

 Date: September 2011

OMG Systems Modeling Language (OMG SysML™)

Version 1.3
(Beta Specification of the SysML 1.3 RTF, with change bars)

OMG Document Number: ptc/2011-08-10
Standard Specification URL: http://www.omg.org/spec/SysML/1.3/
Associated Schema File(s), normative:

http://www.omg.org/spec/SysML/20110919/SysML.xmi
(source XMI document: ptc/2011-08-11)

Associated Schema File(s), non-normative:
http://www.omg.org/spec/SysML/20110919/ISO-80000-1-QUDV.xmii
http://www.omg.org/spec/SysML/20110919/ISO-80000-1-SysML.xmi
http://www.omg.org/spec/SysML/20110919/ QUDV.xmi
(source XMI document: ptc/2011-08-12)

Refer to the Roadmap located in the Preface for a list of documents that were generated as part of
the adoption, finalization, and revision process.

http://www.omg.org/spec/SysML/1.2/
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi

Issue: Editorial Comment - update list of copyright holders and copyright dates prior to final publication

Copyright © 2003-2006, American Systems Corporation
Copyright © 2003-2006, ARTiSAN Software Tools
Copyright © 2003-2006, BAE SYSTEMS
Copyright © 2003-2006, The Boeing Company
Copyright © 2003-2006, Ceira Technologies
Copyright © 2003-2006, Deere & Company
Copyright © 2003-2006, EADS Astrium GmbH
Copyright © 2003-2006, EmbeddedPlus Engineering
Copyright © 2003-2006, Eurostep Group AB
Copyright © 2003-2006, Gentleware AG
Copyright © 2003-2006, I-Logix, Inc.
Copyright © 2003-2006, International Business Machines
Copyright © 2003-2006, International Council on Systems Engineering
Copyright © 2003-2006, Israel Aircraft Industries
Copyright © 2003-2006, Lockheed Martin Corporation
Copyright © 2003-2006, Mentor Graphics
Copyright © 2003-2006, Motorola, Inc.
Copyright © 2003-2006, Northrop Grumman
Copyright © 1997-2010, Object Management Group
Copyright © 2003-2006, oose Innovative Informatik GmbH
Copyright © 2003-2006, PivotPoint Technology Corporation
Copyright © 2003-2006, Raytheon Company
Copyright © 2003-2006, Sparx Systems
Copyright © 2003-2006, Telelogic AB
Copyright © 2003-2006, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

The specification customizes the Unified Modeling Language (UML) specification of the Object Management Group
(OMG) to address the requirements of Systems Engineering as specified in the UML for Systems Engineering RFP, OMG
document number ad/2003-03-41. This document includes references to and excerpts from the UML 2 Superstructure
Specification and UML 2 Infrastructure Specification with copyright holders and conditions as noted in those documents.

LICENSES

Redistribution and use of this specification, with or without modification, are permitted provided that the following
conditions are met: (1) Redistributions of this specification must reproduce the above copyright notice, this list of

conditions and disclaimers in the documentation and/or other materials provided with the distribution; (2) The Copyright
Holders listed in the above copyright notice may not be used to endorse or promote products derived from this
specification without specific prior written permission; (3) All modified versions of this specification must include a
prominent notice stating how and when the specification was modified; and (4) No modifications to this OMG SysML™
specification may be published under or identified by that name, except for versions published by OMG and incorporating
official changes made through the applicable procedures of OMG. OMG SysML™ is a trademark of OMG, and no
unauthorized version or revision of the OMG SysML specification may use the trademark “OMG SysML” or claim any
connection with or endorsement by OMG.

In accordance with the above copyright provisions, the companies listed above have granted to the Object Management
Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute OMG SysML and to
modify OMG SysML and distribute copies of the modified version. Each of the copyright holders listed above has agreed
that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by
reason of having used the specification set forth herein or having conformed any computer software to the specification.
Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, nonsublicenseable, perpetual, worldwide license, to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy,
and distribute this specification as provided under the Copyright Act. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies
of this document in your possession or control.

This document was derived from the “Systems Modeling Language (SysML) Specification, version 1.0 DRAFT,” OMG
document (ad/2006-03-01) submitted to OMG in response to the “UML for Systems Engineering RFP” (ad/2003-03-41).
Review and editing in the OMG process produced the “OMG SysML Specification Final Adopted Specification” (ptc/
2006-05-04). Subsequent changes to the specification are controlled through the OMG process as documented at the
OMG Technology Document website - http://www.omg.org/technology/documents/.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED “AS IS” AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF

MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The entire risk as to the
quality and performance of software developed using this specification is borne by you. This disclaimer of warranty
constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ , IMM™ , MOF™ , OMG Interface Definition Language (OMG IDL)™ , and
OMG Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other
products or company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The Object Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may
authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or other special
designations to indicate compliance with OMG SysML™. Software developed under the terms of this license may claim
compliance or conformance with this specification if and only if the software compliance is of a nature fully matching the
applicable compliance points as stated in the specification. Software developed only partially matching the applicable
compliance points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object Management
Group, Inc., software developed using this specification may claim compliance or conformance with the specification
only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process
we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Part I - Introduction..1

1 Scope ..3

2 Normative References ..3

3 Additional Information ...4

3.1 Relationships to Other Standards .. 4

3.2 How to Read this Specification .. 4

3.3 Acknowledgments.. 4

4 Language Architecture ..7

4.1 Design Principles ... 8

4.2 Architecture.. 8

4.3 Extension Mechanisms.. 11

4.4 SysML Diagrams.. 11

5 Compliance ... 13

5.1 Compliance with UML Subset (UML4SysML).. 13
5.1.1 Compliance Level Contents13

5.2 Compliance with SysML Extensions .. 15

5.3 Meaning of Compliance ... 16

6 Language Formalism ..17

6.1 Levels of Formalism... 17

6.2 Chapter Specification Structure ... 17
6.2.1 Overview17
6.2.2 Diagram Elements17
6.2.3 UML Extensions17
6.2.4 Usage Examples18

6.3 Conventions and Typography .. 18

Part II - Structural Constructs...19

7 Model Elements .. 21

7.1 Overview.. 21

7.2 Diagram Elements ... 21

7.3 UML Extensions... 25
7.3.1 Diagram Extensions25

7.3.1.1 UML Diagram Elements not Included in SysML..25
7.3.2 Stereotypes25
OMG SysMLTM, v1.2 i

7.3.2.1 Conform...25
7.3.2.2 Problem ...26
7.3.2.3 Rationale ...26
7.3.2.4 View...26
7.3.2.5 Viewpoint ...26

7.4 Usage Examples.. 27

8 Blocks..29

8.1 Overview .. 29

8.2 Diagram Elements ... 30
8.2.1 Block Definition Diagram30
8.2.2 Internal Block Diagram35

8.3 UML Extensions... 36
8.3.1 Diagram Extensions36

8.3.1.1 Block Definition Diagram ...36
8.3.1.2 Internal Block Diagram ..38
8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams........................40
8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams...........................40

8.3.2 Stereotypes41
8.3.2.1 Binding Connector ...42
8.3.2.2 Block..42
8.3.2.3 ConnectorProperty ..45
8.3.2.4 DistributedProperty ..46
8.3.2.5 NestedConnectorEnd ..46
8.3.2.6 ParticipantProperty ..47
8.3.2.7 PropertySpecificType ..47
8.3.2.8 QuantityKind ..48
8.3.2.9 Unit ..48
8.3.2.10 ValueType ...49

8.3.3 Model Libraries49
8.3.3.1 Boolean ...50
8.3.3.2 Complex ..50
8.3.3.3 Integer ...50
8.3.3.4 Number..50
8.3.3.5 Real ...51
8.3.3.6 String ...51

8.4 Usage Examples.. 51
8.4.1 Wheel Hub Assembly51
8.4.2 Example Value Type Definitions53
8.4.3 Design Configuration for SUV EPA Fuel Economy Test54
8.4.4 Water Delivery54

9 Ports and Flows...57

9.1 Overview .. 57
9.1.1 Ports57
9.1.2 Flow Properties, Provided and Required Features, and Nested Ports57
9.1.3 Proxy Ports and Full Ports58
9.1.4 Item Flows58
9.1.5 Deprecation of Flow Ports and Flow Specifications59
ii OMG SysMLTM, v1.2

9.2 Diagram Elements ... 59
9.2.1 Block Definition Diagram60
9.2.2 Internal Block Diagram63

9.3 UML Extensions... 64
9.3.1 Diagram Extensions64

9.3.1.1 DirectedFeature... 64
9.3.1.2 FlowProperty ...64
9.3.1.3 FullPort ..64
9.3.1.4 InvocationOnNestedPortAction ...65
9.3.1.5 ItemFlow.. 65
9.3.1.6 Port ..65
9.3.1.7 ProxyPort...66
9.3.1.8 TriggerOnNestedPort ..66

9.3.2 Stereotypes66
9.3.2.1 AcceptChangeStructuralFeatureEventAction .. 68
9.3.2.2 Block..69
9.3.2.3 ChangeStructuralFeatureEvent ...69
9.3.2.4 DirectedFeature... 70
9.3.2.5 FeatureDirection ..71
9.3.2.6 FlowDirection...72
9.3.2.7 FlowProperty ...72
9.3.2.8 FullPort ..74
9.3.2.9 InterfaceBlock.. 75
9.3.2.10 InvocationOnNestedPortAction ...75
9.3.2.11 ItemFlow..76
9.3.2.12 ProxyPort... 77
9.3.2.13 TriggerOnNestedPort .. 78

9.4 Usage Examples.. 79
9.4.1 Ports with Required and Provided Features79
9.4.2 Flow Ports and Item Flows80
9.4.3 Ports with Flow Properties80
9.4.4 Proxy and Full Ports81
9.4.5 Association and Port Decomposition82
9.4.6 Item Flow Decomposition86

10 Constraint Blocks ..69

10.1 Overview.. 69

10.2 Diagram Elements ... 70
10.2.1 Block Definition Diagram70
10.2.2 Parametric Diagram70

10.3 UML Extensions... 71
10.3.1 Diagram Extensions71

10.3.1.1 Block Definition Diagram .. 71
10.3.1.2 Parametric Diagram.. 71

10.3.2 Stereotypes72
10.3.2.1 ConstraintBlock ...73
10.3.2.2 ConstraintProperty... 73

10.4 Usage Examples.. 73
10.4.1 Definition of Constraint Blocks on a Block Definition Diagram73
OMG SysMLTM, v1.2 iii

10.4.2 Usage of Constraint Blocks on a Parametric Diagram74

Part III - Behavioral Constructs ..75

11 Activities ...77

11.1 Overview .. 77
11.1.1 Control as Data77
11.1.2 Continuous Systems77
11.1.3 Probability77
11.1.4 Activities as Blocks78
11.1.5 Timelines78

11.2 Diagram Elements ... 78
11.2.1 Activity Diagram78

11.3 UML Extensions... 85
11.3.1 Diagram Extensions85

11.3.1.1 Activity ...86
11.3.1.2 CallBehaviorAction ..87
11.3.1.3 ControlFlow ...88
11.3.1.4 ObjectNode..88

11.3.2 Stereotypes89
11.3.2.1 Continuous ..90
11.3.2.2 ControlOperator ...91
11.3.2.3 Discrete ...91
11.3.2.4 NoBuffer ..91
11.3.2.5 Overwrite ...92
11.3.2.6 Optional ...92
11.3.2.7 Probability ..92
11.3.2.8 Rate ...93

11.3.3 Model Libraries93
11.3.3.1 ControlValue..93

11.4 Usage Examples.. 94

12 Interactions..99

12.1 Overview .. 99

12.2 Diagram Elements ... 99
12.2.1 Sequence Diagram99

12.3 UML Extensions... 103
12.3.1 Diagram Extensions103

12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and
 Timing Diagram ...103

12.4 Usage Examples.. 104
12.4.1 Sequence Diagrams104

13 State Machines..105

13.1 Overview .. 105

13.2 Diagram Elements ... 105
13.2.1 State Machine Diagram105
iv OMG SysMLTM, v1.2

13.3 UML Extensions... 108

13.4 Usage Examples.. 108
13.4.1 State Machine Diagram108

14 Use Cases... 109

14.1 Overview.. 109

14.2 Diagram Elements ... 109
14.2.1 Use Case Diagram109

14.3 UML Extensions... 111

14.4 Usage Examples.. 111

Part IV - Crosscutting Constructs...113

15 Allocations... 115

15.1 Overview.. 115

15.2 Diagram Elements ... 115
15.2.1 Representing Allocation on Diagrams116

15.3 UML Extensions.. 117
15.3.1 Diagram Extensions117

15.3.1.1 Tables..117
15.3.1.2 Allocate Relationship Rendering ... 117
15.3.1.3 Allocated Property Compartment Format ..117
15.3.1.4 Allocated Property Callout Format...117
15.3.1.5 AllocatedActivityPartition Label ...118

15.3.2 Stereotypes118
15.3.2.1 Allocate(from Allocations).. 118
15.3.2.2 Allocated(from Allocations)..119
15.3.2.3 AllocateActivityPartition(from Allocations) ... 120

15.4 Usage Examples.. 120
15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks121
15.4.2 Allocate Flow122

15.4.2.1 Allocating Structure ..123
15.4.2.2 Automotive Example ...123

15.4.3 Tabular Representation124

16 Requirements..125

16.1 Overview.. 125

16.2 Diagram Elements ... 127
16.2.1 Requirement Diagram127

16.3 UML Extensions... 130
16.3.1 Diagram Extensions130

16.3.1.1 Requirement Diagram ...130
16.3.1.2 Requirement Notation.. 130
16.3.1.3 Requirement Property Callout Format...130
16.3.1.4 Requirements on Other Diagrams...130
16.3.1.5 Requirements Table ..131
OMG SysMLTM, v1.2 v

16.3.2 Stereotypes132
16.3.2.1 Copy ..133
16.3.2.2 DeriveReqt...133
16.3.2.3 Requirement ..134
16.3.2.4 RequirementRelated..135
16.3.2.5 TestCase ...135
16.3.2.6 Satisfy ..135
16.3.2.7 Verify ...135

16.4 Usage Examples.. 136
16.4.1 Requirement Decomposition and Traceability136
16.4.2 Requirements and Design Elements136
16.4.3 Requirements Reuse138
16.4.4 Verification Procedure (Test Case)139

17 Profiles & Model Libraries ...141

17.1 Overview .. 141

17.2 Diagram Elements ... 142
17.2.1 Profile Definition in Package Diagram142

17.2.1.1 Extension...144
17.2.2 Stereotypes Used On Diagrams145

17.2.2.1 StereotypeInNode..146
17.2.2.2
17.2.2.3 StereotypeInCompartment ..147

17.3 UML Extensions... 147

17.4 Usage Examples.. 147
17.4.1 Defining a Profile147
17.4.2 Adding Stereotypes to a Profile149
17.4.3 Defining a Model Library that Uses a Profile150
17.4.4 Guidance on Whether to Use a Stereotype or Class150
17.4.5 Using a Profile151
17.4.6 Using a Stereotype152
17.4.7 Using a Model Library Element152

Part V - Annexes ..153

Annex A: Diagrams ..155

A.1 Overview.. 155

A.2 Guidelines.. 159

Annex B: Deprecated Elements ...155

B.1 Overview.. 155
B.1.1 Flow Ports155

B.2 Diagram Elements ... 156
B.2.1 Block Definition Diagram156
B.2.2 Internal Block Diagram157

B.3 UML Extensions .. 159
B.3.1 Diagram Extensions159
vi OMG SysMLTM, v1.2

B.3.1.1 FlowPort .. 159
B.3.1.2 FlowSpecification .. 159

B.3.2 Stereotypes159
B.3.2.1 FlowPort .. 159
B.3.2.2 FlowSpecification .. 161
B.3.2.3 ItemFlow (deprecated compatibility rule) ..161

B.4 Transitioning SysML 1.2 Flow Ports to SysML 1.3 Ports
(informative) .. 162

Annex C: Sample Problem...161

C.1 Purpose ... 161

C.2 Scope .. 161

C.3 Problem Summary... 161

C.4 Diagrams... 162
C.4.1 Package Overview (Structure of the Sample Model)162

C.4.1.1 Package Diagram - Applying the SysML Profile ..162
C.4.1.2 Package Diagram - Showing Package Structure of the Model ...163

C.4.2 Setting the Context (Boundaries and Use Cases)164
C.4.2.1 Internal Block Diagram - Setting Context..164
C.4.2.2 Use Case Diagram - Top Level Use Cases ..165
C.4.2.3 Use Case Diagram - Operational Use Cases ...166

C.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)167
C.4.3.1 Sequence Diagram - Drive Black Box... 167
C.4.3.2 State Machine Diagram - HSUV Operational States ..168
C.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box..169

C.4.4 Establishing Requirements (Requirements Diagrams and Tables)171
C.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy..171
C.4.4.2 Requirement Diagram - Derived Requirements..171
C.4.4.3 Requirement Diagram - Acceleration Requirement Relationships....................................172
C.4.4.4 Table - Requirements Table ... 173

C.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block
Diagrams)174

C.4.5.1 Block Definition Diagram - Automotive Domain ..174
C.4.5.2 Block Definition Diagram - Hybrid SUV...175
C.4.5.3 Internal Block Diagram - Hybrid SUV..176
C.4.5.4 Block Definition Diagram - Power Subsystem ..177
C.4.5.5 Internal Block Diagram for the “Power Subsystem” ..177

C.4.6 Defining Ports and Flows179
C.4.6.1 Block Definition Diagra - ICE Flow Properties ..179
C.4.6.2 Internal Block Diagram - CANbus ... 179
C.4.6.3 Block Definition Diagram - Fuel Flow Properties ..180
C.4.6.4 Parametric Diagram - Fuel Flow ...181
C.4.6.5 Internal Block Diagram - Fuel Distribution ..181

C.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)182
C.4.7.1 Block Definition Diagram - Analysis Context...182
C.4.7.2 Package Diagram - Performance View Definition...183
C.4.7.3 Parametric Diagram - Measures of Effectiveness...184
C.4.7.4 Parametric Diagram - Economy..185
C.4.7.5 Parametric Diagram - Dynamics ...186
C.4.7.6 (Non-Normative) Timing Diagram - 100hp Acceleration ... 188

C.4.8 Defining, Decomposing, and Allocating Activities190
OMG SysMLTM, v1.2 vii

C.4.8.1 Activity Diagram - Acceleration (top level) ..190
C.4.8.2 Block Definition Diagram - Acceleration..191
C.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail) ..191
C.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation193
C.4.8.5 Table - Acceleration Allocation ...193
C.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test194

Annex D: Non-normative Extensions ...195

D.1 Activity Diagram Extensions.. 195
D.1.1 Overview195
D.1.2 Stereotypes195
D.1.3 Stereotype Examples196

D.2 Requirements Diagram Extensions... 198
D.2.1 Overview198
D.2.2 Stereotypes198
D.2.3 Stereotype Examples199

D.3 Parametric Diagram Extensions for Trade Studies ... 200
D.3.1 Overview200
D.3.2 Stereotypes201
D.3.3 Stereotype Examples201

D.4 Model Library of SysML Quantity Kinds and Units for ISO 80000-1 202

D.5 Model Library for Quantities, Units, Dimensions, and Values (QUDV) 204
D.5.1 Overview204
D.5.2 Abstract Syntax204

D.5.2.1 AffineConversionUnit ..208
D.5.2.2 ConversionBasedUnit ...209
D.5.2.3 DerivedQuantityKind ...209
D.5.2.4 DerivedUnit ...209
D.5.2.5 Dimension ...210
D.5.2.6 GeneralConversionUnit...210
D.5.2.7 LinearConversionUnit ...211
D.5.2.8 Prefix...211
D.5.2.9 PrefixedUnit ..212
D.5.2.10 QuantityKind ...212
D.5.2.11 QuantityKindFactor ...213
D.5.2.12 Rational...213
D.5.2.13 Scale ...214
D.5.2.14 ScaleValueDefinition...215
D.5.2.15 SimpleQuantityKind ..215
D.5.2.16 SimpleUnit...215
D.5.2.17 SpecializedQuantityKind ...215
D.5.2.18 SystemOfQuantities ..215
D.5.2.19 SystemOfUnits ..219
D.5.2.20 Unit..221
D.5.2.21 UnitFactor ...221

D.5.3 References222
D.5.4 Usage Examples222

D.5.4.1 SI Unit and QuantityKind examples ..222
D.5.4.2 Spring example ...224

D.6 Distribution Extensions.. 224
viii OMG SysMLTM, v1.2

D.6.1 Overview224
D.6.2 Stereotypes225
D.6.3 Usage Example225

Annex E: Model Interchange...227

D.1 Overview ... 227

D.2 Context for Model Interchange.. 227

D.3 XMI Serialization of SysML ... 227

D.4 SysML Model Interchange Using AP233... 228
D.4.1 Scope of AP233228
D.4.2 STEP Architecture229
D.4.3 EXPRESS229
D.4.4 SysML-AP233 Mapping230

Annex F: Requirements Traceability ...231
OMG SysMLTM, v1.2 ix

x OMG SysMLTM, v1.2

List of Figures

Figure 4.1 - Overview of SysML/UML Interrelationship... 7
Figure 4.2 - SysML Extension of UML.. 9
Figure 4.3 - SysML Package Structure ... 10
Figure 7.1 - Stereotypes defined in package ModelElements... 25
Figure 7.2 - Rationale and Problem examples .. 27
Figure 8.1 - Nested property reference ... 39
Figure 8.2 - Abstract syntax expressions for SysML blocks .. 41
Figure 8.3 - Abstract syntax extensions for SysML properties... 41
Figure 8.4 - Abstract syntax extensions for SysML value types .. 41
Figure 8.5 - Abstract syntax extensions for SysML connector ends .. 42
Figure 8.6 - Abstract syntax extensions for SysML property-specific types.. 42
Figure 8.7 - Model library for primitive value types .. 50
Figure 8.8 - Block diagram for the Wheel Package.. 52
Figure 8.9 - Internal Block Diagram for WheelHubAssembly... 53
Figure 8.10 - Defining Value Types with units of measure from the International System of Units (SI) 53
Figure 9.1 - Port Stereotypes... 67
Figure 9.2 - Stereotypes for Actions on Nested Ports... 67
Figure 9.3 - Stereotypes for Property Value Change Events... 67
Figure 9.4 - Provided and Required Features ... 68
Figure 9.5 - ItemFlow Stereotype ... 68
Figure 9.6 - Usage example of ports with provided and required features ... 80
Figure 9.7 Usage example of proxy and full ports... 82
Figure 9.8 - Water Delivery association block.. 83
Figure 9.9 - Internal structure of Water Delivery association block ... 83
Figure 9.10 - Two views of Water Delivery connector within House block... 84
Figure 9.11 - Specializations of Water Client in house example .. 84
Figure 9.12 - Plumbing association block... 85
Figure 9.13 - Internal structure of Plumbing association block.. 85
Figure 9.14 - Water Delivery association block with internal Plumbing connector 85
Figure 9.15 Usage example of item flows in internal block diagrams .. 86
Figure 9.16 Usage example of item flow decomposition .. 87
Figure 9.17 Usage example of item flow decomposition ... 87
Figure 10.1 Stereotypes defined in SysML ConstraintBlocks package.. 72
Figure 11.1 - Block definition diagram with activities as blocks.. 86
Figure 11.2 - CallBehaviorAction notation.with behavior stereotype .. 87
Figure 11.3 - CallBehaviorAction notation.with action name .. 87
Figure 11.4 - Control flow notation .. 88
Figure 11.5 - Block definition diagram with activities as blocks associated with types of object nodes . 88
Figure 11.6 - ObjectNode notation in activity diagrams... 89
OMG SysMLTM, v1.2 ix

Figure 11.7 - ObjectNode notation in activity diagrams..89
Figure 11.8 - Abstract Syntax for SysML Activity Extensions ...90
Figure 11.9 - Control values...93
Figure 11.10 - Continuous system example 1..95
Figure 11.11 - Continuous system example 2 ..96
Figure 11.12 Continuous system example 3 ..96
Figure 11.13 - Example block definition diagram for activity decomposition ..97
Figure 11.14 - Example block definition diagram for object node types...97
Figure 15.1 - Abstract syntax extensions for SysML Allocation...118
Figure 15.2 - Abstract syntax expression for AllocatedActivityPartition..118
Figure 15.3 - Generic Allocation, including /from and /to association ends ...121
Figure 15.4 - Behavior allocation ..121
Figure 15.5 - Example of flow allocation from ObjectFlow to Connector..122
Figure 15.6 - Example of flow allocation from ObjectFlow to ItemFlow...122
Figure 15.7 - Example of flow allocation from ObjectNode to FlowProperty ..123
Figure 15.8 - Example of Structural Allocation...123
Figure 15.9 - Allocation Matrix Showing Allocation for Hybrid SUV Accelerate Example124
Figure 16.1 - Abstract Syntax for Requirements Stereotypes..132
Figure 16.2 - Abstract Syntax for Requirements Stereotypes (cont) ...133
Figure 16.3 - Requirements Derivation ...136
Figure 16.4 - Links between requirements and design ..137
Figure 16.5 - Requirement satisfaction in an internal block diagram..138
Figure 16.6 - Use of the copy dependency to facilitate reuse ..138
Figure 16.7 - Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram...139
Figure 16.8 - Linkage of a Test Case to a requirement: This figure shows the Test Case as a State

Diagram..140
Figure 17.1 - Defining a stereotype ...144
Figure 17.2 - Using a stereotype ..146
Figure 17.3 - Using stereotypes and showing values...146
Figure 17.4 - Other notational forms for showing values ..147
Figure 17.5 - Definition of a profile...148
Figure 17.6 - Profile Contents..149
Figure 17.7 - Two model libraries..150
Figure 17.8 - A model with applied profile and imported model library ..151
Figure 17.9 - Using two stereotypes on a model element..152
Figure 17.10 - Using model library elements ..152
Figure A.1 - SysML Diagram Taxonomy ..156
Figure A.2 - Diagram Frame..157
x OMG SysMLTM, v1.2

Figure A.3 - Diagram Usages ... 159
Figure A.4 - Optional Form of Line Crossing .. 160
Figure C.1 - Establishing the User Model by Importing and Applying SysML Profile & Model Library

(Package Diagram).. 162
Figure C.2 - Defining valueTypes and units to be Used in the Sample Problem.................................... 163
Figure C.3 - Establishing Structure of the User Model using Packages and Views (Package Diagram) 164
Figure C.4 - Establishing the Context of the Hybrid SUV System using a User-Defined Context

Diagram. (Internal Block Diagram) Completeness of Diagram Noted in Diagram
Description .. 165

Figure C.5 - Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram) 166
Figure C.6 - Establishing Operational Use Cases for “Drive the Vehicle” (Use Case Diagram) 167
Figure C.7 - Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram)

168
Figure C.8 - Finite State Machine Associated with “Drive the Vehicle” (State Machine Diagram) 169
Figure C.9 - Black Box Interaction for “StartVehicle,” referencing White Box Interaction (Sequence

Diagram) ... 170
Figure C.10 - White Box Interaction for “StartVehicle” (Sequence Diagram)....................................... 170
Figure C.11 - Establishing HSUV Requirements Hierarchy (containment) - (Requirements Diagram) 171
Figure C.12 - Establishing Derived Requirements and Rationale from Lowest Tier of Requirements

Hierarchy (Requirements Diagram).. 172
Figure C.13 - Acceleration Requirement Relationships (Requirements Diagram) 173
Figure C.14 - Requirements Relationships Expressed in Tabular Format (Table) 174
Figure C.15 - Defining the Automotive Domain (compare with Figure C.4) - (Block Definition

Diagram) ... 175
Figure C.16 - Defining Structure of the Hybrid SUV System (Block Definition Diagram) 175
Figure C.17 - Internal Structure of Hybrid SUV (Internal Block Diagram)... 176
Figure C.18 - Defining Structure of Power Subsystem (Block Definition Diagram)............................. 177
Figure C.19 - Internal Structure of the Power Subsystem (Internal Block Diagram)............................. 178
Figure C.20 - Blocks Typing Ports in the Power Subsystem (Block Definition Diagram) 178
Figure C.21 - Initially Defining Port Types with Flow Properties for the CAN Bus (Block Definition

Diagram) ... 179
Figure C.22 - Consolidating Connectors into the CAN Bus. (Internal Block Diagram) 180
Figure C.23 - Elaborating Definition of Fuel Flow. (Block Definition Diagram) 181
Figure C.24 - Defining Fuel Flow Constraints (Parametric Diagram) ... 181
Figure C.25 - Detailed Internal Structure of Fuel Delivery Subsystem (Internal Block Diagram) 182
Figure C.26 - Defining Analyses for Hybrid SUV Engineering Development (Block Definition Diagram)

183
Figure C.27 - Establishing a Performance View of the User Model (Package Diagram)....................... 184
Figure C.28 - Defining Measures of Effectiveness and Key Relationships (Parametric Diagram)........ 185
Figure C.29 - Establishing Mathematical Relationships for Fuel Economy Calculations (Parametric

Diagram) ... 186
Figure C.30 - Straight Line Vehicle Dynamics Mathematical Model (Parametric Diagram)................. 187
OMG SysMLTM, v1.2 xi

Figure C.31 - Defining Straight-Line Vehicle Dynamics Mathematical Constraints (Block Definition
Diagram) ..188

Figure C.32 - Results of Maximum Acceleration Analysis (Timing Diagram).......................................189
Figure C.33 - Behavior Model for “Accelerate” Function (Activity Diagram).......................................190
Figure C.34 - Decomposition of “Accelerate” Function (Block Definition diagram).............................191
Figure C.35 - Detailed Behavior Model for “Provide Power” (Activity Diagram)

Note hierarchical consistency with Figure C.33. ...192
Figure C.36 - Flow Allocation to Power Subsystem (Internal Block Diagram)......................................193
Figure C.37 - Tabular Representation of Allocation from “Accelerate” Behavior Model to Power

Subsystem (Table)..194
Figure C.38 - Special Case of Internal Block Diagram Showing Reference to Specific Properties (serial

numbers) ..195
Figure D.1 - Example activity with «effbd» stereotype applied ..197
Figure D.2 - Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities

197
Figure D.3 - Example extensions to Requirement ..200
Figure D.4 - Model library of SysML Quantity Kinds and Units for ISO 80000-1202
Figure D.5 - ISQ base quantities and SI base units...202
Figure D.6 - ISQ derived quantities and SI derived units with special names203
Figure D.7 - ISQ derived quantities and SI derived units with special names for human health203
Figure D.8 - QUDV Concepts diagram ..206
Figure D.9 - QUDV Unit diagram ..207
Figure D.10 - QUDV QuantityKind diagram ...208
Figure D.11 - Base Unit and Quantity Kinds of the SI and ISQ respectively...223
Figure D.12 - Example of a derived unit and derived quantity kind ..223
Figure D.13 - Spring Length Example..224
Figure D.14 - Basic distribution stereotypes...225
Figure D.15 - Distribution Example ..226
Figure D.1 - SysML/AP233 Data Overlaps ...228
xii OMG SysMLTM, v1.2

List of Tables

Table 4.1 - UML 2 metaclasses excluded from the UML4SysML subset .. 8
Table 5.1 - Elements available in SysML Compliance Level 1 .. 13
Table 5.2 - Elements available in SysML Compliance Level 2 .. 14
Table 5.3 - Elements available in SysML Compliance Level 3 .. 15
Table 5.4 - SysML package dependence on SysML compliance levels ... 16
Table 5.5 - Example Compliance Statement ... 17
Table 5.6 - Example feature support statement ... 18
Table 7.1 - Graphical nodes defined by ModelElements package .. 22
Table 7.2 - Graphical paths defined by ModelElements package ... 24
Table 8.1 - Graphical nodes defined in Block Definition diagrams.. 30
Table 8.2 - Graphical paths defined by in Block Definition diagrams.. 33
Table 8.3 - Graphical nodes defined in Internal Block diagrams.. 35
Table 8.4 - Graphical paths defined in Internal Block diagrams... 36
Table 9.1 - Graphical nodes defined in Block Definition diagrams.. 60
Table 9.2 - Graphical nodes defined in Internal Block diagrams.. 63
Table 10.1 - Graphical nodes defined in Block Definition diagrams.. 70
Table 10.2 - Graphical nodes defined in Parametric diagrams. .. 70
Table 11.1 - Graphical nodes included in activity diagrams ... 78
Table 11.2 - Graphical paths included in activity diagrams .. 83
Table 11.3 - Other graphical elements included in activity diagrams ... 85
Table 12.1 - Graphical nodes included in sequence diagrams. ... 99
Table 12.2 - Graphical paths included in sequence diagram... 103
Table 13.1 - Graphical nodes included in state machine diagrams ... 105
Table 13.2 - Graphical paths included in state machine diagrams .. 108
Table 14.1 - Graphical nodes included in Use Case diagrams .. 109
Table 14.2 - Graphical paths included in Use Case diagrams... 110
Table 15.1 - Extension to graphical nodes included in diagrams.. 116
Table 16.1 - Graphical nodes included in Requirement diagrams .. 127
Table 16.2 - Graphical paths included in Requirement diagrams ... 128
Table 17.1 - Graphical nodes used in profile definition.. 142
Table 17.2 - Graphical paths used in profile definition... 143
Table 17.3 - Notations for Stereotype Use .. 145
Table B.1 - Graphical nodes defined in block definition diagrams... 156
Table B.2 - Graphical nodes defined in internal block diagrams .. 157
Table D.1 - Addition stereotypes for EFFBDs.. 195
Table D.2 - Streaming options for activities ... 196
Table D.3 - Additional Requirement Stereotypes ... 198
Table D.4 - Requirement property enumeration types .. 199
OMG SysMLTM, v1.2 xi

Table D.5 - Stereotypes for Measures of Effectiveness ...201
Table D.6 - Distribution Stereotypes..225
xii OMG SysMLTM, v1.2

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications

• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications

• CORBAservices
OMG SysMLTM, v1.2 xiii

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. (as of
January 16, 2006) at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.

OMG SysML™ Roadmap

Requirements for SysML were originally specified by:

ad/2003-03-41 (UML for Systems Engineering RFP)

The source documents for this specification include:
xiv OMG SysMLTM, v1.2

Alpha: ad/2006-03-01 (submission)
ad/2006-04-07 (errata)
ad/2006-03-04 (glossary)

Associated Schema files: ad/2006-03-02 (XMI)

The Finalization Task Force (FTF) process generated the following documents:

Beta 1: ptc/2006-05-04 (a.k.a. Final Adopted Specification)

Beta 2: ptc/2007-03-19 (FTF Report - full record of FTF votes and issue resolutions
ptc/2007-02-03, ptc/2007-03-04 (a.k.a. convenience document, with and without change bars)
ptc/2007-02-05 (XMI)
ptc/2007-03-09 (Annex E - Requirements Traceability)

Version 1.0 Formal Specification: formal/2007-09-01

The SysML 1.1 Revision Task Force (FTF) process generated the following documents:

ptc/2008-05-15 (RTF Report - full record of RTF votes and issue resolutions)
ptc/2008-05-16, ptc/2008-05-17 (a.k.a. convenience document, with and without change bars)
ptc/2008-05-18 (XMI)

Version 1.1 Formal Specification: formal/2008-11-01, formal/2008-11-02

Associated schema files for this specification, at http://www.omg.org/spec/SysML/20090501/, include the following files:

SysML-profile.xmi XMI 2.1 serialization of the SysML Profile
Activities-model.xmi XMI 2.1 serialization of the Activities model library
Blocks-model.xmi XMI 2.1 serialization of the Blocks model library
UML4SysML-metamodel.xmi XMI 2.1 serialization of the merged UML4SysML subset of UML 2

(used to define the SysML Profile)

The SysML 1.2 Revision Task Force (RTF) process generated the following documents:

ptc/2009-08-13 (RTF Report - full record of RTF votes and issue resolutions)
ptc/2009-08-14 (Submission inventory document)
ptc/2009-08-15, ptc/2009-08-16 (Beta 1 “convenience document,” with and without change bars)
ptc/2009-08-17 (XMI)

Version 1.2 Formal Specification: formal/2010-06-01, formal/2010-06-02

Associated schema files for this specification, at http://www.omg.org/spec/SysML/20100301/, include the following files:

SysML-profile.uml XMI 2.1 serialization of the SysML Profile
UML4SysML-metamodel.uml XMI 2.1 serialization of the merged UML4SysML subset of UML 2

(used to define the SysML Profile)
Activities-model.xmi XMI 2.1 serialization of the Activities model library
Blocks-model.xmi XMI 2.1 serialization of the Blocks model library
OMG SysMLTM, v1.2 xv

http://schema.omg.org/spec/SysML/20090501/
http://schema.omg.org/spec/SysML/20090817/

Issue: Editorial Change – add standard trail of revision history

The SysML 1.3 Revision Task Force (RTF) process generated the following documents:

ptc/2011-08-08 (RTF Report - full record of RTF votes and issue resolutions)
ptc/2011-08-07 (Submission inventory document)
ptc/2011-08-09, ptc/2011-08-10 (Beta “convenience document,” with and without change bars)
ptc/2011-08-11, ptc/2011-08-12 (Normative and non-normative XMI)
xvi OMG SysMLTM, v1.2

Part I - Introduction

This specification defines a general-purpose modeling language for systems engineering applications, called the OMG
Systems Modeling Language (OMG SysML™). Throughout the rest of the specification, the language will be referred to
as SysML.

SysML supports the specification, analysis, design, verification, and validation of a broad range of complex systems.
These systems may include hardware, software, information, processes, personnel, and facilities.

The origins of the SysML initiative can be traced to a strategic decision by the International Council on Systems
Engineering’s (INCOSE) Model Driven Systems Design workgroup in January 2001 to customize the Unified Modeling
Language (UML) for systems engineering applications. This resulted in a collaborative effort between INCOSE and the
Object Management Group (OMG), which maintains the UML specification, to jointly charter the OMG Systems
Engineering Domain Special Interest Group (SE DSIG) in July 2001. The SE DSIG, with support from INCOSE and the
ISO AP 233 workgroup, developed the requirements for the modeling language, which were subsequently issued by the
OMG as part of the UML for Systems Engineering Request for Proposal (UML for SE RFP; OMG document ad/2003-03-
41) in March 2003.

Currently it is common practice for systems engineers to use a wide range of modeling languages, tools, and techniques
on large systems projects. In a manner similar to how UML unified the modeling languages used in the software industry,
SysML is intended to unify the diverse modeling languages currently used by systems engineers.

SysML reuses a subset of UML 2 and provides additional extensions needed to address the requirements in the UML for
SE RFP. SysML uses the UML 2 extension mechanisms as further elaborated in Chapter 17, “Profiles & Model Libraries”
of this specification as the primary mechanism to specify the extensions to UML 2.

Since SysML uses UML 2 as its foundation, systems engineers modeling with SysML and software engineers modeling
with UML 2 will be able to collaborate on models of software-intensive systems. This will improve communication
among the various stakeholders who participate in the systems development process and promote interoperability among
modeling tools. It is anticipated that SysML will be customized to model domain-specific applications, such as
automotive, aerospace, communication, and information systems.
OMG SysMLTM, v1.2 1

2 OMG SysMLTM, v1.2

1 Scope

The purpose of this document is to specify the Systems Modeling Language (SysML), a general-purpose modeling
language for systems engineering that satisfies the requirements of the UML for Systems Engineering RFP. Its intent is
to specify the language so that systems engineering modelers may learn to apply and use SysML, modeling tool vendors
may implement and support SysML, and both can provide feedback to improve future versions.

SysML reuses a subset of UML 2 and provides additional extensions to satisfy the requirements of the language. This
specification documents the language architecture in terms of the parts of UML 2 that are reused and the extensions to
UML 2. The specification includes the concrete syntax (notation) for the complete language and specifies the extensions
to UML 2. The reusable portion of the UML 2 specification is not included directly in the specification but is included by
reference. The specification also provides examples of how the language can be used to solve common systems
engineering problems.

SysML is designed to provide simple but powerful constructs for modeling a wide range of systems engineering
problems. It is particularly effective in specifying requirements, structure, behavior, allocations, and constraints on system
properties to support engineering analysis. The language is intended to support multiple processes and methods such as
structured, object-oriented, and others, but each methodology may impose additional constraints on how a construct or
diagram kind may be used. This version of the language supports most, but not all, of the requirements of the UML for
Systems Engineering RFP, as shown in the Requirements Traceability Matrix referenced by Annex F. These gaps are
intended to be addressed in future versions of SysML as indicated in the matrix.

The following sections provide background information about this specification. Instructions for both systems engineers
and tool vendors who read this specification are provided in Section 3.2, “How to Read this Specification.” The main
body of this document (Parts II-IV) describes the normative technical content of the specification. The annexes include
additional information to aid in understanding and implementation of this specification.

NOTE: Refer to Chapter 5 for detailed Compliance information.

2 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. Refer to the OMG site for subsequent amendments to, or revisions of, any of these publications.

Issue: 15876 – Define the SysML profile as referencing UML and replace the UML4SysML subset with OCL
constraints

• Unified Modeling Language: Superstructure, Version 2.4.1 (http://www.omg.org/spec/UML/2.4.1/Superstructure/)

• Unified Modeling Language: Infrastructure, Version 2.4.1 (http://www.omg.org/spec/UML/2.4.1/Infrastructure/)

Issue: 16396 – Improvements to QUDV for SysML v1.3

• Object Constraint Language (OCL), Version 2.3 (http://www.omg.org/spec/OCL/2.3/)

Issue: 15876 – Define the SysML profile as referencing UML and replace the UML4SysML subset with OCL
OMG SysMLTM , v1.2 3

constraints

• MOF 2 XMI Mapping, Version 2.4 (http://www.omg.org/spec/XMI/2.4)

3 Additional Information

3.1 Relationships to Other Standards

SysML is defined as an extension of the OMG UML 2 Superstructure specification. See Chapter 2, “Normative
References,” for the current version of the UML 2 Superstructure specification.

SysML is intended to be supported by two evolving interoperability standards including the OMG XMI 2.1 model
interchange standard for UML 2 modeling tools and the ISO 10303 STEP AP233 data interchange standard for systems
engineering tools. Overviews of the approach to model interchange and relevant references are included in Annex E.

SysML supports the OMG’s Model Driven Architecture (MDA) initiative by its reuse of UML and related standards.

3.2 How to Read this Specification

This specification is intended to be read by systems engineers so they may learn and apply SysML, and by modeling tool
vendors so they may implement and support SysML. As background, all readers are encouraged to first read Part I,
“Introduction.”

After reading the introduction readers should be prepared to explore the user-level constructs defined in the next three
parts: Part II, “Structural Constructs,” Part III, “Behavioral Constructs,” and Part IV, “Crosscutting Constructs.” Systems
engineers should read the Overview, Diagram Elements, and Usage Examples sections in each chapter, and explore the
UML Extensions as they see fit. Modeling tool vendors should read all sections. In addition, systems engineers and
vendors should read Annex C, “Sample Problem,” to understand how the language is applied to an example, and the
document referenced by Annex F, “Requirements Traceability,” to understand how the requirements in the UML for SE
RFP are satisfied by this specification.

Although the chapters are organized into logical groupings that can be read sequentially, this specification can be used for
reference and may be read in a non-sequential manner.

3.3 Acknowledgments

The following companies and organizations submitted or supported parts of the original version of this specification:

Industry

• American Systems Corporation

• BAE SYSTEMS

• Boeing

• Deere & Company

• EADS Astrium

• Eurostep

• Israel Aircraft Industries
4 OMG SysMLTM , v1.2

• Lockheed Martin Corporation

• Motorola

• Northrop Grumman

• oose Innovative Informatik GmbH

• PivotPoint Technology

• Raytheon

• THALES

US Government

• NASA/Jet Propulsion Laboratory

• National Institute of Standards and Technology (NIST)

• DoD/Office of the Secretary of Defense (OSD)

Vendors

• ARTiSAN Software Tools

• Ceira Technologies

• EmbeddedPlus Engineering

• Gentleware

• IBM

• I-Logix

• Mentor Graphics

• Telelogic

• Structured Software Systems Limited

• Sparx Systems

• Vitech

Academia

• Georgia Institute of Technology

Liaisons

• Consultative Committee for Space Data Systems (CCSDS)

• Embedded Architecture and Software Technologies (EAST)

• International Council on Systems Engineering (INCOSE)

• ISO STEP AP233

• Systems Level Design Language (SLDL) and Rosetta

The following persons were members of the team that designed and wrote this specification: Vincent Arnould, Laurent
Balmelli, Ian Bailey, James Baker, Cory Bialowas, Conrad Bock, Carolyn Boettcher, Roger Burkhart, Murray Cantor,
Bruce Douglass, Harald Eisenmann, Anders Ek, Brenda Ellis, Marilyn Escue, Sanford Friedenthal, Eran Gery, Hal
Hamilton, Dwayne Hardy, James Hummel, Cris Kobryn, Michael Latta, John Low, Robert Long, Kumar Marimuthu, Alan
Moore, Véronique Normand, Salah Obeid, Eldad Palachi, David Price, Bran Selic, Chris Sibbald, Joseph Skipper, Rick
Steiner, Robert Thompson, Jim U’Ren, Tim Weilkiens, Thomas Weigert, and Brian Willard.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Perry Alexander, Michael Chonoles, Mike Dickerson, Orazio Gurrieri, Julian Johnson, Jim
Long, Henrik Lönn, Stephen Mellor, Dave Oliver, Jim Schier, Matthias Weber, Peter Shames, and the Georgia Institute of
OMG SysMLTM , v1.2 5

Technology research team including Manas Bajaj, Injoong Kim, Chris Paredis, Russell Peak, and Diego Tamburini. The
SysML team also wants to acknowledge Pavel Hruby and his contribution by providing the Visio stencil for UML 2 that
was adapted for most of the figures throughout this specification.

Issue: Editorial Comment - review the following acknowledgments based on contributors to SysML 1.3 RTF

Additional organizations and individuals have contributed to further revisions of this specification, as completed by
Finalization and Revision Task Forces listed under the OMG SysML Roadmap in the Preface above. Besides those
already acknowledged above for their contributions to the original specification, the following additional persons have
contributed to the Finalization or Revision Task Forces: Yves Bernard, Graham Bleakley, Fraser Chadburn, Hans Peter de
Konig, Sébastien Demathieu, Peter Denno, Huascar Espinoza, Allison Barnard Feeney, Sébastien Gérard, Matthew Hause,
Kenn Hussey, Nerijus Jankevicius, Steve Jenkins, Robert Karban, Darren Kelly, Andreas Korff, Frédéric Mallet, Sam
Mancarella, Julio Medina, Jishnu Mukerji, Chris Paredis, Pete Rivett, Nicolas Rouquette, George Sawyer, Andrius
Strazdauskas, Kritsana Uttamang, John Watson, Bernd Wenzel.
6 OMG SysMLTM , v1.2

4 Language Architecture

SysML reuses a subset of UML 2 and provides additional extensions needed to address requirements in the UML for
Systems Engineering RFP. This specification documents the language architecture in terms of the parts of UML 2 that are
reused and the extensions to UML 2. This chapter explains design principles and how they are applied to define the
SysML language architecture.

Issue: 15876 – Define the SysML profile as referencing UML and replace the UML4SysML subset with OCL
constraints

To visualize the relationship between the UML and SysML languages, consider the Venn diagram shown in Figure 4.1,
where the sets of language constructs that comprise the UML and SysML languages are shown as the circles marked
“UML” and “SysML,” respectively. The intersection of the two circles, shown by the region marked “UML reused by
SysML,” indicates the UML modeling constructs that SysML reuses, called the UML4SysML subset. Table 4.1 lists the
metaclasses that are excluded from the UML4SysML subset.

The region marked “SysML extensions to UML” in Figure 4.1 indicates the new modeling constructs defined for SysML
which have no counterparts in UML, or which replace UML constructs. Note that there is also a part of UML 2 that is not
required to implement SysML, which is shown by the region marked “UML not required by SysML.”

Figure 4.1 - Overview of SysML/UML Interrelationship

Issue: 15876 – Define the SysML profile as referencing UML and replace the UML4SysML subset with OCL
constraints

SysML

UML
not required

by SysML
(UM L – UM L4SysM L)

UML
reused by

SysM L
(UML4SysM L)

SysM L
extensions

to UM L
(SysM L Profile)

UML 2
OMG SysMLTM , v1.2 7

4.1 Design Principles

The fundamental design principles for SysML are:

• Requirements-driven. SysML is intended to satisfy the requirements of the UML for SE RFP.

• UML reuse. SysML reuses UML wherever practical to satisfy the requirements of the RFP, and when modifications
are required, they are done in a manner that strives to minimize changes to the underlying language. Consequently,
SysML is intended to be relatively easy to implement for vendors who support UML 2.

• UML extensions. SysML extends UML as needed to satisfy the requirements of the RFP. The primary extension
mechanism is the UML 2 profile mechanism as further refined in Chapter 17, “Profiles & Model Libraries” of this
specification.

• Partitioning. The package is the basic unit of partitioning in this specification. The packages partition the model
elements into logical groupings that minimize circular dependencies among them.

• Layering. SysML packages are specified as an extension layer to the UML metamodel.

• Interoperability. SysML inherits the XMI interchange capability from UML. SysML is also intended to be supported
by the ISO 10303-233 data interchange standard to support interoperability among other engineering tools.

4.2 Architecture

Issue: 15876 – Define the SysML profile as referencing UML and replace the UML4SysML subset with OCL
constraints

The relationship between SysML and UML 2 is shown in Figure 4.2. SysML extends UML 2's StandardProfileL2 whose
Trace stereotype provides the basis for Requirement traceability in SysML (see Chapter 16, “Requirements”). Although
SysML indirectly imports the UML 2 PrimitiveTypes library due to the transitivity of package import, SysML provides its
own library of primitive value types that systems engineers can extend via SysML's ValueType stereotype.

In the remainder of this document, the unqualified references to Boolean, Integer, Real and String should be interpreted
as follows:

• In the context of the definition of a SysML Stereotype, the name refers to the definition of a UML::PrimitiveType in the
UML2.4.1 PrimitiveTypes library.

• Elsewhere, the name refers to the definition of a SysML::ValueType stereotype of UML::DataType in the SysML
PrimitiveValueTypes library.

Table 4.1 - UML 2 metaclasses excluded from the UML4SysML subset

UML 2 metaclasses excluded from the UML4SysML subset

Artifact, ClassifierTemplateParameter, Collaboration, CollaborationUse, CommunicationPath,
Component, ComponentRealization, ConnectableElementTemplateParameter, Deployment,
DeploymentSpecification, Device, ExceptionHandler, ExecutionEnvironment, ExpansionNode,
ExpansionRegion, Manifestation, Node, OperationTemplateParameter, ProtocolConformance,
ProtocolStateMachine, ProtocolTransition, QualifierValue, ReadLinkObjectEndQualifierAction,
RedefinableTemplateSignature, StringExpression, TemplateBinding, TemplateParameter,
TemplateParameterSubstitution, TemplateSignature
8 OMG SysMLTM , v1.2

Figure 4.2 - SysML Extension of UML

Issue: 16211 – Deprecated elements package
OMG SysMLTM , v1.2 9

Figure 4.3 - SysML Package Structure

Issue: 15876 – Define the SysML profile as referencing UML and replace the UML4SysML subset with OCL
constraints

As previously stated, the design approach for SysML is to reuse a subset of UML and create extensions to support the
specific concepts needed to satisfy the requirements in the UML for SE RFP. The SysML package structure shown in
Figure 4.3 contains a set of packages that correspond to concept areas in SysML that have been extended.

The SysML packages extend UML as follows:

• SysML::Model Elements refactors and extends the UML kernel portion of UML classes.

• SysML::Blocks reuses structured classes from composite structures.

• SysML::ConstraintBlocks extends Blocks to support parametric modeling.

Issue: 16211 – Deprecated elements package

• SysML::Ports and Flows extends UML ports, UML information flows, and SysML Blocks.
10 OMG SysMLTM , v1.2

• SysML::Activities extends UML activities.

• SysML::Allocations extends UML dependencies.

• SysML::Requirements extends UML classes and dependencies.

Issue: 16211 – Deprecated elements package

• SysML::DeprecatedElements extends UML ports, UML interfaces, and SysML Item Flows.

4.3 Extension Mechanisms

This specification uses the following mechanisms to define the SysML extensions:

• UML stereotypes

• UML diagram extensions

• Model libraries

SysML stereotypes define new modeling constructs by extending existing UML 2 constructs with new properties and
constraints. SysML diagram extensions define new diagram notations that supplement diagram notations reused from
UML 2. SysML model libraries describe specialized model elements that are available for reuse. Additional non-
normative extensions are included in Non-normative Extensions.

Issue: 15876 – Define the SysML profile as referencing UML and replace the UML4SysML subset with OCL
constraints

The SysML user model is created by instantiating its metamodel and applying the stereotypes specified in the SysML
profile, and optionally referencing or subclassing the model elements in the SysML model library. Chapter 17, “Profiles
& Model Libraries” describes how profiles and model libraries are applied and how they can be used to further extend
SysML.

4.4 SysML Diagrams

The SysML diagram taxonomy is shown in Figure A.1 in Annex A. The concrete syntax (notation) for the diagrams along
with the corresponding specification of the UML extensions is described in Parts II - IV of this specification. The
Diagrams Annex (Annex A) describes generalized features of diagrams, such as their frames and headings.
OMG SysMLTM , v1.2 11

12 OMG SysMLTM , v1.2

5 Compliance

Compliance with SysML requires that the subset of UML required for SysML is implemented, and that the SysML
extensions to this subset are implemented. To fully comply with SysML, a tool must implement both the concrete syntax
(notation) and abstract syntax (metamodel) for the required UML subset and the SysML extensions. The following
sections elaborate the definition of compliance for SysML.

5.1 Compliance with UML Subset (UML4SysML)

Issue: 15876 – Define the SysML profile as referencing UML and replace the UML4SysML subset with OCL
constraints

The subset of UML required for SysML is specified in terms of a subset of metaclasses imported from the UML 2
metamodel. It is organized in terms of 3 levels of modeling capabilities:

• Level 1 (L1). This level provides the core UML concepts from the UML kernel and adds language units for use cases,
interactions, structures, actions, and activities.

• Level 2 (L2). This level extends the language units already provided in Level 1and adds language units for state
machine modeling and profiles.

• Level 3 (L3). This level represents entire UML subset for SysML by extending the language units already provided in
Level 2 and adding language units for modeling generalization sets, association classes, and information flows and for
model packaging.

These compliance levels are constructed in the same fashion as for UML and readers are referred to the UML
Superstructure specification for further information.

5.1.1 Compliance Level Contents

Issue: 15876 – Define the SysML profile as referencing UML and replace the UML4SysML subset with OCL
constraints

The three compliance levels for SysML are declaratively specified in terms of the set of classifiers other than associations
available at each compliance level (datatypes, metaclasses and stereotypes), as shown in Tables 5.1, 5.2, and 5.3.

Table 5.1 - Elements available in SysML Compliance Level 1

Classifier Kind

UML::AggregationKind, UML::CallConcurrencyKind, UML::MessageKind, UML::MessageSort,
UML::ObjectNodeOrderingKind, UML::ParameterDirectionKind, UML::ParameterEffectKind,
UML::VisibilityKind

DataType

PrimitiveValueTypes::Boolean, PrimitiveValueTypes::Complex, PrimitiveValueTypes::Integer,
PrimitiveValueTypes::Number, PrimitiveValueTypes::Real, PrimitiveValueTypes::String,
SysML::Activities::ControlValue, SysML::Ports&Flows::FeatureDirection, SysML::Requirements::VerdictKind

DataType

PrimitiveTypes::Boolean, PrimitiveTypes::Integer, PrimitiveTypes::Real, PrimitiveTypes::String,
PrimitiveTypes::UnlimitedNatural

PrimitiveType
OMG SysMLTM , v1.2 13

UML::Abstraction, UML::Action, UML::ActionExecutionSpecification, UML::Activity, UML::ActivityEdge,
UML::ActivityFinalNode, UML::ActivityGroup, ML::ActivityNode, UML::ActivityParameterNode, UML::Actor,
UML::AnyReceiveEvent, UML::Association, UML::Behavior, UML::BehaviorExecutionSpecification,
UML::BehavioralFeature, UML::BehavioredClassifier, UML::CallAction, UML::CallBehaviorAction,
UML::CallEvent, UML::CallOperationAction, UML::ChangeEvent, UML::Class, UML::Classifier,
UML::Comment, UML::ConnectableElement, UML::Constraint, UML::ControlFlow, UML::ControlNode,
UML::DataType, UML::Dependency, UML::DeployedArtifact, UML::DeploymentTarget,
UML::DestructionOccurrenceSpecification, UML::DirectedRelationship, UML::Element, UML::ElementImport,
UML::EncapsulatedClassifier, UML::Enumeration, UML::EnumerationLiteral, UML::Event,
UML::ExecutableNode, UML::ExecutionOccurrenceSpecification, UML::ExecutionSpecification,
UML::Expression, UML::Extend, UML::ExtensionPoint, UML::Feature, UML::FinalNode,
UML::FunctionBehavior, UML::GeneralOrdering, UML::Generalization, UML::Include, UML::InitialNode,
UML::InputPin, UML::InstanceSpecification, UML::InstanceValue, UML::Interaction,
UML::InteractionFragment, UML::Interface, UML::InterfaceRealization, UML::InvocationAction, UML::Lifeline,
UML::LiteralBoolean, UML::LiteralInteger, UML::LiteralNull, UML::LiteralReal, UML::LiteralSpecification,
UML::LiteralString, UML::LiteralUnlimitedNatural, UML::Message, UML::MessageEnd, ML::MessageEvent,
UML::MessageOccurrenceSpecification, UML::MultiplicityElement, UML::NamedElement, UML::Namespace,
UML::ObjectFlow, UML::ObjectNode, UML::OccurrenceSpecification, UML::OpaqueAction,
UML::OpaqueBehavior, UML::OpaqueExpression, UML::Operation, UML::OutputPin, UML::Package,
UML::PackageImport, UML::PackageMerge, UML::PackageableElement, UML::Parameter,
UML::ParameterableElement, UML::Pin, UML::PrimitiveType, UML::Property, UML::Realization,
UML::Reception, UML::RedefinableElement, UML::Relationship, UML::SendSignalAction, UML::Signal,
UML::SignalEvent, UML::Slot, UML::StateInvariant, UML::StructuralFeature, UML::StructuredClassifier,
UML::Substitution, UML::Type, UML::TypedElement, UML::Usage, UML::UseCase, UML::ValuePin,
UML::ValueSpecification

Metaclass

SysML::Activities::Continuous, SysML::Activities::ControlOperator, SysML::Activities::Discrete,
SysML::Activities::NoBuffer, SysML::Activities::Optional, SysML::Activities::Overwrite,
SysML::Activities::Rate, SysML::Allocations::Allocate, SysML::Allocations::Allocated, SysML::Blocks::Block,
SysML::Blocks::DistributedProperty, SysML::Blocks::ParticipantProperty,
SysML::Blocks::PropertySpecificType, SysML::Blocks::QuantityKind, SysML::Blocks::Unit,
SysML::Blocks::ValueType, SysML::ConstraintBlocks::ConstraintBlock,
SysML::ConstraintBlocks::ConstraintProperty, SysML::ModelElements::Conform,
SysML::ModelElements::Problem, SysML::ModelElements::Rationale, SysML::ModelElements::View,
SysML::ModelElements::Viewpoint, SysML::Ports&Flows::ChangeStructuralFeatureEvent,
SysML::Ports&Flows::DirectedFeature, SysML::Ports&Flows::FlowProperty,
SysML::Ports&Flows::InterfaceBlock, SysML::Requirements::Copy, SysML::Requirements::DeriveReqt,
SysML::Requirements::Requirement, SysML::Requirements::RequirementRelated,
SysML::Requirements::Satisfy, SysML::Requirements::TestCase, SysML::Requirements::Verify,
StandardProfileL2::Metaclass, StandardProfileL2::Trace

Stereotype

Table 5.2 - Elements available in SysML Compliance Level 2

Classifier Kind

UML::ConnectorKind, UML::InteractionOperatorKind, UML::PseudostateKind, UML::TransitionKind DataType

Table 5.1 - Elements available in SysML Compliance Level 1

Classifier Kind
14 OMG SysMLTM , v1.2

5.2 Compliance with SysML Extensions

Issue: 15876 – Define the SysML profile as referencing UML and replace the UML4SysML subset with OCL
constraints

Issue: 16211 – Deprecated elements package

In addition to UML, further units of compliance for SysML are the subpackages of the SysML profile, except for
DeprecatedElements, which is not a compliance unit. These packages are given by Chapter 4, Language Architecture.

UML::ActionInputPin, UML::ActivityPartition, UML::AddStructuralFeatureValueAction,
UML::AddVariableValueAction, UML::BroadcastSignalAction, UML::CentralBufferNode, UML::Clause,
UML::ClearAssociationAction, UML::ClearStructuralFeatureAction, UML::ClearVariableAction,
UML::CombinedFragment, UML::ConditionalNode, UML::ConnectionPointReference, UML::Connector,
UML::ConnectorEnd (except for Constraint [3]), UML::ConsiderIgnoreFragment, UML::Continuation,
UML::CreateLinkAction, UML::CreateObjectAction, UML::DecisionNode, UML::DestroyLinkAction,
UML::DestroyObjectAction, UML::Duration, UML::DurationConstraint, UML::DurationInterval,
UML::DurationObservation, UML::Extension, UML::ExtensionEnd, UML::FinalState, UML::FlowFinalNode,
UML::ForkNode, UML::Gate, UML::Image, UML::InteractionConstraint, UML::InteractionOperand,
UML::InteractionUse, UML::Interval, UML::IntervalConstraint, UML::JoinNode, UML::LinkAction,
UML::LinkEndCreationData, UML::LinkEndData, UML::LinkEndDestructionData, UML::LoopNode,
UML::MergeNode, UML::Observation, UML::PartDecomposition, UML::Port, UML::Profile,
UML::ProfileApplication, UML::Pseudostate, UML::RaiseExceptionAction, UML::ReadLinkAction,
UML::ReadSelfAction, UML::ReadStructuralFeatureAction, UML::ReadVariableAction, UML::Region,
UML::RemoveStructuralFeatureValueAction, UML::RemoveVariableValueAction, UML::SendObjectAction,
UML::SequenceNode, UML::State, UML::StateMachine, UML::Stereotype, UML::StructuralFeatureAction,
UML::StructuredActivityNode, UML::TestIdentityAction, UML::TimeConstraint, UML::TimeEvent,
UML::TimeExpression, UML::TimeInterval, UML::TimeObservation, UML::Transition,
UML::ValueSpecificationAction, UML::Variable, UML::VariableAction, UML::Vertex, UML::WriteLinkAction,
UML::WriteStructuralFeatureAction, UML::WriteVariableAction

Metaclass

SysML::Allocations::AllocateActivityPartition, SysML::Blocks::BindingConnector,
SysML::Blocks::ConnectorProperty, SysML::Blocks::NestedConnectorEnd, SysML::Ports&Flows::FullPort,
SysML::Ports&Flows::InvocationOnNestedPortAction, SysML::Ports&Flows::ProxyPort,
SysML::Ports&Flows::TriggerOnNestedPort

Stereotype

Table 5.3 - Elements available in SysML Compliance Level 3

Classifier Kind

UML::AcceptCallAction, UML::AcceptEventAction, UML::AssociationClass, UML::CreateLinkObjectAction,
UML::DataStoreNode, UML::GeneralizationSet, UML::InformationFlow, UML::InformationItem,
UML::InterruptibleActivityRegion, UML::Model, UML::ParameterSet, UML::ReadExtentAction,
UML::ReadIsClassifiedObjectAction, UML::ReadLinkObjectEndAction, UML::ReclassifyObjectAction,
UML::ReduceAction, UML::ReplyAction, UML::StartClassifierBehaviorAction,
UML::StartObjectBehaviorAction,UML::UnmarshallAction

Metaclass

SysML::Activities::Probability, SysML::Ports&Flows::AcceptChangeStructuralFeatureEventAction,
SysML::Ports&Flows::ItemFlow

Stereotype

Table 5.2 - Elements available in SysML Compliance Level 2

Classifier Kind
OMG SysMLTM , v1.2 15

For an implementation of SysML to comply with a particular SysML package, it must also comply with any packages on
which the particular package depends. For SysML, this includes not only other SysML packages, but the SysML
compliance level that introduces all the metaclasses extended by stereotypes in that package. The following table
identifies the compliance level of SysML on which each SysML package depends.

5.3 Meaning of Compliance

An implementation of SysML must comply with both the subset of UML4SysML and the SysML extensions as described
above. The meaning of compliance in SysML is based on the UML definition of compliance, excluding diagram
interchange. (Note that diagram interchange is different from model interchange that is included in SysML—refer to XMI
in Annex E, “Model Interchange.”)

Compliance can be defined in terms of the following:

• Abstract syntax compliance. For a given compliance level, this entails:

• compliance with the metaclasses, stereotypes, and model libraries; their structural relationships; and any
constraints defined as part of the abstract syntax for that compliance level; and the ability to output models and to
read in models based on the XMI schema corresponding to that compliance level.

• Concrete syntax compliance. For a given compliance level, this entails:

• Compliance to the notation defined in the “Diagram Elements” tables and diagrams extension sections in each
chapter of this specification for those metamodel elements that are defined as part of the merged metamodel or
profile subset for that compliance level and, by implication, the diagram types in which those elements may
appear.

Compliance for a given level can be expressed as:

• abstract syntax compliance

• concrete syntax compliance

• abstract syntax with concrete syntax compliance

The fullest compliance response is “YES,” which indicates full realization of all language units/stereotypes that are
defined for that compliance level. This also implies full realization of all language units/stereotypes in all the levels below
that level. “Full realization” for a language unit at a given level means supporting the complete set of modeling concepts
defined for that language unit at that level. A compliance response of “PARTIAL” indicates partial realization and
requires a feature support statement detailing which concepts are supported. These statements should reference either the

Table 5.4 - SysML package dependence on SysML compliance levels

SysML Package SysML Compliance
Level

Activities (without Probability) Level 2

Activities (with Probability) Level 3

Allocations Level 2

Blocks Level 2

ConstraintBlocks Level 2

ModelElements Level 1

Ports&Flows (without ItemFlow) Level 2

Ports&Flows (with ItemFlow) Level 3

Requirements Level 1
16 OMG SysMLTM , v1.2

language unit and metaclass, or profile package and stereotype for abstract syntax, or a diagram element for concrete
syntax (the diagram elements in SysML are given unique names to allow unambiguous references). Finally, a response of
“NO” indicates that none of the language units/stereotypes in this compliance point is realized.

Thus, it is not meaningful to claim compliance to, say, Level 2 without also being compliant with Level 1. A tool that is
compliant at a given level must be able to import models from tools that are compliant to lower levels without loss of
information.

Issue: 15876 – Define the SysML profile as referencing UML and replace the UML4SysML subset with OCL
constraints

In the case of “PARTIAL” support for a compliance point, in addition to a formal statement of compliance, implementors,
and profile designers must also provide feature support statements. These statements clarify which language features are
not satisfied in terms of language units and/or individual packages, as well as for less precisely defined dimensions such
as semantic variation points.

An example feature support statement is shown in Table 5.6 for an implementation whose compliance statement is given
in Table 5.5.

Issue: 15876 – Define the SysML profile as referencing UML and replace the UML4SysML subset with OCL
constraints

Table 5.5 - Example Compliance Statement

Compliance Summary

Compliance level Abstract Syntax Concrete Syntax

SysML Compliance Level 1 YES YES

SysML Compliance Level 2 PARTIAL YES

SysML Compliance Level 3 NO NO

Activities (without Probability) YES YES

Activities (with Probability) NO NO

Allocations PARTIAL PARTIAL

Blocks YES YES

ConstraintBlocks YES YES

ModelElements YES YES

Ports&Flows (without ItemFlow) YES YES

Ports&Flows (with ItemFlow) NO NO

Requirements YES YES
OMG SysMLTM , v1.2 17

NOTE(s):

1. States and state machines are limited to a single region.
Shallow history pseudostates not supported.

2. FIFO queueing in event pool.

3. Don’t show Blocks::StructuredCompartment notation.

Table 5.6 - Example feature support statement

Feature Support Statement

Compliance Level/ Detail Abstract
Syntax

Concrete
Syntax

Semantics

SysML Compliance Level 2 StateMachines::BehaviorStateMachines Note (1) Note(1) Note (2)

SysML::Blocks Block YES Note (3)
18 OMG SysMLTM , v1.2

6 Language Formalism

Issue: 12268 – not possible to take away constraints in a profile

6.1 Levels of Formalism

SysML is specified using a combination of UML modeling techniques and precise natural language to balance rigor and
understandability. Use of more formal constraints and semantics may be applied in future versions to further increase the
precision of the language.

6.2 Chapter Specification Structure

The chapters in Parts II - IV are organized according to the SysML packages as described in the language architecture and
selected reusable portions of UML 2 packages. This section provides information about how each chapter is organized.

6.2.1 Overview

This section provides an overview of the SysML modeling constructs defined in the subject package, which are usually
associated with one or more SysML diagram types.

6.2.2 Diagram Elements

This section provides tables that summarize the concrete syntax (notation) and abstract syntax references for the graphic
nodes and paths associated with the relevant diagram types. The diagram elements tables are intended to include all of the
diagrammatic constructs used in SysML. However, they do not represent all the different combinations in which they can
be used. The reader should refer to the usage examples in the chapters and the sample problem (Annex C) for typical
usages of the concrete syntax. General diagram information on the use of diagram frames and headings can be found in
Annex A.

The diagram elements tables and the additional usage examples fill an important role in defining the scope of SysML. As
described in Chapter 4, Language Architecture, SysML imports many entire packages from the UML metamodel, which
it then reuses and extends. Only a subset of the entire UML metamodel, however, is required to support the notations
included in SysML.

Unless a type of diagram element is shown in some form in one of the SysML diagram elements tables, or in a usage
example in one of the normative SysML chapters, it is not considered to be part of the subset of UML included within
SysML, even if the UML metamodel packages support additional constructs. For example, SysML imports the entire
Dependencies package from UML, but it includes diagram elements for only a subset of the dependency types defined in
this package.

6.2.3 UML Extensions

This section specifies the SysML extensions to UML in terms of diagram extensions and semantic extensions. Diagram
extensions are included when the concrete syntax uses notation other than the standard stereotype notation as defined in
the Profiles and Model Libraries chapter. Semantic extensions consist of stereotype and model library extensions.
Stereotype extensions always include the abstract syntax that identifies which metaclasses a stereotype extends. Each
OMG SysMLTM , v1.2 17

stereotype includes a general description with a definition and semantics, along with stereotype properties (attributes), and
constraints. Each constraint consists of a textual description and may be followed by a formal constraint expressed in
Object Constraint Language (OCL). If there is any ambiguity between the two, the OCL statement of the constraint takes
precedence. The model libraries are defined as subclasses of existing metaclasses.

6.2.4 Usage Examples

This section shows how the SysML modeling constructs can be applied to solve systems engineering problems and is
intended to reuse and/or elaborate the sample problem in Annex C.

6.3 Conventions and Typography

In the description of SysML, the following conventions have been used:

• While referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they
appear in the model are used.

• No visibilities are presented in the diagrams, since all elements are public.

• If a section is not applicable, it is not included, except for the top-level sections outlined in Section 6.2, “Chapter
Specification Structure” above.

• Stereotype, metaclass, and metassociation names: initial embedded capitals are used (e.g., “ModelElement,”
“ElementReference”).

• Boolean metaattribute names: always start with “is” (e.g., “isComposite”).

• Enumeration types: always end with “Kind” (e.g., “DependencyKind”).
18 OMG SysMLTM , v1.2

Part II - Structural Constructs

This Part defines the static and structural constructs used in SysML structure diagrams, including the package diagram, block
definition diagram, internal block diagram, and parametric diagram. The structural constructs are defined in the Model
Elements, Blocks, Ports and Flows, and Constraint Blocks chapters.

Chapter 7: The Model Elements chapter refactors the kernel package from UML 2 and includes some extensions to provide
some foundation capabilities for model management.

Chapter 8: The Blocks chapter reuses and extends structured classes from UML 2 composite structures to provide the
fundamental capability for describing system decomposition and interconnection, and to define different types of system
properties including value properties with optional units of measure.

Chapter 9: The Ports and Flows chapter provides the semantics for defining how blocks and parts interact through ports and
how items flow across connectors.

Chapter 10: The Constraint Blocks chapter defines how blocks are extended to be used on parametric diagrams. Parametric
diagrams model a network of constraints on system properties to support engineering analysis, such as performance,
reliability, and mass properties analysis.
OMG SysMLTM, v1.2 19

20 OMG SysMLTM, v1.2

7 Model Elements

7.1 Overview

The ModelElements package of SysML defines general-purpose constructs that may be shown on multiple SysML
diagram types. These include package, model, various types of dependencies (e.g., import, access, refine, realization),
constraints, and comments. The package diagram defined in this chapter is used to organize the model by partitioning
model elements into packageable elements and establishing dependencies between the packages and/or model elements
within the package. The package defines a namespace for the packageable elements. Model elements from one package
can be imported and/or accessed by another package. This organizational principle is intended to help establish unique
naming of the model elements and avoid overloading a particular model element name. Packages can also be shown on
other diagrams such as the block definition diagram, requirement diagram, and behavior diagrams.

Constraints are used to capture simple constraints associated with one or more model elements and can be represented on
several SysML diagrams. The constraint can represent a logical constraint such as an XOR, a condition on a decision
branch, or a mathematical expression. The constraint has been significantly enhanced in SysML as specified in Chapter
10, “Constraint Blocks” to enable it to be reused and parameterized to support engineering analysis.

Comments can be associated with any model element and are quite useful as an informal means of documenting the
model. SysML has introduced an extension to a comment called rationale to facilitate the system modeler in capturing
decisions. The rationale may be attached to any entity, such as a system element (block), or to any relationship, such as
the satisfy relationship between a design element and a requirement. In the latter case, it may be used to capture the basis
for the design decision and may reference an analysis report or trade study for further elaboration of the decision. In
addition, SysML includes an extension of a comment to reflect a problem or issue that can be attached to any other model
element.

SysML has extended the concept of view and viewpoint from UML to be consistent with the IEEE 1471 standard. In
particular, a viewpoint is a specification of rules for constructing a view to address a set of stakeholder concerns, and the
view is intended to represent the system from this viewpoint. This enables stakeholders to specify aspects of the system
model that are important to them from their viewpoint, and then represent those aspects of the system in a specific view.
Typical examples may include an operational, manufacturing, or security view/viewpoint.

7.2 Diagram Elements

Many of the diagram elements defined in this chapter, specifically comments, constraints, problem, rationale, and
dependencies, including the dependency subtypes Conform, Realization, and Refine, may be shown on all SysML
diagram types, in addition to the diagram elements that are specific to each diagram type.
OMG SysMLTM , v1.2 21

Table 7.1 - Graphical nodes defined by ModelElements package

Element Name Concrete Syntax Example Abstract Syntax Reference

Comment UML4SysML::Comment

ConstraintNote UML4SysML::Constraint

ConstraintTextualNote UML4SysML::Constraint

Model UML4SysML::Model

PackageDiagram UML4SysML::Package

PackageWith
NameInTab

UML4SysML::Package

Comment text.

{C1: {L1} E1.x > E2.y}

{constraint text}

{constraint text}

(any graphical path)

Element1
(any graphical node)

Model

Subpackage1

Subpackage2

«import»

pkg Name

Subpackage1

Subpackage2

Package1

«import»
22 OMG SysMLTM , v1.2

PackageWith
NameInside

UML4SysML::Package

Problem SysML::ModelElements::Problem

Rationale SysML::ModelElements::Rationale

ViewWith
NameInside

SysML::ModelElements::View

ViewWith
NameInTab

SysML::ModelElements::View

Viewpoint SysML::ModelElements::Viewpoint

Table 7.1 - Graphical nodes defined by ModelElements package

Element Name Concrete Syntax Example Abstract Syntax Reference

Package1

«problem»
The problem is that ...

«rationale»
Description of rationale

«view »
{view point=View Name}

Nam e

«view »
Nam e

stakeholders="..."
purpose="..."
concerns="..."
languages="..."
methods="..."

«viewpoint»
Name
OMG SysMLTM , v1.2 23

Table 7.2 - Graphical paths defined by ModelElements package

Element Name Concrete Syntax Example Abstract Syntax Reference

Conform SysML::ModelElements::Conform

Dependency UML4SysML::Dependency

PublicPackageImport UML4SysML::PackageImport with
visibility = public

PrivatePackageImport UML4SysML::PackageImport with
visibility = private

PackageContainment UML4SysML::Package::
ownedElement

Realization UML4SysML::Realization

Refine UML4SysML::Refine

«conform»

«stereotype1»
dependency1

«import»

«access»

«refine»
24 OMG SysMLTM , v1.2

7.3 UML Extensions

7.3.1 Diagram Extensions

7.3.1.1 UML Diagram Elements not Included in SysML

The notation for a “merge”dependency between packages, using a «merge» keyword on a dashed-line arrow, is not
included in SysML. UML uses package merge in the definition of its own metamodel, which SysML builds on, but
SysML does not support this capability for user-level models.

Note: Combining packages that have the same named elements, resulting in merged definitions of the same names, could
cause confusion in user models and adds no inherent modeling capability, and so has been left out of SysML.

7.3.2 Stereotypes

Package ModelElements

«metaclass»
UML4SysML::

Com m ent

«stereotype»
Rationale

«stereotype»
Problem

«metaclass»
UML4SysML::

Class

stakeholders: String [*]
purpose: String
concerns: String [*]
languages: String [*]
methods: String [*]

«stereotype»
View point

«metaclass»
UML4SysML::
Dependency

«stereotype»
Conform

«metaclass»
UML4SysML::

Package

/v iew point : View point

«stereotype»
View

7.3.2.1 Conform

Description

A Conform relationship is a dependency between a view and a viewpoint. The view conforms to the specified rules and
conventions detailed in the viewpoint. Conform is a specialization of the UML dependency, and as with other
dependencies the arrow direction points from the (client/source) to the (supplier/target).

Constraints

[1] The supplier/target must be an element stereotyped by «viewpoint».

[2] The client/source must be an element that is stereotyped by «view».

Figure 7.1 - Stereotypes defined in package ModelElements
OMG SysMLTM , v1.2 25

7.3.2.2 Problem

Description

A Problem documents a deficiency, limitation, or failure of one or more model elements to satisfy a requirement or need,
or other undesired outcome. It may be used to capture problems identified during analysis, design, verification, or
manufacture and associate the problem with the relevant model elements. Problem is a stereotype of comment and may be
attached to any other model element in the same manner as a comment.

7.3.2.3 Rationale

Description

A Rationale documents the justification for decisions and the requirements, design, and other decisions. A Rationale can
be attached to any model element including relationships. It allows the user, for example, to specify a rationale that may
reference more detailed documentation such as a trade study or analysis report. Rationale is a stereotype of comment and
may be attached to any other model element in the same manner as a comment.

7.3.2.4 View

Description

A View is a representation of a whole system or subsystem from the perspective of a single viewpoint. Views are allowed
to import other elements including other packages and other views that conform to the viewpoint.

Attributes

• /viewpoint: Viewpoint
The viewpoint for this View, derived from the supplier of the «conform» dependency whose client is this View.

Constraints

[1] A view can only own element import, package import, comment, and constraint elements.

[2] The view is constructed in accordance with the methods and languages that are specified as part of the viewpoint. SysML
does not define the specific methods. The precise semantics of this constraint is a semantic variation point.

7.3.2.5 Viewpoint

Description

A Viewpoint is a specification of the conventions and rules for constructing and using a view for the purpose of
addressing a set of stakeholder concerns. The languages and methods for specifying a view may reference languages and
methods in another viewpoint. They specify the elements expected to be represented in the view, and may be formally or
informally defined. For example, the security viewpoint may require the security requirements, security functional and
physical architecture, and security test cases.

Attributes

• stakeholders: String [*]
Set of stakeholders.

• purpose: String
The purpose addresses the stakeholder concerns.
26 OMG SysMLTM , v1.2

• concerns: String [*]
The interest of the stakeholders.

• languages: String [*]
The languages used to construct the viewpoint.

• methods: String [*]
The methods used to construct the views for this viewpoint.

Constraints

[1] A viewpoint cannot be the classifier of an instance specification.

[2] The property ownedOperation must be empty.

[3] The property ownedAttribute must be empty.

7.4 Usage Examples

See Figure C.27 in Annex C for a View/Viewpoint example.

Figure 7.2 shows examples of Rationale and Problem elements.

Figure 7.2 - Rationale and Problem examples

bdd Master Cylinder requirements

«requirement»
Loss of Fluid

«requirement»
Reservoir

«block»
Brake System

m : MasterCylinder

«satisfy»

«satisfy»

«problem»
The master cylinder in the
previous version leaked.

«rationale»
The best-practice solution
consists in assigning one
reservoir per brakeline.
See "automotive_d32_hdb.doc"
OMG SysMLTM , v1.2 27

28 OMG SysMLTM , v1.2

8 Blocks

8.1 Overview

Blocks are modular units of system description. Each block defines a collection of features to describe a system or other
element of interest. These may include both structural and behavioral features, such as properties and operations, to
represent the state of the system and behavior that the system may exhibit.

Blocks provide a general-purpose capability to model systems as trees of modular components. The specific kinds of
components, the kinds of connections between them, and the way these elements combine to define the total system can
all be selected according to the goals of a particular system model. SysML blocks can be used throughout all phases of
system specification and design, and can be applied to many different kinds of systems. These include modeling either the
logical or physical decomposition of a system, and the specification of software, hardware, or human elements. Parts in
these systems may interact by many different means, such as software operations, discrete state transitions, flows of
inputs and outputs, or continuous interactions.

The Block Definition Diagram in SysML defines features of blocks and relationships between blocks such as associations,
generalizations, and dependencies. It captures the definition of blocks in terms of properties and operations, and
relationships such as a system hierarchy or a system classification tree. The Internal Block Diagram in SysML captures
the internal structure of a block in terms of properties and connectors between properties. A block can include properties
to specify its values, parts, and references to other blocks. Ports are a special class of property used to specify allowable
types of interactions between blocks, and are described in Chapter 9, “Ports and Flows.” Constraint Properties are a
special class of property used to constrain other properties of blocks, and are described in Chapter 10 “Constraint
Blocks.” Various notations for properties are available to distinguish these specialized kinds of properties on an internal
block diagram.

A property can represent a role or usage in the context of its enclosing block. A property has a type that supplies its
definition. A part belonging to a block, for example, may be typed by another block. The part defines a local usage of its
defining block within the specific context to which the part belongs. For example, a block that represents the definition of
a wheel can be used in different ways. The front wheel and rear wheel can represent different usages of the same wheel
definition. SysML also allows each usage to define context-specific values and constraints associated with the individual
usage, such as 25 psi for the front tires and 30 psi for the rear tires.

Blocks may also specify operations or other features that describe the behavior of a system. Except for operations, this
chapter deals strictly with the definition of properties to describe the state of a system at any given point in time,
including relations between elements that define its structure. Chapter 9, “Ports and Flows” specifies specific forms of
interactions between blocks, and the Behavioral Constructs in Section III including activities, interactions, and state
machines can be applied to blocks to specify their behavior. Chapter 15, “Allocations” in Part IV describes ways to
allocate behavior to parts and blocks.

SysML blocks are based on UML classes as extended by UML composite structures. Some capabilities available for UML
classes, such as more specialized forms of associations, have been excluded from SysML blocks to simplify the language.
SysML blocks always include an ability to define internal connectors, regardless of whether this capability is needed for
a particular block. SysML Blocks also extend the capabilities of UML classes and connectors with reusable forms of
constraints, multi-level nesting of connector ends, participant properties for composite association classes, and connector
properties. SysML blocks include several notational extensions as specified in this chapter.
OMG SysMLTM , v1.2 29

8.2 Diagram Elements

8.2.1 Block Definition Diagram

BlockDefinition
Diagram bdd Namespace1

Block1 Block2
part1

1 0..*

SysML::Blocks::Block
UML4SysML::Package

Block

operations

parts

constraints

property1: Block2

operation1(p1: Type1): Type2

{ x > y }

«block»
{encapsulated}

Block1

property5: Type1

property3: Integer = 99 {readOnly}
property4: Real = 10.0

property2: Block3 [0..*] {ordered}

references

values

properties

SysML::Blocks::Block

Actor UML4SysML::Actor

Table 8.1 - Graphical nodes defined in Block Definition diagrams

Element Name Concrete Syntax Example Abstract syntax Reference

«actor»
ActorNam e

ActorNam e
30 OMG SysMLTM , v1.2

Element Name Concrete Syntax Example Abstract syntax Reference

ValueType

«valueType»
unit = UnitName

property1: Type3

operation1(p1: Type1): Type2

«valueType»
ValueType1

operations

properties

SysML::Blocks::ValueType

Enumeration

literalName1
literalName2

«enumeration»
Enum eration1

UML4SysML::Enumeration

AbstractDefinition

Name

{abstract}
Name

Name
{abstract}

UML4SysML::Classifier with
isAbstract equal true

StereotypeProperty
Compartment

«stereotype1»
property1 = value

«stereotype1»
Block1

UML4SysML::Stereotype

Namespace
Compartment Block1

namespace

Block2 Block3
part1

1 0..*

SysML::Blocks::Block

Structure
Compartment Block1

structure

Block2 Block31
e1

c1:

SysML::Blocks::Block
OMG SysMLTM , v1.2 31

Unit

«unit»
{quantityKind = QuantityKind 1}

Unit1

«unit»
{quantityKind = QuantityKind 1}

Unit1

SysML::Blocks::Unit

QuantityKind

«quantityKind»
QuantityKind1

SysML::Blocks::QuantityKind

InstanceSpecification

i1: Type1 i2: Type2
p3

A1

UML4SysML::
InstanceSpecification

InstanceSpecification

instance1: Type1

value1

UML4SysML::
InstanceSpecification

InstanceSpecification

property1 = 10
property2 = "value"

instance1: Type1

UML4SysML::
InstanceSpecification

InstanceSpecification

: Type 1

instance1 / property1: Type2

property1 = 10
property2 = "value"

instance2 / property2:
Type3

UML4SysML:
InstanceSpecification

Element Name Concrete Syntax Example Abstract syntax Reference
32 OMG SysMLTM , v1.2

Table 8.2 - Graphical paths defined by in Block Definition diagrams

Element Name Concrete Syntax Example Abstract syntax Reference

Dependency
«stereotype1»
dependency1

UML4SysML::Dependency

ReferenceAssociation

0..1

association1 property1

1..*{ordered}

1

association1 property1

0..*{ordered}

property2

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = none

PartAssociation

0..1

association1 property1

1..*{ordered}

1

association1 property1

0..*{ordered}

property2

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = composite

SharedAssociation

0..1

association1 property1

1..*{ordered}

1

association1 property1

0..*{ordered}

property2

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = shared

MultibranchPart
Association

1

association1 property1

0..*

property3

property2

0..*

UML4SysML::Association and
UML::Kernel::Property with
aggregationKind = composite

MultibranchShared
Association

1

association1 property1

0..*

property3

property2

0..*

UML4SysML::Association and
UML::Kernel::Property with
aggregationKind = shared

Generalization UML4SysML::Generalization

Multibranch
Generalization

UML4SysML:Generalization
OMG SysMLTM , v1.2 33

GeneralizationSet

{disjoint}
{overlapping}

UML4SysML::
GeneralizationSet

BlockNamespace
Containment

UML4SysML::Class::
nestedClassifier

ParticipantProperty

Association1

Association1

structure

«participant»
{end=property 1}

p1: Block1

«participant»
{end=property 2}

p2: Block2

«participant» {end=property 1} p1: Block1
«participant» {end=property 2} p2: Block2

Association1

1

Association1 property 1

0..*{ordered}

property 2
Block1Block2

1

property 1

0..*{ordered}

property 2
Block1Block2

1

Association1 property 1

0..*{ordered}

property 2
Block1Block2

UML4SysML:: Property,
UML4SysML:: AssociationClass

ConnectorProperty

«connector» c1: Association1
«connector» c2: Association2

Block1

structure

c2: Association2

1

e1

c1: Association1

1

e1

p1:
Type1

p3:
Type3

p2:
Type2

p4:
Type4

UML4SysML:: Property,
UML4SysML:: Connector

Table 8.2 - Graphical paths defined by in Block Definition diagrams

Element Name Concrete Syntax Example Abstract syntax Reference
34 OMG SysMLTM , v1.2

8.2.2 Internal Block Diagram

InternalBlockDiagram

ibd Block1

p1:
Type1

p2:
Type2

1

p3

c1: a1

SysML::Blocks::Block

Property

x: Integer = 4

p1: Type1
0..*

r1: Type2

p1: Type1

x1=5.0
x2="today"

p3: Type3

initialValues

0..*

UML4SysML::Property

ActorPart SysML::Blocks::PartProperty typed by
UML4SysML::Actor

PropertySpecificType

y: Integer = 5

p2

:values

«normal» {mean=2,stdDeviation=0.1} x: Real

p1: [Type1]

:values

SysML::Blocks::PropertySpecifcType

Table 8.3 - Graphical nodes defined in Internal Block diagrams

Element Name Concrete Syntax Example Abstract Syntax Reference

«actor»
ActorNam e

ActorNam e
OMG SysMLTM , v1.2 35

Dependency
«stereotype1»
dependency1

UML4SysML::Dependency

BindingConnector

1 0..*

«equal»

1 1

UML4SysML::Connector

BidirectionalConnector

c1: association1

0..1 0..*

p2p1

UML4SysML::Connector

UnidirectionalConnector

c1: association1

0..1 0..*

p1

UML4SysML::Connector

8.3 UML Extensions

8.3.1 Diagram Extensions

8.3.1.1 Block Definition Diagram

A block definition diagram is based on the UML class diagram, with restrictions and extensions as defined by SysML.

Block and ValueType Definitions

A SysML Block defines a collection of features to describe a system or other element of interest. A SysML ValueType
defines values that may be used within a model. SysML blocks are based on UML classes, as extended by UML
composite structures. SysML value types are based on UML data types. Diagram extensions for SysML blocks and value
types are described by other subheadings of this section.

Default «block» stereotype on unlabeled box

If no stereotype keyword appears within a definition box on a block definition diagram (including any stereotype property
compartments), then the definition is assumed to be a SysML block, exactly as if the «block» keyword had appeared
before the name in the top compartment of the definition.

Labeled compartments

SysML allows blocks to have multiple compartments, each optionally identified with its own compartment name. The
compartments may partition the features shown according to various criteria. Some standard compartments are defined by
SysML itself, and others can be defined by the user using tool-specific facilities. Compartments may appear in any order.

Table 8.4 - Graphical paths defined in Internal Block diagrams

Element Name Concrete Syntax Example Abstract Syntax Reference
36 OMG SysMLTM , v1.2

SysML defines two additional compartments, namespace and structure compartments, which may contain graphical nodes
rather than textual constraint or feature definitions. See separate subsections of this section for a description of these
compartments.

Constraints compartment

SysML defines a special form of compartment, with the label “constraints,” which may contain one or more constraints
owned by the block. A constraint owned by the block may be shown in this compartment using the standard text-based
notation for a constraint, consisting of a string enclosed in brace characters. The use of a compartment to show constraints
is optional. The note-based notation, with a constraint shown in a note box outside the block and linked to it by a dashed
line, may also be used to show a constraint owned by a block.

A constraints compartment may also contain declarations of constraint properties owned by the block. A constraint
property is a property of the block that is typed by a ConstraintBlock, as defined in Chapter 10, “Constraint Blocks.”
Only the declaration of the constraint property may be shown within the compartment, not the details of its parameters or
binding connectors that link them to other properties.

Namespace compartment

A compartment with the label “namespace” may appear as part of a block definition to show blocks that are defined in the
namespace of a containing block. This compartment may contain any of the graphical elements of a block definition
diagram. All blocks or other named elements defined in this compartment belong to the namespace of the containing
block.

Because this compartment contains graphical elements, a wider compartment than typically used for feature definitions
may be useful. Since the same block can appear more than once in the same diagram, it may be useful to show this
compartment as part of a separate definition box than a box that shows only feature compartments. Both namespace and
structure compartments, which may both need a wide compartment to hold graphical elements, could also be shown
within a common definition box.

Structure compartment

A compartment with the label “structure” may appear as part of a block definition to show connectors and other internal
structure elements for the block being defined. This compartment may contain any of the graphical elements of an internal
block diagram.

Because this compartment contains graphical elements, a wider compartment than typically used for feature definitions
may be useful. Since the same block can appear more than once in the same diagram, it may be useful to show this
compartment as part of a separate definition box than a box that shows only feature compartments. Both namespace and
structure compartments, which may both need a wide compartment to hold graphical elements, could also be shown
within a common definition box.

Unit and QuantityKind definitions

Unit and QuantityKind elements are defined using a rectangular box notation similar to a block, in which only the “unit”
or “quantityKind” stereotype keyword, the name of the Unit or QuantityKind, and optionally the “quantityKind” property
value of a Unit may appear. Even though the base metaclass of Unit and QuantityKind is InstanceSpecification, the name
of a QuantityKind or Unit is not underlined, and no other graphical elements of a UML InstanceSpecification may be
shown. The optional “quantityKind” property of a Unit and the “quantityKind” and/or “unit” properties of a ValueType
are specified using standard stereotype property notations, which must refer by name to a QuantityKind or Unit which has
already been defined separately and which is available for reference in the local namespace. A sample set of predefined
quantity kinds and units is given in Annex C, Figure C.2.
OMG SysMLTM , v1.2 37

Default multiplicities

SysML defines defaults for multiplicities on the ends of specific types of associations. A part or shared association has a
default multiplicity of [0..1] on the black or white diamond end. A unidirectional association has a default multiplicity of
1 on its target end. These multiplicities may be assumed if not shown on a diagram. To avoid confusion, any multiplicity
other than the default should always be shown on a diagram.

Property-specific type

Enclosing the type name of a property in square brackets specifies that the type is a local specialization of the referenced
type, which may be overridden to specify additional values or other customizations that are unique to the property.
Redefined or added features of the newly defined type may be shown in compartments for the property on an internal
block diagram. If no type name appears between the square brackets, the property-specific type is defined provided by its
own declarations, without specializing any existing type.

8.3.1.2 Internal Block Diagram

An internal block diagram is based on the UML composite structure diagram, with restrictions and extensions as defined
by SysML.

Property types

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

Four general categories of properties of blocks are recognized in SysML: parts, references, value properties, and
constraint properties. (See Section 8.3.2.2, “Block, for definitions of these property types.) A part or value property is
always shown on an internal block diagram with a solid-outline box. A reference property is shown by a dashed-outline
box, consistent with UML. Ports are special cases of properties, and have a variety of notations as defined in Chapter 9,
“Ports and Flows.” Constraint properties and their parameters also have their own notations as defined in Chapter 10,
“Constraint Blocks.”

Block reference in diagram frame

The diagram heading name for an internal block diagram (the string contained in the tab in the upper-left-hand corner of
the diagram frame) must identify the name of a SysML block as its modelElementName. (See Annex A for the definition
of a diagram heading name including the modelElementName component.) All the properties and connectors that appear
inside the internal block diagram belong to the block that is named in the diagram heading name.

Compartments on internal properties

SysML permits any property shown on an internal block diagram to also show compartments within the property box.
These compartments may be given standard or user-customized labels just as on block definitions. All features shown
within these compartments must match those of the block or value type that types the property. For a property-specific
type, these compartments may be used to specify redefined or additional features of the locally defined type. An
unlabeled compartment on an internal property box is by default a structure compartment.

The label of any compartment shown on the property box that displays contents belonging to the type of the property is
shown with a colon character (“:”) preceding the compartment label. The compartment name is otherwise the same as it
would appear on the type on a block definition diagram.
38 OMG SysMLTM , v1.2

Compartments on a diagram frame

SysML permits compartments to be shown across the entire width of the diagram frame on an internal block diagram.
These compartments must always follow an initial compartment that always shows the internal structure of a referenced
block. These compartments may have all the same contents as could be shown on a block definition diagram for the block
defined at the top level of the diagram frame.

Property path name

A property name shown inside or outside the property box may take the form of a multi-level name. This form of name
references a nested property accessible through a sequence of intermediate properties from a referencing context. The
name of the referenced property is built by a string of names separated by “.”, resulting in a form of path name that
identifies the property in its local context. A colon and the type name for the property may optionally be shown following
the dotted name string. If any of the properties named in the path name string identifies a reference property, the property
box is shown with a dashed-outline box, just as for any reference property on an internal block diagram.

This notation is purely a notational shorthand for a property that could otherwise be shown within a structure of nested
property boxes, with the names in the dotted string taken from the name that would appear at each level of nesting. In
other words, the internal property shown with a path name in the left-hand side of Figure 8.1 is equivalent to the
innermost nested box shown at the right.

Figure 8.1 - Nested property reference

Nested connector end

Connectors may be drawn that cross the boundaries of nested properties to connect to properties within them. The
connector is owned by the most immediate block that owns both ends of the connector. A NestedConnectorEnd stereotype
of a UML ConnectorEnd is automatically applied to any connector end that is nested more than one level deep within a
containing context.

Use of nested connector ends does not follow strict principles of encapsulation of the parts or other properties that a
connector line may cross. The need for nested connector ends can be avoided if additional properties can be added to the
block at each containing level. Nested connector ends are available for cases where the introduction of these intermediate
properties is not feasible or appropriate.

The ability to connect to nested properties within a containing block requires that multiple levels of decomposition be
shown on the same diagram.

P1: Block1

Name1:

Name 2:

Name3:

P1: Block1

Name1.Name2.Name3:
OMG SysMLTM , v1.2 39

Property-specific type

Enclosing the type name of an internal property in square brackets specifies that the type is a local specialization of the
referenced type, which may be overridden to specify additional values or other customizations that are unique to the
property. Redefined or added features of the newly defined type may be shown in compartments for the property. If the
property name appears on its own, with no colon or type name, or if no type name appears between the square brackets,
the property-specific type is entirely provided by its own declarations, without specializing any existing type.

Initial values compartment

A compartment with a label of “initialValues” may be used to show values of properties belonging to a containing block.
These values override any default values that may have been previously specified on these properties on their originally
defining block. Initial value compartments may be specified within nested properties, which then apply only in the
particular usage context defined by the outermost containing block.

Values are specified in an initialValues compartment by lines in the form <property-name> = <value-specification> or
<property-name> : <type> = <value-specification>, each line of which specifies the initial value for one property owned
either by the block that types the property or by any of its supertypes. This portion of concrete syntax is the same as may
be shown for values within the UML instance specification notation, but this is the only element of UML
InstanceSpecification notation that may be shown in an initial values compartment. See Section 8.3.2.2, “Block” for
details of how values within initialValues compartments are represented in the SysML metamodel.

Default multiplicities

SysML defines default multiplicities of 1 on each end of a connector. These multiplicities may be assumed if not shown
on a diagram. To avoid confusion, any multiplicity other than the default should always be shown on a diagram.

8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams

The supported variety of notations for associations and association annotations has been reduced to simplify the burden of
teaching, learning, and interpreting SysML diagrams for the systems engineering user. Notational and metamodel support
for n-ary associations and qualified associations has been excluded from SysML. N-ary associations, shown in UML by a
large open diamond with multiple branches, can be modeled by an intermediate block with no loss in expressive power.
Qualified associations, shown in SysML by an open box at the end of an association path with a property name inside, are
a specialized feature of UML that specifies how a property value can represent an identifier of an associated target. This
capability, while useful for data modeling, does not seem essential to accomplish any of the SysML requirements for
support of systems engineering. The use of navigation arrowheads on an association has been simplified by excluding the
case of arrowheads on both ends, and requiring that such an association always be shown without arrowheads on either
end. An “X” on a single end of an association to indicate that an end is not navigable has similarly been dropped, as has
the use of a small filled dot at the end of an association to indicate that the end is owned by the associated classifier.

The use of a «primitive» keyword on a value type definition (which in UML specifies the PrimitiveType specialization of
UML DataType) is not supported. Whether or not a value type definition has internal structure can be determined from the
value type itself.

8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

The UML Composite Structure diagram has many notations not included in the subset defined in this chapter. Other
SysML chapters add some of these notations into the supported contents of an internal block diagram.
40 OMG SysMLTM , v1.2

8.3.2 Stereotypes

Package Blocks

«metaclass»
UML4SysML::

Class

isEncapsulated: Boolean

«stereotype»
Block

« m e ta cla ss»
U M L 4S ys M L : :

D a ta T y p e

« ste re o typ e»
V a lu e T y p e

sym b o l : S tr ing [0 ..1]
d e scr ip tion : S tr in g [0 ..1]
d e fin itio n U R I : Str ing [0 . .1]

« ste reo typ e»
U n it

sym b o l : S tr ing [0 ..1]
d e scr ip tion : S tr in g [0 ..1]
d e fin itio n U R I: Str ing [0 ..1]

« ste reo typ e»
Q u a n tityK in d

« m e ta cla ss»
U M L 4S y s M L : :

In s tan c eSp e c if i ca tio n

0 ..1
*

q uan ti tyK ind0 ..1
*

u ni t 0 ..1
*

qu anti ty K in d

Figure 8.2 - Abstract syntax expressions for SysML blocks

Figure 8.3 - Abstract syntax extensions for SysML properties

Figure 8.4 - Abstract syntax extensions for SysML value types

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

«metaclass»
UML4SysML::

Property

«stereotype»
DistributedProperty

end : Property [1]

«stereotype»
ParticipantProperty

connector : Connector [1]

«stereotype»
ConnectorProperty

«metaclass»
UML4SysML::

Property

«stereotype»
DistributedProperty

end : Property [1]

«stereotype»
ParticipantProperty

connector : Connector [1]

«stereotype»
ConnectorProperty

«metaclass»
UML4SysML::

Property

«stereotype»
DistributedProperty

end : Property [1]

«stereotype»
ParticipantProperty

connector : Connector [1]

«stereotype»
ConnectorProperty

«metaclass»
UML4SysML::

Property

«stereotype»
DistributedProperty

end : Property [1]

«stereotype»
ParticipantProperty

connector : Connector [1]

«stereotype»
ConnectorProperty

«metaclass»
UML4SysML::

Property

«stereotype»
DistributedProperty

end: Property [1]

«stereotype»
ParticipantProperty

connector: Connector [1]

«stereotype»
ConnectorProperty
OMG SysMLTM , v1.2 41

«metaclass»
UML4SysML::
ConnectorEnd

propertyPath: Property [1..*] {ordered, nonunique}

«stereotype»
NestedConnectorEnd

«metaclass»
UML4SysML::

Connector

«stereotype»
BindingConnector

«metaclass»
UML4SysML::

Classifier

«stereotype»
PropertySpecificType

Figure 8.5 - Abstract syntax extensions for SysML connector ends

Figure 8.6 - Abstract syntax extensions for SysML property-specific types

8.3.2.1 Binding Connector

Description

A Binding Connector is a connector which specifies that the properties at both ends of the connector have equal values.
If the properties at the ends of a binding connector are typed by a ValueType, the connector specifies that the instances of
the properties must hold equal values, recursively through any nested properties within the connected properties. If the
properties at the ends of a binding connector are typed by a Block, the connector specifies that the instances of the
properties must refer to the same block instance. As with any connector owned by a SysML Block, the ends of a binding
connector may be nested within a multi-level path of properties accessible from the owning block. The
NestedConnectorEnd stereotype is used to represent such nested ends just as for nested ends of other SysML connectors.

Constraints

[1] The two ends of a binding connector must have either the same type or types that are compatible so that equality of their
values can be defined.

8.3.2.2 Block

Description

Issue: 13178 – Port Decomposition of a Flow Specification Discussion
42 OMG SysMLTM , v1.2

Issue: 16333 – Clarify open and closed meaning of port types vs other property types

A Block is a modular unit that describes the structure of a system or element. It may include both structural and
behavioral features, such as properties and operations, that represent the state of the system and behavior that the system
may exhibit. Some of these properties may hold parts of a system, which can also be described by blocks that type the
properties. Properties without types do not restrict the instances that can be values of the properties, as if they had the
most general type possible. A block may include a structure of connectors between its properties to indicate how its parts
or other properties relate to one another.

SysML blocks provide a general-purpose capability to describe the architecture of a system. They provide the ability to
represent a system hierarchy, in which a system at one level is composed of systems at a more basic level. They can
describe not only the connectivity relationships between the systems at any level, but also quantitative values or other
information about a system.

SysML does not restrict the kind of system or system element that may be described by a block. Any reusable form of
description that may be applied to a system or a set of system characteristics may be described by a block. Such reusable
descriptions, for example, may be applied to purely conceptual aspects of a system design, such as relationships that hold
between parts or properties of a system.

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

Connectors owned by SysML blocks may be used to define relationships between parts or other properties of the same
containing block. Connectors can be typed by associations, which can specify more detail about the links between parts
or other properties of a system, along with the types of the connected properties. Associations can also be blocks, and
when used to type connectors give relationships their own interconnected parts and other properties. Connectors without
types do not restrict the way the connected properties are linked together, as if they had the most general type possible.
Connectors have both structural and behavioral functions, which can be used together or separately. Connectors as
structure specify links between parts or other properties of a system. Connectors as behavior specify communication and
item flow between parts or other properties. Connected properties can be linked without specifying communication and
item flow, or can specify communication and item flow without specifying a particular kind of link, or both.

SysML excludes variations of associations in UML in which navigable ends can be owned directly by the association. In
SysML, navigation is equivalent to a named property owned directly by a block. The only form of an association end that
SysML allows an association to own directly is an unnamed end used to carry an inverse multiplicity of a reference
property. This unnamed end provides a metamodel element to record an inverse multiplicity, to cover the specific case of
a unidirectional reference that defines no named property for navigation in the inverse direction. SysML enforces its
equivalence of navigation and ownership by means of constraints that the block stereotype enforces on the existing UML
metamodel.

SysML establishes four basic classifications of properties belonging to a SysML Block or ValueType. A property typed by
a SysML Block that has composite aggregation is classified as a part property, except for the special case of a constraint
property. Constraint properties are further defined in Chapter 10, Constraint Blocks. A port is another category of
property, as further defined in Chapter 9, Ports and Flows. A property typed by a Block that does not have composite
aggregation is classified as a reference property. A property typed by a SysML ValueType is classified as a value property,
and always has composite aggregation. Part, reference, value, and constraint properties may be shown in block definition
compartments with the labels “parts,” “references,” “values,” and “constraints” respectively. Properties of any type may
be shown in a “properties” compartment or in additional compartments with user-defined labels.

Issue: 13178 – Port Decomposition of a Flow Specification Discussion
OMG SysMLTM , v1.2 43

On a block definition diagram, a part property is shown by a black diamond symbol on an association. As in UML, an
instance of a block may be included in at most one instance of a block at a time, though possibly as a value of more than
one part property of the containing block. A part property holds instances that belong to a larger whole. Typically, a part-
whole relationship means that certain operations that apply to the whole also apply to each of the parts. For example, if a
whole represents a physical object, a change in position of the whole could also change the position of each of the parts.
A property of the whole such as its mass could also be implied by its parts. Operations and relationships that apply to
parts typically apply transitively across all parts of these parts, through any number of levels. A particular application
domain may establish its own interpretation of part-whole relationships across the blocks defined in a particular model,
including the definition of operations that apply to the parts along with the whole. For software objects, a typical
interpretation is that delete, copy, and move operations apply across all parts of a composite object.

SysML also supports properties with shared aggregation, as shown by a white diamond symbol on an association. Like
UML, SysML defines no specific semantics or constraints for properties with shared aggregation, but particular models or
tools may interpret them in specific ways.

In addition to the form of default value specifications that SysML supports on properties of a block (with an optional “=”
<value-specification> string following the rest of a property definition), SysML supports an additional form of value
specification for properties using initialValue compartments on an internal block diagram. (See Section 8.3.1.2, “Internal
Block Diagram,” subsection “Initial value compartments.”) An entire tree of context-specific values can be specified on a
containing block to carry values of nested properties as shown on an internal block diagram.

Context-specific values are represented in the SysML metamodel by means of the InstanceValue subtype of UML
ValueSpecification. Selected slots of UML instance specifications referenced by these instance values carry the individual
values shown in initialValue compartments.

If a property belonging to a block has a specification of initial values for any of the properties belonging to its type, then
the default value of that property must be a UML InstanceValue element. This element must reference a UML
InstanceSpecification element created to hold the initial values of the individual properties within its usage context. The
instance specification must be unnamed and owned by the same package that owns the outermost containing block for
which the initial values are being specified.

Selected slots of the referenced instance specification must contain value specifications for the individual property values
specified in a corresponding initialValues compartment. If a value of a property is shown by a nested property box with
its own initialValues compartment, then the slot of the instance specification for the containing property must hold a new
InstanceValue element. Selected slots of the instance specification referenced by this value must contain value
specifications for any nested initial values, recursively through any number of levels of nesting. A tree of instance values
referencing instance specifications, each of which may in turn hold slots carrying instance values, must exist until self-
contained value specifications are reached at the leaf level.

Attributes

• isEncapsulated: Boolean [0..1]
If true, then the block is treated as a black box; a part typed by this black box can only be connected via its
ports or directly to its outer boundary. If false, or if a value is not present, then connections can be established to
elements of its internal structure via deep-nested connector ends.

Constraints

[1] For an association in which both ends are typed by blocks, the number of ends must be exactly two.

[2] The number of ends of a connector owned by a block must be exactly two. (In SysML, a binding connector is not typed by
an association, so this constraint is not implied entirely by the preceding constraint.)
44 OMG SysMLTM , v1.2

[3] In the UML metamodel on which SysML is built, any instance of the Property metaclass that is typed by a block (a Class
with the «block» stereotype applied) and which is owned by an Association may not have a name and may not be defined
as a navigable owned end of the association. (While the Property has a “name” property as defined by its NamedElement
superclass, the value of the “name” property, which is optional, must be missing.)

[4] In the UML metamodel on which SysML is built, a Property that is typed by a block must be defined as an end of an
association. (An inverse end of this association, whether owned by another block or the association itself, must always be
present so there is always a metamodel element to record the inverse multiplicity of the reference.)

[5] The following constraint under Section 9.3.6, “Connector” in the UML 2 Superstructure Specification is removed by
SysML: “[3] The ConnectableElements attached as roles to each ConnectorEnd owned by a Connector must be roles of
the Classifier that owned the Connector, or they must be ports of such roles.”

[6] If a property owned by a SysML Block or SysML ValueType is typed by a SysML ValueType, then the aggregation
attribute of the property must be “composite.”

[7] Within an instance of a SysML Block, the values of any property with composite aggregation (aggregation = composite)
must not contain the block in any of its own properties that also have composite aggregation, or within any unbroken
chain of properties that all have composite aggregation. (Within an instance of a SysML Block, the instances of properties
with composite aggregation must form an acyclic graph.)

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

[8] Any classifier that specializes a Block must also have the Block stereotype or one of its specializations applied.

[9] The following constraint under Section 9.3.7, "ConnectorEnd" in the UML 2 Superstructure Specification is removed by
SysML: "[3] The property held in self.partWithPort must not be a Port."..

8.3.2.3 ConnectorProperty

Description

Connectors can be typed by association classes that are stereotyped by Block (association blocks, see Section 8.3.2.6,
“ParticipantProperty). These connectors specify instances of the association block created within the instances of the
block that owns the connector. The values of a connector property are instances of the association block created due to the
connector referred to by the connector property.

A connector property can optionally be shown in an internal block diagram with a dotted line from the connector line to
a rectangle notating the connector property. The keyword «connector» before a property name indicates the property is
stereotyped by ConnectorProperty.

Attributes

• connector : Connector
A connector of the block owning the property on which the stereotype is applied.

Constraints

[1] ConnectorProperty may only be applied to properties of classes stereotyped by Block.

[2] The connector attribute of the applied stereotype must refer to a connector owned or inherited by a block owning the
property on which the stereotype is applied.

[3] The aggregation of a property stereotyped by ConnectorProperty must be composite.

[4] The type of the connector referred to by a connector attribute must be an association class stereotyped by Block.
OMG SysMLTM , v1.2 45

[5] A property stereotyped by ConnectorProperty must have the same name and type as the connector referred to by the
connector attribute.

8.3.2.4 DistributedProperty

DistributedProperty is a stereotype of Property used to apply a probability distribution to the values of the property.
Specific distributions should be defined as subclasses of the DistributedProperty stereotype with the operands of the
distributions represented by properties of those stereotype subclasses. A sample set of probability distributions that could
be applied to value properties is given in Annex D, Section D.6, “Distribution Extensions.”

Constraints

[1] The DistributedProperty stereotype may be applied only to properties of classifiers stereotyped by Block or ValueType.

8.3.2.5 NestedConnectorEnd

Description

The NestedConnectorEnd stereotype of UML ConnectorEnd extends a UML ConnectorEnd so that the connected property
may be identified by a multi-level path of accessible properties from the block that owns the connector.

Attributes

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

Issue: 16045 – Clarify partWithPort vs. NestedConnectorEnd

• propertyPath: Property [1..*] {ordered, nonunique}
The propertyPath list of the NestedConnectorEnd stereotype must identify a path of containing properties that
identify the connected property in the context of the block that owns the connector. The ordering of properties is
from a property of the block that owns the connector, through a property of each intermediate block that types the
preceding property, ending in a property that includes the nested property in its type. The property attached to the
connector end is not included in the propertyPath list, but instead is held by the role property of the connector end.
The same property might appear more than once because a block can own a property with the same block as a type,
or another block that has the same property.

Constraints

[1] The property at the first position in the propertyPath attribute of the NestedConnectorEnd must be owned by the block that
owns the connector.

[2] The property at each successive position of the propertyPath attribute, following the first position, must be contained in
the Block or ValueType that types the property at the immediately preceding position.

Issue: 16045 – Clarify partWithPort vs. NestedConnectorEnd

[3] Within a connector end to which the NestedConnectorEnd stereotype has been applied, the role property of the connector
end must be contained in the type of the property at the last position of the propertyPath list.
46 OMG SysMLTM , v1.2

8.3.2.6 ParticipantProperty

Description

The Block stereotype extends Class, so it can be applied to any specialization of Class, including Association Classes.
These are informally called “association blocks.” An association block can own properties and connectors, like any other
block. Each instance of an association block can link together instances of the end classifiers of the association.

To refer to linked objects and values of an instance of an association block, it is necessary for the modeler to specify
which (participant) properties of the association block identify the instances being linked at which end of the association.
The value of a participant property on an instance (link) of the association block is the value or object at the end of the
link corresponding to this end of the association.

Participant properties can be the ends of connectors owned by an association block. The association block can be the type
of multiple other connectors to reuse the same internal structure for all the connectors. The keyword «participant» before
a property name indicates the property is stereotyped by ParticipantProperty. The types of participant properties can be
elided if desired. They are always the same as the corresponding association end type.

Attributes

• end : Property
A member end of the association block owning the property on which the stereotype is applied.

Constraints

[1] ParticipantProperty may only be applied to properties of association classes stereotyped by Block.

[2] ParticipantProperty may not be applied to properties that are member ends of an association.

[3] The aggregation of a property stereotyped by ParticipantProperty must be none.

[4] The end attribute of the applied stereotype must refer to a member end of the association block owning the property on
which the stereotype is applied.

[5] A property stereotyped by ParticipantProperty must have the same type as the property referred to by the end attribute.

[6] The property referred to by end must have a multiplicity of 1.

8.3.2.7 PropertySpecificType

The PropertySpecificType stereotype is automatically applied to the classifier that types a property with a property-
specific type. This classifier can contain definitions of new or redefined features that extend the original classifier
referenced by the property-specific type.

Classifiers with the PropertySpecificType stereotype are owned by the block that owns the property that has the property-
specific type. A classifier with this stereotype must specialize at most a single classifier that was referenced as the starting
classifier of the property-specific type. If there is no starting classifier (which occurs if no existing name is specified as
the starting type of a property-specific type), then a classifier with the stereotype applied has no specialization
relationship from any other classifier.

Constraints

[1] A classifier to which the PropertySpecificType stereotype is applied must be referenced as the type of one and only one
property.

[2] The name of a classifier to which a PropertySpecificType is applied must be missing. (The “name” attribute of the
NamedElement metaclass must be empty.)
OMG SysMLTM , v1.2 47

8.3.2.8 QuantityKind

A QuantityKind is a kind of quantity that may be stated by means of defined units. For example, the quantity kind of
length may be measured by units of meters, kilometers, or feet. QuantityKind is defined as a stereotype of
InstanceSpecification, but it uses this metaclass only to define supporting elements for ValueType definitions. (The reuse
of InstanceSpecification to define another metaclass is similar to the EnumerationLiteral metaclass in UML.) The only
valid use of a QuantityKind instance is to be referenced by the “quantityKind” property of a ValueType or Unit
stereotype.

See the non-normative model library in Annex D, Section D.5, “Model Library for Quantities, Units, Dimensions, and
Values (QUDV),” for an optional way to specify more comprehensive definitions of units and quantity kinds as part of
systems of units and systems of quantities. The name of a QuantityKind, its definitionURI, or other means may be used
to link individual quantity kinds to additional sources of documentation such as this optional model library.

Attributes

• symbol: String [0..1]
Short symbolic name of the quantity kind.

• description: String [0..1]
Textual description of the quantity kind.

• definitionURI: String [0..1]
URI that references an external definition of the quantity kind.

8.3.2.9 Unit

A Unit is a quantity in terms of which the magnitudes of other quantities that have the same quantity kind can be stated.
A unit often relies on precise and reproducible ways to measure the unit. For example, a unit of length such as meter may
be specified as a multiple of a particular wavelength of light. A unit may also specify less stable or precise ways to
express some value, such as a cost expressed in some currency, or a severity rating measured by a numerical scale.

Unit is defined as a stereotype of InstanceSpecification, but it uses this metaclass only to define supporting elements for
ValueType definitions. (The reuse of InstanceSpecification to define another metaclass is similar to the
EnumerationLiteral metaclass in UML.)

The only valid use of a Unit instance is to be referenced by the “unit” property of a ValueType stereotype.

See the non-normative model library in Annex D, Section D.5, “Model Library for Quantities, Units, Dimensions, and
Values (QUDV),” for an optional way to specify more comprehensive definitions of units and quantity kinds as part of
systems of units and systems of quantities. The name of a Unit, its definitionURI, or other means may be used to link
individual units to additional sources of documentation such as this optional model library.

Attributes

• symbol: String [0..1]
Short symbolic name of the unit.

• description: String [0..1]
Textual description of the unit.

• definitionURI: String [0..1]
URI that references an external definition of the unit.
48 OMG SysMLTM , v1.2

• quantityKind: QuantityKind [0..1]
A kind of quantity that may be stated by means of defined units, as identified by an instance of the QuantityKind
stereotype.

8.3.2.10 ValueType

Description

A ValueType defines types of values that may be used to express information about a system, but cannot be identified as
the target of any reference. Since a value cannot be identified except by means of the value itself, each such value within
a model is independent of any other, unless other forms of constraints are imposed.

Value types may be used to type properties, operation parameters, or potentially other elements within SysML. SysML
defines ValueType as a stereotype of UML DataType to establish a more neutral term for system values that may never be
given a concrete data representation. For example, the SysML “Real” ValueType expresses the mathematical concept of a
real number, but does not impose any restrictions on the precision or scale of a fixed or floating-point representation that
expresses this concept. More specific value types can define the concrete data representations that a digital computer can
process, such as conventional Float, Integer, or String types.

SysML ValueType adds an ability to carry a unit of measure and quantity kind associated with the value. A quantity kind
is a kind of quantity that may be stated in terms of defined units, but does not restrict the selection of a unit to state the
value. A unit is a particular value in terms of which a quantity of the same quantity kind may be expressed.

A SysML ValueType may define its own properties and/or operations, just as for a UML DataType. See Section 8.3.2.2,
“Block” for property classifications that SysML defines for either a Block or ValueType.

Attributes

• quantityKind: QuantityKind [0..1]
A kind of quantity that may be stated by means of defined units, as identified by an instance of the QuantityKind
stereotype. A value type may optionally specify a quantity kind without any unit. Such a value has no concrete
representation, but may be used to express a value in an abstract form independent of any specific units.

• unit: Unit [0..1]
A quantity in terms of which the magnitudes of other quantities that have the same quantity kind can be stated, as
identified by an instance of the Unit stereotype.

Constraints

[1] Any classifier which specializes a ValueType must also have the ValueType stereotype applied.

8.3.3 Model Libraries

Issue: 15876 – Define the SysML profile as referencing UML and replace the UML4SysML subset with OCL
constraints
OMG SysMLTM , v1.2 49

Package PrimitiveValueTypes

[PrimitiveValueTypes library][modelLibrary] PrimitiveValueTypesbdd

realPart : Real
imaginaryPart : Real

 «valueType»
Complex

 «valueType»
Real

 «valueType»
Boolean

 «valueType»
Number

 «valueType»
String

 «valueType»
Integer

Figure 8.7 - Model library for primitive value types

8.3.3.1 Boolean

A Boolean value type consists of the predefined values true and false.

8.3.3.2 Complex

Description

A Complex value type represents the mathematical concept of a complex number. A complex number consists of a real
part defined by a real number, and an imaginary part defined by a real number multiplied by the square root of -1.
Complex numbers are used to express solutions to various forms of mathematical equations.

Attributes

• realPart: Real
A real number used to express the real part of a complex number.

• imaginaryPart: Real
A real number used to express the imaginary part of a complex number.

8.3.3.3 Integer

An Integer value type represents the mathematical concept of an integer number. An Integer value type may be used to
type values that hold negative or positive integer quantities, without committing to a specific representation such as a
binary or decimal digits with fixed precision or scale.

8.3.3.4 Number

Number is an abstract value type from which other value types that express concepts of mathematical numbers are
specialized.
50 OMG SysMLTM , v1.2

8.3.3.5 Real

A Real value type represents the mathematical concept of a real number. A Real value type may be used to type values
that hold continuous quantities, without committing to a specific representation such as a floating point data type with
restrictions on precision and scale.

8.3.3.6 String

A String value type consists of a sequence of characters in some suitable character set. Character sets may include non-
Roman alphabets and characters.

8.4 Usage Examples

8.4.1 Wheel Hub Assembly

In Figure 8.8 a block definition diagram shows the blocks that comprise elements of a Wheel. The block property
LugBoltJoint.torque has a specialization of DistributedProperty applied to describe the uniform distribution of its values.
Examples of such distributions can be found in Section D.5, “Model Library for Quantities, Units, Dimensions, and
Values (QUDV).”
OMG SysMLTM , v1.2 51

Figure 8.8 - Block diagram for the Wheel Package

WheelAssembly

diameter: mm
width: mm

Wheel

t

1

InflationValve

BalanceWeight

lugBoltSize: mm

LugBolt
MountingHole

weight

0..6

mountingHole

5

v

1

TireMountingRim

TireBead

1

1

PressureSeat

bead0..1

2

WheelHubAssembly

rim
0..1

2

lugBoltSize: mm
threadSize: mm

LugBolt
ThreadedHole

Hub

«uniform» {m in=75, max=85} torque: ft-lb
boltTens ion: lb

LugBoltJoint

0..1

1

wheel

hub

1

h0..1

5 1 0..1

threadedHole

1

0..1

mountingHole

lugBoltJoint5

w

0..1

1

values

inflationPressure: ps i

Tire

values

tireSpecification: String

operations

mountTire()

transmitPressure()

WirelessTire
PressureMonitor

1

1

BandMount

operations

values

values

values values

bdd WbeelPackage
52 OMG SysMLTM , v1.2

Figure 8.9 - Internal Block Diagram for WheelHubAssembly

In Figure 8.9 an internal block diagram (ibd) shows how the blocks defined in the Wheel package are used. This ibd is a
partial view that focuses on particular parts of interest and omits others from the diagram, such as the “v” InflationValve
and “weight” BalanceWeight, which are also parts of a Wheel.

Issue: 16396 – Improvements to QUDV for SysML v1.3

8.4.2 Example Value Type Definitions

In Figure 8.10, several value types that use standard units of measure from the International System of Units (SI) are
defined to be available in the Example Value Type Definitions package. The value types in this package could be
imported into other contexts for typing properties of SysML Blocks. Because a SysML Unit can already identify a type of
quantity, or QuantityKind, that the unit measures, a value type only needs to identify the unit to identify a quantity kind
as well. The value types in this example refer to units that are assumed to be defined in an imported package, such as the
Model Library defined in Annex D, Section D.4, “Model Library of SysML Quantity Kinds and Units for ISO 80000-1.”

Figure 8.10 - Defining Value Types with units of measure from the International System of Units (SI)

w heel: WheelAssem bly

w : Wheel

m ountingHoles:
LugBoltMountingHole

5

lugBoltJoints:
LugBoltJoint

t: Tire

bead:
TireBead

1

0..1

mountingHole

hub: Hub

rim :
TireMountingRim

: PressureSeat

0..5

22

h:
LugBoltThreadedHole

1

0..1

threadedHole

5

ibd WheelHubAssembly

« v a lu e T y p e »
u n it= s e c o n d

s

« va lu e T y p e »
u n it= n e w to n

N

« v a lu e T y p e »
u n it= m e tre

m

« v a lu e T yp e »
u n it= k ilo g ra m

k g

b d d [p a c k a g e] E x a m p le V a lu e T y p e D e fin it io n s

« v a lu e T y p e »
R e a l
OMG SysMLTM , v1.2 53

8.4.3 Design Configuration for SUV EPA Fuel Economy Test

SysML internal block diagrams may be used to specify blocks with unique identification and property values. Figure C.38
in Annex C shows an example used to specify a unique vehicle with a vehicle identification number (VIN) and unique
properties such as its weight, color, and horsepower. This concept is distinct from the UML concept of instance
specifications in that it does not imply or assume any run-time semantic, and can also be applied to specify design
configurations.

In SysML, one approach is to capture system configurations by creating a context for a configuration in the form of a
context block. The context block may capture a unique identity for the configuration, and utilizes parts and initial value
compartments to express property design values within the specification of a particular system configuration. Such a
context block may contain a set of parts that represent the block instances in this system configuration, each containing
specific values for each property. This technique also provides for configurations that reflect hierarchical system
structures, where nested parts or other properties are assigned design values using initial value compartments. The
following example illustrates the approach.

8.4.4 Water Delivery

Issue: 16213 – Water association decomposition example should be in ports

Association blocks can be decomposed into connectors between properties of the associated blocks. These properties can
be ports, as in the water delivery example in Section 9.4.5.
54 OMG SysMLTM , v1.2

9 Ports and Flows

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

9.1 Overview

Issue: 16218 – Clarifications to flow port resolution

Issue: 16221 – Provided / required operations & receptions

Issue: 16226 – Internal and external connectors undefined

Issue: 16280 – Flow properties on blocks typing internal parts

The main motivation for specifying ports and flows is to enable design of modular, reusable blocks with clearly defined
ways of connecting and interacting with their context of use. This chapter extends UML ports to support nested ports, and
extends blocks to support flow properties, and required and provided features, including blocks that type ports. Ports can
be typed by blocks that support operations, receptions, and properties as in UML. SysML defines a specialized form of
Block (InterfaceBlock) that can be used to support nested ports. SysML identifies two kinds of ports, one that exposes
features of the owning block or its internal parts (proxy ports), and another that supports its own features (full ports).
Default compatibility rules are defined for connecting blocks used in composite structure, including parts and ports, with
association blocks available to define more specific ways of doing this. These additional capabilities in SysML enable
modelers to specify a wide variety of interconnectable components, which can be implemented through many engineering
and social techniques, such as software, electrical or mechanical components, and human organizations. This chapter also
extends UML information flows for specifying item flows across connectors and associations.

9.1.1 Ports

Ports are points at which external entities can connect to and interact with a block in different or more limited ways than
connecting directly to the block itself. They are properties with a type that specifies features available to the external
entities via connectors to the ports. The features might be properties, including flow properties and association ends, as
well as operations and receptions. The remaining overview sections introduce other aspects of ports and flows.

9.1.2 Flow Properties, Provided and Required Features, and Nested Ports

SysML extends blocks to support flow properties and provided and required features. Blocks with ports can type other
ports (nested ports). Flow properties specify the kinds of items that might flow between a block and its environment,
whether it is data, material, or energy. The kind of items that flow is specified by typing flow properties. For example, a
block specifying a car's automatic transmission could have a flow property for Torque as an input, and another flow
property for Torque as an output. Required and provided features are operations, receptions, and non-flow properties that
a block supports for other blocks to use, or requires other blocks to support for its own use, or both. For example, a block
might provide particular services to other blocks as operations, or have a particular geometry accessible to other block, or
OMG SysMLTM , v1.2 57

it might require services and geometries of other blocks. Ports nest other ports in the same way that blocks nest other
blocks. The type of the port is a block (or one of its specializations) that also has ports. For example, the ports supporting
torque flows in the transmission example might have nested ports for physical links to the engine or the driveshaft.

9.1.3 Proxy Ports and Full Ports

Issue: 16226 – Internal and external connectors undefined

SysML identifies two usage patterns for ports, one where ports act as proxies for their owning blocks or its internal parts
(proxy ports), and another where ports specify separate elements of the system (full ports). Both are ways of defining the
boundary of the owning block as features available through external connectors to ports. Proxy ports define the boundary
by specifying which features of the owning block or internal parts are visible through external connectors, while full ports
define the boundary with their own features. Proxy ports are always typed by interface blocks, a specialized kind of block
that has no behaviors or internal parts. Full ports cannot be behavioral in the UML sense of standing in for the owning
object, because they handle features themselves, rather than exposing features of their owners, or internal parts of their
owners. Ports that are not specified as proxy or full are simply called “ports.”

In either case, users of a block are only concerned with the features of its ports, regardless of whether the features are
surfaced by proxy ports, or handled by full ports directly. Proxy and full ports support the capabilities of ports in general,
but these capabilities are also available on ports that are not declared as proxy or full. Modelers can choose between
proxy or full ports at any time in the development lifecycle, or not at all, depending on their methodology.

9.1.4 Item Flows

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

Issue: 16280 – Flow properties on blocks typing internal parts

Item flows specify the things that flow between blocks and/or parts and across associations or connectors. Whereas flow
properties specify what “can” flow in or out of a block, item flows specify what “does” flow between blocks and/or parts
in a particular usage context. This important distinction enables blocks to be interconnected in different ways depending
on its usage context. For example, tanks might include a flow property that can accept fluid as an input. In a particular use
of tanks, “gasoline” flows across a connector into a tank, and in another use of tanks, “water” flows across a connector
into a tank. The item flow in each case specifies what “does” flow on the connector in the particular usage (e.g., gas,
water) and the flow property specifies what can flow (e.g., fluid). This enables type matching between the item flows and
between flow properties to assist in interface compatibility analysis.

Item flows may be allocated from object nodes in activity diagrams or signals sent from state machines across a
connector. Flow allocation is described in Chapter 15, “Allocations,” and can be used to help ensure consistency across
the different parts of the model.

Issue: 13178 – Port Decomposition of a Flow Specification Discussion
58 OMG SysMLTM , v1.2

9.1.5 Deprecation of Flow Ports and Flow Specifications

Flow ports and flow specifications are included in SysML, but are deprecated. Annex B defines them, along with
transition guidelines to non-deprecated elements. In particular, the functionality of non-atomic flow ports is supported
with proxy ports typed by interface blocks owning flow properties. Flow properties are not deprecated.

9.2 Diagram Elements

Issue: Editorial Change – changed this section to use the subsection names and table captions of the standard
chapter template, and fixed table formats to straddle pages as in other chapters.

Issue: 16217 – Connectors should not link ports in block definition diagram elements

Issue: 16221 – Provided / required operations & receptions

Issue: 16335 – Association decomposition in diagram element tables

Issue: 16352 – Provided and required feature abbreviations
OMG SysMLTM , v1.2 59

9.2.1 Block Definition Diagram

Table 9.1 - Graphical nodes defined in Block Definition diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Port

Transmission

Transmission
p1

p2

Transmission
p1 : ~T1

Conjugated Ports

Ports with Flow Properties

p3
p1

p2

p2 : ~T2

UML4SysML::Port

Port
(Compartment Notation)

p1: ITransCmd

Transmission

por ts

UML4SysML::Port

Port
(Nested)

Transmission

p1p1.1

p1.3
p1.2

UML4SysML::Port

ProxyPort

Transmission
«proxy»

p1

SysML::Ports&Flows::ProxyPort

FullPort

Transmission

«full»
p1

SysML::Ports&Flows::FullPort

FlowProperty

in gearSelect: Gear
in engineTorque: Torque
out wheelsTorque: Torque

Transmission

flow properties

SysML::Ports&Flows::
FlowProperty
60 OMG SysMLTM , v1.2

Required and Provided
Features

properties

prov temperature : Integer
reqd geometry : Spline

prov Boolean selectGear(g : Gear)
reqd Torque getTorque()

Transmission

operations

SysML::Ports&Flows::
DirectedFeature

InterfaceBlock

notifySpeedChange(): void

«interfaceBlock»
ISpeedObserver

SysML::Ports&Flows::
InterfaceBlock

Item Flow

Item Flow with an Item Property

eng: Engine

trns: Transmission

p

p

Torque

eng: Engine

trns: Transmission

p

p

torque: Torque

Item Flow

structure

«participant»{end=ep} epInLink : EP [1]
«participant»{end=tp} etInLink : TP [1]

c1 : Association-1

tpInLink : TP epInLink : EP

 Vibration

 Heat

Current

tp.1

tp.3

ep.1

ep.3

tp.2ep.2

Torque

eng: Engine trns: Transmission
ep:EP tp:TP

SysML::Ports&Flows::ItemFlow

Interface

notifySpeedChange(): void

«interface»
ISpeedObserver

UML4SysML::Interfaces::
Interface

Table 9.1 - Graphical nodes defined in Block Definition diagrams

Node Name Concrete Syntax Abstract Syntax Reference
OMG SysMLTM , v1.2 61

Required and Provided
Interfaces

ITransCmd

ITransData

Transmissionp1

ITransCmd

ITransData

Transmission
p1

UML4SysML::Interface

Table 9.1 - Graphical nodes defined in Block Definition diagrams

Node Name Concrete Syntax Abstract Syntax Reference
62 OMG SysMLTM , v1.2

9.2.2 Internal Block Diagram

Table 9.2 - Graphical nodes defined in Internal Block diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Port

t : Transmission

t : Transmission
p1

p2

t : Transmission
p1 : ~T1

Conjugated Ports

Ports with Flow Properties

p3
p1

p2

p2 : ~T2

UML4SysML::Port

Port
(Nested)

t : Transmission

p1p1.1

p1.3
p1.2

UML4SysML::Port

ProxyPort

t : Transmission
«proxy»

p1

SysML::Ports&Flows::ProxyPort

FullPort

t : Transmission

«full»
p1

SysML::Ports&Flows::FullPort

ItemFlow

Item Flow with an Item Property

eng: Engine

trns: Transmission

p

p

Torque

eng: Engine

trns: Transmission

p

p

torque: Torque

Item Flow

SysML::Ports&Flows::ItemFlow
OMG SysMLTM , v1.2 63

9.3 UML Extensions

9.3.1 Diagram Extensions

Issue: 16221 – Provided / required operations & receptions

Issue: 16352 – Provided and required feature abbreviations

9.3.1.1 DirectedFeature

A DirectedFeature has the same notation as other non-flow properties and behavioral features with a feature direction
prefix (prov | reqd | provreqd), which corresponds to one the FeatureDirection literals “provided”, “required”, and
“providedrequired”, respectively. Directed features can appear in compartments for the various kinds of properties and
behavioral features.

9.3.1.2 FlowProperty

Issue: 16280 – Flow properties on blocks typing internal parts

A FlowProperty signifies a single flow element to/from a block. A flow property has the same notation as a Property only
with a direction prefix (in | out | inout). Flow properties are listed in a compartment labeled “flow properties”.

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

9.3.1.3 FullPort

Issue: 16227 – Owning block undefined

Full ports can appear in block compartments labeled “full ports.” The keyword «full» before a property name indicates
the property is stereotyped by FullPort.

Required and Provided
Interfaces

ITransCmd

ITransData

t : Transmissionp1

ITransCmd

ITransData

t : Transmission
p1

UML4SysML::Interface

Table 9.2 - Graphical nodes defined in Internal Block diagrams

Node Name Concrete Syntax Abstract Syntax Reference
64 OMG SysMLTM , v1.2

Issue: 16255 – TriggerOnNestedPort refers to onPort instead of port

9.3.1.4 InvocationOnNestedPortAction

The nested port path is notated with a string “‘via’ <port-name> [‘,’ <port-name>]+” in the name string of the icon for the
invocation action. It shows the values of the onNestedPort property in order, and the value of the onPort property at the
end.

9.3.1.5 ItemFlow

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

An ItemFlow describes the flow of items across a connector or an association. The notation of an item flow is a black
arrowhead on the connector or association. The arrowhead is towards the target element. For an item flow with an item
property, the label shows the name and type of the item property (in name: type format). Otherwise the item flow is
labeled with the name of the classifier of the conveyed items. When several item flows having the same direction are
represented, only one triangle is shown, and the list of item flows, separated by a comma is presented.

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

9.3.1.6 Port

Issue: 16227 – Owning block undefined

Ports are notated by rectangles overlapping the boundary of their owning blocks or properties (parts or ports) typed by the
owning block. Port labels appear in the same format as properties on the end of an association. Port labels can appear
inside port rectangles. Nested ports that are not on proxy ports can appear anywhere on the boundary of the owning port
rectangle that does not overlap the boundary of the rectangle the owning port overlaps.

Port rectangles can have port rectangles overlapping their boundaries, to notate a port type that has ports (nested ports).
The fill color of port rectangles is white and the line and text colors are black.

Issue: 16218 – Clarifications to flow port resolution

Issue: 16227 – Owning block undefined

Issue: 16351 – Owning block terminology

Ports with types that have flow properties all in the same direction, either all in or all out, can have an arrow inside them
indicating the direction of the properties with respect to the owning block. (See Section 9.3.2.7 for definition of owning
block of proxy ports in this case.) This includes the direction of flow properties on nested ports, and if the port is full and
its type is unencapsulated, ports on parts of the port, recursively. The arrows are perpendicular to the boundary lines they
overlap. Arrows in conjugated ports are reversed from the flow property direction. Ports with types that have flow
properties in different directions or flow properties that are all in both directions, including have two open arrow heads
OMG SysMLTM , v1.2 65

inside them facing away from each other (<>). This includes the directions of nested and contained flow properties as
described above for one-way arrows. Ports appearing in block compartments can have their direction appear textually
before the port name as “in”, “out”, or “inout”, determined in the same way as the arrow direction.

Ports that are not proxy or full can appear in block compartments labeled “ports”.

Ports are specialized kinds of properties, and can be shown in same way as other properties. They can appear in block
compartments in the same format as other properties of their owning blocks, or as the ends of associations, with the port
appearing in the same format as other association ends, on the end opposite the owning block.

9.3.1.7 ProxyPort

Issue: 16227 – Owning block undefined

Proxy ports can appear in block compartments labeled “proxy ports”. The keyword “full” before a property name
indicates the property is stereotyped by ProxyPort. Nested ports on proxy ports can appear on the portion of the boundary
of the owning port rectangle that is outside the rectangle the owning port overlaps.

Issue: 16255 – TriggerOnNestedPort refers to onPort instead of port

9.3.1.8 TriggerOnNestedPort

The nested port path is notated following a trigger signature with a string “‘«from» (’ <port-name> [‘,’ <port-name>]+
‘)’”in the name string of the icon for the trigger. It shows the values of the onNestedPort property in order, and the value
of the port property at the end.

9.3.2 Stereotypes

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

Issue: 16230 – Block shown as metaclass
66 OMG SysMLTM , v1.2

Package Ports&Flows

«stereotype»
ProxyPort

«metaclass»
UML4SysML::Port

«stereotype»
InterfaceBlock

«stereotype»
SysML::Blocks::Block

«metaclass»
UML4SysML::

Property

direction : FlowDirection

«stereotype»
FlowProperty

in
out
inout

«enumeration»
FlowDirection

«stereotype»
FullPort

Figure 9.1 - Port Stereotypes

Package Ports&Flows

«metaclass»
UML4SysML::Port

«stereotype»
InvocationOnNested

PortAction

«metaclass»
UML4SysML::

InvocationAction

1.. *
onNestedPort

{ordered,
nonunique}

«stereotype»
TriggerOnNestedPort

«metaclass»
UML4SysML::

Trigger

1.. *
onNestedPort
{ordered,
nonunique}

Figure 9.2 - Stereotypes for Actions on Nested Ports

Issue: 16344 – Events for property value changes

Package Ports&Flows

structuralFeature

«metaclass»
UML4SysML::Structural

Feature

«stereotype»
ChangeStructural

FeatureEvent

«metaclass»
UML4SysML::
ChangeEvent

«stereotype»
AcceptChange

StructuralFeature
EventAction

«metaclass»
UML4SysML::

AcceptEventAction

1

Figure 9.3 - Stereotypes for Property Value Change Events
OMG SysMLTM , v1.2 67

Issue: 16221 – Provided / required operations & receptions

Package Ports&Flows

featureDirection: FeatureDirection

«stereotype»
DirectedFeature

provided
required
providedrequired

«enumeration»
FeatureDirection

«metaclass»
UML4SysML::

Feature

Figure 9.4 - Provided and Required Features

Figure 9.5 - ItemFlow Stereotype

Issue: 16344 – Events for property value changes

9.3.2.1 AcceptChangeStructuralFeatureEventAction

Description

Accept change structural feature event actions handle change structural feature events (see Section 9.3.2.4). The actions
have exactly two output pins. The first output pin holds the values of the structural feature just after the values changed,
while the second pin holds the values just before the values changed. The action only accepts events for structural features
on the blocks owning the behavior containing the action, or on the behavior itself, if the behavior is not owned by a
block.

The UML metaclasses are show n for completeness.

«metaclass»
UML4SysML::Classifier

«metaclass»
UML4SysML::Inform ationItem

*

representation *

represented «metaclass»
UML4SysML::Inform ationFlow

itemProperty: Property [0..1]

«stereotype»
Item Flow

«metaclass»
UM L4SysM L::NamedElement

1..** target

1..*
*

source1..*
*

conveyed
68 OMG SysMLTM , v1.2

Constraints

[1] The action has exactly one trigger, the event of which must be a change structural feature event.

[2] The action has two result pins with type and ordering the same as the type and ordering of the structural feature of the trig-
ger event, and multiplicity compatible with the multiplicity of the structural feature.

[3] The structural feature of the trigger event must be owned by or inherited to the context of the behavior containing the
action (the context of a behavior is its owning block, or itself if it is not owned by a block, see definition in the UML 2
Superstructure Specification).

[4] Visibility of the structural feature of the trigger event must allow access to the object performing the action.

[5] The constraint under Section 11.3.2, “AcceptEventAction” in the UML 2 Superstructure Specification, “[2] There are no
output pins if the trigger events are only ChangeEvents,” is removed for accept event actions that have
AcceptChangeStructuralFeatureEventAction applied.

9.3.2.2 Block

Description

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

Issue: 16218 – Clarifications to flow port resolution

Issue: 16227 – Owning block undefined

Issue: 16265 – Non-behavioral ports on behavioral ports

Issue: 16351 – Owning block terminology

Blocks (including specializations of Block) can own ports, including but not limited to proxy ports and full ports. These
blocks can be the type of ports (specifying nested ports), with some restrictions described in other stereotypes in this
section. All links and interactions with a behavioral port (in the UML sense of standing in for the owning object) are links
and interactions with the owner, so the semantics of behavioral ports is the same as if the value of the port as a property
were always the owning block instance (the owning block instance for behavioral ports on proxy ports is the value of the
block usage the proxy port is standing in for, which might be an internal part). In conjugated ports with conjugated nested
ports, the nested ports behave as if they were not conjugated. Blocks loosen UML constraints on connectors to support
nested ports. See Chapter 8, “Blocks” for further details of blocks.

Issue: 16344 – Events for property value changes

9.3.2.3 ChangeStructuralFeatureEvent

Description

A ChangeStructuralFeatureEvent models changes in values of structural features.
OMG SysMLTM , v1.2 69

Attributes

• structuralFeature : StructuralFeature
The event models occurrences of changes to values of this structural feature.

Constraints

[6] The structural feature must not be static.

[7] The structural feature must have exactly one featuringClassifier.

Issue: 16221 – Provided / required operations & receptions

9.3.2.4 DirectedFeature

Description

Issue: 16351 – Owning block terminology

A DirectedFeature indicates whether the feature is supported by the owning block (provided), or is to be supported by
other blocks for the owning block to use (required), or both (the owning block for features on types of proxy ports is the
type of the block usage the proxy port is standing in for, which might be an internal part). Using non-flow properties
means to read or write them, and using behavioral features means to invoke them. Provided non-flow properties are read
and written on the owning block, while required non-flow properties are read or written on an external block. Provided
behavioral features are invoked with the owning block as target, while required behavioral features are invoked with an
external block as target (required).

Issue: 16345 – Broadcasting along connectors

Blocks owning or inheriting required behavioral features can have behaviors invoking the behavioral features on instances
of the block. This sends invocations out along connectors from usages of the block in internal structures of other blocks,
provided the behavioral features match on the other end of the connectors.

Invocations of provided behavioral features due to required behavioral features can only occur when the features match.
A single provided behavioral feature must match each required one according to the following conditions:

• The kind of behavioral feature is the same (operation or reception).

• Names are the same, including parameter names, in the same order.

• Parameter directions are the same, in the same order.

• Provided parameter types for parameters with

• in direction are the same or more general than the required ones, in order.

• out or return direction are the same or more specialized than the required ones, in order.

• inout direction are the same as the required ones, in order.

Parameters without types are treated as if their type is more general than all other types.

• Provided parameter multiplicity has the same condition as type, where wider multiplicities are “more general” than
narrower ones.
70 OMG SysMLTM , v1.2

• Provided parameter order (of each parameter separately) has the same condition as type, where unordered parameters
are “more general” than ordered ones.

• Provided parameter uniqueness (of each parameter separately) has the same condition as type, where non-unique
parameters are “more general” than unique ones.

• Provided operation preconditions are the same as or more general than required ones.

• Provided operation body conditions and postconditions are the same or more specialized than required ones.

If corresponding parameters in provided and required behavioral features both have defaults, the default value
specification of the required feature is used for in parameters, and the default value specification of the provided feature
is used for out and return parameters.

Reading or writing provided non-flow properties due to required non-flow properties can only occur when the features
match. Matching non-flow properties must have the same name. For reading non-flow properties, the types, multiplicities,
uniqueness, and ordering must match in the same way as out parameters for behavioral features above. For writing non-
flow properties, the types, multiplicities, uniqueness, and ordering must match in the same way as in parameters for
behavioral features above. For both reading and writing non-flow properties, the types, multiplicities, uniqueness, and
ordering must be the same. If provided and required non-flow properties both have defaults, the default value
specification of the required feature is used for writing and the default specification of the provided feature is used for
reading.

Attributes

Issue: 16351 – Owning block terminology

• featureDirection : FeatureDirection
Specifies whether the feature is supported by the owning block (featureDirection=“provided”), or is to be
supported by other blocks for the owning block to use (featureDirection=“required”), or both
(featureDirection=“providedrequired”). The meaning of the direction is reversed for conjugated ports.

Constraints

[1] DirectedFeature can only be applied to behavioral features, or to properties that do not have FlowProperty applied, includ-
ing on subsetted or redefined features.

[2] Operations that are not provided must not have or inherit methods.

9.3.2.5 FeatureDirection

Description

Issue: 16351 – Owning block terminology

FeatureDirection is an enumeration type that defines literals used by directed features for specifying whether they are
supported by the owning block, or is to be supported by other blocks for the owning block to use.

Literal values are:

• provided:
Indicates that the feature is supported by the owning block.
OMG SysMLTM , v1.2 71

• required:
Indicates that the feature must be supported by other blocks.

• providedrequired:
Indicates that the feature is both provided and required.

The meanings of the “required” and “provided” literals are switched for conjugated ports. In these cases the actual use is
in the opposite direction than the one specified by the enumeration literal.

9.3.2.6 FlowDirection

Description

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

Issue: 16227 – Owning block undefined

Issue: 16280 – Flow properties on blocks typing internal parts

Issue: 16351 – Owning block terminology

FlowDirection is an enumeration type that defines literals used for specifying the direction that items can flow to or from
a block. FlowDirection is used by flow properties to indicate the direction that its items can flow to or from its owner.
(See Section 9.3.2.7 for definition of owning block of proxy ports in this case.)

Literal Values are:

• in:
Indicates that items of the flow property can flow into the owning block.

• out:
Indicates that items of the flow property can flow out of the owning block.

• inout:
Indicates that items of the flow property can flow into or out of the owning block.

Issue: 16221 – Provided / required operations & receptions

The meanings of the “in” and “out” literals are switched for conjugated ports. In these cases the actual flow is in the
opposite direction than the one specified by the enumeration literal.

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

9.3.2.7 FlowProperty

Description

Issue: 16231 – Flow property semantics only defined for external connectors
72 OMG SysMLTM , v1.2

Issue: 16280 – Flow properties on blocks typing internal parts

Issue: 16351 – Owning block terminology

A FlowProperty signifies a single kind of flow element that can flow to/from a block. A flow property’s values are either
received from or transmitted to another block. An “in” flow property value cannot be modified by its owning or realizing
block, or blocks contained by its owning or realizing block. An “out” flow property can only be modified by its owning
or realizing block, or blocks contained by its owning or realizing block. An “inout” flow property can be used as an “in”
flow property or an “out” flow property. (The owning block of a proxy port in this case depends on how the port is nested
in the internal structures of blocks, because the block directly owning the port might be used to type ports or parts at
different levels of nesting in multiple blocks, or the same block. The owning block of a proxy port in the internal structure
of a block is the block typing the innermost full port or part under which the port is nested.) The meaning of the direction
is reversed for conjugated ports (UML isConjugated = true). In the description below, flow property direction refers to the
direction after conjugation is taken into account.

Issue: 16215 – Flow property compatibility rules should not be dependent on item flow

Flow due to flow properties can only occur when flow properties match. Matching flow properties must have matching
direction and types. Matching direction is defined below. Flow property types match when the target flow property type
has the same, or a generalization of, the source flow property type. (See Section 9.3.2.11 for looser constraints on flow
property types across connectors with item flows.) If multiple flow properties on either end of a connector match by
direction and type, then the names of the flow properties must also be the same for flow to occur. If multiple flow
properties on either end match by direction, type, and name, which can happen for unnamed flow properties, then no flow
will occur.

Issue: 16231 – Flow property semantics only defined for external connectors

Issue: 16280 – Flow properties on blocks typing internal parts

Flow properties enable item flows across connectors between usages typed by blocks having the properties. For Block and
ValueType flow properties, setting an “out” or “inout” FlowProperty value of a block usage on one end of a connector
will result in assigning the same value of an “in” or “inout” FlowProperty of a block usage at the other end of the
connector, provided the flow properties are matched. Flow properties of type Signal imply sending and/or receiving of a
signal usage. This paragraph so far does not apply to internal connectors of proxy ports, see next paragraph.An “out”
FlowProperty of type Signal means that the owning Block may send the signal via connectors and an “in” FlowProperty
means that the owning block is able to receive the Signal.

Issue: 16227 – Owning block undefined

Issue: 16231 – Flow property semantics only defined for external connectors

Items going to or from behavioral ports (UML isBehavior = true) are actually going to or from the owning block. (See
Section 9.3.2.2 for definition of owning block of proxy ports in this case.) Items going to or from non-behavioral ports
(UML isBehavior = false) are actually going to the port itself (for full ports) or to internal parts connected to the port (for
OMG SysMLTM , v1.2 73

proxy ports). Because of this, flow properties of a proxy port are the same as flow properties on the owning block or
internal parts, so the flow property directions must be the same on the proxy port and owning block or internal parts for
items to flow. See Section 9.3.2.12 for the definition of internal connectors and the semantics of proxy ports.

Issue: 16280 – Flow properties on blocks typing internal parts

The flow property semantics above applies to each connector of a block usage, including when the block usage has
multiple connectors.

The binding of flow properties on ports to behavior parameters can be achieved in ways not dictated by SysML. One
approach is to perform name and type matching. Another approach is to explicitly use binding relationships between the
ports properties and behavior parameters or block properties.

Attributes

• direction : FlowDirection
Specifies if the property value is received from an external block (direction=“in”), transmitted to an external Block
(direction=“out”) or both (direction=“inout”). The meaning of the direction is reversed for conjugated ports.

Constraints

[1] A FlowProperty is typed by a ValueType, Block, or Signal.

Issue: 16280 – Flow properties on blocks typing internal parts

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

9.3.2.8 FullPort

Description

Issue: 16293 – Full ports should not be conjugated

Full ports specify a separate element of the system from the owning block or its internal parts. They might have their own
internal parts, and behaviors to support interaction with the owning block, its internal parts, or external blocks. They
cannot be behavioral ports, or linked to internal parts by binding connectors, because these constructs imply identity with
the owning block or internal parts. Full ports also cannot be conjugated, because behaviors defined on their types are
defined independently of the ports these types might be used on.

Constraints

[1] Full ports cannot also be proxy ports. This applies even if some of the stereotypes are on subsetted or redefined ports.

[2] Binding connectors cannot link full ports to other composite properties of the block owning the port, except ports that are
not full.

[3] Full ports cannot be behavioral (isBehavior=false).
74 OMG SysMLTM , v1.2

9.3.2.9 InterfaceBlock

Description

Interface blocks cannot have behaviors, including classifier behaviors or methods, or internal parts.

Constraints

[1] Interface blocks cannot own or inherit behaviors, have classifier behaviors, or methods for their behavioral features.

[2] Interface blocks cannot have composite properties that are not ports.

[3] Ports owned by interface blocks can only be typed by interface blocks.

[4] Full ports cannot be conjugated (isConjugated=false).

9.3.2.10 InvocationOnNestedPortAction

Description

Issue: 16225 – onNestedPort should enable sending directly to target

This extends the capabilities of UML's onPort property of InvocationAction to support nested ports. It identifies a nested
port by a multi-level path of ports from the block that executes the action. Like UML's onPort property, this extends
invocation actions to send invocations out of ports of objects executing the actions, or to ports of those objects or other
objects. Invocations intended to go out of the object executing the action must be sent to the executing object on a proxy
port. Invocations intended to go directly to a target object are sent to that object on a port of that object.

Attributes

• onNestedPort : Port [1..*] {ordered, nonunique}
The onNestedPort list must be a path of containing ports that identify the port receiving the invocation in the context
of the target object of the invocation. The ordering of ports is from a port of the target object, through a port of each
intermediate block that types the preceding port, until a port is reached that contains a port within its type specified by
the onPort property of the invocation action. The onPort port is not included in the onNestedPort list. The same port
might appear more than once because a block can own a port with the same block as a type, or another block that has
the same property.

Constraints

Issue: 16225 – onNestedPort should enable sending directly to target

[1] The onPort property of an invocation action must have a value when this stereotype is applied.

[2] The port at the first position in the onNestedPort property must be owned by the target object of the stereotyped action.

[3] The port at each successive position of the onNestedPort property, following the first position, must be contained in the
block that types the port at the immediately preceding position.

[4] Within the stereotyped action, the onPort port of the invocation action must be contained in the type of the port at the last
position of the onNestedPort list.
OMG SysMLTM , v1.2 75

9.3.2.11 ItemFlow

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

Description

An ItemFlow describes the flow of items across a connector or an association. It may constrain the item exchange
between blocks, block usages, or ports as specified by their flow properties. For example, a pump connected to a tank: the
pump has an “out” flow property of type Liquid and the tank has an “in” FlowProperty of type Liquid. To signify that
only water flows between the pump and the tank, we can specify an ItemFlow of type Water on the connector.

Issue: 16219 – Ownership of item flow properties

Issue: 16334 – Item flow property values

One can label an ItemFlow with the classifiers of the items that may be conveyed. For example: a label Water would
imply that instances of Water might be transmitted over this ItemFlow. In addition, if the item flow identifies an item
property, then one can label the item flow with the item property. For example, a label of “liquid: Water” means Water
items might flow and these items are the values of the property “liquid”, i.e., the values of the “liquid” item property are
the instances of Water flowing at any given time. Item properties are owned by the common (possibly indirect) owner of
the source and target of the item flow, rather than by the source and target types, as flow properties are.

Issue: 16231 – Flow property semantics only defined for external connectors

Item flows on connectors must be compatible with flow properties of the blocks usages at each end of the connector, if
any. The direction of the item flow must be compatible wit the direction of flow specified by the flow properties. (See
Sections 9.3.2.6 and 9.3.2.7 about flow property direction.) Each classifier of conveyed items on an item flow must be the
same as, a specialization of, or a generalization of at least one flow property type on each end of the connected block
usages (or their accessible nested block usages recursively, see Section 8.3.2.2 about encapsulated blocks). The target
flow property type must be the same as, or a generalization of, a classifier of the item flow or the source flow property
type, whichever is more specialized. (See Section 9.3.2.7 for tighter constraints on flow property types across connectors
without item flows.)

Attributes

• itemProperty: Property [0..1]
An optional property that relates the flowing item to the instances of the connector’s enclosing block. This property
is applicable only for item flows realized by connectors. The itemProperty attribute has no values if the item flow is
realized by an Association.

Constraints

[1] A Connector or an Association, or an inherited Association must exist between the source and the target of the
InformationFlow.

Issue: 10342 – Section: 9.3.2.8 ItemFlow

[2] An ItemFlow itemProperty is typed by a ValueType, Block, or Signal.
76 OMG SysMLTM , v1.2

Issue: 16219 – Ownership of item flow properties

[3] ItemProperty is a property of the common (possibly indirect) owner of the source and the target.

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

Issue: 16219 – Ownership of item flow properties

[4] Item property cannot have a value if the item flow is realized by an Association.

[5] If an ItemFlow has an itemProperty, one of the classifiers of conveyed items must be the same as the type of the item
property.

[6] If an ItemFlow has an itemProperty, its name should be the same as the name of the item flow.

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

9.3.2.12 ProxyPort

Description

Issue: 16221 – Provided / required operations & receptions

Issue: 16226 – Internal and external connectors undefined

Issue: 16227 – Owning block undefined

Issue: 16231 – Flow property semantics only defined for external connectors

Issue: 16336 – Proxy port owning block definition should refer to internal structure

Issue: 16351 – Owning block terminology

Proxy ports identify features of the owning block or its internal parts that are available to external blocks through external
connectors to the ports. They do not specify a separate element of the system from the owning block or internal parts.
Actions on features of a proxy port have the same effect as if they were acting on features of the owning block or internal
parts the port stands in for, and changes to features of the owning block or internal parts that the proxy port makes
available to external blocks are visible to those blocks via connectors to the port. (This applies to provided features; for
required features, see Section 9.3.2.4.) Proxy ports do not specify their own behaviors or internal parts, and must be typed
by interface blocks. Their nested ports must also be proxy ports. Completely specified proxy ports must be connected to
internal parts or be behavioral, to enable the owning block or connected internal parts to handle or initiate any interactions
through the port. However, blocks can be defined with non-behavioral proxy ports that do not have internal connectors,
with the expectation that these will be added in specialized blocks. Internal connectors to ports are the ones inside the
port's owner (specifically, they are the ones that do not have a UML partwithPort on the connector end linked to the port,
assuming NestedConnectorEnd is not applied to that end, or if NestedConnectorEnd is applied to that end, they are the
connectors that have only ports in the property path of that end). The rest of the connectors linked to a port are external.
OMG SysMLTM , v1.2 77

Issue: 16285 – Internal fanout from proxy ports should be clarified

Proxy ports can be connected to internal parts or ports on internal parts, identifying features on those parts or ports that
are available to external blocks. When an proxy port is connected to a single internal part, the connector must be a
binding connector, or have the same semantics as a binding connector (the value of the proxy port and the connected
internal part are the same; links of associations typing the connector are between all objects and themselves, and no
others). When a proxy port is connected to multiple internal parts, the connectors have the same semantics as a single
binding connector to a an aggregate of those parts, supporting all their features, and treating flows and invocations from
outside the aggregate as if they were to those parts, and flows and invocations it receives from those parts as if they were
to the outside. This aggregate is not a separate element of the system, and only groups the internal parts for purposes of
binding to the proxy port.Internal connectors to proxy ports can be typed by association blocks, including when the
connector is binding.

Constraints

[1] Proxy ports cannot also be full ports. This applies even if some of the stereotypes are on subsetted or redefined ports.

[2] Proxy ports can only be typed by interface blocks.

[3] Ports owned by the type of a proxy port must be proxy ports.

9.3.2.13 TriggerOnNestedPort

Description

This extends trigger to support nested ports. It identifies a nested port by a multi-level path of ports from the object
receiving the triggering events. It is not applicable to full ports.

Attributes

Issue: 16255 – TriggerOnNestedPort refers to onPort instead of port

Issue: 16344 – Events for property value changes

• onNestedPort : Port [1..*] {ordered, nonunique}
The onNestedPort list must be a path of containing ports that identify a port on which the event is occurring, in the
contextof a block in which the trigger is used. The ordering of ports is from a port of the receiving object, through a
port of each intermediate block that types the preceding port, until a port is reached that contains a port within its type
specified by the port property of the trigger. The port property is not included in the onNestedPort list. The same
port might appear more than once because a block can own a port with the same block as a type, or another block that
has the same property.

Constraints

Issue: 16255 – TriggerOnNestedPort refers to onPort instead of port

[1] The port property of the stereotyped trigger must have exactly one value, and the value cannot be a full port.

[2] The values of the onNestedPort property must not be full ports.

[3] The port at the first position in the onNestedPort property must be owned by a block in which the trigger is used.
78 OMG SysMLTM , v1.2

[4] The port at each successive position of the onNestedPort property, following the first position, must be contained in the
block that types the port at the immediately preceding position.

Issue: 16255 – TriggerOnNestedPort refers to onPort instead of port

[5] The value of the port property of the stereotyped trigger must be contained in the type of the port at the last position of the
onNestedPort list.

9.4 Usage Examples

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

9.4.1 Ports with Required and Provided Features

Issue: 16221 – Provided / required operations & receptions

Figure 9.6 is a fragment of the ibd:PwrSys diagram used in the HybridSUV Sample Problem in Annex C. (The complete
diagram is in Figure C.19.) The ecu:PowerControlUnit part has three ports with required and provided features, each
connected to a port of another part. Each of the ports in this example is typed by a block specifying provided and required
features available via connectors to the ports. For example, the ICE block specifies the provided operations setMixture
and setThrottle, the provided properties RPM, temperature, and isKnocking, and required property isControlOn, as shown
in Figure C.20 in Annex C. This block types the ctrl port of InternalCombustionEngine and the ice port of
PowerControlUnit, but is conjugated on the ice port. This means the provided features of ICE are provided by the ctrl
port of InternalCombustionEngine, and required by the ice port of PowerControlUnit, while the required features of ICE
are required by the the ctrl port of InternalCombustionEngine, and provided by the ice port of PowerControlUnit. Since
the ecu:PowerControlUnit part and ice:InternalCombustionEngine part are connected via these ports, the
ecu:PowerControlUnit part may invoke setThrottle and setMixture on the ice:InternalCombustionEngine part via its ice
port, across the connector to the ctrl port of ice:InternalCombustionEngine. By invoking these operations, the
PowerControlUnit can set the throttle and mixture of the InternalCombustionEngine. The PowerControlUnit can also read
properties of the InternalCombustionEngine across the connector to find out the its rpm, temperature, and whether it is
knocking. Inversely, the InternalCombustionEngine can read the isControlOn property of the PowerControlUnit across
the connector to determine if the unit is still operating, and possibly shut down if it is not.
OMG SysMLTM , v1.2 79

Figure 9.6 - Usage example of ports with provided and required features

9.4.2 Flow Ports and Item Flows

Figure C.25 in Annex C shows the usage of ItemFlow. Here each of the item flows has an item property (fuelSupply:Fuel and
fuelReturn:Fuel) that signify the actual flow of fuel across the fuel lines. We see how Fuel may flow between the
FuelTankAssy and the InternalCombustionEngine. The FuelPump ejects Fuel via p1 port of FuelTankAssy, the Fuel flows
across the fuelSupplyLine connector to the fuelFittingPort of InternalCombustionEngine and from there it is distributed via
other ports to internal parts of the engine. Some of the fuel is returned to the FuelTankAssy from the fuelFitting port across the
fuelReturnLine connector. Note that it is possible to connect a single port to multiple connectors: in this example the direction
of the flow via the fuelFitting port on the external connectors is implied by the direction of the ports on the other side of the
fuel lines as well as by the directions of the item flows on the fuel lines. The direction of the flow on the internal connectors is
implied by the direction of the ports of the engine’s internal parts.

9.4.3 Ports with Flow Properties

Figure C.22 in Annex C shows a way to connect the PowerControlUnit to other parts over a CAN bus. Since connections
over buses are characterized by broadcast asynchronous communications, ports with flow properties are used to connect
the parts to the CAN bus. To specify the flow between the ports, we need to specify flow properties as done in Figure
C.21 in Annex C. Here FS_ICE has three flow properties: an “out” flow property of type signal (ICEData) and two “in”
flow properties of type Real. This allows the InternalCombustionEngine to transmit an ICEData signal via its fp port that
will be transmitted over the CAN bus to the ice port of PowerControlUnit (a conjugated port typed by FS_ICE). This
single signal carries the temperature, rpm, and knockSensor information of the engine. In addition, the PowerControlUnit
can set the mixture and throttle of the InternalCombustionEngine via the mixture and throttlePosition flow properties of
FS_ICE.

ecu : PowerControlUnit

epc : ElectricalPower
Controller

ibd [block] PowerSubsystem [Provided and Required Features]

epc : ~EPC

ctrl : EPC

 c3 :

tsrm : Transmission
 ctrl : TSRM

 tsrm : ~TSRM

 c2 :

 ice : InternalCombustionEngine
 ctrl : ICE

ice : ~ICE

c1 :
80 OMG SysMLTM , v1.2

9.4.4 Proxy and Full Ports

Modelers have the option of applying stereotypes for proxy and full ports to indicate whether ports are specifying features
of their owners and internal parts (proxy), or for themselves separately (full). This is a concern when defining ports,
rather than using existing blocks with ports already defined on them. Using existing blocks with ports only requires
knowing the port types, because they define the features available for linking or communication with those ports via
connectors. The stereotypes of proxy and full ports might be elided in these cases to simplify diagrams.

The ProxyPort and FullPort stereotypes can be applied at any level in a block taxonomy, whether on ports of the most
general blocks, the most specialized, or at intermediate levels of generalization. Ports can be specialized through
redefinition and subsetting if desired, as long they are not proxy and full at the same time, including the stereotypes they
inherit. Figure 9.7 shows an example of a general block for an electrical plug specialized into two other blocks. The
general block can be contained in its own package, for export to users of electrical plugs. The specialized blocks are for
plug designers. This example has two designs, one using proxy ports and the other full. The proxy design adds internal
parts exposed by the ports. The full design redefines the ports with specialized types. The same type is used for the
internal parts of the proxy design and the redefined ports of the full design. The net result for the systems as-built are the
same.

Modelers can apply stereotypes for proxy and full ports at any stage of model development, or not all if the stereotype
constraints are not needed. Figure 9.7 happens to use unstereotyped ports on a general block distributed to users, and
stereotyped ports on its specializations for implementation, but the modelers might have not used stereotypes at all, if they
did not care whether the model met those constraints (such as no behaviors on proxy ports, or no internal binding
connectors to full ports).

Issue: 16280 – Flow properties on blocks typing internal parts

Unstereotyped ports do not commit to whether they are proxy or full, and do not prevent or dictate future application of
the stereotypes, except for ports that violate constraints of the stereotypes. For example, if the port types on the general
block in Figure 9.7 had behaviors defined, then the proxy specialization would be invalid. If the general ports had binding
connectors to internal parts, then the full specialization would be invalid. If the general ports had both behaviors and
internal binding connectors, then both specializations would be invalid. Unstereotyped ports have the basic functionality
of stereotyped ones, including flow properties and nested ports, so they can be used as long as the modeler is not
concerned with the distinction between proxy and full, and the constraints they impose.
OMG SysMLTM , v1.2 81

Figure 9.7 Usage example of proxy and full ports

Issue: 16213 – Water association decomposition example should be in ports

9.4.5 Association and Port Decomposition

Figure 9.8 shows an association block Water Delivery between a bank of spigots and a faucet. Figure 9.9 shows the
internal structure of Water Delivery defining connectors between the spigots in the bank and inlets on the faucet. The
participant properties identify the spigot bank and faucet being connected. The end property on the stereotype refers to the
corresponding association end in Figure 9.8. The type of participant properties is shown for clarity, but is always the same
as the association end type and can be elided. They are shown with dashed rectangles because they are reference
properties. The internal structure connects hot and cold ports of the participants.

values
isOutdoor : Boolean

«block»
Plug

bdd Plug Taxonomy

p1 : P1

p2 : P2

p3 : P3

«block»
Plug Design 1

«proxy»
p1 : P1

«proxy»
p2 : P2
«proxy»
p3 : P3

: P3S

: P1S

: P2S

«equal»

«equal»

«equal»

«block»
Plug Design 2

«full»
p1 : P1S
{redefines p1}

«full»
p2 : P2S
{redefines p2}

«full»
p3 : P3S
{redefines p2}

part
material : Steel

reference
sp : SurfaceP1±0.5%

«block»
P1S

reference
sp : SurfaceP1±1%

flow properties
in live : Electricity

«interfaceBlock»
P1

reference
sp : SurfaceP2±1%

flow properties
in neutral : Electricity

«interfaceBlock»
P2

reference
sp : SurfaceP3±1%

flow properties
in ground : Electricity

«interfaceBlock»
P3

reference
sp : Surface

flow properties
in p : Electricity

«block»
P

part
material : Steel

reference
sp : SurfaceP2±0.5%

«block»
P2S

part
material : Steel

reference
sp : SurfaceP3±0.5%

«block»
P3S
82 OMG SysMLTM , v1.2

Figure 9.8 - Water Delivery association block

Figure 9.9 - Internal structure of Water Delivery association block

Figure 9.10 shows two views of a block House with a connector of type Water Delivery. The connector in the top view
“decomposes” into the subconnectors in the lower view according to the internal structure of Water Delivery. The
subconnectors relate the nested ports of :WaterSupply to the nested ports of :WaterClient.

bdd Water Supply and Client

suppliedBy deliveredTo

1..*1

Spigot

«port»

hot
«port»

hot

Faucet

Water
Client

Water
Supply

Spigot
Bank

1 1 1 1

from to

1 1

1 1
«port»

sbank
«port»

faucet

Water
Delivery

«port»

cold
«port»

cold

Faucet
Inlet

ibd Water Delivery

«participant»
{end=deliveredTo}

deliveredToInLink:
Faucet

hot

cold

«participant»
{end=suppliedBy}

suppliedByInLInk:
SpigotBank

hot

cold

from

from

to

to
OMG SysMLTM , v1.2 83

Figure 9.10 - Two views of Water Delivery connector within House block

The top portion of Figure 9.11 shows specializations of the block WaterClient into Bath, Sink, and Shower. These are
used as part types in the internal structure of the block House 2 shown in the lower portion of the figure. The composite
connector for Water Delivery is reused three times to establish connections between spigots on the water supply and the
inlets of faucets on the bath, sink, and shower.

Figure 9.11 - Specializations of Water Client in house example

: WaterSupply : WaterClient

faucetsbank

: WaterSupply

ibd House

 : WaterClientfaucet
waterDelivery

sbank

coldcold

hothot

ibd House

suppliedBy deliveredTo

from to

from to

ibd House 2

: WaterSupply : Bathfaucet
waterDelivery

sbank

 : Sink

 : Shower

waterDelivery

waterDelivery

bdd Water Client

Bath Sink Shower

Water
Client

faucet

faucet
84 OMG SysMLTM , v1.2

Figure 9.12 adds a Plumbing association block for the association between Spigot and Faucet Inlet in Figure 8.11. Figure
9.13 shows the internal structure for the Plumbing association block, which includes a pipe and two fittings (the
additional part and connector definitions are omitted for brevity).

Figure 9.12 - Plumbing association block

Figure 9.13 - Internal structure of Plumbing association block

Figure 9.14 modifies Figure 9.9 to use Plumbing as a connector type within the Water Delivery association block. The
lower connector shows its connector property explicitly, enabling the pipe it contains to be connected to a mounting
bracket (the additional part and connector definitions are omitted for brevity).

.

Figure 9.14 - Water Delivery association block with internal Plumbing connector

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

bdd Water Supply and Client

Spigot
from to

1 1

Plumbing

Faucet
Inlet

ibd Plumbing

«participant»
{end=to}
toInLink:

FaucetInlet

«participant»
{end=from}

fromInLink:
Spigot

pp: Pipe ff: Fittingsf: Fitting

ibd Water Delivery

«participant»
{end=deliveredTo}

deliveredToInLink:
Faucet

«participant»
{end=suppliedBy}

suppliedByInLInk:
SpigotBank

«connector»

p2: Plumbing

p1: Plumbing

pp : Pipe
m: Mounting

Bracket

hot

cold

hot

cold
from

from

to

to
OMG SysMLTM , v1.2 85

Issue: 16214 – Clarify that item flow decomposition examples are not methodology

9.4.6 Item Flow Decomposition

Item flows in internal block diagrams specify flows local to a block. For example, in Figure 9.15 the connector to the
output of the water heater has an item flow indicating distilled water is flowing, even though the out flow property of the
water heater indicates it produces water. The water heater is fed from a water distiller in this particular usage, so the
modeler knows the output will always be distilled water, rather than other kinds of water. The radiator on the left requires
distilled water, and its connection to the water heater is compatible because the item flow narrows the items to distilled
water. Item flows can also be more general than the actual flow, as shown by the connector on the right. The water
distiller produces distilled water, but the item flow is for any kind of fluid. The connection to the water heater is
compatible because it accepts any kind of water, including distilled. The item flow does not require the heater to accept
any kind of fluid, because the source of flow is still producing water, regardless of the generality of the item flow.

Connectors with item flows can be decomposed by association blocks that have additional item flows. The relationship
between an item flow and those in the association block is determined by the modeler. Figures 9.16 and 9.17 are examples
of item flow decomposition that modelers might choose, but they are not the only possible decompositions and are not
required. In Figure 9.16, the item flow classifier (EnginePart) is a supertype of the classifiers of the item flows in the
decomposition. The flow properties are all in the types of the nested ports, while the composing item flow summarizes
the kinds of items flowing by generalization. In Figure 9.17, the item flow classifier (Engine) composes the classifiers of
the items flows in the decomposition from Figure 9.16. The port types have an additional flow property that is not in the
nested ports. These are for the flow of the engine, as opposed to its parts. Constraints can be added between the flow
properties for the engine and those for the parts, to indicate the flowing parts are inside the flowing engine, or are
separate, for example as spare parts.

Issue: 16216 – Remove colons from item flow classifiers in decomposition examples

Figure 9.15 Usage example of item flows in internal block diagrams

flow properties

in p1f : DistilledWater

«block»

P1

flow properties

out p2fo : Water

«block»

P2o

bdd Port Types

 : Water
Heater

: Radiator
Distilled
Water

ibd Context

: P2o : P1

Water

DistilledWater

Fluid

 : Water
Distiller

 : P3: P2i

flow properties

in p2fi: Water

«block»

P2i

flow properties

out p3f : DistilledWater

«block»

P3

Fluid
86 OMG SysMLTM , v1.2

Figure 9.16 Usage example of item flow decomposition

Figure 9.17 Usage example of item flow decomposition

 ports
p1.1 : P1.1
p1.2 : P1.2
p1.3 : P1.3

«block»

P1
ports

p2.1 : P2.1
p2.2 : P2.2
p2.3 : P2.3

«block»

P2

ae2ae1

A1

bdd Connection Specification 1

b2 :b1 : EnginePart

ibd Context

p2 : P2 p1 : P1

c1 : A1

structure

«participant»{end=e1} e1InLink : P1 [1]
«participant»{end=e2} e2InLink : P2 [1]

«block»

A1

e2InLink : P2 e1InLink : P1

 Piston

 CrankShaft
p2.1

p2.3

p1.1

p1.3

p2.2p1.2

Piston

Crankshaft

 Cam

EnginePart

Cam

 ports
p1.1 : P1.1
p1.2 : P1.2
p1.3 : P1.3

flow properties

p1f : Engine

«block»

P1

ports
p2.1 : P2.1
p2.2 : P2.2
p2.3 : P2.3

flow properties

p2f : Engine

«block»

P2

bdd Connection Specification

 ae2ae1

A1

b2 :b1 : Engine

ibd Context

p2 : P2 p1 : P1

c1 : A1

EnginePart

ep

ew

Engine
OMG SysMLTM , v1.2 87

88 OMG SysMLTM , v1.2

10 Constraint Blocks

10.1 Overview

Constraint blocks provide a mechanism for integrating engineering analysis such as performance and reliability models
with other SysML models. Constraint blocks can be used to specify a network of constraints that represent mathematical
expressions such as {F=m*a} and {a=dv/dt}, which constrain the physical properties of a system. Such constraints can
also be used to identify critical performance parameters and their relationships to other parameters, which can be tracked
throughout the system life cycle.

A constraint block includes the constraint, such as {F=m*a}, and the parameters of the constraint such as F, m, and a.
Constraint blocks define generic forms of constraints that can be used in multiple contexts. For example, a definition for
Newton’s Laws may be used to specify these constraints in many different contexts. Reusable constraint definitions may
be specified on block definition diagrams and packaged into general-purpose or domain-specific model libraries. Such
constraints can be arbitrarily complex mathematical or logical expressions. The constraints can be nested to enable a
constraint to be defined in terms of more basic constraints such as primitive mathematical operators.

Parametric diagrams include usages of constraint blocks to constrain the properties of another block. The usage of a
constraint binds the parameters of the constraint, such as F, m, and a, to specific properties of a block, such as a mass, that
provide values for the parameters. The constrained properties, such as mass or response time, typically have simple value
types that may also carry units, quantity kinds, or probability distributions. A pathname dot notation can be used to refer
to nested properties within a block hierarchy. This allows a value property (such as an engine displacement) that may be
deeply nested within a containing hierarchy (such as vehicle, power system, engine) to be referenced at the outer
containing level (such as vehicle-level equations). The context for the usages of constraint blocks must also be specified
in a parametric diagram to maintain the proper namespace for the nested properties.

Time can be modeled as a property that other properties may be dependent on. A time reference can be established by a
local or global clock that produces a continuous or discrete time value property. Other values of time can be derived from
this clock, by introducing delays and/or skew into the value of time. Discrete values of time as well as calendar time can
be derived from this global time property. SysML includes the time model from UML, but other UML specifications offer
more specialized descriptions of time that may also apply to specific needs.

A state of the system can be specified in terms of the values of some of its properties. For example, when water
temperature is below 0 degrees Celsius, it may change from liquid to solid state. In this example, the change in state
results in a different set of constraint equations. This can be accommodated by specifying constraints that are conditioned
on the value of the state property.

Parametric diagrams can be used to support trade-off analysis. A constraint block can define an objective function to
compare alternative solutions. The objective function can constrain measures of effectiveness or merit and may include a
weighting of utility functions associated with various criteria used to evaluate the alternatives. These criteria, for example,
could be associated with system performance, cost, or desired physical characteristics. Properties bound to parameters of
the objective function may have probability distributions associated with them that are used to compute expected or
probabilistic measures of the system. The use of an objective function and measures of effectiveness in parametric
diagrams are included in Annex D: Non-normative Extensions.

SysML identifies and names constraint blocks, but does not specify a computer interpretable language for them. The
interpretation of a given constraint block (e.g., a mathematical relation between its parameter values) must be provided.
An expression may rely on other mathematical description languages both to capture the detailed specification of
OMG SysMLTM , v1.2 69

mathematical or logical relations, and to provide a computational engine for these relations. In addition, the block
constraints are non-causal and do not specify the dependent or independent variables. The specific dependent and
independent variables are often defined by the initial conditions, and left to the computational engine.

A constraint block is defined by a keyword of «constraint» applied to a block definition. The properties of this block
define the parameters of the constraint. The usage of a constraint block is distinguished from other parts by a box having
rounded corners rather than the square corners of an ordinary part. A parametric diagram is a restricted form of internal
block diagram that shows only the use of constraint blocks along with the properties they constrain within a context.

10.2 Diagram Elements

10.2.1 Block Definition Diagram

The diagram elements described in this section are additions to the Block Definition Diagram described in Chapter 8,
“Blocks.”

10.2.2 Parametric Diagram

The diagram elements described in this section are additions to the Internal Block Diagram described in Chapter 8,
“Blocks.” The Parametric Diagram includes all of the notations of an Internal Block Diagram, subject only to the
restrictions described in Section 10.3.1.2.

Table 10.1 - Graphical nodes defined in Block Definition diagrams

Element Name Concrete Syntax Example Metamodel Reference

ConstraintBlock SysML::ConstraintBlocks::
ConstraintBlock

Table 10.2 - Graphical nodes defined in Parametric diagrams.

Element Name Concrete Syntax Example Metamodel Reference

ParametricDiagram SysML::Constraint-
Blocks::ConstraintBlock
SysML::Blocks::Block

x: Real
y: Real

{{L1} x > y}
nested: ConstraintBlock2

«constraint»
ConstraintBlock1

constraints

parameters

 C1: Constraint1

x:

y:

length: Real

width: Real

par Block1
70 OMG SysMLTM , v1.2

10.3 UML Extensions

10.3.1 Diagram Extensions

10.3.1.1 Block Definition Diagram

Constraint block definition

The «constraint» keyword on a block definition states that the block is a constraint block. An expression that specifies the
constraint may appear in the constraints compartment of the block definition, using either formal statements in some
language, or informal statements using text. This expression can include a formal reference to a language in braces as
indicated in Table 10.1. Parameters of the constraint may be shown in a compartment with the predefined compartment
label “parameters.”

Parameters compartment

Constraint blocks support a special form of compartment, with the label “parameters,” which may contain declarations for
some or all of its constraint parameters. Properties of a constraint block should be shown either in the constraints
compartment, for nested constraint properties, or within the parameters compartment.

10.3.1.2 Parametric Diagram

A parametric diagram is defined as a restricted form of internal block diagram. A parametric diagram may contain
constraint properties and their parameters, along with other properties from within the internal block context. All
properties that appear, other than the constraints themselves, must either be bound directly to a constraint parameter, or
contain a property that is bound to one (through any number of levels of containment).

ConstraintProperty SysML::ConstraintBlocks::
ConstraintProperty

Table 10.2 - Graphical nodes defined in Parametric diagrams.

Element Name Concrete Syntax Example Metamodel Reference

 C1: Constraint1

x: Real

y: Real

x: Real

y: Real

«constraint»
C1: Constraint1
OMG SysMLTM , v1.2 71

Round-cornered rectangle notation for constraint property

A constraint property may be shown on a parametric diagram using a rectangle with rounded corners. This graphical
shape distinguishes a constraint property from all other properties and avoids the need to show an explicit «constraint»
keyword. Otherwise, this notation is equivalent to the standard form of an internal property with a «constraint» keyword
shown. Compartments and internal properties may be shown within the shape just as for other types of internal properties.

«constraint» keyword notation for constraint property

A constraint property may be shown on a parametric diagram using a standard form of internal property rectangle with the
«constraint» keyword preceding its name. Parameters are shown within a constraint property using the standard notations
for internal properties. The stereotype ConstraintProperty is applied to a constraint property, but only the shorthand
keyword «constraint» is used when shown on an internal property.

Small square box notation for an internal property

A value property may optionally be shown by a small square box, with the name and other specifications appearing in a
text string close to the square box. The text string for such a value property may include all the elements that could
ordinarily be used to declare the property in a compartment of a block, including an optional default value. The box may
optionally be shown with one edge flush with the boundary of a containing property. Placement of property boxes is
purely for notational convenience, for example to enable simpler connection from the outside, and has no semantic
significance. If a connector is drawn to a region where an internal property box is shown flush with the boundary of a
containing property, the connector is always assumed to connect to the innermost property.

10.3.2 Stereotypes

Package ConstraintBlocks

«stereotype»
SysML::Blocks::Block

«stereotype»
ConstraintBlock

«stereotype»
UML4SysML::Property

«stereotype»
ConstraintProperty

Figure 10.1 Stereotypes defined in SysML ConstraintBlocks package
72 OMG SysMLTM , v1.2

10.3.2.1 ConstraintBlock

Description

A constraint block is a block that packages the statement of a constraint so it may be applied in a reusable way to
constrain properties of other blocks. A constraint block typically defines one or more constraint parameters, which are
bound to properties of other blocks in a surrounding context where the constraint is used. Binding connectors, as defined
in Chapter 8: Blocks, are used to bind each parameter of the constraint block to a property in the surrounding context. All
properties of a constraint block are constraint parameters, with the exception of constraint properties that hold internally
nested usages of other constraint blocks.

Constraints

[1] A constraint block may not own any structural or behavioral elements beyond the properties that define its constraint
parameters, constraint properties that hold internal usages of constraint blocks, binding connectors between its internally
nested constraint parameters, constraint expressions that define an interpretation for the constraint block, and general-
purpose model management and crosscutting elements.

[2] Any classifier that specializes a ConstraintBlock must also have the ConstraintBlock stereotype applied.

[3] Any property of a block that is typed by a ConstraintBlock must have composite aggregation.

INV Block;
self.ownedAttribute->forAll(p | p.type.oclIsKindOf(ConstraintBlock) implies p.aggregation = #composite)

10.3.2.2 ConstraintProperty

Description

A constraint property is a property of any block that is typed by a constraint block. It holds a localized usage of the
constraint block. Binding connectors may be used to bind the parameters of this constraint block to other properties of the
block that contains the usage.

Constraints

[1] A property to which the ConstraintProperty stereotype is applied must be owned by a SysML Block.

[2] The ConstraintProperty stereotype must be applied to any property of a SysML Block that is typed by a ConstraintBlock.

10.4 Usage Examples

10.4.1 Definition of Constraint Blocks on a Block Definition Diagram

Constraint blocks can only be defined on a block definition diagram or a package diagram, where they must have the
«constraint» keyword shown. The strings in braces in the compartment labeled “constraints” are ordinary UML
constraints, using a special compartment to hold the constraint. This is shown in Figure C.31 in Annex C. These particular
constraints are specified only in an informal language, but a more formal language such as OCL or MathML could also
be used. The compartment labeled “parameters” shows the parameters of this constraint, which are bound on the
parametric diagram.
OMG SysMLTM , v1.2 73

10.4.2 Usage of Constraint Blocks on a Parametric Diagram

Figure C.29 in Annex C shows the use of constraint properties on a parametric diagram. This diagram shows the use of
nested property references to the properties of the parts; parametric diagrams can make use of the nested property name
notation to refer to multiple levels of nested property containment, as shown in this example. A parametric diagram is
similar to an internal block diagram with the exception that the only connectors that may be shown are binding connectors
connected to constraint parameters on at least one end. The Sample Problem in Annex C provides definitions of the
containing EconomyContext block for which this parametric diagram is shown.
74 OMG SysMLTM , v1.2

Part III - Behavioral Constructs

This Part specifies the dynamic, behavioral constructs used in SysML behavioral diagrams, including the activity diagram,
sequence diagram, state machine diagram, and use case diagram. This part includes the following chapters:

Chapter 11 - Activities - defines the extensions to UML 2 activities, which represent the basic unit of behavior that is used in
activity, sequence, and state machine diagrams. The activity diagram is used to describe the flow of control and flow of inputs
and outputs among actions.

Chapter 12 - Interactions - defines the constructs for describing message based behavior used in sequence diagrams.

Chapter 13 - State Machines - describes the constructs used to specify state based behavior in terms of system states and their
transitions.

Chapter 14 - Use Cases - describes behavior in terms of the high level functionality and uses of a system, that are further
specified in the other behavioral diagrams referred to above.
OMG SysMLTM, v1.2 75

76 OMG SysMLTM, v1.2

11 Activities

11.1 Overview

Activity modeling emphasizes the inputs, outputs, sequences, and conditions for coordinating other behaviors. It provides
a flexible link to blocks owning those behaviors. The following is a summary of the SysML extensions to UML Activity
diagrams. For additional information, see extensions for Enhanced Functional Flow Block Diagrams in Annex D, “Non-
normative Extensions,” Section D.1, “Activity Diagram Extensions.”

11.1.1 Control as Data

SysML extends control in activity diagrams as follows.

• In UML Activities, control can only enable actions to start. SysML extends control to support disabling of actions that
are already executing. This is accomplished by providing a model library with a type for control values that are treated
like data (see ControlValue in Figure 11.9).

• A control value is an input or output of a control operator, which is how control acts as data. A control operator can
represent a complex logical operation that transforms its inputs to produce an output that controls other actions (see
ControlOperator in Figure 11.8).

11.1.2 Continuous Systems

SysML provides extensions that might be very loosely grouped under the term “continuous,” but are generally applicable
to any sort of distributed flow of information and physical items through a system. These are:

• Restrictions on the rate at which entities flow along edges in an activity, or in and out of parameters of a behavior (see
Rate in Figure 11.8). This includes both discrete and continuous flows, either of material, energy, or information.
Discrete and continuous flows are unified under rate of flow, as is traditionally done in mathematical models of
continuous change, where the discrete increment of time approaches zero.

• Extension of object nodes, including pins, with the option for newly arriving values to replace values that are already
in the object nodes (see Overwrite in Figure 11.8). SysML also extends object nodes with the option to discard values
if they do not immediately flow downstream (see NoBuffer in Figure 11.8). These two extensions are useful for
ensuring that the most recent information is available to actions by indicating when old values should not be kept in
object nodes, and for preventing fast or continuously flowing values from collecting in an object node, as well as
modeling transient values, such as electrical signals.

11.1.3 Probability

SysML introduces probability into activities as follows (see Probability in Figure 11.8):

• Extension of edges with probabilities for the likelihood that a value leaving the decision node or object node will
traverse an edge.

• Extension of output parameter sets with probabilities for the likelihood that values will be output on a parameter set.
OMG SysMLTM , v1.2 77

11.1.4 Activities as Blocks

In UML, all behaviors including activities are classes, and their instances are executions. Behaviors can appear on block
definition diagrams, and participate in generalization and associations. SysML clarifies the semantics of composition
association between activities, and between activities and the type of object nodes in the activities, and defines
consistency rules between these diagrams and activity diagrams. See Section 11.3.1.1, “Activity.”

11.1.5 Timelines

The simple time model in UML can be used to represent timing and duration constraints on actions in an activity model.
These constraints can be notated as constraint notes in an activity diagram. Although the UML 2 timing diagram was not
included in this version of SysML, it can complement SysML behavior diagrams to notate this information. More
sophisticated SysML modeling techniques can incorporate constraint blocks from Chapter 10, “Constraint Blocks” to
specify resource and related constraints on the properties of the inputs, outputs, and other system properties. (Note: refer
to Section 11.3.1.4, “ObjectNode” for constraining properties of object nodes).

11.2 Diagram Elements

11.2.1 Activity Diagram

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Action, CallBehaviorAction,
AcceptEventAction, Send-
SignalAction

Action action name :
behavior name

Event

Signal

TimeEvent

UML4SysML::Action,
UML4SysML::CallBehaviorAction
UML4SysML::AcceptEventAction
UML4SysML::SendSignalAction

Activity

act

UML4SysML::Activity
78 OMG SysMLTM , v1.2

ActivityFinal UML4SysML::ActivityFinalNode

ActivityNode See ControlNode and ObjectNode. UML4SysML::ActivityNode

ActivityParameterNode

act

UML4SysML::ActivityParameter-
Node

ControlNode See DecisionNode, FinalNode, ForkNode, Initial-
Node, JoinNode, and MergeNode.

UML4SysML::ControlNode

ControlOperator

act [controlOperator]

«controlOperator»
CallBehaviorAction

SysML::Activities::Control
Operator

DecisionNode

[guard]

[else]

UML4SysML::DecisionNode

FinalNode See ActivityFinal and FlowFinal. UML4SysML::FinalNode

FlowFinal UML4SysML::FlowFinalNode

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference
OMG SysMLTM , v1.2 79

ForkNode

...

UML4SysML::ForkNode

InitialNode UML4SysML::InitialNode

JoinNode
...

{joinspec=...}

UML4SysML::JoinNode

isControl

{ control }
Action

{ control }

UML4SysML::Pin.isControl

isStream

{ stream }{ stream }
Action

{ stream }

act

Action

UML4SysML::Parameter.isStream

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference
80 OMG SysMLTM , v1.2

Local pre- and
postconditions ¬´localPrecondition

constraint

Action

¬´localPostcondition
constraint

UML4SysML::Action.local
Precondition,
UML4SysML::Action.local
Postcondition

MergeNode UML4SysML::MergeNode

NoBuffer

«noBuffer»
Action

«noBuffer»

SysML::Activities::NoBuffer

ObjectNode

object node name :
type name

 [state, state ...]

Actionpin name : type name
 [state, state ...]

UML4SysML::OjectNode and its
children, SysML::
Activities::ObjectNode

Optional

«optional» «optional»
Action

«optional»

act

SysML::Activities::Optional

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference
OMG SysMLTM , v1.2 81

OverWrite

«overwrite»
Action

«overwrite»

SysML::Activities::Overwrite

ParameterSet

Action

act

UML4SysML::ParameterSet

Probability

Action

{ probability =
valueSpecification }

{ probability =
valueSpecification }

act
{ probability =

valueSpecification }

{ probability =
valueSpecification }

SysML::Activities::Probability

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference
82 OMG SysMLTM , v1.2

Rate

{ rate = constant }
{ rate = distribution }
«continuous»
«discrete»

«discrete»
Object Node

«continuous»
Object Node

{ rate = constant }
{ rate = distribution }

«continuous»
«discrete»

Object Node

Object Node

«rate»
rate = constant

rate = distribution

{ rate = constant }
{ rate = distribution }

«continuous»
«discrete»

Action
{ rate = constant }
{ rate = distribution }
«continuous»
«discrete»

act

SysML::Activities::Rate,
SysML::Activities::Continuous,
SysML::Activities::Discrete

Table 11.2 - Graphical paths included in activity diagrams

Path Name Concrete Syntax Abstract Syntax Reference

ActivityEdge See ControlFlow and ObjectFlow UML4SysML::ActivityEdge

ControlFlow UML4SysML::ControlFlow
SysML::Activities::ControlFlow

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference
OMG SysMLTM , v1.2 83

ObjectFlow UML4SysML::ObjectFlow

Probability

{ probability = valueSpecification }

{ probability = valueSpecification }

Action

{ probability = valueSpecification }

{ probability = valueSpecification }

Object Node

{ probability = valueSpecification }

{ probability = valueSpecification }

SysML::Activities::Probability

Rate

{ rate = constant }
{ rate = distribution }

«continuous»
«discrete»

SysML::Activities::Rate,
SysML::Activities::Continuous,
SysML::Activities::Discrete

Table 11.2 - Graphical paths included in activity diagrams

Path Name Concrete Syntax Abstract Syntax Reference
84 OMG SysMLTM , v1.2

In Block Definition
Diagrams, Activity,
Association

«activity»
activity name

action
name

«activity»
activity name

«activity»
activity name

object
node
name

«block»
block name

bdd

SysML::Activities, Diagram Usage
for Block Definition Diagrams

ActivityPartition

P
ar

ti
ti

on
 N

am
e

Action
(Partition Name)

UML4SysML::ActivityPartition

InterruptibleActivity
Region region name

UML4SysML::InterruptibleActivity-
Region

StructuredActivityNode
 «structured» node name

UML4SysML::StructuredActivity
Node

11.3 UML Extensions

11.3.1 Diagram Extensions

The following specify diagram extensions to the notations defined in Chapter 17: Profiles & Model Libraries.

Table 11.3 - Other graphical elements included in activity diagrams

Element Name Concrete Syntax Abstract Syntax Reference
OMG SysMLTM , v1.2 85

11.3.1.1 Activity

Notation

In UML, all behaviors are classes, including activities, and their instances are executions of the activity. This follows the
general practice that classes define the constraints under which the instances must operate. Creating an instance of an
activity causes the activity to start executing, and vice versa. Destroying an instance of an activity terminates the
corresponding execution, and vice versa. Terminating an execution also terminates the execution of any other activities
that it invoked synchronously, that is, expecting a reply.

Activities as blocks can have associations between each other, including composition associations. Composition means
that destroying an instance at the whole end destroys instances at the part end. When composition is used with activity
blocks, the termination of execution of an activity on the whole end will terminate executions of activities on the part end
of the links.

Combining the two aspects above, when an activity invokes other activities, they can be associated by a composition
association, with the invoking activity on the whole end, and the invoked activity on the part end. If an execution of an
activity on the whole end is terminated, then the executions of the activities on the part end are also terminated. The upper
multiplicity on the part end restricts the number of concurrent synchronous executions of the behavior that can be invoked
by the containing activity. The lower multiplicity on the part end is always zero, because there will be some time during
the execution of the containing activity that the lower level activity is not executing. See Constraints sections below.

Activities in block definition diagrams appear as regular blocks, except the «activity» keyword may be used to indicate
the Block stereotype is applied to an activity, as shown in Figure 11.1. See example in “Usage Examples” on page 94.
This provides a means for representing activity decomposition in a way that is similar to classical functional
decomposition hierarchies. The names of the CallBehaviorActions that correspond to the association can be used as end
names of the association on the part end. Activities in block definition diagrams can also appear with the same notation
as CallBehaviorAction, except the rake notation can be omitted, if desired. Also see use of activities in block definition
diagrams that include ObjectNodes.

Activities as blocks can have properties of any kind, including value properties. Activity block properties have all the
capabilities of other properties, including that value properties can be bound to parameters in constraint blocks by binding
connectors.

Figure 11.1 - Block definition diagram with activities as blocks

action
name

action
name

action
name

«activity»
activity name

«activity»
activity name

«activity»
activity name

«activity»
activity name

action
name

«activity»
activity name

bdd
86 OMG SysMLTM , v1.2

Constraints

The following constraints apply when composition associations in block definition diagrams are defined between
activities:

[1] The part end name must be the same as the name of a synchronous CallBehaviorAction in the composing activity. If the
action has no name, and the invoked activity is only used once in the calling activity, then the end name is the same as
name of the invoked activity.

self.ownedAttribute->forAll(a | (a.type.oclIsKindOf(Activity) and
 aggregation= #composite)
 implies self.node->exists(n | n.oclIsKindOf(CallBehaviorAction)
 and n.isSynchronous= #true and a.type = n.behavior and
 ((n.name->notEmpty() and n.name=a.name) or (n.name->empty()
 and n.behavior.name = a.name)))

[2] The part end activity must be the same as the activity invoked by the corresponding CallBehaviorAction.

[3] The lower multiplicity at the part end must be zero.

[4] The upper multiplicity at the part end must be 1 if the corresponding action invokes a nonreentrant behavior.

11.3.1.2 CallBehaviorAction

Stereotypes applied to behaviors may appear on the notation for CallBehaviorAction when invoking those behaviors, as
shown in Figure 11.2.

CallBehaviorActions in activity diagrams may optionally show the action name with the name of the invoked behavior
using the colon notation shown in Figure 11.3.

Figure 11.2 - CallBehaviorAction notation.with behavior stereotype

Figure 11.3 - CallBehaviorAction notation.with action name

«stereotype name»

behavior name

action name : behavior name
OMG SysMLTM , v1.2 87

11.3.1.3 ControlFlow

Presentation Option

Control flow may be notated with a dashed line and stick arrowhead, as shown in Figure 11.4.

11.3.1.4 ObjectNode

Notation

See Section 11.3.1.1, “Activity” concerning activities appearing in block definition diagrams. Associations can be used
between activities and classifiers (blocks or value types) that are the type of object nodes in the activity, as shown in
Figure 11.5. This supports linking the execution of the activity with items that are flowing through the activity and happen
to be contained by the object node at the time the link exists. The names of the object node that correspond to the
association can be used as end names of the association on the end towards the object node type. Like any association end
or property these can be the subject of parametric constraints, design values, units, and quantity kinds. The upper
multiplicity on the object node end restricts the number of instances of the item type that can reside in the object node at
one time, which must be lower than the maximum amount allowed by the object node itself. The lower multiplicity on the
object node end is always zero, because there will be some time during the execution of the containing activity that there
is no item in the object node. The associations may be composition if the intention is to delete instances of the classifier
flowing the activity when the activity is terminated. See example in “Usage Examples” on page 94.

Figure 11.4 - Control flow notation

Figure 11.5 - Block definition diagram with activities as blocks associated with types of object nodes

Action Action

object
node
name

object
node
name

object
node
name

«activity»
activity name

«activity»
activity name

object
node
name

«block»
block name

«block»
block name

«block»
block name

bdd
88 OMG SysMLTM , v1.2

Object nodes in activity diagrams can optionally show the node name with the name of the type of the object node as
shown in Figure 11.6.

Stereotypes applying to parameters can appear on object nodes in activity diagrams, as shown in Figure 11.7, when the
object node notation is used as a shorthand for pins. The stereotype applies to all parameters corresponding to the pins
notated by the object node. Stereotype applying to object nodes can also appear in object nodes, and applies to all the pins
notated by the object node.

Constraints

The following constraints apply when associations in block definition diagrams are defined between activities and
classifiers typing object nodes:

[1] The end name towards the object node type is the same as the name of an object node in the activity at the other end.

[2] The classifier must be the same as the type of the corresponding object node.

[3] The lower multiplicity at the object node type end must be zero.

[4] The upper multiplicity at the object node type end must be equal to the upper bound of the corresponding object node.

11.3.2 Stereotypes

The following abstract syntax defines the stereotypes in this chapter and which metaclasses they extend. The descriptions,
attributes, and constraints for each stereotype are specified below.

Figure 11.6 - ObjectNode notation in activity diagrams

Figure 11.7 - ObjectNode notation in activity diagrams

object node name : type name

«stereotype name»

object node name
OMG SysMLTM , v1.2 89

Package Activities

Figure 11.8 - Abstract Syntax for SysML Activity Extensions

11.3.2.1 Continuous

Continuous rate is a special case of rate of flow (see Rate) where the increment of time between items approaches zero.
It is intended to represent continuous flows that may correspond to water flowing through a pipe, a time continuous
signal, or continuous energy flow. It is independent from UML streaming, see “Rate” on page 93. A streaming parameter
may or may not apply to continuous flow, and a continuous flow may or may not apply to streaming parameters.

UML places no restriction on the rate at which tokens flow. In particular, the time between tokens can approach as close
to zero as needed, for example to simulate continuous flow. There is also no restriction in UML on the kind of values that
flow through an activity. In particular, the value may represent as small a number as needed, for example to simulate
continuous material or energy flow. Finally, the exact timing of token flow is not completely prescribed in UML. In
particular, token flow on different edges may be coordinated to occur in a clocked fashion, as in time march algorithms
for numerical solvers of ordinary differential equations, such as Runge-Kutta.

ControlOperator Overwrite

ActivityEdge

«metaclass»«metaclass»

Optional
«stereotype»

NoBuffer

ParameterSet

«metaclass»

Probability

probability : ValueSpecification

Rate

rate : InstanceSpecification

DiscreteContinuous

UML4SysML:: UML4SysML::

UML4SysML:: UML4SysML::UML4SysML::

«stereotype» «stereotype»

«stereotype» «stereotype»

«stereotype» «stereotype» «stereotype»

Parameter
UML4SysML::

«metaclass» «metaclass» «metaclass»

Behavior ObjectNodeOperation
90 OMG SysMLTM , v1.2

11.3.2.2 ControlOperator

Description

A control operator is a behavior that is intended to represent an arbitrarily complex logical operator that can be used to
enable and disable other actions. When the «controlOperator» stereotype is applied to behaviors, the behavior takes
control values as inputs or provides them as outputs, that is, it treats control as data (see “ControlValue” on page 93).
When the «controlOperator» stereotype is not applied, the behavior may not have a parameter typed by ControlValue. The
«controlOperator» stereotype also applies to operations with the same semantics.

The control value inputs do not enable or disable the control operator execution based on their value, they only enable
based on their presence as data. Pins for control parameters are regular pins, not UML control pins. This is so the control
value can be passed into or out of the action and the invoked behavior, rather than control the starting of the action, or
indicating the ending of it.

Constraints

[1] When the «controlOperator» stereotype is applied, the behavior or operation must have at least one parameter typed by
ControlValue. If the stereotype is not applied, the behavior or operation may not have any parameter typed by
ControlValue.

[2] A behavior must have the «controlOperator» stereotype applied if it is a method of an operation that has the
«controlOperator» stereotype applied.

11.3.2.3 Discrete

Description

Discrete rate is a special case of rate of flow (see Section 11.3.2.8, “Rate) where the increment of time between items is
non-zero. Examples include the production of assemblies in a factory and signals set at periodic time intervals.

Constraints

[1] The «discrete» and «continuous» stereotypes cannot be applied to the same element at the same time.

11.3.2.4 NoBuffer

Description

When the «nobuffer» stereotype is applied to object nodes, tokens arriving at the node are discarded if they are refused by
outgoing edges, or refused by actions for object nodes that are input pins. This is typically used with fast or continuously
flowing data values, to prevent buffer overrun, or to model transient values, such as electrical signals. For object nodes that are
the target of continuous flows, «nobuffer» and «overwrite» have the same effect. The stereotype does not override UML token
offering semantics; it just indicates what happens to the token when it is accepted. When the stereotype is not applied, the
semantics are as in UML, specifically, tokens arriving at an object node that are refused by outgoing edges, or action for input
pins, are held until they can leave the object node.

Constraints

[1] The «nobuffer» and «overwrite» stereotypes cannot be applied to the same element at the same time.
OMG SysMLTM , v1.2 91

11.3.2.5 Overwrite

Description

When the «overwrite» stereotype is applied to object nodes, a token arriving at a full object node replaces the ones
already there (a full object node has as many tokens as allowed by its upper bound). This is typically used on an input pin
with an upper bound of 1 to ensure that stale data is overridden at an input pin. For upper bounds greater than one, the
token replaced is the one that would be the last to be selected according to the ordering kind for the node. For FIFO
ordering, this is the most recently added token, for LIFO it is the least recently added token. A null token removes all the
tokens already there. The number of tokens replaced is equal to the weight of the incoming edge, which defaults to 1. For
object nodes that are the target of continuous flows, «overwrite» and «nobuffer» have the same effect. The stereotype
does not override UML token offering semantics, just indicates what happens to the token when it is accepted. When the
stereotype is not applied, the semantics is as in UML, specifically, tokens arriving at object nodes do not replace ones that
are already there.

Constraints

[1] The «overwrite» and «nobuffer» stereotypes cannot be applied to the same element at the same time.

11.3.2.6 Optional

Description

When the «optional» stereotype is applied to parameters, the lower multiplicity must be equal to zero. This means the
parameter is not required to have a value for the activity or any behavior to begin or end execution. Otherwise, the lower
multiplicity must be greater than zero, which is called “required.” The absence of this stereotype indicates a constraint,
see below.

Constraints

[1] A parameter with the «optional» stereotypes applied must have multiplicity.lower equal to zero, otherwise
multiplicity.lower must be greater than zero.

11.3.2.7 Probability

Description

When the «probability» stereotype is applied to edges coming out of decision nodes and object nodes, it provides an
expression for the probability that the edge will be traversed. These must be between zero and one inclusive, and add up
to one for edges with same source at the time the probabilities are used.

When the «probability» stereotype is applied to output parameter sets, it gives the probability the parameter set will be
given values at runtime. These must be between zero and one inclusive, and add up to one for output parameter sets of the
same behavior at the time the probabilities are used.

Constraints

[1] The «probability» stereotype can only be applied to activity edges that have decision nodes or object nodes as sources, or
to output parameter sets.

[2] When the «probability» stereotype is applied to an activity edge, then it must be applied to all edges coming out of the
same source.
92 OMG SysMLTM , v1.2

[3] When the «probability» stereotype is applied to an output parameter set, it must also be applied to all the parameter sets of
the behavior or operation owning the original parameter set.

[4] When the «probability» stereotype is applied to an output parameter set, all the output parameters must be in some
parameter set.

11.3.2.8 Rate

Description

When the «rate» stereotype is applied to an activity edge, it specifies the expected value of the number of objects and
values that traverse the edge per time interval, that is, the expected value rate at which they leave the source node and
arrive at the target node. It does not refer to the rate at which a value changes over time. When the stereotype is applied
to a parameter, the parameter must be streaming, and the stereotype gives the number of objects or values that flow in or
out of the parameter per time interval while the behavior or operation is executing. Streaming is a characteristic of UML
behavior parameters that supports the input and output of items while a behavior is executing, rather than only when the
behavior starts and stops. The flow may be continuous or discrete, see the specialized rates in 11.3.2.1 (“Continuous”) and
“Discrete” on page 91. The «rate» stereotype has a rate property of type InstanceSpecification. The values of this property
must be instances of classifiers stereotyped by «valueType» or «distributionDefinition», see Chapter 8, “Blocks.” In
particular, the denominator for units used in the rate property must be time units.

Constraints

[1] When the «rate» stereotype is applied to a parameter, the parameter must be streaming.

[2] The rate of a parameter must be less than or equal to rates on edges that come into or go out from pins and parameters
nodes corresponding to the parameter.

11.3.3 Model Libraries

The SysML model library for activities is shown in Figure 11.9.

11.3.3.1 ControlValue

Description

The ControlValue enumeration is a type for treating control values as data (see Section 11.3.2.2) and for UML control
pins. It can be used as the type of behavior and operation parameters, object nodes, and attributes, and so on. The possible
runtime values are given as enumeration literals. Modelers can extend the enumeration with additional literals, such as
suspend, resume, with their own semantics.

The disable literal means a termination of an executing behavior that can only be started again from the beginning
(compare to suspend). The enable literal means to start a new execution of a behavior (compare to resume).

Figure 11.9 - Control values

disable
enable

«enumeration»
ControlValue
OMG SysMLTM , v1.2 93

Constraints

[1] UML4SysML::ObjectNode::isControlType is true for object nodes with type ControlValue.

11.4 Usage Examples

The following examples illustrate modeling continuous systems (see Continuous Systems in Section 11.1.1). Figure 11.10
shows a simplified model of driving and braking in a car that has an automatic braking system. Turning the key on has a
duration constraint specifying that this action lasts no more than 0.1 seconds. Turning the key on starts two behaviors,
Driving and Braking. These behaviors execute until the key is turned off, using streaming parameters to communicate
with other behaviors. The Driving behavior outputs a brake pressure continuously to the Braking behavior while both are
executing, as indicated by the «continuous» rate and streaming properties (streaming is a characteristic of UML behavior
parameters that supports the input and output of items while a behavior is executing, rather than only when the behavior
starts and stops). Brake pressure information also flows to a control operator that outputs a control value to enable or
disable the Monitor Traction behavior. No pins are used on Monitor Traction, so once it is enabled, the continuously
arriving enable control values from the control operator have no effect, per UML semantics. When the brake pressure
goes to zero, disable control values are emitted from the control operator. The first one disables the monitor, and the rest
have no effect. While the monitor is enabled, it outputs a modulation frequency for applying the brakes as determined by
the ABS system. The rake notations on the control operator and Monitor Traction indicate they are further defined by
activities, as shown in Figures 11.11 and 11.12. An alternative notation for this activity decomposition is shown in Figure
11.13.

The duration constraint notation associated with the Turn Key To On action is supported by the UML Simple Time model.
The Operate Car activity owns a duration constraint specifying that the “Turn Key To On” action lasts no more than 0.1
seconds. The concrete UML element used in this example is a DurationConstraint owned by Operate Car that constrains
the Turn Key To On action. The DurationConstraint owns a DurationInterval, which specifies that the action is
constrained to last between 0 seconds and 0.1 seconds (both being Duration expressions).
94 OMG SysMLTM , v1.2

Figure 11.10 - Continuous system example 1

The activity diagram for Monitor Traction is shown in Figure 11.11. When Monitor Traction is enabled, it begins listening
for signals coming in from the wheel and accelerometer, as indicated by the signal receipt symbols on the left, which
begin listening automatically when the activity is enabled. A traction index is calculated every 10 ms, which is the slower
of the two signal rates. The accelerometer signals come in continuously, which means the input to Calculate Traction does
not buffer values. The result of Calculate Traction is filtered by a decision node for a threshold value and Calculate
Modulation Frequency determines the output of the activity.

«interruptibleRegion»

Driving

Braking

Monitor Traction

{stream }

{stream }

Turn
Key To On

Key
off

Brake
Pressure

«continuous»
Modulation
Frequency

«controlOperator»
Enable on Brake

Pressure > 0

«continuous»

act Operate Car

{ control }

 { 0 .. 0.1 sec }

ControlValue
OMG SysMLTM , v1.2 95

The activity diagram for the control operator Enable on Brake Pressure > 0 is shown in Figure 11.12. The decision node
and guards determine if the brake pressure is greater than zero, and flow is directed to value specification actions that
output an enabling or disabling control value from the activity. The edges coming out of the decision node indicate the
probability of each branch being taken.

Figure 11.12 Continuous system example 3

Figure 11.13 shows a block definition diagram with composition associations between the activities in Figures 11.10,
11.11, and 11.12, as an alternative way to show the activity decomposition of Figures 11.10, 11.11, and 11.12. Each
instance of Operating Car is an execution of that behavior. It owns the executions of the behaviors it invokes
synchronously, such as Driving. Like all composition, if an instance of Operating Car is destroyed, terminating the
execution, the executions it owns are also terminated.

Figure 11.11 - Continuous system example 2

act [controlOperator] Enable on Brake Pressure > 0

Brake
Pressure

ControlValue

[Brake Pressure > 0]

«ValueSpecificationAction»
enable

«ValueSpecificationAction»
disable

[else]
{probability = 90%}

{probability = 10%}
96 OMG SysMLTM , v1.2

Figure 11.14 shows a block definition diagram with composition associations between the activity in Figure 11.10 and the
types the object nodes in that activity. In an instance of Operating Car, which is one execution of it, instances of Brake
Pressure and Modulation Frequency are linked to the execution instance when they are in the object nodes of the activity.

Figure 11.14 - Example block definition diagram for object node types

Figure 11.13 - Example block definition diagram for activity decomposition

mt
1..1

«activity»

Driving

«activity»

Braking

«activity»

Monitor
Traction

«activity»
Turn

Key to On

«controlOperator »
Enable on Brake

Pressure > 0

«activity»

Calculate
Traction

«activity»
Calculate

Modulation
Frequency

«activity»

Operating Car

enableOnBrakePressure>0
0..1

calculateTraction
0..1

calculateModulationFrequency
0..1

oc
0..1

oc
1..1

oc
0..1

oc
1..1

oc
1..1

m onitorTraction
 0..1

driving
0..1

turnKeyOn
0..1

mt
1..1

braking
0..1

bdd

«activity»

Operating Car

oc
1..1

oc
1..1

mf
 0..1

 bp
0..1

«valueType»

BrakePressure

«valueType»

ModulationFrequency

bdd Name
OMG SysMLTM , v1.2 97

98 OMG SysMLTM , v1.2

12 Interactions

12.1 Overview

Interactions are used to describe interactions between entities. UML 2.1 Interactions are supported by four diagram types
including the Sequence Diagram, Communications Diagram, Interaction Overview Diagram, and Timing Diagram. The
Sequence Diagram is the most common of the Interaction Diagrams. SysML includes the Sequence Diagram only and
excludes the Interaction Overview Diagram and Communication Diagram, which were considered to offer significantly
overlapping functionality without adding significant capability for system modeling applications. The Timing Diagram is
also excluded due to concerns about its maturity and suitability for systems engineering needs.

The sequence diagram describes the flow of control between actors and systems (blocks) or between parts of a system.
This diagram represents the sending and receiving of messages between the interacting entities called lifelines, where
time is represented along the vertical axis. The sequence diagrams can represent highly complex interactions with special
constructs to represent various types of control logic, reference interactions on other sequence diagrams, and
decomposition of lifelines into their constituent parts.

12.2 Diagram Elements

12.2.1 Sequence Diagram

Table 12.1 - Graphical nodes included in sequence diagrams1.

Node Name Concrete Syntax Abstract Syntax Reference

SequenceDiagram UML4SysML::Interaction

Lifeline UML4SysML::Lifeline

sd In teraction1

b1:Block1
OMG SysMLTM, v1.2 99

1. Table is compliant with UML 2.1 Superstructure document.

Execution
Specification

UML4SysML::ExecutionSpecification

InteractionUse UML4SysML::InteractionUse

Node Name Concrete Syntax Abstract Syntax Reference

b1:Block1

execSpec

b1:Block1

ref
Interaction3
100 OMG SysMLTM, v1.2

CombinedFragment UML4SysML::CombinedFragment

A combined fragment is defined by an
interaction operator and corresponding
interaction operands.

Interaction Operators include:
 seq - Weak Sequencing
 alt - Alternatives
 opt - Option
 break - Break
 par - Parallel
 strict - Strict Sequencing
 loop - Loop
 critical - Critical Region
 neg - Negative
 assert - Assertion
 ignore - Ignore
 consider - Consider

StateInvariant /
Continuations

UML4SysML::Continuation

UML4SysML::StateInvariant

Coregion UML4SysML::CombinedFragment (under
parallel)

Node Name Concrete Syntax Abstract Syntax Reference

sd Interaction1

msg2

msg1
[if x < 10]

[else]

alt

b1:Block1 b2:Block2 b3:Block3

msg3

:Y

p==15

s[u]:B

m3

m2
OMG SysMLTM, v1.2 101

CreationEvent
DestructionEvent

UML4SysML::CreationEvent
UML4SysML::DestructionEvent

DurationConstraint
Duration
Observation

UML4SysML::Interactions

TimeConstraint
TimeObservation

UML4SysML::Interactions

Node Name Concrete Syntax Abstract Syntax Reference

b1:Block1

b2:Block2
create

:User

Code d=duration

CardOut {0..13}

OK

{d..3*d}

CardOut {0..13}

OK
t=now

{t..t+3}
102 OMG SysMLTM, v1.2

Table 12.2 - Graphical paths included in sequence diagram

12.3 UML Extensions

12.3.1 Diagram Extensions

The following specify diagram extensions to the notations defined in Chapter 17, “Profiles & Model Libraries.”

12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and
 Timing Diagram

Communication diagrams and interaction overview diagrams are excluded from SysML. The other behavioral diagram
representations were considered to provide sufficient coverage without introducing these diagram kinds. Timing Diagrams
are also excluded due to concerns about their maturity and suitability for systems engineering needs.

Path Name Concrete Syntax Abstract Syntax Reference

Message UML4SysML::Message

Lost Message
Found Message

UML4SysML::Message

GeneralOrdering UML4SysML::GeneralOrdering

asyncSignal

syncCall(param)

b1:Block1 b2:Block2

lost

found
OMG SysMLTM, v1.2 103

12.4 Usage Examples

12.4.1 Sequence Diagrams

Figure C.7 in Annex C illustrates the overall system behavior for operating the vehicle in sequence diagram format. To
manage the complexity, a hierarchical sequence diagram is used which refers to other interactions that further elaborate
the system behavior. (“ref StartVehicleBlackBox”) CombinedFragments are used to illustrate that steering can take place
at the same time as controlling the speed and that controlling speed can be either idling, accelerating/cruising, or braking.

Figure C.9 in Annex C shows an interaction that includes events and messages communicated between the driver and
vehicle during the starting of the vehicle. The “hybridSUV” lifeline represents another interaction which further
elaborates what happens inside the “hybridSUV” when the vehicle is started.

Figure C.10 in Annex C shows the sequence of communication that occurs inside the HybridSUV when the vehicle is started
successfully.
104 OMG SysMLTM, v1.2

13 State Machines

13.1 Overview

The StateMachine package defines a set of concepts that can be used for modeling discrete behavior through finite state
transition systems. The state machine represents behavior as the state history of an object in terms of its transitions and
states. The activities that are invoked during the transition, entry, and exit of the states are specified along with the
associated event and guard conditions. Activities that are invoked while in the state are specified as “do Activities,” and
can be either continuous or discrete. A composite state has nested states that can be sequential or concurrent.

The UML concept of protocol state machines is excluded from SysML to reduce the complexity of the language. The
standard UML state machine concept (called behavior state machines in UML) are thought to be sufficient for expressing
protocols.

13.2 Diagram Elements

13.2.1 State Machine Diagram

Table 13.1 - Graphical nodes included in state machine diagrams

Node Name Concrete Syntax Abstract Syntax Reference

StateMachineDiagram UML4SysML::StateMachines

Choice pseudo state UML4SysML::PseudoState

[Id>10]

[Id<=10]
OMG SysMLTM , v1.2 105

Composite state UML4SysML::State

Entry point UML4SysML::PseudoState

Exit point UML4SysML::PseudoState

Final state UML4SysML::FinalState

History, Deep
Pseudo state

UML4SysML::PseudoState

History, Shallow pseudo
state

UML4SysML::PseudoState

Initial pseudo state UML4SysML::PseudoState

Junction pseudo state UML4SysML::PseudoState

Receive signal action UML4SysML::Transition

Node Name Concrete Syntax Abstract Syntax Reference

CompositeState1

State1

State2

againagain

abortedabortedabortedaborted

H*

H

Req(Id)
106 OMG SysMLTM , v1.2

Send signal action UML4SysML::Transition

Action UML4SysML::Transition

Region UML4SysML::Region

Simple state UML4SysML::State

State list UML4SysML::State

State Machine UML4SysML::StateMachine

Node Name Concrete Syntax Abstract Syntax Reference

TurnOn

MinorReq := Id;

S

State1

State2

entry / entryActivity
do / doActivity
exit / exitActivity

State1, State2

ReadAmountSM

aborted
OMG SysMLTM , v1.2 107

Table 13.2 - Graphical paths included in state machine diagrams

13.3 UML Extensions

None.

13.4 Usage Examples

13.4.1 State Machine Diagram

The high level states or modes of the HybridSUV including the events that trigger changes of state are illustrated in the
state machine diagram in Figure C.8 in Annex C.

Terminate node UML4SysML::PseudoState

Submachine state UML4SysML::State

Path Name Concrete Syntax Abstract Syntax Reference

Transition UML4SysML::Transition

Node Name Concrete Syntax Abstract Syntax Reference

ReadAmount :
ReadAmountSM abortedaborted

ReadAmount :
ReadAmountSM abortedaborted

trigger[guard]/activitytrigger[guard]/activity
108 OMG SysMLTM , v1.2

14 Use Cases

14.1 Overview

The use case diagram describes the usage of a system (subject) by its actors (environment) to achieve a goal, that is
realized by the subject providing a set of services to selected actors. The use case can also be viewed as functionality and/
or capabilities that are accomplished through the interaction between the subject and its actors. Use case diagrams include
the use case and actors and the associated communications between them. Actors represent classifier roles that are
external to the system that may correspond to users, systems, and or other environmental entities. They may interact
either directly or indirectly with the system. The actors are often specialized to represent a taxonomy of user types or
external systems.

The use case diagram is a method for describing the usages of the system. The association between the actors and the use
case represent the communications that occurs between the actors and the subject to accomplish the functionality
associated with the use case. The subject of the use case can be represented via a system boundary. The use cases that are
enclosed in the system boundary represent functionality that is realized by behaviors such as activity diagrams, sequence
diagrams, and state machine diagrams.

The use case relationships are “communication,” “include,” “extend,” and “generalization.” Actors are connected to use
cases via communication paths, that are represented by an association relationship. The “include” relationship provides a
mechanism for factoring out common functionality that is shared among multiple use cases, and is required for the goals
of the actor of the base use case to be met. The “extend” relationship provides optional functionality (optional in the sense
of not being required to meet the goals), which extends the base use case at defined extension points under specified
conditions. The “generalization” relationship provides a mechanism to specify variants of the base use case.

The use cases are often organized into packages with the corresponding dependencies between the use cases in the
packages.

14.2 Diagram Elements

14.2.1 Use Case Diagram

Table 14.1 - Graphical nodes included in Use Case diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Use Case UML4SysML::UseCase

UseCaseName
OMG SysMLTM , v1.2 109

 .

Use Case with
ExtensionPoints

UML4SysML::UseCase

Actor UML4SysML::Actor

Subject Association end name on
UML4SysML::Classifier

Table 14.2 - Graphical paths included in Use Case diagrams

Path Type concrete Syntax Abstract Syntax Reference

Communication
path

UML4SysML::Association

Include UML4SysML::Include

Extend UML4SysML::Extend

Table 14.1 - Graphical nodes included in Use Case diagrams

Node Name Concrete Syntax Abstract Syntax Reference

extension points
p1, p2

UseCaseName

«actor»
ActorName

ActorName

SubjectName

 «include»

 «extend»
110 OMG SysMLTM , v1.2

14.3 UML Extensions

None.

14.4 Usage Examples

Figure C.5 in Annex C is a top-level set of use cases for the Hybrid SUV System. Figure C.6 in Annex C shows the
decomposition of the Operate the Vehicle use case. In this diagram, the frame represents the package that contains the
lower level use cases. The convention of naming the package with the same name as the top level use case has been
employed. This practice offers an implicit tracing mechanism that complements the explicit trace relationships in SysML.

In Figure C.6 in Annex C, the Extend relationship specifies that the behavior of a use case may be extended by the
behavior of another (usually supplementary) use case. The extension takes place at one or more specific extension points
defined in the extended use case. Note, however, that the extended use case is defined independently of the extending use
case and is meaningful independently of the extending use case. On the other hand, the extending use case typically
defines behavior that may not necessarily be meaningful by itself. Instead, the extending use case defines a set of modular
behavior increments that augment an execution of the extended use case under specific conditions. In Table 14.2, the
“Start the Vehicle” use case is modeled as an extension of “Drive the Vehicle.” This means that there are conditions that
may exist that require the execution of an instance of “Start the Vehicle” before an instance of “Drive the Vehicle” is
executed.

The use cases “Accelerate,” “Steer,” and “Brake” are modeled using the include relationship. Include is a
DirectedRelationship between two use cases, implying that the behavior of the included use case is inserted into the
behavior of the including use case. It is also a kind of NamedElement so that it can have a name in the context of its
owning use case. The including use case may only depend on the result (value) of the included use case. This value is
obtained as a result of the execution of the included use case. This means that “Accelerate,” “Steer,” and “Brake” are all
part of the normal process of executing an instance of “Drive the Car.”

In many situations, the use of the Include and Extend relationships is subjective and may be reversed, based on the
approach of an individual modeler.

Extend with
Condition

UML4SysML::Extend

Generalization UML4SysML::Kernel

Table 14.2 - Graphical paths included in Use Case diagrams

Path Type concrete Syntax Abstract Syntax Reference

 «extend»

Condition: {boolean expression}
extension point: p1, p2
OMG SysMLTM , v1.2 111

112 OMG SysMLTM , v1.2

Part IV - Crosscutting Constructs

This Part specifies crosscutting constructs that apply to both structure and behavior. These constructs are defined in the
following chapters:

Chapter 15 - Allocations - defines a basic allocation relationship that can be used to allocate a set of model elements to
another, such as allocating behavior to structure or allocating logical to physical components.

Chapter 16 - Requirements - specifies constructs for system requirements and their relationships.

Chapter 17 - Profiles and Model Libraries - specifies the approach to further customize and extend SysML for specific
applications.
OMG SysMLTM, v1.2 113

114 OMG SysMLTM, v1.2

15 Allocations

15.1 Overview

Allocation is the term used by systems engineers to denote the organized cross-association (mapping) of elements within
the various structures or hierarchies of a user model. The concept of “allocation” requires flexibility suitable for abstract
system specification, rather than a particular constrained method of system or software design. System modelers often
associate various elements in a user model in abstract, preliminary, and sometimes tentative ways. Allocations can be used
early in the design as a precursor to more detailed rigorous specifications and implementations. The allocation
relationship can provide an effective means for navigating the model by establishing cross relationships, and ensuring the
various parts of the model are properly integrated.

This chapter does not try to limit the use of the term “allocation,” but provides a basic capability to support allocation in
the broadest sense. It does include some specific subclasses of allocation for allocating behavior, structure, and flows. A
typical example is the allocation of activities to blocks (e.g., functions to components). This chapter specifies an
extension for an allocation relationship and selected subclasses of allocation, along with the notation to represent
allocations in a SysML model.

15.2 Diagram Elements

The diagram elements defined in this chapter may be shown on some or all SysML diagram types, in addition to the
diagram elements that are specific for each diagram type.
OMG SysMLTM , v1.2 115

15.2.1 Representing Allocation on Diagrams

Table 15.1 - Extension to graphical nodes included in diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Allocated stereotype

«allocated»
Named

Element

SysML::Allocation:Allocated

Allocation derived
properties displayed
in compartment of a
Block.

«elementType»ElementName

«elementType» ElementName

BlockNam e

allocatedFrom

allocatedTo

SysML::Allocation:Allocated

Allocation derived
properties displayed
in Comment. allocatedFrom

«elementType»ElementName
allocatedTo
«elementType»ElementName

ElementName

SysML::Allocation:Allocated

Allocation derived
properties displayed
in compartment of
Part on Internal Block
Diagram.

«block»
BlockNam e

«elementType» ElementName

PartNam e

allocatedFrom

SysML::Allocation:Allocated

Allocation derived
properties displayed
in compartment of
Action on Activity
Diagram. «elementType» ElementName

ActivityNam e

allocatedTo

SysML::Allocation:Allocated
116 OMG SysMLTM , v1.2

15.3 UML Extensions

15.3.1 Diagram Extensions

15.3.1.1 Tables

Allocation relationships may be depicted in tables. A separate row is provided for each «allocate» dependency. “from” is
the client of the «allocate» dependency, and “to” is the supplier. Both ElementType and ElementName for client and
supplier appear in this table.

15.3.1.2 Allocate Relationship Rendering

The “allocate” relationship is a dashed line with an open arrow head. The arrow points in the direction of the allocation.
In other words, the directed line points “from” the element being allocated “to” the element that is the target of the
allocation.

15.3.1.3 Allocated Property Compartment Format

When properties of an «allocated» model element are displayed in a property compartment, a shorthand notation is used
as shown in Table 15.1. This shorthand groups and displays the AllocatedFrom properties together, then the AllocatedTo
properties. These properties are shown without the use of brackets {}.

15.3.1.4 Allocated Property Callout Format

When an «allocate» property compartment is not used, a property callout may be used. An «allocate» property callout
uses the same shorthand notation as the «allocate» property compartment. This notation is also shown in Table 15.1. For
brevity, the «elementType» portion of the AllocatedFrom or AllocatedTo property may be elided from the diagram.

Allocation Activity
Partition

 «allocate»
:ElementName

ActionName

SysML::Allocation:Allocate
ActivityPartition

Allocation (general)

«allocate»
Client Supplier

SysML::Allocation:Allocate

Table 15.1 - Extension to graphical nodes included in diagrams

Node Name Concrete Syntax Abstract Syntax Reference
OMG SysMLTM , v1.2 117

15.3.1.5 AllocatedActivityPartition Label

For brevity, the keyword used on an AllocatedActivityPartition is «allocate», rather than the stereotype name
(«allocateActivityPartition»). For brevity, the «elementType» portion of the AllocatedFrom or AllocatedTo property may
be elided from the diagram.

15.3.2 Stereotypes

Package Allocations

«stereotype»
Allocate

UML4SysML::Abstraction UML4SysML::
NamedElement

/allocatedFrom:NamedElement[*]
/allocatedTo:NamedElement[*]

«stereotype»
Allocated

Figure 15.1 - Abstract syntax extensions for SysML Allocation

Figure 15.2 - Abstract syntax expression for AllocatedActivityPartition

15.3.2.1 Allocate(from Allocations)

Description

Allocate is a dependency based on UML::abstraction. It is a mechanism for associating elements of different types, or in
different hierarchies, at an abstract level. Allocate is used for assessing user model consistency and directing future design
activity. It is expected that an «allocate» relationship between model elements is a precursor to a more concrete
relationship between the elements, their properties, operations, attributes, or sub-classes.

Allocate is a stereotype of a UML4SysML::Abstraction which is permissible between any two NamedElements. It is
depicted as a dependency with the “allocate” keyword attached to it.

Allocate is directional in that one NamedElement is the “from” end (no arrow), and at least one NamedElement is the “to”
end (the end with the arrow).

UML4SysML::ActivityPartition

«stereotype»
AllocateActivityPartition
118 OMG SysMLTM , v1.2

The following paragraphs describe types of allocation that are typical in systems engineering.

Behavior allocation relates to the systems engineering concept segregating form from function. This concept requires
independent models of “function” (behavior) and “form” (structure), and a separate, deliberate mapping between elements
in each of these models. It is acknowledged that this concept does not support a standard object-oriented paradigm, nor is
this always even desirable. Experience on large scale, complex systems engineering problems have proven, however, that
segregation of form and function is a valuable approach. In addition, behavior allocation may also include the allocation
of Behaviors to BehavioralFeatures of Blocks, e.g., Operations.

Flow allocation specifically maps flows in functional system representations to flows in structural system representations.

Flow between activities can either be control or object flow. The figures in the Usage Examples show concrete syntax for
how object flow is mapped to connectors on Activity Diagrams. Allocation of control flow is not specifically addressed
in SysML, but may be represented by relating an ItemFlow to the Control Flow using the UML relationship
InformationFlow.realizingActivityEdge.

Note that allocation of ObjectFlow to Connector is an Allocation of Usage, and does NOT imply any relation between any
defining Blocks of ObjectFlows and any defining associations of connectors.

The figures in the Usage Examples illustrate an available mechanism for relating the objectNode from an activity diagram
to the itemFlow on an internal block diagram. ItemFlow is discussed in Chapter 9, Ports and Flows.

Pin to Port allocation is not addressed in this release of SysML.

Structure allocation is associated with the concept of separate “logical” and “physical” representations of a system. It is
often necessary to construct separate depictions of a system and define mappings between them. For example, a complete
system hierarchy may be built and maintained at an abstract level. In turn, it must then be mapped to another complete
assembly hierarchy at a more concrete level. The set of models supporting complex systems development may include
many of these levels of abstraction. This specification will not define “logical” or “physical” in this context, except to
acknowledge the stated need to capture allocation relationships between separate system representations.

Constraints

A single «allocate» dependency shall have only one client (from), but may have one or many suppliers (to).

If subtypes of the «allocate» dependency are introduced to represent more specialized forms of allocation, then they
should have constraints applied to supplier and client as appropriate.

15.3.2.2 Allocated(from Allocations)

Description

«allocated» is a stereotype that applies to any NamedElement that has at least one allocation relationship with another
NamedElement. «allocated» elements may be designated by either the /from or /to end of an «allocate» dependency.

The «allocated» stereotype provides a mechanism for a particular model element to conveniently retain and display the
element at the opposite end of any «allocate» dependency. This stereotype provides for the properties “allocatedFrom”
and “allocatedTo,” which are derived from the «allocate» dependency.

Attributes

The following properties are derived from any «allocate» dependency:
OMG SysMLTM , v1.2 119

• /allocatedTo:NamedElement[*]
The element types and names of the set of elements that are suppliers (“to” end of the concrete syntax) of an
«allocate» whose client is extended by this stereotype (instance). This property is the union of all suppliers to
which this instance is the client, i.e., there may be more than one /allocatedTo property per allocated model
element. Each allocatedTo property will be expressed as «elementType» ElementName.

• /allocatedFrom:NamedElement[*]
Reverse of allocatedTo: the element types and names of the set of elements that are clients (from) of an «allocate»
whose supplier is extended by this stereotype (instance). The same characteristics apply as to /allocatedTo. Each
allocatedFrom property will be expressed as «elementType» ElementName.

For uniformity, the «elementType» displayed for the /allocatedTo or /allocatedFrom properties should be from the
following list, as applicable. Other «elementType» designations may be used, if none of the below apply.

«activity», «objectFlow», «controlFlow», «objectNode»

«block», «itemFlow», «connector», «port», «flowPort», «atomicFlowPort», «interface», «value»

Note that the supplier or client may be an Element (e.g., Activity, Block), Property (e.g., Action, Part), Connector, or
BehavioralFeature (e.g., Operation). For this reason, it is important to use fully qualified names when displaying /
allocatedFrom and /allocatedTo properties. An example of a fully qualified name is the form
(PackageName::ElementName.PropertyName). Use of such fully qualified names makes it clear that the «allocate» is
referring to the definition of the element, or to its specific usage as a property of another element.

15.3.2.3 AllocateActivityPartition(from Allocations)

Description

AllocateActivityPartition is used to depict an «allocate» relationship on an Activity diagram. The
AllocateActivityPartition is a standard UML2::ActivityPartition, with modified constraints as stated in the paragraph
below.

Constraints

An Action appearing in an “AllocateActivityPartition” will be the /client (from) end of an “allocate” dependency. The
element that represents the “AllocateActivityPartition” will be the /supplier (to) end of the same “allocate” dependency.
In the «AllocateActivityPartition» name field, Properties are designated by the use of a fully qualified name (including
colon, e.g., “part_name:Block_Name”), and Classifiers are designated by a simple name (no colons, e.g., “Block_Name”).

The «AllocateActivityPartition» maintains the constraints, but not the semantics, of the UML2::ActivityPartition.
Classifiers or Properties represented by an «AllocateActivityPartition» do not have any direct responsibility for invoking
behavior depicted within the partition boundaries. To depict this kind of direct responsibility, the modeler is directed to
the UML 2 Superstructure specification, Section 12.3.10, ActivityPartition, Semantics topic.

15.4 Usage Examples

The following examples depict allocation relationships as property callout boxes (basic), property compartment of a
Block (basic), and property compartments of Activities and Parts (advanced). Figure 15.3 shows generic allocation for
Blocks.
120 OMG SysMLTM , v1.2

Figure 15.3 - Generic Allocation, including /from and /to association ends

15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks

Specific behavior allocation of Actions to Parts are depicted in Figure 15.4. Note that the AllocateActivityPartition, if
used in this manner, is unambiguously associated with behavior allocation.

Figure 15.4 - Behavior allocation

«elementType»Element3

«elementType» Element2

Block1

allocatedFrom

allocatedTo

Block1

allocatedFrom
«elementType»Element2
allocatedTo
«elementType»Element3

allocatedFrom

«elementType»Element2

allocatedTo

«elementType»Element3

Block1
«block»
Block4

allocatedFrom

«activity»Activity6

Part5

allocatedTo
«block»Block4.Part5

Block1

allocatedFrom
«elementType»Element2
allocatedTo
«elementType»Element3

«allocate»
Part2:Block1

Action1

«block»
Block4

Part5

allocatedFrom
«activity» Activity6

«activity»
Activity6

allocatedFrom

«block»Block4.Part5

«activity»
Activity6

Action1

allocatedTo
«part»Part2:Block1

allocatedTo

«part»Part2:Block1

Action1
OMG SysMLTM , v1.2 121

15.4.2 Allocate Flow

Figure 15.5 shows flow allocation of ObjectFlow to a Connector, or alternatively to an ItemFlow. Allocation of
ControlFlow is not shown as an example, but it is not prohibited in SysML.

Figure 15.5 - Example of flow allocation from ObjectFlow to Connector

Figure 15.6 - Example of flow allocation from ObjectFlow to ItemFlow

ibd [block] Block0 [Example1]

act Activity0 [Example1]
«block»
Block5

Part6

Part7

allocatedFrom
«objectFlow»ObjectFlow3

ObjectFlow3
Action1 Action2

allocatedTo
«connector»Connector8

Connector8

ibd [block] Block0 [Example2]

act Activity0 [Example2]

ObjectFlow3
Action1 Action2

«block»
Block5

Part6

Part7

allocatedTo
«itemFlow»ItemFlow9

allocatedFrom
«objectFlow»ObjectFlow3

ItemFlow9
122 OMG SysMLTM , v1.2

Figure 15.7 - Example of flow allocation from ObjectNode to FlowProperty

15.4.2.1 Allocating Structure

Systems engineers have a frequent need to allocate structural model elements (e.g., blocks, parts, or connectors) to other
structural elements. For example, if a particular user model includes an abstract logical structure, it may be important to
show how these model elements are allocated to a more concrete physical structure. The need also arises, when adding
detail to a structural model, to allocate a connector (at a more abstract level) to a part (at a more concrete level).

Figure 15.8 - Example of Structural Allocation

15.4.2.2 Automotive Example

Example: consider the functions required to portion and deliver power for a hybrid SUV. The activities for providing
power are allocated to blocks within the Hybrid SUV, as shown in Figure C.35 in Annex C.

Figure C.36 in Annex C shows an internal block diagram showing allocation for the HybridSUV Accelerate example.

bdd [block] Block0 [Example3]act Activity0 [Example3]

«block» Block6

Action1

«block»Block10

ObjectNode4
«block»
Block5

«objectNode» ObjectNode4

«block»
Block10

«activity»Activity1

out:Block10

«block»
Block6

«activity» Activity2

in:Block10

«block»
Block7

«block» Block7

Action2

allocatedFrom

allocatedFromallocatedFrom

allocatedTo allocatedTo

allocatedTo

ibd [package] Block1 [Abstract to Concrete Structural
Allocation]

«block»
AbstractExample

Part2

Part3

«block»
ConcreteExample

Part6

Part7

Part5

cktrA
cktrB

cktrC

«allocate»

«allocate»

«allocate»
«allocate»

«allocate»
OMG SysMLTM , v1.2 123

15.4.3 Tabular Representation

The table shown in Figure C.37 in Annex C is provided as a specific example of how the «allocate» dependency may be
depicted in tabular form, consistent with the automotive example above.

The allocation table can also be shown using a sparse matrix style as in the following example shown in Figure 15.9.

:

Figure 15.9 - Allocation Matrix Showing Allocation for Hybrid SUV Accelerate Example

matrix [activity] ProvidePower [Allocation Tree for Provide Power Activities]

Source Target
 PowerControlUnit InternalCombu

stionEngine
Electrical
PowerContr
oller

ElectricalMo
torGenerator

I1:ElectricC
urrent

A1:ProportionPower allocate
A2:ProvideGasPower allocate
A3:ControlElectricPo
wer

 allocate

A4:ProvideElectriPow
er

 allocate

driveCurrent allocate

124 OMG SysMLTM , v1.2

16 Requirements

16.1 Overview

A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify a function
that a system must perform or a performance condition a system must achieve. SysML provides modeling constructs to
represent text-based requirements and relate them to other modeling elements. The requirements diagram described in this
chapter can depict the requirements in graphical, tabular, or tree structure format. A requirement can also appear on other
diagrams to show its relationship to other modeling elements. The requirements modeling constructs are intended to
provide a bridge between traditional requirements management tools and the other SysML models.

A requirement is defined as a stereotype of UML Class subject to a set of constraints. A standard requirement includes
properties to specify its unique identifier and text requirement. Additional properties such as verification status, can be
specified by the user.

Several requirements relationships are specified that enable the modeler to relate requirements to other requirements as
well as to other model elements. These include relationships for defining a requirements hierarchy, deriving requirements,
satisfying requirements, verifying requirements, and refining requirements.

A composite requirement can contain subrequirements in terms of a requirements hierarchy, specified using the UML
namespace containment mechanism. This relationship enables a complex requirement to be decomposed into its
containing child requirements. A composite requirement may state that the system shall do A and B and C, which can be
decomposed into the child requirements that the system shall do A, the system shall do B, and the system shall do C. An
entire specification can be decomposed into children requirements, which can be further decomposed into their children
to define the requirements hierarchy.

There is a real need for requirement reuse across product families and projects. Typical scenarios are regulatory, statutory,
or contractual requirements that are applicable across products and/or projects and requirements that are reused across
product families (versions/variants). In these cases, one would like to be able to reference a requirement, or requirement
set in multiple contexts with updates to the original requirements propagated to the reused requirement(s).

The use of namespace containment to specify requirements hierarchies precludes reusing requirements in different
contexts since a given model element can only exist in one namespace. Since the concept of requirements reuse is very
important in many applications, SysML introduces the concept of a slave requirement. A slave requirement is a
requirement whose text property is a read-only copy of the text property of a master requirement. The text property of the
slave requirement is constrained to be the same as the text property of the related master requirement. The master/slave
relationship is indicated by the use of the copy relationship.

The “derive requirement” relationship relates a derived requirement to its source requirement. This typically involves
analysis to determine the multiple derived requirements that support a source requirement. The derived requirements
generally correspond to requirements at the next level of the system hierarchy. A simple example may be a vehicle
acceleration requirement that is analyzed to derive requirements for engine power, vehicle weight, and body drag.

The satisfy relationship describes how a design or implementation model satisfies one or more requirements. A system
modeler specifies the system design elements that are intended to satisfy the requirement. In the example above, the
engine design satisfies the engine power requirement.
OMG SysMLTM , v1.2 125

The verify relationship defines how a test case or other model element verifies a requirement. In SysML, a test case or
other named element can be used as a general mechanism to represent any of the standard verification methods for
inspection, analysis, demonstration, or test. Additional subclasses can be defined by the user if required to represent the
different verification methods. A verdict property of a test case can be used to represent the verification result. The
SysML test case is defined consistent with the UML testing profile to facilitate integration between the two profiles.

The refine requirement relationship can be used to describe how a model element or set of elements can be used to further
refine a requirement. For example, a use case or activity diagram may be used to refine a text-based functional
requirement. Alternatively, it may be used to show how a text-based requirement refines a model element. In this case,
some elaborated text could be used to refine a less fine-grained model element.

A generic trace requirement relationship provides a general-purpose relationship between a requirement and any other
model element. The semantics of trace include no real constraints and therefore are quite weak. As a result, it is
recommended that the trace relationship not be used in conjunction with the other requirements relationships described
above.

The rationale construct that is defined in Chapter 7, “Model Elements” is quite useful in support of requirements. It
enables the modeler to attach a rationale to any requirements relationship or to the requirement itself. For example, a
rationale can be attached to a satisfy relationship that refers to an analysis report or trade study that provides the
supporting rationale for why the particular design satisfies the requirement. Similarly, this can be used with the other
relationships such as the derive relationship. It also provides an alternative mechanism to capture the verify relationship
by attaching a rationale to a satisfy relationship that references a test case.

Modelers can customize requirements taxonomies by defining additional subclasses of the Requirement stereotype. For
example, a modeler may want to define requirements categories to represent operational, functional, interface,
performance, physical, storage, activation/deactivation, design constraints, and other specialized requirements such as
reliability and maintainability, or to represent a high level stakeholder need. The stereotype enables the modeler to add
constraints that restrict the types of model elements that may be assigned to satisfy the requirement. For example, a
functional requirement may be constrained so that it can only be satisfied by a SysML behavior such as an activity, state
machine, or interaction. Some potential Requirement subclasses are defined in Non-normative Extensions.
126 OMG SysMLTM , v1.2

16.2 Diagram Elements

16.2.1 Requirement Diagram

Requirement Diagram SysML::Requirements::
Requirement, SysML::
ModelElements::Package

Requirement SysML::Requirements::
Requirement

TestCase SysML::Requirements::
TestCase

Table 16.1 - Graphical nodes included in Requirement diagrams

Node Name Concrete Syntax Abstract Syntax Reference

req ReqDiagram

«requirement»
Requirement name

text=”The system shall do”
Id=”62j32.”

«testCase»
TestCaseName
OMG SysMLTM , v1.2 127

Table 16.2 - Graphical paths included in Requirement diagrams

Path Type Concrete Syntax Abstract Syntax
Reference

Requirement
containment
relationship

UML4SysML::
NestedClassifier

CopyDependency SysML::Requirements::
Copy

MasterCallout

Master
«requirement» Master «requirement» Slave

SysML::Requirements::
Copy

Derive
Dependency

SysML::Requirements::
DeriveReqt

DeriveCallout

Derived
«requirement» ReqB

«requirement»
ReqA

DerivedFrom
«requirement» ReqA

«requirement»
ReqB

SysML::Requirements::
DeriveReqt

Satisfy
Dependency

SysML::Requirements::
Satisfy

«requirement»
Parent

«requirement»
Child1

«requirement»
Child2

«requirement»
Slave

«requirement»
Master

«copy»

«requirement»
Client

«requirement»
Supplier

«deriveReqt»

«satisfy»
«requirement»

Supplier
NamedElement
128 OMG SysMLTM , v1.2

SatisfyCallout

Satisfies
«requirement» ReqA

NamedElement

SatisfiedBy
NamedElement

«requirement»
ReqA

SysML::Requirements::
Satisfy

Verify
Dependency

SysML::Requirements::
Verify

VerifyCallout

Verifies
«requirement» ReqA

NamedElement

VerifiedBy
NamedElement

«requirement»
ReqA

SysML::Requirements::
Verify

Refine
Dependency

UML4SysML::Refine

RefineCallout

Refines
 «requirement» ReqA

NamedElement

RefinedBy
NamedElement

«requirement»
ReqA

UML4SysML::Refine

Table 16.2 - Graphical paths included in Requirement diagrams

Path Type Concrete Syntax Abstract Syntax
Reference

«verify»NamedElement «requirement»
Supplier

«refine» «requirement»
Client

NamedElement
OMG SysMLTM , v1.2 129

16.3 UML Extensions

16.3.1 Diagram Extensions

16.3.1.1 Requirement Diagram

The Requirement Diagram can only display requirements, packages, other classifiers, test cases, and rationale. The
relationships for containment, deriveReqt, satisfy, verify, refine, copy, and trace can be shown on a requirement diagram.
The callout notation can also be used to reflect the relationship of other model elements to a requirement.

16.3.1.2 Requirement Notation

The requirement is represented as shown in Table 16-1. The «requirement» compartment label for the stereotype
properties compartment (e.g., id and text) can be elided.

16.3.1.3 Requirement Property Callout Format

A callout notation can be used to represent derive, satisfy, verify, refine, copy, and trace relationships as indicated in
Table 16.2. For brevity, the «elementType» may be elided.

16.3.1.4 Requirements on Other Diagrams

Requirements can also be represented on other diagrams to show their relationship to other model elements. The
compartment and callout notation described in 16.3.1.2 and 16.3.1.3 can be used. The callouts represent the requirement
that is attached to another model element such as a design element.

Trace
Dependency

UML4SysML::Trace

TraceCallout

TracedFrom
«requirement» ReqANamedElement

TracedTo
NamedElement

«requirement»
ReqA

UML4SysML::Trace

Table 16.2 - Graphical paths included in Requirement diagrams

Path Type Concrete Syntax Abstract Syntax
Reference

«trace»«requirement»
Client

«requirement»
Supplier
130 OMG SysMLTM , v1.2

16.3.1.5 Requirements Table

The tabular format is used to represent the requirements, their properties and relationships, and may include:

• Requirements with their properties in columns.

• A column that includes the supplier for any of the dependency relationships (Derive, Verify, Refine, Trace).

• A column that includes the model elements that satisfy the requirement.

• A column that represents the rationale for any of the above relationships, including reference to analysis reports for
trace rationale, trade studies for design rationale, or test procedures for verification rationale.

The relationships between requirements and other objects can also be shown using a sparse matrix style that is similar to
the table used for allocations (Section 15.4.3, “Tabular Representation”). The table should include the source and target
elements names (and optionally kinds) and the requirement dependency kind.

table [requirement] Performance [Tree of Performance Requirements]

table [requirement] Performance [Decomposition of Performance Requirement]

id name text

2 Performance

The Hybrid SUV shall have the braking, acceleration, and off-
road capability of a typical SUV, but have dramatically better
fuel economy.

2.1 Braking
The Hybrid SUV shall have the braking capability of a typical
SUV.

2.2 FuelEconomy
The Hybrid SUV shall have dramatically better fuel economy
than a typical SUV.

2.3 OffRoadCapability
The Hybrid SUV shall have the off-road capability of a
typical SUV.

2.4 Acceleration
The Hybrid SUV shall have the acceleration of a typical
SUV.

id name relation id name relation id name
2.1 Braking deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.2 Range
4.2 FuelCapacity deriveReqt d.2 Range
2.3 OffRoadCapability deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
2.4 Acceleration deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
4.1 CargoCapacity deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
OMG SysMLTM , v1.2 131

16.3.2 Stereotypes

Package Requirements

Figure 16.1 - Abstract Syntax for Requirements Stereotypes

«stereotype»
TestCase

«metaclass»
UML4SysML::Operation

«metaclass»
UML4SysML::Behavior

«metaclass»
UML4SysML::Class

text: String
id: String
/derived: Requirement [*]
/derivedFrom: Requirement [*]
/satisfiedBy: NamedElement [*]
/refinedBy: NamedElement [*]
/tracedTo: NamedElement [*]
/verifiedBy: NamedElement [*]
/master: Requirement [0..1]

«stereotype»
Requirement

pass
fail
inconclusive
error

«enumeration»
VerdictKind

«stereotype»
UML4SysML::Trace

«stereotype»
DeriveReqt

«stereotype»
Verify

«stereotype»
Satisfy

«stereotype»
Copy
132 OMG SysMLTM , v1.2

Figure 16.2 - Abstract Syntax for Requirements Stereotypes (cont)

16.3.2.1 Copy

Description

A Copy relationship is a dependency between a supplier requirement and a client requirement that specifies that the text
of the client requirement is a read-only copy of the text of the supplier requirement.

A Copy dependency created between two requirements maintains a master/slave relationship between the two elements
for the purpose of requirements re-use in different contexts. When a Copy dependency exists between two requirements,
the requirement text of the client requirement is a read-only copy of the requirement text of the requirement at the
supplier end of the dependency.

Constraints

[1] A Copy dependency may only be created between two classes that have the “requirement” stereotype, or a subtype of the
“requirement” stereotype applied.

[2] The text property of the client requirement is constrained to be a read-only copy of the text property of the supplier
requirement.

[3] Constraint [2] is applied recursively to all subrequirements.

16.3.2.2 DeriveReqt

Description

A DeriveReqt relationship is a dependency between two requirements in which a client requirement can be derived from
the supplier requirement. For example, a system requirement may be derived from a business need, or lower-level
requirements may be derived from a system requirement. As with other dependencies, the arrow direction points from the
derived (client) requirement to the (supplier) requirement from which it is derived.

Constraints

[1] The supplier must be an element stereotyped by «requirement» or one of «requirement» subtypes.

[2] The client must be an element stereotyped by «requirement» or one of «requirement» subtypes.

/tracedFrom: Requirement [*]
/satisf ies: Requirement [*]
/refines: Requirement [*]
/verif ies: Requirement [*]

«stereotype»
RequirementRelated

«metaclass»
UML4SysML::NamedElement
OMG SysMLTM , v1.2 133

16.3.2.3 Requirement

Description

A requirement specifies a capability or condition that must (or should) be satisfied.. A requirement may specify a function
that a system must perform or a performance condition that a system must satisfy. Requirements are used to establish a
contract between the customer (or other stakeholder) and those responsible for designing and implementing the system.

A requirement is a stereotype of Class. Compound requirements can be created by using the nesting capability of the class
definition mechanism. The default interpretation of a compound requirement, unless stated differently by the compound
requirement itself, is that all its subrequirements must be satisfied for the compound requirement to be satisfied.
Subrequirements can be accessed through the “nestedClassifier” property of a class. When a requirement has nested
requirements, all the nested requirements apply as part of the container requirement. Deleting the container requirement
deleted the nested requirements, a functionality inherited from UML.

Attributes

• text: String
The textual representation or a reference to the textual representation of the requirement.

• id: String
The unique id of the requirement.

• /satisfiedBy: NamedElement [*]
Derived from all elements that are the client of a «satisfy» relationship for which this requirement is a supplier.

• /verifiedBy: NamedElement [*]
Derived from all elements that are the client of a «verify» relationship for which this requirement is a supplier.

• /tracedTo: NamedElement [*]
Derived from all elements that are the supplier of a «trace» relationship for which this requirement is a client.

Issue: Editorial Change – fix inconsistency of /derived multiplicity from profile definition in Figure 16.1 above.

• /derived: Requirement [*]
Derived from all requirements that are the client of a «deriveReqt» relationship for which this requirement is a
supplier.

• /derivedFrom: Requirement [*]
Derived from all requirements that are the supplier of a «deriveReqt» relationship for which this requirement is a
client.

• /refinedBy: NamedElement [*]
Derived from all elements that are the client of a «refine» relationship for which this requirement is a supplier.

• /master: Requirement [0..1
This is a derived property that lists the master requirement for this slave requirement. The master attribute is
derived from the supplier of the Copy dependency that has this requirement as the slave.

Constraints

[1] The property “ownedOperation” must be empty.

[2] The property “ownedAttribute” must be empty.

[3] Classes stereotyped by «requirement» may not participate in associations.
134 OMG SysMLTM , v1.2

[4] Classes stereotyped by «requirement» may not participate in generalizations.

[5] A nested classifier of a class stereotyped by «requirement» must also be stereotyped by «requirement».

16.3.2.4 RequirementRelated

Description

This stereotype is used to add properties to those elements that are related to requirements via the various dependencies
described in Figure 16.1. The property values are shown using callout notation (i.e., notes) as shown in the diagram
element table.

Attributes

• /tracedFrom: Requirement [*]
Derived from all requirements that are the client of a «trace» relationship for which this element is a supplier.

• /satisfies: Requirement [*]
Derived from all requirements that are the supplier of a «satisfy» relationship for which this element is a client.

• /refines: Requirement [*]
Derived from all requirements that are the supplier of a «refine» relationship for which this element is a client.

• /verifies: Requirement [*]
Derived from all requirements that are the supplier of a «verify» relationship for which this element is a client.

16.3.2.5 TestCase

Description

A test case is a method for verifying a requirement is satisfied.

Constraints

[1] The type of return parameter of the stereotyped model element must be VerdictKind. (note this is consistent with the UML
Testing Profile).

16.3.2.6 Satisfy

Description

A Satisfy relationship is a dependency between a requirement and a model element that fulfills the requirement. As with
other dependencies, the arrow direction points from the satisfying (client) model element to the (supplier) requirement
that is satisfied.

Constraints

[1] The supplier must be an element stereotyped by «requirement» or one of «requirement» subtypes.
OMG SysMLTM , v1.2 135

16.3.2.7 Verify

Description

A Verify relationship is a dependency between a requirement and a test case or other model element that can determine
whether a system fulfills the requirement. As with other dependencies, the arrow direction points from the (client)
element to the (supplier) requirement.

Constraints

[1] The supplier must be an element stereotyped by «requirement» or one of «requirement» subtypes.

16.4 Usage Examples

All the examples in this chapter are based on a set of publicly available (on-line) requirement specifications from the
National Highway Traffic Safety Administration (NHTSA.) Excerpts of the original requirement text used to create the
models are shown in Figure 16.3. The name and ID of these requirements are referred to in the SysML usage examples
that follow. See NHTSA specification 49CFR571.135 for the complete text from which these examples are taken.

16.4.1 Requirement Decomposition and Traceability

The diagram in Figure 16.3 shows an example of a compound requirement decomposed into multiple subrequirements.

Figure 16.3 - Requirements Derivation

16.4.2 Requirements and Design Elements

The diagram in Figure 16.4 shows derived requirements and refers to the design elements that satisfy them. The rationale
is also shown as a basis for the design solution.
136 OMG SysMLTM , v1.2

.

Figure 16.4 - Links between requirements and design

«requirement»
Master Cylinder Efficacy

«requirement»
LossOfFluid

«requirement»
Reservoir

«block»
BrakeSystem

«satisfy»

Decelerate Car

«refine»

«rationale»
body = “This design of the brake
assembly satisfies the federal safety
requirements.”

id = “S5.4.1a”
text =”Prevent complete loss of fluid”

id = “S5.4.1b”
text = "Separate reservoir compartment”

id = “S5.4.1”
text =”A master cylinder shall have a reservoir
compartment for each service brake
subsystem serviced by the master cylinder.
Loss of fluid from one compartment
shall not result in a complete loss of
brake fluid from another compartment.”

«rationale»
body = “The best-practice
solution consists in using a set of
springs and pistons to confine the
loss to a single compartment”

«rationale»
body = “The best-practice
solution consists in assigning
one reservoir per brakeline.”

«deriveReqt» «deriveReqt»

f: FrontBrake
r: Rear Brake
l1: BrakeLine
l2: BrakeLine
m: MasterCylinder

activateBrake()
releaseBrake()

SatisfiedBy
BrakeSystem::l1
BrakeSystem::l2

SatisfiedBy
BrakeSystem::m

req MasterCylinderSafety
OMG SysMLTM , v1.2 137

ibd BrakeSystem

m: MasterCylinder

l1: BrakeLine l2: BrakeLine

r: RearBrakef: FrontBrake

Safisfies
«requirement»
MasterCylinderSafety::LossOf Fluid

Satisfies
«requirement» MasterCylinderSafety::Reservoir

Figure 16.5 - Requirement satisfaction in an internal block diagram.

16.4.3 Requirements Reuse

Figure 16.6 illustrates the use of the Copy dependency to allow a single requirement to be reused in several requirements
hierarchies. The master tag provides a textual reference to the reused requirement.

Figure 16.6 - Use of the copy dependency to facilitate reuse

«requirement»
NHTSASafetyRequirements

«requirement»
Hybrid Engine A type

«requirement»
Hybrid Engine B type

master=NHTSASafety
Requirements

«requirement»
Shared Safety
Requirements

master=NHTSASafety
Requirements

«requirement»
Shared Safety
Requirements

«requirement»
Safety Requirements

for type A

«requirement»
Safety Requirements

for type B

«copy» «copy»

id = “157.135”
text = “…"

req Safety Reuse
138 OMG SysMLTM , v1.2

16.4.4 Verification Procedure (Test Case)

The example in Figure 16.7 shows how a complex test case, in this example a test for a passenger-car brake system given
as a series of steps in text form, can be described using another type of diagram representation. Figure 16.8 shows a Test
Case linked back to a requirement in Figure 16.7 using a Verify callout. Note that the modeling of test cases can also be
addressed using the UML Testing Profile, available from the Object Management Group.

Figure 16.7 - Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram
OMG SysMLTM , v1.2 139

Figure 16.8 - Linkage of a Test Case to a requirement: This figure shows the Test Case as a State Diagram

[Speed=80]

Initial
condition

[count < 200]

[count=200]

Adjust brake

Accelerate

Maintain

Brake

[IBT=100 or
d >= 2 km]

stm «testCase» BurnishTest

Verifies
«requirement» Burnish
140 OMG SysMLTM , v1.2

17 Profiles & Model Libraries

17.1 Overview

The Profiles package contains mechanisms that allow metaclasses from existing metamodels to be extended to adapt them
for different purposes. This includes the ability to tailor the UML metamodel for different domains. The profiles
mechanism is consistent with the OMG Meta Object Facility (MOF). SysML has added some notational extensions to
represent stereotype properties in compartments as well as notes.

The stereotype is the primary mechanism used to create profiles to extend the metamodel. Stereotypes are defined by
extending a metaclass, and then have them applied to the applicable model elements in the user model. A stereotype of a
requirement could be extended to create a «functionalRequirement» as described in Non-normative Extensions. This
would allow specific properties and constraints to be created for a functional requirement. For example, a functional
requirement may be constrained such that it must be satisfied by an operation or behavior. When the stereotype is applied
to a requirement, then the requirement would include the notation «functionalRequirement» in addition to the name of the
particular functional requirement. Extending the metaclass requirement is different from creating a subclass of
requirement called functionalRequirement.

The Usage Examples section provides guidance both on how to use existing profiles and how to create new profiles. In
addition, the examples provide guidance on the use of model libraries. A model library is a library of model elements
including class and other type definitions that are considered reusable for a given domain. This guidelines can be applied
to further customize SysML for domain specific applications such as automotive, military, or space systems.
OMG SysMLTM , v1.2 141

17.2 Diagram Elements

17.2.1 Profile Definition in Package Diagram

Stereotype UML4SysML::Stereotype

Metaclass

«metaclass»
MetaClassName

UML4SysML::Class

Profile UML4SysML::Profile

Model Library UML::StandardProfileL2

Table 17.1 - Graphical nodes used in profile definition

Node Name Concrete Syntax Abstract Syntax Reference

«stereotype»
StereotypeName

«profile»
ProfileName

«modelLibrary»
LibraryName
142 OMG SysMLTM , v1.2

NOTE: In the above table, boolean properties can alternatively be displayed as BooleanPropertyName=[True|False].

Table 17.2 - Graphical paths used in profile definition

Path Name Concrete Syntax Abstract Syntax Reference

Extension UML4SysML::Extension

Generalization UML4SysML::Generalization

ProfileApplication UML4SysML::ProfileApplication

MetamodelReference UML4SysML::PackageImport;
UML4SysML::ElementImport

Unidirectional
Association

UML4SysML::Association

«metaclass»
MetaClassName

«stereotype»
StereotypeName

{required}

«stereotype»
StereotypeName

«stereotype»
StereotypeName

«apply»{strict}

«reference»

propertyName
OMG SysMLTM , v1.2 143

17.2.1.1 Extension

In Figure 17.1, a simple stereotype Clock is defined to be applicable at will (dynamically) to instances of the metaclass
Class and describes a clock software component for an embedded software system. It has description of the operating
system version supported, an indication of whether it is compliant to the POSIX operating system standard and a
reference to the operation that starts the clock.

Figure 17.1 - Defining a stereotype

«stereotype»
Clock

OSVersion:String
startOperation:Operation
POSIXCompliant:Boolean

«metaclass»
Class
144 OMG SysMLTM , v1.2

17.2.2 Stereotypes Used On Diagrams

Table 17.3 - Notations for Stereotype Use

Node Name Concrete Syntax Abstract Syntax Reference

StereotypeNote UML4SysML::Element

StereotypeNote UML4SysML::Element

StereotypeInNode UML4SysML::Element

StereotypeInCompartment
Element

UML4SysML::Element

StereotypeOnEdge UML4SysML::Element

Element
Name

«stereotypeName»
PropertyName=ValueString
MultiPropertyName=ValueString, ValueString
BooleanPropertyName

Element
NamePathName

Element
Name

«stereotypeName»
PropertyName=ValueString
MultiPropertyName=ValueString, ValueString
BooleanPropertyName

«stereotypeName»
{PropertyName=ValueString;

BooleanPropertyName}
NodeName

«stereotypeName»{PropertyName=ValueString}ElementName
«stereotypeName»{PropertyName=ValueString;
BooleanPropertyName}
ElementName

NodeName

Element
Name

Element
Name

«stereotypeName»
{PropertyName=ValueString;
BooleanPropertyName}PathName
OMG SysMLTM , v1.2 145

17.2.2.1 StereotypeInNode

Figure 17.2 shows how the stereotype Clock, as defined in Figure 17.1, is applied to a class called AlarmClock.

17.2.2.2 StereotypeInComment

When, two stereotypes, Clock and Creator, are applied to the same model element, as is shown in Figure 17.3, the
attribute values of each of the applied stereotypes can be shown in a comment symbol attached to the model element.

Figure 17.3 - Using stereotypes and showing values

Stereotype
Compartment

UML4SysML::Element

Figure 17.2 - Using a stereotype

Table 17.3 - Notations for Stereotype Use

Node Name Concrete Syntax Abstract Syntax Reference

«stereotypeName»
 PropertyName=ValueString
 MultiPropertyName=ValueString,

ValueString
 BooleanPropertyName

«stereotypeName»
NodeName

 Start()

«clock»
{POSIXCompliant}

AlarmClock

«clock,creator»
StopWatch

Click()

«clock»
OSVersion=2.5
startOperation=Click
«creator»
name="Jones"
date="04-04-04"
146 OMG SysMLTM , v1.2

17.2.2.3 StereotypeInCompartment

Finally, the compartment form is shown.

Figure 17.4 - Other notational forms for showing values

In this case, AlarmClock is valid for OS version 3.4, is POSIX-compliant and has a starting operation called Start. Note
that multiple stereotypes can be shown using multiple compartments.

17.3 UML Extensions

None.

17.4 Usage Examples

17.4.1 Defining a Profile

Issue: 15876 – Define the SysML profile as referencing UML and replace the UML4SysML subset with OCL
constraints

 Start()

AlarmClock

«clock»
OSVersion="3.4"
startOperation=Start
POSIXCompliant=True
OMG SysMLTM , v1.2 147

Figure 17.5 - Definition of a profile

In this example, the modeler has created a new profile called SE Toolkit, which imports the SysML profile, so that it can
build upon the stereotypes it contains. The set of metaclasses available to users of the SysML profile is identified by a
reference to a metamodel, in this case a subset of UML specific to SysML. The SE Toolkit can extend those metaclasses
from UML that the SysML profile references.
148 OMG SysMLTM , v1.2

17.4.2 Adding Stereotypes to a Profile

Figure 17.6 - Profile Contents

In SE Toolkit, both the mechanisms for adding new stereotypes are used. The first, exemplified by configurationItem, is
called an extension, shown by a line with a filled triangle; this relates a stereotype to a reference (called base) class or
classes, in this case NamedElement and DirectedRelationship from UML and adds new properties that every
NamedElement or DirectedRelationship stereotyped by configurationItem must have. NamedElement and
DirectedRelationship are abstract classes in UML so it is their subclasses that can have the stereotype applied. The second
mechanism is demonstrated by the system and context stereotypes which are sub-stereotypes of an existing SysML
stereotype, Block; sub-stereotypes inherit any properties of their super-stereotype and also extend the same base class or
classes. Note that TypedElements whose type is extended by «system» do not display the «system» stereotype; this also
applies to InstanceSpecifications. Any notational conventions of this have to be explicitly specified in a diagram
extension.

There is also an example of how stereotypes (in this case FunctionalRequirement) can have unidirectional associations to
metaclasses in the reference metamodel (in this case Behavior).

«metaclass»
NamedElement

isEncapsulated: Boolean

«stereotype»
Block

«stereotype»
System

«stereotype»
Context

«stereotype»
Requirement

«stereotype»
Functional

Requirement

«metaclass»
Behavior

function

«stereotype»
ConfigurationItem

author : String
version: String
lastChanged : Date

«metaclass»
DirectedRelationship

pkg SEToolkit
OMG SysMLTM , v1.2 149

17.4.3 Defining a Model Library that Uses a Profile

pkg [profile] SEToolkit

«modelLibrary»
SI Value Types

«valueType»
unit = KilogramPerCubicMeter

SIDensity

«valueType»
unit= CubicMeter

SIVolume

«valueType»
Real

«modelLibrary»
Physical

«valueType»
unit = Meter

SILength

«import»
density: SIDensity
volume: SIVolume
supplier: String
modelNumber: String
serialNumber: String
lotNumber: String

«block»
PhysicalObject

«modelLibrary»
SI Definitions

«import»

Figure 17.7 - Two model libraries

The model library SI Value Types imports a model library called SI Definitions, so it can use model elements from them
in its own definition. It defines value types having specific units which can be used when property values are measured in
SI units. SI Definitions is a separately published model library, containing definitions of standard SI units and quantity
kinds such as shown in Annex D, Section D.4. A further model library, Physical, imports SI Value Types so it can define
properties that have those types. One model element, PhysicalObject, is shown, a block that can be used as a supertype
for an physical object.

17.4.4 Guidance on Whether to Use a Stereotype or Class

This section provides guidance on when to use stereotypes. Stereotypes can be applied to any model element.
Stereotyping a model element allows the model element to be identified with the «guillemet» notation. In addition, the
stereotyped model element can have stereotype properties, and the stereotype can specify constraints on the model
element.

The modeler must decide when to create a stereotype of a class versus when to specialize (subclass) the class. One reason
is to be able to identify the class with the «guillemet» notation. In addition, the stereotype properties are different from
properties of classes. Stereotype properties represent properties of the class that are not instantiated and therefore do not
have a unique value for each instance of the class, although a class thus stereotyped can have a separate value for the
property.

SE Toolkit::functionalRequirement, which extends Class through its superstereotype, Requirement, is an example where a
stereotype is appropriate because every modeling element stereotyped by SE Toolkit::functionalRequirement has a
reference to another modeling element. In another example, SE Toolkit::configurationItem defined above, which applies
to classes amongst other concepts, is a stereotype because its properties characterize the author, version, and last changed
150 OMG SysMLTM , v1.2

date of the modeling element themselves. One test of this is whether the new properties are inheritable; in this case
author, version, and last-changed date are not, because it is only those classes under configuration control that need the
properties. To summarize, in the following circumstances a stereotype is appropriate:

• Where the model concept to be extended is not a class or class-based.

• Where the extensions include properties that reference other model elements.

• Where the extensions include properties that describe modeling data, not system data.

An example where a class is more appropriate is PhysicalObject from Figure 17.7. In this case, the properties density and
volume, and the component numbers, have distinct values for each system element described by the class, and are
inherited by every subclass of PhysicalObject.

17.4.5 Using a Profile

Figure 17.8 - A model with applied profile and imported model library

The HSUVModel is a systems engineering model that needs to use stereotypes from SysML. It therefore needs to have
the SysML profile applied to it. In order to use the predefined SI units, it also needs to import the SI Definitions model
library. Having done this, elements in HSUVModel can be extended by SysML stereotypes and types like SIVolume can
be used to type properties. Both the SI Definitions model library and HSUVModel have applied the profile strictly which
means that only those metaclasses directly referenced by SysML can be used in those models.

pkg ModelingDomain [Establishing HSUV Model]

«modelLibrary»
SI Definitions

«import»

«profile»
SysML

HSUVModel

«apply»
{strict}

«apply» {strict}
OMG SysMLTM , v1.2 151

17.4.6 Using a Stereotype

req HSUVRequirements

«functionalRequirement»

«configurationItem»

StoppingDistance

«functionalRequirement»
text="The car must stop within
100 feet from 20 mph"
id="102.1"
function=StopCar

«configurationItem»
author="Jones"
version="1.2"
date="04-04-04"

Figure 17.9 - Using two stereotypes on a model element

StoppingDistance has two stereotypes applied: functionalRequirement, which identifies it as a requirement that is satisfied
by a function, and configurationItem, which allows it to have configuration management properties. The modeler has
provided values for all the newly available properties; those for criticalRequirement are shown in a compartment in the
node symbol for StoppingDistance; those for configurationItem are shown in a separate note.

17.4.7 Using a Model Library Element

bdd Physics

circumference: SILength

«block»
Shot

density: SIDensity
volume: SIVolume
supplier: String
modelNumber: String
serialNumber: String
lotNumber: String

«block»
PhysicalObject

Figure 17.10 - Using model library elements

Model library elements can be used just like any other model element of the same type. In this case, Shot is a
specialization of PhysicalObject from the Physical model library. It adds a new property, circumference, of type SILength
to measure the circumference of the (spherical) shot.
152 OMG SysMLTM , v1.2

Part V - Annexes
This section contains the following non-normative annexes for this specification.:

• A - Diagrams

• B - Sample Problem

• C - Non-normative Extensions

• D - Model Interchange

• E - Requirements Traceability

• F - Terms and Definitions
OMG SysMLTM , v1.2 153

154 OMG SysMLTM , v1.2

Annex A: Diagrams
(informative)

A.1 Overview

SysML diagrams contain diagram elements (mostly nodes connected by paths) that represent model elements in the
SysML model, such as activities, blocks, and associations. The diagram elements are referred to as the concrete syntax.

The SysML diagram taxonomy is shown in Figure A.1. This taxonomy is one example of how to organize the SysML
diagrams. Other categories could also be defined, such as a grouping of the use case diagram and the requirement diagram
into a category called Specification Diagrams.

SysML reuses many of the major diagram types of UML. In some cases, the UML diagrams are strictly reused, such as
use case, sequence, state machine, and package diagrams, whereas in other cases they are modified so that they are
consistent with SysML extensions. For example, the block definition diagram and internal block diagram are similar to
the UML class diagram and composite structure diagram respectively, but include extensions as described in Chapter 8,
“Blocks.” Activity diagrams have also been modified via the activity extensions. Tabular representations, such as the
allocation table, are used in SysML but are not considered part of the diagram taxonomy.

SysML does not use all of the UML diagram types such as the object diagram, communication diagram, interaction
overview diagram, timing diagram, deployment diagram, and profile diagram. This is consistent with the approach that
SysML represents a subset of UML. In the case of deployment diagrams, the deployment of software to hardware can be
represented in the SysML internal block diagram. In the case of interaction overview and communication diagrams, it was
felt that the SysML behavior diagrams provided adequate coverage for representing behavior without the need to include
these diagram types. In the case of the profile diagram, profile definitions can be captured on a package diagram, which
is also allowed in SysML. Two new diagram types have been added to SysML including the requirement diagram and the
parametric diagram.
OMG SysMLTM , v1.2 155

Figure A.1 - SysML Diagram Taxonomy

The requirement diagram is a new SysML diagram type. A requirement diagram provides a modeling construct for text-
based requirements, and the relationship between requirements and other model elements that satisfy or verify them.

The parametric diagram is a new SysML diagram type that describes the constraints among the properties associated with
blocks. This diagram is used to integrate behavior and structure models with engineering analysis models such as
performance, reliability, and mass property models.

Although the taxonomy provides a logical organization for the various major kinds of diagrams, it does not preclude the
careful mixing of different kinds of diagram types, as one might do when one combines structural and behavioral
elements (e.g., showing a state machine nested inside a compartment of a block). However, it is critical that the types of
diagram elements that can appear on a particular diagram kind be constrained and well-specified. The diagram elements
tables in each chapter describe what symbols can appear in the diagram, but do not specify the different combinations of
symbols that can be used.

The package diagram and the callout notation are two mechanisms that SysML provides for adding flexibility to represent
a broad range of diagram elements on diagrams. The package diagram can be used quite flexibly to organize the model in
packages and views. As such, a package diagram can include a wide array of packageable elements. The callout notation
provides a mechanism for representing relationships between model elements that appear on different diagram kinds. In
particular, they are used to represent allocations and requirements, such as the allocation of an activity to a block on a
block definition diagram, or showing a part that satisfies a particular requirement on an internal block diagram. There are
other mechanisms for representing this including the compartment notation that is generally described in Chapter 17,
“Profiles & Model Libraries,” Chapter 16, “Requirements,” and Chapter 15, “Allocations” provide specific guidance on
how these notations are used.

The model elements and corresponding concrete syntax that are represented in each of the nine SysML diagram kinds are
described in the SysML chapters as indicated below.

• activity diagram - Activities chapter

SysML
Diagram

Structure
Diagram

Behavior
Diagram

Use Case
Diagram

Activity
Diagram

Internal Block
Diagram

Block Definition
Diagram

Sequence
Diagram

State Machine
Diagram

Parametric
Diagram

Requirement
Diagram

Modified from UML 2

New diagram type

Package Diagram

Same as UML 2
156 OMG SysMLTM , v1.2

• block definition diagram - Blocks chapter, Ports and Flows chapter

• internal block diagram - Blocks chapter, Ports and Flows chapter

• package diagram - Model Elements chapter

• parametric diagram - Constraint Blocks chapter

• requirement diagram - Requirements chapter

• state machine diagram - State Machines chapter

• sequence diagram - Interactions chapter

• use case diagram - Use Cases chapter

Each SysML diagram has a frame, with a contents area, a heading, and a Diagram Description (see Figure A.2).

Figure A.2 - Diagram Frame

The frame is a rectangle that is required for SysML diagrams (Note: the frame is optional in UML). The frame must
designate a model element that is the default namespace for the model elements enclosed in the frame. A qualified name
for the model element within the frame must be provided if it is not contained within default namespace associated with
the frame. The following are some of the designated model elements associated with the different diagram kinds.

• activity diagram - activity

• block definition diagram - block, package, or constraint block

• internal block diagram - block or constraint block

• package diagram - package or model

• parametric diagram - block or constraint block

• requirement diagram - package or requirement

• sequence diagram - interaction

• state machine diagram - state machine

• use case diagram - package

Contents

«diagramUsage»
diagramKind [modelElementType] modelElementName [diagramName]

Diagram Description

Version:
Description:
Completion status:
Reference:
(User defined fields)

Header
OMG SysMLTM , v1.2 157

The frame may include border elements associated with the designated model element, like ports for blocks, entry/exit
points on statemachines, gates on interactions, parameters for activities, and constraint parameters for constraint blocks.
The frame may sometimes be defined by the border of the diagram area provided by a tool.

The diagram contents area contains the graphical symbols. The diagram type and usage defines the type of primary
graphical symbols that are supported, e.g., a block definition diagram is a diagram where the primary symbols in the
contents area are blocks and association symbols along with their adornments.

The heading name is a string contained in a name tag (rectangle with cutoff corner) in the upper leftmost corner of the
rectangle, with the following syntax:

<diagramKind> [modelElementType] <modelElementName> [diagramName]

A space separates each of these entries. The diagramKind is bolded. The modelElementType and diagramName are in
brackets. The heading name should always contain the diagram kind and model element name, and include the model
element type and additional information to remove ambiguity. Ambiguity can occur if there is more than one model
element type for a given diagram kind, or where there is more than one diagram for the same model element. If a model
element type has a stereotype applied to the base model element, such as “modelLibrary” applied to a package or
“controlOperator” applied to an activity, then either the stereotype name or the base model element may be used as the
name for the model element type. In either case, the initial character of the name is shown in lower case. For a stereotype
name, guillemet characters (« and ») are not shown. If more than one stereotype has been applied to the base model
element, either the name of one of the applied stereotypes or a comma-separated list of any or all of the applied stereotype
names may be shown. If a base model element name is used, this element is either a UML metaclass which SysML uses
directly, such as package or activity, or a stereotype which SysML defines on a UML metaclass, such as block or view.

SysML diagram kinds should have the following names or (abbreviations) as part of the heading:

• activity diagram (act)

• block definition diagram (bdd)

• internal block diagram (ibd)

• package diagram (pkg)

• parametric diagram (par)

• requirement diagram (req)

• sequence diagram (sd)

• state machine diagram (stm)

• use case diagram (uc)

The diagram description can be defined by a comment attached to a diagram frame as indicated in Figure A.2 that
includes version, description, references to related information, a completeness field that describes the extent to which the
modeler asserts the diagram is complete, and other-user defined fields. In addition, the diagram description may identify
the view associated with the diagram, and the corresponding viewpoint that identifies the stakeholders and their concerns
(refer to Model Elements chapter). The diagram description can be made more explicit by the tool implementation.

SysML also introduces the concept of a diagram usage. This represents a unique usage of a particular diagram type, such
as a context diagram as a usage of an block definition diagram, internal block diagram, or use case diagram. The diagram
usage can be identified in the header above the diagramKind as «diagramUsage». An example of a diagram usage
158 OMG SysMLTM , v1.2

extension is shown in Figure A.3. For this example, the header in Figure A.2 would replace diagram kind with “uc” and
«diagramUsage» with «ContextDiagram». Applying a stereotype approach to specify a diagram usage can allow a tool
implementation to check that the diagram constraints defined by the stereotype are satisfied.

NOTE: A diagram is not a metaclass in UML or SysML and therefore cannot be extended by a stereotype. However, the
concept of extending a diagram for a particular diagram usage was considered to be of value. The stereotype notation is
used to designate this concept without the formal semantics.

Figure A.3 - Diagram Usages

Some typical diagram usages may include:

• Activity diagram usage with swim lanes - SwimLane Diagram.

• Block definition diagram usage for a block hierarchy - Block Hierarchy where block can be replaced by system, item,
activity, etc.

• Use case diagram or internal block diagram to represent a Context Diagram.

A.2 Guidelines

The following provides some general guidelines that apply to all diagram types.

• Decomposition of a model element can be represented by the rake symbol. This does not always mean decomposition
in a formal sense, but rather a reference to a more elaborated diagram of the model element that includes the rake
symbol. The rake on a model element may include the following:

• activity diagram - call behavior actions that can refer to another activity diagram.

• internal block diagram - parts that can refer to another internal block diagram.

• package diagram - package that can refer to another package diagrams.

• parametric diagram - constraint property that can refer to another parametric diagram

• requirement diagram - requirement that can refer to another requirement diagram.

• sequence diagram - interaction fragments that can refer to another sequence diagram.

• state machine diagram - state that can refer to another state machine diagram.

• use case diagram - use case can that may be realized by other behavior diagrams (activity, state, interactions).

• The primary mechanism for linking a text label outside of a symbol to the symbol is through proximity of the label to
its symbol. This applies to ports, item flows, pins, etc.

DiagramKind

«stereotype»
DiagramUsage

UseCaseDiagram

«stereotype»
Context Diagram
OMG SysMLTM , v1.2 159

• Page connectors (on-page connectors and off-page connectors) can be used to reduce the clutter on diagrams, but
should be used sparingly since they are equivalent to go-to’s in programming languages, and can lead to “spaghetti
diagrams.” Whenever practical, elaborate the model element designated by the frame instead of using a page
connector. A page connector is depicted as a circle with a label inside (often a letter). The circle is shown at both ends
of a line break and means that the two line end connect at the circle.

• When two lines cross, the crossing may optionally be shown with a small semicircular jog to indicate that the lines do
not intersect (as in electrical circuit diagrams), as shown in Figure A.4.

• Diagram overlays are diagram elements that may be used on any diagram kind. An example of an overlay may be a
geographic map to provide a spatial context for the symbols.

• SysML provides the capability to represent a document using the UML 2 standard stereotype «document» applied to
the artifact model element. Properties of the artifact can capture information about the document. Use a «trace»
abstraction to relate the document to model elements. The document can represent text that is contained in the related
model elements.

• SysML diagrams including the enhancements described in this section are intended to conform to diagram definition
and interchange standards to facilitate exchange of diagram and layout information.

• Tabular and matrix representation is an optional alternative notation that can be used in conjunction with the graphical
symbols as long as the information is consistent with the underlying metamodel. Tabular and matrix representations
are often used in systems engineering to represent detailed information and other views of the model such as interface
definitions, requirements traceability, and allocation relationships between various types of model elements. They also
can be convenient mechanisms to represent property values for selected properties, and basic relationships such as
function and inputs/outputs in N2 charts. The UML superstructure contains a tabular representation of a sequence
diagram in an interaction matrix (refer to Superstructure Annex with interaction matrix). The implementations of
tabular and matrix representations are defined by the tool implementations and are not standardized in SysML at this
time. However, tabular or matrix representations may be included in a frame with the heading designator «table» or
«matrix» in bold.

• Graph and tree representations are also optional, alternative notations that can be used in conjunction with graphical
symbols as long as the information is consistent with the underlying metamodel. These representations can be used for
describing complex series of relationships that represent other views of the model. One example is the browser
window in many tools that depicts a hierarchical view of the model. The implementations of graphs and trees are
defined by the tool implementations and are not standardized in SysML at this time. However, graph and tree
representations may be included in a frame with the heading designator «graph» or «tree» in bold.

Figure A.4 - Optional Form of Line Crossing
160 OMG SysMLTM , v1.2

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

Issue: 16212 – Missing cross references in Deprecated Elements Annex

Annex B: Deprecated Elements
(normative)

B.1 Overview

Flow Port and Flow Specification are deprecated in this version of SysML and are defined for backward compatibility.
This annex contains the definition of these concepts as they are defined by SysML 1.2. In addition it provides some
guidelines on how to convert FlowPort to ports in this version of SysML.

B.1.1 Flow Ports

A flow port specifies the input and output items that may flow between a block and its environment. Flow ports are
interaction points through which data, material, or energy can enter or leave the owning block. The specification of what
can flow is achieved by typing the flow port with a specification of things that flow. This can include typing an atomic
flow port with a single type representing the items that flow in or out, or typing a nonatomic flow port with a flow
specification which lists multiple items that flow. A block representing an automatic transmission in a car could have an
atomic flow port that specifies “Torque” as an input and another atomic flow port that specifies “Torque” as an output. A
more complex flow port could specify a set of signals and/or properties that flow in and out of the flow port. In general,
flow ports are intended to be used for asynchronous, broadcast, or send-and-forget interactions. Flow ports extend
UML 2 ports.
OMG SysMLTM , v1.2 155

B.2 Diagram Elements

B.2.1 Block Definition Diagram

Table B.1 - Graphical nodes defined in block definition diagrams

Node Name Concrete Syntax Abstract Syntax Reference

FlowPort

Flow Port

Transm ission
p: ITransmission

Atomic Flow Ports

Transform er
ac: ACVoltage dc: DCVoltage

netw orkType: ElectricNetw orkType

Conjugated Flow Port

Transmission
p: ~ITransmission

SysML::Ports&Flows::FlowPort

FlowPort
(Compartment Notation)

p: ITransmission

Transm ission

flow ports

Flow Port

in ac: ACVoltage
out dc: DCVoltage
inout netw orkType: ElectricNetw orkType

Transm ission

flow ports

Atomic Flow Ports

p: ~ITransmission

Transmission

flow ports

Conjugated Flow Port

SysML::Ports&Flows::FlowPort
156 OMG SysMLTM , v1.2

B.2.2 Internal Block Diagram

FlowSpecification

in gearSelect: Gear
in engineTorque: Torque
out w heelsTorque: Torque

«f low Specif ication»
Nam e

flowProperties

SysML::Ports&Flows::
FlowSpecification

Table B.2 - Graphical nodes defined in internal block diagrams

Node Name Concrete Syntax Abstract Syntax Reference

FlowPort

Flow Port

t: Transm ission
p: ITransmission

Atomic Flow Ports

tr: Transform er
ac: ACVoltage dc: DCVoltage

netw orkType: ElectricNetw orkType

Conjugated Flow Port

Transmission
p: ~ITransmission

SysML::Ports&Flows::FlowPort

Table B.1 - Graphical nodes defined in block definition diagrams

Node Name Concrete Syntax Abstract Syntax Reference
OMG SysMLTM , v1.2 157

ItemFlow

Item Flow with an Item Property

eng: Engine

trns: Transmission

p: Torque

p: Torque

Torque

eng: Engine

trns: Transmission

p: Torque

p: Torque

torque: Torque

Item Flow

SysML::Ports&Flows::ItemFlow

Table B.2 - Graphical nodes defined in internal block diagrams

Node Name Concrete Syntax Abstract Syntax Reference
158 OMG SysMLTM , v1.2

B.3 UML Extensions

B.3.1 Diagram Extensions

B.3.1.1 FlowPort

A FlowPorts is an interaction point through which input and/or output of items such as data, material, or energy may flow.
The notation of flow port is a square on the boundary of the owning block or its usage. The label of the flow port is in the
format portName: portType. Atomic flow ports have an arrow inside them indicating the direction of the port with respect
to the owning Block. A nonatomic flow port has two open arrow heads facing away from each other (i.e., < >). The fill
color of the square is white and the line and text colors are black.

In addition, flow ports can be listed in a special compartment labeled “flow ports.” The format of each line is:

in | out | inout portName:portType [{conjugated}]

B.3.1.2 FlowSpecification

A FlowSpecification specifies inputs and outputs as a set of flow properties. It has a “flowProperties” compartment that
lists the flow properties.

B.3.2 Stereotypes

Package Ports&Flows

Figure B.1 - Deprecated Stereotypes

B.3.2.1 FlowPort

Description

A FlowPort is an interaction point through which input and/or output of items such as data, material, or energy may flow.
This enables the owning block to declare which items it may exchange with its environment and the interaction points
through which the exchange is made.

We distinguish between atomic flow port and a nonatomic flow port. Atomic flow ports relay items that are classified by
a single Block, ValueType, or Signal classifier. A nonatomic flow port relays items of several types as specified by a
FlowSpecification.

«metaclass»
UML4SysML::Interface

«stereotype»
FlowSpecification

«metaclass»
UML4SysML::Port

/isAtomic: Boolean
direction: FlowDirection

«stereotype»
FlowPort
OMG SysMLTM , v1.2 159

The distinction between atomic and nonatomic flow ports is made according to the flow port’s type: If a flow port is typed
by a flow specification, then it is nonatomic; if a flow port is typed by a Block, ValueType, or Signal classifier, then it is
atomic.

Flow ports and associated flow specifications define “what can flow” between the block and its environment, whereas
item flows specify “what does flow” in a specific usage context.

Flow ports relay items to their owning block or to a connector that connects them with their owner’s internal parts
(internal connector).

The isBehavior attribute inherited from UML port is interpreted in the following way: if isBehavior is set to true, then the
items are relayed to/from the owning block. More specifically, every flow property within the flow port is bound to a
property owned by the port’s owning block or to a parameter of its behavior. If isBehavior is set to false, then the flow
port must be connected to an internal connector, which in turn related the items via the port. The need for isBehavior is
mainly to allow specification of internal parts relaying items to their containing part via flow ports.

The isConjugated attribute inherited from the UML Port metaclass is interpreted as follows: It indicates if the flows of
items of a nonatomic flow port maintain the directions specified in the flow specification or if the direction of every flow
property specified in the flow specification is reversed (IN becomes OUT and vice versa). If set to True, then all the
directions of the flow properties specified by the flow specification that types a nonatomic flow port are relayed in the
opposite direction (i.e., an “in” flow property is treated as an “out” flow property by the flow port and vice-versa). By
default, the value is False. This attribute applies only to nonatomic flow ports since atomic flow ports have a direction
attribute signifying the direction of the flow.

In case of flow properties or atomic flow ports of type Signal, inbound properties or atomic flow port are mapped to a
Reception of the signal type (or a subtype) of the flow property’s type. Outbound flow properties only declare the ability
of the flow port to relay the signal over external connectors attached to it and are not mapped to a property of the flow
port’s owning block.

The item flows specified as flowing on a connector between flow ports must match the flow properties of the ports at
each end of the connector: the source of the item flow should be the port that has an outbound/bidirectional flow property
that matches the item flow’s type and the target of the item flow should be the port that has an inbound/bidirectional flow
property that matches the type of the item flow.

If a flow port is connected to multiple external and/or internal connectors, then the items are propagated (broadcast) over
all connectors that have matching properties at the other end.

Semantic Variation Points

The binding of the flow properties on the ports to behavior parameters and/or block properties is a semantic variation
point. One approach is to perform name and type matching. Another approach is to explicitly use binding relationships
between the ports properties and behavior parameters or block properties.

Attributes

• /isAtomic : Boolean (derived)
This is a derived attribute (derived from the flow port’s type). For a flow port typed by a flow specification the
value of this attribute is False, otherwise the value is True.

• direction : FlowDirection
Indicates the direction in which an atomic flow port relays its items. If the direction is set to “in,” then the items
are relayed from an external connector via the flow port into the flow port’s owner (or one of its parts). If the
direction is set to “out,” then the items are relayed from the flow port’s owner, via the flow port, through an
160 OMG SysMLTM , v1.2

external connector attached to the flow port. If the direction is set to “inout,” then items can flow both ways. By
default, the value is inout.

Constraints

[1] A FlowPort must be typed by a FlowSpecification, Block, Signal, or ValueType.

[2] If the FlowPort is atomic (by its type), then isAtomic=True, the direction must be specified (has a value), and
isConjugated is not specified (has no value).

[3] If the FlowPort is nonatomic, and the FlowSpecification typing the port has flow properties with direction “in,” the
FlowPort direction is “in” (or “out” if isConjugated=true). If the flow properties are all out, the FlowPort direction is out
(or in if isConjugated=true). If flow properties are both in and out, the direction is inout.

[4] A FlowPort can be connected (via connectors) to one or more flow ports that have matching flow properties. The matching
of flow properties is done in the following steps:

1. Type Matching: The type being sent is the same type or a subtype of the type being received.

2. Direction Matching: If the connector connects two parts that are external to one another, then the direction of the
flow properties must be opposite, or at least one of the ends should be inout. If the connector is internal to the
owner of one of the flow ports, then the direction should be the same or at least one of the ends should be inout.

3. Name Matching: In case there is type and direction match to several flow properties at the other end, the property
that has the same name at the other end is selected. If there is no such property, then the connection is ambiguous
(ill-formed).

[5] If a flow port is not connected to an internal part, then isBehavior should be set to true.

B.3.2.2 FlowSpecification

Description

A FlowSpecification specifies inputs and outputs as a set of flow properties. A flow specification is used by flow ports to
specify what items can flow via the port.

Constraints

[1] Flow specifications cannot own operations or receptions (they can only own FlowProperties).

[2] Every “ownedAttribute” of a FlowSpecification must be a FlowProperty.

B.3.2.3 ItemFlow (deprecated compatibility rule)

ItemFlows are not deprecated, but when used with atomic flows ports, have a deprecated modification of item flow
compatibility rules that treats types of source and target atomic ports as if they were types of flow properties on types of those
ports.
OMG SysMLTM , v1.2 161

B.4 Transitioning SysML 1.2 Flow Ports to SysML 1.3 Ports
(informative)

To convert a SysML 1.2 flow port to ports in this version of SysML it is recommended to use the following guidelines:

1. Decide if the port should be converted to an proxy port,a full port, or an unstereotyped port.

2. Based on the decision in step 1, create a block (for proxy ports, it must be an interface block specifically).

3. If the original flow port is non-atomic:

Issue: 16212 – Missing cross references in Deprecated Elements Annex

a. Copy all the flow properties owned by the flow port's type, a flow specification, to the block created in step 2
(meaning the flow properties will be owned by the newly created block).

b. Replace the type of the port with the block created in step 2.

c. Remove the flow port stereotype from the port.

d. Based on the decision in step 1, apply the ProxyPort or FullPort stereotype, or do nothing if the decision is not to
use either one.

e. If the proxy stereotype is applied in step 3d, and there is a single connector from the port to a part, the
BindingConnector may be applied to the connector.

f. If the flow specification is not referenced by other model elements, delete it.

4. If the original flow port is atomic:

a. On the block created in step 2, specify a flow property typed by the same type as the flow port and with the same
direction as the original flow port.

b. Do steps b to d from step 3 about non-atomic flow ports.
162 OMG SysMLTM , v1.2

Issue: 13178 – Port Decomposition of a Flow Specification Discussion (renumbered old es B through E)

Annex C: Sample Problem
(informative)

C.1 Purpose

The purpose of this annex is to illustrate how SysML can support the specification, analysis, and design of a system using
some of the basic features of the language.

C.2 Scope

The scope of this example is to provide at least one diagram for each SysML diagram type. The intent is to select simplified
fragments of the problem to illustrate how the diagrams can be applied, and also demonstrate some of the possible inter-
relationships among the model elements in the different diagrams. The sample problem does not highlight all of the features
of the language. The reader should refer to the individual chapters for more detailed features of the language. The diagrams
selected for representing a particular aspect of the model, and the ordering of the diagrams are intended to be representative of
applying a typical systems engineering process, but this will vary depending on the specific process and methodology that is
used.

C.3 Problem Summary

The sample problem describes the use of SysML as it applies to the development of an automobile, in particular a Hybrid gas/
electric powered Sport Utility Vehicle (SUV). This problem is interesting in that it has inherently conflicting requirements, viz.
desire for fuel efficiency, but also desire for large cargo carrying capacity and off-road capability. Technical accuracy and the
feasibility of the actual solution proposed were not high priorities. This sample problem focuses on design decisions
surrounding the power subsystem of the hybrid SUV; the requirements, performance analyses, structure, and behavior.

This annex is structured to show each diagram in the context of how it might be used on such an example problem. The first
section shows SysML diagrams as they might be used to establish the system context; establishing system boundaries, and top
level use cases. The next section is provided to show how SysML diagrams can be used to analyze top level system behavior,
using sequence diagrams and state machine diagrams. The following section focuses on use of SysML diagrams for capturing
and deriving requirements, using diagrams and tables. A section is provided to illustrate how SysML is used to depict system
structure, including block hierarchy and part relationships. The relationship of various system parameters, performance
constraints, analyses, and timing diagrams are illustrated in the next section. A section is then dedicated to illustrating
definition and depiction of interfaces and flows in a structural context. The final section focuses on detailed behavior
modeling, functional and flow allocation.
OMG SysMLTM, v1.2 161

C.4 Diagrams

C.4.1 Package Overview (Structure of the Sample Model)

C.4.1.1 Package Diagram - Applying the SysML Profile

As shown in Figure C.1, the HSUVModel is a package that represents the user model. The SysML Profile must be applied to
this package in order to include stereotypes from the profile. The HSUVModel may also require model libraries, such as the SI
Units Types model library. The model libraries must be imported into the user model as indicated.

Figure C.1 - Establishing the User Model by Importing and Applying SysML Profile & Model Library (Package Diagram)

Figure C.2 details the specification of units and valueTypes employed in this sample problem.

pkg ModelingDomain [Establishing HSUV Model]

«modelLibrary»
SI Definitions

«import»

«profile»
SysML

HSUVModel

«apply»
{strict}

«apply» {strict}
162 OMG SysMLTM, v1.2

.

Figure C.2 - Defining valueTypes and units to be Used in the Sample Problem

C.4.1.2 Package Diagram - Showing Package Structure of the Model

The package diagram (Figure C.3) shows the structure of the model used to evaluate the sample problem. Model elements are
contained in packages, and relationships between packages (or specific model elements) are shown on this diagram. The
relationship between the views (OperationalView and PerformanceView) and the rest of the user model are explicitly
expressed using the «import» relationship. Note that the «view» models contain no model elements of their own, and that
changes to the model in other packages are automatically updated in the Operational and Performance Views.

pkg ModelingDomain [Values and Units]

«modelLibrary»
Automotive Value Types

Automotive Units

«modelLibrary»
SI Definitions

«import»

«unit»
{quantityKind=Power}

hp

«unit»
{quantityKind=Temperature}

°F

«unit»
{quantityKind=Acceleration}

g

«unit»
{quantityKind=Mass}

lb

«unit»
{quantityKind=Pressure}

psi

«unit»
{quantityKind=Time}

sec

«unit»
{quantityKind=Velocity}

mph

«unit»
{quantityKind=Distance}

ft

«unit»
{quantityKind=Volume}

ft^3

«valueType»
unit = g

Accel

«valueType»
unit = hp

Horsepwr

«valueType»
Real

«valueType»
unit = lb

Weight

«valueType»
unit = mph

Vel

«valueType»
unit = sec

Time

«valueType»
unit = ft

Dist

«valueType»
unit = psi

Press

«valueType»
unit = °F

Temp

«valueType»
unit = ft^3

Vol
OMG SysMLTM, v1.2 163

Figure C.3 - Establishing Structure of the User Model using Packages and Views (Package Diagram)

C.4.2 Setting the Context (Boundaries and Use Cases)

C.4.2.1 Internal Block Diagram - Setting Context

The term “context diagram,” in Figure C.4, refers to a user-defined usage of an internal block diagram, which depicts some of
the top-level entities in the overall enterprise and their relationships. The diagram usage enables the modeler or methodologist
to specify a unique usage of a SysML diagram type using the extension mechanism described in Annex A, “Diagrams.” The
entities are conceptual in nature during the initial phase of development, but will be refined as part of the development process.
The «system» and «external» stereotypes are user defined, not specified in SysML, but help the modeler to identify the system
of interest relative to its environment. Each model element depicted may include a graphical icon to help convey its intended
meaning. The spatial relationship of the entities on the diagram sometimes conveys understanding as well, although this is not
specifically captured in the semantics. Also, a background such as a map can be included to provide additional context. The
associations among the classes may represent abstract conceptual relationships among the entities, which would be refined in
subsequent diagrams. Note how the relationships in this diagram are also reflected in the Automotive Domain Model Block
Definition Diagram, Figure C.15.

pkg HSUVModel

HSUVViews

HSUV
RequirementsHSUVStructureHSUVBehavior

DeliverPower
Behavior

HSUVAnalysis

«view»
Performance

View

«viewpoint»
Performance

Viewpoint

«import»

«conform»

«block»
Automotive

Domain

«view»
OperationalView

«viewpoint»
Operational
Viewpoint

«conform»

«import»

«import»

HSUVUseCases

HSUVInterfaces

«requirement»
Performance

«import» Automotive
ValueTypes
164 OMG SysMLTM, v1.2

Figure C.4 - Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram. (Internal Block
Diagram) Completeness of Diagram Noted in Diagram Description

C.4.2.2 Use Case Diagram - Top Level Use Cases

The use case diagram for “Drive Vehicle” in Figure C.5 depicts the drive vehicle usage of the vehicle system. The subject
(HybridSUV) and the actors (Driver, Registered Owner, Maintainer, Insurance Company, DMV) interact to realize the use
case.

«ContextDiagram»
ibd [block] AutomotiveDomain

«external»
drivingConditions:Environment

x1:

x4:

Maintainer:

x5:

«external»
road:Road

«diagramDescription»
version=”0.1"
description=”Initial concept to identify top level domain entities"
reference=”Ops Concept Description”
completeness=”partial. Does not include gas pump and other
external interfaces.”

«external»
object:ExternalObject

«system»
HSUV:

HybridSUV

«external»
weather:Weatherx2:

Driver:

Passenger:

1..*

1..*

«external»
vehicleCargo:

Baggage

x3:
OMG SysMLTM, v1.2 165

Figure C.5 - Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram)

C.4.2.3 Use Case Diagram - Operational Use Cases

Goal-level Use Cases associated with “Operate the Vehicle” are depicted in the following diagram. These use cases help flesh
out the specific kind of goals associated with driving and parking the vehicle. Maintenance, registration, and insurance of the
vehicle would be covered under a separate set of goal-oriented use cases.

uc HSUVUseCases [TopLevelUseCases]

HybridSUV

Driver

Operate the
vehicle

Maintain the
vehicle

Maintainer

Insure the
vehicle

Register the
vehicle

InsuranceCompany

Department
Of Motor
Vehicles

Registered
Owner
166 OMG SysMLTM, v1.2

Figure C.6 - Establishing Operational Use Cases for “Drive the Vehicle” (Use Case Diagram)

C.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)

C.4.3.1 Sequence Diagram - Drive Black Box

Figure C.7 shows the interactions between driver and vehicle that are necessary for the “Drive the Vehicle” Use Case. This
diagram represents the “DriveBlackBox” interaction, with is owned by the AutomotiveDomain block. “BlackBox” for the
purpose of this example, refers to how the subject system (HybridSUV block) interacts only with outside elements, without
revealing any interior detail.

The conditions for each alternative in the alt controlSpeed section are expressed in OCL, and relate to the states of the
HybridSUV block, as shown in Figure C.8.

uc HSUVUseCases [Operational Use Cases]

HybridSUV

Driver

Accelerate
Drive the vehicle

Steer

Brake

«include»

«include»

«include»

Park «include»

«extend»

Start the vehicle
OMG SysMLTM, v1.2 167

Figure C.7 - Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram)

C.4.3.2 State Machine Diagram - HSUV Operational States

Figure C.8 depicts the operational states of the HSUV block, via a State Machine named “HSUVOperationalStates.” Note that
this state machine was developed in conjunction with the DriveBlackBox interaction in Figure C.7. Also note that this state
machine refines the requirement “PowerSourceManagment,” which will be elaborated in the requirements section of this
sample problem. This diagram expresses only the nominal states. Exception states, like “acceleratorFailure,” are not expressed
on this diagram.
168 OMG SysMLTM, v1.2

Figure C.8 - Finite State Machine Associated with “Drive the Vehicle” (State Machine Diagram)

C.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

Figure C.9 shows a “black box” interaction, but references “StartVehicleWhiteBox” (Figure C.10), which will decompose the
lifelines within the context of the HybridSUV block.

stm HSUVOperationalStates

Operate

Idle

Accellerating/
Cruising

Braking

engageBrake

accelerate stopped

releaseBrake

shutOff

Off

start

keyOff

Refines
«requirement»
PowerSource
Management

Nominal
states only
OMG SysMLTM, v1.2 169

Figure C.9 - Black Box Interaction for “StartVehicle,” referencing White Box Interaction (Sequence Diagram)

The lifelines on Figure C.10 (“whitebox” sequence diagram) need to come from the Power System decomposition. This now
begins to consider parts contained in the HybridSUV block.

Figure C.10 - White Box Interaction for “StartVehicle” (Sequence Diagram)
170 OMG SysMLTM, v1.2

C.4.4 Establishing Requirements (Requirements Diagrams and Tables)

C.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy

The vehicle system specification contains many text based requirements. A few requirements are highlighted in Figure C.11,
including the requirement for the vehicle to pass emissions standards, which is expanded for illustration purposes. The
containment (cross hair) relationship, for purposes of this example, refers to the practice of decomposing a complex
requirement into simpler, single requirements.

Figure C.11 - Establishing HSUV Requirements Hierarchy (containment) - (Requirements Diagram)

C.4.4.2 Requirement Diagram - Derived Requirements

Figure C.12 shows a set of requirements derived from the lowest tier requirements in the HSUV specification. Derived
requirements, for the purpose of this example, express the concepts of requirements in the HSUVSpecification in a manner
that specifically relates them to the HSUV system. Various other model elements may be necessary to help develop a derived
requirement, and these model element may be related by a «refinedBy» relationship. Note how PowerSourceManagement is
“RefinedBy” the HSUVOperationalStates model (Figure C.8). Note also that rationale can be attached to the «deriveReqt»
relationship. In this case, rationale is provided by a referenced document “Hybrid Design Guidance.”

«requirement»
Eco-Friendliness

«requirement»
Performance

«requirement»
Capacity«requirement»

Ergonomics

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
OffRoadCapability

«requirement»
Acceleration

id = “R1.2.1”
text = “The vehicle shall meet Ultra-Low
Emissions Vehicle standards.”

«requirement»
Emissions

«requirement»
PassengerCapacity

«requirement»
FuelCapacity

«requirement»
CargoCapacity

HSUVSpecification

«requirement»
Qualification

«requirement»
SafetyTest

req [package] HSUVRequirements [HSUV Specification]
OMG SysMLTM, v1.2 171

Figure C.12 - Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchy (Require-
ments Diagram)

C.4.4.3 Requirement Diagram - Acceleration Requirement Relationships

Figure C.13 focuses on the Acceleration requirement, and relates it to other requirements and model elements. The “refine”
relation, introduced in Figure C.12, shows how the Acceleration requirement is refined by a similarly named use case. The
Power requirement is satisfied by the PowerSubsystem, and a Max Acceleration test case verifies the Acceleration
requirement.

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
RegenerativeBraking

«requirement»
PowerSourceManagement

«requirement»
Power

«deriveReqt»«deriveReqt»

«deriveReqt»

«deriveReqt»

«requirement»
Acceleration

«requirement»
CargoCapacity

«requirement»
FuelCapacity

«requirement»
OffRoadCapability

«requirement»
Range

«deriveReqt» «deriveReqt»

«deriveReqt» «deriveReqt» «deriveReqt»

RefinedBy
HSUVStructure::HSUV.
HSUVOperationalStates

«rationale»
Power delivery must happen by coordinated
control of gas and electric motors. See
“Hybrid Design Guidance”

«problem»
Power needed for acceleration, off-road
performance & cargo capacity conflicts
with fuel economy

req [package] HSUVRequirements [Requirement Derivation]
172 OMG SysMLTM, v1.2

Figure C.13 - Acceleration Requirement Relationships (Requirements Diagram)

C.4.4.4 Table - Requirements Table

Figure C.14 contains two diagrams that show requirement containment (decomposition), and requirements derivation in
tabular form. This is a more compact representation than the requirements diagrams shown previously.

req [package] HSUVRequirements [Acceleration Requirement Refinement and Verification]

«requirement»
Acceleration

HSUVUseCases:
:Accelerate

«block»
PowerSubsystem

«refine»

«satisfy»

«requirement»
Power

«deriveReqt»

«testCase»
Max Acceleration

«verify»
OMG SysMLTM, v1.2 173

Figure C.14 - Requirements Relationships Expressed in Tabular Format (Table)

C.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block
Diagrams)

C.4.5.1 Block Definition Diagram - Automotive Domain

Figure C.15 provides definition for the concepts previously shown in the context diagram. Note that the interactions
DriveBlackBox and StartVehicleBlackBox (described in Section C.4.3, “Elaborating Behavior (Sequence and State Machine
Diagrams),” on page 167) are depicted as owned by the AutomotiveDomain block.

table [requirement] Performance [Decomposition of Performance Requirement]

id name text

2 Performance

The Hybrid SUV shall have the braking, acceleration, and off-
road capability of a typical SUV, but have dramatically better
fuel economy.

2.1 Braking
The Hybrid SUV shall have the braking capability of a typical
SUV.

2.2 FuelEconomy
The Hybrid SUV shall have dramatically better fuel economy
than a typical SUV.

2.3 OffRoadCapability
The Hybrid SUV shall have the off-road capability of a
typical SUV.

2.4 Acceleration
The Hybrid SUV shall have the acceleration of a typical
SUV.

table [requirement] Performance [Tree of Performance Requirements]

id name relation id name relation id name
2.1 Braking deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.2 Range
4.2 FuelCapacity deriveReqt d.2 Range
2.3 OffRoadCapability deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
2.4 Acceleration deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
4.1 CargoCapacity deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
174 OMG SysMLTM, v1.2

Figure C.15 - Defining the Automotive Domain (compare with Figure C.4) - (Block Definition Diagram)

C.4.5.2 Block Definition Diagram - Hybrid SUV

Figure C.16 defines components of the HybridSUV block Note that the BrakePedal and WheelHubAssembly are used by, but
not contained in, the PowerSubsystem block.

Figure C.16 - Defining Structure of the Hybrid SUV System (Block Definition Diagram)

bdd [package] HSUVStructure [Automotive Domain Breakdown]

interactions
DriveBlackBox
StartVehicleBlackBox

«domain»
AutomotiveDomain

«system»
HybridSUV

«external»
Baggage

Driver Maintainer Passenger

«external»
Environment

«external»
Road

1..* road

drivingConditionsvehicleCargoHSUV

«external»
Weather

«external»
ExternalObject

1..* objectweather

bdd [block] AutomotiveDomain [HybridSUV Breakdown]

«system»
HybridSUV

PowerSubsystem

p clibbk

BrakePedal

bkp

ChassisSubsytemBrakeSubsystem InteriorSubsystem LightingSubsystemBodySubsystem

WheelHubAssembly

42

«rationale»
2 wheel drive is the only way to get
acceptable fuel economy, even though it
limits off-road capability
OMG SysMLTM, v1.2 175

C.4.5.3 Internal Block Diagram - Hybrid SUV

Figure C.17 shows how the top level model elements in the above diagram are connected together in the HybridSUV block.

Figure C.17 - Internal Structure of Hybrid SUV (Internal Block Diagram)

ibd [block] HybridSUV

p:PowerSubsystem

c:chassisSubsytem br:BrakeSubsystem

i: InteriorSubsystem

l:LightingSubsystem

b:BodySubsystem

c-bk:

b-c:

b-i:

i-l:
b-l:

bk-l:

p-c:

p-bk:
176 OMG SysMLTM, v1.2

C.4.5.4 Block Definition Diagram - Power Subsystem

Figure C.18 defines the next level of decomposition, namely the components of the PowerSubsystem block. Note how the use
of white diamond (shared aggregation) on FrontWheel, BrakePedal, and others denotes the same “use-not-composition” kind
of relationship previously shown in Figure C.16.

Figure C.18 - Defining Structure of Power Subsystem (Block Definition Diagram)

C.4.5.5 Internal Block Diagram for the “Power Subsystem”

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

Issue: 16221 – Provided / required operations & receptions

Figure C.19 shows how the parts of the PowerSubsystem block, as defined in the diagram above, are used. It shows connectors
between parts, ports, andconnectors with item flows. The dashed borders on FrontWheel and BrakePedal denote the “use-not-
composition” relationship depicted elsewhere in Figure C.16 and Figure C.18. The dashed borders on Fuel denote a store,
which keeps track of the amount and mass of fuel in the FuelTankAssy. This is also depicted in Figure C.18.

 bdd [block] HSUV [PowerSubsystem Breakdown]

PowerSubsystem

ElectricMotor
Generator

FrontWheel

accelerator FuelTankAssembly Differential

Transmission

InternalCombustionEngine

FuelInjector

lfw
1

0..1

dif

trsm

emiceftacl

fi4

BatteryPack ElectricalPowerController

bp

PowerControlUnit

FuelPump

epcpcu

BrakePedal

0..1

bkp
1

fp

WheelHubAssembly

rfw
1

0..1

0..1

Fuel
OMG SysMLTM, v1.2 177

Figure C.19 - Internal Structure of the Power Subsystem (Internal Block Diagram)

Figure C.20 - Blocks Typing Ports in the Power Subsystem (Block Definition Diagram)

Figure C.20 provides definition of the blocks that type ports linked by connector c1 in Figure C.19.

bdd [block] PowerSubsystem [ICE Port Type Definitions]

rpm : Integer
Temperature : Real
isKnocking : Boolean
reqd isControlOn : Boolean

setThrottle(throttlePosition:Real):void
setMixture(mixture:Real):void

operations

value properties
178 OMG SysMLTM, v1.2

C.4.6 Defining Ports and Flows

Issue: 16221 – Provided / required operations & receptions

C.4.6.1 Block Definition Diagra - ICE Flow Properties

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

For purposes of example, the ports,flows, and related point-to-point connectors in Figure C.19 are being refined into a
common bus architecture. For this example, ports with flow properties have been used to model the bus architecture. Figure
C.21 is an incomplete first step in the refinement of this bus architecture, as it begins to specify the flow properties for
InternalCombustionEngine, the Transmission, and the ElectricalPowerController.

.

Figure C.21 - Initially Defining Port Types with Flow Properties for the CAN Bus (Block Definition Diagram)

C.4.6.2 Internal Block Diagram - CANbus

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

Issue: 16221 – Provided / required operations & receptions

Figure C.22 continues the refinement of this Controller Area Network (CAN) bus architecture using ports. The explicit
structural allocation between the original connectors of Figure C.19 and this new bus architecture is shown in Figure C.36.

bdd CAN Bus Flow Properties

out engineData: ICEData
in mixture: Real
in throttlePosition: Real

FS_ICE

flow properties

rpm: Integer
temperature: Real
isKnocking: Boolean

«signal»
ICEData

FS_TRSM

flow properties

FS_EPC

flow properties

To be specified – What is
being exchanged over the
bus to/from the
transmission.

To be specified – What is
being exchanged over the
bus to/from the electronic
power controller.
OMG SysMLTM, v1.2 179

Figure C.22 - Consolidating Connectors into the CAN Bus. (Internal Block Diagram)

C.4.6.3 Block Definition Diagram - Fuel Flow Properties

The ports on the FuelTankAssembly and InternalCombustionEngine (as shown in Figure C.19) are defined in Figure C.23.

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

Issue: 16217 – Connectors should not link ports in block definition diagram elements

ibd [block] PowerSubsystem [CAN Bus description]

trsm:Transmission ice:InternalCombustionEngine

ecu:PowerControlUnit

epc:ElectricalPower
Controller

:CAN_Bus

fp:FS_EPC fp:FS_TRSM fp:FS_ICE

epc:~IFS_EPC etrsm:~IFS_TRSM ice:~IFS_ICE

<> <> <>

bdd [block] HSUV [PowerSubsystem Fuel Flow Definition]

temperature:Temp
pressure:Press

Fuel

«flowProperties»
 out fuelSupply:Fuel
 in fuelReturn:Fuel

«flowSpecification»
FuelFlow

PowerSubsystem

«flowProperties»
 in fuelSupply:Fuel
 out fuelReturn:Fuel

FuelTankAssembly

«flowProperties»
 out fuelSupply:Fuel
 in fuelReturn:Fuel

InternalCombustionEngine

iceft

FuelTankFitting:~FuelFlow

ICEFuelFitting:FuelFlow

<>
180 OMG SysMLTM, v1.2

Figure C.23 - Elaborating Definition of Fuel Flow. (Block Definition Diagram)

C.4.6.4 Parametric Diagram - Fuel Flow

Figure C.24 is a parametric diagram showing how fuel flowrate is related to FuelDemand and FuelPressure value properties.

Figure C.24 - Defining Fuel Flow Constraints (Parametric Diagram)

C.4.6.5 Internal Block Diagram - Fuel Distribution

Figure C.25 shows how the connectors fuelDelivery and fdist on Figure C.19 have been expanded to include design detail. The
fuelDelivery connector is actually two connectors, one carrying fuelSupply and the other carrying fuelReturn. The fdist
connector inside the InternalCombustionEngine block has been expanded into the fuel regulator and fuel rail parts. These more
detailed design elements are related to the original connectors using the allocation relationship. The Fuel store represents a
quantity of fuel in the FuelTankAssy, which is drawn by the FuelPump for use in the engine, and is refreshed, to some degree,
by fuel returning to the FuelTankAssy via the FuelReturnLine.

Issue: 13178 – Port Decomposition of a Flow Specification Discussion

par [Block]PowerSubsystem

constraints

{flowrate=press/(4*injectorDemand)}

fuelflow:FuelFlow

press:Real

injectorDemand:Real

ice.fr.fuel.FuelPressure::Real

ice.fi.FuelDemand:Real

flowrate:Real

ice.ft.FuelFlowRate:Real
OMG SysMLTM, v1.2 181

Figure C.25 - Detailed Internal Structure of Fuel Delivery Subsystem (Internal Block Diagram)

C.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)

C.4.7.1 Block Definition Diagram - Analysis Context

Figure C.26 defines the various model elements that will be used to conduct analysis in this example. It depicts each of the
constraint blocks/equations that will be used for the analysis, and key relationships between them.

ice:InternalCombustionEngine

ft:FuelTankAssy

fuelSupply:Fuel

fp:FuelPump

fi1:FuelInjector

4

fuelReturn:Fuel

fre:FuelRegulatorfra:FuelRail

p1:Fuel

p2:Fuel

fi2:FuelInjector

fi3:FuelInjector

fi4:FuelInjector

allocatedFrom
«connector»fdist:

allocatedFrom
«connector»fuelDelivery:

Fuel

fuelFitting:Fuel

fuelSupplyLine:

fuelReturnLine:

ibd [block] PowerSubsystem [Fuel Distribution Detail]
182 OMG SysMLTM, v1.2

Figure C.26 - Defining Analyses for Hybrid SUV Engineering Development (Block Definition Diagram)

C.4.7.2 Package Diagram - Performance View Definition

Figure C.27 shows the user-defined Performance Viewpoint, and the elements that populate the HSUV specific
PerformanceView. The PerformanceView itself may contain of a number of diagrams depicting the elements it contains.

bdd [package] HSUVAnalysis [Analysis Context]

«constraint»
RollingFriction

Equation

«constraint»
AeroDragEquation

adrag

rdrag dyn

«constraint»
StraightLine

VehicleDynamics

«testCase,Interaction»
MaxAcceleration

1

0..1

ex

«requirement»
Acceleration

«verify»

GlobalTime
delta-t0..1

1

t

0..1

1

UnitCostContext

«domain»
HSUVStructure::

AutomotiveDomain

ad

0..1

1ad

0..1

1ad

0..1

1

parameters

V1:Vol
V2:Vol
V3:Vol

constraints

{pcap = Sum(Vi)}

«constraint»
CapacityEquation

EconomyContextCapacityContext

cap

«constraint»
PayloadEquation

«constraint»
TotalWeight

«constraint»
FuelEfficency

Equation

pl

fe

w

«constraint»
RegenBrake

EfficiencyEquation

rb
OMG SysMLTM, v1.2 183

Figure C.27 - Establishing a Performance View of the User Model (Package Diagram)

C.4.7.3 Parametric Diagram - Measures of Effectiveness

Measure of Effectiveness is a user defined stereotype. Figure C.28 shows how the overall cost effectiveness of the HSUV will
be evaluated. It shows the particular measures of effectiveness for one particular alternative for the HSUV design, and can be
reused to evaluate other alternatives.

«view»
{viewpoint=Performance Viewpoint}

PerformanceView

Driver

Drive Car

id = “2"
text = "The Hybrid SUV
shall have the braking,
acceleration, and off-road
capability of a typical SUV,
but have dramatically better
fuel economy."

«requirement»
Performance

«moe»
HSUValt1.

CostEffectiveness

«moe»
HSUValt1.

FuelEconomy

«moe»
HSUValt1.

Zero60Time

«moe»
HSUValt1.

CargoCapacity

«moe»
HSUValt1.

QuarterMileTime

«constraint»
EconomyEquation

«constraint»
UnitCostEquation

«constraint»
CapacityEquation

«testCase»
EPAFuel

EconomyTest

«viewpoint»
stakeholders="customer"
concerns="Will the system perform
adequately?"
purpose="Highlight the performance of the
system."
methods="show performance requirements,
test cases, MOE, constraint models, etc.;
includes functional viewpoint"
languages="SysML"

Performance Viewpoint

«viewpoint»
Functional Viewpoint

«conform»

pkg [package] HSUVViews [Performance View]
184 OMG SysMLTM, v1.2

Figure C.28 - Defining Measures of Effectiveness and Key Relationships (Parametric Diagram)

C.4.7.4 Parametric Diagram - Economy

Since overall fuel economy is a key requirement on the HSUV design, this example applies significant detail in assessing it.
Figure C.29 shows the constraint blocks and properties necessary to evaluate fuel economy.

par [block] MeasuresOfEffectiveness [HSUV MOEs]

«objectiveFunction»

:MyObjectiveFunction
{CE = Sum(Wi*Pi)}

«moe»
HSUValt1.CostEffectiveness

«moe»
HSUValt1.FuelEconomy

«moe»
HSUValt1.Zero60Time

«moe»
HSUValt1.CargoCapacity

«moe»
HSUValt1.QuarterMileTime

«moe»
HSUValt1.UnitCost

:EconomyEquation
f:

:MaxAcceleration
Analysis

q:

z:

:CapacityEquation
vc:

:UnitCostEquation
uc:

p4:

p1:

p2:

p3:

p5:

CE:
OMG SysMLTM, v1.2 185

Figure C.29 - Establishing Mathematical Relationships for Fuel Economy Calculations (Parametric Diagram)

C.4.7.5 Parametric Diagram - Dynamics

The StraightLineVehicleDynamics constraint block from Figure C.29 has been expanded in Figure C.30. ConstraintNotes are
used, which identify each constraint using curly brackets {}. In addition, Rationale has been used to explain the meaning of
each constraint maintained.

par [block] EconomyContext

dyn:StraightLine
VehicleDynamics

rdrag:Rolling
FrictionEquation

adrag:Aero
DragEquation

w:TotalWeight

pl:PayloadEquation

cgoWt:psgrWt:

psgrWt:

volume:

volume:

vdw: fw:

ad.HSUV.PowerSubsystem.
FuelTank.FuelWeight

Cd:

Cd:

tw:

tw:

tw:

Cf:

Cf:

fe:FuelEfficiency
Equationwhlpwr:

acc:acc:
vel: mpg:

incline:

rb:RegenBrake
EfficiencyEquation

vel:

incline:

ebpwr:

ebpwr:

n_em:

acc:

n_ice:

n_eg:

ad.HSUV.PayloadCapacity

pcap:

cgoWt:

whlpwr:

ad.HSUV.VehicleDryWeight

ad.HSUV.PowerSybsystem.
ElectricMotorGenerator.

GeneratorEfficiency

ad.HSUV.PowerSybsystem.
ElectricMotorGenerator.

MotorEfficiency

ad.HSUV.PowerSybsystem.
InternalCombustionEngine.

ICEEfficiency

ad.drivingConditions.
road.incline

ad.HSUV.position

x:

ad.HSUV.mpg

dt:

delta-t
186 OMG SysMLTM, v1.2

Figure C.30 - Straight Line Vehicle Dynamics Mathematical Model (Parametric Diagram)

The constraints and parameters in Figure C.30 are detailed in Figure C.31 in Block Definition Diagram format.

par [constraintBlock] StraightLineVehicleDynamics

acc:Accelleration
Equation

vel:VelocityEquation

pos:PostionEquation

pwr:PowerEquation

whlpwr: tw:Cd: Cf:

tp:

tp:

delta-t:

delta-t:

delta-t:

tw:

tw:

a:

a:

v:

v:

acc:

vel:

Cf:

Cd:

whlpwr:

v:

x:

incline:

i:

{v(n+1) = v(n) + a(g)*32*3600/5280*delta-t}

{x(n+1) = x(n) + v(mph)*5280/3600*delta-t}

{tp = whlpwr - (Cd*v) - (Cf*tw*v)}

«rationale»
tp (hp) = wheel power - drag - friction

«rationale»
v(n+1) (mph) = v(n) + delta-v = v(n) + a*delta-t

«rationale»
x(n+1) (ft) = x(n) + delta-x = x(n) + v*delta-t

«rationale»
a(g) = F/m = P*t/m

{a = (550/32)*tp(hp)*delta-t*tw}

x:

dt
OMG SysMLTM, v1.2 187

Figure C.31 - Defining Straight-Line Vehicle Dynamics Mathematical Constraints (Block Definition Diagram)

Note the use of valueTypes originally defined in Figure C.2.

C.4.7.6 (Non-Normative) Timing Diagram - 100hp Acceleration

Timing diagrams, while included in UML 2, are not directly supported by SysML. For illustration purposes, however, the
interaction shown in Figure C.32 was generated based on the constraints and parameters of the StraightLineVehicleDynamics
constraintBlock, as described in the Figure C.30. It assumes a constant 100hp at the drive wheels, 4000lb gross vehicle weight,
and constant values for Cd and Cf.

bdd [package] HSUVAnalysis [Definition of Dynamics]

parameters
whlpowr:Horsepwr
Cd:Real
Cf:Real
tw:Weight
tp:Horsepwr
v:Vel
i:Real

constraints
{tp = whlpowr - (Cd*v) -
(Cf*tw*v)}

«constraint»
PowerEquation

parameters
tw:Weight
delta-t:Time
tp:Horsepwr
a:Accel

constraints
{a = (550/32)*tp(hp)*dt*tw}

«constraint»
AccelerationEquation

parameters
delta-t:Time
v:Vel
a:Accel

constraints
{v(n+1 = v(n)+a*32*3600/5280*dt}

«constraint»
VelocityEquation

parameters
delta-t:Time
v:Vel
x:Dist

constraints
{x(n+1) = x(n)+v*5280/3600*dt}

«constraint»
PositionEquation

parameters
whlpowr:Horsepwr
Cd:Real
Cf:Real
tw:Weight
acc:Accel
vel:Vel
incline:Real

«constraint»
StraightLine

VehicleDynamics

accvel
pwr

pos
188 OMG SysMLTM, v1.2

Figure C.32 - Results of Maximum Acceleration Analysis (Timing Diagram)

tim MaxAcceleration [100 Wheel Horsepower]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20

Time (sec)

A
cc

el
le

ra
ti

o
n

 (
g

)

0

20

40

60

80

100

120

140

0 5 10 15 20

Time (sec)

V
el

o
ci

ty
 (

m
p

h
)

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20

Time (sec)

D
is

ta
n

ce
 (

ft
)

Satisfies
«requirement»Acceleration

«diagramDescription»
version=”0.1"
description=”Constant
100 wheel horsepower,
4000 lb vehicle weight,
simple drag"
reference=”Equations of
Motion”
completeness=”assumes
perfect tire traction”
OMG SysMLTM, v1.2 189

C.4.8 Defining, Decomposing, and Allocating Activities

C.4.8.1 Activity Diagram - Acceleration (top level)

Figure C.33 shows the top level behavior of an activity representing acceleration of the HSUV. It is the intent of the systems
engineer in this example to allocate this behavior to parts of the PowerSubsystem. It is quickly found, however, that the
behavior as depicted cannot be allocated, and must be further decomposed.

.

Figure C.33 - Behavior Model for “Accelerate” Function (Activity Diagram)

act Accelerate

PushAccelerator

MeasureVehicle
Conditions

ProvidePower

«continuous»
accelPosition

«continuous»
vehCond

Comment:
Can't allocate
these activities to
PwrSubSystem

«continuous»
drivePower

transModeCmd
190 OMG SysMLTM, v1.2

C.4.8.2 Block Definition Diagram - Acceleration

Figure C.34 defines a decomposition of the activities and objectFlows from the activity diagram in Figure C.33.

Figure C.34 - Decomposition of “Accelerate” Function (Block Definition diagram)

C.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)

Figure C.35 shows the ProvidePower activity, which includes Actions invoking the decomposed Activities and ObjectNodes
from Figure C.34. It also uses AllocateActivityPartitions and an allocation callout to explicitly allocate activities and an object
flow to parts in the PowerSubsystem block.

Note that the incoming and outgoing object flows for the ProvidePower activity have been decomposed. This was done to
distinguish the flow of electrically generated mechanical power and gas generated mechanical power, and to provide further
insight into the specific vehicle conditions being monitored.

bdd [activity] Accelerate [Activity and Object Flow Breakdown]

«activity»
MeasureVehicle

Conditions

«activity»
ProvidePower

«activity»
MeasureVehicle

Velocity

«activity»
MeasureBattery

Condition
«activity»

ProvideGasPower
«activity»

ControlElectricPower

«activity»
ProportionPower

«activity»
ProvideElectric

Power

mbatmvel

a4

a3a2

a1

drivePower

«block»
Power

«block»
GasPower

«block»
ElecPower

gasDrivePower
elecDrivePower
OMG SysMLTM, v1.2 191

.

Figure C.35 - Detailed Behavior Model for “Provide Power” (Activity Diagram)
Note hierarchical consistency with Figure C.33.

«SwimLaneDiagram»
[Figure B.35 Detailed Behavior Model for "Provide Power"]ProvidePower[activity] act

transModeCmd

«continuous»
drivePower«continuous»

vehCond

«continuous»
accelPosition

keyOff
allocatedTo
«itemFlow» i1:ElectricCurrentr

a2 :
ProvideGasPower

a1 :
ProportionPower

a3 : ControlElectricPower a4 : ProvideElectricPower

«allocate»
emg : ElectricMotorGenerator

«allocate»
epc : ElectricalPowerControllerr

«allocate»
ice : InternalCombustionEngine

«allocate»
pcu : PowerControlUnit

«continuous»
eThrottle

«continuous»
driveCurrent

«continuous»
gThrottle

«continuous»
battCond

«continuous»
elecDrivePower

«continuous»
speed

«continuous»
gas

DrivePower
192 OMG SysMLTM, v1.2

C.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation

Figure C.36 depicts a subset of the PowerSubsystem, specifically showing the allocation relationships generated in Figure
C.35.

Issue: 16220 – Sample problem using deprecated conjugated port notation

Issue: Editorial Comment - the following diagram still needs cleanup in final publication

.

Figure C.36 - Flow Allocation to Power Subsystem (Internal Block Diagram)

C.4.8.5 Table - Acceleration Allocation

Figure C.37 shows the same allocation relationships shown in Figure C.36, but in a more compact tabular representation.
OMG SysMLTM, v1.2 193

.

Figure C.37 - Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Subsystem (Table)

C.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test

Figure C.38 shows a particular Hybrid SUV (VIN number) satisfying the EPA fuel economy test. Serial numbers of specific
relevant parts are indicated.

[Figure B.37 Tabular Representation of Allocation from"Accelerate" Behavior Model to Power Subsystem]HSUV Behavior[package] bdd

Type Name End Relation End Type Name
action a1 : ProportionPower from allocate to part ecu : PowerControlUnit
action a2 : ProvideGasPower from allocate to part ice : InternalCombustionEngine
action a3 : ControlElectricPower from allocate to part epc : ElectricPowerController
action a4 : ProvideElectricPower from allocate to part emg : ElectricMotorGenerator
objectFlow o6 from allocate to connector epc-emg.1
194 OMG SysMLTM, v1.2

Figure C.38 - Special Case of Internal Block Diagram Showing Reference to Specific Properties (serial numbers)

VIN = G12345

TestVehicle1: HybridSUV

sn: ID = p67890

p: PowerSubsystem

c-bk:

b-c:

b-i:

bk-l:

c-p: bk-p:

Satisfies
«requirment» Emissions

sn: ID = bk45678

bk: BrakeSubsystem

sn: ID = c34567

c: ChassisSubsystem

sn: ID = lt56789

l: LightingSubsystem

sn: ID = b12345

b: BodySubsystem

sn: ID = i23456

i: Interior

«testCase»
testRun060401:

EPAFuelEconomyTest

sn: ID = sn90123

em: ElectricalMotor
sn: ID = sn89012

t: Transmission
em-t: ice-t:

Verifies
«requirement» Emissions

sn: ID = eid78901

ice: Internal
CombustionEngine

initialValues initialValues

initialValuesinitialValuesinitialValues

initialValues

initialValues
initialValues

initialValues

initialValues

ibd [block] SUV_EPA_Fuel_Economy_Test [Test Results]
OMG SysMLTM, v1.2 195

196 OMG SysMLTM, v1.2

Issue: 13178 – Port Decomposition of a Flow Specification Discussion (renumbered old es B through E)

Annex D: Non-normative Extensions
(informative)

This annex describes useful non-normative extensions to SysML that may be considered for standardization in future versions
of the language.

Non-normative extensions consist of stereotypes and model libraries and are organized by major diagram type, consistent with
how the main body of this specification is organized. Stereotypes in this section are specified using a tabular format, consistent
with how non-normative stereotypes are specified in the UML 2 Superstructure specification. Model libraries are specified
using the guidelines provided in the Profiles & Model Libraries chapter of this specification.

D.1 Activity Diagram Extensions

D.1.1 Overview

Two non-normative extensions to activities are described for:

• Enhanced Functional Flow Block Diagrams.

• Streaming activities that accept inputs and/or provide outputs while they are active.

More information on these extensions and the standard SysML extensions is available at [Bock. C., “SysML and UML 2.0
Support for Activity Modeling,” vol. 9, no. 2, pp. 160-186, Journal of the International Council of Systems Engineering,
2006].

D.1.2 Stereotypes

Enhanced Functional Flow Block Diagrams (EFFBD) are a widely-used systems engineering diagram, also called a behavior
diagram. Most of its functionality is a constrained use of UML activities, as described below. This extension does not address
replication, resources, or kill branches. Kill branches can be translated to activities using interruptible regions and join
specifications.

When the «effbd» stereotype is applied to an activity, its contents must conform to the following constraints:

[1] (On Activity) Activities do not have partitions.

Table D.1 - Addition stereotypes for EFFBDs

Stereotype Base class Properties Constraints Description
«effbd» UML4SysML::Activity (or subtype

of «nonStreaming» below)
N/A See below. Specifies that the activity

conforms to the constraints
necessary for EFFBD.
OMG SysMLTM, v1.2 195

[2] (On Activity) All decisions, merges, joins and forks are well-nested. In particular, each decision and merge are
matched one-to-one, as are forks and joins, accounting for the output parameter sets acting as decisions, and input
parameters and control acting as a join.

[3] (On Action) All actions require exactly one control edge coming into them, and exactly one control edge coming out,
except when using parameter sets.

[4] (Execution constraint) All control is enabling.

[5] (On ControlFlow) All control flows into an action target a pin on the action that has isControl = true.

[6] (On ObjectNode) Ordering is first-in first out, ordering = FIFO.

[7] (On ObjectNode) Object flow is never used for control, isControlType = false, except for pins of parameters in
parameter sets.

[8] (On Parameter) Parameters take and produce no more than one item, multiplicity.upper =1.

[9] (On Parameter) Output parameters produce exactly one value, multiplicity.lower = 1. The «optional» stereotype
cannot be applied to parameters.

[10] (On Parameter) Parameters cannot be streaming or exception.

[11] (On ParameterSet) Parameter sets only apply to output parameters.

[12] (On ParameterSet) Parameter sets only apply to control. Parameters in parameter sets must have pins with
isControlType = true.

[13] (On ParameterSet) Parameter sets have exactly one parameter, and it must not be shared with other parameter sets.\

[14] (On ParameterSet) If one output parameter is in a parameter set, then all output parameters of the behavior or
operation must be in parameter sets.

[15] (On ActivityEdge) Edges cannot have time constraints.

[16] The following SysML stereotypes cannot be applied: «rate», «controlOperator», «noBuffer», «overwrite».

A second extension distinguishes activities based on whether they can accept inputs or provide outputs after they start and
before they finish (streaming), or only accept inputs when they start and provide outputs when they are finished
(nonstreaming). EFFBD activities are nonstreaming. Streaming activities are often terminated by other activities, while
nonstreaming activities usually terminate themselves.

D.1.3 Stereotype Examples

Figure D.1 shows an example activity diagram with the «effbd» stereotype applied, translated from [Long. J., “Relationships
between common graphical representations in system engineering,” 2002]. The stereotype applies the constraints specified in
Section D.1.2, for example, that the data outputs on all functions are required and that queuing is FIF.

Table D.2 - Streaming options for activities

Stereotype Base Class Properties Constraints Description
«streaming» UML4SysML::Activity N/A The activity has at least

one streaming
parameter.

Used for activities that can
accept inputs or provide outputs
after they start and before they
finish.

«nonStreaming» UML4SysML::Activity N/A The activity has no
streaming parameters.

Used for activities that accept
inputs only when they start, and
provide outputs only when they
finish.
196 OMG SysMLTM, v1.2

Figure D.1- Example activity with «effbd» stereotype applied

Figure D.2 shows an example activity diagram with the «streaming» and «nonStreaming» stereotypes applied, adapted from
[MathWorks, “Using Simulink,” 2004]. It is a numerical solution for the differential equation x'(t) = -2x(t) + u(t). Item types
are omitted brevity. The «streaming» and «nonStreaming» stereotypes indicate which subactivities take inputs and produce
outputs while they are executing. They are simpler to use than the {stream} notation on streaming inputs and outputs.

The example assumes a default of zero for the lower input to Add, and that the entire activity is executed with clocked token
flow, to ensure that actions with multiple inputs receive as many of them as possible before proceeding. See the article
referenced in Section D.1.1.

Figure D.2- Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities

External
Input

External
Output

2.1 Serial
Function

2.2 Multi-exit
Function

2.3 Function in
Concurrency

Item 1

2.4 Function in
Multi-exit
Construct

2.5 Function in
an Iterate

[before third time]

Item 2

«optional» [after
third
time]

2.6 Output
Function

«optional»

Item 3

Item 4

«optional»

«optional»

{cc#1}

{cc#2}

«effbd»
act

Generate
u(t)

Add

-2

Display

«streaming»
Integrate

Over Timeu
x’ x

Multiply
-2x

«nonStreaming» «streaming» «streaming»

«nonStreaming»

act
OMG SysMLTM, v1.2 197

D.2 Requirements Diagram Extensions

D.2.1 Overview

This section describe an example of a non-normative extension for a requirements profile.

D.2.2 Stereotypes

This section includes stereotypes for a simplified requirements taxonomy that is intended to be further adapted as required to
support the particular needs of the application or organization. The requirements categories in this example include functional,
interface, performance, physical requirements, and design constraints as shown in Table D.3. As shown in the table, each
category is represented as a stereotype of the generic SysML «requirement». The table also includes a brief description of the
category. The table does not include any stereotype properties or constraints, although they can be added as deemed
appropriate for the application. For example, a constraint that could be applied to a functional requirement is that only SysML
activities and operations can satisfy this category of requirement. Other examples of requirements categories may include
operational, specialized requirements for reliability and maintainability, store requirements, activation, deactivation, and a
high level category for stakeholder needs.

Some general guidance for applying a requirements profile is as follows:

• The categories should be adapted for the specific application or organization and reflected in the table. This includes
agreement on the categories and their associated descriptions, stereotype properties and constraints. Additional
categories can be added by further subclassing the categories in the table below, or adding additional categories at the
pier level of these categories.

• The default requirement category should be the generic «requirement».

• Apply the more specialized requirement stereotype (functional, interface, performance, physical, design constraint) as
applicable and ensure consistency with the description, stereotype properties, and constraints.

• A specific text requirement can include the application of more than one requirement category, in which case, each
stereotype should be shown in guillemets.

Table D.3 - Additional Requirement Stereotypes

Stereotype Base Class Properties Constraints Description
«extendedRequirement» «requirement» source: String

risk: RiskKind
verifyMethod:
VerifyMethodKind

N/A A mix-in stereotype that contains
generally useful attributes for
requirements

«functionalRequirement» «extendedrequirement» N/A satisfied by an
operation or
behavior

Requirement that specifies an
operation or behavior that a
system, or part of a system, must
perform.

«interfaceRequirement» «extendedrequirement» N/A satisfied by a
port, connector,
item flow, and/
or constraint
property

Requirement that specifies the
ports for connecting systems and
system parts and the optionally
may include the item flows across
the connector and/or Interface
constraints.
198 OMG SysMLTM, v1.2

Table D.4 provides the definition of the non-normative enumerations that are used to type properties of
“extendedRequirement” stereotype of Figure D.3.

D.2.3 Stereotype Examples

Figure D.3 shows the use of several subtypes of requirements extended to include the properties risk:RiskKind,
verifyMethod:VerficationMethodKind, and a text attribute source:String, used to capture the source of the requirement.

«performanceRequirement» «extendedrequirement» N/A satisfied by a
value property

Requirement that quantitatively
measures the extent to which a
system, or a system part, satisfies
a required capability or condition.

«physicalRequirement» «extendedrequirement» N/A satisfied by a
structural
element.

Requirement that specifies
physical characteristics and/or
physical constraints of the system,
or a system part.

«designConstraint» «extendedrequirement» N/A satisfied by a
block or part

Requirement that specifies a
constraint on the implementation of
the system or system part, such as
the system must use a commercial
off the shelf component.

Table D.4 - Requirement property enumeration types

Enumeration Enumeration
Literals

Example Description

RiskKind High High indicates an unacceptable level of risk

Medium Medium indicates an acceptable level of risk

Low Low indicates a minimal level of risk or no risk

VerificationMethodKind Analysis Analysis indicates that verification will be performed by technical evaluation using
mathematical representations, charts, graphs, circuit diagrams, data reduction, or
representative data. Analysis also includes the verification of requirements under
conditions, which are simulated or modeled; where the results are derived from the
analysis of the results produced by the model.

Demonstration Demonstration indicates that verification will be performed by operation, movement or
adjustment of the item under specific conditions to perform the design functions without
recording of quantitative data.. Demonstration is typically considered the least restrictive
of the verification types.

Inspection Inspection indicates that verification will be performed by examination of the item,
reviewing descriptive documentation, and comparing the appropriate characteristics with
a predetermined standard to determine conformance to requirements without the use of
special laboratory equipment or procedures.

Test Test indicates that verification will be performed through systematic exercising of the
applicable item under appropriate conditions with instrumentation to measure required
parameters and the collection, analysis, and evaluation of quantitative data to show that
measured parameters equal or exceed specified requirements.

Table D.3 - Additional Requirement Stereotypes

Stereotype Base Class Properties Constraints Description
OMG SysMLTM, v1.2 199

Figure D.3 - Example extensions to Requirement

D.3 Parametric Diagram Extensions for Trade Studies

D.3.1 Overview

This section describes a non-normative extension of a parametric diagram (refer to the Constraint Blocks chapter) to support
trade studies and analysis, which are an essential aspect of any systems engineering effort. In particular, a trade study is used to
evaluate a set of alternatives based on a defined set of criteria. The criteria may have a weighting to reflect their relative
importance. An objective function (aka optimization or cost function) can be used to represent the weighted criteria and
determine the overall value of each alternative. The objective function can be more complex than a simple linear weighting of
the criteria and can include probability distribution functions and utility functions associated with each criteria. However, for
this example, we will assume the simpler case.

 Requirement Diagram: Top-Level User Requirements

«requirement»
HybridSUV

«functinalRequirement»
id =”UR1.1"
source = “Marketing”
text = “Load”
verifyMethod =”Test”
risk =”Low”

«functionalRequirement»
Load

«performanceRequirement»
id =”UR1.2"
source = “Marketing”
text = “Eco-Friendliness”
verifyMethod = ”Analysis”
risk = ”High”

«performanceRequirement»
Eco-Friendliness

«performanceRequirement»
id = ”UR1.3"
source = “Marketing”
text = “Performance”
verifyMethod =”Test”
risk =”Medium”

«performanceRequirement»
Performance

«requirement»
Ergonomics

«requirement»
Passengers

«requirement»
Cargo

«requirement»
FuelCapacity

«performanceRequirement»
id = ”UR1.2.1"
source = “Marketing”
text = “The car shall meet 2010 Kyoto
Accord emissions standards.”
verifyMethod =”Test”
risk =”Medium”

«performanceRequirement»
Emissions

«performanceRequirement»
id = “UR1.3.1”
source = “Marketing”
text = “Users shall obtain fuel
economy better than that provided
by 95% of cars built in 2004.”
verifyMethod = “Test”
risk = “High”

«performanceRequirement»
FuelEconomy

«requirement»

Range

«requirement»
Braking

«requirement»

Power

«requirement»
Acceleration
200 OMG SysMLTM, v1.2

A measure of effectiveness (moe) represents a parameter whose value is critical for achieving the desired mission cost
effectiveness. It will also be assumed that the overall mission cost effectiveness can be determined by applying an objective
function to a set of criteria, each of which is represented by a measure of effectiveness.

This section includes stereotypes for an objective function and a measure of effectiveness. The objective function is a
stereotype of a ConstraintBlock and the measure of effectiveness is a stereotype of a block property.

D.3.2 Stereotypes

«objectiveFunction» «ConstraintBlock» or
«ConstraintProperty»

N/A N/A An objective function (aka optimization or
cost function) is used to determine the
overall value of an alternative in terms of
weighted criteria and/or moe’s.

«moe» UML4SysML::Property N/A N/A A measure of effectiveness (moe)
represents a parameter whose value is
critical for achieving the desired mission
cost effectiveness.

D.3.3 Stereotype Examples

In this example, operational availability, mission response time, and security effectiveness each represent moes along with life
cycle cost. The overall cost effectiveness for each alternative may be defined by an objective function that represents a
weighted sum of their moe values. For each moe, there is a separate parametric model to estimate the value of operational
avialability, mission response time, security effectiveness, and life cycle cost to determine an overall cost effectiveness for
each alternative. It is assumed that the moes refer to the values for system alternative j (sj).

Table D.5 - Stereotypes for Measures of Effectiveness

Stereotype Base Class Properties Constraints Description

«moe»
sj.costEffectiveness

par Effectiveness Model [System Alternative J]

:SecurityModel

«objectiveFunction»
:MyObjectiveFunction

{CE = Sum Wi*Pi}

:ResponseTimeModel

:AvailabilityModel
CE:P3:

P2:

P1:

s:

r:

a:

:CostModel
c:

P4:

«moe»
sj.responseTime

«moe»
sj.security

«moe»
sj.cost

«moe»
sj.availability
OMG SysMLTM, v1.2 201

Issue: 16396 – Improvements to QUDV for SysML v1.3

D.4 Model Library of SysML Quantity Kinds and Units for ISO 80000-1

This section defines a model library of SysML QuantityKind and Unit definitions for a subset of quantities and units defined
by the International System of Quantities (ISQ) and the International System of Units (SI). The specific quantities and units in
this section are defined by ISO 80000-1 Quantities and units - Part1: General. ISO/IEC 80000 currently has fourteen parts
that define many quantities and units for use within various fields of science and technology. Part 1 defines base quantities and
units used by other parts as well as a starting set of derived quantities and units with special names and symbols.

The model library defined in this section contains SysML QuantityKind and Unit elements as defined by Chapter 8, “Blocks”
of the SysML specification. Each QuantityKind or Unit element may optionally carry a "definitionURI" property to document
each quantity kind and unit using additional information available from some external source. One option is for this
definitionURI to identify an element of a QUDV model (see Section D.5, “Model Library for Quantities, Units, Dimensions,
and Values (QUDV)”) that more fully describes the same quantities and units, including the systems of quantities and units
they belong to, and the means by which they may be derived from each other. Section D.5.4, “Usage Examples” contains
examples of such QUDV definitions that could be referenced by these definitionURI's..

Figure D.4 - Model library of SysML Quantity Kinds and Units for ISO 80000-1

Figure D.5 - ISQ base quantities and SI base units

«modelLibrary»
SysML Quantity Kinds and Units for ISO 80000-1

pkg

«quantityKind»
length

«quantityKind»
mass

«quantityKind»
time

«quantityKind»
electric current

«quantityKind»
thermodynamic temperature

«quantityKind»
amount of substance

«quantityKind»
luminous intensity

«unit»
{quantityKind = length,

symbol = m}
metre

«unit»
{quantityKind = mass,

symbol = kg}
kilogram

«unit»
{quantityKind = time,

symbol = s}
second

«unit»
{quantityKind = electric current,

symbol = A}
ampere

«unit»
{quantityKind = thermodynamic temperature,

symbol = K}
kelvin

«unit»
{quantityKind = amount of substance,

symbol = mol}
mole

«unit»
{quantityKind = luminous intensity,

symbol = cd}
candela

bdd SysML Quantity Kinds and Units for ISO 80000-1 [Table 1: ISQ base quantities and SI base units]
202 OMG SysMLTM, v1.2

Figure D.6 - ISQ derived quantities and SI derived units with special names

Figure D.7 - ISQ derived quantities and SI derived units with special names for human health

«quantityKind»
electric current

«quantityKind»
electric potential difference

«quantityKind»
capacitance

«quantityKind»
electric resistance

«unit»
{quantityKind = electric current,

symbol = A}
ampere

«unit»
{quantityKind = electric potential difference,

symbol = V}
volt

«unit»
{quantityKind = capacitance,

symbol = F}
farad

«unit»
{quantityKind = electric resistance,

symbol = O}
ohm

bdd SysML Quantity Kinds and Units for ISO 80000-1 [Table 2: ISQ derived quantities and SI derived units with special names]

«quantityKind»
plane angle

«quantityKind»
solid angle

«quantityKind»
frequency

«quantityKind»
force

«unit»
{quantityKind = radian,

symbol = rad}
radian

«unit»
{quantityKind = solid angle,

symbol = sr}
steradian

«unit»
{quantityKind = frequency,

symbol = Hz}
hertz

«unit»
{quantityKind = force,

symbol = N}
newton

«quantityKind»
pressure

«quantityKind»
energy

«quantityKind»
power

«quantityKind»
electric charge

«unit»
{quantityKind = pressure,

symbol = Pa}
pascal

«unit»
{quantityKind = energy,

symbol = J}
joule

«unit»
{quantityKind = power,

symbol = W}
watt

«unit»
{quantityKind = electric charge,

symbol = C}
coulomb

«quantityKind»
electric conductance

«quantityKind»
magnetic flux

«quantityKind»
magnetic flux density

«quantityKind»
inductance

«unit»
{quantityKind = electric conductance,

symbol = S}
siemens

«unit»
{quantityKind = magnetic flux,

symbol = Wb}
weber

«unit»
{quantityKind = magnetic flux density,

symbol = T}
tesla

«unit»
{quantityKind = inductance,

symbol = H}
henry

«quantityKind»
Celsius temperature

«quantityKind»
luminous flux

«quantityKind»
illuminance

«unit»
{quantityKind = Celsius temperature,

symbol = ºC}
degree Celsius

«unit»
{quantityKind = luminous flux,

symbol = lm}
lumen

«unit»
{quantityKind = illuminance,

symbol = lx}
lux

bdd SysML Quantity Kinds and Units for ISO 80000-1 [Table 3: ISQ derived quantities and SI derived units with special names for human health]

«quantityKind»
activity (of a radionuclide)

«quantityKind»
absorbed dose

«quantityKind»
dose equivalent

«quantityKind»
catalytic activity

«unit»
{quantityKind = activity (of a radionuclide),

symbol = Bq}
becquerel

«unit»
{quantityKind = absorbed dose,

symbol = Gy}
gray

«unit»
{quantityKind = dose equivalent,

symbol = Sv}
sievert

«unit»
{quantityKind = catalytic activity,

symbol = kat}
katal
OMG SysMLTM, v1.2 203

D.5 Model Library for Quantities, Units, Dimensions, and Values
(QUDV)

D.5.1 Overview

For any system model, a solid foundation of well-defined quantities, units, and dimensions system is very important.
Properties that describe many aspects of a system depend on it. At the same time, such a foundation should be a shareable
resource that can be reused in many models within and across organizations and projects.

Issue: 16396 – Improvements to QUDV for SysML v1.3

The most widely accepted, scrutinized, and globally used system of quantities and system of units are the International System
of Quantities (ISQ) and the International System of Units (SI). They are formally standardized through [ISO31] and
[IEC60027]. The harmonization of these two sets of standards into one new set [ISO/IEC80000] has been published by ISO in
2009 and 2010. The present QUDV model in SysML 1.3 is based on ISO/IEC 80000-1:2009, which refers normatively to the
ISO/IEC Guide 99:2007. The ISO/IEC 80000-1:2009 document is also the baseline for the 2010 revision of the IEEE/ASTM
American National Standards for Metric Practice SI-10. All the relevant concepts underlying ISQ and SI are publicly available
in [VIM]. See Section D.5.3 for references to these documents.

At a minimum, SysML should provide the means to support the imminent international standard [ISO/IEC80000]. In addition,
many other systems of quantities and units are still in use for particular applications and for historical reasons. A prime
example is the system based on UK Imperial units, which is still widely used in North America. SysML should provide the
means to support all such specific systems of quantities and units, including precise definitions of the relationships between
different systems of units, and with explicit and unambiguous unit conversions to and from SI as well as other systems.

To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in SysML is
explicitly based on the concepts defined in [VIM], which have been written by the authoritative Working Group 2 of the Joint
Committee for Guides in Metrology (JCGM/WG 2), in which the JCGM member organizations are represented: BIPM, IEC,
IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. At the same time, the model library is designed in such a way that extensions to
the ISQ and SI can be represented, as well as any alternative systems of quantities and units.

The model library can be used to support SysML user models in various ways. A simple approach is to define and document
libraries of reusable systems of units and quantities for reuse across multiple projects, and to link units and quantity kinds from
these libraries to Unit and QuantityKind stereotypes defined in SysML user models. The name of a Unit or QuantityKind
stereotype, its definitionURI, or other means may be used to link it with definitions made using this library. Instances of blocks
conforming to this model library may be created by instance specifications, as shown in Section D.5.4, or by other means.

Even though this model library is specified in terms of SysML blocks, its contents could equally be specified by UML classes
without dependencies on any SysML extensions. This annex specifies the model library using SysML blocks to maintain
compatibility with the SysML specification. UML and other forms of this same conceptual model are important and useful to
align different standards with each other and with those of [VIM].

Separate forms of this model library, including a UML class model generated as a simple transformation from the model
library specified in this annex, together with additional mappings and resources, example applications, and reference libraries
of systems of units and quantities built using this model, are expected to be published via the SysML Project Portal wiki at
http://www.omgwiki.org/OMGSysML/.

D.5.2 Abstract Syntax

Figures D.8-D.10 present the QUDV model library in a series of block definition diagrams.
204 OMG SysMLTM, v1.2

http://www.omgwiki.org/OMGSysML/

Issue: 16396 – Improvements to QUDV for SysML v1.3

The QUDV Concepts diagram in Figure D.8 presents the core concepts of System of Units, Unit, SystemOfQuantities, and
QuantityKind. Distinguished unit values can be organized in a measurement scale for a particular QuantityKind. In SysML, a
value property typed by a given ValueType, with stereotype properties that refer to a SysML Unit and/or QuantityKind, defines
a quantity in the sense of ISO 80000-1, Section 3.1. If specified, the unit of the ValueType designates the measurement unit
assumed for the numerical value of such a quantity. Note that the combination of a unit and quantity kind defined in a
ValueType may be different than the combination of adoptedMeasurementUnit and primaryQuantityKind in the definition of
the unit and quantity kind in a QUDV library.

In the QUDV Unit diagram in Figure D.9, SimpleUnit provides the basis for defining other units via conversion or derivation.
Additionally, QUDV provides support for specifying a coherent derived unit as a product of the baseUnit(s) of a given
SystemOfUnits. In a coherent SystemOfUnits, there is only one base unit for each base quantity kind.

Issue: 16396 – Improvements to QUDV for SysML v1.3

In the QUDV QuantityKind diagram in Figure D.10, SimpleQuantityKind provides the basis for defining other quantity kinds
via specialization or derivation. QUDV provides a declarative specification of dimensional analysis to assign to each
QuantityKind an expression of its dependence on the baseQuantityKind(s) of a SystemOfQuantities. This dependence is
expressed as a list of QuantityKindFactor(s) corresponding to a product of powers of the base quantities. Section D.5.2.18,
“SystemOfQuantities” specifies the derivation of quantity dimensions using an algorithm specified in OCL.

Issue: 16396 – Improvements to QUDV for SysML v1.3
OMG SysMLTM, v1.2 205

Figure D.8 - QUDV Concepts diagram
206 OMG SysMLTM, v1.2

Figure D.9 - QUDV Unit diagram
OMG SysMLTM, v1.2 207

Figure D.10 - QUDV QuantityKind diagram

D.5.2.1 AffineConversionUnit

Description

An AffineConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to another
reference measurement unit through an affine conversion relationship with a conversion factor and offset.

The unit conversion relationship is defined by the following equation:

valueRU = factor · valueCU + offset

where:

valueRU is the quantity value expressed in the referenceUnit, and,
valueCU is the quantity value expressed in the AffineConversionUnit.

E.g. in the definition of the AffineConversionUnit for “degree Fahrenheit” with respect to the referenceUnit “degree Celsius,”
the factor would be 5/9 and the offset would be -160/9, because

TCelsius = 5/9 · TFahrenheit - 160/9 which is equivalent with TFahrenheit = 9/5 · TCelsius + 32/1.
208 OMG SysMLTM, v1.2

Properties

• factor: Rational
Rational number that specifies the factor in the unit conversion relationship.

• offset: Rational
Rational number that specifies the offset in the unit conversion relationship.

D.5.2.2 ConversionBasedUnit

Description

A ConversionBasedUnit is an abstract classifier that is a Unit that represents a measurement unit that is defined with respect to
another reference unit through an explicit conversion relationship.

Properties

• referenceUnit: Unit
Specifies the unit with respect to which the ConversionBasedUnit is defined.

• isInvertible: Boolean
Specifies whether the unit conversion relationship is invertible. For LinearConversionUnit and
AffineConversionUnit this is always true.

D.5.2.3 DerivedQuantityKind

Description

A DerivedQuantityKind is a QuantityKind that represents a kind of quantity that is defined as a product of powers of one or
more other kinds of quantity. A DerivedQuantityKind may also be used to define a synonym kind of quantity for another kind
of quantity.

For example “velocity” can be specified as the product of “length” to the power one times “time” to the power minus one, and
subsequently “speed” can be specified as “velocity” to the power one.

Properties

• factor: QuantityKindFactor [1..*]
Set of QuantityKindFactor that specifies the product of powers of other kind(s) of quantity that define the
DerivedQuantityKind.

D.5.2.4 DerivedUnit

Description

A DerivedUnit is a Unit that represents a measurement unit that is defined as a product of powers of one or more other
measurement units.

For example the measurement unit “metre per second” for “velocity” is specified as the product of “metre” to the power one
times “second” to the power minus one.
OMG SysMLTM, v1.2 209

Properties

• factor: UnitFactor [1..*]
Set of UnitFactor that specifies the product of powers of other measurement units that define the DerivedUnit.

D.5.2.5 Dimension

Description

A Dimension represents the [VIM] concept of “quantity dimension” that is defined as “expression of the dependence of a
quantity on the base quantities of a system of quantities as a product of powers of factors corresponding to the base quantities,
omitting any numerical factor.”

For example in the ISQ the quantity dimension of “force” is denoted by dim F = L·M·T-2, where “F” is the symbol for “force,”
and “L,” “M,” and “T” are the symbols for the ISQ base quantities “length,” “mass,” and “time” respectively.

The Dimension of any QuantityKind can be derived through the algorithm that is defined in Section D.5.2.18 with
SystemOfQuantities. The actual Dimension for a given QuantityKind depends on the choice of baseQuantityKind specified in
a SystemOfQuantities.

Properties

• symbolicExpression: String [0..1]
Symbolic expression of the quantity dimension's product of powers, in terms of symbols of the kinds of quantity
that represent the base kinds of quantity and their exponents. In tool implementations, the symbolicExpression may
automatically derived from the associated factor set.

Issue: 16396 – Improvements to QUDV for SysML v1.3

• factor: QuantityKindFactor [0..*] {ordered}
Ordered set of QuantityKindFactor that specifies the product of powers of base dimensions that define the
Dimension. The possible base dimensions are represented by the ordered set of baseQuantityKind defined in the
SystemOfQuantities for which the Dimension is specified. The order of the factors should follow the ordered set
of baseQuantityKind in SystemOfQuantities.

Issue: 16396 – Improvements to QUDV for SysML v1.3 (deleted old C.5.2.6 DimensionFactor)

D.5.2.6 GeneralConversionUnit

Description

A GeneralConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to another
reference measurement unit through a conversion relationship expressed in some syntax through a general mathematical
expression.

The unit conversion relationship is defined by the following equation:

valueRU / valueCU = f(valueRU, valueCU)
where:
210 OMG SysMLTM, v1.2

valueRU is the quantity value expressed in the referenceUnit, and,
valueCU is the quantity value expressed in the GeneralConversionUnit, and,
f(valueRU, valueCU) is a mathematical expression that includes valueRU and valueCU.

Properties

• expression: String
Specifies the unit conversion relationship in some expression syntax.

• expressionLanguageURI: String [0..1]
URI that specifies the language for the expression syntax.

D.5.2.7 LinearConversionUnit

Description

A LinearConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to another
measurement reference unit through a linear conversion relationship with a conversion factor.

The unit conversion relationship is defined by the following equation:

valueRU = factor · valueCU,

where:

valueRU is the quantity value expressed in the referenceUnit, and,
valueCU is the quantity value expressed in the LinearConversionUnit.

For example, in the definition of the LinearConversionUnit for “inch” with respect to the referenceUnit “metre,” the factor
would be 254/10000, because 0.0254 metre = 1 inch.

Properties

• factor: Rational
Rational number that specifies the factor in the unit conversion relationship.

D.5.2.8 Prefix

Description

A Prefix represents a named multiple or submultiple multiplication factor used in the specification of a PrefixedUnit. A
SystemOfUnits may specify a set of prefixes.

Properties

• name: String
Name of the prefix.

• symbol: String [0..1]
Short symbolic name of the prefix.

• factor: Real [1]
Specifies the multiple or submultiple multiplication factor.
OMG SysMLTM, v1.2 211

D.5.2.9 PrefixedUnit

Description

A PrefixedUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to another
measurement reference unit through a linear conversion relationship with a named prefix that represents a multiple or
submultiple of a unit.

[VIM] defines “multiple of a unit” as “measurement obtained by multiplying a given measurement unit by an integer greater
than one” and “submultiple of a unit” as “measurement unit obtained by dividing a given measurement unit by an integer
greater than one.”

The unit conversion relationship is defined by the following equation:

valueRU = factor · valueCU,

where:

valueRU is the quantity value expressed in the referenceUnit, and,
valueCU is the quantity value expressed in the PrefixedUnit.

For example, in the definition of the PrefixedUnit for “megabyte” with respect to the referenceUnit “byte”, the prefix would

be the Prefix for “mega” with a factor 106, because 106 byte = 1 megabyte.

See [VIM] for all decimal and binary multiples and decimal submultiples defined in SI.

Properties

• prefix: Prefix
Specifies the prefix that defines the name, symbol, and factor of the multiple or submultiple.

Constraints

[1] The referenceUnit shall not be a PrefixedUnit, i.e., it is not allowed to prefix an already prefixed measurement unit. In
general the referenceUnit should be a SimpleUnit.

package QUDV
context PrefixedUnit
inv: not referenceUnit.oclIsTypeOf(PrefixedUnit)
endpackage

Issue: 16396 – Improvements to QUDV for SysML v1.3 (deleted old C.5.2.11 Quantity)

D.5.2.10 QuantityKind

Description

A QuantityKind is an abstract classifier that represents the [VIM] concept of “kind of quantity” that is defined as “aspect
common to mutually comparable quantities.” A QuantityKind represents the essence of a quantity without any numerical
value or unit. Quantities of the same kind within a given system of quantities have the same quantity dimension. However,
quantities of the same dimension are not necessarily of the same kind.
212 OMG SysMLTM, v1.2

Properties

• name: String
Name of the kind of quantity.

• symbol: String [0..1]
Short symbolic name of the kind of quantity.

• description: String [0..1]
Textual description of the kind of quantity.

• definitionURI: String [0..1]
URI that references an external definition of the kind of quantity.

• scale: Scale [0..1]
Specification of a Scale that is associated to the QuantityKind.

D.5.2.11 QuantityKindFactor

Description

A QuantityKindFactor represents a factor in the product of powers that defines a DerivedQuantityKind.

Properties

• exponent: Rational
Rational number that specifies the exponent of the power to which the quantityKind is raised.

• quantityKind: QuantityKind
Reference to the QuantityKind that participates in the factor.

D.5.2.12 Rational

Description

A Rational value type represents the mathematical concept of a number that can be expressed as a quotient of two integers. It
may be used to express the exact value of such values, without issues of rounding or other approximations if the result of the
division were used instead.

Properties

• numerator: Integer
An integer number used to express the numerator of a rational number.

• denominator: Integer
An integer number used to express the denominator of a rational number.

Issue: 16396 – Improvements to QUDV for SysML v1.3

Operations

package QUDV
context Rational
def: plus(r : Rational[1]) : Rational[1]

= result.numerator = self.numerator * r.demonimator
+ r.numerator * self.denominator
OMG SysMLTM, v1.2 213

and result.denominator = self.denominator * r.denominator

context Rational
def: equivalent(r : Rational[1]) : Boolean[1]

= result = (self.numerator * r.demonimator
= r.numerator * self.denominator)

context Rational
def: times(r : Rational[1]) : Rational[1]

= result.numerator = self.numerator * r.numerator
and result.denominator = self.denominator * r.denominator
endpackage

Constraints

[1] The denominator of a rational number must not be zero.

package QUDV
context Rational
inv: denominator <> 0
endpackage

D.5.2.13 Scale

Description

A Scale represents the [VIM] concept of a “measurement scale” that is defined as an “ordered set of quantity values of
quantities of a given kind of quantity used in ranking, according to magnitude, quantities of that kind.” A Scale specifies one
or more fixed values that have a specific significance in the definition of the associating QuantityKind.

For example the “thermodynamic temperature” kind of quantity is defined by specifying the values of 0 and 273.16 kelvin as
the temperatures of absolute zero and the triple point of water respectively.

A Scale does not always need to specify a unit. For example the “Rockwell C Hardness Scale” or the “Beaufort Wind Force
Scale” are ordinal scales that do not have a particular associated unit. Similarly, subjective scales for a “priority” or “risk” kind
of quantity with e.g., value definitions 0 for “low,” 1 for “medium,” and 3 for “high” do not have a particular associated unit.

Properties

• valueDefinition: ScaleValueDefinition [1..*] {ordered}
Ordered set of ScaleValueDefinition that specifies the defined numerical value(s) and textual definition(s) for the
measurement scale.

• unit: Unit [0..1]
Optionally specifies the unit in which the value of each valueDefinition is expressed.

Constraints

Issue: 16396 – Improvements to QUDV for SysML v1.3

[1] A scale must be the same as the scale of the unit's primaryQuantityKind, if any.

package QUDV
context Scale
inv: unit = null

or unit.primaryQuantityKind = null
or unit.primaryQuantityKind.scale = null
214 OMG SysMLTM, v1.2

or unit.primaryQuantityKind.scale = self
endpackage

D.5.2.14 ScaleValueDefinition

Description

A ScaleValueDefinition represents a specific value for a measurement scale.

Properties

• value: Number
Specifies the numerical value.

• definition: String
Specifies the textual definition for the value.

D.5.2.15 SimpleQuantityKind

Description

A SimpleQuantityKind is a QuantityKind that represents a kind of quantity that does not depend on any other QuantityKind.
Typically a base quantity would be specified as a SimpleQuantityKind.

D.5.2.16 SimpleUnit

Description

A SimpleUnit is a Unit that represents a measurement unit that does not depend on any other Unit. Typically a base unit would
be specified as a SimpleUnit.

D.5.2.17 SpecializedQuantityKind

Description

A SpecializedQuantityKind is a QuantityKind that represents a kind of quantity that is a specialization of another kind of
quantity.

For example, “distance,” “width,” “depth,” “radius,” and “wavelength” can all be specified as specializations of the “length”
SimpleQuantityKind.

Properties

• general: QuantityKind
Specifies the QuantityKind that is specialized.

D.5.2.18 SystemOfQuantities

Description

A SystemOfQuantities represents the [VIM] concept of “system of quantities” that is defined as a “set of quantities together
with a set of non-contradictory equations relating those quantities.” It collects a list of QuantityKind that specifies the kinds of
quantity that are known in the system.
OMG SysMLTM, v1.2 215

The International System of Quantities (ISQ) is an example of a SystemOfQuantities, defined in [ISO31] and
[ISO/IEC80000].

Properties

• name: String
Name of the system of quantities.

• symbol: String [0..1]
Short symbolic name of the system of quantities.

• description: String [0..1]
Textual description of the system of quantities.

• definitionURI: String [0..1]
URI that references an external definition of the system of quantities. Note that as part of [ISO/IEC80000]
normative URIs for each of the ISQ quantities and SI units are being defined.

• quantityKind: QuantityKind [0..*] {ordered}
Ordered set of QuantityKind that specifies the kinds of quantity that are known in the system.

• baseQuantityKind: QuantityKind [0..*] {ordered, subsets quantityKind}
Ordered set of QuantityKind that specifies the base quantities of the system of quantities. This is a subset of the
complete quantityKind list. The base quantities define the basis for the quantity dimension of a kind of quantity.

• /dimension: Dimension [0..*] {ordered, readOnly, nonunique}
Derived ordered set of Dimension. The actual dimension of a QuantityKind depends on the list of
baseQuantityKind that are specified in an actual SystemOfQuantities, see the DerivedDimensions constraint.

Constraints

[1] All quantity dimensions are derived through the following algorithm specified in OCL.

Issue: 16396 – Improvements to QUDV for SysML v1.3

package QUDV
-- get the set of units, if any, that a given unit directly depends on
context Unit
def: directUnitDependencies : Set(Unit) =

if oclIsKindOf(ConversionBasedUnit)
then oclAsType(ConversionBasedUnit).referenceUnit
else

if oclIsKindOf(DerivedUnit)
then oclAsType(DerivedUnit).factor->collect(unit)->asSet()
else Set{}

endif
endif

-- get the set of units, if any, that a given unit directly or indirectly depends on
context Unit
def: allUnitDependencies : Set(Unit)

= self->closure(directUnitDependencies)

context Unit
inv acyclic_unit_dependencies

: not allUnitDependencies->excludes(self)

-- get the set of quantityKinds, if any, that a given quantityKind directly depends on
context QuantityKind
216 OMG SysMLTM, v1.2

def: directQKindDependencies : Set(QuantityKind)
= if oclIsKindOf(DerivedQuantityKind)

then oclAsType(DerivedQuantityKind).factor
->collect(quantityKind)->asSet()

else
if oclIsKindOf(SpecializedQuantityKind)
then oclAsType(SpecializedQuantityKind).general
else Set{}
endif

endif

context QuantityKind
def: allQuantityKindDependencies : Set(QuantityKind)

= self->closure(directQKindDependencies)

context QuantityKind
inv acyclic_quantity_kind_dependencies

: allQuantityKindDependencies->excludes(self)

--context SystemOfQuantities::deriveQuantityKindDimensions() :
--post: quantityKind->forAll(qK|qK.hasProperDimension(self))
-- The derived dimension of a simple quantity kind must
-- have exactly one factor
-- whose numerator and denominator are equal to 1.

context SimpleQuantityKind
def: hasProperDimension(sq:SystemOfQuantities) : Boolean

= let d:Dimension=sq.getDimension(self)
in d.factor->size()=1
and d.factor->forAll(exponent->forAll(numerator=1 and denominator=1))

-- The derived dimension of a specialized quantity kind is
-- the dimension of its general quantity kind.
context SpecializedQuantityKind
def: hasProperDimension(sq:SystemOfQuantities) : Boolean

= sq.getDimension(self) = sq.getDimension(general)

-- A helper function to produce the factor/quantityKind tuples
-- for a given Dimension.
context Dimension
def: dimFactors : Bag(Tuple(factor:Rational,qKind:QuantityKind))

= self.factor->collect(qkf | Tuple{factor=qkf.exponent,qKind=qkf.quantityKind})

-- A helper function to get all the factor/quantityKind tuples
-- for the dimension factors of a derived quantity kind.
context DerivedQuantityKind
def: derQFactors(sq:SystemOfQuantities) : Bag(Tuple(factor:Rational,qKind:QuantityKind))

= self.factor->collect(qkf |
let qd:Dimension = sq.getDimension(qkf.quantityKind) in
qd.factor->collect(qkf |
Tuple{factor=qkf.exponent.plus(df.exponent),qKind=qkf.quantityKind}))

-- Reduce a bag of factor/quantityKind tuples by combining
-- all factors for the same quantity kind
-- and eliminating the zero-factor/quantityKind tuples
context DerivedQuantityKind
def: reducetoNonZeroUniqueFactors(

qFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind)),
qKinds:Set(QuantityKind))

: Bag(Tuple(factor:Rational,qKind:QuantityKind))
= let uqFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))
OMG SysMLTM, v1.2 217

= qKinds->collect(
-- for each unique quantity kind, qKind1,
-- from the set of unique quantity kinds, qKinds...
qKind1:QuantityKind|
-- get the sequence of factors from the set of
-- qFactors tuples whose quantity kind is qKind1...
let factor1s:Sequence(Rational)

= qFactors->select(qKind=qKind1)
->collect(factor)->asSequence()

-- start with the first factor, factor1,
-- from all the factor1s associated to qKind1...
in let factor1:Rational=factor1s->first()

-- construct the factor/quantityKind tuple
-- for qKind1 where
-- the factor is the product of factor1 with
-- all remaining factors1s
in Tuple{

factor=factor1s->excluding(factor1)->iterate(
factorI:Rational;
factorN:Rational=factorI |

factorN.plus(factorI)),
qKind=qKind1})

-- eliminate the factor/quantityKind tuples where
-- the factor is zero
in let nqFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))

= uqFactors->select(factor.numerator<>0)
in nqFactors

-- The derived dimension of a derived quantity kind is
-- the simplified set of factor/quantityKind tuples
-- for the derived quantity kind. The simplified set
-- of factor/quantityKind tuples has
-- one factor/quantityKind tuple for each quantityKind where
-- the simplified factor is a non-zero product of
-- all the factors in the factor/quantityKind tuples.
context DerivedQuantityKind
def: hasProperDimension(sq:SystemOfQuantities) : Boolean

= let d:Dimension = sq.getDimension(self)
in let resFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))
= d.dimFactors
-- the unique quantityKinds from the result...
in let resKinds:Set(QuantityKind)

=resFactors->collect(qKind)->asSet()

-- the factor/quantityKind tuples from the derived quantity...
in let qFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))
= self.derQFactors(sq)

-- the unique quantityKinds from the derived quantity...
in let qKinds:Set(QuantityKind)=qFactors->collect(qKind)->asSet()

-- get the reduced non-zero factor/quantityKinds...
in let nqFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))
= self.reducetoNonZeroUniqueFactors(qFactors, qKinds)

-- condition1: there should be the same number
-- of factor/quantityKind tuples in the result
-- compared to the non-zero unique factor/quantityKind
-- tuples for the derivedQuantityKind
in nqFactors->size() = resFactors->size()
218 OMG SysMLTM, v1.2

-- condition2: there should be the same set of
-- quantity kinds in the result
-- and in the non-zero unique factor/quantityKind tuples
-- and qKinds->symmetricDifference(resKinds)->isEmpty()

-- condition3: for each quantity kind,
-- the factors in the result and
-- in the reduced non-zero unique factor/quantityKind
-- tuples should be equivalent rationals
and qKinds->forAll(qk:QuantityKind|
let nFactor:Rational

=nqFactors->select(qKind=qk)
->collect(factor)->asSequence()->first()

in let rFactor:Rational
=resFactors->select(qKind=qk)
->collect(factor)->asSequence()->first()

in nFactor.equivalent(rFactor))
endpackage

[2] In a well-formed SystemOfQuantities, all the general quantityKinds of every SpecializedQuantityKind are defined in the
SystemOfQuantities (SoQ1) and each QuantityKindFactor of any DerivedQuantityKind refers to a QuantityKind in that
SystemOfQuantities.

package QUDV
inv SoQ1:

quantityKind->includesAll(
quantityKind->select(oclIsKindOf(SpecializedQuantityKind))
->collect(oclAsType(SpecializedQuantityKind).general))

inv SoQ2:
quantityKind->includesAll(

quantityKind->select(oclIsKindOf(DerivedQuantityKind))
->collect(oclAsType(DerivedQuantityKind).factor

->collect(quantityKind)))
endpackage

D.5.2.19 SystemOfUnits

Description

A SystemOfUnits represents the [VIM] concept of “system of units” that is defined as “set of base units and derived units,
together with their multiples and submultiples, defined in accordance with given rules, for a given system of quantities.” It
collects a list of Unit that are known in the system. A SysML SystemOfUnits only optionally defines multiples and
submultiples.

Properties

• name: String
Name of the system of units.

• symbol: String [0..1]
Short symbolic name of the system of units.

• description: String [0..1]
Textual description of the system of units.

• definitionURI: String [0..1]
URI that references an external definition of the system of units. Note that as part of [ISO/IEC80000] normative
URIs for each of the quantities in the ISQ and units in the SI are being defined.
OMG SysMLTM, v1.2 219

• unit: Unit [0..*] {ordered}
Ordered set of Unit that specifies the units that are known in the system.

• baseUnit: Unit [0..*] {ordered, subsets unit}
Ordered set of Unit that specifies the base units of the system of units. A “base unit” is defined in [VIM] as a
“measurement unit that is adopted by convention for a base quantity,” i.e. it is the (preferred) unit in which base
quantities of the associated systemOfQuantities are expressed.

• prefix: Prefix [0..*] {ordered}
Ordered set of Prefix that specifies the prefixes for multiples and submultiples of units in the system.

• systemOfQuantities: SystemOfQuantities [0..1]
Reference to the SystemOfQuantities for which the units are specified.

Constraints

[1] In a coherent system of units, there is only one base unit for each base quantity.

Issue: 16396 – Improvements to QUDV for SysML v1.3

package QUDV
context SystemOfUnits
def: isCoherent() : Boolean =

baseUnit->size() = systemOfQuantities.baseQuantityKind->size()
and baseUnit
->forAll(bU|systemOfQuantities.baseQuantityKind

->one(bQK|bU.primaryQuantityKind=bQK))
and systemOfQuantities.baseQuantityKind
->forAll(bQK|baseUnit->one(bU|bQK=bU.primaryQuantityKind))

endpackage

[2] A coherent derived unit is a derived unit that, for a given system of quantities and for a chosen set of base units, is a
product of powers of base units with no other proportionality factor than one.

Issue: 16396 – Improvements to QUDV for SysML v1.3

package QUDV
context SystemOfUnits
def: isCoherent(du : DerivedUnit) : Boolean =

baseUnit->includesAll(du.factor->collect(unit))
and du.factor->collect(exponent)

->forAll(numerator=1 and denominator=1)
endpackage

[3] In a well-formed SystemOfUnits, all of the prefixes of PrefixedUnits are defined in the SystemOfUnits (SoU1); each
UnitFactor of any DerivedUnit refers to a Unit in the SystemofUnits (SoU2); all ConversionBasedUnits refer to units in
the SystemOfUnits (SoU3); and all of the quantityKinds that are measurementUnits of Units in the SystemOfUnits are
defined in the systemOfQuantities of that SystemOfUnit (SoU4).

package QUDV
context SystemOfUnits
context SystemOfUnits
inv SoU3_1:

prefix->includesAll(
unit->select(oclIsTypeOf(PrefixedUnit))

->collect(oclAsType(PrefixedUnit).prefix))
inv SoU3_2:

unit->includesAll(
220 OMG SysMLTM, v1.2

unit->select(oclIsTypeOf(DerivedUnit))
->collect(oclAsType(DerivedUnit).factor->collect(unit)))

inv SoU3_3:
unit->includesAll(

unit->select(oclIsTypeOf(ConversionBasedUnit))
->collect(oclAsType(ConversionBasedUnit).referenceUnit))

inv SoU3_4:
systemOfQuantities = null or
systemOfQuantities.quantityKind->includesAll(

unit->collect(quantityKind))
endpackage

D.5.2.20 Unit

Description

A Unit is an abstract classifier that represents the [VIM] concept of “measurement unit” that is defined as “real scalar quantity,
defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the
two quantities as a number.”

Properties

• name: String
Name of the unit.

• symbol: String [0..1]
Short symbolic name of the unit.

• description: String [0..1]
Textual description of the unit.

• definitionURI: String [0..1]
URI that references an external definition of the unit.

Issue: 16396 – Improvements to QUDV for SysML v1.3

• quantityKind : QuantityKind[0..*]
Since a Unit is a particular value for a quantity of a given kind, every Unit must be the measurementUnit of at least
one QuantityKind.

• primaryQuantityKind : QuantityKind[0..1] {subsets quantityKind}
For a given SystemOfUnits, each chosen baseUnit must have an adopted primaryQuantityKind which is its
adoptedMeasurementUnit. Here the notion of "primary" is meant to designate the particular quantity kind that is used
in the formal definition of a measurement unit, as is e.g. done in ISO/IEC 80000 (see Figure D.11).

D.5.2.21 UnitFactor

Description

A UnitFactor represents a factor in the product of powers that defines a DerivedUnit.

Properties

• exponent: Rational
Rational number that specifies the exponent of the power to which the unit is raised.
OMG SysMLTM, v1.2 221

• unit: Unit
Reference to the Unit that participates in the factor.

D.5.3 References

[VIM]
JCGM 200:2008, International Vocabulary of Metrology - Basic and General Concepts and Associated Terms (VIM), 3rd
edition, 2008, BIPM, Paris, France. Available for download in PDF format from BIPM's website http://www.bipm.org. This
third edition is also published on paper by ISO (ISO/IEC Guide 99-12:2007, International Vocabulary of Metrology – Basic
and General Concepts and Associated Terms, VIM).

[ISO/IEC80000]
ISO/IEC 80000, Quantities and units. 15 parts, some published, some still in progress, harmonized replacement of [ISO31]
and [IEC60027], the new international system of quantities and units.

[ISO31]
ISO 31, Quantities and units (Third edition 1992-08-01). Specifies the international system of units - SI - in 14 parts.

[IEC60027]
IEC 60027-2:2005, Letter symbols to be used in electrical technology - Part 2: Telecommunications and electronics (Third
edition 2005-08).

[SI-Brochure]
Le Système international d'unités (SI) / The International System of Units (SI), 8th edition 2006, BIPM, (French and English).
Available for download in PDF format from http://www.bipm.org/en/si/si_brochure.

[NIST330]
The International System of Units (SI), NIST Special Publication 330, 2008 Edition. NOTE: U.S. version of the English
language text of [SI-Brochure].
Available for download in PDF format from http://physics.nist.gov/cuu/Units/bibliography.html.

[NIST822]
Guide for the Use of the International System of Units (SI), NIST Special Publication 811, 2008 Edition.
Available for download in PDF format from http://physics.nist.gov/cuu/Units/bibliography.html

D.5.4 Usage Examples

D.5.4.1 SI Unit and QuantityKind examples

Figure D.11 shows an approach for defining the seven base units of the System International of Units defined in http://
www.bipm.org/en/si/si_brochure/chapter2/2-1/ and http://physics.nist.gov/cuu/Units/units.html. This approach involves
instantiating the concrete classes of Unit shown in Figure D.9. For example, “second” is defined as a SimpleUnit (D.5.2.16)
which, in the context of the “SI” SystemOfUnits (D.5.2.19) is both a unit and a base unit. The same instantiation technique
applies to define the seven base quantity kinds of the International System of Quantities (ISQ) corresponding to the seven base
units of the SI.

Figure D.12 diagram shows the definition of “newton” as a DerivedUnit (D.5.2.4) corresponding to the “forceQK”
DerivedQuantityKind (D.5.2.3). Derived units and quantity kinds are defined as products of factors on other units and quantity
kinds respectively. In the QUDV, the product factors of a DerivedUnit (resp. DerivedQuantityKind) are all of the UnitFactor
(resp. DerivedUnitFactor) at the “factor” ends of association link instances.
222 OMG SysMLTM, v1.2

http://www.bipm.org

Issue: 16396 – Improvements to QUDV for SysML v1.3

Figure D.11 - Base Unit and Quantity Kinds of the SI and ISQ respectively

Figure D.12 - Example of a derived unit and derived quantity kind
OMG SysMLTM, v1.2 223

D.5.4.2 Spring example

Figure D.13 shows a simple model of the length of a spring defined as the linear distance between the linear position of its two
flange ends. QUDV supports defining arbitrary systems of units and quantities. Although this example uses only one unit,
“metre” and one quantity kind, “lengthQK;” this example illustrates support for specializing the concept of Quantity to make
additional distinctions such as “LinearPosition” vs. “LinearDistance,” two distinct quantities that have the same unit and
quantity kind. This example illustrates an instance of a spring and uses the dot pathname property notation defined for IBDs
(Section 8.3.1.2) to clearly indicate the role of each instance specification.

Figure D.13 - Spring Length Example

D.6 Distribution Extensions

D.6.1 Overview

This section describes a non-normative extension to provide a candidate set of distributions (see Section 8.3.2.4,
“DistributedProperty”). It consists of a profile containing stereotypes that can be used to specify distributions for properties of
blocks.

[Spring Length Example]SpringExample[package]bdd

quantityKind: QuantityKind [0..1] = lengthQK {readOnly,redefines quantityKind}
unit: Unit [0..1] = metre {readOnly,redefines unit}
value: Real {redefines value}

 «valueType»
LinearDistance

quantityKind: QuantityKind [0..1] = lengthQK {readOnly,redefines quantityKind}
unit: Unit [0..1] = metre {readOnly,redefines unit}
value: Real {redefines value}

 «valueType»
LinearPosition

lengthQK: SimpleQuantityKind

SpringQuantities: SystemOfQuantities

value = "42.0"

spring1.length: LinearDistance

SpringUnits: SystemOfUnits

metre: SimpleUnit

value = "50.0"

spring1.b.pos: LinearPosition

value = "8.0"

spring1.a.pos: LinearPosition

parts
a: Flange

values
b: LinearPosition
length: LinearDistance

constraints
springLength: SpringLength

 «block»
Spring

position = spring1.a.pos

spring1.a: Flange

position = spring1.b.pos

spring1.b: Flange

parameters
a: Flange
b: LinearPosition
length: LinearDistance

 «constraint»
SpringLength

{length = | a - b |}

a = spring1.a
b = spring1.b
length = spring1.length

spring1: Spring

values
position: LinearPosition

 «block»
Flange

 «valueType»
Quantity

systemOfQuantities

quantityKind
unit baseQuantityKindquantityKindbaseUnit
224 OMG SysMLTM, v1.2

D.6.2 Stereotypes

Package Distributions

«stereotype»
Uniform

«stereotype»
Interval

min: Real
max: Real

«stereotype»
BasicInterval

mean: Real
standardDeviation: Real

«stereotype»
Normal

«stereotype»
SysML::Blocks::

DistributedProperty

Figure D.14 - Basic distribution stereotypes

D.6.3 Usage Example

Figure D.15 shows a simple example of using distributions; the force of the Cannon is specified using a Normal distribution
with parameters mean and standard Deviation. Whereas the use of a Normal distribution can be inferred from the names of its
parameters, an Interval distribution shares parameters with a Uniform distribution, hence the stereotype keyword «interval» is
used to distinguish it.

Issue: 16114 – typo in diagram C.15

Table D.6 - Distribution Stereotypes

Stereotype Base Class Properties Constraints Description

«BasicInterval» «DistributedProperty» min:Real

max:Real

N/A Basic Interval distribution - value
between min and max inclusive

«Interval» «BasicInterval» N/A N/A Interval distribution - unknown
probability between min and max

«Uniform» «BasicInterval» N/A N/A Uniform distribution - constant
probability between min and max

«Normal» «DistributedProperty» mean:Real

standardDeviation:Real

N/A Normal distribution - constant
probability between min and max
OMG SysMLTM, v1.2 225

Figure D.15 - Distribution Example

bdd [block] FiringRange

«normal»{mean=100.0,standardDeviation=1.0}force: Newton

«block»
Cannon

«interval»{min=101.0,max=105.0}volume: CubicMeter
density:KilogramPerCubicMeter
acceleration: MeterPerSquareSecond

«block»
Shot
226 OMG SysMLTM, v1.2

Issue: 13178 – Port Decomposition of a Flow Specification Discussion (renumbered old es B through E)

Annex E: Model Interchange
(informative)

D.1 Overview

This annex describes two methods for exchanging SysML models between tools. The first method discussed is XML Metadata
Interchange (XMI), which is the preferred method for exchanging models between UML-based tools. The second approach
describes the use of ISO 10303-233 Application Protocol: Systems engineering (AP233), which is one of the series of STEP
(Standard for the Exchange of Product Model Data) engineering data exchange standards. Other model interchange
approaches are possible, but the ones described in this annex are expected to be the primary ones supported by SysML.

D.2 Context for Model Interchange

Developing today’s complex systems typically requires engineering teams that are distributed in time and space and that are
often composed of many companies, each with their own culture, methods, and tools. Effective collaboration requires
agreement on, and a thorough understanding of, the various work assignments and resulting artifacts.

Many of these artifacts pertain to shared engineering data (e.g., requirements, system structural and behavioral models,
verification & validation) that transcend the entire life cycle of the system of interest and are the basis for important systems
engineering considerations and decisions. So it is critical that the system information contained in these artifacts and
information models be accurately captured and readable by all appropriate team members in a timely manner.

Today, this information resides in an array of tools where each is only concerned with a portion of systems engineering data
and can’t share its data with other tools because they only understand their own native schema. To mitigate this situation,
collaborating organizations are usually forced to either adopt a common set of tools or develop a unique, bidirectional
interface between many of the tools that each organization uses. This can be an expensive and untimely approach to data
exchange between team members. So there is a need to define standardized approaches for model interchange between the
different data schemas in use.

D.3 XMI Serialization of SysML

UML 2.0 is formally defined using the OMG Meta Object Facility (MOF). MOF can be considered a language for specifying
modeling languages. The OMG XML Metadata Interchange (XMI) 2.1 standard specifies an XML-based interchange format
for any language modeled using MOF. This results in a standard, convenient format for serializing UML user models as XMI
files for interchange between UML tools. The XMI specification also includes rules for generating an XML Schema that can
be used for basic validation of the structure of those UML user model XMI files.

The UML language includes an extension mechanism called UML Profiles. UML Profiles are themselves defined as UML
models (MOF is not used). However, their intent is to specify extensions to the UML language semantics in much the same
way one could extend the UML language by adding to the MOF definition of UML. As UML Profiles are valid UML models,
XMI does provide a mechanism for exchanging the UML Profiles between UML tools. However, as they are extensions to
concepts defined in the UML language itself, the definition of a UML Profile refers to the UML language definitions. An XMI
2.1 representation of the SysML profile (i.e., the UML Profile for SysML), as well as XMI 2.1 representations of Model
OMG SysMLTM, v1.2 227

Libraries defined by SysML, are provided as support documents to this specification. As with UML, XMI provides a
convenient serialized format for model interchange between SysML tools and basic validation of those files using an XML
Schema as well.

The namespace for the standard profile is: http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi.

D.4 SysML Model Interchange Using AP233

AP233 is a data exchange standard designed to support the exchange of systems engineering data between the many and
varied software tools that systems engineers use in the course of their work. Data from systems modeling tools is included in
the scope of AP233, in fact, requirements for AP233 and SysML have been largely aligned by the OMG and the ISO teams
working together and in close cooperation with the INCOSE Model Driven System Design working group.

D.4.1 Scope of AP233

AP233 is not a graphical modeling language, but specifies data exchange mechanisms to support the exchange of data between
Engineering Tools that generate or consume systems engineering data. Figure D-1 illustrates the overlaps between the types of
data that can be exchanged by a tool that supports the AP233 data exchange mechanisms, and the type of data that is generated
or consumed by a SysML modeling tool. In general, there is considerable overlap indicating the potential support that AP233
can provide as a data exchange standard for SysML modeling tools.

Figure D.1 - SysML/AP233 Data Overlaps

AP233 includes support for assigning program management information as well as system modeling information to systems
engineering data.

Program management capabilities include issue management, risk management and aspects of project management such as
project breakdown, project resource information, organization structure, schedule and work structure.

System modeling capabilities include requirements and requirements allocation, trade studies with measures of effectiveness,
interface to analysis, function-based behavior, state-based behavior, system hierarchies for the design system, the realized
system and all interfaces.

Additional information about AP233 can be found at http://www.ap233.org/.
228 OMG SysMLTM, v1.2

http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi

D.4.2 STEP Architecture

AP233 is standardized under ISO Technical Committee 184 (Industrial Automation Systems and Integration), Subcommittee 4
(Industrial Data). AP233 is part of the family of ISO 10303 standards, referred to as STEP, that include standardized models
and infrastructure for the exchange of product model data.

The STEP architecture is modular. This enables the component information models to be reused across disciplines and life-
cycle stages in different application protocols, which are the models used for implementation. STEP models are written using
the ISO 10303-11 EXPRESS language.

STEP also standardizes a series of implementation methods: a text file structure (ISO 10303-21), a data access interface (ISO
10303-22) and an XML file format (ISO 10303-28). The data access interface has bindings that provide standardized APIs for
accessing EXPRESS-based data in various programming languages. A conforming STEP implementation is the combination
of a STEP application protocol and one or more of the implementation methods.

The scope of STEP is very large and a number of data exchange standards (e.g., geometry, product life-cycle support,
structural, electrical, and engineering analysis) have been in wide use in industry for more than 15 years. Support for several
systems engineering viewpoints within the scope of AP233 are shared with other application protocols. Since AP233 is part of
STEP, it is easy to relate systems engineering data to that of other engineering disciplines over the life cycle of a system and to
related product models.

For more information on the STEP architecture see the ISO TC184/SC4 Industrial Data subcommittee web page at http://
www.tc184-sc4.org.

D.4.3 EXPRESS

AP233, like all STEP application protocols, is defined using the EXPRESS modeling language. EXPRESS is a precise text-
based information modeling language with a related graphical representation called EXPRESS-G.

An example of the text-based format follows:

SCHEMA Ap233_systems_engineering_arm_excerpt;
ENTITY Product;
 id : STRING;
 name : STRING;
 description : OPTIONAL STRING;
END_ENTITY;

ENTITY Product_version;
 id : STRING;
 description : OPTIONAL STRING;
 of_product : Product;
END_ENTITY;

ENTITY Product_view_definition;
 id : OPTIONAL STRING;
 name : OPTIONAL STRING;
 additional_characterization : OPTIONAL STRING;
 initial_context : View_definition_context;
 additional_contexts : SET [0:?] OF View_definition_context;
 defined_version : Product_version;
WHERE
 WR1: NOT (initial_context IN additional_contexts);
 WR2: EXISTS(id) OR (TYPEOF(SELF\Product_view_definition) <> TYPEOF(SELF));
END_ENTITY;
OMG SysMLTM, v1.2 229

ENTITY View_definition_context;
 application_domain : STRING;
 life_cycle_stage : STRING;
 description : OPTIONAL STRING;
WHERE
 WR1: (SIZEOF (USEDIN(SELF, 'AP233_SYSTEMS_ENGINEERING_ARM_EXCERPT.' +
 'PRODUCT_VIEW_DEFINITION.INITIAL_CONTEXT')) > 0) OR
 (SIZEOF (USEDIN(SELF, 'AP233_SYSTEMS_ENGINEERING_ARM_EXCERPT.' +
 'PRODUCT_VIEW_DEFINITION.ADDITIONAL_CONTEXTS')) > 0);
END_ENTITY;

ENTITY System
 SUBTYPE OF (Product);
END_ENTITY;

ENTITY System_version
 SUBTYPE OF (Product_version);
 SELF\Product_version.of_product : System;
END_ENTITY;

ENTITY System_view_definition
SUBTYPE OF (Product_view_definition);
 SELF\Product_view_definition.defined_version : System_version;
END_ENTITY;

END_SCHEMA;

EXPRESS expressions are similar in nature to OCL expressions and the two languages have similar expressiveness.
EXPRESS has also been approved as an OMG standard with a September 2009 publication of Version 1.0 of the Reference
Metamodel for the EXPRESS Information Modeling Language Specification. This will enable the use of OMG Model Driven
Architecture technologies against AP233 and other STEP models written in EXPRESS.

D.4.4 SysML-AP233 Mapping

A formal and standardized mapping between SysML and AP233 is being developed within the OMG. The mapping is a
specification for SysML and other tool vendors to implement so that their tools can import from and export to AP233 data
exchange files. AP233 usage is aimed primarily at scenarios where SysML data is fed to downstream applications such as
those used in manufacturing, life cycle management or systems maintenance. Additional information can be found at the
OMG SysML Portal at http://www.omgwiki.org/OMGSysML/.
230 OMG SysMLTM, v1.2

http://www.omgwiki.org/OMGSysML/

Issue: 13178 – Port Decomposition of a Flow Specification Discussion (renumbered old es B through E)

Annex F: Requirements Traceability
(informative)

The OMG SysML requirements traceability matrix traces this specification to the original source requirements in the
UML for Systems Engineering RFP (ad/2003-03-41). The traceability matrix is included by reference in a separate document
(ptc/2007-03-09).

Issue: 15905 – Appendix F out of date (old F deleted from specification)
OMG SysMLTM, v1.2 231

232 OMG SysMLTM, v1.2

A
Activities 16
activity diagram 156
Allocation 115
Allocations 16
Architecture 7, 8
Attributes 26

B
Binding Connector 42
Block 42, 43

labeled compartments 36
Block definition diagram 36
block definition diagram 157
Block definition diagrams 19
Blocks 16, 19, 29, 69

contraints compartment 37
definitions 36
diagram elements 30
internal block diagram 35, 38
namespace compartment 37
overview 29
structure compartment 37
valuetypes 36

C
Comments 21
compartments 36
Complex number 50
Compliance 13, 16

abstract syntax 16
concrete syntax 16
levels 13

ConnectorProperty 45
constraint 37
constraint block 73
Constraint blocks 16, 19, 69
constraint property 73
Constraints 21, 25, 26
Constructs 19

D
Design principles 8
Diagram 155
Diagrams 11, 19

elements 17
extensions 25

DistributedProperty 46

E
Elements 17, 24
Enhanced Functional Flow Block Diagrams (EFFBD) 195
Extensions 15, 25

UML
extensions 17

F
Feature support statements 17
FlowPort 155, 159
FlowPorts 160
FlowProperty 64, 73
Flows 16, 19, 57

FlowSpecification 159, 161
Formalism 17

levels 17

I
IEEE 1471 standard 21
Internal block diagram 38
internal block diagram 157
Internal block diagrams 19
Interoperability 8
Item Flow 65
Item flows 58
ItemFlow 76

L
Languages 7

formalism 17
SysML 7
UML 7

Layering 8
Library models 11

M
measure of effectiveness (moe) 201
Metaclasses 10
Model Libraries 49
Model library 93, 141
Models

elements 16, 19, 21
libraries 11

N
namespace compartment 37
NestedConnectorEnd stereotype 46

P
package diagram 157
Package diagrams 19
parametric diagram 157
Parametric diagrams 19
ParticipantProperty 47
Partioning 8
Ports 16, 19, 57

standard 57
Problem description 26
Profiles

SysML 10
Profiles package 141
property 29
property path name 39

R
Rationale description 26
Real number 51
Realization

full 16
Relationships

conform 25
Requirement 125
Requirements 8, 16
requirements diagram 157
Reuse 8
OMG SysMLTM, v1.2 235

S
sequence diagram 157
state machine diagram 157
StateMachine 105
stereotype keyword 36
Stereotypes 11, 41, 198
Structural Constructs 19
Structural constructs 19
Structure

chapter specification 17
structure compartment 37
Syntax 16

concrete 17
SysML 7

compliance 13, 15
design principles 8
diagrams 11
examples 18
extensions 11, 15
extensions to UML 7
modeling constructs 17
packages 10
profile 10
reuse 8
UML elements not included in 25

SysML blocks 29
SysML diagrams 155
SysML ValueType 36
Systems engineering 18

U
UML

diagram extensions 11
elements not in SysML 25
extension for SysML 7
extensions for SysML 10
stereotypes 11

Unit 48
Use case 109
use case diagram 157

V
ValueType 36, 49
Viewpoint description 26

X
XML Metadata Interchange (XMI) 227
236 OMG SysMLTM, v1.2

	OMG Systems Modeling Language (OMG SysML™)
	Part I - Introduction
	1 Scope
	2 Normative References
	3 Additional Information
	3.1 Relationships to Other Standards
	3.2 How to Read this Specification
	3.3 Acknowledgments

	4 Language Architecture
	4.1 Design Principles
	4.2 Architecture
	4.3 Extension Mechanisms
	4.4 SysML Diagrams

	5 Compliance
	5.1 Compliance with UML Subset (UML4SysML)
	5.1.1 Compliance Level Contents

	5.2 Compliance with SysML Extensions
	5.3 Meaning of Compliance

	6 Language Formalism
	6.1 Levels of Formalism
	6.2 Chapter Specification Structure
	6.2.1 Overview
	6.2.2 Diagram Elements
	6.2.3 UML Extensions
	6.2.4 Usage Examples

	6.3 Conventions and Typography

	Part II - Structural Constructs
	7 Model Elements
	7.1 Overview
	7.2 Diagram Elements
	7.3 UML Extensions
	7.3.1 Diagram Extensions
	7.3.1.1 UML Diagram Elements not Included in SysML

	7.3.2 Stereotypes
	7.3.2.1 Conform
	7.3.2.2 Problem
	7.3.2.3 Rationale
	7.3.2.4 View
	7.3.2.5 Viewpoint

	7.4 Usage Examples

	8 Blocks
	8.1 Overview
	8.2 Diagram Elements
	8.2.1 Block Definition Diagram
	8.2.2 Internal Block Diagram

	8.3 UML Extensions
	8.3.1 Diagram Extensions
	8.3.1.1 Block Definition Diagram
	8.3.1.2 Internal Block Diagram
	8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams
	8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

	8.3.2 Stereotypes
	8.3.2.1 Binding Connector
	8.3.2.2 Block
	8.3.2.3 ConnectorProperty
	8.3.2.4 DistributedProperty
	8.3.2.5 NestedConnectorEnd
	8.3.2.6 ParticipantProperty
	8.3.2.7 PropertySpecificType
	8.3.2.8 QuantityKind
	8.3.2.9 Unit
	8.3.2.10 ValueType

	8.3.3 Model Libraries
	8.3.3.1 Boolean
	8.3.3.2 Complex
	8.3.3.3 Integer
	8.3.3.4 Number
	8.3.3.5 Real
	8.3.3.6 String

	8.4 Usage Examples
	8.4.1 Wheel Hub Assembly
	8.4.2 Example Value Type Definitions
	8.4.3 Design Configuration for SUV EPA Fuel Economy Test
	8.4.4 Water Delivery

	9 Ports and Flows
	9.1 Overview
	9.1.1 Ports
	9.1.2 Flow Properties, Provided and Required Features, and Nested Ports
	9.1.3 Proxy Ports and Full Ports
	9.1.4 Item Flows
	9.1.5 Deprecation of Flow Ports and Flow Specifications

	9.2 Diagram Elements
	9.2.1 Block Definition Diagram
	9.2.2 Internal Block Diagram

	9.3 UML Extensions
	9.3.1 Diagram Extensions
	9.3.1.1 DirectedFeature
	9.3.1.2 FlowProperty
	9.3.1.3 FullPort
	9.3.1.4 InvocationOnNestedPortAction
	9.3.1.5 ItemFlow
	9.3.1.6 Port
	9.3.1.7 ProxyPort
	9.3.1.8 TriggerOnNestedPort

	9.3.2 Stereotypes
	9.3.2.1 AcceptChangeStructuralFeatureEventAction
	9.3.2.2 Block
	9.3.2.3 ChangeStructuralFeatureEvent
	9.3.2.4 DirectedFeature
	9.3.2.5 FeatureDirection
	9.3.2.6 FlowDirection
	9.3.2.7 FlowProperty
	9.3.2.8 FullPort
	9.3.2.9 InterfaceBlock
	9.3.2.10 InvocationOnNestedPortAction
	9.3.2.11 ItemFlow
	9.3.2.12 ProxyPort
	9.3.2.13 TriggerOnNestedPort

	9.4 Usage Examples
	9.4.1 Ports with Required and Provided Features
	9.4.2 Flow Ports and Item Flows
	9.4.3 Ports with Flow Properties
	9.4.4 Proxy and Full Ports
	9.4.5 Association and Port Decomposition
	9.4.6 Item Flow Decomposition

	10 Constraint Blocks
	10.1 Overview
	10.2 Diagram Elements
	10.2.1 Block Definition Diagram
	10.2.2 Parametric Diagram

	10.3 UML Extensions
	10.3.1 Diagram Extensions
	10.3.1.1 Block Definition Diagram
	10.3.1.2 Parametric Diagram

	10.3.2 Stereotypes
	10.3.2.1 ConstraintBlock
	10.3.2.2 ConstraintProperty

	10.4 Usage Examples
	10.4.1 Definition of Constraint Blocks on a Block Definition Diagram
	10.4.2 Usage of Constraint Blocks on a Parametric Diagram

	Part III - Behavioral Constructs
	11 Activities
	11.1 Overview
	11.1.1 Control as Data
	11.1.2 Continuous Systems
	11.1.3 Probability
	11.1.4 Activities as Blocks
	11.1.5 Timelines

	11.2 Diagram Elements
	11.2.1 Activity Diagram

	11.3 UML Extensions
	11.3.1 Diagram Extensions
	11.3.1.1 Activity
	11.3.1.2 CallBehaviorAction
	11.3.1.3 ControlFlow
	11.3.1.4 ObjectNode

	11.3.2 Stereotypes
	11.3.2.1 Continuous
	11.3.2.2 ControlOperator
	11.3.2.3 Discrete
	11.3.2.4 NoBuffer
	11.3.2.5 Overwrite
	11.3.2.6 Optional
	11.3.2.7 Probability
	11.3.2.8 Rate

	11.3.3 Model Libraries
	11.3.3.1 ControlValue

	11.4 Usage Examples

	12 Interactions
	12.1 Overview
	12.2 Diagram Elements
	12.2.1 Sequence Diagram

	12.3 UML Extensions
	12.3.1 Diagram Extensions
	12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing Diagram

	12.4 Usage Examples
	12.4.1 Sequence Diagrams

	13 State Machines
	13.1 Overview
	13.2 Diagram Elements
	13.2.1 State Machine Diagram

	13.3 UML Extensions
	13.4 Usage Examples
	13.4.1 State Machine Diagram

	14 Use Cases
	14.1 Overview
	14.2 Diagram Elements
	14.2.1 Use Case Diagram

	14.3 UML Extensions
	14.4 Usage Examples

	Part IV - Crosscutting Constructs
	15 Allocations
	15.1 Overview
	15.2 Diagram Elements
	15.2.1 Representing Allocation on Diagrams

	15.3 UML Extensions
	15.3.1 Diagram Extensions
	15.3.1.1 Tables
	15.3.1.2 Allocate Relationship Rendering
	15.3.1.3 Allocated Property Compartment Format
	15.3.1.4 Allocated Property Callout Format
	15.3.1.5 AllocatedActivityPartition Label

	15.3.2 Stereotypes
	15.3.2.1 Allocate(from Allocations)
	15.3.2.2 Allocated(from Allocations)
	15.3.2.3 AllocateActivityPartition(from Allocations)

	15.4 Usage Examples
	15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks
	15.4.2 Allocate Flow
	15.4.2.1 Allocating Structure
	15.4.2.2 Automotive Example

	15.4.3 Tabular Representation

	16 Requirements
	16.1 Overview
	16.2 Diagram Elements
	16.2.1 Requirement Diagram

	16.3 UML Extensions
	16.3.1 Diagram Extensions
	16.3.1.1 Requirement Diagram
	16.3.1.2 Requirement Notation
	16.3.1.3 Requirement Property Callout Format
	16.3.1.4 Requirements on Other Diagrams
	16.3.1.5 Requirements Table

	16.3.2 Stereotypes
	16.3.2.1 Copy
	16.3.2.2 DeriveReqt
	16.3.2.3 Requirement
	16.3.2.4 RequirementRelated
	16.3.2.5 TestCase
	16.3.2.6 Satisfy
	16.3.2.7 Verify

	16.4 Usage Examples
	16.4.1 Requirement Decomposition and Traceability
	16.4.2 Requirements and Design Elements
	16.4.3 Requirements Reuse
	16.4.4 Verification Procedure (Test Case)

	17 Profiles & Model Libraries
	17.1 Overview
	17.2 Diagram Elements
	17.2.1 Profile Definition in Package Diagram
	17.2.1.1 Extension

	17.2.2 Stereotypes Used On Diagrams
	17.2.2.1 StereotypeInNode
	17.2.2.2 StereotypeInComment
	17.2.2.3 StereotypeInCompartment

	17.3 UML Extensions
	17.4 Usage Examples
	17.4.1 Defining a Profile
	17.4.2 Adding Stereotypes to a Profile
	17.4.3 Defining a Model Library that Uses a Profile
	17.4.4 Guidance on Whether to Use a Stereotype or Class
	17.4.5 Using a Profile
	17.4.6 Using a Stereotype
	17.4.7 Using a Model Library Element

	Part V - Annexes
	Annex A: Diagrams
	A.1 Overview
	A.2 Guidelines

	Annex B: Deprecated Elements
	B.1 Overview
	B.1.1 Flow Ports

	B.2 Diagram Elements
	B.2.1 Block Definition Diagram
	B.2.2 Internal Block Diagram

	B.3 UML Extensions
	B.3.1 Diagram Extensions
	B.3.1.1 FlowPort
	B.3.1.2 FlowSpecification

	B.3.2 Stereotypes
	B.3.2.1 FlowPort
	B.3.2.2 FlowSpecification
	B.3.2.3 ItemFlow (deprecated compatibility rule)

	B.4 Transitioning SysML 1.2 Flow Ports to SysML 1.3 Ports (informative)

	Annex C: Sample Problem
	C.1 Purpose
	C.2 Scope
	C.3 Problem Summary
	C.4 Diagrams
	C.4.1 Package Overview (Structure of the Sample Model)
	C.4.1.1 Package Diagram - Applying the SysML Profile
	C.4.1.2 Package Diagram - Showing Package Structure of the Model

	C.4.2 Setting the Context (Boundaries and Use Cases)
	C.4.2.1 Internal Block Diagram - Setting Context
	C.4.2.2 Use Case Diagram - Top Level Use Cases
	C.4.2.3 Use Case Diagram - Operational Use Cases

	C.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)
	C.4.3.1 Sequence Diagram - Drive Black Box
	C.4.3.2 State Machine Diagram - HSUV Operational States
	C.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

	C.4.4 Establishing Requirements (Requirements Diagrams and Tables)
	C.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy
	C.4.4.2 Requirement Diagram - Derived Requirements
	C.4.4.3 Requirement Diagram - Acceleration Requirement Relationships
	C.4.4.4 Table - Requirements Table

	C.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams)
	C.4.5.1 Block Definition Diagram - Automotive Domain
	C.4.5.2 Block Definition Diagram - Hybrid SUV
	C.4.5.3 Internal Block Diagram - Hybrid SUV
	C.4.5.4 Block Definition Diagram - Power Subsystem
	C.4.5.5 Internal Block Diagram for the “Power Subsystem”

	C.4.6 Defining Ports and Flows
	C.4.6.1 Block Definition Diagra - ICE Flow Properties
	C.4.6.2 Internal Block Diagram - CANbus
	C.4.6.3 Block Definition Diagram - Fuel Flow Properties
	C.4.6.4 Parametric Diagram - Fuel Flow
	C.4.6.5 Internal Block Diagram - Fuel Distribution

	C.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)
	C.4.7.1 Block Definition Diagram - Analysis Context
	C.4.7.2 Package Diagram - Performance View Definition
	C.4.7.3 Parametric Diagram - Measures of Effectiveness
	C.4.7.4 Parametric Diagram - Economy
	C.4.7.5 Parametric Diagram - Dynamics
	C.4.7.6 (Non-Normative) Timing Diagram - 100hp Acceleration

	C.4.8 Defining, Decomposing, and Allocating Activities
	C.4.8.1 Activity Diagram - Acceleration (top level)
	C.4.8.2 Block Definition Diagram - Acceleration
	C.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)
	C.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation
	C.4.8.5 Table - Acceleration Allocation
	C.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test

	Annex D: Non-normative Extensions
	D.1 Activity Diagram Extensions
	D.1.1 Overview
	D.1.2 Stereotypes
	D.1.3 Stereotype Examples

	D.2 Requirements Diagram Extensions
	D.2.1 Overview
	D.2.2 Stereotypes
	D.2.3 Stereotype Examples

	D.3 Parametric Diagram Extensions for Trade Studies
	D.3.1 Overview
	D.3.2 Stereotypes
	D.3.3 Stereotype Examples

	D.4 Model Library of SysML Quantity Kinds and Units for ISO 80000-1
	D.5 Model Library for Quantities, Units, Dimensions, and Values (QUDV)
	D.5.1 Overview
	D.5.2 Abstract Syntax
	D.5.2.1 AffineConversionUnit
	D.5.2.2 ConversionBasedUnit
	D.5.2.3 DerivedQuantityKind
	D.5.2.4 DerivedUnit
	D.5.2.5 Dimension
	D.5.2.6 GeneralConversionUnit
	D.5.2.7 LinearConversionUnit
	D.5.2.8 Prefix
	D.5.2.9 PrefixedUnit
	D.5.2.10 QuantityKind
	D.5.2.11 QuantityKindFactor
	D.5.2.12 Rational
	D.5.2.13 Scale
	D.5.2.14 ScaleValueDefinition
	D.5.2.15 SimpleQuantityKind
	D.5.2.16 SimpleUnit
	D.5.2.17 SpecializedQuantityKind
	D.5.2.18 SystemOfQuantities
	D.5.2.19 SystemOfUnits
	D.5.2.20 Unit
	D.5.2.21 UnitFactor

	D.5.3 References
	D.5.4 Usage Examples
	D.5.4.1 SI Unit and QuantityKind examples
	D.5.4.2 Spring example

	D.6 Distribution Extensions
	D.6.1 Overview
	D.6.2 Stereotypes
	D.6.3 Usage Example

	Annex E: Model Interchange
	D.1 Overview
	D.2 Context for Model Interchange
	D.3 XMI Serialization of SysML
	D.4 SysML Model Interchange Using AP233
	D.4.1 Scope of AP233
	D.4.2 STEP Architecture
	D.4.3 EXPRESS
	D.4.4 SysML-AP233 Mapping

	Annex F: Requirements Traceability

