An OMG Systems Modeling Language™ Publication

OMG Systems Modeling Language (OMG SysML ™)

Version 1.6

OMG Document Number: formal/19-11-01

Date: November 2019

Standard document URL: https://www.omg.org/spec/SysML/1.6/
Machine Readable File(s):

Normative:

https://www.omg.org/spec/SysML/20181001/sysml.xmi

Non-normative:

https://www.omg.org/spec/SysML/20181001/sysmlidi.xmi

https://www.omg.org/spec/SysML/20181001/qudv.xmi
https://www.omg.org/spec/SysML/20181001/iso800000.xmi

Refer to the Roadmap located in the Preface for a list of documents that were generated as
part of the adoption, finalization, and revision process.

https://www.omg.org/spec/SysML/20181001/SysML.xmi
https://www.omg.org/spec/SysML/20181001/SysML.xmi
https://www.omg.org/spec/SysML/20181001/SysML.xmi
https://www.omg.org/spec/SysML/20181001/SysML.xmi
https://www.omg.org/spec/SysML/20181001/SysMLDI.xmi
https://www.omg.org/spec/SysML/20181001/SysMLDI.xmi
https://www.omg.org/spec/SysML/20181001/SysMLDI.xmi
https://www.omg.org/spec/SysML/20181001/SysMLDI.xmi
https://www.omg.org/spec/SysML/20181001/QUDV.xmi
https://www.omg.org/spec/SysML/20181001/QUDV.xmi
https://www.omg.org/spec/SysML/20181001/QUDV.xmi
https://www.omg.org/spec/SysML/20181001/QUDV.xmi
https://www.omg.org/spec/SysML/20181001/ISO800000.xmi
https://www.omg.org/spec/SysML/20181001/ISO800000.xmi
https://www.omg.org/spec/SysML/20181001/ISO800000.xmi
https://www.omg.org/spec/SysML/20181001/ISO800000.xmi

Copyright © 2003-2018, American Systems Corporation

Copyright © 2003-2018, PTC Inc.

Copyright © 2003-2018, BAE SYSTEMS

Copyright © 2003-2018, The Boeing Company

Copyright © 2003-2018, Ceira Technologies

Copyright © 2003-2018, Deere & Company

Copyright © 2003-2018, Airbus

Copyright © 2003-2018, EmbeddedPlus Engineering

Copyright © 2007-2018, European Aeronautic Defence and Space Company N.V.
Copyright © 2003-2018, Eurostep Group AB

Copyright © 2003-2018, Gentleware AG

Copyright © 2003-2018, I-Logix, Inc.

Copyright © 2003-2018, International Business Machines

Copyright © 2003-2018, International Council on Systems Engineering
Copyright © 2003-2018, Israel Aircraft Industries

Copyright © 2003-2018, Lockheed Martin Corporation

Copyright © 2003-2018, Mentor Graphics

Copyright © 2003-2018, Motorola, Inc.

Copyright © 2007-2018, National Aeronautics and Space Administration
Copyright © 2007-2018, No Magic, Inc.

Copyright © 2003-2018, Northrop Grumman

Copyright © 1997-2019, Object Management Group

Copyright © 2003-2018, oose Innovative Informatik eG

Copyright © 2003-2018, PivotPoint Technology Corporation
Copyright © 2003-2018, Raytheon Company

Copyright © 2003-2018, Sparx Systems

Copyright © 2003-2018, Telelogic AB

Copyright © 2003-2018, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any companys products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to
this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,

PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, [IOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’S ISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

Table of Contents

PLOTACE ...ttt bt a b btk bttt b e e bt bt h bRt eht bbbt h e eb e bt bt ne bt st ne XX1V
1 LT) 1< PSPPSR 1
2 NOIMALIVE RETEIEICESc..iventeiieiiiieiertet ettt sttt b et b et e bt e bt s bt e b et et e st e bt bt st et et eat e bt e b e sb et et eneenentenbens 2
3 Additional INFOIrMEAtION.c.eiiiiiiieiei ettt b et e st b e bt e bt e et et e st e bt ekt e b et e e bttt b ettt n e bt et nben 3
3.1 Relationships t0 Other StANAAIAS...........ccveiiieieiieieriecietceee ettt e et e st et e e seessesseesseeseessessaessesseassessesseensesssesenseens 3
3.2 How to Read this International Standard.............c.coeoiiiiiiiiiniiie ettt 3
3.2.1 OFZANIZATIONe.veeientietiete et et et et e eteeete bt ett e teseeesbeeseesbesteessesseensesseestenseeseensesseense st ensesseentanseansansesseenseessensesseensenseensensenns 3

33 ACKNOWIEAGIMENESeeuteiieniitieiiesie ettt ettt et et este et este e st e besaeenbesseestesseeneansesstenseeseensesseenseseensansesseenseeneansesseensenseensensenns 5

4 Language and ATCRIEECTUIE.cc.iiieiireiete ettt ettt et et et e bt et e bt et e s teestebeeseessesseenseeseensesseensanseessenseeseenseassensesseensenseensensesneensennes 7
4.1 GEIETAL ...ttt b ettt a bttt b et et h e bttt h et h bt h e E bt h bt b e ettt s bbbt bttt es bbb e enee 7
4.2 DESIZN PIINCIPLE ..ottt ettt ettt et e bt e a et eb e et e e bt e st e sbeea b e bt e st e bees e e b e eht et e sheen b e bt entenbeente bt et enteene 10
4.3 ATCRILECTUIE ...ttt ettt ettt ettt e st e bt e a et e ee e e bt eaeen b e s bt emt e e bt embeebees b e bt eat e st eetenbeeatenbesseemtesbeenbebeeneebeenean 11
4.4 EXtENSION MECRANISIIISeeutiiieiieite ettt ettt ettt et e bt ea et sb e et e e bt esbesbeeab e bt estenbeeseenbeebeentesbeente bt enbenbeeneenbeenes 13
4.5 SYSIML DIAGTAIIIS ...ttt ettt ettt ettt ettt st ettt ettt s b et eae e bt sttt e s et esteu e bt sa et et esteut et e sa et et eseeuesaeebestesseneenesuestennens 13

S COMFOIIMAICE ...ttt ettt ettt et e e et e e s bt ea e et e eat e teesten b e ebeentesbeen s e bt eatesaeestenseeaeenseeeeenbeebeembe bt emte bt esbenseestenbeeseenseseeensannes 14
5.1 OVEIVIEW ...ntteutitteutesteeute et ett e bt s tt e bt ett e tesbeeate bt eatebeestenbeeseentesaeenteea e emte b e estemseeetenteeaeenbeeaeenbesseen s et e esbenbeentenbesbeenbesseanbanseennenseas 14

5.2 CONTOTINANCE TYPES ...ttt ettt b ettt et et e a et b e et s bt e st s bt e st e e bt e ase bt eb e et e s bt e st e ebeembesbeeaaenbeemte bt sbeenaeebean 14

6 Language FOTMALISITISc.couiiuiitiieieietiet ettt ettt ettt bt et e st es e eb e ke b e s et e s e eh e et e b e s emsemeeseeb e et e b entemeeseeneae e b eeenseneeseeneeeenee 15
6.1 LeVelS Of FOTMALISITI. ...ttt ettt ettt b ekttt es et e e b e s e e e st e st e et e b e e emsemeeseese et e b eneeneeseeseeseabeneeneeneeseanenean 15
6.2 CLAUSE SEIUCTUTE. ...euetteutietieiterteeit ettt ettt ettt ettt eat s bt e st e s bt ebt e bt sh e et e e bt ea b e e bt es s e bt eb e e bt eh b et e ebeeabeeb e e st e nbeesbebesbae bt ebeenbesbeeneenneas 15
6.2.1 OVEIVIEW ..ntiitenteeitett ettt ettt ettt e a et e bt et e e bt et eb e et e s bt e st e e bt e a b e e bt eate bt eat e b e sb e et e eb e ea bt e bt e st e e bt eabeebeeabenbeemte bt ebtenbesbeenbenas 15

6.2.2 DiIAGIAM ELEMENLSeeuviiieiieiieiieteetete ettt ettt et e s e te et ebeeteesseeseesseesaessesseassessesssesseessenseassessesssensensesssesseensensennes 15

6.2.3 UL EXEEISIONS. ...c.vtttitenteniettett ettt ettt sttt ettt b ettt s e bt e b e b e e e e e st eb e eb e eb et en s emeebe e bt st e b e st enees e e bt sbe b eneeneeneeteanens 15

6.2.4 USAZE EXAMPLESvenvieeieiieiieiieiieieettet e sttt e et e estesteest e teese e beestesseeseesseassenseasaessesseassanseessesseessenseassessesssensenseessesseessensenses 16

6.3 Conventions and TYPOZIAPNYccveriirieriiiieiiereeierte et este st et e e e et e steestesbeesaesseeseesseesaessesseassaseessessesssesseassessesssensensenssenseasees 16

T IMOAE] EIBIMENLS. ...ttt ettt ettt h et b et e st eb e e bt bt et e st e bt bt et et et eaeebe e bt e bt et en e e st entebeeb e st et e st e st ebe et e be e enee 19
7.1 OVETVICW ..ottt ettt ettt ettt et e bttt s st et e bt 4 et e s e st es e ek e b e s em e es e e bt ee e b e e e m e em e eh e eb e e e e b em e emeeb e eb e e bt s emtenees e et e abe st et eneeneeneebenaennan 19
7.1.1 VIEW QNA VIEWPOINE ..evtiiiieiieiieiieieeieteettete st ete s it estesteeste st e eseessesseenseesaessesseensesseensesseenseeseansesseensenseassensesseensesssensesseens 19

7.2 DIAGIamM EICINENLSeevieiieieieieieetiete sttt et e et e e st e etesteestesteeseesseeseense et e ensesseenseseesseseeseanseeseensesseensanseensenseensenseeseensennean 20
7.3 UML EXEEIISIONS ...ttt ettt ettt ettt sttt ettt b e sttt e b e bt b et et e st eb e e bt bt a et e st eb e bt eb e b et et eb e bt sb e b e e et e st ebeebenaenee 24
7.3.1 DiIAGIam EXLIEINSIONSvevvieiitieiieieeieteetteteettetesttetestesstesseestesseeseessesseensessaessesseassensesssesseensenseassensesssensessesssesseensensennes 24
7.3.1.1 UML Diagram Elements not Included in SYSML.........cccooviiiiiiiiieieceeieeeeieste ettt ee 24

7.3.2 SEETEOTYPES . cuvenvemrenteuteteetertet ettt ettt ettt et e et sttt es e eb e eb e b st e s st ebe e et et et et ea e eb e euesa et en s e st euteb e e b et et e st eaeea e b e st eue bt e e 25
7.3.2.1 COMTOTIIL ...ttt sttt b e e et ea e b e e bt e st e s bt e st e bt e st e bt e st e bt eh e em b e ebeembesbeenbe bt entenbesstensennean 25

7.3.2.2 ELEMENEGTOUD ...ttt ettt sttt b et b e st e bt e at et e s bt et e e bt ea b e sbe e st e bt e st et e eseenbesbeentesbeeneenbeenne 25

Vi OMG Systems Modeling Language, v1.6

7.3.23

7.3.2.4

7.3.2.5

7.3.2.6

7.3.2.7

7.3.2.8

8

8.1 OVEIVIBW ..ottt a ettt e b et b et a et e bbbt a et ea s ne 31
8.2 DHAGIAM EICINENLSeevieiieiiiiieiieiiete ettt ettt ettt et te st e et e et e e st e seestesbesseesteeseensesseentesseensanseesaenseestense et aentesseenseseenaenseenean 32
8.2.1 Block Definition DIAGIAIcccuivuiiiiriieiiiieieree ettt ettt ettt et e bt et e te s st e beebeesbesbeenbeebeenbesbeentesneennenee 32
8.2.2 Internal BIOCK DIa@Iam........cc.eeiiiuiiiiiieieteeetee ettt et ettt b et e b et e b e sbe e be s bt enbesbeenbenbeeseenbeennenee 39
8.3 UL EXEEIISIONS ...ttt st et et et e et eat et eut e tesb e et e et e eateshe e st eabe e st e beestenbeeaeentesheenteeseenbenbeemeenbeestenteeseenbesbeantesbeensenseenne 41
8.3.1 DiIAGIam EXIENSIONSvervieuiitieiieteeiteteetiete ettt ettt et e et e e s bt eat et e e st ebeebeeste s bt enbeebeestesbeemte bt entenbeestenbesseentesseensenaeenes 41
8.3.1.1 Block Definition DIAGIAM.........ceviitieieriiiieieeiteie sttt ettt st et sb et esbeeste bt e st etesstenbeebeensesseensenseennenee 41
8.3.1.2 Internal BIOCK DIQGIAM.....c..coiuiiiiiiiiiiiiiieere ettt et st b e ettt e b st e b bt enees 43
83.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams..... ... 46
8.3.14 UML Diagram Elements not Included in SysML Internal Block Diagrams............cccecveieininieneiinineneneecne 46
8.3.2 SHETEOTYPES vttt ettt ettt ettt sttt et e bt sb et e bt e bt s bt e st bt eat e bt e bt e bt e bt et e e bt em bt e bt eab e e bt e st e bt et e bt ehe e bt eb e e bt ehtenteebean 46
8.3.2.1 PaCKAZE BIOCKS ...ttt b ettt et e et b et st s et e b e b e b et n stk e b et et neene e ee 46
8.3.2.2 AQJUNCEPTOPETLY ...ttt ettt b et s e et e e ekt b e b e m e st e bt et et e e enees e et e abe et et eneeneenene 50
8.3.2.3 BINAINGCONNECIOT ...evvievieniieiieie sttt ettt ettt et et e st et e steesbeseeesaesbeessesseeseenseaseessesseansasseessenseessensenseessesssensensennes 52
8.3.2.4 BLOCK -ttt 53
8.3.2.5 BOUNAREIEIENCE.....c.eeviiiieiiiciiieiec ettt sttt 55
8.3.2.6 ClasSifierBeNaviorPIOPEILYccveviiiieiieieie ettt ettt ettt st e este et e sseessesbesseessasseensesseessesesssensensnensan 57
8.3.2.7 (010330 11010 0 20 () 1S) 4 PSSP 58
8.3.2.8 DirectedRelationshipPropertyPathcc.cccoiiiiiiiiiii ettt 59
8.3.2.9 DIStIIDULEAPTOPETLY ...ttt ettt ettt sttt ettt et este s st e b e eseenteseeente st ente s e entenbesneensesseensenseenns 61
8.3.2.10 ElementPropertyPath..........covoiiiiiieeeeee et sttt ettt b ettt ene et eneenee 61
8.3.2.11 EndPathMUIIPIICIEY «..c.veuveeieiieiieieniet ettt sttt et sttt et st sae e ebeeae 62
8.3.2.12 NestedConneCtOrENQ........c.cooiiiriiiiiiiiiinteeet ettt sttt ettt sttt ettt st 63
8.3.2.13 PartiCIPANTPIOPEILYcveuiiiiiiiiiiitertet ettt ettt ettt ettt ettt et eb et b ettt 64
8.3.2.14 ProPertySPECIIICTIPC ...cuveeieuiitieiterte ettt ettt ettt b et bt et bt et e st e e st e bt eae et e sb e et e abeenbenbeenbenbeeatanne 65
8.3.2.15 VALUETYPE -ttt st b e it e bt e h e et e ht et e s bt eab e e bt eabesbeea e e bt e st et e ebe et e ebeentesbeeneenbeeaee 66
833 IMOAET LIDTATIES ...ttt ettt ettt e b e st a e st s e et ea e e b saesae e neeneebeenen 67
8.3.3.1 Package PrimitiVE VAU TYPES ...c..ceouieuieieiiieiiet ettt sttt eb et st ettt ea et bt et s bt et e sbeeneenbeeanenee 67
8.3.3.2 Package UnitAndQuUantityKind............coerieriiiioiiiniieie ettt ettt sttt st sb e 69
8.4 USAEE EXAMPLES ...eneeiiiiitiiee ettt ettt ettt et b et et e s e et e st ekt eb e b ea e st es e eh e b e A et e st e et eh ek e b e e en e en e e bt eb et et et eneeneeneaeenee 71

8.4.1 WHEET HUD ASSEIMDLY ...ttt ettt b ettt s e bt s b e s eme e st es e et e e b e e et eseeseeaeeseneeneeneeseanens 71

OMG Systems Modeling Language, v1.6 vii

8.4.2 Example Value TYPe DEfINItIONSc.ccuveciirieieriieiestieieieeteie et ettt e s eteete e esaesteesaessesseeseessessesssensesseessesseessessenssenee 73
8.4.3 Design Configuration for SUV EPA Fuel ECONOMY TEStccveviiiiieiiieiieiesiieieseeiesieetesteeeeie e teeseeaesseese e snnessens 73
8.4.4 WALET DICIIVETY ..vevveiieiieiieieieeete ettt ettt ettt et et e st e et e e see b e eteesseeseessessaessesseassenseassesseeseenseessensesssenseaseessenseensansennes 74

8.4.5 Constraining DECOMPOSITIONeutruiriiriiieiieiieieete ettt ettt ettt ettt et et ea et a e st b et eetebeebesae st et e st ebeeteeaesaeneeneeneas 74

8.4.6 Units and QUANTILY KINASvovuiiiiiieieicieieeet ettt ettt b e et e e s et et e s st entesbeenaesbeensesseeneenseensensesseans 76

8.4.7 Property-Specific Typescccceeververuennee. et eeteeateteete e te ettt et e et e be et et e he e te bt enbeeteentenseeatan 78

O POTS A1 FLOWS c..cniiiiiicte ettt a bttt h bt s h b et eh bt e bt bbb st ekt b e s et b et et eb et sae et nene 81
9.1 OVETVIEW ..ottt ettt ettt ettt ettt sttt ea e ae e bt sttt e bt eh e e b e a et e st eaeea e h et et e st eh e e bt e et b e st e et ebeeb e e bt et et estebt et e e bt st et et e bt eneetenaennen 81
9.1.1 POTES et e b h e e h e s a et h e e a e bt st b e et eae 81
9.1.2 Flow Properties, Provided and Required Features, and Nested POItS.........ccceeveriiiiineiiiiniiienieieceieeeeeseeie e 81
9.1.3 Proxy Ports and FULL POTESccuoiuiiiiiiie ettt st b e et e sttt e bt bt et e s bt et e saeenee 81
9.1.4 TEEIIL FIOWS ...ttt ettt ettt et b et e bt e st e s bt e a b e s bt s b e e bt e st e bt e bt et e e bt embeebeenbesbeenbe bt enbenbeentenbeenes 82
9.1.5 Deprecation of Flow Ports and FIow SpecifiCations...........cc.eeieiieriiriiiniieienieiiesieeteie ettt st 82
0.2 DIA@Iam ELBIMENLSeueiiiiiiiiietiete sttt ettt ettt st e e b et e st e e s e s bt eat e be e et ea b e e aeeabesh e en b e bt ea b et e eht e bt eh e et e ebeen b e bt enbenbeeneebeeaee 82
9.2.1 BIock Definition DIAGIAIMc.eeuiiuiitiiiiieieie ettt ettt ettt ettt b et e st es e et e e be et e e e st eseeseebeabe s eneeseeneeseabeseneeneeneas 82
9.2.2 Internal BIOCK DIAGIAMoouiuiiuieiiitiiteteee ettt ettt e e st e bt st e s et es e es e et e b e b eneeseeseeseebessenseneeseeseeteasenseneeneanens 85
9.3 UL EXEEIISIONS ..ttt ettt ettt ettt ettt ettt s bttt e bt ea e bt e st e bt e bt et e sb e eab e e bt e st e sbeea b e bt e bt et e ebeembeebeentesbeemte bt eatenbeeneenbenaee 87
9.3.1 DiIaGram EXIENSIONSeruirutitiiiieieittetiet ettt ettt ettt b e s bttt b et e s bt e st s bt e st e bt e abe s bt e bt e bt e bt et e e bt et e s bt et e s bt et e nbeeaee 87
9.3.1.1 DITECIEAFCATUTE ...ttt ettt et ettt bt et e s bt e bt e bt e bt et e ebe et e sbe et e sbeemeenbeenne 87
9.3.1.2 FLOWPTOPETLY ...ttt b ettt b bt h et s bt et e bt e st e sb e e bt e bt e bt et e ebe et e sbeentesbeemeenbesane 87
9.3.1.3 FUITPOIT ...ttt et b ettt e e bbbt b e e st e st e st e bt et et et e nees e bt st e b et eneeneeseenenean 87
93.14 InvOCatioNONNESTEAPOITACLIONeeeiiitiieieieei ettt ettt ettt s bbb e e eens 87
9.3.1.5 TEEIMFLOW ...t b e et b e bt bttt h e bttt b et et e bt b s bbb e bbbt st ne 87
9.3.1.6 POT et h b h bt a bt h ettt a bt h e h et n e bbbt et ent b bt nee 88
9.3.1.7 53 40024 72) USRS 88
9.3.1.8 TrIGEETONNESIEAPOITe.vieeieiieiieie ettt ettt ettt ettt et e bt ea e stesstesbeeneensesseenba st ensesseentensesnsensesseensas 88

9.3.2 e ET0 13 0T OO RSTSRRR 89
9.3.2.1 AcceptChangeStructural Feature EVENtACHION.ccveitieieiicieiieiee sttt st ste e be e nse e 91
9322 AddFlowProperty ValueOnNestedPOrtACHION.ceviruieieieciieieeeie sttt ettt st e et aesteeneensesnnense e 92
9.3.23 BLOCK .tttk h e h bt e h ekt h e ettt b e bttt eb et ne 93
9.32.4 ChangeStructuralFEatUrEEVENL.ccvirtieieiecieieeee sttt sttt et ettt e et e besseenbesseensesaeenneneas 93
9.3.2.5 DITECLEAFCALUTEottt h et sttt b et e st st et e eae e besb e eate bt esbe st e eseenbesstentesbeensesneenne 94
9.3.2.6 Feature DIreCtionKiNd.cocueiiiiiiiieiieieetee ettt ettt sttt b et e bbb eh et et et bt et e s beentebeennenee 96
9.3.2.7 FLOWDITECHONKING ...ttt ettt ettt et sttt b e st e bees e et e e bt eateseeeneesbeenbesbeeneenseennanee 96
9.3.2.8 FLOWPTOPETLY ...ttt ettt ettt s e et s h et e s bt e st e bt eat et e s st et e eaeenbesbeeat e bt enbenbeentenbesseentesbeensesseenne 97
9.3.2.9 FUIIPOTE ...ttt ettt ettt ettt ettt e eb e b e st e st es e eb e e b e b emseneesees e s e sensenteseeaeesensanseneeseeseesensenseneeneesenne 98
9.3.2.10 INEEITACEBLOCK ...ttt ettt b ettt b e b s bt et s bt et e s b esbe st eaean 99
9.3.2.11 InvocatioNONNESIEAPOTTACIIONcoueitieiiiiiitieteeie ettt sttt b ettt et e bttt sbe et e s b e b e sbeeaeenes 99

viii OMG Systems Modeling Language, v1.6

9.3.2.12 TEEIMFLOW ...ttt b bt bttt s e bbbt b et e bbbttt e st sttt beneen 101
9.3.2.13 50 (0024 72 5) SRR 103
0.3.2.14 Trig@ErONNESIEAPOILieiiiiieietieieie ettt ettt ettt te st et e e teebesteessesaeesaesaeseesseassessesssensesseessessenssenseassanss
9.3.2.15 ~InterfaceBlock
9.4 Usage Examples

9.4.1 Ports with Required and Provided Features
9.4.2 Ports and Item Flows

943 POrtS With FIOW PIOPETLIESeeuiiiiiiieiieiieie ettt sttt ettt ettt et st e et e st e st e estebeestensesseensesseensesseensenseensensanns 110
9.4.4 PrOXY @nd FULL POTTSoitieiieiieieie sttt ettt sttt ettt st ettt e e s te e st e bt e st et e seeenseeaeensesseensenseensansesssenseaneensenes 110

9.4.5 Association and Port DEeCOMPOSITION.c.ueiuieiiriirieiiiiete ettt ettt ettt be ettt ete bt et e bt esbesbeentebesseensesnean 112

9.4.6 Jtem FIOW DECOMPOSILIONuviiietiitietietiete sttt ettt ettt et et ettt st et e bt e it e st e es b e beeutenbesbeenbesbeenbesbeentenseensentenne 115

1O CONSIAINE BIOCKS ...ttt ettt sttt h et e bt ea b e bt e at et e e et et e ebeenbesbeemteeseenbesbeesbe bt ensenbeesbenbeeneenbesseentens 119
LO.T OVEIVIEW w.eeniiiieitieieete sttt ettt eit ettt e te e et e bt eu e e s teseeenteebeeate ekt em e e bt eatem b e ebeenbeeaeenbesbeem b e bt enb et e estenseeneantesbeenbe st enbenbeentenseensanee 119
10.2 Diagram Elementsc........ ... 120
10.2.1 Block Definition Diagram...... ... 120

10.2.2 Parametric Diagram...... ... 120

10.3 UML Extensions.......c..cc..c..... e 121
10.3.1 Diagram Extensionsc......... .. 121
10.3.1.1 Block Definition Diagram...

10.3.1.2 Parametric Diagram 121

10.3.2 Stereotypes.......cccceen.... e 122
10.3.2.1 ConstraintBlock e 122

10.4 Usage EXAMPIES ...ccvevvereieiieiieiesieeieie ettt ete e see e s seens ... 123
10.4.1 Definition of Constraint Blocks on a Block Definition Diagram
10.4.2 Usage of Constraint Blocks on a Parametric Diagram ...

11 Activities............. . 127
I11.1 OVerviewccccceeceveenene . 127
11.1.1 Control as Data............. e 127
11.1.2 Continuous Systems...... e 127
11.1.3 Probability........cccuenuen. e 127

11.1.4 Activities as Blocks...... . 128
11.1.5 Timelines........ . 128
11.2 Diagram Elements.............. .. 128
11.2.1 Activity Diagram...... . 128
11.3 UML Extensions..........c........ ... 136
11.3.1 Diagram Extensions 136
11.3.1.1 ACHVILY oo ... 136
11.3.1.2 CallBENAVIOTACEON. ...ttt ettt et a et b st e e st ee e eb e e te e b et e e esees e ebeebesbeneenteseeneeseabeneenseneeneeeen 137

OMG Systems Modeling Language, v1.6 ix

11.3.1.3 CONITOIETOW ...ttt ettt et ettt et e et e e te e e te e teeeaseeeaeeeateeteeeaseeateeeaseeeseesaseenseessseeseeeaseensesaseean 137
11.3.14 ObjectNode, Variables, and PArametersccocievierieieniieieiesieeteseeiesie et steetesaeseeesaesseessessaessesseessessesssensens 137
L U 0 3 (<101 oLt PR

11.3.2.1 Continuous
11.3.2.2 ControlOperator
11.3.2.3 Discrete
11.3.2.4 NoBuffer
11.3.2.5 OVEIWIIER ..ottt ettt s sttt b et ea et b e sa b n st 142
11.3.2.6 (0515T0] 1F: 1 LSOO PU PSPPSRt 142

11.3.2.7 Probability.... . 143
11.3.2.8 Rate.............. . 144
11.3.3 Model Libraries............cc..c..... ... 145
11.3.3.1 Package ControlValues..... ... 145

11.4 Usage Examples ...

12 Interactions.......... ... 151
12.1 Overviewcc..c..... . 151
12.2 Diagram Elements.............. e 151
12.2.1 Sequence Diagram....

12.3 UML Extensions.................... ... 156
12.3.1 Diagram EXEENSIONSc.ceueiuirtirtiieieiietietestetee et ettt etesteteseete e bt steaseseeseeseeseabesseneeseeseeseabesseseneeseeseasensens ... 156
12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing Diagram..... ... 156

12.3.1.2 Interactions and Parameters

12.4 Usage Examples v 157
12.4.1 Sequence Diagrams...... e 157

13 State Machines
13.1 Overviewc..c....... ... 159
13.2 Diagram Elements..................... ... 159
13.2.1 State Machine Diagram...... .. 159

13.3 UML Extensions................... ... 163
13.3.1 Diagram EXtensionscccecceevveruereenne ... 163
13.3.1.1 State Machines and Parameters...... ... 163

13.4 Usage Examples...........ccccc.......
13.4.1 State Machine Diagram...

14 Use Cases............ . 165
14.1 Overview................. .. 165
14.2 Diagram Elements.............. .. 165

14.2.1 Use Case Diagram....
143 TUML EXEEINSIONSc.tiuteueetietietieteteit ettt ettt et e et et et e et et et es e et e e e e b e e eneeseesees e b ensemeeseee e b e esemsemeesees e et e s enseneeseeseebeabenseneeneeseasenean 167

X OMG Systems Modeling Language, v1.6

14,4 USAZE EXAMPLES ...ecvveiiieieiieiieiesieeieste et este st eteeteessesseestesseessesseeseesseeseessesseassansaessenseassensesssensesssessensesssenseansensesseensenseesensenns 167
15 ALLOCALIONS ...eevviveentieeientesieeetesteetesteetteteeteestesteesseeseessesseessenseassesseeseensaaseessesseessenseessasseassenseasaessesssessenseessenseassenseesaensenssansensenssensenn 171

I5.1 OVEIVIEW ..ottt ettt ettt ettt e e e te e e teeete e ete e e e e eaeeeateebeeeaseeseeeaseeaseeesseease e seeenseeeaseeeseetesenseesseenseeseesaseesessaseeseean

15.2 Diagram Elements
15.2.1 Representing Allocation on Diagrams
15.3 UML Extensions
15.3.1 Diagram Extensions
15.3.1.1 TADIES ...ttt
15.3.1.2 Allocate Relationship RENAEIING.c.ccueeiiriiiieriiiieiieieie ettt ettt ettt te e b e s bt ensesseenaesseennenee 173

15.3.1.3 Allocation Compartment Format....

15.3.14 Allocation Callout Format................. ... 173

15.3.1.5 AllocatedActivityPartition Label 173
15.3.2 Stereotypes..... . 174
15.3.2.1 Allocatec..ccveeveeeirennns . 174

15.3.2.2 AllocateActivityPartition

154 Usage EXAMPLES ...cc.oovveriieiiiiiiiienieeieieetesieeitee ettt ... 176
15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks....

15.42 Allocate Flow.......cccceuneene
15.4.2.1 Allocating Structure 179

15422 Automotive Example

15.4.3 Tabular Representation....

16 Requirements....... ... 181
16.1 Overview................. ... 181
16.2 Diagram Elements.................. ... 182

16.2.1 Requirement Diagram 182
16.3 UML Extensions................... . 186
16.3.1 Diagram Extensions 186

16.3.1.1 Requirement Diagram ...
16.3.1.2 Requirement Notationccecveeveuennenne ... 186
16.3.1.3 Requirement Property Callout Format..... ... 186
16.3.1.4 Requirements on Other Diagrams..... 186
16.3.1.5 Requirements Table...

16.3.2 Stereotypes......ccceeevervemneee. ... 187
16.3.2.1 AbstractRequirement..... .. 187
16322 Copy..coveenunen . 189
16.3.2.3 DeriveReqt...... . 190
16.3.24 Refine.............. . 190
16.3.2.5 REQUITEIMEIE ...ttt ettt et b et s h e et b e e bt et e s bt et e e bt e st e sbe e bt e bt e st enbeebeenbeebeensesbeens 191

OMG Systems Modeling Language, v1.6 xi

16.4 Usage Examples

16.3.2.6 TestCase
16.3.2.7 Satisfy
16.3.2.8 Trace
16.3.2.9 Verify

16.4.1 Requirement Decomposition and Traceability

16.4.2 Requirements and Design Elements

16.4.3 REQUITEIMENES REUSEeuieuiiiieiiiiieiieti ettt ettt sttt et e st e et et e eae e tesate s e esaenbesseessesseensesseensenseensensesseensesssensesseans

16.4.4 Verification Procedure (TESt CaASE)eeieruiririieriieietieteiesttete st etesteeteste st essesseesesseessesseessensesseenseensensesseensesseensense 197

17 Profiles & Model Libraries...... ... 199
17.1 Overview 199
17.2 Diagram Elements 199

17.2.1.1 Extension.........ccccceeeeenene ... 201

17.3 UML Extensions...
17.4 Usage Examples................. ... 204

17.2.2 Stereotypes Used On Diagrams....

17.2.2.1 StereotypelnNode.......... .202
17.2.2.2 StereotypeInComment............. .. 202
17.2.2.3 StereotypeInCompartment203

17.4.1 Defining a Profile..........ccccc..... ... 204
17.4.2 Adding Stereotypes to a Profile..........cceveneneee. ... 204
17.4.3 Defining a Model Library that Uses a Profile.......... ... 205
17.4.4 Guidance on Whether to Use a Stereotype or Class
17.4.5 Using a Profile..........
17.4.6 Using a Stereotypecceeeververennns ... 207
17.4.7 Using a Model Library Element...

ANNEX AT DIAZIAIMS ...ttt ettt ettt be sttt a e eb et s bt et e st e bt e bt b e e et eb e eb e eb e sh e bt e et e bt e bbbt es e bttt e b et et eae s 211

OVEIVIEW ...t et e et e et e e et e e et e e e eate e e e teeeeeaae e e eeaseseeaaseseraeeeeeaseseamtaeeeesseeeenaseeeeseseeersseeeenseeeentaseeessseeenareeennssesanaeeeas 211

A.2 Guidelines..........cccocevveerveennnn. .. 215

Annex B: SysML Diagram Interchange..... w217

Xii

Overview

B.2 Stereotypescccccecerverennene ... 218

B.2.1 SysML Activity Diagram....... ... 220
B.2.2 SysML Behavior Diagram............ ... 220
B.2.3 SysMLBlockDefinitionDiagram...
B.2.4 SysMLDiagram 221
B.2.5 SysMLDiagramElement.................. ... 221
B.2.6 SysMLDiagramWithASSOCIATIONSceuerterieierietirtietestet ettt et et te et eteeteste st e ee st ese et eebess e seseeseaseebesbeaseneeneeneeseabessenseneans 222

OMG Systems Modeling Language, v1.6

B.2.7 SySMLINtEraCtiONDIAGIAINveeuieiieiietietieteeieetesteetesteetesseestesesseessesseessesseessenseessessesssesseassessessaensesseessessesssesseassessessaens 222
B.2.8 SysMLINternalBIOCKDIAGIAIM........ccueeiirtieieriieierieeiesteeeete st etesteestes st estessesseessesstessesseessesseassessesssensesssensensesssesseansensenssens 222
B.2.9 SYSMLPACKAZEDIAGIAIMeevieiieieeiieiieeieteeieeie st et e steetesteestesseseeessesseessessaessenseassessesssenseassessesssensenseassensesssenseassessessanns
B.2.10 SysMLParametricDiagram

B.2.11 SysMLRequirementDiagram
B.2.12 SysMLStateMachineDiagram
B.2.13 SysMLUseCaseDiagram

B.3 SYSML DI USQEZE INOLESeeetieeitieiieiie ettt ettt ettt eat e et ee st e e bt e s et e e bt e sat e e bt e seaeeabeesateenbeesateemseessteenteesaeeenseensaesnseenaeeenses 224
B.4 SysML Notation and DI RePIeSENtAtiONcceecueruieieriiriierieetiertesitetesteetesteetesteestesseesaessesseessesseessesseessesseessessesssessesssesseseenses 224

Annex C: Deprecated Elements and Migration.... . 227
C.1 Overview.............. .. 227
C.1.1 Flow Ports 227
C.1.2 Conjugated Ports 227
C.2 Diagram Elements 228
C.2.1 Block Definition Diagram...... ... 228
C2.2 Internal Block Diagram...... .. 229
C.3 UML Extensions.................... . 230
C3.1 Diagram Extensions 230
C3.1.1 Conjucated Ports 230
C3.1.2 FLowPort 231
C3.13 FlowSpecification 231
C32 StereOtyPes ...eeververververienieniene ... 231
C3.2.1 Package PortsAndFlows... . 231
C3.22 FlowPort......ccccccvvveuennnee. .232
C3.23 Semantic Variation Points232
C324 FlowSpecificationccceeceeveveenieneennens ... 233
C3.25 ItemFlow (deprecated compatibility rule)........cccceevurevereennene ...234
C.4 Transitioning SysML 1.2 Flow Ports to SysML 1.3 Ports (informative) 234
C.5 Transitioning SysML 1.3 Viewpoint and View to SysML 1.4 (informative) 235
C.6 Transitioning SysML 1.3 Units and QuantityKinds to SysML 1.4 (informative)cccceeerereienieiienenieieeeeie e 235
C.7 Transitioning SysML 1.5 conjugated port typed by InterfaceBlock to SysML 1.6 conjugated InterfaceBlock (informative)
237
ANNEX D2 SAMPIE PrODICIN ..c.viiniiiiiiiieiieieeee ettt ettt et et e te e te s at et e et e estesteense st esee s e eseenseeseensesseenseaseensesseensenseensensenns 239
LD 2 O o1y T 1T PSPPSR 239
LD 2 (o0 oL PRSPPI 239
D.3 PrODICI SUIMIMATYouiiiiiiiiiietiete ettt ettt ettt e et b et e st eatesb e e st et e e st et e eueenbe s bt enteeheenbesbeentesseentenbeesbenbeeneenbesseensensean 239
D4 DIAGIAIMSeuiiniiitieieetiete ettt ettt ettt e bt e et et e e ae e st e sbeea e e bt est et e es e e bt eaeenbeebeenbeeheen b ekt en b e bt ea b e bt eh e et e eat et e eheenteeheentenbeenbenaean 239
D.4.1 Packaging Overview (Structure of the Sample MOdel)cccociririiriiiiiiiiininicieeereeee e 239
D4.1.1 Package Diagram — Applying the SYSML Profile...........cccocoviriiriiiiiiniininicicnecececeseeeeeee e 239

OMG Systems Modeling Language, v1.6 xiii

D.4.1.2 Package Diagram — Showing Package Structure of the Modelcccooieiieieienieieiceeeeeee e 241
D.4.2 Setting the Context (Boundaries and USE CaSES)ecververierieririieriieienieeeeiestessesseesesseessessesssessesseessessesssessesssessenes 241
D.4.2.1 Internal Block Diagram — Setting CONEXLc.evuieriereriieriieierierresieetesseseessesseessessessesseessessesssessessesssessasssessens

D.4.2.2 Use Case Diagram — Operational Use Cases
D.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)
D.43.1 Sequence Diagram — Drive Black Box

D.43.2 State Machine Diagram — HSUV Operational Statesccccvecieriirieriinierienieiesiceeesie et seeeeeseeeneseeens 244
D.43.3 Sequence Diagram — Start Vehicle Black Box & White BOXccceovveriieiieniinieiieieiecceeeceeie e 245
D.44 Establishing Requirements (Requirements Diagrams and Tables)cccccoverininiriiininininicneieeenesceceeeeeenene 246

D.4.4.1 Requirement Hierarchycooeeveniiiininenee

D.442 Requirement Diagram — Derived Requirements...........cccceceereennennee. ... 247
D.443 Requirement Diagram — Acceleration Requirement Relationships 248
D.4.44 Table — Requirements Tableceouerieierenieniiieie e ... 249
D.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams)..... ... 249
D.4.5.1 Block Definition Diagram — Automotive Domain..... ... 249
D.45.2 Block Definition Diagram — Hybrid SUV ...
D.453 Internal Block Diagram — Hybrid SUV ...t ... 250
D.454 Internal Block Diagram for the “Power Subsystem™....
D.4.6 Defining Ports and FIOWScccoeoveveniiieniiniinieieeeiee .. 252
D.4.6.1 Block Definition Diagram — ICE Flow Properties
D.4.6.2 Internal Block Diagram — CANbUScccceruenee
D.4.6.3 Block Definition diagram — Fuel Flow Properties..... ... 253
D.4.6.4 Parametric Diagram — Fuel Flow
D.4.6.5 Internal Block Diagram — Fuel Distribution...........cccceeeverveecveniennnns ... 254
D.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views) 255
D.4.7.1 Block Definition Diagram — Analysis Context.......... ... 255
D.4.7.2 Package Diagram — Performance View Definition....
D.4.7.3 Package Diagram — Viewpoint Definition...
D.4.7.4 Package Diagram — View Definition....
D.4.7.5 Package Diagram — View Hierarchy 258

D.4.7.6 Package Diagram — Measures of Effectiveness..... .. 259
D.4.7.7 Parametric Diagram — Economy 260
D.4.7.8 Parametric Diagram — Dynamicsc.cceceeveerierieneneeniennenne ... 261
D.4.7.9 (Non — Normative) Timing Diagram — 100hp Acceleration....... ven 262
D.4.8 Defining, Decomposing, and Allocating Activities 263

D.4.8.1 Activity Diagram — Acceleration (top level) ..
D.48.2 Block Definition Diagram — Acceleration.................... ... 264
D.4.8.3 Activity Diagram (EFFBD) — Acceleration (detail)ccooueriiieiinieniiiieenieesieeeeeeeseste e 265

xiv OMG Systems Modeling Language, v1.6

D.4.8.4 Internal Block Diagram — Power Subsystem Behavioral and Flow Allocationc.cecceveveveieenincnenenene.

D.4.8.5 Table — Acceleration AIIOCATIONcoueieiriiririiieeeei ettt ettt sttt et b et ebe et eeneas

D.4.8.6 Internal Block Diagram: Property Values — EPA Fuel Economy Test

Annex E: Non-normative Extensions
E.l OVEIVIEW .cuiiiiiiiiiircnieccteeee e
E.2 Activity Diagram Extensions

E.2.1 Overview

E22 17 ET0 11 61O 269
E23 StErEOLYPE EXAMPIES ..ottt ettt ettt et et e e s et e steeste s s e ensesaeenseseeseensesseensasseensenseensenseansanee 271
E.3 Requirements Diagram Extensions..... . 272
E3.1 Overview272
E3.2 Stereotypescovevvereene .272
E.3.3 Stereotype Examplescccoeceevverieviencnnieninnee. . 274
E.4 Parametric Diagram Extensions for Trade Studies 275
E.4.1 Overview 275
E42 Stereotypescoveeveeenne . 276
E.43 Stereotype EXamplescccueeerieninieniniiieneeeeeeee e . 276
E.5 Model Library for Quantities, Units, Dimensions, and Values (QUDV)277
ES5.1 Overview............... L2717
ES5.2 Abstract Syntaxccceeeuennee. . 278
E.5.2.1 AffineConversionUnit... . 281
E5.22 ConversionBasedUnit 282
E.5.2.3 DerivedQuantityKind.... . 282
E5.24 DerivedUnit..... . 283
E5.2.5 Dimension.............c...... . 283
E.5.2.6 GeneralConversionUnit.... . 284
E.5.2.7 LinearConversionUnit... . 284
E5.2.8 Prefix......coccee. . 285
E.5.2.9 PrefixedUnit.... . 285
E.5.2.10 QuantityKind............. . 286
E5.2.11 QuantityKindFactor... . 286
E.5.2.12 Rational.......cccecueunene . 287
E.5.2.13 SimpleQuantityKind 288
E.5.2.14 SimpleUnit................ . 288
E.5.2.15 SystemofQuantities 288
E.5.2.16 SystemofUnits..... . 295
E.5.2.17 Unit............. . 300
E.5.2.18 UNIEFACTOT .ttt ettt b e e h et s bt et e bt ea b e st e e st e bt ehb et e sbe e b e sbeentenbeentenbeeane 301

OMG Systems Modeling Language, v1.6 XV

E.5.3 RETETEICES ...ttt ettt ettt et et e et e st e e st et e e teesseeseess et e essenseestessesseenseeseensenseesseseessansesseensenseansensanns 301
E5.4 USAZE EXAMPIESveieeieeiieiieie ettt ettt ettt et e st e b e s bt et e s seestesbeesaesseeseesseasaessesseessenseessenseessensesseensesseansensasssensennean 302

E.6

E.5.4.1 SI Unit and QuantityKind €XampPIEs.........c.cciecveririeriieieiieseeiesieteseetesteetesseseeessesseessesseessessesssessesseesesseessenes

E5.42 Spring Example
Model Library of SysML Quantity Kinds and Units for ISO 8000

E.6.1 OVETVIEW ..ttt et e ettt eteeetteeteeeteeebeeetteebeeesaeeaseesseesseesaeeaseeaseeeaseessseesseeasaeesseeaseesseenseeessesaseeasseenseesssenseesssesnseanns

E.6.2 Units and Quantity Kinds

E.6.3 ISO 80000-1 PIEIIXEScuvveueveuiieterietiietes ettt ettt ettt et ste et ese e et et bes e et es e s ebes e et ene st es et es et et es e b esestebeneeseneaseneneas 312
E.6.4 ISO 80000-2 Mathematical Signs and SYMDOLSccceeruiriiriiiieiiieiesee ettt st eseeenaenaeas 314

E.6.5 Summary of the covered parts of ISO 80000

E.6.5.1 ISO 80000-3 Space and Time..... 316
E.6.5.2 ISO 80000-4 Mechanics................. ... 321
E.6.5.3 ISO 80000-5 Thermodynamics 330
E.6.5.4 ISO 80000-6 Electromagnetism..... ... 338
E.6.5.5 ISO 80000-7 Lightccevveuirieiinieiiinicirieiieeeineeeneereeeieeneen ... 350
E.6.5.6 ISO 80000-9 Physical Chemistry and Molecular Physic..... ... 351

E.6.5.7 ISO 80000-10 Atomic and Nuclear Physics.................
E.6.5.8 ISO 80000-13 Information Science and Technology....

E.7 Distribution Extensions 353
E.7.1 Overview 353
E.7.2 Stereotypes .cc.veverveerverveeeenienne ... 354

E.7.2.1 Package Distributions.... .354
E.7.3 Usage EXaAmPIe......c.coevieriieieieeieieeieie et ... 354

E.8 Building Non-normative Extension for Property-based Requirements..... ... 355
E.8.1 OVEIVIEW ..ottt . 355
E.8.2 An Example PBR Profile Based on ConstraintBlock................ ... 357

E.8.2.1 Profile/Stereotypes of PBR Based on ConstraintBlock... . 357

E.8.2.2 Usage Example using PBR Based on ConstraintBlock... . 358

E.8.3 An Example PBR Profile Based on Constraint............... . 359
E.8.3.1 Profile/Stereotypes of PBR Based on Constraint 360

E.8.3.2 Example using PBR profile Based on Constraint............ ... 360

E.8.4 An Example Property Based Requirement based on Block...... ... 361
Annex F: Requirements Traceability 363

Annex G: Model Interchange ...

G.1
G.2
G3
G4

XVi

OVETVIEW ...oeviviieicrcicnieniceieene ... 365
Context for Model Interchange....
XMI Serialization of SysMLcc.cccceeene ... 365
SysML Model Interchange UsING AP233ottt ettt ettt sttt e bt e b ea et sbeebesbeenne e 366

OMG Systems Modeling Language, v1.6

G.4.1 SCOPE OF AP233 . ettt ettt ettt et et e e e st e e st e st e e st e be et e e st e eseenb e et e esse et e e Rt e seenbeeseentenseesaenseeseenbeantensenraens 366

G4.2 STEP ATCHITECIUTEeevveiivieeeee ettt ettt ettt ettt e et e et e e aeeeaaeebeeeteeeabeeeaeeeeseeeseseaseeaseessseeeseeeaseensesesseeseesnseennes 366
G4.3 EXPRESS ... oottt ettt ettt e et e e et e et e et e te e —eeeateeteeeteeeteeeat e ettt eateeeteeeaeeateeeteeetteereeereeeteenns 367
G444 SYSML-AP233 IMAPPING ...vvevveevieniieiieiesieeteeteetesteeeteteettestesseessesteasaesseeseassesseensesseensasseesseseensensesseensesseensessesssensesnsanes 369

OMG Systems Modeling Language, v1.6 XVii

Table of Figures

Figure 4-1: Overview of SysML/UML InterrelationShip..........coereriiiiieieeiesiesese e 7
Figure 4-2: SysML Extension 0f UMLFIGUIEcooiiiiiiiiiieieeeeeeeesteeeee ettt 11
Figure 4-3: SYSML Package StrUCIUIEocuiiiieiieiiiie ettt ettt eteeste e e ebessaesseesaaesseesseesseesseessessaesssesens 12
Figure 4-4: Non-normative Package SIIUCIUIEccuiiiiiieiieciieieete ettt steesse s eeseesaesseennees 13
Figure 7-1: Stereotypes defined in package MOdEIEICMENLS..........c.eccvieierierieriieieeie et 25
Figure 8-1: Nested Property TETEIENCEecuieriieiieiieie e eeesie ettt ettt e e e e s teseesneesseenseesseenseensessaesseensens 45
Figure 8-2: Abstract syntax extensions for SYSML DIOCKS.........cccvecieiiiiirieiieieees e 46
Figure 8-3: Abstract syntax extensions for SYSIML Propertiesceceeuereeriereereerie e sieseesee e eee e eeeseeeeeas 47
Figure 8-4: Abstract syntax extensions for SySML value tyPes........cccveverieniereeneet et 47
Figure 8-5: Abstract syntax extensions for SySML property pathsccccoeierieriiiiie e 48
Figure 8-6: Abstract syntax extensions for SySML connector €Ndscovereereereiniiieiienceneeieeieee e 48
Figure 8-7: Abstract syntax extensions for SysML property-specific typesccoceeverreriereeneenieeiieeienieneeen 49
Figure 8-8: Abstract syntax extensions for SysML bound references.............cooerirererieieneneneseseeeeeeeeene 49
Figure 8-9: Abstract syntax extensions for SysML adjunct properties and classifier behavior properties............ 49
Figure 8-10: Model library for primitive VAIUE tYPESc.ecverieriieiieiieieeieseesieeie e eeeseeseeesreesseesseessessaessaessees 68
Figure 8-11: Model library for Unit and QuantityKindccceevvieeiiiiiiiieiieieeieeic e 69
Figure 8-12: Block diagram for the Wheel Package.........cccveviiviieiieiiiiiecieceeeeet e 72
Figure 8-13: Internal Block Diagram for WheelHUDASSEmMDLYcoeveriiiiiiiieiieie e 72
Figure 8-14: Defining Value Types with units of measure from the International System of Units (SI)............... 73
Figure 8-15: Vehicle DECOMPOSITIONeovieiiieiieieeieiie ettt ettt ettt e bt eteeteeeeesaeesseenteeneeeneeeneeeseesneenean 74
Figure 8-16: Vehicle internal STIUCULE.c.eiiuiiiiiiiiiie ettt et st e et e st e e et eeneeeseesneeneas 75
Figure 8-17: Vehicle SPeCialiZation..........c.eeiuieiieiiieiiieie ettt ettt et ee e et e e et e eneeeseeeneennean 75
Figure 8-18: Example of Unit, QuantityKind and ValueType definitions..........ccccooceeeiieiinienienineicscececeeene 76
Figure 8-19: Instance-level view of the Unit, QuantityKind and Value Type definitions.............ccccecereeernceiennene 77
Figure 8-20: Example of equivalent Unit repreSENtatioNScoceeueeeeieierieniereesieeieeieeeeeeeie e seesbeseeeneeeensennens 77
Figure 8-21: Instance-level representation of equivalent Unit definitions............ccceeevvvvercienienienieeiieieeee s 78
Figure 8-22: Property-specific types in facility eXample........ccvevveriieciieieiieiieieeie et eeae e eees 79
Figure 8-23: Changes in classification over time due to property-specific typesccovvvveervenierieerirereeieseenen 80
FAigUre 9-1: POIt STEICOLYPES .vveuvieueieiieiieeiiestiesteesteeteetestesteeste e st esteessesssessaesseesseenseensesnsesnsesseanseanseanseassenssenseensen 89
Figure 9-2: Stereotypes for Actions on Nested POItS.........cccvevierieiiieiiiieeieceeeeie e 89
Figure 9-3: Stereotypes for Property Value Change EVEnts............ccoociiiiiiiiiiiieeec e 90
Figure 9-4: Provided and Required FEaturesccoooiiiiriiiieiieeee et 90
Figure 9-5: Ttem FIOW STEICOLYPE ...cuvieuiiiieitieitiete ettt ettt ettt ettt ettt et e eeesmeesseeneeeneeeneeeneeeneesneenean 90
Figure 9-6: Usage example of ports with provided and required featuresoceoevoieiiereienenineneee 109
Figure 9-7: Usage example of proxy and full POTtScccveiiriiriiiiieieeeee e 111
Figure 9-8: Water Delivery assoCiation DIOCK...........eiieirieiiiiieie ettt 112
Figure 9-9: Internal structure of Water Delivery association DlOCKccceecuiieirienieniieniieieeiesieseeie e 112
Figure 9-10: Two views of Water Delivery connector within House blockccoccvevvieciieciinciinieniceecce 113
Figure 9-11: Specializations of Water Client in house eXampleccccvevieviiiiiiienienieie et 114
Figure 9-12: Plumbing association BIOCK............cceiierieriieiieieeieeesteeee ettt 114
Figure 9-13: Internal structure of Plumbing association blockccccveviriiiciiiienieieiceeeeee e 115
Figure 9-14: Water Delivery association block with internal Plumbing connector.............c.cccceverinenirenneenne. 115
Figure 9-15: Usage example of item flows in internal block diagramsccoecevierieiiiiinieneceeee e 116
Figure 9-16: Usage example of item flow decOmMPOSItIONccuevuieiiieiiiiieiieie et 117
Figure 9-17: Usage example of item flow decOmMPOSItIONcceevuieiiiriieiieieeie et 118
Figure 10-1: Stereotypes defined in SysML ConstraintBlocks package............ccccoviiiiiiiiiiiiieiiieeceee 122
Figure 11-1: Block definition diagram with activities as blocks...........coeoeeiieriiiiiiiieee e 136
Figure 11-2: CallBehaviorAction notation.with behavior Stereotypeccoceveririiiriieiieeee e 137

xviii OMG Systems Modeling Language, v1.6

Figure 11-3: CallBehaviorAction notation.with action name ControlFIowcoceceveeiiiniininiininincniceene 137

Figure 11-4: Control floW NOLALIONoc.eeitiiiiiiieie ettt ettt ettt sttt et ene e esee s st e be e seenaeeneeene 137
Figure 11-5: Block definition diagram with activities as blocks associated with types of object nodes,

variables, and PATrAIMETEToiuiiiuieieee ettt ettt et ettt sae et e bt et e et e eneeeneenean 138
Figure 11-6: ObjectNode notation in activity dia@Iamsc.eoueruerereeieieieieesee sttt ee e ebe e eeee e e s 138
Figure 11-7: ObjectNode notation in activity dI8ZIamSc.ecuerererieieieieieeste sttt et ee e ebeese e eenee s 138
Figure 11-8: Abstract Syntax for SysSML Activity EXtenSIONsccceeeeieierieniiie e 139
Figure 11-9: CONMIOl VALUEScviieiieiieiiieiiieieeie ettt ettt e s be e b e e aeseaesaeesseesseesseesseessessaesseessaensessnenens 145
Figure 11-10: Continuous System eXaAMPIE L.......ccccueriiiriiiiiieiieieniereerieesie et e saeesre e b e essessaesseesseesseessessnesens 147
Figure 11-11: Continuous SyStem eXamPIe 2..........ccuevieriieriieirieiesieieesieesteeeeseeseesseesseesseessesssesseesseesseessessnenens 147
Figure 11-12: Continuous System eXaAMPLE 3.......c.cccueriierieriieieeieeiestee et eteseeseeseee e eseensessaesseesseeseensesnnennns 148
Figure 11-13: Example block definition diagram for activity decOmMpPOSItionccecveverecvreieneieneerieeieeeeees 148
Figure 11-14: Example block definition diagram for object N0de types........ccooceevierieiieniieiieiecieeeee e 149
Figure 12-1: Block definition diagram with interactions as blocks associated with used interactions and

EYPES OF PATAIMICTETS.eeeeeeeiietieie ettt ettt ettt et e s ae et e et e st eneeesee bt e teenseentesneesneesseeneeeneeens 157
Figure 13-1: Block definition diagram with state machines as blocks associated with submachines and

EYPES OF PATAIMIETETS.ceee ettt ettt e bttt et es e sb e bt e bt e bt estesatesbeenbeenaeenteens 164
Figure 15-1: Abstract syntax extensions for SySML ATlOCAtIONceerieieniiiiiiiieeeeeieee e 174
Figure 15-2: Abstract syntax expression for Allocated ActivityPartitionccccceevveriieviiecienienieneese e 174
Figure 15-3: Generic Allocation, including /from and /to association ends............ccccvevveerrieieecieniereeneenieene e 177
Figure 15-4: Behavior ATIOCAtIONcceeciiiiieiiiieiieritesie ettt ste et eebeeeaestaesaeesseeseesseessesseesseesseensesssenns 177
Figure 15-5: Example of flow allocation from ObjectFlow to Connector...........ccocceereeieienenenenencneeeenenn 178
Figure 15-6: Example of flow allocation from ObjectFlow to ItemFlowc..cccoviiiriiiiiiinininincicece 178
Figure 15-7: Example of flow allocation from ObjectNode to FIOWPIOpertycccceeveeeveciieienienieeee e 179
Figure 15-8: Example of Structural ATlOCAtION..........ccoiiuiiiiieiieieetieeiiete ettt 179
Figure 15-9: Allocation Matrix showing Allocation for Hybrid SUV Accelerate Example...........ccccceveeireneenne 180
Figure 16-1: Abstract Syntax for Requirements SterEOtYPESevueerrierirrerieeie ettt 187
Figure 16-2: Requirements DETIVATIONcc.coruiiiiiierieieeieeieeeest ettt sttt ettt sbee bt e b e e e s 195
Figure 16-3: Links between requirements and deSIZNcc.ooireiiririiieieieesie e 196
Figure 16-4: Requirement satisfaction in an internal block diagramcccoocoviiiiiiiiiinineeee 197
Figure 16-5: Use of the copy dependency to facilitate rEUSEcccverierieerieeriiiieeierieee et re e 197
Figure 16-6: Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram................ 198
Figure 16-7: Linkage of a Test Case to a requirement: This figure shows the Test Case as a State Diagram.....198
Figure 17-1: DefiNing @ SEEICOLYPEvevvvetieiieieeieeiestierit et eteeetesttesteesseessessesnaesseesseesseenseassesssenseesseessesnsesnsennns 201
Figure 17-2: USINE @ STETCOLYPC . ..cuveeureriieieeteeteetestesttestteteeseestessaessteseesesssesnsesssesseesseenseasseassesseesseessesnsessesnes 202
Figure 17-3: Other notational forms for ShOWINg Valuescceeieiieiiiiiie e 203
Figure 17-4: Other notational forms for ShOWINg Valuesccceeiiiiiiiiiiit e 203
Figure 17-5: Definition 0f @ Profileccoooiiiiiiiiie ettt e 204
Figure 17-6: Profile CONTENEScc.ueiiiiiiiiiiiiie ettt ettt st sttt ettt ebee bt e b e e beenaesaeesae 204
Figure 17-7: TWO MOAE] IIDIATIES.ccueiuieuieieieitiieeie ettt ettt ettt ettt e se e e aesaeseeebeeseeseeneeneenes 205
Figure 17-8: A model with applied profile and imported model libraryccccoooiiiiieiieiiienececeee 206
Figure 17-9: Using two stereotypes on @ model @lement............cecverierieriieriiiiecieseeeeee e 207
Figure 17-10: Using model Ibrary Clementsc.cccueruieriiecrieieniesiesieesteeeeeeeseesieesseeseessessaesseesseesseessessnenens 207
Figure A.1: SYSML Diagram TaXONOMIYcc.eeeuerierieriierieereeteseesseesseesseesesssesssesssessesssesssesssesssssseessesssesssesses 211
Figure A.2: Diagram Frame...........coouiiiniiii et 213
Figure A.3: DiIagram USAZES........ccueeuerieriieiieieetestestiestteteetesaessaesseesseesesssesseesssesseesseenseassesssessaesseessesnsesnsesnes 215
Figure A.4: Optional FOrm of Line CroSSINg..........uouintinintitetietet ettt et e ne e e neeeans 216
Figure B.1: SYSML DI archit@CtUre.ottt e 217
Figure B.2: Abstract Syntax Extension for SysML Diagram Element....................cooiiiiiiiiiiiiine . 218
Figure B.3: Abstract syntax extensions for SysML diagrams (1)...........coooiiiiiiiiiiiiiiiiiieeeee, 218
Figure B.4: Abstract syntax extensions for SysML Diagrams (2)..........coouviiiiiiiiiiiiiiiiiiciieiaen 219

OMG Systems Modeling Language, v1.6

Xix

Figure C.1: Deprecated STEICOLYPESvevieriieriieieeieeierieeteeteetesiaesttesseesseesesaesseesseesseenseassesssessaesseessesnsesnsennns 231
Figure D.1: Establishing the User Model by importing and applying SysML Profile & Model Library

(Package DIAZIAIM)ccueeiiieiieiieie ettt ettt sttt ettt e et st esaeesee e et et e enteenteeneeeneennean 240
Figure D.2: Defining value Types and units to be used in the Sample Problem.............coccoociviiiiiiiennine 240
Figure D.3 Establishing Structure of the User Model using Packages and Views (Package Diagram).............. 241
Figure D.4 Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram.

(Internal Block Diagram) Completeness of Diagram Noted in Diagram Description................... 242
Figure D.5 Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram)..........c.ccocveeveeveennnnne. 243
Figure D.6 Establishing Operational Use Cases for “Drive the Vehicle” (Use Case Diagram).........c..cccceeneene. 243
Figure D.7 Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram)......... 244
Figure D.8 Finite State Machine Associated with “Drive the Vehicle” (State Machine Diagram)...................... 245
Figure D.9 Black Box Interaction for “StartVehicle”, referencing White Box Interaction (Sequence Diagram)245
Figure D.10 White Box Interaction for “StartVehicle” (Sequence Diagram)ccocceevieceeeienieneeneenieeeee 246
Figure D.11 Establishing HSUV Requirements Hierarchy (containment) — (Requirements Diagram)............... 247
Figure D.12 Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchy

(Requirements DIAGIAII)coouiiiiiiiiiiiiieriiee ettt ettt et b e b e e s 248
Figure D.13 Acceleration Requirement Relationships (Requirements Diagram)ccccoecevienieniencnncnncne. 248
Figure D.14 Requirements Relationships Expressed in Tabular Format (Table)...........cccceriieiiiincninieeee 249
Figure D.15 Defining the Automotive Domain (compare with Figure D.4) — (Block Definition Diagram)....... 250
Figure D.16 Defining Structure of the Hybrid SUV System (Block Definition Diagram)...........ccccceevveveenenee. 250
Figure D.17 Internal Structure of Hybrid SUV (Internal Block Diagram)ccoccvevvieviieciieienienieeeie e 251
Figure D.18 Defining Structure of Power Subsystem (Block Definition Diagram)ccoecevververeeniennenne. 251
Figure D.19 Internal Structure of the Power Subsystem (Internal Block Diagram)cccoeevvvvevieneeninennne. 252
Figure D.20 Blocks Typing Ports in the Power Subsystem (Block Definition Diagram).........c.ccocceceverveeennene 252
Figure D.21 Initially Defining Port Types with Flow Properties for the CAN Bus (Block Definition Diagram)253
Figure D.22 Consolidating Connectors into the CAN Bus. (Internal Block Diagram)...........cccceeeeveeieenennnne 253
Figure D.23 Elaborating Definition of Fuel Flow. (Block Definition Diagram)...........cccecceeeuieierieneeneeneee 254
Figure D.24 Defining Fuel Flow Constraints (Parametric Diagram)...........coocoeoerieneenieninienienienceeeee e 254
Figure D.25 Detailed Internal Structure of Fuel Delivery Subsystem (Internal Block Diagram)....................... 255
Figure D.26 Defining Analyses for Hybrid SUV Engineering Development (Block Definition Diagram)........ 256
Figure D.27 Establishing a Performance View of the User Model (Package Diagram)ccccceevverieeveennnnne. 256
Figure D.28 Defining Requirements and VnV viewpoints (Package Diagram)cccocveeviecienieneeneenneenene 257
Figure D.29 Requirements and VnV views exposing elements from the model (Package Diagram)................. 258
Figure D.30 The Requirements and VnV views with supporting views (Package Diagram)cccceeeuvnenne. 259
Figure D.31 Defining Measures of Effectiveness and Key Relationships (Parametric Diagram) 260
Figure D.32 Establishing Mathematical Relationships for Fuel Economy Calculations (Parametric Diagram) 260
Figure D.33 Straight Line Vehicle Dynamics Mathematical Model (Parametric Diagram)ccccceeueenee.ne. 261
Figure D.34 Defining Straight-Line Vehicle Dynamics Mathematical Constraints (Block Definition Diagram)262
Figure D.35 Results of maximum Acceleration Analysis (Timing Diagram)ccceceevierienenenenenieieeene 263
Figure D.36 Behavior Model for “Accelerate” Function (Activity Diagram)ccceceeeierienenenenenieieeene 264
Figure D.37 Decomposition of “Accelerate” Function (Block Definitions diagram)...........cccceecererenieeenenenne. 264
Figure D.38 Detailed Behavior Model for "Provide Power" (Activity Diagram) Note hierarchical consistency

WIth FIGUIE D.36. c.eiiniiieiiciicieee ettt ettt ettt e e tbesbe e beeseesseeseesseesseeseenseens 265
Figure D.39 Flow Allocation to Power Subsystem (Internal Block Diagram)...........ccccceevvieiieienieneeneeieeneee 266
Figure D.40 Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Subsystem

(10 15 T PR 266
Figure D.41 Special Case of Internal Block Diagram Showing Reference to Specific Properties

(SETIAl MUIMDETS) ... eeetiieiiieciie et eete et ee ettt e et e et e esteeestae e teeessbeessee e sbeessaeessseensseesseessseessseensseenes 267
Figure E.1 Example activity with «effbd» stereotype appliedccceevieiiiiiiiiieieeee e 271
Figure E.2 Example activity with «streaming» and «nonStreamingy stereotypes applied to subactivities 272
Figure E.3 Example extensions t0 REQUITEIMENTociiieiiiiiriiii ettt st 275

XX OMG Systems Modeling Language, v1.6

Figure E.4 Example Parametric Diagram using Stereotypes for Measures of Effectiveness..........c.ccocceceeeenenn. 276

Figure E.5 QUDYV Concepts DIQGIamcc.eeruiiiiiiiriieieeie ettt ettt et saee sttt enteeseesseesseeseeaeeneeens 279
Figure E.6 QUDYV UNits DIaZIAIM......cc.eiiiiiiiiiiieie ettt ettt ettt s eee st e st e eeeneeenaesseesseeseeaeeneeenes 280
Figure E.7 QUDV QuantityKinds DIiagram............ccooieiiiiiriieieeesesieee ettt 281
Figure E.8 Base Unit and Quantity Kinds of the SI and ISQ respectively.........ccccoviriiieiieninenereeeeeeeee 302
Figure E.9 Example of a derived unit and derived quantity Kindccocoiiiiiiiiiiieeeeeee 303
Figure E.10 Spring Length EXAMPLEcoooiiiiiiii ettt sttt 304
Figure E.11 Model libraries of SysML Quantity Kinds and Units for the covered content of ISO 80000 parts
3,4,5,6,7,9,10 and 13coiiiiiiiiiiiciei e 305

Figure E.12 Organization of the definitions of units and quantities from the normative parts of ISO 80000
covered in SysML 1.4, which includes all the normative content of parts 3,4,5,6; the subset of
parts 7,9,10 corresponding to the content from SysML 1.3 and the subset of part 13 pertaining
to commonly used units of information. Parts 8,11 and 12 are not covered because none of their
units and quantities were referenced in previous versions of SysML nor in the summary tables

T ISO BO000-1 ...ttt sttt ettt st b et et b e st e bt st e e e bt steeenen 306

Figure E.13 Content relationships for the systems of units and quantities in from the different parts of ISO
80000 in relation to ISO 80000 as a whole and to the International System of Units (SI) and
QUANTITIES (ISQ) ettt ettt et e e e b e b e bt be et e et saeenae et et eas 307

Figure E.14 Table 1 (from ISO 80000-1) SI base units for the ISQ base quantitiescecceeeeervereereerreenenne. 308

Figure E.15 Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (1) .309

Figure E.16 Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (2).310

Figure E.17 Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (3) .311

Figure E.18 Table 3 (from the SI brochure) SI derived units with special names and symbols......................... 312
Figure E.19: Constant numbers used throughout the SysML ISO 80000 Library...........cceccvecveeeeniereereeneeenene 315
Figure E.20 Example of value type definitions for a quantity and applicable units and prefixed un................. 316
Figure E.21 Basic diStribUtion STETEOLYPESuveeuveruiertieriieiieieeiestiesteesteesteeeeeeesaeeste e et eeeeneeeseesseesseeseenseeneesnes 354
Figure E.22 Distribution EXamMPLeccoiiiiiiiiiiiiiiee ettt se e ne et e 355
Figure E.23 Example of Requirement in Graphical FOrmcccociiiiiiiiiiniiiiii e 357
Figure E.24 Example of a PBR Profile Based on ConstraintBlockccoooiiiiiiiiiiieiiiieccceeee 358
Figure E.25 Example of Requirement Evaluation Context Using PBR Based on Constraint Block 359
Figure E.26 Example of Parametric Diagram Using PBR based on Constraint Block............ccccocviniiiinnenn 359
Figure E.27 Example of a PBR profile based on Constraints............ccecvverieerieeieeiesienieenreeieeeeeeeseesseesneene e 360
Figure E.28 Example of PBR based on Constraint used in different contexts...........ccccecuevveveneneniencneeneennenn 360
Figure E.29 Establishing an Analysis Context for evaluating requirement compliance using PBR based on
COMSITAIINL ...ttt a et b et b et b e s et eb e aeseenesae e e 361
Figure E.30 PBR EXAMPLE.....oouiiiiiiiiiieieeee ettt ettt ettt entees e be e beeaeeneeeeee 361
FIgUIE E.3T PBR ..ottt sttt st b et b ettt et bttt ene 362
Figure G.1: SysSML/AP233 Data OVETlaps .. .cccveeeeiieriieieeieeieee ettt ettt ettt ettt eneesseesseeseeaeeneeens 366

OMG Systems Modeling Language, v1.6

XXi

Table of Tables

Table 4-1: UML2 metaclasses excluded from the UMLASYSML SUDSEL.........ccueeeuiriirienieieieiiteeesieeeeeie e 8
Table 4-2: UML 2 metaclasses and datatypes included in the UML4SysML subsetTable............ccccererereinininenieececene 8
Table 4-3: SysML stereotypes, blocks, valuetypes, and datatyPesccceeeerierierienirieneeieieet ettt 10
Table 7-1: Graphical nodes by ModelEIements PACKAZEcovuiruiiiiriiriiiieiieeeeieeie ettt ettt sbeeaeas 20

Table 7-2: Graphical paths defined by ModelElements packagecocoueviiririniinieiiiiieeneececee ettt 23
Table 8-1: Graphical nodes defined in Block Definition diagramsTablecccocevirierieiiiinininiieinineneneeceeese e
Table 8-2: Graphical paths defined in Block Definition diagrams............

Table 8-3: Graphical nodes defined in Internal BIOCK diagrams...........cceeuieierieriierienieieneeienieeeeie st eee e eae e esnessessaessesseennas
Table 8-4: Graphical paths defined in internal BIOCK Qiagramscccecueeuieiieriieieniieiesiesieieeeeee e esesieseessesseesessaesaesseesnas
Table 9-1: Graphical nodes defined in Block Definition diagram...

Table 9-2: Graphical nodes defined in Internal Block dia@ramsc.ccciiiiiiiirieieieieeieie e
Table 10-1: Graphical nodes defined in Block Definition diagramsccceoerieriinieiiinieiienieieseeteeeee et 120
Table 10-2: Graphical nodes defined in Parametric diagrams

Table 11-1: Graphical notation of aCtiVIty dIAZIAMScceciruiriiriiiiiiiiirteetet ettt ettt st saesae
Table 11-2: Graphical paths included in actiVity dIaIAMSc.coueoveiiiiirinieiei ettt
Table 11-3: Other graphical elements included in activity diagrams .

Table 12-1: Graphical notation Of SEQUENCE QIAZIAMSccvevverrieierieieerestietereeeesteetestesreesesseesesseessesseessessesseessessaensessaens
Table 12-2: Graphical paths included in sequEeNnCe dIagram...........cccoveiiiiiiirieieeere ettt
Table 12-3: Other graphical elements included in sequence diagram

Table 13-1: Graphical notation of state Machine dIAZIAMScc.eviiiiiriiiiiriieiereetee ettt ettt 159
Table 13-2: Graphical paths included in state machine dia@ramsccceecveruerieriiiieiiineeeee et 162
Table 14-1: Graphical nodes included in Use Case dia@ramscc.eeveriiruierieriieieniieienieeeeenteeseeiesieetesseesesseessesseesnensessnens 165
Table 14-2: Graphical paths included in Use Case diagrams....... ettt sttt 166
Table 15-1: Extension to graphical nodes included in diagrams..... ettt 171
Table 16-1: Graphical nodes included in Requirement did@rams.............coceverieieiririnineieie e 182
Table 16-2: Graphical paths included in Requirement diagramscceceiiriririeiieiniieee e 183
Table 17-1: Graphical nodes used in profile definitioncooiiiiieiiiiiiee et 199
Table 17-2: Graphical paths used in profile definition....... ...200
Table 17-3: Notations for Stereotype Use..... ...201
Table B.1: SysML Diagram EICMENES...........ccuieieriirieiieieie sttt ettt ettt ette e sttt steeatestesstesbeestetesseensesseensesseensesseensensenns 225

Table C-1: Graphical nodes defined in block definition diagramscceecveruirieriinienieeieeseee et 228
Table C-2: Graphical nodes defined in internal block diagramscccccvecveriiriieriieieriieeeiercee e 229
Table E-1: Addition stereotypes for EFFBDs
Table E-2: Streaming Options fOr ACHIVITIES.eiuiruirieieeietirtiitete ettt sttt es ettt e s ese bt besbe s e e eneenestenaens
Table E-3: Additional ReqUITEMENt StEICOTYPESc.erueuiereruirtieierieieiieteete ettt ettt bt e et se et e e b et e e e e st eseebesbenseneeseeneeseanens
Table E-4: Requirement property enumeration types
Table E-5: Stereotypes for Measures 0f EffeCtIVENESScouiriiriiiieierieetesitetese ettt ettt ettt et sbee b bt beseeens 276
Table E-6: The decimal and binary prefixes in scope of the International System of Units (SI) which uses

the ISO 80000 system of units and its included systems of units such as ISO 80000-13...........ccceevrveurnen. 312
Table E-7: Normative units in ISO 80000-3 (1 OF 2) ..ccuieieiiiiieiieieieeieeiestt ettt st e e s teesaesbessaessessaessesseensensaens
Table E-8: Normative units in ISO 80000-3 (2 O 2) ..ecvieieriiiieiieieiesie ettt ete ettt eteste et eeae s e ssaesseesaessesseensessaessessanns
Table E-9: Normative quantity kinds in ISO 80000-3 (1 of 2)
Table E-10: Normative quantity kinds in ISO 80000-3 (2 0F 2).....cueiiiiiiiieee ettt 320
Table E-11: Normative units in ISO 80000-4 (1 of 2)
Table E-12: Normative units in ISO 80000-4 (2 of 2)
Table E-13: Normative quantity kinds in ISO 80000-4 (1 0T 4)...cc.eiiiiiiiiiiieiereeteeeee sttt 324
Table E-14: Normative quantity kinds in ISO 80000-4 (2 0T 4)....c.ceoiiririerieieneeierteeee sttt ettt st sbe e seeens 326

Table E-15: Normative quantity kinds in ISO 80000-4 (3 of 4)...
Table E-16: Normative quantity kinds in ISO 80000-4 (4 of 4)...
Table E-17: Normative units in ISO 80000-5 (1 0T 2) ...ecuieiiiieiiiieierieseeteeteie sttt sttt esee s sseessesraesaesseessensanns 330

xxii OMG Systems Modeling Language, v1.6

Table E-18:
Table E-19:
Table E-20:

Normative units in ISO 80000-5 (2 0F 2) ...ccuiiiiiriiiieiiiee ettt
Normative quantity kinds in ISO 80000-5 (1 of 5)
Normative quantity kinds in ISO 80000-5 (2 of 5)

Table E-21:Normative quantity kinds in ISO 80000-5 (3 of 5)........

Table E-22:
Table E-23:
Table E-24
Table E-25:
Table E-26:
Table E-27:
Table E-28:
Table E-29:
Table E-30:
Table E-31:
Table E-32:
Table E-33:
Table E-34:
Table E-35:
Table E-36:
Table E-37:
Table E-38:
Table E-39:
Table E-40:
Table E-41:
Table E-42:

: Normative units in ISO 80000-6 (1 of 5)

Normative quantity kinds in ISO 80000-5 (4 of 5)
Normative quantity kinds in ISO 80000-5 (5 of 5)

Normative units in ISO 80000-6 (2 of 5)
Normative units in ISO 80000-6 (3 of 5)
Normative units in ISO 80000-6 (4 of 5)
Normative units in ISO 80000-6 (5 of 5)
Normative quantity kinds in ISO 80000-6 (1 of 4)
Normative quantity kinds in ISO 80000-6 (2 of 4)
Normative quantity kinds in ISO 80000-6 (3 of 4)
Normative quantity kinds in ISO 80000-6 (4 of 4)
Units in ISO 80000-7c.covvveenieririerenineenieerieieenes

Quantity kinds in ISO 80000-7

Units in ISO 80000-9ccccoovviviniiniinnnee

Quantity kinds in ISO 80000-9

Units in ISO 80000-10ccccvveernenennns

Quantity kinds in ISO 80000-10coeiiiiiiiieeeee ettt ettt ettt e et eseeseseeabeeeneas
Units in ISO 80000-13oouiiiiiirieirieiie ettt ettt ettt ettt sa et b e bt et ebe et ne st e b e ene
Quantity kinds in ISO 80000-13
DiStIIDULION STETEOLYPESvenvteutetieiieteeitete ettt ettt e ettt s bt et et e sb e et e sbeea e s bt e st esbe e st e besbtenbesbeenbesbeesbenbeensensenee
Example of Requirement in Tabular FOIMcocooiiiiiiiiiiiiiiiiicrsenccece et

OMG Systems Modeling Language, v1.6

xXiii

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http:/www.iso.org

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

xxiv OMG Systems Modeling Language, v1.6

SysML Roadmap

Requirements for SysML were originally specified by:
ad/2003-03-41 (UML for Systems Engineering RFP)
The source documents for this specification include:
Alpha: ad/2006-03-01 (submission)
ad/2006-04-07 (errata)
ad/2006-03-04 (glossary)
Associated Schema files: ad/2006-03-02 (XMI)

The Finalization Task Force (FTF) process generated the following documents:
Beta 1: ptc/2006-05-04 (a.k.a. Final Adopted Specification)
Beta 2: ptc/2007-03-19 (FTF Report - full record of FTF votes and issue resolutions
ptc/2007-02-03, ptc/2007-03-04 (a.k.a. convenience document, with and without change bars)
ptc/2007-02-05 (XMI)
ptc/2007-03-09 (Annex E - Requirements Traceability)

Version 1.0 Formal Specification: formal/2007-09-01

The SysML 1.1 Revision Task Force (RTF) process generated the following documents:
ptc/2008-05-15 (RTF Report - full record of RTF votes and issue resolutions)
ptc/2008-05-16, ptc/2008-05-17 (a.k.a. convenience document, with and without change bars)
ptc/2008-05-18 (XMI)

Version 1.1 Formal Specification: formal/2008-11-01, formal/2008-11-02

Associated schema files for this specification, at https://www.omg.org/spec/SysML/20090501/, include the following
files:

SysML-profile.xmi XMI 2.1 serialization of the SysML Profile

Activities-model.xmi XMI 2.1 serialization of the Activities model library

Blocks-model.xmi XMI 2.1 serialization of the Blocks model library

UMLA4SysML-metamodel.xmi XMI 2.1 serialization of the merged UML4SysML subset of UML 2
(used to define the SysML Profile)

OMG Systems Modeling Language, v1.6 XXV

The SysML 1.2 Revision Task Force (RTF) process generated the following documents:
ptc/2008-05-15 (RTF Report - full record of RTF votes and issue resolutions)
ptc/2008-05-16, ptc/2008-05-17 (a.k.a. convenience document, with and without change bars)
ptc/2008-05-18 (XMI)
Version 1.2 Formal Specification: formal/2010-06-01, formal/2010-06-02
Associated schema file for this specification, at https://www.omg.org/spec/SysML/20100301, include the following files:
SysML-profile.uml XMI 2.1 serialization of the SysML Profile
UMLA4SysML-metamodel.uml XMI 2.1 serialization of the merged UML4SysML subset of UML 2
(used to define the SysML Profile)
Activities-model.xmi XMI 2.1 serialization of the Activities model library

Blocks-model.xmi XMI 2.1 serialization of the Blocks model library

The SysML 1.3 Revision Task Force (RTF) process generated the following documents:
ptc/2011-08-08 (RTF Report - full record of RTF votes and issue resolutions)
ptc/2011-08-07 (Submission inventory document)
ptc/2011-08-09, ptc/2011-08-10 (Beta “convenience document,” with and without change bars)
ptc/2011-08-11, ptc/2011-08-12 (Normative and non-normative XMI)
ptc/2012-04-07, ptc/2012-04-08 (Normative and non-normative XMI)

Version 1.3 Formal Specification: formal/2012-06-01, formal/2012-06-02

Associated schema files for this specification, at https://www.omg.org/spec/SysML/20120401/, include the following
files:

SysML.xmi (Normative)
ISO-80000-1-QUDV.xmi (Non-normative)
ISO-80000-1-SysML.xmi (Non-normative)
QUDV .xmi (Non-normative)

The SysML 1.4 Revision Task Force (RTF) process generated the following documents:
ptc/2013-12-08 (RTF Report - full record of RTF votes and issue resolutions)
ptc/2013-12-10, ptc/2013-12-09 (Beta “convenience document,” with and without change bars)
ptc/2013-12-11, ptc/2013-12-12 (Normative and non-normative XMI)

Version 1.4 Formal Specification: formal/2015-06-03, formal/2015-06-04

xxvi OMG Systems Modeling Language, v1.6

Associated schema files for this specification, at https://www.omg.org/spec/SysML/20131201/, include the following
files:

SysML.xmi (Normative)

SysMLDI.xmi (Normative)
I1SO-80000-1-QUDV.xmi (Non-normative)
ISO-80000-1-SysML.xmi (Non-normative)
QUDV.xmi (Non-normative)

The SysML 1.5 Revision Task Force (RTF) process generated the following documents:
ptc/2016-11-01 (RTF Report - full record of RTF votes and issue resolutions)
ptc/2016-11-02, ptc/2016-11-03 (Beta “convenience document,” with and without change bars)
ptc/2016-11-05, ptc/2016-11-06, ptc/16-11-07, pte/16-11-08 (Normative and non-normative XMI)

Associated schema files for this specification, at https://www.omg.org/spec/SysML/20161101/, include the following
files:

SysML.xmi (Normative)

SysMLDI.xmi (Normative)
ISO-80000-1-QUDV.xmi (Non-normative)
ISO-80000-1-SysML.xmi (Non-normative)
QUDV.xmi (Non-normative)

The SysML 1.6 Revision Task Force (RTF) process generated the following documents:
ptc/2018-10-01 (RTF Report - full record of RTF votes and issue resolutions)
ptc/2018-10-02, ptc/2018-10-03 (Beta “convenience document,” with and without change bars)

ptc/2018-10-04, ptc/2018-10-05, ptc/2018-10-06, ptc/2018-10-07, ptc/2018-10-08 (Normative and non-
normative XMI)

Associated schema files for this specification, at https://www.omg.org/spec/SysML/20161101/, include the following
files:

SysML.xmi (Normative)
1SO-80000-1-QUDV.xmi (Non-normative)
ISO-80000-1-SysML.xmi (Non-normative)
QUDV .xmi (Non-normative)

OMG Systems Modeling Language, v1.6 XXVii

This page intentionally left blank.

xxviii OMG Systems Modeling Language, v1.6

1 Scope

The purpose of this International Standard is to specify the Systems Modeling Language (SysML), a general-purpose
modeling language for systems engineering. Its intent is to specify the language so that systems engineering modelers
may learn to apply and use SysML; modeling tool vendors may implement and support SysML; and both can provide
feedback to improve future versions. Note that a definition of “system” and “systems engineering” can be found
inISO/IEC 15288.

SysML reuses a subset of UML 2.5 and provides additional extensions to address the requirements in UML for SE.
SysML uses the UML 2.5 extension mechanisms as further elaborated in Clause 17 as the primary mechanism to specify
the extensions to UML 2.5. This revision of SysML relies on several new features incorporated into UML 2.5. Any use
of the term “UML 2” or “UML” in this specification, unless otherwise noted, will refer to UML 2.5 in general and the
UML 2.5 specification in particular.

Since SysML uses UML 2.5 as its foundation, systems engineers modeling with SysML and software engineers modeling
with UML 2.5 will be able to collaborate on models of software-intensive systems. This will improve communication
among the various stakeholders who participate in the systems development process and promote interoperability among
modeling tools. It is anticipated that SysML will be customized to model domain-specific applications, such as
automotive, aerospace, communication, and information systems.

SysML is designed to provide simple but powerful constructs for modeling a wide range of systems engineering
problems. It is particularly effective in specifying requirements, structure, behavior, allocations, and constraints on
system properties to support engineering analysis. The language is intended to support multiple processes and methods
such as structured, object-oriented, and others, but each methodology may impose additional constraints on how a
construct or diagram kind may be used. This version of the language supports most, but not all, of the requirements of the
UML for Systems Engineering RFP, as shown in the Requirements Traceability referenced by Annex F. These gaps are
intended to be addressed in future versions of SysML as indicated in the matrix.

The following sub clauses provide background information about this International Standard. Instructions for both
systems engineers and tool vendors who read this International Standard are provided in “How to Read this International
Standard.” The main body of this International Standard describes the normative technical content. The annexes include
additional information to aid in understanding and implementation of this International Standard.

OMG Systems Modeling Language, v1.6 1

2 Normative References

The following normative documents contain provisions, which through reference in this text, constitute provisions of this
International Standard. Subsequent amendments to, or revisions of, any of these publications do not apply.

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 7th Edition 2016

ISO/IEC 10303-233:2012, STEP AP233, Product data representation and exchange: application protocol: Systems
engineering

ISO/IEC IEEE 15288:2015, Systems and software engineering - System life cycle process
OMG Specification formal/2017-12-01, Unified Modeling Language, (UML) V2.5.1
(https://www.omg.org/spec/UML/2.5.1/)

OMG Specification formal/2014-02-03, Object Constraint Language (OCL), V2.4
(https://www.omg.org/spec/OCL/2.4/)

OMG Specification formal/2015-06-05, Meta Object Facility (MOF), V2.5
(https://www.omg.org/spec/MOF/2.5/)

OMG Specification formal/2015-06-01, Diagram Definition, V1.1
(http://www.omg.org/spec/DD/1.1/)

OMG Document ad/03-03-41, UML for Systems Engineering RFP
(https://www.omg.org/cgi-bin/doc?ad/2003-03-41)

OMG Document ormsc/2014-06-01, Model Driven Architecture (MDA) Guide rev. 2.0
(https://www.omg.org/cgi-bin/doc?ormsc/2014-06-01)

VIM Edition 3 (VIM3), “International vocabulary of metrology - Basic and general concepts and associated terms
(VIM)”, JCGM 200:2012 (JCGM 200:2008 with minor corrections)

299

[Dybkaer-2010] Rene Dybkaer, “ISO terminological analysis of the VIM3 concepts of ‘quantity’ and ‘kind-of-quantity’”,
Metrologia 47, (2010) 127-143

2 OMG Systems Modeling Language, v1.6

3 Additional Information

3.1 Relationships to Other Standards

SysML is defined as an extension of the OMG UML 2 standard. See Clause 2 for the current version of the UML 2
standard.

SysML is intended to be supported by two evolving interoperatility standards including the OMG XMI 2 model
interchange standard for UML 2 modeling tools and the ISO 10303 STEP AP233 data interchange standard for systems
engineering tools. Overviews of the approach to model interchange and relevant references are included in Annex G.

SysML supports the OMG’s Model Driven Architecture (MDA) initiative by its reuse of UML and related standards. See
OMG MDA Guide rev 2.0.

3.2 How to Read this International Standard

This International Standard is intended to be read by systems engineers so they may learn and apply SysML, and by
modeling tool vendors so they may implement and support SysML.

Systems engineers should read the Overview, Diagram Elements, and Usage Examples sub clauses in each clause, and
explore the UML Extensions as they see fit. Modeling tool vendors should read all clauses. In addition, systems
engineers and vendors should read Annex D, “Sample Problem,” to understand how the language is applied to an
example, and the document referenced by Annex F, “Requirements Traceability,” to understand how the requirements in
the UML for SE RFP are satisfied by this International Standard.

Although the clauses are organized into logical groupings that can be read sequentially, this International Standard can be
used for reference and may be read in a non-sequential manner.

3.2.1 Organization

This International Standard is organized as follows:
Preface

INTRODUCTION

1 Scope

2 Normative References

3 Additional Information - includes Relationships to Other Standards, How to Read this International Standard, and
Acknowledgments

4 Language Architecture - General Information, Design Principles, Architecture, and SysML Diagrams
5 Conformance - General Information and Conformance Types

6 Language Formalism -
e Levels of Formalism
e (Clause Structure

e Conventions and Typography

OMG Systems Modeling Language, v1.6 3

STRUCTURAL CONSTRUCTS

7 Model Elements - Refactors the kernel package from UML 2 and includes some extensions to provide some foundation
capabilities for model management.

8 Blocks - Reuses and extends structured classes from UML 2 composite structures to provide the fundamental capability
for describing system decomposition and interconnection, and to define different types of system properties including
value properties with optional units of measure.

9 Ports and Flows - Provides the semantics for defining how blocks and parts interact through ports and how items flow
across connectors.

10 Constraint Blocks - Defines how blocks are extended to be used on parametric diagrams. Parametric diagrams model a
network of constraints on system properties to support engineering analysis, such as performance, reliability, and mass
properties analysis.

BEHAVIORAL CONSTRUCTS

11 Activities - Defines the extensions to UML 2 activities, which represent the basic unit of behavior that is used in
activity, sequence, and state machine diagrams. The activity diagram is used to describe the slow of control and flow of
inputs and outputs among actions.

12 Interactions - Defines the constructs for describing message based behavior used in sequence diagrams.

13 State Machines - Describes the constructs used to specify state based behavior in terms of system states and their
transitions.

14 Use Cases - Describes behavior in terms of the high level functionality and uses of a system, that are further specified
in the other behavioral disgrams referred to above.

CROSSCUTTING CONSTRUCTS
15 Allocations
16 Requirements

17 Profiles & Model Libraries

ANNEXES

Annex A - Diagrams

Annex B - SysML Diagram Interchange
Annex C - Deprecated Elements

Annex D - Sample Problem

Annex E - Non-normative Extensions
Annex F - Requirements Traceability

Annex G - Model Interchange

4 OMG Systems Modeling Language, v1.6

3.3 Acknowledgments

The following companies and organizations submitted or supported parts of the original version of this International
Standard:
Industry
e American Systems Corporation
e BAE SYSTEMS
e Boeing
e Deere & Company
e EADS Astrium
e Eurostep
e Israel Aircraft Industries
e Lockheed Martin Corporation
e Motorola
e Northrop Grumman
e oose Innovative Informatik GmbH
e PivotPoint Technology
e Raytheon
e THALES

US Government
e NASA/Jet Propulsion Laboratory
e National Institute of Standards and Technology (NIST)
e DoD/Office of the Secretary of Defense (OSD)

Vendors
e ARTiISAN Software Tools
e Ceira Technologies
e EmbeddedPlus Engineering
e Gentleware
e IBM
o I-Logix
e Mentor Graphics
o Telelogic
e Structured Software Systems Limited
e Sparx Systems
e Vitech

Academia

e Georgia Institute of Technology

OMG Systems Modeling Language, v1.6

Liaisons
e Consultative Committee for Space Data Systems (CCSDS)
e Embedded Architecture and Software Technologies (EAST)
e International Council on Systems Engineering (INCOSE)
e ISO STEP AP233
e Systems Level Design Language (SLDL) and Rosetta

The following persons were members of the team that designed and wrote this International Standard: Vincent Arnould,
Laurent Balmelli, Ian Bailey, James Baker, Cory Bialowas, Conrad Bock, Carolyn Boettcher, Roger Burkhart, Murray
Cantor, Bruce Douglass, Harald Eisenmann, Anders Ek, Brenda Ellis, Marilyn Escue, Sanford Friedenthal, Eran Gery,
Hal Hamilton, Dwayne Hardy, James Hummel, Cris Kobryn, Michael Latta, John Low, Robert Long, Kumar Marimuthu,
Alan Moore, Véronique Normand, Salah Obeid, Eldad Palachi, David Price, Bran Selic, Chris Sibbald, Joseph Skipper,
Rick Steiner, Robert Thompson, Jim U’Ren, Tim Weilkiens, Thomas Weigert, and Brian Willard.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this International Standard: Perry Alexander, Michael Chonoles, Mike Dickerson, Orazio Gurrieri, Julian
Johnson, Jim Long, Henrik Lénn, Stephen Mellor, Dave Oliver, Jim Schier, Matthias Weber, Peter Shames, and the
Georgia Institute of Technology research team including Manas Bajaj, Injoong Kim, Chris Paredis, Russell Peak, and
Diego Tamburini. The SysML team also wants to acknowledge Pavel Hruby and his contribution by providing the Visio
stencil for UML 2 that was adapted for most of the figures throughout this International Standard.

Additional organizations and individuals have contributed to further revisions of this International Standard, as
completed by Finalization and Revision Task Forces listed under the OMG SysML Roadmap in the Preface above.
Besides those already acknowledged above for their contributions to the original International Standard, the following
additional persons have contributed to the Finalization or Revision Task Forces: Dave Banham,Yves Bernard, Graham
Bleakley, Fraser Chadburn, Chris Delp, Hans Peter de Koning, Sébastien Demathieu, Peter Denno, Huascar Espinoza,
Allison Barnard Feeney, Sébastien Gérard, Matthew Hause, Kenn Hussey, Nerijus Jankevicius, Steve Jenkins, Robert
Karban, Darren Kelly, Andreas Korff, Frédéric Mallet, Sam Mancarella, Julio Medina, Jishnu Mukerji, Chris Paredis,
Axel Reichwein, Pete Rivett, Nicolas Rouquette, George Sawyer, Andrius Strazdauskas, Kritsana Uttamang, John
Watson, Bernd Wenzel. Additional organizations who supported the work of contributors to the Finalization and
Revision Task Forces, not already listed for the original submission above, include 88solutions, Adaptive, Atego, EADS,
CEA LIST, European Southern Observatory, European Space Agency, Fachhochschule Vorarlberg, INRIA, Mathworks,
Tecnalia Research and Innovation, No Magic, and Universidad de Cantabria.

6 OMG Systems Modeling Language, v1.6

4 Language and Architecture

4.1 General

SysML reuses a subset of UML 2 and provides additional extensions needed to address requirements in the UML for
Systems Engineering RFP. This International Standard documents the language architecture in terms of the parts of UML
2 that are reused and the extensions to UML 2. This clause explains design principles and how they are applied to define
the SysML language architecture.

To visualize the relationship between the UML and SysML languages, consider the Venn diagram shown in Figure 4-1,
where the sets of language constructs that comprise the UML and SysML languages are shown as the circles marked
“UML” and “SysML,” respectively. The intersection of the two circles, shown by the region marked “UML reused by
SysML,” indicates the UML modeling constructs that SysML reuses, called the UML4SysML subset. The region marked
“SysML extensions to UML” in Figure 4.1 indicates the new modeling constructs defined for SysML that have no
counterparts in UML, or which replace UML constructs. Note that there is also a part of UML 2 that is not required to
implement SysML, which is shown by the region marked “UML not required by SysML.”

SysML

SysML
extensions
to UML

umL

reused by <
SysMLProfile
uML SysML (Sys
not required (UM L4SysML)
by SysML

{UML - UML4SysML)

Figure 4-1: Overview of SysML/UML Interrelationship

Table 4-1 lists the metaclasses excluded from the UML4SysML subset. Table 4-2 lists the metaclasses and datatypes
included in the UML4SysML subset. Table 4.3 lists the stereotypes, blocks, valuetypes, and datatypes included in
SysML.

OMG Systems Modeling Language, v1.6 7

Table 4-1: UML2 metaclasses excluded from the UML4SysML subset

UML 2 metaclasses excluded from the UML4SysML subset

Artifact, ClassifierTemplateParameter, Collaboration, CollaborationUse,
CommunicationPath, Component, ComponentRealization,
ConnectableElementTemplateParameter, Deployment, DeploymentSpecification,
Device, ExceptionHandler, ExecutionEnvironment, ExpansionNode, ExpansionRegion,
Manifestation, Node, OperationTemplateParameter, ProtocolConformance,
ProtocolStateMachine, ProtocolTransition, QualifierValue,
ReadLinkObjectEndQualifierAction, RedefinableTemplateSignature, StringExpression,
TemplateBinding, TemplateParameter, TemplateParameterSubstitution,
TemplateSignature, UMLActivityDiagram, UMLAssociationEndLabel,
UMLAssociationOrConnectorOrLinkShape,
UMLAssociationOrConnectorOrLinkShapeKind, UMLBehaviorDiagram,
UMLClassDiagram, UMLClassifierShape, UMLCompartment,
UMLCompartmentableShape, UMLComponentDiagram,
UMLCompositeStructureDiagram, UMLDeploymentDiagram, UMLDiagram,
UMLDiagramElement, UMLDiagramWithAssociations, UMLEdge,
UMLlInteractionDiagram, UMLInteractionDiagramKind, UMLInteractionTableLabel,
UMLKeywordLabel, UMLLabel, UMLMultiplicityLabel, UMLNameLabel,
UMLNavigabilityNotationKind, UMLObjectDiagram, UMLPackageDiagram,
UMLProfileDiagram, UMLRedefinesLabel, UMLShape, UMLStateMachineDiagram,
UMLStateShape, UMLStereotypePropertyValueLabel, UMLStructureDiagram,
UMLStyle, UMLTypedElementLabel, UMLUseCaseDiagram

Table 4-2: UML 2 metaclasses and datatypes included in the UML4SysML subsetTable

UML 2 metaclasses and datatypes included in the UML4SysML subset

Abstraction, AcceptCallAction, AcceptEventAction, Action,
ActionExecutionSpecification, ActionlnputPin, Activity, ActivityEdge, ActivityFinalNode,
ActivityGroup, ActivityNode, ActivityParameterNode, ActivityPartition, Actor,
AddStructuralFeatureValueAction, AddVariableValueAction, AggregationKind,
AnyReceiveEvent, Association, AssociationClass, Behavior,
BehaviorExecutionSpecification, BehavioralFeature, BehavioredClassifier,
BroadcastSignalAction, CallAction, CallBehaviorAction, CallConcurrencyKind,
CallEvent, CallOperationAction, CentralBufferNode, ChangeEvent, Class, Classifier,
Clause, ClearAssociationAction, ClearStructuralFeatureAction, ClearVariableAction,
CombinedFragment, Comment, ConditionalNode, ConnectableElement,
ConnectionPointReference, Connector, ConnectorEnd, ConnectorKind,
ConsiderlgnoreFragment, Constraint, Continuation, ControlFlow, ControlNode,

8 OMG Systems Modeling Language,

v1.6

CreateLinkAction, CreateLinkObjectAction, CreateObjectAction, DataStoreNode,
DataType, DecisionNode, Dependency, DeployedArtifact, DeploymentTarget,
DestroyLinkAction, DestroyObjectAction, DestructionOccurrenceSpecification,
DirectedRelationship, Duration, DurationConstraint, DurationInterval,
DurationObservation, Element, Elementimport, EncapsulatedClassifier, Enumeration,
EnumerationLiteral, Event, ExecutableNode, ExecutionOccurrenceSpecification,
ExecutionSpecification, Expression, Extend, Extension, ExtensionEnd, ExtensionPoint,
Feature, FinalNode, FinalState, FlowFinalNode, ForkNode, FunctionBehavior, Gate,
GeneralOrdering, Generalization, GeneralizationSet, Image, Include, InformationFlow,
Informationltem, InitialNode, InputPin, InstanceSpecification, InstanceValue,
Interaction, InteractionConstraint, InteractionFragment, InteractionOperand,
InteractionOperatorKind, InteractionUse, Interface, InterfaceRealization,
InterruptibleActivityRegion, Interval, IntervalConstraint, InvocationAction, JoinNode,
Lifeline, LinkAction, LinkEndCreationData, LinkEndData, LinkEndDestructionData,
LiteralBoolean, Literallnteger, LiteralNull, LiteralReal, LiteralSpecification, LiteralString,
LiteralUnlimitedNatural, LoopNode, MergeNode, Message, MessageEnd,
MessageEvent, MessageKind, MessageOccurrenceSpecification, MessageSort, Model,
MultiplicityElement, NamedElement, Namespace, ObjectFlow, ObjectNode,
ObjectNodeOrderingKind, Observation, OccurrenceSpecification, OpaqueAction,
OpaqueBehavior, OpaqueExpression, Operation, OutputPin, Package, Packagelmport,
PackageMerge, PackageableElement, Parameter, ParameterDirectionKind,
ParameterEffectKind, ParameterSet, ParameterableElement, PartDecomposition, Pin,
Port, PrimitiveType, PrimitiveTypes::Boolean, PrimitiveTypes::Integer,
PrimitiveTypes::Real, PrimitiveTypes::String, Primitive Types::UnlimitedNatural,
PrimitiveValueTypes::Boolean, Profile, ProfileApplication, Property, Pseudostate,
PseudostateKind, RaiseExceptionAction, ReadExtentAction,
ReadlsClassifiedObjectAction, ReadLinkAction, ReadLinkObjectEndAction,
ReadSelfAction, ReadStructuralFeatureAction, ReadVariableAction, Realization,
Reception, ReclassifyObjectAction, RedefinableElement, ReduceAction, Region,
Relationship, RemoveStructuralFeatureValueAction, RemoveVariableValueAction,
ReplyAction, SendObjectAction, SendSignalAction, SequenceNode, Signal,
SignalEvent, Slot, StartClassifierBehaviorAction, StartObjectBehaviorAction, State,
Statelnvariant, StateMachine, Stereotype, StructuralFeature, StructuralFeatureAction,
StructuredActivityNode, StructuredClassifier, Substitution, TestldentityAction,
TimeConstraint, TimeEvent, TimeExpression, Timelnterval, TimeObservation,
Transition, TransitionKind, Type, TypedElement, UnmarshallAction, Usage, UseCase,
ValuePin, ValueSpecification, ValueSpecificationAction, Variable,VariableAction,
Vertex, VisibilityKind, WriteLinkAction, WriteStructuralFeatureAction,
WriteVariableAction

OMG Systems Modeling Language, v1.6

Table 4-3: SysML stereotypes, blocks, valuetypes, and datatypes

SysML stereotypes, blocks, valuetypes, and datatypes

AcceptChangeStructuralFeatureEventAction, AdjunctProperty, Allocate,
AllocateActivityPartition, BindingConnector, Block, BoundReference,
ChangeStructuralFeatureEvent, ClassifierBehaviorProperty, Conform,
ConnectorProperty, ConstraintBlock, Continuous, ControlOperator, ControlValueKind,
Copy, DeriveReqt, DirectedFeature, DirectedRelationshipPropertyPath, Discrete,
DistributedProperty, ElementGroup, ElementPropertyPath, EndPathMultiplicity, Expose,
FeatureDirectionKind, FlowProperty, FullPort, InterfaceBlock,
InvocationOnNestedPortAction, IltemFlow, NestedConnectorEnd, NoBuffer, Optional,
Overwrite, ParticipantProperty, PrimitiveValueTypes::Boolean,
PrimitiveValueTypes::Complex, PrimitiveValueTypes::Integer,
PrimitiveValueTypes::Number, PrimitiveValueTypes::Real, PrimitiveValueTypes::String,
Probability, Problem, PropertySpecificType, ProxyPort, Rate, Rationale, Refine,
Requirement, Satisfy, Stakeholder, TestCase, Trace, TriggerOnNestedPort, ValueType,
VerdictKind, Verify, View, Viewpoint

4.2 Design Principle

The fundamental design principles for SysML are:
e Requirements-driven - SysML is intended to satisfy the requirements of the UML for SE RFP.

e UML reuse - SysML reuses UML wherever practical to satisfy the requirements of the RFP, and when
modifications are required, they are done in a manner that strives to minimize changes to the underlying

language. Consequently, SysML is intended to be relatively easy to implement for vendors who support UML 2.

e UML extensions - SysML extends UML as needed to satisfy the requirements of the RFP. The primary extension
mechanism is the UML 2 profile mechanism as further refined in Clause 17, “Profiles & Model Libraries.”

e Partitioning - The package is the basic unit of partitioning in this International Standard. The packages partition
the model elements into logical groupings that minimize circular dependencies among them.

e Layering - SysML packages are specified as an extension layer to the UML metamodel.

e Interoperability - SysML inherits the XMI interchange capability from UML. SysML is also intended to be
supported by the ISO 10303-233 data interchange standard to support interoperability among other engineering
tools.

SysML provides three model libraries:

e PrimitiveValueTypes, see 8.3.3.1
e UnitAndQuantityKind, see 8.4.6
e ControlValues, see 11.3.3

OMG Systems Modeling Language, v1.6

4.3 Architecture

The relationship between SysML and UML 2 is shown in Figure 4-1. SysML extends UML 2’s StandardProfile (see
Clause 22 in the UML 2.5 specification) whose Trace and Refine stereotypes provide the basis for Requirement
traceability in SysML (see Clause 16, “Requirements” in this International Standard).

Although SysML indirectly imports the UML 2 PrimitiveTypes library (see Clause 21 in the UML 2.5 specification) due
to the transitivity of package import, SysML provides a PrimitiveValueTypes model library that systems engineers can
extend via SysML’s ValueType stereotype. In the remainder of this document, the unqualified references to Boolean,
Integer, Real, and String should be interpreted as follows:

In the context of the definition of a SysML Stereotype, the name refers to the definition of a UML::PrimitiveType in the
UML 2 PrimitiveTypes library.

e In the context of the definition of a SysML Stereotype, the name refers to the definition of a
UML::PrimitiveType in the UML 2 PrimitiveTypes library.

o Elsewhere, the name refers to the definition of a SysML::ValueType stereotype of UML::DataType in the
SysML PrimitiveValueTypes library.

[1] 1]

umL «import» A PrimitiveTypes

w :
N ~«import»
| ~

|]

«profile»
StandardProfile

| «import»

|

| A
Ve

| «import» -
Ve
e
_I_I . 1]
«profile» «apply» «modelLibrary»

SysML Libraries

Figure 4-2: SysML Extension of UMLFigure

OMG Systems Modeling Language, v1.6 11

«profile»
I rre! SysML
Block: Acitivi

OGRS Gitvies ModelElements Allocations

L

! N

«import» ! \nirrpnn»
/ A"
! \
— | 4_|]]
ConstraintBlocks Ports&Flows Requirements DeprecatedElements
L)
| «apply»
|
| L
«modelLibrary»
Libraries
1 1 1
«modelLibrary» «emodelLibrary » «modelLibrary»
PrimitiveValueTypes ControlValues UnitAndQuantityKind

Figure 4-3: SysML Package Structure

As previously stated, the design approach for SysML is to reuse a subset of UML and create extensions to support the
specific concepts needed to satisfy the requirements in the UML for SE RFP. The SysML package structure shown in

Figure 4-2: SysML Extension of UMLFigure contains a set of packages that correspond to concept areas in SysML that
have been extended.
The SysML packages extend UML as follows:

e SysML::Model Elements extends Classification, Common Structure

o SysML::Blocks extends Classification, Structured Classifiers, Common Structure, Simple Classifiers

e SysML::ConstraintBlocks extends Structured Classifiers

e SysML::Ports and Flows extends Actions, Common Behavior, Classification

o SysML::Activities extends Activities.

e SysML::Allocations extends Common Structure, Activities

e SysML::Requirements extends Common Structure, Classification, Common Behavior,

e Structured Classifiers

e SysML::DeprecatedElements extends Common Structure, Simple Classifiers, Classification, Structured

Classifiers, Actions, and SysML Item Flows

Figure 4-4 shows non-normative packages in this International Standard that depend on SysML and UML. Note that the
QUDYV and ISO-80000 libraries are described in non-normative annexes to this specification.

12 OMG Systems Modeling Language, v1.6

DI UML
» 7 7w
«import» i
| «amp |«in'p0rt» | «mporty
I | |
| _I_‘
UMLDI
«profile»
7w SysML ¢ — — _ _ “@plyr
|
) | 7 N
«import» -~ I
e I «importy -~ | “appl2 !
I # I |
] . 1 1
«profile» «modelLibrary» «import» «modelLibrary»
SysMLDI Quobv < = — 7 1S0-80000

Figure 4-4: Non-normative Package Structure

4.4 Extension Mechanisms

This International Standard uses the following mechanisms to define the SysML extensions:
e UML stereotypes
e UML diagram extensions
e Model libraries

SysML stereotypes define new modeling constructs by extending existing UML 2 constructs with new properties and
constraints. SysML diagram extensions define new diagram notations that supplement diagram notations reused from
UML 2. SysML model libraries describe specialized model elements that are available for reuse. Additional non-
normative extensions are included in Annex E “Non-normative Extensions.”

The SysML user model is created by instantiating its metamodel and applying the stereotypes specified in the SysML
profile, and optionally referencing or subclassing the model elements in the SysML model library. Clause 17, “Profiles &
Model Libraries” describes how profiles and model libraries are applied and how they can be used to further extend
SysML.

4.5 SysML Diagrams

The SysML diagram taxonomy is shown in Figure A.1 in Annex A. The concrete syntax (notation) for the diagrams
along with the corresponding specification of the UML extensions is described in Parts II - IV. The Diagrams Annex
(Annex A) describes generalized features of diagrams, such as their frames and headings. A model of SysML diagrams to
support interchange is in SysML Diagram Interchange Annex (Annex B).

OMG Systems Modeling Language, v1.6 13

5 Conformance

5.1 Overview

Conformance with SysML requires that the subset of UML required for SysML is implemented, and that the SysML
extensions to this subset are implemented. SysML has three types of conformance, listed in 5.2, which shall all be
supported to fully conform to SysML. Conformance does not include DeprecatedElements.

5.2 Conformance Types

An implementation of SysML shall comply with both the subset of UML4SysML and the SysML extensions. The types
of SysML conformance extend corresponding types in UML as follows:

14

Abstract syntax conformance. A tool demonstrating abstract syntax conformance provides a user interface
and/or API that enables instances of concrete SysML stereotypes (which are applications of stereotypes to
instances of UML metaclasses) and model library elements to be created, read, updated, and deleted. The tool
shall also provide a way to validate the well-formedness of models that corresponds to the constraints defined in
SysML.

Concrete syntax conformance. A tool demonstrating concrete syntax conformance provides a user interface
and/or API that enables instances of SysML notation to be created, read, updated, and deleted. This includes
conformance to the notation defined in the “Diagram Elements” tables and diagrams extension sub clauses in
each clause of this International Standard. Note that a conforming tool may provide the ability to create, read,
update, and delete additional diagrams and notational elements that are not defined in SysML.

Model interchange conformance. A tool demonstrating model interchange conformance can import and export
conformant XMI for all valid SysML models, including models with profiles defined and/or applied. Model
interchange conformance implies abstract syntax conformance. See more information in Annex G.

OMG Systems Modeling Language, v1.6

6 Language Formalisms

6.1 Levels of Formalism

SysML is specified using a combination of UML modeling techniques and precise natural language to balance rigor and
understandability. Use of more formal constraints and semantics may be applied in future versions to further increase the
precision of the language.

6.2 Clause Structure

The clauses are organized according to the SysML packages as described in the language architecture and selected
reusable portions of UML 2 packages. This sub clause provides information about how each clause is organized.

6.2.1 Overview

This sub clause provides an overview of the SysML modeling constructs defined in the subject package, which are
usually associated with one or more SysML diagram types.

6.2.2 Diagram Elements

This sub clause provides tables that summarize the concrete syntax (notation) and abstract syntax references for the
graphic nodes and paths associated with the relevant diagram types. The diagram elements tables are intended to include
all of the diagrammatic constructs used in SysML. However, they do not represent all the different combinations in
which they can be used. The reader should refer to the usage examples in the clauses and the sample problem (Annex D:)
for typical usages of the concrete syntax. General diagram information on the use of diagram frames and headings can be
found in Annex A.

The diagram elements tables and the additional usage examples fill an important role in defining the scope of SysML. As
described in Clause 4, “Language Architecture,” SysML imports many entire packages from the UML metamodel, which
it then reuses and extends. Only a subset of the entire UML metamodel, however, is required to support the notations
included in SysML.

Unless a type of diagram element is shown in some form in one of the SysML diagram elements tables, or in a usage
example in one of the normative SysML clauses, it is not considered to be part of the subset of UML included within
SysML, even if the UML metamodel packages support additional constructs. For example, SysML imports the entire
Dependencies package from UML, but it includes diagram elements for only a subset of the dependency types defined in
this package.

6.2.3 UML Extensions

This sub clause specifies the SysML extensions to UML in terms of diagram extensions and semantic extensions.
Diagram extensions are included when the concrete syntax uses notation other than the standard stereotype notation as
defined in the Profiles & Model Libraries clause. Semantic extensions consist of stereotype and model library extensions.
Stereotype extensions always include the abstract syntax that identifies which metaclasses a stereotype extends. Each
stereotype includes a general description with a definition and semantics, along with stereotype properties (attributes),
and constraints. Each constraint consists of a textual description and may be followed by a formal constraint expressed in

OMG Systems Modeling Language, v1.6 15

Object Constraint Language (OCL). If there is any ambiguity between the two, the OCL statement of the constraint takes
precedence. The model libraries are defined as subclasses of existing metaclasses.

6.2.4 Usage Examples

This sub clause shows how the SysML modeling constructs can be applied to solve systems engineering problems and is
intended to reuse and/or elaborate the sample problem in Annex D.

6.3 Conventions and Typography

In the description of SysML, the following conventions have been used:

16

When referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as
they appear in the model are used.

No visibilities are presented in the diagrams, since all elements are public.
If a sub clause is not applicable, it is not included, except for the top-level sub clauses outlined in sub clause 6.2.

Stereotype, metaclass, and metaassociation names: initial embedded capitals are used (e.g., “ModelElement,”
“ElementReference”).

Boolean metaattribute names: always start with “is” (e.g., “isComposite™).

Enumeration types: always end with “Kind” (e.g., “DependencyKind”).

OMG Systems Modeling Language, v1.6

STRUCTURAL CONSTRUCTS

OMG Systems Modeling Language, v1.6

17

18

This page intentionally left blank.

OMG Systems Modeling Language, v1.6

7 Model Elements

7.1 Overview

The ModelElements package of SysML defines general-purpose constructs that may be shown on multiple SysML
diagram types. These include package, model, various types of dependencies (e.g., import, access, refine, realization),
constraints, and comments. The package diagram defined in this clause is used to organize the model by partitioning
model elements into packageable elements and establishing dependencies between the packages and/or model elements
within the package. The package defines a namespace for the packageable elements. Model elements from one package
can be imported and/or accessed by another package. This organizational principle is intended to help establish unique
naming of the model elements and avoid overloading a particular model element name. Packages can also be shown on
other diagrams such as the block definition diagram, requirement diagram, and behavior diagrams.

Constraints are used to capture simple constraints associated with one or more model elements and can be represented on
several SysML diagrams. The constraint can represent a logical constraint such as an XOR, a condition on a decision
branch, or a mathematical expression. The constraint has been significantly enhanced in SysML as specified in Clause
10, “Constraint Blocks” to enable it to be reused and parameterized to support engineering analysis.

Comments can be associated with any model element and are quite useful as an informal means of documenting the
model. SysML has introduced an extension to a comment called rationale to facilitate the system modeler in capturing
decisions. The rationale may be attached to any entity, such as a system element (block), or to any relationship, such as
the satisfy relationship between a design element and a requirement. In the latter case, it may be used to capture the basis
for the design decision and may reference an analysis report or trade study for further elaboration of the decision. In
addition, SysML includes an extension of a comment to reflect a problem or issue that can be attached to any other model
element.

7.1.1 View and Viewpoint

The concepts of viewpoint and view are articulated in ISO-42010 (formerly IEEE-1471). SysML viewpoint and view
constructs are consistent with the ISO-42010 standard. Typical examples may include an operational, manufacturing, or
security viewpoint and view.

Systems engineers use SysML to make models of systems-the result is the system model, which is what we mean most of
the time when we speak of “the model.” Along with that model, systems engineers may also use SysML to make a model
of the information to be presented to the stakeholders to address their concerns. The result is the viewpoint and view
model, which helps systems engineers assure that stakeholders get the understanding they need from the system model.

The viewpoint and view model can also be thought of as a description model, which augments a system model. A
viewpoint and view model exposes elements of one or more system models. In particular, a viewpoint is a specification
of rules for constructing a view to address a set of stakeholder concerns. The view is intended to represent the system
from this viewpoint. This enables stakeholders to specify aspects of the system model that are important to them from
their viewpoint, and then represent those aspects of the system in a specific view.

The viewpoint describes the point of view of a set of stakeholders by framing the concerns of the stakeholders along with
the method for producing a view that addresses those concerns. The method describes the expectation of what
stakeholder(s) wish to see exposed from the model, how the stakeholder wishes the information to be structured and
presented, and in what kind of artifact the stakeholder wants to consume the information. In other words, the method is
the set of rules that describe how the view should express the information from the model to address the stakeholder

OMG Systems Modeling Language, v1.6 19

concerns. The method can be specified as a process and/or a set of constraints for producing a view, which may include
rules or instructions for analyzing or verifying the view content.

The view is the modeling element that represents the artifact that is presented to the stakeholder. A view conforms to
only one viewpoint to ensure that only one method is applied to the view. The view shall be related to the model that
contains the information and the method that produces the view. The view is used by a rendering application to generate
the artifact, such as a document.

In summary, the viewpoint description specifies the following:
1. What kind of information the view should contain.

2. How the information should be expressed, i.e., what modeling language is required for the model that will
appear in the view. (Note: this is not to be confused with the language used for specifying the viewpoint
method).

3. The presentation format that specifies how the information should be presented in an artifact, e.g., specifying
that data values should be plotted on a graph or a particular tabular style, or that both English and Spanish text
should be provided, or that photographs be shows in color with minimum dimensions of 100 millimeters square.

4. The file format of the artifacts that are generated from the view (e.g., set of slides in ppt, a PDF, a Word
document, a web viewable format, ...).

It is important to understand that while the view is a SysML construct that exists within a SysML model, artifacts
generated from views potentially live outside of the modeling environment as the means to satisfy stakeholder concerns.
An artifact such as a movie or a PDF document is not directly incorporated in a SysML model, while the view which
represents the artifact does reside in the model as a specification of that artifact. The relationship between the viewpoint
and view model and the corresponding artifact is similar to the relationship between the system model and the system
that is the subject of the model.

7.2 Diagram Elements

Many of the diagram elements defined in this clause, specifically comments, constraints, problem, rationale, and
dependencies, including the dependency subtypes Conform, Realization, and Refine, may be shown on all SysML
diagram types, in addition to the diagram elements that are specific to each diagram type.

Table 7-1: Graphical nodes by ModelElements package

Element Name Concrete Syntax Example Abstract Syntax Reference
Comment UMLA4SysML::Comment
\\ 5 7z
ConstraintNote UMLA4SysML::Constraint
N N B -
T
{C1> {L1}E1x>E2.}

20 OMG Systems Modeling Language, v1.6

Element Name

Concrete Syntax Example

Abstract Syntax Reference

ConstraintTextualNote

‘E
(any graphical node) {constraint text}

{constraint text}

(any graphical path)

UMLA4SysML::Constraint

ElementGroup SysML::ModelElements::Element
Group
«elementGroup»
size = 3
Group criterit))n discription
[=
~
Model UMLA4SysML::Model
Model A
PackageDiagram pkg [Name] UMLA4SysML::Package
Subpackage2
aimports 77
Subpackage1/

OMG Systems Modeling Language, v1.6

21

Element Name

Concrete Syntax Example

Abstract Syntax Reference

PackageWithNamelInTab

Package1

1

Subpackage?2

N
«import» /

—

Subpackage1

Package1
{uri=http://w w w .abc.comVmodels/Package1}

UMLA4SysML::Package

PackageWithNamelnside UMLA4SysML::Package
Package1
Problem SysML::ModelElements::Problem
«problemy»
The problem is that....
Rationale SysML::ModelElements::Rationale
«rationale»
Description of rationale
Stakeholder «stakeholder» SysML::ModelElements::Stakeholder
Name
/concerr.l.;‘hw”“
conc;rnListz
22 OMG Systems Modeling Language, v1.6

Element Name

Concrete Syntax Example

Abstract Syntax Reference

View

wilEwn
Name

wuiEwn
Mvlawpoint=Marme
fstakeholder=MName1 Mame2

propery 1 Wiew

SysML::ModelElements::View

Viewpoint

wviEwpoints
ame

aviewpointz
stakaholder=Namsa
purposa="_"
concernList=, |
feoncem=".."" L
language=",.."
imethad=Name
presantation="._""..."

wgreate s View()

SysML::ModelElements::Viewpoint

Table 7-2: Graphical paths defined by ModelElements package

Element Name Concrete Syntax Example Abstract Syntax Reference

Conform «conformms UML4SysML::Conform

Expose — SysML::ModelElements::Expose

Dependency | o ielf_eilg'f_%__ = UMLA4SysML::Dependency

PublicPackageImport UML4SysML::PackageImport with

o nports visibility = public

PrivatePackagelmport UML4SysML::PackageImport with

_ __ «access» ViSibility = private

OMG Systems Modeling Language, v1.6

23

Element Name Concrete Syntax Example Abstract Syntax Reference

PackageContainment UMLA4SysML::Package::ownedElement
®—

Realization . UMLA4SysML::Realization

Refine _ _ wefner _ UMLA4SysML::Refine

7.3 UML Extensions

7.3.1 Diagram Extensions

7.3.1.1 UML Diagram Elements not Included in SysML

The notation for a “merge” dependency between packages, using a «merge» keyword on a dashed-line arrow, is not
included in SysML. UML uses package merge in the definition of its own metamodel, which SysML builds on, but
SysML does not support this capability for user-level models.

NOTE: Combining packages that have the same named elements, resulting in merged definitions of the same names,
could cause confusion in user models and adds no inherent modeling capability, and so has been left out of SysML.

24

OMG Systems Modeling Language, v1.6

7.3.2 Stereotypes

Package ModelElements

«Metaclass» «Metaclass» 4 «Metaclass» «Metaclass»
UML4SysML::Generalization UML4SysML:Class UML4SysML:Class UML4SysML::Classifier

«stereotypen «stereotypen ustereotype» «ustereotype»
Conform View Viewpoint Stakeholder
[Generalization] [Class] [Class] [Classifier]
stakeho\de'r : ."Bi;keholder 0.4 fconcern : 'S.u'mg [0.1 ‘concern : String [0..*]
/view point : View point [1] concernList : Comment [0..”] concernList : Comment [0..”]
sMctaciasss language : String [0.."]
UML4SysML::Dependency method : Behavior [0..*]
presentation : String [0.."]
purpose : String [1]
T stakeholder : Stakeholder [0.."]
«stereotypex» «Metaclass»
Expose UML4SysML:Comment
[Dependency]
«stereotype» «stereotype» «stereotype»
Rationale Problem BementGroup
[Comment] [Comment] [Comment]

‘criterion : String [1]

‘member : Bement [0.."]

name : String [1]

orderedMember : Bement [0.."]{subset:
'size : Integer [1]

Figure 7-1: Stereotypes defined in package ModelElements

7.3.21 Conform
Description

A Conform relationship is a generalization between a view and a viewpoint. The view conforms to the specified rules and
conventions detailed in the viewpoint. When this is done, the view is said to conform to the viewpoint. Conform extends
UML generalization.

Association Ends
e base Generalization : Generalization [1]

Constraints
e 1 general is viewpoint
The general classifier shall be an element stereotyped by Viewpoint
Viewpoint.allInstances()->exists(v | v.base Class = self.base Generalization.general)
e 2 specific is view
The specific classifier shall be an element that is stereotyped by View
View.allInstances()->exists(v | v.base Class = self.base Generalization.specific)

7.3.2.2 ElementGroup

Description

The ElementGroup stereotype provides a lightweight mechanism for grouping various and possibly heterogeneous model
elements by extending the capability of comments to refer to multiple annotated elements. For example, it can group
elements that are associated with a particular release of the model, have a certain risk level, or are associated with a

OMG Systems Modeling Language, v1.6 25

legacy design. The semantics of ElementGroup is modeler-defined. In particular, the body text is not restricted. It can
describe the grouped elements as well as elements or values related to the grouped elements.

Element groups are named using the name property. The criterion for membership in an element group is specified by the
body of the comment the stereotype is applied to. By grouping elements, the modeler asserts that the criterion of the
group applies to the member. Optionally, members of an element group can be ordered using its orderedMember

property.

ElementGroups appear in diagrams as comments, and properties of the stereotype appear in the notation for stereotype
properties. Grouped elements are the annotated elements of the comment to which the stereotype is applied. This has
several implications:

e FElement groups do not own their elements and thus an element can participate in an unlimited number of
groups.

e The elements in a group are identified by the modeler, as opposed to being the result of a query, as in views.

e FElement groups can be members of other element groups, but this does not imply that members of the first are
members of the second.

Elements related to the grouped elements are not included in the group, even though the body text can address them. In
particular, element groups annotating deeply nested properties or properties with bindings are grouping only the
properties, rather than their nesting or their bound properties.

Grouped elements are also limited to elements of models, rather than instances of values of those model elements. In
particular, element groups annotating blocks or properties are not grouping the instances of the blocks or the values of the
properties. However, since the semantics of ElementGroup is left to the modeler, the body text can refer to related
elements outside the group, such as instances and values of the grouped elements, or to bound properties. The modeler is
then responsible for writing body text that explains the implications for the related elements. For instance:

e A group with the criterion: "Authored by John" could annotate any model element added in the model by John.
This body text does not address any related elements. For example, if the annotated element is a property bound
to another property, the group would not imply authorship of the second property.

e A group with the criterion: "Instances are manufactured in a foreign country" could annotate Blocks to indicate
that any instances of those Blocks are produced in a foreign country. This body text does not address the Block
itself, which is not necessarily "manufactured" in a foreign country.

e A group with criterion: "Values are manufactured in a foreign country" could annotate properties, including part
properties, to indicate the values of the property are produced in a foreign country. This body text does not
address the property itself, which is not necessarily "manufactured" in a foreign country. Since the text is about
values of the property, it is also about values of other properties that might be bound to the annotated property,
because the values of bound properties are the same.

Attributes

e /criterion : String [0..1]
Specifies the rationale for being member of the group. Adding an element to the group asserts that the criterion
applies to this element. Derived from Comment::body.
(derived)

26 OMG Systems Modeling Language, v1.6

e /member : Element [0..*]
Set specifying the members of the group. Derived from Comment::annotatedElement.
(derived)

e name : String [1]
Name of the element group

e orderedMember : Element [0..*]
Organize member according to an arbitrary order. Optional.
(subsets: ElementGroup::member)

e /size : Integer [1]
Number of members in the group. Derived.
(derived)

Association Ends
e base Comment : Comment [1]
Operations

o allGroups (in e : Element) : ElementGroup [0..*]
The query allGroups() returns the set of all the groups an element is member of.

e criterion () : String [0..1]
The query criterion() returns the text describing the criterion defining the group.

e member () : Element [0..*]
The query member() returns the set of all the members of the group.

e size () : Integer [1]
The query size() returns the number of elements which are members of the group.

7.3.2.3 Expose
Description

The expose relationship relates a view to one or more model elements. Each model element is an access point to initiate
the query. The view and the model elements related to the view are passed to the constructor when it is invoked. The
method describes how the exposed elements are navigated to extract the desired information.

Association Ends
e base Dependency : Dependency [1]
Constraints

e 1 client is view
The client shall be an element stereotyped by View.
View.allInstances()->exists(v | v.base Class = self.base Dependency.client)

7.3.2.4 Problem

Description

A Problem documents a deficiency, limitation, or failure of one or more model elements to satisfy a requirement or need,
or other undesired outcome. It may be used to capture problems identified during analysis, design, verification, or

OMG Systems Modeling Language, v1.6 27

manufacture and associate the problem with the relevant model elements. Problem is a stereotype of comment and may
be attached to any other model element in the same manner as a comment.
Association Ends

e base Comment : Comment [1]

7.3.2.5 Rationale

Description

A Rationale documents the justification for decisions and the requirements, design, and other decisions. A Rationale can
be attached to any model element including relationships. It allows the user, for example, to specify a rationale that may

reference more detailed documentation such as a trade study or analysis report. Rationale is a stereotype of comment and
may be attached to any other model element in the same manner as a comment.

Association Ends

e base Comment : Comment [1]

7.3.2.6 Stakeholder

Description
A stakeholder represents a role, group, or individual who has concerns that will be addressed by the View of the model.

Attributes

e /concern : String [0..*]
(derived)

e concernList : Comment [0..*]

Association Ends
e base Classifier : Classifier [1]

Constraints

e 1 not association

A Stakeholder stereotype can only be applied to UML::Actor or UML::Class which are not a
UML::Association.

self.base Classifier.oclIsKindOf (UML::Actor)

or

(self.base Classifier.oclIsKindOf (UML::Class)

and

not self.base Classifier.oclIsKindOf (UML::Association))

e not association
The stakeholder stereotype can only be applied to UML::Actor or UML::Class which are not a
UML::Association

(self.base Classifier.oclIsKindOf (UML::Actor) or
self.base Classifier.oclIsKindOf (UML::Class))
and not self.base Classifier.oclIsKindOf (UML: :Association)

7.3.2.7 View

Description

A View is a model element that represents a real world artifact that can be presented to stakeholders. The view is the
result of querying one or more models that are defined by a viewpoint method. The view shall conform to the viewpoint
in terms of the viewpoint stakeholders, concerns, method, language, and presentation requirements.

28 OMG Systems Modeling Language, v1.6

It is sometimes desirable to construct views from other views, and to establish an order for presenting the views. Views
may include one or more views as properties, each of which conforms to their viewpoint. The order of the referenced
views is reflected in the property order.

The information may be presented to the stakeholder in any format specified by the viewpoint, which may include
figures, tables, plots, entire documents, presentation slides, or video.

Attributes

o /stakeholder : Stakeholder [0..*]
The list of stakeholders is derived from the viewpoint the view conforms to.
(derived)

e /viewpoint : Viewpoint [1]
The viewpoint for this View is derived from the conform relationship.
(derived)

Association Ends
e base Class: Class [1]

Constraints
e 1 single viewpoint
A view shall only conform to a single viewpoint
Conform.allInstances () ->select (base Generalization.specific = self.base Class)
->size() =1
e 2 viewpoint derived from conform
The derived value of the viewpoint shall be the classifier stereotyped by Viewpoint that is the general classifier
of the generalization relationship stereotyped by Conform for which the View is the specific classifier

self.viewpoint = Viewpoint.allInstances()->any(base Class = Conform.allInstances()
->any (base Generalization.specific = self.base Class) .base Generalization.general)

e 3 stakeholder derived from conform
The derived values of the stakeholder attribute shall be the classifiers stereotyped by Stakeholder that are the
values of the stakeholder attribute of the general classifier of the generalization relationship stereotyped by
Conform for which the View is the specific classifier.
self.stakeholder = Viewpoint.allInstances()->any(base Class = Conform.alllInstances ()
->any (base Generalization.specific =
self.base Class) .base Generalization.general) .stakeholder

7.3.2.8 Viewpoint
Description

A Viewpoint is a specification of the conventions and rules for constructing and using a view for the purpose of
addressing a set of stakeholder concerns. They specify the elements expected to be represented in the view, and may be
formally or informally defined. For example, the security viewpoint may require the security requirements, security
functional and physical architecture, and security test cases.

Attributes

e /concern : String [0..*]
The interest of the stakeholders displayed as the body of the comments from concernList.
(derived)

OMG Systems Modeling Language, v1.6 29

concernList : Comment [0..*]

The interests of the stakeholders addressed by this viewpoint.

language : String [0..*]

The languages used to express the models that represent content which is represented by the view. The language
specification such as its metamodel, profile, or other language specification is referred to by its URI.

/method : Behavior [0..%]
The behavior is derived from the method of the operation with the Create stereotype.
(derived)

presentation : String [0..*]

The specifications prescribed for formatting and styling the view.
purpose : String [1]

The purpose addresses the stakeholder concerns.

stakeholder : Stakeholder [0..*]
Set of stakeholders whose concerns are to be addressed by the viewpoint.

Association Ends

base Class : Class [1]

Constraints

30

1 method derived from create operations
The derived values of the method attribute shall be the names of the methods of the operations stereotyped by
the UML Create stereotype on the classifier stereotyped by Viewpoint.
self.method = self.base Class.allFeatures()->select(f |
f.oclIsKindOf(UML::Opergtion))—>select(o |
Standard: :Create.allInstances () .base BehavioralFeature
—>includes(o)).oclAsType(UML::Operatzon).method

2 create view operation
The property ownedOperation shall include at least one operation named "View" with the UML Create
stereotype applied.

self.base Class.ownedOperation->exists(o | o.name='View' and
Standard::Create.alllInstances () .base BehavioralFeature->includes (o))

OMG Systems Modeling Language, v1.6

8 Blocks

8.1 Overview

Blocks are modular units of system description. Each block defines a collection of features to describe a system or other
element of interest. These may include both structural and behavioral features, such as properties and operations, to
represent the state of the system and behavior that the system may exhibit.

Blocks provide a general-purpose capability to model systems as trees of modular components. The specific kinds of
components, the kinds of connections between them, and the way these elements combine to define the total system can
all be selected according to the goals of a particular system model. SysML blocks can be used throughout all phases of
system specification and design, and can be applied to many different kinds of systems. These include modeling either
the logical or physical decomposition of a system, and the specification of software, hardware, or human elements. Parts
in these systems may interact by many different means, such as software operations, discrete state transitions, flows of
inputs and outputs, or continuous interactions.

The Block Definition Diagram in SysML defines features of blocks and relationships between blocks such as
associations, generalizations, and dependencies. It captures the definition of blocks in terms of properties and operations,
and relationships such as a system hierarchy or a system classification tree. The Internal Block Diagram in SysML
captures the internal structure of a block in terms of properties and connectors between properties. A block can include
properties to specify its values, parts, and references to other blocks. Ports are a special class of property used to specify
allowable types of interactions between blocks, and are described in Clause 9, “Ports and Flows.” Constraint Properties
are a special class of property used to constrain other properties of blocks, and are described in Clause 10 “Constraint
Blocks.” Various notations for properties are available to distinguish these specialized kinds of properties on an internal
block diagram.

A property can represent a role or usage in the context of its enclosing block. A property has a type that supplies its
definition. A part belonging to a block, for example, may be typed by another block. The part defines a local usage of its
defining block within the specific context to which the part belongs. For example, a block that represents the definition of
a wheel can be used in different ways. The front wheel and rear wheel can represent different usages of the same wheel
definition. SysML also allows each usage to define context-specific values and constraints associated with the individual
usage, such as 25 psi for the front tires and 30 psi for the rear tires.

Blocks may also specify operations or other features that describe the behavior of a system. Except for operations, this
clause deals strictly with the definition of properties to describe the state of a system at any given point in time, including
relations between elements that define its structure. Clause 9, “Ports and Flows” specifies specific forms of interactions
between blocks, and the Behavioral Constructs including activities, interactions, and state machines can be applied to
blocks to specify their behavior. Clause 15, “Allocations” describes ways to allocate behavior to parts and blocks.

SysML blocks are based on UML classes as extended by UML composite structures. Some capabilities available for
UML classes, such as more specialized forms of associations, have been excluded from SysML blocks to simplify the
language. SysML blocks always include an ability to define internal connectors, regardless of whether this capability is
needed for a particular block. SysML Blocks also extend the capabilities of UML classes and connectors with reusable
forms of constraints, multi-level nesting of connector ends, participant properties for composite association classes, and
connector properties. SysML blocks include several notational extensions as specified in this clause.

OMG Systems Modeling Language, v1.6 31

8.2 Diagram Elements

8.2.1 Block Definition Diagram

Table 8-1: Graphical nodes defined in Block Definition diagrams table

Element Name Concrete Syntax Example Abstract Syntax Reference
BlockDefinition bdd [Namespace 1] SysML::Blocks::Block
Diagram
UMLA4SysML::Package

«block» part1 «block»

Block1 1 0.* Block2
Block «blocky SysML::Blocks::Block

Block1

{isEncapsulated}

constraints

{x>y}

parts
property1 : Block1

property?2 : Block2{subsets property 1}
prop3 : Block3{redefines property0}

properties

propertySa : Block3a
property6 : Block4

references
property4 : Block1 [0.."]{ordered}
property5 : Block2 [1..5]{subsets property4,nonunique}
\prop6 : Block3{union}

values
property7 : Integer = 99{readOnly}
property8 : Real = 10.0
prop9 : Boolean{redefines property00}

operations
op4()

operation2(q1 : Type1) : Type3{redefines operation2}
operation1(p1: Type1) : Type2

signal receptions
Activate()
Notify(message : String)

ValueType SysML::Blocks::ValueType

«alueType»
ValueType1
«valueType»
unit= " [UnitName

properties
property1: Type3
property2 : Type4{subsets property0}
prop3 : Type5{redefines property00}
prop6 : Type6{union}
prop7 : Type7

operations
operation1(p1: Type1) : Type2
operation2(g1 : Type1) : Type3{redefines operation2}
op3(q1: Typel) : Type2{redefines ValueType0::0p3}

32 OMG Systems Modeling Language, v1.6

Enumeration

«enumerationy
Enumeration1

UMLA4SysML::Enumeration

literalName1
literalName2
PropertySpecific SysML::Blocks::
Type Type PropertySpecificType
values
X : Integer
«pst»
APST2
values
X : Integer{redefines x}
y : Real
AbstractDefinition UMLA4SysML::Classifier with

Name

{abstract}
Name

Name
{abstract}

isAbstract equal true

OMG Systems Modeling Language, v1.6

33

StereotypeProperty

UMLA4SysML::Stereotype

Compartment «stereotype1»
Block1
«Stereotype1»
propertyl = value
Behavior Block1 SysML::Blocks::Block
Compartment
classifier behavior
«statemachine»MySM1()
owned behaviors
«activity»myActivity_1(in x : Integer)
MySM2(p1 : F2)
Namespace SysML::Blocks::Blocks
Compartment NB'°°"1
amespace
«block» part1 «block»
Block2 1 0.* Block3
Structure SysML::Blocks::Blocks
Compartment Block1
structure
cl: e1
p1:Type1 y p2:Type2
BoundReference SysML::Blocks::Blocks,
povery 8Bk 1r] SysML::Blocks::BoundReference,
property 11 [24. 371 lower = B, uppe
SysML::Blocks::EndPathMultiplicity
Block 2
endPathiul Splisitys praperty 1[‘|J|| !:I:.-.-|--. perty 11 kower = §, upper =
34 OMG Systems Modeling Language, v1.6

Unit UML4SysML::InstanceSpecification
PR 20n]
definitionURI =" definiionURI ="..."
description ="..." description ="..."
quantityKind = gk1, gk2 symbol ="."
symbol =™
QuantityKind k1= CuantityKind UML4SysML::InstanceSpecification

symbaol="."

description='

definitionURI="... "~

InstanceSpecification

T

| 2wz |

p3

UML4SysML:

:InstanceSpecification

InstanceSpecification

value1

UML4SysML:

:InstanceSpecification

InstanceSpecification

instance1 : Type1

property2 =

propertyl =10
"value"

UML4SysML:

:InstanceSpecification

InstanceSpecification

ip

Teped
propertyl =10

properhl = "alue”

UMLA4SysML:

:InstanceSpecification

Namespace
Compartment

Block1

Namespace

block» part1 «block»

Block2

1 0.*

Block3

SysML::Blocks::Blocks

OMG Systems Modeling Language, v1.6

35

quanfityKind=qk1.gk2 |

Structure SysML::Blocks::Blocks
Compartment Block1
structure
cl: et
1:T 1 2:T 2
1
BoundReference SysML::Blocks::Blocks,
povery 8Bk 1r] SysML::Blocks::BoundReference,
property 11 [24. 371 lower = B, uppe
SysML::Blocks::EndPathMultiplicity
Block 2
Sl g praparty 11] e preperty 11 e = 6 e = ¢
Unit unitl: Unit unit2: Unit UML4SysML::InstanceSpecification
symbal=".." . .symnc:l:'
description="..." description="._.."
definitionURI=", .~ defintionURE="..." |

Table 8-2: Graphical paths defined in Block Definition diagrams

Element Name

Concrete Syntax Example

Abstract Syntax Reference

Dependency UMLA4SysML::Dependency
Gependancrt

Reference - et UMLA4SysML::Association and
Association T Tt UML4SysML::Property with

e " Ty aggregationKind = none

subsets prapertyd)

Progarty 2 assoiaton] 4 praperty 1

1 [redefirae BlockD grapety} fordarad) 0
36 OMG Systems Modeling Language, v1.6

Element Name

Concrete Syntax Example

Abstract syntax Reference

{disjoint}

---—-{overlapping}

PartAssociation UML4SysML::Association and
- association1 propenyl _ UMLA4SysML::Property with
0.1 {ordered} 1. aggregationKind = composite
property2 associationl propertyl
<>
1 {ordered, g *
subsets Block(::property(}
property2 associationl propertyl
1 {redefines property0} {ordered} 0.7
SharedAssociation UML4SysML::Association and
associationl propertyl __ UML4SysML::Property with
= 0.1 {ordered} 1.7 aggregationKind = shared
lproperty2 associationl propertyl
1 {union} {ordered, _«
subsets property0}
property2 associationl propertyl
1 {redefines propeny0} {ordered} 0.
MultibranchPart UML4SysML::Association and
Associations P associationl properyl UML::Kernel: :Property with
1 0% aggregationKind = composite
association2 property2
0.*
MultibranchShared UML4SysML::Association and
Associations o Fropeny3 associationl properyl UML::Kernel::Property with
1 0.7 aggregationKind = shared
association? propery2
0.*
Generalization UML4SysML::Generalization
Multibranch UML4SysML:Generalization
Generalization Z‘E\
GeneralizationSet UML4SysML::
GeneralizationSet

OMG Systems Modeling Language, v1.6

37

Element Name

Concrete Syntax Example

Abstract Syntax Reference

BlockNamespace
Containment

UMLA4SysML::Class::nestedClassifier

ParticipantProperty

roperly? g - praperty1
Association?
whlocks «blocks
Bz |1 | o B1
|

{orderoed)

Association1

s = = _—_=
wparticipants
p2:B1
|{end = propary1}

- - = —

UML4SysML:: Property,
UMLA4SysML:: AssociationClass

ConnectorProperty «block» UMLA4SysML:: Property,
Block1 UMLA4SysML:: Connector
«connector» c1: Associé
«connector» €2 : Association2
c1: Association1 g1 2 Tyne2
el
: 4 : Typed
[
38

OMG Systems Modeling Language, v1.6

8.2.2 Internal Block Diagram

Table 8-3: Graphical nodes defined in Internal Block diagrams

Element Name Concrete Syntax Example Abstract Syntax Reference
InternalBlockDiagram ibd [Block1] SysML::Blocks::Block
1:Typed cl:al P3[po:Type2
[
Property o1 Typet e UMLA4SysML::Property
pd: Typed
initialiakss
*1=5.0
«2="today"
0= | !
pi: Typei E rl: Type2 i
| |
o Integer = 4
A}'.Rﬂa|=4.2 .\pq. T'g,lﬂ94
Part 4: Type 3
relassifier behawor
wstatebachines MySM1 ()
rowned behaviors
MySMZ (p1: P2)
wactivitys myActivity_1 (in x - Integer)
ActorPart SysML::Blocks::PartProperty typed
by UML4SysML::Actor
«actor»
ActorName
ActorName

OMG Systems Modeling Language, v1.6

39

Element Name

Concrete Syntax Example

Abstract Syntax Reference

p1:Typel

I " eboundReferences I

aboundReferances

- 2:Type2[4.8
| p2BR : Subtype2 [6..8]

PropertySpecificType SysML::Blocks::
PropertySpecificType
p1: APST2 (Type)
values
% ! Integer = 5 {redefines x}
y : Integer
BoundReference SysML::Blocks::BoundReference

Table 8-4: Graphical paths defined in internal Block diagrams

Element Name

Concrete Syntax Example

Abstract Syntax Reference

InternalBlockDiagram

«stereotype1»
dependency1

UML4SysML::Dependency

BindingConnector

«equaly»

UML4SysML::Connector

BidirectionalConnector

&1; assodiation

UML4SysML::Connector

UnidirectionalConnector

cl; assodiation

Pl

UML4SysML::Connector

40

OMG Systems Modeling Language, v1.6

8.3 UML Extensions

8.3.1 Diagram Extensions

8.3.1.1 Block Definition Diagram

A block definition diagram is based on the UML class diagram, with restrictions and extensions as defined by SysML.

8.3.1.1.1 Block and Value Type Definitions

A SysML Block defines a collection of features to describe a system or other element of interest. A SysML ValueType
defines values that may be used within a model. SysML blocks are based on UML classes, as extended by UML
composite structures. SysML value types are based on UML data types. Diagram extensions for SysML blocks and value
types are described by other subheadings of this sub clause.

8.3.1.1.2 Default «block» stereotype on unlabeled box

If no stereotype keyword appears within a definition box on a block definition diagram (including any stereotype
property compartments), then the definition is assumed to be a SysML block, exactly as if the «block» keyword had
appeared before the name in the top compartment of the definition.

8.3.1.1.3 Labeled compartments

SysML allows blocks to have multiple compartments, each optionally identified with its own compartment name. The
compartments may partition the features shown according to various criteria. Some standard compartments are defined
by SysML itself, and others can be defined by the user using tool-specific facilities. Compartments may appear in any
order. SysML defines two additional compartments, namespace and structure compartments, which may contain
graphical nodes rather than textual constraint or feature definitions. See separate sub clauses for a description of these
compartments.
Compartment names shall comply with the following notation:
Shown in italics, where permitted by the font in use.

1. Centered

2. All lower case

3. Words separated by spaces

8.3.1.1.4 Behavior compartment

A compartment with the label “classifier behavior” or “owned behaviors” may appear as part of a block definition to list
the classifier behavior or owned behaviors, respectively. This compartment may contain text representations of any kind
of behavior.

Behaviors represented in this compartment are shown as a text string of the form:

<name> ‘(’ [<parameter-list>] ‘)’ [*:” [<return-type-list>]] [<behavior-constraint>]

where:

e <name> is the name of the Behavior.
e <parameter-list> is a list of Parameters of the Behavior in the format defined in UML.

e <return-type-list> is list of types, multiplicities, and other properties of parameters with return direction.
<return-type-list> ::= <return-type-mult-prop> [*,* <return-type-mult-prop> | *
<return-type-mult-prop> :=

<return-type> [‘[* <multiplicity-range> ‘]’] [*{* <param-prop-list> ‘}’]]

OMG Systems Modeling Language, v1.6 41

(see UML for definition of <multiplicity-range>)

<param -prop-list> ::= <param -prop> [*,” <param -prop>]*

<param -prop> ::= ‘ordered’ | ‘unordered’ | ‘unique’ | ‘nonunique’ | ‘seq’ | ‘sequence’
e <behavior-constraint> is a constraint that applies to the behavior.

Other syntax defined by UML can be included, such as for applied stereotypes or the behavior's metaclass as a keyword
before the name (for example «stateMachiney).

8.3.1.1.5 Constraints compartment

SysML defines a special form of compartment, with the label “constraints,” which may contain one or more constraints
owned by the block. A constraint owned by the block may be shown in this compartment using the standard text-based
notation for a constraint, consisting of a string enclosed in brace characters. The use of a compartment to show
constraints is optional. The note-based notation, with a constraint shown in a note box outside the block and linked to it
by a dashed line, may also be used to show a constraint owned by a block.

A constraints compartment may also contain declarations of constraint properties owned by the block. A constraint
property is a property of the block that is typed by a ConstraintBlock, as defined in Clause 10. Only the declaration of the
constraint property may be shown within the compartment, not the details of its parameters or binding connectors that
link them to other properties.

8.3.1.1.6 Namespace compartment

A compartment with the label “namespace” may appear as part of a block definition to show blocks that are defined in
the namespace of a containing block. This compartment may contain any of the graphical elements of a block definition
diagram. All blocks or other named elements defined in this compartment belong to the namespace of the containing
block.

Because this compartment contains graphical elements, a wider compartment than typically used for feature definitions
may be useful. Since the same block can appear more than once in the same diagram, it may be useful to show this
compartment as part of a separate definition box than a box that shows only feature compartments. Both namespace and
structure compartments, which may both need a wide compartment to hold graphical elements, could also be shown
within a common definition box.

8.3.1.1.7 Structure compartment

A compartment with the label “structure” may appear as part of a block definition to show connectors and other internal
structure elements for the block being defined. This compartment may contain any of the graphical elements of an
internal block diagram.

Because this compartment contains graphical elements, a wider compartment than typically used for feature definitions
may be useful. Since the same block can appear more than once in the same diagram, it may be useful to show this
compartment as part of a separate definition box than a box that shows only feature compartments. Both namespace and
structure compartments, which may both need a wide compartment to hold graphical elements, could also be shown
within a common definition box.

8.3.1.1.8 BoundReference compartment

A compartment with the label “bound references” may appear as part of a block definition to show properties with the
BoundReference stereotype applied. The properties omit the “«boundReference»” prefix.

42 OMG Systems Modeling Language, v1.6

8.3.1.1.9 Receptions compartment

A compartment with the label “receptions” may appear as part of a block definition to show signal receptions. The
“«signal»” keyword is optional in this compartment.

8.3.1.1.10 Default multiplicities

SysML defines defaults for multiplicities on the ends of specific types of associations. A part or shared association has a
default multiplicity of [0..1] on the black or white diamond end. A unidirectional association has a default multiplicity of
1 on its target end. These multiplicities may be assumed if not shown on a diagram. To avoid confusion, any multiplicity
other than the default should always be shown on a diagram.

8.3.1.1.11 Property-specific type

The notation for properties typed by a property-specific type shows the name of the most specific generalization of the
property-specific type that is not a property-specific type (or nothing if there is no generalization) between parentheses
after the name of the property-specific type (or after the colon if the property-specific type has no name).

The keyword for PropertySpecificType is «pst».

8.3.1.1.12 Unit Notation

Units on value properties

Value properties can optionally display the unit’s symbol in parentheses if value type has a unit defined.
If no unit symbol is defined, then the unit name can optionally be displayed.

<vpname> ":" <valueTypename> [" (" <unitSymbol | unitName> ")"]

e.g., distance:Length (m)

8.3.1.1.13 Units on values
Any ValueSpecification can optionally display the unit's symbol if it has a type which is a ValueType.
If ValueSpecification has no type and it is used as a value of a slot, then it takes the unit from defining feature type.

If ValueSpecification has no type and it is used as a default value of a value property, it takes the unit from that property
type.

If no unit symbol is defined, then the unit name may be displayed.
<value> [" " <unitSymbol | unitName>]

e.g., distance:Length = 10 m

8.3.1.2 Internal Block Diagram

An internal block diagram is based on the UML composite structure diagram, with restrictions and extensions as defined
by SysML.

8.3.1.21 Property types

Four general categories of properties of blocks are recognized in SysML: parts, references, value properties, and
constraint properties. (See 8.3.2.4 for definitions of these property types.) A part or value property is always shown on an
internal block diagram with a solid-outline box. A reference property is shown by a dashed-outline box, consistent with

OMG Systems Modeling Language, v1.6 43

UML. Ports are special cases of properties, and have a variety of notations as defined in Clause 9, “Ports and Flows.”
Constraint properties and their parameters also have their own notations as defined in Clause 10, “Constraint Blocks.”

8.3.1.2.2 Block reference in diagram frame

The diagram heading name for an internal block diagram (the string contained in the tab in the upper-left-hand corner of
the diagram frame) shall identify the name of a SysML block as its modelElementName. (See Annex A for the definition
of a diagram heading name including the modelElementName component.) All the properties and connectors that appear
inside the internal block diagram belong to the block that is named in the diagram heading name.

8.3.1.2.3 Compartments on internal properties

SysML permits any property shown on an internal block diagram to also show compartments within the property box.
These compartments may be given standard or user-customized labels just as on block definitions. All features shown
within these compartments shall match those of the block or value type that types the property. An unlabeled
compartment on an internal property box is by default a structure compartment. A behavior compartment label and
content shall match the corresponding behavior compartment of the block that types the part. A compartment with the
label “classifier behavior” or “owned behaviors” may contain the classifier behavior or owned behaviors of the block that
types the part which will then appear as specified in 8.3.3.1.4, Behavior compartment.

The label of any compartment shown on the property box that displays contents belonging to the type of the property is

shown with a colon character (“:”) preceding the compartment label. The compartment name is otherwise the same as it
would appear on the type on a block definition diagram.

8.3.1.24 Compartments on a diagram frame

SysML permits compartments to be shown across the entire width of the diagram frame on an internal block diagram.
These compartments shall always follow an initial compartment that always shows the internal structure of a referenced
block. These compartments may have all the same contents as could be shown on a block definition diagram for the
block defined at the top level of the diagram frame.

8.3.1.2.5 Property path name

A property name shown inside or outside the property box may take the form of a multi-level name. This form of name
references a nested property accessible through a sequence of intermediate properties from a referencing context. The
name of the referenced property is built by a string of names separated by “.”, resulting in a form of path name that
identifies the property in its local context. A colon and the type name for the property may optionally be shown following
the dotted name string. If any of the properties named in the path name string identifies a reference property, the property

box is shown with a dashed-outline box, just as for any reference property on an internal block diagram.

This notation is purely a notational shorthand for a property that could otherwise be shown within a structure of nested
property boxes, with the names in the dotted string taken from the name that would appear at each level of nesting. In
other words, the internal property shown with a path name in the left-hand side of

Figure 8-1 is equivalent to the innermost nested box shown at the right.

If the property has no name, the property’s type name can be used instead.

e.g., car:Engine:Cylinder:Piston.length
car.e.c.p.length

44 OMG Systems Modeling Language, v1.6

P1: Block1 P1: Block1

MName1:
Name 2:

Name1.Name2.Named: Name3:

Figure 8-1: Nested property reference

8.3.1.2.6 Nested connector end

Connectors may be drawn that cross the boundaries of nested properties to connect to properties within them. The
connector is owned by the most immediate block that owns both ends of the connector. A NestedConnectorEnd
stereotype of a UML ConnectorEnd is automatically applied to any connector end that is nested more than one level deep
within a containing context.

Use of nested connector ends does not follow strict principles of encapsulation of the parts or other properties that a
connector line may cross. The need for nested connector ends can be avoided if additional properties can be added to the
block at each containing level. Nested connector ends are available for cases where the introduction of these intermediate
properties is not feasible or appropriate.

The ability to connect to nested properties within a containing block requires that multiple levels of decomposition be
shown on the same diagram.

8.3.1.2.7 Property-specific type

The notation for properties typed by a property-specific type shows the name of the most specific generalization of the
property-specific type that is not a property-specific type (or nothing if there is no generalization) between parentheses
after the name of the property-specific type (or after the colon if the property-specific type has no name).

8.3.1.2.8 Initial values compartment

A compartment with a label of “initialValues” may be used to show values of properties belonging to a containing block.
These values override any default values that may have been previously specified on these properties on their originally
defining block. Initial value compartments may be specified within nested properties, which then apply only in the
particular usage context defined by the outermost containing block.

Values are specified in an initialValues compartment by lines in the form <property-name> = <value-specification> or
<property-name> : <type> = <value-specification>, each line of which specifies the initial value for one property owned
either by the block that types the property or by any of its supertypes. This portion of concrete syntax is the same as may
be shown for values within the UML instance specification notation, but this is the only element of UML
InstanceSpecification notation that may be shown in an initial values compartment. See 8.3.2.4 for details of how values
within initialValues compartments are represented in the SysML metamodel.

8.3.1.2.9 Default multiplicities

SysML defines default multiplicities of 1 on each end of a connector. These multiplicities may be assumed if not shown
on a diagram. To avoid confusion, any multiplicity other than the default should always be shown on a diagram.

OMG Systems Modeling Language, v1.6 45

8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams

The supported variety of notations for associations and association annotations has been reduced to simplify the burden
of teaching, learning, and interpreting SysML diagrams for the systems engineering user. Notational and metamodel
support for n-ary associations and qualified associations has been excluded from SysML. The use of navigation
arrowheads on an association has been simplified by excluding the case of arrowheads on both ends, and requiring that
such an association always be shown without arrowheads on either end. An “X” on a single end of an association to
indicate that an end is not navigable has similarly been dropped, as has the use of a small filled dot at the end of an
association to indicate that the end is owned by the associated classifier.

UML allows representing owned attributes using an association-like notation (see UML 2.5 Figure 9-12). This notation
does not show any multiplicity on the opposite end since there is no corresponding property. In such a case, the
multiplicity on the opposite side of the association-like notation is the less constrained possible. That is: "0..1" if the
attribute has a composite aggregation and "0..*" otherwise. However, it is a common practice for modelers to assume
that, when not shown, the multiplicity of an association end is the default multiplicity (i.e., "1..1"). This might create
ambiguity because there is no practical way to distinguish between the association-like notation and a "true" association.
The association-like notation is excluded from SysML to avoid it.

The use of a «primitive» keyword on a value type definition (which in UML specifies the PrimitiveType specialization of
UML DataType) is not supported. Whether or not a value type definition has internal structure can be determined from
the value type itself.

8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

The UML Composite Structure diagram has many notations not included in the subset defined in this clause. Other
SysML clauses add some of these notations into the supported contents of an internal block diagram.

8.3.2 Stereotypes

8.3.2.1 Package Blocks

«Metaclass»
UML4SysML.::.Class

I

«stereotype»
Block

attributes
isEncapsulated : Boolean [0..1]

Figure 8-2: Abstract syntax extensions for SysML blocks

46 OMG Systems Modeling Language, v1.6

«Metaclass»
UML4SysML::Property

«stereotype» «stereotype»
ConnectorProperty ParticipantProperty «stereotype»
attributes attributes DistributedProperty
connector : Connector [1] end : Property [1]

Figure 8-3: Abstract syntax extensions for SysML properties

«Metaclass»
UML4SysML::DataType
«stereotype» valueType

ValueType 0. o
quantityKind | 0..1

«Metaclass»
UMLA4SysML :Instance Specification

valueType unit 10..1

0.*

Figure 8-4: Abstract syntax extensions for SysML value types

OMG Systems Modeling Language, v1.6

«Metaclass»
UM L4SysM L::Element

«Metaclass»

¢ Path
«stereotype> property UML4SysML::Property

ElementPropertyPath 1.+

{ordered, nonunique}

sourcePropertyPath | 0..* 0.* | targetPropertyPath
{ordered, nonunique} {ordered, nonunique}

«Metaclass»
UM L4SysM L::DirectedRelationship

F 3

«stereotype»

DirectedRelationshipPropertyPath |q +

0”*
sourceContext ANEtEIEsER
0. 0.1 |UML4SysML::Classifier
targetContext
(o B 0.1
Figure 8-5: Abstract syntax extensions for SysML property paths
«Metaclass» «Metaclass» «stereotype»
UML4SysML::Connector UML4SysML::ConnectorEnd ElementPropertyPath

«stereotype» «stereotype»
BindingConnector NestedConnectorEnd

Figure 8-6: Abstract syntax extensions for SysML connector ends

48 OMG Systems Modeling Language, v1.6

«Metaclass»
UML4SysML::Classifier

«stereotype»
PropertySpecificType

Figure 8-7: Abstract syntax extensions for SysML property-specific types

«metaclass»
UML4SysML::Property

f

«stereotype»
EndPathMultiplicity

lower : Integer [0..1] =0
upper : UnlimitedNatural [0..1] = unlimited

:

«stereotype»
BoundReference

boundEnd : ConnectorEnd
IbindingPath : Property [1..*] {ordered, nonunigque}

Figure 8-8: Abstract syntax extensions for SysML bound references

«Metaclass»
UMLA4SysML::Property

principal «Metaclass»

astereotype» UM L4SysML::Element

AdjunctProperty (0.." 1

«stereotype»
ClassifierBehaviorProperty

Figure 8-9: Abstract syntax extensions for SysML adjunct properties and classifier behavior properties

OMG Systems Modeling Language, v1.6

8.3.2.2 AdjunctProperty
Description

The AdjunctProperty stereotype can be applied to properties to constrain their values to the values of connectors typed by
association blocks, call actions, object nodes, variables, parameters, interaction uses, and submachine states. The values
of connectors typed by association blocks are the instances of the association block typing a connector in the block
having the stereotyped property. The values of call actions are the executions of behaviors invoked by the behavior
having the call action and the stereotyped property (see 11.3.1.1.1, Notation for more about this use of the stereotype).
The values of object nodes are the values of tokens in the object nodes of the behavior having the stereotyped property
(see 11.3.1.4.1, Notation for more about this use of the stereotype). The values of variables are those assigned by
executions of activities that have the stereotyped property. The values of parameters are those assigned by executions of
behaviors that have the stereotyped property. The keyword «adjunct» before a property name indicates the property is
stereotyped by AdjunctProperty.

Association Ends

e base Property : Property [1]

e principal : Element [1]
Gives the element that determines the values of the property.

Constraints

e 10 multiplicity same or less restrictive
Properties with AdjunctProperty applied that have a Variable or Parameter as principal shall have a lower
multiplicity the same as or lower than the lower multiplicity of their principal, and an upper multiplicity the
same as or higher than the upper multiplicity of their principal
self.principal.oclIsKindOf (UML: :MultiplicityElement) implies self.base Property.lower
<= self.principal.oclAsType (UML: :MultiplicityElement) .lower and
self.base Property.upper >= self.principal.oclAsType (UML::MultiplicityElement) .upper

e 11 submachine and interactionuse composite and compatible type
Properties with AdjunctProperty applied that have an InteractionUse or submachine State as principal shall be
composite and be typed by the interaction or state machine invoked by the interaction use or submachine State
or one of their generalizations.
self.principal.oclIsKindOf (UML: :InteractionUse) or
self.principal.oclIsKindOf (UML: :State) implies let behavior: UML::Behavior = if
self.principal.oclIsKindOf (UML: :InteractionUse) then
self.principal.oclAsType (UML: :InteractionUse) .refersTo else
self.principal.oclAsType (UML: :State) .submachine endif in if behavior.oclIsUndefined()
then self.base Property.type->isEmpty () else self.base Property.type->notEmpty() and
behavior->closure (generalization)->including (behavior)
->includes (self.base Property.type) endif

e 1 principal kind
The principal of an applied AdjunctProperty shall be a Connector, CallAction, ObjectNode, Variable, Parameter,
submachine State, or InteractionUse.
self.principal.oclIsKindOf (UML: :Connector) or
self.principal.oclIsKindOf (UML::CallAction) or
self.principal.oclIsKindOf (UML: :ObjectNode) or

50 OMG Systems Modeling Language, v1.6

self.principal.oclIsKindOf (UML: :Variable) or
self.principal.oclIsKindOf (UML: :Parameter) or
self.principal.oclIsKindOf (UML: :InteractionUse) or
(self.principal.oclIsKindOf (UML: :State) and
self.principal.oclAsType (UML: :State) .isSubmachineState)

® 2 same name
Properties to which AdjunctProperty applied shall have the same name as the principal, if the principal is a
NamedElement.
self.principal.oclIsKindOf (UML: :NamedElement) implies self.base Property.name =
self.principal.oclAsType (UML: :NamedElement) .name

e 3 connector and callaction composite
Properties with AdjunctProperty applied that have a Connector or CallAction as principal shall be composite.

self.principal.oclIsKindOf (UML: :Connector) or
self.principal.oclIsKindOf (UML::CallAction) implies self.base Property.isComposite ()

e 4 same owner
Properties with AdjunctProperty applied shall be owned by an element that owns the principal, at least
indirectly, or one of that elements specializations.

let owners: Set (UML::Element) = self.principal->closure (owner) in let
specializations: Set (UML::Element) = UML::Classifier.alllInstances()->select(c |
c->closure (general)->intersection (owners)->notEmpty()) in owners

->union (specializations)->includes (self.base Property.owner)

e 5 compatible type
Properties with AdjunctProperty applied that have as principal a Connector, ObjectNode, Variable, or Parameter
shall have the same type as the principal or one of that types generalizations.
self.principal.oclIsKindOf (UML: :Connector) or
self.principal.oclIsKindOf (UML: :Variable) or
self.principal.oclIsKindOf (UML: :Parameter) implies let principal type:
UML::Classifier = if self.principal.oclIsKindOf (UML: :Connector) then
self.principal.oclAsType (UML: :Connector) .type else
self.principal.oclAsType (UML: :TypedElement) .type.oclAsType (UML: :Classifier) endif in
principal type->closure (general)->including(principal type)
->includes (self.base Property.type)

e 6 connector principal associationblock
Connectors that are principals of an applied AdjunctProperty shall have association blocks as types
self.principal.oclIsKindOf (UML: :Connector) implies let type: UML::Association =
self.principal.oclAsType (UML: :Connector) .type in Block.allInstances () .base Class
->includes (type) -

e 7 adjunctproperty connectorproperty consistent
AdjunctProperty and ConnectorProperty applied to the same property shall have the same values for principal
and connector, respectively.
AdjunctProperty.alllnstances()->forAll(ap | let cp: ConnectorProperty =
ConnectorProperty.allInstances () ->any (base Property=ap.base Property) in (not
cp.oclIsUndefined()) implies cp.connector = ap.principal) B

OMG Systems Modeling Language, v1.6 51

e 8 callAction composite and consitent type
Properties with AdjunctProperty applied that have a CallAction as principal shall be composite and be typed by
the behavior invoked by the call action or one of that behaviors generalizations (for CallOperationAct ions, this
shall generalize all behaviors that might be dispatched), and an upper multiplicity of one if the CallAction
invokes a nonreentrant behavior.
self.principal.oclIsKindOf (UML: :CallAction) implies if
self.principal.oclIsKindOf (UML: :CallOperationAction) then let called:
Set (UML: :Behavior) =
self.principal.oclAsType (UML: :CallOperationAction) .operation.method in if called
->isEmpty () then self.base Property.type->isEmpty() else self.base Property.type
->notEmpty () and called->forAll(b | b.general->including (b)
->includes (self.base Property.type)) endif else let called: UML::Behavior = if
self.principal.oclIsKindOf (UML: :CallBehaviorAction) then
self.principal.oclAsType (UML: :CallBehaviorAction) .behavior else
self.principal.oclAsType (UML: :StartObjectBehaviorAction) .behavior () endif in if
called.oclIsUndefined() then self.base Property.type.oclIsUndefined() else let
behaviors: Set (UML::Behavior) = called
->closure (generalization) .oclAsType (UML: :Behavior)->including(called)->asSet () in
self.base Property.type->notEmpty() and behaviors->includes (self.base Property.type)
endif endif

e 9 objectnode multiplicity
Properties with AdjunctProperty applied that have an ObjectNode as principal shall have a lower multiplicity of
zero and an upper multiplicity the same as or higher than the upperBound of the ObjectNode.
self.principal.oclIsKindOf (UML: :0bjectNode) implies self.base Property.lower = 0 and
self.base Property.upper >=
self.pringipal.oclAsType(UML::ObjectNode).upperBound.unlimitedValue()

8.3.2.3 BindingConnector
Description

A Binding Connector is a connector which specifies that the properties at both ends of the connector have equal values. If
the properties at the ends of a binding connector are typed by a ValueType, the connector specifies that the instances of
the properties shall hold equal values, recursively through any nested properties within the connected properties. If the
properties at the ends of a binding connector are typed by a Block, the connector specifies that the instances of the
properties shall refer to the same block instance. As with any connector owned by a SysML Block, the ends of a binding
connector may be nested within a multi-level path of properties accessible from the owning block. The
NestedConnectorEnd stereotype is used to represent such nested ends just as for nested ends of other SysML connectors.

Association Ends

e base Connector : Connector [1]
Constraints

e 1 compatible types

The two ends of a binding connector shall have either the same type or types that are compatible so that equality
of their values can be defined.

52 OMG Systems Modeling Language, v1.6

self.base Connector.end->at(l).role.type.conformsTo(self.base Connector.end
->at (2) .role.type) or self.base Connector.end
->at (2) .role.type.conformsTo (self.base Connector.end->at(1l).role.type)

8.3.2.4 Block
Description

A Block is a modular unit that describes the structure of a system or element. It may include both structural and
behavioral features, such as properties and operations, which represent the state of the system and behavior that the
system may exhibit. Some of these properties may hold parts of a system, which can also be described by blocks that type
the properties. Properties without types do not restrict the instances that can be values of the properties, as if they had the
most general type possible. A block may include a structure of connectors between its properties to indicate how its parts
or other properties relate to one another.

SysML blocks provide a general-purpose capability to describe the architecture of a system. They provide the ability to
represent a system hierarchy, in which a system at one level is composed of systems at a more basic level. They can
describe not only the connectivity relationships between the systems at any level, but also quantitative values or other
information about a system.

SysML does not restrict the kind of system or system element that may be described by a block. Any reusable form of
description that may be applied to a system or a set of system characteristics may be described by a block. Such reusable
descriptions, for example, may be applied to purely conceptual aspects of a system design, such as relationships that hold
between parts or properties of a system.

Connectors owned by SysML blocks may be used to define relationships between parts or other properties of the same
containing block. Connectors can be typed by associations, which can specify more detail about the links between parts
or other properties of a system, along with the types of the connected properties. Associations can also be blocks, and
when used to type connectors give relationships their own interconnected parts and other properties. Connectors without
types do not restrict the way the connected properties are linked together, as if they had the most general type possible.
Connectors have both structural and behavioral functions, which can be used together or separately. Connectors as
structure specify links between parts or other properties of a system. Connectors as behavior specify communication and
item flow between parts or other properties. Connected properties can be linked without specifying communication and
item flow, or can specify communication and item flow without specifying a particular kind of link, or both.

SysML excludes variations of associations in UML in which navigable ends can be owned directly by the association. In
SysML, navigation is equivalent to a named property owned directly by a block. The only form of an association end that
SysML allows an association to own directly is an unnamed end used to carry an inverse multiplicity of a reference
property. This unnamed end provides a metamodel element to record an inverse multiplicity, to cover the specific case of
a unidirectional reference that defines no named property for navigation in the inverse direction. SysML enforces its
equivalence of navigation and ownership by means of constraints that the block stereotype enforces on the existing UML
metamodel.

SysML establishes four basic classifications of properties belonging to a SysML Block or ValueType. A property typed
by a SysML Block that has composite aggregation is classified as a part property, except for the special case of a
constraint property. Constraint properties are further defined in Clause 10. A port is another category of property, as
further defined in Section 9. A property typed by a Block that does not have composite aggregation is classified as a
reference property. A property typed by a SysML ValueType is classified as a value property, and always has composite
aggregation. Part, reference, value, and constraint properties may be shown in block definition compartments with the
labels "parts," "references," "values," and "constraints" respectively. Properties of any type may be shown in a
"properties" compartment or in additional compartments with user-defined labels.

OMG Systems Modeling Language, v1.6 53

On a block definition diagram, a part property is shown by a black diamond symbol on an association. As in UML, an
instance of a block may be included in at most one instance of a block at a time, though possibly as a value of more than
one part property of the containing block. A part property holds instances that belong to a larger whole. Typically, a part-
whole relationship means that certain operations that apply to the whole also apply to each of the parts. For example, if a
whole represents a physical object, a change in position of the whole could also change the position of each of the parts.
A property of the whole such as its mass could also be implied by its parts. Operations and relationships that apply to
parts typically apply transitively across all parts of these parts, through any number of levels. A particular application
domain may establish its own interpretation of part-whole relationships across the blocks defined in a particular model,
including the definition of operations that apply to the parts along with the whole. For software objects, a typical
interpretation is that delete, copy, and move operations apply across all parts of a composite object.

SysML also supports properties with shared aggregation, as shown by a white diamond symbol on an association. Like
UML, SysML defines no specific semantics or constraints for properties with shared aggregation, but particular models
or tools may interpret them in specific ways.

In addition to the form of default value specifications that SysML supports on properties of a block (with an optional "="
<value-specification> string following the rest of a property definition), SysML supports an additional form of value
specification for properties using initialValue compartments on an internal block diagram (see Internal Block Diagram on
page 4). An entire tree of context-specific values can be specified on a containing block to carry values of nested
properties as shown on an internal block diagram.

Context-specific values are represented in the SysML metamodel by means of the InstanceValue subtype of UML
ValueSpecification. Selected slots of UML instance specifications referenced by these instance values carry the
individual values shown in initial Value compartments.

If a property belonging to a block has a specification of initial values for any of the properties belonging to its type, then
the default value of that property shall be a UML InstanceValue element. This element shall reference a UML
InstanceSpecification element created to hold the initial values of the individual properties within its usage context.

Selected slots of the referenced instance specification shall contain value specifications for the individual property values
specified in a corresponding initial Values compartment. If a value of a property is shown by a nested property box with
its own initialValues compartment, then the slot of the instance specification for the containing property shall hold a new
InstanceValue element. Selected slots of the instance specification referenced by this value shall contain value
specifications for any nested initial values, recursively through any number of levels of nesting. A tree of instance values
referencing instance specifications, each of which may in turn hold slots carrying instance values, shall exist until self-
contained value specifications are reached at the leaf level.

Attributes

e isEncapsulated : Boolean [0..1]

If true, then the block is treated as a black box; a part typed by this black box can only be connected via its ports
or directly to its outer boundary. If false, or if a value is not present, then connections can be established to
elements of its internal structure via deep-nested connector ends.

Association Ends

e Dbase Class: Class [1]

54 OMG Systems Modeling Language, v1.6

Constraints

e 1 associations binary
For an association in which both ends are typed by blocks, the number of ends shall be exactly two.
UML: :Association.allInstances () ->select(al a.memberEnd->forAll (e| e.type->notEmpty ()
and Block.allInstances () .base Class->includes(e.type)))->forAll(a | a.memberEnd
->size ()=2)

e 2 connectors binary
The number of ends of a connector owned by a block shall be exactly two. (In SysML, a binding connector is
not typed by an association, so this constraint is not implied entirely by the preceding constraint.)
self.base Class.ownedConnector->forAll(c | c.end->size()=2)

e 5 uml connector constraint removed
The following constraint under 11.8, "Connector" in the UML 2 standard is removed by SysML: "The
ConnectableElements attached as roles to each ConnectorEnd owned by a Connector must be roles of the
Classifier that owned the Connector, or they must be ports of such roles.
-- Cannot be expressed in OCL

e 6 valueproperties composite
If a property owned by a SysML Block or SysML ValueType is typed by a SysML ValueType, then the
aggregation attribute of the property shall be "composite."
self.base Class.ownedAttribute->select(a| ValueType.allInstances() .base DataType
->includes(a.type))->forAll (ala.isComposite())

e 7 composition acyclic

Within an instance of a SysML Block, the values of any property with composite aggregation (aggregation =
composite) shall not contain the block in any of its own properties that also have composite aggregation, or
within any unbroken chain of properties that all have composite aggregation. (Within an instance of a SysML
Block, the instances of properties with composite aggregation shall form an acyclic graph.)

self.base Class->closure (part-

>select (plp.type.oclIsKindOf (UML: :Class)) .type.oclAsType (UML: :Class))

->excludes (self.base Class)

e 8 specializations are blocks
Any classifier that specializes a Block shall also have the Block stereotype or one of its specializations applied.
UML: :Classifier.allInstances()->select(c | c.general->includes(self.base Class))
->forAll (c | Block.allInstances ()->includes(c))

e 9 uml constraint removed
The following constraint under 11.8,"ConnectorEnd" in the UML 2 standard is removed by SysML: "[3] The
property held in self.partWithPort must not be a Port."
-- cannot be expressed in OCL

8.3.2.5 BoundReference

Description

The BoundReference stereotype can be applied to properties that have binding connectors, to highlight their usage as
constraining other properties. The bound end of the stereotype is a connector end of one of the binding connectors,

OMG Systems Modeling Language, v1.6 55

opposite the stereotyped property. The binding path includes the property at the bound end, and before that, the property
path of the bound end, if it is a nested connector end.

The type of stereotyped property constrains the type of the values of the bound properties. The multiplicity of the
stereotyped property constrains the number of values of the bound properties, which is the total number of values reached
by navigation through property paths of nested connector ends, if any. The multiplicities at the end of path can be
constrained, because bound references are end path multiplicities (see 8.3.2.11, EndPathMultiplicity).

Properties with BoundReference applied and upper multiplicity greater than one are ordered, with values ordered
according to when they are reached in navigating the binding path (and how they are ordered within their blocks), and
non-unique, to support paths that lead to or pass through the same object.

Generalizations
e EndPathMultiplicity (from Blocks)
Attributes

e /bindingPath : Property [1..*]
Gives the propertyPath of the NestedConnectorEnd applied, if any, to the boundEnd, appended to the role of the
boundEnd.
(derived)

e boundEnd : ConnectorEnd [1]
Gives a connector end of a binding connector opposite to the end linked to the stereotyped property, or linked to
a property that generalizes the stereotyped one through redefinition.

Constraints

e 1 bindingconnector end
Properties to which BoundReference is applied shall be the role of a connector end of at least one binding
connector, or generalized by such a property through redefinition
BindingConnector.allInstances () .base Connector.end.role->exists(r |
r=self.base Property or self.base Property->closure(redefinedElement)->includes(r))

e 2 opposite bindingconnector end
The value of boundEnd shall be a connector end of a binding connector, as identified in constraint 1, opposite
the property, as identified in constraint 1.
let opposite: UML::ConnectorEnd = BindingConnector.allInstances () .base Connector.end
->any (e | e.role=self.base Property or self.base Property—>closure(redgfinedElement)
->includes(e.role)) in self.boundEnd = opposite.gwner.oclAsType(UML::Connector).end
->any (e | e<>opposite)

e 3 navigable
The role of boundEnd shall be a property accessible by navigation from instances of the block owning the
property to which BoundReference is applied, but shall not be the property to which BoundReference is applied,
or one that it is related to by redefinition.
self.base Property.association->notEmpty () and self.boundEnd.definingEnd->notEmpty ()
and self.base Property.association.navigableOwnedEnd
->includes (self.boundEnd.definingEnd)

56 OMG Systems Modeling Language, v1.6

OMG Systems Modeling Language, v1.6

4 propertypath consistency
The last value of bindingPath shall be the role of boundEnd, and the other values shall be the propertyPath of the
NestedConnectorEnd applied to boundEnd, if any.
self.boundEnd = self.bindingPath->last () and (let nce: NestedConnectorEnd =
NestedConnectorEnd.allInstances () ->any(n| n.base ConnectorEnd=self.boundEnd) in nce
->oclIsUndefined() or self.bindingPath->subSequence(l, self.bindingPath->size()-1) =
nce.propertyPath)

5 reference or valueproperty

Properties to which BoundReference is applied shall either be reference properties or value properties.
ValueType.alllnstances () .base DataType->includes (self.base Property.type) or not
self.base Property.isComposite ()

6 _ordered nonunique
Properties with BoundReference applied that have an upper multiplicity greater than one shall be ordered and
non-unique.
self.base Property.upper > 1 implies self.base Property.isOrdered and not
self.base Property.isUnique

7 _cannot redefine boundreference

BoundReferences shall not be applied to properties that are related by redefinition to other properties with

BoundReference applied.
self.base Property.redefinedElement->notEmpty () implies
BoundReference.allInstances () .base Property
—>excludesAll(self.base_Property.rgdefinedElement)

8 notbounded to itslef

The binding connector identified in constraint 1 shall not have the same property on both ends, or properties

related by redefinition.
let el: UML::ConnectorEnd = self.boundEnd.owner.oclAsType (UML: :Connector) .end->at (1)
in let e2: UML::ConnectorkEnd = self.boundEnd.owner.oclAsType (UML::Connector) .end
->at (2) in el.role <> e2.role and (el.role.oclIsKindOf (UML: :Property) and
e2.role.oclIsKindOf (UML: :Property) implies
el.role.oclAsType (UML: : Property) .redefinedElement->excludes (e2.role) and
e2.role.oclAsType (UML: : Property) .redefinedElement->excludes (el.role))

8.3.2.6 ClassifierBehaviorProperty
Description

The ClassifierBehaviorProperty stereotype can be applied to properties to constrain their values to be the executions of
classifier behaviors. The value of properties with ClassifierBehaviorProperty applied are the executions of classifier
behaviors invoked by instantiation of the block that owns the stereotyped property or one of its specializations.

Association Ends

base Property : Property [1]

57

Constraints

1 owner classifierbehavior
ClassifierBehaviorProperty shall only be applied to properties owned (not inherited) by blocks that have
classifier behaviors.

Block.allInstances () .base Class->exists(c | c.ownedAttribute

->includes (self.base Property) and c.classifierBehavior->notEmpty ())

2 _composite
Properties to which ClassifierBehaviorProperty is applied shall be composite
self.base Property.isComposite

3 _typed by classifierbehavior
Properties to which ClassifierBehaviorProperty applied shall be typed by the classifier behavior of their owning
block or a generalization of the classifier behavior.
let clBehavior: UML::Behavior =
self.base Property.owner.oclAsType (UML::Class) .classifierBehavior in
self.base Property.type->notEmpty() and clBehavior->closure (general)
—>includigg(clBehavior)—>includes(self.base_Property.type)

8.3.2.7 ConnectorProperty

Description

Connectors can be typed by association classes that are stereotyped by Block (association blocks, see ParticipantProperty
on page 68). These connectors specify instances of the association block created within the instances of the block that
owns the connector. The values of a connector property are instances of the association block created due to the
connector referred to by the connector property.

A connector property can optionally be shown in an internal block diagram with a dotted line from the connector line to a
rectangle notating the connector property. The keyword «connector» before a property name indicates the property is
stereotyped by ConnectorProperty.

Attributes

connector : Connector [1]
A connector of the block owning the property on which the stereotype is applied.

Association Ends

base Property : Property [1]

Constraints

58

1 block property
ConnectorProperty shall only be applied to properties of classes stereotyped by Block.

Block.allInstances () .base Class->exists(c | c.ownedAttribute
->includes (self.base Property))

OMG Systems Modeling Language, v1.6

e 2 owned or inherited
The connector attribute of the applied stereotype shall refer to a connector owned or inherited by a block owning
the property on which the stereotype is applied.

let owner: UML::Class = Block.allInstances().base Class->any(c | c.ownedAttribute
->includes (self.base Property)) in owner->closure (general)

->select (oclIsKindOf (UML: :Class)) .oclAsType (UML: :Class) .ownedConnector->flatten ()
->includes (self.connector)

e 3 composite
The aggregation of a property stereotyped by ConnectorProperty shall be composite.
self.base Property.isComposite

e 4 typed by associationblock
The type of the connector referred to by a connector attribute shall be an association class stereotyped by Block.

Block.allInstances () .base Class->exists(c | c.oclIsKindOf (UML::AssociationClass) and
self.connector.type = ¢)

e 5 same name
A property stereotyped by ConnectorProperty shall have the same name and type as the connector referred to by
the connector attribute.
self.base Property.name = self.connector.name

8.3.2.8 DirectedRelationshipPropertyPath
Description

The DirectedRelationshipPropertyPath stereotype based on UML DirectedRelationship enables directed relationships to
identify their sources and targets by a multi-level path of properties accessible from context blocks for the sources and
targets. Context blocks are typically the owner of the first property in the path of properties, but can be specializations of
the owner to limit the scope of the relationship.

Association Ends

e base DirectedRelationship : DirectedRelationship [1]

e sourceContext : Classifier [0..1]
Gives the context for sourcePropertyPath to begin from.

e sourcePropertyPath : Property [0..*]
A series of properties that identifies the source of the directed relationship in the context of the block specified
by the sourceContext property. The ordering of properties is from a property of the sourceContext block,
through a property of each intermediate block that types the preceding property, ending in a property with a type
that owns or inherits the source of the directed relationship. The source is not included in the propertyPath list.
The same property might appear more than once because a block can own a property with the same or
specialized block as a type.

o targetContext : Classifier [0..1]
Gives the context for targetPropertyPath to begin from.

e targetPropertyPath : Property [0..*]
A series of properties that identifies the target of the directed relationship in the context of the block specified by

OMG Systems Modeling Language, v1.6 59

the targetContext property. The ordering of properties is from a property of the targetContext block, through a
property of each intermediate block that types the preceding property, ending in a property with a type that owns
or inherits the target of the directed relationship. The target is not included in the propertyPath list. The same
property might appear more than once because a block can own a property with the same or specialized block as

a type.

Constraints

60

1 sourcecontext iif property
sourceContext shall have a value when source is a property, otherwise it shall not have a value

self.base DirectedRelationship.source->exists(s | s.oclIsKindOf (UML::Property)) =xor
self.sourceContext->isEmpty ()

2 targetcontext iif property
targetContext shall have a value when target is a property, otherwise it shall not have a value.

self.base DirectedRelationship.source->exists(s | s.oclIsKindOf (UML::Property)) xor
self.sourceContext->isEmpty ()

3 sourcepropertypath implies property
source shall be a property when sourcePropertyPath has a value.

self.sourcePropertyPath->notEmpty () implies self.base DirectedRelationship.source
->forAll (s | s.oclIsKindOf (UML: :Property))

4 targetpropertypath implies property
target shall be a property when targetPropertyPath has a value.

self.targetPropertyPath->notEmpty () implies self.base DirectedRelationship.target
->forAll(s | s.oclIsKindOf (UML::Property))

5 sourcecontext owns sourcepath first
The property in the first position of the sourcePropertyPath list, if any, shall be owned by the sourceContext or
one of its generalizations

self.sourcePropertyPath->notEmpty () implies self.sourceContext.allAttributes/()
->includes (self.sourcePropertyPath->first())

6 _targetcontext owns targetpath first
The property in the first position of the targetPropertyPath list, if any, shall be owned by the targetContext or
one of its generalizations.

self.targetPropertyPath->notEmpty () implies self.targetContext.allAttributes/()
->includes (self.targetPropertyPath->first ())

7 path and owners consistency
The property at each successive position of the sourcePropertyPath and targetPropertyPath, following the first
position, shall be owned by the Block or ValueType that types the property at the immediately preceding
position, or a generalization of the Block or ValueType.

(self.sourcePropertyPath->size () >1 implies self.sourcePropertyPath->subSequence (2,

self.sourcePropertyPath->size())->forAll(p | let pp: UML::Property =
self.sourcePropertyPath->at (self.sourcePropertyPath->indexOf (p)-1) in let owners:
Set (UML::Classifier) = pp.type.oclAsType (UML::Classifier)

->including (pp.type.oclAsType (UML: :Classifier)) in owners->includes (p.owner))) and

OMG Systems Modeling Language, v1.6

(self.targetPropertyPath->size () >1 implies self.targetPropertyPath->subSequence (2,

self.targetPropertyPath->size())->forAll(p | let pp: UML::Property =
self.targetPropertyPath->at (self.targetPropertyPath->indexOf (p)-1) in let owners:
Set (UML::Classifier) = pp.type.oclAsType (UML::Classifier)

->including (pp.type.oclAsType (UML: :Classifier)) in owners->includes (p.owner)))

e 8 sourcepath last type owns source
The type of the property at the last position of the sourcePropertyPath list shall own or inherit the source of the
stereotyped directed relationship.
self.sourcePropertyPath->notEmpty () implies self.sourcePropertyPath
->last () .type.oclAsType (UML: :Classifier) .allAttributes/()
->includesAll (self.base DirectedRelationship.source)

e 9 targetpath last type owns target
The type of the property at the last position of the targetPropertyPath list shall own or inherit the target of the
stereotyped directed relationship.
self.targetPropertyPath->notEmpty () implies self.targetPropertyPath
->last () .type.oclAsType (UML: :Classifier) .allAttributes()
->includesAll (self.base DirectedRelationship.target)

8.3.2.9 DistributedProperty
Description

DistributedProperty is a stereotype of Property used to apply a probability distribution to the values of the property.
Specific distributions should be defined as subclasses of the DistributedProperty stereotype with the operands of the
distributions represented by properties of those stereotype subclasses. A sample set of probability distributions that could
be applied to value properties is given in E.7.

Association Ends
e base Property : Property [1]
Constraints

e 1 block or valuetype
The DistributedProperty stereotype shall only be applied to properties of classifiers stereotyped by Block or
ValueType.

Block.allInstances () .base Class.oclAsType (UML::Classifier)
->union (ValueType.allInstances () .base DataType)->includes(self.base Property.owner)

8.3.2.10 ElementPropertyPath
Description

The ElementPropertyPath stereotype based on UML Element enables elements to identify other elements by a multi-level
path of properties accessible from a context block. The context block is described in specializations of
ElementPropertyPath.

OMG Systems Modeling Language, v1.6 61

Association Ends

base Element : Element [1]

propertyPath : Property [1..¥]

A series of properties that identifies elements in the context of a block described in specializations of
ElementPropertyPath. The ordering of properties is from a property of the context block, through a property of
each intermediate block that types the preceding property, ending in a property with a type that owns or inherits
the fully nested property. The fully nested property is not included in the propertyPath list, but is given by the
element to which the ElementPropertyPath is applied in a way described in specializations of
ElementPropertyPath. The same property might appear more than once because a block can own a property with
the same or

specialized block as a type.

Constraints

1 path consistency
The property at each successive position of the propertyPath attribute, following the first position, shall be
owned by the Block or ValueType that types the property at the immediately preceding position, or a
generalization of the Block or ValueType.
self.propertyPath->size () >1 implies self.propertyPath->subSequence (2,
self.propertyPath->size())->forAll(p | let pp: UML::Property = self.propertyPath
->at (self.propertyPath->indexOf (p)-1) in let owners: Set (UML::Classifier) =
pp.type.oclAsType (UML: :Classifier)->including (pp.type.oclAsType (UML: :Classifier)) in
owners->includes (p.owner))

8.3.2.11 EndPathMultiplicity

Description

The EndPathMultiplicity stereotype can be applied to properties that are related by redefinition to properties that have
BoundReference applied. The lower and upper properties of the stereotype give the minimum and maximum number of
values, respectively, of the property at the bound end of the related bound reference, for each object reached by
navigation along its binding path.

Attributes

lower : Integer [0..1]

Gives the minimum number of values of the property at the end of the related bindingPath, for each object
reached by navigation along the bindingPath from an instance of the block owning the property to which
EndPathMultiplicity is applied.

upper : UnlimitedNatural [0..1]

Gives the maximum number of values of the property at the end of the related bindingPath, for each object
reached by navigation along the bindingPath from an instance of the block owning the property to which
EndPathMultiplicity is applied.

Association Ends

62

base_Property : Property [1]

OMG Systems Modeling Language, v1.6

Constraints

e 1 redefinition
Properties to which EndPathMultiplicity is applied shall be related by redefinition to a property to which
BoundReference is applied.
self.base Property.redefinedProperty->notEmpty () and
BoundReference.allInstances () .base Property->exists(p |
self.base_Property.redefinedProperEy—>includes(p))

e 2 non negative
endPathLower shall be non-negative.
self.lower >= 0

8.3.2.12 NestedConnectorEnd
Description

The NestedConnectorEnd stereotype of UML ConnectorEnd extends a UML ConnectorEnd so that the connected
property may be identified by a multi-level path of accessible properties from the block that owns the connector. The
propertyPath inherited from ElementPropertyPath gives a series of properties that identifies the connected property in the
context of the block that owns the connector. The ordering of properties is from a property of the block that owns the
connector, through a property of each intermediate block that types the preceding property, ending in a property with a
type that owns or inherits the property that is the role of the connector end (the property that the connector graphically
attaches to at that end). The property that is the role of the connector end is not included in the propertyPath list.

Generalizations
e ElementPropertyPath (from Blocks)
Association Ends

e base ConnectorEnd : ConnectorEnd [1]
(redefines: ElementPropertyPath::base Element)

Constraints

e 1 propertypath first owned by connector owner
The first property in propertyPath shall be owned by the block that owns the connector, or one of the blocks
generalizations.
let owningBlock: UML::Class =
self.base ConnectorEnd.owner.oclAsType (UML: :Connector) .owner.oclAsType (UML: :Class)
in (not o;ningBlock.oclIsUndefined()) and owningBlock->closure (general)
->including (owningBlock)->includes (self.propertyPath->first () .owner)

e 2 propertypath last type owns role
The type of the property at the last position of the propertyPath list shall own or inherit the role property of the
stereotyped connector end

OMG Systems Modeling Language, v1.6 63

let type: UML::Classifier =
self.propertyPath->last () .type.oclAsType (UML: :Classifier) in
not type.oclIsUndefined()) andtype.allFeatures/()
—>includes(self.base_ConnectorEnd.role)

8.3.2.13 ParticipantProperty
Description

The Block stereotype extends Class, so it can be applied to any specialization of Class, including Association Classes.
These are informally called "association blocks." An association block can own properties and connectors, like any other
block. Each instance of an association block can link together instances of the end classifiers of the association.

To refer to linked objects and values of an instance of an association block, it is necessary for the modeler to specify
which (participant) properties of the association block identify the instances being linked at which end of the association.
The value of a participant property on an instance (link) of the association block is the value or object at the end of the
link corresponding to this end of the association.

Participant properties can be the ends of connectors owned by an association block. The association block can be the type
of multiple other connectors to reuse the same internal structure for all the connectors. The keyword «participanty» before
a property name indicates the property is stereotyped by ParticipantProperty. They are always the same as the
corresponding association end type.

Attributes

e end : Property [1]
A member end of the association block owning the property on which the stereotype is applied.

Association Ends
e base Property : Property [1]
Constraints

e 1 associationblock

ParticipantProperty shall only be applied to properties of association classes stereotyped by Block.
self.base Property.class.oclIsKindOf (UML::AssociationClass) and
Block.allInstances () .base Class->includes (self.base Property.class)

e 2 memberend
ParticipantProperty shall not be applied to properties that are member ends of an association.
UML: :Association.allInstances () .memberEnd->flatten () ->excludes (self.base Property)

e 3 aggregationkind none
The aggregation of a property stereotyped by ParticipantProperty shall be none.
self.base Property.aggregation = UML::AggregationKind: :none

64 OMG Systems Modeling Language, v1.6

e 4 end owner
The end attribute of the applied stereotype shall refer to a member end of the association block owning the
property on which the stereotype is applied.
self.base Property.association.memberEnd->includes (self.end)

e 5 same type
A property stereotyped by ParticipantProperty shall have the same type as the property referred to by the end
attribute.
self.base Property.type = self.end.type

e 6 multiplicity 1
A property to which the ParticipantProperty is applied shall have a multiplicity of 1.
self.base Property.lower = 1 and self.base Property.upper = 1

8.3.2.14 PropertySpecificType
Description

The PropertySpecificType stereotype can be applied to classifiers that type exactly one property and that are owned by
the owner of that property. Classifiers with this stereotype applied shall be generalized by at most one other classifier.

Instances of a property-specific type are exactly those that are values of the property it types, in all instances of the
property owner. Values are (de)classified under property-specific types as they are (removed from) added to the property
they type:

e quantityKind : InstanceSpecification [0..1]
A kind of quantity, represented by an InstanceSpecification classified by a kind of SysML QuantityKind, that
may be stated by means

e Added values are classified as instances of the property-specific type.
e Removed values are:

e Declassified as instances of the property-specific type.

e Classified as instances of the most specific generalization of the property-specific type that is not a
property-specific type, unless the instances are indirectly classified by that generalization already. If there is
no such property-specific type, unless the instances are indirectly classified by that generalization already. If
there is no such property-specific type, removed values are not additionally classified.

e This enables values of the property to:
e Support more features than they would when they are not values of the property.

e Have redefined or constrained features only while they are values of the property.
Association Ends

base Classifier : Classifier [1]

OMG Systems Modeling Language, v1.6 65

Constraints

1 only one property
A classifier to which the PropertySpecificType stereotype is applied shall be referenced as the type of one and only
one property.

UML: :Property.allInstances () ->select (p | p.type = self.base Classifier)->size() =1

8.3.2.15 ValueType

Description

A ValueType defines types of values that may be used to express information about a system, but cannot be identified as
the target of any reference. Since a value cannot be identified except by means of the value itself, each such value within
a model is independent of any other, unless other forms of constraints are imposed.

Value types may be used to type properties, operation parameters, or potentially other elements within SysML. SysML
defines ValueType as a stereotype of UML DataType to establish a more neutral term for system values that may never be
given a concrete data representation. For example, the SysML "Real" ValueType expresses the mathematical concept of a
real number, but does not impose any restrictions on the precision or scale of a fixed or floating-point representation that
expresses this concept. More specific value types can define the concrete data representations that a digital computer can
process, such as conventional Float, Integer, or String types.

SysML ValueType adds an ability to carry a unit of measure and quantity kind associated with the value. A quantity kind
is a kind of quantity that may be stated in terms of defined units, but does not restrict the selection of a unit to state the
value. A unit is a particular value in terms of which a quantity of the same quantity kind may be expressed. A SysML
ValueType and its quantityKind establishes, via UML typing, the associative relationship between a particular "quantity"
[VIM3-1.1] (modeled as a SysML value property typed by a ValueType) and a "kind of quantity" [VIM3-1.2] (the
ValueType::quantityKind of the SysML value propertys type). This UML/SysML associative relationship reflects the
terminological distinction made in VIM3 between the concepts of "quantity" [VIM3-1.1] and "kind-of-quantity" [VIM3-
1.2] that "cannot be in a generic or partitive hierarchical relation to each other" [Dybkaer-2010].

A SysML ValueType may define its own properties and/or operations, just as for a UML DataType. See 8.3.2.4, Block for
property classifications that SysML defines for either a Block or ValueType.

Association Ends

e base DataType : DataType [1]

e quantityKind : InstanceSpecification [0..1]
A kind of quantity, represented by an InstanceSpecification classified by a kind of SysML QuantityKind, that
may be stated by means of units. A value type may optionally specify a quantity kind without any unit. Such a
value type may be used to type a value specification to represent it in an abstract form independent of any
specific units.

Value types may be used to type properties, operation parameters, or potentially other elements within SysML.
SysML defines ValueType as a stereotype of UML DataType to establish a more neutral term for system values
that may never be given a concrete data representation. For example, the SysML "Real" ValueType expresses the
mathematical concept of a real number, but does not impose any restrictions on the precision or scale of a fixed
or floating-point representation that expresses this concept. More specific value types can define the concrete
data representations that a digital computer can process, such as conventional Float, Integer, or String types.

66 OMG Systems Modeling Language, v1.6

SysML ValueType adds an ability to carry a unit of measure and quantity kind associated with the value. A
quantity kind is a kind of quantity that may be stated in terms of defined units, but does not restrict the selection
of a unit to state the value. A unit is a particular value in terms of which a quantity of the same quantity kind
may be expressed. A SysML ValueType and its quantityKind establishes, via UML typing, the associative
relationship between a particular "quantity" [VIM3-1.1] (modeled as a SysML value property typed by a
ValueType) and a "kind of quantity” [VIM3-1.2] (the ValueType::quantityKind of the SysML value propertys
type). This UML/SysML associative relationship reflects the terminological distinction made in VIM3 between
the concepts of "quantity" [VIM3-1.1] and "kind-of-quantity" [VIM3- 1.2] that "cannot be in a generic or
partitive hierarchical relation to each other" [Dybkaer-2010].

A SysML ValueType may define its own properties and/or operations, just as for a UML DataType. See 8.3.2.4,
Block for property classifications that SysML defines for either a Block or ValueType.

unit : InstanceSpecification [0..1]
A unit, represented by an InstanceSpecification classified by a kind of SysML Unit, in terms of which the
magnitudes of other quantities that have the same quantity kind can be stated.

Constraints

1 specializations_are valuetypes
Any classifier that specializes a ValueType shall also have the ValueType stereotype applied.

UML: :Classifier.alllnstances()->forAll(c | c.general->includes (self.base DataType)
implies ValueType.alllInstances () .base DataType->includes (c))

2 unit
The unit of a ValueType, if any, shall be an InstanceSpecification classified by SysMLs Unit block in the
UnitAndQuantityKind model library or a specialization of it.

self.unit->notEmpty () and self.unit.classifier->notEmpty () implies

self.unit.classifier->forAll (c |
c.oclIsKindOf (Libraries::UnitAndQuantityKind::Unit))

3 quantitykind

The quantityKind of a ValueType, if any, shall be an InstanceSpecification classified by SysMLs QuantityKind

block in the UnitAndQuantityKind model library or a specialization of it.
self.quantityKind->notEmpty () and self.quantityKind.classifier->notEmpty () implies

self.quantityKind.classifier->forAll (c |
c.oclIsKindOf (Libraries::UnitAndQuantityKind: :QuantityKind))

8.3.3 Model Libraries

8.3.3.1 Package PrimitiveValueTypes

OMG Systems Modeling Language, v1.6 67

bdd [Package] PrimitiveValueTypes [Model library for primitive value types]J

«valueType» «valueType» «valueTypen»
Number String Boolean

T

«valueType» «valueType» «valueType»
Real Integer Complex
attributes
realPart : Real
imaginaryPart : Real

Figure 8-10: Model library for primitive value types

8.3.3.1.1 Boolean

Description

A Boolean value type consists of the predefined values true and false.
8.3.3.1.2 Complex
Description

A Complex value type represents the mathematical concept of a complex number. A complex number consists of a real
part defined by a real number, and an imaginary part defined by a real number multiplied by the square root of -1.
Complex numbers are used to express solutions to various forms of mathematical equations.

Generalizations

e Number (from Primitive ValueTypes)
Attributes

e imaginaryPart : Real [1]

A real number used to express the imaginary part of a complex number.

e realPart : Real [1]
A real number used to express the real part of a complex number.

8.3.3.1.3 Integer
Description

An Integer value type represents the mathematical concept of an integer number. An Integer value type may be used to
type values that hold negative or positive integer quantities, without committing to a specific representation such as a
binary or decimal digits with fixed precision or scale.

68 OMG Systems Modeling Language, v1.6

Generalizations

e Number (from PrimitiveValueTypes)

8.3.3.1.4 Number

Description

Number is an abstract value type from which other value types that express concepts of mathematical numbers are

specialized.
8.3.3.1.5 Real

Description

A Real value type represents the mathematical concept of a real number. A Real value type may be used to type values
that hold continuous quantities, without committing a specific representation such as a floating point data type with

restrictions on precision and scale.

Generalizations

e Number (from Primitive ValueTypes)

8.3.3.1.6 String

Description

A String value type consists of a sequence of characters in some suitable character set. Character sets may include non-
Roman alphabets and characters.

8.3.3.2 Package UnitAndQuantityKind

bdd [Package] UnitAndQuantityKind [Model library for Unit and QuantitylﬁndJJ

«block»
Unit

values
definitionURI : String [0..1]
description : String [0..1]
symbol : String [0..1]

quantityKind

«block»
QuantityKind

0.*

0.*

values
definitionURI : String [0..1]
description : String [0..1]
symbol : String [0..1]

Figure 8-11: Model library for Unit and QuantityKind

OMG Systems Modeling Language, v1.6

69

QuantityKind
Description

A QuantityKind is a kind of quantity that may be stated by means of defined units. For example, the quantity kind of
length may be measured by units of meters, kilometers, or feet. QuantityKind is defined as a non-abstract SysML Block
defined in the SysML UnitAndQuantityKind model library. QuantityKind, or a specialization of it, classifies an
InstanceSpecification to define a particular "kind-of-quantity” in the sense of an "aspect common to mutually comparable
quantities" [VIM3-1.2], where a SysML value property is understood to correspond to the VIM concept of "quantity"
defined as a "property of a phenomenon, body or substance, where the property has a magnitude that can be expressed as
a number and a reference" [VIM3-1.1]. Modelers specialize QuantityKind as done in SysMLs QUDV model library or in
a similar manner in other model libraries.

The definitionURI of an InstanceSpecification classified by a kind of QuantityKind identifies the particular "kind-of-
quantity" [VIM3-1.2] that the InstanceSpecification represents. Two such InstanceSpecifications represent the same
"kind-of-quantity" if and only if their definitionURIs have values and their values are equal. The only valid use of a
QuantityKind instance is to be referenced by the quantityKind property of a ValueType or Unit.

See the non-normative model library in E.5 for an optional way to specify more comprehensive definitions of units and
quantity kinds as part of systems of units and systems of quantities. The name of a QuantityKind, its definitionURI, or
other means may be used to link individual quantity kinds to additional sources of documentation such as this optional
model library.

Attributes

e definitionURI : String [0..1]
e description : String [0..1]
e symbol : String [0..1]

8.3.3.2.2 Unit
Description

QuantityKind is a kind of quantity that may be stated by means of defined units. For example, the quantity kind of length
may be measured by units of meters, kilometers, or feet. QuantityKind is defined as a non-abstract SysML Block defined
in the SysML UnitAndQuantityKind model library. QuantityKind, or a specialization of it, classifies an
InstanceSpecification to define a particular "kind-of-quantity" in the sense of an "aspect common to mutually comparable
quantities" [VIM3-1.2], where a SysML value property is understood to correspond to the VIM concept of "quantity"
defined as a "property of a phenomenon, body or substance, where the property has a magnitude that can be expressed as
a number and a reference" [VIM3-1.1]. Modelers specialize QuantityKind as done in SysMLs QUDYV model library or in
a similar manner in other model libraries.

The definitionURI of an InstanceSpecification classified by a kind of QuantityKind identifies the particular "kind-of-
quantity" [VIM3-1.2] that the InstanceSpecification represents. Two such InstanceSpecifications represent the same
"kind-of-quantity" if and only if their definitionURIs have values and their values are equal. The only valid use of a
QuantityKind instance is to be referenced by the quantityKind property of a ValueType or Unit.

See the non-normative model library in E.5 for an optional way to specify more comprehensive definitions of units and
quantity kinds as part of systems of units and systems of quantities. The name of a QuantityKind, its definitionURI, or

70 OMG Systems Modeling Language, v1.6

other means may be used to link individual quantity kinds to additional sources of documentation such as this optional
model library.

A Unit is a quantity in terms of which the magnitudes of other quantities that have the same quantity kind can be stated. A
unit often relies on precise and reproducible ways to measure the unit. For example, a unit of length such as meter may
be specified as a multiple of a particular wavelength of light. A unit may also specify less stable or precise ways to
express some value, such as a cost expressed in some currency, or a severity rating measured by a numerical scale.
Unit is defined as a non-abstract SysML Block defined in the SysML UnitAndQuantityKind model library. Unit, or a
specialization of it, classifies an InstanceSpecification to define a particular "measurement unit" in the sense of a "real
scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to
express the ratio of the two quantities as a number" [VIM3-1.9], where a SysML value property is understood to
correspond to the VIM concept of "quantity" defined as a "property of a phenomenon, body or substance, where the
property has a magnitude that can be expressed as a number and a reference" [VIM3-1.1]. Modelers specialize Unit as
done in SysMLs QUDV model library or in a similar manner in other model libraries.

The definitionURI of an InstanceSpecification classified by a kind of Unit identifies the particular "measurement unit"
[VIM3-1.9] that the InstanceSpecification represents. Two such InstanceSpecifications represent the same "measurement
unit" if and only if their definitionURIs have values and their values are equal.

The only valid use of a Unit instance is to be referenced by the unit property of a ValueType stereotype.

See the non-normative model library in E.5 for an optional way to specify more comprehensive definitions of units and
quantity kinds as part of systems of units and systems of quantities. The name of a Unit, its definitionURI, or other means
may be used to link individual units to additional sources of documentation such as this optional model library.

Attributes

e definitionURI : String [0..1]
e description : String [0..1]
e symbol : String [0..1]

Association Ends
e quantityKind : QuantityKind [0..*]
8.4 Usage Examples

8.4.1 Wheel Hub Assembly

In Figure 8-12 a block definition diagram shows the blocks that comprise elements of a Wheel. The block property
LugBoltJoint.torque has a specialization of DistributedProperty applied to describe the uniform distribution of its values.
Examples of such distributions can be found in E.5. Connectors from the lugBoltJoints part go to nested parts, and use
NestedConnectorEnd to specify the path of properties to reach those parts. For the threadedHole end of the connector
going to part h, the property path is (hub). For the mountingHole end of the connector going to mountingHoles, the
property path is (wheel, w). Similarly, the connector between the rim and bead parts has property paths (w) and (t) on its
ends.

OMG Systems Modeling Language, v1.6 71

bdd [Wheel Package
‘ WheelHubAssembly ‘
t
0.1 PR Tire
values
tireSpecification : String bead
WheelAssem TireBead
heel values w operations 0.1 2 |—
1 |inflationPressure : psi |0_1 mmountTire{) 1
PressureSeat
1
Whee! rim | TireMountingRim ‘
W values 0.1 2
1 |delmper : mm " nflatonvave |
Bandmount eight
w BalanceWeight ‘
1 0.8
WirelessTirePressureMonitor
operations L“ﬂmml‘bh
transmitPressure() mountingHole valies
5 |woBottSize : mm
1 mountingHole
ngaauninlﬁ 0..1
Hub LugBoltThreadedHole LugBoltJoint
hub h vailues threadedHole values
1 0.1 5 |lugBoltStze : mm 1 0.1 «uniformes torque : fidb{max = 85.0, min = 75.0}
threadSize : mm 1 |boltTension : Ib
Figure 8-12: Block diagram for the Wheel Package
ibd WheslHutAzsembly)
wheel: WhaslAssambly
hub: Hub W Wheel t: Tire
5 2 bead:
3 tingHoles: rim:
h: i Lu;‘B:IIJlrl‘.!:L?nlrn;TIull Tire MountingRim TiraBand
LugBoltThreadedHale
1 | treadeoHoe 1:] meoxinlingHdite
I Fressu efest
Q.1 lug BoltJoints: &5 5.1
LugBoltJoint :

Figure 8-13: Internal Block Diagram for WheelHubAssembly

72

OMG Systems Modeling Language, v1.6

In Figure 8-13 an internal block diagram (ibd) shows how the blocks defined in the Wheel package are used. This ibd is a
partial view that focuses on particular parts of interest and omits others from the diagram, such as the “v” InflationValve
and “weight” BalanceWeight, which are also parts of a Wheel.

8.4.2 Example Value Type Definitions

In Figure 8-14, several value types that use standard units of measure from the International System of Units (SI) are
defined to be available in the Example Value Type Definitions package. The value types in this package could be
imported into other contexts for typing properties of SysML Blocks. Because a SysML Unit can already identify a type
of quantity, or QuantityKind, that the unit measures, a value type only needs to identify the unit to identify a quantity
kind as well. The value types in this example refer to units that are assumed to be defined in an imported package, such
as the Model Library defined in E.6.

bdd [Package] [Exarple Value Type Definitions]J

«valueType»
Real

T

|

s N m kg
«valueType» «valueType» «valueType» «valueType»
unit= second unit= newton unit= metre unit= kilogram

Figure 8-14: Defining Value Types with units of measure from the International System of Units (Sl)

8.4.3 Design Configuration for SUV EPA Fuel Economy Test

SysML internal block diagrams may be used to specify blocks with unique identification and property values. Figure
D.41 shows an example used to specify a unique vehicle with a vehicle identification number (VIN) and unique
properties such as its weight, color, and horsepower. This concept is distinct from the UML concept of instance
specifications in that it does not imply or assume any run-time semantic, and can also be applied to specify design
configurations.

In SysML, one approach is to capture system configurations by creating a context for a configuration in the form of a
context block. The context block may capture a unique identity for the configuration, and utilizes parts and initial value
compartments to express property design values within the specification of a particular system configuration. Such a
context block may contain a set of parts that represent the block instances in this system configuration, each containing
specific values for each property. This technique also provides for configurations that reflect hierarchical system
structures, where nested parts or other properties are assigned design values using initial value compartments. The
following example illustrates the approach.

OMG Systems Modeling Language, v1.6 73

8.4.4 Water Delivery

Association blocks can be decomposed into connectors between properties of the associated blocks. These properties can
be ports, as in the water delivery example in 9.4.5, Association and Port Decomposition.

8.4.5 Constraining Decomposition

Figure 8-15 shows an example decomposition for vehicles in a block definition diagram. Figure 8-16 shows the same
decomposition in an internal block diagram that includes bound references. The binding connectors have nested
connector ends, because they link inside the parts of the vehicle.

bdd [Package] [Vehicle deconpositionJJ

Vehicle

chs |1 eng |1

Chassis Assembly Engine
w |4 rb [0.1 cyl [4..8
Wheel RollBar Cylinder
b |6.10 T 1
LugBolt | ‘I-IeavyRollBar| | LightRollBar

Figure 8-15: Vehicle Decomposition

74

OMG Systems Modeling Language, v1.6

ibd [Block] Vehicle]

«boundReference»
cylinderBR : Cylinder []

ang : Engine [1]

cyl : Cylinder [4..8]

chs : Chassis Assembly [1]

rb : RollBar [0..1]

«boundReference» |

w : Wheel [4]

1b : LugBolt [6..10]

! lugBoltBR [6..8] |

Figure 8-16: Vehicle internal structure

Figure 8-17 shows specializations for vehicles that restrict aspects of nested parts by redefining bound references. Paths
for bound references are based on the property paths of the corresponding binding connectors. The general block on the
top does not restrict the bound properties, except the total number of lug bolts is required to be between 24 and 32, rather

than 24 and 40 as the associations in Figure 8-15 allow. The specialization on the lower left restricts the number of

cylinders to four, requires a light roll bar, and a total of 24 lug bolts over all the wheels. The specialization on the lower

right restricts the number of cylinders to between six and eight, rules out any roll bar, and limits lug bolts per wheel to

between 6 and 7, by giving the end path upper and lower values.

bdd [Package] [Vehicle specialization }J

Vebhicle

references
cylinderBR : Cylinder [*){bindingPath = eng, cyl}
rrolBarBR [*]{bindingPath = chs, rb}
lugBolBR [6..8){ bindingPath = chs, w, Ib}

T

Vehicle Model 1

Vehicle Model 2

references

rroliBarBR [*){redefines rroliBarBR}
lugBoltBR [6..8]{redefines lugBoltBR}

cylinderBR : Cylinder [*}{redefines cylinderBR}

references

«boundReference» cylinderBR : Cylinder [*]{redefines cylinderBR}
«boundReference» «endPathMultiplicity» rroliBarBR [*}{redefines rroliBarBR}
«boundReference» lugBoltBR [6..8){redefines lugBoltBR}

Figure 8-17: Vehicle specialization

OMG Systems Modeling Language, v1.6

75

8.4.6 Units and Quantity Kinds

The following shows a minimal example of definitions a Unit, QuantityKind, and ValueType based on them.

pkg [Example of Unit, QuantityKind and ValueType definitions]_J

Model 1

metre : Unit length : QuantityKind
{definitionURI = "hitp:/mww.bipm.org/en/sifbase_units'metre.html®, {definitionURI = *=..."}
quantityKind = length}

«valueType»
Length
quantiKind = length

unit= metre

«profile»
S| sysmL

Figure 8-18: Example of Unit, QuantityKind and ValueType definitions

In terms of the UML4SysML metamodel and of the SysML profile, the following figure shows a partial account of the
instance-level representation of the above example. This instance-level representation is important for model interchange,

particularly across different implementations of SysML.

76 OMG Systems Modeling Language, v1.6

pkg | hstance-level view of the Unit, QuantilyKind and ValueType definiions)|
ubodelLibrarys
| UnitAndQuantityind
A_gquantityiind tlinit : As s ochatis
i berEnd =,
J' [ownedEnd = @ssociation i Property
iProperty nama = "quaniityind™
name = “measurementUnit* type =
type = ’_
l 1Class. Property
. nama = "QuaniityKind® —— name = "deiinition URF
2Block -Slock *‘:‘:r 1Property ownedAftibute =
name =
base_Class = ownedAtiibule = name ="deliniion URF —1[7
sxtansion_Blook
iBlook
base_Class =
Model 1
definingFeature: Bl
- R - = . s
nams = ‘mairs name = Sangth' definingFeature
slot= vl = slot= value = "
L
wlue = *htip:libipm . orglenfsitbase_unitsimetre im(* iLiteralSirving.
value ="
‘autension_ValueType ValusT:
base_DataType =
i DetaType
Quantitykind = extension_Value
unit = LB wdension_ValuaTywe =

Figure 8-19: Instance-level view of the Unit, QuantityKind and Value Type definitions

The following example shows a minimal example of the semantics of Unit equivalence (A similar example for
QuantityKind is omitted).

pkg [Examplo of equivalent Unit rep jons JJ
Model 1 Model 2
«block»
metre : Unit netre- toit
definitionURI = "hitp:/mwww.bipm .org/en/si/base_units/metre.htmI|™ definitionURI = "htip:/A bipm orglen/silbase_units/metre himl"
quantityKind = length) B -)

Figure 8-20: Example of equivalent Unit representations

OMG Systems Modeling Language, v1.6

In terms of the UML4SysML metamodel and of the SysML profile, the following figure shows a partial account of the
instance-level representation of the above example. This instance-level representation is important for model interchange,
particularly across different implementations of SysML.

pkg [Instance-level represeniation of equivalend Linit definitions]J
sModeiLibrary»
UnitAndQuantityknd
i Blogk,
base Class l bage_Class =
aClass.
classifier | name = "Unif® ow nadA tirbute :Proparty
name = "definiton URI"
definingFeature
Model 1 | Modsl 2 |
shot | .
slot El "
= Instance Specification
 InstanceSpecification name ="metre”
name = "metra” volue
P vailue p - s LiteraiBtring,
- :LiteralString - value = "hiipffwww.blpm.orglenisibase_units/imetre himlI”
A | | Yelue = Witpshwww bipm.orglenisibase_unitsimetre.rimt”,
N ~
«commenis

For model interchanfe purposes, the semantics of Unit

implies that these two reprasentations comespond to

the same unil because they have the same

definiionURI

Figure 8-21: Instance-level representation of equivalent Unit definitions

8.4.7 Property-Specific Types

Figure 8-22 shows property-specific types in a model of facilities that includes factories and warehouses. Items flow
through facilities, while resources operate on items. Items in warehouses are assigned a location, while resources in
factories indicate own much they are being used as a percentage of time. Only objects that are items in warehouses or
resources in factories have these location and utilization properties. The properties appear when an item arrives in a
warehouse or a resource is used in a factory, because they are classified as Warehouseltems and FactoryResources at that
time, respectively. The properties disappear once an item leaves a warehouse or a resource is no longer used in a factory,
because they are declassified as Warehouseltems and FactoryResources at that time, respectively.

78 OMG Systems Modeling Language, v1.6

bdd Logistics
«block»
Object
«block» item «block» resource «block»
«pst» Facility «psty
Facilityttem d D FacilityResource
‘?p'ft'f ftom _ «blockn «blocks resource «blocks <blocks
Warehouseltem {redefines itam} | Wwarghouse Factory {redefines resource} «pst» Machine
values & a2 FactoryResource values
toreAt : " values sin : Integer
® t Loc utilization : Percentage

Figure 8-22: Property-specific types in facility example

Figure 8-23 shows the classification of a particular machine over time, identified by its serial number. At first it is not an
item or resource and is classified only as a machine. Before delivery to the factory, a new machine is stored in a
warehouse, classified additionally as a warehouse item, and is assigned a storage location. Then it is delivered to a
factory, reclassified from a warehouse item to a factory resource (while still being a machine), and records the percentage
of time it is operating.

OMG Systems Modeling Language, v1.6 79

bdd [Packags] Logistics Example | Logistics Example)

«block»
aWarehouse : Warehouse,

«block»
aFactory : Factory

«blocke

sin=12345

bdd [Package] Logistics Exanple [Logistics Example |

«blockn L ablocke Time
aWarehouse : Warehouse. aMachine : Machine, Warehouseltem,
sin=12345
«blocks storeAt = "15F"
aFactory : Factory
bdd [Package] Logistics Example [Logistics Exarmple))
ublock» ublock»
aWarehouse : Warehouse, aMachine : Machine, FactoryResourcs.
resource | 8/n = 12345
ablocks ufilization = “75%"
aFactory ; Factory,

Figure 8-23: Changes in classification over time due to property-specific types

80

OMG Systems Modeling Language, v1.6

9 Ports and Flows

9.1 Overview

The main motivation for specifying ports and flows is to enable design of modular, reusable blocks with clearly defined
ways of connecting and interacting with their context of use. This clause extends UML ports to support nested ports, and
extends blocks to support flow properties, and required and provided features, including blocks that type ports. Ports can
be typed by blocks that support operations, receptions, and properties as in UML. SysML defines a specialized form of
Block (InterfaceBlock) that can be used to support nested ports. SysML identifies two kinds of ports, one that exposes
features of the owning block or its internal parts (proxy ports), and another that supports its own features (full ports).
Default compatibility rules are defined for connecting block usages, such as parts and ports. These can be overridden
with association blocks specifying connections. These additional capabilities in SysML enable modelers to specify a
wide variety of interconnectable components, which can be implemented through many engineering and social
techniques, such as software, electrical or mechanical components, and human organizations. This clause also extends
UML information flows for specifying item flows across connectors and associations.

9.1.1 Ports

Ports are points at which external entities can connect to and interact with a block in different or more limited ways than
connecting directly to the block itself. They are properties with a type that specifies features available to the external
entities via connectors to the ports. The features might be properties, including flow properties and association ends, as
well as operations and receptions. The remaining overview sub clauses introduce other aspects of ports and flows.

9.1.2 Flow Properties, Provided and Required Features, and Nested Ports

SysML extends blocks to support flow properties and provided and required features. Blocks with ports can type other
ports (nested ports). Flow properties specify the kinds of items that might flow between a block and its environment,
whether it is data, material, or energy. The kind of items that flow is specified by typing flow properties. For example, a
block specifying a car’s automatic transmission could have a flow property for Torque as an input, and another flow
property for Torque as an output. Required and provided features are operations, receptions, and non-flow properties that
a block supports for other blocks to use, or requires other blocks to support for its own use, or both. For example, a block
might provide particular services to other blocks as operations, or have a particular geometry accessible to other block, or
it might require services and geometries of other blocks. Ports nest other ports in the same way that blocks nest other
blocks. The type of the port is a block (or one of its specializations) that also has ports. For example, the ports supporting
torque flows in the transmission example might have nested ports for physical links to the engine or the driveshaft.

9.1.3 Proxy Ports and Full Ports

SysML identifies two usage patterns for ports, one where ports act as proxies for their owning blocks or its internal parts
(proxy ports), and another where ports specify separate elements of the system (full ports). Both are ways of defining the
boundary of the owning block as features available through external connectors to ports. Proxy ports define the boundary
by specifying which features of the owning block or internal parts are visible through external connectors, while full
ports define the boundary with their own features. Proxy ports are always typed by interface blocks, a specialized kind of
block that has no behaviors or internal parts. Full ports cannot be behavioral in the UML sense of standing in for the

OMG Systems Modeling Language, v1.6 81

owning object, because they handle features themselves, rather than exposing features of their owners, or internal parts of
their owners. Ports that are not specified as proxy or full are simply called “ports.”

In either case, users of a block are only concerned with the features of its ports, regardless of whether the features are
surfaced by proxy ports, or handled by full ports directly. Proxy and full ports support the capabilities of ports in general,
but these capabilities are also available on ports that are not declared as proxy or full. Modelers can choose between
proxy or full ports at any time in the development lifecycle, or not at all, depending on their methodology.

9.1.4 Item Flows

Item flows specify the things that flow between blocks and/or parts and across associations or connectors. Whereas flow
properties specify what “can” flow in or out of a block, item flows specify what “does” flow between blocks and/or parts
in a particular usage context. This important distinction enables blocks to be interconnected in different ways depending
on its usage context. For example, tanks might include a flow property that can accept fluid as an input. In a particular
use of tanks, “gasoline” flows across a connector into a tank, and in another use of tanks, “water” flows across a
connector into a tank. The item flow in each case specifies what “does” flow on the connector in the particular usage
(e.g., gas, water) and the flow property specifies what can flow (e.g., fluid). This enables type matching between the item
flows and between flow properties to assist in interface compatibility analysis.

Item flows may be allocated from object nodes in activity diagrams or signals sent from state machines across a
connector. Flow allocation is described in Clause 15, “Allocations,” and can be used to help ensure consistency across
the different parts of the model.

9.1.5 Deprecation of Flow Ports and Flow Specifications

Flow ports and flow specifications are included in SysML, but are deprecated. Annex C defines them, along with
transition guidelines to non-deprecated elements. In particular, the functionality of non-atomic flow ports is supported
with proxy ports typed by interface blocks owning flow properties. Flow properties are not deprecated.

9.2 Diagram Elements

9.2.1 Block Definition Diagram

Table 9-1: Graphical nodes defined in Block Definition diagram

Node Name Concrete Syntax Abstract Syntax Reference

Port UMLA4SysML::Port
Transmission
P! %]

p1 Transmission
p3
p2

Ports with Flow Properties

82 OMG Systems Modeling Language, v1.6

Abstract Syntax Reference

Node Name Concrete Syntax
Port (Compartment Notation) UML4SysML::Port
Transmission
s
p1: IMransCmd
Port (with Compartment) UML4SysML::Port
ol .Typé1
b lr\tegj.:::"M
| tow properties Transmission
in live © Electrcity
Suciuie
¥ . Real
Port (Nested) UMLA4SysML::Port
o | P1
?. 1 Transmission
ProxyPort SysML::PortsAndFlows::ProxyPort
ARroy s
[Transmission

ProxyPort (Compartment
Notation)

Transmission

sy pars
pl: ITransCmd

SysML::PortsAndFlows::ProxyPort

FullPort

afulls

P Transmission

SysML::PortsAndFlows::FullPort

OMG Systems Modeling Language, v1.6

Transmisslon

Aow propemies
in gearselect: Gear
i engineTargue Todgue
ol wheglsTargque;, Torgues

Node Name Concrete Syntax Abstract Syntax Reference
FullPort (Compartment SysML::PortsAndFlows::FullPort
Notation)
Transmission
Tl poeTs
pl: ITransCmd
FlowProperty SysML::PortsAndFlows::FlowProperty

Required and Provided
Features

Transmission

CpRTanons
prov Bookean salectGeary | Gear)
reqd Torgue getTorgue()

PO
prov lemperalune | Inkeger
reqd geormelry | Spling

SysML::PortsAndFlows:
Feature

:Directed

InterfaceBlock SysML::PortsAndFlows::InterfaceBlock
sinterfaceBlocks
I5peedObserver
operEiong
notifySpeedChange()
ItemFlow e o on SysML::PortsAndFlows::ItemFlow
tran : Transmission [1] eng : Engine [1]
Engine Transmission
|
1
«block»
Association-1
enghLink : Engine [1}{end = enc
traninLink : Transmission [1]{end = tran}
T~ a7 T 7 o T
: engIanInl((:p&g‘lne " m !ranInLlnkp:aT‘ra:srr‘llsslon M :
| et | |
L= Curent = — — — — — — — —
84 OMG Systems Modeling Language, v1.6

Node Name Concrete Syntax Abstract Syntax Reference

Interface UMLA4SysML::Interfaces::Interface
winterfaces

|1SpeedObserver

notify SpeedChange(): void

Required and Provided [TransCrmd UMLA4SysML::Interface
Interfaces pl
Transmission
TransData
| TransCmd
1p1 Transmission
IMransCiata

9.2.2 Internal Block Diagram

Table 9-2: Graphical nodes defined in Internal Block diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Port UMLA4SysML::Port

t: Transmission

1
:

p1 t2 : Transmission
p3
p2
| |

Ports with the Flow Properties

OMG Systems Modeling Language, v1.6

in live - Electricity

Node Name Concrete Syntax Abstract Syntax Reference
Port (Nested) UMLA4SysML::Port

"_'_: pl

z.] t: Transmission
Port (with Compartment) UMLA4SysML::Port

p1: Typel

values
xInteger
fiow properties t:Transmission

structure
|
ProxyPort SysML::PortsAndFlows::ProxyPort
QEIIUI}'D
p1 t: Transmission
ProxyPort (isBehavior = true) SysML::PortsAndFlows::ProxyPort
'|FrC'I:|"°
P t:Transmission
FullPort challs SysML::PortsAndFlows::ProxyPort
Pl L : Transmission
ItemFlow SysML::PortsAndFlows::ItemFlow
86 OMG Systems Modeling Language, v1.6

Node Name Concrete Syntax Abstract Syntax Reference

IMransCmd

Required and Provided - UML4SysML::Interface

p
Interfaces] t : Transmission

ITranzData

ITransCmd
ip1| t: Transmission

ITramsData

9.3 UML Extensions

9.3.1 Diagram Extensions

9.3.1.1 DirectedFeature

A DirectedFeature has the same notation as other non-flow properties and behavioral features with a feature direction
prefix (prov | reqd | provreqd), which corresponds to one the FeatureDirectionKind literals “provided,” “required,” and
“providedrequired,” respectively. Directed features can appear in compartments for the various kinds of properties and
behavioral features.

9.3.1.2 FlowProperty

A FlowProperty signifies a single flow element to/from a block. A flow property has the same notation as a Property only
with a direction prefix (in | out | inout). Flow properties are listed in a compartment labeled flow properties.

9.3.1.3 FullPort

Full ports can appear in block compartments labeled full ports. The keyword «full» before a property name can also
indicate the property is stereotyped by FullPort.

9.3.1.4 InvocationOnNestedPortAction

The nested port path is notated with a string ““via’ <port-name> [‘,” <port-name>]+" in the name string of the icon for
the invocation action. It shows the values of the onNestedPort property in order, and the value of the onPort property at
the end.

9.3.1.5 ItemFlow

An ItemFlow describes the flow of items across a connector or an association. The notation of an item flow is a black
arrowhead on the connector or association. The arrowhead is towards the target element. For an item flow with an item
property, the label shows the name and type of the item property (in name: type format). Otherwise the item flow is
labeled with the name of the classifier of the conveyed items. When several item flows having the same direction are
represented, only one triangle is shown, and the list of item flows, separated by a comma is presented.

OMG Systems Modeling Language, v1.6 87

9.3.1.6 Port

Ports are notated by rectangles overlapping the boundary of their owning blocks or properties (parts or ports) typed by
the owning block. Port labels appear in the same format as properties on the end of an association. Port labels can appear
inside port rectangles. Nested ports that are not on proxy ports can appear anywhere on the boundary of the owning port
rectangle that does not overlap the boundary of the rectangle the owning port overlaps.

Port rectangles can have port rectangles overlapping their boundaries, to notate a port type that has ports (nested ports).

Ports with types that have flow properties all in the same direction, either all in or all out, can have an arrow inside them
indicating the direction of the properties with respect to the owning block. (See FlowProperty on page 90 for definition of
owning block of proxy ports in this case.) This includes the direction of flow properties on nested ports, and if the port is
full and its type is unencapsulated, ports on parts of the port, recursively. The arrows are perpendicular to the boundary
lines they overlap. Ports with types that have flow properties in different directions or flow properties that are all in both
directions, including have two open arrow heads inside them facing away from each other (<>). This includes the
directions of nested and contained flow properties as described above for one-way arrows. Ports appearing in block
compartments can have their direction appear textually before the port name as “in,” “out,” or “inout” determined in the
same way as the arrow direction.

Ports that are not proxy or full can appear in block compartments labeled ports.

Ports are specialized kinds of properties, and can be shown in same way as other properties. They can appear in block
compartments in the same format as other properties of their owning blocks, or as the ends of associations, with the port
appearing in the same format as other association ends, on the end opposite the owning block.

All ports and nested ports (i.e., proxy, full, and ports with no stereotype applied), and their type definitions (e.g., interface
blocks, blocks) can include compartments with textual and graphical representations to display their features in the same
way as other properties and types, including rectangles used to display properties in structure compartments.

9.3.1.7 ProxyPort

Proxy ports can appear in block compartments labeled proxy ports. The keyword «proxy» before a property name can
also indicate the property is stereotyped by ProxyPort. Nested ports on proxy ports can appear on the portion of the
boundary of the owning port rectangle that is outside the rectangle the owning port overlaps.

9.3.1.8 TriggerOnNestedPort

1113

The nested port path is notated following a trigger signature with a string “‘«from» (* <port-name> [*,” <port-name>]+
‘)’ in the name string of the icon for the trigger. It shows the values of the onNestedPort property in order, and the value
of the port property at the end.

88 OMG Systems Modeling Language, v1.6

9.3.2 Stereotypes

Package PortsAndFlows

«Metaclass»
UML4SysML::Port

«Metaclass»
UML4SysML::Property

«enumeration»
Flow DirectionKind
«stereotype» «stereotype» «stereotype» e
enumeration literals
ProxyPort FullPort FlowProperty H

attributes inout
direction : Flow DirectionKind [1] = inout out

attribi

«stereotype»
«stereotype» 4 «stereotype» ~InterfaceBlock
Block Interface Block attributes

original : InterfaceBlock 1

Figure 9-1: Port Stereotypes

«Metaclass» «stereotypen «Metaclass»
UML4SysML::InvocationAction ElementPropertyPath UML4SysML::Trigger

«Metaclass»
AddStructuralFeatureValueAction

«stereotype»
AddFlow PropertyValueOnNestedPortAction

«stereotype» «Metaclass» «stereotype»
InvocationOnNestedPortAction UML4SysML::Port TriggerOnNestedPort
0.* 1:*

onNestedPort
{redefines propertyPath, ordered, nonunique} {redefines propertyPath, ordered, nonunique}

Figure 9-2: Stereotypes for Actions on Nested Ports

OMG Systems Modeling Language, v1.6

«Metaclass» «Metaclass»

UML4SysML::ChangeEvent UML4SysML::AcceptEventAction
«stereotype» structuralFeature «Metaclass» «stereotype»
ChangeStructuralFeatureEvent 1 UML4SysML::StructuralFeature AcceptChangeStructuralFeatureEventAction

Figure 9-3: Stereotypes for Property Value Change Events

«Metaclass»
UML4SysML::Feature
T «enumeration»
«stereotype» FeatureDirectionKind
DirectedFeature e{mmaraffon literals
: provided
. attributes providedRequired
featureDirection : FeatureDirectionKind [1] required
Figure 9-4: Provided and Required Features
«Metaclass»
UML4SysML::Feature
T «enumeration»
«stereotype» FeatureDirectionKind
DirectedFeature e{rurnerahon literals
: provided
~ attrbutes providedRequired
featureDirection : FeatureDirectionKind [1] required

Figure 9-5: Item Flow Stereotype

920 OMG Systems Modeling Language, v1.6

9.3.2.1 AcceptChangeStructuralFeatureEventAction
Description

Accept change structural feature event actions handle change structural feature events (see clause 9.3.2.10. The actions
have exactly two output pins. The first output pin holds the values of the structural feature just after the values changed,
while the second pin holds the values just before the values changed. The action only accepts events for structural
features on the blocks owning the behavior containing the action, or on the behavior itself, if the behavior is not owned
by a block.

Association Ends
e base AcceptEventAction : AcceptEventAction [1]
Constraints

e 1 one trigger
The action has exactly one trigger, the event of which shall be a change structural feature event.
self.base AcceptEventAction.trigger->size()=1 and let trigger: UML::Trigger =
self.base AcceptEventAction.trigger->any(true) in
ChangeStructuralFeatureEvent.allInstances () .base ChangeEvent->
includes (trigger.event)

e 2 two resultpins
The action has two result pins with type and ordering the same as the type and ordering of the structural feature
of the trigger event, and multiplicity compatible with the multiplicity of the structural feature.
let event: ChangeStructuralFeatureEvent =

ChangeStructuralFeatureEvent.allInstances ()->any(e | e.base ChangeEvent =
self.base AcceptEventAction.trigger->any(true).event) in
self.base AcceptEventAction.result->size() = 2 and

self.base AcceptEventAction.result->forAll(r | r.type =
event.structuralFeature.type and r.isOrdered = event.structuralFeature.isOrdered
and r.lower <= event.structuralFeature.lower and r.upper >=
event.structuralFeature.upper)

e 3 context owns structuralfeature

The structural feature of the trigger event shall be owned by or inherited by the context of the behavior
containing the action. (The context of a behavior is either its owning block or itself if it is not owned by a block.
See definition in the UML 2 standard.)

let event: ChangeStructuralFeatureEvent =

ChangeStructuralFeatureEvent.allInstances ()->any(e | e.base ChangeEvent =

self.base AcceptEventAction.trigger->any(true).event) in

self.base AcceptEventAction. 'context'->notEmpty() and

self.base AcceptEventAction. 'context'.allFeatures ()

->includes (event.structuralFeature)

e 4 can access_ structuralfeature
Visibility of the structural feature of the trigger event shall allow access to the object performing the action.

let event: ChangeStructuralFeatureEvent =
ChangeStructuralFeatureEvent.allInstances()->any(e | e.base ChangeEvent =

OMG Systems Modeling Language, v1.6 91

self.base AcceptEventAction.trigger->any(true).event) in if
event.structuralFeature.visibility = UML::VisibilityKind::private then

self.base AcceptEventAction. 'context'.feature->includes (event.structuralFeature)
else if event.structuralFeature.visibility = UML::VisibilityKind::protected then
self.base AcceptEventAction. 'context'.allFeatures ()

—>includes(event.structurangature) else if event.structuralFeature.visibility =
UML: :VisibilityKind:: 'package' then let thePackage: UML::Package =

event.structuralFeature.allNamespaces () ->select(n | n.oclIsKindOf (UML: :Package))
->first () .oclAsType (UML: :Package) in (not thePackage.oclIsUndefined()) and (let
index: Integer = event.structuralFeature.allNamespaces ()->indexOf (thePackage) in
event.structuralFeature.allNamespaces () —>subOrderedSet (1, index) ->iterate(n; acc:
Boolean=true | acc and not (n.visibility=UML::VisibilityKind::private or
n.visibility=UML::VisibilityKind::protected))) else true endif endif endif

e 5 uml constraint removed
The constraint under 11.3.2, "AcceptEventAction" in the UML 2 standard, "[2] There are no output pins if the
trigger events are only ChangeEvents," shall be removed for accept event actions that have
AcceptChangeStructuralFeatureEventAction applied.
-- cannot be expressed in OCL

9.3.2.2 AddFlowPropertyValueOnNestedPortAction
Description

This enables values added to a flow property to propagate out through a specified behavioral port of an object executing
the action, rather than all behavior ports exposing the flow property. It also enables values added to a flow property to
propagate into objects. Values flowing out of an object are added to an out or inout flow property of the executing object.
In this case, the applied stereotype specifies a (possibly nested) behavioral port at the end of a (possibly multi-level) path
of behavioral ports from a block that supports the flow property. Values flowing into an object are added to an in or inout
flow property of that object, specifying a (possibly nested) port of that object.

Generalizations
e ElementPropertyPath (from Blocks)
Attributes

e onNestedPort : Port [1..%]
Gives a series of ports that end in one supporting the flow property to which a value is being added. The
ordering of ports is from a port of the object of the stereotyped action, through a port of each intermediate block
that types the preceding port, ending in a port with a type that owns or inherits the flow property. The same port
might appear more than once because a block can own a port with the same block as a type, or another block
that has the same property.
(redefines: ElementPropertyPath::propertyPath)

Association Ends

e base AddStructuralFeatureValueAction : AddStructuralFeatureValueAction [1]

92 OMG Systems Modeling Language, v1.6

Constraints

e 1 feature flowproperty
The structural feature referred by actions with this stereotype applied must have FlowProperty applied.

FlowProperty.alllnstances () .base Property
->includes (self.base AddStructuralFeatureValueAction.structuralFeature)

e 2 onnestedport first owned by target type
The port at the first position in the onNestedPort list shall be owned by the block that types the object pin of the
stereotyped action, or one of that blocks generalizations.

self.base AddStructuralFeatureValueAction.object.type.oclAsType (UML::Classifier) -
>allFeatures () ->includes (self.onNestedPort->first()))

3 _path consistency

The port at each successive position of the onNestedPort attribute, following the first position, shall be owned

by the Block that types the port at the immediately preceding position, or a generalization of that Block
self.onNestedPort->size () >1 implies self.propertyPath->subSequence (2,

self.onNestedPort->size())->forAll (p |
let pp: UML::Property = self.onNestedPort->at (self.onNestedPort->indexOf (p)-1) in
let owners: Set (UML::Classifier) = pp.type.oclAsType (UML::Classifier)

->including (pp.type.oclAsType (UML: :Classifier)) in
owners->includes (p.owner))

e 4 onnestedport last type owns invocation onPort
The type of the port at the last position of the onNestedPort list shall own or inherit the flow property that is the
structural feature of the stereotyped action

self.onNestedPort->last () .type.oclAsType (UML: :Classifier) .allFeatures ()
->includes (self.base AddStructuralFeatureValueAction.structuralFeature)

9.3.2.3 Block

Description

Blocks (including specializations of Block) can own ports, including but not limited to proxy ports and full ports. These
blocks can be the type of ports (specifying nested ports), with some restrictions described in other stereotypes in this sub
clause. All links and interactions with a behavioral port (in the UML sense of standing in for the owning object) are links
and interactions with the owner, so the semantics of behavioral ports is the same as if the value of the port as a property
were always the owning block instance (the owning block instance for behavioral ports on proxy ports is the value of the
block usage the proxy port is standing in for, which might be an internal part). Blocks loosen UML constraints on
connectors to support nested ports. See Clause 8, “Blocks” for further details of blocks.

9.3.24 ChangeStructuralFeatureEvent

Description

A ChangeStructuralFeatureEvent models changes in values of structural features.

OMG Systems Modeling Language, v1.6 93

Association Ends

e base ChangeEvent : ChangeEvent [1]

e structuralFeature : StructuralFeature [1]
he event models occurrences of changes to values of this structural feature.

Constraints

e 1 not static
The structural feature shall not be static
not self.structuralFeature.isStatic

e 2 one featuringclassifier

The structural feature shall have exactly one featuringClassifier
self.structuralFeature.featuringClassifier->size()=1

9.3.2.5 DirectedFeature
Description

A DirectedFeature indicates whether the feature is supported by the owning block (provided), or is to be supported by
other blocks for the owning block to use (required), or both (the owning block for features on types of proxy ports is the
type of the block usage the proxy port is standing in for, which might be an internal part). Using non-flow properties
means to read or write them, and using behavioral features means to invoke them. Provided non-flow properties are read
and written on the owning block, while required non-flow properties are read or written on an external block. Provided
behavioral features are invoked with the owning block as target, while required behavioral features are invoked with an
external block as target (required).

Blocks owning or inheriting required behavioral features can have behaviors invoking the behavioral features on
instances of the block. This sends invocations out along connectors from usages of the block in internal structures of
other blocks, provided the behavioral features match on the other end of the connectors.

Invocations of provided behavioral features due to required behavioral features can only occur when the features match.
A single provided behavioral feature shall match each required one according to the following conditions:

e The kind of behavioral feature is the same (operation or reception).
e Names are the same, including parameter names, in the same order.
e Parameter directions are the same, in the same order.
e Provided parameter types for parameters with:
e in direction are the same or more general than the required ones, in order.
e out or return direction are the same or more specialized than the required ones, in order.

e inout direction are the same as the required ones, in order.

Parameters without types are treated as if their type is more general than all other types.

94 OMG Systems Modeling Language, v1.6

e Provided parameter multiplicity has the same condition as type, where wider multiplicities are “more general”
than narrower ones.

e Provided parameter order (of each parameter separately) has the same condition as type, where unordered
parameters are “more general” than ordered ones.

e Provided parameter uniqueness (of each parameter separately) has the same condition as type, where non-unique
parameters are “more general” than unique ones.

e Provided operation preconditions are the same as or more general than required ones.

e Provided operation body conditions and postconditions are the same or more specialized than required ones.

If corresponding parameters in provided and required behavioral features both have defaults, the default value
specification of the required feature is used for in parameters, and the default value specification of the provided
feature is used for out and return parameters.

Reading or writing provided non-flow properties due to required non-flow properties can only occur when the
features match. Matching non-flow properties shall have the same name. For reading non-flow properties, the
types, multiplicities, uniqueness, and ordering shall match in the same way as out parameters for behavioral
features above. For writing non- flow properties, the types, multiplicities, uniqueness, and ordering shall match
in the same way as in parameters for behavioral features above. For both reading and writing non-flow
properties, the types, multiplicities, uniqueness, and ordering shall be the same. If provided and required non-
flow properties both have defaults, the default value specification of the required feature is used for writing and
the default specification of the provided feature is used for reading.

Attributes

featureDirection : FeatureDirectionKind [1]
Specifies whether the feature is supported by the owning block (featureDirection="provided"), or is to be

—n

supported by other blocks for the owning block to use (featureDirection="required"), or both

—n

(featureDirection="providedrequired").
Association Ends

base Feature : Feature [1]
Constraints

1 behavioralfeature or not flowproperty
DirectedFeature shall only be applied to behavioral features, or to properties that do not have FlowProperty
applied, including on subsetted or redefined features.

self.base Feature.oclIsKindOf (UML::BehavioralFeature) or

(self.base Feature.oclIsKindOf (UML::Property) and let property: UML::Property =
self.base Feature.oclAsType (UML::Property) in

FlowProperty.allInstances () .base Property->excludesAll (property.redefinedProperty
->union (property.subsettedProperty)->including (property)))

2 method if provided
A non-provided operation shall not be associated with a behavior as its method.

OMG Systems Modeling Language, v1.6 95

self.base Feature.oclIsKindOf (UML: :0Operation) and
self.featureDirection=FeatureDirectionKind: :required implies
self.base Feature.oclAsType (UML::Operation).method->isEmpty ()

9.3.2.6 FeatureDirectionKind
Description

FeatureDirectionKind is an enumeration type that defines literals used by directed features for specifying whether they
are supported by the owning block, or is to be supported by other blocks for the owning block to use.

Literals

e provided
Indicates that the feature shall be supported by the owning block.

e providedRequired
Indicates that the feature shall be both provided and required.

e required
Indicates that the feature shall be supported by other blocks.

Constraints

e 2 specializations are constraintblocks
Any classifier that specializes a ConstraintBlock shall also have the ConstraintBlock stereotype applied.

UML: :Classifier.allInstances()->forAll(c | c.general->includes (self.base Class)
implies ConstraintBlock.allInstances () .base Class->includes(c))

9.3.2.7 FlowDirectionKind
Description

FlowDirectionKind is an enumeration type that defines literals used for specifying the direction that items can flow to or
from a block. FlowDirectionKind is used by flow properties to indicate the direction that its items can flow to or from its
owner. (See 9.3.2.13 for definition of owning block of proxy ports in this case.)

Literals

e in
Indicates that items of the flow property can flow into the owning block.

e inout
Indicates that items of the flow property can flow into or out of the owning block.

e out
Indicates that items of the flow property can flow out of the owning block.

96 OMG Systems Modeling Language, v1.6

9.3.2.8 FlowProperty
Description

A FlowProperty signifies a single kind of flow element that can flow to/from its owning instance that is specified by the
block defining that flow property. A flow propertys values are either received from or transmitted to another instance. An
"in" flow property value cannot be modified by the owning instance of that flow property, or by parts of that instance. An
"out" flow property can only be modified by the owning instance of that flow property, or by parts of that instance. An
"inout" flow property can be used as an "in" flow property or an "out" flow property, and there is no restriction regarding
the way it can be modified. (The owning block of a proxy port in this case depends on how the port is nested in the
internal structures of blocks, because the block directly owning the port might be used to type ports or parts at different
levels of nesting in multiple blocks, or the same block. The owning block of a proxy port in the internal structure of a
block is the block typing the innermost full port or part under which the port is nested.)

Flow due to flow properties can only occur when flow properties match. Matching flow properties shall have matching
direction and types. Matching direction is defined below. Flow property types match when the target flow property type
has the same, or a generalization of, the source flow property type. (See 9.3.2.11, ItemFlow for looser constraints on flow
property types across connectors with item flows.) If multiple flow properties on either end of a connector match by
direction and type, then the names of the flow properties shall also be the same for flow to occur. If multiple flow
properties on either end match by direction, type, and name, which can happen for unnamed flow properties, then no flow
will occur.

Flow properties enable item flows across connectors between usages typed by blocks having the properties. For Block
and ValueType flow properties, setting an "out" or "inout" FlowProperty value of a block usage on one end of a connector
will result in assigning the same value of an "in" or "inout" FlowProperty of a block usage at the other end of the
connector, provided the flow properties are matched. It is not specified whether send/receive signal events are generated
when values are written to out/in flow properties typed by Signal (implementations might choose to do this, but it is not
required). This paragraph does not apply to internal connectors of proxy ports, see next paragraph.

Items going to or from behavioral ports (UML isBehavior = true) are actually going to or from the owning block. (See
9.3.2.8 for definition of owning block of proxy ports in this case.) Items going to or from non-behavioral ports (UML
isBehavior = false) are actually going to the port itself (for full ports) or to internal parts connected to the port (for proxy
ports). Because of this, flow properties of a proxy port are the same as flow properties on the owning block or internal
parts, so the flow property directions shall be the same on the proxy port and owning block or internal parts for items to
flow. See section 9.3.2.13 for the definition of internal connectors and the semantics of proxy ports.

The flow property semantics above applies to each connector of a block usage, including when the block usage has
multiple connectors.

The binding of flow properties on ports to behavior parameters can be achieved in ways not dictated by SysML. One

approach is to perform name and type matching. Another approach is to explicitly use binding relationships between the
ports properties and behavior parameters or block properties.

Attributes

e direction : FlowDirectionKind [1]
Specifies if the property value is received from an external block (direction="in"), transmitted to an external
Block (direction="out") or both (direction="inout").

OMG Systems Modeling Language, v1.6 97

Association Ends
e base Property : Property [1]
Constraints

e 1 restricted types
A FlowProperty shall be typed by a ValueType, Block, or Signal.

Block.allInstances () .base Class->includes (self.base Property.type) or
ValueType.alllnstances () .base DataType->includes (self.base Property.type) or
self.base Property.oclIsKindOf (UML::Signal)

9.3.29 FullPort

Description

Full ports specify a separate element of the system from the owning block or its internal parts. They might have their own
internal parts and behaviors to support interaction with the owning block, its internal parts, or external blocks. They
cannot be behavioral ports, or linked to internal parts by binding connectors, because these constructs imply identity with
the owning block or internal parts. However, full ports can be linked to non-full ports by binding connectors, because this
does not necessarily imply identity with other parts of the system.

Association Ends
e base Port: Port [1]
Constraints

e 1 not proxy
Full ports shall not also be proxy ports. This applies even if some of the stereotypes are on subsetted or
redefined ports.
ProxyPort.allInstances () ->excludes (self.base Port)

e 2 not bound to fullport

Binding connectors shall not link full ports (either directly or indirectly through other binding connectors) to
other composite properties of the block owning the full port (or that blocks generalizations or specializations),
unless the composite properties are non-full ports.

let fullPorts: Set (UML::Port) = FullPort.alllnstances().base Port->asSet() in
BindingConnector.allInstances () .base Connector->select(c | c.end.role

->includes (self.base Port))->forAll(c | fullPorts->excludesAll(c.end.role->reject
(r | r=self.base Port)))

e 3 not behavioral

Full ports shall not be behavioral (isBehavior=false).
not self.base Port.isBehavior

98 OMG Systems Modeling Language, v1.6

9.3.2.10 InterfaceBlock
Description
Interface blocks cannot have behaviors, including classifier behaviors or methods, or internal parts.
Generalizations
e Block (from Blocks)
Operations

o getConjugated () : InterfaceBlock [0..*]

bodyCondition:
~InterfaceBlock.allInstances ()->any(ib | ib.original = self)

Constraints

. 1 no behavior
Interface blocks shall not own or inherit behaviors, have classifier behaviors, or methods for their behavioral
features.
self.base Class.inheritedMember->select (m | m.oclIsKindOf (UML: :Behavior))
->isEmpty () and self.base Class.operation.method->flatten()->isEmpty ()

e 2 no part
Interface blocks composite properties are either ports, value properties or flow properties.
self.base Class.ownedAttribute->select(ala.isComposite)->forAll (a |
a.oclIsKindOf (UML: :Port) or a.oclIsKindOf (ValueType))

e 3 interfaceblock typed ports

Ports owned by interface blocks shall only be typed by interface blocks.
self.base Class.ownedPort->forAll (p|InterfaceBlock.allInstances () .base Class
->includes (p.type))

e isconjugated not used
Any port typed by an InterfaceBlock shall have its isConjugated property set to false.
Port.allInstances()->forAll(p | p.type = self.base Class implies
p.isConjugated=false)

9.3.2.11 InvocationOnNestedPortAction
Description

This extends the capabilities of UMLs onPort property of InvocationAction to support nested ports. It identifies a nested
port by a multi-level path of ports from the block that executes the action. Like UMLs onPort property, this extends
invocation actions to send invocations out of ports of objects executing the actions, or to ports of those objects or other
objects. Invocations intended to go out of the object executing the action shall be sent to the executing object on a proxy
port. Invocations intended to go directly to a target object are sent to that object on a port of that object.

OMG Systems Modeling Language, v1.6 99

Generalizations

ElementPropertyPath (from Blocks)

Association Ends

base InvocationAction : InvocationAction [1]
(redefines: ElementPropertyPath::base Element)

onNestedPort : Port [1..*]

Gives a series of ports that identifies the port receiving the invocation in the context of the target object of the
invocation. The ordering of ports is from a port of the target object, through a port of each intermediate block
that types the preceding port, ending in a port with a type that owns or inherits the port given by the onPort
property of the invocation action. The onPort port is not included in the onNestedPort list. The same port might
appear more than once because a block can own a port with the same block as a type, or another block that has
the same property.

(redefines: ElementPropertyPath::propertyPath)

Constraints

1 onPort defined
The onPort property of an invocation action shall have a value when this stereotype is applied.

self.base InvocationAction.onPort->notEmpty ()

100

2 onnestedport first owned by target type
The port at the first position in the onNestedPort list shall be owned (directly or via inheritance) by a block that
types the target pin of the invocation action, or one of the blocks generalizations.
let target: UML::InputPin = if
self.base InvocationAction.oclIsKindOf (UML::CallOperationAction) then
self.base:InvocationAction.oclAsType(UML::CallOperationAction).target

else if self.base InvocationAction.oclIsKindOf (UML::SendSignalAction) then
self.base InvocationAction.oclAsType (UML::SendSignalAction) .target

else if self.base InvocationAction.oclIsKindOf (UML::SendObjectAction) then
self.base InvocationAction.oclAsType (UML::SendObjectAction) .target

else

invalid

endif endif endif in

not target.oclIsUndefined() and (

let target type: UML::Class = Block.alllInstances()->any(b | b.base Class =
target.type) .base Class in

not target type.oclIsUndefined() and target type.allFeatures ()

->includes (self.onNestedPort->first()))

3 _path consistency

The port at each successive position of the onNestedPort attribute, following the first position, shall be owned

by the Block that types the port at the immediately preceding position, or a generalization of that Block.
self.onNestedPort->size () >1 implies self.propertyPath->subSequence (2,

self.onNestedPort->size())->forAll (p |
let pp: UML::Property = self.onNestedPort->at (self.onNestedPort->indexOf (p)-1) in
let owners: Set (UML::Classifier) = pp.type.oclAsType (UML::Classifier)
OMG Systems Modeling Language, v1.6

->including (pp.type.oclAsType (UML: :Classifier)) in
owners->includes (p.owner))

e 4 onnestedport last type owns invocation onPort
The type of the port at the last position of the onNestedPort list shall own or inherit the onPort port of the
stereotyped invocation action.

self.onNestedPort->last () .type.oclAsType (UML: :Classifier) .allFeatures ()
->includes (self.base InvocationAction.onPort)

9.3.2.12 ItemFlow
Description

An ItemFlow describes the flow of items across a connector or an association. It may constrain the item exchange
between blocks, block usages, or ports as specified by their flow properties. For example, a pump connected to a tank:
the pump has an "out" flow property of type Liquid and the tank has an "in" FlowProperty of type Liquid. To signify that
only water flows between the pump and the tank, we can specify an ItemFlow of type Water on the connector.

One can label an ItemFlow with the classifiers of the items that may be conveyed. For example: a label Water would
imply that instances of Water might be transmitted over this ItemFlow. In addition, if the item flow identifies an item
property, then one can label the item flow with the item property. For example, a label of "liquid: Water" means Water
items might flow and these items are the values of the property "liquid," i.e., the values of the "liquid" item property are
the instances of Water flowing at any given time. Item properties are owned by the common (possibly indirect) owner of
the source and target of the item flow, rather than by the source and target types, as flow properties are.

Item flows on connectors shall be compatible with flow properties of the blocks usages at each end of the connector, if
any. The direction of the item flow shall be compatible with the direction of flow specified by the flow properties. (See
9.3.2.12 and 9.3.2.13 about flow property direction.) Each classifier of conveyed items on an item flow shall be the same
as, a specialization of, or a generalization of at least one flow property type on each end of the connected block usages
(or their accessible nested block usages recursively, see 9.3.2.8 about encapsulated blocks). The target flow property type
shall be the same as, or a generalization of, a classifier of the item flow or the source flow property type, whichever is
more specialized. (See 9.3.2.13, for tighter constraints on flow property types across connectors without item flows.)

Attributes

e itemProperty : Property [0..1]
An optional property that relates the flowing item to the instances of the connectors enclosing block. This
property is applicable only for item flows realized by connectors. The itemProperty attribute has no values if the
item flow is realized by an Association.

Association Ends
e base InformationFlow : InformationFlow [1]
Constraints

e 1 source and target linked
A Connector or an Association, or an inherited Association shall exist between the source and the target of the
InformationFlow.

OMG Systems Modeling Language, v1.6 101

102

let target: UML::NamedElement = self.base InformationFlow.informationTarget

->any (true) in let targets: Set (UML::NamedElement) = if

target.oclIsKindOf (UML::Classifier) then target.oclAsType (UML::Classifier)
->closure (general)->including (target) else target->asSet () endif in let source:
UML: :NamedElement = self.base InformationFlow.informationSource->any(true) in let
sources: Set (UML::NamedElement) = 1f source.oclIsKindOf (UML::Classifier) then
source.oclAsType (UML: :Classifier)->closure (general)->including (source) else source
->asSet () endif in UML::Association.allInstances ()->exists(a | a.memberEnd
->intersection (targets)->notEmpty () and a.memberEnd->intersection (sources)
->notEmpty()) or UML::Connector.alllInstances()->exists(c | c.end

->intersection (targets)->notEmpty () and c.end->intersection (sources)->notEmpty())

2 type restricted

An ItemFlow itemProperty shall be typed by a ValueType, Block, or Signal.
ValueType.allInstances () .base DataType->includes (self.itemProperty.type) or
Block.allInstances () .base Clags—>includes(self.itemProperty.type) or
UML::Signal.alllnstances(7—>includes(self.itemProperty.type)

3 _itemproperty common_ owner
If itemProperty has a value it shall be a property of the common (possibly indirect) owner of the source and the
target.
self.itemProperty->notEmpty () implies (let target: UML::Element =
self.base InformationFlow.informationTarget->any(true) in let source: UML::Element =
self.base_InformationFlow.informationSource—>any(true) in
target.ociIsKindOf(UML::Property) and source.oclIsKindOf (UML: :Property) and let

owners: Set (UML::Classifier) = target->closure (owner)->select (ol |
0l.0clIsKindOf (UML: :Classifier))->asSet () ->intersection (source->closure (owner) -
>select (02 | 02.0clIsKindOf (UML::Classifier))) .oclAsType (UML::Classifier)->asSet() in
owners.attribute->flatten () ->includes (self.itemProperty))

4 association xor itemproperty

itemProperty shall not have a value if the item flow is realized by an Association.
self.base InformationFlow.realization->exists(r | r.oclIsKindOf (UML::Association))
implies self.itemProperty->isEmpty ()

5 same type
If an [temFlow has an itemProperty, one of the classifiers of conveyed items shall be the same as the type of the
item property.

self.itemProperty->notEmpty () implies self.base InformationFlow.conveyed

->includes (self.itemProperty.type)

6 _same name

If an ItemFlow has an itemProperty, its name shall be the same as the name of the item flow.
self.itemProperty->notEmpty () implies self.itemProperty.name =
self.base InformationFlow.name

OMG Systems Modeling Language, v1.6

9.3.2.13 ProxyPort
Description

Proxy ports identify features of the owning block or its internal parts that are available to external blocks through external
connectors to the ports. They do not specify a separate element of the system from the owning block or internal parts.
Actions on features of a proxy port have the same effect as if they were acting on features of the owning block or internal
parts the port stands in for, and changes to features of the owning block or internal parts that the proxy port makes
available to external blocks are visible to those blocks via connectors to the port. (This applies to provided features; for
required features, see Section 9.3.2.10.) Proxy ports do not specify their own behaviors or internal parts, and shall be
typed by interface blocks. Their nested ports shall also be proxy ports.

A completely specified proxy port shall describe how any interaction through the port is handled or initiated. This can be
achieved in several ways. For instance by making it behavioral, by binding it to a fully specified internal part or by
having all its properties individually bound to internal parts. However, blocks can be defined with non-behavioral proxy
ports that do not have internal connectors, with the expectation that these will be added in specialized blocks. Internal
connectors to ports are the ones inside the ports owner (specifically, they are the ones that do not have a UML
partwithPort on the connector end linked to the port, assuming NestedConnectorEnd is not applied to that end, or if
NestedConnectorEnd is applied to that end, they are the connectors that have only ports in the property path of that end).
The rest of the connectors linked to a port are external.

Proxy ports can be connected to internal parts or ports on internal parts, identifying features on those parts or ports that
are available to external blocks. When a proxy port is connected to a single internal part, the connector shall be a binding
connector, or have the same semantics as a binding connector (the value of the proxy port and the connected internal part
are the same; links of associations typing the connector are between all objects and themselves, and no others). When a
proxy port is connected to multiple internal parts, the connectors have the same semantics as a single binding connector
to an aggregate of those parts, supporting all their features, and treating flows and invocations from outside the aggregate
as if they were to those parts, and flows and invocations it receives from those parts as if they were to the outside. This
aggregate is not a separate element of the system, and only groups the internal parts for purposes of binding to the proxy
port. Internal connectors to proxy ports can be typed by association blocks, including when the connector is binding.

Association Ends
e base Port: Port[1]
Constraints
e 1 not fullport
Proxy ports shall not also be full ports. This applies even if some of the stereotypes are on subsetted or redefined

ports.
FullPort.allInstances () ->excludes (self.base Port)

e 2 interfaceblock
Proxy ports shall only be typed by interface blocks.

InterfaceBlock.allInstances().base_Class—>includes(self.base_Port.type)

e 3 subports are proxyports
Ports owned by the type of a proxy port shall be proxy ports.
ProxyPort.allInstances().base_Port—>includesAll(self.base_Port.class.ownedPort)

OMG Systems Modeling Language, v1.6 103

9.3.2.14 TriggerOnNestedPort
Description

This extends trigger to support nested ports. It identifies a nested port by a multi-level path of ports from the object
receiving the triggering events. It is not applicable to full ports.

Generalizations
e ElementPropertyPath (from Blocks)
Association Ends

e base Trigger : Trigger [1]
(redefines: ElementPropertyPath::base Element)

e onNestedPort : Port [1..*]
Gives a series of ports that identifies a port on which the event is occurring, in the context of a block in which
the trigger is used. The ordering of ports is from a port of the receiving object, through a port of each
intermediate block that types the preceding port, ending in a property with a type that owns or inherits the port
given by the port property of the trigger. The port property is not included in the onNestedPort list. The same
port might appear more than once because a block can own a port with the same block as a type, or another
block that has the same property.
(redefines: ElementPropertyPath::propertyPath)

Constraints

e 1 single proxyport
The port property of the stereotyped trigger shall have exactly one value, and the value cannot be a full port.
self.base Trigger.port->size()=1 and FullPort.alllInstances() .base Port
->excludes (self.base Trigger.port)

e 2 no fullport
The values of the onNestedPort property shall not be full ports.
FullPort.allInstances () .base Port->excludesAll (self.onNestedPort)

e 3 onnestedport first owned by context
The port at the first position in the onNestedPort list shall be owned by a block in which the trigger is used, or

one of the blocks generalizations.
let theContext: UML::Classifier = if self.base Trigger.owner.oclIsKindOf (UML::Action)

then self.base Trigger.owner.oclAsType (UML::Action). 'context'.oclAsType (UML::Class)
else

self.base Trigger.owner.oclAsType (UML::Transition) .containingStateMachine (). 'context
'.0oclAsType (UML: :Class) endif in let owners: Set (UML::Classifier) = theContext
->closure (general)->including (theContext) in owners->includes (self.onNestedPort
->first () .owner)

104 OMG Systems Modeling Language, v1.6

e 4 path consistency

The port at each successive position of the onNestedPort attribute, following the first position, shall be owned
by the Block that types the port at the immediately preceding position, or a generalization of the Block.

self.onNestedPort->size () >1 implies self.onNestedPort->subSequence (2,

self.onNestedPort->size())->forAll (p |

let np: UML::Port = self.onNestedPort->at (self.onNestedPort->indexOf (p)-1) in

let owners: Set (UML::Classifier) = np.type.oclAsType (UML::Classifier)

->including (np.type.oclAsType (UML: :Classifier)) in

owners->includes (p.owner))

e 5 onnestedport last type owns trigger port
The type of the port at the last position of the onNestedPort list must own or inherit the port of the stereotyped
trigger.

self.onNestedPort->last () .type.oclAsType (UML: :Classifier).allFeatures ()
->includes (self.base Trigger.port)

9.3.2.15 ~InterfaceBlock
Description

The ~InterfaceBlock stereotype (shall be pronounced: "conjugated interface block") is a specialization of InterfaceBlock
that has the same features as its original InterfaceBlock except that its DirectedFeatures and FlowProperties are reversed
(conjugated), for example, in flow properties are conjugated as out flow properties and provided features are conjugated
as required features. Conjugation is specified by a constraint giving the features of ~InterfaceBlocks according to those
of their original InterfaceBlocks (see the Constraints subsection below). It is expected that tools conforming to this
specification automatically create features of ~InterfaceBlocks.

Generalizations
e InterfaceBlock (from PortsAndFlows)

Attributes

e original : InterfaceBlock [1]
The InterfaceBlock that this is a conjugation of.

Operations

e areConjugated (in df1 : DirectedFeature, in df2 : DirectedFeature) : Boolean [1]
DirectedFeature overloaded version of the areConjugated query used for specifying the inverted feature
invariant that checks whether one feature definition is the conjugated definition of the other.

bodyCondition:

if (dfl.oclIsUndefined()) then

(not df2.oclIsUndefined() and df2.featureDirection = FeatureDirectionKind::required)
else if (df2.oclIsUndefined()) then

(not dfl.oclIsUndefined() and dfl.featureDirection = FeatureDirectionKind::required)
else

(dfl.featureDirection = FeatureDirectionKind::provided and df2.featureDirection =

FeatureDirectionKind: :required)
or (dfl.featureDirection = FeatureDirectionKind::required and df2.featureDirection =

OMG Systems Modeling Language, v1.6 105

FeatureDirectionKind: :provided)

or (dfl.featureDirection = FeatureDirectionKind::providedRequired and
df2.featureDirection = FeatureDirectionKind: :providedRequired)

endif endif

e areConjugated (in fp1 : FlowProperty, in fp2 : FlowProperty) : Boolean [1]
FlowProperty overloaded version of the areConjugated query used for specifying the inverted_feature invariant
that check whether one feature definition is the conjugated definition of the other

bodyCondition:

(fpl.direction = FlowDirectionKind:: in and fp2.direction = FlowDirectionKind::out)
or (fpl.direction = FlowDirectionKind::out and fp2.direction =
FlowDirectionKind:: in)

or (fpl.direction = FlowDirectionKind::inout and fp2.direction =

FlowDirectionKind: :inout)

e areConjugated (in rl : Reception, in r2 : Reception) : Boolean [1]
Reception overloaded version of the areConjugated query used for specifying the inverted feature invariant that
check whether one feature definition is the conjugated definition of the other.

bodyCondition:

let dfl: DirectedFeature = DirectedFeature.alllnstances()->any(base Feature = rl) in
let df2: DirectedFeature = DirectedFeature.alllInstances ()->any(base Feature = r2) in
rl.concurrency = r2.concurrency

and rl.isAbstract = r2.isAbstract

and rl.ownedParameterSet->forAll (psl | r2.ownedParameterSet->exists (ps2 |
areSameParameterSets (rl, psl, r2, ps2)))

and haveSameSignatures(rl, r2)

and rl.signal = r2.signal

and areConjugated(dfl, df2)

e areConjugated (in ol : Operation, in 02 : Operation) : Boolean [1]
Operation overloaded version of the areConjugated query used for specifying the inverted feature invariant that
check whether one feature definition is the conjugated definition of the other.

bodyCondition:
let dfl: DirectedFeature = DirectedFeature .allInstances()->any(base Feature = ol) in
let df2: DirectedFeature = DirectedFeature .allInstances()->any(base Feature = 02) in

ol.concurrency = o2.concurrency

and ol.isAbstract = o2.isAbstract

and ol.ownedParameterSet->forAll (psl | o2.ownedParameterSet->exists (ps2 |
areSameParameterSets (ol, psl, 02, ps2)))

and areSameConstraintSets (ol.bodyCondition->asSet (), o2.bodyCondition->asSet())
and areSameConstraintSets (ol.precondition, o2.precondition)

and areSameConstraintSets (ol.postcondition, o2.postcondition)

and haveSameSignatures(ol, 02)

and ol.raisedException->forAll (el | o2.raisedException->exists(e2 | e2 = el))
and ol.isQuery = 02.isQuery

and areConjugated(dfl, df2)

e areConjugated (in p1 : Property, in p2 : Property) : Boolean [1]
Property overloaded version of the areConjugated query used for specifying the inverted feature invariant that
checks whether one feature definition is the conjugated definition of the other.

106 OMG Systems Modeling Language, v1.6

bodyCondition:
let fpl: FlowProperty = FlowProperty.allInstances()->any
let fp2: FlowProperty = FlowProperty.allInstances|()->any

ase_ Property = al) in

(b
(base Property = a2) in
()
0)

let dfl: DirectedFeature = DirectedFeature .allInstances()->any(base Feature = al) in
let df2: DirectedFeature = DirectedFeature .allInstances()->any(base Feature = a2) in
al.name = a2.name

and al.type = a2.type

and al.isStatic = a2.isStatic

and al.isOrdered = a2.isOrdered

and al.isUnique = a2.isUnique

and al.lower = a2.lower

and al.upper = a2.upper

and al.isReadOnly = a2.isReadOnly

and al.aggregation = a2.aggregation

and al.isDerived = a2.isDerived

and al.isDerivedUnion = a2.isDerivedUnion

and al.isID = a2.isID

and ((not fpl.oclIsUndefined() and not fp2.oclIsUndefined() and areConjugated(fpl,
fp2))

or

(fpl.oclIsUndefined() and fp2.oclIsUndefined()))

and ((not dfl.oclIsUndefined() and not df2.oclIsUndefined() and areConjugated(dfl,
df2))

or (dfl.oclIsUndefined() and df2.oclIsUndefined()))

e areSameConstraintSets (in cs1 : Constraint, in cs2 : Constraint) : Boolean [1]

The areSameConstraintSets query is used for specifying the inverted feature invariant. It checks whether two
sets of constraints are equivalent.

bodyCondition:

(csl->isEmpty () and cs2->isEmpty())

or (csl->size() = cs2->size()

and csl->forAll(cl | csl->exists(c2 | c2.name = cl.name

and c2.specification.booleanValue ()=true implies cl.specification.booleanValue ()=true

and c2.specification.booleanValue ()=false implies

cl.specification.booleanValue ()=false)))

e areSameParameterSets (in psl : ParameterSet, in ps2 : ParameterSet) : Boolean [1]
The areSameParameterSets query is used for specifying the inverted feature invariant. It checks whether two
sets of parameters are identical.

bodyCondition:
(psl->isEmpty () and ps2->isEmpty())
or (psl->size() = ps2->size()

and areSameConstraintSets (psl.condition, ps2.condition
and psl.parameter->forAll (pl | ps2.parameter->exists (p2 |
bfl.ownedParameter->indexOf (pl) = bf2.ownedParameter->indexOf (p2)))))

e haveSameSignatures (in bfl : BehavioralFeature, in bf2 : BehavioralFeature) : Boolean [1]
The areSameConstraintSignatures query is used for specifying the inverted feature invariant. It checks whether
two behavioral features have the same signature.

bodyCondition:
bfl.name = bf2.name

OMG Systems Modeling Language, v1.6 107

and bfl.ownedParameter->size () = bf2.ownedParameter->size ()
and bfl.ownedParameter->forAll (pl | let p2: UML::Parameter = bf2.ownedParameter
->at (bfl.ownedParameter->indexOf (pl)) in

pl.name = p2.name

and pl.type = p2.type

and pl.direction = p2.direction

and pl.isOrdered = p2.isOrdered

and pl.isUnique = p2.isUnique

and pl.lower = p2.lower

and pl.upper = p2.upper

and pl.effect = p2.effect

and pl.isException = p2.isException

and pl.isStream = p2.isStream)

Constraints

108

enforced name
The name of an ~InterfaceBlock shall be the name of its original InterfaceBlock with a tilde ("~") character
prepended

self.base Class.name = '~'+self.original.base Class.name

inverted features
An ~InterfaceBlock has same features and owned rules than its original InterfaceBlock except that — where
applicable — both its DirectedFeatures and FlowProperties have inverted directions (i.e., are "conjugated").
let allAttributes: Set (UML::Property) = self.base Class.allFeatures ()
->select (oclIsKindOf (UML: : Property)) .oclAsType (UML: : Property) ->asSet () in
let allOperations: Set (UML::Operation) = self.base Class.allFeatures/()
->select (oclIsKindOf (UML: :Operation)) .oclAsType (UML: :Operation)->asSet () in
let allReceptions: Set (UML::Reception) = self.base Class.allFeatures/()
->select (oclIsKindOf (UML: :Reception)) .oclAsType (UML: :Reception)->asSet () in
let inheritedRules: Set (UML::Constraint) =
self.base Class.inherit (self.base Class.inheritedMember

->select (oclIsKindOf (UML: :Constraint))) .oclAsType (UML: :Constraint) ->asSet () in
let allRules: Set (UML::Constraint) = self.base Class.ownedRule->union (inheritedRules)
in

let allOriginalAttributes: Set (UML::Property) =

self.original.base Class.allFeatures()

->select (oclIsKindOf (UML: :Property)) .oclAsType (UML: : Property)->asSet () in

let allOriginalOperations: Set (UML::0Operation) =

self.original.base Class.allFeatures()

->select (oclIsKindOf (UML: :Operation)) .oclAsType (UML: :Operation)->asSet () in
let allOriginalReceptions: Set (UML::Reception) =

self.original.base Class.allFeatures()

->select (0oclIsKindOf (UML: :Reception)) .oclAsType (UML: :Reception) ->asSet () in
let originalInheritedRules: Set (UML::Constraint) =

self.original.base Class.inherit (self.original.base Class.inheritedMember
->select (oclIsKindOf (UML: :Constraint))) .oclAsType (UML: :Constraint) ->asSet () in
let allOrignalRules: Set (UML::Constraint) = self.original.base Class.ownedRule
->union (originalInheritedRules) in

allAttributes->size () = allOriginalAttributes->size()
and allOperations->size() = allOriginalOperations->size ()
and allReceptions->size() = allOriginalReceptions->size()

OMG Systems Modeling Language, v1.6

and (allAttributes->isEmpty or allAttributes->forAll(a | allOriginalAttributes

()
->exists(oa | areConjugated(a, oa))))
and (allOperations->isEmpty() or allOperations->forAll (o | allOriginalOperations
->exists (oo | areConjugated(o, 00))))
and (allReceptions->isEmpty() or allReceptions->forAll(r | allOriginalReceptions
->exists(ro | areConjugated(r, ro))))

and areSameConstraintSets (allRules, allOrignalRules)

9.4 Usage Examples

9.4.1 Ports with Required and Provided Features

Figure 9-6 is a fragment of the ibd:PwrSys diagram used in the HybridSUV Sample Problem in Annex D. (The complete
diagram is in Figure D.19.) The ecu:PowerControlUnit part has three ports with required and provided features, each
connected to a port of another part. Each of the ports in this example is typed by a block specifying provided and required
features available via connectors to the ports. For example, the ICE block specifies the provided operations setMixture
and setThrottle, the provided properties RPM, temperature, and isKnocking, and required property isControlOn, as
shown in Figure D.20. This block types the ctrl port of InternalCombustionEngine while its conjugation (~ICE) types the
ice port of PowerControlUnit. This means the provided features of ICE are provided by the ctrl port of
InternalCombustionEngine, and required by the ice port of PowerControlUnit, while the required features of ICE are
required by the ctrl port of InternalCombustionEngine, and provided by the ice port of PowerControlUnit. Since the
ecu:PowerControlUnit part and ice:InternalCombustionEngine part are connected via these ports, the
ecu:PowerControlUnit part may invoke setThrottle and setMixture on the ice:InternalCombustionEngine part via its ice
port, across the connector to the ctrl port of ice:InternalCombustionEngine. By invoking these operations, the
PowerControlUnit can set the throttle and mixture of the InternalCombustionEngine. The PowerControlUnit can also
read properties of the Internal CombustionEngine across the connector to find out the rpm, temperature, and whether it is
knocking. Inversely, the InternalCombustionEngine can read the isControlOn property of the PowerControlUnit across
the connector to determine if the unit is still operating, and possibly shut down if it is not.

ibd [Block] Pow erSubsystem|[Provided and required featurest

epc : HectricalPowerController

]

ctrl : EPC
c3
ctrl : TRSM trsm : Transmission
epc : ~EPC

ecu : PowerControlUnit Ebtrsm: ~TRSM c2

[

ctrl : ~ICE

—= L]

ctrl : lCEd:‘ ice : InternalCombustionEngine

Figure 9-6: Usage example of ports with provided and required features

OMG Systems Modeling Language, v1.6 109

9.4.2 Ports and Item Flows

Figure D.25 shows the usage of ItemFlow. Here each of the item flows has an item property (fuelSupply:Fuel and
fuelReturn:Fuel) that signify the actual flow of fuel across the fuel lines. We see how Fuel may flow between the
FuelTankAssy and the InternalCombustionEngine. The FuelPump ejects Fuel via pl port of FuelTankAssy, the Fuel
flows across the fuelSupplyLine connector to the fuelFittingPort of InternalCombustionEngine and from there it is
distributed via other ports to internal parts of the engine. Some of the fuel is returned to the FuelTankAssy from the
fuelFitting port across the fuelReturnLine connector. Note that it is possible to connect a single port to multiple
connectors: in this example the direction of the flow via the fuelFitting port on the external connectors is implied by the
direction of the ports on the other side of the fuel lines as well as by the directions of the item flows on the fuel lines. The
direction of the flow on the internal connectors is implied by the direction of the ports of the engine’s internal parts.

9.4.3 Ports with Flow Properties

Figure D.22 shows a way to connect the PowerControlUnit to other parts over a CAN bus. Since connections over buses
are characterized by broadcast asynchronous communications, ports with flow properties are used to connect the parts to
the CAN bus. To specify the flow between the ports, we need to specify flow properties as done in Figure D.21. Here
FS_ICE has three flow properties: an “out” flow property of type signal (ICEData) and two “in” flow properties of type
Real. This allows the InternalCombustionEngine to transmit an ICEData signal via its fp port that will be transmitted
over the CAN bus to the ice port of PowerControlUnit (a port typed by the conjugation ~FS_ICE). This single signal
carries the temperature, rpm, and knockSensor information of the engine. In addition, the PowerControlUnit can set the
mixture and throttle of the InternalCombustionEngine via the mixture and throttlePosition flow properties of FS_ICE.

9.4.4 Proxy and Full Ports

Modelers have the option of applying stereotypes for proxy and full ports to indicate whether ports are specifying
features of their owners and internal parts (proxy), or for themselves separately (full). This is a concern when defining
ports, rather than using existing blocks with ports already defined on them. Using existing blocks with ports only requires
knowing the port types, because they define the features available for linking or communication with those ports via
connectors. The stereotypes of proxy and full ports might be elided in these cases to simplify diagrams.

The ProxyPort and FullPort stereotypes can be applied at any level in a block taxonomy, whether on ports of the most
general blocks, the most specialized, or at intermediate levels of generalization. Ports can be specialized through
redefinition and subsetting if desired, as long they are not proxy and full at the same time, including the stereotypes they
inherit. Figure 9-7 shows an example of a general block for an electrical plug specialized into two other blocks. The
general block can be contained in its own package, for export to users of electrical plugs. The specialized blocks are for
plug designers. This example has two designs, one using proxy ports and the other full. The proxy design adds internal
parts exposed by the ports. The full design redefines the ports with specialized types. The same type is used for the
internal parts of the proxy design and the redefined ports of the full design. The net result for the systems as-built are the
same.

Modelers can apply stereotypes for proxy and full ports at any stage of model development, or not all if the stereotype
constraints are not needed. Figure 9-7 happens to use unstereotyped ports on a general block distributed to users, and
stereotyped ports on its specializations for implementation, but the modelers might have not used stereotypes at all, if
they did not care whether the model met those constraints (such as no behaviors on proxy ports, or no internal binding
connectors to full ports).

110 OMG Systems Modeling Language, v1.6

Unstereotyped ports do not commit to whether they are proxy or full, and do not prevent or dictate future application of
the stereotypes, except for ports that violate constraints of the stereotypes. For example, if the port types on the general
block in Figure 9-7 had behaviors defined, then the proxy specialization would be invalid. If the general ports had
binding connectors to internal parts, then the full specialization would be invalid. If the general ports had both behaviors
and internal binding connectors, then both specializations would be invalid. Unstereotyped ports have the basic
functionality of stereotyped ones, including flow properties and nested ports, so they can be used as long as the modeler
is not concerned with the distinction between proxy and full, and the constraints they impose.

bdd [Plug Taxonomy J
«block»
Plug
isOutdo
p1:P1
p2:P2
p3:P3
T
«block» «block»
Plug Design 1 Plug Design 2 «fully
«Proxy» [] p1:P1S
m = :lp1 Pl {redefines p1}
{redefines p1} «fully
2 : P28
«proxy» p:
m - p2:P2 [:l {redefines p2}
:l {redefines p2}
«fully
«proxy» [] paii Pes
. P3S = :lpa -p3 {redefines p3} {redefines p3}
«block»
P
flow properties
in p : Bectricity
references
sp : Surface
Fay
| |
«interfaceBlock» «interfaceBlock» «interfaceBlock»
P3
in ground ‘
refer S refe S f 23S
sp : Surface{redefines sp} sp : Surface{redefines sp} sp : Surface{redefines sp)
«b::csk» «block» «block»
P2S P38
parts
i parts parts
rEtereEote! material : Steel material : Steel
references
. Iradafinee <l references references
=p;;Surface]radefines:sp) sp : Surface{redefines sp} sp : Surface{redefines sp}

Figure 9-7: Usage example of proxy and full ports

OMG Systems Modeling Language, v1.6 111

9.4.5 Association and Port Decomposition

Figure 9-8 shows an association block Water Delivery between a bank of spigots and a faucet. The «port» keyword
indicates which association ends are ports (associations use properties as ends, which can be ports). Figure 9-9 shows the
internal structure of Water Delivery defining connectors between the spigots in the bank and inlets on the faucet. The
participant properties identify the spigot bank and faucet being connected. The end property on the stereotype refers to
the corresponding association end in Figure 9-8. The type of participant properties is shown for clarity, but is always the
same as the association end type and can be elided. They are shown with dashed rectangles because they are reference
properties. The internal structure connects hot and cold ports of the participants.

bdd [Water Supply and Client }J
«block» «block»
WaterSupply «block» Water Client
Water Delivery
| «
port»
«port»
sbank |1 | faucet 1
«blocks suppliedBy l deliveredTo «block»
Spigot Bank 1 1. Fauoal
«port» | «port» «port» «port»
hot [1 cold 1 hot [1 1 cold
«block» «block»
Spigot from to Faucet Inlet
1 1

Figure 9-8: Water Delivery association block

ibd [Block] Water Delivery [Internal structure of Water Delivery association bIock]J

-
| suppliedByLink : Spigot Bank |

| {end = suppliedBy} from L hot
l from to
|

________ 1

deliveredTolLink : Faucet
{end = deliveredTo} |

Figure 9-9: Internal structure of Water Delivery association block

112 OMG Systems Modeling Language, v1.6

Figure 9-10 shows two views of a block House with a connector of type Water Delivery. The connector in the top view
“decomposes” into the subconnectors in the lower view according to the internal structure of Water Delivery. The

subconnectors relate the nested ports of : WaterSupply to the nested ports of :WaterClient.

ibd [Block] House [House1 JJ

: WaterSupply

w aterDelivery

suppliedBy

deliveredTo

: Water Client

ibd [Block] House [House2 JJ

: WaterSupply
sbank

cold

from

from

: Water Client

Figure 9-10: Two views of Water Delivery connector within House block

The top portion of Figure 9-11 shows specializations of the block WaterClient into Bath, Sink, and Shower. These are

used as part types in the internal structure of the block House 2 shown in the lower portion of the figure. The composite
connector for Water Delivery is reused three times to establish connections between spigots on the water supply and the

inlets of faucets on the bath, sink, and shower.

OMG Systems Modeling Language, v1.6

113

bdd [Package] Water Client[Water Cliem]J

Water Client

AN

Bath

Sink

Shower

ibd [Block] House [House }J

: WaterSupply sbénk

w aterDelivery "
—é st
faucet Eeink
w aterDelivery

faucet
w aterDelivery

: Shower

Figure 9-11: Specializations of Water Client in house example

Figure 9-12 adds a Plumbing association block for the association between Spigot and Faucet Inlet in Figure 9-11. Figure
9-13 shows the internal structure for the Plumbing association block, which includes a pipe and two fittings (the
additional part and connector definitions are omitted for brevity).

bdd [Package] Water Supply and Client[Plumbing association bIockJJ

Spigot

fromPlumbing

Plumbing

toPlumbi

Faucet Inlet
ng

1

1

Figure 9-12: Plumbing association block

114

OMG Systems Modeling Language, v1.6

ibd [Block] Pumbing [Internal structure of Plumbing association bIock]J

«participant» «participant»
fromInLink : Spigot sf : Fitting pp : Pipe ff : Fitting tolnLink : Faucet Inlet
{end = fromPlumbing} {end = toPlumbing}

Figure 9-13: Internal structure of Plumbing association block

Figure 9-14 modifies Figure 9-9 to use Plumbing as a connector type within the Water Delivery association block. The
lower connector shows its connector property explicitly, enabling the pipe it contains to be connected to a mounting
bracket (the additional part and connector definitions are omitted for brevity).

ibd [Block] Water Delivery [Water Delivery association block w ith internal Plumbing conneclor]J

————————— 1: Plumbin =5 B e T B ey e =
| suppliedByLink : Spigot Bank) i H deliveredToLink : Faucet I

| {end = suppliedBy} [hot fromPlurmbing toRumbing hot {end = deliveredTo} |
|

fromPlumbiny toPlumbin
| cold Sy T oo |

|
«connector»
p2 : Plumbing

pp : Pipe 4‘ m : Mounting Bracket

Figure 9-14: Water Delivery association block with internal Plumbing connector

9.4.6 Item Flow Decomposition

Item flows in internal block diagrams specify flows local to a block. For example, in Figure 9-15 the connector to the
output of the water heater has an item flow indicating distilled water is flowing, even though the out flow property of the
water heater indicates it produces water. The water heater is fed from a water distiller in this particular usage, so the
modeler knows the output will always be distilled water, rather than other kinds of water. The radiator on the left requires
distilled water, and its connection to the water heater is compatible because the item flow narrows the items to distilled
water. [tem flows can also be more general than the actual flow, as shown by the connector on the right. The water
distiller produces distilled water, but the item flow is for any kind of fluid. The connection to the water heater is
compatible because it accepts any kind of water, including distilled. The item flow does not require the heater to accept
any kind of fluid, because the source of flow is still producing water, regardless of the generality of the item flow.

Connectors with item flows can be decomposed by association blocks that have additional item flows. The relationship
between an item flow and those in the association block is determined by the modeler. Figures 9.16 and 9.17 are
examples of item flow decomposition that modelers might choose, but they are not the only possible decompositions and
are not required. In Figure 9-16, the item flow classifier (EnginePart) is a supertype of the classifiers of the item flows in
the decomposition. The flow properties are all in the types of the nested ports, while the composing item flow
summarizes the kinds of items flowing by generalization. In Figure 9-17, the item flow classifier (Engine) composes the

OMG Systems Modeling Language, v1.6 115

classifiers of the items flows in the decomposition from Figure 9-17. The port types have an additional flow property that
is not in the nested ports. These are for the flow of the engine, as opposed to its parts. Constraints can be added between
the flow properties for the engine and those for the parts, to indicate the flowing parts are inside the flowing engine, or

are separate, for example as spare parts.

ibd [Block] Context[Internal structure of ContextJJ

: Radiator

DistilledWater

: Water Distiller

bdd [Port Types J

«block»
P1

«block»
P2o

flow propert

BS
in pf1 : DistilledWater

ie

flow properties

out p2fo : Water

«block» «block»
P2i P3
flow properties flow pr ies
in p2fi: Water out p3f : DistiledWater

DistilledWater

Figure 9-15: Usage example of item flows in internal block diagrams

116

OMG Systems Modeling Language, v1.6

«participant» e2lnLink : P2 [1[{end = ae2}
«participant» ellnLink : P1 [1]{end = ae1}

_____ - —
«participant» p1.1 . p2.1

elinLink : P1[1] D H;m - D
p2.

I

| p1.2 e
-

I p1.3 Crankshaft p2.3 d]

| -

«participant»
e2inLink : P2[1]

_____ Cam FEETS R R R)

ibd [Block] Context[Internal structure of ContextlJ
b1 : c1: A1 : b2
o pl:P1 < p2: P2
EnginePart
bdd [Connection Specification 1]J
«block»
EnginePart
«block» «block»
Pl ael A1 ae2 B2 «block» -
ports I ports :
p1.1:P1.1 | p2.1: P21 Piston
p1.2:P1.2 p2.2:P2.2
p1.3:P1.3 | p2.3:P2.3 c «blscl: "
ranksha

|

| «block»

A Cam

«block»
A1
references

Figure 9-16: Usage example of item flow decomposition

OMG Systems Modeling Language, v1.6

117

ibd [Block] Context[Internal structure of Centexth

b1 . b2
—L1p1: Pt & p2: P2
Engine
bdd [Connection Specificatioan
«bE:k» «block» Engine
P2
flow properties flow properties
Bl Endine ’Bf out p2f : Engine
ael ae2 ew
ports | ports
p1.1: P11 p2.1: P2.1
p1.2:P1.2 | p2.2 P2.2 ep
p1.3:P1.3 | p2.3:P2.3 EnginePart
|
|
«block»
A1

Figure 9-17: Usage example of item flow decomposition

118

OMG Systems Modeling Language, v1.6

10 Constraint Blocks

10.1 Overview

Constraint blocks provide a mechanism for integrating engineering analysis such as performance and reliability models
with other SysML models. Constraint blocks can be used to specify a network of constraints that represent mathematical
expressions such as {F=m*a} and {a=dv/dt}, which constrain the physical properties of a system. Such constraints can
also be used to identify critical performance parameters and their relationships to other parameters, which can be tracked
throughout the system life cycle.

A constraint block includes the constraint, such as {F=m*a}, and the parameters of the constraint such as F, m, and a.
Constraint blocks define generic forms of constraints that can be used in multiple contexts. For example, a definition for
Newton’s Laws may be used to specify these constraints in many different contexts. Reusable constraint definitions may
be specified on block definition diagrams and packaged into general-purpose or domain-specific model libraries. Such
constraints can be arbitrarily complex mathematical or logical expressions. The constraints can be nested to enable a
constraint to be defined in terms of more basic constraints such as primitive mathematical operators.

Parametric diagrams include usages of constraint blocks to constrain the properties of another block. The usage of a
constraint binds the parameters of the constraint, such as F, m, and a, to specific properties of a block, such as a mass,
that provide values for the parameters. The constrained properties, such as mass or response time, typically have simple
value types that may also carry units, quantity kinds, or probability distributions. A pathname dot notation can be used to
refer to nested properties within a block hierarchy. This allows a value property (such as an engine displacement) that
may be deeply nested within a containing hierarchy (such as vehicle, power system, engine) to be referenced at the outer
containing level (such as vehicle-level equations). The context for the usages of constraint blocks shall also be specified
in a parametric diagram to maintain the proper namespace for the nested properties.

Time can be modeled as a property that other properties may be dependent on. A time reference can be established by a
local or global clock that produces a continuous or discrete time value property. Other values of time can be derived from
this clock, by introducing delays and/or skew into the value of time. Discrete values of time as well as calendar time can
be derived from this global time property. SysML includes the time model from UML, but other UML specifications
offer more specialized descriptions of time that may also apply to specific needs.

A state of the system can be specified in terms of the values of some of its properties. For example, when water
temperature is below 0 degrees Celsius, it may change from liquid to solid state. In this example, the change in state
results in a different set of constraint equations. This can be accommodated by specifying constraints that are conditioned
on the value of the state property.

Parametric diagrams can be used to support trade-off analysis. A constraint block can define an objective function to
compare alternative solutions. The objective function can constrain measures of effectiveness or merit and may include a
weighting of utility functions associated with various criteria used to evaluate the alternatives. These criteria, for
example, could be associated with system performance, cost, or desired physical characteristics. Properties bound to
parameters of the objective function may have probability distributions associated with them that are used to compute
expected or probabilistic measures of the system. The use of an objective function and measures of effectiveness in
parametric diagrams are included in Annex E: “Non-normative Extensions.”

SysML identifies and names constraint blocks, but does not specify a computer interpretable language for them. The
interpretation of a given constraint block (e.g., a mathematical relation between its parameter values) shall be provided.
An expression may rely on other mathematical description languages both to capture the detailed specification of

OMG Systems Modeling Language, v1.6 119

mathematical or logical relations, and to provide a computational engine for these relations. In addition, the block
constraints are non-causal and do not specify the dependent or independent variables. The specific dependent and
independent variables are often defined by the initial conditions, and left to the computational engine.

A constraint block is defined by a keyword of «constraint» applied to a block definition. Properties of this block define
parameters of the constraint, with the exception of properties that hold internally nested usages of constraint blocks. The
usage of a constraint block is distinguished from other parts by a box having rounded corners rather than the square
corners of an ordinary part. A parametric diagram is a restricted form of internal block diagram that shows only the use
of constraint blocks along with the properties they constrain within a context.

10.2 Diagram Elements

10.2.1 Block Definition Diagram

Table 10-1: Graphical nodes defined in Block Definition diagrams

Element Name Concrete Syntax Example Metamodel Reference
ConstraintBlock SysML::ConstraintBlocks:
ConstraintBlock

aconstraints
ConstraintBlock1

[ar -1

{iL1} x =y}

nestad: ConstraintBlock2
paraneeTs

% Real

y: Real

10.2.2 Parametric Diagram
The diagram elements described in this sub clause are additions to the Internal Block Diagram described in Clause 8. The

Parametric Diagram includes all of the notations of an Internal Block Diagram, subject only to the restrictions described
in 10.3.1.2.

120 OMG Systems Modeling Language, v1.6

Table 10-2: Graphical nodes defined in Parametric diagrams

Element Name Concrete Syntax Example Metamodel Reference
ParametricDiagram par [Block] Block1 [Parametric exampJeJJ SysML::ConstraintBlocks:
ConstraintBlock
C1: Constraint1 SysML::Blocks::Block
Dlength : Real = X :|
Dw‘\dth :Real = y :|
=
ConstraintProperty []x:Real UMLA4SysML::Property typed by
C1: Constraint1 SysML::ConstraintBlocks::ConstraintBlock
[]y: Real
wconstraints
C1: Constraint1
[|x:Real
[|¥: Real

10.3 UML Extensions

10.3.1 Diagram Extensions
10.3.1.1 Block Definition Diagram

10.3.1.1.1 Constraint block definition

The «constraint» keyword on a block definition states that the block is a constraint block. An expression that specifies the
constraint may appear in the constraints compartment of the block definition, using either formal statements in some
language, or informal statements using text. This expression can include a formal reference to a language in braces as
indicated in Table 10-1. Parameters of the constraint may be shown in a compartment with the predefined compartment
label “parameters.”

10.3.1.1.2 Parameters compartment

Constraint blocks support a special form of compartment, with the label “parameters,” which may contain declarations
for some or all of its constraint parameters. Properties of a constraint block should be shown either in the constraints
compartment, for nested constraint properties, or within the parameters compartment.

10.3.1.2 Parametric Diagram

A parametric diagram is defined as a restricted form of internal block diagram. A parametric diagram may contain
constraint properties and their parameters, along with other properties from within the internal block context. All
properties that appear, other than the constraints themselves, shall either be bound directly to a constraint parameter, or
contain a property that is bound to one (through any number of levels of containment).

OMG Systems Modeling Language, v1.6 121

10.3.1.2.1 Round-cornered rectangle notation for constraint property

A constraint property may be shown on a parametric diagram using a rectangle with rounded corners. This graphical
shape distinguishes a constraint property from all other properties and avoids the need to show an explicit «constraint»
keyword. Otherwise, this notation is equivalent to the standard form of an internal property with a «constraint» keyword
shown. Compartments and internal properties may be shown within the shape just as for other types of internal
properties.

10.3.1.2.2 «constraint» keyword notation for constraint property

A constraint property may be shown on a parametric diagram using a standard form of internal property rectangle with
the «constraint» keyword preceding its name. Parameters are shown within a constraint property using the standard
notations for internal properties.

10.3.1.2.3 Small square box notation for an internal property

A value property may optionally be shown by a small square box, with the name and other specifications appearing in a
text string close to the square box. The text string for such a value property may include all the elements that could
ordinarily be used to declare the property in a compartment of a block, including an optional default value. The box may
optionally be shown with one edge flush with the boundary of a containing property. Placement of property boxes is
purely for notational convenience, for example to enable simpler connection from the outside, and has no semantic
significance. If a connector is drawn to a region where an internal property box is shown flush with the boundary of a
containing property, the connector is always assumed to connect to the innermost property.

10.3.2 Stereotypes

Package Constraint Blocks

«stereotype»
SysML::Blocks::Block

T

«stereotype»
ConstraintBlock

Figure 10-1: Stereotypes defined in SysML ConstraintBlocks package

10.3.2.1 ConstraintBlock
Description

A constraint block is a block that packages the statement of a constraint so it may be applied in a reusable way to
constrain properties of other blocks. A constraint block typically defines one or more constraint parameters, which are

122 OMG Systems Modeling Language, v1.6

bound to properties of other blocks in a surrounding context where the constraint is used. Binding connectors, as defined
in Clause 8 are used to bind each parameter of the constraint block to a property in the surrounding context. All
properties of a constraint block are constraint parameters, with the exception of constraint properties that hold internally
nested usages of constraint blocks.

A constraint property is a property of any block that is typed by a constraint block. It holds a localized usage of the
constraint block. Binding connectors may be used to bind the parameters of this constraint block to other properties of the
block that contains the usage.

Generalizations
e Block (from Blocks)
Constraints

e 1 constraintparameters only
A constraint block shall not own any structural or behavioral elements beyond the properties that define its
constraint parameters, constraint properties that hold internal usages of constraint blocks, binding connectors
between its internally nested constraint parameters, constraint expressions that define an interpretation for the
constraint block, and general-purpose model management and crosscutting elements.
-- Cannot be expressed in OCL

e 3 composite
Any property of a block that is typed by a ConstraintBlock shall have composite aggregation.
self.base Class.ownedAttribute->forAll (p| p.isComposite)

10.4 Usage Examples

10.4.1 Definition of Constraint Blocks on a Block Definition Diagram

Constraint blocks can only be defined on a block definition diagram or a package diagram, where they shall have the
«constraint» keyword shown. The strings in braces in the compartment labeled “constraints” are ordinary UML
constraints, using a special compartment to hold the constraint. This is shown in Figure D.34. These particular constraints
are specified only in an informal language, but a more formal language such as OCL or MathML could also be used. The
compartment labeled “parameters” shows the parameters of this constraint, which are bound on the parametric diagram.

10.4.2 Usage of Constraint Blocks on a Parametric Diagram

Figure D.32 shows the use of constraint properties on a parametric diagram. This diagram shows the use of nested
property references to the properties of the parts; parametric diagrams can make use of the nested property name notation
to refer to multiple levels of nested property containment, as shown in this example. A parametric diagram is similar to
an internal block diagram with the exception that the only connectors that may be shown are binding connectors. The
Sample Problem in Annex D provides definitions of the containing EconomyContext block for which this parametric
diagram is shown.

OMG Systems Modeling Language, v1.6 123

This page intentionally left blank.

124 OMG Systems Modeling Language, v1.6

BEHAVIORAL CONSTRUCTS

OMG Systems Modeling Language, v1.6 125

This page intentionally left blank.

126 OMG Systems Modeling Language, v1.6

11 Activities

11.1 Overview

Activity modeling emphasizes the inputs, outputs, sequences, and conditions for coordinating other behaviors. It provides
a flexible link to blocks owning those behaviors. The following is a summary of the SysML extensions to UML Activity
diagrams. For additional information, see extensions for Enhanced Functional Flow Block Diagrams in E.2, Activity
Diagram Extensions.

11.1.1 Control as Data

SysML extends control in activity diagrams as follows:

In UML Activities, control can only enable actions to start. SysML extends control to support disabling of
actions that are already executing. This is accomplished by providing a model library with a type for control
values that are treated like data (see ControlValueKind in Figure 11-9).

A control value is an input or output of a control operator, which is how control acts as data. A control operator
can represent a complex logical operation that transforms its inputs to produce an output that controls other
actions (see ControlOperator in Figure 11-8).

11.1.2 Continuous Systems

SysML provides extensions that might be very loosely grouped under the term “continuous,” but are generally applicable
to any sort of distributed flow of information and physical items through a system. These are:

Restrictions on the rate at which entities flow along edges in an activity, or in and out of parameters of a
behavior (see Rate in Figure 11-8). This includes both discrete and continuous flows, either of material, energy,
or information. Discrete and continuous flows are unified under rate of flow, as is traditionally done in
mathematical models of continuous change, where the discrete increment of time approaches zero.

Extension of object nodes, including pins, with the option for newly arriving values to replace values that are
already in the object nodes (see Overwrite in Figure 11-8). SysML also extends object nodes with the option to
discard values if they do not immediately flow downstream (see NoBuffer in Figure 11-8). These two extensions
are useful for ensuring that the most recent information is available to actions by indicating when old values
should not be kept in object nodes, and for preventing fast or continuously flowing values from collecting in an
object node, as well as modeling transient values, such as electrical signals.

11.1.3 Probability

SysML introduces probability into activities as follows (see Probability in Figure 11-8):

Extension of edges with probabilities for the likelihood that a value leaving the decision node or object node
will traverse an edge.

Extension of output parameter sets with probabilities for the likelihood that values will be output on a parameter
set.

OMG Systems Modeling Language, v1.6 127

11.1.4 Activities as Blocks

In UML, all behaviors including activities are classes, and their instances are executions. Behaviors can appear on block
definition diagrams, and participate in generalization and associations. SysML clarifies the semantics of composition
association between activities, and between activities and the type of object nodes in the activities, and defines
consistency rules between these diagrams and activity diagrams. See 11.3.1.1, Activity.

11.1.5 Timelines

The simple time model in UML can be used to represent timing and duration constraints on actions in an activity model.
These constraints can be notated as constraint notes in an activity diagram. Although the UML 2 timing diagram was not
included in this version of SysML, it can complement SysML behavior diagrams to notate this information. More
sophisticated SysML modeling techniques can incorporate constraint blocks from Clause 10, “Constraint Blocks” to
specify resource and related constraints on the properties of the inputs, outputs, and other system properties. (Note: refer
to 11.3.1.4, ObjectNode, Variables, and Parameters for constraining properties of object nodes).

11.2 Diagram Elements

11.2.1 Activity Diagram

Table 11-1: Graphical notation of activity diagrams

Notation Name Concrete Syntax Abstract Syntax Reference
Action, CallBehaviorAction, UMLA4SysML::Action
AcceptEventAction, UMLA4SysML::CallBehaviorAction
SendSignalAction Action action name : UMLA4SysML::AcceptEventAction
behavior hame UMLA4SysML::SendSignalAction

ent X
TimeEvent
Signal)

Activity Frame and Heading UMLA4SysML::Activity

act [Activity diagramJJ

128 OMG Systems Modeling Language, v1.6

Notation Name

Concrete Syntax

Abstract Syntax Reference

ActivityFinal

@

UMLA4SysML::ActivityFinalNode

ActivityNode

See ControlNode and ObjectNode

UMLA4SysML::ActivityNode

ActivityParameterNode

act [ActivityParameterNode JJ

E’j

UMLA4SysML::ActivityParameter Node

ControlNode See DecisionNode, FinalNode, ForkNode, UMLA4SysML::ControlNode
InitialNode, JoinNode, and MergeNode
ControlOperator SysML::Activities::ControlOperator
«controlOperator»
CallBehaviorAction
act [ControlOperator J
DecisionNode UMLA4SysML::DecisionNode
[guard]
g
[else]
FinalNode See ActivityFinal and FlowFinal UMLA4SysML::FinalNode
FlowFinal ® UMLA4SysML::FlowFinalNode
InitialNode) UMLA4SysML::InitialNode

OMG Systems Modeling Language, v1.6

129

Notation Name

Concrete Syntax

Abstract Syntax Reference

constraint

JoinNode UML4SysML::JoinNode
{ioinspec=...}
isControl UMLA4SysML::Pin.isControl
{ contral } { contral }
4 Action .
isStream UMLA4SysML::Parameter.isStream
{ straam } { stream }
Action
1 Action |}
act
{ straam }
Local pre- and postconditions UMLA4SysML::Action.local Precondition,
—’localPrecondition
constraint UMLA4SysML::Action.local Postcondition
i
L]
H
—localPostcondition

MergeNode

O

UMLA4SysML::MergeNode

130

OMG Systems Modeling Language, v1.6

Notation Name Concrete Syntax Abstract Syntax Reference
NoBuffer SysML::Activities::NoBuffer
wnaBuffers anaBuffers
Action
ObjectNode UML4SysML::ObjectNode and its
) children,
ohject node name :
type name .. Activities::Obi
[stale, state .] SysML::Activities::ObjectNode
e st state] | Action
Optional SysML::Activities::Optional
«optionals '_ «optionals
Action -
Tact |
].optional»
OverWrite SysML::Activities::Overwrite
woverites - " OvErwTites
Action

OMG Systems Modeling Language, v1.6

131

Notation Name Concrete Syntax Abstract Syntax Reference

ParameterSet SysML::Activities::ParameterSet

Action

iact]

Portability SysML::Activities::Portability

{ probability =
valueSpecification }

Action
{ probability =
valueSpecification }
{ probability
act valueSpecdfication }

{ probability =
walueSpedfication }

132 OMG Systems Modeling Language, v1.6

Notation Name

Concrete Syntax

Abstract Syntax Reference

Rate

sdscrater
Qbjact Moda

Objeet Node
wratemn
rate = constant
rate = distribution

act

{ rate = constant }

{ rate = distrbution }
veontinuous:
wdiscreten

Action -
{ rate = constant }
{ rate = dwstribution }
aconlinuous: ncontinuouss
wdiscrates nifiscratan

SysML::Activities::Rate
SysML::Activities::Continuous,
SysML::Activities::Discrete

Table 11-2: Graphical paths included in activity diagrams

Path Name Concrete Syntax Abstract Syntax Reference
ActivityEdge See ControlFlow and ObjectFlow UMLA4SysML::ActivityEdge
ControlFlow UMLA4SysML::ControlFlow
SysML::Activities::ControlFlow
ObjectFlow Qﬂ@ UMLA4SysML::ObjectFlow

OMG Systems Modeling Language, v1.6

133

Path Name

Concrete Syntax

Abstract Syntax Reference

Probability SysML::Activities::Probability
{ probability = valueSpecification }
{ prnbabil'rty-= value Specification }
{ probability = valueSpecification }
Action
{ probability ;'JEJUESPECIFICEI"DI'I 1
{ probability =va lueSpecification }
Object Mode
{ probability = valueSpecification }
Rate . SysML::Activities::Rate,
{ rate = constant } SysML::Activities::Continuous,
{ rate = distribution } SysML::Activities::Discrete
wcontinuouss
wdiscretes
134 OMG Systems Modeling Language, v1.6

Table 11-3: Other graphical elements included in activity diagrams

Element Name Concrete Syntax Abstract Syntax Reference

UMLA4SysML::Activity,
UMLA4SysML::Association,
SysML::Blocks::AdjunctProperty

In Block Definition Diagrams, | [bdd [80D, Activity, Assoc, Adjunct 1J
Activity, Association,

Ad.]uIlCtP roperty «activity» «activity »
activity name activity name
«adjunct» diunct
call action name «adjuncty
variable name
act(ﬁftnv:ya; e «block»
id block name
«activity» «activity »
activity name activity name
«adjunct» «adjunct»
parameter name object node name
«block» «block»
block name block name

UMLA4SysML::ActivityPartition

ActivityPartition "
E
o)
-
£
2
=
t
=
a
(Partition Name}
Aclion
InterruptibleActivity Region - — - - — - = -~ UMLA4SysML::InterruptibleActivity
: region name | Region
| |
| |
- _ _—~>_ _ _ _ _ |

UMLA4SysML::StructuredActivity
_ = — Node
[«structured»

l Node Name

StructuredActivityNode

7

OMG Systems Modeling Language, v1.6 135

11.3 UML Extensions

11.3.1 Diagram Extensions

The following specify diagram extensions to the notations defined in Clause 17, “Profiles & Model Libraries.”

11.3.1.1 Activity

11.3.1.1.1 Notation

In UML, all behaviors are classes, including activities, and their instances are executions of the activity. This follows the
general practice that classes define the constraints under which the instances must operate. Creating an instance of an
activity causes the activity to start executing, and vice versa. Destroying an instance of an activity terminates the
corresponding execution, and vice versa. Terminating an execution also terminates the execution of any other activities
that it invoked synchronously, that is, expecting a reply.

Activities as blocks can have associations between each other, including composition associations. Composition means
that destroying an instance at the whole end destroys instances at the part end. When composition is used with activity
blocks, the termination of execution of an activity on the whole end will terminate executions of activities on the part end
of the links.

Combining the two aspects above, when an activity invokes other activities, they can be associated by a composition
association, with the invoking activity on the whole end, and the invoked activity on the part end. If an execution of an
activity on the whole end is terminated, then the executions of the activities on the part end are also terminated. The
upper multiplicity on the part end restricts the number of concurrent synchronous executions of the behavior that can be
invoked by the containing activity. See Constraints below.

Activities in block definition diagrams appear as regular blocks, except the «activity» keyword may be used to indicate
the Block stereotype is applied to an activity, as shown in Figure 11-1. See example in 11.4, Usage Examples. This
provides a means for representing activity decomposition in a way that is similar to classical functional decomposition
hierarchies. Properties with AdjunctProperty applied, where the principal of the AdjunctProperties are call actions,
including call behavior actions, can be used as the part end of the associations. See 8.3.2.2 for constraints when
AdjunctProperty is used with call actions. Activities in block definition diagrams can also appear with the same notation
as CallBehaviorAction, except the rake notation can be omitted, if desired. Also see use of activities in block definition
diagrams that include ObjectNodes.

bdd [Block definition diagram w ith activities as blocks JJ

«activity»
activity name

«activity»
activity name

djunct: " «adjunct»
sachncts «adjunct» «adjunct» call action name
call action name call action call action
— name — name «activity»
«activity» «activity» e ty
i o activity name
activity name activity name

Figure 11-1: Block definition diagram with activities as blocks

136 OMG Systems Modeling Language, v1.6

Activities as blocks can have properties of any kind, including value properties. Activity block properties have all the
capabilities of other properties, including that value properties can be bound to parameters in constraint blocks by
binding connectors.

11.3.1.2 CaliBehaviorAction

Stereotypes applied to behaviors may appear on the notation for CallBehaviorAction when invoking those behaviors, as
shown in Figure 11-2.

«stereotype name»
behavior name

rh

Figure 11-2: CallBehaviorAction notation.with behavior stereotype

CallBehaviorActions in activity diagrams may optionally show the action name with the name of the invoked behavior
using the colon notation shown in Figure 11-3.

action name : behavior name

rh

Figure 11-3: CallBehaviorAction notation.with action name ControlFlow

11.3.1.3 ControlFlow

11.3.1.3.1 Presentation Option

Control flow may be notated with a dashed line and stick arrowhead, as shown in Figure 11-4.

[Action } L { Action]

Figure 11-4: Control flow notation

11.3.1.4 ObjectNode, Variables, and Parameters

11.3.1.4.1 Notation

See 11.3.1.1, Activity with regard to activities appearing in block definition diagrams. Associations can be used between
activities and classifiers (blocks or value types) that are the type of object nodes, variables, or parameters in the activity,

OMG Systems Modeling Language, v1.6 137

as shown in Figure 11-5. This supports linking the execution of the activity with items that are flowing through the
activity or assigned to variables or parameters, and happen to be contained by an object node or assigned to a variable or
parameter at the time the link exists. Properties with AdjunctProperty applied, where the principal of the AdjunctProperty
is an object node, variable, or parameter, can be used as the end of the associations toward the object node, variable, or
parameter type. Like any association end or property these can be the subject of parametric constraints, design values,
units, and quantity kinds. The associations may be composition if the intention is to delete instances of the classifier
flowing the activity when the activity is terminated. See example in 11.4, Usage Examples.

bdd [Block definition diagram with activities as blocks associated w ith types of object nodes, variables, and parameters JJ
«activity» «activity»
activity name activity name
«adjunct» «adjunct» «adjunct»
object node object node «adjunct» parameter
name name variable name name
«block» «block» «block»
block name block name block name

Figure 11-5: Block definition diagram with activities as blocks associated with types of object nodes, variables,
and parameter

Object nodes in activity diagrams can optionally show the node name with the name of the type of the object node as
shown in Figure 11-6.

object node name : type name

Figure 11-6: ObjectNode notation in activity diagrams

Stereotypes applying to parameters can appear on object nodes in activity diagrams, as shown in Figure 11-7, when the
object node notation is used as a shorthand for pins. The stereotype applies to all parameters corresponding to the pins
notated by the object node. Stereotype applying to object nodes can also appear in object nodes, and applies to all the
pins notated by the object node.

«stereotype name»

object node
name

Figure 11-7: ObjectNode notation in activity diagrams

138 OMG Systems Modeling Language, v1.6

11.3.2 Stereotypes

The following abstract syntax defines the stereotypes in this clause and which metaclasses they extend. The descriptions,
attributes, and constraints for each stereotype are specified below.

Package Activities

«metaclass» smetaciassy «metaclass»
UML4SysML:: UMLASysML:: UML4SysML::
Parameter ActivityEdge ParameterSet
wstareotyper aslereotypen «stereotypes
Optional Rate Probability
rate ;InstanceSpecification probability-ValueS pecification
ustereotypes asterectypes
Continuous Discrete
ametaclass» «metaclasss «metaclasse
UML4SvsML:: UML4SysML:: UML4SysML::
Behavior Operation ObjectNode
ustereotype» usterectypes ustereotypes
ControlOperator MoBuffer Overwrite

Figure 11-8: Abstract Syntax for SysML Activity Extensions

11.3.2.1 Continuous
Description

Continuous rate is a special case of rate of flow (see Rate) where the increment of time between items approaches zero. It
is intended to represent continuous flows that may correspond to water flowing through a pipe, a time continuous signal,
or continuous energy flow. It is independent from UML streaming, see clause 11.3.2.8. A streaming parameter may or
may not apply to continuous flow, and a continuous flow may or may not apply to streaming parameters.

UML places no restriction on the rate at which tokens flow. In particular, the time between tokens can approach as close
to zero as needed, for example to simulate continuous flow. There is also no restriction in UML on the kind of values that
flow through an activity. In particular, the value may represent as small a number as needed, for example to simulate
continuous material or energy flow. Finally, the exact timing of token flow is not completely prescribed in UML. In
particular, token flow on different edges may be coordinated to occur in a clocked fashion, as in time march algorithms
for numerical solvers of ordinary differential equations, such as Runge-Kutta.

OMG Systems Modeling Language, v1.6 139

Generalizations

e Rate (from Activities)

11.3.2.2 ControlOperator
Description

A control operator is a behavior that is intended to represent an arbitrarily complex logical operator that can be used to
enable and disable other actions. When the «controlOperator» stereotype is applied to behaviors, the behavior takes
control values as inputs or provides them as outputs, that is, it treats control as data (see 11.3.3.1.1). When the
«controlOperator» stereotype is not applied, the behavior may not have a parameter typed by ControlValue. The
«controlOperator» stereotype also applies to operations with the same semantics.

The control value inputs do not enable or disable the control operator execution based on their value, they only enable
based on their presence as data. Pins for control parameters are regular pins, not UML control pins. This is so the control
value can be passed into or out of the action and the invoked behavior, rather than control the starting of the action, or
indicating the ending of it.

Association Ends

e base Behavior : Behavior [0..1]

e base Operation : Operation [0..1]
Constraints

e 1 one parameter controlvalue
When the «controlOperator» stereotype is applied, the behavior or operation shall have at least one parameter
typed by ControlValue. If the stereotype is not applied, the behavior or operation may not have any parameter
typed by ControlValue.
UML: :Behavior.allInstances () ->forAll (b | not
(ControlOperator.allInstances () .base Behavior->includes(b) xor b.ownedParameter
->exists(p | p.type=SysML::Libraries::ControlValues::ControlValue))) and
UML: :Operation.allInstances () ->forAll (o | not
(ControlOperator.alllnstances () .base Operation->includes (o) xor o.ownedParameter
->exists(p | p.type=SysML::Libraries::ControlValues::ControlValue)))

e 2 controloperator operation method
A behavior shall have the «controlOperator» stereotype applied if it is a method of an operation that has the
«controlOperator» stereotype applied.
(self.base Operation->notEmpty () and self.base Operation.method->notEmpty()) implies
self.base_6peration.method—>forAll(b | Control6perator.allInstances().base_Behavior
->includes (b))

140 OMG Systems Modeling Language, v1.6

11.3.2.3 Discrete
Description

Discrete rate is a special case of rate of flow (see clause 11.3.2.8) where the increment of time between items is a non-
zero. Examples include the production of assemblies in a factory and signals set at periodic time intervals.

Generalizations
e Rate (from Activities)
Constraints

e 1 not continuous
The «discrete» and «continuous» stereotypes shall not be applied to the same element at the same time.
(self.base ActivityEdge->notEmpty () implies
Continuous.allInstances () .base ActivityEdge->excludes (self.base ActivityEdge)) and
(self.base Parameter->notEmpty () implies Continuous.alllnstances().base_Parameter
->excludes (self.base Parameter))

11.3.2.4 NoBuffer
Description

When the «nobuffer» stereotype is applied to object nodes, tokens arriving at the node are discarded if they are refused
by outgoing edges, or refused by actions for object nodes that are input pins. This is typically used with fast or
continuously flowing data values, to prevent buffer overrun, or to model transient values, such as electrical signals. For
object nodes that are the target of continuous flows, «nobuffer» and «overwrite» have the same effect. The stereotype
does not override UML token offering semantics; it just indicates what happens to the token when it is accepted. When
the stereotype is not applied, the semantics are as in UML, specifically, tokens arriving at an object node that are refused
by outgoing edges, or action for input pins, are held until they can leave the object node.

Association Ends
e base ObjectNode : ObjectNode [1]
Constraints

e 1 not overwrite
The «nobuffer» and «overwrite» stereotypes cannot be applied to the same element at the same time.
Overwrite.alllInstances () .base ObjectNode->excludes (self.base ObjectNode)

OMG Systems Modeling Language, v1.6 141

11.3.2.5 Overwrite
Description

When the «overwrite» stereotype is applied to object nodes, a token arriving at a full object node removes one that is
already there before being added (a full object node has as many tokens as allowed by its upper bound). This is typically
used on an input pin with an upper bound of 1 to ensure that stale data is overridden at an input pin. For upper bounds
greater than one, the token removed is the one that has been in the object node the longest. For FIFO ordering, this is the
token that is next to be selected, for LIFO it is the token that would be last to be selected. Tokens arriving at a full object
node with the Overwrite stereotype applied take up their positions in the ordering as normal, if any. The arriving tokens
do not take the positions of the removed tokens. A null token removes all the tokens already there. The number of tokens
replaced is equal to the weight of the incoming edge, which defaults to 1. For object nodes that are the target of
continuous flows, «overwrite» and «nobuffer» have the same effect. The stereotype does not override UML token
offering semantics, just indicates what happens to the token when it is accepted. When the stereotype is not applied, the
semantics is as in UML, specifically, tokens arriving at object nodes do not replace ones that are already there.

Association Ends
e base ObjectNode : ObjectNode [1]
Constraints

e 1 not nobuffer

The «overwrite» and «nobuffer» stereotypes cannot be applied to the same element at the same time.
NoBuffer.allInstances () .base ObjectNode->excludes (self.base ObjectNode)

11.3.2.6 Optional
Description

When the «optional» stereotype is applied to parameters, the lower multiplicity shall be equal to zero. This means the
parameter is not required to have a value for the activity or any behavior to begin or end execution. Otherwise, the lower
multiplicity shall be greater than zero, which is called "required." The absence of this stereotype indicates a constraint,
see below.

Association Ends
e base Parameter : Parameter [1]
Constraints
e 1 lower is O
A parameter with the «optional» stereotypes applied shall have multiplicity.lower equal to zero, otherwise
multiplicity.lower shall be greater than zero

UML: :Parameter.allInstances () ->forAll(p | Optional.allInstances () .base Parameter
->includes (p) xor p.lower > 0)

142 OMG Systems Modeling Language, v1.6

11.3.2.7 Probability
Description

When the «probability» stereotype is applied to edges coming out of decision nodes and object nodes, it provides an
expression for the probability that the edge will be traversed. These shall be between zero and one inclusive, and add up
to one for edges with same source at the time the probabilities are used.

When the «probability» stereotype is applied to output parameter sets, it gives the probability the parameter set will be
given values at runtime. These shall be between zero and one inclusive, and add up to one for output parameter sets of the
same behavior at the time the probabilities are used.

Attributes

e probability : ValueSpecification [1]
Value of the probability

Association Ends

e base ActivityEdge : ActivityEdge [0..1]

e base ParameterSet : ParameterSet [0..1]
Constraints

e 1 source decisionnode or objectnode
The «probability» stereotype shall only be applied to activity edges that have decision nodes or object nodes as
sources, or to output parameter sets.
(self.base ActivityEdge->notEmpty () implies
self.base ActivityEdge.source.oclIsKindOf (UML::DecisionNode)) and
(self.base ParameterSet->notEmpty () implies self.base ParameterSet.parameter
->forAll(p | p.direction=UML::ParameterDirectionKind: :out))

e 2 all outgoing edges
When the «probability» stereotype is applied to an activity edge, then it shall be applied to all edges coming out
of the same source.
self.base ActivityEdge->notEmpty () implies
ProbabiliEy.allInstances().base_ActivityEdge
->includesAll (self.base ActivityEdge.target.incoming)

e 3 all parametersets
When the «probability» stereotype is applied to an output parameter set, it shall be applied to all the parameter
sets of the behavior or operation owning the original parameter set.
self.base ParameterSet->notEmpty () implies
Probabiligy.alllnstances().base ParameterSet
->includesAll (self.base ParametgrSet.namespace.ownedMember—>select(m |
m.oclIsKindOf(UML::ParaﬁeterSet)))

OMG Systems Modeling Language, v1.6 143

e 4 all outputparameter in parametersets
When the «probability» stereotype is applied to an output parameter set, all the output parameters shall be in
some parameter set.
(self.base ActivityEdge->notEmpty () implies
Continuoustalllnstances().base_ActivityEdge—>excludes(self.base_ActivityEdge)) and
(self.base Parameter->notEmpty () implies Continuous.alllnstances () .base Parameter
—>excludes?self.base_Parameter)) B

11.3.2.8 Rate
Description

When the «rate» stereotype is applied to an activity edge, it specifies the expected value of the number of objects and
values that traverse the edge per time interval, that is, the expected value rate at which they leave the source node and
arrive at the target node. It does not refer to the rate at which a value changes over time. When the stereotype is applied to
a parameter, the parameter shall be streaming, and the stereotype gives the number of objects or values that flow in or out
of the parameter per time interval while the behavior or operation is executing. Streaming is a characteristic of UML
behavior parameters that supports the input and output of items while a behavior is executing, rather than only when the
behavior starts and stops. The flow may be continuous or discrete, see the specialized rates in clause 11.3.2.1 and clause
11.3.2.3. The «rate» stereotype has a rate property of type InstanceSpecification. The values of this property shall be
instances of classifiers stereotyped by «valueType» or «distributionDefinition», see Clause 8. In particular, the
denominator for units used in the rate property shall be time units.

Attributes

e rate : InstanceSpecification [1]
Value of the rate

Association Ends

e base ActivityEdge : ActivityEdge [0..1]
e base ObjectNode : ObjectNode [0..1]
e base Parameter : Parameter [0..1]

Constraints

e 1 streaming
When the «rate» stereotype is applied to a parameter, the parameter shall be streaming.
self.base Parameter->notEmpty() implies self.base Parameter.isStream

e 2 edges rates

The rate of a parameter shall be less than or equal to rates on edges that come into or go out from pins and
parameters nodes corresponding to the parameter.

self.base Parameter->notEmpty() implies (

let nodes: Set (UML::0ObjectNode) =

if self.base Parameter.owner.oclIsKindOf (UML::Behavior) then

let pOwner: UML::Behavior = self.base Parameter.owner.oclAsType (UML::Behavior) in

UML: :CallBehaviorAction.allInstances () ->select(a | a.behavior = pOwner)

144 OMG Systems Modeling Language, v1.6

->collect(a | a.argument->at (pOwner.ownedParameter->indexOf (self.base Parameter)))

->union (UML: :StartObjectBehaviorAction.allInstances () ->select(a | a.behavior() =
pOwner)

->collect (a | a.argument—>at(pOwner.ownedParameter—>indexOf(self.base_Parameter))))
->union (UML: :ActivityParameterNode.allInstances () ->select(n | n.parameter =
self.base Parameter))->asSet()

else if self.base Parameter.owner.oclIsKindOf (UML::Operation) then

let pOwner: UML::Operation = self.base Parameter.owner.oclAsType (UML::0Operation) in
UML: :CallOperationAction.allInstances () ->select(a | a.operation = pOwner)
->collect (a | a.argument->at (pOwner.ownedParameter->indexOf (self.base Parameter)))
->asSet ()

else

Set (UML: :ObjectNode) {}

endif endif in

nodes.incoming->flatten () ->union (nodes.outgoing->flatten())

->forAll (e | let eRate: Rate = Rate.alllnstances()->any(r | r.base ActivityEdge=e) in
(not eRate.oclIsUndefined() and self.rate.specification.realValue () <=
eRate.rate.specification.realValue())))

11.3.3 Model Libraries

11.3.3.1 Package ControlValues
The SysML model library for activities is shown in Figure 11-9.

«modelLibrary»
bdd ControlValues [Control values

«ValueType»
ControlValueKind
enumeration literals
disable
enable

Figure 11-9: Control values

11.3.3.1.1 ControlValueKind
Description

The ControlValueKind enumeration is a type for treating control values as data (see 11.3.2.2) and for UML control pins.
It can be used as the type of behavior and operation parameters, object nodes, and attributes, and so on. The possible
runtime values are given as enumeration literals. Modelers can extend the enumeration with additional literals, such as
suspend, resume, with their own semantics.

The disable literal means a termination of an executing behavior that can only be started again from the beginning
(compare to suspend). The enable literal means to start a new execution of a behavior (compare to resume).

OMG Systems Modeling Language, v1.6 145

Literals

e disable
The disable literal means a termination of an executing behavior that can only be started again from the
beginning (compare to suspend).

e cnable
The enable literal means to start a new execution of a behavior (compare to resume).

Constraints

e 1 node is controltype
UML::ObjectNode::isControl Type is true for object nodes with type ControlValue

11.4 Usage Examples

The following examples illustrate modeling continuous systems (see 11.1.2, Continuous Systems). Figure 11-10 shows a
simplified model of driving and braking in a car that has an automatic braking system. Turning the key on has a duration
constraint specifying that this action lasts no more than 0.1 seconds. Turning the key on starts two behaviors, Driving and
Braking. These behaviors execute until the key is turned off, using streaming parameters to communicate with other
behaviors. The Driving behavior outputs a brake pressure continuously to the Braking behavior while both are executing,
as indicated by the «continuous» rate and streaming properties (streaming is a characteristic of UML behavior parameters
that supports the input and output of items while a behavior is executing, rather than only when the behavior starts and
stops). Brake pressure information also flows to a control operator that outputs a control value to enable or disable the
Monitor Traction behavior. No pins are used on Monitor Traction, so once it is enabled, the continuously arriving enable
control values from the control operator have no effect, per UML semantics. When the brake pressure goes to zero,
disable control values are emitted from the control operator. The first one disables the monitor, and the rest have no
effect. While the monitor is enabled, it outputs a modulation frequency for applying the brakes as determined by the ABS
system. The rake notations on the control operator and Monitor Traction indicate they are further defined by activities, as
shown in Figure 11-11 and Figure 11-12. An alternative notation for this activity decomposition is shown in Figure
11-13.

The duration constraint notation associated with the Turn Key To On action is supported by the UML Simple Time
model. The Operate Car activity owns a duration constraint specifying that the “Turn Key To On” action lasts no more
than 0.1 seconds. The concrete UML element used in this example is a DurationConstraint owned by Operate Car that
constrains the Turn Key To On action. The DurationConstraint owns a DurationInterval, which specifies that the action is
constrained to last between 0 seconds and 0.1 seconds (both being Duration expressions).

146 OMG Systems Modeling Language, v1.6

act [Activity] Operate Car [Continuous system example 1 jJ

._ Turn Key to On

|
|
|
|
{0..0.1 sec} |
|
|
|
|

«interruptibleRegion»

BrakePressure
{stream}

«continuous»

BrakePressure
{stream}

BrakePressure
{stream}

«controlOperator»

|
|
|
|
|
|
|
|
-—=-d- Enable on Brake I
| Pressure >0 |
| th |
| I
| «continuous»
|
| Modulation Frequency |
| I
| I::l I
| ControlValue
|
| I
Menitor
I Traction {control} |
I th |
l I
| I
N i e R S R A e R A e -

Figure 11-10: Continuous system example 1

The activity diagram for Monitor Traction is shown in Figure 11-11. When Monitor Traction is enabled, it begins
listening for signals coming in from the wheel and accelerometer, as indicated by the signal receipt symbols on the left,
which begin listening automatically when the activity is enabled. A traction index is calculated every 10 ms, which is the
slower of the two signal rates. The accelerometer signals come in continuously, which means the input to Calculate
Traction does not buffer values. The result of Calculate Traction is filtered by a decision node for a threshold value and
Calculate Modulation Frequency determines the output of the activity.

act [Activity] Monitor Traction [Continuous system example ZJJ
Calculate Traction
Traction Index

{rate = per 10ms}

Calculate
Modulation
Frequency

Modulation Frequency

«continuous»

|
else]
. Input from Angular s
optical sensor on Velocity
wheel

Input from P - -
Accelerometer ration

Figure 11-11: Continuous system example 2

The activity diagram for the control operator Enable on Brake Pressure > 0 is shown in Figure 11-12. The decision node
and guards determine if the brake pressure is greater than zero, and flow is directed to value specification actions that

OMG Systems Modeling Language, v1.6 147

output an enabling or disabling control value from the activity. The edges coming out of the decision node indicate the
probability of each branch being taken.

act [Activity] ControlOperator [Continuous system example 3 JJ

«valueSpecification»
enable
«valueSpecification»
disable

Brake Pressure >0

Contro@

{probability = "90%"}

Figure 11-12: Continuous system example 3

Figure 11-13 shows a block definition diagram with composition associations between the activities and AdjunctProperty
applied to the part ends in Figures 11.10, 11.11, and 11.12, as an alternative way to show the activity decomposition of
Figures 11.10, 11.11, and 11.12. Each instance of Operating Car is an execution of that behavior. It owns the executions
of the behaviors it invokes synchronously, such as Driving. Like all composition, if an instance of Operating Car is
destroyed, terminating the execution, the executions it owns are also terminated.

bdd [Example block definition diagram for activity decompaosition JJ

wactivity »
Operate Car

oc/ oc
0. 1
wadjuncts
braking o
0.1

wadjuncts wadjuncts . .
turnKeyOn wadjuncts wadjunets
whitor Traction enableOnBrakePressure>0
0.1
0.1 0.1
aactivitys aactivity » wactivity» wactivity» wcontrolOperators
Turn Key to On Driving Braking Monitor Traction Enable on Brake Pressure >0
ml mt
1 1
wadjuncts aadjuncts
calculate Traction calculateModulationFrequency
0.1 Q.1
wactivity» wactivity»

Calculate Traction

Calculate Modulation Frequency

Figure 11-13: Example block definition diagram for activity decomposition

Figure 11-14 shows a block definition diagram with composition associations between the activity in Figure 11-10 and
the types the object nodes in that activity, with AdjunctProperty applied to the object node type end. In an instance of
Operating Car, which is one execution of it, instances of Brake Pressure and Modulation Frequency are linked to the
execution instance when they are in the object nodes of the activity.

148

OMG Systems Modeling Language, v1.6

bdd [Example block definition diagram for activity decomposition JJ

«activity»
oc Operate Car

«adjunct» «adjuncty saduncty «adjunct» «adjunct»
l“"”"BESQQ" brgk:ng monitor Traction enableOnBrakePressure>0
o - 0.1

«activity»
Monitor Traction

«controlOperator»
Enable on Brake Pressure >0

«adjunct»
calculateModulationFrequency
0..1

«activity» «activity » «activity»
Turn Key to On Driving Braking
mt
1
«adjunct»
calculateTraction
0.1
«activity»

Calculate Traction

«activity»
Calculate Modulation Frequency

Figure 11-14: Example block definition diagram for object node types

OMG Systems Modeling Language, v1.6

149

This page intentionally left blank.

150 OMG Systems Modeling Language, v1.6

12 Interactions

12.1 Overview

Interactions are used to describe interactions between entities. UML Interactions are supported by four diagram types
including the Sequence diagram, Communications diagram, Interaction Overview diagram, and Timing diagram. The
Sequence diagram is the most common of the Interaction diagrams. SysML includes the Sequence diagram only and
excludes the Interaction Overview diagram and Communication diagram, which were considered to offer significantly
overlapping functionality without adding significant capability for system modeling applications. The Timing diagram is
also excluded due to concerns about its maturity and suitability for systems engineering needs.

The Sequence diagram describes the flow of control between actors and systems (blocks) or between parts of a system.
This diagram represents the sending and receiving of messages between the interacting entities called lifelines, where
time is represented along the vertical axis. The sequence diagrams can represent highly complex interactions with special
constructs to represent various types of control logic, reference interactions on other sequence diagrams, and
decomposition of lifelines into their constituent parts.

12.2 Diagram Elements

12.2.1 Sequence Diagram

Table 12-1: Graphical notation of sequence diagrams

Notation Name Concrete Syntax Abstract Syntax Reference
SequenceDiagram Frame and sd [Interaction] UMLA4SysML::Interaction
Heading

Lifeline UMLA4SysML::Lifeline

b1 : Block1

OMG Systems Modeling Language, v1.6 151

Notation Name

Concrete Syntax

Abstract Syntax Reference

Execution Specification

b1 Eleckl

axacspec

bi:Block1

UML4SysML::ExecutionSpecification

InteractionUse

ref
Interacion3

ref

soc xcea_op_bi 31 wi12)8

UMLA4SysML::InteractionUse

An InteractionUse with just the <interaction-

name>.

An InteractionUse with <attribute - name>,
the value of arguments, the <return-value>,

ete.

CombinedFragment

sd [Interaction1 J

I b1 : Block1 | | b2 : Block2 | | b3 : Block3
T T

T
I
I
I
|
alt 1
1

[if x < 10]

¥
2

)
[

[else] 1

| 3: msg3

U

UML4SysML::CombinedFragment

A combined fragment is defined by an
interaction operator and corresponding
interaction operands.

Interaction Operators include:

seq - Weak Sequencing
alt — Alternatives

opt — Option

break — Break

par — Parallel

strict - Strict Sequencing
loop — Loop

critical - Critical Region
neg — Negative

assert — Assertion
ignore — Ignore
consider — Consider

152

OMG Systems Modeling Language, v1.6

Notation Name

Concrete Syntax

Abstract Syntax Reference

StateInvariant / Continuations

UMLA4SysML::Continuation
UMLA4SysML::StateInvariant

| b2 Block2

|
p== 15
Coregion UMLA4SysML::CombineFragment (under
s[u] B parallel)
m m3
m2
L
CreationEvent UMLA4SysML::CreationEvent
DestructionEvent b1-Block1 UMLA4SysML::DestructionEvent
Creafte

OMG Systems Modeling Language, v1.6

153

Notation Name

Concrete Syntax

Abstract Syntax Reference

DurationConstraint Duration
Observation

:User

code d = duration
L

{d..3*d}

CardOut {0 .. 13 /

OK

UML4SysML::Interactions

TimeConstraint UMLA4SysML::Interactions
TimeObservation
| |
! il
| Cardout {0.‘13}/
Le {t=now}
oK
{t.t+3)
I
I =
I 1
I 1
SequenceDiagram sd_[a_op_bf(int x, inout int w):Verdict }J UML4SysML::Interaction
(advanced)
X I | w I | a_op_b .
: : : Shows usage of arguments and assignment
| tmsgx) ! to return value.
I
I
I |
| T 2: msg2 :
1
1
i L]
i | i
154 OMG Systems Modeling Language, v1.6

Notation Name

Concrete Syntax

Abstract Syntax Reference

InteractionUse
(advanced)

sd [some_op(int x, intout intw)JJ

x
4]
—— - x

L |
T
|
|

xx .xc =a_op_b(31,w:12) o

UMLA4SysML::InteractionUse

Shows usage of arguments and assignment
to attribute value upon return.

a. Table is compliant with UML 2.1 document.

Table 12-2: Graphical paths included in sequence diagram

Path Name Concrete Syntax Abstract Syntax Reference
Message UMLA4SysML::Message
CE= [b280aa]
| " I
| asyncSignal N
I 1
I I
! syncCall(param) !
l l
c------- y
| |
| I
I 1
I I
I I
I I
Lost Message UML4SysML::Message
Found Message
Lost s
: Found
GeneralOrdering UMLA4SysML::GeneralOrdering
________ ._ dr o i owh i ow

OMG Systems Modeling Language, v1.6

155

Table 12-3: Other graphical elements included in sequence diagram

Element Name Concrete Syntax Abstract Syntax Reference

In Block Definition Diagrams, | [bdd [other Graphical Bements }J UMLA4SysML::Interactions,
Interaction, Association, UMLA4SysML::Association,
AdjunctProperty SysML::Blocks::AdjunctProperty

«interaction»
interaction name

«interaction»
interaction name

«adjunct»

R «adjunct»
interaction

parameter

use name

name
«interaction»
. . «block»
interaction name
block name

12.3 UML Extensions

12.3.1 Diagram Extensions
The following specify diagram extensions to the notations defined in Clause 17, “Profiles & Model Libraries.”

12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing

Diagram
Communication diagrams and Interaction Overview diagrams are excluded from SysML. The other behavioral diagram
representations were considered to provide sufficient coverage without introducing these diagram kinds. Timing
diagrams are also excluded due to concerns about their maturity and suitability for systems engineering needs.

12.3.1.2 Interactions and Parameters

12.3.1.2.1 Notation

In UML, all behaviors are classes, including interactions, and their instances are executions of the interaction.
Interactions as blocks and associations between interactions corresponding to interaction uses have an analogous
semantics to activities as blocks and associations between activities corresponding to call actions, see 11.3.1.1.1,
Notation. Similarly, associations between interactions and classifiers (blocks or value types) have an analogous semantics
to associations between activities and blocks or value types, see 11.3.1.4.1, Notation.

Interactions in block definition diagrams appear as regular blocks, except the «interaction» keyword may be used to
indicate the Block stereotype is applied to an interaction, as shown in Figure 12-1 Properties with AdjunctProperty
applied, where the principal of the AdjunctProperty is an interaction use, can be used as the end of the associations
towards the interaction being used. Properties with AdjunctProperty applied, where the principal of the AdjunctProperty
is a parameter of the interaction, can be used as the end of the associations towards the parameter type. See 8.3.2.2,
AdjunctProperty for constraints when AdjunctProperty is used with interaction uses and parameters. Interactions in block
definition diagrams can also appear with the same notation as InteractionUses.

156 OMG Systems Modeling Language, v1.6

bdd [Block definition diagram w ith interactions as blocks associated w ith used interactions and types of parameters JJ

«interaction»
interaction name

«interaction»
interaction name

«adjunct»

«adjunct» «adjunct» ;
interaction interaction clcadjunc.t» parameter
use name use name interaction name
. . : " use name
«interaction» «interaction» «block»
interaction name interaction name block name

Figure 12-1: Block definition diagram with interactions as blocks associated with used interactions and types of
parameters

12.4 Usage Examples

12.4.1 Sequence Diagrams

Figure D.7 illustrates the overall system behavior for operating the vehicle in Sequence diagram format. To manage the
complexity, a hierarchical sequence diagram is used which refers to other interactions that further elaborate the system
behavior (“ref StartVehicleBlackBox”). CombinedFragments are used to illustrate that steering can take place at the same
time as controlling the speed and that controlling speed can be either idling, accelerating/cruising, or braking.

Figure D.9 shows an interaction that includes events and messages communicated between the driver and vehicle during
the starting of the vehicle. The “hybridSUV” lifeline represents another interaction which further elaborates what
happens inside the “hybridSUV” when the vehicle is started.

Figure D.10 shows the sequence of communication that occurs inside the HybridSUV when the vehicle is started
successfully.

OMG Systems Modeling Language, v1.6 157

This page intentionally left blank.

158 OMG Systems Modeling Language, v1.6

13 State Machines

13.1 Overview

The StateMachine package defines a set of concepts that can be used for modeling discrete behavior through finite state
transition systems. The state machine represents behavior as the state history of an object in terms of its transitions and
states. The activities that are invoked during the transition, entry, and exit of the states are specified along with the
associated event and guard conditions. Activities that are invoked while in the state are specified as “do Activities,” and
can be either continuous or discrete. A composite state has nested states that can be sequential or concurrent.

The UML concept of protocol state machines is excluded from SysML to reduce the complexity of the language. The
standard UML state machine concept, called behavior state machines in UML, is thought to be sufficient for expressing

protocols.

13.2 Diagram Elements

13.2.1 State Machine Diagram

Table 13-1: Graphical notation of state machine diagrams

Notation Name

Concrete Syntax

Abstract Syntax Reference

StateMachineDiagram
Frame and Heading

stm [Block] ThisBlock[Ow nedStateMachine]J

UMLA4SysML::StateMachine

Choice pseudo state

id > 10
[d<=10]

UML4SysML::PseudoState

OMG Systems Modeling Language, v1.6

159

Notation Name

Concrete Syntax

Abstract Syntax Reference

Composite state

CompositeState1

State1
State2

UML4SysML::State

Entry point

again

UMLA4SysML::PseudoState

Exit point

aborted

&

UML4SysML::PseudoState

Final state

UMLA4SysML::FinalState

History, Deep Pseudo - UMLA4SysML::PseudoState
state K}_I>

History, Shallow pseudo N UML4SysML::PseudoState
state |\ H/.I

Initial Pseudo state

UML4SysML::PseudoState

Junction Pseudo state

UMLA4SysML::PseudoState

Receive signal action

UML4SysML::Transition

Send signal action

UMLA4SysML::Transition

160

OMG Systems Modeling Language, v1.6

Notation Name Concrete Syntax

Abstract Syntax Reference

Action

MinorReq = Id;

UML4SysML::Transition

Region

UMLA4SysML::Region

Simple state

(State2]

entry / entryActivity
do / doActivity
exit / exitActivity

UML4SysML::State

State list UML4SysML::State
State1, State2
State Machine UML4SysML::StateMachine
ReadAmountSM
aborted
Terminate node > UML4SysML::PseudoState

OMG Systems Modeling Language, v1.6

161

Notation Name Concrete Syntax Abstract Syntax Reference
Submachine state UMLA4SysML::State
ReadAmount :
ReadAmountsM aborted

Composite State with a HiddenComposite UML4SysML::State
hidden decomposition
indicator icon entry / start dial tone

exit! stop dial tone

O

Table 13-2: Graphical paths included in state machine diagrams

Path Name Concrete Syntax Abstract Syntax
Reference
Transition UMLA4SysML::Transition

trigger [guard] / activity

Connection- Reference
PointReference notation

Alternative entry point ‘ UMLA4SysML::ConnectionPoint

{ wiaagain)

'

Read Amount
Read AmountSM

162 OMG Systems Modeling Language, v1.6

Path Name Concrete Syntax Abstract Syntax
Reference

Alternative exit point UMLA4SysML::ConnectionPoint

ConnectionPointReference ReadAmount Reference
notation ReadAmountSmM

{ wviaaborted

Table 13.3: Other graphical elements included in state machine diagram

Element Name Concrete Syntax Abstract Syntax Reference
In Block Definition Diagrams, | [oad [other graphical elements }J UMLA4SysML::StateMachines,
Interaction, Association, UMLA4SysML::Association,
AdjunctProperty eatarachiney eaterachiney SysML::Blocks::AdjunctProperty
state machine name state machine name
«adjunct» «adjunct»
submachine parameter
state name name
«statemachine» «block»
state machine name block name

13.3 UML Extensions

13.3.1 Diagram Extensions
13.3.1.1 State Machines and Parameters

13.3.1.1.1 Notation

In UML, all behaviors are classes, including state machines, and their instances are executions of the state machine. State
machines as blocks and associations between state machines corresponding to submachine states have an analogous
semantics to activities as blocks and associations between activities corresponding to call actions, see 11.3.1.1.1,
Notation. Similarly, associations between state machines and classifiers (blocks or value types) have an analogous
semantics to associations between activities and blocks or value types, see 11.3.1.4.1, Notation.

OMG Systems Modeling Language, v1.6 163

State machines in block definition diagrams appear as regular blocks, except the «stateMachine» keyword may be used to
indicate the Block stereotype is applied to a state machine, as shown in Figure 13-1. Properties with AdjunctProperty
applied, where the principal of the AdjunctProperty is a submachine state, can be used as the end of the associations
towards the sub state machine. Properties with AdjunctProperty applied, where the principal of the AdjunctProperty is a
parameter of the state machine, can be used as the end of the associations towards the parameter type. See 8.3.2.2,
AdjunctProperty for constraints when AdjunctProperty is used with submachine states and parameters. State machines in
block definition diagrams can also appear with the same notation as submachine states.

bdd/'
astatermachine» astatemachiney
state machine state machine
name name
«adjuncty cadjuncts | / cadjuncts \ «adjuncts
submachine / submachine \ i Stibriaehite. parameter
state name/ state name \'-. ! state nams \name
«statemachine» «statemachine » «blocky
state machine state machine block name
name name

Figure 13-1: Block definition diagram with state machines as blocks associated with submachines and types of
parameters

13.4 Usage Examples

13.4.1 State Machine Diagram

The high level states or modes of the HybridSUV including the events that trigger changes of state are illustrated in the
state machine diagram in Figure D.8.

164 OMG Systems Modeling Language, v1.6

14 Use Cases

14.1 Overview

The use case diagram describes the usage of a system (subject) by its actors (environment) to achieve a goal, that is
realized by the subject providing a set of services to selected actors. The use case can also be viewed as functionality
and/or capabilities that are accomplished through the interaction between the subject and its actors. Use case diagrams
include the use case and actors and the associated communications between them. Actors represent classifier roles that
are external to the system that may correspond to users, systems, and or other environmental entities. They may interact
either directly or indirectly with the system. The actors are often specialized to represent a taxonomy of user types or
external systems.

The use case diagram is a method for describing the usages of the system. The association between the actors and the use
case represent the communications that occur between the actors and the subject to accomplish the functionality
associated with the use case. The subject of the use case can be represented via a system boundary. The use cases that are
enclosed in the system boundary represent functionality that is realized by behaviors such as activity diagrams, sequence
diagrams, and state machine diagrams.

99 ¢C:

The use case relationships are “communication,” “include,” “extend,” and “generalization.” Actors are connected to use
cases via communication paths, which are represented by an association relationship. The “include” relationship provides
a mechanism for factoring out common functionality that is shared among multiple use cases, and is required for the
goals of the actor of the base use case to be met. The “extend” relationship provides optional functionality (optional in
the sense of not being required to meet the goals), which extends the base use case at defined extension points under
specified conditions. The “generalization” relationship provides a mechanism to specify variants of the base use case.

99 <

The use cases are often organized into packages with the corresponding dependencies between the use cases in the
packages.

14.2 Diagram Elements

14.2.1 Use Case Diagram

Table 14-1: Graphical nodes included in Use Case diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Use Case UML4SysML::UseCase

UseCaseName

OMG Systems Modeling Language, v1.6 165

Node Name

Concrete Syntax

Abstract Syntax Reference

Use Case with Extension
Points

UseCaseName

extension points

o1, p2

UML4SysML::UseCase

Actor

lJ_-I
wactor:

& ActorName

FAY
ActorName

UML4SysML::Actor

Subject

SubjectName

Association end name on
UMLA4SysML::Classifier

Table 14-2: Graphical paths included in Use Case diagrams

Path Name

Concrete Syntax

Abstract Syntax Reference

Communication path

UML4SysML::Association

Include aincludes UMLA4SysML::include
LRy S
Extend UMLA4SysML::Extend
. aextends
= e
166 OMG Systems Modeling Language, v1.6

Path Name Concrete Syntax Abstract Syntax Reference
Extend with Condition UMLA4SysML::Extend
Condition: {boolean expression} -\.,
extenson paint: pl, p2
e tends
Generalization i UML4SysML::Kernel

14.3 UML Extensions

None.

14.4 Usage Examples

Figure D.5 is a top-level set of use cases for the Hybrid SUV System. Figure D.6 shows the decomposition of the Operate
the Vehicle use case. In this diagram, the frame represents the package that contains the lower level use cases. The
convention of naming the package with the same name as the top level use case has been employed. This practice offers
an implicit tracing mechanism that complements the explicit trace relationships in SysML.

In Figure D.6 the Extend relationship specifies that the behavior of a use case may be extended by the behavior of
another (usually supplementary) use case. The extension takes place at one or more specific extension points defined in
the extended use case. Note, however, that the extended use case is defined independently of the extending use case and
is meaningful independently of the extending use case. On the other hand, the extending use case typically defines
behavior that may not necessarily be meaningful by itself. Instead, the extending use case defines a set of modular
behavior increments that augment an execution of the extended use case under specific conditions. The “Start the
Vehicle” use case is modeled as an extension of “Drive the Vehicle.” This means that there are conditions that may exist
that require the execution of an instance of “Start the Vehicle” before an instance of “Drive the Vehicle” is executed.

The use cases “Accelerate,” “Steer,” and “Brake” are modeled using the include relationship. Include is a
DirectedRelationship between two use cases, implying that the behavior of the included use case is inserted into the
behavior of the including use case. It is also a kind of NamedElement so that it can have a name in the context of its
owning use case. The including use case may only depend on the result (value) of the included use case. This value is
obtained as a result of the execution of the included use case. This means that “Accelerate,” “Steer,” and “Brake” are all
part of the normal process of executing an instance of “Drive the Car.”

In many situations, the use of the Include and Extend relationships is subjective and may be reversed, based on the
approach of an individual modeler.

OMG Systems Modeling Language, v1.6 167

This page intentionally left blank.

168 OMG Systems Modeling Language, v1.6

CROSSCUTTING CONSTRUCTS

OMG Systems Modeling Language, v1.6 169

This page intentionally left blank.

170 OMG Systems Modeling Language, v1.6

15 Allocations

15.1 Overview

Allocation is the term used by systems engineers to denote the organized cross-association (mapping) of elements within
the various structures or hierarchies of a user model. The concept of “allocation” requires flexibility suitable for abstract
system specification, rather than a particular constrained method of system or software design. System modelers often
associate various elements in a user model in abstract, preliminary, and sometimes tentative ways. Allocations can be
used early in the design as a precursor to more detailed rigorous specifications and implementations. The allocation
relationship can provide an effective means for navigating the model by establishing cross relationships, and ensuring the
various parts of the model are properly integrated.

This clause does not try to limit the use of the term “allocation,” but provides a basic capability to support allocation in
the broadest sense. It does include some specific subclasses of allocation for allocating behavior, structure, and flows. A
typical example is the allocation of activities to blocks (e.g., functions to components). This clause specifies an extension
for an allocation relationship and selected subclasses of allocation, along with the notation to represent allocations in a
SysML model.

15.2 Diagram Elements

The diagram elements defined in this clause may be shown on some or all SysML diagram types, in addition to the
diagram elements that are specific for each diagram type.

In the following table, «elementType» is a placeholder for a keyword used to specify the kind of element it prefixes. For
uniformity, the «elementType» displayed for the allocated-to or allocated-from elements should be from the following
list, as applicable: «activity», «action», «objectFlow», «controlFlow», «objectNode», «operation», «block», «property»,
«itemFlow», «connector», «porty, «valuey.

Other «elementType» designations may be used, if none of the above apply. Note that it is important to use fully
qualified names to avoid ambiguity when required. An example of a fully qualified name is the form:
(PackageName::ElementName.PropertyName).

15.2.1 Representing Allocation on Diagrams

Table 15-1: Extension to graphical nodes included in diagrams

Node Name Concrete Syntax Abstract Syntax Reference
Allocation derived properties SysML::Allocation:Allocate
displayed in compartment of a Block Nam &
Block.

aNocafadFrom

welemen{Types ElementNarme

aiccaled T o

aelemeniTy pesElementMame

OMG Systems Modeling Language, v1.6 171

Node Name Concrete Syntax Abstract Syntax Reference

Allocation derived properties SysML::Allocation:Allocate
displayed in Comment. allocatedFrom

selementTypesElementMName

allocatedTo

«elementTypesElementMame

-
;

ElementMame

Allocation derived properties SysML::Allocation:Allocate
displayed in compartment of wbloche
Part on Internal Block BlockName
Diagram.

PartNam e

allpcaten¥ rom

selementTypes BementNames

Allocation derived properties SysML::Allocation:Allocate

displayed in compartment of

Action on Activity Diagram. Activiybamn \I

afccaledTo
welementTyper BementMName

Allocation Activity Partition SysML::Allocation:Allocate

xallocaten ActivityPartition
ElementName

172 OMG Systems Modeling Language, v1.6

Node Name Concrete Syntax Abstract Syntax Reference

Allocation (general))) SysML::Allocation:Allocate

Client —_—— = == Supplier
agllocates

15.3 UML Extensions

15.3.1 Diagram Extensions

15.3.1.1 Tables

Allocation relationships may be depicted in tables. A separate row is provided for each «allocate» dependency. “from” is
the client of the «allocate» dependency, and “to” is the supplier. Both ElementType and ElementName for client and
supplier appear in this table.

15.3.1.2 Allocate Relationship Rendering

The “allocate” relationship is a dashed line with an open arrow head. The arrow points in the direction of the allocation.
In other words, the directed line points “from: the element being allocated “to” the element that is the target of the
allocation.

15.3.1.3 Allocation Compartment Format

When the allocations of a model element are displayed in a compartment, a shorthand notation is used as shown in Table
15-1. This shorthand groups and lists the elements allocated to that element together (in the “allocated from”
compartment), then the elements allocated from that element (in the “allocated to”” compartment), per the result of
Allocate::getAllocatedFrom() and getAllocatedTo() respectively, called with that element as parameter.

15.3.1.4 Allocation Callout Format

When the allocation compartment is not used, a callout notation may be used. An allocation callout notation uses the
same shorthand notation as the allocation compartment. This notation is also shown in Table 15-1. For brevity, the
«elementType» portion of allocated-from or allocated-to elements may be elided from the diagram.

15.3.1.5 AllocatedActivityPartition Label

For brevity, the keyword used on an AllocatedActivityPartition is «allocate», rather than the stereotype name
(«allocateActivityPartition»). For brevity, the «elementType» portion of the allocatedFrom or allocatedTo property may
be elided from the diagram.

OMG Systems Modeling Language, v1.6 173

15.3.2 Stereotypes

Package Allocations

«stereotype» «Metaclass»
DirectedRelationshipPropertyPath UML4SysML::Abstraction

«stereotype»
Allocate

Figure 15-1: Abstract syntax extensions for SysML Allocation

«Metaclass»
UML4SysML::ActivityPartition

T

«stereotype»
Allocate ActivityPartition

Figure 15-2: Abstract syntax expression for AllocatedActivityPartition

15.3.2.1 Allocate
Description

Allocate is a dependency based on UML::Abstraction. It is a mechanism for associating elements of different types, or in
different hierarchies, at an abstract level. Allocate is used for assessing user model consistency and directing future
design activity. It is expected that an «allocatey relationship between model elements is a precursor to a more concrete
relationship between the elements, their properties, operations, attributes, or sub-classes.

Allocate is a stereotype of a UML4SysML:: Abstraction that is permissible between any two NamedElements. It is
depicted as a dependency with the "allocate" keyword attached to it. Allocate is directional in that one NamedElement is
the "from" end (no arrow), and one NamedElement is the "to" end (the end with the arrow). The Allocate stereotype
specializes DirectedRelationshipPropertyPath to enable allocations to identify their sources and targets by a multi-level
path of accessible properties from context blocks for the sources and targets.

The following paragraphs describe types of allocation that are typical in systems engineering.

Behavior allocation relates to the systems engineering concept segregating form from function. This concept requires
independent models of "function" (behavior) and "form" (structure), and a separate, deliberate mapping between
elements in each of these models. It is acknowledged that this concept does not support a standard object-oriented
paradigm, not is this always even desirable. Experience on large scale, complex systems engineering problems have
proven, however, that segregation of form and function is a valuable approach. In addition, behavior allocation may also
include the allocation of Behaviors to BehavioralFeatures of Blocks (e.g., Operations).

174 OMG Systems Modeling Language, v1.6

Flow allocation specifically maps flows in functional system representations to flows in structural system representations.

Flow between activities can either be control or object flow. The figures in the Usage Examples show concrete syntax for
how object flow is mapped to connectors on Activity Diagrams. Allocation of control flow is not specifically addressed in
SysML, but may be represented by relating an ItemFlow to the Control Flow using the UML relationship
InformationalFlow.realizingActivityEdge.

Note that allocation of ObjectFlow to Connector is an Allocation of Usage, and does NOT imply any relation between
any defining Blocks of ObjectFlows and any defining associations of connectors.

The figures in the Usage Examples illustrate an available mechanism for relating the objectNode from an activity
diagram to the ItemFlow on an internal block diagram. ItemFlow is discussed in 9, "Ports and Flows."

Pin to Port allocation is not addressed in this release of SysML.

Structure allocation is associated with the concept of separate "logical" and "physical" representations of a system. It is
often necessary to construct separate depictions of a system and define mappings between them. For example, a complete
system hierarchy may be built and maintained at an abstract level. In turn, it shall then be mapped to another complete
assembly hierarchy at a more concrete level. The set of models supporting complex systems development may include

many of these levels of abstraction. This International Standard will not define "logical" or "physical" in this context,
except to acknowledge the stated need to capture allocation relationships between separate system representations.

Generalizations
e DirectedRelationshipPropertyPath (from Blocks)
Association Ends

e base Abstraction : Abstraction [1]
(redefines: DirectedRelationshipPropertyPath::base DirectedRelationship)

Operations

o getAllocatedFrom (in ref : NamedElement) : NamedElement [0..*]

bodyCondition:
getAllocatedFrom = Allocate.allInstances()->select(to = ref).from

o getAllocatedTo (in ref : NamedElement) : NamedElement [0..*]

bodyCondition:
getAllocatedFrom = Allocate.allInstances()->select (from = ref) .to

Constraints
e 2 binary

A single «allocate» dependency shall have only one client (from) and one supplier (to).
self.base Abstraction.source->size() = 1 and self.base Abstraction.target->size() =1

OMG Systems Modeling Language, v1.6 175

15.3.2.2 AllocateActivityPartition

Description

AllocateActivityPartition is used to depict an «allocate» relationship on an Activity diagram. The
AllocateActivityPartition is a standard UML::ActivityPartition, with modified constraints as stated below.

Association Ends

base ActivityPartition : ActivityPartition [1]

Constraints

1 actions _on client ends

An Action appearing in an "AllocateActivityPartition" shall be the /client (from) end of an "allocate"
dependency. The element that represents the "AllocateActivityPartition" shall be the /supplier (to) end of the
same "allocate" dependency. In the «AllocateActivityPartition» name field, Properties are designated by the use
of a fully qualified name (including colon, e.g., "part name:Block Name"), and Classifiers are designated by a

simple name (no colons, e.g., "Block Name").

self.base ActivityPartition.node->select (n|n.oclIsKindOf (UML::Action)) ->forAll(a |
let allocs: Set (UML::Abstraction) = Allocate.allInstances () .base Abstraction
->select(x |x.client->includes(a))->asSet() in allocs->exists(x | x.supplier

->includes (self.base ActivityPartition.represents)))

2 not uml semantics
The «AllocateActivityPartition» shall maintain the constraints, but not the semantics, of the
UML::ActivityPartition. Classifiers or Properties represented by an «AllocateActivityPartition» do not have any
direct responsibility for invoking behavior depicted within the partition boundaries. To depict this kind of direct
responsibility, the modeler is directed to the UML 2 standard, sub clause 12.3.10, "ActivityPartition," Semantics
topic.

-- Cannot be expressed in OCL

15.4 Usage Examples

The following examples depict allocation relationships as property callout boxes (basic), property compartment of a
Block (basic), and property compartments of Activities and Parts (advanced). Figure 15-3 shows generic allocation for

Blocks.

176

OMG Systems Modeling Language, v1.6

allocatedFrom
«elementType»Element2

allocatedTo
«elementType»Element3
s Block1
£ allocatedFrom
Block1 «elementTyperElement2
allocatedTo
«elementType»Element3

Figure 15-3: Generic Allocation, including /from and /to association ends
15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks

Specific behavior allocation of Actions to Parts are depicted in Figure 15-4.

Note that the AllocateActivityPartition, if used in this manner, is unambiguously associated with behavior allocation. The
allocation to Activity6 comes from a nested part, and uses the attributes of DirectedRelationshipPropertyPath to specify
the path of properties to reach that part. The sourceContext of the allocation is Block4 and the sourcePropertyPath is
(Part5).

T

allocatedFrom
s achivelly s Aty

allocatedFrom
piameniTypesElament? | : r 1
allacatedTo | wblocke i | allocatedTa 1)

allocatedTa
spartePat? Slock]

selementTypesElment | Blockt: .f | «pertaBioci Perts Par
) N
F / — e
Parts s R
!
Blockl / anctivitys | actont
sallucate s
ehilocks s
art2 Blodk 1
Block! Blockd | ; Par
Eaitivitys i Action
Lo Activig | ~ -
Fsl‘!5 & acHont 'I
ralamantTwna sFlamant: — — m“ AT | LU} |
alecalpdTe PartT | #partsBiocka Parts Pan7 |
elemantType sElements il
=ACHyRy Ak vL
Err—] |

Figure 15-4: Behavior Allocation

15.4.2 Allocate Flow

Figure 15-5 shows flow allocation of ObjectFlow to a Connector, or alternatively to an ItemFlow. Allocation of
ControlFlow is not shown as an example, but it is not prohibited in SysML.

OMG Systems Modeling Language, v1.6 177

act ActivityO[Examplet }J

\

allocatedTo

«connectornConnector8

ibd [Block] BlockO [Example1 JJ

«block»
Block5

allocatedFrom

«objectFlow»ObjectFlow3

\
X Part6
\
Connector8
Part7
Figure 15-5: Example of flow allocation from ObjectFlow to Connector
act [Activity] ActivityO[ExarrpleZlJ ibd [Block] Block0 [ExarrpIeZJJ
ObjectFlow 3 Action2 Block5 : Block5
1
allocatedFrom
allocatedTo «objectFlow»ObjectFlow3
«itemFlow»ltemFlow9
«connectornConnector8 \
\ Parté
A\
temFlow 9

Part7

Figure 15-6: Example of flow allocation from ObjectFlow to ItemFlow

178

OMG Systems Modeling Language, v1.6

act [Activity] ActivityO [Exan”ple:%JJ bdd [Block] Block0 [Exarrp%eS]J

Object Node 4 «block» «block»
allocatedTo = Block10 Block5 Block10

«objectNode»Object Node 4
Action1 Action2

allocatedTo

To

«block»Blocké

«block»Block7
«block» «block»
Block6 Block 7
allocatedFrom allocatedFrom
«activity» Activity1 «activity» Activity2

«callBehaviorAction» Action1 flow properties
in : Block10

flow properties

out : Block10

Figure 15-7: Example of flow allocation from ObjectNode to FlowProperty

15.4.2.1 Allocating Structure

Systems engineers have frequent need to allocate structural model elements (e.g., blocks, parts, or connectors) to other
structural elements. For example, if a particular user model includes an abstract logical structure, it may be important to
show how these model elements are allocated to a more concrete physical structure. The need also arises, when adding
detail to a structural model, to allocate a connector (at a more abstract level) to a part (at a more concrete level).

ibd [Block] Block1 [Example of Structural Allocation JJ

«block»
Concrete Example

«block» «allocate»
Abstract Reference Part 5
I
ckirB
«allocate» __ -3
i Part 6
| «allogate» _
h_«all‘clcale»
o _>ckrtC
| Part 7
O

«allocate»

Figure 15-8: Example of Structural Allocation

15.4.2.2 Automotive Example

Example: consider the functions required to portion and deliver power for a hybrid SUV. The activities for providing
power are allocated to blocks within the Hybrid SUV, as shown in Figure D.38.

Figure D.39 shows an internal block diagram showing allocation for the HybridSUV Accelerate example.

OMG Systems Modeling Language, v1.6 179

15.4.3 Tabular Representation

The table shown in Figure D.40 is provided as a specific example of how the «allocate» dependency may be depicted in
tabular form, consistent with the automotive example above.

The allocation table can also be shown using a sparse matrix style as in the following example shown in Figure 15-9.

matrix [activity] ProvidePower [Allocation Tree for Provide Power Activities])
Source Target
PowerControlUnit | Internal ElectricalPower | Electrical | I1:Electric

Combustion Controller Motor Current
Engine Generator

Al:ProportionPower allocate

A2:ProvideGasPower allocate

A3:ControlElectricPower allocate

A4:ProvideElectricPower allocate

driveCurrent allocate

Figure 15-9: Allocation Matrix showing Allocation for Hybrid SUV Accelerate Example

180 OMG Systems Modeling Language, v1.6

16 Requirements

16.1 Overview

A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify a function
that a system must perform or a performance condition a system must achieve. SysML provides modeling constructs to
represent text-based requirements and relate them to other modeling elements. The requirements diagram described in
this clause can depict the requirements in graphical, tabular, or tree structure format. A requirement can also appear on
other diagrams to show its relationship to other modeling elements. The requirements modeling constructs are intended to
provide a bridge between traditional requirements management tools and the other SysML models.

A requirement is defined as a stereotype of UML Class subject to a set of constraints. A standard requirement includes
properties to specify its unique identifier and text requirement. Additional properties such as verification status, can be
specified by the user.

Several requirements relationships are specified that enable the modeler to relate requirements to other requirements as
well as to other model elements. These include relationships for defining a requirements hierarchy, deriving
requirements, satisfying requirements, verifying requirements, and refining requirements.

A composite requirement can contain subrequirements in terms of a requirements hierarchy, specified using the UML
namespace containment mechanism. This relationship enables a complex requirement to be decomposed into its
containing child requirements. A composite requirement may state that the system shall do A and B and C, which can be
decomposed into the child requirements that the system shall do A, the system shall do B, and the system shall do C. An
entire specification can be decomposed into children requirements, which can be further decomposed into their children
to define the requirements hierarchy.

There is a real need for requirement reuse across product families and projects. Typical scenarios are regulatory,
statutory, or contractual requirements that are applicable across products and/or projects and requirements that are reused
across product families (versions/variants). In these cases, one would like to be able to reference a requirement, or
requirement set in multiple contexts with updates to the original requirements propagated to the reused requirement(s).

The use of namespace containment to specify requirements hierarchies precludes reusing requirements in different
contexts since a given model element can only exist in one namespace. Since the concept of requirements reuse is very
important in many applications, SysML introduces the concept of a slave requirement. A slave requirement is a
requirement whose text property is a read-only copy of the text property of a master requirement. The text property of the
slave requirement is constrained to be the same as the text property of the related master requirement. The master/slave
relationship is indicated by the use of the copy relationship.

The “derive requirement” relationship relates a derived requirement to its source requirement. This typically involves
analysis to determine the multiple derived requirements that support a source requirement. The derived requirements
generally correspond to requirements at the next level of the system hierarchy. A simple example may be a vehicle
acceleration requirement that is analyzed to derive requirements for engine power, vehicle weight, and body drag.

The satisfy relationship describes how a design or implementation model satisfies one or more requirements. A system
modeler specifies the system design elements that are intended to satisfy the requirement. In the example above, the
engine design satisfies the engine power requirement.

The verify relationship defines how a test case or other model element verifies a requirement. In SysML, a test case or
other named element can be used as a general mechanism to represent any of the standard verification methods for
inspection, analysis, demonstration, or test. Additional subclasses can be defined by the user if required to represent the

OMG Systems Modeling Language, v1.6 181

different verification methods. A verdict property of a test case can be used to represent the verification result. The
SysML test case is defined consistent with the UML testing profile to facilitate integration between the two profiles.

The refine requirement relationship can be used to describe how a model element or set of elements can be used to
further refine a requirement. For example, a use case or activity diagram may be used to refine a text-based functional
requirement. Alternatively, it may be used to show how a text-based requirement refines a model element. In this case,
some elaborated text could be used to refine a less fine-grained model element.

A generic trace requirement relationship provides a general-purpose relationship between a requirement and any other
model element. The semantics of trace include no real constraints and therefore are quite weak. As a result, it is
recommended that the trace relationship not be used in conjunction with the other requirements relationships described
above.

The rationale construct that is defined in Clause 7, “Model Elements” is quite useful in support of requirements. It
enables the modeler to attach a rationale to any requirements relationship or to the requirement itself. For example, a
rationale can be attached to a satisfy relationship that refers to an analysis report or trade study that provides the
supporting rationale for why the particular design satisfies the requirement. Similarly, this can be used with the other
relationships such as the derive relationship. It also provides an alternative mechanism to capture the verify relationship
by attaching a rationale to a satisfy relationship that references a test case.

Modelers can customize requirements taxonomies by defining additional subclasses of the Requirement stereotype. For
example, a modeler may want to define requirements categories to represent operational, functional, interface,
performance, physical, storage, activation/deactivation, design constraints, and other specialized requirements such as
reliability and maintainability, or to represent a high level stakeholder need. The stereotype enables the modeler to add
constraints that restrict the types of model elements that may be assigned to satisfy the requirement. For example, a
functional requirement may be constrained so that it can only be satisfied by a SysML behavior such as an activity, state
machine, or interaction. Some potential Requirement subclasses are defined in Annex E.3.

Some users may want a more explicit way to model numerical values and equations as expressed in requirements. Annex
E.8 provides examples of non-normative extensions to SysML that meet this need.

16.2 Diagram Elements

16.2.1 Requirement Diagram

Table 16-1: Graphical nodes included in Requirement diagrams

Node Name Concrete Syntax Abstract Syntax Reference
Requirement req [Requirement Diagram }J SysML::Requirements::
Diagram Requirement, SysML::

ModelElements::Package

182 OMG Systems Modeling Language, v1.6

Node Name

Concrete Syntax

Abstract Syntax Reference

Requirement

«requirement»
Requirement Name

Derived
«requirement»Derived Reqt Name

DerivedFrom
«requirement»DerivedFrom Reqt Name

Master

«requirement»Master Reqt Name

RefinedBy
«namedElementyElement Name

SatisfiedBy
«namedElement»Element Name
TracedTo
«requirement»DerivedFrom Reqt Name
«requirement»Master Reqt Name
«namedElement»Element Name

VerifiedBy
«namedElement»Element Name

Id ="62j32"
Text="The system shall do..."

SysML::Requirements::
Requirement

NamedElement

«namedElement»

Element Name

refines
wrequirement» Requirement Name

satisfies
«requirement» Requirement Name

tracedFrom
«requirement» Requirement Name

verifies

wrequirement» Requirement Name

UML4SysML::NamedElement

Table 16-2: Graphical

paths included in Requirement diagrams

Path Type Concrete Syntax Abstract Syntax Reference
Requirement _ UMLA4SysML::Nested
containment ‘"Eq::r‘;:f”t” Classifier
relationship -
arequirament: arequiremants
Child Child2

OMG Systems Modeling Language, v1.6

183

Path Type Concrete Syntax Abstract Syntax Reference
Copy Dependency SysML::Requirements::Copy
arequirements | ACODYE — — — — = wragquirements
Slave Py Master
MasterCallout SysML::Requirements::Copy
Master .
srequirements Master |~~~ srequirement» Slave
DeriveDependency SysML::Requirements::
wrequirement»s | qenoepens, | requirements DeriveReqt
Client et Supplier
DeriveCallout SysML::Requirements::
wpegLiirementn Derived DeriVeReqt
7 wrequirements ReqB
DerivedFrom wracuirement s
wrpcpirement: Fegh RegB
SatisfyDependency SysML::Requirements::Satisfy
MamedElement - -——— asatisfyn - - - == e
Supplier
SatisfyCallout SysML::Requirements::Satisfy
Satisfi
NamedElement [-————-—-——-— {{f&ll:]sl.l ;?a?nen[» Regh
SatisfiedBy arequirement s
MamedElemeant Regh
VerifyDependency . SysML::Requirements::Verify
MNamedElement ——-——- averifys———— == we"'”"e".m"l»
Supplier
184 OMG Systems Modeling Language, v1.6

Path Type Concrete Syntax Abstract Syntax Reference
VerifyCallout SysML::Requirements::Verify
NamedEl i Verifies
AMEdElEmEn | «aequirement» Regh
Verifiedgy wraquirements
NamedElameant Reqg#a
RefineDependency UML4SysML::Refine
___________ wragquiraments
MamedElement arefines Client
RefineCallout UMLA4SysML::Refine
’ Refines
NamedElement |--------1 wraguiraments Regd,
RefinedBy wrequirements
MNamedElament Regh
TraceDependency UMLA4SysML::Trace
wrequirement» | e] wracuiremeants
Client siraces Supplier
TraceCallout UML4SysML::Trace
TracedFrom
e wrequirements Regh
TracedTo “requirements
MamedElement ReqgA

OMG Systems Modeling Language, v1.6

185

16.3 UML Extensions

16.3.1 Diagram Extensions

16.3.1.1 Requirement Diagram

The Requirement Diagram can only display requirements, packages, other classifiers, test cases, and rationale. The
relationships for containment, deriveReqt, satisfy, verify, refine, copy, and trace can be shown on a requirement diagram.
The callout notation can also be used to reflect the relationship of other model elements to a requirement.

16.3.1.2 Requirement Notation

The requirement is represented as shown in Table 16-1. The «requirement» compartment label for the stereotype
properties compartment (e.g., id and text) can be elided.

16.3.1.3 Requirement Property Callout Format

A callout notation can be used to represent derive, satisfy, verify, refine, copy, and trace relationships as indicated in
Table 16-2. For brevity, the «elementType» may be elided.
16.3.1.4 Requirements on Other Diagrams
Requirements can also be represented on other diagrams to show their relationship to other model elements. The
compartment and callout notation described in 16.3.1.2, Requirement Notation and 16.3.1.3, Requirement Property
Callout Format can be used. The callouts represent the requirement that is attached to another model element such as a
design element.
16.3.1.5 Requirements Table
The tabular format is used to represent the requirements, their properties and relationships, and may include:
e Requirements with their properties in columns.
e A column that includes the supplier for any of the dependency relationships (Derive, Verify, Refine, Trace).
e A column that includes the model elements that satisfy the requirement.

e A column that represents the rationale for any of the above relationships, including reference to analysis reports
for trace rationale, trade studies for design rationale, or test procedures for verification rationale.

The relationships between requirements and other objects can also be shown using a sparse matrix style that is similar to
the table used for allocations (15.4.3, Tabular Representation). The table should include the source and target elements
names (and optionally kinds) and the requirement dependency kind.

186 OMG Systems Modeling Language, v1.6

16.3.2 Stereotypes

Package Requirements

«stereotype»
UML4SysML:Trace

«stereotype»
DirectedRelationshipPropertyPath

«Metaclass»
UML4SysML::Operation

UML4SysML::Behavior

«Metaclass»

il

il

«stereotype»
Trace

i

[

UML4SysML::Refine

«stereotype» «stereotype» «stereotype» «stereotype»
Copy DeriveReqt Verify Satisfy
«stereotype» «stereotype»

DirectedRelationshipPropertyPath

«stereotype»
Refine

Figure 16-1: Abstract Syntax for Requirements Stereotypes

16.3.2.1

Description

AbstractRequirement

i 1

«stereotype»
TestCase

«Metaclass»
UML4SysML::NamedHement

«Metaclass»
UML4SysML:Class

«stereotype»
AbstractRequirement
[NamedBement]

attributes
base_NamedHement : NamedHBement [1]
/derived : AbstractRequirement [0..*]
/derivedFrom : AbstractRequirement [0..*]
id : String [1}id}
/master : AbstractRequirement [0..%]
/refinedBy : NamedHement [0..%]
/satisfiedBy : NamedBement [0..*]
text : String [1]
/tracedTo : NamedBlement [0.."]
IverifiedBy : NamedBlement [0..*]

«stereotype»
ki— Requirement
[Class]

An AbstractRequirement establishes the attributes and relationships essential to any potential kind of requirement. Any
intended requirement kind should subclass AbstractRequirement. The only normative stereotype based on

AbstractRequirement is the Requirement stereotype, described in 16.3.2.5. Examples of additional non-normative
stereotypes based on AbstractRequirement are included in E.8.

Attributes

e base NamedElement : NamedElement [1]

e /derived : AbstractRequirement [0..*]
Derived from all requirements that are the client of a «deriveReqt» relationship for which this requirement is a

supplier.
(derived)

OMG Systems Modeling Language, v1.6

187

/derivedFrom : AbstractRequirement [0..*]

Derived from all requirements that are the supplier of a «deriveReqt» relationship for which this requirement is
a client.

(derived)

id : String [1]

The unique id of the requirement.

/master : AbstractRequirement [0..*]

This is a derived property that lists the master requirement for this slave requirement. The master attribute is

derived from the supplier of the Copy dependency that has this requirement as the slave.
(derived)

/refinedBy : NamedElement [0..*]
Derived from all elements that are the client of a «refine» relationship for which this requirement is a supplier.
(derived)

/satisfiedBy : NamedElement [0..*]

Derived from all elements that are the client of a «satisfy» relationship for which this requirement is a supplier.
(derived)

text : String [1]

The textual representation or a reference to the textual representation of the requirement.

/tracedTo : NamedElement [0..*]

Derived from all elements that are the client of a «trace» relationship for which this requirement is a supplier.
(derived)

/verifiedBy : NamedElement [0..*]
Derived from all elements that are the client of a «verify» relationship for which this requirement is a supplier.
(derived)

Operations

188

getDerived () : AbstractRequirement [0..*]

bodyCondition:
DeriveReqgt.allInstances()
->select (base Abstraction.supplier=self) .base Abstraction.client

getDerivedFrom () : AbstractRequirement [0..*]

bodyCondition:
DeriveReqgt.allInstances|()
->select (base Abstraction.client=self) .base Abstraction.supplier

getMaster () : AbstractRequirement [0..*]

bodyCondition:
Copy.allInstances () ->select (base Abstraction.client=self) .base Abstraction.supplier

getRefinedBy () : NamedElement [0..*]

bodyCondition:
Refine.allInstances () ->select (base Abstraction.supplier=self) .base Abstraction.client

OMG Systems Modeling Language, v1.6

e getSatisfiedBy () : NamedElement [0..*]

bodyCondition:
Satisfy.allInstances ()
->select (base Abstraction.supplier=self) .base Abstraction.client

o getTracedTo () : NamedElement [0..*]

bodyCondition:
Trace.alllInstances () ->select (base Abstraction.client=self) .base Abstraction.supplier

e getVerifiedBy () : NamedElement [0..*]

bodyCondition:
Verify.allInstances ()->select (base Abstraction.supplier=self) .base Abstraction.client

16.3.2.2 Copy
Description

A Copy relationship is a dependency between a supplier requirement and a client requirement that specifies that the text
of the client requirement is a read-only copy of the text of the supplier requirement.

A Copy dependency created between two requirements maintains a master/slave relationship between the two elements
for the purpose of requirements re-use in different contexts. When a Copy dependency exists between two requirements,
the requirement text of the client requirement is a read-only copy of the requirement text of the requirement at the
supplier end of the dependency.

Generalizations
e Trace (from Requirements)
Operations

o isCopy (in reql : AbstractRequirement, in req2 : AbstractRequirement) : Boolean [1]

bodyCondition:

let subReqgl: Set (AbstractRequirement) = AbstractRequirement.allInstances ()
->select (r | reql.base NamedElement.ownedElement->includes (r.base NamedElement)) in
let subReg2: Set (AbstractRequirement) = AbstractRequirement.allInstances ()
->select (r | reg2.base NamedElement.ownedElement->includes (r.base NamedElement)) in
regl.text = reg2.text and subRegl->size() = subReg2->size () and

subRegl->forAll (rl | subReg2->exists(r2 | self.isCopy(rl, r2)))
Constraints

e 1 source and taget are requirements
A Copy dependency may only be created between two NamedElements that have a subtype of the
abstractRequirement stereotype applied
AbstractRequirement.allInstances () .base NamedElement
->includesAll (self.base Abstraction.client) and
AbstractRequirement.allfhstances().base_NamedElement
->includesAll (self.base Abstraction.supplier)

OMG Systems Modeling Language, v1.6 189

e 2 same text
The text property of the client requirement is constrained to be a read-only copy of the text property of the
supplier requirement and this applies recursively to all subrequirements
let cltReq: AbstractRequirement = AbstractRequirement.alllInstances|()->any(r |

self.base Abstraction.client->includes (r.base NamedElement)) in let supReq:
AbstractRequirement = AbstractRequirement.alllnstances|()->any(r |

self.base Abstraction.supplier->includes (r.base NamedElement)) in self.isCopy (cltReq,
supReq)

16.3.2.3 DeriveReqt
Description

A DeriveReqt relationship is a dependency between two requirements in which a client requirement can be derived from
the supplier requirement. For example, a system requirement may be derived from a business need, or lower-level
requirements may be derived from a system requirement. As with other dependencies, the arrow direction points from the
derived (client) requirement to the (supplier) requirement from which it is derived.

Generalizations
e Trace (from Requirements)
Constraints
e 1 supplier is requirement
The supplier shall be an element stereotyped by a subtype of AbstractRequirement.

AbstractRequirement.allInstances () .base NamedElement
->includesAll (self.base Abstraction.client)

e 2 client is requirement
The client shall be an element stereotyped by a subtype of AbstractRequirement.
AbstractRequirement.allInstances () .base NamedElement
->includesAll (self.base Abstraction.supplier)

16.3.2.4 Refine

Description

The Refine stereotype specializes UML4SysML Refine and DirectedRelationshipPropertyPath to enable refinements to
identify their sources and targets by a multi-level path of accessible properties from context blocks for the sources and
targets.

Generalizations

o DirectedRelationshipPropertyPath (from Blocks)

190 OMG Systems Modeling Language, v1.6

Association Ends

e base Abstraction : Abstraction [1]
(redefines: DirectedRelationshipPropertyPath::base DirectedRelationship)

Operations

e getRefines (in ref : NamedElement) : AbstractRequirement [0..*]
The query getRefines() gives all the requirements that are suppliers ("to"end of the concrete syntax) of a
«Refine» relationships whose client is the element in parameter. This is a static query.

bodyCondition:
Refine.allInstances () ->select (base Abstraction.client=ref) .base Abstraction.supplier

Constraints

e 2 binary
Abstractions with a Refine stereotype or one of its specializations applied shall have exactly one client and one

supplier.
self.base Abstraction.client->size()=1 and self.base Abstraction.supplier->size()=1

16.3.2.5 Requirement

Description

A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify a function
that a system must perform or a performance condition that a system must satisfy. Requirements are used to establish a
contract between the customer (or other stakeholder) and those responsible for designing and implementing the system.
A requirement is a stereotype of both Class and Abstract Requirement. Compound requirements can be created by using
the nesting capability of the class definition mechanism. The default interpretation of a compound requirement, unless
stated differently by the compound requirement itself, is that all its subrequirements shall be satisfied for the compound
requirement to be satisfied. Subrequirements shall be accessed through the "nestedClassifier" property of a class. When a

requirement has nested requirements, all the nested requirements apply as part of the container requirement. Deleting the
container requirement deleted the nested requirements, a functionality inherited from UML.

Generalizations
e AbstractRequirement (from Requirements)
Association Ends

e base Class: Class [1]
(redefines: AbstractRequirement::base NamedElement)

OMG Systems Modeling Language, v1.6 191

Constraints

1 no operation
The property "ownedOperation" shall be empty.

self.base Class.ownedOperation->isEmpty ()

2 no_attribute
The property "ownedAttribute" shall be empty.
self.base Class.ownedAttribute->isEmpty ()

3 _no_association
Classes stereotyped by «requirement» shall not participate in associations.
UML::Association.allInstances().memberEnd—>flatten().type—>excludes(self.base_Class)

4 no_generalization
Classes stereotyped by «requirement» shall not participate in generalizations.
UML::Classifier.alllnstances().general—>flatten()—>excludes(self.base_Class)

5 nestedclassifiers are requirements
A nested classifier of a class stereotyped by Requirement or one of its specializations shall also be stereotyped
by Requirement or one of its specializations
self.base Class.nestedClassifier->forAll (c | Requirement.allInstances() .base Class
->includes (c))

6 _not a type
Classes stereotyped by «requirementy shall not be used to type any other model element.
UML: : TypedElement.allInstances () .type->excludes (self.base Class)

16.3.2.6 TestCase

Description

A test case is a method for verifying a requirement is satisfied.

Association Ends

base Behavior : Behavior [0..1]
base_Operation : Operation [0..1]

Constraints

192

1 return verdictkind

The type of return parameter of the stereotyped model element shall be VerdictKind. (note this is consistent with

the UML Testing Profile).
(self.base Behavior->notEmpty() implies self.base Behavior.ownedParameter->exists(p
p.direction=UML: :ParameterDirectionKind: :return and p.type = VerdictKind)) and

OMG Systems Modeling Language, v1.6

(self.base Operation->notEmpty() implies self.base Operation.ownedParameter->exists (p
| p.direction=UML: :ParameterDirectionKind::return and p.type = VerdictKind))

16.3.2.7 Satisfy
Description

A Satisfy relationship is a dependency between a requirement and a model element that fulfills the requirement. As with
other dependencies, the arrow direction points from the satisfying (client) model element to the (supplier) requirement
that is satisfied.

Generalizations
e Trace (from Requirements)
Operations

o getSatisfies (in ref : NamedElement) : AbstractRequirement [0..*]

bodyCondition:
Satisfy.allInstances ()->select (base Abstraction.client=ref) .base Abstraction.supplier

Constraints
e 1 supplier is requirement

The supplier shall be an element stereotyped by any subtype of «AbstractRequirement».

AbstractRequirement.allInstances().base_NamedElement
->includes (self.base Abstraction.supplier)

16.3.2.8 Trace
Description

The Trace stereotype specializes UML4SysML Trace and DirectedRelationshipPropertyPath to enable traces to identify
their sources and targets by a multi-level path of accessible properties from context blocks for the sources and targets.

Generalizations
o DirectedRelationshipPropertyPath (from Blocks)
Association Ends

e base Abstraction : Abstraction [1]
(redefines: DirectedRelationshipPropertyPath::base DirectedRelationship)

OMG Systems Modeling Language, v1.6 193

Operations

o getTracedFrom (in ref : NamedElement) : AbstractRequirement [0..*]
The query getTracedFrom() gives all the requirements that are clients ("from" end of the concrete syntax) of a
«Trace» relationship whose supplier is the element in parameter. This is a static query.

bodyCondition:
AbstractRequirement.allInstances () ->select (tracedTo->includes (ref))

Constraints

e 2 binary
Abstractions with a Trace stereotype or one of its specializations applied shall have exactly one client and one

supplier.
self.base Abstraction.client->size()=1 and self.base Abstraction.supplier->size()=1

16.3.2.9 Verify
Description

A Verify relationship is a dependency between a requirement and a test case or other model element that can determine
whether a system fulfills the requirement. As with other dependencies, the arrow direction points from the (client)
element to the (supplier) requirement.

Generalizations
e Trace (from Requirements)
Operations

o getVerifies (in ref : NamedElement) : AbstractRequirement [0..*]
The query getVerifies() gives all the requirements that are suppliers ("to" end of the concrete syntax) of a
«Verify» relationships whose client is the element in parameter. This is a static query.

bodyCondition:
Verify.allInstances () ->select (base Abstraction.client=ref) .base Abstraction.supplier

Constraints

e 1 supplier is requirement
The supplier shall be an element stereotyped by any subtype of «AbstractRequirement».
AbstractRequirement.allInstances () .base NamedElement
->includes (self.base Abstraction.supplier)

16.4 Usage Examples

The examples in this clause show the use of the normative Requirement stereotypes. Examples showing the definition
and use of non-normative requirement stereotypes based on AbstractRequirement are shown in Annex E.8. All the
examples in this clause are based on a set of publicly available (on-line) requirement specifications from the National

194 OMG Systems Modeling Language, v1.6

Highway Traffic Safety Administration (NHTSA). Excerpts of the original requirement text used to create the models are
shown in Figure 16.2. The name and ID of these requirements are referred to in the SysML usage examples that follow.
See NHTSA specification 49CFR571.135 for the complete text from which these examples are taken.

16.4.1 Requirement Decomposition and Traceability

The diagram in Figure 16-2 shows an example of a compound requirement decomposed into multiple subrequirements.

req [Package] Safety Test[Requirements Derivation JJ

«requirement» «requirement»
ASTM R1337-90 Pavement friction
Id ="A 24241" Id ="86.2.1"

Text = "This test method
covers the measurement of
peak braking coefficient of

Text = "The road test
surface produces a peak
friction coefficient (PFC) of

paved surfaces using a édeEmR—eq‘i 0.9 when measured using
standard reference test tire an American Society for
(SRTT) as described in Testing and Materials
Specification E1136 that (ASTM) E1136 standard
represents current reference testtire, in
technology passenger car accordance with ASTM
radial ties. " Method E 1337 -90"

=

~

Adhesion utilization

«requirement»

Text="_"

d ="S7.4"

«requirement»
Vehicle
conditions

Text=".."

d ="S7.4.2"

4deriveReqt»

~
~

«requirement»
Test and procedure conditions

d ="S7.43"

Text="(a)IBT: 65°C (149 °F)

100°C (212 °F)

(b) Test Surface: PFC of atleast
09"

Figure 16-2: Requirements Derivation

16.4.2 Requirements and Design Elements

The diagram in Figure 16-3 shows derived requirements and refers to the design elements that satisfy them. The rationale

is also shown as a basis for the design solution.

OMG Systems Modeling Language, v1.6

195

req [Package] MasterCylinderSafety [Links betw een requirements and design JJ
Decelerate Car
«refine» «rationale»
I This design of the brake assembly . ibk::k’;
v satisfies the federal safety requirements anesyslem
«requirement» T) parts
Master Cylinder Efficacy | |r1 'BBFI?:EELL?HEE
Id="S5.4.1" | | 12 : BrakeLine
—n : - m: MasterCylinder
LB S SR TIBIED cyhl?lder «satisfy» . — — - f : FrontBrake
shall have a reservoir iy =
compartment for each gy L i "'"’l“’g”’:s
senvice brake subsystem [€ ?:I:;?»:B::k:(())
serviced by the master
cylinder. Loss of fluid from
one compartment shall not
resultin a complete loss of
brake fluid from another B
compartment" «rationale»
N Body = "The best-practice
~ N) solution consists in
N\ «deriveReqt» assigning one reservoir per
«deriveReqty | b brakeline."
[N .
N
! «requirement»
«requirement» Reservoir Y
LossOfFluid Id ="S5.4.1B"
Id="S54.1a" Text = "Separate reservoir ¢
Text = "Prevent complete compartment" = g -
loss of fluid" b SatisfiedBy
BrakeSystem::I2
> BrakeSystem::l1
/ [
«rationale»
Body = "The best-practice solution
SatisfiedBy - _ c9n5|sts in using a set ofsprlng; and
” pistons to confine the loss to a single
BrakeSystem:m y
compartment.
-

Figure 16-3: Links between requirements and design

196

OMG Systems Modeling Language, v1.6

ibd [Block] BrakeSystem[Requirement satisfaction in an internal block diagramJJ

f : FrontBrake r : BrakeLine B

_| Satisfies
«requirement» Reservoir

(]
\
\
\
.
L

11 : BrakeLine | 12 : BrakeLine

]

AN

LI 1

Satisfies

m : MasterCylinder
«requirement»Loss OfFluid

Figure 16-4: Requirement satisfaction in an internal block diagram

16.4.3 Requirements Reuse

Figure 16-5 illustrates the use of the Copy dependency to allow a single requirement to be reused in several requirements
hierarchies. The master tag provides a textual reference to the reused requirement.

req [Safety Reuse J

«requirement» «requirement»
Hybrid Engine A type Hybrid Engine Btype

¥ i

«requirement» «requirement» «requirement» «requirement»
Safety Shared Safety Requirement Shared Safety Requirement Safety Requirements
Requirements for — . for type B
q type A Master =~ 'NHTSASafetyRequirements Master = NHTSASafetyRequirements e
N 7
W F s
\ “COpY» «copy» /
b 7
N 7
N &
«requirement»

NHTSASafetyRequirements

Id ="157.135"

Text="."

Figure 16-5: Use of the copy dependency to facilitate reuse

16.4.4 \Verification Procedure (Test Case)

The example in Figure 16-6 is taken from the automotive safety domain, and shows a Burnish requirement contained in
the NHTSASafetyRequirements requirement. Note that the text of the Burnish requirement indicates a specific sequence
of steps and transition criteria. The Burnish requirement is shown as having a Verify relationship to the BurnishTest test
case using callout notation on the diagram, indicating that the Burnish requirement is verified by the BurnishTest test
case.

Figure 17-1 is a state machine diagram of the BurnishTest test case, which expresses the textual sequence and criteria of
the Burnish requirement in state machine form. The Verify relationship is shown on Figure 16-7 using callout notation
anchored to the diagram frame, which indicates that the BurnishTest test case verifies the Burnish requirement.

OMG Systems Modeling Language, v1.6 197

req [BurnishSafety J

«requirement»

NHTSASafetyRequirements VerifiedBy
Id ="157.135" «testCase»BurnishTest
Text="." :

) © I

[|
«deriveReqt» : I

| «requirement»

| Burnish

Id ="S7.1"
Text="(a)IBT: 100°C
(212 ° F), (b) Test speed: 80
km/h (49.7 mph), (c) Pedal

1
«requirement»

Rosd TestSequence force: Adjust as necessary to
Id ="S9.1" maintain specified constant
Text="." deceleration rate

"

Figure 16-6: Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram

«TestCase»
stm BurnishTest

[Speed =80]

Maintain

Initial condition

| Accelerate (BT = 100 or
d>=2km]
Verifies [count < 200]
i<<requirement>> Burnish r—Brake

[count =200]

Adjust Brake

Figure 16-7: Linkage of a Test Case to a requirement: This figure shows the Test Case as a State Diagram

198 OMG Systems Modeling Language, v1.6

17 Profiles & Model Libraries

17.1 Overview

The Profiles package contains mechanisms that allow metaclasses from existing metamodels to be extended to adapt
them for different purposes. This includes the ability to tailor the UML metamodel for different domains. The profiles
mechanism is consistent with the OMG Meta Object Facility (MOF). SysML has added some notational extensions to
represent stereotype properties in compartments as well as notes.

The stereotype is the primary mechanism used to create profiles to extend the metamodel. Stereotypes are defined by
extending a metaclass, and then have them applied to the applicable model elements in the user model. A stereotype of a
requirement could be extended to create a «functionalRequirement» as described in Annex E: “Non-normative
Extensions.” This would allow specific properties and constraints to be created for a functional requirement. For
example, a functional requirement may be constrained such that it must be satisfied by an operation or behavior. When
the stereotype is applied to a requirement, then the requirement would include the notation «functionalRequirement» in
addition to the name of the particular functional requirement. Extending the metaclass requirement is different from
creating a subclass of requirement called functionalRequirement.

The Usage Examples sub clause provides guidance both on how to use existing profiles and how to create new profiles.
In addition, the examples provide guidance on the use of model libraries. A model library is a library of model elements
including class and other type definitions that are considered reusable for a given domain. These guidelines can be
applied to further customize SysML for domain specific applications such as automotive, military, or space systems.

17.2 Diagram Elements

Table 17-1: Graphical nodes used in profile definition

Node Name Concrete Syntax Abstract Syntax Reference

Stereotype csterectypes UML4SysML::Stereotype
StereotypeName

Metaclass UMLA4SysML::Class

smetaclasss
MetaClassMame

Profile l UML4SysML::Profile

uprofiles
ProfileName

OMG Systems Modeling Language, v1.6 199

Node Name Concrete Syntax Abstract Syntax Reference

Model Library UML::StandardProfile

amodelLibrarys
LibraryMame

Table 17-2: Graphical paths used in profile definition

Path Name Concrete Syntax Abstract Syntax Reference
Extension | UMLA4SysML::Extension
ametaclasss
MetaClassName
A
{required}
asteraalyper
SterectypeName
Generalization UMLA4SysML::Generalization

«stereotype»
GeneralizedStereotypeName

T

«stereotype»
Specialize dSt t
P eotyp

ProfileApplication UML4SysML::Profile
sapplys{sirict} Application
MetamodelReference UML4SysML::Packagelmport;
PR UML4SysML::ElementImport

Unidirectional UMLA4SysML::Association
Association prapertydame

200 OMG Systems Modeling Language, v1.6

NOTE: In the above table, boolean properties can be displayed alternatively as BooleanPropertyName=[True|False].

17.2.1.1 Extension

In Figure 17-1, a simple stereotype Clock is defined to be applicable at will (dynamically) to instances of the metaclass
Class and describes a clock software component for an embedded software system. It has description of the operating
system version supported, an indication of whether it is compliant to the POSIX operating system standard and a

reference to the operation that starts the clock.

«stereotype»
Clock
«Metaclass» OSVersion : String
Class startOperation : Operation
POSIXCompliant : Boolean

Figure 17-1: Defining a stereotype

17.2.2 Stereotypes Used On Diagrams

Table 17-3: Notations for Stereotype Use

Node Name Concrete Syntax

Abstract Syntax Reference

StereotypeNode sstaractypatiames

PropertyName=ValueString
MultiPropariyName=YalueSiring, ValueSiring
BooleanPropertyName

Element | [Element |
Name | pathName | MName |

UMLA4SysML::Element

StereotypeNode

wstereotypehames
PropertyMame=ValueString
MultiPropertyName=ValueSiring, ValeString
BoolsanPropertyMName

Element
Name

UMLA4SysML::Element

StereotypeInNode

wsleraotypaMamas
{PropertyName="YalueString;
BooleanPropertyMame}
NodeName

UMLA4SysML::Element

OMG Systems Modeling Language, v1.6

201

StereotypeInCompartmentElement UML4SysML::Element
MNaodeName

fﬁ|E"I'n:"l'.(g’3\':'hHI""'l':"=--;r'l'mthNH"l'lE"JE'uESllIﬂg}ElE'ITlEI".hdI'I‘H
e5tanactypaNames FropertyMame=\aluaSiring;
BooleanPropertyame}

ElmaniNama

StereotypeOnEdge Element UML4SysML::Element
Name

sglerpotypelames
{Propertydama=ValuaString;
BooleanProperyNamelPathName

Element
Mame

StereotypeCompartment UMLA4SysML::Element
astereotypeNames
MNodeMame

wsterectypeMamex
PropertyName=\alueStrn
MultiPropertyMame=\alueString,
ValueString
BooleanPropertyName

17.2.2.1 StereotypelnNode

«Clock»

{POSIXCompliant}
AlarmClock

Start()

Figure 17-2: Using a stereotype

Figure 17-2 shows how the stereotype Clock, as defined in Figure 17-1, is applied to a class called AlarmClock.

17.2.2.2 StereotypelnComment

When two stereotypes, Clock and Creator, are applied to the same model element, as is shown in Figure 17-3, the
attribute values of each of the applied stereotypes can be shown in a comment symbol attached to the model element.

202 OMG Systems Modeling Language, v1.6

«Clock»
«creator»

StopWatch

Click()

AN

<<clock>>
OSVersion=2.5
startOperation=Click
<<creator>>
name="Jones"

date="04-04-04"

Figure 17-3: Other notational forms for showing values

17.2.2.3

StereotypelnCompartment

Finally, the compartment form is shown.

«Clock»
Alarm Clock

«Clock»
OSVersion ="3.4"

POSIXCompliant = true
startOperation = O Start

operations

Start()

Figure 17-4: Other notational forms for showing values

In this case, AlarmClock is valid for OS version 3.4, is POSIX-compliant and has a starting operation called Start. Note
that multiple stereotypes can be shown using multiple compartments.

17.3 UML Extensions

None.

OMG Systems Modeling Language, v1.6

203

17.4 Usage Examples

17.4.1 Defining a Profile

pkg [Package] SE Toolkit [Definition of a profile JJ

1

PrimitiveTypes

+
— |

«import»

1

umL)
«importy

«profile»
StandardProfile

—1 |

«import»

«profile»
SysML

«apply»

LN
AN
\«import»
AN
N

[1

«profile»
SEToolKit

1

«modelLibrary»
PrimitiveValueTypes

Figure 17-5: Definition of a profile

In this example, the modeler has created a new profile called SE Toolkit, which imports the SysML profile, so that it can
build upon the stereotypes it contains. The set of metaclasses available to users of the SysML profile is identified by a
reference to a metamodel, in this case a subset of UML specific to SysML. The SE Toolkit can extend those metaclasses

from UML that the SysML profile references.

17.4.2 Adding Stereotypes to a Profile

pkg [Package] SE Toolkit [Profile ConiemsJJ

«Metaclass»
DirectedRelationship

«Metaclass»
NamedElement

«stereotype»
Block

| i

attributes

isEncapsulated : Boolean [0..1]

%

«stereotype»
Requirement

«stereotype»
Configurationltem

author : String
version : String

«stereotype»
System

«stereotype»
Context

«stereotype»
FunctionalRequirement

lastChanged : date

function

«Metaclass»
Behavior

Figure 17-6: Profile Contents

204

OMG Systems Modeling Language, v1.6

In SE Toolkit, both the mechanisms for adding new stereotypes are used. The first, exemplified by configurationltem, is
called an extension, shown by a line with a filled triangle; this relates a stereotype to a reference (called base) class or
classes, in this case NamedElement and DirectedRelationship from UML and adds new properties that every
NamedElement or DirectedRelationship stereotyped by configurationltem must have. NamedElement and
DirectedRelationship are abstract classes in UML so it is their subclasses that can have the stereotype applied. The
second mechanism is demonstrated by the system and context stereotypes which are sub-stereotypes of an existing
SysML stereotype, Block; sub-stereotypes inherit any properties of their super-stereotype and also extend the same base
class or classes. Note that TypedElements whose type is extended by «system» do not display the «system» stereotype;
this also applies to InstanceSpecifications. Any notational conventions of this have to be explicitly specified in a diagram
extension.

There is also an example of how stereotypes (in this case FunctionalRequirement) can have unidirectional associations to
metaclasses in the reference metamodel (in this case Behavior).

17.4.3 Defining a Model Library that Uses a Profile

pkg [Profile] SEToolKit[Tw o model libraries]J
«ModelLibrary»
Sl Definitions
7
| «import»
«ModelLibrary» | «ModelLibrary»
Sl Value Types Physical
«valueType»
Real «block»
~ PhysicalObject
«import» volume : SN olume
< - - density : SIDensity
«valueType» avalueType» «valueType» supplier : String
f modelNumber : String
SlVolume SIDensity SlLength serialNumber : String
s RS Y DAN . Ry . . lotNumber : String
unit= CubicMeter unit= kilogramPerCubicMetre unit= Meter

Figure 17-7: Two model libraries

The model library SI Value Types imports a model library called SI Definitions, so it can use model elements from them
in its own definition. It defines value types having specific units which can be used when property values are measured in
ST units. SI Definitions is a separately published model library, containing definitions of standard SI units and quantity
kinds such as shown in Annex D, sub clause D.4. A further model library, Physical, imports SI Value Types so it can
define properties that have those types. One model element, PhysicalObject, is shown, a block that can be used as a
supertype for a physical object.

17.4.4 Guidance on Whether to Use a Stereotype or Class

This sub clause provides guidance on when to use stereotypes. Stereotypes can be applied to any model element.
Stereotyping a model element allows the model element to be identified with the «guillemety» notation. In addition, the
stereotyped model element can have stereotype properties, and the stereotype can specify constraints on the model
element.

The modeler must decide when to create a stereotype of a class versus when to specialize (subclass) the class. One reason
is to be able to identify the class with the «guillemet» notation. In addition, the stereotype properties are different from

OMG Systems Modeling Language, v1.6 205

properties of classes. Stereotype properties represent properties of the class that are not instantiated and therefore do not
have a unique value for each instance of the class, although a class thus stereotyped can have a separate value for the
property.

SE Toolkit:: functionalRequirement, which extends Class through its superstereotype, Requirement, is an example where
a stereotype is appropriate because every modeling element stereotyped by SE Toolkit::functionalRequirement has a
reference to another modeling element. In another example, SE Toolkit::configurationltem defined above, which applies
to classes among other concepts, is a stereotype because its properties characterize the author, version, and last changed
date of the modeling element themselves. One test of this is whether the new properties are inheritable; in this case
author, version, and last-changed date are not, because it is only those classes under configuration control that need the
properties. To summarize, in the following circumstances a stereotype is appropriate:

e Where the model concept to be extended is not a class or class-based.
e Where the extensions include properties that reference other model elements.
o Where the extensions include properties that describe modeling data, not system data.
An example where a class is more appropriate is PhysicalObject from Figure 17-7. In this case, the properties density and

volume, and the component numbers, have distinct values for each system element described by the class, and are
inherited by every subclass of PhysicalObject.

17.4.5 Using a Profile

pkg [Package] ModelingDomain [Establishing HSUV ModeIJJ

«profile»
SysML
N 2y '
| «annivy ~ ffx\pply » {strict}
l{stric:t} .
~
1, L]

«ModelLibrary» . _dmport> | HSUVModel

Sl Definitions

Figure 17-8: A model with applied profile and imported model library

The HSUVModel is a systems engineering model that needs to use stereotypes from SysML. It therefore needs to have
the SysML profile applied to it. In order to use the predefined SI units, it also needs to import the SI Definitions model
library. Having done this, elements in HSUVModel can be extended by SysML stereotypes and types like SIVolume can
be used to type properties. Both the SI Definitions model library and HSUVModel have applied the profile strictly, which
means that only those metaclasses directly referenced by SysML can be used in those models.

206 OMG Systems Modeling Language, v1.6

17.4.6 Using a Stereotype

req [Package] HSUVRequirements [Using tw o stereotypes on a model eIementJJ

«functionalRequirement»
«Configurationken»

StoppingDistance

Id="102.1"
Text ="The car shall stop

within 100 feet from 20 mph"

«Configurationltenm
author
Jones
lastChanged
4/4/04
version
1.2

AN

Figure 17-9: Using two stereotypes on a model element

StoppingDistance has two stereotypes applied:

e functionalRequirement, which identifies it as a requirement that is satisfied by a function, and

e configurationltem, which allows it to have configuration management properties.

The modeler has provided values for all the newly available properties; those for criticalRequirement are shown in a
compartment in the node symbol for StoppingDistance; those for configurationltem are shown in a separate note.

17.4.7 Using a Model Library Element

bdd [Package] Physics [Using model library elements]J

«block»
PhysicalObject

values
volume : SVolume
density : SIDensity
supplier : String
modelNumber : String
serialNumber : String
lotNumber : String

T

«block»
Shot

values

circumference : SlLength

Figure 17-10: Using model library elements

Model library elements can be used just like any other model element of the same type. In this case, Shot is a
specialization of PhysicalObject from the Physical model library. It adds a new property, circumference, of type

SILength to measure the circumference of the (spherical) shot.

OMG Systems Modeling Language, v1.6

207

This page intentionally left blank.

208 OMG Systems Modeling Language, v1.6

ANNEXES

OMG Systems Modeling Language, v1.6 209

This page intentionally left blank.

210 OMG Systems Modeling Language, v1.6

Annex A: Diagrams

(informative)

A.1 Overview

SysML diagrams contain diagram elements (mostly nodes connected by paths) that represent model elements in the
SysML model, such as activities, blocks, and associations. The diagram elements are referred to as the concrete syntax.

The SysML diagram taxonomy is shown in Figure A.1. This taxonomy is one example of how to organize the SysML
diagrams. Other categories could also be defined, such as a grouping of the use case diagram and the requirement
diagram into a category called Specification Diagrams.

SysML reuses many of the major diagram types of UML. In some cases, the UML diagrams are strictly reused, such as
use case, sequence, state machine, and package diagrams, whereas in other cases they are modified so that they are
consistent with SysML extensions. For example, the block definition diagram and internal block diagram are similar to
the UML class diagram and composite structure diagram respectively, but include extensions as described in 8, “Blocks.”
Activity diagrams have also been modified via the activity extensions. Tabular representations, such as the allocation
table, are used in SysML but are not considered part of the diagram taxonomy.

SysML does not use all of the UML diagram types such as the object diagram, communication diagram, interaction
overview diagram, timing diagram, deployment diagram, and profile diagram. This is consistent with the approach that
SysML represents a subset of UML. In the case of deployment diagrams, the deployment of software to hardware can be
represented in the SysML internal block diagram. In the case of interaction overview and communication diagrams, it
was felt that the SysML internal block diagram. In the case of interaction overview and communication diagrams, it was
felt that the SysML behavior diagrams provided adequate coverage for representing behavior without the need to include
these diagram types. In the case of the profile diagram, profile definitions can be captured on a package diagram and the
parametric diagram.

SysML Diagram

Behavior Diagram | Requirement Diagram | Structure Diagram

Activity Diagram Sequence Diagram State Machine Diagram Use Case Diagram Block Definition Diagram Package Diagram Internal Block Diagram

i | New Diagram Type 1 1

E’ Same as UML 2 | P]
[Z] Modified from UML 2

Figure A.1: SysML Diagram Taxonomy

OMG Systems Modeling Language, v1.6 211

The requirement diagram is a new SysML diagram type. A requirement diagram provides a modeling construct for text-
based requirements, and the relationship between requirements and other model elements that satisfy or verify them.

The parametric diagram is a new SysML diagram type that describes the constraints among the properties associated with
blocks. This diagram is used to integrate behavior and structure models with engineering analysis models such as
performance, reliability, and mass property models.

Although the taxonomy provides a logical organization for the various major kinds of diagrams, it does not preclude the
careful mixing of different kinds of diagram types, as one might do when one combines structural and behavioral
elements (e.g., showing a state machine nested inside a compartment of a block). However, it is critical that the types of
diagram elements that can appear on a particular diagram kind be constrained and well-specified. The diagram elements
tables in each clause describe what symbols can appear in the diagram, but do not specify the different combinations of
symbols that can be used.

The package diagram and the callout notation are two mechanisms that SysML provides for adding flexibility to
represent a broad range of diagram elements on diagrams. The package diagram can be used quite flexibly to organize
the model in packages and views. As such, a package diagram can include a wide array of packageable elements. The
callout notation provides a mechanism for representing relationships between model elements that appear on different
diagram kinds. In particular, they are used to represent allocations and requirements, such as the allocation of an activity
to a block on a block definition diagram, or showing a part that satisfies a particular requirement on an internal block
diagram. There are other mechanisms for representing this including the compartment notation that is generally described
in Clause 17, “Profiles & Model Libraries,” 16, “Requirements,” and 15, “Allocations” provide specific guidance on how
these notations are used.

The model elements and corresponding concrete syntax that are represented in each of the nine SysML diagram kinds are
described in the SysML clauses as indicated below.

e activity diagram - activity

e block definition diagram - block, package, constraint block, or activity

e internal block diagram - block or constraint block

e package diagram - package, model, modelLibrary, profile

e parametric diagram - block or constraint block

e requirement diagram - package, requirement, modelLibrary, model

e sequence diagram - interaction

e state machine diagram - state machine

e use case diagram - package, block, model, modelLibrary

Each SysML diagram has a frame, with a contents area, a heading, and a Diagram Description (see Figure 17.12).

212 OMG Systems Modeling Language, v1.6

Diagram Description

Version:
Description:
Completion Status:

Header Reference:
’ _|(User defined fields)

K -
«diagramUsage»
diagramKind [modelBementType] modelBementName [diagramName

Contents

Figure A.2: Diagram Frame

The frame is a rectangle that is required for SysML diagrams (Note: the frame is optional in UML). The frame shall
designate a model element that is the default namespace for the model elements enclosed in the frame. A qualified name
for the model element within the frame shall be provided if it is not contained within default namespace associated with
the frame. The following are some of the designated model elements associated with the different diagram kinds:

e Activity diagram - activity
e Block definition diagram - block, package, or constraint block
e Internal block diagram - block or constraint block
e Package diagram - package or model
e Parametric diagram - block or constraint block
e Requirement diagram - package or requirement
e Sequence diagram - interaction
e State machine diagram - state machine
e Use case diagram - package
The frame may include border elements associated with the designated model element, like:
e Ports for blocks
e Entry/exit points on statemachines
e Gates on interactions
e Parameters for activities

e Constraint parameters for constraint blocks.
The frame may sometimes be defined by the border of the diagram area provided by a tool.

The diagram contents area contains the graphical symbols. The diagram type and usage define the type of primary
graphical symbols that are supported, e.g., a block definition diagram is a diagram where the primary symbols in the
contents area are blocks and association symbols along with their adornments.

The heading name is a string contained in a name tag (rectangle with cutoff corner) in the upper leftmost corner of the
rectangle, with the following syntax:

<diagramKind> [modelElementType] <modelElementName> [diagramName]

OMG Systems Modeling Language, v1.6 213

A space separates each of these entries. The diagramKind is bolded. The modelElementType and diagramName are in
brackets. The heading name should always contain the diagram kind and model element name, and include the model
element type and additional information to remove ambiguity. Ambiguity can occur if there is more than one model
element type for a given diagram kind, or where there is more than one diagram for the same model element. If a model
element type has a stereotype applied to the base model element, such as “modelLibrary” applied to a package or
“controlOperator” applied to an activity, then either the stereotype name or the base model element may be used as the
name for the model element type. In either case, the initial character of the name is shown in lower case. For a stereotype
name, guillemet characters (« and ») are not shown. If more than one stereotype has been applied to the base model
element, either the name of one of the applied stereotypes or a comma-separated list of any or all of the applied
stereotype names may be shown. If a base model element name is used, this element is either a UML metaclass which
SysML uses directly, such as package or activity, or a stereotype which SysML defines on a UML metaclass, such as
block or view.

SysML diagram kinds should have the following names or (abbreviations) as part of the heading:

e Activity diagram (act)

e Block definition diagram (bdd)

e Internal block diagram (ibd)

e Package diagram (pkg)

e Parametric diagram (par)

e Requirement diagram (req)

e Sequence diagram (sd)

e State machine diagram (stm)

e Use case diagram (uc)
The diagram description can be defined by a comment attached to a diagram frame as indicated in Figure A.2 that
includes version, description, references to related information, a completeness field that describes the extent to which
the modeler asserts the diagram is complete, and other user defined fields. In addition, the diagram description may
identify the view associated with the diagram, and the corresponding viewpoint that identifies the stakeholders and their

concerns (refer to Model Elements clause). The diagram description can be made more explicit by the tool
implementation.

SysML also introduces the concept of a diagram usage. This represents a unique usage of a particular diagram type, such
as a context diagram as a usage of a block definition diagram, internal block diagram, or use case diagram. The diagram
usage can be identified in the header above the diagramKind as «diagramUsage». An example of a diagram usage
extension is shown in Figure A.3. For this example, the header in Figure A.2 would replace diagram kind with “uc” and
«diagramUsage» with «ContextDiagram». Applying a stereotype approach to specify a diagram usage can allow a tool
implementation to check that the diagram constraints defined by the stereotype are satisfied.

Diagram usage can be represented by creating stereotypes that extend SysMLDiagram (see Annex B).

214 OMG Systems Modeling Language, v1.6

«stereotype»
SysMLUseCaseDiagram

«stereotype»
Context Diagram

Figure A.3: Diagram Usages

Some typical diagram usages may include:

e Activity diagram usage with swim lanes - SwimLane Diagram.

e Block definition diagram usage for a block hierarchy - Block Hierarchy where block can be replaced by system,
item, activity, etc.

e Use case diagram or internal block diagram to represent a Context Diagram.

A.2 Guidelines

The following provides some general guidelines that apply to all diagram types.

e Decomposition of a model element can be represented by the rake symbol. This does not always mean
decomposition in a formal sense, but rather a reference to a more elaborated diagram of the model element that
includes the rake symbol. This notation adds to the existing decomposition notations defined in UML
(Composite state symbol for States that refer to StateMachines and rake symbol for CallBehaviorActions that
refer to Activities). In SysML, the rake on a model element may also include the following:

o

o

Activity diagram - call behavior actions that can refer to another activity diagram.
Internal block diagram - parts that can refer to another internal block diagram.
Package diagram - package that can refer to another package diagrams.

Parametric diagram - constraint property that can refer to another parametric diagram.
Requirement diagram - requirement that can refer to another requirement diagram.
Sequence diagram - interaction fragments that can refer to another sequence diagram.
State machine diagram - state that can refer to another state machine diagram.

Use case diagram - use case can that may be realized by other behavior diagrams (activity, state,
interactions).

e The primary mechanism for linking a text label outside of a symbol to the symbol is through proximity of the
label to its symbol. This applies to ports, item flows, pins, etc.

OMG Systems Modeling Language, v1.6 215

Page connectors (on-page connectors and off-page connectors) can be used to reduce the clutter on diagrams,
but should be used sparingly since they are equivalent to go-to(s) in programming languages, and can lead to
“spaghetti diagrams.” Whenever practical, elaborate the model element designated by the frame instead of using
a page connector. A page connector is depicted as a circle with a label inside (often a letter). The circle is shown
at both ends of a line break and means that the two line end connect at the circle.

When two lines cross, the crossing optionally may be shown with a small semicircular jog to indicate that the
lines do not intersect (as in electrical circuit diagrams), as shown in Figure A 4.

+

Figure A.4: Optional Form of Line Crossing

216

Diagram overlays are diagram elements that may be used on any diagram kind. An example of an overlay may
be a geographic map to provide a spatial context for the symbols.

SysML diagrams including the enhancements described in this sub clause are intended to conform to diagram
definition and interchange standards to facilitate exchange of diagram and layout information.

Tabular and matrix representation is an optional alternative notation that can be used in conjunction with the
graphical symbols as long as the information is consistent with the underlying metamodel. Tabular and matrix
representations are often used in systems engineering to represent detailed information and other views of the
model such as interface definitions, requirements traceability, and allocation relationships between various types
of model elements. They also can be convenient mechanisms to represent property values for selected
properties, and basic relationships such as function and inputs/outputs in N2 charts. UML contains a tabular
representation of a sequence diagram in an interaction matrix (refer to UML Annex with interaction matrix). The
implementations of tabular and matrix representations are defined by the tool implementations and are not
standardized in SysML at this time. However, tabular or matrix representations may be included in a frame with
the heading designator «table» or «matrix» in bold.

Graph and tree representations are also optional, alternative notations that can be used in conjunction with
graphical symbols as long as the information is consistent with the underlying metamodel. These representations
can be used for describing complex series of relationships that represent other views of the model. One example
is the browser window in many tools that depicts a hierarchical view of the model. The implementations of
graphs and trees are defined by the tool implementations and are not standardized in SysML at this time.
However, graph and tree representations may be included in a frame with the heading designator «graph» or
«tree» in bold.

OMG Systems Modeling Language, v1.6

Annex B: SysML Diagram Interchange

(informative)

B.1 Overview

This annex provides information regarding the exchange of SysML diagrams. It is an extension of the UML Diagram
Interchange (DI) to support the graphical notation specific to SysML. A first part presents stereotypes that extend the
UML DI. A second part presents modifications in the use of UML DI in SysML diagrams.

MOF
M3 Abstract syntax ¥ Diagram syntax
I
Di
M2 ol UML UML DI
|
|
|
I
| SysML SysML DI
|
! t t
f N I
| I 1
[Model Diagram
M1
[DD Spec DD: Diagram Definition
[TUML Spec DI: Diagram Interchange
SysML Spec

—~ Instantiates
= Specializes
= References
= Extends

Figure B.1: SysML DI architecture

OMG Systems Modeling Language, v1.6 217

B.2 Stereotypes

«Metaclass»
UM LDiagramElement

«stereotype»
SysM LDiagramElement

isDecompostionSymbolShow n : Boolean = false

Figure B.2: Abstract Syntax Extension for SysMLDiagramElement

218 OMG Systems Modeling Language, v1.6

«stereotype»
SysM LDiagramElement

isDecompostionSymbolShow n : Boolean = false

I

«stereotype»
@ «Metaclass»
SysMLDiagram UMLDiagram
defaultNameSpace : NameSpace
isLineJogShow n : Boolean = false
«stereotype» «Metaclass»

SysM LDiagramWithAssociations

UM LDiagramWithAssociations

I

«stereotype»

«Metaclass»

SysM LStructureDiagram

UM LStructureDiagram

«stereotype»
SysMLRequirementDiagram

«stereotype»

Sys MLBlockDefinitionDiagram SysMLPackageDiagram

«stereotype»

I

«Metaclass»
UMLClassDiagram

«stereotype» «Metaclass»

SysMLInternalBlockDiagram UMLPackageDiagram

«Metaclass»
UMLCompositeStructureDiagram

«stereotype»

SysMLParametricDiagram

isConstraintPropertyRounded : Boolean = false

Figure B.3: Abstract syntax extensions for SysML diagrams (1)

OMG Systems Modeling Language, v1.6

219

«Stereotypes»
SysMLDiagram
«metaclass» - «stereatype» «stereolype»
UMLBehaviorDiagram SysMLB ehaviorDiagram SysMLDiagramWithAssociations
£|§. L
«stersotype» «stereotype» «stereotype»
SysMLActivity Diagram SysMLStateMachineDiagram SysMLUseCaseDiagram
isControlFlowDashed: Boolean = false * *
«metaclass» «metaclass»
«sterectype» UMLStateM achine Diagram UM LUseCaseDiagram

SysMLinteractionDiagram

Y

«metaclass»
UMLInteractionDiagram

«metaclass»
UMLActivity Diagram

Figure B.4: Abstract syntax extensions for SysML diagrams (2)

B.2.1 SysML Activity Diagram

Description
A SysMLActivityDiagram represents an activity diagram. It extends UMLActivityDiagram.

Attributes

e isControlFlowDashed : Boolean [1] = false
Specifies whether the control flows in the activity diagram are dashed (isControlFlowDashed=true) or not
(isControlFlowDashed=false).

Constraints
[1T7 A SysMLActivityDiagram shall have as a defaultNamespace an Activity.

[2] SysMLActivityDiagram shall only be applied to a UMLActivityDiagram.The principal of an applied AdjunctProperty
shall be a Connector, CallAction, ObjectNode, Variable, Parameter, submachine State, or InteractionUse.

B.2.2 SysML Behavior Diagram

Description
SysMLBehaviorDiagram is an abstract stereotype for all SysML behavior diagrams. It extends UMLBehaviorDiagram.

Constraints
[1] SysMLBehaviorDiagram shall only be applied to a UMLBehaviorDiagram.

220 OMG Systems Modeling Language, v1.6

[2] SysMLActivityDiagram shall only be applied to a UMLActivityDiagram.The principal of an applied AdjunctProperty
shall be a Connector, CallAction, ObjectNode, Variable, Parameter, submachine State, or InteractionUse.

B.2.3 SysMLBIlockDefinitionDiagram

Description
A SysMLBlockDefinitionDiagram represents a block definition diagram. It extends UMLPackageDiagram.

Constraints
[1] A SysMLBIlockDefinitionDiagram shall have as a defaultNamespace a Class with a Block stereotype or one of its

specializations applied or a Package.

[2] SysMLBIlockDefinitionDiagram shall only be applied to a UMLClassDiagram.

B.2.4 SysMLDiagram

Description
SysMLDiagram is an abstract stereotype for all SysML diagrams. It extends UMLDiagram.

Attributes
e defaultNamespace : Namespace [1]
Specifies the default namespace of the SysML diagram.

e isLineJogShown : Boolean [1] = false
Show semi-circular jogs in the stereotyped diagram when two lines are crossing (see Annex A).

Constraints
[11 A UMLDiagram stereotyped by a specialization of SysMLDiagram shall have isFrame=true.
[2] A UMLDiagram stereotyped by a specialization of SysMLDiagram shall have a heading.

[3] A SysMLDiagram that stereotypes a UMLDiagram with a modelElement shall have this modelElement as
defaultNamespace.

[4] SysMLDiagram shall only be applied to a UMLDiagram.

B.2.5 SysMLDiagramElement

Description
SysMLDiagramElement is an abstract generalization of all the other SysML DI stereotypes.

Attributes
e isDecompositionSymbolShown : Boolean [1]
Display a decomposition symbol in a diagram element to indicate the corresponding model element is

decomposed in another diagram. Diagram elements that may have a decomposition symbol are listed in Annex
A.

OMG Systems Modeling Language, v1.6 221

B.2.6 SysMLDiagramWithAssociations

Description

SysMLDiagramWithAssociations is an abstract stereotype for all SysML diagrams with associations. It extends
UMLDiagramWithAssociations.

Constraints

[11 A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations shall have
isAssociationDotShown=false.

[2] A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations shall have
navigabilityNotation=oneWay.

[3] A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations shall have
nonNavigabilityNotation=never.

[4] SysMLDiagramWithAssociations shall only be applied to a UMLDiagramWithAssociations.

B.2.7 SysMLlinteractionDiagram

Description
A SysMLInteractionDiagram represents an interaction diagram. It extends UMLInteractionDiagram.

Constraints
[1] A SysMLlInteractionDiagram shall have as a defaultNamespace an Interaction.

[2] A UMLInteractionDiagram stereotyped by SysMLInteractionDiagram shall have kind=sequence.

[3] SysMLInteractionDiagram shall only be applied to a UMLInteractionDiagram.

B.2.8 SysMLInternalBlockDiagram

Description
A SysMLInternalBlockDiagram represents an internal block diagram. It extends UMLCompositeStructureDiagram.

Constraints
[1T A SysMLInternalBlockDiagram shall have as a defaultNamespace a Class with a Block stereotype or one of its

specializations applied.

[2] SysMLInternalBlockDiagram shall only be applied to a UMLCompositeStructureDiagram.
B.2.9 SysMLPackageDiagram

Description
A SysMLPackageDiagram represents a package diagram. It extends UMLPackageDiagram.

222 OMG Systems Modeling Language, v1.6

Constraints
[1] A SysMLPackageDiagram shall have as a defaultNamespace a Package.

[2] SysMLPackageDiagram shall only be applied to a UMLPackageDiagram.

B.2.10 SysMLParametricDiagram

Description
A SysMLParametricDiagram represents a parametric diagram. It is a specialization of SysMLInternalBlockDiagram.

Attributes

o isConstraintPropertyRounded: Boolean = false
Specifies whether the constraint properties in the parametric diagram have rounded corners
(isConstraintPropertyRounded=true) or not (isConstraintPropertyRounded=false).

Constraints
[1T7 A SysMLParametricDiagram shall have as a defaultNamespace a Class with a Block stereotype or one of its
specializations applied.

[2] SysMLParametricDiagram shall only be applied to a UMLCompositeStructureDiagram.
B.2.11 SysMLRequirementDiagram

Description
A SysMLRequirementDiagram represents a requirement diagram. It is based on the UML class diagram.

Constraints
[1T A SysMLRequirementDiagram shall have as a defaultNamespace a Package or a Class with a Requirement stereotype

or one of its specializations applied.

[2] SysMLRequirementDiagram shall only be applied to a UMLClassDiagram.

B.2.12 SysMLStateMachineDiagram

Description
A SysMLStateMachineDiagram represents a state machine diagram. It extends UMLStateMachineDiagram.

Constraints
[17 A SysMLStateMachineDiagram shall have as a defaultNamespace a StateMachine.

[2] SysMLStateMachineDiagram shall only be applied to a UMLStateMachineDiagram.

B.2.13 SysMLUseCaseDiagram

Description
A SysMLUseCaseDiagram represents a use case diagram. It extends UMLUseCaseDiagram.

OMG Systems Modeling Language, v1.6 223

Constraints
[1] A SysMLUseCaseDiagram shall have as a defaultNamespace a Package.

[2] SysMLUseCaseDiagram shall only be applied to a UMLUseCaseDiagram.

B.3 SysML DI Usage Notes

This clause provides additional notes on how the SysML notation is modeled.

A UMLEdge with a Connector as modelElement may be the source or the target of a UMLEdge with no modelElement.
The target or the source of the latter UMLEdge is a UMLShape with a Property stereotyped by ConnectorProperty or one
of its specializations as modelElement. This UMLEdge is rendered as a dotted line.

Property names with property-specific types (in parentheses) are modeled with UMLTypedElementLabels.

UMLCompartmentableShapes that have a modelElement stereotyped by Allocated or one of its specializations may have
a compartment titled “allocatedFrom” and a compartment titled “allocatedTo.” These compartments contain UMLLabels
with modelElements that are the values of the allocatedFrom and allocatedTo properties, respectively, of the Allocated
stereotype.

A UMLShape with a modelElement stereotyped by Allocated or one of its specializations may be the source or the target
of a UMLEdge with no modelElements. The target or the source of this UMLEdge is a UMLShape with no
modelElement. This UMLShape may contain UMLLabels with text “allocatedFrom” and “allocatedTo,” each being
followed by UMLLabels with modelElements that are the values of the allocatedFrom properties of the Allocated
stereotype or the values of the allocatedTo properties, respectively, of the Allocated stereotype.

SysML callout notation (MasterCallout, DeriveCallout, SatisfyCallout, VerifyCallout, RefineCallout, TraceCallout) can
be modeled by a UMLShape with no modelElement. This UMLShape contains a UMLLabel with text specified by the
callout notation, followed by a UMLLabel with modelElement that is the element with text shown by the callout
notation.

B.4 SysML Notation and DI Representation

This sub clause summarizes Annex B by showing how SysML-specific notations shall be modeled using UML and
SysML UML DI. It does not cover all of Annex B or all notations in previous Clauses. The left column shows an
example of SysML notation. The middle column shows UML DI and SysML DI elements corresponding to the notation.
These elements are presented in a containment hierarchy. Elements with the same container are ordered according to the
notation shown in the left column, read from left to right, top to bottom. For each element, the type of diagram element is
given, followed by the type of modelElement and sometimes other constraints that apply to the diagram element, put
between parentheses. The type of modelElement is followed by a '+ when multiple modelElements of this type can be
assigned to one diagram element. A '+' sign between a metaclass and a stereotype corresponds to an element that
instantiates the metaclass and that has the stereotype applied. The right column references “Notation” clauses and figures
where the notation is defined.

224 OMG Systems Modeling Language, v1.6

Table B.1: SysML Diagram Elements

Notation

Diagram Elements

Ref.

..__..__._..._.._..._..__.._}

UMLEdge (ControlFlow, isControlFlowDashed=false)

UMLEdge+SysMLControlFlowEdge (ControlFlow,
isControlFlowDashed=true)

11.3.1.3.1

«constraint»
Constraintl

s ,

«constraint»
Constraintl

UMLClassifierShape (Property+ConstraintProperty,
isConstraintPropertyRounded =false)

- UMLLabel (Stereotype)

- UMLTypedElementLabel (Property)
UMLClassifierShape (Property+ConstraintProperty is
ConstraintPropertyRounded=true)

- UMLLabel (Stereotype)

- UMLTypedElementLabel (Property)

10.3.1.2.1

Block1

UMLClassifierShape (Class+Block)

- UMLNameLabel (Class)

- UMLShape+SysMLPort (Port, in flows, islcon=true)

- UMLShape+SysMLPort (Port, out flows, islcon=true)

- UMLShape+SysMLPort (Port, inout flows, islcon=true)

9.3.1.6

p1p1[] |p
plp2| | Block1
pl.p3

UMLClassifierShape (Class+Block)
- UMLNameLabel (Class)

- UMLShape (Port)

- UMLNameLabel (Port

- UMLShape (Port

- UMLNamelLabel (Port)

- UMLShape (Port)

- UMLNameLabel (Port)

- UMLShape (Port)

- UMLNameLabel (Port)

9.3.1.6

OMG Systems Modeling Language, v1.6

225

Notation

Diagram Elements

Ref.

Elock1

Connector! Typed

FProperty 1 Type1 —-—|

Property3: Type3

Froperty2: Type2

UMLClassifierShape (Class)

- UMLNameLabel (Class)

- UMLCompartment

--- UMLShape (Property)

————— UMLTypedElementLabel (Property)
--- UMLEdge (Connector)

----- UMLTypedElementLabel (Property)
--- UMLShape (Property)

————— UMLTypedElementLabel (Property)
--- UMLEdge

--- UMLShape (Property)

----- UMLTypedElementLabel

83.2.3

Block1

allocatedFrom
Element?

allocatedTo
Element2

UMLClassifierShape (Class)
- UMLNameLabel (Class)

- UMLCompartment

--- UMLLabel

--- UMLLabel (Element)

- UMLCompartment

--- UMLLabel

--- UMLLabel (Element)

15.3.13

| allocatedFrom l_
| Ebement =
| allocatedTe
Element2

Block1

UMLClassifierShape (Class)
- UMLNameLabel (Class)
UMLEdge

UMLShape

- UMLLabel

- UMLLabel (Element)

- UMLLabel

- UMLLabel (Element)

15.3.1.4

Callout name L
Element! - ——— Elament? ~

UMLShape (Element)

- UMLNameLabel (Element)
UMLEdge

UMLShape

- UMLLabel

- UMLLabel (Element)

16.3.1.3

226

OMG Systems Modeling Language, v1.6

Annex C: Deprecated Elements and Migration

(Informative)

CA Overview

This annex

e Defines SysML elements that are deprecated, but included for backward compatibility (see Subannexes C.1.1
and C.1.2).

e Provides guidlines for migrating elements to this version of SysML that are deprecated (see above) or that
changed significantly between versions of SysML (see Subannexes C.5 through C.7).

CA11 Flow Ports

Flow Port and Flow Specification are deprecated in this version of SysML and are defined for backward compatibility.
This annex contains the definition of these concepts as they are defined by SysML 1.2. In addition it provides some
guidelines on how to convert FlowPort to ports in this version of SysML.

A flow port specifies the input and output items that may flow between a block and its environment. Flow ports are
interaction points through which data, material, or energy can enter or leave the owning block. The specification of what
can flow is achieved by typing the flow port with a specification of things that flow. This can include typing an atomic
flow port with a single type representing the items that flow in or out, or typing a nonatomic flow port with a flow
specification which lists multiple items that flow. A block representing an automatic transmission in a car could have an
atomic flow port that specifies “Torque” as an input and another atomic flow port that specifies “Torque” as an output. A
more complex flow port could specify a set of signals and/or properties that flow in and out of the flow port. In general,
flow ports are intended to be used for asynchronous, broadcast, or send-and-forget interactions. Flow ports exten UML 2
ports.

C1.2 Conjugated Ports

UMLs conjugated ports (UML::Port:: isConjugated) are deprecated in this version of SysML and included for backward
compatibility. This annex contains the description of port conjugation in SysML 1.5. In addition it provides guidelines on
how to convert conjugated ports to ports in this version of SysML.

OMG Systems Modeling Language, v1.6 227

C.2 Diagram Elements

C.21 Block Definition Diagram

Table C-1: Graphical nodes defined in block definition diagrams

Node Name Concrete Syntax Abstract Syntax Reference
Port pl:~T1 UMLA4SysML::Port
Transmission
Conjugated Ports
FlowPort SysML::PortsAndFlows::FlowPort
p: Mransmission
élﬂ Transmission
Flow Port
p: ~ITransmision
EF Transmission
Conjugated Flow Port
netw orkType: ElectricNetw orkType
ac: AC‘Johagemm: DCVoltage
Transformer
Atomic Flow Ports
228 OMG Systems Modeling Language, v1.6

Node Name

Concrete Syntax

Abstract Syntax Reference

FlowPort (Compartment
Notation)

Transmission

flow ports
p: Mransmission

Flow Port

Transmission

fow porfs
p: ~ITransmission

Conjugated Flow Port

Transmission

flow ports
in ac: ACVoltage
out dc: DCVoltage
inout netw orkType: BectricNetw orkType

Atomic Flow Ports

SysML::PortsAndFlows::FlowPort

FlowSpecification

«flow Specificaton:
Name

RenwPropertiag
in gearSelect Gear
in engineTorque: Torgue
out w heelsTorque: Torque

SysML::PortsAndFlows::
FlowSpecification

C.22 Internal Block Diagram

Table C-2: Graphical nodes defined in internal block diagrams

Node Name

Concrete Syntax

Abstract Syntax Reference

Port

t1 :Transmission
pl:~T1 — p2‘~T2

Conjugated Ports

UMLA4SysML::Port

OMG Systems Modeling Language, v1.6

229

Node Name

Concrete Syntax

Abstract Syntax Reference

FlowPort

p: Mransmission
t: Transmission

Flow Port

p: ~ITransmission

Conjugated Flow Port

netw orkType: BectricNetw orkType

ac: ACVoltage Ed dc: DCVoltage

Atomic Flow Ports

SysML::PortsAndFlows::FlowPort

ItemFlow

eng: Engine

p:Torque
Targue
p:Torque
=
trns: Transmission

ltem Flow

eng: Engine

IT}

p:Torque

torque:Torgue
p:Torgue

trns: Transmission

Iterm Flow with an tem Property

SysML::PortsAndFlows::ItemFlow

C.3 UML Extensions

C.3.1 Diagram Extensions

C.3.11 Conjucated Ports

Conjugated ports have UMLs Port::isConjugated property equal to true. Arrows in port rectangles indicated flow
property direction are reversed in conjugated ports. Conjugated ports in conjugated ports (nested conjugated ports)
behave as if they were not conjugated. Full ports also cannot be conjugated, because their types can have behaviors and
can be reused on non-conjugated ports. This would require the same behaviors to use the directed features and flow
properties in opposite directions at the same time.

230

OMG Systems Modeling Language, v1.6

The meaning of DirectedFeature::featureDirection property is reversed for conjugated ports. On conjugated ports,
directed features with a feature direction "provided" are required and those with a feature direction "required" are
provided. Port conjugation has no impact on "providedrequired" directed features. The meanings of the "required" and
"provided" literals in FeatureDirection are switched for conjugated ports. In these cases the actual use is in the opposite
direction than the one specified by the enumeration literal.

The meaning of FlowProperty::direction is reversed for conjugated ports. On conjugated ports, flow properties with
direction "in" are out flow properties and those with direction "out" are in flow properties. Port conjugation has no impact
on "inout" flow properties. The meanings of the "in" and "out" literals in FlowDirection are switched for conjugated
ports. In these cases the actual flow direction is in the opposite direction than the one specified by the enumeration literal.

C.3.1.2 FlowPort

A FlowPorts is an interaction point through which input and/or output of items such as data, material, or energy may
flow. The notation of flow port is a square on the boundary of the owning block or its usage. The label of the flow port is
in the format portName: portType. Atomic flow ports have an arrow inside them indicating the direction of the port with
respect to the owning Block. A nonatomic flow port has two open arrow heads facing away from each other (i.e., <>).
The fill color of the square is white and the line and text colors are black.

In addition, flow ports can be listed in a special compartment labeled “flow ports.” The format of each line is:
in | out | inout portName:portType [{conjugated}]

C.313 FlowSpecification

A FlowSpecification specifies inputs and outputs as a set of flow properties. It has a “flowProperties” compartment that
lists the flow properties.

C.3.2 Stereotypes

C.3.21 Package PortsAndFlows

«Metaclass» «Metaclass»
UML4SysML::Port UML4SysML:Interface
«stereotype» «stereotype»
FlowPort Flow Specification
attributes

direction : Flow Direction [1] = inout
/lisAtomic : Boolean

Figure C.1: Deprecated Stereotypes

OMG Systems Modeling Language, v1.6 231

C.3.2.2 FlowPort

Description

A FlowPort is an interaction point through which input and/or output of items such as data, material, or energy may flow.
This enables the owning block to declare which items it may exchange with its environment and the interaction points
through which the exchange is made.

We distinguish between atomic flow port and a nonatomic flow port. Atomic flow ports relay items that are classified by
a single Block, ValueType, or Signal classifier. A nonatomic flow port relays items of several types as specified by a
FlowSpecification.

The distinction between atomic and nonatomic flow ports is made according to the flow port’s type: If a flow port is
typed by a flow specification, then it is nonatomic; if a flow port is typed by a Block, ValueType, or Signal classifier, then
it is atomic.

Flow ports and associated flow specifications define “what can flow” between the block and its environment, whereas
item flows specify “what does flow” in a specific usage context.

Flow ports relay items to their owning block or to a connector that connects them with their owner’s internal parts
(internal connector).

The isBehavior attribute inherited from UML port is interpreted in the following way: if isBehavior is set to true, then the
items are relayed to/from the owning block. More specifically, every flow property within the flow port is bound to a
property owned by the port’s owning block or to a parameter of its behavior. If isBehavior is set to false, then the flow
port shall be connected to an internal connector, which in turn related the items via the port. The need for isBehavior is
mainly to allow specification of internal parts relaying items to their containing part via flow ports.

The isConjugated attribute inherited from the UML Port metaclass is interpreted as follows: It indicates if the flows of
items of a nonatomic flow port maintain the directions specified in the flow specification or if the direction of every flow
property specified in the flow specification is reversed (IN becomes OUT and vice versa). If set to True, then all the
directions of the flow properties specified by the flow specification that types a nonatomic flow port are relayed in the
opposite direction (i.e., an “in” flow property is treated as an “out” flow property by the flow port and vice-versa). By
default, the value is False. This attribute applies only to nonatomic flow ports since atomic flow ports have a direction
attribute signifying the direction of the flow.

In case of flow properties or atomic flow ports of type Signal, inbound properties or atomic flow port are mapped to a
Reception of the signal type (or a subtype) of the flow property’s type. Outbound flow properties only declare the ability
of the flow port to relay the signal over external connectors attached to it and are not mapped to a property of the flow
port’s owning block.

C.3.2.3 Semantic Variation Points

The binding of the flow properties on the ports to behavior parameters and/or block properties is a semantic variation
point. One approach is to perform name and type matching. Another approach is to explicitly use binding relationships
between the ports properties and behavior parameters or block properties.

Attributes
e /isAtomic : Boolean (derived)

This is a derived attribute (derived from the flow port’s type). For a flow port typed by a flow specification the
value of this attribute is False, otherwise the value is True.

e direction : FlowDirection

232 OMG Systems Modeling Language, v1.6

Indicates the direction in which an atomic flow port relays its items. If the direction is set to “in,” then the items
are relayed from an external connector via the flow port into the flow port’s owner (or one of its parts). If the
direction is set to “out,” then the items are relayed from the flow port’s owner, via the flow port, through an
external connector attached to the flow port. If the direction is set to “inout,” then items can flow both ways. By
default, the value is inout.

Constraints
[17 A FlowPort shall be typed by a FlowSpecification, Block, Signal, or ValueType.

[2] If the FlowPort is atomic (by its type), then isAtomic=True, the direction shall be specified (has a value), and
isConjugated is not specified (has no value).

[3] If the FlowPort is nonatomic, and the FlowSpecification typing the port has flow properties with direction “in,” the
FlowPort direction shall be “in” (or “out” if isConjugated=true). If the flow properties are all out, the FlowPort direction
shall be out (or in if isConjugated=true). If flow properties are both in and out, the direction shall be inout.

[4] A FlowPort can be connected (via connectors) to one or more flow ports that have matching flow properties. The
matching of flow properties shall be done in the following steps:

1.Type Matching: The type being sent shall be the same type or a subtype of the type being received.

2.Direction Matching: If the connector connects two parts that are external to one another, then the
direction of the flow properties shall be opposite, or at least one of the ends should be inout. If the
connector is internal the owner of one of the flow ports, then the direction shall be the same or at least
one of the ends shall be inout.

3.Name Matching: In case there is type and direction match to several flow properties at the other end,
the property that has the same name at the other end shall be selected. If there is no such property, then
the connection is ambiguous (ill-formed).

[5] If a flow port is not connected to an internal part, then isBehavior shall be set to true.

The item flows specified as flowing on a connector between flow ports shall match the flow properties of the ports at
each end of the connector: the source of the item flow should be the port that has an outbound/bidirectional flow property
that matches the item flow’s type and the target of the item flow should be the port that has an inbound/bidirectional flow
property that matches the type of the item flow.

If a flow port is connected to multiple external and/or internal connectors, then the items are propagated (broadcast) over
all connectors that have matching properties at the other end.

C.3.24 FlowSpecification
Description

A FlowSpecification specifies inputs and outputs as a set of flow properties. A flow specification is used by flow ports to
specify what items can flow via the port.

Constraints
[1] Flow specifications shall not own operations or receptions (they can only own FlowProperties).

[2] Every “ownedAttribute” of a FlowSpecification shall be a FlowProperty.

OMG Systems Modeling Language, v1.6 233

C.3.25 ItemFlow (deprecated compatibility rule)

ItemFlows are not deprecated, but when used with atomic flows ports, have a deprecated modification of item flow
compatibility rules that treats types of source and target atomic ports as if they were types of flow properties on types of
those ports.

C4 Transitioning SysML 1.2 Flow Ports to SysML 1.3 Ports
(informative)

To convert a SysML 1.2 flow port to ports in this version of SysML it is recommended to use the following guidelines:

1. Decide if the port should be converted to a proxy port, a full port, or an unstereotyped port.
2. Based on the decision in step 1, create a block (for proxy ports, it shall be an interface block specifically).
3. If the original flow port is non-atomic:

a. Copy all the flow properties owned by the flow port’s type, a flow specification, to the block created in step 2
(meaning the flow properties will be owned by the newly created block).

b. Replace the type of the port with the block created in step 2.
¢. Remove the flow port stereotype from the port.

d. Based on the decision in step 1, apply the ProxyPort or FullPort stereotype, or do nothing if the decision is not
to use either one.

e. If the proxy stereotype is applied in step 3d, and there is a single connector from the port to a part, the
BindingConnector may be applied to the connector.

f. If the flow specification is not referenced by other model elements, delete it.
4. If the original flow port is atomic:

a. On the block created in step 2, specify a flow property typed by the same type as the flow port and with the
same direction as the original flow port.

b. Do steps b to d from step 3 about non-atomic flow ports.

234 OMG Systems Modeling Language, v1.6

C.5 Transitioning SysML 1.3 Viewpoint and View to SysML 1.4
(informative)

Refactoring a view model build from the SysML 1.3 defined viewpoint, view, conforms, and the UML package import
mechanism could be performed as follows:

e Conform

e Replace v1.3 Conform with v1.4 Conform. The conform target in 1.3 becomes the general classifier in
1.4.

e View
e Replace v1.3 View package with 1.4 View class
e Viewpoint
e For each Stakeholder string, create a stakeholder with the string as the name

e Update the stakeholder property on the new viewpoint with the created stakeholder

e For each method string of the 1.3 viewpoint, create the operation «create» View() and append the string
to the body of a comment that annotates the operation.

e FElement and package import

e Replace each package and element import with an expose relationship.

C.6 Transitioning SysML 1.3 Units and QuantityKinds to SysML 1.4
(informative)

Changing units and quantity kinds from SysML 1.3 to SysML 1.4 can be accomplished as follows, depending on the kind
of element being changed:

e An InstanceSpecification stereotyped by SysML 1.3 Unit:
e Unapply the SysML 1.3 Unit stereotype.
e Classify the instance specification by SysML::Libraries::UnitAndQuantityKind::Unit.

o Set the values of SysML 1.4 Unit properties (symbol, description, definitionURI) to the values of the
Unit stereotype properties of the same name (symbol, description, definitionURI).

e An InstanceSpecification stereotyped by SysML 1.3 QuantityKind:
e Unapply the SysML 1.3 QuantityKind stereotype.

e Classifying the instance specification by SysML::Libraries::UnitAndQuantityKind::QuantityKind.

OMG Systems Modeling Language, v1.6 235

236

Set the values of SysML 1.4 QuantityKind properties (symbol, description, definitionURI) to the
values of the QuantityKind stereotype properties of the same name (symbol, description,
definitionURI).

An InstanceSpecification classified by SysML 1.3 QUDV::Unit or one of its specializations:

If the instance specification has no value for the SysML 1.3 QUDV::Unit::name property, no further
changes are needed.

If the instance specification has a value for the SysML 1.3 QUDV::Unit::name property and the
instance specification has no name, then set its name to the value of the SysML 1.3 QUDV::Unit::name
property.

If the instance specification has a value for the SysML 1.3 QUDV::Unit::name property and the
instance specification has a name, then choose whether to keep the same name for the instance
specification or use the value of the SysML 1.3 QUDV::Unit::name property.

An InstanceSpecification classified SysML 1.3 QUDV::QuantityKind or one of its specializations:

If the instance specification has no value for the SysML 1.3 property QUDV::QuantityKind::name,
then no further changes are needed.

If the instance specification has a value for the SysML 1.3 property QUDV::QuantityKind::name and
the instance specification has no name, then set the name of the instance specification to the value of
the SysML 1.3 QUDV::QuantityKind::name property.

If the instance specification has a value for the SysML 1.3 property QUDV::QuantityKind::name and
the instance specification has a name, then choose whether to keep the same name for the instance
specification or use the value of the SysML 1.3 QUDV::QuantityKind::name property.

An InstanceSpecification An InstanceSpecification classified by SysML 1.3 QUDV::Scale. Each SysML 1.3
QUDV::ScaleValueDefinition becomes an EnumerationLiteral such that:

The numeric value of SysML 1.3 QUDV::ScaleValueDefinition::value becomes a specification of the
corresponding EnumerationLiteral.

The string value of SysML 1.3 QUDV::ScaleValueDefinition::description becomes a comment on the
corresponding EnumerationLiteral.

Blocks defined as specializations of SysML 1.3 QUDV::Unit do not require changes in SysML 1.4.

Blocks defined as specializations of SysML 1.3 QUDV::QuantityKind do not require changes in SysML 1.4
except for the following:

Blocks defined specializations of QUDV::SpecializedQuantityKind in SysML 1.3 become
corresponding Blocks defined as specializations of QUDV::QuantityKind in SysML 1.4.

Usages of SysML 1.3 QUDV::SpecializedQuantityKind::general property become corresponding
usages of QUDV::QuantityKind::general in SysML 1.4.

OMG Systems Modeling Language, v1.6

C.7 Transitioning SysML 1.5 conjugated port typed by InterfaceBlock
to SysML 1.6 conjugated InterfaceBlock
(informative)

Here are the migration rules from former versions of SysML in pseudo code, they can be easily automated:
For each port with isConjugated=true
do {
assume t1 is the type the port
if t1 is a kind of InterfaceBlock then
{
if tl.getConjugated() return an empty result then
{

create a new InterfaceBlock t2 with the name of tl1 prepended by a tilde
symbol (~)

For each feature of t1
do {
create the exact same feature f' in t2

if f' has the FlowProperty stereotype applied

{
if the direction of f' is "in" then
set f' direction to "out"
else if direction of f' is "out" then
set f' direction to "in"
else do nothing
}
else if f' has the DirectedFeature stereotype applied
{

if the direction of f' is "provided" then
set f' direction to "required"
else if direction of f' is "required" then

set f' direction to "provided"

OMG Systems Modeling Language, v1.6 237

else do nothing

}
else
{
apply the DirectedFeature stereotype to f'
set f' direction to "required"
}

For each owned rule r of t1
do {
create the exact same owned rule r' in t2

}

create a dependency from t2 to tl with the Conjugation stereotype applied

}
set this port type to t2

set this port isConjugated to false

238 OMG Systems Modeling Language, v1.6

Annex D: Sample Problem

(Informative)

D.1 Purpose

The purpose of this annex is to illustrate how SysML can support the specification, analysis, and design of a system using
some of the basic features of the language.

D.2 Scope

The scope of this example is to provide at least one diagram for each SysML diagram type. The intent is to select
simplified fragments of the problem to illustrate how the diagrams can be applied, and to demonstrate some of the
possible inter-relationships among the model elements in the different diagrams. The sample problem does not highlight
all of the features of the language. The reader should refer to the individual clauses for more detailed features of the
language. The diagrams selected for representing a particular aspect of the model, and the ordering of the diagrams are
intended to be representative of applying a typical systems engineering process, but this will vary depending on the
specific process and methodology that is used.

D.3 Problem Summary

The sample problem describes the use of SysML as it applies to the development of an automobile, in particular a Hybrid
gas/electric powered Sport Utility Vehicle (SUV). This problem is interesting in that it has inherently conflicting
requirements, viz. desire for fuel efficiency, but also desire for large cargo carrying capacity and off-road capability.
Technical accuracy and the feasibility of the actual solution proposed were not high priorities. This sample problem
focuses on design decisions surrounding the power subsystem of the hybrid SUV; the requirements, performance
analyses, structure, and behavior.

This annex is structured to show each diagram in the context of how it might be used on such an example problem. The
first sub clause shows SysML diagrams as they might be used to establish the system context; establishing system
boundaries, and top level use cases. The next sub clause is provided to show how SysML diagrams can be used to
analyze top level system behavior, using sequence diagrams and state machine diagrams. The following sub clause
focuses on use of SysML diagrams for capturing and deriving requirements, using diagrams and tables. A sub clause is
provided to illustrate how SysML is used to depict system structure, including block hierarchy and part relationships. The
relationship of various system parameters, performance constraints, analyses, and timing diagrams are illustrated in the
next sub clause. A sub clause is then dedicated to illustrating definition and depiction of interfaces and flows in a
structural context. The final sub clause focuses on detailed behavior modeling, functional and flow allocation.

D.4 Diagrams

D.4.1 Package Overview (Structure of the Sample Model)

D.4.1.1 Package Diagram — Applying the SysML Profile

As shown in Figure D.1, the HSUVModel is a package that represents the user model. The SysML Profile shall be
applied to this package in order to include stereotypes from the profile. The HSUVModel may also require model
libraries, such as the SI Units Types model library. The model libraries shall be imported into the user model as indicated.

OMG Systems Modeling Language, v1.6 239

pkg [Package] ModelingDomain [Establishing HSUV ModeIJJ
«profile»
SysML
NS
N ~
\ .
! apply>» ~ «apply» {stict
| {strict} ~
~
I | ~ —
«ModelLibrary»
. H M |

Sl Definitions o _ «importy SUV Mode

Figure D.1: Establishing the User Model by importing and applying SysML Profile & Model Library (Package
Diagram)

Figure D.2 details the specification of units and valueTypes employed in this sample problem.

pkg [Package] ModelingDomain [Defining valueTypes and units to be Used in the Sample PmblemJJ

«ModelLibrary»
SlDefinitions.

«ModelLibrary» I .
Automotive Value Types § il
wal;‘;{pe» Automotive Units
«unit» «unity «unit»
g mph hp DerivedUnit
{quantityKind = Acceleration} {quantityKind = Velocity} {quantityKind = Power}
Horsepwr Accel Weight
unit:. “hp Uni(:.;g B unit="_1b «unity «unit» «unity
ZE ft sec
{quantityKind = Temperature} {quantityKind = Distance} {quantityKind = Time}
Global Time z «unit» «unit» «unity
Vel Dist :
slue Type s = itar] b
unit="sec unit= ;mbh unit= —ﬁ {quantityKind = Pressure} {quantityKind = Volume} {quantityKind = Mass}
Temp Press Vol
unit=_ I°F unit="psi unit="_f"3

Figure D.2: Defining value Types and units to be used in the Sample Problem

240 OMG Systems Modeling Language, v1.6

D.4.1.2 Package Diagram — Showing Package Structure of the Model

The package diagram (Figure D.3) shows the structure of the model used to evaluate the sample problem. Model
elements are contained in packages, and relationships between packages (or specific model elements) are shown on this
diagram. The relationship between the views (Operational View and PerformanceView) and the rest of the user model are
explicitly expressed using the «import» relationship. Note that the «view» models contain no model elements of their
own, and that changes to the model in other packages are automatically updated in the Operational and Performance
Views.

pkg [Package] HSUV Model)

HSUV Behavior HSUV Structure HSUV HSUV UseCases
Requirements
L4 ()
HSUV Interfaces
DeliverPower «domain» HSUV Specification HSUV Analysis
Behavior Autom otive Domain
HSWV : HybridSUV
vehicleCargo : Baggage
drivingConditions : Environment
- b «requirement»
: Passenger 2 Performance
: Maintainer Automotive Value
Types

HSUV Views HSUV ViewEoints HSUV View point Methods

«vie-w » & :.Vlewlp‘(;!nt» - «activity»
SUV Functional View perational Viewpoin Requirement Query
«iew » «view point»
HSUV Performance Performance View point

Figure D.3 Establishing Structure of the User Model using Packages and Views (Package Diagram)

D.4.2 Setting the Context (Boundaries and Use Cases)

D.4.2.1 Internal Block Diagram — Setting Context

The term “context diagram,” in Figure D.4, refers to a user-defined usage of an internal block diagram, which depicts
some of the top-level entities in the overall enterprise and their relationships. The diagram usage enables the modeler or

OMG Systems Modeling Language, v1.6 241

methodologist to specify a unique usage of a SysML diagram type using the extension mechanism described in Annex A,
“Diagrams.” The entities are conceptual in nature during the initial phase of development, but will be refined as part of
the development process. The «system» and «external» stereotypes are user defined, not specified in SysML, but help the
modeler to identify the system of interest relative to its environment. Each model element depicted may include a
graphical icon to help convey its intended meaning. The spatial relationship of the entities on the diagram sometimes
conveys understanding as well, although this is not specifically captured in the semantics. Also, a background such as a
map can be included to provide additional context. The associations among the classes may represent abstract conceptual
relationships among the entities, which would be refined in subsequent diagrams. Note how the relationships in this
diagram are also reflected in the Automotive Domain Model Block Definition Diagram, Figure D.15.

aContextCiagrams
ibd [Domain] AutomativeDomain [Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram. (Internal Block Diagram) Completeness of Diagram Noted in Diagram Description

:Driver x1: «systems x5
HSWV : HybridSUV
X2 / @ agxternals

& driving : Environment

\ x3: aextarnals
thet : Weath aeternale
MHeTIa e aK object : ExternalObject [1..]

: Maintainer

:Passenger
wexlernals

vehicleCargo : Baggage
P =
Q

aexternals
road : Road [1.."]

adiagramDescriptions

fcompletenass = “partial. Does not include gas pump and other axtamal
fnterfaces.”,
-~ Wescription = "Initial cencept to identify top level domain entities”,
L = "0Ops Concept Description®,

- ersion = "0.17}

Figure D.4 Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram.
(Internal Block Diagram) Completeness of Diagram Noted in Diagram Description

The use case diagram for “Drive Vehicle” in Figure D.5 depicts the drive vehicle usage of the vehicle system. The subject
(HybridSUV) and the actors (Driver, Registered Owner, Maintainer, Insurance Company, DMV) interact to realize the
use case.

242 OMG Systems Modeling Language, v1.6

uc [Package] HSUVUseCase | Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram) JJ

Hybrid SUV

Operate the vehicle
%__,I____

Driver

Insure the vehicle)—j: :
Insurance Company
RegisteredOwner i i | e
Register the vehicle Department Of Motor Vehicle

P Maintain the vehicle
Maintainer

Figure D.5 Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram)

D.4.2.2 Use Case Diagram — Operational Use Cases

Goal-level Use Cases associated with “Operate the Vehicle” are depicted in the following diagram. These use cases help

flesh out the specific kind of goals associated with driving and parking the vehicle. Maintenance, registration, and
insurance of the vehicle would be covered under a separate set of goal-oriented use cases.

uc [Package] HSUVUseCase [Establishing Operational Use Cases for "Drive the Vehicle” (Use Case Diagram) JJ

Hybrid SUV
Start the vehicle
=
wextend» —
e
=
s
= " «include»
—_— Drive the vehicle e Accelerate
Driver —
s
. «include»
=
~
«inc\ud‘e»\
S

il

«includen

Figure D.6 Establishing Operational Use Cases for “Drive the Vehicle” (Use Case Diagram)

OMG Systems Modeling Language, v1.6

243

D.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)

D.4.3.1 Sequence Diagram — Drive Black Box

Figure D.7 shows the interactions between driver and vehicle that are necessary for the “Drive the Vehicle” Use Case.
This diagram represents the “DriveBlackBox” interaction, with is owned by the AutomotiveDomain block. “BlackBox”
for the purpose of this example, refers to how the subject system (HybridSUV block) interacts only with outside
elements, without revealing any interior detail.

The conditions for each alternative in the alt controlSpeed sub clause are expressed in OCL, and relate to the states of the
HybridSUV block, as shown in Figure D.8.

sd [Interaction] Specification Models [Blaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram) JJ

vehiclelnContext : HybridSUV |
T
|]
| |
| |
|]
| 1
r's
ref
StartVehicle BlackBox
i |
|]
r
[]
o
alt
[
| ret]
Idle

1seEcolhsta’[e[accelerating-’c ruising] o

Accelerate/Cruise

[self colinState(brakina)]

O
ref |
Brake
_________________ —
ref
Steer
% -

ParkiShutdewnVehicle

Figure D.7 Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram)

D.4.3.2 State Machine Diagram — HSUV Operational States

Figure D.8 depicts the operational states of the HSUV block, via a State Machine named “HSUVOperationalStates.”
Note that this state machine was developed in conjunction with the DriveBlackBox interaction in Figure D.7. Also note

244 OMG Systems Modeling Language, v1.6

that this state machine refines the requirement “PowerSourceManagment,” which will be elaborated in the requirements

sub clause of this sample problem. This diagram expresses only the nominal states. Exception states, like

“acceleratorFailure,” are not expressed on this diagram.

(‘stm [State Machine] HSUV OperationalStates [HSUV OperationalStates]J

® -

start

off keyOIf ®

shutOff

accelerate

Accelerating/
Cruising

Operate

releaseBrake

engageBrake

Refines
<<Requirement>>
PowerSourceManagement

Nominal states only

Figure D.8 Finite State Machine Associated with “Drive the Vehicle” (State Machine Diagram)

D.4.3.3 Sequence Diagram — Start Vehicle Black Box & White Box

Figure D.9 shows a “black box” interaction, but references “StartVehicleWhiteBox” (Figure D.10), which will

decompose the lifelines within the context of the HybridSUV block.

sd [Black Box Interaction for “StartVehicle,” referencing White Box Interaction (Sequence Diagram) JJ

driver : Driver

vehiclelnContext : Hybrid SUV |

1: StartVehicle

»

I
1
I
I
I
I
I
I

ref

White Box Interaction for “StartVehicle” (Sequence Diagram)

Figure D.9 Black Box Interaction for “StartVehicle,” referencing White Box Interaction (Sequence Diagram)

OMG Systems Modeling Language, v1.6

245

The lifelines on Figure D.10 (“whitebox” sequence diagram) need to come from the Power System decomposition. This
now begins to consider parts contained in the HybridSUV block.

sd [White Box Interaction for “StartVehicle” (Sequence Diagram)JJ

pecu : Pow erControlUnit ‘ | epc : HectricalPow erController

1: Enable

Figure D.10 White Box Interaction for “StartVehicle” (Sequence Diagram)
D.4.4 Establishing Requirements (Requirements Diagrams and Tables)

D.4.41 Requirement Hierarchy

The vehicle system specification contains many text based requirements. A few requirements are highlighted in Figure
D.11, including the requirement for the vehicle to pass emissions standards, which is expanded for illustration purposes.
The containment (cross hair) relationship, for purposes of this example, refers to the practice of decomposing a complex
requirement into simpler, single requirements.

246 OMG Systems Modeling Language, v1.6

req [Package] HSUVRequirements [Establishing HSUV Requirements Hierarchy (containment) - (Requirements Diagram)]j

1

[:}]

HSWV Specification

T%

«requirements
Eco-Friendiness

«requirements

«requirements

«requirements

Performance Ergonomics Qualification
& j& L] eg &
«requirement» «requirement» «requirements «requirement» «requirementy
Braking FuelEconomy OffRoadCapability Acceleration SafetyTest

«requirement»
Emissions
Id="R1.2.1"
Text = "The vehicle shall meet Ultra-low
Emissions vehicle standards "

e

«requirements
Capacity

«requirements
CargoCapacity

i

«requirement»
PassengerCapacity

«requirement»
FuelCapacity

Figure D.11 Establishing HSUV Requirements Hierarchy (containment) — (Requirements Diagram)

D.4.4.2 Requirement Diagram — Derived Requirements

Figure D.12 shows a set of requirements derived from the lowest tier requirements in the HSUV specification. Derived
requirements, for the purpose of this example, express the concepts of requirements in the HSUV Specification in a
manner that specifically relates them to the HSUV system. Various other model elements may be necessary to help
develop a derived requirement, and these model element may be related by a «refinedBy» relationship. Note how
PowerSourceManagement is “RefinedBy” the HSUVOperationalStates model (Figure D.8). Note also that rationale can
be attached to the «deriveReqt» relationship. In this case, rationale is provided by a referenced document “Hybrid Design

Guidance.”

OMG Systems Modeling Language, v1.6

247

req [Package] HSUVRequirements [Establishing Derived Requirements and Rationale from Low est Tier of Requirements Hierarchy (Requirements Diagram) _]J

arequirements «wrequirements arequirements srequirements wrequirements srequirements
Braking FuelEconomy FuelCapacity OffRoadCapability Acceleration CargoCapacity
L3 Rk ™ = IS L3
Ny N ~
\ / \ ~ N |
~ LY e
\ / 1 . #deriveReqty . ! |
\ / \ N - ~ ciivaRedh ~ A :
~ «deriveReqty % .
wderiveReqts \ aderiveReqgts \ N = \ «deriveRegts \ “drrNERqu”
~ ~ 0
/ ~ .
| / \ % wrequirements k idameRe\qln |
\ ; «deriveReqls ™~ Range ~ N |
™ ~
arequirements \ 5, % N\ |
RegenerativeBraking \]
| wrequirements
goroleme. L Power

Power needed for acceleration, off-road performance &

(eargo capacity conflicts with fuel economy i
RefinedBy \ p—
HSUV Operational States -
ST wderiveRagts

< \ _
= . s s
—

arequirements
PowerSourceManage ment

arationalexs
Power delivery must happen by
coordinaled control of gas and electric
motors. See "Hybrid Design
Guidance"

Figure D.12 Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchy

(Requirements Diagram)

D.4.4.3 Requirement Diagram — Acceleration Requirement Relationships

Figure D.13 focuses on the Acceleration requirement, and relates it to other requirements and model elements. The
“refine” relation, introduced in Figure D.12, shows how the Acceleration requirement is refined by a similarly named use
case. The Power requirement is satisfied by the PowerSubsystem, and a Max Acceleration test case verifies the

Acceleration requirement.

req [Package] HSUVRequirements [Acceleration Requirement Relationships (Requirements Diagram) JJ

«requirement»

. Acceleration
«refine» _

_;
«deriveReqty .~

Ve
< \

«requirement»
Power

\ «verify»

«testCase»
Max Acceleration

«satisfy» . -7
-

«block»
PowerSubsystem

Figure D.13 Acceleration Requirement Relationships (Requirements Diagram)

248

OMG Systems Modeling Language, v1.6

D.4.4.4

Table — Requirements Table

Figure D.14 contains two diagrams that show requirement containment (decomposition), and requirements derivation in

tabular form. This is a more compact representation than the requirements diagrams shown previously.

table [requirement] Performance [Decompasition of Performance Requuememy

id

name

text

2|Performance

The Hybrid SUV shall have the braking, acceleration, and off-
road capability of a typical SUV, but have dramatically better
fuel economy.

The Hybrid SUV shall have the braking capability of a typical

2.1|Braking SUV.
The Hybrid SUV shall have dramatically better fuel economy
2.2|FuelEconomy than a typical SUV.

2

3| OffRoad Capability

The Hybrid SUV shall have the off-road capability of a
typical SUV.

2.

4|Acceleration

The Hybrid SUV shall have the acceleration of a typical

SUV.

table [requirement] Performance [Tres of Petformance Requiresmsnits]]

id

hame

relation id |name relation |id name

241

Braking

deriveReqt [d.1 |RegenerativeBraking

2.2 | FuelEconomy

deriveReqt |d.1 |RegenerativeBraking

deriveReqt [d.2 |Range

4.2 |FuelCapacity

deriveReqt [d.2 |Range

2.3 |OffRoadCapability deriveReqt |d.4 |Power deriveReqt |[d.2 |PowerSourceManagement
2.4 |Acceleration deriveReqt |d.4 |Power deriveReqt [d.2 | PowerSourceManagement
4.1 |CargoCapacity deriveReqt [d.4 |Power deriveReqt [d.2 |PowerSourceManagement

Figure D.14 Requirements Relationships Expressed in Tabular Format (Table)

D.4.5

Diagrams)

D.4.51

Figure D.15 provides definition for the concepts previously shown in the context diagram. Note that the interactions
DriveBlackBox and Stac4rtVehicleBlackBox (described in D.4.3 Elaborating Behavior (Sequence and State Machine
Diagrams), are depicted as owned by the AutomotiveDomain block.

OMG Systems Modeling Language, v1.6

Block Definition Diagram — Automotive Domain

Breaking Down the Pieces (Block Definition Diagrams, Internal Block

249

bdd [Package] HSUV Structure [Automotive Domain Breakdow n JJ

«domain»
Automotive Domain

owned behaviors

DriveBlackBox

StartVehicleBlackBox
HSUV l vehicleCargo l drivingConditions
«system «externah «externabh
HybridSUvV Baggage Environment
Driver Maintainer Passenger
lweather 1.* |object 12 lroad
«external» «external» «external»
Weather ExternalObject Road

Figure D.15 Defining the Automotive Domain (compare with Figure D.4) — (Block Definition Diagram)

D.4.5.2 Block Definition Diagram — Hybrid SUV

Figure D.16 defines components of the HybridSUV block. Note that the BrakePedal and WheelHubAssembly are used
by, but not contained in, the PowerSubsystem block.

bedd [ock] AuiomoiheD omain [HybridSLA Breakdowr] _,I
HyBrd S
—‘—
P Bk b i L &
! ¥ k. § L] b J
Powsr SUbEyEtem BrakeSulysystem BodySubsystem Initeri orSuls syl &m LightingSul:syestem ChassisSubeytan
i T ~ |
i O b3 2l |4
1 | N\ 0
| #rATio ke
BrakeFadal | 2 wheel diive B the only vy 1 gel ‘—‘ Wheed Hub A 55 slehy
| | BCoeptable Tud sconomy . & Molgh it
| imiks off-road capabdiy

Figure D.16 Defining Structure of the Hybrid SUV System (Block Definition Diagram)

D.4.5.3 Internal Block Diagram — Hybrid SUV
Figure D.17 shows how the top level model elements in the above diagram are connected together in the HybridSUV
block.

250 OMG Systems Modeling Language, v1.6

ibd [Block] HybridSUV)

b : BodySubsystem

c:ChassisSubsystem

p : PowerSubsystem

bk : BrakeSubsystem

b-i i :InteriorSubsystem
L H
bk-I I : LightingSubsystem

p-bk

Figure D.17 Internal Structure of Hybrid SUV (Internal Block Diagram)

bdd HSUV Structure [Defining Structure of Pow er Subsystem (Block Definition Diagram) JJ

WheelHubAssembly

bkp [1

BrakePedal

acl

Accelerator

bp
BatteryPack

ft
FuelTankAssembly

0.1

fp
FuelPump

pou epc
Fow erControlUnit HectricalPow erController
ice emg

InternalCombustionEngine

fi

4
Fuelinjector

BectricMotorGenerator

w |1 rfw [1
FrontWheel

dif

Differential

trsm

Transmission

Figure D.18 Defining Structure of Power Subsystem (Block Definition Diagram)

D.4.54

Figure D.19 shows how the parts of the PowerSubsystem block, as defined in the diagram above, are used. It shows
connectors between parts, ports, and connectors with item flows. The dashed borders on FrontWheel and BrakePedal

Internal Block Diagram for the “Power Subsystem”

denote the “use-not-composition” relationship depicted elsewhere in Figure D.16 and Figure D.18. The dashed borders
on Fuel denote a store, which keeps track of the amount and mass of fuel in the FuelTankAssy. This is also depicted in

Figure D.18.

OMG Systems Modeling Language, v1.6

251

ibd [Block] Pow erSubsystem [Internal Structure of the Pow er Subsystem (internal Block Diagram| }J

‘ bp : BatteryPack bp-epc epc : BectricalPow erConroller | 2 : BectricCurrent | amg : BactricMotorGanerator

Jctd it : BectricCurrent %]

|_IEPCCmd |_TRSMCrnd | rfw : FrontWheel [1] I]
acl - Accelerator Ck ! | [—[

elrl " _—— AL

£2 irsm: Transmission spling :

L2 : Torque
r Y
| EPCCrd il
ackecu
Tor guein

o Hre ’ rightHalf Shaft

i

g1 : Torque gh

peu : Pow erCantrallnit
rsm

ice : InternalCombusionEngine

ice

fi : Fuelinjector [4] Wsm
| TRSMCmd [
bkp-ecu |_ICEData @ 1 : Torque- i : Differantial
1

| ICECTds ICEData - el "_'L
_____ fdist
" bkp - BrakePedal[1] | |_ICECma | &
il il eMHaIrShart
Poit : ICEFuelFitting
ft : FuelTankAssembly #EOMTEnts

ctrl | 3 |

X whlocks [
fp : FuslPump % effort : “FuslTankFiting fuelDelivery 3 | Mfw : FrantWhesl [1]]
Lrl TualResturn . Fusl fuedSupply -Foel - - —— — — 4

Figure D.19 Internal Structure of the Power Subsystem (Internal Block Diagram)

bdd [Block] PowerSubsystem [ICE Port Type Deﬁn'riions])
<<~InterfaceBlock>>
<<InterfaceBlock>> ~ICE
ICE {original=ICE}
operations operations
setThrottle(throttlePosition:Real):void reqd setThrottle(throttlePosition:Real):void
setMixture(mixture:Real):void reqd setMixture(mixture:Real):void
value properties value properties
rpm : Integer reqd rpm : Integer
Temperature : Real reqd Temperature : Real
isknocking : Boolean reqd isknocking : Boolean
reqd isControlOn : Boolean isControlOn : Boolean

Figure D.20 Blocks Typing Ports in the Power Subsystem (Block Definition Diagram)
Figure D.20 provides definition of the block that types the ports linked by connector ¢l in Figure D.19.

D.4.6 Defining Ports and Flows

D.4.6.1 Block Definition Diagram — ICE Flow Properties

For purposes of example, the ports, flows, and related point-to-point connectors in Figure D.19 are being refined into a
common bus architecture. For this example, ports with flow properties have been used to model the bus architecture.
Figure D.21 is an incomplete first step in the refinement of this bus architecture, as it begins to specify the flow
properties for InternalCombustionEngine, the Transmission, and the ElectricalPowerController.

252 OMG Systems Modeling Language, v1.6

bdd |Peckege] CAM Bus Flow Properties [indally Defining Porl Types with Fow Properties for the CAM Bus (Block Definition Diagram) iJ

= Interface Block™
FS_ICE

<o InterfaceRlnck=>
~F5_ICE
{original=F§_ICE}

out engnaliata: ICEData
n mixiure. Real
n throttiePasition: Rea

Bovew [T
n engineData: ICEData
aut mixture: Real
out throttlePostion: Real

~=InterfaceBlock=>
FS_TRSM

S [T i

“<Interface Blnck
FS_EPC

Fow propemes |

- w—==" bus tairom the

| To be speciied — What iz
| baing exchangad over the

| transmssion

T be specitied — Whal i1s
being axchanged ovar the
bus oTonm e eleclronc
powear condrofler

=Zignals
ICEData

Tpim: Integer
temparatura: Real
isKnockeng. Bookean

“eImerfaceBlock=>
~FS TRSM

Mo prOOENeS

“=InterfaceBlock:>
~FS_EPC
Mo e T

Figure D.21 Initially Defining Port Types with Flow Properties for the CAN Bus (Block Definition Diagram)

D.4.6.2 Internal Block Diagram — CANbus

Figure D.22 continues the refinement of this Controller Area Network (CAN) bus architecture using ports. The explicit
structural allocation between the original connectors of Figure D.19 and this new bus architecture is shown in Figure

D.39.

ibd [Block] Pow erSubsystem[CAN Bus DescriplionJJ

epc : HectricalPowerController

trsm : Transmission

ice : InternalCombustionEngine

H £l &
fp: FS_EPC fp: FS_TRSM fp: FS_ICE
can : CAN_Bus
eepc : ~IFS_EPC |etrsm: ~IFS_TRSM eice : ~IFS_ICE
v {3 v

pcu : PowerControlUnit

Figure D.22 Consolidating Connectors into the CAN Bus. (Internal Block Diagram)

D.4.6.3 Block Definition diagram — Fuel Flow Properties
The ports on the FuelTankAssembly and InternalCombustionEngine (as shown in Figure D.19) are defined in Figure
D.23.

OMG Systems Modeling Language, v1.6 253

bdd [Package] HSUV Structure [Baboring Definition of Fuel Flow 1]

«block» «block»
PowerSubsystem Fuel

temperature : Temp
pressure : Press
fuelPressure : Real

ft ice
«blocks» » «block»
FuelTankAssembly ICEFuelFitting : FuelFlow |14te rnalCombustionEngine
€
flow properties - flow properties
n fuelSupply : Fuel{readOnly} | FuelTankFitting : ~FuelFlow out fuelSupply : Fuel
out fuelReturn : Fuel in fuelReturn : Fuel{readOnly}
«flow Specification»
FuelFlow

out fuelSupply : Fuel
in fuelReturn : Fuel

Figure D.23 Elaborating Definition of Fuel Flow. (Block Definition Diagram)

D.4.6.4 Parametric Diagram — Fuel Flow

Figure D.24 is a parametric diagram showing how fuel flowrate is related to FuelDemand and FuelPressure value
properties.

par [Block] Pow erSubsystem[Defining Fuel Flow Constraints (Parametric Diagram)]J

ice.fi.fuelDemand : Real

| injectorDemand : Real

L]

«constraint»
fuelFlow : FuelFlow
{flow rate=press/(4*injectorDemand)}

ice.ft.fuelFlow Rate : Real

ice.fre.fuel.fuelPressure : Real

flow rate ; Real

press : Real

Figure D.24 Defining Fuel Flow Constraints (Parametric Diagram)

D.4.6.5 Internal Block Diagram — Fuel Distribution

Figure D.25 shows how the connectors fuelDelivery and fdist on Figure D.19 have been expanded to include design
detail. The fuelDelivery connector is actually two connectors, one carrying fuelSupply and the other carrying fuelReturn.
The fdist connector inside the InternalCombustionEngine block has been expanded into the fuel regulator and fuel rail
parts. These more detailed design elements are related to the original connectors using the allocation relationship. The
Fuel store represents a quantity of fuel in the FuelTankAssy, which is drawn by the FuelPump for use in the engine, and
is refreshed, to some degree, by fuel returning to the FuelTankAssy via the FuelReturnLine.

254 OMG Systems Modeling Language, v1.6

ibd [Block] Pow erSubsystem|[Fuel Distribution Detail]J

~

allocated from g
<<connector>> fdist: |~ T meesndy

ice : InternalCombust

T —
%_._ i1 : Fuelinjector

fi2 : Fuellnjector
]

I
i3 : Fuellnjector

7

fi4 : Fuellnjector

.
fre : FuelRegulator

allocatedFrom {4
wconneclorsfuelDelivery
~ 1= s ——
- fuelFitting : Fuel
ft : FuelTankAssembly
fuel : Fuel fp : FuelPump R Line:
_.]p1 - Fuel uengg)!y ine
™ fuelSupply - Fuel
i
-~
| p2 : Fuel rueiRerrnLine:
+
| fuelReturn : Fuel

Figure D.25 Detailed Internal Structure of Fuel Delivery Subsystem (Internal Block Diagram)

D.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)

D.4.71 Block Definition Diagram — Analysis Context

Figure D.26 defines the various model elements that will be used to conduct analysis in this example. It depicts each of
the constraint blocks/equations that will be used for the analysis, and key relationships between them.

OMG Systems Modeling Language, v1.6

255

bdd [Package] HSUV Analysis [Analysis Context]J

CapacityContext UnitCostContext EconomyContext deltat Global Time
0.1 1
t |1
X
1
ad N ad /1ad 0.1
«domain: | HSUV Structure 0.1 «testCasen
AutomotiveDomain MaxAcceleration
-aver'rr\,r»
fe l dynl &
rdrag - «requirements
aconstiaints gconsiraint» «constraint» A lerati
RollingFrictionEquation Fue|EfficiencyEquation StraightLineVehicle Dynamics rearran
cap
«constraint»

CapacityEquation

adragl 1 ‘J’

€ =' sl |‘.l"7 pI W -
{pcap=Sum(Vi}} - cconstraints «ccns_tr.?lntn .
E— wconstraints «wconstraints AaroDiagEquation RegenBrakeEfficie ncyEquation
V1 Vol PayloadEquation TotalWeight g
V2:Vol
V3 : Vol

Figure D.26 Defining Analyses for Hybrid SUV Engineering Development (Block Definition Diagram)

D.4.7.2 Package Diagram — Performance View Definition

Figure D.27 shows the user-defined Performance Viewpoint, and the elements that populate the HSUV specific
PerformanceView. The PerformanceView itself may contain a number of diagrams depicting the elements it contains.

pkg [Package] HSLVView s [Performance View j,J]

Hybrid SUV Model

%

aview »
SUV Functional View

wstakeholders
Customer

presentation = "BDD High-level stlesheetin slide
format”

purpose = "Highlight the performance of the system"
stakeholder = = customer

Miew ()

ar

Concemn = "Will the system perform adequately?" fView Point= Functional\iewpoint
Driver
«view paints wviEw
Performance Viewpoint HSUV Performance

concem ="V.... the system perform adequately?” |Stakeholder= customer

language = "12c469dc-31a8-495e-83b2-T188abBB492" Miew Point= Performance Viewpoint wvalueTypen arequirements
method = Show performance requirements, test l—] 2 a

2 i . 2 i . i i == FuelEc Z Performance

cases, MOE, constraint models, etc.; includes functional HSW Functions : SUV Functional View) mEseonemy e

viewpoint wconforms d="2

Text = "The Hybrid SUV
shall have the braking,
acceleration, and off-road
capability of a typical SUV,
but have dramatically

wvalueTypen
QuarterMileTime

wvalueTypen

Zero60Time

avalueTypen better fuel economy”
CargoCapacity
sconstraints wconstraints
UnitCostEquati E y i

m s
CapacityEquation EPAFuelEconomyTest
«valueTypes
CostEfectiveness

Figure D.27 Establishing a Performance View of the User Model (Package Diagram)

256

OMG Systems Modeling Language, v1.6

D.4.7.3 Package Diagram — Viewpoint Definition

Figure D.28 shows the Requirements and VnV viewpoint definitions with relationships to stakeholders, concerns and
views. The stakeholder and viewpoint share the same concern via comments that are shown textually as values of the

concern property. The comments could be shown graphically with annotation relationships to stakeholders and

viewpoints, if needed. Note that the value of the stakeholder property is an instance of the stereotype not the class to

which the stereotype is applied.

pkg [package] HSUYViews [Viewpoints])

requiremants?"
language="SysML"

/method= Requiraments Query
presentation="Requirements fable
report style-shaat in slide farmat”

ucre aten\fiewl)

astakeholdars aviewpeint: wvigwn
Customer Requirements Hybrid SUV Requirements
astakeholdears aviewpoints aviews
/concem="What are the system stakeholder=Customer fviewpoint=Requirem ants
requirements?”,"Will the system perform purpese="Describe the system Istakeholder=Customer
adequataly?" requiremants.”]
feoncem="/'hat are tha systam w«eonforms

ayiewpeints
vnv

i &
Hybrid SUV Verification
and Validation Plan

aylewpeint:
stakehelder=Customer
purpoese="Describe the YnV " e —————
feoncem="Will the system perform
adequataly?” «conform:

wvigwn
Aiewpoint=vVny
/stakeholder=Customer

language="SysML"
/method=\nVQauery

presentation="ynV report

stylesheet in slide format™

acreaten\Viewy)

Figure D.28 Defining Requirements and VnV viewpoints (Package Diagram)

D.4.7.4 Package Diagram — View Definition

Figure D.29 shows the Requirements and VnV views and the model elements they expose. Note that the expose

relationship relies on the viewpoint method to identify the entire set of elements that appear in the view.

OMG Systems Modeling Language, v1.6

257

phg [package] HSUV Views [HSUV Views])

Hybrid SUV Madel ‘
cviewn =
Hybrid SUV Requirements T)
> DriveCar
wviews e
Mewpoint=Requirements
fstakeholder=Customer Driver
wreguirements
Perfermance
- id="2"
S, RS | Tex! = "The Hybrid SUV
Y shall have the braking,
‘\\ acceleration, and off-road
by capability of a typical SUV,
hY 7] but have dramatically better
b 7| fuel ecanomy.”
v e
‘l ol’
L testCase
wenplsan “ %
':?\ = EPAFuel
P e EconomyTest
Vg E e
Hybrid SUV Verification o CEXPOSEN
and Validation Plan S N
s e 5,
Newp P e cexposer k5 Hyhrid SUV Constraints
= o
fstakeholder=Customer o \\
\L
N
«consiraint» «constraint
UnitCostEquation CapacityEquation
«consiraint»
EconomyEquation

Figure D.29 Requirements and VnV views exposing elements from the model (Package Diagram)

D.4.7.5 Package Diagram — View Hierarchy

Figure D.30 shows the Requirements and VnV views and the supporting views that complete the description of
Requirements and VnV respectively for the Hybrid SUV.

258 OMG Systems Modeling Language, v1.6

pkg [package] HSUVViews [HSUV Views])

wyiewn wVeWs
Hybrid SUV Requirements Hybrid SUV Verification and Validation Plan
wigwn wvigw
fviewpoint=Requirements fviewpoint=VnV
Istakeholder=Customer fstakeholder=Customer

System RequirementsHybnd SUV Requirements

Performance Mocdlel:Hybrid SUV Performance Requirements Test Trace:Hybrid SUV Requirements VnV Trace
Functional Medel:Hybrid SUY Functional View
‘Hybrid SUY Requirements Rationale

aviewsn

. aviewn .
i wviewn - f Hybrid SUY
Hybrid SUV Performance Hyhnid Skl;isﬁggrements Requirements ViV Trace
wvigwn aviewn . _wviews .
Niewpoint=Performance \Viewpoint fviewpoint=R equirements Analysis Niewpoint=VnV Analysis
Istakeholder=Customer Istakeholder=Customer Istakeholder=Customer
‘Hyhbrid SUV Tests

aviewn _aviewn
Hybrid SUV Functional View Hybrid SUV Tests

ayiewn
Iviewpoint=Systems Test
fstakeh older=Customer

aviewn
fviewpoint=Functional Viewpoint
stakeholder=Customer

Figure D.30 The Requirements and VnV views with supporting views (Package Diagram)

D.4.7.6 Package Diagram — Measures of Effectiveness

Measure of Effectiveness is a user defined stereotype. Figure D.31 shows how the overall cost effectiveness of the HSUV
will be evaluated. It shows the particular measures of effectiveness for one particular alternative for the HSUV design,

and can be reused to evaluate other alternatives.

OMG Systems Modeling Language, v1.6

259

par [Block] MeasureOfEifectiveness [HSUV MOEs]J

«moe»
HSUValt1.CostEffectiveness

«moex

[: EconomyEquation ljfi HSWValt1.FuelEconcomy
pl . :
«objectiveFunction»

«IMOER : MyOvijective Function

HSWalt1.QuarterMileTime p2 {CE = Sum|{Wi*Fi)}
: MaxAccleration Anaylsis
p3

Y e H Sl [

HSUValt1.Zero60Time p4 ps

[]

[]

C e at] ve amoen
[e 0 ’j HSWValt1.CargoCapacity

- i «moen
[: UnitCostConstraint |j7 R —

Figure D.31 Defining Measures of Effectiveness and Key Relationships (Parametric Diagram)

D.4.7.7 Parametric Diagram — Economy

Since overall fuel economy is a key requirement on the HSUV design, this example applies significant detail in assessing
it. Figure D.32 shows the constraint blocks and properties necessary to evaluate fuel economy.

par [Block] Economy Context[i i i ips for Fuel Ezonomy C: ions {Parametric Diagram)]J
|de|l&-t |
ad HSUV PayloadCapacity | rb : Re genBrake EfficiencyEquation ad HSLV PowerSubsystem.
Ineline InternalCombustienEngine.,
= ;:l ICEEMieciency
vokame E adrag : AeroDragEquation & acc g
Cd @ OpW n_ice
0 m O O
dyn : StralghiLineVehicle Dy I: :l fe - Fue B et -
prap rohame ingine val vel j
|_| l_l ad.drivingConditions.road.incline I:
pl: PayloadEquation . Wit whigw £]
|—['_| tw |_I{' |—] x |—‘ 1_|
psgriv ol : n_em h e
TEe ——
W H i
g0 :‘ w : TetalWeight i
e | |admw_. £y 5 7Y 7 = l
vaw fw tw ct I ad HSLV.P y B i MotorEffiency
rdrag : RollingFrictionEquation
ad HUW. yWeight

| 2d HSUV Pow erSubsystem FuelTank FusWeight I

Figure D.32 Establishing Mathematical Relationships for Fuel Economy Calculations (Parametric Diagram)

260 OMG Systems Modeling Language, v1.6

D.4.7.8

Parametric Diagram — Dynamics

The StraightLineVehicleDynamics constraint block from Figure D.32 has been expanded in Figure D.33. ConstraintNotes
are used, which identify each constraint using curly brackets {}. In addition, Rationale has been used to explain the
meaning of each constraint maintained.

par [Constraint Block] StraightLine/ ehicle Dynamics [Straight Lina Vehicle Dynamics Mathematical Moﬂel]_]

wn+1}(ff=x(n)+delta-x= xn)+v*deita

=

{x(n+1)=xin)+v{mph)*5 2soxaaon'de|:a%]

—_— >
-
-
-
" -
t -

!
Ccr arationales
1 a(g)=FiM=P"t/m
— Cd
-
— W hlpw r ¢ |{8=1550/32)"ip(hp)"delta-1"tw}
— whlpwr| cd i W £ T
I I R I N LT
pwr : PowerEguatien
acc : AccelerationEguation
Ip tp I:-deﬁa—l
1 J [1]
7 v a
!
wrationales / g‘-:i[
tp(hpj=wheel power -drag-friction s a
vel : VelocityEquation
- Lt . | defta-t lelt_—
{tp=whlpwr-(Cd*vj-{Cftw \:ﬁ i =~ |
-—""J’HHH/’/ I|—|r/ir|'¢:-orted
= o = el
arationales — LE
vin+1}{mph)=wn+detla-v=vin)}=a"delta-t P ol v
pos : PositionBquation __{ daia-
{uln+1)=wn)+a(g)*32* 3600/5280-delta-t} I:
e [1
- l ;
i
arationales L

Figure D.33 Straight Line Vehicle Dynamics Mathematical Model (Parametric Diagram)

The constraints and parameters in Figure D.33 are detailed in Figure D.34 in Block Definition Diagram format.

OMG Systems Modeling Language, v1.6

261

bdd [Package] HSUW Analysis | Definition of Dynamics },J
aconstrants
StraightLineVehicle Dynamics
acc 'Anr:ell o
Cd : Real
i : Real
dt : Glabal Time
mncling : Real
w Waight
vel: Vel
w hlpw P o Horsapw r
x : Dst
pwr pos vel el -
wcanstraints wcanstraints weonstrants Accolicr:is:::c::aﬂon
Pow erEquation Position Equation VelocityEguation ravir
strait UEEETE - " ., g
{tp=w hipws r-(Cd"v}-(Cf *tw *v)) {x{n+1)=x(n)+e(mph) *5280/3600 delta-t) {w(n+1)=v{n|+a(g)"32*3600/5280-delta-t} {a=(550/32)"tp{hp)"delta-t'w }
Cd:Real dalta-1: Global Tame a:Accal - Baa T
Cf - Real v Vel detta-t : Global Time W tersabit
|: Rea x - Dist v_imported @ Vel g |,|' 'c'i ',']_
tp : Horsepwr Weight
tw 2 Waight
v Ve
whipwr @ Horsepw r

Figure D.34 Defining Straight-Line Vehicle Dynamics Mathematical Constraints (Block Definition Diagram)
Note the use of valueTypes originally defined in Figure D.2.

D.4.7.9 (Non — Normative) Timing Diagram — 100hp Acceleration

Timing diagrams, while included in UML 2, are not directly supported by SysML. For illustration purposes, however, the
interaction shown in Figure D.35 was generated based on the constraints and parameters of the
StraightLineVehicleDynamics constraintBlock, as described in the Figure D.33. It assumes a constant 100hp at the drive
wheels, 40001b gross vehicle weight, and constant values for Cd and Cf.

262 OMG Systems Modeling Language, v1.6

time [Interaction] 100 Wheel Horsepow ar | 100 Wheel Horsepow er J_J -

2
-~
-~ !
-
x i o -
0.45 | Satisfies = Accelaration -]
5 T j
go e /
§ o3 \ /
E 0.25 =~ adiagramDescriplions /
T 0.2 ‘ compleleness = "asumes pedect lire traclion®
E 015 descriplion = "condant 100 wheel homsepower, 2000 [b
i vehicle weight, smple drag®,
0.1 elomnce = "Equalion of Molion®,
nos verson = 0,17
o
1] 5 10 15 2
140 7
120
™
__ 100 #
s o
E =m0 /
=
g 80
> a0 "
" g
o
0 5 0 15 2
1800
. V.
1800
"4
1400
= 1200 /
-
1000
g 4
] a00
9 a0
400
L]
0 5 0 15 i
Tamee [Sec)

Figure D.35 Results of maximum Acceleration Analysis (Timing Diagram)
D.4.8 Defining, Decomposing, and Allocating Activities

D.4.8.1 Activity Diagram — Acceleration (top level)

Figure D.36 shows the top level behavior of an activity representing acceleration of the HSUV. It is the intent of the
systems engineer in this example to allocate this behavior to parts of the PowerSubsystem. It is quickly found, however,
that the behavior as depicted cannot be allocated, and must be further decomposed. The stereotypes on the object nodes
between actions in the figure apply to parameters of the behaviors or operations called by the actions (see the notation for
object nodes described in 11.3.1.4, ObjectNode, Variables, and Parameters).

OMG Systems Modeling Language, v1.6 263

factivity [Behavior Model for "Accelerate” Function]J

wcomments
Can'tallocate
these activities to
PwrSubSystem

wcontinuous»
| accelPosition

: ProvidePower

th

MeasureVehicle

Conditions : |
MeasureVehicle
Conditions I
|
| | | #continuous» |
| | vehCond |

«continuous»
drivePower

transModeCmd_imported

Figure D.36 Behavior Model for “Accelerate” Function (Activity Diagram)

D.4.8.2 Block Definition Diagram — Acceleration

Figure D.37 defines a decomposition of the activities and objectFlows from the activity diagram in Figure D.36.

bdd [Activity] Accelerate [Activity and Object flow Breakdown}J

wactivity»
ProvidePower

wactivity»
MeasureVehicle Conditions

al

aactivitys
ProportionPower

mvel hat Ia? drivePow er
ik 7o ProvideGas Power s
MeasureVehicleVelocity | | MeasureBatteryConditions ¢ ¢
gasDrivePow er
«block»
GasPower

k\
aactivitys

ProvideBectricPower

a3

wactivity»
ControlHectricPower

/ \ elecDrivePow er

«bloclks
BecPower

Figure D.37 Decomposition of “Accelerate” Function (Block Definitions diagram)

264

OMG Systems Modeling Language, v1.6

D.4.8.3 Activity Diagram (EFFBD) — Acceleration (detail)

Figure D.38 shows the ProvidePower activity, which includes Actions invoking the decomposed Activities and
ObjectNodes from Figure D.37. It also uses AllocateActivityPartitions and an allocation callout to explicitly allocate
activities and an object flow to parts in the PowerSubsystem block.

Note that the incoming and outgoing object flows for the ProvidePower activity have been decomposed. This was done to
distinguish the flow of electrically generated mechanical power and gas generated mechanical power, and to provide
further insight into the specific vehicle conditions being monitored.

«SwimLaneDiagrams
act [Actwity] Detailed Behavior Model for “Provide Pow er” [Actwity Dvagram)y drivePow er, transModeCmd | | Detailed Behavior Model for "Provide Pow ar” (Activity Diagram)

wallocaten sallocaten wallocalen sallocaten
peu : PowerControlUnit ice : InternalC: ienEngi epc:B i ontroller emg : BactricMotorGe nerator

seontinuous s

ACONtNUOUS »
speed

wgoniinuouss
gThrettle

scontinuous s
drivePower

|
|
|
|
gas
[DrivePower
|
|
|
|
|

a4
Provide BectricPower

Bl

#COnbnoUS «
vehCond

atl:
ProportionPower

acontinuous »
driveCurrant

#contimous J wcontinuouse
eThrottle elecDrive Power

aCONtUCUS »
battCond

- allocatedTo |
.- wltamFlows 1 |
|

A CONEIWOUS &
accelPosition

Figure D.38 Detailed Behavior Model for "Provide Power" (Activity Diagram)
Note hierarchical consistency with Figure D.36.

D.4.8.4 Internal Block Diagram — Power Subsystem Behavioral and Flow Allocation

Figure D.39 depicts a subset of the PowerSubsystem, specifically showing the allocation relationships generated in
Figure D.38.

OMG Systems Modeling Language, v1.6 265

ibd [Block] Pow erSubsystem| Flow Allocation to Pow er Subsystem {Internal Block Diagram} JJ

wdiagramDescriptions
fcompleteness = "partial. Power subsystem elements that have no
gllocation yet have bean elidad”,

allocatedFrom = "all ion of behavior and connectors to elements of power

«continuous»driveCurrent fubsyslem”,
reference = "null”,
ersion = "0.1"}

=~
~
~
LA EectrlcalPov.\rerContrcller,J-! 2: EIeCtZGQ'I"E”I e Bect.llcburrem |—p| mg : BectricMotorGenerator
bt it [. =

«callBehaviorAction»a3 «callBehaviorActionnad

can : CAN_Bus
- fp: FS_TRSME? trsm : Transmission

eepc . ~FS_EPC |eice . ~IFS_ICE etrsm: ~IFS_TRSM fp: FS_ICE
5 15 v e
pcu : PowerControlUnit ice : InternalCombustionEngine
«callBehaviorActionzal «callBehaviorAction»a2

Figure D.39 Flow Allocation to Power Subsystem (Internal Block Diagram)

D.4.8.5 Table — Acceleration Allocation

Figure D.40 shows the same allocation relationships shown in Figure D.38, but in a more compact tabular representation.

D.4.8.6 Internal Block Diagram: Property Values — EPA Fuel Economy Test

bdd [Package] HSUVY Behavior [Figure B.37 Tabular Representation of Allocation from"Accelerate” Behavior Model to Power Subsystem] /J

Type Name End Relation End Type Name

action al : ProportionPower from allocate to part ecy : PowerControlUnit

action a2 : ProvideGasPower from allocate fo part ice : InternalCombustionEngine
action a3 : ControlElectricPower _ |from allocate to part epc : ElectricPowerController
action a4 : ProvideElectricPower |from allocate to part emgq : ElectricMotorGenerator
objectFlow o6 from allocate to connector epc-emg.1

Figure D.40 Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Subsystem (Table)

Figure D.41shows a particular Hybrid SUV (VIN number) satisfying the EPA fuel economy test. Serial numbers of

specific relevant parts are indicated.

266 OMG Systems Modeling Language, v1.6

bd [Bock] 5LV _EPa_Fusl Economy _Test [Test Resulis])

Satisfies : Verifies -
arsUinEnts Ermissions wreduirements Emissions stestCasen
o Tl testRUNDB0401:
\\\ e EPAFuelEconomyTast
I\\
A S
TestVehiclel: HybridSUW
b: BodySubsystem i I: Irterior
Il stes ItV akes
| sn 1D =b12345 sn. 1D = 23456
b
¢: ChassisSubsystem bk bk Brake Subsystem el I: LightingSubsystam
It b It At R
= |D = c34567 an D= bl 5678 shc |0 = IG6TE
op | bhe-pe
p: PowerSubsystem
t: Transmission
am-t et
ElectricalM . ice:l |
e Erctricalfatorn sn. 1D = snd9012 Cnl‘ll'l?ﬂeulstriit;l'rEn:lﬂm
I iV akses
e
sn; 10 = 580123
cn 1D = end7 5901
Nl anes
sn: D = pETesd
e s
VIN = 12345

Figure D.41 Special Case of Internal Block Diagram Showing Reference to Specific Properties (serial numbers)

OMG Systems Modeling Language, v1.6

267

This page intentionally left blank.

268 OMG Systems Modeling Language, v1.6

Annex E: Non-normative Extensions

(Informative)

E.1 Overview

This annex describes useful non-normative extensions to SysML that may be considered for standardization in future
versions of the language.

Non-normative extensions consist of stereotypes and model libraries and are organized by major diagram type, consistent
with how the main body of this International Standard is organized. Stereotypes in this sub clause are specified using a
tabular format, consistent with how non-normative stereotypes are specified in the UML 2 standard. Model libraries are
specified using the guidelines provided in the Profiles & Model Libraries clause of this International Standard.

E.2 Activity Diagram Extensions

E.21 Overview

Two non-normative extensions to activities are described for:
e Enhanced Functional Flow Block Diagrams.
e Streaming activities that accept inputs and/or provide outputs while they are active.
More information on these extensions and the standard SysML extensions is available at [Bock. C., “SysML and UML

2.0 Support for Activity Modeling,” vol. 9, no. 2, pp. 160-186, Journal of the International Council of Systems
Engineering, 2006].

E.2.2 Stereotypes

Enhanced Functional Flow Block Diagrams (EFFBD) are a widely-used systems engineering diagram, also called a
behavior diagram. Most of its functionality is a constrained use of UML activities, as described below. This extension
does not address replication, resources, or kill branches. Kill branches can be translated to activities using interruptible
regions and join specifications.

Table E-1: Addition stereotypes for EFFBDs

Stereotype Base class Properties Constraints Description

«effbd» UML4SysML::Activity (or N/A See below. Specifies that the activity
subtype of «nonStreaming» conforms to the constraints
below) necessary for EFFBD.

When the «effbd» stereotype is applied to an activity, its contents shall conform to the following constraints:
[17 (On Activity) Activities shall not have partitions.

[2] (On Activity) All decisions, merges, joins, and forks shall be well-nested. In particular, each decision and merge shall
be matched one-to-one, as are forks and joins, accounting for the output parameter sets acting as decisions, and input
parameters and control acting as a join.

OMG Systems Modeling Language, v1.6 269

[3] (On Action) All actions shall have exactly one control edge coming into them, and exactly one control edge coming
out,except when using parameter sets.

[4] (Execution constraint) All control shall be enabling.
[5] (On ControlFlow) All control flows into an action target a pin on the action that shall have isControl = true.
[6] (On ObjectNode) Ordering shall be first-in first out, ordering = FIFO.

[7] (On ObjectNode) Object flow shall be never used for control, isControlType = false, except for pins of parameters in
parameter sets.

[8] (On Parameter) Parameters shall take and produce no more than one item, multiplicity.upper =1.

[9] (On Parameter) Output parameters shall produce exactly one value, multiplicity.lower = 1. The «optional» stereotype
cannot be applied to parameters.

[10] (On Parameter) Parameters shall not be streaming or exception.
[11] (On ParameterSet) Parameter sets shall only apply to output parameters.

[12] (On ParameterSet) Parameter sets shall only apply to control. Parameters in parameter sets shall have pins with
is ControlType = true.

[13] (On ParameterSet) Parameter sets shall have exactly one parameter, and it shall not be shared with other parameter
sets.\

[14] (On ParameterSet) If one output parameter is in a parameter set, then all output parameters of the behavior or
operation shall be in parameter sets.

[15] (On ActivityEdge) Edges shall not have time constraints.
[16] The following SysML stereotypes shall not be applied: «rate», «controlOperator», «noBuffery», «overwritey.

A second extension distinguishes activities based on whether they can accept inputs or provide outputs after they start
and before they finish (streaming), or only accept inputs when they start and provide outputs when they are finished
(nonstreaming). EFFBD activities are nonstreaming. Streaming activities are often terminated by other activities, while
nonstreaming activities usually terminate themselves.

Table E-2: Streaming options for activities

no streaming
parameters.

Stereotype Base class Properties Constraints Description
«streaming» UML4SysML.::Activity N/A The activity has at | Used for activities that can
least one accept inputs or provide
streaming outputs after they start and
parameter. before they finish.
«nonStreaming» | UML4SysML::Activity N/A The activity has | Used for activities that

accept inputs only when
they start, and provide
outputs only when they
finish.

270

OMG Systems Modeling Language, v1.6

E.2.3 Stereotype Examples

Figure E.1 shows an example activity diagram with the «effbd» stereotype applied, translated from [Long. J.,
“Relationships between common graphical representations in system engineering,” 2002]. The stereotype applies the
constraints specified in E.2.2 Stereotypes, for example, that the data outputs on all functions are required and that
queuing is FIF.

weffbds
act [Exarmpée activity with <<effbd>> stereotype applied

2.4 Function in
Multi-e xit
Constuct

2.2 Multi-e xit
Function

Item 1

{ecH2)

argument

2.1 Serlal
Functien

| e hurd time] pird

External Input
External Output I

2.5 Function in =
an lterate

2.3 Function in
Concurrency | |

Figure E.1 Example activity with «effbd» stereotype applied

Figure E.2 shows an example activity diagram with the «streaming» and «nonStreaming» stereotypes applied, adapted
from [MathWorks, “Using Simulink,” 2004]. It is a numerical solution for the differential equation x'(t) = -2x(t) + u(t).
Item types are omitted brevity. The «streaming» and «nonStreaming» stereotypes indicate which subactivities take inputs
and produce outputs while they are executing. They are simpler to use than the {stream} notation on streaming inputs and
outputs.

The example assumes a default of zero for the lower input to Add, and that the entire activity is executed with clocked
token flow, to ensure that actions with multiple inputs receive as many of them as possible before proceeding. See the
article referenced in E.2.1 Overview.

OMG Systems Modeling Language, v1.6 271

act [Example activity with <<streaming>> and <<nonStreaming>> stereotypes applied to subactivities }J

«streaming»
Generate u
(t)

«streaming»

Integrate
Over Time

«streaming»
Display

«nonStreaming»
Multiply

Figure E.2 Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities
E.3 Requirements Diagram Extensions

E.3.1 Overview

This sub clause describes an example of a non-normative extension for a requirements profile.

E.3.2 Stereotypes

This non-normative extension includes stereotypes for a simplified requirements taxonomy that is intended to be further
adapted as required to support the particular needs of the application or organization. The requirements categories in this
example include functional, interface, performance, physical requirements, and design constraints as shown in Table E-3.
As shown in the table, each category is represented as a stereotype of the generic SysML «requirement». The table also
includes a brief description of the category. The table does not include any stereotype properties or constraints, although
they can be added as deemed appropriate for the application. For example, a constraint that could be applied to a
functional requirement is that only SysML activities and operations can satisfy this category of requirement. Other
examples of requirements categories may include operational, specialized requirements for reliability and
maintainability, store requirements, activation, deactivation, and a high level category for stakeholder needs.

Some general guidance for applying a requirements profile is as follows:

e The categories should be adapted for the specific application or organization and reflected in the table. This
includes agreement on the categories and their associated descriptions, stereotype properties, and constraints.
Additional categories can be added by further subclassing the categories in the table below, or adding additional
categories at the pier level of these categories.

e The default requirement category should be the generic «requirementy.

e Apply the more specialized requirement stereotype (functional, interface, performance, physical, design
constraint) as applicable and ensure consistency with the description, stereotype properties, and constraints.

e A specific text requirement can include the application of more than one requirement category, in which case,
each stereotype should be shown in guillemets.

272 OMG Systems Modeling Language, v1.6

Table E-3: Additional Requirement Stereotypes

Stereotype

Base class

Properties

Constraints

Description

«extendedRequirement»

«requirement»

source: String

N/A

A mix-in stereotype that
contains generally useful

block or part

risk: RiskKind attributes for
verifyMethod: requirements.
VerifyMethodKind
«functionalRequirement» «extendedrequirement» | N/A satisfied by an| Requirement that
operation or [specifies an operation or
behavior behavior that a system,
or part of a system, must
perform.
«interfaceRequirement» «extendedrequirement» | N/A satisfied by a [Requirement that
port, conector, | specifies the ports for
item flow, connecting systems and
and/or system parts and the
constraint optionally may include
property the item flows across the
connector and/or
interface constraints.
«performanceRequirement» | «xextendedrequirement» [N/A satisfied by a | Requirement that
value property | quantitavely measures
the extent to which a
system, or a system part,
satisfies a required
capability or condition.
«physicalRequirement» «extendedrequirement» | N/A satisfied by a | Requirement that
structural specifies physical
element characteristics and/or
physical constraints of
the system, or a system
part.
«designConstraint» «extendedrequirement» | N/A satisfied by a | Requirement that

specifies a constraint on
the implementation of the
system or system part,
such as the system must
use a commercial off the
shelf component.

Table E-4 provides the definition of the non-normative enumerations that are used to type properties of
“extendedRequirement” stereotype of Figure E.3.

OMG Systems Modeling Language, v1.6

273

Table E-4: Requirement

property enumeration types

Enumeration

Enumeration
Literals

Example Description

RiskKind

High

High indicates an unacceptable level of risk

Medium

Medium indicates an acceptable level of risk

Low

Low indicates a minimal level of risk or no risk

VerificationMethodKind

Analysis

Analysis indicates that verification will be performed by
technical evaluation using mathematical representations,
charts, graphs, circuit diagrams, data reduction, or
representative data. Analysis also includes the verification of
requirements under conditions, which are simulated or
modeled; where the results are derived from the analysis of the
results produced by the model.

Demonstration

Demonstration indicates that verification will be performed by
operation, movement or adjustment of the item under specific
conditions to perform the design functions without recording of
quantitative data. Demonstration is typically considered the
least restrictive of the verification types.

Inspection

Inspection indicates that verification will be performed by
examination of the item, reviewing descriptive documentation,
and comparing the appropriate characteristics with a
predetermined standard to determine conformance to
requirements without the use of special laboratory equipment
or procedures.

Test

Test indicates that verification will be performed through
systematic exercising of the applicable item under appropriate
conditions with instrumentation to measure required
parameters and the collection, analysis, and evaluation of
quantitative data to show that measured parameters equal or
exceed specified requirements.

E.3.3 Stereotype Examples

Figure E.3 shows the use of several subtypes of requirements extended to include the properties risk:RiskKind,
verifyMethod: VerficationMethodKind, and a text attribute source:String, used to capture the source of the requirement.

274

OMG Systems Modeling Language, v1.6

req [Package] Reguirement Diagram Top-Level User Requirement | Example exiensions to Requirement _LJ

srequirements
Hybrid SUV

“1“"5”"“‘:'%:”'9"“”‘” “per;:m;"_':a :q,"'im sl aperformanceRequirements sreguirements
i R rancanees Performance Ergonomics
. " —"URA 2"
Iq _UR1.1 Iq _UFt 2 1d="UR1.a"
risk = Low rizk = High s & h
n — - . risk = Medium
source = "Marketing source = "Marketing e Er
3 4 . = source = "Marketing
Text = "Load Text = *Eco-Freindliness i i
: thod = Test thod = Anal Texi = "Performance
veriffvethod = Tes verifiMethod = Analysis verifybethod = Test

]

T wragUirarmarits
areguirement:

arequirements

f Power
wperformanceRequirements Acceleration Braking
Emissions
afequiraments wraguremants Id="UR121"
Passangers Cargo risk = Medium aperformanceRequirements wreguirements
source = "Marketing” FuelEconomy Range
Text="The car shall meet 14 ="UR1.3.1"
2010 Kyoto Accord risk = High
emissions standards." =]
source = "Marketing
ikl werifyMethod = Test Text = "User shall obtain fuel
FuelCapacity

econamy batter than that provided
by 85% of cars built In 2004 .
varifethod = Test

Figure E.3 Example extensions to Requirement

E.4 Parametric Diagram Extensions for Trade Studies

E.4.1 Overview

This sub clause describes a non-normative extension of a parametric diagram (refer to the Constraint Blocks clause) to
support trade studies and analysis, which are an essential aspect of any systems engineering effort. In particular, a trade
study is used to evaluate a set of alternatives based on a defined set of criteria. The criteria may have a weighting to
reflect their relative importance. An objective function (aka optimization or cost function) can be used to represent the
weighted criteria and determine the overall value of each alternative. The objective function can be more complex than a
simple linear weighting of the criteria and can include probability distribution functions and utility functions associated
with each criteria. However, for this example, we will assume the simpler case.

A measure of effectiveness (moe) represents a parameter whose value is critical for achieving the desired mission cost
effectiveness. It will also be assumed that the overall mission cost effectiveness can be determined by applying an
objective function to a set of criteria, each of which is represented by a measure of effectiveness.

This non-normative extension includes stereotypes for an objective function and a measure of effectiveness. The
objective function is a stereotype of a ConstraintBlock and the measure of effectiveness is a stereotype of a block

property.

OMG Systems Modeling Language, v1.6 275

E.4.2 Stereotypes

Table E-5: Stereotypes for Measures of Effectiveness

Stereotype Base class Properties Constraints Description

«objectiveFunction» | «ConstraintBlock» N/A N/A An objective function (aka
optimization or cost
function) is used to
determine the overall value
of an alternative in terms of
weighted criteria and/or
moe's.

«moe» UML4SysML::Property | N/A N/A A measure of effectiveness
(moe) represents a
parameter whose value is
critical for achieving the
desired mission cost
effectiveness.

E.4.3 Stereotype Examples

In this example, operational availability, mission response time, and security effectiveness each represent moes along
with life cycle cost. The overall cost effectiveness for each alternative may be defined by an objective function that
represents a weighted sum of their moe values. For each moe, there is a separate parametric model to estimate the value
of operational availability, mission response time, security effectiveness, and life cycle cost to determine an overall cost
effectiveness for each alternative. It is assumed that the moes refer to the values for system alternative j (sj).

par Effectiveness Model[System Alternative JJJ

[:ResponseTlmeModel |j'7 o moen
sj.responseTime

p1 :| «objectiveFunction»

«moe»n
 AvailabilityModel a . Mk : MyObje ctive Function CE «moen
2
‘ si;avaliehiny z {CE=Sum(WiFi} sledstExactivaniasx

st r‘

pd
«moe»

: SecurityModel 2 sj.security

«moen

: CostModel & — sj.cost

Figure E.4 Example Parametric Diagram using Stereotypes for Measures of Effectiveness

276 OMG Systems Modeling Language, v1.6

E.5 Model Library for Quantities, Units, Dimensions, and Values
(QUDV)

E.5.1 Overview

For any system model, a solid foundation of well-defined quantities, units, and dimensions system is very important.
Properties that describe many aspects of a system depend on it. At the same time, such a foundation should be a shareable
resource that can be reused in many models within and across organizations and projects.

The most widely accepted, scrutinized, and globally used system of quantities and system of units are the International
System of Quantities (ISQ) and the International System of Units (SI). They are formally standardized through [ISO31]
and [IEC60027]. The harmonization of these two sets of standards into one new set [ISO/IEC80000] has been published
by ISO in 2009 and 2010. The present QUDV model in SysML is based on ISO/IEC 80000-1:2009, which refers
normatively to the ISO/IEC Guide 99:2007. The ISO/IEC 80000-1:2009 document is also the baseline for the 2010
revision of the [IEEE/ASTM American National Standards for Metric Practice SI-10. All the relevant concepts underlying
ISQ and SI are publicly available in [VIM]. See E.5.3, References for references to these documents.

At a minimum, SysML should provide the means to support the imminent international standard [ISO/IEC80000]. In
addition, many other systems of quantities and units are still in use for particular applications and for historical reasons. A
prime example is the system based on UK Imperial units, which is still widely used in North America. SysML should
provide the means to support all such specific systems of quantities and units, including precise definitions of the
relationships between different systems of units, and with explicit and unambiguous unit conversions to and from SI as
well as other systems.

To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in SysML is
explicitly based on the concepts defined in [VIM], which have been written by the authoritative Working Group 2 of the
Joint Committee for Guides in Metrology (JCGM/WG 2), in which the JCGM member organizations are represented:
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. At the same time, the model library is designed in such a way
that extensions to the ISQ and SI can be represented, as well as any alternative systems of quantities and units.

The model library can be used to support SysML user models in various ways. A simple approach is to define and
document libraries of reusable systems of units and quantities for reuse across multiple projects, and to link units and
quantity kinds from these libraries to Unit and QuantityKind stereotypes defined in SysML user models. The name of a
Unit or QuantityKind stereotype, its definitionURI, or other means may be used to link it with definitions made using this
library. Instances of blocks conforming to this model library may be created by instance specifications, as shown in E.5.4
Usage Examples, or by other means.

Even though this model library is specified in terms of SysML blocks, its contents could equally be specified by UML
classes without dependencies on any SysML extensions. This annex specifies the model library using SysML blocks to
maintain compatibility with the SysML standard. UML and other forms of this same conceptual model are important and
useful to align different standards with each other and with those of [VIM].

Separate forms of this model library, including a UML class model generated as a simple transformation from the model
library specified in this annex, together with additional mappings and resources, example applications, and reference
libraries of systems of units and quantities built using this model, are expected to be published via the SysML Project
Portal wiki at https://www.omgwiki.org/OMGSysML/.

OMG Systems Modeling Language, v1.6 277

https://www.omgwiki.org/OMGSysML/

E.5.2 Abstract Syntax

Figures E.S - E.7 present the QUDYV model library in a series of block definition diagrams.

The QUDYV Concepts diagram in Figure E.5 presents the core concepts of System of Units, Unit, SystemOfQuantities,
and QuantityKind. The QUDV concepts of Unit and QuantityKind are specialized by restriction from their respective
SysML concepts shown in gray in Figure E.5. The QUDV concepts form the basis of the QUDYV subset of the Vocabulary
of International Metrology (VIM) from ISO 80000-1 and JCGM 200:2012. In SysML, a value property typed by a given
ValueType, with stereotype properties that refer to a SysML Unit and/or QuantityKind, defines a quantity in the sense of
ISO 80000-1, Sub clause 3.1. If specified, the unit of the ValueType designates the measurement unit assumed for the
numerical value of such a quantity.

In the QUDYV Unit diagram in Figure E.6, SimpleUnit provides the basis for defining other units via conversion or
derivation. Additionally, QUDYV provides support for specifying a coherent derived unit as a product of the baseUnit(s) of
a given SystemOfUnits. In a coherent SystemOfUnits, there is only one base unit for each base quantity kind.

In the QUDYV QuantityKind diagram in Figure E.7, SimpleQuantityKind provides the basis for defining other quantity
kinds via specialization or derivation. QUDV provides a declarative specification of dimensional analysis to assign to
each QuantityKind an expression of its dependence on the baseQuantityKind(s) of a SystemOfQuantities. This
dependence is expressed as a list of QuantityKindFactor(s) corresponding to a product of powers of the base quantities.
E.5.2.15 SystemOfQuantities, specifies the derivation of quantity dimensions using an algorithm specified in OCL.

278 OMG Systems Modeling Language, v1.6

BRg OLOW | E-5 OUOV Concepts I

abiscks
Uil =unit A quantityind_unit “quan iting =Bncks
[Sys ML Libraries. UnibndCuantittind | i_* a.* *Migraiiom
syl | Sirieg [0..1] X SRy
sdmscnption - Srng [1..1] i Sys ML Libranes Unithnd Quardbkind)
=il ininLR - Erineg (09 +symbeul : Sring [i2.1]
[#descrption - Srng [0.7]
[+ defindinn iR : Eiring 0. 1]
A_generalinit_speciiclni A_panecsl Cuardiwind_s peafictuanlibiGnd
espeific [0.." +general 0. {rededrees i {radalinrgn guanditing
“Blacks +measuremenilng +guanttykind raurmralil. ropocic|0.”
Lhnil K 1.0 aliocis
faloy . #_ouantityind_measurementiinit QuialityFivd
s UnCount Dl Enfes : Boglsan = false (ouov)
+isLnitForDuarndty raicnDne Bockean = fake +/il iz et e J0L Ry
+empendaCnlnis - Linf [0, 7] read e HgMamber CiEntes. . Boclean = false
+aCuinntiy OIDiTensianone - Boake = foke
sequariitying [0..° whaseCuanlibdand [0,
[orderad}
{subsets quantitgind, ondared,
+unit] 0. +haselinit|0.*
Lk s | [ordered} sLinkOw = | [subsels unit, ordered)
A_ 5y b OO0y s es_quaniiind A_systerm Of0uvantibes _baseOuantit#lnd
A systemCfUnits_unit A systemOfUnits baseUnt
[subsels &ystem Hlnis)
+&4E%em Ol |01 +5 @ ba OfLIvaes [0.1 {subisets ayslem CMuaniies)
wHincke +RyE M CACuANEas |01 +5 i e CHDasa e (0.1
Eyrtem<Oin +aysiamOfniis +gystam Cicuanitias aBloks
o b= 1) o+ o SystemDfOuantiics
= - % X
e . A_8 lem CUnlis_systam CiQuanitiss (UDv
+deliniicn URE - Sving [0..1] +ayknl : Biring [0.1]
sdescnpton : Srmg [0.1]
T rincluded Syatsm Oiouantitiss | +defitionl R - Sing [0.]

+ii5 05y e Oflres | 0.7 +inchited Sy am ORJmits (0,7

A usedSysiemOfUnits_sysiemOiUrnis

A_included Symtem HlUnit_syism OfUnie

0.

+us ad System OfOuantitias szystemOuantibes | g «

A_Use0SyEtm DICLANNIE_5ystemOiCuantitss

A e Sy o m O CJuarBlies_ & bem N0 ankilies

wayslnmOiuanes

Figure E.5 QUDV Concepts Diagram

OMG Systems Modeling Language, v1.6

279

BRg OLOW | E-5 OUOV Concepts I

ablocks
Uil =unit A quantityind_unit “quan iting =Bncks
[Sys ML Libraries UnibndCuantibdlnd L 0.* aMgratiom

P Cusantity#nd
suymbol | Siring 10, 1] "

sEgcRption ,gjy'n;w 1) i Sys ML Libranes Unithnd Quardbkind)
=il ininLR - Erineg (09 +sptmdzal : Siing [0.1]

*desonption - =g [0.7]

e nlionUR - Siring J01]

A_ganecal Cunnykind_s pesifi cOuantitdind

A_gensmallnit_specliclni

espeific [0.." +general 0. {rededrees i {radalinrgn guanditing
“Blacks +measuremenilng +guanttykind b LI L topacific|0
Ehnil e 1.0 afocks
faloy . #_ouantityind_measurementiinit QuialityFivd
s UnCount Dl Enfes : Boglsan = false (ouov)
+isUnitForDuarnity OMDmensionDne © Bockean = lake +ibingen ik el B2 T by
+empendaCnlnis - Linf [0, 7] read e HgMamber CiEntes. . Boclean = false
+aCuinntiy OIDiTensianone - Boake = foke
sequariitying [0..° whaseCuanlibdand [0,
[orderad}
{subsets quantitgind, ondared,
+unit] 0. +haselinit|0.*
Lk s | [ordered} sLinkOw = | [subsels unit, ordered)
A_ 5y b OO0y s es_quaniiind A_systerm Of0uvantibes _baseOuantit#lnd
A systemCfUnits_unit A systemOfUnits baseUnt
[subsels &ystem Hlnis)
+&4E%em Ol |01 +5 @ ba OfLIvaes [0.1 {subisets ayslem CMuaniies)
wHincke +RyE M CACuANEas |01 +5 i e CHDasa e (0.1
Eyrtem<Oin +aysiamOfniis +gystam Cicuanitias aBloks
o b= 1) o+ o SystemDfOuantiics
= - % X
e . A_8 lem CUnlis_systam CiQuanitiss (UDv
+deliniicn URE - Sving [0..1] +ayknl : Biring [0.1]
sdescnpton : Srmg [0.1]
T rincluded Syatsm Oiouantitiss | +defitionl R - Sing [0.]
-+ S S DMLt [0, T e [N
+usad System OfOuantitias +systemOHuantibes | g

wayslnmOiuanes

A usedSysiemOfUnits_sysiemOiUrnis

A_Use0SyEtm DICLANNIE_5ystemOiCuantitss

A_included Symtem HlUnit_syism OfUnie

A e Sy o m O CJuarBlies_ & bem N0 ankilies

Figure E.6 QUDV Units Diagram

280 OMG Systems Modeling Language, v1.6

package QUOV [[E-7: QUDV QuantityKind ﬂ

«Blocks wBlocks
System OfQuantities +dimension, Dimension
(QUDV} 1.* 0.* (QUDV)
+symbol - String [0..1] {readCnly, ordered, nonunigue} |+symbolicExpression © String [0..1]
+descripfion : String [0..1]
+definition URI : String [0..1] 1
0.1 0.1
{subsets systemOfQuantities}
{ordered) {subsets quantityKind, ordered}
+guantityKind | 0..* +baseQuantityknd [0..*
#Blocks {ordered}
QuantityKind +factor |0.*
+genaeral [auovy +guantityind «Blocks
g, | +dependsOnQuantityKinds : QuantityKind [0..]{readOnly} 1 0. | QuantityKindFactor
+ishumberOf Entities : Boolean = false (QUBV)
+isQuantity Of DimensionOne - Boolean = false
+exponent : Rational [1]

+specific |0..* +factor [1..*

«Blocks «Blocks

A_generalCuantity Kind_s pecificQuantity Kind SimpleQuantityKind De riva-qﬂu antityind
(auov) (QuDv)

=

Figure E.7 QUDV QuantityKinds Diagram

E.5.2.1 AffineConversionUnit
Description

An AffineConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to
another reference measurement unit through an affine conversion relationship with a conversion factor and offset.

The unit conversion relationship is defined by the following equation:
valuery = factor - valuecy + offset

where:

valuery is the quantity value expressed in the referenceUnit, and,
valuecy is the quantity value expressed in the AffineConversionUnit.

For example, in the definition of the AffineConversionUnit for “degree Fahrenheit” with respect to the referenceUnit
“degree Celsius,” the factor would be 5/9 and the offset would be -160/9, because

Tcelsius = 5/9 - Trahrenheit - 160/9 which is equivalent with Trahrenheit = 9/5 - Tcelsius + 32/1

OMG Systems Modeling Language, v1.6 281

Properties

e factor: Number
Number that specifies the factor in the unit conversion relationship.

e offset: Number
Number that specifies the offset in the unit conversion relationship.

E.5.2.2 ConversionBasedUnit

Description

A ConversionBasedUnit is an abstract classifier that is a Unit that represents a measurement unit that is defined with
respect to another reference unit through an explicit conversion relationship.

Properties

e referenceUnit: Unit
Specifies the unit with respect to which the ConversionBasedUnit is defined.

¢ inlnvertible: Boolean
Specifies whether the unit conversion relationship is invertible. For LinearConversionUnit and
AffineConversionUnit this is always true.

Operations

[1] A ConversionBasedUnit transitively depends on its referenceUnit and all of the Units that its referenceUnit depends
on.

dependsOnUnits () : Unit[0..*] {unique}
body: referenceUnit.dependsOnUnits ()->including(referenceUnit)->asSet ()

E.5.2.3 DerivedQuantityKind
Description

A DerivedQuantityKind is a QuantityKind that represents a kind of quantity that is defined as a product of powers of one
or more other kinds of quantity. A DerivedQuantityKind may also be used to define a synonym kind of quantity for
another kind of quantity.

For example “velocity” can be specified as the product of “length” to the power one times “time” to the power minus
one, and subsequently “speed” can be specified as “velocity” to the power one.
Properties
e factor: QuantityKindFactor [1..*]
Set of QuantityKindFactor that specifies the product of powers of other kind(s) of quantity that define the
DerivedQuantityKind.
Operations

[1] A DerivedQuantityKind transitively depends on its factors' QuantityKinds and all of the QuantityKinds that its
factors' QuantityKinds depend on.

dependsOnQuantityKinds () : QuantityKind[O0..*] {unique}
body: factor.quantityKind.dependsOnQuantityKinds ()->flatten ()->asSet ()
->union (factor.quantityKind->flatten () ->asSet ())->asSet ()

282 OMG Systems Modeling Language, v1.6

E.5.24 DerivedUnit
Description

A DerivedUnit is a Unit that represents a measurement unit that is defined as a product of powers of one or more other
measurement units.

For example the measurement unit “metre per second” for “velocity” is specified as the product of “metre” to the power
one times “second” to the power minus one.
Properties
e factor: UnitFactor [1..¥]
Set of UnitFactor that specifies the product of powers of other measurement units that define the DerivedUnit.
e hasReducedFactors : Boolean[1] = true
If true, the UnitFactors specifying the product of powers of other measurement units that define the DerivedUnit
cannot be simplified. If false, the DerivedUnit is non-reduced; some UnitFactors can be simplified. A non-
reduced DerivedUnit can have as a general unit other DerivedUnits defined in terms of simplified UnitFactors,
possibly in reduced form.

Operations

[17 A DerivedUnit transitively depends on its factors' Units and all of the Units that its factors' Units depend on.

dependsOnUnits () : Unit[0..*] {unique}
body: factor.unit.dependsOnUnits()->flatten()->asSet ()->union(factor.unit->flatten{()
->asSet ()) —>asSet ()

[1] The query accessibleQuantityKinds() gives all the QuantityKinds directly defined in the SystemOfQuantities or
transitively in any included or used SystemOfQuantities.

allAccessibleQuantityKinds () : QuantityKind[O0..*] {unique}

body: allAccessibleSystemOfQuantities()->collect (quantityKind)->flatten () ->asSet ()
inv SoU3 3:

getEffectiveSystemOfQuantities () = null or let agk : Set(QuantityKind) =
getEffectiveSystemOfQuantities () .allQuantityKinds () in ->allUnits()

->forAll (u | agk>includesAll (getKindOfQuantitiesForMeasurementUnit (u)))

E.5.2.5 Dimension

A Dimension represents the [VIM] concept of “quantity dimension” that is defined as “expression of the dependence of a
quantity on the base quantities of a system of quantities as a product of powers of factors corresponding to the base
quantities, omitting any numerical factor.”

For example in the ISQ the quantity dimension of “force” is denoted by dim F = L-M-T-2, where “F” is the symbol for
“force,” and “L,” “M,” and “T” are the symbols for the ISQ base quantities “length,” “mass,” and “time” respectively.

The Dimension of any QuantityKind can be derived through the algorithm that is defined in E.5.2.15 SystemOfQuantities
with SystemOfQuantities. The actual Dimension for a given QuantityKind depends on the choice of baseQuantityKind
specified in a SystemOfQuantities.

Properties

e symbolicExpression: String [0..1]
Symbolic expression of the quantity dimension's product of powers, in terms of symbols of the kinds of quantity

OMG Systems Modeling Language, v1.6 283

that represent the base kinds of quantity and their exponents. In tool implementations, the symbolicExpression
may automatically derived from the associated factor set.

e factor: QuantityKindFactor [0..*] {ordered}
If true Ordered set of QuantityKindFactor that specifies the product of powers of base dimensions that define the
Dimension. The possible base dimensions are represented by the ordered set of baseQuantityKind defined in the
SystemOfQuantities for which the Dimension is specified. The order of the factors should follow the ordered set
of baseQuantityKind in SystemOfQuantities.
E.5.2.6 GeneralConversionUnit
Description

A GeneralConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to
another reference measurement unit through a conversion relationship expressed in some syntax through a general
mathematical expression.

The unit conversion relationship is defined by the following equation:
valuery / valuecuy = f(valueru, valuecu)

where:

valueruy is the quantity value expressed in the referenceUnit and

valuecy is the quantity value expressed in the GeneralConversionUnit and

f(valueru, valuecy) is a mathematical expression that includes valuery and valuecy

Properties

e expression: String
Specifies the unit conversion relationship in some expression syntax.

e expressionLanguageURI: String [0..1]
URI that specifies the language for the expression syntax.

E.5.2.7 LinearConversionUnit
Description

A LinearConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to
another measurement reference unit through a linear conversion relationship with a conversion factor.

The unit conversion relationship is defined by the following equation:
valueru = factor - valuecu

where:

valuery is the quantity value expressed in the referenceUnit, and,

valuecy is the quantity value expressed in the LinearConversionUnit.

284 OMG Systems Modeling Language, v1.6

For example, in the definition of the LinearConversionUnit for “inch” with respect to the referenceUnit “metre,” the
factor would be 254/10000, because 0.0254 metre = 1 inch.

Properties

e factor: Number
Number that specifies the factor in the unit conversion relationship.

E.5.2.8 Prefix
Description

A Prefix represents a named multiple or submultiple multiplication factor used in the specification of a PrefixedUnit. A
SystemOfUnits may specify a set of prefixes.

Properties
e symbol: String [0..1]
Short symbolic name of the prefix.

e factor: Rational [1]
Specifies the multiple or submultiple multiplication factor.

E.5.2.9 PrefixedUnit
Description

A PrefixedUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to another
measurement reference unit through a linear conversion relationship with a named prefix that represents a multiple or
submultiple of a unit.

[VIM] defines “multiple of a unit” as “measurement obtained by multiplying a given measurement unit by an integer
greater than one” and “submultiple of a unit” as “measurement unit obtained by dividing a given measurement unit by an
integer greater than one.”

The unit conversion relationship is defined by the following equation:
valuery = factor - valuecu

where:

valuery is the quantity value expressed in the referenceUnit and
valuecy is the quantity value expressed in the PrefixedUnit.

For example, in the definition of the PrefixedUnit for “megabyte” with respect to the referenceUnit “byte,” the prefix
would be the Prefix for “mega” with a factor 106, because 106 byte = 1 megabyte.

See [VIM] for all decimal and binary multiples and decimal submultiples defined in SI.

Properties

e prefix: Prefix
Specifies the prefix that defines the name, symbol, and factor of the multiple or submultiple.

OMG Systems Modeling Language, v1.6 285

Constraints
[1] The referenceUnit shall not be a PrefixedUnit, i.e., it is not allowed to prefix an already prefixed measurement unit. In

general the referenceUnit should be a SimpleUnit.

package QUDV

context PrefixedUnit

inv: not referenceUnit.oclIsTypeOf (PrefixedUnit)
endpackage

E.5.2.10 QuantityKind
Description

In QUDV, the concept of QuantityKind is an abstract specialization of SysML QuantityKind to support designating a
primary QuantityKind for a given Unit within the scope of a system of units and quantities and to support a richer
vocabulary for defining QuantityKinds.

Properties

e /dependsOnQuantityKinds : QuantityKind[0..*] {readOnly, unique}
The set of all QuantityKinds that this QuantityKind directly or indirectly depends on according to its definition.

e general: QuantityKind[0..*] {unique}

A quantity can be defined to represent a combination of specific characteristics from one or more aspects
defined by general QuantityKinds (see ISO 80000-1, 3.2).

e isNumberOfEntities: Boolean = false
If true, indicates that the QuantityKind represents a number of entities (see ISO 80000-1, 3.8, Note 4).

¢ isQuantityOfDimensionOne: Boolean = false
If true, indicates that the QuantityKind has dimension one (see ISO 80000-1, 3.8).

Constraints

[17 A QuantityKind cannot be defined in terms of itself. This follows from the quantity calculus used for expressing a
derived QuantityKind in terms of base QuantityKinds chosen for a SystemOfQuantities by means of non- contradictory
equations (See ISO 80000-1, 4.3).

inv acyclic quantity kind dependencies:
dependsOnQuantityKinds () ->excludes (self)

Operations

[1] Abstract operation specified in SimpleQuantityKind and DerivedQuantityKind to calculate the value of the derived
property QuantityKind:/dependsOnQuantityKinds.

dependsOnQuantityKinds () : QuantityKind[O0..*] {unique}

E.5.2.11 QuantityKindFactor
Description

A QuantityKindFactor represents a factor in the product of powers that defines a DerivedQuantityKind.

286 OMG Systems Modeling Language, v1.6

Properties

e cexponent: Rational

Rational number that specifies the exponent of the power to which the quantityKind is raised.

e QuantityKind: QuantityKind
Reference to the QuantityKind that participates in the factor.

E.5.2.12 Rational

Description

A Rational value type represents the mathematical concept of a number that can be expressed as a quotient of two

integers. It may be used to express the exact value of such values, without issues of rounding or other approximations if

the result of the division were used instead.

Properties
e numerator: Integer

An integer number used to express the numerator of a rational number.

e denominator: Integer

An integer number used to express the denominator of a rational number.

Operations

package QUDV

context Rational

def: plus(r : Rational[l]) : Rational[l]

= result.numerator = self.numerator * r.demonimator

+ r.numerator * self.denominator

and result.denominator = self.denominator * r.denominator

context Rational

def: equivalent(r : Rational[l]) : Boolean([1l]
= result = (self.numerator * r.demonimator
= r.numerator * self.denominator)

context Rational

def: times(r : Rational[l]) : Rational[l]

= result.numerator = self.numerator * r.numerator

and result.denominator = self.denominator * r.denominator
endpackage

Constraints
[1] The denominator of a rational number shall not be zero.

package QUDV
context Rational

OMG Systems Modeling Language, v1.6

287

inv: denominator <> 0
endpackage

E.5.2.13 SimpleQuantityKind

Description

A SimpleQuantityKind is a QuantityKind that represents a kind of quantity that does not depend on any other
QuantityKind. Typically a base quantity would be specified as a SimpleQuantityKind.

Operations
[17 A SimpleQuantityKind does not depend on any other QuantityKind.

dependsOnQuantityKinds() : QuantityKind[0..*] {unique}
body: Set{}

E.5.2.14 SimpleUnit

Description

A SimpleUnit is a Unit that represents a measurement unit that does not depend on any other Unit. Typically, a base unit
would be specified as a SimpleUnit.

Operations

[1] A SimpleUnit is a Unit that represents a measurement unit that does not depend on any other Unit. Typically, a base
unit would be specified as a SimpleUnit.

dependsOnUnits() : Unit[0..*] {unique}
body: Set{}

E.5.2.15 SystemofQuantities
Description

A SystemOfQuantities represents the [VIM] concept of “system of quantities” that is defined as a “set of quantities
together with a set of non-contradictory equations relating those quantities.” It collects a list of QuantityKind that
specifies the kinds of quantity that are known in the system.

The International System of Quantities (ISQ) is an example of a SystemOfQuantities, defined in [[SO31] and
[ISO/TEC80000].
Properties
e symbol: String [0..1]
Short symbolic name of the system of quantities.
e description: String [0..1]
Textual description of the system of quantities.

e definitionURI: String [0..1]
URI that references an external definition of the system of quantities. Note that as part of [[SO/IEC80000]
normative URIs for each of the ISQ quantities and SI units are being defined.

288 OMG Systems Modeling Language, v1.6

e quantityKind: QuantityKind [0..*] {ordered}

Ordered set of QuantityKind that specifies the kinds of quantity that are known in the system.

e baseQuantityKind: QuantityKind [0..*] {ordered, subsets quantityKind}

Ordered set of QuantityKind that specifies the base quantities of the system of quantities. This is a subset of the
complete quantityKind list. The base quantities define the basis for the quantity dimension of a kind of quantity.

e /dimension: Dimension [0..*] {ordered, readOnly, nonunique}

Derived ordered set of Dimension. The actual dimension of a QuantityKind depends on the list of

baseQuantityKind that are specified in an actual SystemOfQuantities, see the DerivedDimensions constraint.

¢ includedSystemOfQuantities: SystemOfQuantities[0..*] {unique}

Including a SystemOfQuantities means including all of the QuantityKind it defines and includes from other

SystemOfQuantities.

e usedSystemOfQuantities: SystemOfQuantities[0..*] {unique}

A QuantityKind can be defined in a SystemOfQuantities in terms of QuantityKinds defined in that

SystemOfQuantities or from other SystemOfQuantities it uses or includes. See for example the units used with

the SI in ISO 80000-1, Table 5.
Constraints

[1] All quantity dimensions are derived through the following algorithm specified in OCL.
package QUDV

-- get the set of units, if any, that a given unit directly depends on
context Unit

def: directUnitDependencies : Set (Unit) =

1if oclIsKindOf (ConversionBasedUnit)

then oclAsType (ConversionBasedUnit) .referenceUnit

else

if oclIsKindOf (DerivedUnit)

then oclAsType (DerivedUnit) .factor->collect (unit)->asSet ()

else Set{}

endif

endif

-- get the set of units, if any, that a given unit directly or indirectly depends on

context Unit
def: allUnitDependencies : Set (Unit)

= self->closure(directUnitDependencies)

context Unit

OMG Systems Modeling Language, v1.6

289

inv acyclic unit dependencies

not allUnitDependencies->excludes (self)

-- get the set of quantityKinds, if any, that a given quantityKind directly depends on

context QuantityKind

def: directQKindDependencies : Set (QuantityKind)
= if oclIsKindOf (DerivedQuantityKind)

then oclAsType (DerivedQuantityKind) .factor
->collect (quantityKind) ->asSet ()

else

if oclIsKindOf (SpecializedQuantityKind)

then oclAsType (SpecializedQuantityKind) .general
else Set{}

endif

endif

context QuantityKind

def: allQuantityKindDependencies : Set (QuantityKind)

= self->closure (directQKindDependencies)

context QuantityKind
inv acyclic quantity kind dependencies

allQuantityKindDependencies->excludes (self)

--context SystemOfQuantities::deriveQuantityKindDimensions ()
--post: quantityKind->forAll (gK|gK.hasProperDimension (self))
-- The derived dimension of a simple gquantity kind must

-- have exactly one factor

-- whose numerator and denominator are equal to 1.

context SimpleQuantityKind
def: hasProperDimension (sqg:SystemOfQuantities) : Boolean
= let d:Dimension=sqg.getDimension (self)

in d.factor->size()=1

290

OMG Systems Modeling Language, v1.6

and d.factor->forAll (exponent->forAll (numerator=1 and denominator=1))
-- The derived dimension of a specialized quantity kind is

-- the dimension of its general quantity kind.

context SpecializedQuantityKind

def: hasProperDimension (sqg:SystemOfQuantities) : Boolean

= sg.getDimension(self) = sg.getDimension (general)

-- A helper function to produce the factor/quantityKind tuples

-- for a given Dimension.

context Dimension

def: dimFactors : Bag(Tuple(factor:Rational,gKind:QuantityKind))

= self.factor->collect (gkf | Tuple{factor=gkf.exponent,gKkind=gkf.quantityKind})
-- A helper function to get all the factor/quantityKind tuples

-- for the dimension factors of a derived quantity kind.

context DerivedQuantityKind

def: derQFactors (sq:SystemOfQuantities) : Bag(Tuple (factor:Rational,gKind:QuantityKind))
= self.factor->collect (gkf |

let gd:Dimension = sqg.getDimension (gkf.quantityKind) in
qgd.factor->collect (gkf |
Tuple{factor=gkf.exponent.plus (df.exponent), gkind=gkf.quantityKind}))
-- Reduce a bag of factor/quantityKind tuples by combining

-- all factors for the same quantity kind

-- and eliminating the zero-factor/quantityKind tuples

context DerivedQuantityKind

def: reducetoNonZeroUniqueFactors (

gFactors:Bag (Tuple (factor:Rational, gKind:QuantityKind)),

gKinds:Set (QuantityKind))

Bag (Tuple (factor:Rational, gKind:QuantityKind))

= let ugFactors:Bag(Tuple (factor:Rational,gKind:QuantityKind))
= gKinds->collect (

-- for each unique quantity kind, gKindl,

-- from the set of unique quantity kinds, gKinds...
gKindl:QuantityKind|

-- get the sequence of factors from the set of

-- gFactors tuples whose quantity kind is gKindl...

let factorls:Sequence (Rational)

OMG Systems Modeling Language, v1.6 291

= gFactors->select (gkind=gKindl)
->collect (factor) ->asSequence ()

-- start with the first factor, factorl,

-- from all the factorls associated to gKindl...
in let factorl:Rational=factorls->first()

-- construct the factor/quantityKind tuple

-- for gKindl where

-- the factor is the product of factorl with

-- all remaining factorsls

in Tuple({

factor=factorls->excluding (factorl)->iterate (
factorI:Rational;

factorN:Rational=factorI |

factorN.plus (factorI)),

gKind=gKindl})

-- eliminate the factor/quantityKind tuples where
-- the factor is zero

in let ngFactors:Bag(Tuple (factor:Rational,gKind:QuantityKind))
= ugFactors->select (factor.numerator<>0)

in ngFactors

—-- The derived dimension of a derived quantity kind is

-- the simplified set of factor/quantityKind tuples

-- for the derived quantity kind. The simplified set

-- of factor/quantityKind tuples has

-- one factor/quantityKind tuple for each quantityKind where
-- the simplified factor is a non-zero product of

-- all the factors in the factor/quantityKind tuples.
context DerivedQuantityKind

def: hasProperDimension (sqg:SystemOfQuantities) : Boolean

= let d:Dimension = sg.getDimension (self)

in let resFactors:Bag(Tuple (factor:Rational,gKind:QuantityKind))
= d.dimFactors

-- the unique quantityKinds from the result...

292 OMG Systems Modeling Language, v1.6

in let resKinds:Set (QuantityKind)
=resFactors->collect (gKind) ->asSet ()

-- the factor/quantityKind tuples from the derived quantity...
in let gFactors:Bag(Tuple (factor:Rational,gKind:QuantityKind))
= self.derQFactors (sq)

-- the unique quantityKinds from the derived quantity...

in let gKinds:Set (QuantityKind)=qgFactors->collect (gKind)->asSet ()
-- get the reduced non-zero factor/quantityKinds...

in let ngFactors:Bag(Tuple (factor:Rational,gKind:QuantityKind))
= self.reducetoNonZeroUniqueFactors (gqFactors, gKinds)

-- conditionl: there should be the same number

-- of factor/quantityKind tuples in the result

-- compared to the non-zero unique factor/quantityKind

-- tuples for the derivedQuantityKind

in ngFactors->size() = resFactors->size()

-- condition2: there should be the same set of

-- quantity kinds in the result

-- and in the non-zero unique factor/quantityKind tuples

-- and gKinds->symmetricDifference (resKinds)->isEmpty ()

-- condition3: for each quantity kind,

-- the factors in the result and

-- in the reduced non-zero unique factor/quantityKind

-- tuples should be equivalent rationals

and gKinds->forAll (gk:QuantityKind|

let nFactor:Rational

=ngFactors->select (gkind=qgk)

->collect (factor)->asSequence () ->first ()

in let rFactor:Rational

=resFactors->select (gkind=qgk)

->collect (factor)->asSequence () ->first ()

in nFactor.equivalent (rFactor))

endpackage

OMG Systems Modeling Language, v1.6

293

[2] For a QuantityKind to have a provenance to a single SystemOfQuantities, all included systems of quantities
shall be transitively disjoint with all used systems of quantities.

inv includedSystemOfQuantities transitivelyDisjoint usedSystemOfQuantities:
allIncludedSystemOfQuantities () ->intersection(self.oclAsSet ()
->closure (usedSystemOfQuantities)) ->isEmpty ()

[3] The set of all QuantityKinds in a given SystemOfQuantities shall be partitioned into two disjoint, covering subsets:
the set of base QuantityKinds (typically chosen to be mutually independent) and its complement, the

set of derived QuantityKinds, each of which can be expressed in terms of the base QuantityKinds (See ISO

80000-1, 4.3).

inv allBaseQuantitiesAreQuantities:
allQuantityKinds () ->includesAll (allBaseQuantityKinds ())

[4] Every QuantityKind shall be defined in only one SystemOfQuantities but it can be in the scope of several
SystemOfQuantities. A given QuantityKind is in scope of a SystemOfQuantities either because it is defined or used in a
SystemOfQuantities or because it is included from the scope of another SystemOfQuantities.

inv singleProvenance:
includedSystemOfQuantities->collect (allQuantityKinds())
->intersection (quantityKind) ->isEmpty ()

[5] For a QuantityKind to have a provenance to a single SystemOfQuantities, the use and includes relationships among
SystemOfQuantities shall be acyclic.

inv acyclicProvenance:
allAccessibleSystemOfQuantities () ->excludes (self)

Operations

[1] The query accessibleQuantityKinds() gives all the QuantityKinds directly defined in the SystemOfQuantities or
transitively in any included or used SystemOfQuantities.

allAccessibleQuantityKinds () : QuantityKind[O0..*] {unique}
body: allAccessibleSystemOfQuantities()->collect (quantityKind)->flatten ()->asSet ()

[2] The query allAccessibleSystemOfQuantities() gives all the SystemOfQuantities directly or transitively included or
used.

allAccessibleSystemOfQuantities () : SystemOfQuantities[0..*] {unique}
body: self->closure (includedSystemOfQuantities->union (usedSystemOfQuantities))
->asSet ()

[3] The query allBaseQuantityKinds() gives all the QuantityKinds directly adopted or transitively adopted from any
included SystemOfQuantities as base QuantityKinds.

294 OMG Systems Modeling Language, v1.6

allBaseQuantityKinds () : QuantityKind[0..*] {unique}
body: allIncludedSystemOfQuantities ()->collect (baseQuantityKind)->flatten ()->asSet ()
->union (baseQuantityKind) ->asSet ()

[4] The query alllncludedSystemOfQuantities() gives all the SystemOfQuantities directly or transitively included.

allIncludedSystemOfQuantities () : SystemOfQuantities[0..*] {unique}
body: self->closure(includedSystemOfQuantities)->asSet ()

[5] The query allQuantityKinds() gives all the QuantityKinds in scope of a SystemOfQuantities; that is, each
QuantityKind is either directly defined in the SystemOfQuantities, selectively used from another SystemOfQuantities or
part of the scope of all the QuantityKinds included from another SystemOfQuantities.

allQuantityKinds () : QuantityKind[0..*] {unique}
body: allIncludedSystemOfQuantities()->collect (quantityKind)->flatten()->asSet ()
->union (quantityKind)->asSet())

E.5.2.16 SystemofUnits
Description

A SystemOfUnits represents the [VIM] concept of “system of units” that is defined as “set of base units and derived
units, together with their multiples and submultiples, defined in accordance with given rules, for a given system of
quantities.” It collects a list of Units that are known in the system. A QUDV SystemOfUnits only optionally defines
multiples and submultiples.
Properties
e symbol: String [0..1]
Short symbolic name of the system of units.
e description: String [0..1]
Textual description of the system of units.

e definitionURI: String [0..1]
A URI that references an external definition of the system of units. Note that as part of [ISO/IEC80000]
normative URIs for each of the quantities in the ISQ and units in the SI are being defined.

e unit: Unit [0..*] {ordered}
Ordered set of Unit that specifies the units that are known in the system.

e baseUnit: Unit [0..*] {ordered, subsets unit}

Ordered set of Unit that specifies the base units of the system of units. A “base unit” is defined in [VIM] as a
“measurement unit that is adopted by convention for a base quantity.” It is the (preferred) unit in which base
quantities of the associated systemOfQuantities are expressed.

o prefix: Prefix [0..*] {ordered}

Ordered set of Prefix that specifies the prefixes for multiples and submultiples of units in the system.

e systemOfQuantities: SystemOfQuantities [0..1]
Reference to the SystemOfQuantities for which the units are specified.

e includedSystemOfUnits: SystemOfUnits[0..*] {unique}

OMG Systems Modeling Language, v1.6 295

Including a SystemOfQuantities means including all of the QuantityKind it defines and includes from other
SystemOfQuantities.

o usedSystemOfUnits: SystemOfUnits[0..*] {unique}

A Unit can be defined in a SystemOfUnits in terms of Units defined in that SystemOfUnits or from other
SystemOfUnits it uses or includes. See for example the units used with the SI in ISO 80000-1, Table 5.

Constraints

[1] In a coherent system of units, there shall be only one base unit for each base quantity.
package QUDV

context SystemOfUnits

def: isCoherent () : Boolean =

baseUnit->size () = systemOfQuantities.baseQuantityKind->size()
and baseUnit

->forAll (bU|systemOfQuantities.baseQuantityKind

->one (bQK|bU.primaryQuantityKind=bQK))

and systemOfQuantities.baseQuantityKind

->forAll (bQK|baseUnit->one (bU|bQK=bU.primaryQuantityKind))

Endpackage

[2] A coherent derived unit shall be a derived unit that, for a given system of quantities and for a chosen set of base units,
is a product of powers of base units with no other proportionality factor than one.

package QUDV

context SystemOfUnits

def: isCoherent (du : DerivedUnit) : Boolean =
baseUnit->includesAll (du.factor->collect (unit))
and du.factor->collect (exponent)

->forAll (numerator=1 and denominator=1)

Endpackage

[3] In a well-formed SystemOfUnits, all of the prefixes of PrefixedUnits shall be defined in the SystemOfUnits.
inv SoU3 1:
allPrefixes()->includesAll (allUnits()->select (oclIsTypeOf (PrefixedUnit))

->collect (oclAsType (PrefixedUnit) .prefix))

[4] All the dependent Units of a SystemOfUnits shall be in the scope of that SystemOfUnits.

inv SoU3 2:

296 OMG Systems Modeling Language, v1.6

allUnits () ->includesAll (allUnits ()->collect (dependsOnUnits())->flatten()->asSet())

[51 All of the quantityKinds that are measurementUnits of Units in the SystemOfUnits shall be defined in the
systemOfQuantities of that SystemOfUnits.

inv SoU3 3:
getEffectiveSystemOfQuantities () = null or let agk : Set(QuantityKind) =
getEffectiveSystemOfQuantities () .allQuantityKinds () in ->allUnits()

->forAll(u | agk
->includesAll (getKindOfQuantitiesForMeasurementUnit (u)))

[6] For a Unit to have a provenance to a single SystemOfUnits, all included systems of units shall be transitively disjoint
with all used systems of units.

inv includedSystemOfUnits transitivelyDisjoint usedSystemOfUnits:
allIncludedSystemOfUnits () ->intersection(self.oclAsSet ()

->closure (usedSystemOfUnits)) ->isEmpty ()

[7] The set of all Units in a given SystemOfUnits shall be capable of being partitioned into two disjoint, covering subsets:
the set of base Units (typically chosen to be mutually independent) and all its complement, the set of derived Units, each
of which can be expressed in terms of the base Units (See ISO 80000-1, 6.4).

inv allBaseUnitsAreUnits:

allUnits () ->includesAll (allBaseUnits ())

[8] Every Unit shall be defined in only one SystemOfUnits but it can be in the scope of several SystemOfUnits. A given
Unit is in scope of a SystemOfUnits either because it is defined or used in a SystemOfUnits or because it is included
from the scope of another SystemOfUnits.

inv singleProvenance:

includedSystemOfUnits->collect (allUnits ())->intersection (unit)->isEmpty())

[9] For a Unit to have a provenance to a single SystemOfUnits, the use and includes relationships among SystemOfUnits
shall be acyclic.

inv acyclicProvenance:

allAccessibleSystemOfUnits () ->excludes (self)
Operations

[1] The query accessibleQuantityKinds() gives all the QuantityKinds directly defined in the SystemOfQuantities or
transitively in any included or used SystemOfQuantities.

OMG Systems Modeling Language, v1.6 297

allAccessibleQuantityKinds () : QuantityKind[O0..*] {unique}

body: allAccessibleSystemOfQuantities()->collect (quantityKind)->flatten ()->asSet ()
inv SoU3 3:

getEffectiveSystemOfQuantities () = null or let agk : Set(QuantityKind) =
getEffectiveSystemOfQuantities () .allQuantityKinds () in ->allUnits{()

->forAll(u | agk
->includesAll (getKindOfQuantitiesForMeasurementUnit (u)))

[2] The query allAccessibleSystemOfUnits() gives all the SystemOfUnits directly or transitively included or used.
allAccessibleSystemOfUnits () : SystemOfUnits[0..*] {unique}

body: self->closure (includedSystemOfUnits->union (usedSystemOfUnits))->asSet ()

[3] The query accessibleUnits () gives all the units directly defined in a system of units or transitively in any included or
used system of units.

allAccessibleUnits(): Unit[0..*] {unique}

body: allAccessibleSystemOfUnits () ->collect (unit)->flatten()->asSet ()

[4] The query allBaseQuantityKinds() gives all the QuantityKinds directly adopted or transitively adopted from any
included SystemOfQuantities as base QuantityKinds in the effective SystemOfQuantities associated to a SystemOfUnits.

allBaseQuantityKinds () : QuantityKind[O0..*] {unique}

body: getEffectiveSystemOfQuantities ()->allBaseQuantityKinds ()->flatten () ->asSet()

[5] The query allBaseUnits() gives all the Units directly adopted or transitively adopted from any included
SystemOfUnits as base Units.

allBaseUnits(): Unit[0..*] {unique}
body: allIncludedSystemOfUnits ()->collect (baseUnit)->flatten()->asSet()

->union (baseUnit) ->asset

[6] The query alllncludedSystemOfUnits() gives all the SystemOfUnits directly or transitively included.
allIncludedSystemOfUnits () : SystemOfUnits[0..*] {unique}

body: self->closure (includedSystemOfUnits->union (usedSystemOfUnits))->asSet ()

[7] The predicate allMeasurementUnitsDefinedForSomeQuantityKind() determines whether, in a SystemOfUnits, every
Unit shall be defined, by convention, as a multiplicable reference for at least one QuantityKind (see ISO 80000-1, 3.9).

allMeasurementUnitsDefinedForSomeQuantityKind () : Boolean

body: allUnits()->select (quantityKind <> null)

298 OMG Systems Modeling Language, v1.6

[8] The query allPrefixes() gives all the Prefixes in scope of a SystemOfUnits; that is, each Prefix is either directly
defined in the SystemOfUnits or in any accessible SystemOfUnits.

allPrefixes(): Prefix[0..*] {unique}

body: allAccessibleSystemOfUnits () ->including(self)->collect (prefix)->flatten()
->asSet ()

[9] The query allUnits() gives all the Units in scope of a SystemOfUnits; that is, each Unit is either directly defined in the
SystemOfUnits, selectively used from another SystemOfUnits or part of the scope of all the Units included from another
SystemOfUnits.

allUnits(): Unit[0..*] {unique}

body: allIncludedSystemOfUnits ()->collect (unit)->flatten()->asSet ()->union (unit)
->asSet ()

[10] The query getAdoptedBaseUnitForMeasurementUnit() determines for a Unit u in scope of a SystemOfUnits the base
Unit, if any, corresponding to u, which can be u itself if it is a baseUnit in that SystemOfUnits or its reference Unit if it is
a base Unit and u is a PrefixUnit.

getAdoptedBaseUnitForMeasurementUnit (u : Unit) : Unit[0..1]
body: let abu : Set(Unit) = allBaseUnits () in
if (abu->includes(u)) then u

else 1if (u.oclIsKindOf (PrefixedUnit))

then abu->intersection (u.oclAsType (PrefixedUnit) .referenceUnit->asSet())
->any (true)

else null endif

endif

[11] The query getAdoptedQuantityKindForAdoptedBaseUnitOfMeasurementUnit() determines for a Unit u in scope of
a SystemOfUnits the base QuantityKind, if any, corresponding to the base Unit of u.

getAdoptedQuantityKindForAdoptedBaseUnitOfMeasurementUnit (u : Unit)
QuantityKind[0..1]

body: let bu : Unit = getAdoptedBaseUnitForMeasurementUnit (u) in

if (bu = null) then Set({}

else let gks : Set(QuantityKind) = getKindOfQuantitiesForMeasurementUnit (bu) in
allBaseQuantityKinds () ->intersection (gks)
endif

[12] The query getEffectiveSystemOfQuantities() determines for a SystemOfUnits the SystemOfQuantities, if any, that it
is directly or indirectly associated with via included SystemOfUnits.

getEffectiveSystemOfQuantities () : SystemOfQuantities[0..1]

OMG Systems Modeling Language, v1.6 299

body: if systemOfQuantities = null then includedSystemOfUnits->
collect (getEffectiveSystemOfQuantities())->flatten()->asSet ()->any(true)

else systemOfQuantities endif

[13] The query getKindOfQuantitiesForMeasurementUnit() determines for a Unit u in scope of a SystemOfUnits the set
of QuantityKinds corresponding to u, if specified, or to the Units that u is defined in terms of, if any.

getKindOfQuantitiesForMeasurementUnit (u : Unit) : QuantityKind[O0..*] {unique}
body: let bu : Unit = getAdoptedBaseUnitForMeasurementUnit (u) in

if (bu = null) then Set{}

else let gks : Set(QuantityKind) = getKindOfQuantitiesForMeasurementUnit (bu) in
allBaseQuantityKinds () ->intersection (gks)

endif

E.5.2.17 Unit
Description
In QUDV, the concept of Unit is an abstract specialization of SysML Unit to support designating a primary QuantityKind
for a given Unit within the scope of a system of units and quantities and to support a richer vocabulary for defining Units.
Properties
e /dependsOnUnits : Unit[0..*] {readOnly, unique}
The set of all Units that this Unit directly or indirectly depends on according to its definition.
e general: Unit[0..*] {unique}
A Unit can be defined as a specialization of zero or more Units. This capability is important for specifying the
meaning of a unit for a quantity of dimension one (see ISO 80000-1, 3.8 and 3.10).
o isUnitCountOfEntities: Boolean = false
If true, indicates that the measurement unit represents a number of entities (see ISO 80000-1, 3.10,
Note 3).
e isUnitForQuantityOfDimensionOne: Boolean = false
If true, indicates that the corresponding QuantityKind has dimension one (see ISO 80000-1, 3.8).

Constraints

[1] A Unit cannot be defined in terms of itself. This follows from the requirement that, in a coherent SystemO{fUnits, the
Units of all derived QuantityKinds are expressed in terms of the base Units in accordance with the equations in the
SystemOfQuantities (see ISO 80000-1, 6.4).

inv acyclic unit dependencies:
dependsOnUnits () ->excludes (self)

300 OMG Systems Modeling Language, v1.6

Operations

[1] Abstract operation specified in SimpleQuantityKind and DerivedQuantityKind to calculate the value of the derived
property QuantityKind:/dependsOnQuantityKinds.

dependsOnQuantityKinds () : QuantityKind[O0..*] {unique}

E.5.218 UnitFactor
Description
A UnitFactor represents a factor in the product of powers that defines a DerivedUnit.

Properties

e exponent: Rational
Rational number that specifies the exponent of the power to which the unit is raised.

e unit: Unit
Reference to the Unit that participates in the factor.

E.5.3 References

[VIM]

JCGM 200:2012, International vocabulary of metrology - Basic and general concepts and associated terms (VIM), 3rd
edition (JCGM 200:2008 with minor corrections), 2012, BIPM, Paris, France.
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200 2012.pdf.

[ISO/IEC80000]

ISO/IEC 80000, Quantities and units. 15 parts, some published, some still in progress, harmonized replacement of
[ISO31] and [IEC60027], the new international system of quantities and units.

[ISO31]
ISO 31, Quantities and units (Third edition 1992-08-01). Specifies the international system of units - SI - in 14 parts.
[TEC60027]

IEC 60027-2:2005, Letter symbols to be used in electrical technology - Part 2: Telecommunications and electronics
(Third edition 2005-08).

[SI-Brochure]

Le Systéme international dunités (SI) / The International System of Units (SI), 8th edition 2006, BIPM, (French and
English). Available for download in PDF format from http://www.bipm.org/en/si/si_brochure.

[NIST330]

The International System of Units (SI), NIST Special Publication 330, 2008 Edition. NOTE: U.S. version of the English
language text of [SI-Brochure].

Available for download in PDF format from http://physics.nist.gov/cuu/Units/bibliography.html.

OMG Systems Modeling Language, v1.6 301

http://www.bipm.org/en/si/si_brochure

[NIST822]
Guide for the Use of the International System of Units (SI), NIST Special Publication 811, 2008 Edition.

Available for download in PDF format from http://physics.nist.gov/cuu/Units/bibliography.html.

999

[Dybkaer-2010] Rene Dybkaer, “ISO terminological analysis of the VIM3 concepts of ‘quantity’ and ‘kind-of-quantity’”,
Metrologia 47, (2010) 127-143, http://dx.doi.org/10.1088/0026-1394/47/3/003. See also:
http://www.bipm.org/en/publications/guides/rationale_vim3.html.

E.5.4 Usage Examples

E.5.4.1 Sl Unit and QuantityKind examples

Figure E.8 shows an approach for defining base units of the System International of Units defined in
http://www.bipm.org/en/si/si_brochure/chapter2/2-1/ and http://physics.nist.gov/cuu/Units/units.html. This approach
involves instantiating the concrete classes of Unit shown in Figure E.6.

Figure E.9diagram shows the definition of “newton” as a DerivedUnit (E.5.2.4 DerivedUnit) corresponding to the “force”
DerivedQuantityKind (E.5.2.3 DerivedQuantityKind). Derived units and quantity kinds are defined as products of factors
on other units and quantity kinds respectively. In the QUDYV, the product factors of a DerivedUnit (resp.
DerivedQuantityKind) are all of the UnitFactor (resp. DerivedUnitFactor) at the “factor” ends of association link
nstances.

bdd [packags] ES0-80000-1-QUDV Diagram [Emmple of QUDV definitions for basa units and quantities from 150 B0000-1 Quantities and Uinits Part I]J

51 : SystemOdUnits systamOfQuantities | 150 : SystemOfQuantities
name = "International name = "International
System c..UI.!Ils unit s ShmiAa primary T : Slmletmntitgnd System 0|..QLI|J-IIL'I.IL5
symbol = "SI L — | lenath : SimpleQuantityring 4 symbal ="15Q'

definibonURI = "hitpcibwww.bipm orglen/sifsi_brochurelchapter2!2-1imetre himl™ —— name = ength™ 5
beseUnit| name = "metre” L symbel = "I haseQuantityKind
symbol = "m"
unit : - - primaryQuantitykiind - — :
hilogram : PrefixedUnit mass ; SimpleQuantityKind | Quanstykind
definibonUR] = "hitpcibwww. bipm.orglenfsi'si_ brochurelchapter2f2-1ikilograrm.html™ name = "mass”
baseUnit | name = "kilogram™ guantityKind | symbaol = "m* haseQuantityKind
symbal = "kg"
kilo : Prefix
e | 126100 = LOE3 /
P name = "kio" prefix referencellni quantiykind
symbal ="k gram : SimpleUnit
name = "gram"
unit | symbel ="g"

Figure E.8 Base Unit and Quantity Kinds of the Sl and I1SQ respectively

302 OMG Systems Modeling Language, v1.6

http://www.bipm.org/en/publications/guides/rationale_vim3.html

bdd [package] ISO-80000-1-QUDV Diagram [Example of QUDV definitions for derived units and quantities from 150 80000-1 Quantities and Units Part 1]J

newton : DerivedUnit

name = "newton™

primaryQuantitykind

factor J/

metre”l : UnitFactor

exponent = 1/1

symbol = "m"

guantityKind

length : SimpleQuantitykind

symbol = "N"
primanyQuantitykind guantitykind
fore: erivedQuantityKind
name = "force™
symbol ="F"

name = "length”
symbaol ="

guantityKind

primaryQuantitykind,

factor
kilogram™1 : UnitFactor
exponent= L/1

unit
kilogram : PrefixedUnit
name = "kilogram"
prefix = kilo
referencellnit = gram
symbol = "kg”

quantitykind

mass : SimpleQuantityKind

name = "mass”
symbol = "m”

length”1 : QuantityKindFactor

exponent = 1/1

factor

quantitykind

primanyQuantityKind guantitykind

factor

second”-2 : UnitFactor

exponent = -2/1

unit
second : SimpleUnit

name = “second”
symbol = “g"

time : SimpleQuantityKind

narme = “time"”
symbaol ="1"

exponent = 171

quantitykind

mass”1 : QuantityKindFactor

factor

time”-2 : QuantityKindFactor

exponent = -2/1

factor |’

Figure E.9 Example of a derived unit and derived quantity kind

E.5.4.2

Figure E.10 shows a simple model of the length of a spring defined as the linear distance between the linear position of
its two flange ends. QUDYV supports defining arbitrary systems of units and quantities. Although this example uses only
one unit, “metre” and one quantity kind, “lengthQK;” this example illustrates specialized value types to make additional
distinctions such as “LinearPosition” vs. “LinearDistance,” two distinct quantities that have the same unit and quantity
kind. This example illustrates an instance of a spring and uses the dot pathname property notation defined for IBDs
(8.3.1.2, Internal Block Diagram) to clearly indicate the role of each instance specification.

Spring Example

OMG Systems Modeling Language, v1.6 303

bdd [package] Spri

ple [Spring Length Example])

«blocks

SpringUnits : SystemOfUnits

systemOIQuaniities
Sprin;

«blocks

uantities : SystemOfQuantities

wwalueTypes svalue Types
LinearPosition LinearDistance
wvalueTypes swalueTypes
unit = metre unit = metre
values values
value : Real value : Real

unit baseUnit quantitykind baseQuantitykind
e y quaniityKind gopantbaddi. =
metre : SimpleUnit lengthQK : SimpleQuantityKind =blocks
Flange

primanyQuantityiind values
pasition : LinearPosition{unit = metre}

«ValueTypes «blocks ;D'O_"-k”
springl.a.pos : LinearPosition springl.a: Flange P
z z ConsirEints
wvalue = 8.0 posilion = springla_pos {unil = metre} springlength - SpringLength
parns
a : Flange
«ValuaTypes whincks b : Flange
springl.b.pos : LinearPosition springl.b : Flange o
value = 50.0 position = springlb_pos {unit = metre} length : LinearDistancefunit = metre}
«NalueTypes sCOnsiraint
springl.length : LinearDistance whblocks SpringLength
value = 42.0 | springl : Spring constraints
a=springla {length.value = | a position.value - b position.value [}
b =springlb A AR
wCONStraint: length = spring1 length {unil = metre} a : Flange
i i s i springLength = spring1.springLength b : Flange
springl.springlength : SpringLength Sprngend S L spimigLeng

length : LinearDistance

Figure E.10 Spring Length Example

E.6 Model Library of SysML Quantity Kinds and Units for ISO 8000

E.6.1 Overview

This non-normative extension defines a model library of SysML QuantityKind and Unit definitions for a subset of
quantities and units defined by the International System of Quantities (ISQ) and the International System of Units (SI).
The specific quantities and units in this library are defined by ISO 80000-1 Quantities and units - Part1: General.
ISO/TEC 80000 currently has fourteen parts that define many quantities and units for use within various fields of science
and technology. Part 1 defines base quantities and units used by other parts as well as a starting set of derived quantities
and units with special names and symbols.

E.6.2 Units and Quantity Kinds

The model library defined in this sub clause contains SysML QuantityKind and Unit elements as defined by Clause 8,
“Blocks.” Each QuantityKind or Unit element may optionally carry a “definitionURI” property to document each
quantity kind and unit using additional information available from some external source. One option is for this
definitionURI to identify an element of a QUDYV model (see E.5, Model Library for Quantities, Units, Dimensions, and
Values (QUDYV)) that more fully describes the same quantities and units, including the systems of quantities and units
they belong to, and the means by which they may be derived from each other.

304 OMG Systems Modeling Language, v1.6

E.5.4 Usage Examples contains examples of such QUDV definitions that could be referenced by these definitionURIs.

class J
| i
«profile» «ModelLibrary»
SysML _«apply» | Qubv
{uri=http://www.omg.org/spec/SysML/20131201/SysML} {uri=http://www.omg.org/spec/SysML/20131201/QUDV}
N | N
| *ARPYH | «import»
A | |
«ModelLibrary»
1S0-80000

{uri=http://www.omg.org/spec/SysML/20131201/1S0-80000}

Figure E.11 Model libraries of SysML Quantity Kinds and Units for the covered content of ISO 80000 parts

3,4,5,6,7,9,10 and 13

OMG Systems Modeling Language, v1.6

305

class [Package] ISO-80000 [SysML Quantity Kinds and Units for the covered content of ISO 80000 JJ

1S080000-1 General 1S080000-2 Mathematical Signs and Symbols[
«import»
Prefixes|] [— — & — ke Constant Numbers
«import»
-1+ ——-= -4 - -
T
| _«importy
1S080000-3 Space and Time |
Units) Quantities
gy o PRNDE o o
«import»
[7
| | «import» | «import»

1S080000-4 Mechanics | I |

Units% _ o dmport | Quantities
T ™
!

m«in‘purt» R i t @ r
| «import» «importy ™ y 4 LA ~ «importy I“'“’Pon”
1S080000-5 Thermodynamicsl bR IEC80000-13 Information Science and Technulogy|
e
Units Quantities i L. | Units Quantities Preﬂxesl
_«import» .
> dmports |
£
/r\ -
| Simpors f«in’porl» I «import»
| |
IEC80000-6 Elegtromagnetism | .
Units Quantities
_«importy.)
) N
™~
wimport» | «import» I «import»

|
| |
1S080000-9 Phyg‘cal Chemestry and Mglecular Physics

Units Quantities
_«\mﬂr{i N
)
Ndmports | cimport» | «import»
|
1S080000-10 Atomic and Nuclear Physics
Units _eimporty. ol Quantities
73
i i
et ‘«\rrpnrt» I«mporl»
_‘—rj. |
1S080000-7 L|g_hrl
|
import
Units| — e Quantities

Figure E.12 Organization of the definitions of units and quantities from the normative parts of ISO 80000 covered
in SysML 1.4, which includes all the normative content of parts 3,4,5,6; the subset of parts 7,9,10 corresponding
to the content from SysML 1.3 and the subset of part 13 pertaining to commonly used units of information. Parts
8,11 and 12 are not covered because none of their units and quantities were referenced in previous versions of
SysML nor in the summary tables in ISO 80000-1

306 OMG Systems Modeling Language, v1.6

class [Package] 1ISO80000 [Systems of Units and Quantities for the covered parts of ISO 80000 JJ

system OfQuantities | i N 2 |
5{ 150 80000-3 Quantities : SystemOfQuantities

= =
IS0 80000-3 Units ; SystemOfUnits
| |
includedSystemOfUnits

[150800004 Units : Ofunits |

includedSystem OfQuantities

systemOfQuantities f 150 §0000-4 Quantities : SystemOfQuantities |
A

includedSystem OfUnits includedSystem OfUnits

includedSystem OfQuantities includedSystem OfQuantities

systemOfQuanities [|50 800005 Quantities : SystemOfQuantities |
3

includedSystem OfUnits

[ECa00 i Sttt |

includedSystem OfQuantities

systemOfOuanliliestmn.sr tities ; Syst: Ml

includedSystemOfUnits

[1s0-60100-5 Unie.: SystemOfloits |

includedSystemOfQuantities

system OfQuantities

includedSystemOfUnits

= = -
1150 80000-9 Quanties : SystemOrQuantites |
includedSystemOfQuantities

[150 80000-10 Units : SystemOfunits }
f
includedSystem OfUnits

150800007 Units - SystcmmOfliis

systemOfQuantities | R o |
3| 150 §0000-10 Quantities : SystemOfQuantities
includedSystem OfQuantities

systemOfQuantities [150 §0000-7 Quantities : SystemOfQuantities |
iy

includedSystemOfUnits

includedSystem OfQuantities

includedSystem OfUnits

systemOlQuantilies.'\E¢ §0000-13 QuantityKinds Subset : SystemOfQuantities
3

includedSystem OfQuantities

system OfQuantities

1S0-80000 Units : S OfUnits |
usedSystemOfUnits

f 80000 QuantityKinds - S OfQuantiti
usedSystemOfQuantities

[s1:3sstemorusins |

systemOfQuanﬁtiesJF OfQuantiti

Figure E.13 Content relationships for the systems of units and quantities in from the different parts of ISO 80000
in relation to ISO 80000 as a whole and to the International System of Units (SI) and quantities (1SQ)

OMG Systems Modeling Language, v1.6

307

class ISO-80000 [Table 1: S| base units for the ISQ base quantities JJ

S1: SystemOfunits

definitionURI = “htip-/iwww bipm org/enisi/si_brochure/chapter1/1-2 him|}

usedSystemOfUnits

System OfQx

1SQ: SystemOfQuantities
definitionURI = "hitp:/www bipm orglen/silsi_brochure/chapter1/1-2.htm|
symbol ="ISQ" symbol ="SI"
usedSystemOfQuantities = ISO-80000 Quantityinds usedSystem OfUnits = ISO-80000 Units

usedSyslemOFOuanlmesl

1S0-80000 : SystemOf L&yshirrﬂfmanﬁliis
€

— '
baseQuantityKind plion = "ISO B00004, 4.1+ auantitykind

baseQuantityKind iption = "ISO 80000-3, 3-1.1" [guantityKind
L —
= 3 3.7+ [quantityKind
baseQuaniityKind description = "ISO 80000-3, 3-7' 5

kilogram . PrefixeduUnit
JRI = "http:fwww.bipm ifsi_brocht i him .
description = "ISO 800004, 4-1.a" asaUnit
isinvertible = true
= "ISO B00D0-4, 4-1.a" |feferencelnit
maetre : Si
RI = "hitp:/www.bipm ifsi_brocht 2-1/metre.htm
deseriplion = "ISO 80000-3, 3-1.a,3-17.a" baseUnit

a -
JRI = "http:fiwww.bipm org/en/sifsi_brochL h

f2-1/second.htmfl, s o it

description ="ISO 80000-3, 3-7.a, 3-12.3, 3-13.2"

baseQuantitykind | 9eseription = IS0 80000-6, 5-1"
aseQua q

electric current ; Simple QuantityKind
baseQuantitykind | description = "IEC 80000-8, 6-1"
A

baseQuantityKind Sl aisneonty

| amaunt.of substance. SimpleQuantityKind |
description = "ISO 80000-9, 9-1"

JRI = "hitp Jiwww.bipm.arg/e i h /2-1/kelvin htm|| —_——
description ="ISO 80000-5,5-1.a, 5-33.2" ey
ampere : Simple Unit
JR1 = "hitpfiwww bipm ifsi_brocht Vampere.hml, o5 e Unit
description = "IEC 80000-6, 6-1.a"
meole . SimpleUnit
definitionURI = "hitp/iwww.bipm.orglenisiisi_brochure/chapter2/2-1/mole.htm}
quantityKind ="1SO 80000-9, 8-1.2" baseUnit
isUnitCountOfEntities = true

1/candela.htm|

JRI= "httpfwww.bipm ifsi_broch
description = "ISO 80000-7, 7-35.2"

baseUnit

Figure E.14 Table 1 (from ISO 80000-1) S| base units for the ISQ base quantities

308

OMG Systems Modeling Language, v1.6

class 1SO-80000(Table 2a - Sl derived units w ith special names and symbols l,]

temOfQuantities

| SQ:S ofQ = [r:sVS

usedSystemOTQuamitiesl
| S0-80000 Q itk -5 o1Q = |systemOfQuantities
)

description = "ISO 80000-3, 3-5" |quantityKind

Jian : DerivedUni

isQuantityOfDimensionOne = frue

- 18 - Darlada ityKi
description ="ISO 80000-3, 3-6" quantityKind

description ="ISO 80000-3, 3-5.a"
isUnitForQuantityOfDimensionOne = true

jian - DerivedUni

isQuantityOfDimensionOne = frue

— iyKind
descriptiocn = "ISO 80000-3, 3-15.1" quantityKind

description ="ISO 80000-3, 3-6.a"
isUnitForQuantityOfDimensionOne = true

- Deriveduni

DerivedCuantiKind
description = "ISO 80000-4, 4-9.1" |quantityKind

description = "ISO 80000-3, 3-15.a"

- DerivedUni

prEe a—ra—
descripion = "ISO 80000-4, 4-15.1" | anitykind

description ="ISO 80000-4, 4-9.a"

Deri R

quantityKind

description ="ISO 80000-4, 4-15.a, 4-18.2"

k- SimpleQuantityKind
description = "ISO 80000-4, 4-27.1"

specific
ical - SimpleQ ityKind
description = "ISO 80000-4, 4-27 4"

specific
Kineti - DerivedQ ityKind
description = "ISO 80000-4, 4-27.3"

specific
tential energy : DerivedQuantityKind
description = "ISO 80000-4, 4-27 2"

specific
t of heat - SimpleQuantityKind
description = "ISO 80000-5, 5-6"

- BT e—

description = "ISO 80000-4, 4-27 .a, 4-34.a, 4-36.a"

Figure E.15 Table 2 (from ISO 80000-1) ISQ derived quantities and Sl derived units with special names (1)

OMG Systems Modeling Language, v1.6

309

class ISO-80000[Table 2b - Sl derived units w ith special names and symbols JJ

[15Q: SystemOfQuantities |systemOfQuantities

usedSystem OfQuantities

[150-80000 QuantityKinds : SystemOfQuantities |systemOfQuantites

usedSystemOfUnits

[Eeene s
{ J80-20000 Unifa : SyatemOfthaita
z z quantityKind - 5
power : DerivedQuantityKind newton metre per second : DerivedUnit
description = "ISO 80000-4, 4-26" description = "ISO 80000-4, 4-26.a"
general
il |- DerivedUni
description = "ISO 80000-4, 4-26.a"
general
si i
description = "ISO 80000-4, 4-26.a, 4-56.a"
electric charge : DerivedQuantityKind |duantitKind soulomb ; Derivedunit
description = "IEC 80000-6, 6-2" description = "IEC 80000-6, 6-2.a"
- - - = quantityKind . -
electric potential : DerivedQuantityKind volt : Sim ple Unit

description ="IEC 80000-6, 6-11.1"

general

lectri 2l diff - SimpleQuantityKind

description = "IEC 80000-6, 6-11.2"

description = "IEC 80000-6, 6-11.a"

Figure E.16 Table 2 (from ISO 80000-1) ISQ derived quantities and Sl derived units with special names (2)

310

OMG Systems Modeling Language, v1.6

class ISO-80000[Table 2¢ - Sl derived units w ith special names and symbols]J

’ _ ——— |systemOfQuantities
)

usedSystemOfQuantities
l 150-80000 QuantityKinds : System OfQuantities |§ysterrOfQuantilies

usedSystemOfUnits
[55-80000 Units Systemoilns |

- - DerivadQuantiyKind

" Deri Jni

description = "IEC 80000-6, 6-13" |duantityind

electric resistance : DerivedQuantityKind |qantitykind

description = "IEC 80000-6, 6-13.a"

hm .Si Uni

description = "IEC 80000-6, 6-46"

- - DerivedQuantityki

description ="IEC 80000-6, 6-46.2"

description = "IEC 80000-6, 6-47" quantityKind

AT ——
description = "IEC 80000-6, 6-22.1" |duantitykind

description = "IEC 80000-6, 6-47.a"

si uni

magnetic flux density : DerivedQuantityKind |qyantityKind

description = "IEC 80000-6, 6-22.a"

:

description ="IEC 80000-6, 6-21"

ind - DerivedQuantityKind

quantityKind

description = "I[EC 80000-6, 6-21.a"

Tsi uni

description ="IEC 80000-6, 6-41.1"

1SiusT TSI QuantityKind

quantityKind

description = "IEC 80000-6, 6-41.a"

" ISius : AffineC lonUni

description ="ISO 80000-5, 5-2"

o ium - Derlved CumntiteKind
description = "ISO 80000-7, 7-32" |guantityKind

description = "ISO 80000-5, 5-2.a"
isInvertible = true
offset=273.16

- DerivedUnit

illuminance : DerivedQuantityKind quantityKind

description = "ISO 80000-7, 7-32.a"

|1 - DerivedUnit

description ="ISO 80000-7, 7-36"

description = "ISO 80000-7, 7-36.a"

Figure E.17 Table 2 (from ISO 80000-1) ISQ derived quantities and Sl derived units with special names (3)

OMG Systems Modeling Language, v1.6

31

class ISO-80000[Table — Sl derived units with special names and symbols admitted for reasons of safeguarding human health]J

I = 1systemOfQuantities
1SQ : SystemOfQuantities F

usedSystem OfQuantities

[sl sustemGnunia |

usedSystem OfUnits

IlS.QﬂﬂIlﬂﬂQ ityKinds : System OfQuantiti]systemOfQuantities
= F

— ity - DerivadOuantitekl

description = "ISO 80000-10, 10-29" quantityKind

| 1S0-80000 Units : System OfUnits |
|

Deri -

b orbad dass - DorivedCuantividnd

description = "ISO 80000-10, 10-81.1~ [duantityKind

description ="ISO 80000-10, 10-29.2"

- DerivadUni

dose equivalent : DerivedQuantityKind |qyantityKind

description = "ISO 80000-10, 10-86"

description ="ISO 80000-10, 10-84.a"

1 t : DerivedUnit

description ="ISO 80000-10, 10-86.a"

Figure E.18 Table 3 (from the Sl brochure) Sl derived units with special names and symbols

E.6.3 ISO 80000-1 Prefixes

Table E-6: The decimal and binary prefixes in scope of the International System of Units (SI) which uses the ISO
80000 system of units and its included systems of units such as ISO 80000-13

Prefix name Prefix Factor Defining Part
(num, den)

yocto 1,10°24 ISO 80000-1 General
zepto 1,10°21 ISO 80000-1 General
atto 1,1078 ISO 80000-1 General
femto 1,107M5 ISO 80000-1 General
pico 1,107M2 ISO 80000-1 General
312

OMG Systems Modeling Language, v1.6

Prefix name Prefix Factor Defining Part
(num, den)

nano 1,1079 ISO 80000-1 General

micro 1,106 ISO 80000-1 General

milli 1,103 ISO 80000-1 General

centi 1,102 ISO 80000-1 General

deci 1,10M ISO 80000-1 General

deca 10M.1 ISO 80000-1 General

hecto 10721 ISO 80000-1 General

kilo 1073.1 ISO 80000-1 General

mega 1076.1 ISO 80000-1 General

giga 1019.1 ISO 80000-1 General

tera 10M2.1 ISO 80000-1 General

peta 10M5.1 ISO 80000-1 General

exa 10"18.1 ISO 80000-1 General

zetta 10211 ISO 80000-1 General

yotta 10724 1 ISO 80000-1 General

kibi 2MoM A IEC80000-13 Information Science and Technology
mebi (2*0)2,1 IEC80000-13 Information Science and Technology
gibi (2M0)*3,1 IEC80000-13 Information Science and Technology
lebi (2M0)M 1 IEC80000-13 Information Science and Technology
pebi (2*0)75,1 IEC80000-13 Information Science and Technology
exbi (2*10)"6,1 IEC80000-13 Information Science and Technology

OMG Systems Modeling Language, v1.6

313

zebi (2MO0)M7 1 IEC80000-13 Information Science and Technology

yobi (2*10)"8,1 IEC80000-13 Information Science and Technology

E.6.4 ISO 80000-2 Mathematical Signs and Symbols

ISO 80000 part 2 defines Mathematical Signs and Symbols used in other ISO 80000 parts. In the SysML library, this part
contains definitions of constant numbers used across all other parts.

314 OMG Systems Modeling Language, v1.6

class [Package] Constant Numbers [ISO 80000-2 Constantsj,j

10*1 :Integer
1042 :Integer

10,1 ; Rational

10*11,1 : Rational

1.10%1 : Rational

1,10411 ; Rational

denominator = 1
numerator = 10"

denominator = 1
numerator = 10411

denominator = 10
numerator = 1

denominator = 1011
numerator = 1

1042.1 : Rational

10121 : Rational

1.10"2 : Rational

1,10412 : Rational

denominator = 1
numerator = 1072

denominator = 1
numerator = 102

denominator = 102
numerator = 1

denominator = 10M2
numerator =1

1031 ; Rational

10*13,1; Rational

1,103 : Rational

110713 : Rational

denominator =1
numerator = 10”3

denominator = 1
numerator = 103

denominator = 103
numerator = 1

denominator = 1013
numerator =1

104.1 : Rational

10714.1 ; Rational

1.10%4 : Rational

1.10%14 : Rational

denominator = 1
numerator = 104

denominator = 1
numerator = 10414

denominator = 104
numerator = 1

denominator = 104
numerator = 1

10%5,1; Rational

10%15,1 ; Rational

1,105 : Rational

1,10%15 ; Rational

denominator =1
numerator = 10”5

denominator =1
numerator = 10415

denominator = 10%5
numerator = 1

denominator = 10M5
numerator = 1

10%6,1; Rational

10%16,1 ; Rational

1,106 : Rational

1.10%16 ; Rational

denominator =1
numerator = 10"6

denominator = 1
numerator = 106

denominator = 10"6
numerator = 1

denominator = 10M6
numerator = 1

10*7.1; Rational

10%17.1 ; Rational

1.10°7 : Rational

110717 : Rational

denominator =1
numerator = 107

denominator = 1
numerator = 1017

denominator = 107
numerator = 1

denominator = 10"7
numerator = 1

10%8,1 ; Rational

10%18,1 ; Rational

1,108 : Rational

1.10%18 ; Rational

denominator = 1
numerator = 108

denominator = 1
numerator = 10418

denominator = 108
numerator = 1

denominator = 10*18
numerator = 1

WA e Rl R

10%9,1 ; Rational

10191 ; Rational

1,109 : Rational

1.10*19 ; Rational

denominator = 1
numerator = 10"9

denominator = 1
numerator = 1049

denominator = 109
numerator = 1

denominator = 10"19
numerator = 1

10%20.1: Rational

denominator = 1
numerator = 100

denominator = 1
numerator = 10%20

denominator = 1010
numerator = 1

denominator = 10420
numerator = 1

10%22,1 ; Rational

10231 ; Rational

denominator =1
numerator = 1021

denominator = 1
numerator = 1022

denominator = 1
numerator = 1023

denominator = 1

[Lidnteger | | -A:lnteger |
[2iteger | [-2:Integer |
[3ilnteger | [-3:lnteger |
[24:integer | [60:integer |

1.1 . Rational

denominator = 1
numerator = 1

denominator = 1
numerator = -1

2.1 . Rational

=2,1: Rational

denominator = 1
numerator = 2

denominator =1
numerator = -2

3.1.: Rati

3.1 Rational

denominator = 1
numerator = 3

denominator =1
numerator = -3

273.16 : Rational

denominator = 102
numerator = 27316

1.60 . Rational

denominator = 60
numerator = 1

numerator = 1024

110721 : Rational

1.10°22 - Rational

110723 . Rati

1.10424 ; Rational

denominator = 10421
numerator = 1

denominator = 1022
numerator =1

denominator = 10723
numerator = 1

denominator = 10424
numerator = 1

Figure E.19: Constant numbers used throughout the SysML ISO 80000 library

E.6.5

The following sub clauses provide a summary overview of all definitions of units and quantity kinds grouped by ISO
80000 part (3,4,5,6,7,9,10,13). Note that “quantities” in the ISO documents correspond to “QuantityKinds” in QUDV. As
explained in 8.3.3.2.1, QuantityKind, the type of a SysML value property (i.e., a VIM “quantity”), a SysML ValueType,

OMG Systems Modeling Language, v1.6

Summary of the covered parts of ISO 80000

specifies the QUDV QuantityKind aspects that this “quantity” has in common with other “quantities” typed by SysML
ValueTypes referencing the same QUDV QuantityKind aspect.

The SysML definitions are indexed and ordered according to their corresponding ISO 80000 definition. The ISO 80000
part document provides the authoritative reference for the meaning of the corresponding SysML definitions of units and
quantity kinds.

Prefixes apply for all units except for units corresponding to quantities of dimension one or for units in non-reduced
form. The 20 decimal prefixes apply to such units in parts 3,4,5,6,7,9,10; the 8 binary prefixes apply to such units in parts
13. For a derived unit defined in terms of N other units, there are 20"N possible prefixed derived units; far too many to
create explicitly. This library contains only the combinations for the first factor for each derived unit. Finally, the library
includes value type definitions for the possible combinations of quantity kinds and compatible units and prefixed units
represented in the library.

All value type definitions follow the same pattern: a toplevel value type is defined with only the quantity kind. This value
type is compatible with values typed by specializations of that toplevel value type that specify a particular unit. The
following diagram shows the resulting taxonomy for the value types about mass (ISO 80000 -4, 4-1) and all applicable
prefixes for the corresponding unit, gram (ISO 80000-4, 4-1.a).

bdd [Packags] mass [mass valis ypes

ayakeTypan
s 6 [Fagrain]
{nusntityKing = mass,

sualieTypes
tass[megagram)
quanlityKind = mass,
it = Fegagran:

avalaTypes
mass[heclogram]
Fruantitykind = mass,
it = hactogram}

unit = kilogram)

mass[kilagram]
{quantityking = mam,

wvalieTypes

A [decagram |
fquantityking = masm,
unit = decagram)

mass[nanogram]
{yuaniin¥ind = mass

avaleTypes

it = nanagram}

fquantityind = mam.
wril = milligeam}

avakieTypes
maas[dacigram]

[quantityKind = mas.

unit = docigram)

wealuaTypas
mass
fquantityind = mass
L T L T T L T L
avaluaTypes
mass[yactagram]
avitliaTypas wwalueTypes avueTypen fquantityking = mam,
’ t it = yociog
mass[gram] pC— mass [zettagram] '“iﬂllllﬂp Z‘J—ﬂml unit = yaciog rsm}
{quantityking = mas, mazs[yottagram] {quantitykind = mass "'“:I’:] "“:" i
Lt = grami h ‘: o gn urat = zatiagram} 1ol = St plogram} e —
iquantityKind = mass,
unit = yollagram} mass[attegram]
avausTypae m;:;‘r':::f;;'m] {nu;-mnnlx nd :In—.m
unit = atiogram,
mass[patagram]
wvaluaTypes {quantilyKind = mass,
{quantifykind = mazm L= :

"‘“5!::99‘:3"‘1 it = petageam) unit = femtagram}

iquantitking = mass,

unit = exagram} eveleTyper

mass([picogram]
Iquantitykind = mass
il = pitogran

unit = teragram} wvabieTypee
.
prp— nl’ﬂlle. Ypas mass[microgram)
mazs[milligram] fruantitgKind = mass,

unit = micragram|

avaluaTypes
mass[centigram |
fquantitykind = mams,
unit = centigram}

Figure E.20 Example of value type definitions for a quantity and applicable units and prefixed un

E.6.5.1

1ISO 80000-3 Space and Time

All 25 entries (including sub-entries) in the normative contents of ISO 80000-3 are modeled as summarized below.

316

OMG Systems Modeling Language, v1.6

Table E-7: Normative units in ISO 80000-3 (1 of 2)

Unit name Description Symbol General units | Quantity Kinds| is unit for | is reduced
quantity of form?
metre ISO 80000-3, 3-1.a, |m ISO 80000-3,
3-17.a 311
metre to the power |I1SO 80000-3, 3-2.a, |[m-1 ISO 80000-3,
minus one 3-18.a, 3-19.a, 32[5]
3-25.a
square metre ISO 80000-3, 3-3.a m? ISO 80000-3, 3-3
cubic metre 1ISO 80000-3, 3-4.a m3 ISO 80000-3, 34
litre ISO 80000-3, 3-4.b 1
radian 1ISO 80000-3, 3-5.a rad ISO 80000-3 TRUE
degree angle degree angle ° TRUE
minute angle 1ISO 80000-3, 3-5.c ! TRUE
second angle 1ISO 80000-3, 3-5.d " TRUE
gon 1ISO 80000-3, 3-5.e gon TRUE
steradian ISO 80000-3, 3-6.a | srad ISO 80000-3, 3-6 | TRUE
second ISO 80000-3, 3-7.a, |s ISO 80000-3, 3-7
3-12.a, 3-13.a
minute 1ISO 80000-3, 3-7.b min
hour 1ISO 80000-3, 3-7.c h
day 1ISO 80000-3, 3-7.d d
metre per second 1SO 80000-3, 3-8.a, m/s ISO 80000-3,
3-20.
2 3-8.1
metre per second 1ISO 80000-3, 3-9.a m/s? ISO 80000-3,
squared 3.9 1
radian per second |1SO 80000-3, 3-10.a, |rad/s 1ISO 80000-3, ISO 80000-3,
OMG Systems Modeling Language, v1.6 317

Unit name Description Symbol General units | Quantity Kinds| is unit for | is reduced
quantity of form?
3-16.a 3-15.b, 3-16.b, 3-10[5]
3-23.\a [4\
radian per second |1SO 80000-3, 3-11.a |rad/s? ISO 80000-3,3-11
squared
number of turns 1ISO 80000-3, 3-14.a ISO 80000-3,3-14 | TRUE
revolution ISO 80000-3, 3-14.a ISO 80000-3, TRUE
3-14.a
hertz ISO 80000-3, 3-15.a | H; ISO 80000-3,
3-15.1
Table E-8: Normative units in ISO 80000-3 (2 of 2)

Unit name Description | Symbol | General units | Quantity Kinds| is unit for | is reduced
quantity of form?
dimension

number of turns per 1ISO 80000-3, s-1 ISO 80000-3, ISO 80000-3,
second 3-15.b 3-15.b, 3-16.b 3-15.2 [6]
second to the power 1ISO 80000-3, s-1 ISO 80000-3
minus one 3-15.b, 3-16.b, 3-23 [6
3-23.a
revolution per second | ISO 80000-3, r/s ISO 80000-3
3-15b 3-15.b
revolution per minute 1ISO 80000-3, r/min ISO 80000-3
3-15.b
neper ISO 80000-3, Np ISO 80000-3 TRUE
3-21.a, 3-22.a, 3-24
3-24b
bel ISO 80000-3, B ISO 80000-3 TRUE
3-21.b, 3-22.b 3-24[6
bel per second ISO 80000-3, 3- |B/s ISO 80000-3
23.b, 3-24.b 3-15.b, 3-16.b
3-23.a[4

318

OMG Systems Modeling Language, v1.6

neper per second

ISO 80000-3, 3- [Np/s

23.b

ISO 80000-3
3-15.b, 3-16.b
3-23.a

Table E-9: Normative quantity kinds in ISO 80000-3 (1 of 2)

Quantity Kind name Description Symbol General is dimension
1?

length ISO 80000-3, 3-1.1 I.L

breadth ISO 80000-3, 3-1.2 b.B ISO 80000-3, 3-1.1 [5]

height ISO 80000-3, 3-1.3 h.H ISO 80000-3, 3-1.1 [5]

thickness ISO 80000-3, 3-1.4 d.6 ISO 80000-3, 3-1.1 [5]

radius ISO 80000-3, 3-1.5 r.R ISO 80000-3, 3-1.1 [5]

radial distance ISO 80000-3, 3-1.6 I"Q”G ISO 80000-3, 3-1.1 [5]

diameter ISO 80000-3, 3-1.7 d.D ISO 80000-3, 3-1.1 [5]

length of path ISO 80000-3, 3-1.8 5 ISO 80000-3, 3-1.1 [5]

distance ISO 80000-3, 3-1.9 d.r ISO 80000-3, 3-1.1 [5]

cartesian coordinates ISO 80000-3, 3-1.10 XVZ ISO 80000-3, 3-1.1 [5]

position vector 1ISO 80000-3, 3-1.11 r ISO 80000-3, 3-1.1 [5]

displacement ISO 80000-3, 3-1.12 Ar ISO 80000-3, 3-1.1 [5]

radius of curvature ISO 80000-3, 3-1.13 p ISO 80000-3, 3-1.1 [5]

curvature 1ISO 80000-3, 3-2 ¥

area ISO 80000-3, 3-3 A [5:|

volums ISO 80000-3, 3-4 vV

plane angle 1ISO 80000-3, 3-5 e, L—? :;=3=¢ TRUE

solid angle ISO 80000-3, 3-6 Q TRUE

OMG Systems Modeling Language, v1.6

319

Quantity Kind name Description Symbol General is dimension
1?

time ISO 80000-3, 3-7 ¢

speed ISO 80000-3, 3-8.1 wv,w ISO 80000-3, 3-8.1 [5]

velocity 1ISO 80000-3, 3-8.1 v

speed of propagation of 1ISO 80000-3, 3-8.2 c ISO 80000-3, 3-8.1 [5]

waves

acceleration 1ISO 80000-3, 3-9.1 a

acceleration of free fall 1ISO 80000-3, 3-9.2 g ISO 80000-3, 3-9.1 [5]

angular velocity 1ISO 80000-3, 3-10 G},)

angular acceleration 1ISO 80000-3, 3-11 o

period duration ISO 80000-3, 3-12 i ISO 80000-3, 3-7 [5]

time cons'tant for an ISO 80000-3, 3-13 T, [T ‘_| ISO 80000-3, 3-7 [5]

exponentially varying .

quantity

rotation ISO 80000-3, 3-14 N TRUE

frequency ISO 80000-3, 3-15.1 f= 1V

Table E-10: Normative quantity kinds in ISO 80000-3 (2 of 2)

Quantity Kind name Description Symbol General is dimension
1?

rational frequency 1ISO 80000-3, 3-15.2 n

angular frequency 1ISO 80000-3, 3-16)

wavelength ISO 80000-3, 3-17 A ISO 80000-3, 3-1.1 [5]

linear repetency8 1ISO 80000-3, 3-18

angular repetency 1ISO 80000-3, 3-19 k

320 OMG Systems Modeling Language, v1.6

an exponentially varying
quantity

Quantity Kind name Description Symbol General is dimension
1?
phase velocity 1ISO 80000-3, 3-20.1 cCV.Ee. VW ISO 80000-3, 3-8.1 [5]
> > '.- > '.-
group velocity 1ISO 80000-3, 3-20.2 Co» Ve ISO 80000-3, 3-8.1 [5]
level of a field quantity 1ISO 80000-3, 3-21 L TRUE
level of a power quantity [ISO 80000-3, 3-22 Lp TRUE
damping coefficient for an | 1ISO 80000-3, 3-23 Ie)
exponentially varying
quantity
logarithmic decrement for [ISO 80000-3, 3-24 A\ 1ISO 80000-3, 3-23 [6] TRUE
an exponentially varying
quantity
attenuation coefficient for | ISO 80000-3, 3-25.1 a ISO 80000-3
an exponentially varying 3-25.3 [6
quantity
phase coefficient for an 1ISO 80000-3, 3-25.2 B ISO 80000-3
exponentially varying 3-25.3 [6
quantity
propagation coefficient for [ISO 80000-3, 3-25.3 Y

E.6.5.2

All 37 entries (including sub-entries) in the normative contents of ISO 80000-4 are modeled as summarized below.

ISO 80000-4 Mechanics

Table E-11: Normative units in ISO 80000-4 (1 of 2)

Unit name Description Symbol | General units| Quantity is unit for |is reduced
Kinds quantity of | form?
dimension
1?

gram ISO 80000-4, 4-1.a g ISO 80000-4

4-1110]
tonne ISO 80000-4, 4-1.b t
kilogram per cubic | ISO 80000-4, 4-2.a kg/m3 1ISO 80000-4
metre 4-2 10

OMG Systems Modeling Language, v1.6

Unit name Description Symbol | General units| Quantity is unit for |is reduced
Kinds quantity of | form?
dimension
1?

mass density ratio | ISO 80000-4, 4-3.a 1ISO 80000-4 TRUE
4-3[10

cubic metre per ISO 80000-4, 4-4.a m3/kg 1ISO 80000-4

kilogram 4-4 10

kilogram per square | ISO 80000-4, 4-5.a kg/m2 ISO 80000-4

metre 4-5[10

kilogram per metre |1SO 80000-4, 4-6.a kg/m ISO 80000-4
4-6 [10

kilogram metre ISO 80000-4, 4-7.a kg.m2 ISO 80000-4

squared 4-7 10

kilogram metre per |1SO 80000-4, 4-8.a kg.m/s ISO 80000-4

second 4-8 10

newton ISO 80000-4, 4-9.a N ISO 80000-4
4-9.1[10

newton metre ISO 80000-4, 4-10.a | N - m?/kg? ISO 80000-4

squared per 4-10[10

kilogram squared

newton second ISO 80000-4, 4-11.a N.s ISO 80000-4
4-11[10

kilogram metre ISO 80000-4, 4-12.a | k.- m %/s ISO 80000-4

squared per second & 4-12 10

newton metre ISO 80000-4, 4-13.a N.m ISO 80000-4
4-13[10

newton metre ISO 80000-4, 4-14.a N.m.s ISO 80000-4

second 4-14 110

pascal ISO 80000-4, 4-15.a Pa ISO 80000-4

4-18.a 4-15.1[10

cubic metre ISO 80000-4, 4-16.a ISO 80000-4, ISO 80000-4, TRUE

strain factor 4-16.a [7] 4-16.3 [11]

strain factor ISO 80000-4, 4-16.a ISO 80000-4 TRUE
4-16.1.2.3 [10]

322

OMG Systems Modeling Language, v1.6

metre

Unit name Description Symbol | General units| Quantity is unit for |is reduced
Kinds quantity of | form?
dimension
1?
metre strain factor [ISO 80000-4, 4-16.a ISO 80000-4, ISO 80000-4, TRUE
4-16.a[7] 4-16.1[11]
Table E-12: Normative units in ISO 80000-4 (2 of 2)
Unit name Description Symbol | General units| Quantity is unit for | is reduced
Kinds quantity of form?
dimension
1?

contraction to ISO 80000-4, 4-17.a ISO 80000-4 TRUE
elongation metre 4-17 [11
ratio
cubic metre strain | ISO 80000-4, 4-19.a Pa -1 ISO 80000-4, ISO 80000-4,
factor per pascal 4-19.a[8 4-19 [11
pascal to the power | ISO 80000-4, 4-19.a Pa -1
minus one
metre to the power |[I1SO 80000-4, 4-20.a m 4 ISO 80000-4
of four 4-20.1 [11
newton ratio ISO 80000-4, 4-22.a ISO 80000-4 TRUE

4-22.1[13
pascal second ISO 80000-4, 4-23.a Pas ISO 80000-4

4-23[13
metre per second ISO 800004, 4-23.a ISO 80000-3, ISO 80000-4, FALSE
per metre 3-15b, 3-16b, 4-23 [13]

3-23.a[4

square metre per ISO 800004, 4-24.a m 2/S
second
pascal second ISO 800004, 4-24.a m 2/S ISO 80000-4, ISO 80000-4,
kilogram per cubic 4-24.a[8 4-24 13

OMG Systems Modeling Language, v1.6

323

Unit name Description Symbol | General units| Quantity is unit for | is reduced

Kinds quantity of form?
dimension
1?

newton per metre ISO 800004, 4-25.a N/m ISO 80000-4

4-25[13
watt ISO 80000-4, 4-26.a, A\ ISO 80000-4
4-56.a 4-26.a [8
joule per second ISO 80000-4, 4-26.a J/s ISO 80000-4
4-26.a[8

newton metre per | 1ISO 80000-4, 4-26.a N.m/s ISO 80000-4
second 4-26 [13

joule ISO 80000-4, 4-27 .3,] ISO 80000-4
4.34.a, 4-36.a 4-34 [14

output watt ISO 80000-4, 4-28.a | T§T ISO 80000-4, ISO 80000-4,
out 4-26.a, 4-56.a [8] |4-28[13]

output input ISO 80000-4, 4-28.a ISO 80000-4
4-28 [13
watt ratio 42811l

input watt ISO 80000-4, 4-28.a | T ISO 80000-4, ISO 80000-4,
o 4-26.a, 4-56.a [8] |4-28 [13]

kilogram per second| ISO 80000-4, 4-29.a kg/s ISO 80000-4
4-29 [14

cubic metre per ISO 80000-4, 4-30.a m iy 5 ISO 80000-4
second ' 4-30[14

joule second ISO 80000-4, 4-37.a Is ISO 80000-4
4-37[14

Table E-13: Normative quantity kinds in ISO 80000-4 (1 of 4)
Quantity Kind name Description Symbol General is dimension
1?
mass ISO 80000-4, 4-1 m
density ISO 80000-4, 4-2 ISO 80000-4, 4-24 [10]

324 OMG Systems Modeling Language, v1.6

Quantity Kind name Description Symbol General is dimension
1?

mass density of a ISO 80000-4, 4-2, 4-3 O ISO 80000-4, 4-24 [10]

reference substance

mass density ISO 80000-4, 4-2 2

relative mass density ISO 80000-4, 4-3 d TRUE

specificVolume ISO 80000-4, 4-4 v

surface density ISO 80000-4, 4-5 Pa

linear density ISO 80000-4, 4-6 2,

mass moment of inertia ISO 80000-4, 4-7 LJ

momentum ISO 80000-4, 4-8 P

force ISO 80000-4, 4-9.1 F

weight ISO 80000-4, 4-9.2 E.G

gravitational constant ISO 80000-4, 4-10 G

between two mass

particles

impulse ISO 800004, 4-11 I

moment of momentum ISO 80000-4, 4-12 L

moment of force ISO 80000-4, 4-13.1 M

torque ISO 80000-4, 4-13.2 T ISO 80000-4, 4-13.1 [10]

bending moment of force | 1SO 80000-4, 4-13.3 *M-t- 1ISO 80000-4, 4-13.1 [10]

angular impulse ISO 80000-4, 4-14 H

pressure ISO 80000-4, 4-15.1 p

normal stress ISO 80000-4, 4-15.2 o ISO 80000-4, 4-15.1 [10]

sheer stress ISO 80000-4, 4-15.3 T ISO 80000-4, 4-15.1 [10]

OMG Systems Modeling Language, v1.6

325

Quantity Kind name Description Symbol General is dimension
1?
length of item in a ISO 80000-4, 4-16 1 ISO 80000-3, 3-1.1 [5]
reference state o
increase in length ISO 80000-4, 4-16 Al ISO 80000-3, 3-1.1 [5]
strain ISO 80000-4, 4-16.1.2.3 TRUE
Table E-14: Normative quantity kinds in ISO 80000-4 (2 of 4)
Quantity Kind name Description Symbol General is dimension
1?
linear strain ISO 80000-4, 4-16.1 £ [E;l ISO 80000-4, 4-16.1.2.3 [TRUE
B [10]

thickness of a layer ISO 80000-4, 4-16.2 d ISO 80000-3, 3-1.4 [5]
between two surfaces
sheer strain ISO 80000-4, 4-16.2 ¥ ISO 80000-4, 4-16.1.2.3 [TRUE

(ol
parallel displacement 1ISO 80000-4, 4-16.2 Ax 1ISO 80000-3, 3-1.12 [5]
between two surfaces of a
layer
increase in volume ISO 80000-4, 4-16.3 AV ISO 80000-3, 3-4 [5]
volume strain ISO 80000-4, 4-16.3] ISO 80000-4, 4-16.1.2.3 [TRUE

[10]
volume in a reference ISO 80000-4, 4-16.3 V. ISO 80000-3, 3-4 [5]
state o
elongation ISO 80000-4, 4-17 Al ISO 80000-3, 3-1.1 [5]
lateral contraction ISO 80000-4, 4-17 A& ISO 80000-3, 3-1.1 [5]
poisson number ISO 80000-4, 4-17 ,.DL[V) TRUE
modulus of elasticity 1ISO 80000-4, 4-18.1 E ISO 80000-4, 4-18.1.2.3

o1
modulus ISO 80000-4, 4-18.1.2.3 ISO 80000-4, 4-15.1 [10]

326 OMG Systems Modeling Language, v1.6

of the surface considered

Quantity Kind name Description Symbol General is dimension
1?
modulus of rigidity ISO 80000-4, 4-18.2 G ISO 80000-4, 4-18.1.2.3
11
modulus of compression [ISO 80000-4, 4-18.3 K ISO 80000-4, 4-18.1.2.3
[

compressibility 1ISO 80000-4, 4-19 ¥
increase in pressure 1ISO 80000-4, 4-19 ISO 80000-4, 4-15.1 [10]
surface considered ISO 80000-4, 4-20 ISO 80000-3, 3-3 [5]
second axial 1ISO 80000-4, 4-20.1 L
moment of area
radial distance froma Q- [ISO 80000-4, 4-20.1 r ISO 80000-3, 3-1.6 [5]
axis in the plane of the Q
surface considered
second polar 1ISO 80000-4, 4-20.2 I

P
moment of area
radial distance froma Q- [1SO 80000-4, 4-20.2 r ISO 80000-3, 3-1.6 [5]
axis perpendicular to the Q
plane of the surface
considered

Table E-15: Normative quantity kinds in ISO 80000-4 (3 of 4
Quantity Kind name Description Symbol General is dimension
1?

section modules 1ISO 80000-4, 4-21 7 IIH-'F ‘|
maximum radial distance | ISO 80000-4, 4-21 I ISO 80000-4, 4-20.1 [11]
from a Q-axis in the plane Q. 2z

maximum tangential
component of the contact
force between two bodies
at rest

ISO 80000-4, 4-22

ISO 80000-4, 4-22 [12]

OMG Systems Modeling Language, v1.6

327

Quantity Kind name

Description

Symbol

General

is dimension
1?

tangential component of
the contact force between
two sliding bodies

ISO 80000-4, 4-22

ISO 80000-4, 4-22 [12]

contact force between two
sliding bodies

ISO 80000-4, 4-22

ISO 80000-4, 4-22 [12]

tangential component of
the contact force between
two bodies at rest

ISO 80000-4, 4-22

ISO 80000-4, 4-22 [12]

tangential component of
the contact force between
two bodies

ISO 80000-4, 4-22

ISO 80000-4, 4-22 [12]

contact force between two
bodies

ISO 80000-4, 4-22

ISO 80000-4, 4-9.1 [10]

normal component of the
contact force between two
sliding bodies

ISO 80000-4, 4-22

ISO 80000-4, 4-22 [13]

maximum contact force
between two bodies

ISO 80000-4, 4-22

mzx

ISO 80000-4, 4-22 [12]

contact force between two
bodies at rest

ISO 80000-4, 4-22

ISO 80000-4, 4-22 [12]

normal component of the
contact force between two
bodies at rest

ISO 80000-4, 4-22

ISO 80000-4, 4-22 [13]

normal component of the
contact force between two
bodies

ISO 80000-4, 4-22

ISO 80000-4, 4-22 [12]

Table E-16: Normative ¢

uantity kinds in ISO 80000-4 (4 of 4)

Quantity Kind name

Description

Symbol

General

is dimension
1?

dynamic friction factor

ISO 80000-4, 4-22.1

L f)

TRUE

328

OMG Systems Modeling Language, v1.6

Quantity Kind name Description Symbol General is dimension
y y
1?
static friction factor 1ISO 80000-4, 4-22.2 I' ‘l TRUE
L 1

velocity gradient 1ISO 80000-4, 4-23
dynamic viscosity 1ISO 80000-4, 4-23
kinematic viscosity 1ISO 80000-4, 4-24 V
surface tension ISO 80000-4, 4-25 y.a
force component 1ISO 80000-4, 4-25 ISO 80000-4, 4-9.1 [10]
perpendicular to a line
element in a surface
length of line elementin a [ISO 80000-4, 4-25 ISO 80000-3, 3-1.1 [5]
surface
power 1ISO 80000-4, 4-26 P
work ISO 80000-4, 4-27.1 W
potential energy ISO 80000-4, 4-27.2 Ep ISO 80000-4, 4-27.4 [13]
kinetic energy ISO 80000-4, 4-27.3 Ep ISO 80000-4, 4-27.4 [13]
mechanical energy 1ISO 80000-4, 4-27.4 E ISO 80000-4, 4-27.1 [13]
power efficiency 1ISO 80000-4, 4-28 n TRUE
output power 1ISO 80000-4, 4-28 P " ISO 80000-4, 4-26 [13]

o
input power ISO 80000-4, 4-28 » ISO 80000-4, 4-26 [13]

in
mass flow rate 1ISO 80000-4, 4-29 q

m
volume flow rate 1ISO 80000-4, 4-30 Qv
generalized coordinate 1ISO 80000-4, 4-31 q.
generalized velocity 1ISO 80000-4, 4-32 q.
generalized force 1ISO 80000-4, 4-33 Q

OMG Systems Modeling Language, v1.6

329

Quantity Kind name Description Symbol General is dimension
1?

generalized potential 1ISO 80000-4, 4-34 i A
energy Vl q;. qi_},.
generalized kinetic energy | 1ISO 80000-4, 4-34 s ™

T | Qi 2 qu.
Lagrange function ISO 80000-4, 4-34 i % | 1SO 80000-4, 4-34 [14]

L | Qi = qu
generalized momentum 1ISO 80000-4, 4-35 jo

1

generalized momentum of | ISO 80000-4, 4-36 1ISO 80000-4, 4-36 [14]
velocity P; q;
Hamilton function ISO 80000-4, 4-36 H ISO 80000-4, 4-36 [14]
action functional 1ISO 80000-4, 4-37 S

Contact force between two bodies is an example of a taxonomy of specialized quantity kinds induced by different
measurement procedures.

Per ISO 80000-4, 4-31, 4-32, 4-33 and 4-35, there are no measurement units defined for these generalized quantity kinds;
the unit of a particular quantity (i.e., SysML value property) typed by a SysML ValueType referencing a generalized
quantity kind depends on the dimension of that particular quantity.

E.6.5.3 ISO 80000-5 Thermodynamics

All 33 entries (including sub-entries) in the normative contents of ISO 80000-5 are modeled as summarized below.

Table E-17: Normative units in ISO 80000-5 (1 of 2
Unit name Description Symbol | General units| Quantity is unit for | is reduced
Kinds quantity of| form?
dimension
1?

kelvin ISO 80000-5, 5-1.a K ISO 80000-5
5-33.a 5-1[17]

degree celsius ISO 80000-5, 5-2.a o ISO 80000-5
5-2 [17]

330 OMG Systems Modeling Language, v1.6

Unit name Description Symbol | General units| Quantity is unit for | is reduced
Kinds quantity of| form?
dimension
1?
cubic metre ISO 80000-5, 5-3.2 K—l ISO 80000-5, ISO 80000-5,
coefficient per 5-3.a[15 5-3.2[17
kelvin
pascal ratio per ISO 80000-5, 5-3.3 K—l ISO 80000-5, ISO 80000-5,
kelvin 5-3.a[15 5-3.1[17
kelvin to the power |[ISO 80000-5, 5-3.a K—l
minus one
metre coefficient ISO 80000-5, 5-3.a K—l ISO 80000-5, ISO 80000-5,
per kelvin 5-3.a[15 5-3.1[17
pascal ratio ISO 80000-5, 5-3.a ISO 80000-5 TRUE
5-3.3[17
pascal per kelvin ISO 80000-5, 5-4.a Pa'K ISO 80000-5
' 5-4[17
cubic metre ratio ISO 80000-5, 5-5.a Pa—l ISO 80000-4, ISO 80000-5,
per pascal 4-19.a[8 5-5.1[17
watt per square ISO 80000-5, 5-8.a W/ y) ISO 80000-5
metre fm 5-8[18
watt per metre ISO 80000-5, 5-9.a Wim-K ':, ISO 80000-5
kelvin : ’ 5-9[18
kelvin per metre ISO 80000-5, 5-9.a K'm ISO 80000-5
5-9[18
watt per square ISO 80000-5, 5-10.a Wim-K ISO 80000-5
metre per kelvin 5-10.1[18
square metre kelvin | ISO 80000-5, 5-11.a m: KW ISO 80000-5
per watt 5-11[18
kelvin per watt ISO 80000-5, 5-12.a KW ISO 80000-5
5-12[18
watt per kelvin ISO 80000-5, 5-13.a WK ISO 80000-5
5-13[18
watt square metre [ISO 80000-5, 5-14.a W _m: /] ISO 80000-4, ISO 80000-5,
per joule 4-24.a[8 5-14 18

OMG Systems Modeling Language, v1.6

331

Unit name Description Symbol | General units| Quantity is unit for | is reduced
Kinds quantity of| form?
dimension
1?
joule per kelvin ISO 80000-5, 5-15.a, J/KE ISO 80000-5
5-18.a, 5-21.a, 5- 5-18[19
22.a,5-23.a
Table E-18: Normative units in ISO 80000-5 (2 of 2)
Unit name Description Symbol | General units| Quantity is unit for | is reduced
Kinds quantity of| form?
dimension
1?
joule per kilogram | 1SO 80000-5, 5-16.a I |'kE E) ISO 80000-5
kelvin = ' 5-16.1[18
cubic metre per ISO 80000-5, 5-17.a ISO 80000-5 TRUE
pascal ratio 5-17.2[19
cubic metre per ISO 80000-5, 5-17.a Ip ISO 80000-5
pascal m /Fa 5-17.2 [19
joule per kilogram [ISO 80000-5, 5-17.a ISO 80000-5 TRUE
kelvin ratio 5-17.1[19
pascal per cubic ISO 80000-5, 5-17.a Pa/ 3 ISO 80000-5
metre a/m 5-17.2[19]
kelvin joule per ISO 80000-5, 5-20.a J ISO 80000-4, ISO 80000-5, FALSE
kelvin 4-27.a,4-34.a, 5-20.
4-36.a [8] [45]
9
pascal cubic metre |1SO 80000-5, 5-20.a P 3 |ISO 80000-4, ISO 80000-5,
a-M 14373 4-343a, |5-20.3[19]
4-36.a [8
kelvin joule per ISO 80000-5, 5-21.a J/K ISO 80000-5, ISO 80000-5, FALSE
kelvin kilogram 5-21.a[16 5-21.5[20
joule per kilogram [ISO 80000-5, 5-21.a J/K ISO 80000-5
5-21.1[19
kilogram ratio ISO 80000-5, 5-26.a, ISO 80000-5 TRUE
5-27.a, 5-28.a, 5-26 [20
5-29.a

332

OMG Systems Modeling Language, v1.6

Unit name Description Symbol | General units| Quantity is unit for | is reduced
Kinds quantity of| form?
dimension
1?
kilogram ratio ISO 80000-5, 5-28.a, ISO 80000-5 TRUE
fraction 5-32.a 5-28 [21
kilogram per cubic | 1ISO 80000-5, 5-31.a ISO 80000-5 TRUE
metre ratio 5-31 [21
Table E-19: Normative quantity kinds in ISO 80000-5 (1 of 5)
uanti ind name escription mbo enera is dimension 17

Quantity Kind D pt Symbol G I d 1?
thermodynamic 1ISO 80000-5, 5-1 ey
temperature T:[_EI |
celcius Temperature 1ISO 80000-5, 5-2 ISO 80000-5, 5-1 [17]

[
linear expansion 1ISO 80000-5, 5-3.1 o
coefficient I
increase in temperature 1ISO 80000-5, 5-3.1.2.3.4 2T .dT 1ISO 80000-5, 5-1 [17]
cubic expansion coefficient| ISO 80000-5, 5-3.2 . .V

= =4
pressure in a reference 1ISO 80000-5, 5-3.3 ISO 80000-4, 4-15.1 [10]
state
relative pressure 1ISO 80000-5, 5-3.3 o
coefficient 5
pressure ratio 1ISO 80000-5, 5-3.3 TRUE
increase in pressure at 1ISO 80000-5, 5-3.3 [qP‘l 1ISO 80000-4, 4-19 [11]
constant volums _C hr
increase in temperature at [ISO 80000-5, 5-3.3 [q]-‘l ISO 80000-5, 5-3.1.2.3.4
constant volume & J5r 17
pressure coefficient 1ISO 80000-5, 5-4 ﬁ
isothermal compressibility [ISO 80000-5, 5-5.1 P
-T

increase in pressure at 1ISO 80000-5, 5-5.1 [qP‘l 1ISO 80000-4, 4-19 [11]
constant temperature _'5- It

OMG Systems Modeling Language, v1.6

333

Quantity Kind name

Description

Symbol

General

is dimension 1?

increase in volume at

ISO 80000-5, 5-5.1

ISO 80000-4, 4-16.3 [11]

constant temperature [cV .|r
increase in pressure at 1ISO 80000-5, 5-5.2 [qP‘l 1ISO 80000-4, 4-19 [11]
constant entropy _C /g
isentropic compressibility [ISO 80000-5, 5-5.2 7

o)
increase in volume at 1ISO 80000-5, 5-5.2 [qv-‘l ISO 80000-4, 4-16.3 [11]
constant entropy _C /g

Table E-20: Normative ¢

uantity kinds in 1ISO 80000-5 (2 of 5)

temperature difference

Quantity Kind name Description Symbol General is dimension 1?
amount of heat ISO 80000-5, 5-6 Q ISO 80000-4, 4-27 [13]
heat flow rate 1ISO 80000-5, 5-7 B ISO 80000-4, 4-26 [13]
surface density of heat 1ISO 80000-5, 5-8 q. g} ISO 80000-5, 5-8 [18]
flow rate
areic heat flow rate 1ISO 80000-5, 5-8 q. g}
thermodynamic 1ISO 80000-5, 5-9
temperature gradient
th | ductivit 1SO 80000-5, 5-9 PO

ermal conductivity f’-:[_f]
coefficient of heat transfer | ISO 80000-5, 5-10.1 K ['k‘l
tnermodynamic 1ISO 80000-5, 5-10.1 ISO 80000-5, 5-1 [17]
temperature difference
surface coefficient of heat | 1SO 80000-5, 5-10.2 h [‘l
transfer : .a.
surface thermodynamic 1ISO 80000-5, 5-10.2 h ['CZ] ISO 80000-5, 5-2 [18]

surface thermodynamic
temperature

ISO 80000-5, 5-10.2

ISO 80000-5, 5-1 [17]

reference thermodynamic
temperature

1ISO 80000-5, 5-10.2

ISO 80000-5, 5-1 [17]

334

OMG Systems Modeling Language, v1.6

Quantity Kind name Description Symbol General is dimension 1?
coefficient of thermal 1ISO 80000-5, 5-11 M
insulance
thermal resistance 1ISO 80000-5, 5-12 R
thermal conductance ISO 80000-5, 5-13 G [H ‘l
thermal diffusivity 1ISO 80000-5, 5-14 o
heat capacity ISO 80000-5, 5-15 B
specific heat capacity 1ISO 80000-5, 5-16.1 '
specific heat capacity at 1ISO 80000-5, 5-16.2 c ISO 80000-5, 5-16.1 [18]
constant pressure r
Table E-21:Normative quantity kinds in ISO 80000-5 (3 of 5)
Quantity Kind name Description Symbol General is dimension
1?
specific heat capacity at 1ISO 80000-5, 5-16.3 c ISO 80000-5, 5-16.1 [18]
constant volume v
specific heat capacity at 1ISO 80000-5, 5-16.4 c ISO 80000-5, 5-16.1 [18]
saturation a
ratio of the specific heat 1ISO 80000-5, 5-17.1 ¥ TRUE
capacities
pressure per volume 1ISO 80000-5, 5-17.2 X
increase at constant
entropy
volume per pressure ina | 1SO 80000-5, 5-17.2
reference state
isentropic exponent 1ISO 80000-5, 5-17.2
entropy 1ISO 80000-5, 5-18 5
heat received 1ISO 80000-5, 5-18 dQ ISO 80000-5, 5-6 [18]
specific entropy 1ISO 80000-5, 5-19 s

OMG Systems Modeling Language, v1.6

335

Quantity Kind name Description Symbol General is dimension
1?

energy 1ISO 80000-5, 5-20.1 E ISO 80000-4, 4-27.4 [13]

internal thermodynamic 1ISO 80000-5, 5-20.2 i ISO 80000-5, 5-18 [19]

energy

volumetric pressure 1ISO 80000-5, 5-20.3 pV

enthalpy ISO 80000-5, 5-20.3 ISO 80000-5, 5-20.2 [19]

Helmholtz energy 1ISO 80000-5, 5-20.4 AF ISO 80000-5, 5-20.2 [19]

Gibbs energy ISO 80000-5, 5-20.5 = ISO 80000-5, 5-20.3 [19]

system enthalpy at 1ISO 80000-5, 5-20 [45]

thermodynamic

temperature

specific energy 1ISO 80000-5, 5-21.1 e

specific internal ISO 80000-5, 5-21.2 u ISO 80000-5, 5-21.1 [19]

thermodynamic energy

specific enthalpy ISO 80000-5, 5-21.3 h ISO 80000-5, 5-21.2 [19]

specific Helmholtz energy |I1SO 80000-5, 5-21.4 a. f

Table E-22: Normative ¢

uantity kinds in ISO 80000-5 (4 of 5)

of the form of aggregation

Quantity Kind name Description Symbol General is dimension
1?

specific Gibs energy 1ISO 80000-5, 5-21.5 g

Massieu function 1ISO 80000-5, 5-22 J

Planck function 1SO 80000-5, 5-23 Y

mass of water irrespective | ISO 80000-5, 5-24 m ISO 80000-4, 4-1[10]

336

OMG Systems Modeling Language, v1.6

vapour to dry gas at
saturation

Quantity Kind name Description Symbol General is dimension
1?

mass concentration of 1ISO 80000-5, 5-24 W ISO 80000-4, 4-2 [10]

water at saturation F- i

total volume of water and | ISO 80000-5, 5-24 v ISO 80000-3, 3-4 [5]

dry matter

mass concentration of 1ISO 80000-5, 5-24 W ISO 80000-4, 4-2 [10]

water

mass of water vapour 1ISO 80000-5, 5-24 m ISO 80000-5, 5-24 [20]

mass concentration of 1ISO 80000-5, 5-25 ISO 80000-4, 4-2 [10]

water vapour

mass concentration of 1ISO 80000-5, 5-25 ; 1ISO 80000-4, 4-2 [10]

water vapour at saturation 5at

mass of water at ISO 80000-5, 5-25 m 1ISO 80000-5, 5-24 [20]

saturation i

mass of water vapour at 1ISO 80000-5, 5-25 m ISO 80000-5, 5-24 [20]

saturation st

mass ratio of water to dry [ISO 80000-5, 5-26 TRUE

matter

mass of dry matter ISO 80000-5, 5-26 m{i ISO 80000-4, 4-1 [10] TRUE

mass ratio of water to dry [ISO 80000-5, 5-26 ISO 80000-5, 5-26 [20] TRUE

gas at saturation =t

mass ratio of water vapour [ISO 80000-5, 5-27 W 1ISO 80000-5, 5-26 [20] TRUE

to dry gas

mass ration of water ISO 80000-5, 5-27 W ISO 80000-5, 5-27 [20] TRUE

Table E-23: Normative quantity kinds in ISO 80000-5 (5 of 5)

OMG Systems Modeling Language, v1.6

337

Quantity Kind name Description Symbol General is dimension
1?

mass of dry gas 1ISO 80000-5, 5-27 m{i ISO 80000-5, 5-26 [20]

mass fraction of water 1ISO 80000-5, 5-28 W TRUE
H,O

mass fraction of dry matter | ISO 80000-5, 5-29 W ISO 80000-5, 5-28 [21] TRUE
HO

partial pressure of a gas in| Quantity Kind name [Description | Symbol General

a mixture at saturation

partial pressure of a gas in [ISO 80000-5, 5-30 P ISO 80000-4, 4-15.1 [10]

a mixture

relative partial pressure of [ISO 80000-5, 5-30 ISO 80000-5, 5-3.3 [17] TRUE

agas

relative mass 1ISO 80000-5, 5-31 g} TRUE

concentration of water

vapour

relative mass ratio of water| ISO 80000-5, 5-32 TRUE

vapour

dew point thermodynamic | 1SO 80000-5, 5-33 T ISO 80000-5, 5-33 [21]

temperature of humid air d

thermodynamic ISO 80000-5, 5-33 T ISO 80000-5, 5-1[17]

temperature of humid air

E.6.5.4

ISO 80000-6 Electromagnetism

All 62 entries (including sub-entries) in the normative contents of ISO 80000-6 are modeled as summarized below.

Table E-24: Normative units in ISO 80000-6 (1 of 5)

Unit name Description Symbol | General units| Quantity | is unit for |is reduced
Kinds quantity of| form?
dimension
1?
ampere IEC 80000-6, 6-1.a A IEC 80000-6
6-1127]
coulomb IEC 80000-6, 6-2.a C IEC 80000-6
6-2[27]
338 OMG Systems Modeling Language, v1.6

Unit name Description Symbol | General units| Quantity | is unit for |is reduced
Kinds quantity of| form?
dimension
1?
coulomb per cubic | IEC 80000-6, 6-3.a C/ 3 IEC 80000-6
metre fm 6-3 [27
coulomb per square | IEC 80000-6, 6-4.a C/ 2 IEC 80000-6
metre fm 6-4 [27
coulomb per metre | IEC 80000-6, 6-5.a C/m IEC 80000-6
6-5 [27
coulomb metre IEC 80000-6, 6-6.a C-m IEC 80000-6
6-6 [27
coulomb per square | IEC 80000-6, 6-7.a C/ | m?- q:l IEC 80000-6, IEC 80000-6
metre per second A “l[6-8.a[22 6-8 [27
coulomb per metre | IEC 80000-6, 6-7.a C/) IEC 80000-6, IEC 80000-6
squared fm 6-4.a [22] 6-7 [27
ampere per square | IEC 80000-6, 6-8.a A 2 IEC 80000-6
metre fm 6-8 [27
coulomb per metre | IEC 80000-6, 6-9.a C/ [‘l IEC 80000-6, IEC 80000-6,
per second S\ -5 11625 5 [23] 6-9 [27]
volt per metre IEC 80000-6, 6-10.a YV m IEC 80000-6
6-10 [27
newton per coulomb| IEC 80000-6, 6-10.a ™N/C IEC 80000-6, IEC 80000-6,
6-10.a [22 6-10 [27
volt IEC 80000-6, 6-11.a Vv IEC 80000-6
6-11.1[27
volt metre per metre | IEC 80000-6, 6-11.a YV .m /m |IEC80000-6 FALSE
6-11.a [22
farad volt per metre | IEC 80000-6, 6-12.a F-V/ 1 | IEC 80000-6, IEC 80000-6,
squared "V M §7a22] 6-12 [27]
farad IEC 80000-6, 6-13.a F IEC 80000-6
6-13 [27
farad per metre IEC 80000-6, 6-14.a F'm IEC 80000-6, IEC 80000-6,
6-14.a [22 6-14.1 [27

OMG Systems Modeling Language, v1.6

339

Unit name Description Symbol | General units| Quantity | is unit for |is reduced
Kinds quantity of| form?
dimension
1?
coulomb per volt IEC 80000-6, 6-14.a ol | v .m:l IEC 80000-6
per metre | ! 6-14.2 [28
coulomb per volt IEC 80000-6, 6-15.a IEC 80000-6 TRUE
per metre ratio 6-15 [28
Table E-25: Normative units in ISO 80000-6 (2 of 5)
Unit name Description Symbol General |Quantity| is unitfor | is reduced
units Kinds | quantity of form?
dimension 1?
coulomb per IEC 80000-6, 6-16.a IEC 80000-| TRUE
metre squared 6,
ratio 6-16 [28
square metre IEC 80000-6, 6-17.a IEC 80000-6 FALSE
coulomb per C 6-2.a [22
metre squared
coulomb per IEC 80000-6, 6-18.a IEC 80000-6
metre squared “ 2 6-8.a [22
per second C/ (111 'SJ
square metre IEC 80000-6, 6-19.a A IEC 80000-6 FALSE
ampere per 6-1.a[22
square metre
volt second per | IEC 80000-6, 6-21 V.z/A.m" | IEC 80000-6
metre squared 6-21.a[23
newton per IEC 80000-6, 6-21.a| 17 | A.m :, IEC 80000-6
ampere per g 6-21.a[23
metre
tesla IEC 80000-6, 6-21.a T IEC 80000-
6.
6-21[28
weber IEC 80000-6, 6-22.a Wb IEC 80000-
6.
6-21.1[28
340 OMG Systems Modeling Language, v1.6

Unit name Description Symbol General |Quantity| is unitfor | is reduced
units Kinds | quantity of form?
dimension 1?

newton metre per | IEC 80000-6, 6-22.a| 7.y /4 | IEC 80000-6
ampere 6-22.a [23
volt second IEC 80000-6, 6-22.a V-s IEC 80000-6

6-22.a [23
ampere square | IEC 80000-6, 6-23.a A 2 IEC 80000-
metre -m 6,

6-23 [28
ampere square | IEC 80000-6, 6-24.a A-m?/m IEC 80000-6 FALSE
metre per cubic B 6-25.a [23
metre
newton per IEC 80000-6, 6-25 N/ Wh |lEC80000-6
weber 6-25.a [23
ampere per IEC 80000-6, 6-25.a Alm IEC 80000-
metre 6.
6-25 [28
ampere metre IEC 80000-6, 6-25.a A-m/ m: IEC 80000-6 FALSE
per metre - 6-25.a [23
squared
volt second metre| IEC 80000-6, 6-26.a A 1 | IEC 80000-6 FALSE
squared per -5-m 6-26.a [24]
ampere per 3
metre cube A-m
Table E-26: Normative units in ISO 80000-6 (3 of 5
Unit name Description Symbol | General units| Quantity is unit for | is reduced
Kinds quantity of form?
dimension
1?
volt second per IEC 80000-6, 6-26.a V-s IEC 80000-6
ampere per metre 6-26.a [24]
A-m

newton weber per | IEC 80000-6, 6-26.a N.Wb IEC 80000-6 FALSE
ampere per metre - " |6-26.a[24
per newton A-m-N

OMG Systems Modeling Language, v1.6

341

Unit name Description Symbol | General units| Quantity is unit for | is reduced
Kinds quantity of form?
dimension
1?

henry per metre IEC 80000-6, 6-26.a H'm IEC 80000-6

6-26.2 [28
weber per ampere | IEC 80000-6, 6-26.a Wh IEC 80000-6
per metre 6-26.a [24]

A-m
henry per metre IEC 80000-6, 6-27.a IEC 80000-6 TRUE
ratio 6-27 [28
ampere per metre | IEC 80000-6, 6-28.a IEC 80000-6 TRUE
ratio 6-28 [29
weber per metre IEC 80000-6, 6-29.a IEC 80000-6
squared 6-21.a [23
volt second ampere | IEC 80000-6, 6-29.a V.5-A IEC 80000-6 FALSE
per ampere per - ** |16-21[23
metre squared A ml
volt second metre | IEC 80000-6, 6-30.a % -g.m |IEC 80000-6
6-30.a [24

weber metre IEC 80000-6, 6-30.a Wh-m IEC 80000-6

6-30 [29
weber per metre IEC 80000-6, 6-32.a Whi/m IEC 80000-6

6-32 [29
newton per ampere | IEC 80000-6, 6-32.a MN/A IEC 80000-6

6-32.a [24

volt second per IEC 80000-6, 6-32.a YVos/m IEC 80000-6
metre 6-32.a [24
newton ampere per | IEC 80000-6, 6-33.a N-A/ m: IEC 80000-6
metre squared = 6-33.a [25
newton coulomb per| IEC 80000-6, 6-33.a N.C/ 1 | IEC 80000-6
metre squared /M 1533325
joule per cubic IEC 80000-6, 6-33.a I/ 3 IEC 80000-6
metre fm 6-33 [29]

Table E-27: Normative units in ISO 80000-6 (4 of 5)

342

OMG Systems Modeling Language, v1.6

Unit name Description Symbol | General units| Quantity is unit for | is reduced
Kinds quantity of form?
dimension
1?

newton per metre | IEC 80000-6, 6-33.a N/ 1 |IEC 80000-6
squared fm 6-33.a [24
volt ampere per IEC 80000-6, 6-34.a N-AS m: ISO 80000-5, IEC 80000-6,
square metre = 5-8.a[15 6-34 [29
ampere metre per |IEC 80000-6, 6-37.a | A .4y /4y |EC 80000-6 FALSE
metre 6-1.a [22
turns IEC 80000-6, 6-38.a IEC 80000-6

6-38 [29
ampere per volt per | IEC 80000-6, 6-39.a A/ "V i 5‘| IEC 80000-6
second - |- /16-39.a [25
henry to the power |IEC 80000-6, 6-39.a 1/H IEC 80000-6
minus one 6-39 [29
volt second per IEC 80000-6, 6-41.a Y .s/ A |IEC 80000-6
ampere 6-41.a [25
weber per ampere | IEC 80000-6, 6-41.a Wh' A |IEC80000-6

6-41.a [25

henry IEC 80000-6, 6-41.a H IEC 80000-6

6-41.1[29
henry factor IEC 80000-6, 6-42.2 IEC 80000-6 TRUE
squared 6-42.2 [29
henry factor IEC 80000-6, 6-42.a IEC 80000-6 TRUE

6-42.1 [29
ampere metre per |IEC 80000-6, 6-43.a A-m IEC 80000-6 FALSE
volt per square - — |e-43.a[25
metre V.m 2
siemens per metre |IEC 80000-6, 6-43.a S/m IEC 80000-6

6-43 [29
ampere per volt per | IEC 80000-6, 6-43.a ANV -m} IEC 80000-6
metre A !16-43.a[25
metre per siemens [IEC 80000-6, 6-44 m/!S IEC 80000-6

6-44.a [25
OMG Systems Modeling Language, v1.6 343

Unit name Description Symbol | General units| Quantity is unit for | is reduced
Kinds quantity of form?
dimension
1?
ohm metre IEC 80000-6, 6-44.a O-m IEC 80000-6
6-44 [29
volt ampere IEC 80000-6, 6-45.a, VA 1ISO 80000-4, IEC 80000-6,
6-57.a, 6-59.a, 6-61.a 4-26.a, 4-56.a [8] | 6-59 [30]
ohm IEC 80000-6, 6-46.a (@) IEC 80000-6
6-46 [30
volt per ampere IEC 80000-6, 6-46.a VIiA IEC 80000-6
6-46.a [25
Table E-28: Normative units in ISO 80000-6 (5 of 5
Unit name Description Symbol | General units| Quantity | is unitfor | is reduced
Kinds quantity of form?
dimension
1?
siemens to the IEC 80000-6, 6-46.a 1/8 IEC 80000-6
power minus one 6-46.a [25
siemens IEC 80000-6, 6-47.a S IEC 80000-6
6-47 [30
ampere per volt IEC 80000-6, 6-47.a AV IEC 80000-6
6-47.a [26
ohm to the power IEC 80000-6, 6-47.a 1/0 IEC 80000-6
minus one 6-47.a [26
ohm ratio IEC 80000-6, 6-53.a IEC 80000-6 TRUE
6-53 [30
watt per volt per IEC 80000-6, 6-58.a IEC 80000-6 TRUE
ampere 6-58 [30
var IEC 80000-6, 6-60.b var IEC 80000-6, IEC 80000-6,
6-45.a, 6-57.a, 6- | 6-60 [30]
59.a, 6-61.a [25
second joule per IEC 80000-6, 6-62.a s.J/s ISO 80000-4, IEC 80000-6, FALSE
second 4-27.a,4-34.a, 6-62 [31]
4-36.a[8

344

OMG Systems Modeling Language, v1.6

Unit name Description Symbol | General units| Quantity | is unitfor | is reduced
Kinds quantity of form?
dimension
1?
watt hour IEC 80000-6, 6-62.b W.h IEC 80000-6
6-62 [31
Table E-29: Normative quantity kinds in ISO 80000-6 (1 of 4)
Quantity Kind name Description Symbol General is dimension 1?
electric current in a thin IEC 80000-6, 6-1 I IEC 80000-6, 6-1 [27]
conducting loop n n
electirc current IEC 80000-6, 6-1 Ii
rms current IEC 80000-6, 6-1 I IEC 80000-6, 6-1 [27]
electric charge IEC 80000-6, 6-2 Q q
volumic electric charge IEC 80000-6, 6-3 2.0
areic electric charge IEC 80000-6, 6-4
£4.0

lineic electric charge IEC 80000-6, 6-5 0.7

i]
electric dipole moment IEC 80000-6, 6-6 P
electric polarization IEC 80000-6, 6-7 P
electric current density IEC 80000-6, 6-8 J
areic electric current IEC 80000-6, 6-8 J IEC 80000-6, 6-8 [27]
lineic electric current IEC 80000-6, 6-9 J
electric field strength IEC 80000-6, 6-10 E
electric potential IEC 80000-6, 6-11.1 V= Q
electric potential difference| IEC 80000-6, 6-11.2 g IEC 80000-6, 6-11.1 [27]

zb
electric tension IEC 80000-6, 6-11.3 U IEC 80000-6, 6-11.1 [27]

" ab

OMG Systems Modeling Language, v1.6

345

Quantity Kind name Description Symbol General is dimension 1?
voltage IEC 80000-6, 6-11.3 U U-:l:- IEC 80000-6, 6-11.3 [27]
rms voltage IEC 80000-6, 6-11.3 [J IEC 80000-6, 6-11.3 [27]
electric flux density IEC 80000-6, 6-12 D IEC 80000-6, 6-7 [27]
electric flus density in IEC 80000-6, 6-12 IEC 80000-6, 6-12 [27]
vacuum
capacitance IEC 80000-6, 6-13 B
permittivity of vaccum IEC 80000-6, 6-14.1 g, IEC 80000-6, 6-14.2 [28]
permittivity IEC 80000-6, 6-14.2 E
relative permittivity IEC 80000-6, 6-15 E; TRUE
electric susceptibility IEC 80000-6, 6-16 X TRUE
electric flux IEC 80000-6, 6-17 W IEC 80000-6, 6-2 [27]
displgcement current IEC 80000-6, 6-18 J IEC 80000-6, 6-20 [25]
density D
displacement current IEC 80000-6, 6-19.1 ID IEC 80000-6, 6-19.2 [28]
total current IEC 80000-6, 6-19.2 I I IEC 80000-6, 6-1 [27]
tot ="t
total current density IEC 80000-6, 6-20 JDFJI IEC 80000-6, 6-8 [27]
Table E-30: Normative quantity kinds in ISO 80000-6 (2 of 4)
Quantity Kind name Description Symbol General is dimension 1?
magnetic flux density IEC 80000-6, 6-21 B
magnetic flux IEC 80000-6, 6-22.1 i)
linked flux in a loop IEC 80000-6, 6-22.2 P IEC 80000-6, 6-22.2 [28]
caused by an electric ffrr_u’f
current in that loop
linked flux IEC 80000-6, 6-22.2 X
346 OMG Systems Modeling Language, v1.6

electromagnetic waves

Quantity Kind name Description Symbol General is dimension 1?
linked flux in a loop m IEC 80000-6, 6-22.2 X IEC 80000-6, 6-22.2 [28]
caused by an electric
current in another loop n
magnetic area moment IEC 80000-6, 6-23 m
magnetization IEC 80000-6, 6-24 M H IEC 80000-6, 6-25 [28]
M. o,

magnetic field strength in | IEC 80000-6, 6-25 H IEC 80000-6, 6-25 [28]
vacuum o
magnetic field strength IEC 80000-6, 6-25 H
permeability of vacuum IEC 80000-6, 6-26.1 % IEC 80000-6, 6-26.2 [28]
permeability IEC 80000-6, 6-26.2 L IEC 80000-6, 6-26.2 [28]
magnetic flux density of IEC 80000-6, 6-26.2
magnetic field strength
relative permeability IEC 80000-6, 6-27 u TRUE

T
magnetic susceptibilit IEC 80000-6, 6-28 f) TRUE

gnetic susceptibility K-=[_fm,|

magnetic polarization IEC 80000-6, 6-29 J

m
magnetic dipole moment | IEC 80000-6, 6-30 :

1.J

coercivity IEC 80000-6, 6-31 IEC 80000-6, 6-25 [28]
magnetic vector potential | IEC 80000-6, 6-32 A
energy density of electric | IEC 80000-6, 6-33 IEC 80000-6, 6-33 [29]
field
energy density of IEC 80000-6, 6-33 IEC 80000-6, 6-33 [29]
magnetic field
electromagnetic energy IEC 80000-6, 6-33 W
density
Poynting vector IEC 80000-6, 6-34 5
phase speed of IEC 80000-6, 6-35.1 C ISO 80000-3, 3-8.2 [5]

OMG Systems Modeling Language, v1.6

347

Quantity Kind name

Description

General

is dimension 1?

phase speed of light in

IEC 80000-6, 6-35.2

IEC 80000-6, 6-35.1 [29]

vacuum C:
source voltage IEC 80000-6, 6-36 U IEC 80000-6, 6-11.3 [27]
scalar magnetic potential | IEC 80000-6, 6-37.1 v (;? IEC 80000-6, 6-1 [27]
rr-_:
magnetic tension IEC 80000-6, 6-37.2 8 IEC 80000-6, 6-1 [27]
m
magnetomotive force IEC 80000-6, 6-37.3 F IEC 80000-6, 6-1[27]
m
current linkage IEC 80000-6, 6-37.4] IEC 80000-6, 6-1 [27]

Table E-31: Normative ¢

uantity kinds in ISO 80000-6 (3 of 4)

Quantity Kind name Description Symbol General is dimension 1?
number of turns in a IEC 80000-6, 6-38 N

winding

reluctance IEC 80000-6, 6-39 R,r_=R

permeanance IEC 80000-6, 6-40 A

inductance IEC 80000-6, 6-41.1 L:L.r_

mutual inductance IEC 80000-6, 6-41.1 LE IEC 80000-6, 6-41.1 [29]
self inductance IEC 80000-6, 6-41.1 L IEC 80000-6, 6-41.1 [29]
coupling factor IEC 80000-6, 6-42.1

leakage factor IEC 80000-6, 6-42.2 a

conductivity IEC 80000-6, 6-43 ay

resistivity IEC 80000-6, 6-44 2

electric power IEC 80000-6, 6-45 P ISO 80000-4, 4-26 [13]
electric resistance IEC 80000-6, 6-46 R

348

OMG Systems Modeling Language, v1.6

Quantity Kind name Description Symbol General is dimension 1?
electric conductance IEC 80000-6, 6-47 o

initial phase of electric IEC 80000-6, 6-48 @ ISO 80000-3, 3-5 [5]
voltage u

phase difference IEC 80000-6, 6-48] ISO 80000-3, 3-5 [5]
initial phase of electric IEC 80000-6, 6-48 g} ISO 80000-3, 3-5 [5]
current u

electric current phasor IEC 80000-6, 6-49 I IEC 80000-6, 6-1 [27]
voltage phasor IEC 80000-6, 6-50 T IEC 80000-6, 6-11.3 [27]
complex impedance IEC 80000-6, 6-51.1 Y IEC 80000-6, 6-46 [30]
resistance to alternating | IEC 80000-6, 6-51.2 R IEC 80000-6, 6-51.1 [30]
electric current

reactance to alternative IEC 80000-6, 6-51.3 X IEC 80000-6, 6-51.1 [30]
electric current

modules of impedance IEC 80000-6, 6-51.4 7 IEC 80000-6, 6-51.1 [30]

Table E-32: Normative quantity kinds in ISO 80000-6 (4 of 4)

Quantity Kind name Description Symbol General is dimension 1?
complex admittance IEC 80000-6, 6-52.1 E

conductance to alternating | IEC 80000-6, 6-52.2 o IEC 80000-6, 6-52.1 [30]

current

susceptance to alternating | IEC 80000-6, 6-52.3 B IEC 80000-6, 6-52.1 [30]

current

modules of admittance IEC 80000-6, 6-52.4 Y IEC 80000-6, 6-52.1 [30]

quality factor IEC 80000-6, 6-53 Q TRUE
loss factor IEC 80000-6, 6-54 d TRUE
loss angle IEC 80000-6, 6-55) ISO 80000-3, 3-5 [5] TRUE
active power IEC 80000-6, 6-56 P IEC 80000-6, 6-59 [30]

OMG Systems Modeling Language, v1.6

349

Quantity Kind name Description Symbol General is dimension 1?
apparent power IEC 80000-6, 6-57 5

power factor IEC 80000-6, 6-58 A TRUE

complex power IEC 80000-6, 6-59 5

reactive power IEC 80000-6, 6-60 Q IEC 80000-6, 6-59 [30]

non-active power IEC 80000-6, 6-61 Qr IEC 80000-6, 6-56 [30]

active energy IEC 80000-6, 6-62 W

E.6.5.5 ISO 80000-7 Light
The subset of the normative contents of ISO 80000-7 is identical to that of SysML 1.4 as summarized below.

Table E-33: Units in ISO 80000-7

Unit name Description Symbol | General units| Quantity is unit for is reduced
Kinds quantity of form?
dimension 1?

refractive index ISO 80000-7, 7-5.a ISO 80000-7, | TRUE
7-5[33

lumen ISO 80000-7, 7-32.a Im ISO 80000-7
7-32[33

candela ISO 80000-7, 7-35.a cd ISO 80000-7
7-35[33

lux ISO 80000-7, 7-36.a Ix ISO 80000-7
7-36 [33

candela per square [ISO 80000-7, 7-37.a cd/m? ISO 80000-7
metre 7-37 [33

Table E-34: Quantity kinds in ISO 80000-7

Quantity Kind name Description Symbol General is dimension 1?

speed of light in vacuum | ISO 80000-7, 7-4.1 ISO 80000-3, 3-8.1 [5]

[S

350 OMG Systems Modeling Language, v1.6

Quantity Kind name Description Symbol General is dimension 1?
phase speed of light in 1ISO 80000-7, 7-4.2 ' ISO 80000-3, 3-8.2 [5]
medium
refractive index 1ISO 80000-7, 7-5 n TRUE
radiant flux 1ISO 80000-7, 7-13 ISO 80000-4, 4-26 [13]
luminous flux 1SO 80000-7, 7-32 .

@,.(@)
luminous intensity 1ISO 80000-7, 7-35 I [Il

v

illuminance 1ISO 80000-7, 7-36 Bt

E,.(E)
luminance 1SO 80000-7, 7-37 [\ [L |

E.6.5.6 ISO 80000-9 Physical Chemistry and Molecular Physic

The subset of the normative contents of ISO 80000-9 is identical to that of SysML 1.4 as summarized below.

Table E-35: Units in ISO 80000-9

Unit name Description Symbol | General units| Quantity | is unit for | is reduced
Kinds quantity of| form?
dimension
1?
mole ISO 80000-9, 9-1.a mol ISO 80000-9
9-1
mole per cubic ISO 80000-9, 9-13.a mol/m3 ISO 80000-9
metre 9-13
Table E-36: Quantity kinds in ISO 80000-9

Quantity Kind name Description Symbol General is dimension 1?
amount of substance 1ISO 80000-9, 9-1 n
amount of substance 1ISO 80000-9, 9-13 c
concentration E

OMG Systems Modeling Language, v1.6

351

E.6.5.7 1ISO 80000-10 Atomic and Nuclear Physics
The 3 units and 3 quantity kind definitions included were in the non-normative ISO 80000-10 library of SysML 1.3.
Table E-37: Units in ISO 80000-10

Unit name Description Symbol | General units| Quantity is unit for |is reduced
Kinds quantity of| form?
dimension
1?
becquerel ISO 80000-10, Bq ISO 80000-10
10-29.a 10-29
gray ISO 80000-10, Gy ISO 80000-10
10-84.a 10-84
sievert ISO 80000-10, Sv ISO 80000-10
10-86.a 10-86

Table E-38: Quantity kinds in ISO 80000-10

Quantity Kind name Description Symbol General is dimension 1?
radionuclide activity 1ISO 80000-10, 10-29 A

absorbed dose ISO 80000-10, 10-81.1 D

dose equivalent 1ISO 80000-10, 10-86

E.6.5.8 ISO 80000-13 Information Science and Technology

SysML 1.4 adds commonly used 3 units (bit, byte and octet) of information and 3 of their associated quantity kinds.

Table E-39: Units in 1ISO 80000-13

Unit name Description Symbol | General units| Quantity | is unit for | is reduced
Kinds quantity of form?
dimension
1?
bit IEC 80000-13, bit IEC 80000-13, |TRUE
13-9.b 13-9
byte IEC 80000-13, B IEC 80000-13, |TRUE
13-9.c 13-9

352 OMG Systems Modeling Language, v1.6

Unit name Description Symbol | General units| Quantity | is unit for | is reduced
Kinds quantity of form?
dimension
1?
octet IEC 80000-13, 0 IEC 80000-13, | TRUE
13-9.c 13-9

Table E-40: Quantity kinds in ISO 80000-13

Quantity Kind name Description Symbol General is dimension 1?
storage capacity IEC 80000-13, 13-9 M TRUE

storage size IEC 80000-13, 13.9 M IEC 80000-13 TRUE

13-9
equivalent binary storage |IEC 80000-13, 13-10 M TRUE
capacity e

E.7

E.71

Overview

Distribution Extensions

This sub clause describes a non-normative extension to provide a candidate set of distributions (see 8.3.2.9,
DistributedProperty). It consists of a profile containing stereotypes that can be used to specify distributions for properties

of blocks.

OMG Systems Modeling Language, v1.6

353

E.7.2 Stereotypes

E.7.21 Package Distributions

asteraotypes
SysML::Blocks::
DistributedProperty

e:stereé:lt\(pan ocslareblype»

_ Basicinterval Mormal
min. Real mean: Real
max: Raal standardDeviation: Real
«slere-otype» astereotypes
Interval Uniform
Figure E.21 Basic distribution stereotypes
Table E-41: Distribution Stereotypes
Stereotype Base Class Properties Constraints Description
«Basiclnterval» «DistributedProperty» min:Real N/A Basic Interval distribution -
max:Real value between min and max
inclusive
«Interval» «Basiclnterval» N/A N/A Interval distribution - unknown
probability between min and
max
«Uniformy» «Basiclnterval» N/A N/A Uniform distribution - constant
probability between min and
max
«Normal» «DistributedProperty» mean:Real N/A Normal distribution - constant
standard probability between min and
Deviation:Real max
E.7.3 Usage Example

Figure E.22 shows a simple example of using distributions; the force of the Cannon is specified using a Normal
distribution with parameters mean and standard deviation. Whereas the use of a Normal distribution can be inferred from

354

OMG Systems Modeling Language, v1.6

the names of its parameters, an Interval distribution shares parameters with a Uniform distribution, hence the stereotype
keyword «interval» is used to distinguish it.

bdd [block] FiringRange

ublocks
Cannon

ancimals{mean=100.0 standardDeviation=1.0force: Newton

wblocks

Shot
cinterval »{min=101.0, max=105 0jvalume: CubichMeter

densityKilogramPerCubicMeter
acceleration: MeterPerSquareSecond

Figure E.22 Distribution Example

E.8 Building Non-normative Extension for Property-based
Requirements
E.8.1 Overview

Annex E.3 addresses extending requirements that are fundamentally textual in nature. They may be extended with
various enumerations (for example RiskKind or VerifyMethodKind), and they may have different modeling constraints
applied to the requirements relationships, but the requirements are only expressed as text strings.

Expressing requirements as text strings alone fundamentally limits their ability to be evaluated and verified. This Annex
addresses a more formal expression of requirements generally referred to as property based requirements (PBR); one that
includes quantitative specification of numerical parameters, relationships, equations and/or constraints.

Current users of text-based requirements have frequently expressed a basic need to represent numerical requirements
more precisely, both to reduce ambiguity and facilitate verification by analysis and other methods. This basic need can be
decomposed into three primary needs: 1) Requirements shall have numerical properties (properties capable of
representing numerical values), 2) these numerical properties shall be typeable (preferably by ValueType) to account for
quantity kind and units, and 3) these numerical properties shall be bindable (preferably using BindingConnector) to other
model elements (e.g., ConstraintParameters) so they can be evaluated using analysis tools. For the purpose of this
discussion, a requirement that meets these three conditions is said to be a property-based requirement.

This kind of property-based requirement is intended to be used with the overall system model to assist in specifying and
architecting systems. More generally, the system model may be used as a model-based specification, such as when block
instances with specific property values represent the requirement. In this latter case, the model-based specification can
further refine the property-based requirement.

Users of property-based requirements may desire a more elaborate capability than the primary need described above. For
example, it may be desirable for the requirement to contain a constraint or mathematical expression that formally states
an acceptance condition, threshold, or goal. This may alternatively need to be expressed as a set of valued pairs,
elaborating both the conditions and the acceptance thresholds for each condition, or by an arbitrary graphical

OMG Systems Modeling Language, v1.6 355

relationship. Some users may want the property-based requirement to formally own a behavior representing the
functionality of the requirement, or the behavior by which it is satisfied or verified.

The need for this kind of property-based requirement is illustrated in the simple example of specifying a vehicle’s
required stopping distance for various initial speeds and road conditions. The requirement can be expressed in a table as
follows:

The Vehicle stopping distance shall not exceed the values in Table E-42 as a function of initial speed and pavement
condition.

Table E-42: Example of Requirement in Tabular Form

Initial Pavement | Req'd Stopping Initial Pavement Req'd Stopping
Speed Condition | Distance -Dry Speed Condition Distance- Wet
(mph) (wet/dry) (feet) (mph) (wet/dry) (feet)

0 dry 0 0 wet 0

10 dry 4 10 wet 6

20 dry 17 20 wet 22

30 dry 38 30 wet 50

40 dry 67 40 wet 89

50 dry 104 50 wet 139

60 dry 150 60 wet 201

70 dry 205 70 wet 273

80 dry 267 80 wet 357

90 dry 338 90 wet 451

100 dry 418 100 wet 557

An alternative expression in plot format can be:

The Vehicle stopping distance shall not exceed the values in Table E-42 as a function of initial speed and pavement
condition.

356 OMG Systems Modeling Language, v1.6

600 7

__ 500
=
g 400
m
g 300 == == Req'd Stopping
& Distance-Wet (feet)
g 200 Req'd Stopping
b Distance-Dry (feet)
100
0

0 10 20 30 40 50 o0 70 80 90 100
Initial Velocity (mph)

Figure E.23 Example of Requirement in Graphical Form

The input/output parameter relationship or constraint can be specified in equation form, such as in the following
example:

Stopping distance <= (1/(2%32.174* alpha)*(580*Initial Speed/3600"2)
State Speed =0 ...100

alpha
dry 0.8
wet 0.6

More generally, the input and output parameter values may be complex functions of other parameters, and may have
probability distributions associated with them.

This annex addresses mechanisms and approaches for building SysML profiles to enable property-based requirements.
While examples of property-based requirement profiles are provided in this annex, these are not to be considered
normative or even authoritative. Instead, they are intended to be illustrative of the kind of extensions that some users may
find desirable. Ultimate responsibility for the compatibility of any property-based requirement profile with a particular
requirements management process or toolset rests fully with the user.

E.8.2 An Example PBR Profile Based on ConstraintBlock

E.8.2.1 Profile/Stereotypes of PBR Based on ConstraintBlock

Table E-24 shows use of both «abstractRequirement» and «constraintBlock» to define a new PBR stereotype, named
RequirementConstraintBlock in this example for clarity.

OMG Systems Modeling Language, v1.6 357

bdd [Profile] PER Profile [requirementConstraintBlock schema])

wstereotype»
A bs trac tRequiremen t

attributes
+Text : String [1]
+|d : String [1]
+/derived : AbstractRequirement [*] «Slereotypes
+/derivedFrom : AbstractRequirement [*] C ons traintBloc k
+/satisfiedBy : NamedElement [*] fa
+irefinedBy : NamedElement [*]
+itracedTo : NamedElement [*]
+iverifiedBy : NamedElement [*]
+/master : AbstractRequirement

wstereotypes»
Reguiremen tConstrainte loc k

Figure E.24 Example of a PBR Profile Based on ConstraintBlock

Basing PBR on ConstraintBlock provides flexibility in expressing the name of required numerical values as
ConstraintParameters, which can be typed by ValueTypes and related to properites or parameters of other model
elements using binding connectors. Textual requirement statements may be restated as constraint expressions that
reference these ConstraintParameters. The value bindings can then be used to evaluate the constraint expression and
determine compliance with the requirement.

The numerical required value may then be stored as a DefaultValue of the ConstraintParameter. It may alternatively be
specified directly in a constraint expression, rather than a default value, e.g., {requiredWeight = 1450} where
requiredWeight is defined as a constraint parameter typed by a value type. Complex requirement criteria may be
represented by a series of constraint expressions.

It is also noted that constraint blocks can have owned behavior, and that a constraint expression can be a value expression
(with opaque behavior).

E.8.2.2 Usage Example using PBR Based on ConstraintBlock

The following example leverages the above PBR user profile based on ConstraintBlock to specify and evaluate the
weight of a vehicle.

The requirement is captured via a PBR (RequirementConstraintBlock), which includes a constraint expression that
reflects the textual requirements statement in terms of two defined parameters, actualMass and requiredMass. Both of
these parameters are typed by the kilogram value type from the SI value types library. The required value for mass is
expressed as a default value of the requiredMass parameter. Note that the required value may have alternatively been
expressed as a second constraint expression, e.g., {requiredMass = 1450}. The vehicle itself is represented in the model
by a block with a value property for mass, also typed by the kilogram SI value type.

358 OMG Systems Modeling Language, v1.6

As shown in Table E-25, the context for evaluating if the requirement has been met is established using a Requirement
Context block. This method of context setting is a best practice that is not essential to this example. Both the Vehicle and
the Vehicle Mass Requirement are used in this Requirement Context.

bed [Package] Vehicle Example [context])

ablock whlocks
R equirement C ontext VoL Wehicle
valies
vehicleMass : mass[kilogram]

rL01y)
uRequirementConstrainiBlocis
Vehicle Mass R equirement

Cons raints
{actualMass < requiredMass}

Id="1"
Text = "The vehicle mass shall be less than
or equal to 1450 kilograms”

parameders
actualMass : mass{kilogram]
requiredMass : massfkilogram] = 1450

Figure E.25 Example of Requirement Evaluation Context Using PBR Based on Constraint Block

Table E-26 shows a parametric diagram of the Requirement Context block, useful for establishing the method of
evaluating compliance of the vehicleMass value with the Vehicle Mass Requirement. As with any parametric model, it
does not actually perform the evaluation/analysis, but it does specify the key relationships so that an evaluation tool may
determine if the weight requirement has been met.

par [Block] Requirement Context [vehicle mass evaluationﬂ

v01 : Vehicle «RequirementConstraintBlocks
r1.01 : Vehicle Mass R equirement
vehicleMass : mass [kilogram] {acwalMass < requiredMass)
‘ actualMass requiredMass
Default Value = 1450.0

Figure E.26 Example of Parametric Diagram Using PBR based on Constraint Block

E.8.3 An Example PBR Profile Based on Constraint

Constraints are arguably the most straightforward way for representing system requirements. Their specification may be
provided by opaque constraint expressions, which can be expressed in formal (and computable) languages like OCL.
This allows the constraint statement to be applied directly to a specific design, without necessarily applying a formal
evaluation context.

OMG Systems Modeling Language, v1.6 359

E.8.3.1 Profile/Stereotypes of PBR Based on Constraint

Table E-27shows use of both «abstractRequirement» and «constraint» to define a new PBR stereotype, named
CbRequirement in this example.

«stereotype»
AbstractRequirement

attributes
base_NamedHement : NamedBement [1]
/derived : AbstractRequirement [0..%]
/derivedFrom : AbstractRequirement [0..%]
id : String [1] =
/master : AbstractRequirement [0..%]
/refinedBy : NamedElement [0..*]
/satisfiedBy : NamedElement [0..%]
text : String [1] =
/tracedTo : NamedEBement [0..%]
IverifiedBy : NamedElement [0..*]

<t attributes

Figure E.27 Example of a PBR profile based on Constraints

E.8.3.2 Example using PBR profile Based on Constraint

«Metaclass»
Constraint

«stereotype»
CbRequirement

/text : String [1]

Table E-28 shows how requirements are specified on the model representing a specification. Note that, as modeled here,
the requirement represented by Constraint2 applies to any instance of the Vehicle block while the one represented by
Constraint] applies to instances of Vehicle block which are “used” as defined by the “vehicle” role of the Context block,

such as the design weight of the vehicle on a bridge or vehicle transporter.

«block»
Vehicle

vehicle A uses context

«block»
Context

vaiues 1
w eight : Real [1]

N\
\

Constraint2

«CbRequirement»

{{OCL}self.weight<5000}

«CbRequirement»

1Constraint1

{{OCL}self.vehicle. weight<=3200}

Figure E.28 Example of PBR based on Constraint used in different contexts

Table E-29 shows a particular case where testedVehicle is an instance of the Vehicle block and AnalysisContext an
instance of the Context block, as specified above. A simple evaluation of model constraints using a classical OCL
evaluator would produce a report showing that Requirement/Constraint2 is met, while Requirement/Constraint] is

violated.

360

OMG Systems Modeling Language, v1.6

Figure E.29 Establishing an Analysis Context for evaluating requirement compliance using PBR based on

Constraint

E.8.4

AnalysisContext: Context

AnalysisContext

testedVehicle

testedVehicle: Vehicle |
weight : Real = 3500.0

An Example Property Based Requirement based on Block

Property based requirements can be based on a Block which allows to define additional properties like value properties.

Table E-30 shows use of both “abstractRequirement” and “Block” to define a new PBR stereotype, named «PBR» in this

example.

bdd [Model] Data [Property Based Requirement Stereotype JJ

«comment:»

New in SysML
15

«stereotypes

A bs trac tR equirement
[NamedElement]

«stereotype»
Block
[Class]

id
text

aftributes

«Ccomments iy
SysML 1.4

«stereotype»
R equirement
[Class]

«steresotypes
PBR
[Class]

«comments
—|User defined

Property Based
Requirement
stereotype

Figure E.30 PBR Example

Table E-31gives an example where a requirement element “Max Peak Power Requirement is created. It defines “id,”

“text,” and “maxPeakPwr.”

It also has additionally a constraint property “maxPower” which permits to define constraints for the value properties.
The requirement is contextualized in the block “System Specification.” The block “Verification Context” contextualizes

the block “System Design” which holds the as-designed “totalPower” value property. In this context the as-designed
value is bound to the requirement constraint for the purpose of analysis to verify that the designed value satisfies the
required value.

OMG Systems Modeling Language, v1.6

361

bdd [Model] Data [Fraperty Based Requirement Library 1]

«FBR »

bk

por (k] Max Faak Power Recurement | M Foak Pow e fequinement 1

Max Peak Power Reguirement

=1

agnirrEnts
text = The maxmum peak pow er shal be less than 8.5 kW Paran:-atnc
maxFeakPw r - W = 85000 madal of

raguirgmant can

ralate properies
of requirement

max Poak Poy er Requirement

cB

sconsirainls

<h: maxPowor
p1 <=p2p

woonsiraints
maxPowar

ablocks
System Specification

iy slarm Spod

ablocks
Verification Context

par [Block] Verilicalion Contaxt [Verilicalion Conlesxt 1]

system Design

ublocke

system Specification : System Specification

System Design

max Peak Power Requirement : Max Peak Powar Requiremeant

totalPow er - W

maxPeakPwr : W

woansiraints
cB:maxPower

{p1 == p2}

b1

systam Design : System Design

totalPower 1 W

Figure E.31 PBR

362

OMG Systems Modeling Language, v1.6

Annex F: Requirements Traceability

(Informative)

The OMG SysML requirements traceability matrix traces this International Standard to the original source requirements
in the UML for Systems Engineering RFP (ad/2003-03-41). The traceability matrix is included by reference in a separate
document (ptc/2007-03-09).

OMG Systems Modeling Language, v1.6 363

This page intentionally left blank.

364 OMG Systems Modeling Language, v1.6

Annex G: Model Interchange

(Informative)

G.1 Overview

This annex describes two methods for exchanging SysML models between tools. The first method discussed is XML
Metadata Interchange (XMI), which is the preferred method for exchanging models between UML-based tools. The
second approach describes the use of ISO 10303-233 Application Protocol: Systems engineering (AP233), which is one
of the series of STEP (Standard for the Exchange of Product Model Data) engineering data exchange standards. Other
model interchange approaches are possible, but the ones described in this annex are expected to be the primary ones
supported by SysML.

G.2 Context for Model Interchange

Developing today’s complex systems typically requires engineering teams that are distributed in time and space and that
are often composed of many companies, each with their own culture, methods, and tools. Effective collaboration requires
agreement on, and a thorough understanding of, the various work assignments and resulting artifacts.

Many of these artifacts pertain to shared engineering data (e.g., requirements, system structural and behavioral models,
verification & validation) that transcend the entire life cycle of the system of interest and are the basis for important
systems engineering considerations and decisions. So it is critical that the system information contained in these artifacts
and information models be accurately captured and readable by all appropriate team members in a timely manner.

Today, this information resides in an array of tools where each is only concerned with a portion of systems engineering
data and can’t share its data with other tools because they only understand their own native schema. To mitigate this
situation, collaborating organizations are usually forced to either adopt a common set of tools or develop a unique,
bidirectional interface between many of the tools that each organization uses. This can be an expensive and untimely
approach to data exchange between team members. So, there is a need to define standardized approaches for model
interchange between the different data schemas in use.

G.3 XMI Serialization of SysML

UML 2.5.1 is formally defined using the OMG Meta Object Facility (MOF). MOF can be considered a language for
specifying modeling languages. The OMG XML Metadata Interchange (XMI) 2.5.1 standard specifies an XML-based
interchange format for any language modeled using MOF. This results in a standard, convenient format for serializing
UML user models as XMI files for interchange between UML tools. The XMI specification also includes rules for
generating an XML Schema that can be used for basic validation of the structure of those UML user model XMI files.

The UML language includes an extension mechanism called UML Profiles. UML Profiles are themselves defined as
UML models (MOF is not used). However, their intent is to specify extensions to the UML language semantics in much
the same way one could extend the UML language by adding to the MOF definition of UML. As UML Profiles are valid
UML models, XMI does provide a mechanism for exchanging the UML Profiles between UML tools. However, as they
are extensions to concepts defined in the UML language itself, the definition of a UML Profile refers to the UML
language definitions. An XMI 2.5.1 representation of the SysML profile (i.e., the UML Profile for SysML), as well as
XMI 2.5.1 representations of Model Libraries defined by SysML, are provided as support documents to this International
Standard. As with UML, XMI provides a convenient serialized format for model interchange between SysML tools and
basic validation of those files using an XML Schema as well.

OMG Systems Modeling Language, v1.6 365

The namespace for the standard profile is: https://www.omg.org/spec/SysML/20181001/SysML.xmi.

G4 SysML Model Interchange Using AP233

AP233 is a data exchange standard designed to support the exchange of systems engineering data between the many and
varied software tools that systems engineers use in the course of their work. Data from systems modeling tools is
included in the scope of AP233, in fact, requirements for AP233 and SysML have been largely aligned by the OMG and
the ISO teams working together and in close cooperation with the INCOSE Model Driven System Design working group.

G.4.1 Scope of AP233

System Structures/Blocks -

1~ vav [[Actvites]) [Allocations])
Text-based Reguirements I] Il Parametrics]J

Change Manaqemen't_l, [Function Models i] I' Views and Viewpoints I:l

f

L
|__Approvals, Security, Status
’\ LY | State Machines Ij ”
irements n men { Model Organization IJ
Property & Units i)

=

r Property-based Requirements
N Y

[Interfaces/Ports & Flows

Figure G.1: SysML/AP233 Data Overlaps

AP233 includes support for assigning program management information as well as system modeling information to
systems engineering data.

Program management capabilities include issue management, risk management and aspects of project management such
as project breakdown, project resource information, organization structure, schedule, and work structure.

System modeling capabilities include requirements and requirements allocation, trade studies with measures of
effectiveness, interface to analysis, function-based behavior, state-based behavior, system hierarchies for the design
system, the realized system and all interfaces.

Additional information about AP233 can be found at http://www.ap233.org/.

G.4.2 STEP Architecture

AP233 is standardized under ISO Technical Committee 184 (Industrial Automation Systems and Integration),
Subcommittee 4 (Industrial Data). AP233 is part of the family of ISO 10303 standards, referred to as STEP, that include
standardized models and infrastructure for the exchange of product model data.

366 OMG Systems Modeling Language, v1.6

https://www.omg.org/spec/SysML/20181001/SysML.xmi

The STEP architecture is modular. This enables the component information models to be reused across disciplines and
life-cycle stages in different application protocols, which are the models used for implementation. STEP models are
written using the ISO 10303-11 EXPRESS language.

STEP also standardizes a series of implementation methods: a text file structure (ISO 10303-21), a data access interface
(ISO 10303-22) and an XML file format (ISO 10303-28). The data access interface has bindings that provide
standardized APIs for accessing EXPRESS-based data in various programming languages. A conforming STEP
implementation is the combination of a STEP application protocol and one or more of the implementation methods.

The scope of STEP is very large and a number of data exchange standards (e.g., geometry, product life-cycle support,
structural, electrical, and engineering analysis) have been in wide use in industry for more than 15 years. Support for
several systems engineering viewpoints within the scope of AP233 are shared with other application protocols. Since
AP233 is part of STEP, it is easy to relate systems engineering data to that of other engineering disciplines over the life
cycle of a system and to related product models.

For more information on the STEP architecture see the ISO TC184/SC4 Industrial Data subcommittee web page at
http://www.tc184-sc4.org.

G43 EXPRESS

AP233, like all STEP application protocols, is defined using the EXPRESS modeling language. EXPRESS is a precise
text-based information modeling language with a related graphical representation called EXPRESS-G.

An example of the text-based format follows:

SCHEMA Ap233 systems engineering arm_excerpt;
ENTITY Product;

id : STRING;

name : STRING;

description : OPTIONAL STRING;

END ENTITY;

ENTITY Product_version;

id : STRING;

description : OPTIONAL STRING;
of product : Product;

END_ENTITY;

ENTITY Product view_definition;

OMG Systems Modeling Language, v1.6 367

id : OPTIONAL STRING;

name : OPTIONAL STRING;

additional characterization : OPTIONAL STRING;

initial context : View_definition context;

additional contexts : SET [0:?] OF View_definition context;

defined version : Product version;

WHERE

WR1: NOT (initial context IN additional contexts);

WR2: EXISTS(id) OR (TYPEOF(SELF\Product view definition) <> TYPEOF(SELF));

END_ ENTITY;

ENTITY View_definition_context;

application_domain : STRING;

life_cycle stage : STRING;

description : OPTIONAL STRING;

WHERE

WR1: (SIZEOF (USEDIN(SELF, AP233 SYSTEMS ENGINEERING ARM_ EXCERPT. +
PRODUCT_ VIEW_DEFINITION.INITIAL CONTEXT)) > 0) OR

(SIZEOF (USEDIN(SELF, AP233 SYSTEMS ENGINEERING ARM EXCERPT. +
PRODUCT VIEW_DEFINITION.ADDITIONAL CO NTEXTS)) > 0);

END ENTITY;

ENTITY System
SUBTYPE OF (Product);

END ENTITY;

ENTITY System_version

SUBTYPE OF (Product_version);

SELF\Product version.of product : System;

368 OMG Systems Modeling Language, v1.6

END ENTITY;

ENTITY System_view_definition
SUBTYPE OF (Product_view_definition);
SELF\Product view_definition.defined version : System_version;

END ENTITY;

END SCHEMA;

EXPRESS expressions are similar in nature to OCL expressions and the two languages have similar expressiveness.
EXPRESS has also been approved as an OMG standard with a September 2009 publication of Version 1.0 of the
Reference Metamodel for the EXPRESS Information Modeling Language Specification. This will enable the use of
OMG Model Driven Architecture technologies against AP233 and other STEP models written in EXPRESS.

G.4.4 SysML-AP233 Mapping

A formal and standardized mapping between SysML and AP233 is being developed within the OMG. The mapping is a
specification for SysML and other tool vendors to implement so that their tools can import from and export to AP233
data exchange files. AP233 usage is aimed primarily at scenarios where SysML data is fed to downstream applications
such as those used in manufacturing, life cycle management or systems maintenance. Additional information can be
found at the OMG SysML Portal at http://www.omgwiki.org/OMGSysML/.

OMG Systems Modeling Language, v1.6 369

http://www.omgwiki.org/OMGSysML/

This page intentionally left blank.

370 OMG Systems Modeling Language, v1.6

	Preface
	1 Scope
	2 Normative References
	3 Additional Information
	3.1 Relationships to Other Standards
	3.2 How to Read this International Standard
	3.2.1 Organization

	3.3 Acknowledgments

	4 Language and Architecture
	4.1 General
	4.2 Design Principle
	4.3 Architecture
	4.4 Extension Mechanisms
	4.5 SysML Diagrams

	5 Conformance
	5.1 Overview
	5.2 Conformance Types

	6 Language Formalisms
	6.1 Levels of Formalism
	6.2 Clause Structure
	6.2.1 Overview
	6.2.2 Diagram Elements
	6.2.3 UML Extensions
	6.2.4 Usage Examples

	6.3 Conventions and Typography

	7 Model Elements
	7.1 Overview
	7.1.1 View and Viewpoint

	7.2 Diagram Elements
	7.3 UML Extensions
	7.3.1 Diagram Extensions
	7.3.1.1 UML Diagram Elements not Included in SysML

	7.3.2 Stereotypes
	7.3.2.1 Conform
	7.3.2.2 ElementGroup
	7.3.2.3 Expose
	7.3.2.4 Problem
	7.3.2.5 Rationale
	7.3.2.6 Stakeholder
	7.3.2.7 View
	7.3.2.8 Viewpoint

	8 Blocks
	8.1 Overview
	8.2 Diagram Elements
	8.2.1 Block Definition Diagram
	8.2.2 Internal Block Diagram

	8.3 UML Extensions
	8.3.1 Diagram Extensions
	8.3.1.1 Block Definition Diagram
	8.3.1.1.1 Block and Value Type Definitions
	8.3.1.1.2 Default «block» stereotype on unlabeled box
	8.3.1.1.3 Labeled compartments
	8.3.1.1.4 Behavior compartment
	8.3.1.1.5 Constraints compartment
	8.3.1.1.6 Namespace compartment
	8.3.1.1.7 Structure compartment
	8.3.1.1.8 BoundReference compartment
	8.3.1.1.9 Receptions compartment
	8.3.1.1.10 Default multiplicities
	8.3.1.1.11 Property-specific type
	8.3.1.1.12 Unit Notation
	Units on value properties

	8.3.1.1.13 Units on values

	8.3.1.2 Internal Block Diagram
	8.3.1.2.1 Property types
	8.3.1.2.2 Block reference in diagram frame
	8.3.1.2.3 Compartments on internal properties
	8.3.1.2.4 Compartments on a diagram frame
	8.3.1.2.5 Property path name
	8.3.1.2.6 Nested connector end
	8.3.1.2.7 Property-specific type
	8.3.1.2.8 Initial values compartment
	8.3.1.2.9 Default multiplicities

	8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams
	8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

	8.3.2 Stereotypes
	8.3.2.1 Package Blocks
	8.3.2.2 AdjunctProperty
	8.3.2.3 BindingConnector
	8.3.2.4 Block
	8.3.2.5 BoundReference
	8.3.2.6 ClassifierBehaviorProperty
	8.3.2.7 ConnectorProperty
	8.3.2.8 DirectedRelationshipPropertyPath
	8.3.2.9 DistributedProperty
	8.3.2.10 ElementPropertyPath
	8.3.2.11 EndPathMultiplicity
	8.3.2.12 NestedConnectorEnd
	8.3.2.13 ParticipantProperty
	8.3.2.14 PropertySpecificType
	8.3.2.15 ValueType

	8.3.3 Model Libraries
	8.3.3.1 Package PrimitiveValueTypes
	8.3.3.1.1 Boolean
	Description
	8.3.3.1.2 Complex
	8.3.3.1.3 Integer
	8.3.3.1.4 Number
	8.3.3.1.5 Real
	8.3.3.1.6 String

	8.3.3.2 Package UnitAndQuantityKind
	8.3.3.2.1 QuantityKind
	8.3.3.2.2 Unit

	8.4 Usage Examples
	8.4.1 Wheel Hub Assembly
	8.4.2 Example Value Type Definitions
	8.4.3 Design Configuration for SUV EPA Fuel Economy Test
	8.4.4 Water Delivery
	8.4.5 Constraining Decomposition
	8.4.6 Units and Quantity Kinds
	8.4.7 Property-Specific Types

	9 Ports and Flows
	9.1 Overview
	9.1.1 Ports
	9.1.2 Flow Properties, Provided and Required Features, and Nested Ports
	9.1.3 Proxy Ports and Full Ports
	9.1.4 Item Flows
	9.1.5 Deprecation of Flow Ports and Flow Specifications

	9.2 Diagram Elements
	9.2.1 Block Definition Diagram
	9.2.2 Internal Block Diagram

	9.3 UML Extensions
	9.3.1 Diagram Extensions
	9.3.1.1 DirectedFeature
	9.3.1.2 FlowProperty
	9.3.1.3 FullPort
	9.3.1.4 InvocationOnNestedPortAction
	9.3.1.5 ItemFlow
	9.3.1.6 Port
	9.3.1.7 ProxyPort
	9.3.1.8 TriggerOnNestedPort

	9.3.2 Stereotypes
	9.3.2.1 AcceptChangeStructuralFeatureEventAction
	9.3.2.2 AddFlowPropertyValueOnNestedPortAction
	9.3.2.3 Block
	9.3.2.4 ChangeStructuralFeatureEvent
	9.3.2.5 DirectedFeature
	9.3.2.6 FeatureDirectionKind
	9.3.2.7 FlowDirectionKind
	9.3.2.8 FlowProperty
	9.3.2.9 FullPort
	9.3.2.10 InterfaceBlock
	9.3.2.11 InvocationOnNestedPortAction
	9.3.2.12 ItemFlow
	9.3.2.13 ProxyPort
	9.3.2.14 TriggerOnNestedPort
	9.3.2.15 ~InterfaceBlock

	9.4 Usage Examples
	9.4.1 Ports with Required and Provided Features
	9.4.2 Ports and Item Flows
	9.4.3 Ports with Flow Properties
	9.4.4 Proxy and Full Ports
	9.4.5 Association and Port Decomposition
	9.4.6 Item Flow Decomposition

	10 Constraint Blocks
	10.1 Overview
	10.2 Diagram Elements
	10.2.1 Block Definition Diagram
	10.2.2 Parametric Diagram

	10.3 UML Extensions
	10.3.1 Diagram Extensions
	10.3.1.1 Block Definition Diagram
	10.3.1.1.1 Constraint block definition
	10.3.1.1.2 Parameters compartment

	10.3.1.2 Parametric Diagram
	10.3.1.2.1 Round-cornered rectangle notation for constraint property
	10.3.1.2.2 «constraint» keyword notation for constraint property
	10.3.1.2.3 Small square box notation for an internal property

	10.3.2 Stereotypes
	10.3.2.1 ConstraintBlock

	10.4 Usage Examples
	10.4.1 Definition of Constraint Blocks on a Block Definition Diagram
	10.4.2 Usage of Constraint Blocks on a Parametric Diagram

	11 Activities
	11.1 Overview
	11.1.1 Control as Data
	11.1.2 Continuous Systems
	11.1.3 Probability
	11.1.4 Activities as Blocks
	11.1.5 Timelines

	11.2 Diagram Elements
	11.2.1 Activity Diagram

	11.3 UML Extensions
	11.3.1 Diagram Extensions
	11.3.1.1 Activity
	11.3.1.1.1 Notation

	11.3.1.2 CallBehaviorAction
	11.3.1.3 ControlFlow
	11.3.1.3.1 Presentation Option

	11.3.1.4 ObjectNode, Variables, and Parameters
	11.3.1.4.1 Notation

	11.3.2 Stereotypes
	11.3.2.1 Continuous
	11.3.2.2 ControlOperator
	11.3.2.3 Discrete
	11.3.2.4 NoBuffer
	11.3.2.5 Overwrite
	11.3.2.6 Optional
	11.3.2.7 Probability
	11.3.2.8 Rate

	11.3.3 Model Libraries
	11.3.3.1 Package ControlValues
	11.3.3.1.1 ControlValueKind

	11.4 Usage Examples

	12 Interactions
	12.1 Overview
	12.2 Diagram Elements
	12.2.1 Sequence Diagram

	12.3 UML Extensions
	12.3.1 Diagram Extensions
	12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing Diagram
	12.3.1.2 Interactions and Parameters
	12.3.1.2.1 Notation

	12.4 Usage Examples
	12.4.1 Sequence Diagrams

	13 State Machines
	13.1 Overview
	13.2 Diagram Elements
	13.2.1 State Machine Diagram

	13.3 UML Extensions
	13.3.1 Diagram Extensions
	13.3.1.1 State Machines and Parameters
	13.3.1.1.1 Notation

	13.4 Usage Examples
	13.4.1 State Machine Diagram

	14 Use Cases
	14.1 Overview
	14.2 Diagram Elements
	14.2.1 Use Case Diagram

	14.3 UML Extensions
	14.4 Usage Examples

	15 Allocations
	15.1 Overview
	15.2 Diagram Elements
	15.2.1 Representing Allocation on Diagrams

	15.3 UML Extensions
	15.3.1 Diagram Extensions
	15.3.1.1 Tables
	15.3.1.2 Allocate Relationship Rendering
	15.3.1.3 Allocation Compartment Format
	15.3.1.4 Allocation Callout Format
	15.3.1.5 AllocatedActivityPartition Label

	15.3.2 Stereotypes
	15.3.2.1 Allocate
	15.3.2.2 AllocateActivityPartition

	15.4 Usage Examples
	15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks
	15.4.2 Allocate Flow
	15.4.2.1 Allocating Structure
	15.4.2.2 Automotive Example

	15.4.3 Tabular Representation

	16 Requirements
	16.1 Overview
	16.2 Diagram Elements
	16.2.1 Requirement Diagram

	16.3 UML Extensions
	16.3.1 Diagram Extensions
	16.3.1.1 Requirement Diagram
	16.3.1.2 Requirement Notation
	16.3.1.3 Requirement Property Callout Format
	16.3.1.4 Requirements on Other Diagrams
	16.3.1.5 Requirements Table

	16.3.2 Stereotypes
	16.3.2.1 AbstractRequirement
	16.3.2.2 Copy
	16.3.2.3 DeriveReqt
	16.3.2.4 Refine
	16.3.2.5 Requirement
	16.3.2.6 TestCase
	16.3.2.7 Satisfy
	16.3.2.8 Trace
	16.3.2.9 Verify

	16.4 Usage Examples
	16.4.1 Requirement Decomposition and Traceability
	16.4.2 Requirements and Design Elements
	16.4.3 Requirements Reuse
	16.4.4 Verification Procedure (Test Case)

	17 Profiles & Model Libraries
	17.1 Overview
	17.2 Diagram Elements
	17.2.1.1 Extension
	17.2.2 Stereotypes Used On Diagrams
	17.2.2.1 StereotypeInNode
	17.2.2.2 StereotypeInComment
	17.2.2.3 StereotypeInCompartment

	17.3 UML Extensions
	17.4 Usage Examples
	17.4.1 Defining a Profile
	17.4.2 Adding Stereotypes to a Profile
	17.4.3 Defining a Model Library that Uses a Profile
	17.4.4 Guidance on Whether to Use a Stereotype or Class
	17.4.5 Using a Profile
	17.4.6 Using a Stereotype
	17.4.7 Using a Model Library Element

	Annex A: Diagrams
	A.1 Overview
	A.2 Guidelines

	Annex B: SysML Diagram Interchange
	B.1 Overview
	B.2 Stereotypes
	B.2.1 SysML Activity Diagram
	B.2.2 SysML Behavior Diagram
	B.2.3 SysMLBlockDefinitionDiagram
	B.2.4 SysMLDiagram
	B.2.5 SysMLDiagramElement
	B.2.6 SysMLDiagramWithAssociations
	B.2.7 SysMLInteractionDiagram
	B.2.8 SysMLInternalBlockDiagram
	B.2.9 SysMLPackageDiagram
	B.2.10 SysMLParametricDiagram
	B.2.11 SysMLRequirementDiagram
	B.2.12 SysMLStateMachineDiagram
	B.2.13 SysMLUseCaseDiagram

	B.3 SysML DI Usage Notes
	B.4 SysML Notation and DI Representation

	Annex C: Deprecated Elements and Migration
	C.1 Overview
	C.1.1 Flow Ports
	C.1.2 Conjugated Ports

	C.2 Diagram Elements
	C.2.1 Block Definition Diagram
	C.2.2 Internal Block Diagram

	C.3 UML Extensions
	C.3.1 Diagram Extensions
	C.3.1.1 Conjucated Ports
	C.3.1.2 FlowPort
	C.3.1.3 FlowSpecification

	C.3.2 Stereotypes
	C.3.2.1 Package PortsAndFlows
	C.3.2.2 FlowPort
	C.3.2.3 Semantic Variation Points
	C.3.2.4 FlowSpecification
	C.3.2.5 ItemFlow (deprecated compatibility rule)

	C.4 Transitioning SysML 1.2 Flow Ports to SysML 1.3 Ports (informative)
	C.5 Transitioning SysML 1.3 Viewpoint and View to SysML 1.4 (informative)
	C.6 Transitioning SysML 1.3 Units and QuantityKinds to SysML 1.4 (informative)
	C.7 Transitioning SysML 1.5 conjugated port typed by InterfaceBlock to SysML 1.6 conjugated InterfaceBlock (informative)

	Annex D: Sample Problem
	D.1 Purpose
	D.2 Scope
	D.3 Problem Summary
	D.4 Diagrams
	D.4.1 Package Overview (Structure of the Sample Model)
	D.4.1.1 Package Diagram – Applying the SysML Profile
	D.4.1.2 Package Diagram – Showing Package Structure of the Model

	D.4.2 Setting the Context (Boundaries and Use Cases)
	D.4.2.1 Internal Block Diagram – Setting Context
	D.4.2.2 Use Case Diagram – Operational Use Cases

	D.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)
	D.4.3.1 Sequence Diagram – Drive Black Box
	D.4.3.2 State Machine Diagram – HSUV Operational States
	D.4.3.3 Sequence Diagram – Start Vehicle Black Box & White Box

	D.4.4 Establishing Requirements (Requirements Diagrams and Tables)
	D.4.4.1 Requirement Hierarchy
	D.4.4.2 Requirement Diagram – Derived Requirements
	D.4.4.3 Requirement Diagram – Acceleration Requirement Relationships
	D.4.4.4 Table – Requirements Table

	D.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams)
	D.4.5.1 Block Definition Diagram – Automotive Domain
	D.4.5.2 Block Definition Diagram – Hybrid SUV
	D.4.5.3 Internal Block Diagram – Hybrid SUV
	D.4.5.4 Internal Block Diagram for the “Power Subsystem”

	D.4.6 Defining Ports and Flows
	D.4.6.1 Block Definition Diagram – ICE Flow Properties
	D.4.6.2 Internal Block Diagram – CANbus
	D.4.6.3 Block Definition diagram – Fuel Flow Properties
	D.4.6.4 Parametric Diagram – Fuel Flow
	D.4.6.5 Internal Block Diagram – Fuel Distribution

	D.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)
	D.4.7.1 Block Definition Diagram – Analysis Context
	D.4.7.2 Package Diagram – Performance View Definition
	D.4.7.3 Package Diagram – Viewpoint Definition
	D.4.7.4 Package Diagram – View Definition
	D.4.7.5 Package Diagram – View Hierarchy
	D.4.7.6 Package Diagram – Measures of Effectiveness
	D.4.7.7 Parametric Diagram – Economy
	D.4.7.8 Parametric Diagram – Dynamics
	D.4.7.9 (Non – Normative) Timing Diagram – 100hp Acceleration

	D.4.8 Defining, Decomposing, and Allocating Activities
	D.4.8.1 Activity Diagram – Acceleration (top level)
	D.4.8.2 Block Definition Diagram – Acceleration
	D.4.8.3 Activity Diagram (EFFBD) – Acceleration (detail)
	D.4.8.4 Internal Block Diagram – Power Subsystem Behavioral and Flow Allocation
	D.4.8.5 Table – Acceleration Allocation
	D.4.8.6 Internal Block Diagram: Property Values – EPA Fuel Economy Test

	Annex E: Non-normative Extensions
	E.1 Overview
	E.2 Activity Diagram Extensions
	E.2.1 Overview
	E.2.2 Stereotypes
	E.2.3 Stereotype Examples

	E.3 Requirements Diagram Extensions
	E.3.1 Overview
	E.3.2 Stereotypes
	E.3.3 Stereotype Examples

	E.4 Parametric Diagram Extensions for Trade Studies
	E.4.1 Overview
	E.4.2 Stereotypes
	E.4.3 Stereotype Examples

	E.5 Model Library for Quantities, Units, Dimensions, and Values (QUDV)
	E.5.1 Overview
	E.5.2 Abstract Syntax
	E.5.2.1 AffineConversionUnit
	E.5.2.2 ConversionBasedUnit
	E.5.2.3 DerivedQuantityKind
	E.5.2.4 DerivedUnit
	E.5.2.5 Dimension
	E.5.2.6 GeneralConversionUnit
	E.5.2.7 LinearConversionUnit
	E.5.2.8 Prefix
	E.5.2.9 PrefixedUnit
	E.5.2.10 QuantityKind
	E.5.2.11 QuantityKindFactor
	E.5.2.12 Rational
	E.5.2.13 SimpleQuantityKind
	E.5.2.14 SimpleUnit
	E.5.2.15 SystemofQuantities
	E.5.2.16 SystemofUnits
	E.5.2.17 Unit
	E.5.2.18 UnitFactor

	E.5.3 References
	E.5.4 Usage Examples
	E.5.4.1 SI Unit and QuantityKind examples
	E.5.4.2 Spring Example

	E.6 Model Library of SysML Quantity Kinds and Units for ISO 8000
	E.6.1 Overview
	E.6.2 Units and Quantity Kinds
	E.6.3 ISO 80000-1 Prefixes
	E.6.4 ISO 80000-2 Mathematical Signs and Symbols
	E.6.5 Summary of the covered parts of ISO 80000
	E.6.5.1 ISO 80000-3 Space and Time
	E.6.5.2 ISO 80000-4 Mechanics
	E.6.5.3 ISO 80000-5 Thermodynamics
	E.6.5.4 ISO 80000-6 Electromagnetism
	E.6.5.5 ISO 80000-7 Light
	E.6.5.6 ISO 80000-9 Physical Chemistry and Molecular Physic
	E.6.5.7 ISO 80000-10 Atomic and Nuclear Physics
	E.6.5.8 ISO 80000-13 Information Science and Technology

	E.7 Distribution Extensions
	E.7.1 Overview
	E.7.2 Stereotypes
	E.7.2.1 Package Distributions

	E.7.3 Usage Example

	E.8 Building Non-normative Extension for Property-based Requirements
	E.8.1 Overview
	E.8.2 An Example PBR Profile Based on ConstraintBlock
	E.8.2.1 Profile/Stereotypes of PBR Based on ConstraintBlock
	E.8.2.2 Usage Example using PBR Based on ConstraintBlock

	E.8.3 An Example PBR Profile Based on Constraint
	E.8.3.1 Profile/Stereotypes of PBR Based on Constraint
	E.8.3.2 Example using PBR profile Based on Constraint

	E.8.4 An Example Property Based Requirement based on Block

	Annex F: Requirements Traceability
	Annex G: Model Interchange
	G.1 Overview
	G.2 Context for Model Interchange
	G.3 XMI Serialization of SysML
	G.4 SysML Model Interchange Using AP233
	G.4.1 Scope of AP233
	G.4.2 STEP Architecture
	G.4.3 EXPRESS
	G.4.4 SysML-AP233 Mapping

