
An OMG Systems Modeling LanguageTM Publication

OMG Systems Modeling Language (OMG SysML™)

Version 1.7

OMG Document Number: ptc/2022-08-02

Date: August 2022

Standard document URL: https://www.omg.org/spec/SysML/1.7/

Machine Readable File(s):

Normative:

https://www.omg.org/spec/SysML/20220801/SysML.xmi

Non-normative:

https://www.omg.org/spec/SysML/20220801/SysMLDI.xmi

https://www.omg.org/spec/SysML/20220801/QUDV.xmi

https://www.omg.org/spec/SysML/20220801/ISO80000.xmi

Refer to the Roadmap located in the Preface for a list of documents that were generated as part of the
adoption, finalization, and revision process.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://www.omg.org/spec/SysML/1.7/
https://www.omg.org/spec/SysML/20220801/SysML.xmi
https://www.omg.org/spec/SysML/20220801/SysMLDI.xmi
https://www.omg.org/spec/SysML/20220801/QUDV.xmi
https://www.omg.org/spec/SysML/20220801/ISO80000.xmi

Copyright © 2003-2022, American Systems Corporation

Copyright © 2003-2022, PTC Inc.

Copyright © 2003-2022, BAE SYSTEMS

Copyright © 2003-2022, The Boeing Company

Copyright © 2003-2022, Ceira Technologies

Copyright © 2022, Dassault Systemes

Copyright © 2003-2022, Deere & Company

Copyright © 2003-2022, Airbus

Copyright © 2003-2022, EmbeddedPlus Engineering

Copyright © 2007-2022, European Aeronautic Defence and Space Company N.V.

Copyright © 2003-2022, Eurostep Group AB

Copyright © 2003-2022, Gentleware AG

Copyright © 2003-2022, I-Logix, Inc.

Copyright © 2022, INCOSE

Copyright © 2003-2022, International Business Machines

Copyright © 2003-2022, International Council on Systems Engineering

Copyright © 2003-2022, Israel Aircraft Industries

Copyright © 2003-2022, Lockheed Martin Corporation

Copyright © 2003-2022, Mentor Graphics

Copyright © 2003-2022, Motorola, Inc.

Copyright © 2007-2022, National Aeronautics and Space Administration

Copyright © 2007-2022, No Magic, Inc.

Copyright © 2003-2022, Northrop Grumman

Copyright © 1997-2022, Object Management Group

Copyright © 2003-2022, oose Innovative Informatik eG

Copyright © 2003-2022, PivotPoint Technology Corporation

Copyright © 2003-2022, Raytheon Company

Copyright © 2022, Ronnie Gill

Copyright © 2003-2022, Sparx Systems

Copyright © 2003-2022, Telelogic AB

Copyright © 2003-2022, THALES

Copyright © 2022, Thematix Partners LLC

Copyright © 2022, Universidad de Cantabria

Copyright © 2022, Webel IT Australia

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the
terms, conditions and notices set forth below. This document does not represent a commitment to
implement any portion of this specification in any companys products. The information contained in this
document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document
and distribute copies of the modified version. Each of the copyright holders listed above has agreed that
no person shall be deemed to have infringed the copyright in the included material of any such copyright
holder by reason of having used the specification set forth herein or having conformed any computer
software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby
grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications
that are based upon this specification, and to use, copy, and distribute this specification as provided under
the Copyright Act; provided that: (1) both the copyright notice identified above and this permission notice
appear on any copies of this specification; (2) the use of the specifications is for informational purposes
and will not be copied or posted on any network computer or broadcast in any media and will not be
otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these
terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in
your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be responsible for
identifying patents for which a license may be required by any OMG specification, or for conducting legal
inquiries into the legal validity or scope of those patents that are brought to its attention. OMG
specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and
communications regulations and statutes. This document contains information which is protected by
copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or
used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne
by you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this
specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in
subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights
clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement
and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its
successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management
Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or
through its designees) is and shall at all times be the sole entity that may authorize developers, suppliers
and sellers of computer software to use certification marks, trademarks or other special designations to
indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable
compliance points may claim only that the software was based on this specification, but may not claim
compliance or conformance with this specification. In the event that testing suites are implemented or
approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing
suites.

https://www.omg.org/legal/tm_list.htm

OMG’S ISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page https://www.omg.org, under
Documents, Report a Bug/Issue.

http://www.omg.org/

Table of Contents
0 Preface...29

1 Scope...1

2 Normative References...3

3 Additional Information ...5
3.1 Relationships to Other Standards..5

3.2 How to Read this International Standard ..5
3.2.1 Organization ..5

3.3 Acknowledgments...6

4 Language Architecture..9
4.1 General ...9

4.2 Design Principles ..12

4.3 Architecture...12

4.4 Extension Mechanisms ...14

4.5 SysML Diagrams ...14

5 Conformance...17
5.1 Overview...17

5.2 Conformance Types ..17

6 Language Formalism ..19
6.1 Levels of Formalism ...19

6.2 Clause Structure ..19
6.2.1 Overview...19

6.2.2 Diagram Elements...19

6.2.3 UML Extensions ...19

6.2.4 Usage Examples ..19

6.3 Conventions and Typography ...20

7 Model Elements ..23
7.1 Overview...23

7.1.1 View and Viewpoint ..23

7.2 Diagram Elements...24

7.3 UML Extensions ...27
7.3.1 Diagram Extensions ..27

7.3.1.1 UML Diagram Elements not Included in SysML ..27

7.3.2 Stereotypes ..27
7.3.2.1 Conform ..28

7.3.2.2 ElementGroup ...28

7.3.2.3 Expose ...30

7.3.2.4 Problem ...30

7.3.2.5 Rationale..30

7.3.2.6 Stakeholder..31

7.3.2.7 View ..31

7.3.2.8 Viewpoint ..32

OMG Systems Modeling Language, v1.7 vii

8 Blocks ...35
8.1 Overview...35

8.2 Diagram Elements...35
8.2.1 Block Definition Diagram...35

8.2.2 Internal Block Diagram...40

8.3 UML Extensions ...41
8.3.1 Diagram Extensions ..41

8.3.1.1 Block Definition Diagram...41
8.3.1.1.1 Block and ValueType Definitions..41

8.3.1.1.2 Default «block» stereotype on unlabeled box ...41

8.3.1.1.3 Labeled compartments ..42

8.3.1.1.4 Behavior compartment ..42

8.3.1.1.5 Constraints compartment...42

8.3.1.1.6 Namespace compartment ..42

8.3.1.1.7 Structure compartment ..43

8.3.1.1.8 BoundReference compartment ..43

8.3.1.1.9 Receptions compartment ...43

8.3.1.1.10 Default multiplicities ...43

8.3.1.1.11 Property-specific type..43

8.3.1.1.12 Units on value properties...43

8.3.1.1.13 Units on values ..43

8.3.1.2 Internal Block Diagram...44
8.3.1.2.1 Property types..44

8.3.1.2.2 Block reference in diagram frame ...44

8.3.1.2.3 Compartments on internal properties ..44

8.3.1.2.4 Compartments on a diagram frame ...44

8.3.1.2.5 Property path name..44

8.3.1.2.6 Nested connector end ..45

8.3.1.2.7 Property-specific type..45

8.3.1.2.8 Initial values compartment ..45

8.3.1.2.9 Default multiplicities ...45

8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams...46

8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams...46

8.3.2 Stereotypes ..46
8.3.2.1 AdjunctProperty ..49

8.3.2.2 Binding Connector ..52

8.3.2.3 Block ...52

8.3.2.4 Bound Reference ...55

8.3.2.5 ClassifierBehaviorProperty ...57

8.3.2.6 DirectedRelationshipPropertyPath ..57

8.3.2.7 DistributedProperty ...59

viii OMG Systems Modeling Language, v1.7

8.3.2.8 ElementPropertyPath...60

8.3.2.9 EndPathMultiplicity ..60

8.3.2.10 NestedConnectorEnd...61

8.3.2.11 ParticipantProperty ..61

8.3.2.12 PropertySpecificType ..63

8.3.2.13 ValueType..63

8.3.3 Model Libraries...65
8.3.3.1 PrimitiveValueTypes ...65

8.3.3.1.1 Boolean..65

8.3.3.1.2 Complex ..65

8.3.3.1.3 Integer..66

8.3.3.1.4 Number..66

8.3.3.1.5 Real..66

8.3.3.1.6 String ...66

8.3.3.2 Package UnitAndQuantityKind...67
8.3.3.2.1 QuantityKind ...67

8.3.3.2.2 Unit..67

8.4 Usage Examples..68
8.4.1 Wheel Hub Assembly ...68

8.4.2 Example Value Type Definitions ..69

8.4.3 Design Configuration for SUV EPA Fuel Economy Test ...70

8.4.4 Water Delivery ..70

8.4.5 Constraining Decomposition...70

8.4.6 Units and Quantity Kinds..72

8.4.7 Property-Specific Types ..74

9 Ports and Flows...77
9.1 Overview...77

9.1.1 Ports ..77

9.1.2 Flow Properties, Provided and Required Features, and Nested Ports...77

9.1.3 Proxy Ports and Full Ports ..77

9.1.4 Item Flows...78

9.1.5 Deprecation of Flow Ports and Flow Specifications...78

9.2 Diagram Elements...78
9.2.1 Block Definition Diagram...78

9.2.2 Internal Block Diagram...80

9.3 UML Extensions ...82
9.3.1 Diagram Extensions ..82

9.3.1.1 DirectedFeature ...82

9.3.1.2 FlowProperty...82

9.3.1.3 FullPort..82

9.3.1.4 InvocationOnNestedPortAction ..83

9.3.1.5 ItemFlow ...83

OMG Systems Modeling Language, v1.7 ix

9.3.1.6 Port ..83

9.3.1.7 ProxyPort...83

9.3.1.8 TriggerOnNestedPort ..83

9.3.2 Stereotypes ..83
9.3.2.1 AcceptChangeStructuralFeatureEventAction ...85

9.3.2.2 AddFlowPropertyValueOnNestedPortAction ...86

9.3.2.3 Block ...88

9.3.2.4 ChangeStructuralFeatureEvent..88

9.3.2.5 DirectedFeature ...88

9.3.2.6 FeatureDirectionKind..90

9.3.2.7 FlowDirectionKind..90

9.3.2.8 FlowProperty...90

9.3.2.9 FullPort..91

9.3.2.10 InterfaceBlock ...92

9.3.2.11 InvocationOnNestedPortAction ..93

9.3.2.12 ItemFlow ...94

9.3.2.13 ProxyPort...96

9.3.2.14 TriggerOnNestedPort ..97

9.3.2.15 ~InterfaceBlock...98

9.4 Usage Examples..101
9.4.1 Ports with Required and Provided Features ..101

9.4.2 Ports and Item Flows...102

9.4.3 Ports with Flow Properties ..102

9.4.4 Proxy and Full Ports..102

9.4.5 Association and Port Decomposition ..104

9.4.6 Item Flow Decomposition...107

10 Constraint Blocks..111
10.1 Overview...111

10.2 Diagram Elements...112
10.2.1 Block Definition Diagram...112

10.2.2 Parametric Diagram ..112

10.3 UML Extensions ...112
10.3.1 Diagram Extensions ..112

10.3.1.1 Block Definition Diagram...112
10.3.1.1.1 Constraint block definition..113

10.3.1.1.2 Parameters compartment ...113

10.3.1.2 Parametric Diagram...113
10.3.1.2.1 Round-cornered rectangle notation for constraint property ..113

10.3.1.2.2 «constraint» keyword notation for constraint property ...113

10.3.1.2.3 Small square box notation for an internal property...113

10.3.2 Stereotypes ..113
10.3.2.1 ConstraintBlock...114

x OMG Systems Modeling Language, v1.7

10.4 Usage Examples..114
10.4.1 Definition of Constraint Blocks on a Block Definition Diagram ...114

10.4.2 Usage of Constraint Blocks on a Parametric Diagram..114

11 Activities ...119
11.1 Overview ...119

11.1.1 Control as Data ...119

11.1.2 Continuous Systems ..119

11.1.3 Probability ...119

11.1.4 Activities as Blocks ...119

11.1.5 Timelines ...119

11.2 Diagram Elements ...120
11.2.1 Activity Diagram ..120

11.3 UML Extensions ...125
11.3.1 Diagram Extensions ..125

11.3.1.1 Activity..125
11.3.1.1.1 Notation ...125

11.3.1.2 CallBehaviorAction...126

11.3.1.3 ControlFlow...126
11.3.1.3.1 Presentation Option ...126

11.3.1.4 ObjectNode, Variables, and Parameters ..126
11.3.1.4.1 Notation ...127

11.3.2 Stereotypes ..127
11.3.2.1 Continuous...128

11.3.2.2 ControlOperator...128

11.3.2.3 Discrete..129

11.3.2.4 NoBuffer..129

11.3.2.5 Optional ...130

11.3.2.6 Overwrite...130

11.3.2.7 Probability ..131

11.3.2.8 Rate..132

11.3.3 Model Libraries ...133
11.3.3.1 Package ControlValues..133

11.3.3.1.1 ControlValueKind..133

11.4 Usage Examples ..134

12 Interactions..139
12.1 Overview...139

12.2 Diagram Elements...139
12.2.1 Sequence Diagram ..139

12.3 UML Extensions ...143
12.3.1 Diagram Extensions ..143

12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing Diagram143

12.3.1.2 Interactions and Parameters ..143
12.3.1.2.1 Notation ...143

12.4 Usage Examples..144
12.4.1 Sequence Diagrams ..144

OMG Systems Modeling Language, v1.7 xi

13 State Machines ..147
13.1 Overview...147

13.2 Diagram Elements...147
13.2.1 State Machine Diagram...147

13.3 UML Extensions ...150
13.3.1 Diagram Extensions ..150

13.3.1.1 State Machines and Parameters...150
13.3.1.1.1 Notation ...150

13.4 Usage Examples..151
13.4.1 State Machine Diagram...151

14 Use Cases ..153
14.1 Overview...153

14.2 Diagram Elements...153
14.2.1 Use Case Diagram...153

14.3 UML Extensions ...154

14.4 Usage Example ...154

15 Allocations ..159
15.1 Overview...159

15.2 Diagram Elements ..159
15.2.1 Representing Allocation on Diagrams ...159

15.3 UML Extensions ...160
15.3.1 Diagram Extensions ..160

15.3.1.1 Tables ...160

15.3.1.2 Allocate Relationship Rendering ...160

15.3.1.3 Allocation Compartment Format ...160

15.3.1.4 Allocation Callout Format ..160

15.3.1.5 AllocatedActivityPartition Label ..160

15.3.2 Stereotypes ..160
15.3.2.1 AllocateActivityPartition (from Allocations)..161

15.3.2.2 Allocate (from Allocations) ..161

15.4 Usage Examples..163
15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks ...163

15.4.2 Allocate Flow..164
15.4.2.1 Allocating Structure ..166

15.4.2.2 Automotive Example ..166

15.4.3 Tabular Representation..166

16 Requirements ..169
16.1 Overview...169

16.2 Diagram Elements...170
16.2.1 Requirement Diagram ...170

16.3 UML Extensions ...172
16.3.1 Diagram Extensions ..172

16.3.1.1 Requirement Diagram ...172

16.3.1.2 Requirement Notation ...172

16.3.1.3 Requirement Property Callout Format ..172

xii OMG Systems Modeling Language, v1.7

16.3.1.4 Requirements on Other Diagrams ...172

16.3.1.5 Requirements Table...172

16.3.2 Stereotypes ..172
16.3.2.1 AbstractRequirement...173

16.3.2.2 Copy ..174

16.3.2.3 DeriveReqt ..175

16.3.2.4 TestCase ..176

16.3.2.5 Refine ..176

16.3.2.6 Requirement ..177

16.3.2.7 Satisfy..178

16.3.2.8 Trace..178

16.3.2.9 Verify...179

16.3.3 Model Libraries...179
16.3.3.1 Package Verdicts ...179

16.3.3.1.1 VerdictKind ...180

16.4 Usage Examples..180
16.4.1 Requirement Decomposition and Traceability..180

16.4.2 Requirements and Design Elements..181

16.4.3 Requirements Reuse..183

16.4.4 Verification Procedure - Test Case ..183

17 Profiles & Model Libraries ...187
17.1 Overview...187

17.2 Diagram Elements...187
17.2.1 Profile Definition in Package Diagram...187

17.2.2 Stereotypes Used On Diagrams ..188

17.3 UML Extensions ...189

17.4 Usage Examples..189
17.4.1 Defining a Profile..189

17.4.2 Adding Stereotypes to a Profile ..190

17.4.3 Defining a Model Library that Uses a Profile...191

17.4.4 Guidance on Whether to Use a Stereotype or Class ...191

17.4.5 Using a Profile...192

17.4.6 Using a Stereotype ..192

17.4.7 Using a Model Library Element..193

Annex A: Diagrams ...197
A.1 Overview..197

A.2 Guidelines ..200

Annex B: SysML Diagram Interchange ..203
B.1 Overview ..203

B.2 Stereotypes ...204
B.2.1 SysMLActivityDiagram ...205

B.2.2 SysMLBehaviorDiagram..205

OMG Systems Modeling Language, v1.7 xiii

B.2.3 SysMLBlockDefinitionDiagram ..206

B.2.4 SysMLDiagram ..206

B.2.5 SysMLDiagramElement ...207

B.2.6 SysMLDiagramWithAssociations ..207

B.2.7 SysMLInteractionDiagram...207

B.2.8 SysMLInternalBlockDiagram ..208

B.2.9 SysMLPackageDiagram...208

B.2.10 SysMLParametricDiagram ...208

B.2.11 SysMLRequirementDiagram..209

B.2.12 SysMLStateMachineDiagram ..209

B.2.13 SysMLStructureDiagram..209

B.2.14 SysMLUseCaseDiagram ..210

B.3 SysML DI usage notes ...210

B.4 SysML Notation and DI Representation ..211

Annex C: Deprecated Elements and Migration ...213
C.1 Overview ..213

C.1.1 Flow Ports...213

C.1.2 Conjugated Ports ..213

C.1.3 ConnectorProperty..213

C.2 Diagram Elements ..213
C.2.1 Block Definition Diagram ..213

C.2.2 Internal Block Diagram ..214

C.3 UML Extensions ..215
C.3.1 Diagram Extensions..215

C.3.1.1 Conjugated Ports ..215

C.3.1.2 FlowPort ...215

C.3.1.3 FlowSpecification...216

C.3.2 Stereotypes ...216
C.3.2.1 Package Ports&Flows...216

C.3.2.2 FlowPort ...216

C.3.2.3 FlowSpecification ..217

C.3.2.4 ItemFlow (deprecated compatibility rule) ..218

C.3.2.5 ConnectorProperty..218

C.4 Transitioning SysML1.2 Flow Ports to SysML 1.3 Ports (informative) ..220

C.5 Transitioning SysML 1.3 Viewpoint and View to SysML 1.4 (informative)...220

C.6 Transitioning SysML 1.3 Units and QuantityKinds to SysML 1.4 (informative)..221

C.7 Transitioning SysML 1.5 conjugated port typed by InterfaceBlock to SysML 1.6 conjugated InterfaceBlock
(informative) ...222

Annex D: Sample Problem ..223
D.1 Purpose...223

D.2 Scope ..223

D.3 Problem Summary..223

xiv OMG Systems Modeling Language, v1.7

D.4 Diagrams ..223
D.4.1 Package Overview (Structure of the Sample Model)...223

D.4.1.1 Package Diagram - Applying the SysML Profile...223

D.4.1.2 Package Diagram - Showing Package Structure of the Model ..224

D.4.2 Setting the Context (Boundaries and Use Cases)...225
D.4.2.1 Internal Block Diagram - Setting Context..225

D.4.2.2 Use Case Diagram - Top Level Use Cases...226

D.4.2.3 Use Case Diagram - Optional Use Cases ...227

D.4.3 Elaborting Behavior (Sequence and State Machine Diagrams) ...227
D.4.3.1 Sequence Diagram - Drive Black Box ...227

D.4.3.2 State Machine Diagram - HSUV Operational States ...228

D.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box ...229

D.4.4 Establishing Requirements (Requirements Diagrams and Tables) ..230
D.4.4.1 Requirement Diagram - HSUV Requirement HIerarchy ...230

D.4.4.2 Requirement Diagram - Derived Requirements...230

D.4.4.3 Requirement Diagram - Acceleration Requirement Relationships ..231

D.4.4.4 Table - Requirements Table ...231

D.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams)...232
D.4.5.1 Block Definition Diagram - Automotive Domain..232

D.4.5.2 Block Definition Diagram - Hybrid SUV ..232

D.4.5.3 Internal Block Diagram - Hybrid SUV ..233

D.4.5.4 Block Definition Diagram - Power Subsystem ..233

D.4.5.5 Internal Block Diagram for the "Power Subsystem"..234

D.4.6 Defining Ports and Flows...235
D.4.6.1 Block Definition Diagram - ICE Flow Properties..235

D.4.6.2 Internal Block Diagram - CANbus ..236

D.4.6.3 Block Definition Diagram - Fuel Flow Properties ...236

D.4.6.4 Parametric Diagram - Fuel Flow..237

D.4.6.5 Internal Block Diagram - Fuel Distribution ...237

D.4.7 Analyze Perfomance (Constraint Diagrams, Timing Diagrams, Views...238
D.4.7.1 Block Definition Diagram - Analysis Context ...238

D.4.7.2 Package Diagram - Performance View Definition ...239

D.4.7.3 Package Diagram - Viewpoint Definition ..240

D.4.7.4 Package Diagram - View Definition ..241

D.4.7.5 Package Diagram - View Hierarchy...242

D.4.7.6 Parametric Diagram - Measures of Effectiveness ..242

D.4.7.7 Parametric Diagram - Economy ...243

D.4.7.8 Parametric Diagram - Dynamics ..243

D.4.7.9 (Non-Normative) Non-SysML Diagram - 100hp Acceleration ...245

D.4.8 Defining, Decomposing, and Allocating Activities ...246
D.4.8.1 Activity Diagram - Acceleration (top level)...247

D.4.8.2 Block Definition Diagram - Acceleration ..247

OMG Systems Modeling Language, v1.7 xv

D.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail) ...247

D.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation..248

D.4.8.5 Table - Acceleration Allocation ...248

D.4.8.6 Block Definition Diagram: Slot Values - EPA Fuel Economy Test ...249

Annex E: Non-normative Extensions ..253
E.1 Overview ..253

E.2 Activity Diagram Extensions..253
E.2.1 Overview...253

E.2.2 Stereotypes..253

E.2.3 Stereotype Examples ..254

E.3 Requirements Diagram Extensions ..255
E.3.1 Overview...255

E.3.2 Stereotypes..255

E.3.3 Stereotype Examples ..258

E.4 Parametric Diagram Extension for Trade Studies ..259
E.4.1 Overview...259

E.4.2 Stereotypes..259

E.4.3 Stereotye Examples ..260

E.5 Model Library for Quantities, Units, Dimensions, and Values (QUDV) ...260
E.5.1 Overview...260

E.5.2 Abstract Syntax...261
E.5.2.1 AffineConversionUnit ..263

E.5.2.2 ConversionBasedUnit ...264

E.5.2.3 DerivedQuantityKind..264

E.5.2.4 DerivedUnit ..265

E.5.2.5 Dimension...265

E.5.2.6 GeneralConversionUnit ..266

E.5.2.7 LinearConversionUnit ..266

E.5.2.8 Prefix...267

E.5.2.9 PrefixedUnit..267

E.5.2.10 QuantityKind ..268

E.5.2.11 QuantityKindFactor ..269

E.5.2.12 Rational...269

E.5.2.13 SimpleQuantityKind ...270

E.5.2.14 SimpleUnit ..270

E.5.2.15 SystemOfQuantities ..270

E.5.2.16 SystemOfUnits..272

E.5.2.17 Unit ...276

E.5.2.18 UnitFactor ...277

E.5.3 References...277

xvi OMG Systems Modeling Language, v1.7

E.5.4 Usage Examples..278
E.5.4.1 SI Unit and QuantityKind examples...278

E.5.4.2 Spring Example...279

E.6 Model Library of SysML Quantity Kinds and Units for ISO 80000..279
E.6.1 Overview...279

E.6.2 Unit and Quantity Kinds...279

E.6.3 ISO 80000-1 Prefixes ...287

E.6.4 ISO 80000-2 Mathematical Signs and Symbols...288

E.6.5 Summary of the covered parts of ISO 80000 ...289
E.6.5.1 ISO 80000-3 Space and Time ..290

E.6.5.1.1 Normative Quantity kinds ..292

E.6.5.2 ISO 80000-4 Mechanics ...295
E.6.5.2.1 Normative Quantity kinds ISO 80000-4 ...298

E.6.5.3 ISO 80000-5 Thermodynamics...303
E.6.5.3.1 Normative Diagram Kinds..305

E.6.5.4 ISO 80000-6 Electromagnetism..310
E.6.5.4.1 Quantity Kind ISO 80000-6..317

E.6.5.5 ISO 80000-7 Light ..322

E.6.5.6 ISO 80000-9 Physical Chemistry and Molecular Physic..323

E.6.5.7 ISO 80000-10 Atomic and Nuclear Physics ...323

E.6.5.8 ISO 80000-13 Information Science and Technology ...324

E.7 Distribution Extensions ..324
E.7.1 Overview...324

E.7.2 Stereotypes..324
E.7.2.1 Package Distributions ...324

E.7.3 Usage Example ...326

E.8 Building Non-Normative Extensions for Property-Based Requirements ..326
E.8.1 Overview...326

E.8.2 An Example PBR Profile Based on ConstraintBlock...328
E.8.2.1 Profile/Stereotypes of PBR Based on ConstraintBlock..328

E.8.2.2 Usage Example using PBR profile based on ConstraintBlock ...329

E.8.3 An Example PBR Profile Based on Constraint ..330
E.8.3.1 Profile/Stereotypes of PBR based on Constraint ..330

E.8.3.2 Example using PBR profile based on Constraint..330

E.8.4 An Example Property Based Requirement based on Block ..331

Annex F: Requirements Traceability ...333

Annex G: Model Interchange...335
G.1 Overview..335

G.2 Context for Model Interchange ..335

G.3 XMI Serialization of SysML ...335

G.4 SysML Model Interchange Using AP233 ..335
G.4.1 Scope of AP233..336

G.4.2 STEP Architecture..336

OMG Systems Modeling Language, v1.7 xvii

G.4.3 EXPRESS...337

G.4.4 SysML-AP233 Mapping ..338

Annex H: Precise Semantics of SysML...339
H.1 Overview..339

H.2 References ..340

H.3 Semantics ...340
H.3.1 Actions ...340

H.3.1.1 Overview ..341

H.3.1.2 Additional Constraints..341

H.3.1.3 Class descriptions ...341
H.3.1.3.1 SysML_AddStructuralFeatureValueActionActivation...341

H.3.1.3.2 SysML_CallOperationActivation...344

H.3.1.3.3 SysML_ClearStructuralFeatureActionActivation ..345

H.3.1.3.4 SysML_InputPinActivation..347

H.3.1.3.5 SysML_OutputPinActivation ...348

H.3.1.3.6 SysML_ReadStructuralFeatureActionActivation...349

H.3.1.3.7 SysML_RemoveStructuralFeatureValueActionActivation ..349

H.3.1.3.8 SysML_SendSignalActionActivation ..352

H.3.2 Activities ..354
H.3.2.1 Overview ..354

H.3.2.2 Class descriptions ...354
H.3.2.2.1 SysML_ActivityExecution ...354

H.3.2.2.2 SysML_ActivityParameterNodeActivation ...355

H.3.2.2.3 SysML_ExpansionNodeActivation..355

H.3.2.2.4 SysML_ObjectNodeActivation ..356

H.3.3 Blocks...357
H.3.3.1 Overview ..357

H.3.3.2 Class descriptions ...359
H.3.3.2.1 AdjunctBinding ..359

H.3.3.2.2 ObjectNodeAdjunctBinding ...359

H.3.3.2.3 ParameterAdjunctBinding ..360

H.3.3.2.4 SysML_FeatureValue ...360

H.3.3.2.5 SysML_Object..360

H.3.3.2.6 SysML_ReferencePropertyPair ..361

H.3.3.2.7 SysML_StructuredValue...361

H.3.3.2.8 ValueBinding ..362

H.3.4 Loci...363
H.3.4.1 Overview ..363

H.3.4.2 Class descriptions ...364
H.3.4.2.1 SysML_ExecutionFactory..364

H.3.4.2.2 SysML_Locus ..365

xviii OMG Systems Modeling Language, v1.7

H.3.5 Ports and Flows ..372
H.3.5.1 Overview ..372

H.3.5.2 Additional Constraints..372

H.3.5.3 Class descriptions ...373

OMG Systems Modeling Language, v1.7 xix

List of Tables
4.1. UML 2 metaclasses excluded from the UML4SysML subset ..10

4.2. UML 2 metaclasses and datatypes included in the UML4SysML subset ..11

4.3. SysML stereotypes, blocks, valuetypes, and datatypes ..12

7.1. Graphical nodes defined by ModelElements package ..24

7.2. Graphical paths defined by ModelElements package...26

8.1. Graphical nodes defined in Block Definition diagrams..36

8.2. Graphical paths defined in Block Definition diagrams...38

8.3. Graphical nodes defined in Internal Block diagrams..40

8.4. Graphical paths defined in Internal Block diagrams...41

9.1. Graphical nodes defined in Block Definition diagrams..78

9.2. Graphical nodes defined in Internal Block diagrams..81

10.1. Graphical nodes defined in Block Definition diagrams..112

10.2. Graphical nodes defined in Parametric diagrams ...112

11.1. Graphical notation of Activity diagrams...120

11.2. Graphical paths included in Activity diagrams...123

11.3. Other graphical elements included in Activity diagrams..124

12.1. Graphical notation of Sequence diagrams ..139

12.2. Graphical paths included in Sequence diagrams ..142

12.3. Other graphical elements included in Sequence diagrams ...143

13.1. Graphical notation of State Machine diagrams...147

13.2. Graphical paths included in state machine diagrams..149

13.3. Other graphical elements included in state machine diagrams...150

14.1. Graphical nodes included in Use Case diagrams..153

14.2. Graphical paths included in Use Case diagrams...154

15.1. Extension to graphical nodes included in diagrams..159

16.1. Graphical nodes included in Requirement diagrams ..170

16.2. Graphical paths included in Requirement diagrams ...171

17.1. Graphical nodes used in Profile definition..187

17.2. Graphical paths used in Profile definition ..188

17.3. Notations for Stereotype Use ..188

B.1. SysML Diagram Elements ...211

C.1. Graphical nodes defined in Block Definition diagrams ...213

C.2. Graphical nodes defined in Internal Block diagrams ...215

E.1. Additional Stereotypes for EFFBDs...253

E.2. Streaming Options for Activities..254

E.3. Additional Requirement Stereotypes..256

E.4. Requirement Property Enumeration Types ..257

xx OMG Systems Modeling Language, v1.7

E.5. Stereotypes for Measure of Effectiveness ..260

E.6. The decimal and binary prefixes in scope of the International System of Units (SI) which uses the ISO 80000 system of units
and its included systems of units such as ISO 80000-13 ...287

E.7. Normative units in ISO 80000-3 (1 of 2) ...290

E.8. Normative units in ISO 80000-3 (2 of 2) ...292

E.9. Normative quantity kinds in ISO 80000-3 (1 of 2) ..292

E.10. Normative quantity kinds in ISO 80000-3 (2 of 2) ..294

E.11. Normative units in ISO 80000-4 (1 of 2) ...295

E.12. Normative units in ISO 80000-4 (2 of 2) ...296

E.13. Normative quantity kinds in ISO 80000-4 (1 of 4) ..298

E.14. Normative quantity kinds in ISO 80000-4 (2 of 4) ..299

E.15. Normative quantity kinds in ISO 80000-4 (3 of 4) ..301

E.16. Normative quantity kinds in ISO 80000-4 (4 of 4) ..302

E.17. Normative units in ISO 80000-5 (1 of 2) ...303

E.18. Normative units in ISO 80000-5 (2 of 2) ...304

E.19. Normative quantity kinds in ISO 80000-5 (1 of 5) ..305

E.20. Normative quantity kinds in ISO 80000-5 (2 of 5) ..307

E.21. Normative quantity kinds in ISO 80000-5 (3 of 5) ..308

E.22. Normative quantity kinds in ISO 80000-5 (4 of 5) ..309

E.23. Normative quantity kinds in ISO 80000-5 (5 of 5) ..310

E.24. Normative units in ISO 80000-6 (1 of 5) ...311

E.25. Normative units in ISO 80000-6 (2 of 5) ...312

E.26. Normative units in ISO 80000-6 (3 of 5) ...313

E.27. Normative units in ISO 80000-6 (4 of 5) ...314

E.28. Normative units in ISO 80000-6 (5 of 5) ...316

E.29. Normative quantity kinds in ISO 80000-6 (1 of 4) ..317

E.30. Normative quantity kinds in ISO 80000-6 (2 of 4) ..318

E.31. Normative quantity kinds in ISO 80000-6 (3 of 4) ..320

E.32. Normative quantity kinds in ISO 80000-6 (4of 4) ...321

E.33. Units in ISO 80000-7..322

E.34. Quantity Kinds in ISO 80000-7..322

E.35. Units in ISO 80000-9..323

E.36. Quantity Kinds in ISO 80000-9..323

E.37. Units in ISO 80000-10..323

E.38. Quantity Kinds in ISO 80000-10..324

E.39. Units in ISO 80000-13..324

E.40. Quantity Kinds in ISO 80000-13..324

E.41. Distribution Stereotypes ...325

E.42. Example of Requirement in Tabular Form...327

OMG Systems Modeling Language, v1.7 xxi

List of Figures
4.1. Overview of SysML/UML Interrelationship ..9

4.2. SysML Extension of UML..13

4.3. SysML Package Structure...13

4.4. Non-normative Package Structure ..14

7.1. Stereotypes defined in package ModelElements ..28

8.1. Nested property reference ...45

8.2. Abstract syntax extensions for SysML blocks..46

8.3. Abstract syntax extensions for SysML properties ..47

8.4. Abstract syntax extensions for SysML value types ..47

8.5. Abstract syntax extensions for SysML property paths ...48

8.6. Abstract syntax extensions for SysML connector ends ..48

8.7. Abstract syntax extensions for SysML property-specific types ...48

8.8. Abstract syntax extensions for SysML bound references...49

8.9. Abstract syntax extensions for SysML adjunct properties and classifier behavior properties ...49

8.10. Model library for primitive value types ..65

8.11. Model library for Unit and QuantityKind ...67

8.12. Wheel Package..69

8.13. Internal Block Diagram for WheelHubAssembly...69

8.14. Defining Value Types with units of measure from the International System of Units (SI) ..70

8.15. Example Value Type Definitions ..70

8.16. Vehicle decomposition ..71

8.17. Vehicle internal structure ..71

8.18. Vehicle specialization..72

8.19. Example of Unit, QuantityKind and ValueType definitions ...72

8.20. Instance-level view of the Unit, QuantityKind and ValueType definitions ..73

8.21. Example of equivalent Unit representations ...73

8.22. Instance-level representation of equivalent Unit definitions ..74

8.23. Property-specific types in facility example...74

8.24. Changes in classification over time due to property-specific types..75

9.1. Port Stereotypes ..84

9.2. Stereotypes for Actions on Nested Ports ..84

9.3. Stereotypes for Property Value Change Events ..84

9.4. Provided and Required Features ...85

9.5. ItemFlow Stereotype...85

9.6. Usage example of ports with provided and required features...102

9.7. Usage example of proxy and full ports ...104

9.8. Water Delivery association block ...105

xxii OMG Systems Modeling Language, v1.7

9.9. Internal structure of Water Delivery association block...105

9.10. Two views of Water Delivery connector within House block ..106

9.11. Specializations of Water Client in house example ..106

9.12. Water Delivery association block with internal Plumbing connector...107

9.13. Internal structure of Plumbing association block..107

9.14. Water Delivery association block with internal Plumbing connector...107

9.15. Usage example of item flows in internal block diagrams...108

9.16. Usage example of item flow decomposition...109

9.17. Usage example of item flow decomposition...109

10.1. Stereotypes defined in SysML ConstraintBlocks package ...113

11.1. Block definition diagram with activities as blocks ...126

11.2. CallBehaviorAction notation with behavior stereotype..126

11.3. CallBehaviorAction notation with action name..126

11.4. Control flow notation ..126

11.5. Block definition diagram with activities as blocks associated with types of object nodes, variables, and parameters127

11.6. ObjectNode notation in activity diagrams ..127

11.7. ObjectNode notation with stereotype in activity diagrams...127

11.8. Abstract Syntax for SysML Activity Extensions..128

11.9. Control values ...133

11.10. Continuous system example 1...135

11.11. Continuous system example 2...136

11.12. Continuous system example 3...136

11.13. Example block definition diagram for activity decomposition...137

11.14. Example block definition diagram for object node types ...137

11.15. Activity Generalization ...137

12.1. Block definition diagram with interactions as blocks associated with used interactions and types of parameters144

13.1. Block definition diagram with state machines as blocks associated with submachines and types of parameters..................151

15.1. Abstract syntax extensions for SysML Allocation ..161

15.2. Abstract syntax expression for AllocatedActivityPartition ...161

15.3. Generic Allocation, including /from and /to association ends..163

15.4. Behavior Allocation ..164

15.5. Example of flow allocation from ObjectFlow to Connector ...165

15.6. Example of flow allocation from ObjectFlow to ItemFlow..165

15.7. Example of Structural Allocation ...166

15.8. Tabular Representation ...167

16.1. Abstract Syntax for Requirements Stereotypes ..173

16.2. Verdicts ...180

16.3. Requirements Derivation ..181

16.4. Links between requirements and design ...182

OMG Systems Modeling Language, v1.7 xxiii

16.5. Requirement satisfaction in an internal block diagram...182

16.6. Safety Reuse..183

16.7. Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram ...183

16.8. Linkage of a Test Case to a requirement: This figure shows the Test Case as a State Diagram...184

17.1. Definition of a profile ..190

17.2. Profile Contents ..190

17.3. Two model libraries ..191

17.4. Establishing HSUV Model ...192

17.5. Using two stereotypes on a model element...192

17.6. Using model library elements ...193

A.1. SysML Diagram Taxonomy...197

A.2. Diagram Frame ..198

A.3. Diagram Usages ...200

A.4. Optional Form of Line Crossing ..201

B.1. SysML DI architecture ...203

B.2. Abstract Syntax Extension for SysMLDiagramElement ...204

B.3. Abstract syntax extensions for SysML diagrams (1) ...204

B.4. Abstract syntax extensions for SysML diagrams (2) ...205

C.1. Deprecated Stereotypes ..216

D.1. Establishing the User Model by importing and applying SysML Profile & Model Library (Package Diagram)224

D.2. Defining value Types and units to be used in the Sample Problem...224

D.3. Model Package Organization ...225

D.4. Establishing the Context of the Hybrid SUV System..226

D.5. Establishing Top Level Use Cases ...226

D.6. Establishing Operational Use Cases ..227

D.7. Elaborating Black Box Behavior for the "Drive Vehicle" Use Case ...228

D.8. HSUV Operational States ..229

D.9. Start Vehicle Black Box ...229

D.10. Start Vehicle White Box...230

D.11. Establishing HSUV Requirements Hierarchy (containment) ..230

D.12. Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchy231

D.13. Acceleration Requirement Relationships...231

D.14. Requirements Relationships Expressed in Tabular Format ...232

D.15. Defining the Automotive Domain..232

D.16. Defining Structure of Hybrid SUV System ...233

D.17. Internal Structure of Hybrid SUV..233

D.18. Defining Structure of Power Subsystem..234

D.19. Internal Structure of the Power Subsystem..234

D.20. PCU Port Type Definitions ..235

xxiv OMG Systems Modeling Language, v1.7

D.21. Initially Port Types with Flow Properties for the CANBus ...236

D.22. Consolidating Connectors into the CAN Bus ..236

D.23. Elaborating Definition of Fuel Flow..237

D.24. Defining Fuel Flow Constraints ...237

D.25. Detailed Internal Structure of Fuel Delivery Subsystem ...238

D.26. Defining Analyses for Hybrid SUV Engineering Development..239

D.27. Performance View..240

D.28. Defining Requirements and VnV viewpoints ..241

D.29. Requirements and VnV views exposing model elements..241

D.30. The Requirements and VnV views with supporting views..242

D.31. Measures of Effectiveness ...243

D.32. EconomyContext..243

D.33. Straight Line Vehicle Dynamics ..244

D.34. Defining Straight-Line Vehicle Dynamics Mathematical Constraints...245

D.35. 100 Wheel Horsepower ...246

D.36. Behavior Model for Accelerate Function...247

D.37. Decomposition of Provide Power Function ...247

D.38. Detailed Behavior for Provide Power Function...248

D.39. Flow Allocation to Power Subsystem..248

D.40. Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Subsystem (Table).............................249

D.41. Test Results ..250

E.1. Example activity with «effbd» stereotype applied ...255

E.2. Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities ...255

E.3. Example extensions to Requirement ..259

E.4. Example Parametric Diagram using Stereotypes for Measures of Effectiveness ..260

E.5. QUDV Concepts Diagram..262

E.6. QUDV Units...262

E.7. QUDV QuantityKind..263

E.8. Base Unit and Quantity Kinds of the SI and ISQ respectively...278

E.9. Example of a derived unit and derived quantity kind...278

E.10. Spring Length Example..279

E.11. Model libraries of SysML Quantity Kinds and Units for the covered content of ISO 80000 parts 3,4,5,6,7,9,10 and 13280

E.12. Organization of the definitions of units and quantities from the normative parts of ISO 80000 covered in SysML 1.4, which
includes all the normative content of parts 3,4,5,6; the subset of parts 7,9,10 corresponding to the content from SysML 1.3 and
the subset of part 13 pertaining to commonly used units of information. Parts 8,11 and 12 are not covered because none of their
units and quantities were referenced in previous versions of SysML nor in the summary tables in ISO 80000-1281

E.13. Content relationships for the systems of units and quantities in from the different parts of ISO 80000 in relation to ISO
80000 as a whole and to the International System of Units (SI) and quantities (ISQ) ..282

E.14. Table 1 (from ISO 80000-1) SI base units for the ISQ base quantities ..283

E.15. Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (1)..284

OMG Systems Modeling Language, v1.7 xxv

E.16. Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (2)..285

E.17. Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (3)..286

E.18. Table 3 (from the SI brochure) SI derived units with special names and symbols ..287

E.19. Constant numbers used throughout the SysML ISO 80000 library..289

E.20. Example of value type definitions for a quantity and applicable units and prefixed units ..290

E.21. Basic distribution stereotypes...325

E.22. Distribution Example..326

E.23. Example of Requirement in Graphical Form ...328

E.24. Example of a PBR Profile Based on ConstraintBlock ...329

E.25. Example of Parametric Diagram Using PBR based on Constraint Block..329

E.26. Example of Requirement Evaluation Context Using PBR Based on Constraint Block...330

E.27. Example of a PBR profile based on Constraints ..330

E.28. Example of PBR based on Constraint used in different contexts...331

E.29. Establishing an Analysis Context for evaluating requirement compliance using PBR based on Constraint.........................331

E.30. Property Based Requirement Stereotype..331

E.31. Property Based Requirement Library...332

G.1. SysML/AP233 Data Overlaps..336

H.1. SysML_Semantics ...340

H.2. Actions ...341

H.3. Activities ..354

H.4. Blocks...359

H.5. Loci ..364

xxvi OMG Systems Modeling Language, v1.7

OMG Systems Modeling Language, v1.7 xxvii

xxviii OMG Systems Modeling Language, v1.7

0 Preface
OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML®
(Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. All OMG
Specifications are available from the OMG website at: https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Milford, MA 01757
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page https://www.omg.org, under Specifications, Report an Issue.

SysML Roadmap

Requirements for SysML were originally specified by: ad/2003-03-41 (UML for Systems Engineering RFP)

The source documents for this specification include:

Alpha:

• ad/2006-03-01 (submission)

• ad/2006-04-07 (errata)

• ad/2006-03-04 (glossary)

• Associated Schema files: ad/2006-03-02 (XMI)

The Finalization Task Force (FTF) process generated the following documents:

• Beta 1: ptc/2006-05-04 (a.k.a. Final Adopted Specification)

• Beta 2: ptc/2007-03-19 (FTF Report - full record of FTF votes and issue resolutions

OMG Systems Modeling Language, v1.7 xxix

https://www.omg.org/
https://www.omg.org/spec
mailto:pubs@omg.org
https://www.iso.org/
https://www.omg.org/

• ptc/2007-02-03, ptc/2007-03-04 (a.k.a. convenience document, with and without change bars)

• ptc/2007-02-05 (XMI)

• ptc/2007-03-09 (Annex E - Requirements Traceability)

• Version 1.0 Formal Specification: formal/2007-09-01

The SysML 1.1 Revision Task Force (RTF) process generated the following documents:

• ptc/2008-05-15 (RTF Report - full record of RTF votes and issue resolutions)

• ptc/2008-05-16, ptc/2008-05-17 (a.k.a. convenience document, with and without change bars)

• ptc/2008-05-18 (XMI)

• Version 1.1 Formal Specification: formal/2008-11-01, formal/2008-11-02

Associated schema files for this specification, at https://www.omg.org/spec/SysML/1.1/, include the following files:

• SysML-profile.xmi XMI 2.1 serialization of the SysML Profile

• Activities-model.xmi XMI 2.1 serialization of the Activities model library

• Blocks-model.xmi XMI 2.1 serialization of the Blocks model library

• UML4SysML-metamodel.xmi XMI 2.1 serialization of the merged UML4SysML subset of UML 2 (used to
define the SysML Profile)

The SysML 1.2 Revision Task Force (RTF) process generated the following documents:

• ptc/2008-05-15 (RTF Report - full record of RTF votes and issue resolutions)

• ptc/2008-05-16, ptc/2008-05-17 (a.k.a. convenience document, with and without change bars)

• ptc/2008-05-18 (XMI)

• Version 1.2 Formal Specification: formal/2010-06-01, formal/2010-06-02

Associated schema file for this specification, at https://www.omg.org/spec/SysML/1.2, include the following files:

• SysML-profile.uml XMI 2.1 serialization of the SysML Profile

• UML4SysML-metamodel.uml XMI 2.1 serialization of the merged UML4SysML subset of UML 2 (used to
define the SysML Profile)

• Activities-model.xmi XMI 2.1 serialization of the Activities model library

• Blocks-model.xmi XMI 2.1 serialization of the Blocks model library

The SysML 1.3 Revision Task Force (RTF) process generated the following documents:

• ptc/2011-08-08 (RTF Report - full record of RTF votes and issue resolutions)

• ptc/2011-08-07 (Submission inventory document)

• ptc/2011-08-09, ptc/2011-08-10 (Beta “convenience document,” with and without change bars)

• ptc/2011-08-11, ptc/2011-08-12 (Normative and non-normative XMI)

• ptc/2012-04-07, ptc/2012-04-08 (Normative and non-normative XMI)

• Version 1.3 Formal Specification: formal/2012-06-01, formal/2012-06-02

Associated schema files for this specification, at https://www.omg.org/spec/SysML/1.3/, include the following files:

• SysML.xmi (Normative)

• ISO-80000-1-QUDV.xmi (Non-normative)

• ISO-80000-1-SysML.xmi (Non-normative)

• QUDV.xmi (Non-normative)

The SysML 1.4 Revision Task Force (RTF) process generated the following documents:

• ptc/2013-12-08 (RTF Report - full record of RTF votes and issue resolutions)

xxx OMG Systems Modeling Language, v1.7

https://www.omg.org/spec/SysML/1.1/
https://www.omg.org/spec/SysML/1.2
https://www.omg.org/spec/SysML/1.3/

• ptc/2013-12-10, ptc/2013-12-09 (Beta “convenience document,” with and without change bars)

• ptc/2013-12-11, ptc/2013-12-12 (Normative and non-normative XMI)

• Version 1.4 Formal Specification: formal/2015-06-03, formal/2015-06-04

Associated schema files for this specification, at https://www.omg.org/spec/SysML/1.4/, include the following files:

• SysML.xmi (Normative)

• SysMLDI.xmi (Normative)

• ISO-80000-1-QUDV.xmi (Non-normative)

• ISO-80000-1-SysML.xmi (Non-normative)

• QUDV.xmi (Non-normative)

The SysML 1.5 Revision Task Force (RTF) process generated the following documents:

• ptc/2016-11-01 (RTF Report - full record of RTF votes and issue resolutions)

• ptc/2016-11-02, ptc/2016-11-03 (Beta “convenience document,” with and without change bars)

• ptc/2016-11-05, ptc/2016-11-06, ptc/16-11-07, ptc/16-11-08 (Normative and non-normative XMI)

Associated schema files for this specification, at https://www.omg.org/spec/SysML/1.5/, include the following files:

• SysML.xmi (Normative)

• SysMLDI.xmi (Normative)

• ISO-80000-1-QUDV.xmi (Non-normative)

• ISO-80000-1-SysML.xmi (Non-normative)

• QUDV.xmi (Non-normative)

The SysML 1.6 Revision Task Force (RTF) process generated the following documents:

• ptc/2018-10-01 (RTF Report - full record of RTF votes and issue resolutions)

• ptc/2018-10-02, ptc/2018-10-03 (Beta “convenience document,” with and without change bars)

• ptc/2018-10-04, ptc/2018-10-05, ptc/2018-10-06, ptc/2018-10-07, ptc/2018-10-08 (Normative and non-
normative XMI)

Associated schema files for this specification, at https://www.omg.org/spec/SysML/1.6/, include the following files:

• SysML.xmi (Normative)

• ISO-80000-1-QUDV.xmi (Non-normative)

• ISO-80000-1-SysML.xmi (Non-normative)

• QUDV.xmi (Non-normative)

The SysML 1.7 Revision Task Force (RTF) process generated the following documents:

• ptc/2022-08-01: RTF Report - full record of RTF votes and issue resolutions

• ptc/2022-08-02: SysML v1.7 convenience document without change bars

• ptc/2022-08-03: SysML v1.7 convenience document with change bars

• ptc/2022-08-04, ptc/2022-08-05, ptc/2022-08-06, ptc/2022-08-07, ptc/2022-08-08, ptc/2022-08-09 (Normative
and non- normative XMI and files)

Associated schema files for this specification, at https://www.omg.org/spec/SysML/1.7, include the following files:

• SysML.xmi (Normative)

• ISO-80000.xmi (Non-normative)

• QUDV.xmi (Non-normative)

• SysML 1.7 Precise Semantic model (Non-normative)

OMG Systems Modeling Language, v1.7 xxxi

https://www.omg.org/spec/SysML/1.4/
https://www.omg.org/spec/SysML/1.5/
https://www.omg.org/spec/SysML/1.6/
https://www.omg.org/spec/SysML/1.7/

• Ancillary attachment file (Non-normative)

xxxii OMG Systems Modeling Language, v1.7

This page intentionally left blank.

OMG Systems Modeling Language, v1.7 xxxiii

xxxiv OMG Systems Modeling Language, v1.7

1 Scope
The purpose of this International Standard is to specify the Systems Modeling Language (SysML), a general-
purpose modeling language for systems engineering. Its intent is to specify the language so that systems engineering
modelers may learn to apply and use SysML; modeling tool vendors may implement and support SysML; and both
can provide feedback to improve future versions. Note that a definition of “system” and “systems engineering” can
be found inISO/IEC 15288.

SysML reuses a subset of UML 2.5.1 and provides additional extensions to address the requirements in UML for
SE. SysML uses the UML 2.5.1 extension mechanisms as further elaborated in Clause 17 as the primary mechanism
to specify the extensions to UML 2.5.1. This revision of SysML relies on several new features incorporated into
UML 2.5.1. Any use of the term “UML 2” or “UML” in this specification, unless otherwise noted, will refer to
UML 2.5.1 in general and the UML 2.5.1 specification in particular.

Since SysML uses UML 2.5.1 as its foundation, systems engineers modeling with SysML and software engineers
modeling with UML 2.5.1 will be able to collaborate on models of software-intensive systems. This will improve
communication among the various stakeholders who participate in the systems development process and promote
interoperability among modeling tools. It is anticipated that SysML will be customized to model domain-specific
applications, such as automotive, aerospace, communication, and information systems.

SysML is designed to provide simple but powerful constructs for modeling a wide range of systems engineering
problems. It is particularly effective in specifying requirements, structure, behavior, allocations, and constraints on
system properties to support engineering analysis. The language is intended to support multiple processes and
methods such as structured, object-oriented, and others, but each methodology may impose additional constraints on
how a construct or diagram kind may be used. This version of the language supports most, but not all, of the
requirements of the UML for Systems Engineering RFP, as shown in the Requirements Traceability referenced by
Annex F. These gaps are intended to be addressed in future versions of SysML as indicated in the matrix.

The following sub clauses provide background information about this International Standard. Instructions for both
systems engineers and tool vendors who read this International Standard are provided in “How to Read this
International Standard.” The main body of this International Standard describes the normative technical content. The
annexes include additional information to aid in understanding and implementation of this International Standard.

OMG Systems Modeling Language, v1.7 1

This page intentionally left blank.

2 OMG Systems Modeling Language, v1.7

2 Normative References
The following normative documents contain provisions, which through reference in this text, constitute provisions
of this International Standard. Subsequent amendments to, or revisions of, any of these publications do not apply.

• ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 7th Edition 2016

• ISO/IEC 10303-233:2012, STEP AP233, Product data representation and exchange: application protocol:
Systems engineering

• ISO/IEC IEEE 15288:2015, Systems and software engineering - System life cycle process

• OMG Specification formal/2017-12-01, Unified Modeling Language, (UML) v2.5.1 (https://www.omg.org/spec/
UML/2.5.1/)

• OMG Specification formal/2014-02-03, Object Constraint Language (OCL), v2.4 (https://www.omg.org/spec/
OCL/2.4/)

• OMG Specification formal/2015-06-05, Meta Object Facility (MOF), v2.5 (https://www.omg.org/spec/MOF/
2.5/)

• OMG Specification formal/2015-06-01, Diagram Definition, v1.1 (http://www.omg.org/spec/DD/1.1/)

• OMG Document ad/03-03-41, UML for Systems Engineering RFP (https://www.omg.org/cgi-bin/doc?ad/
2003-03-41)

• OMG Document ormsc/2014-06-01, Model Driven Architecture (MDA) Guide rev. 2.0 (https://www.omg.org/
cgi-bin/doc?ormsc/2014-06-01)

• VIM Edition 3 (VIM3), “International vocabulary of metrology - Basic and general concepts and associated
terms (VIM)”, JCGM 200:2012 (JCGM 200:2008 with minor corrections)

• [Dybkaer-2010] Rene Dybkaer, “ISO terminological analysis of the VIM3 concepts of ‘quantity’ and ‘kind-of-
quantity’”, Metrologia 47, (2010) 127-143

OMG Systems Modeling Language, v1.7 3

https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/OCL/2.4/
https://www.omg.org/spec/OCL/2.4/
https://www.omg.org/spec/MOF/2.5/
https://www.omg.org/spec/MOF/2.5/
http://www.omg.org/spec/DD/1.1/
https://www.omg.org/cgi-bin/doc?ad/2003-03-41
https://www.omg.org/cgi-bin/doc?ad/2003-03-41
https://www.omg.org/cgi-bin/doc?ormsc/2014-06-01
https://www.omg.org/cgi-bin/doc?ormsc/2014-06-01

This page intentionally left blank.

4 OMG Systems Modeling Language, v1.7

3 Additional Information
3.1 Relationships to Other Standards

SysML is defined as an extension of the OMG UML 2 standard. See Clause 2 for the current version of the UML 2
standard.

SysML is intended to be supported by two evolving interoperability standards including the OMG XMI 2 model
interchange standard for UML 2 modeling tools and the ISO 10303 STEP AP233 data interchange standard for
systems engineering tools. Overviews of the approach to model interchange and relevant references are included in
Annex G.

SysML supports the OMG’s Model Driven Architecture (MDA) initiative by its reuse of UML and related standards.
See OMG MDA Guide rev 2.0.

3.2 How to Read this International Standard

This International Standard is intended to be read by systems engineers so they may learn and apply SysML, and by
modeling tool vendors so they may implement and support SysML.

Although the clauses are organized into logical groupings that can be read sequentially, this International Standard
can be used for reference and may be read in a non-sequential manner.

3.2.1 Organization

This International Standard is organized as follows:

Preface

INTRODUCTION

1 Scope

2 Normative References

3 Additional Information - includes Relationships to Other Standards, How to Read this International Standard, and
Acknowledgments

4 Language Architecture - General Information, Design Principles, Architecture, and SsyML Diagrams

5 Conformance - General Information and Conformance Types

6 Language Formalism -

• Levels of Formalism

• Clause Structure

• Conventions and Typography

STRUCTURAL CONSTRUCTS

7 Model Elements - Refactors the kernel package from UML 2 and includes some extensions to provide some
foundation capabilities for model management.

8 Blocks - Reuses and extends structured classes from UML 2 composite structures to provide the fundamental
capability for describing system decomposition and interconnection, and to define different types of system
properties including value properties with optional units of measure.

9 Ports and Flows - Provides the semantics for defining how blocks and parts interact through ports and how items
flow across connectors.

10 Constraint Blocks - Defines how blocks are extended to be used on parametric diagrams. Parametric diagrams
model a network of constraints on system properties to support engineering analysis, such as performance,
reliability, and mass properties analysis.

BEHAVIORAL CONSTRUCTS

OMG Systems Modeling Language, v1.7 5

11 Activities - Defines the extensions to UML 2 activities, which represent the basic unit of behavior that is used in
activity, sequence, and state machine diagrams. The activity diagram is used to describe the slow of control and flow
of inputs and outputs among actions.

12 Interactions - Defines the constructs for describing message based behavior used in sequence diagrams.

13 State Machines - Describes the constructs used to specify state based behavior in terms of system states and their
transitions.

14 Use Cases - Describes behavior in terms of the high level functionality and uses of a system, that are further
specified in the other behavioral disgrams referred to above.

CROSSCUTTING CONSTRUCTS

15 Allocations

16 Requirements

17 Profiles & Model Libraries

ANNEXES

Annex A - Diagrams

Annex B - SysML Diagram Interchange

Annex C - Deprecated Elements

Annex D - Sample Problem

Annex E - Non-normative Extensions

Annex F - Requirements Traceability

Annex G - Model Interchange

3.3 Acknowledgments

The following companies and organizations submitted or supported parts of the original version of this International
Standard:

Industry

• American Systems Corporation

• BAE SYSTEMS

• Boeing

• Deere & Company

• EADS Astrium

• Eurostep

• Israel Aircraft Industries

• Lockheed Martin Corporation

• Motorola

• Northrop Grumman

• oose Innovative Informatik eG

• PivotPoint Technology

• Raytheon

• THALES

US Government

• NASA/Jet Propulsion Laboratory

6 OMG Systems Modeling Language, v1.7

• National Institute of Standards and Technology (NIST)

• DoD/Office of the Secretary of Defense (OSD)

Vendors

• ARTiSAN Software Tools

• Ceira Technologies

• EmbeddedPlus Engineering

• Gentleware

• IBM

• I-Logix

• Mentor Graphics

• Telelogic

• Structured Software Systems Limited

• Sparx Systems

• Vitech

Academia

• Georgia Institute of Technology

Liaisons

• Consultative Committee for Space Data Systems (CCSDS)

• Embedded Architecture and Software Technologies (EAST)

• International Council on Systems Engineering (INCOSE)

• ISO STEP AP233

• Systems Level Design Language (SLDL) and Rosetta

The following persons were members of the team that designed and wrote this International Standard: Vincent
Arnould, Laurent Balmelli, Ian Bailey, James Baker, Cory Bialowas, Conrad Bock, Carolyn Boettcher, Roger
Burkhart, Murray Cantor, Bruce Douglass, Harald Eisenmann, Anders Ek, Brenda Ellis, Marilyn Escue, Sanford
Friedenthal, Eran Gery, Hal Hamilton, Dwayne Hardy, James Hummel, Cris Kobryn, Michael Latta, John Low,
Robert Long, Kumar Marimuthu, Alan Moore, Véronique Normand, Salah Obeid, Eldad Palachi, David Price, Bran
Selic, Chris Sibbald, Joseph Skipper, Rick Steiner, Robert Thompson, Jim U’Ren, Thomas Weigert, Tim Weilkiens
and Brian Willard.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content
and the quality of this International Standard: Perry Alexander, Michael Chonoles, Mike Dickerson, Orazio Gurrieri,
Julian Johnson, Jim Long, Henrik Lönn, Stephen Mellor, Dave Oliver, Jim Schier, Matthias Weber, Peter Shames,
and the Georgia Institute of Technology research team including Manas Bajaj, Injoong Kim, Chris Paredis, Russell
Peak, and Diego Tamburini.

The SysML team would also like to thank Pavel Hruby for his contribution - the Visio template for UML 2 - which
was used for most of the illustrations in the first versions of The SysML. We would also like to thank the
OpenMBEE community and Dassault, whose support made it possible to generate this specification from a model.
Special thanks go to Chris Delp, Charles Galey, Ivan Gomes, Jason Han, Robert Karban, Erik Karlsson, and Doris
Lam.

Additional organizations and individuals have contributed to further revisions of this International Standard, as
completed by Finalization and Revision Task Forces listed under the OMG SysML Roadmap in the Preface above.
Besides those already acknowledged above for their contributions to the original International Standard, the
following additional persons have contributed to the Finalization or Revision Task Forces: Awele Anyanhum, Dave
Banham, Yves Bernard, Graham Bleakley, Emilee Bovre, Fraser Chadburn, Amanda Crawford, Chris Delp, Hans
Peter de Koning, Sébastien Demathieu, Peter Denno, Huascar Espinoza, Allison Barnard Feeney, Sébastien Gérard,

OMG Systems Modeling Language, v1.7 7

Ronnie Gill, Ivan Gomes, Matthew Hause, Emma Herrick, Kenn Hussey, Nerijus Jankevicius, Steve Jenkins, Robert
Karban, Darren Kelly, Andreas Korff, Emily Lambert, Myra Lattimore, Leah De Laurell, Frédéric Mallet, Sam
Mancarella, Julio Medina, Jishnu Mukerji, Chris Paredis, Axel Reichwein, Pete Rivett, Tanner Rosenberg, Nicolas
Rouquette, George Sawyer, Axel Scheithauer, Andrius Strazdauskas, Kritsana Uttamang, John Watson, Bernd
Wenzel.

Additional organizations who supported the work of contributors to the Finalization and Revision Task Forces, not
already listed for the original submission above, include 88solutions, Adaptive, Atego, EADS, CEA LIST, European
Southern Observatory, European Space Agency, Fachhochschule Vorarlberg, INRIA, Mathworks, Tecnalia Research
and Innovation, No Magic, and Universidad de Cantabria.

8 OMG Systems Modeling Language, v1.7

4 Language Architecture
4.1 General

SysML reuses a subset of UML 2 and provides additional extensions needed to address requirements in the UML for
Systems Engineering RFP. This International Standard documents the language architecture in terms of the parts of
UML 2 that are reused and the extensions to UML 2. This clause explains design principles and how they are
applied to define the SysML language architecture.

To visualize the relationship between the UML and SysML languages, consider the Venn diagram shown in Fig. 4.1,
where the sets of language constructs that comprise the UML and SysML languages are shown as the circles marked
“UML” and “SysML,” respectively. The intersection of the two circles, shown by the region marked “UML reused
by SysML,” indicates the UML modeling constructs that SysML reuses, called the UML4SysML subset. The region
marked “SysML extensions to UML” in Fig. 4.1 indicates the new modeling constructs defined for SysML that have
no counterparts in UML, or which replace UML constructs. Note that there is also a part of UML 2 that is not
required to implement SysML, which is shown by the region marked “UML not required by SysML.”

Figure 4.1. Overview of SysML/UML Interrelationship

Table 4.1 lists the metaclasses excluded from the UML4SysML subset. Table 4.2 lists the metaclasses and datatypes
included in the UML4SysML subset. Table 4.3 lists the stereotypes, blocks, valuetypes, and datatypes included in
SysML.

OMG Systems Modeling Language, v1.7 9

Table 4.1. UML 2 metaclasses excluded from the UML4SysML subset

UML 2 metaclasses excluded from the UML4SysML subset

Artifact, ClassifierTemplateParameter, Collaboration, CollaborationUse, CommunicationPath, Component,
ComponentRealization, ConnectableElementTemplateParameter, Deployment, DeploymentSpecification, Device,
ExecutionEnvironment, ExpansionNode, ExpansionRegion, Manifestation, Node, OperationTemplateParameter,
ProtocolConformance, ProtocolStateMachine, ProtocolTransition, QualifierValue,
ReadLinkObjectEndQualifierAction, RedefinableTemplateSignature, StringExpression, TemplateBinding,
TemplateParameter, TemplateParameterSubstitution, TemplateSignature, UMLActivityDiagram,
UMLAssociationEndLabel, UMLAssociationOrConnectorOrLinkShape,
UMLAssociationOrConnectorOrLinkShapeKind, UMLBehaviorDiagram, UMLClassDiagram,
UMLClassifierShape, UMLCompartment, UMLCompartmentableShape, UMLComponentDiagram,
UMLCompositeStructureDiagram, UMLDeploymentDiagram, UMLDiagram, UMLDiagramElement,
UMLDiagramWithAssociations, UMLEdge, UMLInteractionDiagram, UMLInteractionDiagramKind,
UMLInteractionTableLabel, UMLKeywordLabel, UMLLabel, UMLMultiplicityLabel, UMLNameLabel,
UMLNavigabilityNotationKind, UMLObjectDiagram, UMLPackageDiagram, UMLProfileDiagram,
UMLRedefinesLabel, UMLShape, UMLStateMachineDiagram, UMLStateShape,
UMLStereotypePropertyValueLabel, UMLStructureDiagram, UMLStyle, UMLTypedElementLabel,
UMLUseCaseDiagram

10 OMG Systems Modeling Language, v1.7

Table 4.2. UML 2 metaclasses and datatypes included in the UML4SysML subset

UML 2 metaclasses and datatypes included in the UML4SysML subset

Abstraction, AcceptCallAction, AcceptEventAction, Action, ActionExecutionSpecification, ActionInputPin,
Activity, ActivityEdge, ActivityFinalNode, ActivityGroup, ActivityNode, ActivityParameterNode,
ActivityPartition, Actor, AddStructuralFeatureValueAction, AddVariableValueAction, AggregationKind,
AnyReceiveEvent, Association, AssociationClass, Behavior, BehaviorExecutionSpecification, BehavioralFeature,
BehavioredClassifier, BroadcastSignalAction, CallAction, CallBehaviorAction, CallConcurrencyKind, CallEvent,
CallOperationAction, CentralBufferNode, ChangeEvent, Class, Classifier, Clause, ClearAssociationAction,
ClearStructuralFeatureAction, ClearVariableAction, CombinedFragment, Comment, ConditionalNode,
ConnectableElement, ConnectionPointReference, Connector, ConnectorEnd, ConnectorKind,
ConsiderIgnoreFragment, Constraint, Continuation, ControlFlow, ControlNode, CreateLinkAction,
CreateLinkObjectAction, CreateObjectAction, DataStoreNode, DataType, DecisionNode, Dependency,
DeployedArtifact, DeploymentTarget, DestroyLinkAction, DestroyObjectAction,
DestructionOccurrenceSpecification, DirectedRelationship, Duration, DurationConstraint, DurationInterval,
DurationObservation, Element, ElementImport, EncapsulatedClassifier, Enumeration, EnumerationLiteral, Event,
ExceptionHandler, ExecutableNode, ExecutionOccurrenceSpecification, ExecutionSpecification, Expression,
Extend, Extension, ExtensionEnd, ExtensionPoint, Feature, FinalNode, FinalState, FlowFinalNode, ForkNode,
FunctionBehavior, Gate, GeneralOrdering, Generalization, GeneralizationSet, Image, Include, InformationFlow,
InformationItem, InitialNode, InputPin, InstanceSpecification, InstanceValue, Interaction, InteractionConstraint,
InteractionFragment, InteractionOperand, InteractionOperatorKind, InteractionUse, Interface,
InterfaceRealization, InterruptibleActivityRegion, Interval, IntervalConstraint, InvocationAction, JoinNode,
Lifeline, LinkAction, LinkEndCreationData, LinkEndData, LinkEndDestructionData, LiteralBoolean,
LiteralInteger, LiteralNull, LiteralReal, LiteralSpecification, LiteralString, LiteralUnlimitedNatural, LoopNode,
MergeNode, Message, MessageEnd, MessageEvent, MessageKind, MessageOccurrenceSpecification,
MessageSort, Model, MultiplicityElement, NamedElement, Namespace, ObjectFlow, ObjectNode,
ObjectNodeOrderingKind, Observation, OccurrenceSpecification, OpaqueAction, OpaqueBehavior,
OpaqueExpression, Operation, OutputPin, Package, PackageImport, PackageMerge, PackageableElement,
Parameter, ParameterDirectionKind, ParameterEffectKind, ParameterSet, ParameterableElement,
PartDecomposition, Pin, Port, PrimitiveType, PrimitiveTypes::Boolean, PrimitiveTypes::Integer,
PrimitiveTypes::Real, PrimitiveTypes::String, PrimitiveTypes::UnlimitedNatural, PrimitiveValueTypes::Boolean,
Profile, ProfileApplication, Property, Pseudostate, PseudostateKind, RaiseExceptionAction, ReadExtentAction,
ReadIsClassifiedObjectAction, ReadLinkAction, ReadLinkObjectEndAction, ReadSelfAction,
ReadStructuralFeatureAction, ReadVariableAction, Realization, Reception, ReclassifyObjectAction,
RedefinableElement, ReduceAction, Region, Relationship, RemoveStructuralFeatureValueAction,
RemoveVariableValueAction, ReplyAction, SendObjectAction, SendSignalAction, SequenceNode, Signal,
SignalEvent, Slot, StartClassifierBehaviorAction, StartObjectBehaviorAction, State, StateInvariant, StateMachine,
Stereotype, StructuralFeature, StructuralFeatureAction, StructuredActivityNode, StructuredClassifier,
Substitution, TestIdentityAction, TimeConstraint, TimeEvent, TimeExpression, TimeInterval, TimeObservation,
Transition, TransitionKind, Type, TypedElement, UnmarshallAction, Usage, UseCase, ValuePin,
ValueSpecification, ValueSpecificationAction, Variable,VariableAction, Vertex, VisibilityKind, WriteLinkAction,
WriteStructuralFeatureAction, WriteVariableAction

OMG Systems Modeling Language, v1.7 11

Table 4.3. SysML stereotypes, blocks, valuetypes, and datatypes

SysML stereotypes, blocks, valuetypes, and datatypes

AcceptChangeStructuralFeatureEventAction, AdjunctProperty, Allocate, AllocateActivityPartition,
BindingConnector, Block, BoundReference, ChangeStructuralFeatureEvent, ClassifierBehaviorProperty,
Conform, ConstraintBlock, Continuous, ControlOperator, ControlValue, Copy, DeriveReqt, DirectedFeature,
DirectedRelationshipPropertyPath, Discrete, DistributedProperty, ElementGroup, ElementPropertyPath,
EndPathMultiplicity, Expose, FeatureDirection, FlowProperty, FullPort, InterfaceBlock,
InvocationOnNestedPortAction, ItemFlow, NestedConnectorEnd, NoBuffer, Optional, Overwrite,
ParticipantProperty, PrimitiveValueTypes::Boolean, PrimitiveValueTypes::Complex,
PrimitiveValueTypes::Integer, PrimitiveValueTypes::Number, PrimitiveValueTypes::Real,
PrimitiveValueTypes::String, Probability, Problem, PropertySpecificType, ProxyPort, Rate, Rationale, Refine,
Requirement, Satisfy, Stakeholder, TestCase, Trace, TriggerOnNestedPort, ValueType, VerdictKind, Verify, View,
Viewpoint

4.2 Design Principles

The fundamental design principles for SysML are:

• Requirements-driven - SysML is intended to satisfy the requirements of the UML for SE RFP.

• UML reuse - SysML reuses UML wherever practical to satisfy the requirements of the RFP, and when
modifications are required, they are done in a manner that strives to minimize changes to the underlying
language. Consequently, SysML is intended to be relatively easy to implement for vendors who support UML 2.

• UML extensions - SysML extends UML as needed to satisfy the requirements of the RFP. The primary extension
mechanism is the UML 2 profile mechanism as further refined in Section 17

• Partitioning - The package is the basic unit of partitioning in this International Standard. The packages partition
the model elements into logical groupings that minimize circular dependencies among them.

• Layering - SysML packages are specified as an extension layer to the UML metamodel.

• Interoperability - SysML inherits the XMI interchange capability from UML. SysML is also intended to be
supported by the ISO 10303-233 data interchange standard to support interoperability among other engineering
tools.

SysML provides three model libraries:

• PrimitiveValueTypes, see Section 8.3.3.1

• UnitAndQuantityKind, see Section 8.3.3.2

• ControlValues, see Section 11.3.3.1

4.3 Architecture

The relationship between SysML and UML 2 is shown in Fig. 4.2. SysML extends UML 2’s StandardProfile (see
Clause 22 in the UML 2.5 specification) whose Trace and Refine stereotypes provide the basis for Requirement
traceability in SysML (see Section 16 in this International Standard).

Although SysML indirectly imports the UML 2 PrimitiveTypes library (see Clause 21 in the UML 2.5 specification)
due to the transitivity of package import, SysML provides a PrimitiveValueTypes model library that systems
engineers can extend via SysML’s ValueType stereotype. In the remainder of this document, the unqualified
references to Boolean, Integer, Real, and String should be interpreted as follows:

• In the context of the definition of a SysML Stereotype, the name refers to the definition of a
UML::PrimitiveType in the UML 2 PrimitiveTypes library.

• Elsewhere, the name refers to the definition of a SysML::ValueType stereotype of UML::DataType in the SysML
PrimitiveValueTypes library.

12 OMG Systems Modeling Language, v1.7

StandardProfile
«profile»

Libraries
«ModelLibrary»

PrimitiveTypesUML

SysML
«profile»

«import»

«import»

«import»

«import»

«apply»

Figure 4.2. SysML Extension of UML

SysML
«profile»

RequirementsPorts&Flows

ModelElements

DeprecatedElementsConstraintBlocks

Blocks AllocationsActivities

Libraries
«ModelLibrary»

UnitAndQuantityKind
«ModelLibrary»

PrimitiveValueTypes
«ModelLibrary»

ControlValues
«ModelLibrary»

«import»

«import»

«apply»

Figure 4.3. SysML Package Structure

As previously stated, the design approach for SysML is to reuse a subset of UML and create extensions to support
the specific concepts needed to satisfy the requirements in the UML for SE RFP. The SysML package structure
shown in Fig. 4.3 contains a set of packages that correspond to concept areas in SysML that have been extended.

The SysML packages extend UML as follows:

• SysML::Model Elements extends Classifications, Common Structure

• SysML::Blocks extends Classifications, Structured Classifiers, Common Structure, Simple Classifiers

OMG Systems Modeling Language, v1.7 13

• SysML::ConstraintBlocks extends Structured Classifiers

• SysML::Ports and Flows extends Actions, Common Behavior, Classifications

• SysML::Activities extends Activities.

• SysML::Allocations extends Common Structure, Activities

• SysML::Requirements extends Common Structure, Classifications, Common Behavior, Structured Classifiers

• SysML::DeprecatedElements extends Common Structure, Simple Classifiers, Classifications, Structured
Classifiers, Actions, and SysML Item Flows

Fig. 4.4 shows non-normative packages in this International Standard that depend on SysML and UML. Note that
the QUDV and ISO-80000 libraries are described in non-normative annexes to this specification.

ISO-80000
«ModelLibrary»

DI

UMLDI

SysMLDI
«profile»

UML

SysML
«profile»

QUDV
«ModelLibrary»

«apply»

«import»

«import»

«import»

«apply»

«import» «import»

«import»

Figure 4.4. Non-normative Package Structure

4.4 Extension Mechanisms

This International Standard uses the following mechanisms to define the SysML extensions:

• UML stereotypes

• UML diagram extensions

• Model libraries

SysML stereotypes define new modeling constructs by extending existing UML 2 constructs with new properties
and constraints. SysML diagram extensions define new diagram notations that supplement diagram notations reused
from UML 2. SysML model libraries describe specialized model elements that are available for reuse. Additional
non- normative extensions are included in Annex E.

The SysML user model is created by instantiating its metamodel and applying the stereotypes specified in the
SysML profile, and optionally referencing or subclassing the model elements in the SysML model library. Section
17 describes how profiles and model libraries are applied and how they can be used to further extend SysML.

4.5 SysML Diagrams

The SysML diagram taxonomy is shown in Overview . The concrete syntax (notation) for the diagrams along with
the corresponding specification of the UML extensions is described in Parts II - IV. The Diagrams in Annex Annex
A describes generalized features of diagrams, such as their frames and headings. A model of SysML diagrams to
support interchange is in SysML Diagram Interchange Annex Annex B.

14 OMG Systems Modeling Language, v1.7

This page intentionally left blank.

OMG Systems Modeling Language, v1.7 15

16 OMG Systems Modeling Language, v1.7

5 Conformance
5.1 Overview

Conformance with SysML requires that the subset of UML required for SysML is implemented, and that the SysML
extensions to this subset are implemented. SysML has three types of conformance, listed in Conformance Types,
which shall all be supported to fully conform to SysML. Conformance does not include DeprecatedElements.

5.2 Conformance Types

An implementation of SysML shall comply with both the subset of UML4SysML and the SysML extensions. The
types of SysML conformance extend corresponding types in UML as follows:

• Abstract syntax conformance. A tool demonstrating abstract syntax conformance provides a user interface and/or
API that enables instances of concrete SysML stereotypes (which are applications of stereotypes to instances of
UML metaclasses) and model library elements to be created, read, updated, and deleted. The tool shall also
provide a way to validate the well-formedness of models that corresponds to the constraints defined in SysML.

• Concrete syntax conformance. A tool demonstrating concrete syntax conformance provides a user interface and/
or API that enables instances of SysML notation to be created, read, updated, and deleted. This includes
conformance to the notation defined in the “Diagram Elements” tables and diagrams extension sub clauses in
each clause of this International Standard. Note that a conforming tool may provide the ability to create, read,
update, and delete additional diagrams and notational elements that are not defined in SysML.

• Model interchange conformance. A tool demonstrating model interchange conformance can import and export
conformant XMI for all valid SysML models, including models with profiles defined and/or applied. Model
interchange conformance implies abstract syntax conformance. See more information in Annex G.

OMG Systems Modeling Language, v1.7 17

https://mms.openmbee.org/alfresco/mmsapp/mms.html#/projects/PROJECT-7f0f4015-5aae-46f9-bfea-f9587678fd0f/master/documents/MMS_1495132688220_ec2e9416-998c-473f-b4aa-ef4c6b7add6b/full#MMS_1495132688220_ec2e9416-998c-473f-b4aa-ef4c6b7add6b

This page intentionally left blank.

18 OMG Systems Modeling Language, v1.7

6 Language Formalism
6.1 Levels of Formalism

SysML is specified using a combination of UML modeling techniques and precise natural language to balance rigor
and understandability. Use of more formal constraints and semantics may be applied in future versions to further
increase the precision of the language

6.2 Clause Structure

The clauses are organized according to the SysML packages as described in the language architecture and selected
reusable portions of UML 2 packages. This sub clause provides information about how each clause is organized.

6.2.1 Overview

This sub clause provides an overview of the SysML modeling constructs defined in the subject package, which are
usually associated with one or more SysML diagram types.

6.2.2 Diagram Elements

This sub clause provides tables that summarize the concrete syntax (notation) and abstract syntax references for the
graphic nodes and paths associated with the relevant diagram types. The diagram elements tables are intended to
include all of the diagrammatic constructs used in SysML. However, they do not represent all the different
combinations in which they can be used. The reader should refer to the usage examples in the clauses and the sample
problem (Annex D) for typical usages of the concrete syntax. General diagram information on the use of diagram
frames and headings can be found in Annex A.

The diagram elements tables and the additional usage examples fill an important role in defining the scope of
SysML. As described in Section 4, SysML imports many entire packages from the UML metamodel, which it then
reuses and extends. Only a subset of the entire UML metamodel, however, is required to support the notations
included in SysML.

Unless a type of diagram element is shown in some form in one of the SysML diagram elements tables, or in a usage
example in one of the normative SysML clauses, it is not considered to be part of the subset of UML included within
SysML, even if the UML metamodel packages support additional constructs. For example, SysML imports the
entire Dependencies package from UML, but it includes diagram elements for only a subset of the dependency types
defined in this package.

6.2.3 UML Extensions

This sub clause specifies the SysML extensions to UML in terms of diagram extensions and semantic extensions.
Diagram extensions are included when the concrete syntax uses notation other than the standard stereotype notation
as defined in the Profiles & Model Libraries clause. Semantic extensions consist of stereotype and model library
extensions. Stereotype extensions always include the abstract syntax that identifies which metaclasses a stereotype
extends. Each stereotype includes a general description with a definition and semantics, along with stereotype
properties (attributes), and constraints. Each constraint consists of a textual description and may be followed by a
formal constraint expressed in Object Constraint Language (OCL). If there is any ambiguity between the two, the
OCL statement of the constraint takes precedence. The model libraries are defined as subclasses of existing
metaclasses.

6.2.4 Usage Examples

This sub clause shows how the SysML modeling constructs can be applied to solve systems engineering problems
and is intended to reuse and/or elaborate the sample problem in Annex D.

OMG Systems Modeling Language, v1.7 19

6.3 Conventions and Typography

In the description of SysML, the following conventions have been used:

• When referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as
they appear in the model are used.

• No visibilities are presented in the diagrams, since all elements are public.

• If a sub clause is not applicable, it is not included, except for the top-level sub clauses outlined in Section 6.2.

• Stereotype, metaclass, and metaassociation names: initial embedded capitals are used (e.g., “ModelElement,”
“ElementReference”).

• Boolean metaattribute names: always start with “is” (e.g., “isComposite”).

• Enumeration types: always end with “Kind” (e.g., “DependencyKind”).

20 OMG Systems Modeling Language, v1.7

STRUCTURAL CONSTRUCTS

OMG Systems Modeling Language, v1.7 21

This page intentionally left blank.

22 OMG Systems Modeling Language, v1.7

7 Model Elements
7.1 Overview

The ModelElements package of SysML defines general-purpose constructs that may be shown on multiple SysML
diagram types. These include package, model, various types of dependencies (e.g., import, access, refine,
realization), constraints, and comments. The package diagram defined in this clause is used to organize the model by
partitioning model elements into packageable elements and establishing dependencies between the packages and/or
model elements within the package. The package defines a namespace for the packageable elements. Model
elements from one package can be imported and/or accessed by another package. This organizational principle is
intended to help establish unique naming of the model elements and avoid overloading a particular model element
name. Packages can also be shown on other diagrams such as the block definition diagram, requirement diagram,
and behavior diagrams.

Constraints are used to capture simple constraints associated with one or more model elements and can be
represented on several SysML diagrams. The constraint can represent a logical constraint such as an XOR, a
condition on a decision branch, or a mathematical expression. The constraint has been significantly enhanced in
SysML as specified in Section 10, “Constraint Blocks” to enable it to be reused and parameterized to support
engineering analysis.

Comments can be associated with any model element and are quite useful as an informal means of documenting the
model. SysML has introduced an extension to a comment called rationale to facilitate the system modeler in
capturing decisions. The rationale may be attached to any entity, such as a system element (block), or to any
relationship, such as the satisfy relationship between a design element and a requirement. In the latter case, it may be
used to capture the basis for the design decision and may reference an analysis report or trade study for further
elaboration of the decision. In addition, SysML includes an extension of a comment to reflect a problem or issue that
can be attached to any other model element.

7.1.1 View and Viewpoint

The concepts of viewpoint and view are articulated in ISO-42010 (formerly IEEE-1471). SysML viewpoint and
view constructs are consistent with the ISO-42010 standard. Typical examples may include an operational,
manufacturing, or security viewpoint and view.

Systems engineers use SysML to make models of systems - the result is the system model, which is what we mean
most of the time when we speak of “the model.” Along with that model, systems engineers may also use SysML to
make a model of the information to be presented to the stakeholders to address their concerns. The result is the
viewpoint and view model, which helps systems engineers assure that stakeholders get the understanding they need
from the system model.

The viewpoint and view model can also be thought of as a description model, which augments a system model. A
viewpoint and view model exposes elements of one or more system models. In particular, a viewpoint is a
specification of rules for constructing a view to address a set of stakeholder concerns. The view is intended to
represent the system from this viewpoint. This enables stakeholders to specify aspects of the system model that are
important to them from their viewpoint, and then represent those aspects of the system in a specific view.

The viewpoint describes the point of view of a set of stakeholders by framing the concerns of the stakeholders along
with the method for producing a view that addresses those concerns. The method describes the expectation of what
stakeholder(s) wish to see exposed from the model, how the stakeholder wishes the information to be structured and
presented, and in what kind of artifact the stakeholder wants to consume the information. In other words, the method
is the set of rules that describe how the view should express the information from the model to address the
stakeholder concerns. The method can be specified as a process and/or a set of constraints for producing a view,
which may include rules or instructions for analyzing or verifying the view content.

The view is the modeling element that represents the artifact that is presented to the stakeholder. A view conforms to
only one viewpoint to ensure that only one method is applied to the view. The view shall be related to the model that
contains the information and the method that produces the view. The view is used by a rendering application to
generate the artifact, such as a document.

OMG Systems Modeling Language, v1.7 23

In summary, the viewpoint description specifies the following:

1. What kind of information the view should contain.

2. How the information should be expressed, i.e., what modeling language is required for the model that will
appear in the view. (Note: this is not to be confused with the language used for specifying the viewpoint
method).

3. The presentation format that specifies how the information should be presented in an artifact, e.g., specifying
that data values should be plotted on a graph or a particular tabular style, or that both English and Spanish text
should be provided, or that photographs be shows in color with minimum dimensions of 100 millimeters square.

4. The file format of the artifacts that are generated from the view (e.g., set of slides in ppt, a PDF, a Word
document, a web viewable format, ...).

It is important to understand that while the view is a SysML construct that exists within a SysML model, artifacts
generated from views potentially live outside of the modeling environment as the means to satisfy stakeholder
concerns. An artifact such as a movie or a PDF document is not directly incorporated in a SysML model, while the
view which represents the artifact does reside in the model as a specification of that artifact. The relationship
between the viewpoint and view model and the corresponding artifact is similar to the relationship between the
system model and the system that is the subject of the model.

7.2 Diagram Elements

Table 7.1. Graphical nodes defined by ModelElements package

ElementName Concrete Syntax Abstract Syntax Reference

Comment

 Comment text.

UML4SysML::Comment

ConstraintNote

{C1> {L1} E1.x > E2.y}

UML4SysML::Constraint

ConstraintTextualNote

Element1
(any graphical node)

{constraint text}

(any graphical path)

{constraint text}
UML4SysML::Constraint

24 OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

ElementGroup

Element2
Element3

Element1

 Group criterion discription

«elementGroup»

{name = "MyGroup",
size = 3}

SysML::ModelElements::
ElementGroup

Model Model UML4SysML::Model

PackageDiagram

Namepkg][

Subpackage2

Subpackage1

«import» UML4SysML::Package

PackageWith NameInTab

Package1

Subpackage2

Subpackage1

{uri=http://www.abc.com/models/Package1}
Package1

«import»

UML4SysML::Package

PackageWith NameInside Package1 UML4SysML::Package

OMG Systems Modeling Language, v1.7 25

ElementName Concrete Syntax Abstract Syntax Reference

Problem The problem is that…

«problem»

SysML::ModelElements::Problem

Rationale Description of rationale

«rationale»

SysML::ModelElements::Rationale

Stakeholder
/concernList =
/concern =

«stakeholder»

Name
«stakeholder»

concern = "…", "…", "…"
,,,

SysML::ModelElements::
Stakeholder

View

property1 : View1

/viewPoint = Name
/stakeholder = Name1, Name2

«view»

Name
«view»

SysML::ModelElements::View

Viewpoint

«Create»View()

/stakeholder = Name
purpose = "…"
presentation = "…", "…"
/method = Name
language = "…"
/concernList = …", "…", "…
/concern = "…", "…", "… "

«viewpoint»

Name
«viewpoint»

concernList = ,,,

stakeholder

SysML::ModelElements::Viewpoint

Table 7.2. Graphical paths defined by ModelElements package

ElementName Concrete Syntax Abstract Syntax Reference

Conform
«conform»

UML4SysML::Conform

26 OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

Expose
«expose»

SysML::ModelElements::Expose

Dependency

«stereotype1»
dependency1

UML4SysML::Dependency

PublicPackageImport
«import»

UML4SysML::PackageImport
with visibility = public

PrivatePackageImport
«access»

UML4SysML::PackageImport
with visibility = private

PackageContainment
UML4SysML::Package::
ownedElement

Realization UML4SysML::Realization

Refine
«refine»

UML4SysML::Refine

7.3 UML Extensions

7.3.1 Diagram Extensions

7.3.1.1 UML Diagram Elements not Included in SysML

The notation for a “merge” dependency between packages, using a «merge» keyword on a dashed-line arrow, is not
included in SysML. UML uses package merge in the definition of its own metamodel, which SysML builds on, but
SysML does not support this capability for user-level models.

NOTE: Combining packages that have the same named elements, resulting in merged definitions of the same names,
could cause confusion in user models and adds no inherent modeling capability, and so has been left out of SysML.

7.3.2 Stereotypes

Package ModelElements

OMG Systems Modeling Language, v1.7 27

/size : Integer [1]
orderedMember : Element [0..*]{subsets member,ordered}
name : String [1]
/member : Element [0..*]
/criterion : String [0..1]

attributes

ElementGroup
«stereotype»

Generalization
«Metaclass»

Dependency
«Metaclass»

Dependency
«Metaclass»

Comment
«Metaclass»

Classifier
«Metaclass»

UML4SysML::Dependency
«Metaclass»

Generalization
«Metaclass»

Expose
«stereotype»

UML4SysML::Generalization
«Metaclass»

Conform
«stereotype»

/viewpoint : Viewpoint [1]
/stakeholder : Stakeholder [0..*]

attributes

View
«stereotype»

Classifier
«Metaclass»

stakeholder : Stakeholder [0..*]
purpose : String [1]
presentation : String [0..*]
/method : Behavior [0..*]
language : String [0..*]
concernList : Comment [0..*]
/concern : String [0..*]

attributes

Viewpoint
«stereotype»

Comment
«Metaclass»

Class
«Metaclass»

UML4SysML::Classifier
«Metaclass»

concernList : Comment [0..*]
/concern : String [0..*]

attributes

Stakeholder
«stereotype»

UML4SysML::Comment
«Metaclass»

Class
«Metaclass»

Class
«Metaclass»

Class
«Metaclass»

UML4SysML::Class
«Metaclass»

UML4SysML::Class
«Metaclass»

Rationale
«stereotype»

Problem
«stereotype»

Figure 7.1. Stereotypes defined in package ModelElements

7.3.2.1 Conform

Description

A Conform relationship is a generalization between a view and a viewpoint. The view conforms to the specified
rules and conventions detailed in the viewpoint. When this is done, the view is said to conform to the viewpoint.
Conform extends UML generalization.

Association Ends

• base_Generalization : Generalization [1]

Constraints

• 1_general_is_viewpoint

The general classifier shall be an element stereotyped by Viewpoint.

Viewpoint.allInstances()‑>exists(v | v.base_Class =
self.base_Generalization.general)

• 2_specific_is_view

The specific classifier shall be an element that is stereotyped by View.

View.allInstances()‑>exists(v | v.base_Class =
self.base_Generalization.specific)

7.3.2.2 ElementGroup

28 OMG Systems Modeling Language, v1.7

Description

The ElementGroup stereotype provides a lightweight mechanism for grouping various and possibly heterogeneous
model elements by extending the capability of comments to refer to multiple annotated elements. For example, it can
group elements that are associated with a particular release of the model, have a certain risk level, or are associated
with a legacy design. The semantics of ElementGroup is modeler-defined. In particular, the body text is not
restricted. It can describe the grouped elements as well as elements or values related to the grouped elements.

Element groups are named using the name property. The criterion for membership in an element group is specified
by the body of the comment the stereotype is applied to. By grouping elements, the modeler asserts that the criterion
of the group applies to the member. Optionally, members of an element group can be ordered using its
orderedMember property.

ElementGroups appear in diagrams as comments, and properties of the stereotype appear in the notation for
stereotype properties. Grouped elements are the annotated elements of the comment to which the stereotype is
applied. This has several implications:

• Element groups do not own their elements and thus an element can participate in an unlimited number of groups.

• The elements in a group are identified by the modeler, as opposed to being the result of a query, as in views.

• Element groups can be members of other element groups, but this does not imply that members of the first are
members of the second.

Elements related to the grouped elements are not included in the group, even though the body text can address them.
In particular, element groups annotating deeply nested properties or properties with bindings are grouping only the
properties, rather than their nesting or their bound properties.

Grouped elements are also limited to elements of models, rather than instances of values of those model elements. In
particular, element groups annotating blocks or properties are not grouping the instances of the blocks or the values
of the properties. However, since the semantics of ElementGroup is left to the modeler, the body text can refer to
related elements outside the group, such as instances and values of the grouped elements, or to bound properties.
The modeler is then responsible for writing body text that explains the implications for the related elements. For
instance:

• A group with the criterion: "Authored by John" could annotate any model element added in the model by John.
This body text does not address any related elements. For example, if the annotated element is a property bound
to another property, the group would not imply authorship of the second property.

• A group with the criterion: "Instances are manufactured in a foreign country" could annotate Blocks to indicate
that any instances of those Blocks are produced in a foreign country. This body text does not address the Block
itself, which is not necessarily "manufactured" in a foreign country.

• A group with criterion: "Values are manufactured in a foreign country" could annotate properties, including part
properties, to indicate the values of the property are produced in a foreign country. This body text does not
address the property itself, which is not necessarily "manufactured" in a foreign country. Since the text is about
values of the property, it is also about values of other properties that might be bound to the annotated property,
because the values of bound properties are the same.

Attributes

• /criterion : String [0..1]
Specifies the rationale for being member of the group. Adding an element to the group asserts that the criterion
applies to this element. Derived from Comment::body.

• /member : Element [0..*]
Set specifying the members of the group. Derived from Comment::annotatedElement.

• name : String [1]
Name of the element group.

• orderedMember : Element [0..*] {ordered, subsets member}
Organize member according to an arbitrary order.

OMG Systems Modeling Language, v1.7 29

• /size : Integer [1]
Number of members in the group.

Association Ends

• base_Comment : Comment [1]

Operations

• allGroups (in e : Element) : ElementGroup [0..*]
The query allGroups() returns the set of all the groups an element is member of.

• criterion () : String [0..1]
The query criterion() returns the text describing the criterion defining the group.

• member () : Element [0..*]
The query member() returns the set of all the members of the group.

• size () : Integer [1]
The query size() returns the number of elements which are members of the group.

7.3.2.3 Expose

Description

The expose relationship relates a view to one or more model elements. Each model element is an access point to
initiate the query. The view and the model elements related to the view are passed to the constructor when it is
invoked. The method describes how the exposed elements are navigated to extract the desired information.

Association Ends

• base_Dependency : Dependency [1]

Constraints

• 1_client_is_view

The client shall be an element stereotyped by View.

View.allInstances()‑>exists(v | v.base_Class =
self.base_Dependency.client)

7.3.2.4 Problem

Description

A Problem documents a deficiency, limitation, or failure of one or more model elements to satisfy a requirement or
need, or other undesired outcome. It may be used to capture problems identified during analysis, design, verification,
or manufacture and associate the problem with the relevant model elements. Problem is a stereotype of comment
and may be attached to any other model element in the same manner as a comment.

Association Ends

• base_Comment : Comment [1]

7.3.2.5 Rationale

Description

A Rationale documents the justification for decisions and the requirements, design, and other decisions. A Rationale
can be attached to any model element including relationships. It allows the user, for example, to specify a rationale
that may reference more detailed documentation such as a trade study or analysis report. Rationale is a stereotype of
comment and may be attached to any other model element in the same manner as a comment.

30 OMG Systems Modeling Language, v1.7

Association Ends

• base_Comment : Comment [1]

7.3.2.6 Stakeholder

Description

A stakeholder represents a role, group, or individual who has concerns that will be addressed by the View of the
model.

Attributes

• /concern : String [0..*]

• concernList : Comment [0..*]

Association Ends

• base_Classifier : Classifier [1]

Constraints

• 1_not_association

A Stakeholder stereotype can only be applied to UML::Actor or UML::Class which are not a UML::Association.

(self.base_Classifier.oclIsKindOf(UML::Actor) or
self.base_Classifier.oclIsKindOf(UML::Class))
and not self.base_Classifier.oclIsKindOf(UML::Association)

7.3.2.7 View

Description

A View is a model element that represents a real world artifact that can be presented to stakeholders. The view is the
result of querying one or more models that are defined by a viewpoint method. The view shall conform to the
viewpoint in terms of the viewpoint stakeholders, concerns, method, language, and presentation requirements.

It is sometimes desirable to construct views from other views, and to establish an order for presenting the views.
Views may include one or more views as properties, each of which conforms to their viewpoint. The order of the
referenced views is reflected in the property order.

The information may be presented to the stakeholder in any format specified by the viewpoint, which may include
figures, tables, plots, entire documents, presentation slides, or video.

Attributes

• /stakeholder : Stakeholder [0..*]
The list of stakeholders is derived from the viewpoint the view conforms to.

• /viewpoint : Viewpoint [1]
The viewpoint for this View is derived from the conform relationship.

Association Ends

• base_Class : Class [1]

Constraints

• 1_single_viewpoint

A view shall only conform to a single viewpoint.

Conform.allInstances()‑>select(base_Generalization.specific =
self.base_Class)‑>size() = 1

OMG Systems Modeling Language, v1.7 31

• 2_viewpoint_derived_from_conform

The derived value of the viewpoint shall be the classifier stereotyped by Viewpoint that is the general classifier
of the generalization relationship stereotyped by Conform for which the View is the specific classifier.

self.viewpoint = Viewpoint.allInstances()‑>any(base_Class =
Conform.allInstances()‑>any(base_Generalization.specific =
self.base_Class).base_Generalization.general)

• 3_stakeholder_derived_from_conform

The derived values of the stakeholder attribute shall be the classifiers stereotyped by Stakeholder that are the
values of the stakeholder attribute of the general classifier of the generalization relationship stereotyped by
Conform for which the View is the specific classifier.

self.stakeholder = Viewpoint.allInstances()‑>any(base_Class =
Conform.allInstances()‑>any(base_Generalization.specific =
self.base_Class).base_Generalization.general).stakeholder

7.3.2.8 Viewpoint

Description

A Viewpoint is a specification of the conventions and rules for constructing and using a view for the purpose of
addressing a set of stakeholder concerns. They specify the elements expected to be represented in the view, and may
be formally or informally defined. For example, the security viewpoint may require the security requirements,
security functional and physical architecture, and security test cases.

Attributes

• /concern : String [0..*]
The interest of the stakeholders displayed as the body of the comments from concernList.

• concernList : Comment [0..*]
The interests of the stakeholders addressed by this viewpoint.

• language : String [0..*]
The languages used to express the models that represent content which is represented by the view. The language
specification such as its metamodel, profile, or other language specification is referred to by its URI.

• /method : Behavior [0..*]
The behavior is derived from the method of the operation with the Create stereotype.

• presentation : String [0..*]
The specifications prescribed for formatting and styling the view.

• purpose : String [1]
The purpose addresses the stakeholder concerns.

• stakeholder : Stakeholder [0..*]
Set of stakeholders whose concerns are to be addressed by the viewpoint.

Association Ends

• base_Class : Class [1]

Constraints

• 1_method_derived_from_create_operations

The derived values of the method attribute shall be the names of the methods of the operations stereotyped by
the UML Create stereotype on the classifier stereotyped by Viewpoint.

self.method = self.base_Class.allFeatures()‑>select(f |
f.oclIsKindOf(UML::Operation))‑>select(o |

32 OMG Systems Modeling Language, v1.7

Standard::Create.allInstances().base_BehavioralFeature‑>
includes(o)).oclAsType(UML::Operation).method

• 2_create_view_operation

The property ownedOperation shall include at least one operation named "View" with the UML Create
stereotype applied.

self.base_Class.ownedOperation‑>exists(o | o.name='View' and
Standard::Create.allInstances().base_BehavioralFeature‑>includes(o))

OMG Systems Modeling Language, v1.7 33

This page intentionally left blank.

34 OMG Systems Modeling Language, v1.7

8 Blocks
8.1 Overview

Blocks are modular units of system description. Each block defines a collection of features to describe a system or
other element of interest. These may include both structural and behavioral features, such as properties and
operations, to represent the state of the system and behavior that the system may exhibit.

Blocks provide a general-purpose capability to model systems as trees of modular components. The specific kinds of
components, the kinds of connections between them, and the way these elements combine to define the total system
can all be selected according to the goals of a particular system model. SysML blocks can be used throughout all
phases of system specification and design, and can be applied to many different kinds of systems. These include
modeling either the logical or physical decomposition of a system, and the specification of software, hardware, or
human elements. Parts in these systems may interact by many different means, such as software operations, discrete
state transitions, flows of inputs and outputs, or continuous interactions.

The Block Definition Diagram in SysML defines features of blocks and relationships between blocks such as
associations, generalizations, and dependencies. It captures the definition of blocks in terms of properties and
operations, and relationships such as a system hierarchy or a system classification tree. The Internal Block Diagram
in SysML captures the internal structure of a block in terms of properties and connectors between properties. A
block can include properties to specify its values, parts, and references to other blocks. Ports are a special class of
property used to specify allowable types of interactions between blocks, and are described in Section 9, “Ports and
Flows.” Constraint Properties are a special class of property used to constrain other properties of blocks, and are
described in Section 10, “Constraint Blocks.” Various notations for properties are available to distinguish these
specialized kinds of properties on an internal block diagram.

A property can represent a role or usage in the context of its enclosing block. A property has a type that supplies its
definition. A part belonging to a block, for example, may be typed by another block. The part defines a local usage
of its defining block within the specific context to which the part belongs. For example, a block that represents the
definition of a wheel can be used in different ways. The front wheel and rear wheel can represent different usages of
the same wheel definition. SysML also allows each usage to define context-specific values and constraints
associated with the individual usage, such as 25 psi for the front tires and 30 psi for the rear tires.

Blocks may also specify operations or other features that describe the behavior of a system. Except for operations,
this clause deals strictly with the definition of properties to describe the state of a system at any given point in time,
including relations between elements that define its structure. Section 9, “Ports and Flows” specifies specific forms
of interactions between blocks, and the Behavioral Constructs including activities, interactions, and state machines
can be applied to blocks to specify their behavior. Section 15, “Allocations” describes ways to allocate behavior to
parts and blocks.

SysML blocks are based on UML classes as extended by UML composite structures. Some capabilities available for
UML classes, such as more specialized forms of associations, have been excluded from SysML blocks to simplify
the language. SysML blocks always include an ability to define internal connectors, regardless of whether this
capability is needed for a particular block. SysML Blocks also extend the capabilities of UML classes and
connectors with reusable forms of constraints, multi-level nesting of connector ends, participant properties for
composite association classes, and connector properties. SysML blocks include several notational extensions as
specified in this clause.

8.2 Diagram Elements

8.2.1 Block Definition Diagram

OMG Systems Modeling Language, v1.7 35

Table 8.1. Graphical nodes defined in Block Definition diagrams

ElementName Concrete Syntax Abstract Syntax Reference

BlockDefinitionDiagram

Namespace 1bdd][

Block1
«block»

Block2
«block»

1

part1

0..*

SysML::Blocks::Block,
UML4SysML::Package

Block

Notify(message)
Activate()

signal receptions

operation1(p1 : Type1) : Type2
operation2(q1 : Type1) : Type3{redefines operation2}
op4()

operations

prop9 : Boolean{redefines property00}
property8 : Real = 10.0
property7 : Integer = 99{readOnly}

values

\prop6 : Block3{union}
property5 : Block2 [1..5]{subsets property4,nonunique}
property4 : Block1 [0..*]{ordered}

references

property6 : Block4
property5a : Block3a

properties

prop3 : Block3{redefines property0}
property2 : Block2{subsets property1}
property1 : Block1

parts

{x>y}
constraints

Block1
«block»

{isEncapsulated}

SysML::Blocks::Block

ValueType

op3(q1 : Type1) : Type2{redefines ValueType0::op3}
operation2(q1 : Type1) : Type3{redefines operation2}
operation1(p1 : Type1) : Type2

operations

prop7 : Type7
/prop6 : Type6{union}
prop3 : Type5{redefines property00}
property2 : Type4{subsets property0}
property1 : Type3

attributes

unit = UnitName
«valueType»

ValueType1
«valueType»

properties

SysML::Blocks::ValueType

Enumeration
literalName2
literalName1

Enumeration1
«enumeration»

UML4SysML::Enumeration

36 OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

PropertySpecificType

y : Real
x : Integer{redefines x}

values

APST2
«pst»

x : Integer
values

Type

SysML::Blocks::
PropertySpecificType

AbstractDefinition
Name

Name

Name

{abstract}

{abstract}

UML4SysML::Classifier with
isAbstract equal true

StereotypeProperty Compartment
property1 = "value"

«stereotype1»

Block1
«stereotype1»

UML4SysML::Stereotype

Behavior Compartment

«statemachine»MySM2(p1 : P2)
«activity»MyAct1(x : Integer)

owned behaviors
«statemachine»MySM1

classifier behavior

Block1

SysML::Blocks::Block

Namespace Compartment

Namespace

Block1

Block1

Block3
«block»

Block2
«block»

1

part1

0..*

SysML::Blocks::Block

Structure Compartment

Block1

p1 : Type1 p2 : Type2

structure

1

e1c1 : SysML::Blocks::Block

OMG Systems Modeling Language, v1.7 37

ElementName Concrete Syntax Abstract Syntax Reference

BoundReference

«endPathMultiplicity» property 11 [*]{redefines property 11,lower = 6, upper = 8}
properties

Block 2

property 11 [24..32]{lower = 6, upper = 12}
property 9 : Block 1 [*]

references

Block 1

SysML::Blocks::Blocks,
SysML::Blocks::BoundReference,
SysML::Blocks::
EndPathMultiplicity

Unit
symbol = ""
quantityKind = qk1, qk2
description = "…"
definitionURI = ""

unit1 : Unit

symbol = "…"
description = "…"
definitionURI = "…"

unit2 : Unit

UML4SysML::
InstanceSpecification

QuantityKind
symbol = "…"
description = "…"
definitionURI = "…"

qk1 : QuantityKind

UML4SysML::
InstanceSpecification

Instance Specification
i2 : Type2i1 : Type1

: A1

p3 UML4SysML::
InstanceSpecification

Instance Specification value
instance1 : Type1

UML4SysML::
InstanceSpecification

Instance Specification property2 = "value"
property1 = 10

instance1 : Type1

UML4SysML::
InstanceSpecification

Instance Specification

: Type1

instance1/property1 : Type2

property2 = "value"
property1 = 10.0

instance2/property2 : Type3 UML4SysML::
InstanceSpecification

Table 8.2. Graphical paths defined in Block Definition diagrams

ElementName Concrete Syntax Abstract Syntax Reference

Dependency
B1

B2

«stereotype1»
dependency1

UML4SysML::Dependency

38 OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

ReferenceAssociation

{redefines Block0::property0}

B6

B5

B3 B4

B2

B1

association1 property1

{ordered} 0..*

property2

1

association1

{subsets property0, ordered}

property1

0..*

/property2

{union}1

association 1

0..1

property1

{ordered} 1..*

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = none

PartAssociation {ordered,
subsets Block0::property0}

B6B5

B3 B4

B2B1

association1

{redefines property0}

property2

1

property1

{ordered} 0..*

association1property2

1

property1

0..*

association1

0..1

property1
{ordered} 1..*

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = composite

SharedAssociation
B6B5

B4B3

B2B1

association1

{redefines property0}

property2

1

property1

{ordered} 0..*

association1/property2

{union}1 {subsets property0, ordered}

property1

0..*

association1

0..1

property1

{ordered} 1..*

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = shared

MultibranchPart Association B3

B2

B1

association2

property3

property2

0..*

association1

1

property1

0..* UML4SysML::Association and
UML::Kernel::Property with
aggregationKind = composite

MultibranchShared Associations B3

B2B1

association2

property3

property2

0..*

association1

1

property1

0..* UML4SysML::Association and
UML::Kernel::Property with
aggregationKind = shared

Generalization
B2B1

UML4SysML::Generalization

Multibranch Generalization
B3B2

B1

UML4SysML::Generalization

GeneralizationSet

B1

B7B6

B5

B4 B3B2

{overlapping}{complete, disjoint}

UML4SysML::GeneralizationSet

BlockNamespace Containment

B1

B3B2

UML4SysML::Class::
nestedClassifier

OMG Systems Modeling Language, v1.7 39

ElementName Concrete Syntax Abstract Syntax Reference

ParticipantProperty

B2
«block»

B1
«block»

B2
«block»

B1
«block»

B1
«block»

B2
«block»

Association1

property1

{ordered} 0..*

property2

1

Association1

{end = property1}

p2 : B1
«participant»

{end = property2}

p1 : B2
«participant»

property1

{ordered} 0..*

property2

1

«participant» p2 : B1{end = property1}
«participant» p1 : B2{end = property2}

references

Association1

Association1 property1

{ordered} 0..*

property2

1

UML4SysML::Property,
UML4SysML::AssociationClass

8.2.2 Internal Block Diagram

Table 8.3. Graphical nodes defined in Internal Block diagrams

ElementName Concrete Syntax Abstract Syntax Reference

InternalBlockDiagram

Block1ibd

p2 : Type2p1 : Type1
1

p3c1 : a1 SysML::Blocks::Block

Property

:classifier behavior

«statemachine»MySM2(p1 : P2)
«activity»MyAct1(x : Integer)

:owned behaviors
«statemachine»MySM1

part4 : Type 3

p1 : Type 1

x2 = "today"
x1 = 5.0

initialValues

p3 : Type3

^y : Real = 4.2
x : Integer = 4

:values

p1' : Type 1

^p4 : Type 4

r1 : Type 2

0..*

UML4SysML::Property

ActorPart

ActorName

ActorName
«actor» SysML::Blocks::PartProperty

typed by UML4SysML::Actor

40 OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

PropertySpecificType y : Integer
x : Integer = 5 {redefines x}

:values

p1 : APST2 (Type)

SysML::Blocks::
PropertySpecificType

BoundReference p2BR : Subtype2 [6..8]
«boundReference»

p1 : Type1

p2 : Type2 [4..8]= SysML::Blocks::BoundReference

Table 8.4. Graphical paths defined in Internal Block diagrams

ElementName Concrete Syntax Abstract Syntax Reference

Dependency Block2Block1

«stereotype1»
dependency1 UML4SysML::Dependency

BindingConnector

p6p5

p4p3

=

«equal»

1 1

UML4SysML::Connector

BidirectionalConnector
pBpA

0..*

p2

0..1

p1 c1 : association1
UML4SysML::Connector

UnidirectionalConnector
p2p1

0..1 0..*

p1c1 : association1

UML4SysML::Connector

8.3 UML Extensions

8.3.1 Diagram Extensions

8.3.1.1 Block Definition Diagram

A block definition diagram is based on the UML class diagram, with restrictions and extensions as defined by
SysML.

8.3.1.1.1 Block and ValueType Definitions

A SysML Block defines a collection of features to describe a system or other element of interest. A SysML
ValueType defines values that may be used within a model. SysML blocks are based on UML classes, as extended
by UML composite structures. SysML value types are based on UML data types. Diagram extensions for SysML
blocks and value types are described by other subheadings of this sub clause.

8.3.1.1.2 Default «block» stereotype on unlabeled box

If no stereotype keyword appears within a definition box on a block definition diagram (including any stereotype
property compartments), then the definition is assumed to be a SysML block, exactly as if the «block» keyword had
appeared before the name in the top compartment of the definition.

OMG Systems Modeling Language, v1.7 41

8.3.1.1.3 Labeled compartments

SysML allows blocks to have multiple compartments, each optionally identified with its own compartment name.
The compartments may partition the features shown according to various criteria. Some standard compartments are
defined by SysML itself, and others can be defined by the user using tool-specific facilities. Compartments may
appear in any order. SysML defines two additional compartments, namespace and structure compartments, which
may contain graphical nodes rather than textual constraint or feature definitions. See separate sub clauses for a
description of these compartments.
Compartment names shall comply with the following notation: Shown in italics, where permitted by the font in use.

1. Centered

2. All lower case

3. Words separated by spaces

8.3.1.1.4 Behavior compartment

A compartment with the label “classifier behavior” or “owned behaviors” may appear as part of a block definition to
list the classifier behavior or owned behaviors, respectively. This compartment may contain text representations of
any kind of behavior.
Behaviors represented in this compartment are shown as a text string of the form:
<name> ‘(’ [<parameter-list>] ‘)’ [‘:’ [<return-type-list>]] [<behavior-constraint>]
where:

• <name> is the name of the Behavior.

• <parameter-list> is a list of Parameters of the Behavior in the format defined in UML.

• <return-type-list> is list of types, multiplicities, and other properties of parameters with return direction.

<return-type-list> ::= <return-type-mult-prop> [‘,‘ <return-type-mult-prop>] *
<return-type-mult-prop> :=
<return-type> [‘[‘ <multiplicity-range> ‘]’] [‘{‘ <param-prop-list> ‘}’]]

(see UML for definition of <multiplicity-range>)
<param -prop-list> ::= <param -prop> [‘,’ <param -prop>]*
<param -prop> ::= ‘ordered’ | ‘unordered’ | ‘unique’ | ‘nonunique’ | ‘seq’ | ‘sequence’
• <behavior-constraint> is a constraint that applies to the behavior.
Other syntax defined by UML can be included, such as for applied stereotypes or the behavior's metaclass as a
keyword before the name (for example «stateMachine»).

8.3.1.1.5 Constraints compartment

SysML defines a special form of compartment, with the label “constraints,” which may contain one or more
constraints owned by the block. A constraint owned by the block may be shown in this compartment using the
standard text-based notation for a constraint, consisting of a string enclosed in brace characters. The use of a
compartment to show constraints is optional. The note-based notation, with a constraint shown in a note box outside
the block and linked to it by a dashed line, may also be used to show a constraint owned by a block.

A constraints compartment may also contain declarations of constraint properties owned by the block. A constraint
property is a property of the block that is typed by a ConstraintBlock, as defined in Section 10. Only the declaration
of the constraint property may be shown within the compartment, not the details of its parameters or binding
connectors that link them to other properties.

8.3.1.1.6 Namespace compartment

A compartment with the label “namespace” may appear as part of a block definition to show blocks and other
NamedElements that are defined in the Namespace of a containing block. This compartment may contain any of the
graphical elements of a block definition diagram. All NamedElements that are shown in this compartment belong to
the Namespace of the containing block, provided this is legal. Elements that cannot be owned by a Block, like
Dependencies, may still be shown in the compartment, but without implications for their owner. Relationships

42 OMG Systems Modeling Language, v1.7

between Elements inside and outside of the block’s Namespace may also be shown. Since the relationship is then
half outside of the compartment, no conclusion about ownership can be drawn from the diagram.

Because this compartment contains graphical elements, a wider compartment than typically used for feature
definitions may be useful. Since the same block can appear more than once in the same diagram, it may be useful to
show this compartment as part of a separate definition box than a box that shows only feature compartments. Both
namespace and structure compartments, which may both need a wide compartment to hold graphical elements, could
also be shown within a common definition box.

8.3.1.1.7 Structure compartment

A compartment with the label “structure” may appear as part of a block definition to show connectors and other
internal structure elements for the block being defined. This compartment may contain any of the graphical elements
of an internal block diagram.

Because this compartment contains graphical elements, a wider compartment than typically used for feature
definitions may be useful. Since the same block can appear more than once in the same diagram, it may be useful to
show this compartment as part of a separate definition box than a box that shows only feature compartments. Both
namespace and structure compartments, which may both need a wide compartment to hold graphical elements, could
also be shown within a common definition box.

8.3.1.1.8 BoundReference compartment

A compartment with the label “bound references” may appear as part of a block definition to show properties with
the BoundReference stereotype applied. The properties omit the “«boundReference»” prefix.

8.3.1.1.9 Receptions compartment

A compartment with the label “receptions” may appear as part of a block definition to show signal receptions. The
“«signal»” keyword is optional in this compartment.

8.3.1.1.10 Default multiplicities

SysML defines defaults for multiplicities on the ends of specific types of associations. A part or shared association
has a default multiplicity of [0..1] on the black or white diamond end. A unidirectional association has a default
multiplicity of 1 on its target end. These multiplicities may be assumed if not shown on a diagram. To avoid
confusion, any multiplicity other than the default should always be shown on a diagram.

8.3.1.1.11 Property-specific type

The notation for properties typed by a property-specific type shows the name of the most specific generalization of
the property-specific type that is not a property-specific type (or nothing if there is no generalization) between
parentheses after the name of the property-specific type (or after the colon if the property-specific type has no
name).

The keyword for PropertySpecificType is «pst».

8.3.1.1.12 Units on value properties

Value properties can optionally display the unit’s symbol in parentheses if value type has a unit defined.
If no unit symbol is defined, then the unit name can optionally be displayed.
<vpname> ":" <valueTypename> [" (" <unitSymbol | unitName> ")"]
e.g., distance:Length (m)

8.3.1.1.13 Units on values

Any ValueSpecification can optionally display the unit's symbol if it has a type which is a ValueType.
If ValueSpecification has no type and it is used as a value of a slot, then it takes the unit from defining feature type.
If ValueSpecification has no type and it is used as a default value of a value property, it takes the unit from that
property type.
If no unit symbol is defined, then the unit name may be displayed.

OMG Systems Modeling Language, v1.7 43

<value> [" " <unitSymbol | unitName>]
e.g., distance:Length = 10 m

8.3.1.2 Internal Block Diagram

An internal block diagram is based on the UML composite structure diagram, with restrictions and extensions as
defined by SysML.

8.3.1.2.1 Property types

Four general categories of properties of blocks are recognized in SysML: parts, references, value properties, and
constraint properties. (See Section 8.3.2.3 for definitions of these property types.) A part or value property is always
shown on an internal block diagram with a solid-outline box. A reference property is shown by a dashed-outline
box, consistent with UML. Ports are special cases of properties, and have a variety of notations as defined in Section
9, “Ports and Flows.” Constraint properties and their parameters also have their own notations as defined in Section
10, “Constraint Blocks.”

8.3.1.2.2 Block reference in diagram frame

The diagram heading name for an internal block diagram (the string contained in the tab in the upper-left-hand
corner of the diagram frame) shall identify the name of a SysML block as its modelElementName. (See Annex A for
the definition of a diagram heading name including the modelElementName component.) All the properties and
connectors that appear inside the internal block diagram belong to the block that is named in the diagram heading
name

8.3.1.2.3 Compartments on internal properties

SysML permits any property shown on an internal block diagram to also show compartments within the property
box. These compartments may be given standard or user-customized labels just as on block definitions. All features
shown within these compartments shall match those of the block or value type that types the property. An unlabeled
compartment on an internal property box is by default a structure compartment. A behavior compartment label and
content shall match the corresponding behavior compartment of the block that types the part. A compartment with
the label “classifier behavior” or “owned behaviors” may contain the classifier behavior or owned behaviors of the
block that types the part which will then appear as specified in Section 8.3.1.1.4, Behavior compartment.

The label of any compartment shown on the property box that displays contents belonging to the type of the property
is shown with a colon character (“:”) preceding the compartment label. The compartment name is otherwise the
same as it would appear on the type on a block definition diagram.

8.3.1.2.4 Compartments on a diagram frame

SysML permits compartments to be shown across the entire width of the diagram frame on an internal block
diagram. These compartments shall always follow an initial compartment that always shows the internal structure of
a referenced block. These compartments may have all the same contents as could be shown on a block definition
diagram for the block defined at the top level of the diagram frame.

8.3.1.2.5 Property path name

A property name shown inside or outside the property box may take the form of a multi-level name. This form of
name references a nested property accessible through a sequence of intermediate properties from a referencing
context. The name of the referenced property is built by a string of names separated by “.”, resulting in a form of
path name that identifies the property in its local context. A colon and the type name for the property may optionally
be shown following the dotted name string. If any of the properties named in the path name string identifies a
reference property, the property box is shown with a dashed-outline box, just as for any reference property on an
internal block diagram.

This notation is purely a notational shorthand for a property that could otherwise be shown within a structure of
nested property boxes, with the names in the dotted string taken from the name that would appear at each level of
nesting. In other words, the internal property shown with a path name in the left-hand side of Fig. 8.1 is equivalent
to the innermost nested box shown at the right.

44 OMG Systems Modeling Language, v1.7

If the property has no name, the property’s type name can be used instead.
e.g., car:Engine:Cylinder:Piston.length car.e.c.p.length

P1 : Block 1

Name 1

Name 2

Name 3

P1 : Block 1

Name 1.Name 2.Name 3

Figure 8.1. Nested property reference

8.3.1.2.6 Nested connector end

Connectors may be drawn that cross the boundaries of nested properties to connect to properties within them. The
connector is owned by the most immediate block that owns both ends of the connector. A NestedConnectorEnd
stereotype of a UML ConnectorEnd is automatically applied to any connector end that is nested more than one level
deep within a containing context.

Use of nested connector ends does not follow strict principles of encapsulation of the parts or other properties that a
connector line may cross. The need for nested connector ends can be avoided if additional properties can be added to
the block at each containing level. Nested connector ends are available for cases where the introduction of these
intermediate properties is not feasible or appropriate.

The ability to connect to nested properties within a containing block requires that multiple levels of decomposition
be shown on the same diagram.

8.3.1.2.7 Property-specific type

The notation for properties typed by a property-specific type shows the name of the most specific generalization of
the property-specific type that is not a property-specific type (or nothing if there is no generalization) between
parentheses after the name of the property-specific type (or after the colon if the property-specific type has no
name).

8.3.1.2.8 Initial values compartment

A compartment with a label of “initialValues” may be used to show values of properties belonging to a containing
block. These values override any default values that may have been previously specified on these properties on their
originally defining block. Initial value compartments may be specified within nested properties, which then apply
only in the particular usage context defined by the outermost containing block.

Values are specified in an initialValues compartment by lines in the form <property-name> = <value-specification>
or <property-name> : <type> = <value-specification>, each line of which specifies the initial value for one property
owned either by the block that types the property or by any of its supertypes. This portion of concrete syntax is the
same as may be shown for values within the UML instance specification notation, but this is the only element of
UML InstanceSpecification notation that may be shown in an initial values compartment. See Section 8.3.2.3 for
details of how values within initialValues compartments are represented in the SysML metamodel.

8.3.1.2.9 Default multiplicities

SysML defines default multiplicities of 1 on each end of a connector. These multiplicities may be assumed if not
shown on a diagram. To avoid confusion, any multiplicity other than the default should always be shown on a
diagram.

OMG Systems Modeling Language, v1.7 45

8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams

The supported variety of notations for associations and association annotations has been reduced to simplify the
burden of teaching, learning, and interpreting SysML diagrams for the systems engineering user. Notational and
metamodel support for n-ary associations and qualified associations has been excluded from SysML. The use of
navigation arrowheads on an association has been simplified by excluding the case of arrowheads on both ends, and
requiring that such an association always be shown without arrowheads on either end. An “X” on a single end of an
association to indicate that an end is not navigable has similarly been dropped, as has the use of a small filled dot at
the end of an association to indicate that the end is owned by the associated classifier.

UML allows representing owned attributes using an association-like notation (see UML 2.5.1, Figure 9-12). This
notation does not show any multiplicity on the opposite end since there is no corresponding property. In such a case,
the multiplicity on the opposite side of the association-like notation is the less constrained possible. That is: "0..1" if
the attribute has a composite aggregation and "0..*" otherwise. However, it is a common practice for modelers to
assume that, when not shown, the multiplicity of an association end is the default multiplicity (i.e., "1..1"). This
might create ambiguity because there is no practical way to distinguish between the association-like notation and a
"true" association. The association-like notation is excluded from SysML to avoid it.

The use of a «primitive» keyword on a value type definition (which in UML specifies the PrimitiveType
specialization of UML DataType) is not supported. Whether or not a value type definition has internal structure can
be determined from the value type itself.

8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

The UML Composite Structure diagram has many notations not included in the subset defined in this clause. Other
SysML clauses add some of these notations into the supported contents of an internal block diagram.

8.3.2 Stereotypes

Package Blocks

Class
«Metaclass»

UML4SysML::Class
«Metaclass»

isEncapsulated : Boolean [0..1]
attributes

Block
«stereotype»

Figure 8.2. Abstract syntax extensions for SysML blocks

46 OMG Systems Modeling Language, v1.7

Property
«Metaclass»

end : Property [1]
attributes

ParticipantProperty
«stereotype»

UML4SysML::Property
«Metaclass»

DistributedProperty
«stereotype»

Figure 8.3. Abstract syntax extensions for SysML properties

InstanceSpecification
«Metaclass»

InstanceSpecification
«Metaclass»

UML4SysML::InstanceSpecification
«Metaclass»

DataType
«Metaclass»

DataType
«Metaclass»

UML4SysML::DataType
«Metaclass»

ValueType
«stereotype»

0..1unit

quantityKind 0..1

Figure 8.4. Abstract syntax extensions for SysML value types

OMG Systems Modeling Language, v1.7 47

DirectedRelationship
«Metaclass»

Element
«Metaclass»

DirectedRelationship
«Metaclass»

Element
«Metaclass»

ElementPropertyPath
«stereotype»

UML4SysML::Element
«Metaclass»

UML4SysML::DirectedRelationship
«Metaclass»

DirectedRelationshipPropertyPath
«stereotype»

Classifier
«Metaclass»

Classifier
«Metaclass»

Property
«Metaclass»

UML4SysML::Classifier
«Metaclass»

Property
«Metaclass»

UML4SysML::Property
«Metaclass»

0..*

{ordered, nonunique}

sourcePropertyPath 0..*

0..*

{ordered, nonunique}

targetPropertyPath0..*

0..*

sourceContext

0..1

0..*

targetContext

0..1

{ordered, nonunique}

propertyPath

1..*

Figure 8.5. Abstract syntax extensions for SysML property paths

ConnectorEnd
«Metaclass»

ConnectorEnd
«Metaclass»

NestedConnectorEnd
«stereotype»

UML4SysML::ConnectorEnd
«Metaclass»Connector

«Metaclass»

BindingConnector
«stereotype»

UML4SysML::Connector
«Metaclass»

ElementPropertyPath
«stereotype»

Figure 8.6. Abstract syntax extensions for SysML connector ends

Classifier
«Metaclass»

PropertySpecificType
«stereotype»

UML4SysML::Classifier
«Metaclass»

Figure 8.7. Abstract syntax extensions for SysML property-specific types

48 OMG Systems Modeling Language, v1.7

Property
«Metaclass»

upper : UnlimitedNatural [0..1] = *
lower : Integer [0..1] = 0

attributes

EndPathMultiplicity
«stereotype»

boundEnd : ConnectorEnd [1]
/bindingPath : Property [1..*]{ordered,nonunique}

attributes

BoundReference
«stereotype»

UML4SysML::Property
«Metaclass»

Figure 8.8. Abstract syntax extensions for SysML bound references

ClassifierBehaviorProperty
«stereotype»

Property
«Metaclass»

Element
«Metaclass»

Property
«Metaclass»

Property
«Metaclass»

Property
«Metaclass»

UML4SysML::Element
«Metaclass»

UML4SysML::Property
«Metaclass»

AdjunctProperty
«stereotype»

0..*

principal

1

Figure 8.9. Abstract syntax extensions for SysML adjunct properties and classifier behavior properties

8.3.2.1 AdjunctProperty

Description

The AdjunctProperty stereotype can be applied to properties to constrain their values to the values of connectors
typed by association blocks, call actions, object nodes, variables, or parameters, interaction uses, and submachine
states. The values of connectors typed by association blocks are the instances of the association block typing a
connector in the block having the stereotyped property. The values of call actions are the executions of behaviors
invoked by the behavior having the call action and the stereotyped property (see Section 11.3.1.1.1 Notation for
more about this use of the stereotype). The values of object nodes are the values of tokens in the object nodes of the
behavior having the stereotyped property (see Section 11.3.1.4.1 Notation for more about this use of the stereotype).
The values of variables are those assigned by executions of activities that have the stereotyped property. The values
of parameters are those assigned by executions of behaviors that have the stereotyped property. The keyword
«adjunct» before a property name indicates the property is stereotyped by AdjunctProperty.

Association Ends

• base_Property : Property [1]

• principal : Element [1]
Gives the element that determines the values of the property.

Constraints

• 10_multiplicity_same_or_less_restrictive

Properties with AdjunctProperty applied that have a Variable or Parameter as principal shall have a lower
multiplicity the same as or lower than the lower multiplicity of their principal, and an upper multiplicity the
same as or higher than the upper multiplicity of their principal.

OMG Systems Modeling Language, v1.7 49

self.principal.oclIsKindOf(UML::MultiplicityElement) implies
self.base_Property.lower <=
self.principal.oclAsType(UML::MultiplicityElement).lower and
self.base_Property.upper >=
self.principal.oclAsType(UML::MultiplicityElement).upper

• 11_submachine_and_interactionuse_composite_and _compatible_type

Properties with AdjunctProperty applied that have an InteractionUse or submachine State as principal shall be
composite and be typed by the interaction or state machine invoked by the interaction use or submachine State or
one of their generalizations.

self.principal.oclIsKindOf(UML::InteractionUse) or
self.principal.oclIsKindOf(UML::State) implies let behavior:
UML::Behavior = if self.principal.oclIsKindOf(UML::InteractionUse)
then self.principal.oclAsType(UML::InteractionUse).refersTo else
self.principal.oclAsType(UML::State).submachine endif in if
behavior.oclIsUndefined() then self.base_Property.type‑>isEmpty() else
self.base_Property.type‑>notEmpty() and behavior‑>closure(generalization)‑>
including(behavior)‑>includes(self.base_Property.type) endif

• 1_principal_kind

The principal of an applied AdjunctProperty shall be a Connector, CallAction, ObjectNode, Variable, Parameter,
submachine State, or InteractionUse.

self.principal.oclIsKindOf(UML::Connector) or
self.principal.oclIsKindOf(UML::CallAction) or
self.principal.oclIsKindOf(UML::ObjectNode) or
self.principal.oclIsKindOf(UML::Variable) or
self.principal.oclIsKindOf(UML::Parameter) or
self.principal.oclIsKindOf(UML::InteractionUse) or
(self.principal.oclIsKindOf(UML::State) and
self.principal.oclAsType(UML::State).isSubmachineState)

• 2_same_name

Properties to which AdjunctProperty applied shall have the same name as the principal, if the principal is a
NamedElement.

self.principal.oclIsKindOf(UML::NamedElement) implies
self.base_Property.name =
self.principal.oclAsType(UML::NamedElement).name

• 3_connector_and_callaction_composite

Properties with AdjunctProperty applied that have a Connector or CallAction as principal shall be composite.

self.principal.oclIsKindOf(UML::Connector) or
self.principal.oclIsKindOf(UML::CallAction) implies
self.base_Property.isComposite()

• 4_same_owner

Properties with AdjunctProperty applied shall be owned by an element that owns the principal, at least indirectly,
or one of that elements specializations.

let owners: Set(UML::Element) = self.principal‑>closure(owner) in let
specializations: Set(UML::Element) = UML::Classifier.allInstances()‑>

50 OMG Systems Modeling Language, v1.7

select(c | c‑>closure(general)‑>intersection(owners)‑>notEmpty()) in
owners‑>union(specializations)‑>includes(self.base_Property.owner)

• 5_compatible_type

Properties with AdjunctProperty applied that have as principal a Connector, ObjectNode, Variable, or Parameter
shall have the same type as the principal or one of that types generalizations.

self.principal.oclIsKindOf(UML::Connector) or
self.principal.oclIsKindOf(UML::Variable) or
self.principal.oclIsKindOf(UML::Parameter) implies let principal_type:
UML::Classifier = if self.principal.oclIsKindOf(UML::Connector) then
self.principal.oclAsType(UML::Connector).type else
self.principal.oclAsType(UML::TypedElement).type.oclAsType(UML::Classifier)
endif in principal_type‑>closure(general)‑>including(principal_type)‑>
includes(self.base_Property.type)

• 6_connector_principal_associationblock

Connectors that are principals of an applied AdjunctProperty shall have association blocks as types.

self.principal.oclIsKindOf(UML::Connector) implies let type:
UML::Association = self.principal.oclAsType(UML::Connector).type in
Block.allInstances().base_Class‑>includes(type)

• 7_adjunctproperty_connectorproperty_consistent

AdjunctProperty and ConnectorProperty applied to the same property shall have the same values for principal
and connector, respectively.

AdjunctProperty.allInstances()‑>forAll(ap | let cp: ConnectorProperty =
ConnectorProperty.allInstances()‑>any(base_Property=ap.base_Property) in
(not cp.oclIsUndefined()) implies cp.connector = ap.principal)

• 8_callAction_composite_and_consistent_type

Properties with AdjunctProperty applied that have a CallAction as principal shall be composite and be typed by
the behavior invoked by the call action or one of that behaviors generalizations (for CallOperationActions, this
shall generalize all behaviors that might be dispatched), and an upper multiplicity of one if the CallAction
invokes a nonreentrant behavior.

self.principal.oclIsKindOf(UML::CallAction) implies if
self.principal.oclIsKindOf(UML::CallOperationAction) then let called:
Set(UML::Behavior) =
self.principal.oclAsType(UML::CallOperationAction).operation.method in
if called‑>isEmpty() then self.base_Property.type‑>isEmpty() else
self.base_Property.type‑>notEmpty() and called‑>forAll(b | b.general‑>
including(b)‑>includes(self.base_Property.type)) endif else let called:
UML::Behavior = if self.principal.oclIsKindOf(UML::CallBehaviorAction)
then self.principal.oclAsType(UML::CallBehaviorAction).behavior
else
self.principal.oclAsType(UML::StartObjectBehaviorAction).behavior()
endif in if called.oclIsUndefined() then
self.base_Property.type.oclIsUndefined() else let behaviors:
Set(UML::Behavior) = called‑>
closure(generalization).oclAsType(UML::Behavior)‑>including(called)‑>
asSet() in self.base_Property.type‑>notEmpty() and behaviors‑>
includes(self.base_Property.type) endif endif

OMG Systems Modeling Language, v1.7 51

• 9_objectnode_multiplicity

Properties with AdjunctProperty applied that have an ObjectNode as principal shall have a lower multiplicity of
zero and an upper multiplicity the same as or higher than the upperBound of the ObjectNode.

self.principal.oclIsKindOf(UML::ObjectNode) implies
self.base_Property.lower = 0 and self.base_Property.upper >=
self.principal.oclAsType(UML::ObjectNode).upperBound.unlimitedValue()

8.3.2.2 Binding Connector

Description

A Binding Connector is a connector which specifies that the properties at both ends of the connector have equal
values. If the properties at the ends of a binding connector are typed by a ValueType, the connector specifies that the
instances of the properties shall hold equal values, recursively through any nested properties within the connected
properties. If the properties at the ends of a binding connector are typed by a Block, the connector specifies that the
instances of the properties shall refer to the same block instance. As with any connector owned by a SysML Block,
the ends of a binding connector may be nested within a multi-level path of properties accessible from the owning
block. The NestedConnectorEnd stereotype is used to represent such nested ends just as for nested ends of other
SysML connectors.

Association Ends

• base_Connector : Connector [1]

Constraints

• 1_compatible_types

The two ends of a binding connector shall have either the same type or types that are compatible so that equality
of their values can be defined.

self.base_Connector.end‑>
at(1).role.type.conformsTo(self.base_Connector.end‑>at(2).role.type) or
self.base_Connector.end‑>
at(2).role.type.conformsTo(self.base_Connector.end‑>at(1).role.type)

8.3.2.3 Block

Description

A Block is a modular unit that describes the structure of a system or element. It may include both structural and
behavioral features, such as properties and operations, which represent the state of the system and behavior that the
system may exhibit. Some of these properties may hold parts of a system, which can also be described by blocks that
type the properties. Properties without types do not restrict the instances that can be values of the properties, as if
they had the most general type possible. A block may include a structure of connectors between its properties to
indicate how its parts or other properties relate to one another.

SysML blocks provide a general-purpose capability to describe the architecture of a system. They provide the ability
to represent a system hierarchy, in which a system at one level is composed of systems at a more basic level. They
can describe not only the connectivity relationships between the systems at any level, but also quantitative values or
other information about a system.

SysML does not restrict the kind of system or system element that may be described by a block. Any reusable form
of description that may be applied to a system or a set of system characteristics may be described by a block. Such
reusable descriptions, for example, may be applied to purely conceptual aspects of a system design, such as
relationships that hold between parts or properties of a system.

Connectors owned by SysML blocks may be used to define relationships between parts or other properties of the
same containing block. Connectors can be typed by associations, which can specify more detail about the links
between parts or other properties of a system, along with the types of the connected properties. Associations can also

52 OMG Systems Modeling Language, v1.7

be blocks, and when used to type connectors give relationships their own interconnected parts and other properties.
Connectors without types do not restrict the way the connected properties are linked together, as if they had the most
general type possible. Connectors have both structural and behavioral functions, which can be used together or
separately. Connectors as structure specify links between parts or other properties of a system. Connectors as
behavior specify communication and item flow between parts or other properties. Connected properties can be
linked without specifying communication and item flow, or can specify communication and item flow without
specifying a particular kind of link, or both.

SysML excludes variations of associations in UML in which navigable ends can be owned directly by the
association. In SysML, navigation is equivalent to a named property owned directly by a block. The only form of an
association end that SysML allows an association to own directly is an unnamed end used to carry an inverse
multiplicity of a reference property. This unnamed end provides a metamodel element to record an inverse
multiplicity, to cover the specific case of a unidirectional reference that defines no named property for navigation in
the inverse direction. SysML enforces its equivalence of navigation and ownership by means of constraints that the
block stereotype enforces on the existing UML metamodel.

SysML establishes four basic classifications of properties belonging to a SysML Block or ValueType. A property
typed by a SysML Block that has composite aggregation is classified as a part property, except for the special case
of a constraint property. Constraint properties are further defined in Section 10. A port is another category of
property, as further defined in Section 9. A property typed by a Block that does not have composite aggregation is
classified as a reference property. A property typed by a SysML ValueType is classified as a value property, and
always has composite aggregation. Part, reference, value, and constraint properties may be shown in block definition
compartments with the labels "parts," "references," "values," and "constraints" respectively. Properties of any type
may be shown in a "properties" compartment or in additional compartments with user-defined labels.

On a block definition diagram, a part property is shown by a black diamond symbol on an association. As in UML,
an instance of a block may be included in at most one instance of a block at a time, though possibly as a value of
more than one part property of the containing block. A part property holds instances that belong to a larger whole.
Typically, a part-whole relationship means that certain operations that apply to the whole also apply to each of the
parts. For example, if a whole represents a physical object, a change in position of the whole could also change the
position of each of the parts. A property of the whole such as its mass could also be implied by its parts. Operations
and relationships that apply to parts typically apply transitively across all parts of these parts, through any number of
levels. A particular application domain may establish its own interpretation of part-whole relationships across the
blocks defined in a particular model, including the definition of operations that apply to the parts along with the
whole. For software objects, a typical interpretation is that delete, copy, and move operations apply across all parts
of a composite object.

SysML also supports properties with shared aggregation, as shown by a white diamond symbol on an association.
Like UML, SysML defines no specific semantics or constraints for properties with shared aggregation, but particular
models or tools may interpret them in specific ways.

In addition to the form of default value specifications that SysML supports on properties of a block (with an optional
"=" <value-specification> string following the rest of a property definition), SysML supports an additional form of
value specification for properties using initialValue compartments on an internal block diagram (see Section
8.3.1.2.8). An entire tree of context-specific values can be specified on a containing block to carry values of nested
properties as shown on an internal block diagram.

Context-specific values are represented in the SysML metamodel by means of the InstanceValue subtype of UML
ValueSpecification. Selected slots of UML instance specifications referenced by these instance values carry the
individual values shown in initialValue compartments.

If a property belonging to a block has a specification of initial values for any of the properties belonging to its type,
then the default value of that property shall be a UML InstanceValue element. This element shall reference a UML
InstanceSpecification element created to hold the initial values of the individual properties within its usage context.

Selected slots of the referenced instance specification shall contain value specifications for the individual property
values specified in a corresponding initialValues compartment. If a value of a property is shown by a nested property
box with its own initialValues compartment, then the slot of the instance specification for the containing property
shall hold a new InstanceValue element. Selected slots of the instance specification referenced by this value shall
contain value specifications for any nested initial values, recursively through any number of levels of nesting. A tree

OMG Systems Modeling Language, v1.7 53

of instance values referencing instance specifications, each of which may in turn hold slots carrying instance values,
shall exist until self-contained value specifications are reached at the leaf level.

Attributes

• isEncapsulated : Boolean [0..1]
If true, then the block is treated as a black box; a part typed by this black box can only be connected via its ports
or directly to its outer boundary. If false, or if a value is not present, then connections can be established to
elements of its internal structure via deep-nested connector ends.

Association Ends

• base_Class : Class [1]

Constraints

• 1_associations_binary

For an association in which both ends are typed by blocks, the number of ends shall be exactly two.

UML::Association.allInstances()‑>select(a| a.memberEnd‑>forAll(e| e.type‑>
notEmpty() and Block.allInstances().base_Class‑>includes(e.type)))‑>
forAll(a | a.memberEnd‑>size()=2)

• 2_connectors_binary

The number of ends of a connector owned by a block shall be exactly two. (In SysML, a binding connector is not
typed by an association, so this constraint is not implied entirely by the preceding constraint.)

self.base_Class.ownedConnector‑>forAll(c | c.end‑>size()=2)

• 5_uml_connector_constraint_removed

The following constraint under 11.8, "Connector" in the UML 2 standard is removed by SysML: "The
ConnectableElements attached as roles to each ConnectorEnd owned by a Connector must be roles of the
Classifier that owned the Connector, or they must be ports of such roles.

-- Cannot be expressed in OCL

• 6_valueproperties_composite

If a property owned by a SysML Block or SysML ValueType is typed by a SysML ValueType, then the
aggregation attribute of the property shall be "composite."

self.base_Class.ownedAttribute‑>select(a|
ValueType.allInstances().base_DataType‑>includes(a.type))‑>
forAll(a|a.isComposite())

• 7_composition_acyclic

Within an instance of a SysML Block, the values of any property with composite aggregation (aggregation =
composite) shall not contain the block in any of its own properties that also have composite aggregation, or
within any unbroken chain of properties that all have composite aggregation. (Within an instance of a SysML
Block, the instances of properties with composite aggregation shall form an acyclic graph.)

self.base_Class‑>closure(part‑>
select(p|p.type.oclIsKindOf(UML::Class)).type.oclAsType(UML::Class))‑>
excludes(self.base_Class)

• 8_specializations_are_blocks

Any classifier that specializes a Block shall also have the Block stereotype or one of its specializations applied.

54 OMG Systems Modeling Language, v1.7

UML::Classifier.allInstances()‑>select(c | c.general‑>
includes(self.base_Class))‑>forAll(c | Block.allInstances()‑>includes(c))

• 9_valueproperties_composite

The following constraint under 11.8,"ConnectorEnd" in the UML 2 standard is removed by SysML: "[3] The
property held in self.partWithPort must not be a Port."

self.base_Class.ownedAttribute‑>select(a|
ValueType.allInstances().base_DataType‑>includes(a.type))‑>
forAll(a|a.isComposite())

8.3.2.4 Bound Reference

Description

The BoundReference stereotype can be applied to properties that have binding connectors, to highlight their usage as
constraining other properties. The bound end of the stereotype is a connector end of one of the binding connectors,
path of the bound end, if it is a nested connector end.

The type of stereotyped property constrains the type of the values of the bound properties. The multiplicity of the
stereotyped property constrains the number of values of the bound properties, which is the total number of values
reached by navigation through property paths of nested connector ends, if any. The multiplicities at the end of path
can be constrained, because bound references are end path multiplicities (see Section 8.3.2.9, EndPathMultiplicity).

Properties with BoundReference applied and upper multiplicity greater than one are ordered, with values ordered
according to when they are reached in navigating the binding path (and how they are ordered within their blocks),
and non-unique, to support paths that lead to or pass through the same object.

Generalizations

• EndPathMultiplicity (from Blocks)

Attributes

• /bindingPath : Property [1..*] {ordered, nonunique}
Gives the propertyPath of the NestedConnectorEnd applied, if any, to the boundEnd, appended to the role of the
boundEnd.

• boundEnd : ConnectorEnd [1]
Gives a connector end of a binding connector opposite to the end linked to the stereotyped property, or linked to
a property that generalizes the stereotyped one through redefinition.

Association Ends

• base_Property : Property [1]

Constraints

• 1_bindingconnector_end

Properties to which BoundReference is applied shall be the role of a connector end of at least one binding
connector, or generalized by such a property through redefinition.

BindingConnector.allInstances().base_Connector.end.role‑>exists(r |
r=self.base_Property or self.base_Property‑>closure(redefinedElement)‑>
includes(r))

• 2_opposite_bindingconnector_end

The value of boundEnd shall be a connector end of a binding connector, as identified in constraint 1, opposite
the property, as identified in constraint 1.

OMG Systems Modeling Language, v1.7 55

let opposite: UML::ConnectorEnd =
BindingConnector.allInstances().base_Connector.end‑>any(e |
e.role=self.base_Property or self.base_Property‑>
closure(redefinedElement)‑>includes(e.role)) in self.boundEnd =
opposite.owner.oclAsType(UML::Connector).end‑>any(e | e<>opposite)

• 3_navigable

The role of boundEnd shall be a property accessible by navigation from instances of the block owning the
property to which BoundReference is applied, but shall not be the property to which BoundReference is applied,
or one that it is related to by redefinition.

self.base_Property.association‑>notEmpty() and
self.boundEnd.definingEnd‑>notEmpty() and
self.base_Property.association.navigableOwnedEnd‑>
includes(self.boundEnd.definingEnd)

• 4_propertypath_consistency

The last value of bindingPath shall be the role of boundEnd, and the other values shall be the propertyPath of the
NestedConnectorEnd applied to boundEnd, if any.

self.boundEnd = self.bindingPath‑>last() and (let nce:
NestedConnectorEnd = NestedConnectorEnd.allInstances()‑>any(n|
n.base_ConnectorEnd=self.boundEnd) in nce‑>oclIsUndefined() or
self.bindingPath‑>subSequence(1, self.bindingPath‑>size()-1) =
nce.propertyPath)

• 5_reference_or_valueproperty

Properties to which BoundReference is applied shall either be reference properties or value properties.

ValueType.allInstances().base_DataType‑>includes(self.base_Property.type)
or not self.base_Property.isComposite()

• 6_ordered_nonunique

Properties with BoundReference applied that have an upper multiplicity greater than one shall be ordered and
non-unique.

self.base_Property.upper > 1 implies self.base_Property.isOrdered and
not self.base_Property.isUnique

• 7_cannot_redefine_boundreference

BoundReferences shall not be applied to properties that are related by redefinition to other properties with
BoundReference applied.

self.base_Property.redefinedElement‑>notEmpty() implies
BoundReference.allInstances().base_Property‑>
excludesAll(self.base_Property.redefinedElement)

• 8_notbounded_to_itslef

The binding connector identified in constraint 1 shall not have the same property on both ends, or properties
related by redefinition.

let e1: UML::ConnectorEnd =
self.boundEnd.owner.oclAsType(UML::Connector).end‑>at(1) in let e2:
UML::ConnectorEnd = self.boundEnd.owner.oclAsType(UML::Connector).end‑>
at(2) in e1.role <> e2.role and (e1.role.oclIsKindOf(UML::Property) and
e2.role.oclIsKindOf(UML::Property) implies

56 OMG Systems Modeling Language, v1.7

e1.role.oclAsType(UML::Property).redefinedElement‑>excludes(e2.role) and
e2.role.oclAsType(UML::Property).redefinedElement‑>excludes(e1.role))

8.3.2.5 ClassifierBehaviorProperty

Description

The ClassifierBehaviorProperty stereotype can be applied to properties to constrain their values to be the executions
of classifier behaviors. The value of properties with ClassifierBehaviorProperty applied are the executions of
classifier behaviors invoked by instantiation of the block that owns the stereotyped property or one of its
specializations.

Association Ends

• base_Property : Property [1]

Constraints

• 1_owner_classifierbehavior

ClassifierBehaviorProperty shall only be applied to properties owned (not inherited) by blocks that have
classifier behaviors.

Block.allInstances().base_Class‑>exists(c | c.ownedAttribute‑>
includes(self.base_Property) and c.classifierBehavior‑>notEmpty())

• 2_composite

Properties to which ClassifierBehaviorProperty is applied shall be composite.

self.base_Property.isComposite

• 3_typed_by_classifierbehavior

Properties to which ClassifierBehaviorProperty applied shall be typed by the classifier behavior of their owning
block or a generalization of the classifier behavior.

let clBehavior: UML::Behavior =
self.base_Property.owner.oclAsType(UML::Class).classifierBehavior in
self.base_Property.type‑>notEmpty() and clBehavior‑>closure(general)‑>
including(clBehavior)‑>includes(self.base_Property.type)

8.3.2.6 DirectedRelationshipPropertyPath

Description

The DirectedRelationshipPropertyPath stereotype based on UML DirectedRelationship enables directed
relationships to identify their sources and targets by a multi-level path of properties accessible from context blocks
for the sources and targets. Context blocks are typically the owner of the first property in the path of properties, but
can be specializations of the owner to limit the scope of the relationship.

Association Ends

• base_DirectedRelationship : DirectedRelationship [1]

• sourceContext : Classifier [0..1]
Gives the context for sourcePropertyPath to begin from.

• sourcePropertyPath : Property [0..*] {ordered, nonunique}
A series of properties that identifies the source of the directed relationship in the context of the block specified
by the sourceContext property. The ordering of properties is from a property of the sourceContext block, through
a property of each intermediate block that types the preceding property, ending in a property with a type that
owns or inherits the source of the directed relationship. The source is not included in the propertyPath list. The

OMG Systems Modeling Language, v1.7 57

same property might appear more than once because a block can own a property with the same or specialized
block as a type.

• targetContext : Classifier [0..1]
Gives the context for targetPropertyPath to begin from.

• targetPropertyPath : Property [0..*] {ordered, nonunique}
A series of properties that identifies the target of the directed relationship in the context of the block specified by
the targetContext property. The ordering of properties is from a property of the targetContext block, through a
property of each intermediate block that types the preceding property, ending in a property with a type that owns
or inherits the target of the directed relationship. The target is not included in the propertyPath list. The same
property might appear more than once because a block can own a property with the same or specialized block as
a type.

Constraints

• 1_sourcecontext_iif_property

sourceContext shall have a value when source is a property, otherwise it shall not have a value

self.base_DirectedRelationship.source‑>exists(s |
s.oclIsKindOf(UML::Property)) xor self.sourceContext‑>isEmpty()

• 2_targetcontext_iif_property

targetContext shall have a value when target is a property, otherwise it shall not have a value.

self.base_DirectedRelationship.source‑>exists(s |
s.oclIsKindOf(UML::Property)) xor self.sourceContext‑>isEmpty()

• 3_sourcepropertypath_implies_property

source shall be a property when sourcePropertyPath has a value.

self.sourcePropertyPath‑>notEmpty() implies
self.base_DirectedRelationship.source‑>forAll(s |
s.oclIsKindOf(UML::Property))

• 4_targetpropertypath_implies_property

target shall be a property when targetPropertyPath has a value.

self.targetPropertyPath‑>notEmpty() implies
self.base_DirectedRelationship.target‑>forAll(s |
s.oclIsKindOf(UML::Property))

• 5_sourcecontext_owns_sourcepath_first

The property in the first position of the sourcePropertyPath list, if any, shall be owned by the sourceContext or
one of its generalizations.

self.sourcePropertyPath‑>notEmpty() implies
self.sourceContext.allAttributes()‑>includes(self.sourcePropertyPath‑>
first())

• 6_targetcontext_owns_targetpath_first

The property in the first position of the targetPropertyPath list, if any, shall be owned by the targetContext or one
of its generalizations.

self.targetPropertyPath‑>notEmpty() implies
self.targetContext.allAttributes()‑>includes(self.targetPropertyPath‑>
first())

58 OMG Systems Modeling Language, v1.7

• 7_path_and_owners_consistency

The property at each successive position of the sourcePropertyPath and targetPropertyPath, following the first
position, shall be owned by the Block or ValueType that types the property at the immediately preceding
position, or a generalization of the Block or ValueType.

(self.sourcePropertyPath‑>size() >1 implies self.sourcePropertyPath‑>
subSequence(2, self.sourcePropertyPath‑>size())‑>forAll(p | let pp:
UML::Property = self.sourcePropertyPath‑>at(self.sourcePropertyPath‑>
indexOf(p)-1) in let owners: Set(UML::Classifier) =
pp.type.oclAsType(UML::Classifier)‑>
including(pp.type.oclAsType(UML::Classifier)) in owners‑>
includes(p.owner))) and (self.targetPropertyPath‑>size() >1 implies
self.targetPropertyPath‑>subSequence(2, self.targetPropertyPath‑>size())‑>
forAll(p | let pp: UML::Property = self.targetPropertyPath‑>
at(self.targetPropertyPath‑>indexOf(p)-1) in let owners:
Set(UML::Classifier) = pp.type.oclAsType(UML::Classifier)‑>
including(pp.type.oclAsType(UML::Classifier)) in owners‑>
includes(p.owner)))

• 8_sourcepath_last_type_owns_source

The type of the property at the last position of the sourcePropertyPath list shall own or inherit the source of the
stereotyped directed relationship.

self.sourcePropertyPath‑>notEmpty() implies self.sourcePropertyPath‑>
last().type.oclAsType(UML::Classifier).allAttributes()‑>
includesAll(self.base_DirectedRelationship.source)

• 9_targetpath_last_type_owns_target

The type of the property at the last position of the targetPropertyPath list shall own or inherit the target of the
stereotyped directed relationship.

self.targetPropertyPath‑>notEmpty() implies self.targetPropertyPath‑>
last().type.oclAsType(UML::Classifier).allAttributes()‑>
includesAll(self.base_DirectedRelationship.target)

8.3.2.7 DistributedProperty

Description

DistributedProperty is a stereotype of Property used to apply a probability distribution to the values of the property.
Specific distributions should be defined as subclasses of the DistributedProperty stereotype with the operands of the
distributions represented by properties of those stereotype subclasses. A sample set of probability distributions that
could be applied to value properties is given in Section E.7.

Association Ends

• base_Property : Property [1]

Constraints

• 1_block_or_valuetype

The DistributedProperty stereotype shall only be applied to properties of classifiers stereotyped by Block or
ValueType.

Block.allInstances().base_Class.oclAsType(UML::Classifier)‑>
union(ValueType.allInstances().base_DataType)‑>
includes(self.base_Property.owner)

OMG Systems Modeling Language, v1.7 59

8.3.2.8 ElementPropertyPath

Description

The ElementPropertyPath stereotype based on UML Element enables elements to identify other elements by a multi-
level path of properties accessible from a context block. The context block is described in specializations of
ElementPropertyPath.

Association Ends

• base_Element : Element [1]

• propertyPath : Property [1..*] {ordered, nonunique}
A series of properties that identifies elements in the context of a block described in specializations of
ElementPropertyPath. The ordering of properties is from a property of the context block, through a property of
each intermediate block that types the preceding property, ending in a property with a type that owns or inherits
the fully nested property. The fully nested property is not included in the propertyPath list, but is given by the
element to which the ElementPropertyPath is applied in a way described in specializations of
ElementPropertyPath. The same property might appear more than once because a block can own a property with
the same or specialized block as a type.

Constraints

• 1_path_consistency

The property at each successive position of the propertyPath attribute, following the first position, shall be
owned by the Block or ValueType that types the property at the immediately preceding position, or a
generalization of the Block or ValueType.

self.propertyPath‑>size() >1 implies self.propertyPath‑>subSequence(2,
self.propertyPath‑>size())‑>forAll(p | let pp: UML::Property =
self.propertyPath‑>at(self.propertyPath‑>indexOf(p)-1) in let owners:
Set(UML::Classifier) = pp.type.oclAsType(UML::Classifier)‑>
including(pp.type.oclAsType(UML::Classifier)) in owners‑>
includes(p.owner))

8.3.2.9 EndPathMultiplicity

Description

The EndPathMultiplicity stereotype can be applied to properties that are related by redefinition to properties that
have BoundReference applied. The lower and upper properties of the stereotype give the minimum and maximum
number of values, respectively, of the property at the bound end of the related bound reference, for each object
reached by navigation along its binding path.

Attributes

• lower : Integer [0..1]
Gives the minimum number of values of the property at the end of the related bindingPath, for each object
reached by navigation along the bindingPath from an instance of the block owning the property to which
EndPathMultiplicity is applied.

• upper : UnlimitedNatural [0..1]
Gives the maximum number of values of the property at the end of the related bindingPath, for each object
reached by navigation along the bindingPath from an instance of the block owning the property to which
EndPathMultiplicity is applied.

Association Ends

• base_Property : Property [1]

60 OMG Systems Modeling Language, v1.7

Constraints

• 1_redefinition

Properties to which EndPathMultiplicity is applied shall be related by redefinition to a property to which
BoundReference is applied.

self.base_Property.redefinedProperty‑>notEmpty() and
BoundReference.allInstances().base_Property‑>exists(p |
self.base_Property.redefinedProperty‑>includes(p))

• 2_non_negative

endPathLower shall be non-negative.

self.lower >= 0

8.3.2.10 NestedConnectorEnd

Description

The NestedConnectorEnd stereotype of UML ConnectorEnd extends a UML ConnectorEnd so that the connected
property may be identified by a multi-level path of accessible properties from the block that owns the connector. The
propertyPath inherited from ElementPropertyPath gives a series of properties that identifies the connected property
in the context of the block that owns the connector. The ordering of properties is from a property of the block that
owns the connector, through a property of each intermediate block that types the preceding property, ending in a
property with a type that owns or inherits the property that is the role of the connector end (the property that the
connector graphically attaches to at that end). The property that is the role of the connector end is not included in the
propertyPath list.

Generalizations

• ElementPropertyPath (from Blocks)

Association Ends

• base_ConnectorEnd : ConnectorEnd [1]

Constraints

• 1_propertypath_first_owned_by_connector_owner

The first property in propertyPath shall be owned by the block that owns the connector, or one of the blocks
generalizations.

let owningBlock: UML::Class =
self.base_ConnectorEnd.owner.oclAsType(UML::Connector).owner.oclAsType(UML::Class)
in (not owningBlock.oclIsUndefined()) and owningBlock‑>closure(general)‑>
including(owningBlock)‑>includes(self.propertyPath‑>first().owner)

• 2_propertypath_last_type_owns_role

The type of the property at the last position of the propertyPath list shall own or inherit the role property of the
stereotyped connector end.

let type: UML::Classifier = self.propertyPath‑>
last().type.oclAsType(UML::Classifier) in (not type.oclIsUndefined())
and type.allFeatures()‑>includes(self.base_ConnectorEnd.role)

8.3.2.11 ParticipantProperty

OMG Systems Modeling Language, v1.7 61

Description

The Block stereotype extends Class, so it can be applied to any specialization of Class, including Association
Classes. These are informally called "association blocks." An association block can own properties and connectors,
like any other block. Each instance of an association block can link together instances of the end classifiers of the
association.

To refer to linked objects and values of an instance of an association block, it is necessary for the modeler to specify
which (participant) properties of the association block identify the instances being linked at which end of the
association. The value of a participant property on an instance (link) of the association block is the value or object at
the end of the link corresponding to this end of the association.

Participant properties can be the ends of connectors owned by an association block. The association block can be the
type of multiple other connectors to reuse the same internal structure for all the connectors. The keyword
«participant» before a property name indicates the property is stereotyped by ParticipantProperty. They are always
the same as the corresponding association end type.

Attributes

• end : Property [1]
A member end of the association block owning the property on which the stereotype is applied.

Association Ends

• base_Property : Property [1]

Constraints

• 1_associationblock

ParticipantProperty shall only be applied to properties of association classes stereotyped by Block.

self.base_Property.class.oclIsKindOf(UML::AssociationClass) and
Block.allInstances().base_Class‑>includes(self.base_Property.class)

• 2_memberend

ParticipantProperty shall not be applied to properties that are member ends of an association.

UML::Association.allInstances().memberEnd‑>flatten()‑>
excludes(self.base_Property)

• 3_aggregationkind_none

The aggregation of a property stereotyped by ParticipantProperty shall be none.

self.base_Property.aggregation = UML::AggregationKind::none

• 4_end_owner

The end attribute of the applied stereotype shall refer to a member end of the association block owning the
property on which the stereotype is applied.

self.base_Property.association.memberEnd‑>includes(self.end)

• 5_same_type

A property stereotyped by ParticipantProperty shall have the same type as the property referred to by the end
attribute.

self.base_Property.type = self.end.type

• 6_multiplicity_1

A property to which the ParticipantProperty is applied shall have a multiplicity of 1.

62 OMG Systems Modeling Language, v1.7

self.base_Property.lower = 1 and self.base_Property.upper = 1

8.3.2.12 PropertySpecificType

Description

The PropertySpecificType stereotype can be applied to classifiers that type exactly one property and that are owned
by the owner of that property. Classifiers with this stereotype applied shall be generalized by at most one other
classifier.

Instances of a property-specific type are exactly those that are values of the property it types, in all instances of the
property owner. Values are (de)classified under property-specific types as they are (removed from) added to the
property they type:

• quantityKind : InstanceSpecification [0..1]
A kind of quantity, represented by an InstanceSpecification classified by a kind of SysML QuantityKind, that
may be stated by means

• Added values are classified as instances of the property-specific type.

• Removed values are:

◦ Declassified as instances of the property-specific type.

◦ Classified as instances of the most specific generalization of the property-specific type that is not a property-
specific type, unless the instances are indirectly classified by that generalization already. If there is no such
property-specific type, unless the instances are indirectly classified by that generalization already. If there is
no such property-specific type, removed values are not additionally classified.

• This enables values of the property to:

◦ Support more features than they would when they are not values of the property.

◦ Have redefined or constrained features only while they are values of the property.

Association Ends

• base_Classifier : Classifier [1]

Constraints

• 1_only_one_property

A classifier to which the PropertySpecificType stereotype is applied shall be referenced as the type of one and
only one property.

UML::Property.allInstances()‑>select(p | p.type = self.base_Classifier)‑>
size() = 1

8.3.2.13 ValueType

Description

A ValueType defines types of values that may be used to express information about a system, but cannot be
identified as the target of any reference. Since a value cannot be identified except by means of the value itself, each
such value within a model is independent of any other, unless other forms of constraints are imposed.

Value types may be used to type properties, operation parameters, or potentially other elements within SysML.
SysML defines ValueType as a stereotype of UML DataType to establish a more neutral term for system values that
may never be given a concrete data representation. For example, the SysML "Real" ValueType expresses the
mathematical concept of a real number, but does not impose any restrictions on the precision or scale of a fixed or
floating-point representation that expresses this concept. More specific value types can define the concrete data
representations that a digital computer can process, such as conventional Float, Integer, or String types.

SysML ValueType adds an ability to carry a unit of measure and quantity kind associated with the value. A quantity
kind is a kind of quantity that may be stated in terms of defined units, but does not restrict the selection of a unit to

OMG Systems Modeling Language, v1.7 63

state the value. A unit is a particular value in terms of which a quantity of the same quantity kind may be expressed.
A SysML ValueType and its quantityKind establishes, via UML typing, the associative relationship between a
particular "quantity" [VIM3-1.1] (modeled as a SysML value property typed by a ValueType) and a "kind of
quantity" [VIM3-1.2] (the ValueType::quantityKind of the SysML value propertys type). This UML/SysML
associative relationship reflects the terminological distinction made in VIM3 between the concepts of "quantity"
[VIM3-1.1] and "kind-of-quantity" [VIM3- 1.2] that "cannot be in a generic or partitive hierarchical relation to each
other" [Dybkaer-2010].

A SysML ValueType may define its own properties and/or operations, just as for a UML DataType. See Section
8.3.2.3, Block for property classifications that SysML defines for either a Block or ValueType.

Association Ends

• base_DataType : DataType [1]

• quantityKind : InstanceSpecification [0..1]

A kind of quantity, represented by an InstanceSpecification classified by a kind of SysML QuantityKind, that
may be stated by means of units. A value type may optionally specify a quantity kind without any unit. Such a
value type may be used to type a value specification to represent it in an abstract form independent of any
specific units.

Value types may be used to type properties, operation parameters, or potentially other elements within SysML.
SysML defines ValueType as a stereotype of UML DataType to establish a more neutral term for system values
that may never be given a concrete data representation. For example, the SysML "Real" ValueType expresses the
mathematical concept of a real number, but does not impose any restrictions on the precision or scale of a fixed
or floating-point representation that expresses this concept. More specific value types can define the concrete
data representations that a digital computer can process, such as conventional Float, Integer, or String types.

SysML ValueType adds an ability to carry a unit of measure and quantity kind associated with the value. A
quantity kind is a kind of quantity that may be stated in terms of defined units, but does not restrict the selection
of a unit to state the value. A unit is a particular value in terms of which a quantity of the same quantity kind
may be expressed. A SysML ValueType and its quantityKind establishes, via UML typing, the associative
relationship between a particular "quantity" [VIM3-1.1] (modeled as a SysML value property typed by a
ValueType) and a "kind of quantity" [VIM3-1.2] (the ValueType::quantityKind of the SysML value propertys
type). This UML/SysML associative relationship reflects the terminological distinction made in VIM3 between
the concepts of "quantity" [VIM3-1.1] and "kind-of-quantity" [VIM3- 1.2] that "cannot be in a generic or
partitive hierarchical relation to each other" [Dybkaer-2010].

A SysML ValueType may define its own properties and/or operations, just as for a UML DataType. See 8.3.2.4,
Block for property classifications that SysML defines for either a Block or ValueType.

• unit : InstanceSpecification [0..1]
A unit, represented by an InstanceSpecification classified by a kind of SysML Unit, in terms of which the
magnitudes of other quantities that have the same quantity kind can be stated.

Constraints

• 1_specializations_are_valuetypes

Any classifier that specializes a ValueType shall also have the ValueType stereotype applied.

UML::Classifier.allInstances()‑>forAll(c | c.general‑>
includes(self.base_DataType) implies
ValueType.allInstances().base_DataType‑>includes(c))

• 2_unit

The unit of a ValueType, if any, shall be an InstanceSpecification classified by SysMLs Unit block in the
UnitAndQuantityKind model library or a specialization of it.

64 OMG Systems Modeling Language, v1.7

self.unit‑>notEmpty() and self.unit.classifier‑>notEmpty() implies
self.unit.classifier‑>forAll(c |
c.oclIsKindOf(Libraries::UnitAndQuantityKind::Unit))

• 3_quantitykind

The quantityKind of a ValueType, if any, shall be an InstanceSpecification classified by SysMLs QuantityKind
block in the UnitAndQuantityKind model library or a specialization of it.

self.quantityKind‑>notEmpty() and self.quantityKind.classifier‑>
notEmpty() implies self.quantityKind.classifier‑>forAll(c |
c.oclIsKindOf(Libraries::UnitAndQuantityKind::QuantityKind))

8.3.3 Model Libraries

8.3.3.1 PrimitiveValueTypes

Model library for primitive value typesPrimitiveValueTypes[Package]bdd][

realPart : Real [1]
imaginaryPart : Real [1]

attributes

Complex
«ValueType»

Boolean
«primitive»

String
«primitive»

Integer
«primitive»

Real
«primitive»

String
«ValueType»

Real
«ValueType»

Number
«ValueType»

Integer
«ValueType»

Boolean
«ValueType»

Figure 8.10. Model library for primitive value types

8.3.3.1.1 Boolean

Description

A Boolean value type consists of the predefined values true and false.

Generalizations

• Boolean (from PrimitiveTypes)

8.3.3.1.2 Complex

Description

A Complex value type represents the mathematical concept of a complex number. A complex number consists of a
real part defined by a real number, and an imaginary part defined by a real number multiplied by the square root of
-1. Complex numbers are used to express solutions to various forms of mathematical equations.

OMG Systems Modeling Language, v1.7 65

Generalizations

• Number (from PrimitiveValueTypes)

Attributes

• imaginaryPart : Real [1]
A real number used to express the imaginary part of a complex number.

• realPart : Real [1]
A real number used to express the real part of a complex number.

8.3.3.1.3 Integer

Description

An Integer value type represents the mathematical concept of an integer number. An Integer value type may be used
to type values that hold negative or positive integer quantities, without committing to a specific representation such
as a binary or decimal digits with fixed precision or scale.

Generalizations

• Integer (from PrimitiveTypes)

• Number (from PrimitiveValueTypes)

8.3.3.1.4 Number

Description

Number is an abstract value type from which other value types that express concepts of mathematical numbers are
specialized.

8.3.3.1.5 Real

Description

A Real value type represents the mathematical concept of a real number. A Real value type may be used to type
values that hold continuous quantities, without committing a specific representation such as a floating point data
type with restrictions on precision and scale.

Generalizations

• Number (from PrimitiveValueTypes)

• Real (from PrimitiveTypes)

8.3.3.1.6 String

Description

A String value type consists of a sequence of characters in some suitable character set. Character sets may include
non-Roman alphabets and characters.

Generalizations

• String (from PrimitiveTypes)

66 OMG Systems Modeling Language, v1.7

8.3.3.2 Package UnitAndQuantityKind

Model library for Unit and QuantityKindUnitAndQuantityKind[Package]bdd][

symbol : String [0..1]
description : String [0..1]
definitionURI : String [0..1]

values

Unit
«block»

symbol : String [0..1]
description : String [0..1]
definitionURI : String [0..1]

values

QuantityKind
«block»

0..*

quantityKind

0..*

Figure 8.11. Model library for Unit and QuantityKind

8.3.3.2.1 QuantityKind

Description

A QuantityKind is a kind of quantity that may be stated by means of defined units. For example, the quantity kind of
length may be measured by units of meters, kilometers, or feet. QuantityKind is defined as a non-abstract SysML
Block defined in the SysML UnitAndQuantityKind model library. QuantityKind, or a specialization of it, classifies
an InstanceSpecification to define a particular "kind-of-quantity" in the sense of an "aspect common to mutually
comparable quantities" [VIM3-1.2], where a SysML value property is understood to correspond to the VIM concept
of "quantity" defined as a "property of a phenomenon, body or substance, where the property has a magnitude that
can be expressed as a number and a reference" [VIM3-1.1]. Modelers specialize QuantityKind as done in SysMLs
QUDV model library or in a similar manner in other model libraries.

The definitionURI of an InstanceSpecification classified by a kind of QuantityKind identifies the particular "kind-
of-quantity" [VIM3-1.2] that the InstanceSpecification represents. Two such InstanceSpecifications represent the
same "kind-of-quantity" if and only if their definitionURIs have values and their values are equal. The only valid use
of a QuantityKind instance is to be referenced by the quantityKind property of a ValueType or Unit.

See the non-normative model library in E.5 for an optional way to specify more comprehensive definitions of units
and quantity kinds as part of systems of units and systems of quantities. The name of a QuantityKind, its
definitionURI, or other means may be used to link individual quantity kinds to additional sources of documentation
such as this optional model library.

Attributes

• definitionURI : String [0..1]

• description : String [0..1]

• symbol : String [0..1]

8.3.3.2.2 Unit

Description

QuantityKind is a kind of quantity that may be stated by means of defined units. For example, the quantity kind of
length may be measured by units of meters, kilometers, or feet. QuantityKind is defined as a non-abstract SysML
Block defined in the SysML UnitAndQuantityKind model library. QuantityKind, or a specialization of it, classifies
an InstanceSpecification to define a particular "kind-of-quantity" in the sense of an "aspect common to mutually
comparable quantities" [VIM3-1.2], where a SysML value property is understood to correspond to the VIM concept
of "quantity" defined as a "property of a phenomenon, body or substance, where the property has a magnitude that
can be expressed as a number and a reference" [VIM3-1.1]. Modelers specialize QuantityKind as done in SysMLs
QUDV model library or in a similar manner in other model libraries.

The definitionURI of an InstanceSpecification classified by a kind of QuantityKind identifies the particular "kind-
of-quantity" [VIM3-1.2] that the InstanceSpecification represents. Two such InstanceSpecifications represent the

OMG Systems Modeling Language, v1.7 67

same "kind-of-quantity" if and only if their definitionURIs have values and their values are equal. The only valid use
of a QuantityKind instance is to be referenced by the quantityKind property of a ValueType or Unit.

See the non-normative model library in Section E.5 for an optional way to specify more comprehensive definitions
of units and quantity kinds as part of systems of units and systems of quantities. The name of a QuantityKind, its
definitionURI, or other means may be used to link individual quantity kinds to additional sources of documentation
such as this optional model library.

A Unit is a quantity in terms of which the magnitudes of other quantities that have the same quantity kind can be
stated. A unit often relies on precise and reproducible ways to measure the unit. For example, a unit of length such
as meter may be specified as a multiple of a particular wavelength of light. A unit may also specify less stable or
precise ways to express some value, such as a cost expressed in some currency, or a severity rating measured by a
numerical scale. Unit is defined as a non-abstract SysML Block defined in the SysML UnitAndQuantityKind model
library. Unit, or a specialization of it, classifies an InstanceSpecification to define a particular "measurement unit" in
the sense of a "real scalar quantity, defined and adopted by convention, with which any other quantity of the same
kind can be compared to express the ratio of the two quantities as a number" [VIM3-1.9], where a SysML value
property is understood to correspond to the VIM concept of "quantity" defined as a "property of a phenomenon,
body or substance, where the property has a magnitude that can be expressed as a number and a reference"
[VIM3-1.1]. Modelers specialize Unit as done in SysMLs QUDV model library or in a similar manner in other
model libraries.

The definitionURI of an InstanceSpecification classified by a kind of Unit identifies the particular "measurement
unit" [VIM3-1.9] that the InstanceSpecification represents. Two such InstanceSpecifications represent the same
"measurement unit" if and only if their definitionURIs have values and their values are equal.

The only valid use of a Unit instance is to be referenced by the unit property of a ValueType stereotype. See the non-
normative model library in Section E.5 for an optional way to specify more comprehensive definitions of units and
quantity kinds as part of systems of units and systems of quantities. The name of a Unit, its definitionURI, or other
means may be used to link individual units to additional sources of documentation such as this optional model
library.

Attributes

• definitionURI : String [0..1]

• description : String [0..1]

• symbol : String [0..1]

Association Ends

• quantityKind : QuantityKind [0..*]

8.4 Usage Examples

8.4.1 Wheel Hub Assembly

In Fig. 8.12 a block definition diagram shows the blocks that comprise elements of a Wheel. The block property
LugBoltJoint.torque has a specialization of DistributedProperty applied to describe the uniform distribution of its
values. Examples of such distributions can be found in Section E.5. Connectors from the lugBoltJoints part go to
nested parts, and use NestedConnectorEnd to specify the path of properties to reach those parts. For the
threadedHole end of the connector going to part h, the property path is (hub). For the mountingHole end of the
connector going to mountingHoles, the property path is (wheel, w). Similarly, the connector between the rim and
bead parts has property paths (w) and (t) on its ends.

68 OMG Systems Modeling Language, v1.7

Wheel Packagebdd][

boltTension : lb
«uniform» torque : ft-lb{max = 85.0, min = 75.0}

values

LugBoltJoint

operations
transmitPressure()

WirelessTirePressureMonitor

WheelHubAssembly

threadSize : mm
lugBoltSize : mm

values

LugBoltThreadedHole

lugBoltSize : mm
values

LugBoltMountingHole

BalanceWeight

InflationValve

TireMountingRim

TireBead

width : mm
diameter : mm

values

Wheel

mountTire()
operations

tireSpecification : String
values

Tire

inflationPressure : psi
values

WheelAssembly

Hub

lugBoltJoints
5

0..1

1

hub

0..1

mountingHole

5

0..1

weight

0..6

0..1

1

v

0..1 2

rim

0..1

bead

2

0..1

threadedHole

10..1
h

5

wheel
1 0..1

1

w

0..1

1

t

BandMount

1

1

PressureSeat
1

1

0..1

mountingHole1

Figure 8.12. Wheel Package

Internal Block Diagram for WheelHubAssemblyibd][

wheel : WheelAssembly

w : Wheel

mountingHole : LugBoltMountingHole [5]

rim : TireMountingRim [2]

t : Tire

bead : TireBead [2]

hub : Hub

h : LugBoltThreadedHole [5]

lugBoltJoints : LugBoltJoint [5]

: PressureSeat

mountingHole 1

0..1

threadedHole 1

0..1

Figure 8.13. Internal Block Diagram for WheelHubAssembly

In Fig. 8.13 an internal block diagram (ibd) shows how the blocks defined in the Wheel package are used. This ibd
is a partial view that focuses on particular parts of interest and omits others from the diagram, such as the “v”
InflationValve and “weight” BalanceWeight, which are also parts of a Wheel.

8.4.2 Example Value Type Definitions

In Fig. 8.14, several value types that use standard units of measure from the International System of Units (SI) are
defined to be available in the Example Value Type Definitions package. The value types in this package could be

OMG Systems Modeling Language, v1.7 69

imported into other contexts for typing properties of SysML Blocks. Because a SysML Unit can already identify a
type of quantity, or QuantityKind, that the unit measures, a value type only needs to identify the unit to identify a
quantity kind as well. The value types in this example refer to units that are assumed to be defined in an imported
package, such as the Model Library defined in Section E.6.

Example Value Type Definitions[Package]bdd][

unit = kilogram
«valueType»

kg

Real
«valueType»

unit = newton
«valueType»

N

unit = second
«valueType»

s

unit = metre
«valueType»

m

Figure 8.14. Defining Value Types with units of measure from the International System of Units (SI)

Example Value Type Definitions[Package]bdd][

unit = kilogram
«valueType»

kg

Real
«valueType»

unit = newton
«valueType»

N

unit = second
«valueType»

s

unit = metre
«valueType»

m

Figure 8.15. Example Value Type Definitions

8.4.3 Design Configuration for SUV EPA Fuel Economy Test

SysML internal block diagrams may be used to specify blocks with unique identification and property values. Fig.
D.41 shows an example used to specify a unique vehicle with a vehicle identification number (VIN) and unique
properties such as its weight, color, and horsepower. This concept is distinct from the UML concept of instance
specifications in that it does not imply or assume any run-time semantic, and can also be applied to specify design
configurations.

In SysML, one approach is to capture system configurations by creating a context for a configuration in the form of
a context block. The context block may capture a unique identity for the configuration, and utilizes parts and initial
value compartments to express property design values within the specification of a particular system configuration.
Such a context block may contain a set of parts that represent the block instances in this system configuration, each
containing specific values for each property. This technique also provides for configurations that reflect hierarchical
system structures, where nested parts or other properties are assigned design values using initial value
compartments. The following example illustrates the approach.

8.4.4 Water Delivery

Association blocks can be decomposed into connectors between properties of the associated blocks. These properties
can be ports, as in the water delivery example in Section 9.4.5, Association and Port Decomposition.

8.4.5 Constraining Decomposition

70 OMG Systems Modeling Language, v1.7

Fig. 8.16 shows an example decomposition for vehicles in a block definition diagram. Fig. 8.17 shows the same
decomposition in an internal block diagram that includes bound references. The binding connectors have nested
connector ends, because they link inside the parts of the vehicle.

Vehicle decomposition[Package]bdd][

Vehicle

Chassis Assembly

HeavyRollBar LightRollBarLugBolt

Wheel RollBar Cylinder

Engine

1chs 1eng

6..10lb

4w 0..1rb 4..8cyl

Figure 8.16. Vehicle decomposition

Vehicle[Block]ibd

chs : Chassis Assembly [1]

w : Wheel [4]

lb : LugBolt [6..10]

rb : RollBar [0..1]

eng : Engine [1]

cyl : Cylinder [4..8]

lugBoltBR [6..8]
«boundReference»

rrollBarBR [*]
«boundReference»

cylinderBR : Cylinder [*]
«boundReference»

=

=

=

Figure 8.17. Vehicle internal structure

Fig. 8.18 shows specializations for vehicles that restrict aspects of nested parts by redefining bound references. Paths
for bound references are based on the property paths of the corresponding binding connectors. The general block on
the top does not restrict the bound properties, except the total number of lug bolts is required to be between 24 and
32, rather than 24 and 40 as the associations in Fig. 8.17 allow. The specialization on the lower left restricts the
number of cylinders to four, requires a light roll bar, and a total of 24 lug bolts over all the wheels. The
specialization on the lower right restricts the number of cylinders to between six and eight, rules out any roll bar, and
limits lug bolts per wheel to between 6 and 7, by giving the end path upper and lower values.

OMG Systems Modeling Language, v1.7 71

Vehicle specialization[Package]bdd][

«boundReference» lugBoltBR [6..8]{redefines lugBoltBR}
«boundReference» «endPathMultiplicity» rrollBarBR [*]{redefines rrollBarBR}
«boundReference» cylinderBR : Cylinder [*]{redefines cylinderBR}

references

Vehicle Model 2

lugBoltBR [6..8]{bindingPath = chs, w, lb}
rrollBarBR [*]{bindingPath = chs, rb}
cylinderBR : Cylinder [*]{bindingPath = eng, cyl}

references

Vehicle

lugBoltBR [6..8]{redefines lugBoltBR}
rrollBarBR [*]{redefines rrollBarBR}
cylinderBR : Cylinder [*]{redefines cylinderBR}

references

Vehicle Model 1

Figure 8.18. Vehicle specialization

8.4.6 Units and Quantity Kinds

The following shows a minimal example of definitions a Unit, QuantityKind, and ValueType based on them.

Example of Unit, QuantityKind and ValueType definitionspkg][

Model 1

{definitionURI = "http://www.bipm.org/en/si/base_units/metre.html",
quantityKind = length}

metre : Unit length : QuantityKind

{definitionURI = "..."}

unit = metre
quantityKind = length

Length
«valueType»

SysML
«profile»

«apply»

Figure 8.19. Example of Unit, QuantityKind and ValueType definitions

In terms of the UML4SysML metamodel and of the SysML profile, the following figure shows a partial account of
the instance-level representation of the above example. This instance-level representation is important for model
interchange, particularly across different implementations of SysML.

72 OMG Systems Modeling Language, v1.7

Instance-level view of the Unit, QuantityKind and ValueType definitionspkg][

Model 1

value = "http://bipm.org/en/si/base_units/metre.html"

: LiteralString

name = "length"

: InstanceSpecification

name = "metre"

: InstanceSpecification

name = "length"

: DataType

: ValueType

value = ""

: LiteralString

: Slot: Slot

UnitAndQuantityKind
«ModelLibrary»

name = "QuantityKind"

: Class

name = "Unit"

: Class

A_quantityKind_measurementUnit :
Association

name = "definition URI"

: Property

name = "measurementUnit"

: Property

name = "quantityKind"

: Property

name = "definition URI"

: Property

: Block: Block

: A_quantityKind_measurementUnit

quantityKindunit

classifier definingFeaturedefiningFeature classifier

extension_ValueType

base_DataType

value value

type

type

extension_Block

base_Class

extension_Block

base_Class

ownedAttributeownedAttribute

ownedAttribute
association

association
ownedEnd

Figure 8.20. Instance-level view of the Unit, QuantityKind and ValueType definitions

The following example shows a minimal example of the semantics of Unit equivalence (A similar example for
QuantityKind is omitted).

Example of equivalent Unit representationspkg][

Model 2

definitionURI = "http://www.bipm.org/en/si/base_units/metre.html"

metre : Unit
«block»

Model 1

quantityKind = length
definitionURI = "http://www.bipm.org/en/si/base_units/metre.html""

metre : Unit
«block»

SysML
«profile»«apply» «apply»

Figure 8.21. Example of equivalent Unit representations

In terms of the UML4SysML metamodel and of the SysML profile, the following figure shows a partial account of
the instance-level representation of the above example. This instance-level representation is important for model
interchange, particularly across different implementations of SysML.

OMG Systems Modeling Language, v1.7 73

Instance-level representation of equivalent Unit definitionspkg][

UnitAndQuantityKind
«ModelLibrary»

name = "definitionURI"

: Property
name = "Unit"

: Class : Block

Model 2

value = "http://www.bipm.org/en/si/base_units/metre.html"

: LiteralString

name = "metre"

: InstanceSpecification
: Slot

Model 1

value = "http://www.bipm.org/en/si/base_units/metre.html"

: LiteralString

name = "metre"

: InstanceSpecification
: Slot

For model interchange purposes, the semantics of Unit
implies that these two representations correspond to the
same unit because they have the same definitionURI.

ownedAttribute

base_Class

classifier definingFeature

value

definingFeatureclassifier

value

Figure 8.22. Instance-level representation of equivalent Unit definitions

8.4.7 Property-Specific Types

Fig. 8.23 shows property-specific types in a model of facilities that includes factories and warehouses. Items flow
through facilities, while resources operate on items. Items in warehouses are assigned a location, while resources in
factories indicate own much they are being used as a percentage of time. Only objects that are items in warehouses
or resources in factories have these location and utilization properties. The properties appear when an item arrives in
a warehouse or a resource is used in a factory, because they are classified as WarehouseItems and FactoryResources
at that time, respectively. The properties disappear once an item leaves a warehouse or a resource is no longer used
in a factory, because they are declassified as WarehouseItems and FactoryResources at that time, respectively.

Logisticsbdd

Object
«block»

Facility
«block»

storeAt : Location
values

WarehouseItem

«block»
«pst»

FacilityItem

«block»
«pst»

utilization : Percentage
values

FactoryResource

«block»
«pst»

FacilityResource

«block»
«pst»

Factory
«block»

Warehouse
«block»

s/n : Integer
values

Machine
«block»

{redefines resource}

resource

resource

{redefines item}

item

item

Figure 8.23. Property-specific types in facility example

Fig. 8.24 shows the classification of a particular machine over time, identified by its serial number. At first it is not
an item or resource and is classified only as a machine. Before delivery to the factory, a new machine is stored in a
warehouse, classified additionally as a warehouse item, and is assigned a storage location. Then it is delivered to a

74 OMG Systems Modeling Language, v1.7

factory, reclassified from a warehouse item to a factory resource (while still being a machine), and records the
percentage of time it is operating.

utilization = "75%"
s/n = 12345

aMachine : Machine, FactoryResource
«block»

aFactory : Factory
«block»

aWarehouse : Warehouse
«block»

resource

Logistics Example[Package]bdd]t3[

storeAt = "15F"
s/n = 12345

aMachine : Machine, WarehouseItem
«block»

aFactory : Factory
«block»

aWarehouse : Warehouse
«block»

item

Logistics Example[Package]bdd]t2[

s/n = 12345

aMachine : Machine
«block»

aFactory : Factory
«block»

aWarehouse : Warehouse
«block»

Logistics Example[Package]bdd]t1[

y
«block»

X
«block»

Time

Figure 8.24. Changes in classification over time due to property-specific types

OMG Systems Modeling Language, v1.7 75

This page intentionally left blank.

76 OMG Systems Modeling Language, v1.7

9 Ports and Flows
9.1 Overview

The main motivation for specifying ports and flows is to enable design of modular, reusable blocks with clearly
defined ways of connecting and interacting with their context of use. This clause extends UML ports to support
nested ports, and extends blocks to support flow properties, and required and provided features, including blocks
that type ports. Ports can be typed by blocks that support operations, receptions, and properties as in UML. SysML
defines a specialized form of Block (InterfaceBlock) that can be used to support nested ports. SysML identifies two
kinds of ports, one that exposes features of the owning block or its internal parts (proxy ports), and another that
supports its own features (full ports). Default compatibility rules are defined for connecting block usages, such as
parts and ports. These can be overridden with association blocks specifying connections. These additional
capabilities in SysML enable modelers to specify a wide variety of interconnectable components, which can be
implemented through many engineering and social techniques, such as software, electrical or mechanical
components, and human organizations. This clause also extends UML information flows for specifying item flows
across connectors and associations.

9.1.1 Ports

Ports are points at which external entities can connect to and interact with a block in different or more limited ways
than connecting directly to the block itself. They are properties with a type that specifies features available to the
external entities via connectors to the ports. The features might be properties, including flow properties and
association ends, as well as operations and receptions. The remaining overview sub clauses introduce other aspects
of ports and flows.

9.1.2 Flow Properties, Provided and Required Features, and Nested Ports

SysML extends blocks to support flow properties and provided and required features. Blocks with ports can type
other ports (nested ports). Flow properties specify the kinds of items that might flow between a block and its
environment, whether it is data, material, or energy. The kind of items that flow is specified by typing flow
properties. For example, a block specifying a car’s automatic transmission could have a flow property for Torque as
an input, and another flow property for Torque as an output. Required and provided features are operations,
receptions, and non-flow properties that a block supports for other blocks to use, or requires other blocks to support
for its own use, or both. For example, a block might provide particular services to other blocks as operations, or
have a particular geometry accessible to other block, or it might require services and geometries of other blocks.
Ports nest other ports in the same way that blocks nest other blocks. The type of the port is a block (or one of its
specializations) that also has ports. For example, the ports supporting torque flows in the transmission example
might have nested ports for physical links to the engine or the driveshaft.

9.1.3 Proxy Ports and Full Ports

SysML identifies two usage patterns for ports, one where ports act as proxies for their owning blocks or its internal
parts (proxy ports), and another where ports specify separate elements of the system (full ports). Both are ways of
defining the boundary of the owning block as features available through external connectors to ports. Proxy ports
define the boundary by specifying which features of the owning block or internal parts are visible through external
connectors, while full ports define the boundary with their own features. Proxy ports are always typed by interface
blocks, a specialized kind of block that has no behaviors or internal parts. Full ports cannot be behavioral in the
UML sense of standing in for the owning object, because they handle features themselves, rather than exposing
features of their owners, or internal parts of their owners. Ports that are not specified as proxy or full are simply
called “ports.”

In either case, users of a block are only concerned with the features of its ports, regardless of whether the features
are surfaced by proxy ports, or handled by full ports directly. Proxy and full ports support the capabilities of ports in
general, but these capabilities are also available on ports that are not declared as proxy or full. Modelers can choose
between proxy or full ports at any time in the development lifecycle, or not at all, depending on their methodology.

OMG Systems Modeling Language, v1.7 77

9.1.4 Item Flows

Item flows specify the things that flow between blocks and/or parts and across associations or connectors. Whereas
flow properties specify what “can” flow in or out of a block, item flows specify what “does” flow between blocks
and/or parts in a particular usage context. This important distinction enables blocks to be interconnected in different
ways depending on its usage context. For example, tanks might include a flow property that can accept fluid as an
input. In a particular use of tanks, “gasoline” flows across a connector into a tank, and in another use of tanks,
“water” flows across a connector into a tank. The item flow in each case specifies what “does” flow on the
connector in the particular usage (e.g., gas, water) and the flow property specifies what can flow (e.g., fluid). This
enables type matching between the item flows and between flow properties to assist in interface compatibility
analysis.

Item flows may be allocated from object nodes in activity diagrams or signals sent from state machines across a
connector. Flow allocation is described in Section 15, “Allocations,” and can be used to help ensure consistency
across the different parts of the model.

9.1.5 Deprecation of Flow Ports and Flow Specifications

Flow ports and flow specifications are included in SysML, but are deprecated. Annex C defines them, along with
transition guidelines to non-deprecated elements. In particular, the functionality of non-atomic flow ports is
supported with proxy ports typed by interface blocks owning flow properties. Flow properties are not deprecated.

9.2 Diagram Elements

9.2.1 Block Definition Diagram

Table 9.1. Graphical nodes defined in Block Definition diagrams

ElementName Concrete Syntax Abstract Syntax Reference

Port Transmission

Transmission

p2

Ports with FlowProperties

p3

p2

p1

p4

UML4SysML::Port

Port (Compartment Notation)
p1 : ITransCmd

ports

Transmission

UML4SysML::Port

Port (with Compartment) Transmission
in live : Electricity

:flow properties

x : integer
:values

p1 : Type 1

y : Real

structure UML4SysML::Port

78 OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

Port (Nested) Transmission
p1.3

p1.2

p1.1
p1

UML4SysML::Port

ProxyPort Transmission

«proxy»

p1
SysML::Ports&Flows::ProxyPort

ProxyPort (Compartment
Notation) p1 : ITransCmd

proxy ports

Transmission

SysML::Ports&Flows::ProxyPort

FullPort Transmission

«full»
p1

SysML::Ports&Flows::FullPort

FullPort (Compartment Notation)
p1 : ITransCmd

full ports

Transmission

SysML::Ports&Flows::FullPort

FlowProperty

out wheelsTorque : Torque
in engineTorque : Torque
in gearSelect : Gear

flow properties

Transmission

SysML::Ports&Flows::
FlowProperty

Required and Provided Features

reqd getTorque() : Torque
prov selectGear(g : Gear) : Boolean

operations

reqd geometry : Spline
prov temperature : Integer

properties

Transmission

SysML::Ports&Flows::
DirectedFeature

OMG Systems Modeling Language, v1.7 79

ElementName Concrete Syntax Abstract Syntax Reference

InterfaceBlock
notifySpeedChange()

operations

ISpeedObserver
«interfaceBlock»

SysML::Ports&Flows::
InterfaceBlock

Item Flow

tran : Transmission [1]
references

Engine
«block»

Engine
«block»

eng : Engine [1]
references

Transmission
«block»

Transmission
«block»

«participant» tranInLink : Transmission [1]{end = tran}
«participant» engInLink : Engine [1]{end = eng}

references

Association-1
«block»

tranInLink :
Transmission [1]

«participant»
engInLink :
Engine [1]

«participant»

Vibration

Current

Heat

Torque
eng tran

SysML::Ports&Flows::ItemFlow

Interface
notifySpeedChange() : void

operations

ISpeedObserver
«interface»

UML4SysML::Interface

Required and Provided Interfaces

Transmission
«block»

p1

Transmission
«block»

ITransData

ITransCmd

ITransCmd

ITransData

p1

UML4SysML::Interface

9.2.2 Internal Block Diagram

80 OMG Systems Modeling Language, v1.7

Table 9.2. Graphical nodes defined in Internal Block diagrams

ElementName Concrete Syntax Abstract Syntax Reference

Port
t2 : Transmission

t : Transmission

p2

Ports with FlowProperties

p1
p3

p2

p4

UML4SysML::Port

Port (Compartment Notation)

t : Transmission

p1.3

p1.2

p1.1

p1
UML4SysML::Port

Port (with Compartment)

t : Transmission

in live : Electricity
:flow properties

x : integer
:values

p1 : Type 1

y : Real

structure UML4SysML::Port

ProxyPort
t : Transmission

«proxy»
p1

SysML::Ports&Flows::ProxyPort

ProxyPort (isBehavior = true)
t : Transmission«proxy»

p1
SysML::Ports&Flows::ProxyPort

FullPort
t : Transmission

«full»
p1 SysML::Ports&Flows::FullPort

OMG Systems Modeling Language, v1.7 81

ElementName Concrete Syntax Abstract Syntax Reference

ItemFlow

«participant» tpInLink : TP [1]{end = tp}
«participant» epInLink : EP [1]{end = ep}

:references

c1 : Association-1

tpInLink : TP [1]
«participant»

{end = tp}

epInLink : EP [1]
«participant»

{end = ep}

ItemFlow with an itemProperty

trns : Transmission

eng : Engine

p

p

Torque

trns : Transmission

eng : Engine

p1

p1

torque : Torque

trns : Transmissioneng : Engine

ItemFlow

tp.3

tp.2

tp.1ep.1

ep.3

ep.2
Heat

Vibration

Current

tp : TPep : EP

Torque

SysML::Ports&Flows::ItemFlow

Required and Provided Interfaces

t1 : Transmission

p1

t : Transmission

ITransData

ITransCmd

ITransData

ITransCmd

p1

UML4SysML::Interface

9.3 UML Extensions

9.3.1 Diagram Extensions

9.3.1.1 DirectedFeature

A DirectedFeature has the same notation as other non-flow properties and behavioral features with a feature
direction prefix (prov | reqd | provreqd), which corresponds to one the FeatureDirectionKind literals “provided,”
“required,” and “providedrequired,” respectively. Directed features can appear in compartments for the various
kinds of properties and behavioral features.

9.3.1.2 FlowProperty

A FlowProperty signifies a single flow element to/from a block. A flow property has the same notation as a Property
only with a direction prefix (in | out | inout). Flow properties are listed in a compartment labeled flow properties.

9.3.1.3 FullPort

Full ports can appear in block compartments labeled full ports. The keyword «full» before a property name can also
indicate the property is stereotyped by FullPort.

82 OMG Systems Modeling Language, v1.7

9.3.1.4 InvocationOnNestedPortAction

The nested port path is notated with a string “‘via’ <port-name> [‘,’ <port-name>]+” in the name string of the icon
for the invocation action. It shows the values of the onNestedPort property in order, and the value of the onPort
property at the end.

9.3.1.5 ItemFlow

An ItemFlow describes the flow of items across a connector or an association. The notation of an item flow is a
black arrowhead on the connector or association. The arrowhead is towards the target element. For an item flow with
an item property, the label shows the name and type of the item property (in name: type format). Otherwise the item
flow is labeled with the name of the classifier of the conveyed items. When several item flows having the same
direction are represented, only one triangle is shown, and the list of item flows, separated by a comma is presented.

9.3.1.6 Port

Ports are notated by rectangles overlapping the boundary of their owning blocks or properties (parts or ports) typed
by the owning block. Port labels appear in the same format as properties on the end of an association. Port labels can
appear inside port rectangles. Nested ports that are not on proxy ports can appear anywhere on the boundary of the
owning port rectangle that does not overlap the boundary of the rectangle the owning port overlaps.

Port rectangles can have port rectangles overlapping their boundaries, to notate a port type that has ports (nested
ports).

Ports with types that have flow properties all in the same direction, either all in or all out, can have an arrow inside
them indicating the direction of the properties with respect to the owning block. (See FlowProperty on page 90 for
definition of owning block of proxy ports in this case.) This includes the direction of flow properties on nested ports,
and if the port is full and its type is unencapsulated, ports on parts of the port, recursively. The arrows are
perpendicular to the boundary lines they overlap. Ports with types that have flow properties in different directions or
flow properties that are all in both directions, including have two open arrow heads inside them facing away from
each other (<>). This includes the directions of nested and contained flow properties as described above for one-way
arrows. Ports appearing in block compartments can have their direction appear textually before the port name as
“in,” “out,” or “inout” determined in the same way as the arrow direction.

Ports that are not proxy or full can appear in block compartments labeled ports.

Ports are specialized kinds of properties, and can be shown in same way as other properties. They can appear in
block compartments in the same format as other properties of their owning blocks, or as the ends of associations,
with the port appearing in the same format as other association ends, on the end opposite the owning block.

All ports and nested ports (i.e., proxy, full, and ports with no stereotype applied), and their type definitions (e.g.,
interface blocks, blocks) can include compartments with textual and graphical representations to display their
features in the same way as other properties and types, including rectangles used to display properties in structure
compartments.

9.3.1.7 ProxyPort

Proxy ports can appear in block compartments labeled proxy ports. The keyword «proxy» before a property name
can also indicate the property is stereotyped by ProxyPort. Nested ports on proxy ports can appear on the portion of
the boundary of the owning port rectangle that is outside the rectangle the owning port overlaps.

9.3.1.8 TriggerOnNestedPort

The nested port path is notated following a trigger signature with a string “‘«from» (’ <port-name> [‘,’ <port-
name>]+ ‘)’” in the name string of the icon for the trigger. It shows the values of the onNestedPort property in order,
and the value of the port property at the end.

9.3.2 Stereotypes

Package PortsAndFlows

OMG Systems Modeling Language, v1.7 83

Property
«Metaclass»

UML4SysML::Property
«Metaclass»
Property

«Metaclass»

direction : FlowDirectionKind [1] = inout
attributes

FlowProperty
«stereotype»

isEncapsulated : Boolean [0..1]
attributes

Block
«stereotype»

InterfaceBlock
«stereotype»

original : InterfaceBlock [1]
attributes

~InterfaceBlock
«stereotype»

Port
«Metaclass»

out
inout
in

enumeration literals

FlowDirectionKind
«enumeration»

UML4SysML::Port
«Metaclass»

FullPort
«stereotype»

ProxyPort
«stereotype»

Figure 9.1. Port Stereotypes

AddFlowPropertyValueOnNestedPortAction
«stereotype»

AddStructuralFeatureValueAction
«Metaclass»

AddStructuralFeatureValueAction
«Metaclass»

InvocationAction
«Metaclass»

InvocationOnNestedPortAction
«stereotype»

InvocationAction
«Metaclass»

UML4SysML::InvocationAction
«Metaclass»

Trigger
«Metaclass»

ElementPropertyPath
«stereotype»

Trigger
«Metaclass»

TriggerOnNestedPort
«stereotype»

UML4SysML::Trigger
«Metaclass»

Port
«Metaclass»

Port
«Metaclass»

UML4SysML::Port
«Metaclass»

{redefines propertyPath, ordered, nonunique}

onNestedPort
1..*0..*

{redefines propertyPath, ordered, nonunique}

onNestedPort
1..* 0..*

Figure 9.2. Stereotypes for Actions on Nested Ports

AcceptChangeStructuralFeatureEventAction
«stereotype»

AcceptEventAction
«Metaclass»

UML4SysML::AcceptEventAction
«Metaclass»

StructuralFeature
«Metaclass»

UML4SysML::StructuralFeature
«Metaclass»

ChangeStructuralFeatureEvent
«stereotype»

ChangeEvent
«Metaclass»

UML4SysML::ChangeEvent
«Metaclass»

structuralFeature

1

Figure 9.3. Stereotypes for Property Value Change Events

84 OMG Systems Modeling Language, v1.7

Feature
«Metaclass»

UML4SysML::Feature
«Metaclass»

featureDirection : FeatureDirectionKind [1]
attributes

DirectedFeature
«stereotype»

required
providedRequired
provided

enumeration literals

FeatureDirectionKind
«enumeration»

Figure 9.4. Provided and Required Features

InformationFlow
«Metaclass»

InformationItem
«Metaclass»

InformationFlow
«Metaclass»

UML4SysML::InformationFlow
«Metaclass»

UML4SysML::InformationItem
«Metaclass»

NamedElement
«Metaclass»

UML4SysML::NamedElement
«Metaclass»

Classifier
«Metaclass»

itemProperty : Property [0..1]
attributes

ItemFlow
«stereotype»

UML4SysML::Classifier
«Metaclass»

The UML metaclasses are
shown for completeness.

*
source 1..*

* target 1..*

*

conveyed

1..*

representation *

represented *

Figure 9.5. ItemFlow Stereotype

9.3.2.1 AcceptChangeStructuralFeatureEventAction

Description

Accept change structural feature event actions handle change structural feature events (see Section 9.3.2.5). The
actions have exactly two output pins. The first output pin holds the values of the structural feature just after the
values changed, while the second pin holds the values just before the values changed. The action only accepts events
for structural features on the blocks owning the behavior containing the action, or on the behavior itself, if the
behavior is not owned by a block.

Association Ends

• base_AcceptEventAction : AcceptEventAction [1]

Constraints

• 1_one_trigger

The action has exactly one trigger, the event of which shall be a change structural feature event.

self.base_AcceptEventAction.trigger‑>size()=1 and let trigger:
UML::Trigger = self.base_AcceptEventAction.trigger‑>any(true) in
ChangeStructuralFeatureEvent.allInstances().base_ChangeEvent‑>
includes(trigger.event)

• 2_two_resultpins

The action has two result pins with type and ordering the same as the type and ordering of the structural feature
of the trigger event, and multiplicity compatible with the multiplicity of the structural feature.

OMG Systems Modeling Language, v1.7 85

let event: ChangeStructuralFeatureEvent =
ChangeStructuralFeatureEvent.allInstances()‑>any(e | e.base_ChangeEvent =
self.base_AcceptEventAction.trigger‑>any(true).event) in
self.base_AcceptEventAction.result‑>size() = 2 and
self.base_AcceptEventAction.result‑>forAll(r | r.type =
event.structuralFeature.type and r.isOrdered =
event.structuralFeature.isOrdered and r.lower <=
event.structuralFeature.lower and r.upper >=
event.structuralFeature.upper)

• 3_context_owns_structuralfeature

The structural feature of the trigger event shall be owned by or inherited by the context of the behavior
containing the action. (The context of a behavior is either its owning block or itself if it is not owned by a block.
See definition in the UML 2 standard.)

let event: ChangeStructuralFeatureEvent =
ChangeStructuralFeatureEvent.allInstances()‑>any(e | e.base_ChangeEvent =
self.base_AcceptEventAction.trigger‑>any(true).event) in
self.base_AcceptEventAction._'context'‑>notEmpty() and
self.base_AcceptEventAction._'context'.allFeatures()‑>
includes(event.structuralFeature)

• 4_can_access_structuralfeature

Visibility of the structural feature of the trigger event shall allow access to the object performing the action.

let event: ChangeStructuralFeatureEvent =
ChangeStructuralFeatureEvent.allInstances()‑>any(e | e.base_ChangeEvent =
self.base_AcceptEventAction.trigger‑>any(true).event) in if
event.structuralFeature.visibility = UML::VisibilityKind::private then
self.base_AcceptEventAction._'context'.feature‑>
includes(event.structuralFeature) else if
event.structuralFeature.visibility = UML::VisibilityKind::protected
then self.base_AcceptEventAction._'context'.allFeatures()‑>
includes(event.structuralFeature) else if
event.structuralFeature.visibility = UML::VisibilityKind::_'package'
then let thePackage: UML::Package =
event.structuralFeature.allNamespaces()‑>select(n |
n.oclIsKindOf(UML::Package))‑>first().oclAsType(UML::Package) in (not
thePackage.oclIsUndefined()) and (let index: Integer =
event.structuralFeature.allNamespaces()‑>indexOf(thePackage) in
event.structuralFeature.allNamespaces()‑>subOrderedSet(1, index) ‑>
iterate(n; acc: Boolean=true | acc and not
(n.visibility=UML::VisibilityKind::private or
n.visibility=UML::VisibilityKind::protected))) else true endif endif
endif

• 5_uml_constraint_removed

The constraint under 11.3.2, "AcceptEventAction" in the UML 2 standard, "[2] There are no output pins if the
trigger events are only ChangeEvents," shall be removed for accept event actions that have
AcceptChangeStructuralFeatureEventAction applied.

-- cannot be expressed in OCL

9.3.2.2 AddFlowPropertyValueOnNestedPortAction

86 OMG Systems Modeling Language, v1.7

Description

This enables values added to a flow property to propagate out through a specified behavioral port of an object
executing the action, rather than all behavior ports exposing the flow property. It also enables values added to a flow
property to propagate into objects. Values flowing out of an object are added to an out or inout flow property of the
executing object. In this case, the applied stereotype specifies a (possibly nested) behavioral port at the end of a
(possibly multi-level) path of behavioral ports from a block that supports the flow property. Values flowing into an
object are added to an in or inout flow property of that object, specifying a (possibly nested) port of that object.

Generalizations

• ElementPropertyPath (from Blocks)

Attributes

• onNestedPort : Port [1..*] {ordered, nonunique}
Gives a series of ports that end in one supporting the flow property to which a value is being added. The
ordering of ports is from a port of the object of the stereotyped action, through a port of each intermediate block
that types the preceding port, ending in a port with a type that owns or inherits the flow property. The same port
might appear more than once because a block can own a port with the same block as a type, or another block that
has the same property.
(redefines: ElementPropertyPath::propertyPath)

Association Ends

• base_AddStructuralFeatureValueAction : AddStructuralFeatureValueAction [1]

Constraints

• 1_feature_flowproperty

The structural feature referred by actions with this stereotype applied must have FlowProperty applied.

FlowProperty.allInstances().base_Property‑>
includes(self.base_AddStructuralFeatureValueAction.structuralFeature)

• 2_onnestedport_first_owned_by_target_type

The port at the first position in the onNestedPort list shall be owned by the block that types the object pin of the
stereotyped action, or one of that blocks generalizations.

self.base_AddStructuralFeatureValueAction.object.type.oclAsType(UML::Classifier)‑>
allFeatures()‑>includes(self.onNestedPort‑>first()))

• 3_path_consistency

The port at each successive position of the onNestedPort attribute, following the first position, shall be owned by
the Block that types the port at the immediately preceding position, or a generalization of that Block.

self.onNestedPort‑>size() >1 implies self.propertyPath‑>subSequence(2,
self.onNestedPort‑>size())‑>forAll(p |
let pp: UML::Property = self.onNestedPort‑>at(self.onNestedPort‑>
indexOf(p)-1) in
let owners: Set(UML::Classifier) = pp.type.oclAsType(UML::Classifier)‑>
including(pp.type.oclAsType(UML::Classifier)) in
owners‑>includes(p.owner))

• 4_onnestedport_last_type_owns_invocation_onPort

The type of the port at the last position of the onNestedPort list shall own or inherit the flow property that is the
structural feature of the stereotyped action.

OMG Systems Modeling Language, v1.7 87

self.onNestedPort‑>last().type.oclAsType(UML::Classifier).allFeatures()‑>
includes(self.base_AddStructuralFeatureValueAction.structuralFeature)

9.3.2.3 Block

Description

Blocks (including specializations of Block) can own ports, including but not limited to proxy ports and full ports.
These blocks can be the type of ports (specifying nested ports), with some restrictions described in other stereotypes
in this sub clause. All links and interactions with a behavioral port (in the UML sense of standing in for the owning
object) are links and interactions with the owner, so the semantics of behavioral ports is the same as if the value of
the port as a property were always the owning block instance (the owning block instance for behavioral ports on
proxy ports is the value of the block usage the proxy port is standing in for, which might be an internal part). Blocks
loosen UML constraints on connectors to support nested ports. See Section 8, "Blocks" for further details of blocks.

9.3.2.4 ChangeStructuralFeatureEvent

Description

A ChangeStructuralFeatureEvent models changes in values of structural features.

Association Ends

• base_ChangeEvent : ChangeEvent [1]

• structuralFeature : StructuralFeature [1]
The event models occurrences of changes to values of this structural feature.

Constraints

• 1_not_static

The structural feature shall not be static.

not self.structuralFeature.isStatic

• 2_one_featuringclassifier

The structural feature shall have exactly one featuringClassifier.

self.structuralFeature.featuringClassifier‑>size()=1

9.3.2.5 DirectedFeature

Description

A DirectedFeature indicates whether the feature is supported by the owning block (provided) for other connected
blocks to use, or is to be supported by a connected block for the owning block to use (required), or both
(providedRequired). A providedRequired feature specifies a symmetric dependency between two connected blocks
whereby a block’s internal use of such a feature is delegated to the connected block with the corresponding feature
and conversely that block’s internal use of the feature is delegated to the other connected block.

The owning block for features on types of proxy ports is the type of the block usage the proxy port is standing in for,
which might be an internal part.

Using non-flow properties means to read or write them, and using behavioral features means to invoke them.
Provided non-flow properties are read and written on the owning block, while required non-flow properties are read
or written on an external block. Provided behavioral features are invoked with the owning block as target, while
required behavioral features are invoked with an external block as target (required).

Blocks owning or inheriting required behavioral features can have behaviors invoking the behavioral features on
instances of the block. This sends invocations out along connectors from usages of the block in internal structures of
other blocks, provided the behavioral features match on the other end of the connectors.

88 OMG Systems Modeling Language, v1.7

Invocations of provided behavioral features due to required behavioral features can only occur when the features
match. A single provided behavioral feature shall match each required one according to the following conditions:

• The kind of behavioral feature is the same (operation or reception).

• Names are the same, including parameter names, in the same order.

• Parameter directions are the same, in the same order.

• Provided parameter types for parameters with:

◦ in direction are the same or more general than the required ones, in order.

◦ out or return direction are the same or more specialized than the required ones, in order.

◦ inout direction are the same as the required ones, in order.

• Parameters without types are treated as if their type is more general than all other types.

• Provided parameter multiplicity has the same condition as type, where wider multiplicities are “more general”
than narrower ones.

• Provided parameter order (of each parameter separately) has the same condition as type, where unordered
parameters are “more general” than ordered ones.

• Provided parameter uniqueness (of each parameter separately) has the same condition as type, where non-unique
parameters are “more general” than unique ones.

• Provided operation preconditions are the same as or more general than required ones.

• Provided operation body conditions and postconditions are the same or more specialized than required ones.

If corresponding parameters in provided and required behavioral features both have defaults, the default value
specification of the required feature is used for in parameters, and the default value specification of the provided
feature is used for out and return parameters.

Reading or writing provided non-flow properties due to required non-flow properties can only occur when the
features match. Matching non-flow properties shall have the same name. For reading non-flow properties, the types,
multiplicities, uniqueness, and ordering shall match in the same way as out parameters for behavioral features above.
For writing non- flow properties, the types, multiplicities, uniqueness, and ordering shall match in the same way as
in parameters for behavioral features above. For both reading and writing non-flow properties, the types,
multiplicities, uniqueness, and ordering shall be the same. If provided and required non-flow properties both have
defaults, the default value specification of the required feature is used for writing and the default specification of the
provided feature is used for reading.

Features that are not denoted as a DirectedFeature are implicitly provided features. As such they can be matched
against a corresponding required feature.

Attributes

• featureDirection : FeatureDirectionKind [1]
Specifies whether the feature is supported by the owning block (featureDirection="provided"), or is to be
supported by other blocks for the owning block to use (featureDirection="required"), or both
(featureDirection="providedrequired").

Association Ends

• base_Feature : Feature [1]

Constraints

• 1_behavioralfeature_or_not_flowproperty

DirectedFeature shall only be applied to behavioral features, or to properties that do not have FlowProperty
applied, including on subsetted or redefined features.

self.base_Feature.oclIsKindOf(UML::BehavioralFeature) or
(self.base_Feature.oclIsKindOf(UML::Property) and let property:

OMG Systems Modeling Language, v1.7 89

UML::Property = self.base_Feature.oclAsType(UML::Property) in
FlowProperty.allInstances().base_Property‑>
excludesAll(property.redefinedProperty‑>
union(property.subsettedProperty)‑>including(property)))

• 2_method_if_provided

A non-provided operation shall not be associated with a behavior as its method.

self.base_Feature.oclIsKindOf(UML::Operation) and
self.featureDirection=FeatureDirection::required implies
self.base_Feature.oclAsType(UML::Operation).method‑>isEmpty()

9.3.2.6 FeatureDirectionKind

Description

FeatureDirectionKind is an enumeration type that defines literals used by directed features for specifying whether
they are supported by the owning block, or is to be supported by other blocks for the owning block to use.

Literals

• provided
Indicates that the feature shall be supported by the owning block.

• providedRequired
Indicates that the feature shall be both provided and required.

• required
Indicates that the feature shall be supported by other blocks.

9.3.2.7 FlowDirectionKind

Description

FlowDirectionKind is an enumeration type that defines literals used for specifying the direction that items can flow
to or from a block. FlowDirectionKind is used by flow properties to indicate the direction that its items can flow to
or from its owner. (See Section 9.3.2.13 for definition of owning block of proxy ports in this case.)

Literals

• in
Indicates that items of the flow property can flow into the owning block.

• inout
Indicates that items of the flow property can flow into or out of the owning block.

• out
Indicates that items of the flow property can flow out of the owning block.

9.3.2.8 FlowProperty

Description

A FlowProperty signifies a single kind of flow element that can flow to/from its owning instance that is specified by
the block defining that flow property. A flow propertys values are either received from or transmitted to another
instance. An "in" flow property value cannot be modified by the owning instance of that flow property, or by parts of
that instance. An "out" flow property can only be modified by the owning instance of that flow property, or by parts
of that instance. An "inout" flow property can be used as an "in" flow property or an "out" flow property, and there
is no restriction regarding the way it can be modified.

Flow due to flow properties can only occur when flow properties match. Matching flow properties shall have
matching direction and types. Matching direction is defined below. Flow property types match when the target flow
property type has the same, or a generalization of, the source flow property type. (See 9.3.2.11, ItemFlow for looser

90 OMG Systems Modeling Language, v1.7

constraints on flow property types across connectors with item flows.) If multiple flow properties on either end of a
connector match by direction and type, then the names of the flow properties shall also be the same for flow to
occur. If multiple flow properties on either end match by direction, type, and name, which can happen for unnamed
flow properties, then no flow will occur.

Flow properties enable item flows across connectors between usages typed by blocks having the properties. For
Block and ValueType flow properties, setting an "out" or "inout" FlowProperty value of a block usage on one end of
a connector will result in assigning the same value of an "in" or "inout" FlowProperty of a block usage at the other
end of the connector, provided the flow properties are matched. It is not specified whether send/receive signal events
are generated when values are written to out/in flow properties typed by Signal (implementations might choose to do
this, but it is not required). This paragraph does not apply to internal connectors of proxy ports, see next paragraph.

Items going to or from behavioral ports (UML isBehavior = true) are actually going to or from the owning block.
(See Section 9.3.2.3 for definition of owning block of proxy ports in this case.) Items going to or from non-
behavioral ports (UML isBehavior = false) are actually going to the port itself (for full ports) or to internal parts
connected to the port (for proxy ports). Because of this, flow properties of a proxy port are the same as flow
properties on the owning block or internal parts, so the flow property directions shall be the same on the proxy port
and owning block or internal parts for items to flow. See Section 9.3.2.13 for the definition of internal connectors
and the semantics of proxy ports.

The flow property semantics above applies to each connector of a block usage, including when the block usage has
multiple connectors.

The binding of flow properties on ports to behavior parameters can be achieved in ways not dictated by SysML. One
approach is to perform name and type matching. Another approach is to explicitly use binding relationships between
the ports properties and behavior parameters or block properties.

Attributes

• direction : FlowDirectionKind [1]
Specifies if the property value is received from an external block (direction="in"), transmitted to an external
Block (direction="out") or both (direction="inout").

Association Ends

• base_Property : Property [1]

Constraints

• 1_restricted_types

A FlowProperty shall be typed by a ValueType, Block, or Signal.

Block.allInstances().base_Class‑>includes(self.base_Property.type) or
ValueType.allInstances().base_DataType‑>includes(self.base_Property.type)
or self.base_Property.oclIsKindOf(UML::Signal)

9.3.2.9 FullPort

Description

Full ports specify a separate element of the system from the owning block or its internal parts. They might have their
own internal parts and behaviors to support interaction with the owning block, its internal parts, or external blocks.
They cannot be behavioral ports, or linked to internal parts by binding connectors, because these constructs imply
identity with the owning block or internal parts. However, full ports can be linked to non-full ports by binding
connectors, because this does not necessarily imply identity with other parts of the system.

Association Ends

• base_Port : Port [1]

OMG Systems Modeling Language, v1.7 91

Constraints

• 1_not_proxy

Full ports shall not also be proxy ports. This applies even if some of the stereotypes are on subsetted or redefined
ports.

ProxyPort.allInstances()‑>excludes(self.base_Port)

• 2_not_bound_to_fullport

Binding connectors shall not link full ports (either directly or indirectly through other binding connectors) to
other composite properties of the block owning the full port (or that blocks generalizations or specializations),
unless the composite properties are non-full ports.

let fullPorts: Set(UML::Port) = FullPort.allInstances().base_Port‑>
asSet() in BindingConnector.allInstances().base_Connector‑>select(c |
c.end.role‑>includes(self.base_Port))‑>forAll(c | fullPorts‑>
excludesAll(c.end.role‑>reject(r | r=self.base_Port)))

• 3_not_behavioral

Full ports shall not be behavioral (isBehavior=false).

not self.base_Port.isBehavior

9.3.2.10 InterfaceBlock

Description

Interface blocks are blocks that cannot have internal parts or behaviors, including classifier behaviors or methods,
but otherwise have the same capabilities as blocks. In particular, they can have operations, receptions and properties
(like UML interfaces), as well as ports. They can type any kind of property, but are mandatory as types of proxy
ports, and can type ports to any level of nesting.

Generalizations

• Block (from Blocks)

Operations

• getConjugated () : InterfaceBlock [0..*]

bodyCondition:
~InterfaceBlock.allInstances()->any(ib | ib.original = self)

Constraints

• 1_no_behavior

Interface blocks shall not own or inherit behaviors, have classifier behaviors, or methods for their behavioral
features.

self.base_Class.inheritedMember‑>select(m | m.oclIsKindOf(UML::Behavior))
‑>isEmpty() and self.base_Class.operation.method‑>flatten()‑>isEmpty()

• 2_no_part

Interface blocks composite properties are either ports, value properties or flow properties.

self.base_Class.ownedAttribute‑>select(a|a.isComposite)‑>forAll(a |
a.oclIsKindOf(UML::Port) or a.oclIsKindOf(ValueType))

• 3_interfaceblock_typed_ports

92 OMG Systems Modeling Language, v1.7

Ports owned by interface blocks shall only be typed by interface blocks.

self.base_Class.ownedPort‑>
forAll(p|InterfaceBlock.allInstances().base_Class ‑>includes(p.type))

• 4_isconjugated_not_used

Any port typed by an InterfaceBlock shall have its isConjugated property set to false.

Port.allInstances()‑>forAll(p | p.type = self.base_Class implies
p.isConjugated=false)

9.3.2.11 InvocationOnNestedPortAction

Description

This extends the capabilities of UMLs onPort property of InvocationAction to support nested ports. It identifies a
nested port by a multi-level path of ports from the block that executes the action. Like UMLs onPort property, this
extends invocation actions to send invocations out of ports of objects executing the actions, or to ports of those
objects or other objects. Invocations intended to go out of the object executing the action shall be sent to the
executing object on a proxy port. Invocations intended to go directly to a target object are sent to that object on a
port of that object.

Generalizations

• ElementPropertyPath (from Blocks)

Association Ends

• base_InvocationAction : InvocationAction [1]

• onNestedPort : Port [1..*] {ordered, nonunique}
Gives a series of ports that identifies the port receiving the invocation in the context of the target object of the
invocation. The ordering of ports is from a port of the target object, through a port of each intermediate block
that types the preceding port, ending in a port with a type that owns or inherits the port given by the onPort
property of the invocation action. The onPort port is not included in the onNestedPort list. The same port might
appear more than once because a block can own a port with the same block as a type, or another block that has
the same property.
(redefines: ElementPropertyPath::propertyPath)

Constraints

• 1_onPort_defined

The onPort property of an invocation action shall have a value when this stereotype is applied.

self.base_InvocationAction.onPort‑>notEmpty()

• 2_onnestedport_first_owned_by_target_type

The port at the first position in the onNestedPort list shall be owned (directly or via inheritance) by a block that
types the target pin of the invocation action, or one of the blocks generalizations.

let target: UML::InputPin = if
self.base_InvocationAction.oclIsKindOf(UML::CallOperationAction) then

self.base_InvocationAction.oclAsType(UML::CallOperationAction).target
else if self.base_InvocationAction.oclIsKindOf(UML::SendSignalAction)
then

self.base_InvocationAction.oclAsType(UML::SendSignalAction).target
else if self.base_InvocationAction.oclIsKindOf(UML::SendObjectAction)
then

self.base_InvocationAction.oclAsType(UML::SendObjectAction).target
else

OMG Systems Modeling Language, v1.7 93

invalid
endif endif endif in
not target.oclIsUndefined() and (
let target_type: UML::Class = Block.allInstances()‑>any(b |

b.base_Class = target.type).base_Class in
not target_type.oclIsUndefined() and target_type.allFeatures()‑>

includes(self.onNestedPort‑>first()))

• 3_path_consistency

The port at each successive position of the onNestedPort attribute, following the first position, shall be owned by
the Block that types the port at the immediately preceding position, or a generalization of that Block.

self.onNestedPort‑>size() >1 implies self.propertyPath‑>subSequence(2,
self.onNestedPort‑>size())‑>forAll(p |
let pp: UML::Property = self.onNestedPort‑>at(self.onNestedPort‑>

indexOf(p)-1) in
let owners: Set(UML::Classifier) = pp.type.oclAsType(UML::Classifier)‑>

including(pp.type.oclAsType(UML::Classifier)) in
owners‑>includes(p.owner))

• 4_onnestedport_last_type_owns_invocation_onPort

The type of the port at the last position of the onNestedPort list shall own or inherit the onPort port of the
stereotyped invocation action.

self.onNestedPort‑>last().type.oclAsType(UML::Classifier).allFeatures()‑>
includes(self.base_InvocationAction.onPort)

9.3.2.12 ItemFlow

Description

An ItemFlow describes the flow of items across a connector or an association. It may constrain the item exchange
between blocks, block usages, or ports as specified by their flow properties. For example, a pump connected to a
tank: the pump has an "out" flow property of type Liquid and the tank has an "in" FlowProperty of type Liquid. To
signify that only water flows between the pump and the tank, we can specify an ItemFlow of type Water on the
connector.

One can label an ItemFlow with the classifiers of the items that may be conveyed. For example: a label Water would
imply that instances of Water might be transmitted over this ItemFlow. In addition, if the item flow identifies an item
property, then one can label the item flow with the item property. For example, a label of "liquid: Water" means
Water items might flow and these items are the values of the property "liquid," i.e., the values of the "liquid" item
property are the instances of Water flowing at any given time. Item properties are owned by the common (possibly
indirect) owner of the source and target of the item flow, rather than by the source and target types, as flow
properties are.

Item flows on connectors shall be compatible with flow properties of the blocks usages at each end of the connector,
if any. The direction of the item flow shall be compatible with the direction of flow specified by the flow properties.
(See Section 9.3.2.7 and Section 9.3.2.8 about flow property direction.) Each classifier of conveyed items on an item
flow shall be the same as, a specialization of, or a generalization of at least one flow property type on each end of
the connected block usages (or their accessible nested block usages recursively, see Section 9.3.2.3 about
encapsulated blocks). The target flow property type shall be the same as, or a generalization of, a classifier of the
item flow or the source flow property type, whichever is more specialized. (See Section 9.3.2.8, for tighter
constraints on flow property types across connectors without item flows.)

Attributes

• itemProperty : Property [0..1]
An optional property that relates the flowing item to the instances of the connectors enclosing block. This

94 OMG Systems Modeling Language, v1.7

property is applicable only for item flows realized by connectors. The itemProperty attribute has no values if the
item flow is realized by an Association.

Association Ends

• base_InformationFlow : InformationFlow [1]

Constraints

• 1_source_and_target_linked

A Connector or an Association, or an inherited Association shall exist between the source and the target of the
InformationFlow.

let target: UML::NamedElement =
self.base_InformationFlow.informationTarget‑>any(true) in let targets:
Set(UML::NamedElement) = if target.oclIsKindOf(UML::Classifier) then
target.oclAsType(UML::Classifier)‑>closure(general)‑>including(target)
else target‑>asSet() endif in let source: UML::NamedElement =
self.base_InformationFlow.informationSource‑>any(true) in let sources:
Set(UML::NamedElement) = if source.oclIsKindOf(UML::Classifier) then
source.oclAsType(UML::Classifier)‑>closure(general)‑>including(source)
else source‑>asSet() endif in UML::Association.allInstances()‑>exists(a
| a.memberEnd‑>intersection(targets)‑>notEmpty() and a.memberEnd‑>
intersection(sources)‑>notEmpty()) or UML::Connector.allInstances()‑>
exists(c | c.end‑>intersection(targets)‑>notEmpty() and c.end‑>
intersection(sources)‑>notEmpty())

• 2_type_restricted

An ItemFlow itemProperty shall be typed by a ValueType, Block, or Signal.

ValueType.allInstances().base_DataType‑>includes(self.itemProperty.type)
or Block.allInstances().base_Class‑>includes(self.itemProperty.type) or
UML::Signal.allInstances()‑>includes(self.itemProperty.type)

• 3_itemproperty_common_owner

If itemProperty has a value it shall be a property of the common (possibly indirect) owner of the source and the
target.

self.itemProperty‑>notEmpty() implies (let target: UML::Element =
self.base_InformationFlow.informationTarget‑>any(true) in let source:
UML::Element = self.base_InformationFlow.informationSource‑>any(true) in
target.oclIsKindOf(UML::Property) and source.oclIsKindOf(UML::Property)
and let owners: Set(UML::Classifier) = target‑>closure(owner)‑>select(o1
| o1.oclIsKindOf(UML::Classifier))‑>asSet() ‑>intersection(source‑>
closure(owner)‑>select(o2 |
o2.oclIsKindOf(UML::Classifier))).oclAsType(UML::Classifier)‑>asSet() in
owners.attribute‑>flatten()‑>includes(self.itemProperty))

• 4_association_xor_itemproperty

itemProperty shall not have a value if the item flow is realized by an Association.

self.base_InformationFlow.realization‑>exists(r |
r.oclIsKindOf(UML::Association)) implies self.itemProperty‑>isEmpty()

• 5_same_type

OMG Systems Modeling Language, v1.7 95

If an ItemFlow has an itemProperty, one of the classifiers of conveyed items shall be the same as the type of the
item property.

self.itemProperty‑>notEmpty() implies self.base_InformationFlow.conveyed‑>
includes(self.itemProperty.type)

• 6_same_name

If an ItemFlow has an itemProperty, its name shall be the same as the name of the item flow.

self.itemProperty‑>notEmpty() implies self.itemProperty.name =
self.base_InformationFlow.name

9.3.2.13 ProxyPort

Description

Proxy ports identify features of the owning block or its internal parts that are available to external blocks through
external connectors to the ports. They do not specify a separate element of the system from the owning block or
internal parts. Actions on features of a proxy port have the same effect as if they were acting on features of the
owning block or internal parts the port stands in for, and changes to features of the owning block or internal parts
that the proxy port makes available to external blocks are visible to those blocks via connectors to the port. (This
applies to provided features; for required features, see Section 9.3.2.5.) Proxy ports do not specify their own
behaviors or internal parts, and shall be typed by interface blocks. Their nested ports shall also be proxy ports.

A completely specified proxy port shall describe how any interaction through the port is handled or initiated. This
can be achieved in several ways. For instance by making it behavioral, by binding it to a fully specified internal part
or by having all its properties individually bound to internal parts. However, blocks can be defined with non-
behavioral proxy ports that do not have internal connectors, with the expectation that these will be added in
specialized blocks. Internal connectors to ports are the ones inside the ports owner (specifically, they are the ones
that do not have a UML partwithPort on the connector end linked to the port, assuming NestedConnectorEnd is not
applied to that end, or if NestedConnectorEnd is applied to that end, they are the connectors that have only ports in
the property path of that end). The rest of the connectors linked to a port are external.

Proxy ports can be connected to internal parts or ports on internal parts, identifying features on those parts or ports
that are available to external blocks. When a proxy port is connected to a single internal part, the connector shall be
a binding connector, or have the same semantics as a binding connector (the value of the proxy port and the
connected internal part are the same; links of associations typing the connector are between all objects and
themselves, and no others). When a proxy port is connected to multiple internal parts, the connectors have the same
semantics as a single binding connector to an aggregate of those parts, supporting all their features, and treating
flows and invocations from outside the aggregate as if they were to those parts, and flows and invocations it receives
from those parts as if they were to the outside. This aggregate is not a separate element of the system, and only
groups the internal parts for purposes of binding to the proxy port. Internal connectors to proxy ports can be typed
by association blocks, including when the connector is binding.

Association Ends

• base_Port : Port [1]

Constraints

• 1_not_fullport

Proxy ports shall not also be full ports. This applies even if some of the stereotypes are on subsetted or redefined
ports.

FullPort.allInstances()‑>excludes(self.base_Port)

• 2_interfaceblock

Proxy ports shall only be typed by interface blocks.

InterfaceBlock.allInstances().base_Class‑>includes(self.base_Port.type)

96 OMG Systems Modeling Language, v1.7

• 3_subports_are_proxyports

Ports owned by the type of a proxy port shall be proxy ports.

ProxyPort.allInstances().base_Port‑>
includesAll(self.base_Port.class.ownedPort)

9.3.2.14 TriggerOnNestedPort

Description

This extends trigger to support nested ports. It identifies a nested port by a multi-level path of ports from the object
receiving the triggering events. It is not applicable to full ports.

Generalizations

• ElementPropertyPath (from Blocks)

Association Ends

• base_Trigger : Trigger [1]

• onNestedPort : Port [1..*] {ordered, nonunique}
Gives a series of ports that identifies a port on which the event is occurring, in the context of a block in which
the trigger is used. The ordering of ports is from a port of the receiving object, through a port of each
intermediate block that types the preceding port, ending in a property with a type that owns or inherits the port
given by the port property of the trigger. The port property is not included in the onNestedPort list. The same
port might appear more than once because a block can own a port with the same block as a type, or another
block that has the same property.
(redefines: ElementPropertyPath::propertyPath)

Constraints

• 1_single_proxyport

The port property of the stereotyped trigger shall have exactly one value, and the value cannot be a full port.

self.base_Trigger.port‑>size()=1 and FullPort.allInstances().base_Port‑>
excludes(self.base_Trigger.port)

• 2_no_fullport

The values of the onNestedPort property shall not be full ports.

FullPort.allInstances().base_Port‑>excludesAll(self.onNestedPort)

• 3_onnestedport_first_owned_by_context

The port at the first position in the onNestedPort list shall be owned by a block in which the trigger is used, or
one of the blocks generalizations.

let theContext: UML::Classifier = if
self.base_Trigger.owner.oclIsKindOf(UML::Action) then
self.base_Trigger.owner.oclAsType(UML::Action)._'context'.oclAsType(UML::Class)
else
self.base_Trigger.owner.oclAsType(UML::Transition).containingStateMachine()._'context'.oclAsType(UML::Class)
endif in let owners: Set(UML::Classifier) = theContext‑>closure(general)‑>
including(theContext) in owners‑>includes(self.onNestedPort‑>
first().owner)

• 4_path_consistency

The port at each successive position of the onNestedPort attribute, following the first position, shall be owned by
the Block that types the port at the immediately preceding position, or a generalization of the Block.

OMG Systems Modeling Language, v1.7 97

self.onNestedPort‑>size() >1 implies self.onNestedPort‑>subSequence(2,
self.onNestedPort‑>size())‑>forAll(p |
let np: UML::Port = self.onNestedPort‑>at(self.onNestedPort‑>

indexOf(p)-1) in
let owners: Set(UML::Classifier) = np.type.oclAsType(UML::Classifier)‑>

including(np.type.oclAsType(UML::Classifier)) in
owners‑>includes(p.owner))

• 5_onnestedport_last_type_owns_trigger_port

The type of the port at the last position of the onNestedPort list must own or inherit the port of the stereotyped
trigger.

self.onNestedPort‑>last().type.oclAsType(UML::Classifier).allFeatures()‑>
includes(self.base_Trigger.port)

9.3.2.15 ~InterfaceBlock

Description

The ~InterfaceBlock stereotype (shall be pronounced: "conjugated interface block") is a specialization of
InterfaceBlock that has the same features as its original InterfaceBlock except that its DirectedFeatures and
FlowProperties are reversed (conjugated), for example, in flow properties are conjugated as out flow properties and
provided features are conjugated as required features. Conjugation is specified by a constraint giving the features of
~InterfaceBlocks according to those of their original InterfaceBlocks (see the Constraints subsection below). It is
expected that tools conforming to this specification automatically create features of ~InterfaceBlocks.

Generalizations

• InterfaceBlock (from Ports&Flows)

Attributes

• original : InterfaceBlock [1]
The InterfaceBlock that this is a conjugation of.

Association Ends

• base_Class : Class [1]

Operations

• areConjugated (in df1 : DirectedFeature, in df2 : DirectedFeature) : Boolean [1]
DirectedFeature overloaded version of the areConjugated query used for specifying the inverted_feature
invariant that checks whether one feature definition is the conjugated definition of the other.
bodyCondition:
if (df1.oclIsUndefined()) then (not df2.oclIsUndefined() and
df2.featureDirection = FeatureDirection::required) else if
(df2.oclIsUndefined()) then (not df1.oclIsUndefined() and
df1.featureDirection = FeatureDirection::required) else
(df1.featureDirection = FeatureDirection::provided and df2.featureDirection
= FeatureDirection::required) or (df1.featureDirection =
FeatureDirection::required and df2.featureDirection =
FeatureDirection::provided) or (df1.featureDirection =
FeatureDirection::providedRequired and df2.featureDirection =
FeatureDirection::providedRequired) endif endif

• areConjugated (in fp1 : FlowProperty, in fp2 : FlowProperty) : Boolean [1]
FlowProperty overloaded version of the areConjugated query used for specifying the inverted_feature invariant
that check whether one feature definition is the conjugated definition of the other.

98 OMG Systems Modeling Language, v1.7

bodyCondition:
(fp1.direction = FlowDirection::_in and fp2.direction = FlowDirection::out)
or (fp1.direction = FlowDirection::out and fp2.direction =
FlowDirection::_in) or (fp1.direction = FlowDirection::inout and
fp2.direction = FlowDirection::inout)

• areConjugated (in o1 : Operation, in o2 : Operation) : Boolean [1]
Operation overloaded version of the areConjugated query used for specifying the inverted_feature invariant that
check whether one feature definition is the conjugated definition of the other.
bodyCondition:
let df1: DirectedFeature = DirectedFeature .allInstances()-
>any(base_Feature = o1) in let df2: DirectedFeature = DirectedFeature
.allInstances()->any(base_Feature = o2) in o1.concurrency = o2.concurrency
and o1.isAbstract = o2.isAbstract and o1.ownedParameterSet->forAll(ps1 |
o2.ownedParameterSet->exists(ps2 | areSameParameterSets(o1, ps1, o2, ps2)))
and areSameConstraintSets(o1.bodyCondition->asSet(), o2.bodyCondition-
>asSet()) and areSameConstraintSets(o1.precondition, o2.precondition) and
areSameConstraintSets(o1.postcondition, o2.postcondition) and
haveSameSignatures(o1, o2) and o1.raisedException->forAll(e1 |
o2.raisedException->exists(e2 | e2 = e1)) and o1.isQuery = o2.isQuery and
areConjugated(df1, df2)

• areConjugated (in p1 : Property, in p2 : Property) : Boolean [1]
Property overloaded version of the areConjugated query used for specifying the inverted_feature invariant that
checks whether one feature definition is the conjugated definition of the other.
bodyCondition:
let fp1: FlowProperty = FlowProperty.allInstances()->any(base_Property =
a1) in let fp2: FlowProperty = FlowProperty.allInstances()-
>any(base_Property = a2) in let df1: DirectedFeature = DirectedFeature
.allInstances()->any(base_Feature = a1) in let df2: DirectedFeature =
DirectedFeature .allInstances()->any(base_Feature = a2) in a1.name =
a2.name and a1.type = a2.type and a1.isStatic = a2.isStatic and
a1.isOrdered = a2.isOrdered and a1.isUnique = a2.isUnique and a1.lower =
a2.lower and a1.upper = a2.upper and a1.isReadOnly = a2.isReadOnly and
a1.aggregation = a2.aggregation and a1.isDerived = a2.isDerived and
a1.isDerivedUnion = a2.isDerivedUnion and a1.isID = a2.isID and ((not
fp1.oclIsUndefined() and not fp2.oclIsUndefined() and areConjugated(fp1,
fp2)) or (fp1.oclIsUndefined() and fp2.oclIsUndefined())) and ((not
df1.oclIsUndefined() and not df2.oclIsUndefined() and areConjugated(df1,
df2)) or (df1.oclIsUndefined() and df2.oclIsUndefined()))

• areConjugated (in r1 : Reception, in r2 : Reception) : Boolean [1]
Reception overloaded version of the areConjugated query used for specifying the inverted_feature invariant that
check whether one feature definition is the conjugated definition of the other.
bodyCondition:
let df1: DirectedFeature = DirectedFeature.allInstances()->any(base_Feature
= r1) in let df2: DirectedFeature = DirectedFeature.allInstances()-
>any(base_Feature = r2) in r1.concurrency = r2.concurrency and
r1.isAbstract = r2.isAbstract and r1.ownedParameterSet->forAll(ps1 |
r2.ownedParameterSet->exists(ps2 | areSameParameterSets(r1, ps1, r2, ps2)))
and haveSameSignatures(r1, r2) and r1.signal = r2.signal and
areConjugated(df1, df2)

• areSameConstraintSets (in cs1 : Constraint, in cs2 : Constraint) : Boolean [1]
The areSameConstraintSets query is used for specifying the inverted_feature invariant. It checks whether two
sets of constraints are equivalent.

OMG Systems Modeling Language, v1.7 99

bodyCondition:
(cs1->isEmpty() and cs2->isEmpty()) or (cs1->size() = cs2->size() and
cs1->forAll(c1 | cs1->exists(c2 | c2.name = c1.name and
c2.specification.booleanValue()=true implies
c1.specification.booleanValue()=true and
c2.specification.booleanValue()=false implies
c1.specification.booleanValue()=false)))

• areSameParameterSets (in ps1 : ParameterSet, in ps2 : ParameterSet) : Boolean [1]
The areSameParameterSets query is used for specifying the inverted_feature invariant. It checks whether two
sets of parameters are identical.
bodyCondition:
(ps1->isEmpty() and ps2->isEmpty()) or (ps1->size() = ps2->size() and
areSameConstraintSets(ps1.condition, ps2.condition and ps1.parameter-
>forAll(p1 | ps2.parameter->exists(p2 | bf1.ownedParameter->indexOf(p1) =
bf2.ownedParameter->indexOf(p2)))))

• haveSameSignatures (in bf1 : BehavioralFeature, in bf2 : BehavioralFeature) : Boolean [1]
The areSameConstraintSignatures query is used for specifying the inverted_feature invariant. It checks whether
two behavioral features have the same signature.
bodyCondition:
bf1.name = bf2.name and bf1.ownedParameter->size() = bf2.ownedParameter-
>size() and bf1.ownedParameter->forAll(p1 | let p2: UML::Parameter =
bf2.ownedParameter->at(bf1.ownedParameter->indexOf(p1)) in p1.name =
p2.name and p1.type = p2.type and p1.direction = p2.direction and
p1.isOrdered = p2.isOrdered and p1.isUnique = p2.isUnique and p1.lower =
p2.lower and p1.upper = p2.upper and p1.effect = p2.effect and
p1.isException = p2.isException and p1.isStream = p2.isStream)

Constraints

• enforced_name

The name of an ~InterfaceBlock shall be the name of its original InterfaceBlock with a tilde ("~") character
prepended.

self.base_Class.name = '~'+self.original.base_Class.name

• inverted_features

An ~InterfaceBlock has same features and owned rules than its original InterfaceBlock except that – where
applicable – both its DirectedFeatures and FlowProperties have inverted directions (i.e., are "conjugated").

let allAttributes: Set(UML::Property) = self.base_Class.allFeatures()‑>
select(oclIsKindOf(UML::Property)).oclAsType(UML::Property)‑>asSet() in
let allOperations: Set(UML::Operation) = self.base_Class.allFeatures()‑>
select(oclIsKindOf(UML::Operation)).oclAsType(UML::Operation)‑>asSet() in
let allReceptions: Set(UML::Reception) = self.base_Class.allFeatures()‑>
select(oclIsKindOf(UML::Reception)).oclAsType(UML::Reception)‑>asSet() in
let inheritedRules: Set(UML::Constraint) =
self.base_Class.inherit(self.base_Class.inheritedMember‑>
select(oclIsKindOf(UML::Constraint))).oclAsType(UML::Constraint)‑>asSet()
in
let allRules: Set(UML::Constraint) = self.base_Class.ownedRule‑>
union(inheritedRules) in
let allOriginalAttributes: Set(UML::Property) =
self.original.base_Class.allFeatures()‑>
select(oclIsKindOf(UML::Property)).oclAsType(UML::Property)‑>asSet() in

100 OMG Systems Modeling Language, v1.7

let allOriginalOperations: Set(UML::Operation) =
self.original.base_Class.allFeatures()‑>
select(oclIsKindOf(UML::Operation)).oclAsType(UML::Operation)‑>asSet() in
let allOriginalReceptions: Set(UML::Reception) =
self.original.base_Class.allFeatures()‑>
select(oclIsKindOf(UML::Reception)).oclAsType(UML::Reception)‑>asSet() in
let originalInheritedRules: Set(UML::Constraint) =
self.original.base_Class.inherit(self.original.base_Class.inheritedMember‑>
select(oclIsKindOf(UML::Constraint))).oclAsType(UML::Constraint)‑>asSet()
in
let allOrignalRules: Set(UML::Constraint) =
self.original.base_Class.ownedRule‑>union(originalInheritedRules) in

allAttributes‑>size() = allOriginalAttributes‑>size()
and allOperations‑>size() = allOriginalOperations‑>size()
and allReceptions‑>size() = allOriginalReceptions‑>size()

and (allAttributes‑>isEmpty() or allAttributes‑>forAll(a |
allOriginalAttributes‑>exists(oa | areConjugated(a, oa))))
and (allOperations‑>isEmpty() or allOperations‑>forAll(o |
allOriginalOperations‑>exists(oo | areConjugated(o, oo))))
and (allReceptions‑>isEmpty() or allReceptions‑>forAll(r |
allOriginalReceptions‑>exists(ro | areConjugated(r, ro))))
and areSameConstraintSets(allRules, allOrignalRules)

9.4 Usage Examples

9.4.1 Ports with Required and Provided Features

Fig. 9.6 is a fragment of the ibd:PwrSys diagram used in the HybridSUV Sample Problem in Annex D. (The
complete diagram is in Fig. D.19.) The ecu:PowerControlUnit part has three ports with required and provided
features, each connected to a port of another part. Each of the ports in this example is typed by a block specifying
provided and required features available via connectors to the ports. For example, the ICE block specifies the
provided operations setMixture and setThrottle, the provided properties RPM, temperature, and isKnocking, and
required property isControlOn, as shown in Fig. D.20. This block types the ctrl port of InternalCombustionEngine
while its conjugation (~ICE) types the ice port of PowerControlUnit.. This means the provided features of ICE are
provided by the ctrl port of InternalCombustionEngine, and required by the ice port of PowerControlUnit, while the
required features of ICE are required by the ctrl port of InternalCombustionEngine, and provided by the ice port of
PowerControlUnit. Since the ecu:PowerControlUnit part and ice:InternalCombustionEngine part are connected via
these ports, the ecu:PowerControlUnit part may invoke setThrottle and setMixture on the
ice:InternalCombustionEngine part via its ice port, across the connector to the ctrl port of
ice:InternalCombustionEngine. By invoking these operations, the PowerControlUnit can set the throttle and mixture
of the InternalCombustionEngine. The PowerControlUnit can also read properties of the InternalCombustionEngine
across the connector to find out the its rpm, temperature, and whether it is knocking. Inversely, the
InternalCombustionEngine can read the isControlOn property of the PowerControlUnit across the connector to
determine if the unit is still operating, and possibly shut down if it is not.

OMG Systems Modeling Language, v1.7 101

Usage example of ports with provided and required featuresPowerSubsystem[Block]ibd][

ice : InternalCombustionEngine

trsm : Transmission

epc : ElectricalPowerController

ecu : PowerControlUnit

ctrl : ICE

ctrl : TRSM

ctrl : EPC

epc : ~EPC

ctrl : ~ICE

trsm : ~TRSM

c1

c2

c3

Figure 9.6. Usage example of ports with provided and required features

9.4.2 Ports and Item Flows

Fig. D.25 shows the usage of ItemFlow. Here each of the item flows has an item property (fuelSupply:Fuel and
fuelReturn:Fuel) that signify the actual flow of fuel across the fuel lines. We see how Fuel may flow between the
FuelTankAssy and the InternalCombustionEngine. The FuelPump ejects Fuel via p1 port of FuelTankAssy, the Fuel
flows across the fuelSupplyLine connector to the fuelFittingPort of InternalCombustionEngine and from there it is
distributed via other ports to internal parts of the engine. Some of the fuel is returned to the FuelTankAssy from the
fuelFitting port across the fuelReturnLine connector. Note that it is possible to connect a single port to multiple
connectors: in this example the direction of the flow via the fuelFitting port on the external connectors is implied by
the direction of the ports on the other side of the fuel lines as well as by the directions of the item flows on the fuel
lines. The direction of the flow on the internal connectors is implied by the direction of the ports of the engine’s
internal parts.

9.4.3 Ports with Flow Properties

Fig. D.22 shows a way to connect the PowerControlUnit to other parts over a CAN bus. Since connections over
buses are characterized by broadcast asynchronous communications, ports with flow properties are used to connect
the parts to the CAN bus. To specify the flow between the ports, we need to specify flow properties as done in Fig.
D.21. Here FS_ICE has three flow properties: an “out” flow property of type signal (ICEData) and two “in” flow
properties of type Real. This allows the InternalCombustionEngine to transmit an ICEData signal via its fp port that
will be transmitted over the CAN bus to the ice port of PowerControlUnit (a port typed by the conjugation
~FS_ICE). This single signal carries the temperature, rpm, and knockSensor information of the engine. In addition,
the PowerControlUnit can set the mixture and throttle of the InternalCombustionEngine via the mixture and
throttlePosition flow properties of FS_ICE.

9.4.4 Proxy and Full Ports

Modelers have the option of applying stereotypes for proxy and full ports to indicate whether ports are specifying
features of their owners and internal parts (proxy), or for themselves separately (full). This is a concern when
defining ports, rather than using existing blocks with ports already defined on them. Using existing blocks with ports
only requires knowing the port types, because they define the features available for linking or communication with
those ports via connectors. The stereotypes of proxy and full ports might be elided in these cases to simplify
diagrams.

The ProxyPort and FullPort stereotypes can be applied at any level in a block taxonomy, whether on ports of the
most general blocks, the most specialized, or at intermediate levels of generalization. Ports can be specialized
through redefinition and subsetting if desired, as long they are not proxy and full at the same time, including the
stereotypes they inherit. Fig. 9.7 shows an example of a general block for an electrical plug specialized into two
other blocks. The general block can be contained in its own package, for export to users of electrical plugs. The

102 OMG Systems Modeling Language, v1.7

specialized blocks are for plug designers. This example has two designs, one using proxy ports and the other full.
The proxy design adds internal parts exposed by the ports. The full design redefines the ports with specialized types.
The same type is used for the internal parts of the proxy design and the redefined ports of the full design. The net
result for the systems as-built are the same.

Modelers can apply stereotypes for proxy and full ports at any stage of model development, or not all if the
stereotype constraints are not needed. Fig. 9.7 happens to use unstereotyped ports on a general block distributed to
users, and stereotyped ports on its specializations for implementation, but the modelers might have not used
stereotypes at all, if they did not care whether the model met those constraints (such as no behaviors on proxy ports,
or no internal binding connectors to full ports).

Unstereotyped ports do not commit to whether they are proxy or full, and do not prevent or dictate future application
of the stereotypes, except for ports that violate constraints of the stereotypes. For example, if the port types on the
general block in Fig. 9.7 had behaviors defined, then the proxy specialization would be invalid. If the general ports
had binding connectors to internal parts, then the full specialization would be invalid. If the general ports had both
behaviors and internal binding connectors, then both specializations would be invalid. Unstereotyped ports have the
basic functionality of stereotyped ones, including flow properties and nested ports, so they can be used as long as the
modeler is not concerned with the distinction between proxy and full, and the constraints they impose.

OMG Systems Modeling Language, v1.7 103

Usage example of proxy and full portsPlug Taxonomy[Package]bdd][

Plug Design 2
«block»

Plug Design 1
«block»

: P2S

: P3S

: P1S

sp : Surface
references

in p : Electricity
flow properties

P
«block»

sp : Surface{redefines sp}
references

in ground : Electricity
flow properties

P3
«interfaceBlock»

sp : Surface{redefines sp}
references

in neutral : Electricity
flow properties

P2
«interfaceBlock»

sp : Surface{redefines sp}
references

in live : Electricity
flow properties

P1
«interfaceBlock»

sp : Surface{redefines sp}
references

material : Steel
parts

P3S
«block»

sp : Surface{redefines sp}
references

material : Steel
parts

P2S
«block»

sp : Surface{redefines sp}
references

material : Steel
parts

P1S
«block»

isOutdoor : Boolean
values

Plug
«block»

{redefines p3}

{redefines p2}

{redefines p1}

{redefines p3}

{redefines p2}

{redefines p1}

«full»
p3 : P3S

«full»
p2 : P2S

«full»
p1 : P1S

=

=

= «proxy»
p3 : P3

«proxy»
p2 : P2

«proxy»
p1 : P1

p3 : P3

p2 : P2

p1 : P1

Figure 9.7. Usage example of proxy and full ports

9.4.5 Association and Port Decomposition

Fig. 9.8 shows an association block Water Delivery between a bank of spigots and a faucet. The «port» keyword
indicates which association ends are ports (associations use properties as ends, which can be ports). Fig. 9.9 shows
the internal structure of Water Delivery defining connectors between the spigots in the bank and inlets on the faucet.

104 OMG Systems Modeling Language, v1.7

The participant properties identify the spigot bank and faucet being connected. The end property on the stereotype
refers to the corresponding association end in Fig. 9.8. The type of participant properties is shown for clarity, but is
always the same as the association end type and can be elided. They are shown with dashed rectangles because they
are reference properties. The internal structure connects hot and cold ports of the participants.

Water Supply and Clientbdd][

Water Client
«block»

Faucet Inlet
«block»

Faucet
«block»

Spigot
«block»

Spigot Bank
«block»

WaterSupply
«block»

Water Delivery
«block»

suppliedBy

1

deliveredTo

1..*

1

from

1

to

«port»
cold1

«port»
1hot

«port»
1 cold

«port»
1hot

«port»
faucet 1

«port»
sbank 1

Figure 9.8. Water Delivery association block

Internal structure of Water Delivery association blockWater Delivery[Block]ibd][

deliveredToLink : Faucet

{end = deliveredTo}

cold

hot

suppliedByLink : Spigot Bank

{end = suppliedBy}

cold

hot
tofrom

tofrom

Figure 9.9. Internal structure of Water Delivery association block

Fig. 9.10 shows two views of a block House with a connector of type Water Delivery. The connector in the top view
“decomposes” into the subconnectors in the lower view according to the internal structure of Water Delivery. The
subconnectors relate the nested ports of :WaterSupply to the nested ports of :WaterClient.

OMG Systems Modeling Language, v1.7 105

: Water Client

faucet

: WaterSupply

sbank
deliveredTosuppliedBy

: Water Delivery

House1[Block] Houseibd][

: WaterSupply

sbank

cold

hot

: Water Client

faucet

cold

hot
tofrom

tofrom

House2[Block] Houseibd][

Figure 9.10. Two views of Water Delivery connector within House block

The top portion of Fig. 9.11 shows specializations of the block WaterClient into Bath, Sink, and Shower. These are
used as part types in the internal structure of the block House 2 shown in the lower portion of the figure. The
composite connector for Water Delivery is reused three times to establish connections between spigots on the water
supply and the inlets of faucets on the bath, sink, and shower.

: WaterSupply

sbank

: Shower
faucet

: Sink
faucet

: Bath
faucet

: Water Delivery

: Water Delivery

: Water Delivery

[Block] HouseHouseibd][

Sink ShowerBath

Water Client

Water ClientWater Client[Package]bdd][

Figure 9.11. Specializations of Water Client in house example

106 OMG Systems Modeling Language, v1.7

Fig. 9.12 adds a Plumbing association block for the association between Spigot and Faucet Inlet in Fig. 9.11. Fig.
9.13 shows the internal structure for the Plumbing association block, which includes a pipe and two fittings (the
additional part and connector definitions are omitted for brevity).

Plumbing association blockWater Supply and Client[Package]bdd][

Faucet InletSpigot

Plumbing

fromPlumbing

1

toPlumbing

1

Figure 9.12. Water Delivery association block with internal Plumbing connector

Internal structure of Plumbing association blockPlumbing[Block]ibd][

fromInLink : Spigot
«participant»

{end = fromPlumbing}

toInLink : Faucet Inlet
«participant»

{end = toPlumbing}
ff : Fittingsf : Fitting pp : Pipe

Figure 9.13. Internal structure of Plumbing association block

Fig. 9.14 modifies Fig. 9.9 to use Plumbing as a connector type within the Water Delivery association block. The
lower connector shows its connector property explicitly, enabling the pipe it contains to be connected to a mounting
bracket (the additional part and connector definitions are omitted for brevity).

Water Delivery association block with internal Plumbing connectorWater Delivery[Block]ibd][

suppliedByLink : Spigot Bank

{end = suppliedBy}

cold

hot

deliveredToLink : Faucet

{end = deliveredTo}

cold

hot

m : Mounting Bracket

p2 : Plumbing
«connector»

pp : Pipe

toPlumbingfromPlumbing

p1 : Plumbing

toPlumbingfromPlumbing

Figure 9.14. Water Delivery association block with internal Plumbing connector

9.4.6 Item Flow Decomposition

Item flows in internal block diagrams specify flows local to a block. For example, in Fig. 9.15 the connector to the
output of the water heater has an item flow indicating distilled water is flowing, even though the out flow property
of the water heater indicates it produces water. The water heater is fed from a water distiller in this particular usage,
so the modeler knows the output will always be distilled water, rather than other kinds of water. The radiator on the
left requires distilled water, and its connection to the water heater is compatible because the item flow narrows the
items to distilled water. Item flows can also be more general than the actual flow, as shown by the connector on the

OMG Systems Modeling Language, v1.7 107

right. The water distiller produces distilled water, but the item flow is for any kind of fluid. The connection to the
water heater is compatible because it accepts any kind of water, including distilled. The item flow does not require
the heater to accept any kind of fluid, because the source of flow is still producing water, regardless of the generality
of the item flow.

Connectors with item flows can be decomposed by association blocks that have additional item flows. The
relationship between an item flow and those in the association block is determined by the modeler. Fig. 9.16 and Fig.
9.17 are examples of item flow decomposition that modelers might choose, but they are not the only possible
decompositions and are not required. In Fig. 9.16, the item flow classifier (EnginePart) is a supertype of the
classifiers of the item flows in the decomposition. The flow properties are all in the types of the nested ports, while
the composing item flow summarizes the kinds of items flowing by generalization. In Fig. 9.17, the item flow
classifier (Engine) composes the classifiers of the items flows in the decomposition from Fig. 9.17. The port types
have an additional flow property that is not in the nested ports. These are for the flow of the engine, as opposed to its
parts. Constraints can be added between the flow properties for the engine and those for the parts, to indicate the
flowing parts are inside the flowing engine, or are separate, for example as spare parts.

out p2fo : Water
flow properties

P2o
«block»

out p3f : DistilledWater
flow properties

P3
«block»

in p2fi : Water
flow properties

P2i
«block»

in pf1 : DistilledWater
flow properties

P1
«block»

DistilledWater

Water

Fluid

Port TypesPort Types[Package]bdd][

: Water Heater : Water Distiller: Radiator

: P2i: P2o : P3: P1

DistilledWater Fluid

Internal structure of ContextContext[Block]ibd][

Figure 9.15. Usage example of item flows in internal block diagrams

108 OMG Systems Modeling Language, v1.7

p2.3 : P2.3
p2.2 : P2.2
p2.1 : P2.1

ports

out p2f : Engine
flow properties

P2
«block»

p1.3 : P1.3
p1.2 : P1.2
p1.1 : P1.1

ports

in p1f : Engine
flow properties

P1
«block»

EnginePart

Engine

A1
«block»

A1

ae1 ae2

Connection Specificationbdd][

b2b1
p2 : P2p1 : P1 c1 : A1

Engine

Internal structure of ContextContext[Block]ibd][

Figure 9.16. Usage example of item flow decomposition

p2.3 : P2.3
p2.2 : P2.2
p2.1 : P2.1

ports

P2
«block»

p1.3 : P1.3
p1.2 : P1.2
p1.1 : P1.1

ports

P1
«block»

Crankshaft
«block»

EnginePart
«block»

Cam
«block»

Piston
«block»

«participant» e1InLink : P1 [1]{end = ae1}
«participant» e2InLink : P2 [1]{end = ae2}

references

A1
«block»

e2InLink : P2 [1]

{end = ae2}

p2.3 : P2.3

p2.2 : P2.2

p2.1 : P2.1
e1InLink : P1 [1]

{end = ae1}

p1.3 : P1.3

p1.2 : P1.2

p1.1 : P1.1

Piston

Cam

Crankshaft

A1ae1 ae2

Piston

Cam

Crankshaft

Connection Specification 1bdd][

b2b1
p2 : P2p1 : P1

EnginePart

c1 : A1

Internal structure of ContextContext[Block]ibd][

Figure 9.17. Usage example of item flow decomposition

OMG Systems Modeling Language, v1.7 109

This page intentionally left blank.

110 OMG Systems Modeling Language, v1.7

10 Constraint Blocks
10.1 Overview

Constraint blocks provide a mechanism for integrating engineering analysis such as performance and reliability
models with other SysML models. Constraint blocks can be used to specify a network of constraints that represent
mathematical expressions such as {F=m*a} and {a=dv/dt}, which constrain the physical properties of a system.
Such constraints can also be used to identify critical performance parameters and their relationships to other
parameters, which can be tracked throughout the system life cycle.

A constraint block includes the constraint, such as {F=m*a}, and the parameters of the constraint such as F, m, and
a. Constraint blocks define generic forms of constraints that can be used in multiple contexts. For example, a
definition for Newton’s Laws may be used to specify these constraints in many different contexts. Reusable
constraint definitions may be specified on block definition diagrams and packaged into general-purpose or domain-
specific model libraries. Such constraints can be arbitrarily complex mathematical or logical expressions. The
constraints can be nested to enable a constraint to be defined in terms of more basic constraints such as primitive
mathematical operators.

Parametric diagrams include usages of constraint blocks to constrain the properties of another block. The usage of a
constraint binds the parameters of the constraint, such as F, m, and a, to specific properties of a block, such as a
mass, that provide values for the parameters. The constrained properties, such as mass or response time, typically
have simple value types that may also carry units, quantity kinds, or probability distributions. A pathname dot
notation can be used to refer to nested properties within a block hierarchy. This allows a value property (such as an
engine displacement) that may be deeply nested within a containing hierarchy (such as vehicle, power system,
engine) to be referenced at the outer containing level (such as vehicle-level equations). The context for the usages of
constraint blocks shall also be specified in a parametric diagram to maintain the proper namespace for the nested
properties.

Time can be modeled as a property that other properties may be dependent on. A time reference can be established
by a local or global clock that produces a continuous or discrete time value property. Other values of time can be
derived from this clock, by introducing delays and/or skew into the value of time. Discrete values of time as well as
calendar time can be derived from this global time property. SysML includes the time model from UML, but other
UML specifications offer more specialized descriptions of time that may also apply to specific needs.

A state of the system can be specified in terms of the values of some of its properties. For example, when water
temperature is below 0 degrees Celsius, it may change from liquid to solid state. In this example, the change in state
results in a different set of constraint equations. This can be accommodated by specifying constraints that are
conditioned on the value of the state property.

Parametric diagrams can be used to support trade-off analysis. A constraint block can define an objective function to
compare alternative solutions. The objective function can constrain measures of effectiveness or merit and may
include a weighting of utility functions associated with various criteria used to evaluate the alternatives. These
criteria, for example, could be associated with system performance, cost, or desired physical characteristics.
Properties bound to parameters of the objective function may have probability distributions associated with them
that are used to compute expected or probabilistic measures of the system. The use of an objective function and
measures of effectiveness in parametric diagrams are included in Annex E: “Non-normative Extensions.”

SysML identifies and names constraint blocks, but does not specify a computer interpretable language for them. The
interpretation of a given constraint block (e.g., a mathematical relation between its parameter values) shall be
provided. An expression may rely on other mathematical description languages both to capture the detailed
specification of mathematical or logical relations, and to provide a computational engine for these relations. In
addition, the block constraints are non-causal and do not specify the dependent or independent variables. The
specific dependent and independent variables are often defined by the initial conditions, and left to the
computational engine.

A constraint block is defined by a keyword of «constraint» applied to a block definition. Properties of this block
define parameters of the constraint, with the exception of properties that hold internally nested usages of constraint
blocks. The usage of a constraint block is distinguished from other parts by a box having rounded corners rather than

OMG Systems Modeling Language, v1.7 111

the square corners of an ordinary part. A parametric diagram is a restricted form of internal block diagram that
shows only the use of constraint blocks along with the properties they constrain within a context.

10.2 Diagram Elements

10.2.1 Block Definition Diagram

Table 10.1. Graphical nodes defined in Block Definition diagrams

ElementName Concrete Syntax Abstract Syntax Reference

ConstraintBlock

y : Real
x : Real

parameters

nested : ConstraintBlock2
{{L1} x > y }

constraints

ConstraintBlock1
«constraint»

SysML::ConstraintBlocks::
ConstraintBlock

10.2.2 Parametric Diagram

The diagram elements described in this sub clause are additions to the Internal Block Diagram described in Section
8. The Parametric Diagram includes all of the notations of an Internal Block Diagram, subject only to the restrictions
described in Section 10.3.1.2.

Table 10.2. Graphical nodes defined in Parametric diagrams

ElementName Concrete Syntax Abstract Syntax Reference

ParametricDiagram

Parametric example[Block] Block1par][

C1 : Constraint1
{}

: C

y

xlength : Real

width : Real

=

=

SysML::ConstraintBlocks::
ConstraintBlock,
SysML::Blocks::Block

ConstraintProperty

C1' : Constraint1
«constraint»

invisible

C1 : Constraint1

y : Real

x : Real

y : Real

x : Real

UML4SysML::Property typed by
SysML::ConstraintBlocks::
ConstraintBlock

10.3 UML Extensions

10.3.1 Diagram Extensions

10.3.1.1 Block Definition Diagram

112 OMG Systems Modeling Language, v1.7

10.3.1.1.1 Constraint block definition

The «constraint» keyword on a block definition states that the block is a constraint block. An expression that
specifies the constraint may appear in the constraints compartment of the block definition, using either formal
statements in some language, or informal statements using text. This expression can include a formal reference to a
language in braces as indicated in Table 10.1. Parameters of the constraint may be shown in a compartment with the
predefined compartment label “parameters.”

10.3.1.1.2 Parameters compartment

Constraint blocks support a special form of compartment, with the label “parameters,” which may contain
declarations for some or all of its constraint parameters. Properties of a constraint block should be shown either in
the constraints compartment, for nested constraint properties, or within the parameters compartment.

10.3.1.2 Parametric Diagram

A parametric diagram is defined as a restricted form of internal block diagram. A parametric diagram may contain
constraint properties and their parameters, along with other properties from within the internal block context. All
properties that appear, other than the constraints themselves, shall either be bound directly to a constraint parameter,
or contain a property that is bound to one (through any number of levels of containment).

10.3.1.2.1 Round-cornered rectangle notation for constraint property

A constraint property may be shown on a parametric diagram using a rectangle with rounded corners. This graphical
shape distinguishes a constraint property from all other properties and avoids the need to show an explicit
«constraint» keyword. Otherwise, this notation is equivalent to the standard form of an internal property with a
«constraint» keyword shown. Compartments and internal properties may be shown within the shape just as for other
types of internal properties.

10.3.1.2.2 «constraint» keyword notation for constraint property

A constraint property may be shown on a parametric diagram using a standard form of internal property rectangle
with the «constraint» keyword preceding its name. Parameters are shown within a constraint property using the
standard notations for internal properties.

10.3.1.2.3 Small square box notation for an internal property

A constraint parameter may optionally be shown by a small square box, with the name and other specifications
appearing in a text string close to the square box. The text string for such a constraint parameter may include all the
elements that could ordinarily be used to declare the parameter in a compartment of a block, including an optional
default value. The box may optionally be shown with one edge flush with the boundary of a containing property.
Placement of constraint parameter boxes is purely for notational convenience, for example, to enable simpler
connection from the outside, and has no semantic significance. If a connector is drawn to a region where an internal
constraint parameter box is shown flush with the boundary of a containing property, the connector is always
assumed to connect to the innermost constraint parameter.

10.3.2 Stereotypes

Package ConstraintBlocks

ConstraintBlock
«stereotype»

SysML::Blocks::Block
«stereotype»

Figure 10.1. Stereotypes defined in SysML ConstraintBlocks package

OMG Systems Modeling Language, v1.7 113

10.3.2.1 ConstraintBlock

Description

A constraint block is a block that packages the statement of a constraint so it may be applied in a reusable way to
constrain properties of other blocks. A constraint block typically defines one or more constraint parameters, which
are bound to properties of other blocks in a surrounding context where the constraint is used. Binding connectors, as
defined in Section 8 are used to bind each parameter of the constraint block to a property in the surrounding context.
All properties of a constraint block are constraint parameters, with the exception of constraint properties that hold
internally nested usages of constraint blocks.

A constraint property is a property of any block that is typed by a constraint block. It holds a localized usage of the
constraint block. Binding connectors may be used to bind the parameters of this constraint block to other properties
of the block that contains the usage.

Generalizations

• Block (from Blocks)

Association Ends

• base_Class : Class [1]

Constraints

• 1_constraintparameters_only

A constraint block shall not own any structural or behavioral elements beyond the properties that define its
constraint parameters, constraint properties that hold internal usages of constraint blocks, binding connectors
between its internally nested constraint parameters, constraint expressions that define an interpretation for the
constraint block, and general-purpose model management and crosscutting elements.

-- Cannot be expressed in OCL

• 2_specializations_are_constraintblocks

Any classifier that specializes a ConstraintBlock shall also have the ConstraintBlock stereotype applied.

UML::Classifier.allInstances()‑>forAll(c | c.general‑>
includes(self.base_Class) implies
ConstraintBlock.allInstances().base_Class‑>includes(c))

• 3_composite

Any property of a block that is typed by a ConstraintBlock shall have composite aggregation.

self.base_Class.ownedAttribute‑>forAll(p| p.isComposite)

10.4 Usage Examples

10.4.1 Definition of Constraint Blocks on a Block Definition Diagram

Constraint blocks can only be defined on a block definition diagram or a package diagram, where they shall have the
«constraint» keyword shown. The strings in braces in the compartment labeled “constraints” are ordinary UML
constraints, using a special compartment to hold the constraint. This is shown in Section D.4.7.8. These particular
constraints are specified only in an informal language, but a more formal language such as OCL or MathML could
also be used. The compartment labeled “parameters” shows the parameters of this constraint, which are bound on
the parametric diagram.

10.4.2 Usage of Constraint Blocks on a Parametric Diagram

Fig. D.32 shows the use of constraint properties on a parametric diagram. This diagram shows the use of nested
property references to the properties of the parts; parametric diagrams can make use of the nested property name

114 OMG Systems Modeling Language, v1.7

notation to refer to multiple levels of nested property containment, as shown in this example. A parametric diagram
is similar to an internal block diagram with the exception that the only connectors that may be shown are binding
connectors. The Sample Problem in Annex D provides definitions of the containing EconomyContext block for
which this parametric diagram is shown.

OMG Systems Modeling Language, v1.7 115

This page intentionally left blank.

116 OMG Systems Modeling Language, v1.7

BEHAVIORAL CONSTRUCTS

OMG Systems Modeling Language, v1.7 117

This page intentionally left blank.

118 OMG Systems Modeling Language, v1.7

11 Activities
11.1 Overview

Activity modeling emphasizes the inputs, outputs, sequences, and conditions for coordinating other behaviors. It
provides a flexible link to blocks owning those behaviors. The following is a summary of the SysML extensions to
UML Activity diagrams. For additional information, see extensions for Enhanced Functional Flow Block Diagrams
in Annex E, Activity Diagram Extensions.

11.1.1 Control as Data

SysML extends control in activity diagrams as follows:

• In UML Activities, control can only enable actions to start. SysML extends control to support disabling of
actions that are already executing. This is accomplished by providing a model library with a type for control
values that are treated like data (see ControlValueKind in Fig. 11.9).

• A control value is an input or output of a control operator, which is how control acts as data. A control operator
can represent a complex logical operation that transforms its inputs to produce an output that controls other
actions (see ControlOperator in Fig. 11.8).

11.1.2 Continuous Systems

SysML provides extensions that might be very loosely grouped under the term “continuous,” but are generally
applicable to any sort of distributed flow of information and physical items through a system. These are:

• Restrictions on the rate at which entities flow along edges in an activity, or in and out of parameters of a
behavior (see Rate in Fig. 11.8). This includes both discrete and continuous flows, either of material, energy, or
information. Discrete and continuous flows are unified under rate of flow, as is traditionally done in
mathematical models of continuous change, where the discrete increment of time approaches zero.

• Extension of object nodes, including pins, with the option for newly arriving values to replace values that are
already in the object nodes (see Overwrite in Fig. 11.8). SysML also extends object nodes with the option to
discard values if they do not immediately flow downstream (see NoBuffer in Fig. 11.8). These two extensions
are useful for ensuring that the most recent information is available to actions by indicating when old values
should not be kept in object nodes, and for preventing fast or continuously flowing values from collecting in an
object node, as well as modeling transient values, such as electrical signals.

11.1.3 Probability

SysML introduces probability into activities as follows (see Probability in Fig. 11.8):

• Extension of edges with probabilities for the likelihood that a value leaving the decision node or object node will
traverse an edge.

• Extension of output parameter sets with probabilities for the likelihood that values will be output on a parameter
set.

11.1.4 Activities as Blocks

In UML, all behaviors including activities are classes, and their instances are executions. Behaviors can appear on
block definition diagrams, and participate in generalization and associations. SysML clarifies the semantics of
composition association between activities, and between activities and the type of object nodes in the activities, and
defines consistency rules between these diagrams and activity diagrams. See Section 11.3.1.1, Activity.

11.1.5 Timelines

The simple time model in UML can be used to represent timing and duration constraints on actions in an activity
model. These constraints can be notated as constraint notes in an activity diagram. Although the UML 2 timing
diagram was not included in this version of SysML, it can complement SysML behavior diagrams to notate this
information. More sophisticated SysML modeling techniques can incorporate constraint blocks from Section 10,

OMG Systems Modeling Language, v1.7 119

“Constraint Blocks” to specify resource and related constraints on the properties of the inputs, outputs, and other
system properties. (Note: refer to Section 11.3.1.4, ObjectNode, Variables, and Parameters for constraining
properties of object nodes).

11.2 Diagram Elements

11.2.1 Activity Diagram

Table 11.1. Graphical notation of Activity diagrams

ElementName Concrete Syntax Abstract Syntax Reference

Action, CallBehaviorAction,
AcceptEventAction,
SendSignalAction

TimeEvent

Signal Event

action name :
behavior name

Action

UML4SysML::Action,
UML4SysML::CallBehaviorAction
UML4SysML::AcceptEventAction
UML4SysML::SendSignalAction

Activity Frame and Heading

Activity Diagram1Activity1act][

UML4SysML::Activity

ActivityFinal UML4SysML::ActivityFinalNode

ActivityNode See ControlNode and ObjectNode UML4SysML::ActivityNode

ActivityParameterNode

ActivityParameterNodeact][

UML4SysML::
ActivityParameterNode

ControlNode
See DecisionNode, FinalNode, ForkNode,
InitialNode, JoinNode, and MergeNode. UML4SysML::ControlNode

ControlOperator

CallBehaviorAction1
«ControlOperator»

controlOperatoract][
UML4SysML::ControlOperator

120 OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

DecisonNode

[else]

[guard]

UML4SysML::DecisionNode

ExceptionHandler
HandlerBody

Node
Protected Node

ExceptionType
UML4SysML::ExceptionHandler

FinalNode
See ActivityFinal and FlowFinal

UML4SysML::FinalNode

FlowFinal UML4SysML::FlowFinal

ForkNode
…

UML4SysML::ForkNode

InitialNode UML4SysML::InitialNode

isControl
Action

Action

{control}{control}

UML4SysML::Pin.isControl

isStream

Action

Action
{stream}{stream}

act

{stream} {stream}

UML4SysML::Parameter.isStream

OMG Systems Modeling Language, v1.7 121

ElementName Concrete Syntax Abstract Syntax Reference

JoinNode …

{joinspec=…}

UML4SysML::JoinNode

Local pre- and postconditions
Action

Local Postcondition
«constraint»constraint

Local Precondition
«constraint»constraint

UML4SysML::
Action.localPrecondition,
UML4SysML::
Action.localPostcondition

MergeNode UML4SysML::MergeNode

NoBuffer
Action «nobuffer»«nobuffer»

SysML::Activities::NoBuffer

ObjectNode

[state1, state2, …]
object node name : type name

Action

pin name : type name
[state1, state2, …]

UML4SysML::ObjectNode and its
children,
SysML::Activities::ObjectNode

Optional

Action «optional»«optional»

act

«Optional»
SysML::Activities::Optional

122 OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

OverWrite
Action

«overwrite»«overwrite»

SysML::Activities::Overwrite

ParameterSet act

Action

UML4SysML::ParameterSet

Probability act

{probability=
 valueSpecification}

{probability=
 valueSpecification}

{probability=
 valueSpecification}

{probability=
 valueSpecification}

Action

SysML::Activities::Probability

Rate

activity Rate][

{stream}
{rate=every 3 ms}
parameter4

«discrete»

{stream}
{rate=1.2 m³/h}
parameter5
«continuous»{stream}

parameter2
«continuous»

{stream}
parameter1
«discrete»

{stream}
{rate=10/s}
parameter3

«rate»

Action «continuous»
{rate = 1.2 m³/h}

«discrete»
{rate = every 3 ms}

SysML::Activities::Rate,
SysML::Activities::Continuous,
SysML::Activities::Discrete

Table 11.2. Graphical paths included in Activity diagrams

ElementName Concrete Syntax Abstract Syntax Reference

ActivityEdge See ControlFlow and ObjectFlow UML4SysML::ActivityEdge

OMG Systems Modeling Language, v1.7 123

ElementName Concrete Syntax Abstract Syntax Reference

ControlFlow
UML4SysML::ControlFlow,
SysML::Activities::ControlFlow

ObjectFlow UML4SysML::ObjectFlow

Probability

Object
Node

Action

{probability = "valueSpecification"}

{probability = "valueSpecification"}

{probability = "valueSpecification"}

{probability = "valueSpecification"}

{probability = "valueSpecification"}

{probability = "valueSpecification"}

SysML::Activities::Probability

Rate
{rate = distribution}

«continuous»
«discrete»

{rate = constant}

SysML::Activities::Rate,
SysML::Activities::Continuous,
SysML::Activities::Discrete

Table 11.3. Other graphical elements included in Activity diagrams

ElementName Concrete Syntax Abstract Syntax Reference

In Block Definition Diagrams,
Activity, Association,
AdjunctProperty

BDD, Activity, Assoc, Adjunctbdd][

block name
«block»

activity name
«activity»

block name
«block»

activity name
«activity»

block name
«block»

activity name
«activity»

activity name
«activity»

activity name
«activity»

«adjunct»
variable name

«adjunct»
call action name

«adjunct»
parameter name

«adjunct»
object node name

UML4SysML::Activity,
UML4SysML::Association,
SysML::Blocks

124 OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

ActivityPartition

(Partition Name)
Action

P
ar

ti
ti

o
n

 N
am

e

UML4SysML::ActivityPartition

InterruptibleActivityRegion

region name

UML4SysML::
InterruptibleActivityRegion

StructuredActivityDiagram

Node Name
«structured»

UML4SysML::
StructuredActivityNode

11.3 UML Extensions

11.3.1 Diagram Extensions

The following specify diagram extensions to the notations defined in Section 17, “Profiles & Model Libraries”.

11.3.1.1 Activity

11.3.1.1.1 Notation

In UML, all behaviors are classes, including activities, and their instances are executions of the activity. This follows
the general practice that classes define the constraints under which the instances must operate. Creating an instance
of an activity causes the activity to start executing, and vice versa. Destroying an instance of an activity terminates
the corresponding execution, and vice versa. Terminating an execution also terminates the execution of any other
activities that it invoked synchronously, that is, expecting a reply.

Activities as blocks can have associations between each other, including composition associations. Composition
means that destroying an instance at the whole end destroys instances at the part end. When composition is used
with activity blocks, the termination of execution of an activity on the whole end will terminate executions of
activities on the part end of the links.

Combining the two aspects above, when an activity invokes other activities, they can be associated by a composition
association, with the invoking activity on the whole end, and the invoked activity on the part end. If an execution of
an activity on the whole end is terminated, then the executions of the activities on the part end are also terminated.
The upper multiplicity on the part end restricts the number of concurrent synchronous executions of the behavior
that can be invoked by the containing activity. See Constraints below.

OMG Systems Modeling Language, v1.7 125

Activities in block definition diagrams appear as regular blocks, except the «activity» keyword may be used to
indicate the Block stereotype is applied to an activity, as shown in Fig. 11.1. See example in Section 11.4, Usage
Examples. This provides a means for representing activity decomposition in a way that is similar to classical
functional decomposition hierarchies. Properties with AdjunctProperty applied, where the principal of the
AdjunctProperties are call actions, including call behavior actions, can be used as the part end of the associations.
See Section 8.3.2.1 for constraints when AdjunctProperty is used with call actions. Activities in block definition
diagrams can also appear with the same notation as CallBehaviorAction, except the rake notation can be omitted, if
desired. Also see use of activities in block definition diagrams that include ObjectNodes.

Block definition diagram with activities as blocksbdd][

activity name
«activity»

activity name
«activity»

activity name
«activity»

activity name
«activity»

activity name
«activity»

«adjunct»
call action name

«adjunct»
call action name

«adjunct»
call action name

«adjunct»
call action name

Figure 11.1. Block definition diagram with activities as blocks

11.3.1.2 CallBehaviorAction

Stereotypes applied to behaviors may appear on the notation for CallBehaviorAction when invoking those
behaviors, as shown in Fig. 11.2.

behavior name
«stereotype name»

Figure 11.2. CallBehaviorAction notation with behavior stereotype

CallBehaviorActions in activity diagrams may optionally show the action name with the name of the invoked
behavior using the colon notation shown in Fig. 11.3.

action name : behavior name

Figure 11.3. CallBehaviorAction notation with action name

11.3.1.3 ControlFlow

11.3.1.3.1 Presentation Option

Control flow may be notated with a dashed line and stick arrowhead, as shown in Fig. 11.4.

ActionAction

Figure 11.4. Control flow notation

11.3.1.4 ObjectNode, Variables, and Parameters

126 OMG Systems Modeling Language, v1.7

11.3.1.4.1 Notation

See Section 11.3.1.1, Activity with regard to activities appearing in block definition diagrams. Associations can be
used between activities and classifiers (blocks or value types) that are the type of object nodes, variables, or
parameters in the activity, as shown in Fig. 11.5. This supports linking the execution of the activity with items that
are flowing through the activity or assigned to variables or parameters, and happen to be contained by an object
node or assigned to a variable or parameter at the time the link exists. Properties with AdjunctProperty applied,
where the principal of the AdjunctProperty is an object node, variable, or parameter, can be used as the end of the
associations toward the object node, variable, or parameter type. Like any association end or property these can be
the subject of parametric constraints, design values, units, and quantity kinds. The associations may be composition
if the intention is to delete instances of the classifier flowing the activity when the activity is terminated. See
example in Section 11.4, Usage Examples.

Block definition diagram with activities as blocks associated with types of object nodes, variables, and parametersbdd][

activity name
«activity»

activity name
«activity»

block name
«block»

block name
«block»

block name
«block»

«adjunct»
parameter name

«adjunct»
variable name

«adjunct»
object node name

«adjunct»
object node name

Figure 11.5. Block definition diagram with activities as blocks associated with types of object nodes, variables,
and parameters

Object nodes in activity diagrams can optionally show the node name with the name of the type of the object node as
shown in Fig. 11.6.

object node name : type name

Figure 11.6. ObjectNode notation in activity diagrams

Stereotypes applying to parameters can appear on object nodes in activity diagrams, as shown in Fig. 11.7, when the
object node notation is used as a shorthand for pins. The stereotype applies to all parameters corresponding to the
pins notated by the object node. Stereotype applying to object nodes can also appear in object nodes, and applies to
all the pins notated by the object node.

object node
name

«stereotype name»

Figure 11.7. ObjectNode notation with stereotype in activity diagrams

11.3.2 Stereotypes

The following abstract syntax defines the stereotypes in this clause and which metaclasses they extend. The
descriptions, attributes, and constraints for each stereotype are specified below.

OMG Systems Modeling Language, v1.7 127

Package Activities

probability : ValueSpecification [1]
attributes

Probability
«stereotype»

ParameterSet
«Metaclass»

UML4SysML::ParameterSet
«Metaclass»ActivityEdge

«Metaclass»

ObjectNode
«Metaclass»

rate : InstanceSpecification [1]
attributes

Rate
«stereotype»

ObjectNode
«Metaclass»

UML4SysML::ActivityEdge
«Metaclass»

Operation
«Metaclass»
Operation

«Metaclass»

UML4SysML::ObjectNode
«Metaclass»

Parameter
«Metaclass»

UML4SysML::Parameter
«Metaclass»

UML4SysML::Operation
«Metaclass»

Behavior
«Metaclass»
Behavior

«Metaclass»

UML4SysML::Behavior
«Metaclass»

ControlOperator
«stereotype»

Continuous
«stereotype»

Optional
«stereotype»

Discrete
«stereotype»

NoBuffer
«stereotype»

Overwrite
«stereotype»

Figure 11.8. Abstract Syntax for SysML Activity Extensions

11.3.2.1 Continuous

Description

Continuous rate is a special case of rate of flow (see Rate) where the increment of time between items approaches
zero. It is intended to represent continuous flows that may correspond to water flowing through a pipe, a time
continuous signal, or continuous energy flow. It is independent from UML streaming, see Section 11.3.2.8. A
streaming parameter may or may not apply to continuous flow, and a continuous flow may or may not apply to
streaming parameters.

UML places no restriction on the rate at which tokens flow. In particular, the time between tokens can approach as
close to zero as needed, for example to simulate continuous flow. There is also no restriction in UML on the kind of
values that flow through an activity. In particular, the value may represent as small a number as needed, for example
to simulate continuous material or energy flow. Finally, the exact timing of token flow is not completely prescribed
in UML. In particular, token flow on different edges may be coordinated to occur in a clocked fashion, as in time
march algorithms for numerical solvers of ordinary differential equations, such as Runge-Kutta.

Generalizations

• Rate (from Activities)

11.3.2.2 ControlOperator

Description

A control operator is a behavior that is intended to represent an arbitrarily complex logical operator that can be used
to enable and disable other actions. When the «controlOperator» stereotype is applied to behaviors, the behavior
takes control values as inputs or provides them as outputs, that is, it treats control as data (see Section 11.3.3.1.1).
When the «controlOperator» stereotype is not applied, the behavior may not have a parameter typed by
ControlValue. The «controlOperator» stereotype also applies to operations with the same semantics.

128 OMG Systems Modeling Language, v1.7

The control value inputs do not enable or disable the control operator execution based on their value, they only
enable based on their presence as data. Pins for control parameters are regular pins, not UML control pins. This is so
the control value can be passed into or out of the action and the invoked behavior, rather than control the starting of
the action, or indicating the ending of it.

Association Ends

• base_Behavior : Behavior [1]

• base_Operation : Operation [1]

Constraints

• 1_one_parameter_controlvalue

When the «controlOperator» stereotype is applied, the behavior or operation shall have at least one parameter
typed by ControlValue. If the stereotype is not applied, the behavior or operation may not have any parameter
typed by ControlValue.

UML::Behavior.allInstances()‑>forAll(b | not
(ControlOperator.allInstances().base_Behavior‑>includes(b) xor
b.ownedParameter‑>exists(p |
p.type=SysML::Libraries::ControlValues::ControlValue))) and
UML::Operation.allInstances()‑>forAll(o | not
(ControlOperator.allInstances().base_Operation‑>includes(o) xor
o.ownedParameter‑>exists(p |
p.type=SysML::Libraries::ControlValues::ControlValue)))

• 2_controloperator_operation_method

A behavior shall have the «controlOperator» stereotype applied if it is a method of an operation that has the
«controlOperator» stereotype applied.

(self.base_Operation‑>notEmpty() and self.base_Operation.method‑>
notEmpty()) implies self.base_Operation.method‑>forAll(b |
ControlOperator.allInstances().base_Behavior‑>includes(b))

11.3.2.3 Discrete

Description

Discrete rate is a special case of rate of flow (see Section 11.3.2.8) where the increment of time between items is a
non-zero. Examples include the production of assemblies in a factory and signals set at periodic time intervals.

Generalizations

• Rate (from Activities)

Constraints

• 1_not_continuous

The «discrete» and «continuous» stereotypes shall not be applied to the same element at the same time.

(self.base_ActivityEdge‑>notEmpty() implies
Continuous.allInstances().base_ActivityEdge‑>
excludes(self.base_ActivityEdge)) and (self.base_Parameter‑>notEmpty()
implies Continuous.allInstances().base_Parameter‑>
excludes(self.base_Parameter))

11.3.2.4 NoBuffer

OMG Systems Modeling Language, v1.7 129

Description

When the «nobuffer» stereotype is applied to object nodes, tokens arriving at the node are discarded if they are
refused by outgoing edges, or refused by actions for object nodes that are input pins. This is typically used with fast
or continuously flowing data values, to prevent buffer overrun, or to model transient values, such as electrical
signals. For object nodes that are the target of continuous flows, «nobuffer» and «overwrite» have the same effect.
The stereotype does not override UML token offering semantics; it just indicates what happens to the token when it
is accepted. When the stereotype is not applied, the semantics are as in UML.

Association Ends

• base_ObjectNode : ObjectNode [1]

Constraints

• 1_not_overwrite

The «nobuffer» and «overwrite» stereotypes cannot be applied to the same element at the same time.

Overwrite.allInstances().base_ObjectNode‑>excludes(self.base_ObjectNode)

11.3.2.5 Optional

Description

When the «optional» stereotype is applied to parameters, the lower multiplicity shall be equal to zero. This can be
used on an object node with an upper bound of 1 to ensure that stale data is overridden at the object node.
Otherwise, the lower multiplicity shall be greater than zero, which is called "required." The absence of this
stereotype indicates a constraint, see below.

Association Ends

• base_Parameter : Parameter [1]

Constraints

• 1_lower_is_0

A parameter with the «optional» stereotypes applied shall have multiplicity.lower equal to zero, otherwise
multiplicity.lower shall be greater than zero.

UML::Parameter.allInstances()‑>forAll(p |
Optional.allInstances().base_Parameter‑>includes(p) xor p.lower > 0)

11.3.2.6 Overwrite

Description

When the «overwrite» stereotype is applied to object nodes, a token arriving at a full object node removes one that is
already there before being added (a full object node has as many tokens as allowed by its upper bound). This is
typically used on an input pin with an upper bound of 1 to ensure that stale data is overridden at an input pin. For
upper bounds greater than one, the token removed is the one that has been in the object node the longest. For FIFO
ordering, this is the token that is next to be selected, for LIFO it is the token that would be last to be selected. Tokens
arriving at a full object node with the Overwrite stereotype applied take up their positions in the ordering as normal,
if any. The arriving tokens do not take the positions of the removed tokens. A null token removes all the tokens
already there. The number of tokens replaced is equal to the weight of the incoming edge, which defaults to 1. For
object nodes that are the target of continuous flows, «overwrite» and «nobuffer» have the same effect. The
stereotype does not override UML token offering semantics, just indicates what happens to the token when it is
accepted. When the stereotype is not applied, the semantics is as in UML, specifically, tokens arriving at object
nodes do not replace ones that are already there.

Association Ends

• base_ObjectNode : ObjectNode [1]

130 OMG Systems Modeling Language, v1.7

Constraints

• 1_not_nobuffer

The «overwrite» and «nobuffer» stereotypes cannot be applied to the same element at the same time.

NoBuffer.allInstances().base_ObjectNode‑>excludes(self.base_ObjectNode)

11.3.2.7 Probability

Description

When the «probability» stereotype is applied to edges coming out of decision nodes and object nodes, it provides an
expression for the probability that the edge will be traversed. These shall be between zero and one inclusive, and add
up to one for edges with same source at the time the probabilities are used. When the «probability» stereotype is
applied to output parameter sets, it gives the probability the parameter set will be given values at runtime. These
shall be between zero and one inclusive, and add up to one for output parameter sets of the same behavior at the time
the probabilities are used.

Attributes

• probability : ValueSpecification [1]
Value of the probability

Association Ends

• base_ActivityEdge : ActivityEdge [1]

• base_ParameterSet : ParameterSet [1]

Constraints

• 1_source_decisionnode_or_objectnode

The «probability» stereotype shall only be applied to activity edges that have decision nodes or object nodes as
sources, or to output parameter sets.

(self.base_ActivityEdge‑>notEmpty() implies
self.base_ActivityEdge.source.oclIsKindOf(UML::DecisionNode)) and
(self.base_ParameterSet‑>notEmpty() implies
self.base_ParameterSet.parameter‑>forAll(p |
p.direction=UML::ParameterDirectionKind::out))

• 2_all_outgoing_edges

When the «probability» stereotype is applied to an activity edge, then it shall be applied to all edges coming out
of the same source.

self.base_ActivityEdge‑>notEmpty() implies
Probability.allInstances().base_ActivityEdge‑>
includesAll(self.base_ActivityEdge.target.incoming)

• 3_all_parametersets

When the «probability» stereotype is applied to an output parameter set, it shall be applied to all the parameter
sets of the behavior or operation owning the original parameter set.

self.base_ParameterSet‑>notEmpty() implies
Probability.allInstances().base_ParameterSet‑>
includesAll(self.base_ParameterSet.namespace.ownedMember‑>select(m |
m.oclIsKindOf(UML::ParameterSet)))

• 4_all_outputparameter_in_parametersets

OMG Systems Modeling Language, v1.7 131

When the «probability» stereotype is applied to an output parameter set, all the output parameters shall be in
some parameter set.

(self.base_ActivityEdge‑>notEmpty() implies
Continuous.allInstances().base_ActivityEdge‑>
excludes(self.base_ActivityEdge)) and (self.base_Parameter‑>notEmpty()
implies Continuous.allInstances().base_Parameter‑>
excludes(self.base_Parameter))

11.3.2.8 Rate

Description

When the «rate» stereotype is applied to an activity edge, it specifies the expected value of the number of objects
and values that traverse the edge per time interval, that is, the expected value rate at which they leave the source
node and arrive at the target node. It does not refer to the rate at which a value changes over time. When the
stereotype is applied to a parameter, the parameter shall be streaming, and the stereotype gives the number of objects
or values that flow in or out of the parameter per time interval while the behavior or operation is executing.
Streaming is a characteristic of UML behavior parameters that supports the input and output of items while a
behavior is executing, rather than only when the behavior starts and stops. The flow may be continuous or discrete,
see the specialized rates in Section 11.3.2.1 and Section 11.3.2.3. The «rate» stereotype has a rate property of type
InstanceSpecification. The values of this property shall be instances of classifiers stereotyped by «valueType» or
«distributionDefinition», see Section 8. In particular, the denominator for units used in the rate property shall be
time units.

Attributes

• rate : InstanceSpecification [1]
Value of the rate

Association Ends

• base_ActivityEdge : ActivityEdge [1]

• base_ObjectNode : ObjectNode [1]

• base_Parameter : Parameter [1]

Constraints

• 1_streaming

When the «rate» stereotype is applied to a parameter, the parameter shall be streaming.

self.base_Parameter‑>notEmpty() implies self.base_Parameter.isStream

• 2_edges_rates

The rate of a parameter shall be less than or equal to rates on edges that come into or go out from pins and
parameters nodes corresponding to the parameter.

self.base_Parameter‑>notEmpty() implies (
let nodes: Set(UML::ObjectNode) =
if self.base_Parameter.owner.oclIsKindOf(UML::Behavior) then
let pOwner: UML::Behavior =

self.base_Parameter.owner.oclAsType(UML::Behavior) in
UML::CallBehaviorAction.allInstances()‑>select(a | a.behavior =

pOwner)
‑>collect(a | a.argument‑>at(pOwner.ownedParameter‑>

indexOf(self.base_Parameter)))
‑>union(UML::StartObjectBehaviorAction.allInstances()‑>select(a |

a.behavior() = pOwner)

132 OMG Systems Modeling Language, v1.7

‑>collect(a | a.argument‑>at(pOwner.ownedParameter‑>
indexOf(self.base_Parameter))))

‑>union(UML::ActivityParameterNode.allInstances()‑>select(n |
n.parameter = self.base_Parameter))‑>asSet()
else if self.base_Parameter.owner.oclIsKindOf(UML::Operation) then
let pOwner: UML::Operation =

self.base_Parameter.owner.oclAsType(UML::Operation) in
UML::CallOperationAction.allInstances()‑>select(a | a.operation =

pOwner)
‑>collect(a | a.argument‑>at(pOwner.ownedParameter‑>

indexOf(self.base_Parameter)))‑>asSet()
else
Set(UML::ObjectNode){}

endif endif in
nodes.incoming‑>flatten()‑>union(nodes.outgoing‑>flatten())
‑>forAll(e | let eRate: Rate = Rate.allInstances()‑>any(r |

r.base_ActivityEdge=e) in
(not eRate.oclIsUndefined() and self.rate.specification.realValue() <=

eRate.rate.specification.realValue())))

11.3.3 Model Libraries

11.3.3.1 Package ControlValues

The SysML model library for activities is shown in Fig. 11.9.

ControlValues Control valuesbdd][
«modelLibrary»

enable
disable

enumeration literals

{}
ControlValueKind

«ValueType»

Figure 11.9. Control values

11.3.3.1.1 ControlValueKind

Description

The ControlValueKind enumeration is a type for treating control values as data (see Section 11.3.2.2) and for UML
control pins. It can be used as the type of behavior and operation parameters, object nodes, and attributes, and so on.
The possible runtime values are given as enumeration literals. Modelers can extend the enumeration with additional
literals, such as suspend, resume, with their own semantics. The disable literal means a termination of an executing
behavior that can only be started again from the beginning (compare to suspend). The enable literal means to start a
new execution of a behavior (compare to resume).

Literals

• disable
The disable literal means a termination of an executing behavior that can only be started again from the
beginning (compare to suspend).

OMG Systems Modeling Language, v1.7 133

• enable
The enable literal means to start a new execution of a behavior (compare to resume).

Constraints

• 1_node_is_controltype

UML::ObjectNode::isControlType is true for object nodes with type ControlValue.

11.4 Usage Examples

The following examples illustrate modeling continuous systems (see Section 11.1.2, Continuous Systems). Fig.
11.10 shows a simplified model of driving and braking in a car that has an automatic braking system. Turning the
key on has a duration constraint specifying that this action lasts no more than 0.1 seconds. Turning the key on starts
two behaviors, Driving and Braking. These behaviors execute until the key is turned off, using streaming parameters
to communicate with other behaviors. The Driving behavior outputs a brake pressure continuously to the Braking
behavior while both are executing, as indicated by the «continuous» rate and streaming properties (streaming is a
characteristic of UML behavior parameters that supports the input and output of items while a behavior is executing,
rather than only when the behavior starts and stops). Brake pressure information also flows to a control operator that
outputs a control value to enable or disable the Monitor Traction behavior. No pins are used on Monitor Traction, so
once it is enabled, the continuously arriving enable control values from the control operator have no effect, per UML
semantics. When the brake pressure goes to zero, disable control values are emitted from the control operator. The
first one disables the monitor, and the rest have no effect. While the monitor is enabled, it outputs a modulation
frequency for applying the brakes as determined by the ABS system. The rake notations on the control operator and
Monitor Traction indicate they are further defined by activities, as shown in Fig. 11.11 and Fig. 11.12. An alternative
notation for this activity decomposition is shown in Fig. 11.13.

The duration constraint notation associated with the Turn Key To On action is supported by the UML Simple Time
model. The Operate Car activity owns a duration constraint specifying that the “Turn Key To On” action lasts no
more than 0.1 seconds. The concrete UML element used in this example is a DurationConstraint owned by Operate
Car that constrains the Turn Key To On action. The DurationConstraint owns a DurationInterval, which specifies
that the action is constrained to last between 0 seconds and 0.1 seconds (both being Duration expressions).

134 OMG Systems Modeling Language, v1.7

Continuous system example 1Operate Car[Activity]act][

«interruptibleRegion»

Enable on Brake
Pressure > 0

«controlOperator»

ControlValue

Monitor
Traction

modulationFreq
uency :

ModulationFreq
uency

«continuous»

Braking

Driving Key Off

Turn Key to On

{0..0.1 s}

BrakePressure
{stream}

BrakePressure
{stream}

brakePressure : BrakePressure
{stream}

«continuous»

{control}

Figure 11.10. Continuous system example 1

The activity diagram for Monitor Traction is shown in Fig. 11.11. When Monitor Traction is enabled, it begins
listening for signals coming in from the wheel and accelerometer, as indicated by the signal receipt symbols on the
left, which begin listening automatically when the activity is enabled. A traction index is calculated every 10 ms,
which is the slower of the two signal rates. The accelerometer signals come in continuously, which means the input
to Calculate Traction does not buffer values. The result of Calculate Traction is filtered by a decision node for a
threshold value and Calculate Modulation Frequency determines the output of the activity.

OMG Systems Modeling Language, v1.7 135

Continuous system example 2Monitor Traction[Activity]act][

Modulation
Frequency

Input from
optical sensor on

wheel

Input from
Accelerometer

Calculate
Modulation
Frequency

Angular
Velocity

Calculate
Traction

Acceleration

Traction
Index

[loss of traction]

«continuous»

{rate = per 10ms}

[else]

Figure 11.11. Continuous system example 2

The activity diagram for the control operator Enable on Brake Pressure > 0 is shown in Fig. 11.12. The decision
node and guards determine if the brake pressure is greater than zero, and flow is directed to value specification
actions that output an enabling or disabling control value from the activity. The edges coming out of the decision
node indicate the probability of each branch being taken.

Continuous system example 3ControlOperator[Activity]act][

Brake Pressure ControlValue

enable
«valueSpecification»

disable
«valueSpecification»

[Brake Pressure > 0]

{probability = "10%"}

{probability = "90%"}

[else]

Figure 11.12. Continuous system example 3

Fig. 11.13 shows a block definition diagram with composition associations between the activities and
AdjunctProperty applied to the part ends in Fig. 11.10, Fig. 11.11, and Fig. 11.12, as an alternative way to show the
activity decomposition of Fig. 11.10, Fig. 11.11, and Fig. 11.12. Each instance of Operating Car is an execution of
that behavior. It owns the executions of the behaviors it invokes synchronously, such as Driving. Like all
composition, if an instance of Operating Car is destroyed, terminating the execution, the executions it owns are also
terminated.

136 OMG Systems Modeling Language, v1.7

Example block definition diagram for activity decompositionbdd][

Calculate Modulation Frequency
«activity»

Operate Car
«activity»

Enable on Brake Pressure > 0
«controlOperator»

Calculate Traction
«activity»

Monitor Traction
«activity»

Turn Key to On
«activity»

Braking
«activity»

Driving
«activity»

oc
0..1

«adjunct»
turnKeyOn

0..1

oc
1

«adjunct»
enableOnBrakePressure0..1

oc
1

«adjunct»
driving 0..1

oc
1

«adjunct»
monitorTraction0..1

oc
0..1

«adjunct»
braking 0..1

mt
1

«adjunct»
calculateTraction 0..1

mt
1

«adjunct»
calculateModulationFrequency0..1

Figure 11.13. Example block definition diagram for activity decomposition

Fig. 11.14 shows a block definition diagram with composition associations between the activity in Fig. 11.10 and the
types the object nodes in that activity, with AdjunctProperty applied to the object node type end. In an instance of
Operating Car, which is one execution of it, instances of Brake Pressure and Modulation Frequency are linked to the
execution instance when they are in the object nodes of the activity.

Example block definition diagram for object node typesbdd][

ModulationFrequency
«valueType»

Operate Car
«activity»

BrakePressure
«valueType»

1 oc

«adjunct»
modulationFrequency0..1

1oc

«adjunct»
brakePressure 0..1

Figure 11.14. Example block definition diagram for object node types

Activity GeneralizationActivity Generalization[Package]bdd][

Smooth Braking
«activity»

Braking
«activity»

Figure 11.15. Activity Generalization

OMG Systems Modeling Language, v1.7 137

138 OMG Systems Modeling Language, v1.7

12 Interactions
12.1 Overview

Interactions are used to describe interactions between entities. UML Interactions are supported by four diagram
types including the Sequence diagram, Communications diagram, Interaction Overview diagram, and Timing
diagram. The Sequence diagram is the most common of the Interaction diagrams. SysML includes the Sequence
diagram only and excludes the Interaction Overview diagram and Communication diagram, which were considered
to offer significantly overlapping functionality without adding significant capability for system modeling
applications. The Timing diagram is also excluded due to concerns about its maturity and suitability for systems
engineering needs.

The Sequence diagram describes the flow of control between actors and systems (blocks) or between parts of a
system. This diagram represents the sending and receiving of messages between the interacting entities called
lifelines, where time is represented along the vertical axis. The sequence diagrams can represent highly complex
interactions with special constructs to represent various types of control logic, reference interactions on other
sequence diagrams, and decomposition of lifelines into their constituent parts.

12.2 Diagram Elements

12.2.1 Sequence Diagram

Table 12.1. Graphical notation of Sequence diagrams

ElementName Concrete Syntax Abstract Syntax Reference

SequenceDiagram Frame and
Heading

Interaction1sd

UML4SysML::Interaction

Lifeline

b1 : Block1

{} UML4SysML::Lifeline

ExecutionSpecification

b1 : Block1 b1 : Block1

execSpec UML4SysML::
ExecutionSpecification

OMG Systems Modeling Language, v1.7 139

ElementName Concrete Syntax Abstract Syntax Reference

InteractionUse :9:xx.xc=a_op_b(31,w:12)

ref

Interaction3

ref UML4SysML::InteractionUse

An InteractionUse with just the
<interaction‑name>.

An InteractionUse with
<attribute‑name>, the value of
arguments, the <return‑value>, etc.

CombinedFragment

Interaction1sd

b3 : Block3b2 : Block2b1 : Block1

alt

[else]

[if x < 10]
msg1

msg2

msg3

UML4SysML::
CombinedFragment

A combined fragment is defined by
an interaction operator and
corresponding interaction operands.

Interaction Operators include:

seq - Weak Sequencing
alt - Alternatives
opt - Option
break - Break
par - Parallel
strict - Strict Sequencing
loop - Loop
critical - Critical Region
neg - Negative
assert - Assertion
ignore - Ignore
consider - Consider

StateInvariant/Continuations

: Y

P == 15

[State Machine]stm]Y[Y

P == 15

UML4SysML::Continuation,
UML4SysML::StateInvariant

140 OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

Coregion

s[u] : B : B2

m3

m2

UML4SysML::
CombinedFragment (under
parallel)

Creation message, Deletion
message

b2 : Block2

b1 : Block1

create UML4SysML::Message (with
messageSort equals
createMessage),
UML4SysML::Message (with
messageSort equals
deleteMessage)

DurationObservation,
DurationConstraint

: CardReader

d=duration

: User

{0..13 s}

OK

CardOut

code

{d..3*d}

UML4SysML::Interactions

TimeConstraint TimeObservation

: CardReader: User

{0..13 s}

{t = now}
Ok

CardOut

{t..t+3}

UML4SysML::Interactions

OMG Systems Modeling Language, v1.7 141

ElementName Concrete Syntax Abstract Syntax Reference

SequenceDiagram (advanced)

a_op_b(int x, inout int w):Verdictsd][

x a_op_bw

msg(x)

msg2

UML4SysML::Interactions

Shows usage of arguments and
assignment to return value.

InteractionUse (advanced)

some_op(int x, intout int w)sd][

wx: xx

:xx .xc = a_op_b(31,w:12)

ref

:9

UML4SysML::InteractionUse

Shows usage of arguments and
assignment to attribute value upon
return.

Table 12.2. Graphical paths included in Sequence diagrams

ElementName Concrete Syntax Abstract Syntax Reference

Message

b2 : Block2b1 : Block1

reply

asyncSignal

syncCall(param=42)
UML4SysML::Message

LostMessage, FoundMessage

b1 : Block1
Lost

Found

UML4SysML::Message

GeneralOrdering UML4SysML::GeneralOrdering

142 OMG Systems Modeling Language, v1.7

Table 12.3. Other graphical elements included in Sequence diagrams

ElementName Concrete Syntax Abstract Syntax Reference

In Block Definition Diagrams,
Interaction, Association,
AdjunctProperty

Other Graphical Elementsbdd][

Block Name
«block»

Interaction Name
«interaction»

Interaction Name
«interaction»

«adjunct»
parameter name

«adjunct»
interaction use name

Interaction NameInteraction Name[Interaction]sd][

Interaction Name(-)

ref

UML4SysML::Interactions,
UML4SysML::Association,
SysML::Blocks::AdjunctProperty

12.3 UML Extensions

12.3.1 Diagram Extensions

The following specify diagram extensions to the notations defined in Section 17, "Profiles & Model Libraries."

12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing Diagram

Communication diagrams and Interaction Overview diagrams are excluded from SysML. The other behavioral
diagram representations were considered to provide sufficient coverage without introducing these diagram kinds.
Timing diagrams are also excluded due to concerns about their maturity and suitability for systems engineering
needs.

12.3.1.2 Interactions and Parameters

12.3.1.2.1 Notation

In UML, all behaviors are classes, including interactions, and their instances are executions of the interaction.
Interactions as blocks and associations between interactions corresponding to interaction uses have an analogous
semantics to activities as blocks and associations between activities corresponding to call actions, see Section
11.3.1.1.1. Similarly, associations between interactions and classifiers (blocks or value types) have an analogous
semantics to associations between activities and blocks or value types, see Section 11.3.1.4.1.

Interactions in block definition diagrams appear as regular blocks, except the «interaction» keyword may be used to
indicate the Block stereotype is applied to an interaction, as shown in Fig. 12.1 Properties with AdjunctProperty
applied, where the principal of the AdjunctProperty is an interaction use, can be used as the end of the associations
towards the interaction being used. Properties with AdjunctProperty applied, where the principal of the
AdjunctProperty is a parameter of the interaction, can be used as the end of the associations towards the parameter
type. See Section 8.3.2.1, AdjunctProperty for constraints when AdjunctProperty is used with interaction uses and
parameters. Interactions in block definition diagrams can also appear with the same notation as InteractionUses.

OMG Systems Modeling Language, v1.7 143

Block definition diagram with interactions as blocks associated with used interactions and types of parametersbdd][

Interaction NameB
«interaction»

Interaction NameA
«interaction»

Interaction Name2
«interaction»

Block Name
«block»

Interaction Name1
«interaction»

«adjunct»
parameter name

«adjunct»
interaction use name

«adjunct»
interaction use name2

«adjunct»
interaction use name1

Figure 12.1. Block definition diagram with interactions as blocks associated with used interactions and types
of parameters

12.4 Usage Examples

12.4.1 Sequence Diagrams

Fig. D.7 illustrates the overall system behavior for operating the vehicle in Sequence diagram format. To manage the
complexity, a hierarchical sequence diagram is used which refers to other interactions that further elaborate the
system behavior (“ref StartVehicleBlackBox”). CombinedFragments are used to illustrate that steering can take
place at the same time as controlling the speed and that controlling speed can be either idling, accelerating/cruising,
or braking.

Section D.4.3.3 shows an interaction that includes events and messages communicated between the driver and
vehicle during the starting of the vehicle. The “hybridSUV” lifeline represents another interaction which further
elaborates what happens inside the “hybridSUV” when the vehicle is started.

Section D.4.3.3 shows the sequence of communication that occurs inside the HybridSUV when the vehicle is started
successfully.

144 OMG Systems Modeling Language, v1.7

This page intentionally left blank.

OMG Systems Modeling Language, v1.7 145

146 OMG Systems Modeling Language, v1.7

13 State Machines
13.1 Overview

The StateMachine package defines a set of concepts that can be used for modeling discrete behavior through finite
state transition systems. The state machine represents behavior as the state history of an object in terms of its
transitions and states. The activities that are invoked during the transition, entry, and exit of the states are specified
along with the associated event and guard conditions. Activities that are invoked while in the state are specified as
“do Activities,” and can be either continuous or discrete. A composite state has nested states that can be sequential
or concurrent.

The UML concept of protocol state machines is excluded from SysML to reduce the complexity of the language.
The standard UML state machine concept, called behavior state machines in UML, is thought to be sufficient for
expressing protocols.

13.2 Diagram Elements

13.2.1 State Machine Diagram

Table 13.1. Graphical notation of State Machine diagrams

ElementName Concrete Syntax Abstract Syntax Reference

StateMachineDiagram Frame and
Heading

OwnedStateMachineThisBlock[Block]stm][

UML4SysML::StateMachine

Choice pseudo state

State CState B

State A

[Id > 10]

[Id <= 10]
UML4SysML::PseudoState

Composite state

Composite State 1

State 2

State 1

UML4SysML::State

Entry point
again

UML4SysML::PseudoState

Exit point aborted UML4SysML::PseudoState

OMG Systems Modeling Language, v1.7 147

ElementName Concrete Syntax Abstract Syntax Reference

Final state UML4SysML::FinalState

History, Deep Pseudo state H* UML4SysML::FinalState

History, Shallow Pseudo state H UML4SysML::PseudoState

Initial pseudo state UML4SysML::PseudoState

Junction pseudo state UML4SysML::PseudoState

Receive signal action Req(Id) UML4SysML::Transition

Send signal action TurnOn UML4SysML::Transition

Action
MinorReq : = Id;

UML4SysML::Transition

Region

S

UML4SysML::Region

148 OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

Simple State

exitActivityexit /
doActivitydo /

entryActivityentry /

State 2

State 1

UML4SysML::State

State list State 1, State 2 UML4SysML::State

State Machine
ReadAmount

aborted UML4SysML::StateMachine

Terminate node UML4SysML::PseudoState

Submachine state

ReadAmount :
ReadAmountSM

aborted
UML4SysML::State

Composite State with a hidden
decomposition indicator icon

stop dial toneexit /
start dial toneentry /

HiddenComposite

: Composite state

UML4SysML::State

Table 13.2. Graphical paths included in state machine diagrams

ElementName Concrete Syntax Abstract Syntax Reference

Transition
Initial State

trigger [guard] / activity
UML4SysML::Transition

OMG Systems Modeling Language, v1.7 149

ElementName Concrete Syntax Abstract Syntax Reference

Alternative entry point
Connection- PointReference
notation ReadAmount :

ReadAmountSM

via again

UML4SysML::
ConnectionPointReference

Alternative exit point
ConnectionPoint Reference
notation

ReadAmount :
ReadAmountSM

via aborted
UML4SysML::
ConnectionPointReference

Table 13.3. Other graphical elements included in state machine diagrams

ElementName Concrete Syntax Abstract Syntax Reference

In Block Definition Diagrams,
Interaction, Association,
AdjunctProperty

Other graphical elementsbdd][

state machine name
«statemachine»

state machine name
«statemachine»

block name
«block»

«adjunct»
submachine state name

«adjunct»
parameter name

UML4SysML::StateMachine,
UML4SysML::Association,
SysML::Blocks::AdjunctProperty

13.3 UML Extensions

13.3.1 Diagram Extensions

13.3.1.1 State Machines and Parameters

13.3.1.1.1 Notation

In UML, all behaviors are classes, including state machines, and their instances are executions of the state machine.
State machines as blocks and associations between state machines corresponding to submachine states have an
analogous semantics to activities as blocks and associations between activities corresponding to call actions, see
Section 11.3.1.1.1. Similarly, associations between state machines and classifiers (blocks or value types) have an
analogous semantics to associations between activities and blocks or value types, see Section 11.3.1.4.1.

State machines in block definition diagrams appear as regular blocks, except the «stateMachine» keyword may be
used to indicate the Block stereotype is applied to a state machine, as shown in Fig. 13.1. Properties with
AdjunctProperty applied, where the principal of the AdjunctProperty is a submachine state, can be used as the end of
the associations towards the sub state machine. Properties with AdjunctProperty applied, where the principal of the
AdjunctProperty is a parameter of the state machine, can be used as the end of the associations towards the

150 OMG Systems Modeling Language, v1.7

parameter type. See Section 8.3.2.1, AdjunctProperty for constraints when AdjunctProperty is used with submachine
states and parameters. State machines in block definition diagrams can also appear with the same notation as
submachine states.

bdd

state machine name
«statemachine»

state machine name
«statemachine»

state machine name
«statemachine»

state machine name
«statemachine»

block name
«block»

«adjunct»
submachine state name2

«adjunct»
submachine state name1

«adjunct»
submachine state name

«adjunct»
parameter name

Figure 13.1. Block definition diagram with state machines as blocks associated with submachines and types of
parameters

13.4 Usage Examples

13.4.1 State Machine Diagram

The high level states or modes of the HybridSUV including the events that trigger changes of state are illustrated in
the state machine diagram in Fig. D.8.

OMG Systems Modeling Language, v1.7 151

This page intentionally left blank.

152 OMG Systems Modeling Language, v1.7

14 Use Cases
14.1 Overview

The use case diagram describes the usage of a system (subject) by its actors (environment) to achieve a goal, that is
realized by the subject providing a set of services to selected actors. The use case can also be viewed as functionality
and/or capabilities that are accomplished through the interaction between the subject and its actors. Use case
diagrams include the use case and actors and the associated communications between them. Actors represent
classifier roles that are external to the system that may correspond to users, systems, and or other environmental
entities. They may interact either directly or indirectly with the system. The actors are often specialized to represent
a taxonomy of user types or external systems.

The use case diagram is a method for describing the usages of the system. The association between the actors and
the use case represent the communications that occur between the actors and the subject to accomplish the
functionality associated with the use case. The subject of the use case can be represented via a system boundary. The
use cases that are enclosed in the system boundary represent functionality that is realized by behaviors such as
activity diagrams, sequence diagrams, and state machine diagrams.

The use case relationships are “communication,” “include,” “extend,” and “generalization.” Actors are connected to
use cases via communication paths, which are represented by an association relationship. The “include” relationship
provides a mechanism for factoring out common functionality that is shared among multiple use cases, and is
required for the goals of the actor of the base use case to be met. The “extend” relationship provides optional
functionality (optional in the sense of not being required to meet the goals), which extends the base use case at
defined extension points under specified conditions. The “generalization” relationship provides a mechanism to
specify variants of the base use case.

The use cases are often organized into packages with the corresponding dependencies between the use cases in the
packages.

14.2 Diagram Elements

14.2.1 Use Case Diagram

Table 14.1. Graphical nodes included in Use Case diagrams

ElementName Concrete Syntax Abstract Syntax Reference

Use Case UseCaseName UML4SysML::UseCase

Use Case with Extension Points
p2
p1

extension points

UseCaseName

UML4SysML::UseCase

Actor
ActorName

ActorName
«actor»

UML4SysML::Actor

OMG Systems Modeling Language, v1.7 153

ElementName Concrete Syntax Abstract Syntax Reference

Subject

SubjectName

Association end name on
UML4SysML::Classifier

Table 14.2. Graphical paths included in Use Case diagrams

ElementName Concrete Syntax Abstract Syntax Reference

Communication Path
Use Case 2Use Case 1

UML4SysML::Association

Include Use Case 2Use Case 1 «include» UML4SysML::Include

Extend Use Case 2Use Case 1 «extend» UML4SysML::Extend

Extend with Condition
Use Case 2Use Case 1

condition: {boolean expression}
extension point p1, p2

«extend»

UML4SysML::Extend

Generalization Use Case 2Use Case 1 UML4SysML::Generalization

14.3 UML Extensions

None.

14.4 Usage Example

Fig. D.5 is a top-level set of use cases for the Hybrid SUV System. Fig. D.6 shows the decomposition of the Operate
the Vehicle use case. In this diagram, the frame represents the package that contains the lower level use cases. The
convention of naming the package with the same name as the top level use case has been employed. This practice
offers an implicit tracing mechanism that complements the explicit trace relationships in SysML.

In Fig. D.6 the Extend relationship specifies that the behavior of a use case may be extended by the behavior of
another (usually supplementary) use case. The extension takes place at one or more specific extension points defined
in the extended use case. Note, however, that the extended use case is defined independently of the extending use
case and is meaningful independently of the extending use case. On the other hand, the extending use case typically
defines behavior that may not necessarily be meaningful by itself. Instead, the extending use case defines a set of
modular behavior increments that augment an execution of the extended use case under specific conditions. The
“Start the Vehicle” use case is modeled as an extension of “Drive the Vehicle.” This means that there are conditions
that may exist that require the execution of an instance of “Start the Vehicle” before an instance of “Drive the
Vehicle” is executed.

The use cases “Accelerate,” “Steer,” and “Brake” are modeled using the include relationship. Include is a
DirectedRelationship between two use cases, implying that the behavior of the included use case is inserted into the
behavior of the including use case. It is also a kind of NamedElement so that it can have a name in the context of its
owning use case. The including use case may only depend on the result (value) of the included use case. This value

154 OMG Systems Modeling Language, v1.7

is obtained as a result of the execution of the included use case. This means that “Accelerate,” “Steer,” and “Brake”
are all part of the normal process of executing an instance of “Drive the Car.”

In many situations, the use of the Include and Extend relationships is subjective and may be reversed, based on the
approach of an individual modeler.

OMG Systems Modeling Language, v1.7 155

This page intentionally left blank.

156 OMG Systems Modeling Language, v1.7

CROSSCUTTING CONSTRUCTS

OMG Systems Modeling Language, v1.7 157

This page intentionally left blank.

158 OMG Systems Modeling Language, v1.7

15 Allocations
15.1 Overview

Allocation is the term used by systems engineers to denote the organized cross-association (mapping) of elements
within the various structures or hierarchies of a user model. The concept of “allocation” requires flexibility suitable
for abstract system specification, rather than a particular constrained method of system or software design. System
modelers often associate various elements in a user model in abstract, preliminary, and sometimes tentative ways.
Allocations can be used early in the design as a precursor to more detailed rigorous specifications and
implementations. The allocation relationship can provide an effective means for navigating the model by
establishing cross relationships, and ensuring the various parts of the model are properly integrated.

This clause does not try to limit the use of the term “allocation,” but provides a basic capability to support allocation
in the broadest sense. It does include some specific subclasses of allocation for allocating behavior, structure, and
flows. A typical example is the allocation of activities to blocks (e.g., functions to components). This clause
specifies an extension for an allocation relationship and selected subclasses of allocation, along with the notation to
represent allocations in a SysML model.

15.2 Diagram Elements

The diagram elements defined in this clause may be shown on some or all SysML diagram types, in addition to the
diagram elements that are specific for each diagram type.

In the following table, «elementType» is a placeholder for a keyword used to specify the kind of element it prefixes.
For uniformity, the «elementType» displayed for the allocated-to or allocated-from elements should be from the
following list, as applicable: «activity», «action», «objectFlow», «controlFlow», «objectNode», «operation»,
«block», «property», «itemFlow», «connector», «port», «value».

Other «elementType» designations may be used, if none of the above apply. Note that it is important to use fully
qualified names to avoid ambiguity when required. An example of a fully qualified name is the form:
(PackageName::ElementName.PropertyName).

15.2.1 Representing Allocation on Diagrams

Table 15.1. Extension to graphical nodes included in diagrams

ElementName Concrete Syntax Abstract Syntax Reference

Allocation derived properties
displayed in compartment of a
Block.

allocatedFrom

«elementType»ElementName
allocatedTo

«elementType»ElementName

BlockName

allocatedToElements

allocatedElements

SysML::Allocation:Allocate

Allocation derived properties
displayed in Comment. ElementName

allocatedElements
«elementType» ElementName
allocatedToElements
«elementType» ElementName

SysML::Allocation:Allocate

Allocation derived properties
displayed in compartment of Part
on Internal Block Diagram.

BlockName
«block»

allocatedFrom

«elementType»ElementName

PartName

allocatedElements
SysML::Allocation:Allocate

OMG Systems Modeling Language, v1.7 159

ElementName Concrete Syntax Abstract Syntax Reference

Allocation derived properties
displayed in compartment of
Action on Activity Diagram.

ActivityName

allocatedTo

«elementType» ElementName
allocatedToElements SysML::Allocation::Allocate

Allocation Activity Partition ActionName

: ElementName
«allocate»

SysML::Allocation:Allocate
ActivityPartition

Allocation (general)
SupplierClient «allocate»

SysML::Allocation:Allocate

15.3 UML Extensions

15.3.1 Diagram Extensions

15.3.1.1 Tables

Allocation relationships may be depicted in tables. A separate row is provided for each «allocate» dependency.
“from” is the client of the «allocate» dependency, and “to” is the supplier. Both ElementType and ElementName for
client and supplier appear in this table.

15.3.1.2 Allocate Relationship Rendering

The “allocate” relationship is a dashed line with an open arrow head. The arrow points in the direction of the
allocation. In other words, the directed line points “from" the element being allocated “to” the element that is the
target of the allocation.

15.3.1.3 Allocation Compartment Format

When the allocations of a model element are displayed in a compartment, a shorthand notation is used as shown in
Table 15.1. This shorthand groups and lists the elements allocated to that element together (in the
“allocatedElements” compartment), then the elements allocated from that element (in the “allocatedToElements”
compartment), per the result of Allocate::getAllocatedElements() and getAllocatedToElements() respectively, called
with that element as parameter.

15.3.1.4 Allocation Callout Format

When the allocation compartment is not used, a callout notation may be used. An allocation callout notation uses the
same shorthand notation as the allocation compartment. This notation is also shown in Table 15.1. For brevity, the
«elementType» portion of allocated-elements or allocated-to-elements may be elided from the diagram.

15.3.1.5 AllocatedActivityPartition Label

For brevity, the keyword used on an AllocatedActivityPartition is «allocate», rather than the stereotype name
(«allocateActivityPartition»). For brevity, the «elementType» portion of the allocatedElements or
allocatedToElements property may be elided from the diagram.

15.3.2 Stereotypes

160 OMG Systems Modeling Language, v1.7

Package Allocations

DirectedRelationshipPropertyPath
«stereotype» Abstraction

«Metaclass»

UML4SysML::Abstraction
«Metaclass»

Allocate
«stereotype»

Figure 15.1. Abstract syntax extensions for SysML Allocation

ActivityPartition
«Metaclass»

UML4SysML::ActivityPartition
«Metaclass»

AllocateActivityPartition
«stereotype»

Figure 15.2. Abstract syntax expression for AllocatedActivityPartition

15.3.2.1 AllocateActivityPartition (from Allocations)

Description

AllocateActivityPartition is used to depict an «allocate» relationship on an Activity diagram. The
AllocateActivityPartition is a standard UML::ActivityPartition, with modified constraints as stated below.

Association Ends

• base_ActivityPartition : ActivityPartition [1]

Constraints

• 1_actions_on_client_ends

An Action appearing in an "AllocateActivityPartition" shall be the /client (from) end of an "allocate"
dependency. The element that represents the "AllocateActivityPartition" shall be the /supplier (to) end of the
same "allocate" dependency. In the «AllocateActivityPartition» name field, Properties are designated by the use
of a fully qualified name (including colon, e.g., "part_name:Block_Name"), and Classifiers are designated by a
simple name (no colons, e.g., "Block_Name").

self.base_ActivityPartition.node‑>select(n|n.oclIsKindOf(UML::Action)) ‑>
forAll(a | let allocs: Set(UML::Abstraction) =
Allocate.allInstances().base_Abstraction‑>select(x |x.client‑>
includes(a))‑>asSet() in allocs‑>exists(x | x.supplier‑>
includes(self.base_ActivityPartition.represents)))

• 2_not_uml_semantics

The «AllocateActivityPartition» shall maintain the constraints, but not the semantics, of the
UML::ActivityPartition. Classifiers or Properties represented by an «AllocateActivityPartition» do not have any
direct responsibility for invoking behavior depicted within the partition boundaries. To depict this kind of direct
responsibility, the modeler is directed to the UML 2 standard, semantic description of the model element
ActivityPartition.

-- Cannot be expressed in OCL

15.3.2.2 Allocate (from Allocations)

OMG Systems Modeling Language, v1.7 161

Description

Allocate is a dependency based on UML::Abstraction. It is a mechanism for associating elements of different types,
or in different hierarchies, at an abstract level. Allocate is used for assessing user model consistency and directing
future design activity. It is expected that an «allocate» relationship between model elements is a precursor to a more
concrete relationship between the elements, their properties, operations, attributes, or sub-classes. Allocate is a
stereotype of a UML4SysML::Abstraction that is permissible between any two NamedElements. It is depicted as a
dependency with the "allocate" keyword attached to it. Allocate is directional in that one NamedElement is the
"from" end (no arrow), and one NamedElement is the "to" end (the end with the arrow). The Allocate stereotype
specializes DirectedRelationshipPropertyPath to enable allocations to identify their sources and targets by a multi-
level path of accessible properties from context blocks for the sources and targets. The following paragraphs
describe types of allocation that are typical in systems engineering. Behavior allocation relates to the systems
engineering concept segregating form from function. This concept requires independent models of "function"
(behavior) and "form" (structure), and a separate, deliberate mapping between elements in each of these models. It is
acknowledged that this concept does not support a standard object-oriented paradigm, not is this always even
desirable. Experience on large scale, complex systems engineering problems have proven, however, that segregation
of form and function is a valuable approach. In addition, behavior allocation may also include the allocation of
Behaviors to BehavioralFeatures of Blocks (e.g., Operations).

Flow allocation specifically maps flows in functional system representations to flows in structural system
representations. Flow between activities can either be control or object flow. The figures in the Usage Examples
show concrete syntax for how object flow is mapped to connectors on Activity Diagrams. Allocation of control flow
is not specifically addressed in SysML, but may be represented by relating an ItemFlow to the Control Flow using
the UML relationship InformationalFlow.realizingActivityEdge. Note that allocation of ObjectFlow to Connector is
an Allocation of Usage, and does NOT imply any relation between any defining Blocks of ObjectFlows and any
defining associations of connectors. The figures in the Usage Examples illustrate an available mechanism for
relating the objectNode from an activity diagram to the ItemFlow on an internal block diagram. ItemFlow is
discussed in 9, "Ports and Flows." Pin to Port allocation is not addressed in this release of SysML. Structure
allocation is associated with the concept of separate "logical" and "physical" representations of a system. It is often
necessary to construct separate depictions of a system and define mappings between them. For example, a complete
system hierarchy may be built and maintained at an abstract level. In turn, it shall then be mapped to another
complete assembly hierarchy at a more concrete level. The set of models supporting complex systems development
may include many of these levels of abstraction. This International Standard will not define "logical" or "physical"
in this context, except to acknowledge the stated need to capture allocation relationships between separate system
representations.

Generalizations

• DirectedRelationshipPropertyPath (from Blocks)

Association Ends

• base_Abstraction : Abstraction [1]

Operations

• getAllocatedElements (in ref : NamedElement) : NamedElement [0..*]

bodyCondition:
getAllocatedElements = Allocate.allInstances()->select(supplier =
ref).client

• getAllocatedToElements (in ref : NamedElement) : NamedElement [0..*]

bodyCondition:
getAllocatedToElements = Allocate.allInstances()->select(client =
ref).supplier

162 OMG Systems Modeling Language, v1.7

Constraints

• 2_binary

A single «allocate» dependency shall have only one client (from) and one supplier (to).

self.base_Abstraction.source‑>size() = 1 and
self.base_Abstraction.target‑>size() = 1

15.4 Usage Examples

The following examples depict allocation relationships as property callout boxes (basic), property compartment of a
Block (basic), and property compartments of Activities and Parts (advanced). Fig. 15.3 shows generic allocation for
Blocks.

allocatedFrom

«elementType»Element2
allocatedTo

«elementType»Element3

Block1

Block1

allocatedFrom
«elementType»Element2
allocatedTo
«elementType»Element3

Figure 15.3. Generic Allocation, including /from and /to association ends

15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks

Specific behavior allocations of Actions to Parts and Activities to Blocks are depicted in Fig. 15.4.

The allocation from action1 goes to a nested part, and uses the attributes of DirectedRelationshipPropertyPath to
specify the path of properties to reach that part. The targetContext of the allocation is Block 0 and the
targetPropertyPath is part1. Note that the AllocateActivityPartition, if used in this manner, is unambiguously
associated with behavior allocation.

OMG Systems Modeling Language, v1.7 163

Block0

part1 : Block1

part2 : Block2

structure

action1 : Activity1 «allocate»

Activity0act

allocation of usage (action to part)allocation of definition (Activity to Block)

Activity1
«activity»

Block2
«block»«allocate»

allocationsbdd][

action1 : Activity1

part2 : Block2
«allocate»

Activity0act

action1 : Activity1

allocatedTo
«part»Block0.part1.part2

Activity0act

part1 : Block1

part2 : Block2

allocatedFrom
«callBehaviorAction»action1

Block0ibd

Block2
«block»

allocatedFrom
«activity»Activity1

blocksbdd][

Activity1
«activity»

allocatedTo
«block»Block2

activitiesbdd][

AllocateActivityPartition

callout notation

The property path cannot
be shown in the partition

Figure 15.4. Behavior Allocation

15.4.2 Allocate Flow

Fig. 15.5 shows flow allocation of ObjectFlow to a Connector, or alternatively to an ItemFlow. Allocation of
ControlFlow is not shown as an example, but it is not prohibited in SysML.

164 OMG Systems Modeling Language, v1.7

Block5
«block»

Part6 Part7

allocatedFrom
«objectFlow»ObjectFlow3

Connector8

Example1[Block] Block0ibd][

Action2Action1

allocatedTo
«connector»Connector8

ObjectFlow3

Example1Activity0act][

Figure 15.5. Example of flow allocation from ObjectFlow to Connector

Block5 : Block5

Part7Part6

allocatedFrom
«objectFlow»ObjectFlow3

ItemFlow9

Example2[Block] Block0ibd][

Action1 Action2

allocatedTo
«itemFlow»ItemFlow9
«connector»Connector8

ObjectFlow3

Example2[Activity] Activity0act][

Figure 15.6. Example of flow allocation from ObjectFlow to ItemFlow

OMG Systems Modeling Language, v1.7 165

15.4.2.1 Allocating Structure

Systems engineers have frequent need to allocate structural model elements (e.g., blocks, parts, or connectors) to
other structural elements. For example, if a particular user model includes an abstract logical structure, it may be
important to show how these model elements are allocated to a more concrete physical structure. The need also
arises, when adding detail to a structural model, to allocate a connector (at a more abstract level) to a part (at a more
concrete level).

Example of Structural Allocation[Block] Block1ibd][

Concrete Example
«block»

Part 7

Part 6

Part 5Abstract Reference
«block»

Part 3

Part 2 cktrB

ckrtC

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

ckrtA

Figure 15.7. Example of Structural Allocation

15.4.2.2 Automotive Example

Example: consider the functions required to portion and deliver power for a hybrid SUV. The activities for providing
power are allocated to blocks within the Hybrid SUV, as shown in Fig. D.38.

Fig. D.39 shows an internal block diagram showing allocation for the HybridSUV Accelerate example.

15.4.3 Tabular Representation

The table shown in Section D.4.8.5 is provided as a specific example of how the «allocate» dependency may be
depicted in tabular form, consistent with the automotive example above.

The allocation table can also be shown using a sparse matrix style as in the following example shown in Fig. 15.8.

166 OMG Systems Modeling Language, v1.7

I1
:E

le
ct

ric
Cu

rr
en

t

Po
w

er
Co

nt
ro

lU
ni

t

El
ec

tr
ic

al
Po

w
er

Co
nt

ro
lle

r

In
te

rn
al

Co
m

bu
st

io
nE

ng
in

e

El
ec

tr
ic

al
M

ot
or

G
en

er
at

orAllocate

Legend

A1: ProportionPower (context PowerControlUnit)

A2: ProvideGasPower (context InternalCombustionEngine)

A3: ControlElectricPower (context ElectricalPowerController)

A4: ProvideElectricPower (context ElectricalMotorGenerator)

driveCurrent(context I1:ElectricCurrent)
Figure 15.8. Tabular Representation

OMG Systems Modeling Language, v1.7 167

168 OMG Systems Modeling Language, v1.7

16 Requirements
16.1 Overview

A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify a
function that a system must perform or a performance condition a system must achieve. SysML provides modeling
constructs to represent text-based requirements and relate them to other modeling elements. The requirements
diagram described in this clause can depict the requirements in graphical, tabular, or tree structure format. A
requirement can also appear on other diagrams to show its relationship to other modeling elements. The
requirements modeling constructs are intended to provide a bridge between traditional requirements management
tools and the other SysML models.

A requirement is defined as a stereotype of UML Class subject to a set of constraints. A standard requirement
includes properties to specify its unique identifier and text requirement. Additional properties such as verification
status, can be specified by the user.

Several requirements relationships are specified that enable the modeler to relate requirements to other requirements
as well as to other model elements. These include relationships for defining a requirements hierarchy, deriving
requirements, satisfying requirements, verifying requirements, and refining requirements.

A composite requirement can contain subrequirements in terms of a requirements hierarchy, specified using the
UML namespace containment mechanism. This relationship enables a complex requirement to be decomposed into
its containing child requirements. A composite requirement may state that the system shall do A and B and C, which
can be decomposed into the child requirements that the system shall do A, the system shall do B, and the system
shall do C. An entire specification can be decomposed into children requirements, which can be further decomposed
into their children to define the requirements hierarchy.

There is a real need for requirement reuse across product families and projects. Typical scenarios are regulatory,
statutory, or contractual requirements that are applicable across products and/or projects and requirements that are
reused across product families (versions/variants). In these cases, one would like to be able to reference a
requirement, or requirement set in multiple contexts with updates to the original requirements propagated to the
reused requirement(s).

The use of namespace containment to specify requirements hierarchies precludes reusing requirements in different
contexts since a given model element can only exist in one namespace. Since the concept of requirements reuse is
very important in many applications, SysML introduces the concept of a slave requirement. A slave requirement is a
requirement whose text property is a read-only copy of the text property of a master requirement. The text property
of the slave requirement is constrained to be the same as the text property of the related master requirement. The
master/slave relationship is indicated by the use of the copy relationship.

The “derive requirement” relationship relates a derived requirement to its source requirement. This typically
involves analysis to determine the multiple derived requirements that support a source requirement. The derived
requirements generally correspond to requirements at the next level of the system hierarchy. A simple example may
be a vehicle acceleration requirement that is analyzed to derive requirements for engine power, vehicle weight, and
body drag.

The satisfy relationship describes how a design or implementation model satisfies one or more requirements. A
system modeler specifies the system design elements that are intended to satisfy the requirement. In the example
above, the engine design satisfies the engine power requirement.

The verify relationship defines how a test case or other model element verifies a requirement. In SysML, a test case
or other named element can be used as a general mechanism to represent any of the standard verification methods
for inspection, analysis, demonstration, or test. Additional subclasses can be defined by the user if required to
represent the different verification methods. The return parameter of type VerdictKind of a test case can be used to
represent the verification result. The SysML test case is defined consistent with the UML testing profile to facilitate
integration between the two profiles.

The refine requirement relationship can be used to describe how a model element or set of elements can be used to
further refine a requirement. For example, a use case or activity diagram may be used to refine a text-based

OMG Systems Modeling Language, v1.7 169

functional requirement. Alternatively, it may be used to show how a text-based requirement refines a model element.
In this case, some elaborated text could be used to refine a less fine-grained model element.

A generic trace requirement relationship provides a general-purpose relationship between a requirement and any
other model element. The semantics of trace include no real constraints and therefore are quite weak. As a result, it
is recommended that the trace relationship not be used in conjunction with the other requirements relationships
described above.

The rationale construct that is defined in Section 7, “Model Elements” is quite useful in support of requirements. It
enables the modeler to attach a rationale to any requirements relationship or to the requirement itself. For example, a
rationale can be attached to a satisfy relationship that refers to an analysis report or trade study that provides the
supporting rationale for why the particular design satisfies the requirement. Similarly, this can be used with the other
relationships such as the derive relationship. It also provides an alternative mechanism to capture the verify
relationship by attaching a rationale to a satisfy relationship that references a test case.

Modelers can customize requirements taxonomies by defining additional subclasses of the Requirement stereotype.
For example, a modeler may want to define requirements categories to represent operational, functional, interface,
performance, physical, storage, activation/deactivation, design constraints, and other specialized requirements such
as reliability and maintainability, or to represent a high level stakeholder need. The stereotype enables the modeler to
add constraints that restrict the types of model elements that may be assigned to satisfy the requirement. For
example, a functional requirement may be constrained so that it can only be satisfied by a SysML behavior such as
an activity, state machine, or interaction. Some potential Requirement subclasses are defined in Annex Section E.3.

Some users may want a more explicit way to model numerical values and equations as expressed in requirements.
Annex Section E.8 provides examples of non-normative extensions to SysML that meet this need.

16.2 Diagram Elements

16.2.1 Requirement Diagram

Table 16.1. Graphical nodes included in Requirement diagrams

ElementName Concrete Syntax Abstract Syntax Reference

Requirement Diagram

Requirement Diagramreq

SysML::Requirements::
Requirement,
SysML::ModelElements::Package

Requirement

Text = "The system shall do…"
Id = "62j32"

Derived

«requirement»Derived Reqt Name
DerivedFrom

«requirement»DerivedFrom Reqt Name
Master

«requirement»Master Reqt Name
RefinedBy

«namedElement»Element Name
SatisfiedBy

«namedElement»Element Name
TracedTo

«namedElement»Element Name
VerifiedBy

«namedElement»Element Name

Requirement Name
«requirement»

SysML::Requirements::
Requirement

170 OMG Systems Modeling Language, v1.7

Table 16.2. Graphical paths included in Requirement diagrams

ElementName Concrete Syntax Abstract Syntax Reference

Requirement Containment
Relationship

Child2
«requirement»

Child1
«requirement»

Parent
«requirement»

UML4SysML::NestedClassifier

Copy Dependency Slave
«requirement»

Master
«requirement»«copy»

SysML::Requirements::Copy

MasterCallout
Slave

«requirement»
Master
«requirement»Master SysML::Requirements::Copy

Derive Dependency Supplier
«requirement»

Client
«requirement» «deriveReqt»

SysML::Requirements::DeriveReqt

Derive Callout ReqB
«requirement»

ReqA
«requirement»

Derived
«requirement»ReqB

DerivedFrom
«requirement»ReqA

SysML::Requirements::DeriveReqt

Satisfy Dependency
NamedElement

Supplier
«requirement»«satisfy»

SysML::Requirements::Satisfy

Satisfy Callout
NamedElement

ReqA
«requirement»

SatisfiedBy
NamedElement

Satisfies
«requirement»ReqA

SysML::Requirements::Satisfy

Verify Dependency
NamedElement

Supplier
«requirement»«verify»

SysML::Requirements::Verify

Verify Callout
NamedElement

ReqA
«requirement»

VerifiedBy
NamedElement

Verifies
«requirement»ReqA

SysML::Requirements::Verify

Refine Dependency
NamedElement

Client
«requirement»«refine»

UML4SysML::Refine

Refine Callout
NamedElement

ReqA
«requirement»

RefinedBy
NamedElement

Refines
«requirement»ReqA

UML4SysML::Refine

OMG Systems Modeling Language, v1.7 171

ElementName Concrete Syntax Abstract Syntax Reference

Trace Dependency Supplier
«requirement»

Client
«requirement» «trace»

UML4SysML::Trace

Trace Callout
NamedElement

ReqA
«requirement»

TracedFrom
«requirement»ReqA

TracedTo
NamedElement

UML4SysML::Trace

16.3 UML Extensions

16.3.1 Diagram Extensions

16.3.1.1 Requirement Diagram

The Requirement Diagram can only display requirements, packages, other classifiers, test cases, and rationale. The
relationships for containment, deriveReqt, satisfy, verify, refine, copy, and trace can be shown on a requirement
diagram. The callout notation can also be used to reflect the relationship of other model elements to a requirement.

16.3.1.2 Requirement Notation

The requirement is represented as shown in Table 16.1. The «requirement» compartment label for the stereotype
properties compartment (e.g., id and text) can be elided.

16.3.1.3 Requirement Property Callout Format

A callout notation can be used to represent derive, satisfy, verify, refine, copy, and trace relationships as indicated in
Table 16.2. For brevity, the «elementType» may be elided.

16.3.1.4 Requirements on Other Diagrams

Requirements can also be represented on other diagrams to show their relationship to other model elements. The
compartment and callout notation described in Section 16.3.1.2, Requirement Notation and Section 16.3.1.3,
Requirement Property Callout Format can be used. The callouts represent the requirement that is attached to another
model element such as a design element.

16.3.1.5 Requirements Table

The tabular format is used to represent the requirements, their properties and relationships, and may include:

• Requirements with their properties in columns.

• A column that includes the supplier for any of the dependency relationships (Derive, Verify, Refine, Trace).

• A column that includes the model elements that satisfy the requirement.

• A column that represents the rationale for any of the above relationships, including reference to analysis reports
for trace rationale, trade studies for design rationale, or test procedures for verification rationale.

The relationships between requirements and other objects can also be shown using a sparse matrix style that is
similar to the table used for allocations (Section 15.4.3, Tabular Representation). The table should include the source
and target elements names (and optionally kinds) and the requirement dependency kind.

16.3.2 Stereotypes

Package Requirements

172 OMG Systems Modeling Language, v1.7

/master : AbstractRequirement [0..*]
/verifiedBy : NamedElement [0..*]
/tracedTo : NamedElement [0..*]
/refinedBy : NamedElement [0..*]
/satisfiedBy : NamedElement [0..*]
/derivedFrom : AbstractRequirement [0..*]
/derived : AbstractRequirement [0..*]
id : String [1]{id}
text : String [1]

attributes

AbstractRequirement
«stereotype»

DirectedRelationshipPropertyPath
«stereotype»

DirectedRelationshipPropertyPath
«stereotype»

NamedElement
«Metaclass»

NamedElement
«Metaclass»

UML4SysML::NamedElement
«Metaclass»

Operation
«Metaclass»

Refine
«stereotype»

UML4SysML::Operation
«Metaclass»

Behavior
«Metaclass»

UML4SysML::Behavior
«Metaclass»

Refine
«stereotype»

Class
«Metaclass»
Class

«Metaclass»

Trace
«stereotype»

UML4SysML::Refine
«stereotype»

TestCase
«stereotype»

UML4SysML::Trace
«stereotype»

Requirement
«stereotype»

UML4SysML::Class
«Metaclass»

Copy
«stereotype»

DeriveReqt
«stereotype»

Satisfy
«stereotype»

Verify
«stereotype»

Trace
«stereotype»

Figure 16.1. Abstract Syntax for Requirements Stereotypes

16.3.2.1 AbstractRequirement

Description

An AbstractRequirement establishes the attributes and relationships essential to any potential kind of requirement.
Any intended requirement kind should subclass AbstractRequirement. The only normative stereotype based on
AbstractRequirement is the Requirement stereotype, described in Section 16.3.2.6. Examples of additional non-
normative stereotypes based on AbstractRequirement are included in Section E.8.

Attributes

• /derived : AbstractRequirement [0..*]
Derived from all requirements that are the client of a «deriveReqt» relationship for which this requirement is a
supplier.

• /derivedFrom : AbstractRequirement [0..*]
Derived from all requirements that are the supplier of a «deriveReqt» relationship for which this requirement is a
client.

• id : String [1]
The unique id of the requirement.

• /master : AbstractRequirement [0..*]
This is a derived property that lists the master requirement for this slave requirement. The master attribute is
derived from the supplier of the Copy dependency that has this requirement as the slave.

• /refinedBy : NamedElement [0..*]
Derived from all elements that are the client of a «refine» relationship for which this requirement is a supplier.

• /satisfiedBy : NamedElement [0..*]
Derived from all elements that are the client of a «satisfy» relationship for which this requirement is a supplier.

• text : String [1]
The textual representation or a reference to the textual representation of the requirement.

• /tracedTo : NamedElement [0..*]
Derived from all elements that are the client of a «trace» relationship for which this requirement is a supplier.

OMG Systems Modeling Language, v1.7 173

• /verifiedBy : NamedElement [0..*]
Derived from all elements that are the client of a «verify» relationship for which this requirement is a supplier.

Association Ends

• base_NamedElement : NamedElement [1]

Operations

• getDerived () : AbstractRequirement [0..*]

bodyCondition:
DeriveReqt.allInstances()-
>select(base_Abstraction.supplier=self).base_Abstraction.client

• getDerivedFrom () : AbstractRequirement [0..*]

bodyCondition:
DeriveReqt.allInstances()-
>select(base_Abstraction.client=self).base_Abstraction.supplier

• getMaster () : AbstractRequirement [0..*]

bodyCondition:
Copy.allInstances()-
>select(base_Abstraction.client=self).base_Abstraction.supplier

• getRefinedBy () : NamedElement [0..*]

bodyCondition:
Refine.allInstances()-
>select(base_Abstraction.supplier=self).base_Abstraction.client

• getSatisfiedBy () : NamedElement [0..*]

bodyCondition:
Satisfy.allInstances()-
>select(base_Abstraction.supplier=self).base_Abstraction.client

• getTracedTo () : NamedElement [0..*]

bodyCondition:
Trace.allInstances()-
>select(base_Abstraction.client=self).base_Abstraction.supplier

• getVerifiedBy () : NamedElement [0..*]

bodyCondition:
Verify.allInstances()-
>select(base_Abstraction.supplier=self).base_Abstraction.client

16.3.2.2 Copy

Description

A Copy relationship is a dependency between a supplier requirement and a client requirement that specifies that the
text of the client requirement is a read-only copy of the text of the supplier requirement.

A Copy dependency created between two requirements maintains a master/slave relationship between the two
elements for the purpose of requirements re-use in different contexts. When a Copy dependency exists between two

174 OMG Systems Modeling Language, v1.7

requirements, the requirement text of the client requirement is a read-only copy of the requirement text of the
requirement at the supplier end of the dependency.

Generalizations

• Trace (from Requirements)

Association Ends

• base_Abstraction : Abstraction [1]

Operations

• isCopy (in req1 : AbstractRequirement, in req2 : AbstractRequirement) : Boolean [1]

bodyCondition:
let subReq1: Set(AbstractRequirement) = AbstractRequirement.allInstances()
->select(r | req1.base_NamedElement.ownedElement-
>includes(r.base_NamedElement)) in let subReq2: Set(AbstractRequirement) =
AbstractRequirement.allInstances() ->select(r |
req2.base_NamedElement.ownedElement->includes(r.base_NamedElement)) in
req1.text = req2.text and subReq1->size() = subReq2->size() and
subReq1->forAll(r1 | subReq2->exists(r2 | self.isCopy(r1, r2)))

Constraints

• 1_source_and_taget_are_requirements

A Copy dependency may only be created between two NamedElements that have a subtype of the
abstractRequirement stereotype applied.

AbstractRequirement.allInstances().base_NamedElement‑>
includesAll(self.base_Abstraction.client) and
AbstractRequirement.allInstances().base_NamedElement‑>
includesAll(self.base_Abstraction.supplier)

• 2_same_text

The text property of the client requirement is constrained to be a read-only copy of the text property of the
supplier requirement and this applies recursively to all subrequirements.

let cltReq: AbstractRequirement = AbstractRequirement.allInstances()‑>
any(r | self.base_Abstraction.client‑>includes(r.base_NamedElement)) in
let supReq: AbstractRequirement = AbstractRequirement.allInstances()‑>
any(r | self.base_Abstraction.supplier‑>includes(r.base_NamedElement)) in
self.isCopy(cltReq, supReq)

16.3.2.3 DeriveReqt

Description

A DeriveReqt relationship is a dependency between two requirements in which a client requirement can be derived
from the supplier requirement. For example, a system requirement may be derived from a business need, or lower-
level requirements may be derived from a system requirement. As with other dependencies, the arrow direction
points from the derived (client) requirement to the (supplier) requirement from which it is derived.

Generalizations

• Trace (from Requirements)

OMG Systems Modeling Language, v1.7 175

Association Ends

• base_Abstraction : Abstraction [1]

Constraints

• 1_supplier_is_requirement

The supplier shall be an element stereotyped by a subtype of AbstractRequirement.

AbstractRequirement.allInstances().base_NamedElement‑>
includesAll(self.base_Abstraction.client)

• 2_client_is_requirement

The client shall be an element stereotyped by a subtype of AbstractRequirement.

AbstractRequirement.allInstances().base_NamedElement‑>
includesAll(self.base_Abstraction.supplier)

16.3.2.4 TestCase

Description

A test case is a method for verifying a requirement is satisfied.

Association Ends

• base_Behavior : Behavior [1]

• base_Operation : Operation [1]

Constraints

• 1_return_verdictkind

The type of return parameter of the stereotyped model element shall be VerdictKind. (note this is consistent with
the UML Testing Profile).

(self.base_Behavior‑>notEmpty() implies
self.base_Behavior.ownedParameter‑>exists(p |
p.direction=UML::ParameterDirectionKind::return and p.type = VerdictKind
)) and (self.base_Operation‑>notEmpty() implies
self.base_Operation.ownedParameter‑>exists(p |
p.direction=UML::ParameterDirectionKind::return and p.type = VerdictKind
))

16.3.2.5 Refine

Description

The Refine stereotype specializes UML4SysML Refine and DirectedRelationshipPropertyPath to enable refinements
to identify their sources and targets by a multi-level path of accessible properties from context blocks for the sources
and targets.

Generalizations

• DirectedRelationshipPropertyPath (from Blocks)

• Refine (from StandardProfile)

Association Ends

• base_Abstraction : Abstraction [1]

176 OMG Systems Modeling Language, v1.7

Operations

• getRefines (in ref : NamedElement) : AbstractRequirement [0..*]
The query getRefines() gives all the requirements that are suppliers ("to"end of the concrete syntax) of a
«Refine» relationships whose client is the element in parameter. This is a static query.
bodyCondition:
Refine.allInstances()-
>select(base_Abstraction.client=ref).base_Abstraction.supplier

Constraints

• 2_binary

Abstractions with a Refine stereotype or one of its specializations applied shall have exactly one client and one
supplier.

self.base_Abstraction.client‑>size()=1 and
self.base_Abstraction.supplier‑>size()=1

16.3.2.6 Requirement

Description

A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify a
function that a system must perform or a performance condition that a system must satisfy. Requirements are used to
establish a contract between the customer (or other stakeholder) and those responsible for designing and
implementing the system.

A requirement is a stereotype of both Class and Abstract Requirement. Compound requirements can be created by
using the nesting capability of the class definition mechanism. The default interpretation of a compound
requirement, unless stated differently by the compound requirement itself, is that all its subrequirements shall be
satisfied for the compound requirement to be satisfied. Subrequirements shall be accessed through the
"nestedClassifier" property of a class. When a requirement has nested requirements, all the nested requirements
apply as part of the container requirement. Deleting the container requirement deleted the nested requirements, a
functionality inherited from UML.

Generalizations

• AbstractRequirement (from Requirements)

Association Ends

• base_Class : Class [1]

Constraints

• 1_no_operation

The property "ownedOperation" shall be empty.

self.base_Class.ownedOperation‑>isEmpty()

• 2_no_attribute

The property "ownedAttribute" shall be empty.

self.base_Class.ownedAttribute‑>isEmpty()

• 3_no_association

Classes stereotyped by «requirement» shall not participate in associations.

UML::Association.allInstances().memberEnd‑>flatten().type‑>
excludes(self.base_Class)

OMG Systems Modeling Language, v1.7 177

• 4_no_generalization

Classes stereotyped by «requirement» shall not participate in generalizations.

UML::Classifier.allInstances().general‑>flatten()‑>
excludes(self.base_Class)

• 5_nestedclassifiers_are_requirements

A nested classifier of a class stereotyped by Requirement or one of its specializations shall also be stereotyped
by Requirement or one of its specializations.

self.base_Class.nestedClassifier‑>forAll(c |
Requirement.allInstances().base_Class‑>includes(c))

• 6_not_a_type

Classes stereotyped by «requirement» shall not be used to type any other model element.

UML::TypedElement.allInstances().type‑>excludes(self.base_Class)

16.3.2.7 Satisfy

Description

A Satisfy relationship is a dependency between a requirement and a model element that fulfills the requirement. As
with other dependencies, the arrow direction points from the satisfying (client) model element to the (supplier)
requirement that is satisfied.

Generalizations

• Trace (from Requirements)

Association Ends

• base_Abstraction : Abstraction [1]

Operations

• getSatisfies (in ref : NamedElement) : AbstractRequirement [0..*]

bodyCondition:
Satisfy.allInstances()-
>select(base_Abstraction.client=ref).base_Abstraction.supplier

Constraints

• 1_supplier_is_requirement

The supplier shall be an element stereotyped by any subtype of «AbstractRequirement».

AbstractRequirement.allInstances().base_NamedElement‑>
includes(self.base_Abstraction.supplier)

16.3.2.8 Trace

Description

The Trace stereotype specializes UML4SysML Trace and DirectedRelationshipPropertyPath to enable traces to
identify their sources and targets by a multi-level path of accessible properties from context blocks for the sources
and targets.

Generalizations

• DirectedRelationshipPropertyPath (from Blocks)

178 OMG Systems Modeling Language, v1.7

• Trace (from StandardProfile)

Association Ends

• base_Abstraction : Abstraction [1]

Operations

• getTracedFrom (in ref : NamedElement) : AbstractRequirement [0..*]
The query getTracedFrom() gives all the requirements that are clients ("from" end of the concrete syntax) of a
«Trace» relationship whose supplier is the element in parameter. This is a static query.
bodyCondition:
AbstractRequirement.allInstances()->select(tracedTo->includes(ref))

Constraints

• 2_binary

Abstractions with a Trace stereotype or one of its specializations applied shall have exactly one client and one
supplier.

self.base_Abstraction.client‑>size()=1 and
self.base_Abstraction.supplier‑>size()=1

16.3.2.9 Verify

Description

A Verify relationship is a dependency between a requirement and a test case or other model element that can
determine whether a system fulfills the requirement. As with other dependencies, the arrow direction points from the
(client) element to the (supplier) requirement.

Generalizations

• Trace (from Requirements)

Association Ends

• base_Abstraction : Abstraction [1]

Operations

• getVerifies (in ref : NamedElement) : AbstractRequirement [0..*]
The query getVerifies() gives all the requirements that are suppliers ("to" end of the concrete syntax) of a
«Verify» relationships whose client is the element in parameter. This is a static query.
bodyCondition:
Verify.allInstances()-
>select(base_Abstraction.client=ref).base_Abstraction.supplier

Constraints

• 1_supplier_is_requirement

The supplier shall be an element stereotyped by any subtype of «AbstractRequirement».

AbstractRequirement.allInstances().base_NamedElement‑>
includes(self.base_Abstraction.supplier)

16.3.3 Model Libraries

16.3.3.1 Package Verdicts

The SysML model library for Verdicts is shown in Fig. 16.2.

OMG Systems Modeling Language, v1.7 179

[Package] VerdictsVerdictsbdd][
«ModelLibrary»

pass
inconclusive
fail
error
enumeration literals

VerdictKind
«enumeration»

Figure 16.2. Verdicts

16.3.3.1.1 VerdictKind

Description

The VerdictKind is an enumeration that contains the values fail, inconclusive, pass, and error indicating how this test
case execution has performed.

A pass indicates that the test case is successful and that the system under test has behaved according to what should
be expected. A fail on the other hand shows that the system under test is not behaving according to the specification.
An inconclusive means that the test execution cannot determine whether the system under test performs well or not.
An error tells that the test system itself and not the system under test fails.

The VerdictKind is derived from the Verdict element from the UTP specification v1.2.

Literals

• error

• fail

• inconclusive

• pass

16.4 Usage Examples

The examples in this clause show the use of the normative Requirement stereotypes. Examples showing the
definition and use of non-normative requirement stereotypes based on AbstractRequirement are shown in
Annex Section E.8. All the examples in this clause are based on a set of publicly available (on-line) requirement
specifications from the National Highway Traffic Safety Administration (NHTSA). Excerpts of the original
requirement text used to create the models are shown in Fig. 16.3. The name and ID of these requirements are
referred to in the SysML usage examples that follow. See NHTSA specification 49CFR571.135 for the complete
text from which these examples are taken.

16.4.1 Requirement Decomposition and Traceability

180 OMG Systems Modeling Language, v1.7

Requirements DerivationSafety Test[Package]req][

Text = "The road test surface produces a peak
friction coefficient (PFC) of 0.9 when measured
using an American Society for Testing and
Materials (ASTM) E1136 standard reference test
tire, in accordance with ASTM Method E 1337 - 90 "

Id = "S6.2.1"

Pavement friction
«requirement»

Text = "This test method covers the measurement
of peak braking coefficient of paved surfaces using
a standard reference test tire (SRTT) as described
in Specification E1136 that represents current
technology passenger car radial ties. "

Id = "A. 24241"

ASTM R1337-90
«requirement»

Text = "(a) IBT: 65 oC (149 oF) , 100 oC (212 oF)
(b) Test Surface: PFC of at least 0.9 "

Id = "S7.4.3"

Test and procedure conditions
«requirement»

Text = "..."
Id = "S7.4"

Adhesion utilization
«requirement»

Text = "..."
Id = "S7.4.2"

Vehicle conditions
«requirement»

«deriveReqt»

«deriveReqt»

Figure 16.3. Requirements Derivation

16.4.2 Requirements and Design Elements

The diagram in Fig. 16.4 shows derived requirements and refers to the design elements that satisfy them. The
rationale is also shown as a basis for the design solution.

OMG Systems Modeling Language, v1.7 181

Links between requirements and designMasterCylinderSafety[Package]req][

Text = "A master cylinder
shall have a reservoir
compartment for each
service brake subsystem
serviced by the master
cylinder. Loss of fluid from
one compartment shall not
result in a complete loss of
brake fluid from another
compartment"

Id = "S5.4.1"

Master Cylinder Efficacy
«requirement»

releaseBrake()
activateBrake()

operations

f : FrontBrake
m : MasterCylinder
l2 : BrakeLine
l1 : BrakeLine
r : BrakeLine

parts

BrakeSystem
«block»

Decelerate Car

Text = "Prevent
complete loss of fluid"

Id = "S5.4.1a"

LossOfFluid
«requirement»

Text = "Separate
reservoir compartment"

Id = "S5.4.1B"

Reservoir
«requirement»

Body = "The best-practice solution
consists in using a set of springs
and pistons to confine the loss to
a single compartment. "

«rationale»

Body = "The best-practice solution
consists in assigning one
reservoir per brakeline."

«rationale»

Body = "This design of the brake
assembly satisfies the federal
safety requirements"

«rationale»

SatisfiedBy
BrakeSystem::m

SatisfiedBy
BrakeSystem::l2
BrakeSystem::l1

«satisfy»

«deriveReqt»

«deriveReqt»

«refine»

Figure 16.4. Links between requirements and design

Requirement satisfaction in an internal block diagramBrakeSystem[Block]ibd][

m : MasterCylinder

l2 : BrakeLinel1 : BrakeLine

r : BrakeLinef : FrontBrake

Satisfies
«requirement»LossOfFluid

Satisfies
«requirement»Reservoir

Figure 16.5. Requirement satisfaction in an internal block diagram

182 OMG Systems Modeling Language, v1.7

16.4.3 Requirements Reuse

Fig. 16.6 illustrates the use of the Copy dependency to allow a single requirement to be reused in several
requirements hierarchies. The master tag provides a textual reference to the reused requirement.

Safety Reusereq][

Master

«requirement»NHTSASafetyRequirements

Shared Safety Requirement
«requirement»

Master

«requirement»NHTSASafetyRequirements

Shared Safety Requirement
«requirement»

Text = "…"
Id = "157.135"

NHTSASafetyRequirements
«requirement»

Safety Requirements
for type A

«requirement»
Safety Requirements

for type B

«requirement»

Hybrid Engine A type
«requirement»

Hybrid Engine B type
«requirement»«copy» «copy»

Figure 16.6. Safety Reuse

16.4.4 Verification Procedure - Test Case

The example in Fig. 16.7 is taken from the automotive safety domain, and shows a Burnish requirement contained in
the NHTSASafetyRequirements requirement. Note that the text of the Burnish requirement indicates a specific
sequence of steps and transition criteria. The Burnish requirement is shown as having a Verify relationship to the
BurnishTest test case using callout notation on the diagram, indicating that the Burnish requirement is verified by
the BurnishTest test case.

Fig. 16.8 is a state machine diagram of the BurnishTest test case, which expresses the textual sequence and criteria
of the Burnish requirement in state machine form. The Verify relationship is shown on Fig. 16.8 using callout
notation anchored to the diagram frame, which indicates that the BurnishTest test case verifies the Burnish
requirement.

BurnishSafetyreq][

Text = "…"
Id = "157.135"

NHTSASafetyRequirements
«requirement»

Text = "(a) IBT: 100 °C (212 ° F)
(b) Test speed: 80 km/h (49.7 mph)
(c) Pedal force: Adjust as necessary
to maintain specified constant
deceleration rate"

Id = "S7.1"

Burnish
«requirement»

Text = "..."
Id = "S9.1"

RoadTestSequence
«requirement»

VerifiedBy
«testCase»BurnishTest«deriveReqt»

Figure 16.7. Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram

OMG Systems Modeling Language, v1.7 183

BurnishTeststm
«TestCase»

Brake

MaintainAccelerate

Adjust brake

Initial condition

Verifies
«requirement»Burnish

[Speed = 80]

[count < 200]
[IBT = 100 or d

>= 2 km]

[count = 200]

Figure 16.8. Linkage of a Test Case to a requirement: This figure shows the Test Case as a State Diagram

184 OMG Systems Modeling Language, v1.7

This page intentionally left blank.

OMG Systems Modeling Language, v1.7 185

186 OMG Systems Modeling Language, v1.7

17 Profiles & Model Libraries
17.1 Overview

The Profiles package contains mechanisms that allow metaclasses from existing metamodels to be extended to adapt
them for different purposes. This includes the ability to tailor the UML metamodel for different domains. The
profiles mechanism is consistent with the OMG Meta Object Facility (MOF). SysML has added some notational
extensions to represent stereotype properties in compartments as well as notes.

The stereotype is the primary mechanism used to create profiles to extend the metamodel. Stereotypes are defined
by extending a metaclass, and then have them applied to the applicable model elements in the user model. A
stereotype of a requirement could be extended to create a «functionalRequirement» as described in Annex E: “Non-
normative Extensions.” This would allow specific properties and constraints to be created for a functional
requirement. For example, a functional requirement may be constrained such that it must be satisfied by an operation
or behavior. When the stereotype is applied to a requirement, then the requirement would include the notation
«functionalRequirement» in addition to the name of the particular functional requirement. Extending the metaclass
requirement is different from creating a subclass of requirement called functionalRequirement.

The Usage Examples sub clause provides guidance both on how to use existing profiles and how to create new
profiles. In addition, the examples provide guidance on the use of model libraries. A model library is a library of
model elements including class and other type definitions that are considered reusable for a given domain. These
guidelines can be applied to further customize SysML for domain specific applications such as automotive, military,
or space systems.

17.2 Diagram Elements

17.2.1 Profile Definition in Package Diagram

Table 17.1. Graphical nodes used in Profile definition

ElementName Concrete Syntax Abstract Syntax Reference

Stereotype StereotypeName
«stereotype»

UML4SysML::Stereotype

Metaclass MetaClassName
«Metaclass»

UML4SysML::Class

Profile
ProfileName
«profile»

UML4SysML::Profile

Model Library
LibraryName
«ModelLibrary»

UML::StandardProfile

OMG Systems Modeling Language, v1.7 187

Table 17.2. Graphical paths used in Profile definition

ElementName Concrete Syntax Abstract Syntax Reference

Extension

StereotypeName
«stereotype»

MetaClassName
«Metaclass»

{required}

UML4SysML::Extension

Generalization

SpecializedStereotypeName
«stereotype»

GeneralizedStereotypeName
«stereotype»

UML4SysML::Generalization

ProfileApplication Profile2Profile1

«apply»

{strict} UML4SysML::ProfileApplication

MetamodelReference
«reference»

UML2 MetamodelProfile1

UML4SysML::PackageImport,
UML4SysML::ElementImport

Unidirectional Association Block2Block1 propertyName UML4SysML::Association

NOTE: In the above table, boolean properties can be displayed alternatively as BooleanPropertyName=[True|False].

17.2.2 Stereotypes Used On Diagrams

Table 17.3. Notations for Stereotype Use

ElementName Concrete Syntax Abstract Syntax Reference

StereotypeNode BooleanPropertyName

ElementNameElementName

PropertyName = "ValueString"
MultiPropertyName = "ValueString", "ValueString"

«stereotypeName»

PathName

UML4SysML::Element

188 OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

StereotypeNode BooleanPropertyName

ElementName

PropertyName = "ValueString"
MultiPropertyName = "ValueString", "ValueString"

«stereotypeName»

UML4SysML::Element

StereotypeInNode {PropertyName="ValueString",
BooleanPropertyName}

NodeName
«stereotypeName»

UML4SysML::Element

StereotypeIn
CompartmentElement «stereotypeName» ElementName2

«stereotypeName» ElementName1{PropertyName = "ValueString"}
properties

NodeName

{PropertyName = "ValueString", BooleanPropertyName} UML4SysML::Element

StereotypeOnEdge

ElementName

ElementName

«stereotypeName»

PathName

{BooleanPropertyName,
PropertyName = "ValueString"} UML4SysML::Element

StereotypeCompartment PropertyName = "ValueString"
MultiPropertyName = "ValueString", "ValueString"

«stereotypeName»

NodeName
«stereotypeName»

BooleanPropertyName

UML4SysML::Element

17.3 UML Extensions

None.

17.4 Usage Examples

17.4.1 Defining a Profile

OMG Systems Modeling Language, v1.7 189

Definition of a profile[Package] SE Toolkitpkg][

PrimitiveValueTypes
«modelLibrary»

StandardProfile
«profile»

SysML
«profile»

SEToolKit
«profile»

PrimitiveTypes

UML

«import»

«import»

«import»

«apply»

«import»

«import»

«import»

Figure 17.1. Definition of a profile

In this example, the modeler has created a new profile called SE Toolkit, which imports the SysML profile, so that it
can build upon the stereotypes it contains. The set of metaclasses available to users of the SysML profile is
identified by a reference to a metamodel, in this case a subset of UML specific to SysML. The SE Toolkit can
extend those metaclasses from UML that the SysML profile references.

17.4.2 Adding Stereotypes to a Profile

Profile ContentsSEToolKit[Profile]pkg][

isEncapsulated : Boolean [0..1]
attributes

Block
«stereotype»

Requirement
«stereotype»

FunctionalRequirement
«stereotype»

DirectedRelationship
«Metaclass»

NamedElement
«Metaclass»

lastChanged : date
version : String
author : String

ConfigurationItem
«stereotype»

Context
«stereotype»

System
«stereotype»

Behavior
«Metaclass»function

Figure 17.2. Profile Contents

In SE Toolkit, both the mechanisms for adding new stereotypes are used. The first, exemplified by
configurationItem, is called an extension, shown by a line with a filled triangle; this relates a stereotype to a
reference (called base) class or classes, in this case NamedElement and DirectedRelationship from UML and adds
new properties that every NamedElement or DirectedRelationship stereotyped by configurationItem must have.
NamedElement and DirectedRelationship are abstract classes in UML so it is their subclasses that can have the
stereotype applied. The second mechanism is demonstrated by the system and context stereotypes which are sub-
stereotypes of an existing SysML stereotype, Block; sub-stereotypes inherit any properties of their super-stereotype
and also extend the same base class or classes. Note that TypedElements whose type is extended by «system» do not
display the «system» stereotype; this also applies to InstanceSpecifications. Any notational conventions of this have
to be explicitly specified in a diagram extension.

190 OMG Systems Modeling Language, v1.7

There is also an example of how stereotypes (in this case FunctionalRequirement) can have unidirectional
associations to metaclasses in the reference metamodel (in this case Behavior).

17.4.3 Defining a Model Library that Uses a Profile

Two model librariesSEToolKit[Profile]pkg][

SI Value Types
«ModelLibrary»

unit = kilogramPerCubicMetre
«valueType»

SIDensity
«valueType»

unit = CubicMeter
«valueType»

SIVolume
«valueType»

«valueType»

unit = Meter

SILength
«valueType»

Real
«valueType»

Physical
«ModelLibrary»

lotNumber : String
serialNumber : String
modelNumber : String
supplier : String
density : SIDensity
volume : SIVolume

values

PhysicalObject
«block»

SI Definitions
«ModelLibrary»

«import»

«import»

Figure 17.3. Two model libraries

The model library SI Value Types imports a model library called SI Definitions, so it can use model elements from
them in its own definition. It defines value types having specific units which can be used when property values are
measured in SI units. SI Definitions is a separately published model library, containing definitions of standard SI
units and quantity kinds such as shown in Annex D, subclause Section D.4. A further model library, Physical,
imports SI Value Types so it can define properties that have those types. One model element, PhysicalObject, is
shown, a block that can be used as a supertype for a physical object.

17.4.4 Guidance on Whether to Use a Stereotype or Class

This sub clause provides guidance on when to use stereotypes. Stereotypes can be applied to any model element.
Stereotyping a model element allows the model element to be identified with the «guillemet» notation. In addition,
the stereotyped model element can have stereotype properties, and the stereotype can specify constraints on the
model element.

The modeler must decide when to create a stereotype of a class versus when to specialize (subclass) the class. One
reason is to be able to identify the class with the «guillemet» notation. In addition, the stereotype properties are
different from properties of classes. Stereotype properties represent properties of the class that are not instantiated
and therefore do not have a unique value for each instance of the class, although a class thus stereotyped can have a
separate value for the property.

SE Toolkit::functionalRequirement, which extends Class through its superstereotype, Requirement, is an example
where a stereotype is appropriate because every modeling element stereotyped by SE
Toolkit::functionalRequirement has a reference to another modeling element. In another example, SE
Toolkit::configurationItem defined above, which applies to classes among other concepts, is a stereotype because its
properties characterize the author, version, and last changed date of the modeling element themselves. One test of
this is whether the new properties are inheritable; in this case author, version, and last-changed date are not, because
it is only those classes under configuration control that need the properties. To summarize, in the following
circumstances a stereotype is appropriate:

• Where the model concept to be extended is not a class or class-based.

• Where the extensions include properties that reference other model elements.

• Where the extensions include properties that describe modeling data, not system data.

OMG Systems Modeling Language, v1.7 191

An example where a class is more appropriate is PhysicalObject from Defining a Model Library that Uses a Profile .
In this case, the properties density and volume, and the component numbers, have distinct values for each system
element described by the class, and are inherited by every subclass of PhysicalObject.

17.4.5 Using a Profile

Establishing HSUV ModelModelingDomain[Package]pkg][

SI Definitions
«ModelLibrary»

Local SysML
«profile»

HSUV Model

«apply»
{strict}

«apply»
{strict}

«import»

Figure 17.4. Establishing HSUV Model

The HSUVModel is a systems engineering model that needs to use stereotypes from SysML. It therefore needs to
have the SysML profile applied to it. In order to use the predefined SI units, it also needs to import the SI
Definitions model library. Having done this, elements in HSUVModel can be extended by SysML stereotypes and
types like SIVolume can be used to type properties. Both the SI Definitions model library and HSUVModel have
applied the profile strictly, which means that only those metaclasses directly referenced by SysML can be used in
those models.

17.4.6 Using a Stereotype

Using two stereotypes on a model elementHSUVRequirements[Package]req][

function = StopCar
«FunctionalRequirement»

text = "The car shall stop within 100 feet from 20 mph"
id = "102.1"

«AbstractRequirement»

StoppingDistance

«FunctionalRequirement»
«ConfigurationItem»

«ConfigurationItem»

version
1.2

lastChanged
4/4/04

author
Jones

Figure 17.5. Using two stereotypes on a model element

StoppingDistance has two stereotypes applied:

• functionalRequirement, which identifies it as a requirement that is satisfied by a function, and

• configurationItem, which allows it to have configuration management properties.

The modeler has provided values for all the newly available properties; those for criticalRequirement are shown in a
compartment in the node symbol for StoppingDistance; those for configurationItem are shown in a separate note.

192 OMG Systems Modeling Language, v1.7

17.4.7 Using a Model Library Element

Using model library elements[Package] Physicsbdd][

circumference : SILength
values

Shot
«block»

lotNumber : String
serialNumber : String
modelNumber : String
supplier : String
density : SIDensity
volume : SIVolume

values

PhysicalObject
«block»

Figure 17.6. Using model library elements

Model library elements can be used just like any other model element of the same type. In this case, Shot is a
specialization of PhysicalObject from the Physical model library. It adds a new property, circumference, of type
SILength to measure the circumference of the (spherical) shot.

OMG Systems Modeling Language, v1.7 193

ANNEXES

194 OMG Systems Modeling Language, v1.7

This page intentionally left blank.

OMG Systems Modeling Language, v1.7 195

196 OMG Systems Modeling Language, v1.7

Annex A: Diagrams
(informative)

A.1 Overview

SysML diagrams contain diagram elements (mostly nodes connected by paths) that represent model elements in the
SysML model, such as activities, blocks, and associations. The diagram elements are referred to as the concrete
syntax.

The SysML diagram taxonomy is shown in Fig. A.1. This taxonomy is one example of how to organize the SysML
diagrams. Other categories could also be defined, such as a grouping of the use case diagram and the requirement
diagram into a category called Specification Diagrams.

SysML reuses many of the major diagram types of UML. In some cases, the UML diagrams are strictly reused, such
as use case, sequence, state machine, and package diagrams, whereas in other cases they are modified so that they
are consistent with SysML extensions. For example, the block definition diagram and internal block diagram are
similar to the UML class diagram and composite structure diagram respectively, but include extensions as described
in Section 8, “Blocks.” Activity diagrams have also been modified via the activity extensions. Tabular
representations, such as the allocation table, are used in SysML but are not considered part of the diagram taxonomy.

SysML does not use all of the UML diagram types such as the object diagram, communication diagram, interaction
overview diagram, timing diagram, deployment diagram, and profile diagram. This is consistent with the approach
that SysML represents a subset of UML. In the case of deployment diagrams, the deployment of software to
hardware can be represented in the SysML internal block diagram. In the case of interaction overview and
communication diagrams, it was felt that the SysML internal block diagram. In the case of interaction overview and
communication diagrams, it was felt that the SysML behavior diagrams provided adequate coverage for representing
behavior without the need to include these diagram types. In the case of the profile diagram, profile definitions can
be captured on a package diagram and the parametric diagram.

Parametric
Diagram

Requirement
Diagram

Package
Diagram

Internal Block
Diagram

Block Definition
Diagram

Structure
Diagram

Use Case
Diagram

State Machine
Diagram

Sequence
Diagram

Activity
Diagram

SysML
Diagram

Behavior
Diagram

Modified from UML 2

New Diagram Type

Same as UML 2

Figure A.1. SysML Diagram Taxonomy

The requirement diagram is a new SysML diagram type. A requirement diagram provides a modeling construct for
text-based requirements, and the relationship between requirements and other model elements that satisfy or verify
them.

The parametric diagram is a new SysML diagram type that describes the constraints among the properties associated
with blocks. This diagram is used to integrate behavior and structure models with engineering analysis models such
as performance, reliability, and mass property models.

OMG Systems Modeling Language, v1.7 197

Although the taxonomy provides a logical organization for the various major kinds of diagrams, it does not preclude
the careful mixing of different kinds of diagram types, as one might do when one combines structural and behavioral
elements (e.g., showing a state machine nested inside a compartment of a block). However, it is critical that the
types of diagram elements that can appear on a particular diagram kind be constrained and well-specified. The
diagram elements tables in each clause describe what symbols can appear in the diagram, but do not specify the
different combinations of symbols that can be used.

The package diagram and the callout notation are two mechanisms that SysML provides for adding flexibility to
represent a broad range of diagram elements on diagrams. The package diagram can be used quite flexibly to
organize the model in packages and views. As such, a package diagram can include a wide array of packageable
elements. The callout notation provides a mechanism for representing relationships between model elements that
appear on different diagram kinds. In particular, they are used to represent allocations and requirements, such as the
allocation of an activity to a block on a block definition diagram, or showing a part that satisfies a particular
requirement on an internal block diagram. There are other mechanisms for representing this including the
compartment notation that is generally described in Section 17, “Profiles & Model Libraries,” Section 16,
“Requirements,” and Section 15, “Allocations” provide specific guidance on how these notations are used.

The model elements and corresponding concrete syntax that are represented in each of the nine SysML diagram
kinds are described in the SysML clauses as indicated below.

• activity diagram - activity

• block definition diagram - block, package, constraint block, or activity

• internal block diagram - block or constraint block

• package diagram - package, model, modelLibrary, profile

• parametric diagram - block or constraint block

• requirement diagram - package, requirement, modelLibrary, model

• sequence diagram - interaction

• state machine diagram - state machine

• use case diagram - package, block, model, modelLibrary

Each SysML diagram has a frame, with a contents area, a heading, and a Diagram Description (see Fig. A.2).

Contents

[modelElementType] modelElementNamediagramNamepkg][
«diagramUsage»

Diagram
Kind

Header

Diagram Description

Version:
Description:
Completion Status:
Reference:
(User defined fields)

Figure A.2. Diagram Frame

The frame is a rectangle that is required for SysML diagrams (Note: the frame is optional in UML). The frame shall
designate a model element that is the default namespace for the model elements enclosed in the frame. A qualified
name for the model element within the frame shall be provided if it is not contained within default namespace

198 OMG Systems Modeling Language, v1.7

associated with the frame. The following are some of the designated model elements associated with the different
diagram kinds:

• Activity diagram - activity

• Block definition diagram - block, package, or constraint block

• Internal block diagram - block or constraint block

• Package diagram - package or model

• Parametric diagram - block or constraint block

• Requirement diagram - package or requirement

• Sequence diagram - interaction

• State machine diagram - state machine

• Use case diagram - package

The frame may include border elements associated with the designated model element, like:

• Ports for blocks

• Entry/exit points on statemachines

• Gates on interactions

• Parameters for activities

• Constraint parameters for constraint blocks.

The frame may sometimes be defined by the border of the diagram area provided by a tool.

The diagram contents area contains the graphical symbols. The diagram type and usage define the type of primary
graphical symbols that are supported, e.g., a block definition diagram is a diagram where the primary symbols in the
contents area are blocks and association symbols along with their adornments.

The heading name is a string contained in a name tag (rectangle with cutoff corner) in the upper leftmost corner of
the rectangle, with the following syntax:

[modelElementType] [diagramName]

A space separates each of these entries. The diagramKind is bolded. The modelElementType and diagramName are
in brackets. The heading name should always contain the diagram kind and model element name, and include the
model element type and additional information to remove ambiguity. Ambiguity can occur if there is more than one
model element type for a given diagram kind, or where there is more than one diagram for the same model element.
If a model element type has a stereotype applied to the base model element, such as “modelLibrary” applied to a
package or “controlOperator” applied to an activity, then either the stereotype name or the base model element may
be used as the name for the model element type. In either case, the initial character of the name is shown in lower
case. For a stereotype name, guillemet characters (« and ») are not shown. If more than one stereotype has been
applied to the base model element, either the name of one of the applied stereotypes or a comma-separated list of
any or all of the applied stereotype names may be shown. If a base model element name is used, this element is
either a UML metaclass which SysML uses directly, such as package or activity, or a stereotype which SysML
defines on a UML metaclass, such as block or view.

SysML diagram kinds should have the following names or (abbreviations) as part of the heading:

• Activity diagram (act)

• Block definition diagram (bdd)

• Internal block diagram (ibd)

• Package diagram (pkg)

• Parametric diagram (par)

• Requirement diagram (req)

• Sequence diagram (sd)

OMG Systems Modeling Language, v1.7 199

• State machine diagram (stm)

• Use case diagram (uc)

The diagram description can be defined by a comment attached to a diagram frame as indicated in Fig. A.2 that
includes version, description, references to related information, a completeness field that describes the extent to
which the modeler asserts the diagram is complete, and other user defined fields. In addition, the diagram
description may identify the view associated with the diagram, and the corresponding viewpoint that identifies the
stakeholders and their concerns (refer to Model Elements clause). The diagram description can be made more
explicit by the tool implementation.

SysML also introduces the concept of a diagram usage. This represents a unique usage of a particular diagram type,
such as a context diagram as a usage of a block definition diagram, internal block diagram, or use case diagram. The
diagram usage can be identified in the header above the diagramKind as «diagramUsage». An example of a diagram
usage extension is shown in Figure A.3. For this example, the header in Figure A.2 would replace diagram kind with
“uc” and «diagramUsage» with «ContextDiagram». Applying a stereotype approach to specify a diagram usage can
allow a tool implementation to check that the diagram constraints defined by the stereotype are satisfied.

Diagram usage can be represented by creating stereotypes that extend SysMLDiagram (see Annex B).

SysMLUseCaseDiagram
«stereotype»

Context Diagram
«stereotype»

Figure A.3. Diagram Usages

Some typical diagram usages may include:

• Activity diagram usage with swim lanes - SwimLane Diagram.

• Block definition diagram usage for a block hierarchy - Block Hierarchy where block can be replaced by system,
item, activity, etc.

• Use case diagram or internal block diagram to represent a Context Diagram.

A.2 Guidelines

200 OMG Systems Modeling Language, v1.7

The following provides some general guidelines that apply to all diagram types.

• Decomposition of a model element can be represented by the rake symbol. This does not always mean
decomposition in a formal sense, but rather a reference to a more elaborated diagram of the model element that
includes the rake symbol. This notation adds to the existing decomposition notations defined in UML
(Composite state symbol for States that refer to StateMachines and rake symbol for CallBehaviorActions that
refer to Activities). In SysML, the rake on a model element may also include the following:

◦ Activity diagram - call behavior actions that can refer to another activity diagram.

◦ Internal block diagram - parts that can refer to another internal block diagram.

◦ Package diagram - package that can refer to another package diagrams.

◦ Parametric diagram - constraint property that can refer to another parametric diagram.

◦ Requirement diagram - requirement that can refer to another requirement diagram.

◦ Sequence diagram - interaction fragments that can refer to another sequence diagram.

◦ State machine diagram - state that can refer to another state machine diagram.

◦ Use case diagram - use case can that may be realized by other behavior diagrams (activity, state,
interactions).

• The primary mechanism for linking a text label outside of a symbol to the symbol is through proximity of the
label to its symbol. This applies to ports, item flows, pins, etc.

• Page connectors (on-page connectors and off-page connectors) can be used to reduce the clutter on diagrams, but
should be used sparingly since they are equivalent to go-to(s) in programming languages, and can lead to
“spaghetti diagrams.” Whenever practical, elaborate the model element designated by the frame instead of using
a page connector. A page connector is depicted as a circle with a label inside (often a letter). The circle is shown
at both ends of a line break and means that the two line end connect at the circle.

• When two lines cross, the crossing optionally may be shown with a small semicircular jog to indicate that the
lines do not intersect (as in electrical circuit diagrams), as shown in Fig. A.4.

Figure A.4. Optional Form of Line Crossing

• Diagram overlays are diagram elements that may be used on any diagram kind. An example of an overlay may
be a geographic map to provide a spatial context for the symbols.

• SysML diagrams including the enhancements described in this sub clause are intended to conform to diagram
definition and interchange standards to facilitate exchange of diagram and layout information.

• Tabular and matrix representation is an optional alternative notation that can be used in conjunction with the
graphical symbols as long as the information is consistent with the underlying metamodel. Tabular and matrix
representations are often used in systems engineering to represent detailed information and other views of the
model such as interface definitions, requirements traceability, and allocation relationships between various types
of model elements. They also can be convenient mechanisms to represent property values for selected properties,
and basic relationships such as function and inputs/outputs in N2 charts. UML contains a tabular representation
of a sequence diagram in an interaction matrix (refer to UML Annex with interaction matrix). The
implementations of tabular and matrix representations are defined by the tool implementations and are not
standardized in SysML at this time. However, tabular or matrix representations may be included in a frame with
the heading designator «table» or «matrix» in bold.

• Graph and tree representations are also optional, alternative notations that can be used in conjunction with
graphical symbols as long as the information is consistent with the underlying metamodel. These representations
can be used for describing complex series of relationships that represent other views of the model. One example

OMG Systems Modeling Language, v1.7 201

is the browser window in many tools that depicts a hierarchical view of the model. The implementations of
graphs and trees are defined by the tool implementations and are not standardized in SysML at this time.
However, graph and tree representations may be included in a frame with the heading designator «graph» or
«tree» in bold.

202 OMG Systems Modeling Language, v1.7

Annex B: SysML Diagram Interchange
(informative)

B.1 Overview

This annex provides information regarding the exchange of SysML diagrams. It is an extension of the UML
Diagram Interchange (DI) to support the graphical notation specific to SysML. A first part presents stereotypes that
extend the UML DI. A second part presents modifications in the use of UML DI in SysML diagrams.

DD: Diagram Definition
6f4b505d-f0ee-4eb5-bed5-05b48c8abea
a: Diagram Interchange

Diagram syntax Abstract syntax

UML

SysML

Model Diagram

SysML DI

UML DI

DI

MOF

M1

M2

M3

References

Instantiates

Specializes

Extends

SysML Spec

UML Spec

DD Spec

Figure B.1. SysML DI architecture

OMG Systems Modeling Language, v1.7 203

B.2 Stereotypes

isDecompositionSymbolShown : Boolean [1] = false
attributes

SysMLDiagramElement
«stereotype»

UMLDiagramElement
«Metaclass»

Figure B.2. Abstract Syntax Extension for SysMLDiagramElement

isDecompositionSymbolShown : Boolean [1] = false
attributes

SysMLDiagramElement
«stereotype»

isConstraintPropertyRounded : Boolean [1] = false
attributes

SysMLParametricDiagram
«stereotype»

SysMLDiagramWithAssociations
«stereotype»

UMLCompositeStructureDiagram
«Metaclass»

isLineJogShown : Boolean [1] = false
defaultNamespace : Namespace [1]

attributes

SysMLDiagram
«stereotype»

UMLDiagramWithAssociations
«Metaclass»

SysMLBlockDefinitionDiagram
«stereotype»

SysMLInternalBlockDiagram
«stereotype»

SysMLRequirementDiagram
«stereotype»

SysMLStructureDiagram
«stereotype»

UMLStructureDiagram
«Metaclass»

SysMLPackageDiagram
«stereotype»

UMLPackageDiagram
«Metaclass»

UMLClassDiagram
«Metaclass»

UMLDiagram
«Metaclass»

Figure B.3. Abstract syntax extensions for SysML diagrams (1)

204 OMG Systems Modeling Language, v1.7

+isControlFlowDashed : Boolean [1] = false
attributes

SysMLActivityDiagram
«stereotype»

SysMLDiagramWithAssociations
«stereotype»

SysMLStateMachineDiagram
«stereotype»

UMLStateMachineDiagram
«Metaclass»

SysMLInteractionDiagram
«stereotype»

SysMLDiagram
«stereotype»

SysMLBehaviorDiagram
«stereotype»

SysMLUseCaseDiagram
«stereotype»

UMLInteractionDiagram
«Metaclass»

UMLBehaviorDiagram
«Metaclass»

UMLUseCaseDiagram
«Metaclass»

UMLActivityDiagram
«Metaclass»

Figure B.4. Abstract syntax extensions for SysML diagrams (2)

B.2.1 SysMLActivityDiagram

Description

A SysMLActivityDiagram represents an activity diagram. It extends UMLActivityDiagram.

Generalizations

• SysMLBehaviorDiagram (from SysMLDI)

Attributes

• isControlFlowDashed : Boolean [1]
Specifies whether the control flows in the activity diagram are dashed (isControlFlowDashed=true) or not
(isControlFlowDashed=false).

Association Ends

• base_UMLActivityDiagram : UMLActivityDiagram [1]
(redefines: SysMLBehaviorDiagram::base_UMLBehaviorDiagram)

Constraints

[1] A SysMLActivityDiagram shall have as a defaultNamespace an Activity.

[2] SysMLActivityDiagram shall only be applied to a UMLActivityDiagram.The principal of an applied
AdjunctProperty shall be a Connector, CallAction, ObjectNode, Variable, Parameter, submachine State, or
InteractionUse.

B.2.2 SysMLBehaviorDiagram

Description

SysMLBehaviorDiagram is an abstract stereotype for all SysML behavior diagrams. It extends
UMLBehaviorDiagram.

OMG Systems Modeling Language, v1.7 205

Generalizations

• SysMLDiagram (from SysMLDI)

Association Ends

• base_UMLBehaviorDiagram : UMLBehaviorDiagram [1]
(redefines: SysMLDiagram::base_UMLDiagram)

Constraints

[1] SysMLBehaviorDiagram shall only be applied to a UMLBehaviorDiagram.

B.2.3 SysMLBlockDefinitionDiagram

Description

A SysMLBlockDefinitionDiagram represents a block definition diagram. It extends UMLClassDiagram.

Generalizations

• SysMLStructureDiagram (from SysMLDI)

Association Ends

• base_UMLClassDiagram : UMLClassDiagram [1]
(redefines: SysMLStructureDiagram::base_UMLStructureDiagram)

Constraints

[1] A SysMLBlockDefinitionDiagram shall have as a defaultNamespace a Class with a Block stereotype or one of
its specializations applied or a Package.

[2] SysMLBlockDefinitionDiagram shall only be applied to a UMLClassDiagram.

B.2.4 SysMLDiagram

Description

SysMLDiagram is an abstract stereotype for all SysML diagrams. It extends UMLDiagram.

Generalizations

• SysMLDiagramElement (from SysMLDI)

Attributes

• defaultNamespace : Namespace [1]
Specifies the default namespace of the SysML diagram.

• isLineJogShown : Boolean [1]
Show semi-circular jogs in the stereotyped diagram when two lines are crossing (see Annex A).

Association Ends

• base_UMLDiagram : UMLDiagram [1]
(redefines: SysMLDiagramElement::base_UMLDiagramElement)

Constraints

[1] A UMLDiagram stereotyped by a specialization of SysMLDiagram shall have isFrame=true.

[2] A UMLDiagram stereotyped by a specialization of SysMLDiagram shall have a heading.

206 OMG Systems Modeling Language, v1.7

[3] A SysMLDiagram that stereotypes a UMLDiagram with a modelElement shall have this modelElement as
defaultNamespace.

[4] SysMLDiagram shall only be applied to a UMLDiagram.

B.2.5 SysMLDiagramElement

Description

SysMLDiagramElement is an abstract generalization of all the other SysML 6f4b505d-
f0ee-4eb5-bed5-05b48c8abeaa stereotypes.

Attributes

• isDecompositionSymbolShown : Boolean [1]
Display a decomposition symbol in a diagram element to indicate the corresponding model element is
decomposed in another diagram. Diagram elements that may have a decomposition symbol are listed in Annex
A.

Association Ends

• base_UMLDiagramElement : UMLDiagramElement [1]

B.2.6 SysMLDiagramWithAssociations

Description

SysMLDiagramWithAssociations is an abstract stereotype for all SysML diagrams with associations. It extends
UMLDiagramWithAssociations.

Generalizations

• SysMLDiagram (from SysMLDI)

Association Ends

• base_UMLDiagramWithAssociations : UMLDiagramWithAssociations [1]
(redefines: SysMLDiagram::base_UMLDiagram)

Constraints

[1] A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations shall
have isAssociationDotShown=false.

[2] A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations shall
have navigabilityNotation=oneWay.

[3] A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations shall
have nonNavigabilityNotation=never.

[4] SysMLDiagramWithAssociations shall only be applied to a UMLDiagramWithAssociations.

B.2.7 SysMLInteractionDiagram

Description

A SysMLInteractionDiagram represents an interaction diagram. It extends UMLInteractionDiagram.

Generalizations

• SysMLBehaviorDiagram (from SysMLDI)

OMG Systems Modeling Language, v1.7 207

Association Ends

• base_UMLInteractionDiagram : UMLInteractionDiagram [1]
(redefines: SysMLBehaviorDiagram::base_UMLBehaviorDiagram)

Constraints

[1] A SysMLInteractionDiagram shall have as a defaultNamespace an Interaction.

[2] A UMLInteractionDiagram stereotyped by SysMLInteractionDiagram shall have kind=sequence.

[3] SysMLInteractionDiagram shall only be applied to a UMLInteractionDiagram.

B.2.8 SysMLInternalBlockDiagram

Description

A SysMLInternalBlockDiagram represents an internal block diagram. It extends UMLCompositeStructureDiagram.

Generalizations

• SysMLStructureDiagram (from SysMLDI)

Association Ends

• base_UMLCompositeStructureDiagram : UMLCompositeStructureDiagram [1]

Constraints

[1] A SysMLInternalBlockDiagram shall have as a defaultNamespace a Class with a Block stereotype or one of its
specializations applied.

[2] SysMLInternalBlockDiagram shall only be applied to a UMLCompositeStructureDiagram.

B.2.9 SysMLPackageDiagram

Description

A SysMLPackageDiagram represents a package diagram. It extends UMLPackageDiagram.

Generalizations

• SysMLStructureDiagram (from SysMLDI)

Association Ends

• base_UMLPackageDiagram : UMLPackageDiagram [1]

Constraints

[1] A SysMLPackageDiagram shall have as a defaultNamespace a Package.

[2] SysMLPackageDiagram shall only be applied to a UMLPackageDiagram.

B.2.10 SysMLParametricDiagram

Description

A SysMLParametricDiagram represents a parametric diagram. It is a specialization of SysMLInternalBlockDiagram.

Generalizations

• SysMLInternalBlockDiagram (from SysMLDI)

208 OMG Systems Modeling Language, v1.7

Attributes

• isConstraintPropertyRounded : Boolean [1]
Specifies whether the constraint properties in the parametric diagram have rounded corners
(isConstraintPropertyRounded=true) or not (isConstraintPropertyRounded=false).

Constraints

[1] A SysMLParametricDiagram shall have as a defaultNamespace a Class with a Block stereotype or one of its
specializations applied.

[2] SysMLParametricDiagram shall only be applied to a UMLCompositeStructureDiagram.

B.2.11 SysMLRequirementDiagram

Description

A SysMLRequirementDiagram represents a requirement diagram. It is based on the UML class diagram.

Generalizations

• SysMLStructureDiagram (from SysMLDI)

Association Ends

• base_UMLClassDiagram : UMLClassDiagram [1]

Constraints

[1] A SysMLRequirementDiagram shall have as a defaultNamespace a Package or a Class with a Requirement
stereotype or one of its specializations applied.

[2] SysMLRequirementDiagram shall only be applied to a UMLClassDiagram.

B.2.12 SysMLStateMachineDiagram

Description

A SysMLStateMachineDiagram represents a state machine diagram. It extends UMLStateMachineDiagram.

Generalizations

• SysMLBehaviorDiagram (from SysMLDI)

Association Ends

• base_UMLStateMachineDiagram : UMLStateMachineDiagram [1]
(redefines: SysMLBehaviorDiagram::base_UMLBehaviorDiagram)

Constraints

[1] A SysMLStateMachineDiagram shall have as a defaultNamespace a StateMachine.

[2] SysMLStateMachineDiagram shall only be applied to a UMLStateMachineDiagram.

B.2.13 SysMLStructureDiagram

Description

SysMLStructureDiagram is an abstract stereotype for all SysML structure diagrams. It extends
UMLStructureDiagram.

OMG Systems Modeling Language, v1.7 209

Generalizations

• SysMLDiagramWithAssociations (from SysMLDI)

Association Ends

• base_UMLStructureDiagram : UMLStructureDiagram [1]
(redefines: SysMLDiagramWithAssociations::base_UMLDiagramWithAssociations)

Constraints

[1] SysMLStructureDiagram shall only be applied to a UMLStructureDiagram.

B.2.14 SysMLUseCaseDiagram

Description

A SysMLUseCaseDiagram represents a use case diagram. It extends UMLUseCaseDiagram.

Generalizations

• SysMLBehaviorDiagram (from SysMLDI)

• SysMLDiagramWithAssociations (from SysMLDI)

Association Ends

• base_UMLUseCaseDiagram : UMLUseCaseDiagram [1]
(redefines: SysMLBehaviorDiagram::base_UMLBehaviorDiagram)
(redefines: SysMLDiagram::base_UMLDiagram)

Constraints

[1] A SysMLUseCaseDiagram shall have as a defaultNamespace a Package.

[2] SysMLUseCaseDiagram shall only be applied to a UMLUseCaseDiagram.

B.3 SysML DI usage notes

This clause provides additional notes on how the SysML notation is modeled.

A UMLEdge with a Connector as modelElement may be the source or the target of a UMLEdge with no
modelElement. The target or the source of the latter UMLEdge is a UMLShape with a Property stereotyped by
AdjunctProperty with a connector as the principal or one of its specializations as modelElement. This UMLEdge is
rendered as a dotted line.

Property names with property-specific types (in parentheses) are modeled with UMLTypedElementLabels.

UMLCompartmentableShapes that have a modelElement stereotyped by Allocated or one of its specializations may
have a compartment titled “allocatedElements” and a compartment titled “allocatedToElements.” These
compartments contain UMLLabels with modelElements that are the values of the allocatedElements and
allocatedToElements properties, respectively, of the Allocated stereotype.

A UMLShape with a modelElement stereotyped by Allocated or one of its specializations may be the source or the
target of a UMLEdge with no modelElements. The target or the source of this UMLEdge is a UMLShape with no
modelElement. This UMLShape may contain UMLLabels with text “allocatedFrom” and “allocatedTo,” each being
followed by UMLLabels with modelElements that are the values of the allocatedFrom properties of the Allocated
stereotype or the values of the allocatedTo properties, respectively, of the Allocated stereotype.

SysML callout notation (MasterCallout, DeriveCallout, SatisfyCallout, VerifyCallout, RefineCallout, TraceCallout)
can be modeled by a UMLShape with no modelElement. This UMLShape contains a UMLLabel with text specified
by the callout notation, followed by a UMLLabel with modelElement that is the element with text shown by the
callout notation.

210 OMG Systems Modeling Language, v1.7

B.4 SysML Notation and DI Representation

This sub clause summarizes Annex B by showing how SysML-specific notations shall be modeled using UML and
SysML UML DI. It does not cover all of Annex B or all notations in previous Clauses. The left column shows an
example of SysML notation. The middle column shows UML DI and SysML DI elements corresponding to the
notation. These elements are presented in a containment hierarchy. Elements with the same container are ordered
according to the notation shown in the left column, read from left to right, top to bottom. For each element, the type
of diagram element is given, followed by the type of modelElement and sometimes other constraints that apply to
the diagram element, put between parentheses. The type of modelElement is followed by a '+' when multiple
modelElements of this type can be assigned to one diagram element. A '+' sign between a metaclass and a stereotype
corresponds to an element that instantiates the metaclass and that has the stereotype applied. The right column
references “Notation” clauses and figures where the notation is defined.

Table B.1. SysML Diagram Elements

Notation Diagram Elements Ref.

UMLEdge (ControlFlow,
isControlFlowDashed=false)

UMLEdge+SysMLControlFlowEdge
(ControlFlow,
isControlFlowDashed=true)

Section 11.3.1.3.1

Constraint
«Constraint»

Constraint1
«Constraint»

UMLClassifierShape
(Property+ConstraintProperty,
isConstraintPropertyRounded=false)
- UMLLabel (Stereotype)
- UMLTypedElementLabel
(Property)
UMLClassifierShape
(Property+ConstraintProperty,
isConstraintPropertyRounded=true)
- UMLLabel (Stereotype)
- UMLTypedElementLabel
(Property)

Section 10.3.1.2.1

Block1 UMLClassifierShape (Class+Block)
- UMLNameLabel (Class)
- UMLShape+SysMLPort (Port, in
flows, isIcon=true)
- UMLShape+SysMLPort (Port, out
flows, isIcon=true)
- UMLShape+SysMLPort (Port,
inout flows, isIcon=true)

Section 9.3.1.6

OMG Systems Modeling Language, v1.7 211

Notation Diagram Elements Ref.

Block1

p1.p3

p1.p2

p1.p1

p1

UMLClassifierShape (Class+Block)
- UMLNameLabel (Class)
- UMLShape (Port)
- UMLNameLabel (Port)
- UMLShape (Port)
- UMLNameLabel (Port)
- UMLShape (Port)
- UMLNameLabel (Port)
- UMLShape (Port)
- UMLNameLabel (Port)

Section 9.3.1.6

Block1

Property2:Type2Property1:Type1

Property3:Type3

Connector1:Type4

UMLClassifierShape (Class)
- UMLNameLabel (Class)
- UMLCompartment
--- UMLShape (Property)
----- UMLTypedElementLabel
(Property)
--- UMLEdge (Connector)
----- UMLTypedElementLabel
(Property)
--- UMLShape (Property)
----- UMLTypedElementLabel
(Property)
--- UMLEdge
--- UMLShape (Property)
----- UMLTypedElementLabel

Section 8.3.2.2

allocatedFrom

Element1
allocatedTo

Element2

Block1

UMLClassifierShape (Class)
- UMLNameLabel (Class)
- UMLCompartment
--- UMLLabel
--- UMLLabel (Element)
- UMLCompartment
--- UMLLabel
--- UMLLabel (Element)

Section 15.3.1.3

Block1

allocatedFrom
Element1
allocatedFrom
Element2

UMLClassifierShape (Class)
- UMLNameLabel (Class)
UMLEdge
UMLShape
- UMLLabel
- UMLLabel (Element)
- UMLLabel
- UMLLabel (Element)

Section 15.3.1.4

Element1

Callout name
Element2

UMLShape (Element)
- UMLNameLabel (Element)
UMLEdge
UMLShape
- UMLLabel
- UMLLabel (Element)

Section 16.3.1.3

212 OMG Systems Modeling Language, v1.7

Annex C: Deprecated Elements and Migration
(informative)

C.1 Overview

This annex

• Defines SysML elements that are deprecated, but included for backward compatibility (see Subannexes Section
C.1.1 through Section C.1.3).

• Provides guidelines for migrating elements to this version of SysML that are deprecated (see above) or that
changed significantly between versions of SysML (see Subannexes Section C.4 through Section C.7).

C.1.1 Flow Ports

Flow Port and Flow Specification are deprecated in this version of SysML and are defined for backward
compatibility. This annex contains the definition of these concepts as they are defined by SysML 1.2. In addition it
provides some guidelines on how to convert FlowPort to ports in this version of SysML.

A flow port specifies the input and output items that may flow between a block and its environment. Flow ports are
interaction points through which data, material, or energy can enter or leave the owning block. The specification of
what can flow is achieved by typing the flow port with a specification of things that flow. This can include typing an
atomic flow port with a single type representing the items that flow in or out, or typing a nonatomic flow port with a
flow specification which lists multiple items that flow. A block representing an automatic transmission in a car could
have an atomic flow port that specifies “Torque” as an input and another atomic flow port that specifies “Torque” as
an output. A more complex flow port could specify a set of signals and/or properties that flow in and out of the flow
port. In general, flow ports are intended to be used for asynchronous, broadcast, or send-and-forget interactions.
Flow ports exten UML 2 ports.

C.1.2 Conjugated Ports

UMLs conjugated ports (UML::Port::isConjugated) are deprecated in this version of SysML and included for
backward compatibility. This annex contains the description of port conjugation in SysML 1.5. In addition it
provides guidelines on how to convert conjugated ports to ports in this version of SysML.

C.1.3 ConnectorProperty

ConnectorProperty is deprecated in this version of SysML and is defined for backward compatibility. This annex
contains the definition of these concepts as they are in SysML 1.6. AdjunctProperty with a connector as principal
provides the same capability as ConnectorProperty.

C.2 Diagram Elements

C.2.1 Block Definition Diagram

Table C.1. Graphical nodes defined in Block Definition diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Port
Transmission

«block»
p2 : ~T2

Conjugated Port

p1 : ~T1

UML4SysML::Port

OMG Systems Modeling Language, v1.7 213

Node Name Concrete Syntax Abstract Syntax Reference

FlowPort

Transformer

Transmission

Transmission

Conjugated FlowPort

Atomic Flow Ports

Flow Port

in ac : ACVoltage out dc : DCVoltage

inout networkType : ElectricNetworkType

p : ~ITransmission

p : ITransmission

SysML::Ports & Flows::FlowPort

FlowPort (Compartment Notation)

out dc : DCVoltage
inout networkType : ElectricNetworkType
in ac : ACVoltage

«FlowPort»

Transformer

p : ~ITransmission
«FlowPort»

Transmission

p : ITransmission
«FlowPort»

Transmission

Conjugate Flow Port

Atomic Flow Ports

Flow Port

SysML::Ports & Flows::FlowPort

FlowSpecification

out wheelsTorque
in engineTorque
in gearSelect : Gear

flow properties

Name
«flowSpecification»

SysML::Ports &
Flows::FlowSpecification

ConnectorProperty

«connector» c2 : Association2
«connector» c1 : Association1

parts

Block1
«block»

c2 : Association2

p4 : Type4p3 : Type3

p2 : Type2p1 : Type1
1

e1c1 : Association1

1
e1

UML4SysML::Property,
UML4SysML::Connector

C.2.2 Internal Block Diagram

214 OMG Systems Modeling Language, v1.7

Table C.2. Graphical nodes defined in Internal Block diagrams

Node Name Concrete Syntax Abstract Syntax Reference

FlowPort

: Transmission

tr : Transformer

t : Transmission

Conjugated Flow Port

Atomic Flow Ports

Flow Port

p : ~ITransmission

in ac : ACVoltage out dc : DCVoltage

inout networkType : ElectricNetworkType

p : ITransmission

SysML::Ports & Flows::FlowPort

ItemFlow

Item Flow with an Item Property

Trns : Transmission

Eng : engineeng : engine

trns : Transmission

Item Flow

p1 : Torque

p1 : Torquep : Torque

p : Torque

torque : TorqueTorque

SysML::Ports & Flows::ItemFlow

Port

: Transmission

Conjugated Ports

p2 : ~T2p1 : ~T1

UML4SysML::Port

C.3 UML Extensions

C.3.1 Diagram Extensions

C.3.1.1 Conjugated Ports

Conjugated ports have UMLs Port::isConjugated property equal to true. Arrows in port rectangles indicated flow
property direction are reversed in conjugated ports. Conjugated ports in conjugated ports (nested conjugated ports)
behave as if they were not conjugated. Full ports also cannot be conjugated, because their types can have behaviors
and can be reused on non-conjugated ports. This would require the same behaviors to use the directed features and
flow properties in opposite directions at the same time.

The meaning of DirectedFeature::featureDirection property is reversed for conjugated ports. On conjugated ports,
directed features with a feature direction "provided" are required and those with a feature direction "required" are
provided. Port conjugation has no impact on "providedrequired" directed features. The meanings of the "required"
and "provided" literals in FeatureDirection are switched for conjugated ports. In these cases the actual use is in the
opposite direction than the one specified by the enumeration literal.

The meaning of FlowProperty::direction is reversed for conjugated ports. On conjugated ports, flow properties with
direction "in" are out flow properties and those with direction "out" are in flow properties. Port conjugation has no
impact on "inout" flow properties. The meanings of the "in" and "out" literals in FlowDirection are switched for
conjugated ports. In these cases the actual flow direction is in the opposite direction than the one specified by the
enumeration literal.

C.3.1.2 FlowPort

A FlowPorts is an interaction point through which input and/or output of items such as data, material, or energy may
flow. The notation of flow port is a square on the boundary of the owning block or its usage. The label of the flow
port is in the format portName: portType. Atomic flow ports have an arrow inside them indicating the direction of
the port with respect to the owning Block. A nonatomic flow port has two open arrow heads facing away from each
other (i.e., < >). The fill color of the square is white and the line and text colors are black.

OMG Systems Modeling Language, v1.7 215

In addition, flow ports can be listed in a special compartment labeled “flow ports.” The format of each line is:

in | out | inout portName:portType [{conjugated}]

C.3.1.3 FlowSpecification

A FlowSpecification specifies inputs and outputs as a set of flow properties. It has a “flowProperties” compartment
that lists the flow properties.

C.3.2 Stereotypes

C.3.2.1 Package Ports&Flows

attributes

/isAtomic : Boolean
direction : FlowDirection [1] = inout

FlowPort
«stereotype»

Interface
«Metaclass»

UML4SysML::Interface
«Metaclass»

FlowSpecification
«stereotype»

Port
«Metaclass»

UML4SysML::Port
«Metaclass»

Figure C.1. Deprecated Stereotypes

C.3.2.2 FlowPort

Description

A FlowPort is an interaction point through which input and/or output of items such as data, material, or energy may
flow. This enables the owning block to declare which items it may exchange with its environment and the interaction
points through which the exchange is made.

We distinguish between atomic flow port and a nonatomic flow port. Atomic flow ports relay items that are
classified by a single Block, ValueType, or Signal classifier. A nonatomic flow port relays items of several types as
specified by a FlowSpecification.

The distinction between atomic and nonatomic flow ports is made according to the flow port’s type: If a flow port is
typed by a flow specification, then it is nonatomic; if a flow port is typed by a Block, ValueType, or Signal classifier,
then it is atomic.

Flow ports and associated flow specifications define “what can flow” between the block and its environment,
whereas item flows specify “what does flow” in a specific usage context.

Flow ports relay items to their owning block or to a connector that connects them with their owner’s internal parts
(internal connector).

The isBehavior attribute inherited from UML port is interpreted in the following way: if isBehavior is set to true,
then the items are relayed to/from the owning block. More specifically, every flow property within the flow port is
bound to a property owned by the port’s owning block or to a parameter of its behavior. If isBehavior is set to false,
then the flow port shall be connected to an internal connector, which in turn related the items via the port. The need
for isBehavior is mainly to allow specification of internal parts relaying items to their containing part via flow ports.

The isConjugated attribute inherited from the UML Port metaclass is interpreted as follows: It indicates if the flows
of items of a nonatomic flow port maintain the directions specified in the flow specification or if the direction of
every flow property specified in the flow specification is reversed (IN becomes OUT and vice versa). If set to True,
then all the directions of the flow properties specified by the flow specification that types a nonatomic flow port are
relayed in the opposite direction (i.e., an “in” flow property is treated as an “out” flow property by the flow port and

216 OMG Systems Modeling Language, v1.7

vice-versa). By default, the value is False. This attribute applies only to nonatomic flow ports since atomic flow
ports have a direction attribute signifying the direction of the flow.

In case of flow properties or atomic flow ports of type Signal, inbound properties or atomic flow port are mapped to
a Reception of the signal type (or a subtype) of the flow property’s type. Outbound flow properties only declare the
ability of the flow port to relay the signal over external connectors attached to it and are not mapped to a property of
the flow port’s owning block.

Semantic Variation Points

The binding of the flow properties on the ports to behavior parameters and/or block properties is a semantic
variation point. One approach is to perform name and type matching. Another approach is to explicitly use binding
relationships between the ports properties and behavior parameters or block properties.

Attributes

• /isAtomic : Boolean (derived)
This is a derived attribute (derived from the flow port’s type). For a flow port typed by a flow specification the
value of this attribute is False, otherwise the value is True.

• direction : FlowDirection
Indicates the direction in which an atomic flow port relays its items. If the direction is set to “in,” then the items
are relayed from an external connector via the flow port into the flow port’s owner (or one of its parts). If the
direction is set to “out,” then the items are relayed from the flow port’s owner, via the flow port, through an
external connector attached to the flow port. If the direction is set to “inout,” then items can flow both ways. By
default, the value is inout.

Constraints

[1] A FlowPort shall be typed by a FlowSpecification, Block, Signal, or ValueType.

[2] If the FlowPort is atomic (by its type), then isAtomic=True, the direction shall be specified (has a value), and
isConjugated is not specified (has no value).

[3] If the FlowPort is nonatomic, and the FlowSpecification typing the port has flow properties with direction “in,”
the FlowPort direction shall be “in” (or “out” if isConjugated=true). If the flow properties are all out, the FlowPort
direction shall be out (or in if isConjugated=true). If flow properties are both in and out, the direction shall be inout.

[4] A FlowPort can be connected (via connectors) to one or more flow ports that have matching flow properties. The
matching of flow properties shall be done in the following steps:

1. Type Matching: The type being sent shall be the same type or a subtype of the type being received.

2. Direction Matching: If the connector connects two parts that are external to one another, then the direction of the
flow properties shall be opposite, or at least one of the ends should be inout. If the connector is internal the
owner of one of the flow ports, then the direction shall be the same or at least one of the ends shall be inout.

3. Name Matching: In case there is type and direction match to several flow properties at the other end, the
property that has the same name at the other end shall be selected. If there is no such property, then the
connection is ambiguous (ill-formed).

[5] If a flow port is not connected to an internal part, then isBehavior shall be set to true.

The item flows specified as flowing on a connector between flow ports shall match the flow properties of the ports
at each end of the connector: the source of the item flow should be the port that has an outbound/bidirectional flow
property that matches the item flow’s type and the target of the item flow should be the port that has an inbound/
bidirectional flow property that matches the type of the item flow.

If a flow port is connected to multiple external and/or internal connectors, then the items are propagated (broadcast)
over all connectors that have matching properties at the other end.

C.3.2.3 FlowSpecification

Description

OMG Systems Modeling Language, v1.7 217

A FlowSpecification specifies inputs and outputs as a set of flow properties. A flow specification is used by flow
ports to specify what items can flow via the port.

Constraints

[1] Flow specifications shall not own operations or receptions (they can only own FlowProperties).

[2] Every “ownedAttribute” of a FlowSpecification shall be a FlowProperty.

C.3.2.4 ItemFlow (deprecated compatibility rule)

ItemFlows are not deprecated, but when used with atomic flows ports, have a deprecated modification of item flow
compatibility rules that treats types of source and target atomic ports as if they were types of flow properties on
types of those ports.

C.3.2.5 ConnectorProperty

Description

Connectors can be typed by association classes that are stereotyped by Block (association blocks, see
ParticipantProperty in subclause Section 8.3.2.11). These connectors specify instances of the association block
created within the instances of the block that owns the connector. The values of a connector property are instances of
the association block created due to the connector referred to by the connector property.

A connector property can optionally be shown in an internal block diagram with a dotted line from the connector
line to a rectangle notating the connector property. The keyword «connector» before a property name indicates the
property is stereotyped by ConnectorProperty.

Attributes

• connector : Connector [1]
A connector of the block owning the property on which the stereotype is applied.

Association Ends

• base_Property : Property [1]

Constraints

• 1_block_property

ConnectorProperty shall only be applied to properties of classes stereotyped by Block.

Block.allInstances().base_Class‑>exists(c | c.ownedAttribute‑>
includes(self.base_Property))

• 2_owned_or_inherited

The connector attribute of the applied stereotype shall refer to a connector owned or inherited by a block owning
the property on which the stereotype is applied.

let owner: UML::Class = Block.allInstances().base_Class‑>any(c |
c.ownedAttribute‑>includes(self.base_Property)) in owner‑>
closure(general)‑>
select(oclIsKindOf(UML::Class)).oclAsType(UML::Class).ownedConnector‑>
flatten()‑>includes(self.connector)

• 3_composite

The aggregation of a property stereotyped by ConnectorProperty shall be composite.

self.base_Property.isComposite

• 4_typed_by_associationblock

The type of the connector referred to by a connector attribute shall be an association class stereotyped by Block.

218 OMG Systems Modeling Language, v1.7

Block.allInstances().base_Class‑>exists(c |
c.oclIsKindOf(UML::AssociationClass) and self.connector.type = c)

• 5_same_name

A property stereotyped by ConnectorProperty shall have the same name and type as the connector referred to by
the connector attribute.

self.base_Property.name = self.connector.name

OMG Systems Modeling Language, v1.7 219

C.4 Transitioning SysML1.2 Flow Ports to SysML 1.3 Ports
(informative)

To convert a SysML 1.2 flow port to ports in this version of SysML it is recommended to use the following
guidelines:

1. Decide if the port should be converted to a proxy port, a full port, or an unstereotyped port.

2. Based on the decision in step 1, create a block (for proxy ports, it shall be an interface block specifically).

3. If the original flow port is non-atomic:
a. Copy all the flow properties owned by the flow port’s type, a flow specification, to the block created in step

2 (meaning the flow properties will be owned by the newly created block).

b. Replace the type of the port with the block created in step 2.

c. Remove the flow port stereotype from the port.

d. Based on the decision in step 1, apply the ProxyPort or FullPort stereotype, or do nothing if the decision is
not to use either one.

e. If the proxy stereotype is applied in step 3d, and there is a single connector from the port to a part, the
BindingConnector may be applied to the connector.

If the flow specification is not referenced by other model elements, delete it.

4. If the original flow port is atomic:
a. On the block created in step 2, specify a flow property typed by the same type as the flow port and with the

same direction as the original flow port.

b. Do steps b to d from step 3 about non-atomic flow ports.

C.5 Transitioning SysML 1.3 Viewpoint and View to SysML 1.4
(informative)

Refactoring a view model build from the SysML 1.3 defined viewpoint, view, conforms, and the UML package
import mechanism could be performed as follows:

• Conform

◦ Replace v1.3 Conform with v1.4 Conform. The conform target in 1.3 becomes the general classifier in 1.4.

• View

◦ Replace v1.3 View package with 1.4 View class

• Viewpoint

◦ For each Stakeholder string, create a stakeholder with the string as the name

◦ Update the stakeholder property on the new viewpoint with the created stakeholder

◦ For each method string of the 1.3 viewpoint, create the operation «create» View() and append the string to
the body of a comment that annotates the operation.

• Element and package import

◦ Replace each package and element import with an expose relationship.

220 OMG Systems Modeling Language, v1.7

C.6 Transitioning SysML 1.3 Units and QuantityKinds to SysML 1.4
(informative)

Changing units and quantity kinds from SysML 1.3 to SysML 1.4 can be accomplished as follows, depending on the
kind of element being changed:

• An InstanceSpecification stereotyped by SysML 1.3 Unit:

◦ Unapply the SysML 1.3 Unit stereotype.

◦ Classify the instance specification by SysML::Libraries::UnitAndQuantityKind::Unit.

◦ Set the values of SysML 1.4 Unit properties (symbol, description, definitionURI) to the values of the Unit
stereotype properties of the same name (symbol, description, definitionURI).

• An InstanceSpecification stereotyped by SysML 1.3 QuantityKind:

◦ Unapply the SysML 1.3 QuantityKind stereotype.

◦ Classifying the instance specification by SysML::Libraries::UnitAndQuantityKind::QuantityKind.

◦ Set the values of SysML 1.4 QuantityKind properties (symbol, description, definitionURI) to the values of
the QuantityKind stereotype properties of the same name (symbol, description, definitionURI).

• An InstanceSpecification classified by SysML 1.3 QUDV::Unit or one of its specializations:

◦ If the instance specification has no value for the SysML 1.3 QUDV::Unit::name property, no further changes
are needed.

◦ If the instance specification has a value for the SysML 1.3 QUDV::Unit::name property and the instance
specification has no name, then set its name to the value of the SysML 1.3 QUDV::Unit::name property.

◦ If the instance specification has a value for the SysML 1.3 QUDV::Unit::name property and the instance
specification has a name, then choose whether to keep the same name for the instance specification or use the
value of the SysML 1.3 QUDV::Unit::name property.

• An InstanceSpecification classified SysML 1.3 QUDV::QuantityKind or one of its specializations:

◦ If the instance specification has no value for the SysML 1.3 property QUDV::QuantityKind::name, then no
further changes are needed.

◦ If the instance specification has a value for the SysML 1.3 property QUDV::QuantityKind::name and the
instance specification has no name, then set the name of the instance specification to the value of the SysML
1.3 QUDV::QuantityKind::name property.

◦ If the instance specification has a value for the SysML 1.3 property QUDV::QuantityKind::name and the
instance specification has a name, then choose whether to keep the same name for the instance specification
or use the value of the SysML 1.3 QUDV::QuantityKind::name property.

• An InstanceSpecification An InstanceSpecification classified by SysML 1.3 QUDV::Scale. Each SysML 1.3
QUDV::ScaleValueDefinition becomes an EnumerationLiteral such that:

◦ The numeric value of SysML 1.3 QUDV::ScaleValueDefinition::value becomes a specification of the
corresponding EnumerationLiteral.

◦ The string value of SysML 1.3 QUDV::ScaleValueDefinition::description becomes a comment on the
corresponding EnumerationLiteral.

• Blocks defined as specializations of SysML 1.3 QUDV::Unit do not require changes in SysML 1.4.

• Blocks defined as specializations of SysML 1.3 QUDV::QuantityKind do not require changes in SysML 1.4
except for the following:

◦ Blocks defined specializations of QUDV::SpecializedQuantityKind in SysML 1.3 become corresponding
Blocks defined as specializations of QUDV::QuantityKind in SysML 1.4.

◦ Usages of SysML 1.3 QUDV::SpecializedQuantityKind::general property become corresponding usages of
QUDV::QuantityKind::general in SysML 1.4.

OMG Systems Modeling Language, v1.7 221

C.7 Transitioning SysML 1.5 conjugated port typed by InterfaceBlock
to SysML 1.6 conjugated InterfaceBlock (informative)

Here are the migration rules from former versions of SysML in pseudo-code, they can be easily automated:

For each port with isConjugated=true
do {

assume t1 is the type the port
if t1 is a kind of InterfaceBlock then
{

if t1.getConjugated() return an empty result then
{

create a new InterfaceBlock t2 with the name of t1
prepended by a tilde symbol (~)

For each feature of t1
do {

create the exact same feature f' in t2
if f' has the FlowProperty stereotype applied
{

if the direction of f' is "in" then
set f' direction to "out"

else if direction of f' is "out" then
set f' direction to "in"

else do nothing
}
else if f' has the DirectedFeature stereotype applied
{

if the direction of f' is "provided" then
set f' direction to "required"

else if direction of f' is "required" then
set f' direction to "provided"

else do nothing
}
else

{
apply the DirectedFeature stereotype to f'
set f' direction to "required"

}
}

For each owned rule r of t1
do {

create the exact same owned rule r' in t2
}
create a dependency from t2 to t1 with the Conjugation stereotype applied

}
set this port type to t2
set this port isConjugated to false

}
}

222 OMG Systems Modeling Language, v1.7

Annex D: Sample Problem
(Informative)

D.1 Purpose

The purpose of this annex is to illustrate how the nominal usage of SysML model can support the specification,
analysis, and design of a system. This focuses on using the basic features of the language in building a system
model, and then rendering the model as SysML diagrams.

While this annex focuses on diagrams, the reader should remember that these diagrams are rendered from an
integrated model using tooling available at the time this specification was published. No post-processing has been
applied to these diagrams; they appear just as they are represented in the modeling tool. This was done to streamline
the generation and maintenance of this appendix. Effort has been made to suppress tool-specific graphic artifacts on
these diagrams, but some such artifacts may be unavoidable.

D.2 Scope

The scope of this example is a single SysML system model that can be used to render at least one diagram of each
diagram type. The intent is to model simplified fragments of the problem to illustrate how a model can be
constructed, and to demonstrate some of the possible inter-relationships among the model elements. The sample
problem is not intended to exercise all of the features of the language. The reader should refer to the individual
clauses for more detailed features of the language. The diagrams rendered for representing a particular aspect of the
model, and the ordering of the diagrams are intended to be representative of applying a nominal systems engineering
process, but is not intended to endorse any specific process or methodology.

D.3 Problem Summary

The sample problem describes the use of SysML as it applies to the development of an automobile, in particular a
Hybrid gas/electric powered Sport Utility Vehicle (SUV). This problem is interesting in that it has inherently
conflicting requirements, viz. desire for fuel efficiency, but also desire for large cargo carrying capacity and off-road
capability. Technical accuracy and the feasibility of the actual solution proposed were not high priorities. This
sample problem focuses on design decisions surrounding the power subsystem of the hybrid SUV; the requirements,
performance analyses, structure, and behavior.

This annex is structured to show each diagram in the context of how it might be used on such an example problem.
The first sub clause shows SysML diagrams as they might be used to establish the system context; establishing
system boundaries, and top level use cases. The next sub clause is provided to show how SysML diagrams can be
used to analyze top level system behavior, using sequence diagrams and state machine diagrams. The following sub
clause focuses on use of SysML diagrams for capturing and deriving requirements, using diagrams and tables. A sub
clause is provided to illustrate how SysML is used to depict system structure, including block hierarchy and part
relationships. The relationship of various system parameters, performance constraints, analyses, and timing
diagrams are illustrated in the next sub clause. A sub clause is then dedicated to illustrating definition and depiction
of interfaces and flows in a structural context. The final sub clause focuses on detailed behavior modeling,
functional and flow allocation.

D.4 Diagrams

D.4.1 Package Overview (Structure of the Sample Model)

D.4.1.1 Package Diagram - Applying the SysML Profile

As shown in Fig. D.1 the HSUVModel is a package that represents the user model. The SysML Profile is applied to
this package in order to include stereotypes from the profile. The HSUVModel also requires the use model libraries,
such as the SI Units Types model library. The model libraries are imported into the user model as indicated.

OMG Systems Modeling Language, v1.7 223

Establishing HSUV ModelModeling Domain[Package]pkg][

SI Definitions
«ModelLibrary»

SysML
«profile»

HSUV Model

«apply» {strict}

«import»

«apply»

{strict}

Figure D.1. Establishing the User Model by importing and applying SysML Profile & Model Library
(Package Diagram)

Fig. D.2 shows the specification of automotive units and valueTypes employed in this sample problem.

Automotive domain units of measureAutomotive Value Types[Package]pkg][

Automotive Value Types

Automotive Units

{quantityKind = Temperature,
symbol = "°F "}

°F

«unit»

{quantityKind = Acceleration}

g

«unit»

ft^3

«unit»

{quantityKind = Volume}

hp

«unit»

{quantityKind = Power}psi

«unit»

{quantityKind = Pressure}

{quantityKind = Distance}

ft

«unit»

mph

«unit»

{quantityKind = Velocity}

{quantityKind = Mass}

lb

«unit»

{quantityKind = Time}

sec

«unit»

SysML::Libraries::PrimitiveValueTypes::Real

«valueType»

unit = °F
«valueType»

Temperature

«valueType»

unit = psi
«valueType»

Pressure

«valueType»

unit = mph
«valueType»

Velocity

«valueType»

unit = g
«valueType»

Acceleration

«valueType»

unit = hp
«valueType»

Horsepower

«valueType»

unit = ft^3
«valueType»

Volume

«valueType»

unit = sec
«valueType»

Global Time

«valueType»

unit = lb
«valueType»

Weight

«valueType»

unit = ft
«valueType»

Distance

«valueType»

Figure D.2. Defining value Types and units to be used in the Sample Problem

D.4.1.2 Package Diagram - Showing Package Structure of the Model

The package diagram Fig. D.3 shows the structure of the model for this sample problem. Model elements are
contained in packages, and relationships between packages (or specific model elements) are shown on this diagram.
Note that the «view» models contain no model elements of their own, and that changes to the model in other
packages are automatically updated in the Operational and Performance Views.

224 OMG Systems Modeling Language, v1.7

Model Package OrganizationHSUV Model[Package]pkg][

HSUV Views

Hybrid SUV Verification and Validation Plan

«view»

Hybrid SUV Requirements

«view»

Hybrid SUV Functional View

«view»

Hybrid SUV Performance

«view»

HSUV Viewpoints

Requirements

«viewpoint»

VnV

«viewpoint»

Performance Viewpoint

«viewpoint»

Functional Viewpoint

«viewpoint»

HSUV Viewpoint Methods

VnV Query

«activity»

Performance Query

«activity»

Requirements Query

«activity»

vehicle mechanic : Maintainer
vehicle passenger : Passenger
vehicle driver : Driver

properties

driving conditions : Environment
vehicle cargo : Baggage
HSUV : Hybrid SUV

parts

Automotive Domain

«domain»

HSUV Requirements

HSUV SpecificationDeliver Power
Behavior

Automotive Value
Types

HSUV Interfaces

HSUV Analysis

HSUV StructureHSUV Behavior HSUV Use Cases

Performance

«requirement»

Figure D.3. Model Package Organization

D.4.2 Setting the Context (Boundaries and Use Cases)

D.4.2.1 Internal Block Diagram - Setting Context

The term “context diagram,” in Fig. D.4, refers to a user-defined usage of an internal block diagram, which depicts
some of the top-level entities in the overall enterprise and their relationships. The diagram usage enables the
modeler or methodologist to specify a unique usage of a SysML diagram type using the extension mechanism
described in Annex A, “Diagrams.” The entities are conceptual in nature during the initial phase of development, but
will be refined as part of the development process. The «system» stereotype is user defined, not specified in SysML,
but helps the modeler to identify the system of interest relative to its environment. Each model element depicted
may include a graphical icon to help convey its intended meaning. The spatial relationship of the entities on the
diagram sometimes conveys understanding as well, although this is not specifically captured in the semantics. Also,
a background such as a map can be included to provide additional context. The associations among the classes may
represent abstract conceptual relationships among the entities, which would be refined in subsequent diagrams. Note
how the relationships in this diagram are also reflected in the Automotive Domain Model Block Definition
Diagram, Fig. D.15, which is rendered from the same underlying model.

OMG Systems Modeling Language, v1.7 225

Establishing the Context of the Hybrid SUV SystemAutomotive Domain[Block]ibd][
«ContextDiagram»

Diagram name Establishing the Context of the Hybrid SUV System

Author janderson

Creation date 3/4/20 1:43 AM

Modification date 3/15/22 8:39 AM

driving conditions : Environment

object : External Object [1..*]

road : Road [1..*]

weather : Weather

vehicle passenger : Passe...

vehicle mechanic : Maintai...

vehicle cargo : Bagga...

HSUV : Hybrid SUV
«system»

vehicle driver : Dri...

x2:

x1:

x3:

x5:

x4:

Figure D.4. Establishing the Context of the Hybrid SUV System

D.4.2.2 Use Case Diagram - Top Level Use Cases

The use case diagram “Establishing Top Level Uses Cases” in Fig. D.5 depicts usage in the Automotive Domain.
The subject (Hybrid SUV) and the actors (Driver, Registered Owner, Maintainer, Insurance Company, Department
of Motor Vehicles) interact to realize the use case.

Establishing Top Level Use CasesHSUV Use Cases[Package]uc][

Hybrid SUV

Maintain the vehicle

Drive the Vehicle

Insure the vehicle

Register the vehicle
Department of Motor Vehicle

InsuranceCompany

RegisteredOwner

Maintainer

Driver

Figure D.5. Establishing Top Level Use Cases

226 OMG Systems Modeling Language, v1.7

D.4.2.3 Use Case Diagram - Optional Use Cases

Goal-level Use Cases associated with “Operate the Vehicle” are depicted in the following diagram. These use cases
help flesh out the specific kind of goals associated with driving and parking the vehicle. Maintenance, registration,
and insurance of the vehicle would be covered under a separate set of goal-oriented use cases.

Establishing Operational Use CasesHSUV Use Cases[Package]uc][

Hybrid SUV

Accelerate

Brake

Steer

Drive the Vehicle Start the Vehicle

Park

Start Vehicle Black Box

«interaction»

Drive Black Box

«interaction»

Driver

«include»

«include»

«include»

«extend»

«include»

«refine»

«refine»

Figure D.6. Establishing Operational Use Cases

D.4.3 Elaborting Behavior (Sequence and State Machine Diagrams)

D.4.3.1 Sequence Diagram - Drive Black Box

Fig. D.7 shows the interactions between driver and vehicle that are necessary for the “Drive the Vehicle” Use Case.
This diagram represents the “Drive Black Box” interaction, with is owned by the Automotive Domain block. “Black
Box” for the purpose of this example, refers to how the subject system (Hybrid SUV) interacts only with outside
elements, without revealing any interior detail.

The conditions for each alternative in the alt controlSpeed sub clause are expressed in OCL, and relate to the states
of the Hybrid SUV block, as shown in Fig. D.8.

OMG Systems Modeling Language, v1.7 227

Elaborating Black Box Behavior for the "Drive Vehicle" Use CaseDrive Black Box[Interaction]sd][

vehicle driver : Driver HSUV : Hybrid SUV

par

[]

Steer

ref

[]
alt

[Self.oclIsInState(Braking)]

[Self.oclIsInState(Accelerating/Cuising)]

[Self.oclIsInState(Idle)]

Idle

ref

Brake

ref

Acceleration / Cruise

ref

Start Vehicle Black Box

ref

Park / Shutdown Vehicle

ref

Figure D.7. Elaborating Black Box Behavior for the "Drive Vehicle" Use Case

D.4.3.2 State Machine Diagram - HSUV Operational States

Fig. D.8 depicts the operational states of the HSUV block, via a State Machine named “HSUV Operational States.”
Note that this state machine was developed in conjunction with the DriveBlackBox interaction in Fig. D.7. Also note
that this state machine refines the requirement “Power Source Managment,” which will be elaborated in the
requirements sub clause of this sample problem. This diagram expresses only the nominal states. Exception states,
like “accelerator Failure,” are not expressed on this diagram.

228 OMG Systems Modeling Language, v1.7

HSUV Operational StatesHSUV Operational States[State Machine]stm][

Operate

Idle

Accelerating /
Cruising

Braking

Off

Refines
«requirement»Power
Source Management

Nominal states only

«comment»

releaseBrake

engageBrake

accelerate stopped

keyOff

shut...start

Figure D.8. HSUV Operational States

D.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

Fig. D.9 shows a “black box” interaction, but references “Start Vehicle White Box” (Fig. D.10), which will
decompose the lifelines within the context of the HybridSUV block.

The lifelines on Fig. D.10 (“whitebox” sequence diagram) need to come from the Power System decomposition.
This now begins to consider parts contained in the HybridSUV block.

Start Vehicle Black BoxStart Vehicle Black Box[Interaction]sd][

vehicle driver : Driver HSUV : Hybrid SUV

Start Vehicle White Box

refStartVehicle()1:

Figure D.9. Start Vehicle Black Box

OMG Systems Modeling Language, v1.7 229

Start Vehicle White BoxStart Vehicle White Box[Interaction]sd][

epc : Electrical Power Controllerpcu : Power Control Unit

Ready3:

Enable()2:

StartVehicle()1:

Figure D.10. Start Vehicle White Box

D.4.4 Establishing Requirements (Requirements Diagrams and Tables)

D.4.4.1 Requirement Diagram - HSUV Requirement HIerarchy

The vehicle system specification contains many text based requirements. A few requirements are highlighted in Fig.
D.11, including the requirement for the vehicle to pass emissions standards, which is expanded for illustration
purposes.

Establishing HSUV Requirements Hierarchy (containment)HSUV Requirements[Package]req][

Text = "The vehicle shall meet Ultra-low
Emissions vehicle standards."

Id = "R1.2.1"

Emissions
«requirement»

HSUV Specification

Passenger Capacity
«requirement»

Off-Road Capability
«requirement»

Eco-Friendliness
«requirement»

Cargo Capacity
«requirement»

Fuel Economy
«requirement»

Fuel Capacity
«requirement»

Performance
«requirement»

Acceleration
«requirement»

Braking
«requirement»

Qualification
«requirement»

Safety Test
«requirement»

Ergonomics
«requirement»

Capacity
«requirement»

Figure D.11. Establishing HSUV Requirements Hierarchy (containment)

D.4.4.2 Requirement Diagram - Derived Requirements

Fig. D.12 shows a set of requirements derived from the lowest tier requirements in the HSUV specification. Derived
requirements, for the purpose of this example, express the concepts of requirements in the HSUV Specification in a
manner that specifically relates them to the HSUV system. Various other model elements may be necessary to help
develop a derived requirement, and these model element may be related by a «refinedBy» relationship. Note how
Power Source Management is “RefinedBy” the HSUV Operational States model (Fig. D.8). Note also that rationale

230 OMG Systems Modeling Language, v1.7

can be attached to the «deriveReqt» relationship. In this case, rationale is provided by a referenced document
“Hybrid Design Guidance.”

Establishing Derived Requirements and Rationale from Lowest Tier of Requirements HierarchyHSUV Requirements[Package]req][

Power Source Managem...
«requirement»

Regenerative Braking
«requirement»

Off-Road Capability
«requirement»

Cargo Capacity
«requirement»

Fuel Economy
«requirement»

Fuel Capacity
«requirement»

Acceleration
«requirement»

Range
«requirement»

Power
«requirement»

Braking
«requirement»

Power needed for acceleration, off-road performance &
cargo capacity conflicts with fuel economy

«problem»

Power delivery must happen by
coordinated control of gas and electric
motors. See "Hybrid Design Guidance"

«rationale»

RefinedBy
HSUV Operational States

«deriveReqt» «deriveReqt»

«deriveReqt» «deriveReqt» «deriveReqt»
«deriveReqt»

«deriveReqt» «deriveReqt»
«deriveReqt»

Figure D.12. Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchy

D.4.4.3 Requirement Diagram - Acceleration Requirement Relationships

Section D.4.4.2 focuses on the Acceleration requirement, and relates it to other requirements and model elements.
The “refine” relation, introduced in Fig. D.12, shows how the Acceleration requirement is refined by a similarly
named use case. The Power requirement is satisfied by the part property pwr-ss:Power Subsystem, and a Max
Acceleration test case verifies the Acceleration requirement.

Acceleration Requirement RelationshipsHSUV Requirements[Package]req][

...
pwr-ss : Power Subsystem

parts

Hybrid SUV

«system»

Max Acceleration

«testCase»

Accelerate
Acceleration

«requirement»

Power

«requirement»«satisfy»

«refine»

«deriveReqt» «verify»

Figure D.13. Acceleration Requirement Relationships

D.4.4.4 Table - Requirements Table

SysML allows the representation of relationships using tables without constraining the exact layout of such a table.

Section D.4.4.4 provides two examples showing requirement containment (decomposition), and requirements
derivation in tabular form. This is a more compact representation than the requirements diagrams shown previously.

OMG Systems Modeling Language, v1.7 231

Figure D.14. Requirements Relationships Expressed in Tabular Format

Please Note: Tables are not a normative part of the SysML specification. So all tables are for illustration and
reference only.

D.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block
Diagrams)

D.4.5.1 Block Definition Diagram - Automotive Domain

Fig. D.15 provides definition for the concepts previously shown in the context diagram. Note that the interactions
Drive Black Box and Start Vehicle Black Box (described in, Fig. D.9 and Fig. D.10) are depicted as owned by the
AutomotiveDomain block.

Defining the Automotive DomainHSUV Structure[Package]bdd][

...
«interaction»Start Vehicle Black Box
«interaction»Drive Black Box

owned behaviors

Automotive Domain

«domain»

Baggage

«external»

Weather

«external»

Environment

«external»

External Object

«external»

Hybrid SUV

«system»

Road

«external»

PassengerDriver Maintainer

vehicle driver driving conditionsvehicle mechanic

road1..*weather

vehicle cargovehicle passenger HSUV

object1..*

Figure D.15. Defining the Automotive Domain

D.4.5.2 Block Definition Diagram - Hybrid SUV

Fig. D.16 defines components of the Hybrid SUV block. Note that the Brake Pedal and Wheel Hub Assembly are
used by, but not contained in, the Power Subsystem block.

232 OMG Systems Modeling Language, v1.7

Defining Structure of Hybrid SUV SystemHSUV Structure[Package]bdd][

Lighting Subsystem
«block»

Chassis Subsystem
«block»

Interior Subsystem
«block»

Power Subsystem
«block»

Hybrid SUV
«system»

Brake Pedal
«block»

Brake Subsystem
«block»

Wheel Hub
Assembly

«block»

Body Subsystem
«block»

«rationale»

2 wheel drive is the only way to get
acceptable fuel economy, even though it
limits off-road capability

2

chs-sspwr-ss lght-ssbrk-ss intr-ss

brkpdlbrkpdl 1

0..1

bdy-ss

4

Figure D.16. Defining Structure of Hybrid SUV System

D.4.5.3 Internal Block Diagram - Hybrid SUV

Fig. D.17 shows how the top level model elements in the above diagram are connected together in the Hybrid SUV
block.

Internal Structure of Hybrid SUVHybrid SUV[System]ibd][

lght-ss : Lighting Subsystemchs-ss : Chassis Subsystem

intr-ss : Interior Subsystem

pwr-ss : Power Subsystem

bdy-ss : Body Subsystem

brk-ss : Brake Subsystem

bdy-chs bdy-lght

pwr-brk

brk-lght

bdy-intr

intr-lght

pwr-chs

chs-brk

Figure D.17. Internal Structure of Hybrid SUV

D.4.5.4 Block Definition Diagram - Power Subsystem

Fig. D.18 defines the next level of decomposition, namely the components of the Power Subsystem block. Note how
the use of white diamond (shared aggregation) on Front Wheel, Brake Pedal, and others denotes the same “use-not-
composition” kind of relationship previously shown in Fig. D.16

OMG Systems Modeling Language, v1.7 233

Defining Structure of Power SubsystemHSUV Structure[Package]bdd][

Internal Combustion Engine
«block»

Electrical Power Controller
«block»

level : volume[gallon (US)]
capacity : volume[gallon (US)]

values

out fout : Fluid
in fin : Fluid

flow properties

Tank
«block»

Electric Motor Generator
«block»

Wheel Hub Assembly
«block»

fuelFlowRate : gpm
values

Fuel Tank Assembly
«block»

Power Control Unit
«block»

Power Subsystem
«block»

fuelPressure : psi
values

Fuel Regulator
«block»

Transmission
«block»

Battery Pack
«block»

Differential
«block»

Brake Pedal
«block»

Accelerator
«block»

Fuel Injector
«block»

Front Wheel
«block»

Fuel Pump
«block»

Fuel Rail
«block»

acl dif

trsm

2

brkpdl 1

0..1

1lfw

ft

rfw 1bp

emg

epc

ice

fp frefrafi 4

ft

pcu

shell

Figure D.18. Defining Structure of Power Subsystem

D.4.5.5 Internal Block Diagram for the "Power Subsystem"

Fig. D.19 shows how the parts of the Power Subsystem block, as defined in the diagram above, are used. It shows
connectors between parts, ports, and connectors with item flows. The dashed borders on Front Wheel and Brake
Pedal denote the “use-not-composition” relationship depicted elsewhere in Fig. D.16 and Fig. D.18.

Internal Structure of the Power SubsystemPower Subsystem[Block]ibd][

ice : Internal Combustion Engine

fi : Fuel Injector [4]

pcu : Power Control Unit

epc : Electrical Power Controller emg : Electric Motor Generator

ft : Fuel Tank Assembly

trsm : Transmission

brkpdl : Brake Pedal [1]

rfw : Front Wheel [1]

lfw : Front Wheel [1]

dif : Differential

bp : Battery Pack

acl : Accelerator

rtp : Tire Patch

ltp : Tire Patch
p1 : ~F1

p2 : F2

p1 : T1

ctrl : ~ICE ctrl IF

epc : EPC ctrl IF

trsm : TRSM ctrl IF

ice : ICE ctrl IF

p1 : I2
ctrl : ~EPC ctrl IF

p2 : T2

p1 : I2

p1 : F2

ctrl : ~TRSM ctrl IF

p3 : T2

p2 : ~T1

p1 : T2

p2 : Tire Patch

p1 : T2

p1 : T2

p2 : Tire Patch

pR : T2

p1 : T2

pL : T2

fuelSupply : Fuel
fuelReturn : Fuel fuel delivery

c1

c2

i_motive : Elec Poweri_regen : Elec Power
epc-emg

left half shaft

c3

regen : Torque

drive : Torque

bkp-pcu

g1 : Torque

bp-epc

acl-pcu

right half shaft

fdist

Figure D.19. Internal Structure of the Power Subsystem

Fig. D.20 provides definition of the block that types the ports linked by connectors c1, c2 and c3 in Fig. D.19. Note
the use of conjugate (~) interface blocks, the composition of interface blocks, and the use of signals & value types
for flow properties.

234 OMG Systems Modeling Language, v1.7

Pwr Sys Logical Interfaces PCU Port Type Definitions[Package]bdd][

maf : volume flow rate(cubic metre per second)
egt : celsiusTemperature
iat : celsiusTemperature
knockSensor : Boolean
coolant temp : celsiusTemperature
rpm : revolutions per minute

attributes

ice status
«signal»

attributes

ign timing : crankshaft degrees
valve timing : crankshaft degrees
injector timing : crankshaft degrees
injector rate : Percentage
throttle position : Percentage

ice command
«signal»

selected mode : mode
oil temp : celsiusTemperature

attributes

trsm status
«signal»

current : rms current[ampere]
temp : celsiusTemperature
rpm : revolutions per minute

attributes

motor status
«signal»

out drive : motor command
flow properties

EPC cmd IF
«InterfaceBlock»

regen brake : Percentage
accel : Percentage

attributes

motor command
«signal»

regen brake
mode command : mode
gear command : gear

attributes

trsm command
«signal»

out ts : trsm status
flow properties

{original = TRSM data IF}

~TRSM data IF
«~InterfaceBlock»

in tc : trsm command
flow properties

{original = TRSM cmd IF}

~TRSM cmd IF
«~InterfaceBlock»

in sc : motor command
flow properties

~EPC cmd IF
«~InterfaceBlock»

{original = EPC cmd IF}

out tc : trsm command
flow properties

TRSM cmd IF
«interfaceBlock»

low
drive
reverse
park
enumeration literals

gear
«valueType»

out rpm : motor status
flow properties

{original = EPC data IF}

~EPC data IF
«~InterfaceBlock»

{original = TRSM ctrl IF}

~TRSM ctrl IF
«~InterfaceBlock»

out is : ice status
flow properties

{original = ICE data IF}

~ICE data IF
«~InterfaceBlock»

in ic : ice command
flow properties

{original = ICE cmd IF}

~ICE cmd IF
«~InterfaceBlock»

out ic : ice command
flow properties

ICE cmd IF
«interfaceBlock»

{original = EPC ctrl IF}

~EPC ctrl IF
«~InterfaceBlock»

in ms : motor status
flow properties

EPC data IF
«InterfaceBlock»

{original = ICE ctrl IF}

~ICE ctrl IF
«~InterfaceBlock»

mountain
sport
touring
enumeration literals

mode
«valueType»

in ts : trsm status
flow properties

TRSM data IF
«interfaceBlock»

ICE ctrl IF
«InterfaceBlock»

EPC ctrl IF
«InterfaceBlock»

TRSM ctrl IF
«interfaceBlock»

in is : ice status
flow properties

ICE data IF
«interfaceBlock»

«proxy»
cmd

«proxy»
data

«proxy»
cmd

«proxy»
data

«proxy»
cmd

«proxy»
data

«proxy»
cmd

«proxy»
data

«proxy»
cmd

«proxy»
data

«proxy»
data

«proxy»
cmd

Figure D.20. PCU Port Type Definitions

D.4.6 Defining Ports and Flows

D.4.6.1 Block Definition Diagram - ICE Flow Properties

For purpose of example, the ports, flows, and related point-to-point connectors in Fig. D.19 are being refined into a
common bus architecture. For this example, ports with flow properties have been used to model the bus architecture.
Fig. D.21 is an incomplete first step in the refinement of this bus architecture, as it begins to specify the flow
properties for Internal Combustion Engine, the Transmission, and the Electrical Power Controller.

Note that the table provided is not a SysML diagram, but is a quite useful list of CAN Message interface
specifications depicting various messages that may be used on the CAN bus.

OMG Systems Modeling Language, v1.7 235

end of frame : Subframe
ack : Subframe
cyclic redundancy check : Subframe
data : Subframe
control : Subframe
remote transmission request : Subframe
id : Subframe
start of frame : Subframe

parts

CAN Frame
«block»

inout can_msg : CAN Message
flow properties

allocatedFrom =
 EPC ctrl IF
 ICE ctrl IF
 TRSM ctrl IF

CAN IF
«interfaceBlock»

CAN Message
«block»

CAN spec - Application,
Transport, and Physical layers
Physical layer: ISO 11898
Automotive implementation: SAE
J2284

«comment»

Defining Port Types for the CANBusCAN Message Library[Package]bdd][

Figure D.21. Initially Port Types with Flow Properties for the CANBus

Please Note: Tables are not a normative part of the SysML specification. So all tables are for illustration and
reference only.

D.4.6.2 Internal Block Diagram - CANbus

Fig. D.22 continues the refinement of this Controller Area Network (CAN) bus architecture using ports. The explicit
structural allocation between the original connectors of Fig. D.19 and this new bus architecture is shown in Fig.
D.39.

Consolidating Connectors into the CAN BusPower Subsystem[Block]ibd][

out o_msg : CAN Message
in i_msg : CAN Message

:flow properties

can : CAN Bus

pcu : Power Control Unit

ice : Internal Combustion Engineepc : Electrical Power Controller trsm : Transmission

pcu_can : ~CAN IF

ice_can : CAN IFepc_can : CAN IF trsm_can : CAN IF

Figure D.22. Consolidating Connectors into the CAN Bus

D.4.6.3 Block Definition Diagram - Fuel Flow Properties

The ports on the Fuel Tank Assembly and Internal Combustion Engine (as shown in Fig. D.19) are defined in Fig.
D.23.

236 OMG Systems Modeling Language, v1.7

Elaborating Definition of Fuel FlowHSUV Structure[Package]bdd][

vscsty : kinematic viscosity [pascal second kilogram per cubic metre] = 0.006
values

Petroleum
«block»

fVolume : volume[litre]
fDensity : density[kilogram per cubic metre]
fPressure : pressure[pascal]

values

Fluid
«block»

inout ice_can : CAN IF
inout p2 : F2
out p1 : T1
inout ctrl : ~ICE ctrl IF

proxy ports

ft : Fuel Tank Assembly
references

Internal Combustion Engine
«block»

in p1.2 : ~F1
out p1.1 : F1

proxy ports

out fOut : Fluid
in fIn : Fluid

flow properties

F2
«interfaceBlock»

inout p1 : F2
proxy ports

fuelFlowRate : gpm
values

Fuel Tank Assembly
«block»

sn : ID
values

fuelFlow : FuelFlow
constraints

Power Subsystem
«block»

out fOut : Fluid
flow properties

F1
«interfaceBlock»

Fuel
«block»

«proxy»
p2 : F2«proxy»

p1 : F2

ft
ice

Figure D.23. Elaborating Definition of Fuel Flow

D.4.6.4 Parametric Diagram - Fuel Flow

Fig. D.24 is a parametric diagram showing how fuel flow rate is related to FuelDemand and FuelPressure value
properties.

Defining Fuel Flow ConstraintsPower Subsystem[Block]par][

{flowrate=press/(4*injectorDemand)}
fuelFlow : FuelFlow

«constraint»

ice.fre.fuelPressure : psi

ice.fi.fuelDemand : gpm

ft.fuelFlowRate : gpm injectorDemand : gpm

flowrate : gpm press : psi

Figure D.24. Defining Fuel Flow Constraints

D.4.6.5 Internal Block Diagram - Fuel Distribution

Fig. D.25 shows how the connectors fuelDelivery and fdist on Fig. D.19 have been expanded to include design
detail. The fuel delivery connector is allocated to two connectors, one carrying fuel supply and the other carrying
fuel return. The fdist connector inside the Internal Combustion Engine block has been allocated into the fuel
regulator and fuel rail parts. These more detailed design elements are related to the original connectors using the
allocation relationship. Fuel in the tank portion of the Fuel Tank Assembly is drawn by the Fuel Pump for use in the
engine, and is refreshed, to some degree, by fuel returning to the Fuel Tank Assembly.

OMG Systems Modeling Language, v1.7 237

Detailed Internal Structure of Fuel Delivery SubsystemPower Subsystem[Block]ibd][

ice : Internal Combustion Engine

fra : Fuel Rail
fre : Fuel Regulator

fi4 : Fuel Injector

fi3 : Fuel Injector

fi2 : Fuel Injector

fi1 : Fuel Injector

ft : Fuel Tank Assembly

level : volume[gallon (US)]
capacity : volume[gallon (US)]

:values

shell : Tank
fp : Fuel Pump

allocatedElements
«connector» fuel delivery

allocatedElements
«connector» fuel delivery

allocatedElements
«connector» fdist

allocatedElements
«connector» fdist

allocatedElements
«connector» fdist

allocatedElements
«connector» fdist

allocatedElements
«connector» fdist

p2 : F1p1 : F1 p3 : F1

p5 : ~F1

p4 : F1

p3 : ~F1 p2 : F1

p1 : F1

p1 : ~F1

p1 : ~F1

p1 : ~F1

p1 : ~F1

p1.1 : F1p1.2 : ~F1

p2 : F2

p1 : F1p2 : ~F1
p1.1 : F1

p1.2 : ~F1

p1 : F2

Figure D.25. Detailed Internal Structure of Fuel Delivery Subsystem

D.4.7 Analyze Perfomance (Constraint Diagrams, Timing Diagrams, Views

D.4.7.1 Block Definition Diagram - Analysis Context

Fig. D.26 defines the various model elements that will be used to conduct analysis in this example. It depicts each of
the constraint blocks/equations that will be used for the analysis, and key relationships between them. The types of
the constraint parameters have defaulted to Real, but will need to be updated to the actual value types of the
properties to which they are bound.

238 OMG Systems Modeling Language, v1.7

Defining Analyses for Hybrid SUV Engineering DevelopmentHSUV Analysis[Package]bdd][

vehicle mechanic : Maintainer
vehicle passenger : Passenger
vehicle driver : Driver

properties

driving conditions : Environment
vehicle cargo : Baggage
HSUV : Hybrid SUV

parts

Automotive Domain

«block»
«domain»

parameters

incline : plane angle
ebpwr : power
acc : acceleration

RegenBrakeEfficiencyEquation
«constraint»

StraightLineVehicle Dynamics
«constraint»

whlpwr : power
vel : velocity
n_ice : power efficiency
n_em : power efficiency
n_eg : power efficiency
mpg : mpg
ebpwr : power
acc : acceleration

parameters

FuelEfficiencyEquation
«constraint»

vc : volume
v3 : volume
v2 : volume
v1 : volume

parameters

{vc = sum(vi)}
constraints

vol
«constraint»

tw : force
Cf : dynamic friction fact...

parameters

RollingFrictionEquation
«constraint»

vdw : mass
tw : mass
psgrWt : mass
fw : mass
cgoWt : mass

parameters

TotalWeight
«constraint»

volume : volume
Cd : coefficent of drag

parameters

AeroDragEquation
«constraint»

volume : volume
psgrWt : mass
pcap : volume
cgoWt : mass

parameters

PayloadEquation
«constraint»

HSUV Structure

Max Acceleration
«testCase»

EconomyContext
«block»

UnitCostContext
«block»

CapacityContext
«block»

Acceleration
«requirement»

Global Time
«valueType»

rbwpl adrag

0..1

dt

1

0..1

1

ex

0..1

1

ad

cap

dynrdrag fe

1ad0..1

«verif...

1t

0..1

1ad 0..1

Figure D.26. Defining Analyses for Hybrid SUV Engineering Development

D.4.7.2 Package Diagram - Performance View Definition

Fig. D.27 shows the user-defined Performance Viewpoint, and the elements that populate the HSUV specific Hybrid
SUV Performance View. This view may contain a number of other views, as well as exposing specific
model elements or package contents.

OMG Systems Modeling Language, v1.7 239

Performance ViewHSUV Views[Package]pkg][

/stakeholder = Customer
purpose = "Highlight the performance of the system"
presentation = "BDD high-level stylesheet in slide format"
/method = Performance Query
language = "SysML"

Performance Viewpoint
«viewpoint»

Text = "The Hybrid SUV shall have the
braking, acceleration, and off-road
capability of a typical SUV, but have
dramatically better fuel economy.
"

Id = "2"

Performance
«requirement»

/concern =
Will the system perform adequately?
What are the system requirements?

«stakeholder»

Customer
«stakeholder»

/viewPoint = Performance Viewpoint
«view»

Hybrid SUV Performance
«view»

/viewPoint = Functional Viewpoint
«view»

Hybrid SUV Functional View
«view»

HSUV Analysis

Drive the Vehicle

...
zero60Time
quarterMileTime
fuelEconomy

values

Hybrid SUV
«system»

HSUV Behavior

Max Acceleration Analysis
FuelEfficiencyEquation

AccelerationEquation
Economy Equation

Unit Cost Equation

EconomyContext

UnitCostContext

«expose»

«expose»

«expose»

«expose»

hsuv functions

«conform»

«expose»

Figure D.27. Performance View

D.4.7.3 Package Diagram - Viewpoint Definition

Fig. D.28 shows the Requirements and VnV viewpoint definitions and their conforming views. The Customer
stakeholder is referenced by both viewpoints and both views.

Note that the value of the stakeholder property is an instance of the stereotype not the class to which the stereotype
is applied.

240 OMG Systems Modeling Language, v1.7

Defining Requirements and VnV viewpointsHSUV Views[Package]pkg][

/stakeholder = Customer
purpose = "Describe the system requirements"
presentation = "Requirements table report stylesheet in slide format"
/method = Requirements Query
language = "SysML"

«viewpoint»

Requirements
«viewpoint»

/stakeholder = Customer
purpose = "Describe the VnV"
presentation = "VnV report stylesheet in slide format"
/method = VnV Query
language = "SysML"

«viewpoint»

VnV
«viewpoint»

«view»

/viewPoint = VnV
/stakeholder = Customer

Hybrid SUV Verification and Validation Plan
«view»

/concern =
Will the system perform adequately?
What are the system requirements?

«stakeholder»

Customer
«stakeholder»

/viewPoint = Requirements
/stakeholder = Customer

«view»

Hybrid SUV Requirements
«view»

«conform»

«conform»

Figure D.28. Defining Requirements and VnV viewpoints

D.4.7.4 Package Diagram - View Definition

Fig. D.29 shows the Requirements and VnV views and the model elements they expose. Note that the expose
relationship relies on the viewpoint method to identify the entire set of elements that appear in the view.

Requirements and VnV views exposing model elementsHSUV Views[Package]pkg][

Id = "2"
Text = "The Hybrid SUV shall have the
braking, acceleration, and off-road capability
of a typical SUV, but have dramatically better
fuel economy.
"

Performance
«requirement»

Hybrid SUV Requirements VnV Trace
«view»

«view»

viewPoint = Requirements
stakeholder = Customer

Hybrid SUV Requirements
«view»

viewPoint = VnV
stakeholder = Customer

«view»

Hybrid SUV Verification and
Validation Plan

«view»

HSUV Requirements

+testDate : date
+verdict : VerdictKind
+testAuthorityName : String

attributes

EPA Fuel Economy Test
«testCase»

Drive the Vehicle

«expose»

«expose»

«expose»

+requirements test trace

«expose»

«expose»

+system requirements

Figure D.29. Requirements and VnV views exposing model elements

OMG Systems Modeling Language, v1.7 241

D.4.7.5 Package Diagram - View Hierarchy

Fig. D.30 shows the composition Hybrid SUV Verification and Validation Plan view and supporting views.

The Requirements and VnV views with supporting viewsHSUV Views[Package]pkg][

Hybrid SUV Functional View
«view»

Hybrid SUV Verification and Validation Plan
«view»

Hybrid SUV Requirements VnV Trace
«view»

Hybrid SUV Requirements Rationale
«view»

Hybrid SUV Requirements
«view»

Hybrid SUV Performance
«view»

Hybrid SUV Tests
«view»

performance model

hsuv functions functional model

requirements test tracesystem requirements

suv testssuv rationale

Figure D.30. The Requirements and VnV views with supporting views

D.4.7.6 Parametric Diagram - Measures of Effectiveness

Measure of Effectiveness is a user defined stereotype. Fig. D.31 shows how the overall cost effectiveness of the
HSUV will be evaluated. It shows the particular measures of effectiveness for one particular alternative for the
HSUV design, and can be reused to evaluate other alternatives. Value types for the moe value properties are not
shown on this diagram.

242 OMG Systems Modeling Language, v1.7

Measures of EffectivenessMeasures of Effectiveness[Block]par][

fuel economy : Economy Equati...
«constraint»

cargo space : vol
«constraint»

{CE = Sum(Wi*pi)}

costEffectivenessEvaluation :
MyObjectiveFunction

«constraint»
«objectiveFunction»

maximum acceleration : Max
Acceleration Analysis

«constraint»

costEffectiveness
«moe»

cargoCapacity
«moe»

unitCost
«moe»

quarterMileTime
«moe»

zero60Time
«moe»

fuelEconomy
«moe»

cost per unit : Unit
Cost Equation

«constraint»

f

vc

p1

p5

p3

p2

CE

p4

q

z

uc

Figure D.31. Measures of Effectiveness

D.4.7.7 Parametric Diagram - Economy

Since overall fuel economy is a key requirement on the HSUV design, this example applies significant detail in
assessing it. Fig. D.32 shows the constraint blocks and properties necessary to evaluate fuel economy. Value
types for the value properties are not shown on this diagram.

EconomyContextEconomyContext[Block]par][

dyn : StraightLineVehicle Dynamics
«constraint»

rb : RegenBrakeEfficiencyEquation
«constraint»

generatorEfficiency

incline

fe : FuelEfficiencyEquation
«constraint»

motorEfficiency

adrag : AeroDragEquation
«constraint»

rdrag : RollingFrictionEquation
«constraint»

ICEEfficiency

vehicleDryWeight

payloadCapacity

w : TotalWeight
«constraint»

pl : PayloadEquation
«constraint»

dt [1]

position

mpg

dtCd

incline v

tw

acc

Cf x

whlp...

acc

incline

ebp...

acc

vel

n_emn_eg

n_ice

mpg

whlp...

ebp...

Cdvolume

tw Cf

cgoWt

vdw

tw

psgrWt

fw

volume

psgrWt cgoWt

pcap

Figure D.32. EconomyContext

D.4.7.8 Parametric Diagram - Dynamics

The StraightLineVehicleDynamics constraint block from Fig. D.32 has been expanded in Fig. D.33. Each constraint
is identified using curly brackets {}. In addition, Rationale has been used to explain the meaning of each constraint
maintained.

OMG Systems Modeling Language, v1.7 243

Straight Line Vehicle DynamicsStraightLineVehicle Dynamics[Constraint Block]par][

{a=(550/32)*tp(hp)*dt*tw}
accEq : AccelerationEquation

«constraint»

{x(n+1)=x(n)+v(mph)*5280/3600*dt}
posEq : PositionEquation

«constraint»

{tp=whlpwr-(Cd*v)-(Cf*tw)}
pwrEq : PowerEquation

«constraint»

{v(n+1)=v(n)+a(g)*32*3600/5280*dt}
velEq : VelocityEquation

«constraint»

x(n+1)(ft)=x(n)+delta-x=x(n)+v*delta-t

«rationale»

v(n+1)(mph) =
v(n)+delta-v=v(n)=a*delta-t

«rationale»

tp(hp) = Wheel
power - drag-friction

«rationale»

a(g) = F/M =
P*t/m

«rationale»

whlpwr

incline

dt

x

Cf

tw

Cd

v

acc

tp

tw

a

dt

x

dt

v

i

whlpwr Cf

v

tp

Cd tw

a

dt

v

Figure D.33. Straight Line Vehicle Dynamics

The constraints and parameters in Fig. D.33 are detailed in Section D.4.7.8 in Block Definition Diagram format.

Note the use of valueTypes originally defined in Fig. D.2.

244 OMG Systems Modeling Language, v1.7

Defining Straight-Line Vehicle Dynamics Mathematical ConstraintsHSUV Analysis[Package]bdd][

x : Distance
v : Velocity
dt : Global Time

parameters

{x(n+1)=x(n)+v(mph)*5280/3600*dt}
constraints

PositionEquation
«constraint»

tw : Weight
tp : Horsepower
dt : Global Time
a : Acceleration

parameters

{a=(550/32)*tp(hp)*dt*tw}
constraints

AccelerationEquation
«constraint»

v : Velocity
dt : Global Time
a : Acceleration

parameters

{v(n+1)=v(n)+a(g)*32*3600/5280*dt}
constraints

VelocityEquation
«constraint»

whlpwr : Horsepower
v : Velocity
tw : Weight
tp : Horsepower
i : Real
Cf : Real
Cd : Real

parameters

{tp=whlpwr-(Cd*v)-(Cf*tw)}
constraints

PowerEquation
«constraint»

x : Distance
whlpwr : Horsepower
v : Velocity
tw : Weight
incline : Real
dt : Global Time
Cf : Real
Cd : Real
acc : Acceleration

parameters

StraightLineVehicle Dynamics
«constraint»

accEqpwr... posEq velEq

Figure D.34. Defining Straight-Line Vehicle Dynamics Mathematical Constraints

D.4.7.9 (Non-Normative) Non-SysML Diagram - 100hp Acceleration

Timing diagrams, while included in UML 2, are not directly supported by SysML. For illustration purposes,
however, the interaction shown in Fig. D.35 was generated based on the constraints and parameters of the
StraightLineVehicleDynamics constraintBlock, as described in the Fig. D.33. It assumes a constant 100hp at the
drive wheels, 4000lb gross vehicle weight, and constant values for Cd and Cf.

OMG Systems Modeling Language, v1.7 245

Figure D.35. 100 Wheel Horsepower

Please Note: This diagram are not a normative part of the SysML specification. So this diagram is for illustration
and reference only.

D.4.8 Defining, Decomposing, and Allocating Activities

246 OMG Systems Modeling Language, v1.7

D.4.8.1 Activity Diagram - Acceleration (top level)

Fig. D.36 shows the top level behavior of an activity representing acceleration of the HSUV. It is the intent of the
systems engineer in this example to allocate this behavior to parts of the PowerSubsystem. It is quickly found,
however, that the behavior as depicted cannot be allocated, and must be further decomposed.

Behavior Model for Accelerate FunctionBehavior Model for Accelerate Function[Activity]act][

{stream}

motive : Mech Power

«continuous»

a3 : Provide Power
a1 : Push

Accelerator

a2 : Measure
Vehicle

Conditions

«continuous»

i1 : Accel Position
{stream}

«continuous»

i2 : Veh Cond
{stream}

«continuous»

motive : Mech Power
{stream}

«continuous»

o1 : Accel Position
{stream}

«continuous»

o1 : Veh Cond
{stream}

Figure D.36. Behavior Model for Accelerate Function

D.4.8.2 Block Definition Diagram - Acceleration

Fig. D.37 defines a decomposition of the activities from the activity diagram in Fig. D.36.

Decomposition of Provide Power FunctionHSUV Behavior[Package]bdd][

Throttle
«block»

Mech Power
«block»

Provide Electric Power
«activity»

Control Electric Power
«activity»

Elec Power
«block»

Provide Gas Power
«activity»

Proportion Power
«activity»

Trans Mode Cmd
«block»

Provide Power
«activity»

Accel Position
«block»

Veh Cond
«block»

«adjunct»
motive

«adjunct»
a1

«adjunct»
a3

«adjunct»
e

«adjunct»
e

«adjunct»
g

«adjunct»
o1

«adjunct»
o3

«adjunct»
i1

«adjunct»
i2

«adjunct»
i1

«adjunct»
o1

«adjunct»
g

«adjunct»
a2

«adjunct»
a4

«adjunct»
o1

Figure D.37. Decomposition of Provide Power Function

D.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)

SysML allows the representation of relationships using tables without constraining the exact layout of such a table.

Section D.4.4.4 provides an example showing allocation relationships in tabular form. This is a more compact
representation than the requirements diagrams shown previously.

OMG Systems Modeling Language, v1.7 247

Detailed Behavior for Provide Power FunctionProvide Power[Activity]act][

{stream}
motive : Mech Power

«Continuous»

{stream}
i1 : Accel Position

«Continuous»

{stream}
i2 : Veh Cond
«Continuous» a3 : Control

Electric Power

a2 : Provide Gas
Power

a4 : Provide
Electric Power

a5 : Combine
Power

a1 : Proportion
Power

emg : Electric Motor Generator
«allocate»

pcu : Power Control Unit
«allocate»

trsm : Transmission
«allocate»

ice : Internal Combustion Engine
«allocate»

epc : Electrical Power Controller
«allocate»

keyOff allocatedTo
«connector»epc-emg

«continuous»
o1 : Elec Power

«continuous»
i1 : Throttle

o6

«continuous»
i1 : Throttle

«continuous»
o1 : Mech Power o4

«continuous»
o1 : Mech Power

«continuous»
i1 : Elec Power

o8

«continuous»
e : Mech Power

«continuous»
g : Mech Power

«continuous»
cmd : Trans Mode Cmd

«continuous»
motive : Mech Power

o9

«continuous»
i2 : Accel Position

«continuous»
i1 : Veh Cond

«continuous»
g : Throttle

«continuous»
e : Throttle

«continuous»
o3 : Trans Mode Cmd o7

o5

o3

o1

o2

Figure D.38. Detailed Behavior for Provide Power Function

Note hierarchical consistency with Fig. D.36

D.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation

SysML allows the representation of relationships using tables without constraining the exact layout of such a table.

Section D.4.4.4 provides two examples showing requirement containment (decomposition), and requirements
derivation in tabular form. This is a more compact representation than the requirements diagrams shown previously.

Flow Allocation to Power SubsystemPower Subsystem[Block]ibd][

ice : Internal Combustion Engine
allocatedFrom

«callBehaviorAction»a2

emg : Electric Motor Generator
allocatedFrom

«callBehaviorAction»a4

pcu : Power Control Unit
allocatedFrom

«callBehaviorAction»a1

epc : Electrical Power Controller
allocatedFrom

«callBehaviorAction»a3

allocatedFrom

«connector»c2
«connector»c3
«connector»c1

can : CAN Bus

allocatedElements

allocatedElements

allocatedElements

allocatedElements

allocatedElements

allocatedElements
«objectFlow»o6

ice_can : CAN IF

p1 : I2

pcu_can : ~CAN IF

p1 : I2

epc_can : CAN IF

i_motive : Elec Poweri_regen : Elec Power

epc-emg

Figure D.39. Flow Allocation to Power Subsystem

D.4.8.5 Table - Acceleration Allocation

SysML allows the representation of relationships using tables without constraining the exact layout of such a table.

Fig. D.40 is a simple table showing each end of the allocation relationships also shown in Fig. D.38 and Fig. D.39.
This table is a more compact representation than the diagrams shown previously.

Section D.4.4.4 also provided two examples showing requirement containment (decomposition), and requirements
derivation in tabular form.

248 OMG Systems Modeling Language, v1.7

Figure D.40. Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Subsystem
(Table)

Please Note: Tables are not a normative part of the SysML specification. So all tables are for illustration and
reference only.

D.4.8.6 Block Definition Diagram: Slot Values - EPA Fuel Economy Test

Fig. D.41 demonstrates the use of InstanceSpecifications to show a particular Hybrid SUV (VIN number provided as
a slot value) satisfying the EPA fuel economy test. Serial numbers of specific relevant parts are also indicated as slot
values.

OMG Systems Modeling Language, v1.7 249

SUV EPA Fuel Economy Test Test Results[Package]bdd][

VIN = "G12345"

TestVehicle1 : Hybrid SUV

sn = "p67890"

p : Power Subsystem

sn = "eid78901"

ice : Internal Combustion Engine

sn = "sn90123"

em : Electric Motor Generator

sn = "sn89012"

t : Transmission

sn = "c34567"

c : Chassis Subsystem

sn = "lt56789"

l : Lighting Subsystem

sn = "bk45678"

bk : Brake Subsystem

sn = "i23456"

i : Interior Subsystem

sn = "b12345"

b : Body Subsystem

verdict = pass
testDate = "2001.06.04"
testAuthorityName = "Arthur Dent"

testRun060401 : EPA Fuel Economy Test
«testCase»

Verifies
«requirement»Emissions

Satisfies
«requirement»Emissions

em-t

b-c

ice-t

b-i

c-bk bk-i

p-c p-bk

Figure D.41. Test Results

250 OMG Systems Modeling Language, v1.7

This page intentionally left blank.

OMG Systems Modeling Language, v1.7 251

252 OMG Systems Modeling Language, v1.7

Annex E: Non-normative Extensions
(informative)

E.1 Overview

This annex describes useful non-normative extensions to SysML that may be considered for standardization in
future versions of the language.

Non-normative extensions consist of stereotypes and model libraries and are organized by major diagram type,
consistent with how the main body of this International Standard is organized. Stereotypes in this sub clause are
specified using a tabular format, consistent with how non-normative stereotypes are specified in the UML 2
standard. Model libraries are specified using the guidelines provided in the Profiles & Model Libraries clause of this
International Standard.

E.2 Activity Diagram Extensions

E.2.1 Overview

Two non-normative extensions to activities are described for:

• Enhanced Functional Flow Block Diagrams.

• Streaming activities that accept inputs and/or provide outputs while they are active.

More information on these extensions and the standard SysML extensions is available at [Bock. C., “SysML and
UML 2.0 Support for Activity Modeling,” vol. 9, no. 2, pp. 160-186, Journal of the International Council of Systems
Engineering, 2006].

E.2.2 Stereotypes

Enhanced Functional Flow Block Diagrams (EFFBD) are a widely-used systems engineering diagram, also called a
behavior diagram. Most of its functionality is a constrained use of UML activities, as described below. This
extension does not address replication, resources, or kill branches. Kill branches can be translated to activities using
interruptible regions and join specifications.

Table E.1. Additional Stereotypes for EFFBDs

Stereotype Base class Properties Constraints Description

«effbd»

UML4SysML::
Activity (or subtype
of «nonStreaming»
below)

N/A See below.

Specifies that the
activity conforms to
the constraints
necessary for
EFFBD.

When the «effbd» stereotype is applied to an activity, its contents shall conform to the following constraints:

[1] (On Activity) Activities shall not have partitions.

[2] (On Activity) All decisions, merges, joins, and forks shall be well-nested. In particular, each decision and merge
shall be matched one-to-one, as are forks and joins, accounting for the output parameter sets acting as decisions, and
input parameters and control acting as a join.

[3] (On Action) All actions shall have exactly one control edge coming into them, and exactly one control edge
coming out,except when using parameter sets.

[4] (Execution constraint) All control shall be enabling.

[5] (On ControlFlow) All control flows into an action target a pin on the action that shall have isControl = true.

[6] (On ObjectNode) Ordering shall be first-in first out, ordering = FIFO.

OMG Systems Modeling Language, v1.7 253

[7] (On ObjectNode) Object flow shall be never used for control, isControlType = false, except for pins of
parameters in parameter sets.

[8] (On Parameter) Parameters shall take and produce no more than one item, multiplicity.upper =1.

[9] (On Parameter) Output parameters shall produce exactly one value, multiplicity.lower = 1. The «optional»
stereotype cannot be applied to parameters.

[10] (On Parameter) Parameters shall not be streaming or exception.

[11] (On ParameterSet) Parameter sets shall only apply to output parameters.

[12] (On ParameterSet) Parameter sets shall only apply to control. Parameters in parameter sets shall have pins with
is ControlType = true.

[13] (On ParameterSet) Parameter sets shall have exactly one parameter, and it shall not be shared with other
parameter sets.

[14] (On ParameterSet) If one output parameter is in a parameter set, then all output parameters of the behavior or
operation shall be in parameter sets.

[15] (On ActivityEdge) Edges shall not have time constraints.

[16] The following SysML stereotypes shall not be applied: «rate», «controlOperator», «noBuffer», «overwrite».

A second extension distinguishes activities based on whether they can accept inputs or provide outputs after they
start and before they finish (streaming), or only accept inputs when they start and provide outputs when they are
finished (nonstreaming). EFFBD activities are nonstreaming. Streaming activities are often terminated by other
activities, while nonstreaming activities usually terminate themselves.

Table E.2. Streaming Options for Activities

Stereotype Base Class Properties Constraints Description

«nonStreaming»
UML4SysML::
Activity

N/A
The activity has no
streaming
parameters.

Used for activities
that accept inputs
only when they start,
and provide outputs
only when they
finish.

«streaming»
UML4SysML::
Activity

N/A
The activity has at
least one streaming
parameter.

Used for activities
that can accept inputs
or provide outputs
after they start and
before they finish.

E.2.3 Stereotype Examples

Fig. E.1 shows an example activity diagram with the «effbd» stereotype applied, translated from [Long. J.,
“Relationships between common graphical representations in system engineering,” 2002]. The stereotype applies the
constraints specified in Stereotypes Stereotypes, for example, that the data outputs on all functions are required and
that queuing is FIF.

254 OMG Systems Modeling Language, v1.7

Example activity with «effbd» stereotype appliedact][
«effbd»

External Output

External Input

2.2 Multi-exit
Function

2.6 Output
Function

2.5 Function in
an Iterate

2.4 Function in
Multi-exit
Construct

2.1 Serial
Function

2.3 Function in
Concurrency

Item 4

Item 3

Item 2

Item 1

«optional»

{cc#2}

argument

{cc#1}

«optional»

«optional»

result

«optional»

result
[before third time]

[after third time]

Figure E.1. Example activity with «effbd» stereotype applied

Fig. E.2 shows an example activity diagram with the «streaming» and «nonStreaming» stereotypes applied, adapted
from [MathWorks, “Using Simulink,” 2004]. It is a numerical solution for the differential equation x'(t) = -2x(t) +
u(t). Item types are omitted for brevity. The «streaming» and «nonStreaming» stereotypes indicate which
subactivities take inputs and produce outputs while they are executing. They are simpler to use than the {stream}
notation on streaming inputs and outputs.

The example assumes a default of zero for the lower input to Add, and that the entire activity is executed with
clocked token flow, to ensure that actions with multiple inputs receive as many of them as possible before
proceeding. See the article referenced in Section E.2.1 Overview.

Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivitiesact][

Display
«streaming»

Multiply
«nonStreaming»

Integrate Over
Time

«streaming»
Add

«nonStreaming»
Generate u(t)

«streaming»

-2-2x

x'

u

Figure E.2. Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities

E.3 Requirements Diagram Extensions

E.3.1 Overview

This sub clause describes an example of a non-normative extension for a requirements profile.

E.3.2 Stereotypes

This non-normative extension includes stereotypes for a simplified requirements taxonomy that is intended to be
further adapted as required to support the particular needs of the application or organization. The requirements
categories in this example include functional, interface, performance, physical requirements, and design constraints
as shown in Table E.3. As shown in the table, each category is represented as a stereotype of the generic SysML
«requirement». The table also includes a brief description of the category. The table does not include any stereotype
properties or constraints, although they can be added as deemed appropriate for the application. For example, a
constraint that could be applied to a functional requirement is that only SysML activities and operations can satisfy
this category of requirement. Other examples of requirements categories may include operational, specialized
requirements for reliability and maintainability, store requirements, activation, deactivation, and a high level
category for stakeholder needs.

OMG Systems Modeling Language, v1.7 255

Some general guidance for applying a requirements profile is as follows:

• The categories should be adapted for the specific application or organization and reflected in the table. This
includes agreement on the categories and their associated descriptions, stereotype properties, and constraints.
Additional categories can be added by further subclassing the categories in the table below, or adding additional
categories at the pier level of these categories.

• The default requirement category should be the generic «requirement».

• Apply the more specialized requirement stereotype (functional, interface, performance, physical, design
constraint) as applicable and ensure consistency with the description, stereotype properties, and constraints.

• A specific text requirement can include the application of more than one requirement category, in which case,
each stereotype should be shown in guillemets.

Table E.3. Additional Requirement Stereotypes

Stereotype Base class Properties Constraints Description

«extendedRequirement»«requirement»

source: String risk:
RiskKind
verifyMethod:
VerifyMethodKind

N/A

A mix-in stereotype
that contains
generally useful
attributes for
requirements.

«functionalRequirement»«extendedrequirement»N/A
satisfied by an
operation or behavior

Requirement that
specifies an
operation or behavior
that a system, or part
of a system, must
perform.

«interfaceRequirement»«extendedrequirement»N/A

satisfied by a port,
connector, item flow,
and/ or constraint
property

Requirement that
specifies the ports for
connecting systems
and system parts and
the optionally may
include the item
flows across the
connector and/or
Interface constraints.

«performanceRequirement»«extendedrequirement»N/A
satisfied by a value
property

Requirement that
quantitatively
measures the extent
to which a system, or
a system part,
satisfies a required
capability or
condition.

«physicalRequirement»«extendedrequirement»N/A
satisfied by a
structural element.

Requirement that
specifies physical
characteristics and/or
physical constraints
of the system, or a
system part.

256 OMG Systems Modeling Language, v1.7

Stereotype Base class Properties Constraints Description

«designConstraint» «extendedrequirement»N/A
satisfied by a block
or part

Requirement that
specifies a constraint
on the
implementation of
the system or system
part, such as the
system must use a
commercial off the
shelf component.

Table E.4 provides the definition of the non-normative enumerations that are used to type properties of
“extendedRequirement” stereotype of Fig. E.3.

Table E.4. Requirement Property Enumeration Types

Enumeration Enumeration Literals Example Description

RiskKind High
High indicates an unacceptable level
of risk

RiskKind Medium
Medium indicates an acceptable
level of risk

RiskKind Low
Low indicates a minimal level of
risk or no risk

VerificationMethodKind Analysis

Analysis indicates that verification
will be performed by technical
evaluation using mathematical
representations, charts, graphs,
circuit diagrams, data reduction, or
representative data. Analysis also
includes the verification of
requirements under conditions,
which are simulated or modeled;
where the results are derived from
the analysis of the results produced
by the model.

VerificationMethodind Demonstration

Demonstration indicates that
verification will be performed by
operation, movement or adjustment
of the item under specific conditions
to perform the design functions
without recording of quantitative
data kind. Demonstration is typically
considered the least restrictive of the
verification types.

OMG Systems Modeling Language, v1.7 257

Enumeration Enumeration Literals Example Description

VerificationMethodKind Inspection

Inspection indicates that verification
will be performed by examination of
the item, reviewing descriptive
documentation, and comparing the
appropriate characteristics with a
predetermined standard to determine
conformance to requirements
without the use of special laboratory
equipment or procedures.

VerificationMethodKind Test

Test indicates that verification will
be performed through systematic
exercising of the applicable item
under appropriate conditions with
instrumentation to measure required
parameters and the collection,
analysis, and evaluation of
quantitative data to show that
measured parameters equal or
exceed specified requirements.

E.3.3 Stereotype Examples

Fig. E.3 shows the use of several subtypes of requirements extended to include the properties risk:RiskKind,
verifyMethod:VerficationMethodKind, and a text attribute source:String, used to capture the source of the
requirement.

258 OMG Systems Modeling Language, v1.7

Requirement Diagram Top-Level User RequirementExample extensions to Requirement[Package]req][

verifyMethod = Test

Text = "User shall obtain
fuel economy better than
that provided by 95% of
cars built in 2004."

source = "Marketing"
risk = High
Id = "UR1.3.1"

FuelEconomy
«performanceRequirement»

verifyMethod = Test

Text = "The car shall meet
2010 Kyoto Accord
emissions standards."

source = "Marketing"
risk = Medium
Id = "UR1.2.1"

Emissions
«performanceRequirement»

Ergonomics
«requirement»

verifyMethod = Test
Text = "Performance"
source = "Marketing"
risk = Medium
Id = "UR1.3"

Performance
«performanceRequirement»

verifyMethod = Analysis
Text = "Eco-Freindliness"
source = "Marketing"
risk = High
Id = "UR1.2"

Eco-Friendliness
«performanceRequirement»

verifyMethod = Test
Text = "Load"
source = "Marketing"
risk = Low
Id = "UR1.1"

Load
«functionalRequirement»

Braking
«requirement»

Power
«requirement»

Range
«requirement»

Acceleration
«requirement»

Cargo
«requirement»

FuelCapacity
«requirement»

Passengers
«requirement»

HybridSUV
«requirement»

Figure E.3. Example extensions to Requirement

E.4 Parametric Diagram Extension for Trade Studies

E.4.1 Overview

This sub clause describes a non-normative extension of a parametric diagram (refer to the Constraint Blocks clause)
to support trade studies and analysis, which are an essential aspect of any systems engineering effort. In particular, a
trade study is used to evaluate a set of alternatives based on a defined set of criteria. The criteria may have a
weighting to reflect their relative importance. An objective function (aka optimization or cost function) can be used
to represent the weighted criteria and determine the overall value of each alternative. The objective function can be
more complex than a simple linear weighting of the criteria and can include probability distribution functions and
utility functions associated with each criteria. However, for this example, we will assume the simpler case.

A measure of effectiveness (moe) represents a parameter whose value is critical for achieving the desired mission
cost effectiveness. It will also be assumed that the overall mission cost effectiveness can be determined by applying
an objective function to a set of criteria, each of which is represented by a measure of effectiveness.

This non-normative extension includes stereotypes for an objective function and a measure of effectiveness. The
objective function is a stereotype of a ConstraintBlock and the measure of effectiveness is a stereotype of a block
property.

E.4.2 Stereotypes

OMG Systems Modeling Language, v1.7 259

Table E.5. Stereotypes for Measure of Effectiveness

Stereotype Base class Properties Constraints Description

«moe»
UML4SysML::
Property

N/A N/A

A measure of
effectiveness (moe)
represents a
parameter whose
value is critical for
achieving the desired
mission cost
effectiveness.

«objectiveFunction» «ConstraintBlock» N/A N/A

An objective
function (aka
optimization or cost
function) is used to
determine the overall
value of an
alternative in terms
of weighted criteria
and/or moe’s.

E.4.3 Stereotye Examples

System Alternative JEffectiveness Modelpar][

{CE=sum(Wi*Pi)}
: MyObjectiveFunction

«objectiveFunction»

: CostModel

: SecurityModel

: AvailabilityModel

: ResponseTimeModel

sj.costEffectiveness
«moe»

sj.cost
«moe»

sj.security
«moe»

sj.avaliabilty
«moe»

sj.responseTime
«moe»

CE

p4

p3

p2

p1

c

s

a

r

Figure E.4. Example Parametric Diagram using Stereotypes for Measures of Effectiveness

E.5 Model Library for Quantities, Units, Dimensions, and Values
(QUDV)

E.5.1 Overview

For any system model, a solid foundation of well-defined quantities, units, and dimensions system is very important.
Properties that describe many aspects of a system depend on it. At the same time, such a foundation should be a
shareable resource that can be reused in many models within and across organizations and projects.

The most widely accepted, scrutinized, and globally used system of quantities and system of units are the
International System of Quantities (ISQ) and the International System of Units (SI). They are formally standardized
through [ISO31] and [IEC60027]. The harmonization of these two sets of standards into one new set [ISO/
IEC80000] has been published by ISO in 2009 and 2010. The present QUDV model in SysML is based on ISO/IEC
80000-1:2009, which refers normatively to the ISO/IEC Guide 99:2007. The ISO/IEC 80000-1:2009 document is
also the baseline for the 2010 revision of the IEEE/ASTM American National Standards for Metric Practice SI-10.

260 OMG Systems Modeling Language, v1.7

All the relevant concepts underlying ISQ and SI are publicly available in [VIM]. See Section E.5.3, References for
references to these documents.

At a minimum, SysML should provide the means to support the imminent international standard [ISO/IEC80000]. In
addition, many other systems of quantities and units are still in use for particular applications and for historical
reasons. A prime example is the system based on UK Imperial units, which is still widely used in North America.
SysML should provide the means to support all such specific systems of quantities and units, including precise
definitions of the relationships between different systems of units, and with explicit and unambiguous unit
conversions to and from SI as well as other systems.

To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in SysML
is explicitly based on the concepts defined in [VIM], which have been written by the authoritative Working Group 2
of the Joint Committee for Guides in Metrology (JCGM/WG 2), in which the JCGM member organizations are
represented: BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. At the same time, the model library is
designed in such a way that extensions to the ISQ and SI can be represented, as well as any alternative systems of
quantities and units.

The model library can be used to support SysML user models in various ways. A simple approach is to define and
document libraries of reusable systems of units and quantities for reuse across multiple projects, and to link units
and quantity kinds from these libraries to Unit and QuantityKind stereotypes defined in SysML user models. The
name of a Unit or QuantityKind stereotype, its definitionURI, or other means may be used to link it with definitions
made using this library. Instances of blocks conforming to this model library may be created by instance
specifications, as shown in Section E.5.4 Usage Examples, or by other means.

Even though this model library is specified in terms of SysML blocks, its contents could equally be specified by
UML classes without dependencies on any SysML extensions. This annex specifies the model library using SysML
blocks to maintain compatibility with the SysML standard. UML and other forms of this same conceptual model are
important and useful to align different standards with each other and with those of [VIM].

Separate forms of this model library, including a UML class model generated as a simple transformation from the
model library specified in this annex, together with additional mappings and resources, example applications, and
reference libraries of systems of units and quantities built using this model, are expected to be published via the
SysML Project Portal wiki at https://www.omgwiki.org/OMGSysML/.

E.5.2 Abstract Syntax

Fig. E.5 - Fig. E.7 present the QUDV model library in a series of block definition diagrams.

The QUDV Concepts diagram in Fig. E.5 presents the core concepts of System of Units, Unit, SystemOfQuantities,
and QuantityKind. The QUDV concepts of Unit and QuantityKind are specialized by restriction from their
respective SysML concepts shown in gray in Fig. E.5. The QUDV concepts form the basis of the QUDV subset of
the Vocabulary of International Metrology (VIM) from ISO 80000-1 and JCGM 200:2012. In SysML, a value
property typed by a given ValueType, with stereotype properties that refer to a SysML Unit and/or QuantityKind,
defines a quantity in the sense of ISO 80000-1, Sub clause 3.1. If specified, the unit of the ValueType designates the
measurement unit assumed for the numerical value of such a quantity.

In the QUDV Unit diagram in Fig. E.6, SimpleUnit provides the basis for defining other units via conversion or
derivation. Additionally, QUDV provides support for specifying a coherent derived unit as a product of the
baseUnit(s) of a given SystemOfUnits. In a coherent SystemOfUnits, there is only one base unit for each base
quantity kind.

In the QUDV QuantityKind diagram in Fig. E.7, SimpleQuantityKind provides the basis for defining other quantity
kinds via specialization or derivation. QUDV provides a declarative specification of dimensional analysis to assign
to each QuantityKind an expression of its dependence on the baseQuantityKind(s) of a SystemOfQuantities. This
dependence is expressed as a list of QuantityKindFactor(s) corresponding to a product of powers of the base
quantities. Section E.5.2.15 SystemOfQuantities, specifies the derivation of quantity dimensions using an algorithm
specified in OCL.

OMG Systems Modeling Language, v1.7 261

https://www.omgwiki.org/OMGSysML/

/dependsOnQuantityKinds : QuantityKind [0..*]{readOnly}
references

isQuantityOfDimensionOne : Boolean [1] = false
isNumberOfEntities : Boolean [1] = false

properties

QUDV::QuantityKind
«block»

symbol : String [0..1]
description : String [0..1]
definitionURI : String [0..1]

values

SysML::Libraries::UnitAndQuantityKind::QuantityKind
«block»

/dimension : Dimension [0..*]{readOnly,ordered,nonunique}
references

symbol : String [0..1]
description : String [0..1]
definitionURI : String [0..1]

properties

QUDV::SystemOfQuantities
«block»

prefix : Prefix [0..*]{ordered}
references

symbol : String [0..1]
description : String [0..1]
definitionURI : String [0..1]

properties

QUDV::SystemOfUnits
«block»

/dependsOnUnits : Unit [0..*]{readOnly}
references

isUnitForQuantityOfDimensionOne : Boolean [1] = false
isUnitCountOfEntities : Boolean [1] = false

properties

QUDV::Unit
«block»

symbol : String [0..1]
description : String [0..1]
definitionURI : String [0..1]

values

SysML::Libraries::UnitAndQuantityKind::Unit
«block»

A_systemOfUnits_systemOfQuantities
systemOfQuantities

0..1

systemOfUnits

0..*

A_quantityKind_measurementUnit

measurementUnit

{redefines unit}

0..*

{redefines quantityKind}

quantityKind

0..*

A_quantityKind_unit

0..*

unit quantityKind

0..*

A_generalQuantityKind_specificQuantityKind

specific

0..*

general 0..*

A_generalUnit_specificUnit

general

0..*

specific 0..*

A_includedSystemOfUnits_systemOfUnits

includedSystemOfUnits 0..*

systemOfUnits

0..*

A_usedSystemOfQuantities_systemOfQuantities

usedSystemOfQuantities 0..*

systemOfQuantities

0..*

A_systemOfUnits_unit

{ordered}

0..*unit

systemOfUnits 0..1

A_systemOfUnits_baseUnit

{subsets unit, ordered}

baseUnit 0..*

{subsets systemOfUnits}

systemOfUnits 0..1

A_systemOfQuantities_baseQuantityKind

{subsets quantityKind, ordered}

baseQuantityKind 0..*

{subsets systemOfQuantities}

systemOfQuantities 0..1

A_systemOfQuantities_quantityKind

quantityKind

{ordered}

0..*

systemOfQuantities 0..1

A_includedSystemOfQuantities_systemOfQuantities

includedSystemOfQuantities 0..*

systemOfQuantities

0..*

A_usedSystemOfUnits_systemOfUnits

usedSystemOfUnits 0..*

systemOfUnits

0..*

QUDV Concepts Diagram[Package] QUDVbdd][

Figure E.5. QUDV Concepts Diagram

PrefixedUnit
«block»

/dependsOnUnits : Unit [0..*]{readOnly}
references

isUnitForQuantityOfDimensionOne : Boolean [1] = false
isUnitCountOfEntities : Boolean [1] = false

properties

Unit
«block»

times(r : Rational [1]) : Rational [1]
plus(r : Rational [1]) : Rational [1]
equivalent(r : Rational [1]) : Boolean [1]

operations

numerator : Integer [1]
denominator : Integer [1]

attributes

Rational
«valueType»

expressionLanguageURI : String [0..1]
expression : String [1]

properties

GeneralConversionUnit
«block»

properties
isInvertible : Boolean [1]

ConversionBasedUnit
«block»

SimpleUnit
«block»

DerivedUnit
«block»

factor : Number [1]
properties

LinearConversionUnit
«block»

offset : Number [1]
factor : Number [1]

properties

AffineConversionUnit
«block»

exponent : Rational [1]
values

UnitFactor
«block»

factor : Rational [1]
values

symbol : String [0..1]
properties

Prefix
«block»

SystemOfUnits
«block» QuantityKind

«block»

{redefines measurementUnit}

measurementUnit 0

{redefines quantityKind}

noQuantityKind 0
{ordered}

0..*

unit

0..1

general 0..*specific 0..*

measurementUnit

0..*

quantityKind

0..*

referenceUnit 1

0..*

1unit

0..*

{ordered}

prefix 0..*

0..*

prefix 1

0..*

factor 1..*

0..*

QUDV Units[Package] QUDVbdd][

Figure E.6. QUDV Units

A QuantityKindFactor represents a factor in the product of powers that defines a DerivedQuantityKind.

262 OMG Systems Modeling Language, v1.7

/dependsOnQuantityKinds : QuantityKind [0..*]{readOnly}
references

isQuantityOfDimensionOne : Boolean [1] = false
isNumberOfEntities : Boolean [1] = false

properties

QuantityKind
«block»

symbol : String [0..1]
description : String [0..1]
definitionURI : String [0..1]

properties

SystemOfQuantities
«block»

symbolicExpression : String [0..1]
properties

Dimension
«block»

exponent : Rational [1]
values

QuantityKindFactor
«block»

DerivedQuantityKind
«block»

SimpleQuantityKind
«block»

factor 1..*

0..*

quantityKind

1 0..*

{readOnly, ordered, nonunique}

/dimension

0..*

systemOfQuantities

1..*

{ordered}

factor 0..*

dimension 1

{subsets quantityKind, ordered}

baseQuantityKind 0..*

{subsets systemOfQuantities}

0..1

quantityKind

{ordered}

0..*

0..1

A_generalQuantityKind_specificQuantityKind

specific 0..*

general

0..*

QUDV QuantityKind[Package] QUDVbdd][

Figure E.7. QUDV QuantityKind

E.5.2.1 AffineConversionUnit

Description

An AffineConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect
to another reference measurement unit through an affine conversion relationship with a conversion factor and offset.

The unit conversion relationship is defined by the following equation:

valueRU = factor · valueCU + offset

where:

valueRU is the quantity value expressed in the referenceUnit, and,

valueCU is the quantity value expressed in the AffineConversionUnit.

For example, in the definition of the AffineConversionUnit for “degree Fahrenheit” with respect to the referenceUnit
“degree Celsius,” the factor would be 5/9 and the offset would be -160/9, because

TCelsius = 5/9 · TFahrenheit - 160/9 which is equivalent with TFahrenheit = 9/5 · TCelsius + 32/1

Generalizations

• ConversionBasedUnit (from QUDV)

Attributes

• factor : Number [1]
Number that specifies the factor in the unit conversion relationship.

• offset : Number [1]
Number that specifies the offset in the unit conversion relationship.

OMG Systems Modeling Language, v1.7 263

Constraints

• invertible

isInvertible = true

E.5.2.2 ConversionBasedUnit

Description

A ConversionBasedUnit is an abstract classifier that is a Unit that represents a measurement unit that is defined with
respect to another reference unit through an explicit conversion relationship.

Generalizations

• Unit (from QUDV)

Attributes

• isInvertible : Boolean [1]
Specifies whether the unit conversion relationship is invertible. For LinearConversionUnit and
AffineConversionUnit this is always true.

Association Ends

• referenceUnit : Unit [1]
Specifies the unit with respect to which the ConversionBasedUnit is defined.

Operations

• dependsOnUnits () : Unit [0..*] {redefines dependsOnUnits}
A ConversionBasedUnit transitively depends on its referenceUnit and all of the Units that its referenceUnit
depends on.
bodyCondition:
result = referenceUnit.dependsOnUnits()->including(referenceUnit)->asSet()

E.5.2.3 DerivedQuantityKind

Description

A DerivedQuantityKind is a QuantityKind that represents a kind of quantity that is defined as a product of powers of
one or more other kinds of quantity. A DerivedQuantityKind may also be used to define a synonym kind of quantity
for another kind of quantity.

For example “velocity” can be specified as the product of “length” to the power one times “time” to the power
minus one, and subsequently “speed” can be specified as “velocity” to the power one.

Generalizations

• QuantityKind (from QUDV)

Association Ends

• factor : QuantityKindFactor [1..*]
Set of QuantityKindFactor that specifies the product of powers of other kind(s) of quantity that define the
DerivedQuantityKind.

Operations

• dependsOnQuantityKinds () : QuantityKind [0..*]
A DerivedQuantityKind transitively depends on its factors' QuantityKinds and all of the QuantityKinds that its
factors' QuantityKinds depend on.
bodyCondition:

264 OMG Systems Modeling Language, v1.7

result = factor.quantityKind.dependsOnQuantityKinds()->flatten()->asSet()
->union(factor.quantityKind->flatten()->asSet())->asSet()

E.5.2.4 DerivedUnit

Description

A DerivedUnit is a Unit that represents a measurement unit that is defined as a product of powers of one or more
other measurement units.

For example the measurement unit “metre per second” for “velocity” is specified as the product of “metre” to the
power one times “second” to the power minus one.

Generalizations

• Unit (from QUDV)

Attributes

• hasReducedFactors : Boolean [1]
If true, the UnitFactors specifying the product of powers of other measurement units that define the DerivedUnit
cannot be simplified. If false, the DerivedUnit is non-reduced; some UnitFactors can be simplified. A non-
reduced DerivedUnit can have as a general unit other DerivedUnits defined in terms of simplified UnitFactors,
possibly in reduced form.

Association Ends

• factor : UnitFactor [1..*]
Set of UnitFactor that specifies the product of powers of other measurement units that define the DerivedUnit.

Operations

• allAccessibleQuantityKinds () : QuantityKind [0..*]
The query accessibleQuantityKinds() gives all the QuantityKinds directly defined in the SystemOfQuantities or
transitively in any included or used SystemOfQuantities.
bodyCondition:
result = allAccessibleSystemOfQuantities()->collect(quantityKind)-
>flatten()->asSet() inv SoU3_3: getEffectiveSystemOfQuantities() = null or
let aqk : Set(QuantityKind) =
getEffectiveSystemOfQuantities().allQuantityKinds() in ->allUnits()
->forAll(u | aqk>includesAll (getKindOfQuantitiesForMeasurementUnit(u)))

• dependsOnUnits () : Unit [0..*] {redefines dependsOnUnits}
A DerivedUnit transitively depends on its factors' Units and all of the Units that its factors' Units depend on.
bodyCondition:
result = factor.unit.dependsOnUnits()->flatten()->asSet()-
>union(factor.unit->flatten()->asSet())->asSet()

Constraints

• mustSpecifyQuantityKind

Since a DerivedUnit is defined as a product factor of one or more other Units, it must specify explicitly its
QuantityKinds.

quantityKind <> null and quantityKind‑>notEmpty()

E.5.2.5 Dimension

OMG Systems Modeling Language, v1.7 265

Description

A Dimension represents the [VIM] concept of “quantity dimension” that is defined as “expression of the dependence
of a quantity on the base quantities of a system of quantities as a product of powers of factors corresponding to the
base quantities, omitting any numerical factor.”

For example in the ISQ the quantity dimension of “force” is denoted by dim F = L·M·T-2, where “F” is the symbol
for “force,” and “L,” “M,” and “T” are the symbols for the ISQ base quantities “length,” “mass,” and “time”
respectively.

The Dimension of any QuantityKind can be derived through the algorithm that is defined in E.5.2.15
SystemOfQuantities with SystemOfQuantities. The actual Dimension for a given QuantityKind depends on the
choice of baseQuantityKind specified in a SystemOfQuantities.

Attributes

• symbolicExpression : String [0..1]
Symbolic expression of the quantity dimension's product of powers, in terms of symbols of the kinds of quantity
that represent the base kinds of quantity and their exponents. In tool implementations, the symbolicExpression
may automatically derived from the associated factor set.

Association Ends

• factor : QuantityKindFactor [0..*] {ordered}
If true Ordered set of QuantityKindFactor that specifies the product of powers of base dimensions that define the
Dimension. The possible base dimensions are represented by the ordered set of baseQuantityKind defined in the
SystemOfQuantities for which the Dimension is specified. The order of the factors should follow the ordered set
of baseQuantityKind in SystemOfQuantities.

E.5.2.6 GeneralConversionUnit

Description

A GeneralConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect
to another reference measurement unit through a conversion relationship expressed in some syntax through a general
mathematical expression.

The unit conversion relationship is defined by the following equation:

valueRU / valueCU = f(valueRU, valueCU)

where:

valueRU is the quantity value expressed in the referenceUnit and

valueCU is the quantity value expressed in the GeneralConversionUnit and

f(valueRU, valueCU) is a mathematical expression that includes valueRU and valueCU

Generalizations

• ConversionBasedUnit (from QUDV)

Attributes

• expression : String [1]
Specifies the unit conversion relationship in some expression syntax.

• expressionLanguageURI : String [0..1]
URI that specifies the language for the expression syntax.

E.5.2.7 LinearConversionUnit

266 OMG Systems Modeling Language, v1.7

Description

A LinearConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect
to another measurement reference unit through a linear conversion relationship with a conversion factor.

The unit conversion relationship is defined by the following equation:

valueRU = factor · valueCU

where:

valueRU is the quantity value expressed in the referenceUnit, and,

valueCU is the quantity value expressed in the LinearConversionUnit.

For example, in the definition of the LinearConversionUnit for “inch” with respect to the referenceUnit “metre,” the
factor would be 254/10000, because 0.0254 metre = 1 inch.

Generalizations

• ConversionBasedUnit (from QUDV)

Attributes

• factor : Number [1]
Number that specifies the factor in the unit conversion relationship.

Constraints

• invertible

isInvertible = true

E.5.2.8 Prefix

Description

A Prefix represents a named multiple or submultiple multiplication factor used in the specification of a PrefixedUnit.
A SystemOfUnits may specify a set of prefixes.

Attributes

• factor : Rational [1]
Specifies the multiple or submultiple multiplication factor.

• symbol : String [0..1]
Short symbolic name of the prefix.

E.5.2.9 PrefixedUnit

Description

A PrefixedUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to another
measurement reference unit through a linear conversion relationship with a named prefix that represents a multiple
or submultiple of a unit.

[VIM] defines “multiple of a unit” as “measurement obtained by multiplying a given measurement unit by an integer
greater than one” and “submultiple of a unit” as “measurement unit obtained by dividing a given measurement unit
by an integer greater than one.”

The unit conversion relationship is defined by the following equation:

valueRU = factor · valueCU

where:

valueRU is the quantity value expressed in the referenceUnit and

OMG Systems Modeling Language, v1.7 267

valueCU is the quantity value expressed in the PrefixedUnit.

For example, in the definition of the PrefixedUnit for “megabyte” with respect to the referenceUnit “byte,” the
prefix would be the Prefix for “mega” with a factor 106, because 106 byte = 1 megabyte.

See [VIM] for all decimal and binary multiples and decimal submultiples defined in SI.

Generalizations

• ConversionBasedUnit (from QUDV)

Association Ends

• noQuantityKind : QuantityKind [0]
(redefines: Unit::quantityKind)

• prefix : Prefix [1]
Specifies the prefix that defines the name, symbol, and factor of the multiple or submultiple.

Constraints

• PU1

The referenceUnit shall not be a PrefixedUnit, i.e., it is not allowed to prefix an already prefixed measurement
unit. In general the referenceUnit should be a SimpleUnit.

not referenceUnit.oclIsTypeOf(PrefixedUnit)

• noQuantityKind

The PrefixedUnit has not quantity kind.

self.quantityKind = null

E.5.2.10 QuantityKind

Description

In QUDV, the concept of QuantityKind is an abstract specialization of SysML QuantityKind to support designating
a primary QuantityKind for a given Unit within the scope of a system of units and quantities and to support a richer
vocabulary for defining QuantityKinds.

Generalizations

• QuantityKind (from UnitAndQuantityKind)

Attributes

• /dependsOnQuantityKinds : QuantityKind [0..*] {readOnly}
The set of all QuantityKinds that this QuantityKind directly or indirectly depends on according to its definition.

• isNumberOfEntities : Boolean [1]
If true, indicates that the QuantityKind represents a number of entities (see ISO 80000-1, 3.8, Note 4).

• isQuantityOfDimensionOne : Boolean [1]
If true, indicates that the QuantityKind has dimension one (see ISO 80000-1, 3.8).

Association Ends

• general : QuantityKind [0..*]
A quantity can be defined to represent a combination of specific characteristics from one or more aspects defined
by general QuantityKinds (see ISO 80000-1, 3.2).

268 OMG Systems Modeling Language, v1.7

Operations

• dependsOnQuantityKinds () : QuantityKind [0..*]
Abstract operation specified in SimpleQuantityKind and DerivedQuantityKind to calculate the value of the
derived property QuantityKind:/dependsOnQuantityKinds.

Constraints

• acyclic_quantity_kind_dependencies

A QuantityKind cannot be defined in terms of itself. This follows from the quantity calculus used for expressing
a derived QuantityKind in terms of base QuantityKinds chosen for a SystemOfQuantities by means of non-
contradictory equations (See ISO 80000-1, 4.3).

dependsOnQuantityKinds‑>excludes(self)

E.5.2.11 QuantityKindFactor

Description

A QuantityKindFactor represents a factor in the product of powers that defines a DerivedQuantityKind.

Attributes

• exponent : Rational [1]
Rational number that specifies the exponent of the power to which the quantityKind is raised.

Association Ends

• quantityKind : QuantityKind [1]
Reference to the QuantityKind that participates in the factor.

E.5.2.12 Rational

Description

A Rational value type represents the mathematical concept of a number that can be expressed as a quotient of two
integers. It may be used to express the exact value of such values, without issues of rounding or other
approximations if the result of the division were used instead.

Attributes

• denominator : Integer [1]
An integer number used to express the denominator of a rational number.

• numerator : Integer [1]
An integer number used to express the numerator of a rational number.

Operations

• equivalent (in r : Rational) : Boolean [1]

bodyCondition:
result = (self.numerator * r.demonimator = r.numerator * self.denominator)

• plus (in r : Rational) : Rational [1]

bodyCondition:
result.numerator = self.numerator * r.demonimator + r.numerator *
self.denominator and result.denominator = self.denominator * r.denominator

• times (in r : Rational) : Rational [1]

bodyCondition:

OMG Systems Modeling Language, v1.7 269

result.numerator = self.numerator * r.numerator and result.denominator =
self.denominator * r.denominator

E.5.2.13 SimpleQuantityKind

Description

A SimpleQuantityKind is a QuantityKind that represents a kind of quantity that does not depend on any other
QuantityKind. Typically a base quantity would be specified as a SimpleQuantityKind.

Generalizations

• QuantityKind (from QUDV)

Operations

• dependsOnQuantityKinds () : QuantityKind [0..*] {redefines dependsOnQuantityKinds}
A SimpleQuantityKind does not depend on any other QuantityKind.
bodyCondition:
result = Set{}

E.5.2.14 SimpleUnit

Description

A SimpleUnit is a Unit that represents a measurement unit that does not depend on any other Unit. Typically, a base
unit would be specified as a SimpleUnit.

Generalizations

• Unit (from QUDV)

Operations

• dependsOnUnits () : Unit [0..*] {redefines dependsOnUnits}
A SimpleUnit is a Unit that represents a measurement unit that does not depend on any other Unit. Typically, a
base unit would be specified as a SimpleUnit.
bodyCondition:
result = Set{}

E.5.2.15 SystemOfQuantities

Description

A SystemOfQuantities represents the [VIM] concept of “system of quantities” that is defined as a “set of quantities
together with a set of non-contradictory equations relating those quantities.” It collects a list of QuantityKind that
specifies the kinds of quantity that are known in the system.

The International System of Quantities (ISQ) is an example of a SystemOfQuantities, defined in [ISO31] and [ISO/
IEC80000].

Attributes

• definitionURI : String [0..1]
URI that references an external definition of the system of quantities. Note that as part of [ISO/IEC80000]
normative URIs for each of the ISQ quantities and SI units are being defined.

• description : String [0..1]
Textual description of the system of quantities.

• symbol : String [0..1]
Short symbolic name of the system of quantities.

270 OMG Systems Modeling Language, v1.7

Association Ends

• baseQuantityKind : QuantityKind [0..*] {ordered, subsets quantityKind}
Ordered set of QuantityKind that specifies the base quantities of the system of quantities. This is a subset of the
complete quantityKind list. The base quantities define the basis for the quantity dimension of a kind of quantity.

• /dimension : Dimension [0..*] {ordered, readOnly, nonunique}
Derived ordered set of Dimension. The actual dimension of a QuantityKind depends on the list of
baseQuantityKind that are specified in an actual SystemOfQuantities, see the DerivedDimensions constraint.

• includedSystemOfQuantities : SystemOfQuantities [0..*]
Including a SystemOfQuantities means including all of the QuantityKind it defines and includes from other
SystemOfQuantities.

• quantityKind : QuantityKind [0..*] {ordered}
Ordered set of QuantityKind that specifies the kinds of quantity that are known in the system.

• usedSystemOfQuantities : SystemOfQuantities [0..*]
A QuantityKind can be defined in a SystemOfQuantities in terms of QuantityKinds defined in that
SystemOfQuantities or from other SystemOfQuantities it uses or includes. See for example the units used with
the SI in ISO 80000-1, Table 5.

Operations

• allAccessibleQuantityKinds () : QuantityKind [0..*]
The query accessibleQuantityKinds() gives all the QuantityKinds directly defined in the SystemOfQuantities or
transitively in any included or used SystemOfQuantities.
bodyCondition:
result=allAccessibleSystemOfQuantities()->collect(quantityKind)->flatten()-
>asSet()

• allAccessibleSystemOfQuantities () : SystemOfQuantities [0..*]
The query allAccessibleSystemOfQuantities() gives all the SystemOfQuantities directly or transitively included
or used.
bodyCondition:
result=self->closure(includedSystemOfQuantities-
>union(usedSystemOfQuantities))->asSet()

• allBaseQuantityKinds () : QuantityKind [0..*]
The query allBaseQuantityKinds() gives all the QuantityKinds directly adopted or transitively adopted from any
included SystemOfQuantities as base QuantityKinds.
bodyCondition:
result=allIncludedSystemOfQuantities()->collect(baseQuantityKind)-
>flatten()->asSet()->union(baseQuantityKind)->asSet()

• allIncludedSystemOfQuantities () : SystemOfQuantities [0..*]
The query allIncludedSystemOfQuantities() gives all the SystemOfQuantities directly or transitively included.
bodyCondition:
result=self->closure(includedSystemOfQuantities)->asSet()

• allQuantityKinds () : QuantityKind [0..*]
The query allQuantityKinds() gives all the QuantityKinds in scope of a SystemOfQuantities; that is, each
QuantityKind is either directly defined in the SystemOfQuantities, selectively used from another
SystemOfQuantities or part of the scope of all the QuantityKinds included from another SystemOfQuantities.
bodyCondition:
result=allIncludedSystemOfQuantities()->collect(quantityKind)->flatten()-
>asSet()->union(quantityKind)->asSet()

• getDimension (in qk : QuantityKind) : Dimension [1]

OMG Systems Modeling Language, v1.7 271

Constraints

• acyclicProvenance

For a QuantityKind to have a provenance to a single SystemOfQuantities, the use and includes relationships
among SystemOfQuantities shall be acyclic.

allAccessibleSystemOfQuantities()‑>excludes(self)

• allBaseQuantitiesAreQuantities

The set of all QuantityKinds in a given SystemOfQuantities shall be partitioned into two disjoint, covering
subsets: the set of base QuantityKinds (typically chosen to be mutually independent) and its complement, the set
of derived QuantityKinds, each of which can be expressed in terms of the base QuantityKinds (See ISO 80000-1,
4.3).

allQuantityKinds()‑>includesAll(allBaseQuantityKinds())

• includedSystemOfQuantities_transitivelyDisjoint_usedSystemOfQuantities

For a QuantityKind to have a provenance to a single SystemOfQuantities, all included systems of quantities shall
be transitively disjoint with all used systems of quantities.

allIncludedSystemOfQuantities()‑>intersection(self.oclAsSet()‑>
closure(usedSystemOfQuantities))‑>isEmpty()

• singleProvenance

Every QuantityKind shall be defined in only one SystemOfQuantities but it can be in the scope of several
SystemOfQuantities. A given QuantityKind is in scope of a SystemOfQuantities either because it is defined or
used in a SystemOfQuantities or because it is included from the scope of another SystemOfQuantities.

includedSystemOfQuantities‑>collect(allQuantityKinds())‑>
intersection(quantityKind)‑>isEmpty()

E.5.2.16 SystemOfUnits

Description

A SystemOfUnits represents the [VIM] concept of “system of units” that is defined as “set of base units and derived
units, together with their multiples and submultiples, defined in accordance with given rules, for a given system of
quantities.” It collects a list of Units that are known in the system. A QUDV SystemOfUnits only optionally defines
multiples and submultiples.

Attributes

• definitionURI : String [0..1]
A URI that references an external definition of the system of units. Note that as part of [ISO/IEC80000]
normative URIs for each of the quantities in the ISQ and units in the SI are being defined.

• description : String [0..1]
Textual description of the system of units.

• symbol : String [0..1]
Short symbolic name of the system of units.

Association Ends

• baseUnit : Unit [0..*] {ordered, subsets unit}
Ordered set of Unit that specifies the base units of the system of units. A “base unit” is defined in [VIM] as a
“measurement unit that is adopted by convention for a base quantity.” It is the (preferred) unit in which base
quantities of the associated systemOfQuantities are expressed.

272 OMG Systems Modeling Language, v1.7

• includedSystemOfUnits : SystemOfUnits [0..*]
Including a SystemOfQuantities means including all of the QuantityKind it defines and includes from other
SystemOfQuantities.

• prefix : Prefix [0..*] {ordered}
Ordered set of Prefix that specifies the prefixes for multiples and submultiples of units in the system.

• systemOfQuantities : SystemOfQuantities [0..1]
Reference to the SystemOfQuantities for which the units are specified.

• unit : Unit [0..*] {ordered}
Ordered set of Unit that specifies the units that are known in the system.

• usedSystemOfUnits : SystemOfUnits [0..*]
A Unit can be defined in a SystemOfUnits in terms of Units defined in that SystemOfUnits or from other
SystemOfUnits it uses or includes. See for example the units used with the SI in ISO 80000-1, Table 5.

Operations

• allAccessibleSystemOfUnits () : SystemOfUnits [0..*]
The query allAccessibleSystemOfUnits() gives all the SystemOfUnits directly or transitively included or used.
bodyCondition:
result=self->closure(includedSystemOfUnits->union(usedSystemOfUnits))-
>asSet()

• allAccessibleUnits () : Unit [0..*]
The query accessibleUnits () gives all the units directly defined in a system of units or transitively in any
included or used system of units.
bodyCondition:
result=allAccessibleSystemOfUnits()->collect(unit)->flatten()->asSet()

• allBaseQuantityKinds () : QuantityKind [0..*]
The query allBaseQuantityKinds() gives all the QuantityKinds directly adopted or transitively adopted from any
included SystemOfQuantities as base QuantityKinds in the effective SystemOfQuantities associated to a
SystemOfUnits.
bodyCondition:
result=getEffectiveSystemOfQuantities()->allBaseQuantityKinds()->flatten()-
>asSet()

• allBaseUnits () : Unit [0..*]
The query allBaseUnits() gives all the Units directly adopted or transitively adopted from any included
SystemOfUnits as base Units.
bodyCondition:
result=allIncludedSystemOfUnits()->collect(baseUnit)->flatten()->asSet()-
>union(baseUnit)->asSet()

• allIncludedSystemOfUnits () : SystemOfUnits [0..*]
The query allIncludedSystemOfUnits() gives all the SystemOfUnits directly or transitively included.
bodyCondition:
result=self->closure(includedSystemOfUnits->union(usedSystemOfUnits))-
>asSet()

• allMeasurementUnitsDefinedForSomeQuantityKind () : Boolean [1]
The predicate allMeasurementUnitsDefinedForSomeQuantityKind() determines whether, in a SystemOfUnits,
every Unit shall be defined, by convention, as a multiplicable reference for at least one QuantityKind (see ISO
80000-1, 3.9).
bodyCondition:
result=allUnits()->forAll(quantityKind <> null)

• allPrefixes () : Prefix [0..*]
The query allPrefixes() gives all the Prefixes in scope of a SystemOfUnits; that is, each Prefix is either directly

OMG Systems Modeling Language, v1.7 273

defined in the SystemOfUnits or in any accessible SystemOfUnits.
bodyCondition:
result=allAccessibleSystemOfUnits()->including(self)->collect(prefix)-
>flatten()->asSet()

• allUnits () : Unit [0..*]
The query allUnits() gives all the Units in scope of a SystemOfUnits; that is, each Unit is either directly defined
in the SystemOfUnits, selectively used from another SystemOfUnits or part of the scope of all the Units included
from another SystemOfUnits.
bodyCondition:
result=allIncludedSystemOfUnits()->collect(unit)->flatten()->asSet()-
>union(unit)->asSet()

• getAdoptedBaseUnitForMeasurementUnit (in u : Unit) : Unit [0..1]
The query getAdoptedBaseUnitForMeasurementUnit() determines for a Unit u in scope of a SystemOfUnits the
base Unit, if any, corresponding to u, which can be u itself if it is a baseUnit in that SystemOfUnits or its
reference Unit if it is a base Unit and u is a PrefixUnit.
bodyCondition:
result = let abu : Set(Unit) = allBaseUnits() in if (abu->includes(u)) then
u else if (u.oclIsKindOf(PrefixedUnit)) then abu-
>intersection(u.oclAsType(PrefixedUnit).referenceUnit->asSet())->any(true)
else null endif endif

• getAdoptedQuantityKindForAdoptedBaseUnitOfMeasurementUnit (in u : Unit) : QuantityKind [0..*]
The query getAdoptedQuantityKindForAdoptedBaseUnitOfMeasurementUnit() determines for a Unit u in scope
of a SystemOfUnits the base QuantityKind, if any, corresponding to the base Unit of u.
bodyCondition:
result=let bu : Unit = getAdoptedBaseUnitForMeasurementUnit(u) in if (bu =
null) then Set{} else let qks : Set(QuantityKind) =
getKindOfQuantitiesForMeasurementUnit(bu) in allBaseQuantityKinds()-
>intersection(qks) endif

• getEffectiveSystemOfQuantities () : SystemOfQuantities [0..1]
The query getEffectiveSystemOfQuantities() determines for a SystemOfUnits the SystemOfQuantities, if any,
that it is directly or indirectly associated with via included SystemOfUnits.
bodyCondition:
result=if systemOfQuantities = null then includedSystemOfUnits-
>collect(getEffectiveSystemOfQuantities())->flatten()->asSet()->any(true)
else systemOfQuantities endif

• getKindOfQuantitiesForMeasurementUnit (in u : Unit) : QuantityKind [0..*]
The query getKindOfQuantitiesForMeasurementUnit() determines for a Unit u in scope of a SystemOfUnits the
set of QuantityKinds corresponding to u, if specified, or to the Units that u is defined in terms of, if any.
bodyCondition:
result=if (u.oclIsKindOf(SimpleUnit)) then u.quantityKind-
>collect(oclAsType(QuantityKind))->asSet() else if
(u.oclIsKindOf(DerivedUnit)) then let du : DerivedUnit =
u.oclAsType(DerivedUnit) in if (du.quantityKind <> null) then
du.quantityKind->collect(oclAsType(QuantityKind))->asSet() else
getKindOfQuantitiesForMeasurementUnit(du.factor->any(true).unit) endif else
if (u.oclIsKindOf(ConversionBasedUnit)) then let cu : ConversionBasedUnit =
u.oclAsType(ConversionBasedUnit) in if (cu.oclIsKindOf(PrefixedUnit)) then
getKindOfQuantitiesForMeasurementUnit(cu.referenceUnit) else if
(cu.quantityKind <> null) then cu.quantityKind-
>collect(oclAsType(QuantityKind))->asSet() else
getKindOfQuantitiesForMeasurementUnit(cu.referenceUnit) endif endif else
Set(QuantityKind){} endif endif endif

274 OMG Systems Modeling Language, v1.7

• getUnit (in name : String) : Unit [0..1]

bodyCondition:
result=allUnits()->select(u | u.name = name)->any(true)

• isCoherent () : Boolean [1]
In a coherent system of units, there shall be only one base unit for each base quantity.
bodyCondition:
result = baseUnit->size() = systemOfQuantities.baseQuantityKind->size() and
baseUnit ->forAll(bU|systemOfQuantities.baseQuantityKind
->one(bQK|bU.primaryQuantityKind=bQK)) and
systemOfQuantities.baseQuantityKind ->forAll(bQK|baseUnit-
>one(bU|bQK=bU.primaryQuantityKind))

• isCoherent (in du : DerivedUnit) : Boolean [1]
A coherent derived unit shall be a derived unit that, for a given system of quantities and for a chosen set of base
units, is a product of powers of base units with no other proportionality factor than one.
bodyCondition:
result = baseUnit->includesAll(du.factor->collect(unit)) and du.factor-
>collect(exponent) ->forAll(numerator=1 and denominator=1)

Constraints

• SoU3_1

In a well-formed SystemOfUnits, all of the prefixes of PrefixedUnits shall be defined in the SystemOfUnits.

allPrefixes()‑>includesAll(allUnits()‑>select(oclIsTypeOf(PrefixedUnit))‑>
collect(oclAsType(PrefixedUnit).prefix))

• SoU3_2

All the dependent Units of a SystemOfUnits shall be in the scope of that SystemOfUnits.

allUnits()‑>includesAll(allUnits()‑>collect(dependsOnUnits())‑>flatten()‑>
asSet())

• SoU3_3

All of the quantityKinds that are measurementUnits of Units in the SystemOfUnits shall be defined in the
systemOfQuantities of that SystemOfUnits.

getEffectiveSystemOfQuantities() = null or let aqk : Set(QuantityKind) =
getEffectiveSystemOfQuantities().allQuantityKinds() in allUnits()‑>
forAll(u | aqk‑>includesAll(getKindOfQuantitiesForMeasurementUnit(u)))

• acyclicProvenance

For a Unit to have a provenance to a single SystemOfUnits, the use and includes relationships among
SystemOfUnits shall be acyclic.

allAccessibleSystemOfUnits()‑>excludes(self)

• allBaseUnitsAreUnits

The set of all Units in a given SystemOfUnits shall be capable of being partitioned into two disjoint, covering
subsets: the set of base Units (typically chosen to be mutually independent) and all its complement, the set of
derived Units, each of which can be expressed in terms of the base Units (See ISO 80000-1, 6.4).

allUnits()‑>includesAll(allBaseUnits())

• includedSystemOfUnits_transitivelyDisjoint_usedSystemOfUnits

OMG Systems Modeling Language, v1.7 275

For a Unit to have a provenance to a single SystemOfUnits, all included systems of units shall be transitively
disjoint with all used systems of units.

allIncludedSystemOfUnits()‑>intersection(self.oclAsSet()‑>
closure(usedSystemOfUnits))‑>isEmpty()

• singleProvenance

Every Unit shall be defined in only one SystemOfUnits but it can be in the scope of several SystemOfUnits. A
given Unit is in scope of a SystemOfUnits either because it is defined or used in a SystemOfUnits or because it
is included from the scope of another SystemOfUnits.

includedSystemOfUnits‑>collect(allUnits())‑>intersection(unit)‑>isEmpty()

• systemOfQuantitiesIncludesAllUnitsQuantityKinds

For a Unit to have a provenance to a single SystemOfUnits, includedSystemsOfUnits must be transitively
disjoint with usedSystemsOfUnits.

let aqks : Set(QuantityKind) =
getEffectiveSystemOfQuantities().allQuantityKinds() in allUnits()‑>
forAll(u | getKindOfQuantitiesForMeasurementUnit(u)‑>intersection(aqks)‑>
notEmpty())

E.5.2.17 Unit

Description

In QUDV, the concept of Unit is an abstract specialization of SysML Unit to support designating a primary
QuantityKind for a given Unit within the scope of a system of units and quantities and to support a richer vocabulary
for defining Units.

Generalizations

• Unit (from UnitAndQuantityKind)

Attributes

• /dependsOnUnits : Unit [0..*] {readOnly}
The set of all Units that this Unit directly or indirectly depends on according to its definition.

• isUnitCountOfEntities : Boolean [1]
If true, indicates that the measurement unit represents a number of entities (see ISO 80000-1, 3.10, Note 3).

• isUnitForQuantityOfDimensionOne : Boolean [1]
If true, indicates that the corresponding QuantityKind has dimension one (see ISO 80000-1, 3.8).

Association Ends

• general : Unit [0..*]
A Unit can be defined as a specialization of zero or more Units. This capability is important for specifying the
meaning of a unit for a quantity of dimension one (see ISO 80000-1, 3.8 and 3.10).

• quantityKind : QuantityKind [0..*]
(redefines: Unit::quantityKind)

Operations

• dependsOnUnits () : Unit [0..*]
Abstract operation specified in SimpleQuantityKind and DerivedQuantityKind to calculate the value of the
derived property QuantityKind:/dependsOnQuantityKinds.

276 OMG Systems Modeling Language, v1.7

Constraints

• acyclic_unit_dependencies

A Unit cannot be defined in terms of itself. This follows from the requirement that, in a coherent SystemOfUnits,
the Units of all derived QuantityKinds are expressed in terms of the base Units in accordance with the equations
in the SystemOfQuantities (see ISO 80000-1, 6.4).

dependsOnUnits‑>excludes(self)

E.5.2.18 UnitFactor

Description

A UnitFactor represents a factor in the product of powers that defines a DerivedUnit.

Attributes

• exponent : Rational [1]
Rational number that specifies the exponent of the power to which the unit is raised.

Association Ends

• unit : Unit [1]
Reference to the Unit that participates in the factor.

E.5.3 References

[VIM]

JCGM 200:2012, International vocabulary of metrology - Basic and general concepts and associated terms (VIM),
3rd edition (JCGM 200:2008 with minor corrections), 2012, BIPM, Paris, France. http://www.bipm.org/utils/
common/documents/jcgm/JCGM_200_2012.pdf.

[ISO/IEC80000]

ISO/IEC 80000, Quantities and units. 15 parts, some published, some still in progress, harmonized replacement of
[ISO31] and [IEC60027], the new international system of quantities and units.

[ISO31]

ISO 31, Quantities and units (Third edition 1992-08-01). Specifies the international system of units - SI - in 14 parts.

[IEC60027]

IEC 60027-2:2005, Letter symbols to be used in electrical technology - Part 2: Telecommunications and electronics
(Third edition 2005-08).

[SI-Brochure]

Le Système international dunités (SI) / The International System of Units (SI), 8th edition 2006, BIPM, (French and
English). Available for download in PDF format from http://www.bipm.org/en/si/si_brochure.

[NIST330]

The International System of Units (SI), NIST Special Publication 330, 2008 Edition. NOTE: U.S. version of the
English language text of [SI-Brochure]. Available for download in PDF format from http://physics.nist.gov/cuu/
Units/bibliography.html.

[NIST822]

Guide for the Use of the International System of Units (SI), NIST Special Publication 811, 2008 Edition. Available
for download in PDF format from http://physics.nist.gov/cuu/Units/bibliography.html.

[Dybkaer-2010] Rene Dybkaer, “ISO terminological analysis of the VIM3 concepts of ‘quantity’ and ‘kind-of-
quantity’”, Metrologia 47, (2010) 127-143, http://dx.doi.org/10.1088/0026-1394/47/3/003. See also:
http://www.bipm.org/en/publications/guides/rationale_vim3.html.

OMG Systems Modeling Language, v1.7 277

http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/en/si/si_brochure
http://physics.nist.gov/cuu/Units/bibliography.html
http://physics.nist.gov/cuu/Units/bibliography.html
http://physics.nist.gov/cuu/Units/bibliography.html
http://dx.doi.org/10.1088/0026-1394/47/3/003
http://www.bipm.org/en/publications/guides/rationale_vim3.html

E.5.4 Usage Examples

E.5.4.1 SI Unit and QuantityKind examples

Fig. E.8 shows an approach for defining base units of the System International of Units defined in
http://www.bipm.org/en/si/si_brochure/chapter2/2-1/ and http://physics.nist.gov/cuu/Units/units.html. This approach
involves instantiating the concrete classes of Unit shown in Fig. E.6.

Fig. E.9 diagram shows the definition of “newton” as a DerivedUnit (Section E.5.2.4) corresponding to the “force”
DerivedQuantityKind (Section E.5.2.3). Derived units and quantity kinds are defined as products of factors on other
units and quantity kinds respectively. In the QUDV, the product factors of a DerivedUnit (resp.
DerivedQuantityKind) are all of the UnitFactor (resp. DerivedUnitFactor) at the “factor” ends of association link
instances.

Base Unit and Quantity Kinds of the SI and ISQ respectivelyISO-80000-1-QUDV Diagram[Package]bdd][

symbol = "kg"
description = "kilogram"
definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/kilogram.html"

kilogram : PrefixedUnit

symbol = "m"
description = "metre"
definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/metre.html"

metre : SimpleUnit
symbol = "SI"

description = "International
System of Units"

SI : SystemOfUnits

symbol = "ISQ"

description = "International
System of Quantities"

ISQ : SystemOfQuantities

symbol = "m"

mass : SimpleQuantityKind

symbol = "l"

length : SimpleQuantityKind

symbol = "g"
description = "gram"

gram : SimpleUnitsymbol = "k"
factor = 10^3,1

kilo : Prefix

primary

primary

systemOfQuantities

unit

quantityKind

quantityKind

baseQuantityKind

quantityKind

baseQuantityKind

quantityKind

quantityKind

prefix

baseUnit

unit

baseUnit

unit

referenceUnit

prefix

Figure E.8. Base Unit and Quantity Kinds of the SI and ISQ respectively

Example of a derived unit and derived quantity kindISO-80000-1-QUDV Diagrambdd][

exponent = 1/1

length^1 : QuantityKindFactor

symbol = "kg"
referenceUnit = gram
prefix = kilo

kilogram : PrefixedUnit

symbol = "m"

mass : SimpleQuantityKind

exponent = 1/1

mass^1 : QuantityKindFactor

exponent = -2/1

time^-2 : QuantityKindFactor

symbol = "t"

time : SimpleQuantityKind

symbol = "s"

second : SimpleUnit

exponent = -2/1

second^-2 : UnitFactor

symbol = "l"

length : SimpleQuantityKind

symbol = "m"

metre : SimpleUnit

exponent = 1/1

kilogram^1 : UnitFactor

exponent = 1/1

metre^1 : UnitFactor

symbol = "F"

force : DerivedQuantityKind

symbol = "N"

newton : DerivedUnit

primary

primaryprimary

factor

factor

quantityKind quantityKind factor

factor

factor

factor

quantityKind quantityKindquantityKind quantityKind

quantityKind quantityKindquantityKind

unitunitunit

Figure E.9. Example of a derived unit and derived quantity kind

278 OMG Systems Modeling Language, v1.7

http://www.bipm.org/en/si/si_brochure/chapter2/2-1/
http://physics.nist.gov/cuu/Units/units.html

E.5.4.2 Spring Example

Fig. E.10 shows a simple model of the length of a spring defined as the linear distance between the linear position of
its two flange ends. QUDV supports defining arbitrary systems of units and quantities. Although this example uses
only one unit, “metre” and one quantity kind, “lengthQK;” this example illustrates specialized value types to make
additional distinctions such as “LinearPosition” vs. “LinearDistance,” two distinct quantities that have the same unit
and quantity kind. This example illustrates an instance of a spring and uses the dot pathname property notation
defined for IBDs (Section 8.3.1.2, Internal Block Diagram) to clearly indicate the role of each instance specification.

Spring Length ExampleSpringExamplebdd][

spring1 : Spring
«block»

length : LinearDistance
values

Spring
«block»

length : LinearDistance
b : Flange
a : Flange

parameters

{length.value= | a.position.value - b.position.value |}
constraints

SpringLength
«constraint»

SpringQuantities : SystemOfQuantities
«block»

value = 50.0

spring1.b.position : LinearPosition
«valueType»

value = 8.0

spring1.a.position : LinearPosition
«valueType»

value = 42.0

spring1.length : LinearDistance
«valueType»

lengthQK : SimpleQuantityKind

SpringUnits : SystemOfUnits
«block»

spring1.springLength :
SpringLength

«constraint»

position : LinearPosition
values

Flange
«block»

metre : SimpleUnit

spring1.b : Flange
«block»

spring1.a : Flange
«block»

attributes
value : Real

«valueType»

unit = metre

LinearPosition
«valueType»

value : Real
attributes

unit = metre
«valueType»

LinearDistance
«valueType»

primary
quantityKind

quantityKind

systemOfQuantities

length ba

positionposition

unitbaseUnitquantityKindbaseQuantityKind

springLength

springLengthba

Figure E.10. Spring Length Example

E.6 Model Library of SysML Quantity Kinds and Units for ISO 80000

E.6.1 Overview

This non-normative extension defines a model library of SysML QuantityKind and Unit definitions for a subset of
quantities and units defined by the International System of Quantities (ISQ) and the International System of Units
(SI). The specific quantities and units in this library are defined by ISO 80000-1 Quantities and units - Part1:
General. ISO/IEC 80000 currently has fourteen parts that define many quantities and units for use within various
fields of science and technology. Part 1 defines base quantities and units used by other parts as well as a starting set
of derived quantities and units with special names and symbols.

E.6.2 Unit and Quantity Kinds

The model library defined in this sub clause contains SysML QuantityKind and Unit elements as defined by Section
8, “Blocks.” Each QuantityKind or Unit element may optionally carry a “definitionURI” property to document each
quantity kind and unit using additional information available from some external source. One option is for this
definitionURI to identify an element of a QUDV model (see Section E.5, Model Library for Quantities, Units,
Dimensions, and Values (QUDV)) that more fully describes the same quantities and units, including the systems of
quantities and units they belong to, and the means by which they may be derived from each other. Section E.5.4
Usage Examples contains examples of such QUDV definitions that could be referenced by these definitionURIs.

OMG Systems Modeling Language, v1.7 279

pkg

{uri=https://www.omg.org/spec/SysML/20220801/ISO80000.xmi}
ISO-80000
«ModelLibrary»

{uri=https://www.omg.org/spec/SysML/20220801/SysML.xmi}
SysML
«profile»

{uri=https://www.omg.org/spec/SysML/20220801/QUDV.xmi}
QUDV

«ModelLibrary»

«import»

«apply»

«apply»

Figure E.11. Model libraries of SysML Quantity Kinds and Units for the covered content of ISO 80000 parts
3,4,5,6,7,9,10 and 13

280 OMG Systems Modeling Language, v1.7

SysML QuantityKinds and Units for the covered content of ISO 80000ISO 80000[Package]pkg][

IEC80000-6 Electromagnetism

QuantitiesUnits

IEC80000-13 Information Science and Technology

Quantities

Prefixes

Units

ISO80000-10 Atomic and Nuclear Physics

QuantitiesUnits

ISO80000-9 Physical Chemestry and Molecular Physics

QuantitiesUnits

ISO80000-7 Light

QuantitiesUnits

ISO80000-5 Thermodynamics

QuantitiesUnits

ISO80000-4 Mechanics

QuantitiesUnits

ISO80000-3 Space and Time

QuantitiesUnits

ISO80000-2 Mathematical Signs and
Symbols

Constant Numbers

ISO80000-1 General

Prefixes

«import»

«import»«import»

«import»

«import»

«import»

«import»

«import»«import»

«import»

«import»«import»

«import»

«import»«import»

«import»

«import»«import»

«import»

«import»«import»

«import»

«import»

«import»

«import» «import»

«import»

«import»

«import»

«import»

«import»

«import»

Figure E.12. Organization of the definitions of units and quantities from the normative parts of ISO 80000
covered in SysML 1.4, which includes all the normative content of parts 3,4,5,6; the subset of parts 7,9,10
corresponding to the content from SysML 1.3 and the subset of part 13 pertaining to commonly used units of
information. Parts 8,11 and 12 are not covered because none of their units and quantities were referenced in
previous versions of SysML nor in the summary tables in ISO 80000-1

OMG Systems Modeling Language, v1.7 281

Systems of Units and Quantities for the covered parts of ISO 80000ISO 80000[Package]bdd][

ISO-80000 QuantityKinds : SystemOfQuantities

IEC 80000-13 QuantityKinds Subset : SystemOfQuantities

ISO 80000-4 Quantities : SystemOfQuantities

ISO 80000-3 Quantities : SystemOfQuantities

ISO-80000 Units : SystemOfUnits

ISO 80000-7 Quantities : SystemOfQuantities

ISO 80000-10 Quantities : SystemOfQuantities

ISO 80000-9 Quantities : SystemOfQuantities

IEC 80000-6 Quantities : SystemOfQuantities

ISO 80000-5 Quantities : SystemOfQuantities

IEC 80000-13 Units Subset : SystemOfUnits

ISO 80000-4 Units : SystemOfUnits

ISO 80000-3 Units : SystemOfUnits

ISO 80000-7 Units : SystemOfUnits

ISO 80000-10 Units : SystemOfUnits

ISO 80000-9 Units : SystemOfUnits

IEC 80000-6 Units : SystemOfUnits

ISO 80000-5 Units : SystemOfUnits

ISQ : SystemOfQuantitiesSI : SystemOfUnits

includedSystemOfUnits
includedSystemOfQuantities

systemOfQuantities

systemOfQuantities

includedSystemOfUnits includedSystemOfQuantities

systemOfQuantities

systemOfQuantities

systemOfQuantities

systemOfQuantities

systemOfQuantities

systemOfQuantities

systemOfQuantities

systemOfQuantities

usedSystemOfUnits usedSystemOfQuantities

includedSystemOfUnits includedSystemOfQuantities

includedSystemOfQuantitiesincludedSystemOfUnits

includedSystemOfQuantitiesincludedSystemOfUnits

includedSystemOfQuantitiesincludedSystemOfUnits

includedSystemOfUnits includedSystemOfQuantities

includedSystemOfQuantitiesincludedSystemOfUnits

includedSystemOfQuantities

Figure E.13. Content relationships for the systems of units and quantities in from the different parts of ISO
80000 in relation to ISO 80000 as a whole and to the International System of Units (SI) and quantities (ISQ)

282 OMG Systems Modeling Language, v1.7

SysML Quantity Kinds and Units for the covered content of ISO 80000 Table 1 (from ISO 80000-1) SI base units for the ISQ base quantities[Package]bdd][

symbol = "SI"
definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter1/1-2.html"

SI : SystemOfUnits

description = "ISO 80000-7, 7-35.a"
definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/candela.html"

candela : SimpleUnit

isUnitCountOfEntities = true
description = "ISO 80000-9, 9-1.a"
definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/mole.html"

mole : SimpleUnit

description = "ISO 80000-5, 5-1.a, 5-33.a"
definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/kelvin.html"

kelvin : SimpleUnit

description = "IEC 80000-6, 6-1.a"
definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/ampere.html"

ampere : SimpleUnit

description = "ISO 80000-3, 3-1.a, 3-17.a"
definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/metre.html"

metre : SimpleUnit

description = "ISO 80000-3, 3-7.a, 3-12.a, 3-13.a"
definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/second.html"

second : SimpleUnit

isInvertible = true
description = "ISO 80000-4, 4-1.a"
definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/kilogram.html"

kilogram : PrefixedUnit

ISO-80000 Units : SystemOfUnits

description = "ISO 80000-4, 4-1.a"

gram : SimpleUnit

symbol = "ISQ"
definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter1/1-2.html"

ISQ : SystemOfQuantities

description = "ISO 80000-3, 3-7"

time : SimpleQuantityKind

description = "ISO 80000-4, 4-1"

mass : SimpleQuantityKind

description = "IEC 80000-6, 6-1"

electric current : SimpleQuantityKind

description = "ISO 80000-5, 5-1"

thermodynamic temperature : SimpleQuantityKind

description = "ISO 80000-3, 3-1.1"

length : SimpleQuantityKind

description = "ISO 80000-7, 7-35"

luminous intensity : SimpleQuantityKind

isNumberOfEntities = true
description = "ISO 80000-9, 9-1"

amount of substance : SimpleQuantityKind

ISO-80000 QuantityKinds : SystemOfQuantities

symbol = "k"

kilo : Prefix

baseUnit
baseQuantityKind

baseUnit

baseQuantityKind

baseUnit
baseQuantityKind

baseUnit
baseQuantityKind

baseUnit
baseQuantityKind

baseUnit
baseQuantityKind

baseQuantityKind

baseUnit

systemOfQuantities

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

systemOfQuantities

prefix

usedSystemOfQuantities usedSystemOfUnits

prefix

referenceUnit

Figure E.14. Table 1 (from ISO 80000-1) SI base units for the ISQ base quantities

OMG Systems Modeling Language, v1.7 283

Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (1)SysML Quantity Kinds and Units for the covered content of ISO 80000bdd][

ISO 80000-4 Units : SystemOfUnits

SI : SystemOfUnits

ISO-80000 Units : SystemOfUnits

ISQ : SystemOfQuantities

ISO-80000 QuantityKinds : SystemOfQuantities

ISO 80000-4 Quantities : SystemOfQuantities

description = "ISO 80000-4, 4-27.4"

mechanical energy : SimpleQuantityKind

description = "ISO 80000-4, 4-27.a, 4-34.a, 4-36.a"

joule : DerivedUnit

description = "ISO 80000-4, 4-15.a, 4-18.a"

pascal : DerivedUnit

description = "ISO 80000-4, 4-9.a"

newton : DerivedUnit

ISO 80000-3 Quantities : SystemOfQuantities ISO 80000-3 Units : SystemOfUnits

ISO 80000-5 Quantities : SystemOfQuantities

description = "ISO 80000-3, 3-15.a"

hertz : DerivedUnit

isUnitForQuantityOfDimensionOne = true
description = "ISO 80000-3, 3-5.a"

radian : DerivedUnit

isUnitForQuantityOfDimensionOne = true
description = "ISO 80000-3, 3-6.a"

steradian : DerivedUnit

description = "ISO 80000-5, 5-6"

amount of heat : SimpleQuantityKind

description = "ISO 80000-4, 4-27.2"

potential energy : DerivedQuantityKind

description = "ISO 80000-4, 4-27.3"

kinetic energy : DerivedQuantityKind

description = "ISO 80000-4, 4-27.1"

work : SimpleQuantityKind

description = "ISO 80000-4, 4-15.1"

pressure : DerivedQuantityKind

description = "ISO 80000-4, 4-9.1"

force : DerivedQuantityKind

description = "ISO 80000-3, 3-15.1"

frequency : DerivedQuantityKind

isQuantityOfDimensionOne = true
description = "ISO 80000-3, 3-6"

solid angle : DerivedQuantityKind

isQuantityOfDimensionOne = true
description = "ISO 80000-3, 3-5"

plane angle : DerivedQuantityKind

indirectly includedSystemOfQuantities indirectly includedSystemOfUnits

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind
unit

quantityKind
unit

quantityKind
unit

unit
quantityKind

systemOfQuantities

systemOfQuantities

systemOfQuantities

systemOfQuantities

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

general

quantityKind

general

quantityKind

unit

general

includedSystemOfQuantities

includedSystemOfQuantities

usedSystemOfQuantities usedSystemOfUnits

general

Figure E.15. Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (1)

284 OMG Systems Modeling Language, v1.7

Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (2)SysML Quantity Kinds and Units for the covered content of ISO 80000bdd][

ISO-80000 Units : SystemOfUnits

SI : SystemOfUnits

ISO-80000 QuantityKinds : SystemOfQuantities

ISQ : SystemOfQuantities

ISO 80000-4 Quantities : SystemOfQuantities

description = "IEC 80000-6, 6-11.2"

electric potential difference : SimpleQuantityKind

description = "ISO 80000-4, 4-26.a"

newton metre per second : DerivedUnit

description = "IEC 80000-6, 6-11.a"

volt : SimpleUnit

description = "IEC 80000-6, 6-2.a"

coulomb : DerivedUnit

IEC 80000-6 Quantities : SystemOfQuantities

description = "ISO 80000-4, 4-26.a, 4-56.a"

watt : SimpleUnit

description = "ISO 80000-4, 4-26.a"

joule per second : DerivedUnit

description = "ISO 80000-4, 4-26"

power : DerivedQuantityKind

description = "IEC 80000-6, 6-11.1"

electric potential : DerivedQuantityKind

description = "IEC 80000-6, 6-2"

electric charge : DerivedQuantityKind

ISO 80000-4 Units : SystemOfUnits

IEC 80000-6 Units : SystemOfUnits

indirectly includedSystemOfQuantities indirectly includedSystemOfUnits

quantityKind

systemOfQuantities

unitquantityKind

unit
quantityKind

systemOfQuantities

unit

quantityKind

quantityKind

quantityKind

systemOfQuantities

systemOfQuantities

unit

quantityKind
unit

general

usedSystemOfUnitsusedSystemOfQuantities

general

general

Figure E.16. Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (2)

OMG Systems Modeling Language, v1.7 285

Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (3)SysML Quantity Kinds and Units for the covered content of ISO 80000bdd][

ISQ : SystemOfQuantities

ISO-80000 QuantityKinds : SystemOfQuantities

SI : SystemOfUnits

ISO-80000 Units : SystemOfUnits

ISO 80000-7 Quantities : SystemOfQuantities

ISO 80000-5 Quantities : SystemOfQuantities

description = "ISO 80000-7, 7-36"

illuminance : DerivedQuantityKind

description = "ISO 80000-7, 7-32"

luminous flux : DerivedQuantityKind

description = "ISO 80000-5, 5-2"

celsiusTemperature : SimpleQuantityKind

description = "IEC 80000-6, 6-41.1"

inductance : DerivedQuantityKind

description = "IEC 80000-6, 6-21"

magnetic flux density : DerivedQuantityKind

description = "IEC 80000-6, 6-22.1"

magnetic flux : DerivedQuantityKind

description = "IEC 80000-6, 6-47"

electric conductance : DerivedQuantityKind

description = "IEC 80000-6, 6-46"

electric resistance : DerivedQuantityKind

description = "IEC 80000-6, 6-13"

capacitance : DerivedQuantityKind

IEC 80000-6 Quantities : SystemOfQuantities

description = "ISO 80000-7, 7-36.a"

lux : DerivedUnit

description = "ISO 80000-7, 7-32.a"

lumen : DerivedUnit

offset = 273.16
isInvertible = true
description = "ISO 80000-5, 5-2.a"

degree celsius : AffineConversionUnit

description = "IEC 80000-6, 6-41.a"

henry : SimpleUnit

description = "IEC 80000-6, 6-21.a"

tesla : SimpleUnit

description = "IEC 80000-6, 6-22.a"

weber : SimpleUnit

description = "IEC 80000-6, 6-47.a"

siemens : SimpleUnit

description = "IEC 80000-6, 6-46.a"

ohm : SimpleUnit

description = "IEC 80000-6, 6-13.a"

farad : DerivedUnit

ISO 80000-7 Units : SystemOfUnits

ISO 80000-5 Units : SystemOfUnits

IEC 80000-6 Units : SystemOfUnits

indirectly includedSystemOfQuantities indirectly includedSystemOfUnits

quantityKind unit

quantityKind unit

quantityKind unit

systemOfQuantities

unitquantityKind

systemOfQuantities

quantityKind unit

systemOfQuantities

unit
quantityKind

unit
quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

systemOfQuantities

systemOfQuantities

unit
quantityKind

includedSystemOfQuantities includedSystemOfUnits

quantityKind
unit

includedSystemOfQuantities includedSystemOfUnits

usedSystemOfQuantities usedSystemOfUnits

Figure E.17. Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (3)

286 OMG Systems Modeling Language, v1.7

Table 3 (from the SI brochure) SI derived units with special names and symbolsSysML Quantity Kinds and Units for the covered content of ISO 80000bdd][

ISO-80000 Units : SystemOfUnits

SI : SystemOfUnits

ISO 80000-10 Quantities : SystemOfQuantities

ISO-80000 QuantityKinds : SystemOfQuantities

ISQ : SystemOfQuantities

ISO 80000-10 Units : SystemOfUnits

description = "ISO 80000-10, 10-86"

dose equivalent : DerivedQuantityKind

description = "ISO 80000-10, 10-81.1"

absorbed dose : DerivedQuantityKind

description = "ISO 80000-10, 10-29"

radionuclide activity : DerivedQuantityKind

description = "ISO 80000-10, 10-86.a"

sievert : DerivedUnit

description = "ISO 80000-10, 10-84.a"

gray : DerivedUnit

description = "ISO 80000-10, 10-29.a"

becquerel : DerivedUnit

indirectly includedSystemOfQuantities indirectly includedSystemOfUnits

systemOfQuantities

quantityKind

quantityKind

quantityKind

quantityKind
unit

systemOfQuantities

systemOfQuantities

quantityKind
unit

quantityKind unit

usedSystemOfUnitsusedSystemOfQuantities

Figure E.18. Table 3 (from the SI brochure) SI derived units with special names and symbols

E.6.3 ISO 80000-1 Prefixes

Table E.6. The decimal and binary prefixes in scope of the International System of Units (SI) which uses the
ISO 80000 system of units and its included systems of units such as ISO 80000-13

Prefix name Prefix Factor (num, den) Defining Part

yocto 1,10^24 ISO 80000-1 General

zepto 1,10^21 ISO 80000-1 General

atto 1,10^18 ISO 80000-1 General

femto 1,10^15 ISO 80000-1 General

pico 1,10^12 ISO 80000-1 General

nano 1,10^9 ISO 80000-1 General

micro 1,10^6 ISO 80000-1 General

milli 1,10^3 ISO 80000-1 General

centi 1,10^2 ISO 80000-1 General

deci 1,10^1 ISO 80000-1 General

deca 10^1,1 ISO 80000-1 General

hecto 10^2,1 ISO 80000-1 General

kilo 10^3,1 ISO 80000-1 General

mega 10^6,1 ISO 80000-1 General

giga 10^9,1 ISO 80000-1 General

tera 10^12,1 ISO 80000-1 General

peta 10^15,1 ISO 80000-1 General

exa 10^18,1 ISO 80000-1 General

OMG Systems Modeling Language, v1.7 287

Prefix name Prefix Factor (num, den) Defining Part

zetta 10^21,1 ISO 80000-1 General

yotta 10^24,1 ISO 80000-1 General

kibi (2^10)^1,1
IEC80000-13 Information Science
and Technology

mebi (2^10)^2,1
IEC80000-13 Information Science
and Technology

gibi (2^10)^3,1
IEC80000-13 Information Science
and Technology

tebi (2^10)^4,1
IEC80000-13 Information Science
and Technology

pebi (2^10)^5,1
IEC80000-13 Information Science
and Technology

exbi (2^10)^6,1
IEC80000-13 Information Science
and Technology

zebi (2^10)^7,1
IEC80000-13 Information Science
and Technology

yobi (2^10)^8,1
IEC80000-13 Information Science
and Technology

E.6.4 ISO 80000-2 Mathematical Signs and Symbols

ISO 80000 part 2 defines Mathematical Signs and Symbols used in other ISO 80000 parts. In the SysML library, this
part contains definitions of constant numbers used across all other parts.

288 OMG Systems Modeling Language, v1.7

Constant numbers used throughout the SysML ISO 80000 library.Constant Numbers[Package]bdd][

numerator = (2^10)^8
denominator = 1

(2^10)^8,1 : Rational

numerator = (2^10)^7
denominator = 1

(2^10)^7,1 : Rational

numerator = (2^10)^6
denominator = 1

(2^10)^6,1 : Rational

numerator = (2^10)^5
denominator = 1

(2^10)^5,1 : Rational

numerator = (2^10)^4
denominator = 1

(2^10)^4,1 : Rational

numerator = (2^10)^3
denominator = 1

(2^10)^3,1 : Rational

numerator = (2^10)^2
denominator = 1

(2^10)^2,1 : Rational

numerator = (2^10)^1
denominator = 1

(2^10)^1,1 : Rational

numerator = 1
denominator = 10^24

1,10^24 : Rational

numerator = 1
denominator = 10^23

1,10^23 : Rational

numerator = 1
denominator = 10^22

1,10^22 : Rational

numerator = 1
denominator = 10^21

1,10^21 : Rational

numerator = 1
denominator = 10^20

1,10^20 : Rational

numerator = 1
denominator = 10^19

1,10^19 : Rational

numerator = 1
denominator = 10^18

1,10^18 : Rational

numerator = 1
denominator = 10^17

1,10^17 : Rational

numerator = 1
denominator = 10^16

1,10^16 : Rational

numerator = 1
denominator = 10^15

1,10^15 : Rational

numerator = 1
denominator = 10^14

1,10^14 : Rational

numerator = 1
denominator = 10^13

1,10^13 : Rational

numerator = 1
denominator = 10^12

1,10^12 : Rational

numerator = 1
denominator = 10^11

1,10^11 : Rational

numerator = 1
denominator = 10^10

1,10^10 : Rational

numerator = 1
denominator = 10^9

1,10^9 : Rational

numerator = 1
denominator = 10^8

1,10^8 : Rational

numerator = 1
denominator = 10^7

1,10^7 : Rational

numerator = 1
denominator = 10^6

1,10^6 : Rational

numerator = 1
denominator = 10^5

1,10^5 : Rational

numerator = 1
denominator = 10^4

1,10^4 : Rational

numerator = 1
denominator = 10^3

1,10^3 : Rational

numerator = 1
denominator = 10^2

1,10^2 : Rational

numerator = 1
denominator = 10^1

1,10^1 : Rational

numerator = 27316
denominator = 10^2

273.16 : Rational

numerator = 3
denominator = 1

3,1 : Rational

numerator = 2
denominator = 1

2,1 : Rational

numerator = 1
denominator = 60

1,60 : Rational

numerator = 1
denominator = 1

1,1 : Rational

numerator = -3
denominator = 1

-3,1 : Rational

numerator = -2
denominator = 1

-2,1 : Rational

numerator = -1
denominator = 1

-1,1 : Rational

numerator = 10^24
denominator = 1

10^24,1 : Rational

numerator = 10^23
denominator = 1

10^23,1 : Rational

numerator = 10^22
denominator = 1

10^22,1 : Rational

numerator = 10^21
denominator = 1

10^21,1 : Rational

numerator = 10^20
denominator = 1

10^20,1 : Rational

numerator = 10^19
denominator = 1

10^19,1 : Rational

numerator = 10^18
denominator = 1

10^18,1 : Rational

numerator = 10^17
denominator = 1

10^17,1 : Rational

numerator = 10^16
denominator = 1

10^16,1 : Rational

numerator = 10^15
denominator = 1

10^15,1 : Rational

numerator = 10^14
denominator = 1

10^14,1 : Rational

numerator = 10^13
denominator = 1

10^13,1 : Rational

numerator = 10^12
denominator = 1

10^12,1 : Rational

numerator = 10^11
denominator = 1

10^11,1 : Rational

numerator = 10^10
denominator = 1

10^10,1 : Rational

numerator = 10^9
denominator = 1

10^9,1 : Rational

numerator = 10^8
denominator = 1

10^8,1 : Rational

numerator = 10^7
denominator = 1

10^7,1 : Rational

numerator = 10^6
denominator = 1

10^6,1 : Rational

numerator = 10^5
denominator = 1

10^5,1 : Rational

numerator = 10^4
denominator = 1

10^4,1 : Rational

numerator = 10^3
denominator = 1

10^3,1 : Rational

numerator = 10^2
denominator = 1

10^2,1 : Rational

numerator = 10^1
denominator = 1

10^1,1 : Rational

(2^10)^8 : Integer

(2^10)^7 : Integer

(2^10)^6 : Integer

(2^10)^5 : Integer

(2^10)^4 : Integer

(2^10)^3 : Integer

(2^10)^2 : Integer

(2^10)^1 : Integer

Pi/200 : RealPi/180 : Real ln(10) : Real

27316 : Integer

60 : Integer

24 : Integer

10^24 : Integer

10^23 : Integer

10^22 : Integer

10^21 : Integer

10^20 : Integer

10^19 : Integer

10^18 : Integer

10^17 : Integer

10^16 : Integer

10^15 : Integer

10^14 : Integer

10^13 : Integer

10^12 : Integer

10^11 : Integer

10^10 : Integer

10^9 : Integer

10^8 : Integer

10^7 : Integer

10^6 : Integer

10^5 : Integer

10^4 : Integer

10^3 : Integer

10^2 : Integer

10^1 : Integer

8 : Integer

3 : Integer

2 : Integer

1 : Integer

-3 : Integer

-2 : Integer

-1 : Integer

Figure E.19. Constant numbers used throughout the SysML ISO 80000 library.

E.6.5 Summary of the covered parts of ISO 80000

The following sub clauses provide a summary overview of all definitions of units and quantity kinds grouped by
ISO 80000 part (3,4,5,6,7,9,10,13). Note that “quantities” in the ISO documents correspond to “QuantityKinds” in
QUDV. As explained in Section 8.3.3.2.1, QuantityKind, the type of a SysML value property (i.e., a VIM
“quantity”), a SysML ValueType, specifies the QUDV QuantityKind aspects that this “quantity” has in common
with other “quantities” typed by SysML ValueTypes referencing the same QUDV QuantityKind aspect.

The SysML definitions are indexed and ordered according to their corresponding ISO 80000 definition. The ISO
80000 part document provides the authoritative reference for the meaning of the corresponding SysML definitions
of units and quantity kinds.

Prefixes apply for all units except for units corresponding to quantities of dimension one or for units in non-reduced
form. The 20 decimal prefixes apply to such units in parts 3,4,5,6,7,9,10; the 8 binary prefixes apply to such units in
parts 13. For a derived unit defined in terms of N other units, there are 20^N possible prefixed derived units; far too
many to create explicitly. This library contains only the combinations for the first factor for each derived unit.

OMG Systems Modeling Language, v1.7 289

Finally, the library includes value type definitions for the possible combinations of quantity kinds and compatible
units, and prefixed units represented in the library.

All value type definitions follow the same pattern: a top-level value type is defined with only the quantity kind. This
value type is compatible with values typed by specializations of that top-level value type that specify a particular
unit. The following diagram shows the resulting taxonomy for the value types about mass (ISO 80000-4, 4-1) and all
applicable prefixes for the corresponding unit, gram (ISO 80000-4, 4-1.a).

mass value types[Package] massbdd][

mass
«ValueType»

{quantityKind = mass}

mass(zettagram)
«ValueType»

{quantityKind = mass,
unit = zettagram}

mass(zeptogram)
«ValueType»

{quantityKind = mass,
unit = zeptogram}

mass(yottagram)
«ValueType»

{quantityKind = mass,
unit = yottagram}

mass(yoctogram)
«ValueType»

{quantityKind = mass,
unit = yoctogram}

mass(teragram)
«ValueType»

{quantityKind = mass,
unit = teragram}

mass(picogram)
«ValueType»

{quantityKind = mass,
unit = picogram}

mass(petagram)
«ValueType»

{quantityKind = mass,
unit = petagram}

mass(nanogram)
«ValueType»

{quantityKind = mass,
unit = nanogram}

mass(milligram)
«ValueType»

{quantityKind = mass,
unit = milligram}

mass(microgram)
«ValueType»

{quantityKind = mass,
unit = microgram}

mass(megagram)
«ValueType»

{quantityKind = mass,
unit = megagram}

mass(kilogram)
«ValueType»

{quantityKind = mass,
unit = kilogram}

mass(hectogram)
«ValueType»

{quantityKind = mass,
unit = hectogram}

mass(gigagram)
«ValueType»

{quantityKind = mass,
unit = gigagram}

mass(femtogram)
«ValueType»

{quantityKind = mass,
unit = femtogram}

mass(exagram)
«ValueType»

{quantityKind = mass,
unit = exagram}

mass(decigram)
«ValueType»

{quantityKind = mass,
unit = decigram}

mass(decagram)
«ValueType»

{quantityKind = mass,
unit = decagram}

mass(centigram)
«ValueType»

{quantityKind = mass,
unit = centigram}

mass(attogram)
«ValueType»

{quantityKind = mass,
unit = attogram}

mass(gram)
«ValueType»

{quantityKind = mass,
unit = gram}

Figure E.20. Example of value type definitions for a quantity and applicable units and prefixed units

E.6.5.1 ISO 80000-3 Space and Time

All 25 entries (including sub-entries) in the normative contents of ISO 80000-3 are modeled as summarized below.
Table E.7. Normative units in ISO 80000-3 (1 of 2)

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

metre
ISO 80000-3,
3-1.a, 3-17.a

m
ISO 80000-3,
3-1.1

metre to the
power minus
one

ISO 80000-3,
3-2.a, 3-18.a,
3-19.a, 3-25.a

m-1
ISO 80000-3,
3-2 [5]

square metre
ISO 80000-3,
3-3.a

m2
ISO 80000-3,
3-3

290 OMG Systems Modeling Language, v1.7

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

cubic metre
ISO 80000-3,
3-4.a

m3
ISO 80000-3,
3-4

litre
ISO 80000-3,
3-4.b

l

radian
ISO 80000-3,
3-5.a

rad ISO 80000-3 true

degree angle degree angle o true

minute angle
ISO 80000-3,
3-5.c

' true

second angle
ISO 80000-3,
3-5.d

" true

gon
ISO 80000-3,
3-5.e

gon true

steradian
ISO 80000-3,
3-6.a

srad
ISO 80000-3,
3-6

true

second
ISO 80000-3,
3-7.a, 3-12.a,
3-13.a

s
ISO 80000-3,
3-7

minute
ISO 80000-3,
3-7.b

min

hour
ISO 80000-3,
3-7.c

h

day
ISO 80000-3,
3-7.d

d

metre per
second

ISO 80000-3,
3-8.a, 3-20.a

m/s
ISO 80000-3,
3-8.1

metre per
second
squared

ISO 80000-3,
3-9.a

m/s2
ISO 80000-3,
3-9.1

radian per
second

ISO 80000-3,
3-10.a, 3-16.a

rad/s
ISO 80000-3,
3-15.b, 3-16.b,
3-23.\a [4\]

ISO 80000-3,
3-15.b, 3-16.b,
3-23.\a [4\]

radian per
second
squared

ISO 80000-3,
3-11.a

rad/s2
ISO 80000-3,
3-11

number of
turns

ISO 80000-3,
3-14.a

ISO 80000-3,
3-14

true

OMG Systems Modeling Language, v1.7 291

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

revolution
ISO 80000-3,
3-14.a

ISO 80000-3,
3-14.a

true

hertz
ISO 80000-3,
3-15.a

ISO 80000-3,
3-14.a

true

Table E.8. Normative units in ISO 80000-3 (2 of 2)

Unit name Description Symbol General units
Quantity

kinds

is unit for
quantity of

dimension 1?

is reduced
form?

number of
turns per
second

ISO 80000-3,
3-15.b

s-1
ISO 80000-3,
3- 15.b, 3-16.b

ISO 80000-3,
3-15.2 [6]

second to the
power minus
one

ISO 80000-3,
3-15.b, 3-
16.b, 3-23.a

s-1
ISO 80000-3,
3-23 [6]

revolution per
second

ISO 80000-3,
3-15.b

r/s
ISO 80000-3,
3-15.b

revolution per
minute

ISO 80000-3,
3-15.b

r/min ISO 80000-3

neper
ISO 80000-3,
3-21.a, 3-
22.a, 3-24.b

Np
ISO 80000-3,
3-24

true

bel
ISO 80000-3,
3-21.b, 3-22.b

B
ISO 80000-3,
3-24 [6]

true

bel per
second

ISO 80000-3,
3-23.b, 3-24.b

B/s
ISO 80000-3,
3-15.b, 3-16.b,
3-23.a [4]

neper per
second

ISO 80000-3,
3-23.b

Np/s
ISO 80000-3,
3-15.b, 3-16.b,
3-23.a

E.6.5.1.1 Normative Quantity kinds

Table E.9. Normative quantity kinds in ISO 80000-3 (1 of 2)

Quantity Kinds
name

Description Symbol General is dimension of 1?

length ISO 80000-3, 3-1.1 l,L

292 OMG Systems Modeling Language, v1.7

Quantity Kinds
name

Description Symbol General is dimension of 1?

breadth ISO 80000-3, 3-1.2 b,B
ISO 80000-3, 3-1.1
[5]

height ISO 80000-3, 3-1.3 h,H
ISO 80000-3, 3-1.1
[5]

thickness ISO 80000-3, 3-1.4 d,δ
ISO 80000-3, 3-1.1
[5]

radius ISO 80000-3, 3-1.5 r,R
ISO 80000-3, 3-1.1
[5]

radial distance ISO 80000-3, 3-1.6 rQ,ρ
ISO 80000-3, 3-1.1
[5]

diameter ISO 80000-3, 3-1.7 d,D
ISO 80000-3, 3-1.1
[5]

length of path ISO 80000-3, 3-1.8 s
ISO 80000-3, 3-1.1
[5]

distance ISO 80000-3, 3-1.9 d,r
ISO 80000-3, 3-1.1
[5]

cartesian coordinates ISO 80000-3, 3-1.10 x,y,z
ISO 80000-3, 3-1.1
[5]

position vector ISO 80000-3, 3-1.11 r
ISO 80000-3, 3-1.1
[5]

displacement ISO 80000-3, 3-1.12 ∆r
ISO 80000-3, 3-1.1
[5]

radius of curvature ISO 80000-3, 3-1.13 ρ
ISO 80000-3, 3-1.1
[5]

curvature ISO 80000-3, 3-2 χ

area ISO 80000-3, 3-3 A,(S)

volume ISO 80000-3, 3-4 V

plane angle ISO 80000-3, 3-5 α,β,γ,θ,φ true

solid angle ISO 80000-3, 3-6 Ω true

time ISO 80000-3, 3-7 t

OMG Systems Modeling Language, v1.7 293

Quantity Kinds
name

Description Symbol General is dimension of 1?

speed ISO 80000-3, 3-8.1 u,v,w
ISO 80000-3, 3-8.1
[5]

velocity ISO 80000-3, 3-8.1 v

speed of propagation
of waves

ISO 80000-3, 3-8.2 c
ISO 80000-3, 3-8.1
[5]

acceleration ISO 80000-3, 3-9.1 a

acceleration of free
fall

ISO 80000-3, 3-9.2 g
ISO 80000-3, 3-9.1
[5]

angular velocity ISO 80000-3, 3-10 ω,ω

angular acceleration ISO 80000-3, 3-11 α

period duration ISO 80000-3, 3-12 T ISO 80000-3, 3-7 [5]

time constant for an
expoentially varying
quantity

ISO 80000-3, 3-13 τ,(T) ISO 80000-3, 3-7 [5]

rotation ISO 80000-3, 3-14 N true

frequency ISO 80000-3, 3-15.1 f,ν

Table E.10. Normative quantity kinds in ISO 80000-3 (2 of 2)

Quantity Kind
name

Description Symbol General is dimension of 1?

rational frequency ISO 80000-3, 3-15.2 n

angular frequency ISO 80000-3, 3-16 ω

wavelength ISO 80000-3, 3-17 λ
ISO 80000-3, 3-1.1
[5]

linear repetency ISO 80000-3, 3-18

angular repetency ISO 80000-3, 3-19 k

phase velocity ISO 80000-3, 3-20.1 c,v,cφ,vφ
ISO 80000-3, 3-8.1
[5]

group velocity ISO 80000-3, 3-20.2 cg, vg
ISO 80000-3, 3-8.1
[5]

level of a field
quantity

ISO 80000-3, 3-21 LF true

level of a power
quantity

ISO 80000-3, 3-22 LP true

294 OMG Systems Modeling Language, v1.7

Quantity Kind
name

Description Symbol General is dimension of 1?

damping coefficient
for an exponentially
varying quantity

ISO 80000-3, 3-23 \del

logarithmic
decrement for an
exponentially
varying quantity

ISO 80000-3, 3-24 \Lambda
ISO 80000-3, 3-23
[6]

true

attenuation
coefficient for an
exponentially
varying quantity

ISO 80000-3, 3-25.1 \alpha
ISO 80000-3, 3-25.3
[6]

phase coefficient for
an exponentially
varying quantity

ISO 80000-3, 3-25.2 \beta
ISO 80000-3, 3-25.3
[6]

propagation
coefficient for an
exponentially
varying quantity

ISO 80000-3, 3-25.3 \gamma

E.6.5.2 ISO 80000-4 Mechanics

All 37 entries (including sub-entries) in the normative contents of ISO 80000-4 are modeled as summarized below.
Table E.11. Normative units in ISO 80000-4 (1 of 2)

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

gram
ISO 80000-4,
4-1.a

g
ISO 80000-4,
4-1 [10]

tonne
ISO 80000-4,
4-1.b

t

kilogram per
cubic metre

ISO 80000-4,
4-2.a

kg/m3
ISO 80000-4,
4-2 [10]

mass density
ratio

ISO 80000-4,
4-3.a

ISO 80000-4,
4-3 [10]

true

cubic metre
per kilogram

ISO 80000-4,
4-4.a

m3/kg
ISO 80000-4,
4-4 [10]

kilogram per
square metre

ISO 80000-4,
4-5.a

kg/m2
ISO 80000-4,
4-5 [10]

kilogram per
metre

ISO 80000-4,
4-6.a

kg/m
ISO 80000-4,
4-6 [10]

OMG Systems Modeling Language, v1.7 295

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

kilogram
metre squared

ISO 80000-4,
4-7.a

kg.m2
ISO 80000-4,
4-7 [10]

kilogram
metre per
second

ISO 80000-4,
4-8.a

kg.m/s
ISO 80000-4,
4-8 [10]

newton
ISO 80000-4,
4-9.a

N
ISO 80000-4,
4-9.1 [10]

newton metre
squared per
kilogram
squared

ISO 80000-4,
4-10.a

N · m2/kg2
ISO 80000-4,
4-10 [10]

newton second
ISO 80000-4,
4-11.a

N.s
ISO 80000-4,
4-11 [10]

kilogram
metre squared
per second

ISO 80000-4,
4-12.a

kg · m 2/s
ISO 80000-4,
4-12 [10]

newton metre
ISO 80000-4,
4-13.a

N.m
ISO 80000-4,
4-13.1 [10]

newton metre
second

ISO 80000-4,
4-14.a

N.m.s
ISO 80000-4,
4-14 [10]

pascal
ISO 80000-4,
4-15.a, 4-18.a

Pa
ISO 80000-4,
4-15.1 [10]

cubic metre
strain factor

ISO 80000-4,
4-16.a

ISO 80000-4,
4-16.a [7]

ISO 80000-4,
4-16.3 [11]

true

strain factor
ISO 80000-4,
4-16.a

ISO 80000-4,
4-16.1,2,3 [10]

true

metre strain
factor

factor ISO
80000-4,
4-16.a

ISO 80000-4,
4-16.a [7]

ISO 80000-4,
4-16.1 [11]

true

Table E.12. Normative units in ISO 80000-4 (2 of 2)

Unit name Description Symbol General units
Quantity

kinds

is unit for
quantity of

dimension 1?

is reduced
form?

contraction to
elongation
metre ratio

ISO 80000-4,
4-17.a

ISO 80000-4,
4-17 [11]

true

296 OMG Systems Modeling Language, v1.7

Unit name Description Symbol General units
Quantity

kinds

is unit for
quantity of

dimension 1?

is reduced
form?

cubic metre
strain factor
per pascal

ISO 80000-4,
4-19.a

Pa −1
ISO 80000-4,
4-19.a [8]

ISO 80000-4,
4-19 [11]

pascal to the
power minus
one

ISO 80000-4,
4-19.a

Pa −1

metre to the
power of four

ISO 80000-4,
4-20.a

m4
ISO 80000-4,
4-20.1 [11]

newton ratio
ISO 80000-4,
4-22.a

ISO 80000-4,
4-22.1 [13]

true

pascal second
ISO 80000-4,
4-23.a

Pa.s
ISO 80000-4,
4-23 [13]

metre per
second per
metre

ISO 80000-4,
4-23.a

ISO 80000-3,
3-15.b, 3-16.b,
3-23.a [4]

ISO 80000-4,
4-23 [13]

false

square metre
per second

ISO 80000-4,
4-24.a

m2/s

pascal second
kilogram per
cubic metre

ISO 80000-4,
4-24.a

m2/s
ISO 80000-4,
4-24.a [8]

ISO 80000-4,
4-24 [13]

newton per
metre

ISO 80000-4,
4-25.a

N/m
ISO 80000-4,
4-25 [13]

watt
ISO 80000-4,
4-26.a, 4-56.a

W
ISO 80000-4,
4-26.a [8]

joule per
second

ISO 80000-4,
4-26.a

J/s
ISO 80000-4,
4-26.a [8]

newton metre
per second

ISO 80000-4,
4-26.a

N.m/s
ISO 80000-4,
4-26 [13]

joule
ISO 80000-4,
4-27.a, 4-34.a,
4-36.a

J
ISO 80000-4,
4-34 [14]

output watt
ISO 80000-4,
4-28.a

Wout
ISO 80000-4,
4-26.a, 4-56.a
[8]

ISO 80000-4,
4-28 [13]

OMG Systems Modeling Language, v1.7 297

Unit name Description Symbol General units
Quantity

kinds

is unit for
quantity of

dimension 1?

is reduced
form?

output input
watt ratio

ISO 80000-4,
4-28.a

ISO 80000-4,
4-28 [13]

true

input watt
ISO 80000-4,
4-28.a

Win
ISO 80000-4,
4-26.a, 4-56.a
[8]

ISO 80000-4,
4-28 [13]

kilogram per
second

ISO 80000-4,
4-29.a

kg/s
ISO 80000-4,
4-29 [14]

cubic metre
per second

ISO 80000-4,
4-30.a

m3 /s
ISO 80000-4,
4-30 [14]

joule second
ISO 80000-4,
4-37.a

J.s
ISO 80000-4,
4-37 [14]

E.6.5.2.1 Normative Quantity kinds ISO 80000-4

Table E.13. Normative quantity kinds in ISO 80000-4 (1 of 4)

Quantity Kinds
name

Description Symbol General is dimension of 1?

mass ISO 80000-4, 4-1 m

density ISO 80000-4, 4-2
ISO 80000-4, 4-2
[10]

mass density of a
reference substance

ISO 80000-4, 4-2,
4-3

ρ0
ISO 80000-4, 4-2
[10]

mass density ISO 80000-4, 4-2 ρ

relative mass density ISO 80000-4, 4-3 d true

specificVolume ISO 80000-4, 4-4 v

surface density ISO 80000-4, 4-5 ρA

linear density ISO 80000-4, 4-6 ρl

mass moment of
inertia

ISO 80000-4, 4-7 I, J

momentum ISO 80000-4, 4-8 p

force ISO 80000-4, 4-9.1 F

weight ISO 80000-4, 4-9.2 Fg,G

gravitational constant
between two mass
particles

ISO 80000-4, 4-10 G

298 OMG Systems Modeling Language, v1.7

Quantity Kinds
name

Description Symbol General is dimension of 1?

impulse ISO 80000-4, 4-11 I

moment of
momentum

ISO 80000-4, 4-12 L

moment of force ISO 80000-4, 4-13.1 M

torque ISO 80000-4, 4-13.2 T
ISO 80000-4, 4-13.1
[10]

bending moment of
force

ISO 80000-4, 4-13.3 Mb
ISO 80000-4, 4-13.1
[10]

angular impulse ISO 80000-4, 4-14 H

pressure ISO 80000-4, 4-15.1 p

normal stress ISO 80000-4, 4-15.2 \sigma
ISO 80000-4, 4-15.1
[10]

sheer stress ISO 80000-4, 4-15.3 \tau
ISO 80000-4, 4-15.1
[10]

length of item in a
reference state

ISO 80000-4, 4-16 l0
ISO 80000-3, 3-1.1
[5]

increase in length ISO 80000-4, 4-16 ∆l
ISO 80000-3, 3-1.1
[5]

strain
ISO 80000-4,
4-16.1,2,3

true

Table E.14. Normative quantity kinds in ISO 80000-4 (2 of 4)

Quantity Kind
name

Description Symbol General is dimension of 1?

linear strain ISO 80000-4, 4-16.1 ε,(e)
ISO 80000-4,
4-16.1,2,3 [10]

true

thickness of a layer
between two surfaces

ISO 80000-4, 4-16.2 d
ISO 80000-3, 3-1.4
[5]

sheer strain ISO 80000-4, 4-16.2 γ
ISO 80000-4,
4-16.1,2,3 [10]

true

parallel displacement
between two surfaces
of a layer

ISO 80000-4, 4-16.2 ∆x
ISO 80000-3, 3-1.12
[5]

increase in volume ISO 80000-4, 4-16.3 ∆V ISO 80000-3, 3-4 [5]

OMG Systems Modeling Language, v1.7 299

Quantity Kind
name

Description Symbol General is dimension of 1?

volume strain ISO 80000-4, 4-16.3 θ
ISO 80000-4,
4-16.1,2,3 [10]

true

volume in a
reference state

elongation ISO 80000-4, 4-17 ∆l
ISO 80000-3, 3-1.1
[5]

lateral contraction ISO 80000-4, 4-17 ∆δ
ISO 80000-3, 3-1.1
[5]

poisson number ISO 80000-4, 4-17 μ,(ν) true

modulus of elasticity ISO 80000-4, 4-18.1 E
ISO 80000-4,
4-18.1,2,3 [11]

modulus
ISO 80000-4,
4-18.1,2,3

ISO 80000-4, 4-15.1
[10]

modulus of rigidity ISO 80000-4, 4-18.2 G
ISO 80000-4,
4-18.1,2,3 [11]

modulus of
compression

ISO 80000-4, 4-18.3 K
ISO 80000-4,
4-18.1,2,3 [11]

compressibility ISO 80000-4, 4-19 χ

increase in pressure ISO 80000-4, 4-19
ISO 80000-4, 4-15.1
[10]

surface considered ISO 80000-4, 4-20 ISO 80000-3, 3-3 [5]

second axial moment
of area

ISO 80000-4, 4-20.1 Ia

radial distance from
a Q-axis in the plane
of the surface
considered

ISO 80000-4, 4-20.1 rQ
ISO 80000-3, 3-1.6
[5]

second polar moment
of area

ISO 80000-4, 4-20.2 Ip

radial distance from
a Q-axis
perpendicular to the
plane of the surface
considered

ISO 80000-4, 4-20.2 rQ
ISO 80000-3, 3-1.6
[5]

300 OMG Systems Modeling Language, v1.7

Table E.15. Normative quantity kinds in ISO 80000-4 (3 of 4)

Quantity Kind
name

Description Symbol General is dimension 1?

section modulus ISO 80000-4, 4-21 Z,(W)

maximum radial
distance from a Q-
axis in the plane of
the surface
considered

ISO 80000-4, 4-21 IQ, max
ISO 80000-4, 4-20.1
[11]

maximum tangential
component of the
contact force
between two bodies
at rest

ISO 80000-4, 4-22
ISO 80000-4, 4-22
[12]

tangential component
of the contact force
between two sliding
bodies

ISO 80000-4, 4-22
ISO 80000-4, 4-22
[12]

contact force
between two sliding
bodies

ISO 80000-4, 4-22
ISO 80000-4, 4-22
[12]

tangential component
of the contact force
between two bodies
at rest

ISO 80000-4, 4-22
ISO 80000-4, 4-22
[12]

tangential component
of the contact force
between two bodies

ISO 80000-4, 4-22
ISO 80000-4, 4-22
[12]

contact force
between two bodies

ISO 80000-4, 4-22 F
ISO 80000-4, 4-9.1
[10]

normal component of
the contact force
between two sliding
bodies

ISO 80000-4, 4-22
ISO 80000-4, 4-22
[13]

maximum contact
force between two
bodies

ISO 80000-4, 4-22 Fmax
ISO 80000-4, 4-22
[12]

contact force
between two bodies
at rest

ISO 80000-4, 4-22
ISO 80000-4, 4-22
[12]

normal component of
the contact force
between two bodies
at rest

ISO 80000-4, 4-22
ISO 80000-4, 4-22
[13]

normal component of
the contact force
between two bodies

ISO 80000-4, 4-22
ISO 80000-4, 4-22
[12]

OMG Systems Modeling Language, v1.7 301

Table E.16. Normative quantity kinds in ISO 80000-4 (4 of 4)

Quantity Kind
name

Description Symbol General is dimension 1?

dynamic friction
factor

ISO 80000-4, 4-22.1 μ,(f) true

static friction factor ISO 80000-4, 4-22.2 μs,(fs) true

velocity gradient ISO 80000-4, 4-23

dynamic viscosity ISO 80000-4, 4-23

kinematic viscosity ISO 80000-4, 4-24 ν

surface tension ISO 80000-4, 4-25 γ,σ

force component
perpendicular to a
line element in a
surface

ISO 80000-4, 4-25
ISO 80000-4, 4-9.1
[10]

length of line
element in a surface

ISO 80000-4, 4-25
ISO 80000-3, 3-1.1
[5]

power ISO 80000-4, 4-26 P

work ISO 80000-4, 4-27.1 W

potential energy ISO 80000-4, 4-27.2 Ep
ISO 80000-4, 4-27.4
[13]

kinetic energy ISO 80000-4, 4-27.3 Ek
ISO 80000-4, 4-27.4
[13]

mechanical energy ISO 80000-4, 4-27.4 E
ISO 80000-4, 4-27.1
[13]

power efficiency ISO 80000-4, 4-28 n

output power ISO 80000-4, 4-28 Pout
ISO 80000-4, 4-26
[13]

input power ISO 80000-4, 4-28 Pin
ISO 80000-4, 4-26
[13]

mass flow rate ISO 80000-4, 4-29 qm

volume flow rate ISO 80000-4, 4-30 qV

generalized
coordinate

ISO 80000-4, 4-31 qi

generalized velocity ISO 80000-4, 4-32 qi

generalized force ISO 80000-4, 4-33 Qi

generalized potential
energy

ISO 80000-4, 4-34 V(qi , qi dot)

302 OMG Systems Modeling Language, v1.7

Quantity Kind
name

Description Symbol General is dimension 1?

generalized kinetic
energy

ISO 80000-4, 4-34 T(qi , qi dot)

Lagrange function ISO 80000-4, 4-34 L(qi , qi dot)
ISO 80000-4, 4-34
[14]

generalized
momentum

ISO 80000-4, 4-35 pi

generalized
momentum of
velocity

ISO 80000-4, 4-36 pi, qi dot
ISO 80000-4, 4-36
[14]

Hamilton function ISO 80000-4, 4-36 H
ISO 80000-4, 4-36
[14]

action functional ISO 80000-4, 4-37 S

Contact force between two bodies is an example of a taxonomy of specialized quantity kinds induced by different
measurement procedures.

Per ISO 80000-4, 4-31, 4-32, 4-33 and 4-35, there are no measurement units defined for these generalized quantity
kinds; the unit of a particular quantity (i.e., SysML value property) typed by a SysML ValueType referencing a
generalized quantity kind depends on the dimension of that particular quantity.

E.6.5.3 ISO 80000-5 Thermodynamics

All 33 entries (including sub-entries) in the normative contents of ISO 80000-5 are modeled as summarized below.
Table E.17. Normative units in ISO 80000-5 (1 of 2)

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

kelvin
ISO 80000-5,
5-1.a, 5-33.a

K
ISO 80000-5,
5-1 [17]

degree celsius
ISO 80000-5,
5-2.a

°C
ISO 80000-5,
5-2 [17]

cubic metre
coefficient per
kelvin

ISO 80000-5,
5-3.2

K−1
ISO 80000-5,
5-3.a [15]

ISO 80000-5,
5-3.2 [17]

pascal ratio
per kelvin

ISO 80000-5,
5-3.3

K−1
ISO 80000-5,
5-3.a [15]

ISO 80000-5,
5-3.3 [17]

kelvin to the
power minus
one

ISO 80000-5,
5-3.a

K−1

metre
coefficient per
kelvin

ISO 80000-5,
5-3.a

K−1
ISO 80000-5,
5-3.a [15]

ISO 80000-5,
5-3.1 [17]

OMG Systems Modeling Language, v1.7 303

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

pascal ratio
ISO 80000-5,
5-3.a

ISO 80000-5,
5-3.3 [17]

true

pascal per
kelvin

ISO 80000-5,
5-4.a

Pa/K
ISO 80000-5,
5-4 [17]

cubic metre
ratio per
pascal

ISO 80000-5,
5-5.a

Pa−1
ISO 80000-4,
4-19.a [8]

ISO 80000-5,
5-5.1 [17]

watt per
square metre

ISO 80000-5,
5-8.a

W/m2
ISO 80000-5,
5-8 [18]

watt per metre
kelvin

ISO 80000-5,
5-9.a W/(m⋅K)

ISO 80000-5,
5-9 [18]

kelvin per
metre

ISO 80000-5,
5-9.a

K/m
ISO 80000-5,
5-9 [18]

watt per
square metre
per kelvin

ISO 80000-5,
5-10.a W/m2 ⋅K ISO 80000-5,

5-10.1 [18]

square metre
kelvin per
watt

ISO 80000-5,
5-11.a m2 ⋅K/W

ISO 80000-5,
5-11 [18]

kelvin per
watt

ISO 80000-5,
5-12.a

K/W
ISO 80000-5,
5-12 [18]

watt per
kelvin

ISO 80000-5,
5-13.a

W/K
ISO 80000-5,
5-13 [18]

watt square
metre per
joule

ISO 80000-5,
5-14.a W⋅m2 /J

ISO 80000-4,
4-24.a [8]

ISO 80000-5,
5-14 [18]

joule per
kelvin

ISO 80000-5,
5-15.a, 5-18.a,
5-21.a, 5-22.a,
5-23.a

J/K
ISO 80000-5,
5-18 [19]

Table E.18. Normative units in ISO 80000-5 (2 of 2)

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension1?

is reduced
form?

joule per
kilogram
kelvin

ISO 80000-5,
5-16.a J/(kg⋅K)

ISO 80000-5,
5-16.1 [18]

304 OMG Systems Modeling Language, v1.7

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension1?

is reduced
form?

cubic metre
per pascal
ratio

ISO 80000-5,
5-17.a

ISO 80000-5,
5-17.2 [19]

true

cubic metre
per pascal

ISO 80000-5,
5-17.a

m3 / Pa
ISO 80000-5,
5-17.2 [19]

joule per
kilogram
kelvin ratio

ISO 80000-5,
5-17.a

ISO 80000-5,
5-17.1 [19]

true

pascal per
cubic metre

ISO 80000-5,
5-17.a

Pa/m3
ISO 80000-5,
5-17.2 [19]

kelvin joule
per kelvin

ISO 80000-5,
5-20.a

J
ISO 80000-4,
4-27.a,4-34.a,
4-36.a [8]

ISO 80000-5,
5-20. [45] [19]

false

pascal cubic
metre

ISO 80000-5,
5-20.a Pa⋅m3

ISO 80000-4,
4-27.a,4-34.a,
4-36.a [8]

ISO 80000-5,
5-20.3 [19]

kelvin joule
per kelvin
kilogram

ISO 80000-5,
5-21.a

J/K
ISO 80000-5,
5-21.a [16]

ISO 80000-5,
5-21.5 [20]

false

joule per
kilogram

ISO 80000-5,
5-21.a

J/K
ISO 80000-5,
5-21.1 [19]

kilogram ratio
ISO 80000-5,
5-26.a, 5-27.a,
5-28.a, 5-29.a

ISO 80000-5,
5-26 [20]

true

kilogram ratio
fraction

ISO 80000-5,
5-28.a, 5-32.a

ISO 80000-5,
5-28 [21]

true

kilogram per
cubic metre
ratio

ISO 80000-5,
5-31.a

ISO 80000-5,
5-31 [21]

true

E.6.5.3.1 Normative Diagram Kinds

Table E.19. Normative quantity kinds in ISO 80000-5 (1 of 5)

Quantity Kinds
name

Description Symbol General is dimension of 1?

thermodynamic
temperature

ISO 80000-5, 5-1 T,(Θ)

OMG Systems Modeling Language, v1.7 305

Quantity Kinds
name

Description Symbol General is dimension of 1?

celsius Temperature ISO 80000-5, 5-2 t,θ
ISO 80000-5, 5-1
[17]

linear expansion
coefficient

ISO 80000-5, 5-3.1 αl

increase in
temperature

ISO 80000-5,
5-3.1,2,3,4

∂T ,dT
ISO 80000-5, 5-1
[17]

cubic expansion
coefficient

ISO 80000-5, 5-3.2 αV ,α,γ

pressure in a
reference state

ISO 80000-5, 5-3.3
ISO 80000-4, 4-15.1
[10]

relative pressure
coefficient

ISO 80000-5, 5-3.3 αp

pressure ratio ISO 80000-5, 5-3.3 true

increase in pressure
at constant volume

ISO 80000-5, 5-3.3 (∂P) V
ISO 80000-4, 4-19
[11]

increase in
temperature at
constant volume

ISO 80000-5, 5-3.3 (∂T) V
ISO 80000-5,
5-3.1,2,3,4 [17]

pressure coefficient ISO 80000-5, 5-4 β

isothermal
compressibility

ISO 80000-5, 5-5.1 χT

increase in pressure
at constant
temperature

ISO 80000-5, 5-5.1 (∂P) T
ISO 80000-4, 4-19
[11]

increase in volume at
constant temperature

ISO 80000-5, 5-5.1 (∂V) T
ISO 80000-4, 4-16.3
[11]

increase in pressure
at constant entropy

ISO 80000-5, 5-5.2 (∂P)S
ISO 80000-4, 4-19
[11]

isentropic
compressibility

ISO 80000-5, 5-5.2 χS

increase in volume at
constant entropy

ISO 80000-5, 5-5.2 (∂V)S
ISO 80000-4, 4-16.3
[11]

306 OMG Systems Modeling Language, v1.7

Table E.20. Normative quantity kinds in ISO 80000-5 (2 of 5)

Quantity Kind
name

Description Symbol General is dimension of 1?

amount of heat ISO 80000-5, 5-6 Q
ISO 80000-4, 4-27.4
[13]

heat flow rate ISO 80000-5, 5-7 Φ
ISO 80000-4, 4-26
[13]

surface density of
heat flow rate

ISO 80000-5, 5-8 q,φ
ISO 80000-5, 5-8
[18]

areic heat flow rate ISO 80000-5, 5-8 q,φ

thermodynamic
temperature gradient

ISO 80000-5, 5-9

thermal conductivity ISO 80000-5, 5-9 λ,(χ)

coefficient of heat
transfer

ISO 80000-5, 5-10.1 K,(k)

thermodynamic
temperature
difference

ISO 80000-5, 5-10.1
ISO 80000-5, 5-1
[17]

surface coefficient of
heat transfer

ISO 80000-5, 5-10.2 h,(α)

surface
thermodynamic
temperature
difference

ISO 80000-5, 5-10.2 h,(α)
ISO 80000-5, 5-10.2
[18]

surface thermo-
dynamic temperature

ISO 80000-5, 5-10.2
ISO 80000-5, 5-1
[17]

reference thermo-
dynamic temperature

ISO 80000-5, 5-10.2
ISO 80000-5, 5-1
[17]

coefficient of thermal
insulance

ISO 80000-5, 5-11 M

thermal resistance ISO 80000-5, 5-12 R

thermal conductance ISO 80000-5, 5-13 G,(H)

thermal diffusivity ISO 80000-5, 5-14 α

heat capacity ISO 80000-5, 5-15 C

specific heat capacity ISO 80000-5, 5-16.1 c

specific heat capacity
at constant pressure

ISO 80000-5, 5-16.2 cp
ISO 80000-5, 5-16.1
[18]

OMG Systems Modeling Language, v1.7 307

Table E.21. Normative quantity kinds in ISO 80000-5 (3 of 5)

Quantity Kind
name

Description Symbol General is dimension 1?

specific heat capacity
at constant volume

ISO 80000-5, 5-16.3 cV
ISO 80000-5, 5-16.1
[18]

specific heat capacity
at saturation

ISO 80000-5, 5-16.4 csat
ISO 80000-5, 5-16.1
[18]

ratio of the specific
heat capacities

ISO 80000-5, 5-17.1 γ true

pressure per volume
increase at constant
entropy

ISO 80000-5, 5-17.2

volume per pressure
in a reference state

ISO 80000-5, 5-17.2

isentropic exponent ISO 80000-5, 5-17.2 χ

entropy ISO 80000-5, 5-18 S

heat received ISO 80000-5, 5-18 dQ
ISO 80000-5, 5-6
[18]

specific entropy ISO 80000-5, 5-19 s

energy ISO 80000-5, 5-20.1 E
ISO 80000-4, 4-27.4
[13]

internal thermo-
dynamic energy

ISO 80000-5, 5-20.2 U
ISO 80000-5, 5-18
[19]

volumetric pressure ISO 80000-5, 5-20.3 pV

enthalpy ISO 80000-5, 5-20.3 H
ISO 80000-5, 5-20.2
[19]

Helmholtz energy ISO 80000-5, 5-20.4 A,F
ISO 80000-5, 5-20.2
[19]

Gibbs energy ISO 80000-5, 5-20.5 G
ISO 80000-5, 5-20.3
[19]

system enthalpy at
thermodynamic
temperature

ISO 80000-5, 5-20.
[45]

TS

specific energy ISO 80000-5, 5-21.1 e

specific internal
thermodynamic
energy

ISO 80000-5, 5-21.2 u
ISO 80000-5, 5-21.1
[19]

308 OMG Systems Modeling Language, v1.7

Quantity Kind
name

Description Symbol General is dimension 1?

specific enthalpy ISO 80000-5, 5-21.3 h
ISO 80000-5, 5-21.2
[19]

specific Helmholtz
energy

ISO 80000-5, 5-21.4 a, f

Table E.22. Normative quantity kinds in ISO 80000-5 (4 of 5)

Quantity Kind
name

Description Symbol General is dimension 1?

specific Gibbs
energy

ISO 80000-5, 5-21.5 g

Massieu function ISO 80000-5, 5-22 J

Planck function ISO 80000-5, 5-23 Y

mass of water
irrespective of the
form of aggregation

ISO 80000-5, 5-24 m
ISO 80000-4, 4-1
[10]

mass concentration
of water at saturation

ISO 80000-5, 5-24 wsat
ISO 80000-4, 4-2
[10]

total volume of water
and dry matter

ISO 80000-5, 5-24 V ISO 80000-3, 3-4 [5]

mass concentration
of water

ISO 80000-5, 5-24 w
ISO 80000-4, 4-2
[10]

mass of water vapour ISO 80000-5, 5-24 m
ISO 80000-5, 5-24
[20]

mass concentration
of water vapour

ISO 80000-5, 5-25 v
ISO 80000-4, 4-2
[10]

mass concentration
of water vapour at
saturation

ISO 80000-5, 5-25 vsat
ISO 80000-4, 4-2
[10]

mass of water at
saturation

ISO 80000-5, 5-25 msat
ISO 80000-5, 5-24
[20]

mass of water vapour
at saturation

ISO 80000-5, 5-25 msat
ISO 80000-5, 5-24
[20]

mass ratio of water to
dry matter

ISO 80000-5, 5-26 u true

mass of dry matter ISO 80000-5, 5-26 md
ISO 80000-4, 4-1
[10]

OMG Systems Modeling Language, v1.7 309

Quantity Kind
name

Description Symbol General is dimension 1?

mass ratio of water to
dry gas at saturation

ISO 80000-5, 5-26 usat
ISO 80000-5, 5-26
[20]

true

mass ratio of water
vapour to try gas

ISO 80000-5, 5-27 w
ISO 80000-5, 5-26
[20]

true

mass ratio of water
vapour to dry gas at
saturation

ISO 80000-5, 5-27 wsat
ISO 80000-5, 5-27
[20]

true

Table E.23. Normative quantity kinds in ISO 80000-5 (5 of 5)

Quantity Kind
name

Description Symbol General is dimension of 1?

mass of dry gas ISO 80000-5, 5-27 md
ISO 80000-5, 5-26
[20]

mass fraction of
water

ISO 80000-5, 5-28 wH2O true

mass fraction of dry
matter

ISO 80000-5, 5-29 wd
ISO 80000-5, 5-28
[21]

true

partial pressure of a
gas in a mixture at
saturation

ISO 80000-5, 5-30 psat
ISO 80000-5, 5-30
[21]

partial pressure of a
gas in a mixture

ISO 80000-5, 5-30 p
ISO 80000-4, 4-15.1
[10]

relative partial
pressure of a gas

ISO 80000-5, 5-30
ISO 80000-5, 5-3.3
[17]

true

relative mass
concentration of
water vapour

ISO 80000-5, 5-31 φ true

relative mass ratio of
water vapour

ISO 80000-5, 5-32 true

dew point
thermodynamic
temperature of humid
air

ISO 80000-5, 5-33 Td
ISO 80000-5, 5-33
[21]

thermodynamic
temperature of humid
air

ISO 80000-5, 5-33 T
ISO 80000-5, 5-1
[17]

E.6.5.4 ISO 80000-6 Electromagnetism

All 62 entries (including sub-entries) in the normative contents of ISO 80000-6 are modeled as summarized below.

310 OMG Systems Modeling Language, v1.7

Table E.24. Normative units in ISO 80000-6 (1 of 5)

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

ampere
IEC 80000-6,
6-1.a

A
IEC 80000-6,
6-1 [27]

coulomb
IEC 80000-6,
6-2.a

C
C IEC
80000-6, 6-2
[27]

coulomb per
cubic metre

IEC 80000-6,
6-3.a

C/m3
IEC 80000-6,
6-3 [27]

coulomb per
square metre

IEC 80000-6,
6-4.a

C/m2
IEC 80000-6,
6-4 [27]

coulomb per
metre

IEC 80000-6,
6-5.a

C/m
IEC 80000-6,
6-5 [27]

coulomb
metre

IEC 80000-6,
6-6.a C⋅m IEC 80000-6,

6-6 [27]

coulomb per
square metre
per second

IEC 80000-6,
6-7.a C/ (m2⋅s)

IEC 80000-6,
6-8.a [22]

IEC 80000-6,
6-8 [27]

coulomb per
metre squared

IEC 80000-6,
6-7.a

C/m2
IEC 80000-6,
6-4.a [22]

IEC 80000-6,
6-7 [27]

ampere per
square metre

IEC 80000-6,
6-8.a

A/m2
IEC 80000-6,
6-8 [27]

coulomb per
metre per
second

IEC 80000-6,
6-9.a C/(m⋅s)

IEC 80000-6,
6-25.a [23]

IEC 80000-6,
6-9 [27]

volt per metre
IEC 80000-6,
6-10.a

V/m
IEC 80000-6,
6-10 [27]

newton per
coulomb

IEC 80000-6,
6-10.a

N/C
IEC 80000-6,
6-10.a [22]

IEC 80000-6,
6-10 [27]

volt
IEC 80000-6,
6-11.a

V
IEC 80000-6,
6-11.1 [27]

volt metre per
metre

IEC 80000-6,
6-11.a V⋅m/m

IEC 80000-6,
6-11.a [22]

false

OMG Systems Modeling Language, v1.7 311

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

farad volt per
metre squared

IEC 80000-6,
6-12.a F⋅V/m2

IEC 80000-6,
6-7.a [22]

IEC 80000-6,
6-12 [27]

farad
IEC 80000-6,
6-13.a

F
IEC 80000-6,
6-13 [27]

farad per
metre

IEC 80000-6,
6-14.a

F/m
IEC 80000-6,
6-14.a [22]

IEC 80000-6,
6-14.1 [27]

coulomb per
volt per metre

IEC 80000-6,
6-14.a C/(V⋅m)

IEC 80000-6,
6-14.2 [28]

coulomb per
volt per metre
ratio

IEC 80000-6,
6-15.a

IEC 80000-6,
6-15 [28]

true

Table E.25. Normative units in ISO 80000-6 (2 of 5)

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

coulomb per
metre squared
ratio

IEC 80000-6,
6-16.a

IEC 80000-6,
6-16 [28]

true

square metre
coulomb per
metre squared

IEC 80000-6,
6-17.a

C
IEC 80000-6,
6-2.a [22]

false

coulomb per
metre squared
per second

IEC 80000-6,
6-18.a C/ (m2⋅s)

IEC 80000-6,
6-8.a [22]

square metre
ampere per
square metre

IEC 80000-6,
6-19.a

A
IEC 80000-6,
6-1.a [22]

false

volt second
per metre
squared

IEC 80000-6,
6-21 V⋅s/A⋅m2

IEC 80000-6,
6-21.a [23]

newton per
ampere per
metre

IEC 80000-6,
6-21.a N/(A⋅m)

IEC 80000-6,
6-21.a [23]

tesla
IEC 80000-6,
6-21.a

T
IEC 80000-6,
6-21 [28]

weber
IEC 80000-6,
6-22.a

Wb
IEC 80000-6,
6-22.1 [28]

312 OMG Systems Modeling Language, v1.7

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

newton metre
per ampere

IEC 80000-6,
6-22.a N⋅m/A

IEC 80000-6,
6-22.a [23]

volt second
IEC 80000-6,
6-22.a V⋅s IEC 80000-6,

6-22.a [23]

ampere square
metre

IEC 80000-6,
6-23.a A⋅m2

IEC 80000-6,
6-23 [28]

ampere square
metre per
cubic metre

IEC 80000-6,
6-24.a A⋅m2 /m3

IEC 80000-6,
6-25.a [23]

false

newton per
weber

IEC 80000-6,
6-25

N /Wb
IEC 80000-6,
6-25.a [23]

ampere per
metre

IEC 80000-6,
6-25.a

A/m
IEC 80000-6,
6-25 [28]

ampere metre
per metre
squared

IEC 80000-6,
6-25.a A⋅m/m2

IEC 80000-6,
6-25.a [23]

false

volt second
metre squared
per ampere per
metre cube

IEC 80000-6,
6-26.a A⋅s⋅m2/ A⋅m3

IEC 80000-6,
6-26.a [24]

false

Table E.26. Normative units in ISO 80000-6 (3 of 5)

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

volt second
per ampere per
metre

IEC 80000-6,
6-26.a V⋅s/ A⋅m IEC 80000-6,

6-26.a [24]

newton weber
per ampere per
metre per
newton

IEC 80000-6,
6-26.a N⋅Wb/ A⋅m⋅N IEC 80000-6,

6-26.a [24]
false

henry per
metre

IEC 80000-6,
6-26.a

H/m
IEC 80000-6,
6-26.2 [28]

weber per
ampere per
metre

IEC 80000-6,
6-26.a Wb/ A⋅m IEC 80000-6,

6-26.a [24]

OMG Systems Modeling Language, v1.7 313

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

henry per
metre ratio

IEC 80000-6,
6-27.a

IEC 80000-6,
6-27 [28]

true

ampere per
metre ratio

IEC 80000-6,
6-28.a

IEC 80000-6,
6-28 [29]

true

weber per
metre squared

IEC 80000-6,
6-29.a

Wb/m2
IEC 80000-6,
6-21.a [23]

volt second
ampere per
ampere per
metre squared

IEC 80000-6,
6-29.a V⋅s⋅A/ A⋅m2

IEC 80000-6,
6-21 [23]

false

volt second
metre

IEC 80000-6,
6-30.a V⋅s⋅m IEC 80000-6,

6-30.a [24]

weber metre
IEC 80000-6,
6-30.a Wb⋅m IEC 80000-6,

6-30 [29]

weber per
metre

IEC 80000-6,
6-32.a

Wb/m
IEC 80000-6,
6-32 [29]

newton per
ampere

IEC 80000-6,
6-32.a

N/A
IEC 80000-6,
6-32.a [24]

volt second
per metre

IEC 80000-6,
6-32.a V⋅s/m

IEC 80000-6,
6-32.a [24]

newton
ampere per
metre squared

IEC 80000-6,
6-33.a N⋅A/m2

IEC 80000-6,
6-33.a [25]

newton
coulomb per
metre squared

IEC 80000-6,
6-33.a N⋅C/m2

IEC 80000-6,
6-33.a [25]

joule per cubic
metre

IEC 80000-6,
6-33.a

J / m3
IEC 80000-6,
6-33 [29]

Table E.27. Normative units in ISO 80000-6 (4 of 5)

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

newton per
metre squared

IEC 80000-6,
6-33.a

N/m2
IEC 80000-6,
6-33.a [24]

314 OMG Systems Modeling Language, v1.7

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

volt ampere
per square
metre

IEC 80000-6,
6-34.a N⋅A/m2

ISO 80000-5,
5-8.a [15]

IEC 80000-6,
6-34 [29]

ampere metre
per metre

IEC 80000-6,
6-37.a A⋅m/m

IEC 80000-6,
6-1.a [22]

false

turns
IEC 80000-6,
6-38.a

IEC 80000-6,
6-38 [29]

true

ampere per
volt per
second

IEC 80000-6,
6-39.a A/(V⋅s)

IEC 80000-6,
6-39.a [25]

henry to the
power minus
one

IEC 80000-6,
6-39.a

1/ H
IEC 80000-6,
6-39 [29]

volt second
per ampere

IEC 80000-6,
6-41.a V⋅s/A

IEC 80000-6,
6-41.a [25]

weber per
ampere

IEC 80000-6,
6-41.a

Wb/A
IEC 80000-6,
6-41.a [25]

henry
IEC 80000-6,
6-41.a

H
IEC 80000-6,
6-41.1 [29]

henry factor
squared

IEC 80000-6,
6-42.2

IEC 80000-6,
6-42.2 [29]

true

henry factor
IEC 80000-6,
6-42.a

IEC 80000-6,
6-42.1 [29]

true

ampere metre
per volt per
square metre

IEC 80000-6,
6-43.a A⋅m / V⋅m2

IEC 80000-6,
6-43.a [25]

false

siemens per
metre

IEC 80000-6,
6-43.a

S/m
IEC 80000-6,
6-43 [29]

ampere per
volt per metre

IEC 80000-6,
6-43.a A/(V⋅m)

IEC 80000-6,
6-43.a [25]

metre per
siemens

IEC 80000-6,
6-44

m/S
IEC 80000-6,
6-44.a [25]

ohm metre
IEC 80000-6,
6-44.a Ω⋅m IEC 80000-6,

6-44 [29]

OMG Systems Modeling Language, v1.7 315

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

volt ampere
IEC 80000-6,
6-45.a, 6-57.a,
6-59.a, 6-61.a

V⋅A
ISO 80000-4,
4-26.a, 4-56.a
[8]

IEC 80000-6,
6-59 [30]

ohm
IEC 80000-6,
6-46.a

Ω
IEC 80000-6,
6-46 [30]

volt per
ampere

IEC 80000-6,
6-46.a

V/A
IEC 80000-6,
6-46.a [25]

Table E.28. Normative units in ISO 80000-6 (5 of 5)

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity

dimension 1?

is reduced
form?

siemens to the
power minus
one

IEC 80000-6,
6-46.a

1/S
IEC 80000-6,
6-46.a [25]

siemens
IEC 80000-6,
6-47.a

S
IEC 80000-6,
6-47 [30]

ampere per
volt

IEC 80000-6,
6-47.a

A/V
IEC 80000-6,
6-47.a [26]

ohm to the
power minus
one

IEC 80000-6,
6-47.a

1/Ω
IEC 80000-6,
6-47.a [26]

ohm ratio
IEC 80000-6,
6-53.a

IEC 80000-6,
6-53 [30]

True

watt per volt
per ampere

IEC 80000-6,
6-58.a

IEC 80000-6,
6-58 [30]

true

var
IEC 80000-6,
6-60.b

var

IEC 80000-6,
6-45.a, 6-57.a,
6-59.a, 6-61.a
[25]

IEC 80000-6,
6-60 [30]

second joule
per second

IEC 80000-6,
6-62.a

s.J/s
ISO 80000-4,
4-27.a, 4-34.a,
4-36.a [8]

IEC 80000-6,
6-62 [31]

false

watt hour
IEC 80000-6,
6-62.b

W.h
IEC 80000-6,
6-62 [31]

316 OMG Systems Modeling Language, v1.7

E.6.5.4.1 Quantity Kind ISO 80000-6

Table E.29. Normative quantity kinds in ISO 80000-6 (1 of 4)

Quantity Kinds
name

Description Symbol General is dimension of 1?

electric current in a
thin conducting loop
n

IEC 80000-6, 6-1 In
IEC 80000-6, 6-1
[27]

electric current IEC 80000-6, 6-1 I,i

rms current IEC 80000-6, 6-1 I
IEC 80000-6, 6-1
[27]

electric charge IEC 80000-6, 6-2 Q,q

volumic electric
charge

IEC 80000-6, 6-3 ρ,ρV

areic electric charge IEC 80000-6, 6-4 ρA,σ

lineic electric charge IEC 80000-6, 6-5 ρl ,τ

electric dipole
moment

IEC 80000-6, 6-6 p

electric polarization IEC 80000-6, 6-7 P

electric current
density

IEC 80000-6, 6-8 J

areic electric current IEC 80000-6, 6-8 J
IEC 80000-6, 6-8
[27]

lineic electric current IEC 80000-6, 6-9 Js

electric field strength IEC 80000-6, 6-10 E

electric potential IEC 80000-6, 6-11.1 V,φ

electric potential
difference

IEC 80000-6, 6-11.2 Vab
IEC 80000-6, 6-11.1
[27]

electric tension IEC 80000-6, 6-11.3 U,Uab
IEC 80000-6, 6-11.1
[27]

voltage IEC 80000-6, 6-11.3 U,Uab
IEC 80000-6, 6-11.3
[27]

rms voltage IEC 80000-6, 6-11.3 U
IEC 80000-6, 6-11.3
[27]

electric flux density IEC 80000-6, 6-12 D
IEC 80000-6, 6-7
[27]

OMG Systems Modeling Language, v1.7 317

Quantity Kinds
name

Description Symbol General is dimension of 1?

electric flux density
in vacuum

IEC 80000-6, 6-12
IEC 80000-6, 6-12
[27]

capacitance IEC 80000-6, 6-13 C

permittivity of
vacuum

IEC 80000-6, 6-14.1 ε0
IEC 80000-6, 6-14.2
[28]

permittivity IEC 80000-6, 6-14.2 ε

relative permittivity IEC 80000-6, 6-15 εr true

electric susceptibility IEC 80000-6, 6-16 χ true

electric flux IEC 80000-6, 6-17 ψ
IEC 80000-6, 6-2
[27]

displacement current
density

IEC 80000-6, 6-18 JD
IEC 80000-6, 6-20
[28]

displacement current IEC 80000-6, 6-19.1 ID
IEC 80000-6, 6-19.2
[28]

total current IEC 80000-6, 6-19.2 Itot ,It
IEC 80000-6, 6-1
[27]

total current density IEC 80000-6, 6-20 Jtot ,Jt
IEC 80000-6, 6-8
[27]

Table E.30. Normative quantity kinds in ISO 80000-6 (2 of 4)

Quantity Kind
name

Description Symbol General is dimension of 1?

magnetic flux density IEC 80000-6, 6-21 B

magnetic flux IEC 80000-6, 6-22.1 Φ

linked flux in a loop
caused by an electric
current in that loop

IEC 80000-6, 6-22.2 χm,χ
IEC 80000-6, 6-22.2
[28]

linked flux IEC 80000-6, 6-22.2 χ

linked flux in a loop
m caused by an
electric current in
another loop n

IEC 80000-6, 6-22.2 χ
IEC 80000-6, 6-22.2
[28]

magnetic area
moment

IEC 80000-6, 6-23 m

318 OMG Systems Modeling Language, v1.7

Quantity Kind
name

Description Symbol General is dimension of 1?

magnetization IEC 80000-6, 6-24 M,Hi
IEC 80000-6, 6-25
[28]

magnetic field
strength in vaccum

IEC 80000-6, 6-25 H0
IEC 80000-6, 6-25
[28]

magnetic field
strength

IEC 80000-6, 6-25 H

permeability of
vaccum

IEC 80000-6, 6-26.1 μ0
IEC 80000-6, 6-26.2
[28]

permeability IEC 80000-6, 6-26.2 μ

magnetic flux density
of magnetic field
strength

IEC 80000-6, 6-26.2
IEC 80000-6, 6-26.2
[28]

relative permeability IEC 80000-6, 6-27 μr true

magnetic
susceptibility

IEC 80000-6, 6-28 κ,(χm) true

magnetic
polarization

IEC 80000-6, 6-29 Jm

magnetic dipole
moment

IEC 80000-6, 6-30 jm ,j

coercivity IEC 80000-6, 6-31 Hc,B
IEC 80000-6, 6-25
[28]

magnetic vector
potential

IEC 80000-6, 6-32 A

energy density of
electric field

IEC 80000-6, 6-33
IEC 80000-6, 6-33
[29]

energy density of
magnetic field

IEC 80000-6, 6-33
IEC 80000-6, 6-33
[29]

electromagnetic
energy density

IEC 80000-6, 6-33 w

Poynting vector IEC 80000-6, 6-34 S

phase speed of
electromagnetic
waves

IEC 80000-6, 6-35.1 c
ISO 80000-3, 3-8.2
[5]

phase speed of light
in vaccum

IEC 80000-6, 6-35.2 c0
IEC 80000-6, 6-35.1
[29]

OMG Systems Modeling Language, v1.7 319

Quantity Kind
name

Description Symbol General is dimension of 1?

source voltage IEC 80000-6, 6-36 Us
IEC 80000-6, 6-11.3
[27]

scalar magnetic
potential

Vm,φ
IEC 80000-6, 6-1
[27]

magnetic tension IEC 80000-6, 6-37.2 Um
IEC 80000-6, 6-1
[27]

magnetomotive force IEC 80000-6, 6-37.3 Fm
IEC 80000-6, 6-1
[27]

current linkage IEC 80000-6, 6-37.4 Θ
IEC 80000-6, 6-1
[27]

Table E.31. Normative quantity kinds in ISO 80000-6 (3 of 4)

Quantity Kind
name

Description Symbol General is dimension 1?

number of turns in a
winding

IEC 80000-6, 6-38 N

reluctance IEC 80000-6, 6-39 Rm,R

permeanance IEC 80000-6, 6-40 Λ

inductance IEC 80000-6, 6-41.1 L,Lm

mutual inductance IEC 80000-6, 6-41.1 Lmn
IEC 80000-6, 6-41.1
[29]

self inductance IEC 80000-6, 6-41.1 Ln
IEC 80000-6, 6-41.1
[29]

coupling factor IEC 80000-6, 6-42.1 k

leakage factor IEC 80000-6, 6-42.2 σ

conductivity IEC 80000-6, 6-43 σ,γ

resistivity IEC 80000-6, 6-44 ρ

electric power IEC 80000-6, 6-45 p
ISO 80000-4, 4-26
[13]

electric resistance IEC 80000-6, 6-46 R

electric conductance IEC 80000-6, 6-47 G

initial phase of
electric voltage

IEC 80000-6, 6-48 φu ISO 80000-3, 3-5 [5]

320 OMG Systems Modeling Language, v1.7

Quantity Kind
name

Description Symbol General is dimension 1?

phase difference IEC 80000-6, 6-48 φ ISO 80000-3, 3-5 [5]

initial phase of
electric current

IEC 80000-6, 6-48 φi ISO 80000-3, 3-5 [5]

electric current
phasor

IEC 80000-6, 6-49 I
IEC 80000-6, 6-1 [27
]

voltage phasor IEC 80000-6, 6-50 U
IEC 80000-6, 6-11.3
[27]

complex impedance IEC 80000-6, 6-51.1 Z
IEC 80000-6, 6-46
[30]

resistance to
alternating electric
current

IEC 80000-6, 6-51.2 R
IEC 80000-6, 6-51.1
[30]

reactance to
alternating electric
current

IEC 80000-6, 6-51.3 X
IEC 80000-6, 6-51.1
[30]

modulus of
impedance

IEC 80000-6, 6-51.4 Z
IEC 80000-6, 6-51.1
[30]

Table E.32. Normative quantity kinds in ISO 80000-6 (4of 4)

Quantity Kind
name

Description Symbol General is dimension 1?

complex admittance IEC 80000-6, 6-52.1 Y

conductance to
alternating current

IEC 80000-6, 6-52.2 G
IEC 80000-6, 6-52.1
[30]

susceptance to
alternating current

IEC 80000-6, 6-52.3 B
IEC 80000-6, 6-52.1
[30]

modulus of
admittance

IEC 80000-6, 6-52.4 Y
IEC 80000-6, 6-52.1
[30]

quality factor IEC 80000-6, 6-53 Q true

loss factor IEC 80000-6, 6-54 d true

loss angle IEC 80000-6, 6-55 δ ISO 80000-3, 3-5 [5] true

active power IEC 80000-6, 6-56 P
IEC 80000-6, 6-59
[30]

apparent power IEC 80000-6, 6-57 S

OMG Systems Modeling Language, v1.7 321

Quantity Kind
name

Description Symbol General is dimension 1?

power factor IEC 80000-6, 6-58 λ true

complex power IEC 80000-6, 6-59 S

reactive power IEC 80000-6, 6-60 Q
IEC 80000-6, 6-59
[30]

non-active power IEC 80000-6, 6-61 Q′
IEC 80000-6, 6-56
[30]

active energy IEC 80000-6, 6-62 W

E.6.5.5 ISO 80000-7 Light

The subset of the normative contents of ISO 80000-7 is identical to that of SysML 1.4 as summarized below.

Table E.33. Units in ISO 80000-7

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

refractive
index

ISO 80000-7,
7-5.a

ISO 80000-7,
7-5 [33]

true

lumen
ISO 80000-7,
7-32.a

lm
ISO 80000-7,
7-32 [33]

candela
ISO 80000-7,
7-35.a

cd
ISO 80000-7,
7-35 [33]

lux
ISO 80000-7,
7-36.a

lx
ISO 80000-7,
7-36 [33]

candela per
square metre

ISO 80000-7,
7-37.a

cd/m^2
ISO 80000-7,
7-37 [33]

Table E.34. Quantity Kinds in ISO 80000-7

Quantity Kind
name

Description Symbol General units Quantity kinds

speed of light in
vaccum

ISO 80000-7, 7-4.1 c0
ISO 80000-3, 3-8.1
[5]

phase speed of light
in medium

ISO 80000-7, 7-4.2 c
ISO 80000-3, 3-8.2
[5]

refractive index ISO 80000-7, 7-5 n true

322 OMG Systems Modeling Language, v1.7

Quantity Kind
name

Description Symbol General units Quantity kinds

radiant flux ISO 80000-7, 7-13
ISO 80000-4, 4-26
[13]

luminous flux ISO 80000-7, 7-32 Φv ,(Φ)

luminous intensity ISO 80000-7, 7-35 Iv,(I)

illuminance ISO 80000-7, 7-36 Ev,(E)

luminance ISO 80000-7, 7-37 Lv,(L)

E.6.5.6 ISO 80000-9 Physical Chemistry and Molecular Physic

The subset of the normative contents of ISO 80000-9 is identical to that of SysML 1.4 as summarized below.

Table E.35. Units in ISO 80000-9

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

mole
ISO 80000-9,
9-1.a

mol
ISO 80000- 9,
9-1

mole per cubic
metre

ISO 80000-9,
9-13.a

mol/m3
ISO 80000- 9,
9-13

Table E.36. Quantity Kinds in ISO 80000-9

Quantity Kind
name

Description Symbol General units Quantity kinds

amount of substance ISO 80000-9, 9-1 n

amount of substance
concentration

ISO 80000-9, 9-13 cB

E.6.5.7 ISO 80000-10 Atomic and Nuclear Physics

The 3 units and 3 quantity kind definitions included were in the non-normative ISO 80000-10 library of SysML 1.3.

Table E.37. Units in ISO 80000-10

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

becquerel
ISO 80000-10,
10-29.a

Bq
ISO 80000-
10, 10-29

gray
ISO 80000-10,
10-84.a

Gy
ISO 80000-
10,10-84

sievert
ISO 80000-10,
10-86.a

Sv
ISO 80000-
10, 10-86

OMG Systems Modeling Language, v1.7 323

Table E.38. Quantity Kinds in ISO 80000-10

Quantity Kind
name

Description Symbol General units Quantity kinds

radionuclide activity ISO 80000-10, 10-29 A

absorbed dose
ISO 80000-10,
10-81.1

D

dose equivalent ISO 80000-10, 10-86 H

E.6.5.8 ISO 80000-13 Information Science and Technology

SysML 1.4 adds commonly used 3 units (bit, byte and octet) of information and 3 of their associated quantity kinds.

Table E.39. Units in ISO 80000-13

Unit name Description Symbol General units
Quantity

Kinds

is unit for
quantity of

dimension 1?

is reduced
form?

bit
IEC 80000-13,
13-9.b

bit
IEC 80000-
13, 13-9

true

byte
IEC 80000-13,
13-9.c

B
IEC 80000-
13, 13-9

true

octet
IEC 80000-13,
13-9.c

o
IEC 80000-
13, 13-9

true

Table E.40. Quantity Kinds in ISO 80000-13

Quantity Kind
name

Description Symbol General units Quantity kinds

storage capacity IEC 80000-13, 13-9 true

storage size IEC 80000-13, 13-9 M IEC 80000- 13, 13-9 true

equivalent binary
storage capacity

IEC 80000-13, 13-10 Me true

E.7 Distribution Extensions

E.7.1 Overview

This sub clause describes a non-normative extension to provide a candidate set of distributions (see Section 8.3.2.7,
DistributedProperty). It consists of a profile containing stereotypes that can be used to specify distributions for
properties of blocks.

E.7.2 Stereotypes

E.7.2.1 Package Distributions

324 OMG Systems Modeling Language, v1.7

DistributedProperty
«stereotype»

standardDeviation : Real
mean : Real

Normal
«stereotype»

Uniform
«stereotype»

Interval
«stereotype»

max : Real
min : Real

BasicInterval
«stereotype»

Figure E.21. Basic distribution stereotypes

Table E.41. Distribution Stereotypes

Stereotype Base class Properties Constraints Description

«BasicInterval» «DistributedProperty» min:Real max:Real N/A

Basic Interval
distribution - value
between min and
max inclusive

«Interval» «BasicInterval» N/A N/A

Interval distribution -
unknown probability
between min and
max

«Uniform» «BasicInterval» N/A N/A

Uniform distribution
- constant probability
between min and
max

«Normal» «DistributedProperty»
mean:Real standard
Deviation:Real

N/A

Normal distribution -
constant probability
between min and
max

OMG Systems Modeling Language, v1.7 325

E.7.3 Usage Example

FiringRange[Block]bdd

acceleration : acceleration[metre per second squared]
density : density[kilogram per cubic metre]
«interval» volume : volume[cubic metre]{max = 105.0, min = 101.0}

values

Shot
«block»

«normal» force : force[newton]{mean = 100.0, standardDeviation = 1.0}
values

Cannon
«block»

Figure E.22. Distribution Example

Fig. E.22 shows a simple example of using distributions; the force of the Cannon is specified using a Normal
distribution with parameters mean and standard deviation. Whereas the use of a Normal distribution can be inferred
from the names of its parameters, an Interval distribution shares parameters with a Uniform distribution, hence the
stereotype keyword «interval» is used to distinguish it.

E.8 Building Non-Normative Extensions for Property-Based
Requirements

E.8.1 Overview

Annex Section E.3 addresses extending requirements that are fundamentally textual in nature. They may be
extended with various enumerations (for example RiskKind or VerifyMethodKind), and they may have different
modeling constraints applied to the requirements relationships, but the requirements are only expressed as text
strings.

Expressing requirements as text strings alone fundamentally limits their ability to be evaluated and verified. This
Annex addresses a more formal expression of requirements generally referred to as property based requirements
(PBR); one that includes quantitative specification of numerical parameters, relationships, equations and/or
constraints.

Current users of text-based requirements have frequently expressed a basic need to represent numerical requirements
more precisely, both to reduce ambiguity and facilitate verification by analysis and other methods. This basic need
can be decomposed into three primary needs: 1) Requirements shall have numerical properties (properties capable of
representing numerical values), 2) these numerical properties shall be typeable (preferably by ValueType) to account
for quantity kind and units, and 3) these numerical properties shall be bindable (preferably using BindingConnector)
to other model elements (e.g., ConstraintParameters) so they can be evaluated using analysis tools. For the purpose
of this discussion, a requirement that meets these three conditions is said to be a property-based requirement.

This kind of property-based requirement is intended to be used with the overall system model to assist in specifying
and architecting systems. More generally, the system model may be used as a model-based specification, such as
when block instances with specific property values represent the requirement. In this latter case, the model-based
specification can further refine the property-based requirement.

Users of property-based requirements may desire a more elaborate capability than the primary need described above.
For example, it may be desirable for the requirement to contain a constraint or mathematical expression that
formally states an acceptance condition, threshold, or goal. This may alternatively need to be expressed as a set of
valued pairs, elaborating both the conditions and the acceptance thresholds for each condition, or by an arbitrary

326 OMG Systems Modeling Language, v1.7

graphical relationship. Some users may want the property-based requirement to formally own a behavior
representing the functionality of the requirement, or the behavior by which it is satisfied or verified.

The need for this kind of property-based requirement is illustrated in the simple example of specifying a vehicle’s
required stopping distance for various initial speeds and road conditions. The requirement can be expressed in a
table as follows:

The Vehicle stopping distance shall not exceed the values in Table E.42 as a function of initial speed and pavement
condition.

Table E.42. Example of Requirement in Tabular Form

Initial Speed
(mph)

Pavement
Condition (wet/

dry)

Required
Stopping

Distance-Dry
(feet)

Initial Speed
(mph)

Pavement
Condition (wet/

dry)

Required
Stopping

Distance-Wet
(feet)

0 dry 0 0 wet 0

10 dry 4 10 wet 6

20 dry 17 20 wet 22

30 dry 38 30 wet 50

40 dry 67 40 wet 89

50 dry 104 50 wet 139

60 dry 150 60 wet 201

70 dry 205 70 wet 273

80 dry 267 80 wet 357

90 dry 338 90 wet 451

100 dry 418 100 wet 557

An alternative expression in plot format can be:

The Vehicle stopping distance shall not exceed the values in Overview as a function of initial speed and pavement
condition.

OMG Systems Modeling Language, v1.7 327

Figure E.23. Example of Requirement in Graphical Form

The input/output parameter relationship or constraint can be specified in equation form, such as in the following
example:

Stopping distance <= (1/(2*32.174*alpha)*(5280*Initial Speed/3600)^2)

Start Speed = 0..100

alpha

dry 0.8

wet 0.6

More generally, the input and output parameter values may be complex functions of other parameters, and may have
probability distributions associated with them.

This annex addresses mechanisms and approaches for building SysML profiles to enable property-based
requirements. While examples of property-based requirement profiles are provided in this annex, these are not to be
considered normative or even authoritative. Instead, they are intended to be illustrative of the kind of extensions that
some users may find desirable. Ultimate responsibility for the compatibility of any property-based requirement
profile with a particular requirements management process or toolset rests fully with the user.

E.8.2 An Example PBR Profile Based on ConstraintBlock

Using «constraintBlock» as a base class for PBR may prove compact, simple, and intuitive. The following example
first establishes a PBR user profile, and then employs that profile for a simple user example.

E.8.2.1 Profile/Stereotypes of PBR Based on ConstraintBlock

Fig. E.24 shows use of both «abstractRequirement» and «constraintBlock» to define a new PBR stereotype, named
RequirementConstraintBlock in this example for clarity.

328 OMG Systems Modeling Language, v1.7

Example of a PBR Profile Based on ConstraintBlockPBR Profile[Profile]bdd][

{-- Cannot be expressed in OCL,
UML::Classifier.allInstances()->forAll(c | c.general->includes(self.base_Class) implies ConstraintBlock.allInstances().base_Class->includes(c)),

self.base_Class.ownedAttribute->forAll(p| p.isComposite) }

[Class]
ConstraintBlock

«stereotype»

/master : AbstractRequirement [0..*]
/verifiedBy : NamedElement [0..*]
/tracedTo : NamedElement [0..*]
/refinedBy : NamedElement [0..*]
/satisfiedBy : NamedElement [0..*]
/derivedFrom : AbstractRequirement [0..*]
/derived : AbstractRequirement [0..*]
id : String [1]{id}
text : String [1]

attributes

[NamedElement]
AbstractRequirement

«stereotype»

RequirementConstraintBlock
«stereotype»

Figure E.24. Example of a PBR Profile Based on ConstraintBlock

Basing PBR on ConstraintBlock provides flexibility in expressing the name of required numerical values as
ConstraintParameters, which can be typed by ValueTypes and related to properties or parameters of other model
elements using binding connectors. Textual requirement statements may be restated as constraint expressions that
reference these ConstraintParameters. The value bindings can then be used to evaluate the constraint expression and
determine compliance with the requirement.

The numerical required value may then be stored as a DefaultValue of the ConstraintParameter. It may alternatively
be specified directly in a constraint expression, rather than a default value, e.g., {requiredWeight = 1450} where
requiredWeight is defined as a constraint parameter typed by a value type. Complex requirement criteria may be
represented by a series of constraint expressions.

It is also noted that constraint blocks can have owned behavior, and that a constraint expression can be a value
expression (with opaque behavior).

E.8.2.2 Usage Example using PBR profile based on ConstraintBlock

The following example leverages the above PBR user profile based on ConstraintBlock to specify and evaluate the
weight of a vehicle.

The requirement is captured via a PBR (RequirementConstraintBlock), which includes a constraint expression that
reflects the textual requirements statement in terms of two defined parameters, actualMass and requiredMass. Both
of these parameters are typed by the kilogram value type from the SI value types library. The required value for
mass is expressed as a default value of the requiredMass parameter. Note that the required value may have
alternatively been expressed as a second constraint expression, e.g., {requiredMass = 1450}. The vehicle itself is
represented in the model by a block with a value property for mass, also typed by the kilogram SI value type.

As shown in Fig. E.25, the context for evaluating if the requirement has been met is established using a Requirement
Context block. This method of context setting is a best practice that is not essential to this example. Both the Vehicle
and the Vehicle Mass Requirement are used in this Requirement Context.

Example of Parametric Diagram Using PBR based on Constraint BlockRequirement Context[Block]par][

v01 : Vehicle

vehicleMass : mass[kilogram]

{actualMass ≤ requiredMass}
r1.01 : Vehicle Mass Requirement

«RequirementConstraintBlock»

Default Value = 1450.0
requiredMass

actualMass

Figure E.25. Example of Parametric Diagram Using PBR based on Constraint Block

Fig. E.26 shows a parametric diagram of the Requirement Context block, useful for establishing the method of
evaluating compliance of the vehicleMass value with the Vehicle Mass Requirement. As with any parametric model,

OMG Systems Modeling Language, v1.7 329

it does not actually perform the evaluation/analysis, but it does specify the key relationships so that an evaluation
tool may determine if the weight requirement has been met.

Example of Requirement Evaluation Context Using PBR Based on Constraint BlockVehicle Example[Package]bdd][

requiredMass : mass[kilogram] = 1450.0 kg
actualMass : mass[kilogram]

parameters

text = "The vehicle mass shall be less
than or equal to 145 kilograms."

id = "1"

{actualMass ≤ requiredMass}
constraints

Vehicle Mass Requirement
«RequirementConstraintBlock»

Requirement Context
«block»

vehicleMass : mass[kilogram]
values

Vehicle
«block»

r1.01

v01

Figure E.26. Example of Requirement Evaluation Context Using PBR Based on Constraint Block

E.8.3 An Example PBR Profile Based on Constraint

Constraints are arguably the most straightforward way for representing system requirements. Their specification
may be provided by opaque constraint expressions, which can be expressed in formal (and computable) languages
like OCL. This allows the constraint statement to be applied directly to a specific design, without necessarily
applying a formal evaluation context.

E.8.3.1 Profile/Stereotypes of PBR based on Constraint

Fig. E.27 shows use of both «abstractRequirement» and «constraint» to define a new PBR stereotype, named
CbRequirement in this example.

/master : AbstractRequirement [0..*]
/verifiedBy : NamedElement [0..*]
/tracedTo : NamedElement [0..*]
/refinedBy : NamedElement [0..*]
/satisfiedBy : NamedElement [0..*]
/derivedFrom : AbstractRequirement [0..*]
/derived : AbstractRequirement [0..*]
id : String [1]{id}
text : String [1]

attributes

[NamedElement]
AbstractRequirement

«stereotype»

/text : String [1]
attributes

CbRequirement
«stereotype»

Constraint
«Metaclass»

Figure E.27. Example of a PBR profile based on Constraints

E.8.3.2 Example using PBR profile based on Constraint

330 OMG Systems Modeling Language, v1.7

Fig. E.28 shows how requirements are specified on the model representing a specification. Note that, as modeled
here, the requirement represented by Constraint2 applies to any instance of the Vehicle block while the one
represented by Constraint1 applies to instances of Vehicle block which are “used” as defined by the “vehicle” role of
the Context block, such as the design weight of the vehicle on a bridge or vehicle transporter.

Context
«block»

weight : Real [1]
values

Vehicle
«block»

Constraint1
{{OCL}self.vehicle. weight<=3200}

«CbRequirement»

Constraint2
{{OCL}self.weight<5000}

«CbRequirement»

A uses context

*

vehicle

1

Figure E.28. Example of PBR based on Constraint used in different contexts

Fig. E.29 shows a particular case where testedVehicle is an instance of the Vehicle block and AnalysisContext an
instance of the Context block, as specified above. A simple evaluation of model constraints using a classical OCL
evaluator would produce a report showing that Requirement/Constraint2 is met, while Requirement/Constraint1 is
violated.

AnalysisContext : Context

weight : Real[1] = 3500.0

testedVehicle : Vehicle: A uses

context vehicle

Figure E.29. Establishing an Analysis Context for evaluating requirement compliance using PBR based on
Constraint

E.8.4 An Example Property Based Requirement based on Block

Property based requirements can be based on a Block which allows to define additional properties like value
properties.

Fig. E.30 shows use of both “abstractRequirement” and “Block” to define a new PBR stereotype, named «PBR» in
this example.

Property Based Requirement Stereotype[Model]bdd Data][

{UML::Association.allInstances()->select(a| a.memberEnd->forAll(e| e.type->notEmpty() and Block.allInstances().base_Class->includes(e.type)))->forAll(a | a.memberEnd->size()=2),
self.base_Class.ownedConnector->forAll(c | c.end->size()=2),

-- Cannot be expressed in OCL,
self.base_Class.ownedAttribute->select(a| ValueType.allInstances().base_DataType->includes(a.type))->forAll(a|a.isComposite()),

self.base_Class->closure(part->select(p|p.type.oclIsKindOf(UML::Class)).type.oclAsType(UML::Class))->excludes(self.base_Class),
UML::Classifier.allInstances()->select(c | c.general->includes(self.base_Class))->forAll(c | Block.allInstances()->includes(c)),

self.base_Class.ownedAttribute->select(a| ValueType.allInstances().base_DataType->includes(a.type))->forAll(a|a.isComposite())}

[Class]
Block

«stereotype»

{self.base_Class.ownedOperation->isEmpty(),
self.base_Class.ownedAttribute->isEmpty(),

UML::Association.allInstances().memberEnd->flatten().type->excludes(self.base_Class),
UML::Classifier.allInstances().general->flatten()->excludes(self.base_Class),

self.base_Class.nestedClassifier->forAll(c | Requirement.allInstances().base_Class->includes(c)),
UML::TypedElement.allInstances().type->excludes(self.base_Class)}

[Class]
Requirement
«stereotype»

[Class]
PBR

«stereotype»

id : String [1]{id}
text : String [1]

attributes

[NamedElement]
AbstractRequirement

«stereotype»

User defined Properly Based
Requirement stereotype

«comment»

SysML 1.4

«comment»

New in SysML 1.5

«comment»

Figure E.30. Property Based Requirement Stereotype

Fig. E.31 gives an example where a requirement element “Max Peak Power Requirement is created. It defines “id,”
“text,” and “maxPeakPwr.”

It also has additionally a constraint property “maxPower” which permits to define constraints for the value
properties. The requirement is contextualized in the block “System Specification.” The block “Verification Context”
contextualizes the block “System Design” which holds the as-designed “totalPower” value property. In this context

OMG Systems Modeling Language, v1.7 331

the as-designed value is bound to the requirement constraint for the purpose of analysis to verify that the designed
value satisfies the required value.

Property Based Requirement Library[Model]bdd Data][

system Specification : System Specification

max Peak Power Requirement : Max Peak Power Requirement

{p1 <= p2}
cB : maxPower

«constraint»

maxPeakPwr : W

system Design :
System Design

totalPower : Wp2 p1=

Verification Context[Block]par

{p1 <= p2}
cB : maxPower

«constraint»

maxPeakPwr : W p2 p1=

Max Peak Power Requirement[Block]ibd

maxPeakPwr : W = 8500.0
text = The maximum peak power shall be less than 8.5 kW
id = 1

values

Max Peak Power Requirement

«PBR »
«block»

System Specification
«block»

System Specification
«block»

p2
p1
parameters

{p1 <= p2}
constraints

maxPower
«constraint»

Verification Context
«block»

totalPower : W
values

System Design
«block»

Parametric model of requirement can
relate properties of requirement

«comment»

system Specification system Design

max Peak Power Requirement

cB

Figure E.31. Property Based Requirement Library

332 OMG Systems Modeling Language, v1.7

Annex F: Requirements Traceability
(Informative)

The OMG SysML requirements traceability matrix traces this International Standard to the original source
requirements in the UML for Systems Engineering RFP (ad/2003-03-41). The traceability matrix is included by
reference in a separate document (ptc/2007-03-09).

OMG Systems Modeling Language, v1.7 333

This page intentionally left blank.

334 OMG Systems Modeling Language, v1.7

Annex G: Model Interchange
(informative)

G.1 Overview

This annex describes two methods for exchanging SysML models between tools. The first method discussed is XML
Metadata Interchange (XMI), which is the preferred method for exchanging models between UML-based tools. The
second approach describes the use of ISO 10303-233 Application Protocol: Systems engineering (AP233), which is
one of the series of STEP (Standard for the Exchange of Product Model Data) engineering data exchange standards.
Other model interchange approaches are possible, but the ones described in this annex are expected to be the
primary ones supported by SysML.

G.2 Context for Model Interchange

Developing today’s complex systems typically requires engineering teams that are distributed in time and space and
that are often composed of many companies, each with their own culture, methods, and tools. Effective
collaboration requires agreement on, and a thorough understanding of, the various work assignments and resulting
artifacts.

Many of these artifacts pertain to shared engineering data (e.g., requirements, system structural and behavioral
models, verification & validation) that transcend the entire life cycle of the system of interest and are the basis for
important systems engineering considerations and decisions. So it is critical that the system information contained in
these artifacts and information models be accurately captured and readable by all appropriate team members in a
timely manner.

Today, this information resides in an array of tools where each is only concerned with a portion of systems
engineering data and can’t share its data with other tools because they only understand their own native schema. To
mitigate this situation, collaborating organizations are usually forced to either adopt a common set of tools or
develop a unique, bidirectional interface between many of the tools that each organization uses. This can be an
expensive and untimely approach to data exchange between team members. So, there is a need to define
standardized approaches for model interchange between the different data schemas in use.

G.3 XMI Serialization of SysML

UML 2.5.1 is formally defined using the OMG Meta Object Facility (MOF). MOF can be considered a language for
specifying modeling languages. The OMG XML Metadata Interchange (XMI) 2.5.1 standard specifies an XML-
based interchange format for any language modeled using MOF. This results in a standard, convenient format for
serializing UML user models as XMI files for interchange between UML tools. The XMI specification also includes
rules for generating an XML Schema that can be used for basic validation of the structure of those UML user model
XMI files.

The UML language includes an extension mechanism called UML Profiles. UML Profiles are themselves defined as
UML models (MOF is not used). However, their intent is to specify extensions to the UML language semantics in
much the same way one could extend the UML language by adding to the MOF definition of UML. As UML
Profiles are valid UML models, XMI does provide a mechanism for exchanging the UML Profiles between UML
tools. However, as they are extensions to concepts defined in the UML language itself, the definition of a UML
Profile refers to the UML language definitions. An XMI 2.5.1 representation of the SysML profile (i.e., the UML
Profile for SysML), as well as XMI 2.5.1 representations of Model Libraries defined by SysML, are provided as
support documents to this International Standard. As with UML, XMI provides a convenient serialized format for
model interchange between SysML tools and basic validation of those files using an XML Schema as well.

The namespace for the standard profile is: https://www.omg.org/spec/SysML/1.7/SysML.xmi.

G.4 SysML Model Interchange Using AP233

AP233 is a data exchange standard designed to support the exchange of systems engineering data between the many
and varied software tools that systems engineers use in the course of their work. Data from systems modeling tools

OMG Systems Modeling Language, v1.7 335

https://www.omg.org/spec/SysML/1.7/SysML.xmi

is included in the scope of AP233, in fact, requirements for AP233 and SysML have been largely aligned by the
OMG and the ISO teams working together and in close cooperation with the INCOSE Model Driven System Design
working group.

G.4.1 Scope of AP233
SysML/AP233 Data Overlapspackage AnnexG][

Figure G.1. SysML/AP233 Data Overlaps

AP233 includes support for assigning program management information as well as system modeling information to
systems engineering data.

Program management capabilities include issue management, risk management, and aspects of project management
such as project breakdown, project resource information, organization structure, schedule, and work structure.

System modeling capabilities include requirements and requirements allocation, trade studies with measures of
effectiveness, interface to analysis, function-based behavior, state-based behavior, system hierarchies for the design
system, the realized system, and all interfaces.

Additional information about AP233 can be found at https://www.ap233.org/.

G.4.2 STEP Architecture

AP233 is standardized under ISO Technical Committee 184 (Industrial Automation Systems and Integration),
Subcommittee 4 (Industrial Data). AP233 is part of the family of ISO 10303 standards, referred to as STEP, that
include standardized models and infrastructure for the exchange of product model data.

The STEP architecture is modular. This enables the component information models to be reused across disciplines
and life-cycle stages in different application protocols, which are the models used for implementation. STEP models
are written using the ISO 10303-11 EXPRESS language.

STEP also standardizes a series of implementation methods: a text file structure (ISO 10303-21), a data access
interface (ISO 10303-22) and an XML file format (ISO 10303-28). The data access interface has bindings that
provide standardized APIs for accessing EXPRESS-based data in various programming languages. A conforming
STEP implementation is the combination of a STEP application protocol and one or more of the implementation
methods.

336 OMG Systems Modeling Language, v1.7

https://www.ap233.org/

The scope of STEP is very large and a number of data exchange standards (e.g., geometry, product life-cycle
support, structural, electrical, and engineering analysis) have been in wide use in industry for more than 15 years.
Support for several systems engineering viewpoints within the scope of AP233 are shared with other application
protocols. Since AP233 is part of STEP, it is easy to relate systems engineering data to that of other engineering
disciplines over the life cycle of a system and to related product models.

For more information on the STEP architecture see the ISO TC184/SC4 Industrial Data subcommittee web page at
https://www.tc184-sc4.org.

G.4.3 EXPRESS

AP233, like all STEP application protocols, is defined using the EXPRESS modeling language. EXPRESS is a
precise text-based information modeling language with a related graphical representation called EXPRESS-G.

An example of the text-based format follows:

SCHEMA Ap233_systems_engineering_arm_excerpt;
ENTITY Product;

id : STRING;
name : STRING;
description : OPTIONAL STRING;

END_ENTITY;

ENTITY Product_version;
id : STRING;
description : OPTIONAL STRING;
of_product : Product;

END_ENTITY;

ENTITY Product_view_definition;
id : OPTIONAL STRING;
name : OPTIONAL STRING;
additional_characterization : OPTIONAL STRING;
initial_context : View_definition_context;
additional_contexts : SET [0:?] OF View_definition_context;
defined_version : Product_version;

WHERE
WR1: NOT (initial_context IN additional_contexts);
WR2: EXISTS(id) OR (TYPEOF(SELF\Product_view_definition) <> TYPEOF(SELF));

END_ENTITY;

ENTITY View_definition_context;
application_domain : STRING;
life_cycle_stage : STRING;
description : OPTIONAL STRING;

WHERE
WR1: (SIZEOF (USEDIN(SELF, 'AP233_SYSTEMS_ENGINEERING_ARM_EXCERPT.' +

'PRODUCT_VIEW_DEFINITION.INITIAL_CONTEXT')) > 0) OR
(SIZEOF (USEDIN(SELF, 'AP233_SYSTEMS_ENGINEERING_ARM_EXCERPT.' +
'PRODUCT_VIEW_DEFINITION.ADDITIONAL_CONTEXTS')) > 0);

OMG Systems Modeling Language, v1.7 337

https://www.tc184-sc4.org/

END_ENTITY;

ENTITY System
SUBTYPE OF (Product);

END_ENTITY;

ENTITY System_version
SUBTYPE OF (Product_version);
SELF\Product_version.of_product : System;

END_ENTITY;

ENTITY System_view_definition
SUBTYPE OF (Product_view_definition);

SELF\Product_view_definition.defined_version : System_version;
END_ENTITY;

END_SCHEMA;

EXPRESS expressions are similar in nature to OCL expressions and the two languages have similar expressiveness.
EXPRESS has also been approved as an OMG standard with a September 2009 publication of Version 1.0 of the
Reference Metamodel for the EXPRESS Information Modeling Language Specification. This will enable the use of
OMG Model Driven Architecture technologies against AP233 and other STEP models written in EXPRESS.

G.4.4 SysML-AP233 Mapping

A formal and standardized mapping between SysML and AP233 is being developed within the OMG. The mapping
is a specification for SysML and other tool vendors to implement so that their tools can import from and export to
AP233 data exchange files. AP233 usage is aimed primarily at scenarios where SysML data is fed to downstream
applications such as those used in manufacturing, life cycle management, or systems maintenance. Additional
information can be found at the OMG SysML Portal at https://www.omgwiki.org/OMGSysML/.

338 OMG Systems Modeling Language, v1.7

https://www.omgwiki.org/OMGSysML/

Annex H: Precise Semantics of SysML
(informative)

H.1 Overview

This annex defines the precise semantics of the abstract syntax of a subset of SysML stereotypes. This semantic
definition is given as an extension to the semantic model for PSCS (see [PSCS], Clause 8), which is itself an
extension of the execution model for fUML (see [fUML], Clause 8). This annex includes only the extensions to the
PSCS model necessary for SysML. However, the full semantics of the SysML subset included in this annex are
given by the fUML execution model as extended for PSCS, which is then a complete, executable fUML model of
the operational semantics for the combined PSCS and SysML subset.

The SysML execution model is given as an extension of the PSCS model in order to ensure that SysML semantics
are compatible with PSCS semantics.

The SysML semantics specified by this annex does not depend on PSSM. However it is possible for an execution
engine to conform to both PSSM and this specification.

The circularity of defining SysML semantics by extending the fUML execution model, which is itself a fUML
model, is handled as it is in fUML. That is, the execution model is defined using only the further subset of fUML
whose semantics are separately specified by the fUML base semantics (see [fUML], Clause 10), which is not
extended further for the purposes of SysML. This further subset, known as Base UML (or “bUML”) includes a
subset of UML activity modeling that is used to specify the detailed behavior of all concrete operations in the
execution model. However, rather than using activity diagram notation to represent such activity models, they are
specified in the execution model extensions for SysML using the Java-syntax textual notation whose mapping to
UML is given in Annex A of [fUML].

The SysML extensions to the PSCS execution model are organized into five packages. Figure H.1 shows each of
these packages and their dependencies on packages from the SysML profile and from fUML and PSCS semantic
models. These dependencies are represented as package-import relationships, which also make the unqualified
names of the necessary syntactic and semantics elements visible for use in the detailed behavioral code of each of
the SysML semantics packages.

The subsequent clauses in this annex describe each of the SysML semantics packages in turn. The description
includes a class model for the contents of the package and an explanation of the operational semantics defined by the
functionality of the classes in the model. Those packages are organized as follows:

• the "Actions" package specifies additional constraints on the UML::Actions package that restrict the scope of
models on which this operational semantics applies. It defines also a set of semantics visitors that extends some
from the fUML::Semantics::Actions package according to semantics defined by SysML stereotypes.

• The "Activities" package defines a set of semantics visitors that extends some from the
fUML::Semantics::Activities package according to semantics defined by SysML stereotypes.

• The "Blocks" package extends the CS_Object visitor define by the PSCS specification and defines a set of
construct that can support the semantics defined by SysML stereotypes from the SysML::Blocks package.

• The "PortsAndFlows" package specifies additional constraints on ports, Flow properties and directed features
that restrict the scope of models on which this operational semantics applies.

• The "Loci" package is added for specifying necessary extensions of the Loci package of PSCS together with a
set of utility operations that simplify the specification of teh semantics visitors

OMG Systems Modeling Language, v1.7 339

PSCS_Semantics

Semantics

StructuredClassifiers

Loci

Actions

SysML
«profile»

Ports&Flows

Blocks

Activities

fUML_Semantics

Semantics

Activities

(SysML_Semantics)
PortsAndFlows

(SysML_Semantics)
Loci

(SysML_Semantics)
Blocks

(SysML_Semantics)
Activities

(SysML_Semantics)
Actions

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

SysML_SemanticsSysML_Semantics[Package]package][

Figure H.1. SysML_Semantics

H.2 References

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification. For versioned references, subsequent amendments to, or revisions of, any of these publications
do not apply.

[fUML] Semantics of a Foundational Subset for Executable UML Models (fUML), version 1.5,
http://www.omg.org/spec/FUML

[PSCS] Precise Semantics of UML Composite Structures (PSCS), version 1.2, http://www.omg.org/spec/PSCS

[PSSM] Precise Semantics of UML State Machines, version 1.0, https://www.omg.org/spec/PSSM/1.0/PDF

[UML] Unified Modeling Language, version 2.5.1, https://www.omg.org/spec/UML/2.5.1/PDF

H.3 Semantics

This clause is organized in sub-clauses that include this overview and a set of sub-clauses chapter that specifies the
structural and behavioral constructs of this specification and/or a sub-clause that defines additional constraints that
restrict the scope on which the semantics defined by this specification applies.

Those semantics are defined as an extension of the PSCS semantics that are themselves defined as an extension of
fUML. A SysML model that syntactically conforms to this subset shall have an abstract syntax representation that
consists solely of instances of metaclasses that are (imported) members of the either the fUML_Syntax::Syntax or
the PCSC_Syntax packages, as described in the corresponding specifications. Also only the SysML Stereotypes
listed in the sub-clauses below shall be used.

H.3.1 Actions

340 OMG Systems Modeling Language, v1.7

http://www.omg.org/spec/FUML
http://www.omg.org/spec/PSCS
https://www.omg.org/spec/PSSM/1.0/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

H.3.1.1 Overview

The Actions package introduces extensions to various fUML action activation classes defined in PSCS or in fUML.
SysML does not specify any stereotype for actions. However, the semantics of a number of SysML stereotypes
actually impact the semantics of some actions that are performed on elements those stereotypes are applied on. For
instance, binding connectors can link together a pair of properties so that their values shall be the same at any time.
The operational consequence of this semantics is that any action modifying the value of one of those properties shall
be replicated to the value of the property it is bound to.

H.3.1.2 Additional Constraints

• upperbound_equal_upper
The value of a Pin for its upperbound and upper properties shall be the same

context Pin inv: self.upperBound = self.upper

H.3.1.3 Class descriptions

+doDirectedFeatureAction(targetObject : Value, featureValue : FeatureValue [1])
+doAction(){redefines doAction}
+doFlowAction(targetObject : Value, featureValue : FeatureValue [1])
+doBoundAction(featureValue : FeatureValue [1], visitedFeatures : FeatureValue [0..*])

operations

SysML_RemoveStructuralFeatureValueActionActivation

+doDirectedFeatureAction(targetObject : Value, featureValue : FeatureValue [1])
+doFlowAction(targetObject : Value, featureValue : FeatureValue [1])
+doBoundAction(featureValue : FeatureValue [1], visitedFeatures : FeatureValue [0..*])
+doAction(){redefines doAction}

operations

SysML_ClearStructuralFeatureActionActivation

+doDirectedFeatureAction(targetObject : Value, featureValue : FeatureValue [1])
+doFlowAction(targetObject : Value, featureValue : FeatureValue [1])
+doBoundAction(featureValue : FeatureValue [1], visitedFeatures : FeatureValue [0..*])
+doAction(){redefines doAction}

operations

SysML_AddStructuralFeatureValueActionActivation

CS_RemoveStructuralFeatureValueActionActivation

CS_AddStructuralFeatureValueActionActivation

+doAction(){redefines doAction}
operations

SysML_ReadStructuralFeatureActionActivation

+addToken(token : Token){redefines addToken}
+sendOffers(tokens : Token [*]){redefines sendOffers}

operations

SysML_OutputPinActivation

+sendOffers(tokens : Token [*]){redefines sendOffers}
operations

SysML_InputPinActivation

CS_ClearStructuralFeatureActionActivation

ReadStructuralFeatureActionActivation

+doAction(){redefines doAction}
operations

SysML_SendSignalActionActivationCS_SendSignalActionActivation

OutputPinActivation

InputPinActivation

[Package] ActionsActionsclass][

Figure H.2. Actions

H.3.1.3.1 SysML_AddStructuralFeatureValueActionActivation

Description

This semantics visitor extends the PSCS CS_AddStructuralFeatureValueActionActivation class in order to support
semantics of binding connectors, flow properties and directed features.

Generalizations

• CS_AddStructuralFeatureValueActionActivation (from Actions)

Operations

• doAction () {redefines doAction}

OMG Systems Modeling Language, v1.7 341

// If the feature has a binding connector attached
// a coordinated update is done
// otherwise, behaves as usual

// get the value of the target pin before the super.doAction() is called
AddStructuralFeatureValueAction action = (AddStructuralFeatureValueAction)
(this.node);
Value target = this.getToken(action.object).getValue(0);

super.doAction();

StructuralFeature feature = action.structuralFeature;
if (feature instanceof Property & object instanceof StructuredValue) {

FeatureValue featureValue = action.object.getFeatureValue(feature);

FeatureValueList visitedFeatures = new FeatureValueList();

this.doBoundAction(featureValue, visitedFeatures);

//Flow property management
this.doFlowAction(target, featureValue);

//Directed feature management
this.doDirectedFeatureAction(target, featureValue);

}

• doBoundAction (in featureValue : FeatureValue, in visitedFeatures : FeatureValue)

// check that this feature value has not been visited yet
// otherwise stop the recursion here
for (int k=0; k < visitedFeature.size(); k++) {

if (featureValue == visitedFeature.get(k)) {
return;

}
}

// add the feature value to the visited list
visitedFeatures.addValue(featureValue);

// retrieve all the bindings for this feature value
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();
ValueBindingList bindings = locus.getAllValueBindings(featureValue);

for (int i = 0; i < bindings.size(); i++) {
// get the feature value bound by this binding
FeatureValue otherFeatureValue =

bindings.get(i).getOppositeBoundFeatureValue(featureValue);

// Loop on values...
for (int j = 0; j < featureValue.values.size(); j++) {

otherFeatureValue.values = featureValue.values;

342 OMG Systems Modeling Language, v1.7

}

// execute recursively
doBoundAction(otherFeatureValue, visitedFeatures);

}

• doDirectedFeatureAction (in targetObject : Value, in featureValue : FeatureValue)

// If the feature is a required feature the value has to be added to the
matched feature, if any
Feature feature = featureValue.feature;
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();

if (feature instanceof Property && locus.isRequiredFeature((Property)
feature) && targetObject instanceof StructuredValue) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =

locus.getMatchingFeatureValue(targetObject, feature);

if (matchingFeatureValue != null) {
// Loop on values...
for (int j = 0; j < featureValue.values.size(); j++) {

matchingFeatureValue.values = featureValue.values;
}

// trigger binding connections, if any
FeatureValueList visitedFeatures = new FeatureValueList();
doBoundAction(matchingFeatureValue, visitedFeatures);

}

}

• doFlowAction (in targetObject : Value, in featureValue : FeatureValue)

// Looks for the value of the owner of the property,
// i.e. typicaly the value passed to the action
// using its "target" input pin.
// The link to be used connects this "target"
// rather than the feature value itself.
// It is check whether it is a flow property
Feature feature = featureValue.feature;
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();

if (feature instanceof Property &&
locus.isFlowProperty((Property) feature) &&
targetObject instanceof StructuredValue) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =

locus.getMatchingFeatureValue(targetObject, feature);

OMG Systems Modeling Language, v1.7 343

if (matchingFeatureValue != null) {
// Loop on values...
for (int j = 0; j < featureValue.values.size(); j++) {

matchingFeatureValue.values.get(j) = featureValue.values.get(j);
}

// trigger binding connections, if any
FeatureValueList visitedFeatures = new FeatureValueList();
doBoundAction(matchingFeatureValue, visitedFeatures);

}

}

H.3.1.3.2 SysML_CallOperationActivation

Description

This semantics visitor extends the PSCS CS_CallOperationActionActivation class in order to support semantics of
binding connectors, flow properties and directed features.

Generalizations

• CallOperationActionActivation (from Actions)

Operations

• getCallExecution () : Execution [1] {redefines getCallExecution}

// Check whether the operation is a required feature.
// If so, call from the matching feature instead, if any.
// If it is not a required feature, invoke the regular getCallExecution

CallOperationAction action = (CallOperationAction) (this.node);
Value target = this.takeTokens(action.target).getValue(0);
Execution execution = null;

if (action.operation != null) {

// If the operation is a required feature the matching feature shall be
called

SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();

if (locus.isRequiredFeature((Property) feature)) {

// retrieve the matching feature value
FeatureValue matchingOperation = locus.getMatchingFeatureValue(target,

action.operation);

target = locus.getObjectWithFeatureValue(matchingOperation);

execution = ((Reference) target).dispatch(matchingOperation);
}

}

344 OMG Systems Modeling Language, v1.7

else {
execution = super.getCallExecution();

}

return execution;

H.3.1.3.3 SysML_ClearStructuralFeatureActionActivation

Description

This semantics visitor extends the PSCS CS_ClearStructuralFeatureActionActivation class in order to support
semantics of binding connectors, flow properties and directed features.

Generalizations

• CS_ClearStructuralFeatureActionActivation (from Actions)

Operations

• doAction () {redefines doAction}

// If the feature has a binding connector attached
// a coordinated update is done
// otherwise, behaves as usual

// get the value of the target pin before the super.doAction() is called
ClearStructuralFeatureValueAction action =
(ClearStructuralFeatureValueAction) (this.node);
Value target = this.getToken(action.object).getValue(0);

super.doAction();

StructuralFeature feature = action.structuralFeature;
if (feature instanceof Property && object instanceof StructuredValue) {

FeatureValue featureValue = action.object.getFeatureValue(feature);

FeatureValueList visitedFeatures = new FeatureValueList();

this.doBoundAction(featureValue, visitedFeatures);

//Flow property management
this.doFlowAction(target, featureValue);

//Directed feature management
this.doDirectedFeatureAction(target, featureValue);

}

• doBoundAction (in featureValue : FeatureValue, in visitedFeatures : FeatureValue)

// Check that this feature value has not been visited yet
// otherwise stop the recursion here

OMG Systems Modeling Language, v1.7 345

for (int k=0; k < visitedFeature.size(); k++) {
if (featureValue == visitedFeature.get(k)) {

return;
}

}

// add the feature value to the visited list
visitedFeatures.addValue(featureValue);

// retrieve all the bindings for this feature value
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();
ValueBindingList bindings = locus.getAllValueBindings(featureValue);

for (int i = 0; i < bindings.size(); i++) {
// get the feature value bound by this binding
FeatureValue otherFeatureValue =

bindings.get(i).getOppositeBoundFeatureValue(featureValue);

otherFeatureValue.values = new ValueList();

// execute recursively
doBoundAction(otherFeatureValue, visitedFeatures);

}

• doDirectedFeatureAction (in targetObject : Value, in featureValue : FeatureValue)

// If the feature is a required feature the values of the matched feature,
if any,
// have to be cleared
Feature feature = featureValue.feature;
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();

if (feature instanceof Property && locus.isRequiredFeature((Property)
feature) && targetObject instanceof StructuredValue) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =

locus.getMatchingFeatureValue(targetObject, feature);

if (matchingFeatureValue != null) {
matchingFeatureValue.values = new ValueList();

// trigger binding connections, if any
FeatureValueList visitedFeatures = new FeatureValueList();
doBoundAction(matchingFeatureValue, visitedFeatures);

}

}

• doFlowAction (in targetObject : Value, in featureValue : FeatureValue)

346 OMG Systems Modeling Language, v1.7

// Get the value of the owner of the property,
// i.e. typicaly the value passed to the action using its "target" input
pin.
// The link to be used connects this "target" rather than the feature value
itself.
// check whether this is a flow property
Feature feature = featureValue.feature;
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();

if (feature instanceof Property &&
locus.isFlowProperty((Property) feature) &&
targetObject instanceof StructuredValue) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =

locus.getMatchingFeatureValue(targetObject, feature);

if (matchingFeatureValue != null) {
matchingFeatureValue.values = new ValueList();

// trigger binding connections, if any
FeatureValueList visitedFeatures = new FeatureValueList();
doBoundAction(matchingFeatureValue, visitedFeatures);

}

}

H.3.1.3.4 SysML_InputPinActivation

Description

This semantics visitor extends the fUML InputPinActivation class in order to support semantics of the NoBuffer
stereotype.

Generalizations

• InputPinActivation (from Actions)

Operations

• sendOffers (in tokens : Token) {redefines sendOffers}

// call the original sendOffer operation
// then, if the NoBuffer stereotype is applied,
// discard remaining tokens, if any

super.sendOffers(tokens);

ObjectNode node = (ObjectNode) this.node;

if (node.owner instanceof StructuredActivityNode) {
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();

if (locus.isNoBuffer(node)) {
this.clearToken();

OMG Systems Modeling Language, v1.7 347

}
}

H.3.1.3.5 SysML_OutputPinActivation

Description

This semantics visitor extends the fUML OutputPinActivation class in order to support semantics of both the
NoBuffer and the Overwrite stereotypes.

Generalizations

• OutputPinActivation (from Actions)

Operations

• addToken (in token : Token) {redefines addToken}

// if the Overwrite stereotype is applied and the node holds at least one
token,
// remove the "oldest" token in the list,
// depending on the node ordering
// then call the original addToken operation

ObjectNode node = (ObjectNode) this.node;
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();

if (locus.isOverwrite(node) && his.heldTokens.size() > 0) {
//this.clearToken();
if (node.ordering == ObjectNodeOrderingKind::FIFO) {

this.heldTokens.remove(0);
}
else {

if (node.ordering == ObjectNodeOrderingKind::LIFO) {
this.heldTokens.remove(this.heldTokens.size()-1);

}
}

}

super.addToken(tokens);

• sendOffers (in tokens : Token) {redefines sendOffers}

// call the original sendOffer operation
// then, if the NoBuffer stereotype is applied,
// discard remaining tokens, if any

super.sendOffers(tokens);

ObjectNode node = (ObjectNode) this.node;
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();

if (locus.isNoBuffer(node)) {
this.clearToken();

348 OMG Systems Modeling Language, v1.7

}

H.3.1.3.6 SysML_ReadStructuralFeatureActionActivation

Description

This semantics visitor extends the fUML ReadStructuralFeatureActionActivation class in order to support semantics
of required directed features.

Generalizations

• ReadStructuralFeatureActionActivation (from Actions)

Operations

• doAction () {redefines doAction}

// Check whether the feature is a required feature
// if so, get the value from a matching feature, if any.
// If it is not a required feature, invoke the regular doACtion

ReadStructuralFeatureAction action = (ReadStructuralFeatureAction)
(this.node);
StructuralFeature feature = action.structuralFeature;

if (feature != null && action.object instanceof StructuredValue) {

// If the feature is a required feature,
// the values of the matched feature, if any, have to be cleared
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();

if (locus.isRequiredFeature((Property) feature)) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =

locus.getMatchingFeatureValue(targetObject, feature);

if (matchingFeatureValue != null) {
matchingFeatureValue.values = new ValueList();
this.putTokens(action.result, matchingFeatureValue.values);

}

}
else {

super.doAction();
}

}

H.3.1.3.7 SysML_RemoveStructuralFeatureValueActionActivation

Description

This semantics visitor extends the PSCS CS_RemoveStructuralFeatureValueActionActivation class in order to
support semantics of binding connectors, flow properties and directed features.

OMG Systems Modeling Language, v1.7 349

Generalizations

• CS_RemoveStructuralFeatureValueActionActivation (from Actions)

Operations

• doAction () {redefines doAction}

// If the feature has a binding connector attached
// a coordinated update is done
// otherwise, behaves as usual

// get the value of the target pin before the super.doAction() is called
RemoveStructuralFeatureValueAction action =
(RemoveStructuralFeatureValueAction) (this.node);
Value target = this.getToken(action.object).getValue(0);

super.doAction();

StructuralFeature feature = action.structuralFeature;
if (feature instanceof Property && object instanceof StructuredValue) {

FeatureValue featureValue = action.object.getFeatureValue(feature);

FeatureValueList visitedFeatures = new FeatureValueList();

this.doBoundAction(featureValue, visitedFeatures);

//Flow property management
this.doFlowAction(target, featureValue);

//Directed feature management
this.doDirectedFeatureAction(target, featureValue);

}

• doBoundAction (in featureValue : FeatureValue, in visitedFeatures : FeatureValue)

// check that this feature value has not been visited yet
// otherwise stop the recursion here
for (int k=0; k < visitedFeature.size(); k++) {

if (featureValue == visitedFeature.get(k)) {
return;

}
}

// add the feature value to the visited list
visitedFeatures.addValue(featureValue);

// retrieve all the bindings for this feature value
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();
ValueBindingList bindings = locus.getAllValueBindings(featureValue);

350 OMG Systems Modeling Language, v1.7

for (int i = 0; i < bindings.size(); i++) {
// get the feature value bound by this binding
FeatureValue otherFeatureValue =

bindings.get(i).getOppositeBoundFeatureValue(featureValue);

// Loop on values...
otherFeatureValue.values = new ValueList()
for (int j = 0; j < featureValue.values.size(); j++) {

otherFeatureValue.values.get(j) = featureValue.values.get(j);
}

// execute recursively
doBoundAction(otherFeatureValue, visitedFeatures);

}

• doDirectedFeatureAction (in targetObject : Value, in featureValue : FeatureValue)

// If the feature is a required feature the values of the matched feature,
if any,
// have to be cleared
Feature feature = featureValue.feature;
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();

if (feature instanceof Property &&
locus.isRequiredFeature((Property) feature) &&
targetObject instanceof StructuredValue) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =

locus.getMatchingFeatureValue(targetObject, feature);

if (matchingFeatureValue != null) {
matchingFeatureValue.values = matchingFeatureValue.values;

// trigger binding connections, if any
FeatureValueList visitedFeatures = new FeatureValueList();
doBoundAction(matchingFeatureValue, visitedFeatures);

}

}

• doFlowAction (in targetObject : Value, in featureValue : FeatureValue)

// Get the value of the owner of the property, i.e. typicaly the value
passed to teh action using its "target" input pin
// the link to be used will connect this "target" rather than the feature
value itself.
//check whether this is a flow property
Feature feature = featureValue.feature;
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();

OMG Systems Modeling Language, v1.7 351

if (feature instanceof Property && locus.isFlowProperty((Property) feature)
&& targetObject instanceof StructuredValue) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =

locus.getMatchingFeatureValue(targetObject, feature);

if (matchingFeatureValue != null) {
matchingFeatureValue.values = featureValue.values;

}

// trigger binding connections, if any
FeatureValueList visitedFeatures = new FeatureValueList();
doBoundAction(matchingFeatureValue, visitedFeatures);

}

}

H.3.1.3.8 SysML_SendSignalActionActivation

Description

This semantics visitor extends the PSCS CS_RemoveStructuralFeatureValueActionActivation class in order to
support semantics of proxy ports. Note: the final target of the Signal shall be have Reception for this Signal in order
to trigger a behavior when the signal occurrence is received.

Generalizations

• CS_SendSignalActionActivation (from Actions)

Operations

• doAction () {redefines doAction}

// If onPort is not specified, behaves like in fUML/PSCS
// If onPort is specified:
// - if it is a behavior port,
// get the value from the onPort pin.
// - else (i.e. if it is not a behavior port),
// get the value from the target pin.
// If the value is not a reference then do nothing.
// Otherwise, looks for all links connected to the referenced object
// if links are found, construct a signal using the values from the
argument pins
// and send it to the referenced object on the opposite side of each of
those links

SendSignalAction action = (SendSignalAction) (this.node);
Port port = action.getOnPort();

if (port == null) {
// Behaves like in fUML
super.doAction();

352 OMG Systems Modeling Language, v1.7

} else {

FeatureValueList actualTargets;

// Get all links (available at the locus of this object) that are attached
to this port
// (i.e. the port is an end such links)
// and get their opposite ends as actual targets
// Note: SysML links are binary
ExtensionalValueList extensionalValues = this.locus.extensionalValues ;
Integer i = 1 ;
while (i <= extensionalValues.size()) {

ExtensionalValue value = extensionalValues.getValue(i-1) ;
if (value instanceof CS_Link) {

CS_Link link = (CS_Link)value;
if (link.getFeatureValues.size() > 1) {

if (link.getFeatureValues.get(0).feature == port) {
actualTargets.addValue(link.getFeatureValues.get(1));

}
else {

if (link.getFeatureValues.get(1).feature == port) {
actualTargets.addValue(link.getFeatureValues.get(0));

}
}

}
}
i = i + 1 ;

}

// Send the a signal instance to all the targets identified that are
CS_References
for (int j=0; j < actualTargets.size(); j++) {

Value target = actualTargets.get(j).value;

if (target instanceof CS_Reference) {
// Constructs the signal instance
Signal signal = action.getSignal();
SignalInstance signalInstance = new SignalInstance();
signalInstance.type = signal;

List attributes = signal.getOwnedAttributes();
List argumentPins = action.getArguments();
Integer j = 0;
while (j < attributes.size()) {

Property attribute = attributes.get(j);
InputPin argumentPin = argumentPins.get(j);
List values = this.takeTokens(argumentPin);
signalInstance.setFeatureValue(attribute, values, 0);
j = j + 1;

}

CS_Reference targetReference = (CS_Reference) target;

OMG Systems Modeling Language, v1.7 353

targetReference.send(signalInstance);
}

}

H.3.2 Activities

H.3.2.1 Overview

This sub-clause addresses the semantics of both the NoBuffer and the Overwrite stereotypes from the Activities
package of SysML. The fact that fUML does not includes foundational semantics for time prevent from describing
those for the stereotypes Rate, Discrete and Continuous. Also the way the fUML execution model is built would not
make it possible to describe the semantics of ControlOperator without an in-deep revision. The semantics of the
Optional stereotype is redundant with that of the multiplicity lower bound and so, already handled in fUML. The
semantics of Probability have no direct impact on the model execution even if it can be exploited by analysis tools.

The semantics of NoBuffer, is described in the extensions of both InputPinActivation and OutputPinActivation.
Their sendOffers operations is redefined so that remaining tokens are removed if the NoBuffer stereotype is applied.
The same extension is done for ActivityParameterNodeActivation but will be effective only for Input parameter
nodes.

With the Overwrite stereotype applied on an ObjectNode, a conforming execution engine shall replace tokens stored
in a "full" object node by incoming tokens. "Full" means that the number of tokens held within the node is equal to
the value of its upperBound property. The tokens to be removed depend whether it has a FIFO or a LIFO ordering.
This is supported by the redefinition of the addToken() operation in the SysML_OutputPinActivation. It shall also be
done for InputPin, CentralBuffer, and activity parameter nodes (Datastore already has an overwrite semantics).

SysML Stereotypes Supported: NoBuffer, Overwrite

H.3.2.2 Class descriptions

+setParameterValue(parameterValue : ParameterValue [1]){redefines setParameterValue}
operations

SysML_ActivityExecution

+clearTokens(){redefines clearTokens}
+removeToken(token : Token [1]) : Integer [1]{redefines removeToken}
+addToken(token : Token [1]){redefines addToken}

operations

SysML_ObjectNodeActivation

+sendOffers(tokens : Token [*]){redefines sendOffers}
operations

SysML_ExpansionNodeActivation

+sendOffers(tokens : Token [*]){redefines sendOffers}
operations

SysML_ActivityParameterNodeActivation
ActivityParameterNodeActivation

ExpansionNodeActivation

ObjectNodeActivation

ActivityExecution

[Package] ActivitiesActivitiesclass][

Figure H.3. Activities

H.3.2.2.1 SysML_ActivityExecution

Description

This semantics visitor extends the fUML ActivityExecution class in order to support semantics of adjunct properties.

Generalizations

• ActivityExecution (from Activities)

354 OMG Systems Modeling Language, v1.7

Operations

• setParameterValue (in parameterValue : ParameterValue) {redefines setParameterValue}

// Call the regular SetParalmeterValue first
super.setParameterValue(parameterValue);

// then find looks for any adjunct bindings
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();
AdjunctBindingList bindings = locus.getAllAdjunctBindings(link);

for (int i = 0; i < bindings.size(); i++) {
// get the feature value bound by this binding
FeatureValue adjunctFeatureValue = bindings.get(i).adjunctFeatureValue;

// then copy its value to those of the adjunct feature
adjunctFeatureValue.values = parameterValue.values;

}

H.3.2.2.2 SysML_ActivityParameterNodeActivation

Description

This semantics visitor extends the fUML ActivityParameterNodeActivation class in order to support semantics of
adjunct properties.

Generalizations

• ActivityParameterNodeActivation (from Activities)

Operations

• sendOffers (in tokens : Token) {redefines sendOffers}

// Call the original sendOffer operation.
// Then, if the NoBuffer stereotype is applied,
// discard remaining tokens, if any

super.sendOffers(tokens);

ObjectNode node = (ObjectNode) this.node;

SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();

if (locus.isNoBuffer(node)) {
this.clearToken();

}

H.3.2.2.3 SysML_ExpansionNodeActivation

Description

This semantics visitor extends the fUML ExpansionNodeActivation class in order to support semantics of the
NoBuffer stereotype.

OMG Systems Modeling Language, v1.7 355

Generalizations

• ExpansionNodeActivation (from Actions)

Operations

• sendOffers (in tokens : Token) {redefines sendOffers}

// Call the original sendOffer operation.
// Then, if the NoBuffer stereotype is applied,
// discard remaining tokens, if any

super.sendOffers(tokens);

ObjectNode node = (ObjectNode) this.node;

SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();

if (locus.isNoBuffer(node)) {
this.clearToken();

}

H.3.2.2.4 SysML_ObjectNodeActivation

Description

This semantics visitor extends the fUML ObjectNodeActivation class in order to support semantics of adjunct
properties.

Generalizations

• ObjectNodeActivation (from Activities)

Operations

• addToken (in token : Token) {redefines addToken}

// Execute a addToken as defined in the base class
// then add the corresponding value to the adjunct property

super.addToken(token);

// retrieve all the adjuncts for this node
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();
AdjunctBindingList bindings = locus.getAllAdjunctBindings(this);

for (int i = 0; i < bindings.size(); i++) {
// get the feature value bound by this adjunct binding
FeatureValue adjunctFeatureValue = bindings.get(i).adjunctFeatureValue;

// add the token value
adjunctFeatureValue.values.addValue(token.getValue());

}

356 OMG Systems Modeling Language, v1.7

• clearTokens () {redefines clearTokens}

// call the clearTokens operation of the base class and remove all
// the values from the adjunct property

super.clearTokens();

// retrieve all the adjuncts for this node
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();
AdjunctBindingList bindings = locus.getAllAdjunctBindings(this);

for (int i = 0; i < bindings.size(); i++) {
// get the feature value bound by this adjunct binding
FeatureValue adjunctFeatureValue = bindings.get(i).adjunctFeatureValue;

// clear all the token values
adjunctFeatureValue.values.clear();

}

• removeToken (in token : Token) : Integer [1] {redefines removeToken}

// Call the base class version of removeToken then
// if it return a index > 1 then remove the value at that position in the
adjunct property
// Note that index in "1 based" so adjust for java arrays that are "0
based"

int i = super.removeToken(token);
if (i > 0) {

// retrieve all the adjuncts for this fnode
SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();
AdjunctBindingList bindings = locus.getAllAdjunctBindings(this);

for (int j = 0; j < bindings.size(); j++) {
// get the feature value bound by this adjunct binding
FeatureValue adjunctFeatureValue = bindings.get(j).adjunctFeatureValue;

// remove the token value at i-1
adjunctFeatureValue.values.removeValue(i-1);
}

}
return i;

H.3.3 Blocks

H.3.3.1 Overview

The Blocks sub-clause is focused on the semantics for AdjunctProperty and BindingConnector that link together
values of the elements they involve. The Block PropertySpecificType, DistributedProperty and ValueType
stereotypes do not add any specific executable semantics to Class, Property and DataType, respectively.
BoundReference, NestedConnectorEnd, EndPathMultiplicity, DirectedRelationshipPropertyPath and

OMG Systems Modeling Language, v1.7 357

ElementPropertyPath provide mechanisms that allow extending the UML syntax but they have no semantics
implication by themselves.

The semantics for ConnectorProperty is redundant to that of an AdjunctProperty having a Connector as its principal.
Also, the semantics of ParticipantProperty is linked to AssociationBlock, but AssociationClass is not included in
fUML. AdjunctProperty for Connector would also require AssociationClass. They will not be addressed further in
this annex.

The semantics specified for BindingConnector is based on those given to FeatureValue by fUML. A FeatureValue
owns its value (composite aggregation) and so it cannot share it with another FeatureValue. So, the only way to
realize the binding connector semantics is to have one distinct value for each and to maintain them as exact copies.
Feature that are typed by Classes have references to objects as values. Changing their value means changing that
reference, so the copy mechanism used for ValueProperties will work as well. Based on that approach, the
BindingConnector semantics is fully handled by actions modifying the value of the bound properties. That is:
AddStructuralFeatureValue, ClearStructuralFeatureValue and RemoveStructuralFeatureValue.

The semantics of AdjunctProperty are quite similar to those of BindingConnector. However this sub-clause excludes
adjunct for AssociationBlocks , InteractionUse and Variables, because fUML does not support them. It excludes
also CallAction because it would need to either override the doAction() operation of CallActionActivation semantic
visitor class which would implies a significant amount of rework of some classes of the fUML execution model that
would require a new version of this standard. The semantics of ClassifierBehaviorProperty is not included in this
annex for the same reason. The semantics of Adjunct for SubmachineState are also out of scope of this subclause in
order to avoid inducing a dependency on PSSM.

In order to support the semantics of AdjunctProperty, an AdjunctBinding abstract class is provided. It is specialized
for each kind of principal for which the semantics is described. That is: Parameter and ObjectNode. The
adjunctFeatureValue of an AdjunctBinding shall refer to the feature value that is the adjunct for that model element.
When the value referred by the principalValue property is modified, that value is copied to the value referred by
adjunctFeature.

Note: semantics for parameter adjunct property is provided for parameters owned by activities only.

In addition the following classes of the execution fUML model are extended (see Actions and Activities paragraphs
in this annex):
- for supporting adjunct of a Parameter: ActivityExecution
- for supporting adjunct of an ObjectNode: ObjectNodeActivation, ActivityParameterNodeActivation,
CentralBufferNodeActivation, ExpansionNodeActivation, PinActivation, InputPinActivation, OutputPinActivation

Supported stereotypes: BindingConnector, AdjunctProperty

358 OMG Systems Modeling Language, v1.7

H.3.3.2 Class descriptions

+getOppositeBoundFeature(featureValue : FeatureValue [1]) : StructuralFeature [1]
+getOppositeBoundFeatureValue(featureValue : FeatureValue [1]) : FeatureValue [1]{query}
+isBound(featureValue : FeatureValue [1]) : Boolean [1]{query}

operations

ValueBinding

+principalValue() : SysML_ObjectNodeActivation [1]{redefines principalValue}
operations

ObjectNodeAdjunctBinding

+clearTokens(){redefines clearTokens}
+removeToken(token : Token [1]) : Integer [1]{redefines removeToken}
+addToken(token : Token [1]){redefines addToken}

operations

SysML_ObjectNodeActivation

+principalValue() : ParameterValue [1]{redefines principalValue}
operations

ParameterAdjunctBinding

#new_() : Value{redefines new_}
+createFeatureValues(){redefines createFeatureValues}

operations

SysML_Object

+principalValue()
+isBoundTo(principal) : Boolean [1]{query}

operations

AdjunctBinding

+copy() : ParameterValue
operations

ParameterValue

CS_Object

+principalValue
1

+principalValue 1

[Package] BlocksBlocksclass][

Figure H.4. Blocks

H.3.3.2.1 AdjunctBinding

Description

This class is added in order to support semantics of adjunct properties. Note: bUML does not allow property
redefinition, only operation redefinition => principalValue shall be defined as an operation that will return an
untyped value (because ParameterValue and Link are not semantic visitors).isBound parameter shall also have no
type (for the exact same reason)

Generalizations

• ExtensionalValue (from StructuredClassifiers)

Association Ends

• adjunctFeatureValue : FeatureValue [1]

Operations

• isBoundTo (in principal) : Boolean [1]

return this.principalValue == principal;

• principalValue () [1]
Abstract operation intended to return the value of the principal

H.3.3.2.2 ObjectNodeAdjunctBinding

Description

This class is added in order to support semantics of adjunct properties for object nodes.

Generalizations

• AdjunctBinding (from Blocks)

OMG Systems Modeling Language, v1.7 359

Association Ends

• principalValue : SysML_ObjectNodeActivation [1]

Operations

• principalValue () : SysML_ObjectNodeActivation [1] {redefines principalValue}

return this.principalValue;

H.3.3.2.3 ParameterAdjunctBinding

Description

This class is added in order to support semantics of adjunct properties for parameters. Note: the changes of
parameter values (and so update of the adjunct property) are managed within SysML_ActivityExecution by
overriding the setParameterValue() operation.

Generalizations

• AdjunctBinding (from Blocks)

Association Ends

• principalValue : ParameterValue [1]

Operations

• principalValue () : ParameterValue [1] {redefines principalValue}

return this.principalValue;

H.3.3.2.4 SysML_FeatureValue

Description

Generalizations

• FeatureValue (from SimpleClassifiers)

Attributes

• path : StructuralFeature [0..*]

H.3.3.2.5 SysML_Object

Description

This semantics visitor extends the PSCS CS_Object class in order to support semantics of proxy ports.

Generalizations

• CS_Object (from StructuredClassifiers)

Operations

• createFeatureValues () {redefines createFeatureValues}

// Create empty feature values for all structural features of the types
// of this structured value and all its supertypes (including private
// features that are not inherited).

360 OMG Systems Modeling Language, v1.7

super.createFeatureValues();

SysML_Locus locus = (SysML_Locus) this.getExecutionLocus();

//Initialize the values for behavioral proxy ports only
for (int i=0; i < this.featureValues.size(); i++) {

Port port = (Port) this.featureValues.get(i);

if (port != null && locus.isProxyPort(port) {
if (port.isBehavior) {

port.values = new ValueList(this);
}

}
}

• new_ () : Value [1] {redefines new_}

// Create a new object with no type, feature values or locus.
SysML_Object newObject = new SysML_Object_();

H.3.3.2.6 SysML_ReferencePropertyPair

Description

Association Ends

• property : Property [1]

• reference : Reference [1]

H.3.3.2.7 SysML_StructuredValue

Description

Generalizations

• StructuredValue (from SimpleClassifiers)

Operations

• addFeatureValuesForType (in type : Classifier, in oldFeatureValues : FeatureValue) {redefines
addFeatureValues}

// Add feature values for all structural features of the given type and
// all of its supertypes (including private features that are not
// inherited). If a feature has an old feature value in the given list,
// then use that to initialize the values of the corresponding new
// feature value. Otherwise leave the values of the new feature value
// empty.

// Set feature values for the owned structural features of the given
// type. (Any common structural values that have already been added
// previously will simply have their values set again.)
NamedElementList ownedMembers = type.ownedMember;

OMG Systems Modeling Language, v1.7 361

for (int j = 0; j < ownedMembers.size(); j++) {
NamedElement ownedMember = ownedMembers.getValue(j);
if (ownedMember instanceof StructuralFeature) {

this.setFeatureValue((StructuralFeature) ownedMember,
this.getValues(ownedMember, oldFeatureValues), 0);

}
}

// Add feature values for the structural features of the supertypes
// of the given type. (Note that the feature values for supertype
// features always come after the feature values for owned features.)
ClassifierList supertypes = type.general;
for (int i = 0; i < supertypes.size(); i++) {

Classifier supertype = supertypes.getValue(i);
this.addFeatureValuesForType(supertype, oldFeatureValues);

}

• getBoundElements (in feature) : ConnectableElement [0..*]

//Check whether there is a binding connector attached to this feature
ConnectableElementList = new ConnectableElementList();

if (feature instanceof ConnectableElement) {
ConnectableElement connectableElement = (ConnectableElement) feature;

for (int i = 0; i < connectableElement.end.size(); i++) {
ConnectorEnd thatEnd = connectableElement.end.getValue(i);
Connector connector = (Connector) thatEnd.owner;

if (

}
}

return result;

H.3.3.2.8 ValueBinding

Description

This class is added in order to support semantics of binding connectors.

Generalizations

• ExtensionalValue (from StructuredClassifiers)

Association Ends

• boundFeatureValues : FeatureValue [2]

Operations

• getOppositeBoundFeature (in featureValue : FeatureValue) : StructuralFeature [1]

StructuralFeature oppositeFeature = null ;

362 OMG Systems Modeling Language, v1.7

FeatureValue oppositeFeatureValue =
this.getOppositeFeatureValue(featureValue) ;

if (oppositeFeatureValue != null) {
oppositeFeature = oppositeFeatureValue.feature ;

}

return oppositeFeature ;

• getOppositeBoundFeatureValue (in featureValue : FeatureValue) : FeatureValue [1]

FeatureValue oppositeFeatureValue = null ;

if (this.boundFeatureValue.get(0) == featureValue) {
oppositeFeatureValue = this.boundFeatureValue.get(1) ;

}
else if (this.boundFeatureValue.get(1) == featureValue) {

oppositeFeatureValue = this.boundFeatureValue.get(0) ;
}

return oppositeFeatureValue ;

• isBound (in featureValue : FeatureValue) : Boolean [1]

return this.boundFeatureValue.get(0) == featureValue ||
this.boundFeatureValue.get(1) == featureValue;

H.3.4 Loci

H.3.4.1 Overview

The Loci package includes extensions to fUML CS_Locus and CS_ExecutionFactory in order to account for
new semantic visitors introduced by this specification. The extended Locus class also provides an additional set of
utility operations that facilitate the specification of semantic visitors' operations.

OMG Systems Modeling Language, v1.7 363

H.3.4.2 Class descriptions

+isMatchingFeature(sourceFeature : Feature [1], targetFeature : Feature [1]) : Boolean [1]
+getMatchingFeatureValue(targetObject : StructuredValue [1], feature : FeatureValue [1])
+getAllAdjunctBindings(objectNode : SysML_ObjectNodeActivation [1])
+getAllAdjunctBindings(link)
+getAllAdjunctBindings(parameterValue)
+getAllAdjunctBindings(callActionActivation)
+getObjectWIthFeatureValue(featureValue : FeatureValue [1]) : SysML_Object [1]
+getAllValueBindings(featureValue : FeatureValue [1]) : ValueBinding [*]
+isContinuous(edge : ActivityEdge [1]) : Boolean [1]
+hasRate(edge : ActivityEdge [1]) : Boolean [1]
+isOverwrite(node : ObjectNode [1]) : Boolean [1]
+hasRate(parameter : Parameter [1]) : Boolean [1]
+isNoBuffer(node : ObjectNode [1]) : Boolean [1]
+isContinuous(parameter : Parameter [1]) : Boolean [1]
+isConstraintBlock(type : Class [1]) : Boolean [1]
+isItemFlow(flow : InformationFlow [1]) : Boolean [1]
+isProvidedDirectedFeature(feature : Feature [1]) : Boolean [1]
+isRequiredDirectedFeature(feature : Feature [1]) : Boolean [1]
+isTriggerOnNestedPort(trigger : Port [1]) : Boolean [1]
+isInterfaceBlock(type : Class [1]) : Boolean [1]
+isFullPort(port : Port [1]) : Boolean [1]
+isDirectedFeature(feature : Feature [1]) : Boolean [1]
+isPropertySpecificType(type : Classifier [1]) : Boolean [1]
+isParticipantProperty(property : Property [1]) : Boolean [1]
+isConnectorProperty(property : Property [1]) : Boolean [1]
+isClassifierBehaviorProperty(property : Property [1]) : Boolean [1]
+isAdjunctProperty(property : Property [1]) : Boolean [1]
+isBindingConnector(connector : Connector [1]) : Boolean [1]
+isFlowProperty(property : Property [1]) : Boolean [1]
+isOutputFlowProperty(property : Property [1]) : Boolean [1]
+isProxyPort(port : Port [1]) : Boolean [1]
+isInputFlowProperty(property : Property [1]) : Boolean [1]
+isBlock(type : Class [1]) : Boolean [1]
+instantiate(type : Class [1]) : Object [1]{redefines instantiate}

operations

SysML_Locus

+instantiateVisitor(element : Element [1]) : SemanticVisitor [1]{redefines instantiate}
operations

SysML_ExecutionFactoryCS_ExecutionFactory

CS_Locus

[Package]class LociLoci][

Figure H.5. Loci

H.3.4.2.1 SysML_ExecutionFactory

Description

This class extends the PSCS CS_ExecutionFactory class in order to support the semantics visitors added by this
annex.

Generalizations

• CS_ExecutionFactory (from Loci)

Operations

• instantiateVisitor (in element : Element) : SemanticVisitor [1] {redefines instantiate}
<<TextualRepresentation>>public instantiateVisitor (in element : Element) : SemanticVisitor { // TODO return
super.instantiateVisitor(element) ; }
// Extends CS_ExecutionFactory to instantiate
// SysML semantic visitors

SemanticVisitor visitor = null ;
if (element instanceof Activity) {

visitor = new SysML_ActivityExecution() ;
}
else if (element instanceof ActivityParameterNode) {

visitor = new SysML_ActivityParameterNodeActivation() ;
}
else if (element instanceof AddStructuralFeatureValueAction) {

visitor = new SysML_AddStructuralFeatureValueActionActivation() ;
}
else if (element instanceof CallOperationAction) {

364 OMG Systems Modeling Language, v1.7

visitor = new SysML_CallOperationActionActivation() ;
}
else if (element instanceof ClearStructuralFeatureAction) {

visitor = new SysML_ClearStructuralFeatureActionActivation() ;
}
else if (element instanceof ExpansionNode) {

visitor = new SysML_ExpansionNodeActivation() ;
}
else if (element instanceof InputPin) {

visitor = new SysML_InputPinActivation() ;
}
else if (element instanceof ObjectNode) {

visitor = new SysML_ObjectNodeActivation() ;
}
else if (element instanceof OutputPin) {

visitor = new SysML_OutputPinActivation() ;
}
else if (element instanceof ReadStructuralFeatureAction) {

visitor = new SysML_ReadStructuralFeatureActionActivation() ;
}
else if (element instanceof RemoveStructuralFeatureValueAction) {

visitor = new SysML_RemoveStructuralFeatureValueActionActivation() ;
}
else if (element instanceof SendSignalAction) {

visitor = new SysML_SendSignalActionActivation() ;
}
else {

visitor = super.instantiateVisitor(element) ;
}
return visitor ;

H.3.4.2.2 SysML_Locus

Description

This class extends the PSCS CS_Locus class in order to provide a set of utility operations for SysML stereotypes.

Generalizations

• CS_Locus (from Loci)

Operations

• getAllAdjunctBindings (in callActionActivation) [0..*]

• getAllAdjunctBindings (in link) [0..*]

• getAllAdjunctBindings (in objectNode : SysML_ObjectNodeActivation) [0..*]

// Return the set of ajunct bindings at this locus which involve the
// given object node
getAllAdjunctBindings bindings = new AdjunctBindingList();

ExtensionalValueList extensionalValues = this.extensionalValues;
for (int i = 0; i < extensionalValues.size(); i++) {

ExtensionalValue value = extensionalValues.getValue(i);

OMG Systems Modeling Language, v1.7 365

if (value instanceof ObjectNodeAdjunctBinding) {
ObjectNodeAdjunctBinding binding = (ObjectNodeAdjunctBinding) value;

if (binding.isBound(objectNode)) {
bindings.addValue(binding);

}
}

}

return bindings;

• getAllAdjunctBindings (in parameterValue) [0..*]

// Return the set of ajunct bindings at this locus which involve the
// given parameter
getAllAdjunctBindings bindings = new AdjunctBindingList();

ExtensionalValueList extensionalValues = this.extensionalValues;
for (int i = 0; i < extensionalValues.size(); i++) {

ExtensionalValue value = extensionalValues.getValue(i);

if (value instanceof ParameterAdjunctBinding) {
ParameterAdjunctBinding binding = (ParameterAdjunctBinding) value;

if (binding.isBound(parameterValue)) {
bindings.addValue(binding);

}
}

}

return bindings;

• getAllValueBindings (in featureValue : FeatureValue) : ValueBinding [0..*]

// Return the set of value bindings at this locus which involve the
// given feature value

ValueBindingList bindings = new ValueBindingList();

ExtensionalValueList extensionalValues = this.extensionalValues;
for (int i = 0; i < extensionalValues.size(); i++) {

ExtensionalValue value = extensionalValues.getValue(i);

if (value instanceof ValueBinding) {
ValueBinding binding = (ValueBinding) value;

if (binding.isBound(featureValue)) {
bindings.addValue(binding);

}
}

366 OMG Systems Modeling Language, v1.7

}

return bindings;

• getMatchingFeatureValue (in targetObject : StructuredValue, in feature : FeatureValue)

// First check whether the property provided as a parameter is a flow
property
// or a required feature
// if so look for the links attached to the targetObject
// for each link found, check whether there is a property on the other side
that is a "matching" flow property
// according to SysML, "matching" flow properties have compatible
directions and conforming types

//

FeatureValueList matchingFeatures = new FeatureValueList();

if (feature instanceof Property && (this.isOutFlowProperty((Property)
feature))

|| this.isRequiredFeature(feature) {
LinkList links = new LinkList();

ExtensionalValueList extensionalValues = this.extensionalValues;

for (int i = 0; i < extensionalValues.size(); i++) {
ExtensionalValue value = extensionalValues.getValue(i);

if (value instanceof Link) {
Link link = (Link) value;
FeatureValueList linkFeatureValues = link.getFeatureValues();
FeatureValue candidateFeatureValue = null;

if (linkFeatureValues.getValue(0).equals(targetObject)) {
candidateFeatureValue = linkFeatureValues.getValue(1);

} else if (linkFeatureValues.getValue(1).equals(targetObject)) {
candidateFeatureValue = linkFeatureValues.getValue(0);

}

if (candidateFeatureValue != null) {
//now we can check whether this feature "matches"
if (this.isMatchingFeature(feature, candidateFeatureValue.feature))

{
matchingFeatures.addValue(candidateFeatureValue);

}
}

}
}

}

OMG Systems Modeling Language, v1.7 367

return matchingFeatures;

• getObjectWIthFeatureValue (in featureValue : FeatureValue) : SysML_Object [1]

// Return the object at this locus which owns the
// given feature value

SysML_Object object = null;

ExtensionalValueList extensionalValues = this.extensionalValues;
int i = 0;
while (i < extensionalValues.size() && object = null) {

ExtensionalValue value = extensionalValues.getValue(i);

if (value instanceof SysML_Object) {
SysML_Object candidate = (SysML_Object) value;
FeatureValueList featureValues = candidate.featureValues;
int j = 0;

while (j < featureValues.size() && object = null) {
if (featureValues.get(j) == featureValue) {

object = candidate;
}
j++;

}
}
i++;

}

return object;

• hasRate (in edge : ActivityEdge) : Boolean [1]
Check whether the activity edge has the Rate stereotype applied. // The algorithm of this operation is
implementation specific

• hasRate (in parameter : Parameter) : Boolean [1]
Check whether the parameter has the Rate stereotype applied. // The algorithm of this operation is
implementation specific

• instantiate (in type : Class) : Object [1] {redefines instantiate}

// If the type is a Block, instantiate a SysML_Object.
// Otherwise behaves like in CS_Locus
if (isBlock(type)) {

Object_ object = null;
object = new SysML_Object() ;
object.types.add(type);
this.add(object);
object.createFeatureValues();
this.assignBehaviorProxyPorts(object);
return object;

}
else {

return super.instantiate(type);

368 OMG Systems Modeling Language, v1.7

}

• isAdjunctProperty (in property : Property) : Boolean [1]
Check whether the property has the AdjunctProperty stereotype applied // The algorithm of this operation is
implementation specific

• isBindingConnector (in connector : Connector) : Boolean [1]
Check whether the connector has the Block stereotype applied. // The algorithm of this operation is
implementation specific

• isBlock (in type : Class) : Boolean [1]
Check whether the class has the Block stereotype applied. // The algorithm of this operation is implementation
specific

• isClassifierBehaviorProperty (in property : Property) : Boolean [1]
Check whether the property has the ClassifierBehaviorProperty stereotype applied // The algorithm of this
operation is implementation specific

• isConnectorProperty (in property : Property) : Boolean [1]
Check whether the property has the ConnectorProperty stereotype applied // The algorithm of this operation is
implementation specific

• isConstraintBlock (in type : Class) : Boolean [1]
Check whether the class has the ConstraintBlock stereotype applied. // The algorithm of this operation is
implementation specific

• isContinuous (in edge : ActivityEdge) : Boolean [1]
Check whether the activity edge has the Continuous stereotype applied. // The algorithm of this operation is
implementation specific

• isContinuous (in parameter : Parameter) : Boolean [1]
Check whether the parameter has the Continuous stereotype applied. // The algorithm of this operation is
implementation specific

• isDirectedFeature (in feature : Feature) : Boolean [1]
Check whether the feature has the DirectedFeature stereotype applied // The algorithm of this operation is
implementation specific

• isFlowProperty (in property : Property) : Boolean [1]
Check whether the property has the FlowProperty stereotype applied // The algorithm of this operation is
implementation specific

• isFullPort (in port : Port) : Boolean [1]
Check whether the port has the FullPort stereotype applied. // The algorithm of this operation is implementation
specific

• isInputFlowProperty (in property : Property) : Boolean [1]
Check whether the property has the FlowProperty stereotype applied and the flow direction is "in" // The
algorithm of this operation is implementation specific

• isInterfaceBlock (in type : Class) : Boolean [1]
Check whether the class has the InterfaceBlock stereotype applied. // The algorithm of this operation is
implementation specific

• isItemFlow (in flow : InformationFlow) : Boolean [1]
Check whether the information flow has the ItemFlow stereotype applied. // The algorithm of this operation is
implementation specific

• isMatchingFeature (in sourceFeature : Feature, in targetFeature : Feature) : Boolean [1]

//"Matching" applies to flow properties and directed features
//Flow properties "match" when they have opposite directions and compatible
types. That is:

OMG Systems Modeling Language, v1.7 369

// - the source flow property shall be out or inout
// - the target flow property shall be in or inout
// - the type of the source flow property shall be the same or a
specialization of the type of the target flow property

boolean result = false;
boolean directionChk = false
boolean typeChk = false;

if (this.isFlowProperty(sourceFeature) &&
this.isFlowProperty(targetFeature)) {

FlowDirectionKind srcDirection = this.getDirection(sourceFeature);
FlowDirectionKind tgtDirection = this.getDirection(targetFeature);

Type srcType = ((StructuralFeature) sourceFeature).type;
Type tgtType = ((StructuralFeature) targetFeature).type;

directionChk = (srcDirection == FlowDirectionKind.out || srcDirection ==
FlowDirectionKind.inout) &&

(tgtDirection == FlowDirectionKind.in || tgtDirection ==
FlowDirectionKind.inout);

typeChk = (tgtType == null || srcType != null &&
srcType.conformsTo(tgtType));

result = directionChk & typeChk;
}
else {

if (this.isDirectedFeature(sourceFeature) &&
this.isDirectedFeature(targetFeature)) {

FeatureDirectionKind srcDirection =
this.getFeatureDirection(sourceFeature);

FeatureDirectionKind tgtDirection =
this.getFeatureDirection(targetFeature);

Type srcType = ((StructuralFeature) sourceFeature).type;
Type tgtType = ((StructuralFeature) targetFeature).type;

directionChk = (srcDirection == FeatureDirectionKind.provided ||
srcDirection == FeatureDirectionKind.provrequired) &&

(tgtDirection == FeatureDirectionKind.required || tgtDirection ==
FeatureDirectionKind.provrequired);

if (sourceFeature instanceof BehavioralFeature and targetFeature
instanceof BehavioralFeature) {

BehavioralFeature sourceBFeature = (BehavioralFeature) sourceFeature;
BehavioralFeature targetBFeature = (BehavioralFeature) targetFeature;

boolean paramChk = sourceBFeature.ownedParameter.size() ==
targetBFeature.ownedParameter.size();

370 OMG Systems Modeling Language, v1.7

for (int i=0; paramChk && i < sourceBFeature.ownedParameter.size();
i++) {

Parameter sourceParam = sourceBFeature.ownedParameter.get(i);
Parameter targetParam = targetBFeature.ownedParameter.get(i);

paramChk = paramChk &&
sourceParam.type.conformsTo(targetParam.type);

paramChk = paramChk && sourceParam.lower >= targetParam.lower;
paramChk = paramChk && sourceParam.upper <= targetParam.upper;

paramChk = paramChk && sourceParam.direction ==
targetParam.direction;

}

result = directionChk && paramChk;
}
else {

if (sourceFeature instanceof StructuralFeature and targetFeature
instanceof StructuralFeature) {

StructuralFeature sourceSFeature = (StructuralFeature)
sourceFeature;

StructuralFeature targetSFeature = (StructuralFeature)
targetFeature;

typeChk = sourceSFeature.type.conformsTo(targetSFeature.type) &&
sourceSFeature.lower >= targetSFeature.lower &&
targetSFeature.upper <= targetSFeature.upper;

result = directionChk && typeChk;
}

}

}
}

return result;

• isNoBuffer (in node : ObjectNode) : Boolean [1]
Check whether the object node has the NoBuffer stereotype applied. // The algorithm of this operation is
implementation specific

• isOutputFlowProperty (in property : Property) : Boolean [1]
Check whether the property has the FlowProperty stereotype applied and the flow direction is "out" // The
algorithm of this operation is implementation specific

• isOverwrite (in node : ObjectNode) : Boolean [1]
Check whether the object node has the Overwrite stereotype applied. // The algorithm of this operation is
implementation specific

OMG Systems Modeling Language, v1.7 371

• isParticipantProperty (in property : Property) : Boolean [1]
Check whether the property has the ParticipantProperty stereotype applied // The algorithm of this operation is
implementation specific

• isPropertySpecificType (in type : Classifier) : Boolean [1]
Check whether the classifier has the PropertySpecific stereotype applied // The algorithm of this operation is
implementation specific

• isProvidedDirectedFeature (in feature : Feature) : Boolean [1]
Check whether the feature has the DirectedFeature stereotype applied with direction "provided" // The algorithm
of this operation is implementation specific

• isProxyPort (in port : Port) : Boolean [1]
Check whether the port has the ProxyPort stereotype applied. // The algorithm of this operation is
implementation specific

• isRequiredDirectedFeature (in feature : Feature) : Boolean [1]
Check whether the feature has the DirectedFeature stereotype applied with direction "required" // The algorithm
of this operation is implementation specific

• isTriggerOnNestedPort (in trigger : Port) : Boolean [1]
Check whether the port has the TriggerOnNestedPort stereotype applied. // The algorithm of this operation is
implementation specific

H.3.5 Ports and Flows

H.3.5.1 Overview

This clause specifies executable semantics for FlowProperty and ProxyPort. With regard to the executable
semantics, a FullPort is the same a a classical part.

Writing a value to an "out" flow property is the same as writing this value to a matching "in" flow property, if there
is one and only one. This can be realized by extending WriteStructuralFeatureActionActivation using a mechanism
similar to the one use for the binding connectors, taking care to avoid infinite loop in case of "inout" flow properties.
In order to avoid inconsistencies an additional constraint prevents flow properties to have a composite aggregation
kind. It is assumed that a flow may occur if there is a link, whatever the way it has been created. So, there is no need
to retrieve the corresponding connector.

A proxy port stands for another element in the model that can be: either the port owner, if the port is behavioral (i.e.
its isBehavior property is true), or a part of the block owning the port, if it is not behavioral. This can be realized by
initializing the value of a proxy port with a reference to its owner, if it is behavioral, or with the the reference to its
bound part otherwise. It is managed in the extension SysML_Object.

In order to avoid inconsistencies with proxy ports, the following constraints shall be enforced.

• In case of a behavioral port, the type of that port shall also classify the owner of the port

• A non behavioral proxy-port shall be bound to a part of its owner

• In case of a non behavioral port, the type of the port shall also classify the part to which that port is bound

Supported stereotypes: FlowProperty, ProxyPort

H.3.5.2 Additional Constraints

• behavioral_port_owner_has_compatible_type
For a behavioral port, the type of that port shall also classify the owner of the port

context ProxyPort inv: self.base_Port.isBehavior implies
self.base_Port.class.conformsTo(self.base_Port.type))

• bound_part_has_compatible_type
In case of a non behavioral port, the type of the port shall also classify the part to which that port is bound

372 OMG Systems Modeling Language, v1.7

context ProxyPort inv: not self.base_Port.isBehavior implies
BindingConnector.allInstances() ->exists(b | b.base_Connector.end->exists(e1
| e1.role = self.base_Port) and b.base_Connector.end->exists(e2 | e2.role <>
self.base_Port and e2.role.type.conformsTo(self.base_Port.type)))

• bound_to_owner_part
A non behavioral proxy-port shall be bound to a part of its owner

context ProxyPort inv: let internalParts: Set(Property) =
self.base_Port.owner.allFeatures() ->selectByKind(Property)->reject(f |
f.oclIsKindOf(Port) in not self.base_Port.isBehavior implies
BindingConnector.allInstances() ->exists(b | b.base_Connector.end->exists(e1
| e1.role = self.base_Port) and b.base_Connector.end->exists(e2 | e2.role <>
self.base_Port and internalParts->includes(e2.role))

• flowproperty_not_composite
Flow properties shall not have a composite aggregation kind

context FlowProperty inv: not self.base_Property.isComposite

• provrequired_not_supported
No semantics is specified for features with direction providedRequired

context Feature inv: let df: DirectedFeature =
DirectedFeature.allInstances()->any(f | f.base_Feature = self) in
df.oclIsUndefined() or df.direction <> DirectedFeatureKind#providedRequired

H.3.5.3 Class descriptions

OMG Systems Modeling Language, v1.7 373

	Table of Contents
	List of Tables
	List of Figures
	0 Preface
	OMG Specifications

	1 Scope
	2 Normative References
	3 Additional Information
	3.1 Relationships to Other Standards
	3.2 How to Read this International Standard
	3.2.1 Organization

	3.3 Acknowledgments

	4 Language Architecture
	4.1 General
	4.2 Design Principles
	4.3 Architecture
	4.4 Extension Mechanisms
	4.5 SysML Diagrams

	5 Conformance
	5.1 Overview
	5.2 Conformance Types

	6 Language Formalism
	6.1 Levels of Formalism
	6.2 Clause Structure
	6.2.1 Overview
	6.2.2 Diagram Elements
	6.2.3 UML Extensions
	6.2.4 Usage Examples

	6.3 Conventions and Typography

	7 Model Elements
	7.1 Overview
	7.1.1 View and Viewpoint

	7.2 Diagram Elements
	7.3 UML Extensions
	7.3.1 Diagram Extensions
	7.3.1.1 UML Diagram Elements not Included in SysML

	7.3.2 Stereotypes
	7.3.2.1 Conform
	7.3.2.2 ElementGroup
	7.3.2.3 Expose
	7.3.2.4 Problem
	7.3.2.5 Rationale
	7.3.2.6 Stakeholder
	7.3.2.7 View
	7.3.2.8 Viewpoint

	8 Blocks
	8.1 Overview
	8.2 Diagram Elements
	8.2.1 Block Definition Diagram
	8.2.2 Internal Block Diagram

	8.3 UML Extensions
	8.3.1 Diagram Extensions
	8.3.1.1 Block Definition Diagram
	8.3.1.1.1 Block and ValueType Definitions
	8.3.1.1.2 Default «block» stereotype on unlabeled box
	8.3.1.1.3 Labeled compartments
	8.3.1.1.4 Behavior compartment
	8.3.1.1.5 Constraints compartment
	8.3.1.1.6 Namespace compartment
	8.3.1.1.7 Structure compartment
	8.3.1.1.8 BoundReference compartment
	8.3.1.1.9 Receptions compartment
	8.3.1.1.10 Default multiplicities
	8.3.1.1.11 Property-specific type
	8.3.1.1.12 Units on value properties
	8.3.1.1.13 Units on values

	8.3.1.2 Internal Block Diagram
	8.3.1.2.1 Property types
	8.3.1.2.2 Block reference in diagram frame
	8.3.1.2.3 Compartments on internal properties
	8.3.1.2.4 Compartments on a diagram frame
	8.3.1.2.5 Property path name
	8.3.1.2.6 Nested connector end
	8.3.1.2.7 Property-specific type
	8.3.1.2.8 Initial values compartment
	8.3.1.2.9 Default multiplicities

	8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams
	8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

	8.3.2 Stereotypes
	8.3.2.1 AdjunctProperty
	8.3.2.2 Binding Connector
	8.3.2.3 Block
	8.3.2.4 Bound Reference
	8.3.2.5 ClassifierBehaviorProperty
	8.3.2.6 DirectedRelationshipPropertyPath
	8.3.2.7 DistributedProperty
	8.3.2.8 ElementPropertyPath
	8.3.2.9 EndPathMultiplicity
	8.3.2.10 NestedConnectorEnd
	8.3.2.11 ParticipantProperty
	8.3.2.12 PropertySpecificType
	8.3.2.13 ValueType

	8.3.3 Model Libraries
	8.3.3.1 PrimitiveValueTypes
	8.3.3.1.1 Boolean
	8.3.3.1.2 Complex
	8.3.3.1.3 Integer
	8.3.3.1.4 Number
	8.3.3.1.5 Real
	8.3.3.1.6 String

	8.3.3.2 Package UnitAndQuantityKind
	8.3.3.2.1 QuantityKind
	8.3.3.2.2 Unit

	8.4 Usage Examples
	8.4.1 Wheel Hub Assembly
	8.4.2 Example Value Type Definitions
	8.4.3 Design Configuration for SUV EPA Fuel Economy Test
	8.4.4 Water Delivery
	8.4.5 Constraining Decomposition
	8.4.6 Units and Quantity Kinds
	8.4.7 Property-Specific Types

	9 Ports and Flows
	9.1 Overview
	9.1.1 Ports
	9.1.2 Flow Properties, Provided and Required Features, and Nested Ports
	9.1.3 Proxy Ports and Full Ports
	9.1.4 Item Flows
	9.1.5 Deprecation of Flow Ports and Flow Specifications

	9.2 Diagram Elements
	9.2.1 Block Definition Diagram
	9.2.2 Internal Block Diagram

	9.3 UML Extensions
	9.3.1 Diagram Extensions
	9.3.1.1 DirectedFeature
	9.3.1.2 FlowProperty
	9.3.1.3 FullPort
	9.3.1.4 InvocationOnNestedPortAction
	9.3.1.5 ItemFlow
	9.3.1.6 Port
	9.3.1.7 ProxyPort
	9.3.1.8 TriggerOnNestedPort

	9.3.2 Stereotypes
	9.3.2.1 AcceptChangeStructuralFeatureEventAction
	9.3.2.2 AddFlowPropertyValueOnNestedPortAction
	9.3.2.3 Block
	9.3.2.4 ChangeStructuralFeatureEvent
	9.3.2.5 DirectedFeature
	9.3.2.6 FeatureDirectionKind
	9.3.2.7 FlowDirectionKind
	9.3.2.8 FlowProperty
	9.3.2.9 FullPort
	9.3.2.10 InterfaceBlock
	9.3.2.11 InvocationOnNestedPortAction
	9.3.2.12 ItemFlow
	9.3.2.13 ProxyPort
	9.3.2.14 TriggerOnNestedPort
	9.3.2.15 ~InterfaceBlock

	9.4 Usage Examples
	9.4.1 Ports with Required and Provided Features
	9.4.2 Ports and Item Flows
	9.4.3 Ports with Flow Properties
	9.4.4 Proxy and Full Ports
	9.4.5 Association and Port Decomposition
	9.4.6 Item Flow Decomposition

	10 Constraint Blocks
	10.1 Overview
	10.2 Diagram Elements
	10.2.1 Block Definition Diagram
	10.2.2 Parametric Diagram

	10.3 UML Extensions
	10.3.1 Diagram Extensions
	10.3.1.1 Block Definition Diagram
	10.3.1.1.1 Constraint block definition
	10.3.1.1.2 Parameters compartment

	10.3.1.2 Parametric Diagram
	10.3.1.2.1 Round-cornered rectangle notation for constraint property
	10.3.1.2.2 «constraint» keyword notation for constraint property
	10.3.1.2.3 Small square box notation for an internal property

	10.3.2 Stereotypes
	10.3.2.1 ConstraintBlock

	10.4 Usage Examples
	10.4.1 Definition of Constraint Blocks on a Block Definition Diagram
	10.4.2 Usage of Constraint Blocks on a Parametric Diagram

	11 Activities
	11.1 Overview
	11.1.1 Control as Data
	11.1.2 Continuous Systems
	11.1.3 Probability
	11.1.4 Activities as Blocks
	11.1.5 Timelines

	11.2 Diagram Elements
	11.2.1 Activity Diagram

	11.3 UML Extensions
	11.3.1 Diagram Extensions
	11.3.1.1 Activity
	11.3.1.1.1 Notation

	11.3.1.2 CallBehaviorAction
	11.3.1.3 ControlFlow
	11.3.1.3.1 Presentation Option

	11.3.1.4 ObjectNode, Variables, and Parameters
	11.3.1.4.1 Notation

	11.3.2 Stereotypes
	Package Activities
	11.3.2.1 Continuous
	11.3.2.2 ControlOperator
	11.3.2.3 Discrete
	11.3.2.4 NoBuffer
	11.3.2.5 Optional
	11.3.2.6 Overwrite
	11.3.2.7 Probability
	11.3.2.8 Rate

	11.3.3 Model Libraries
	11.3.3.1 Package ControlValues
	11.3.3.1.1 ControlValueKind

	11.4 Usage Examples

	12 Interactions
	12.1 Overview
	12.2 Diagram Elements
	12.2.1 Sequence Diagram

	12.3 UML Extensions
	12.3.1 Diagram Extensions
	12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing Diagram
	12.3.1.2 Interactions and Parameters
	12.3.1.2.1 Notation

	12.4 Usage Examples
	12.4.1 Sequence Diagrams

	13 State Machines
	13.1 Overview
	13.2 Diagram Elements
	13.2.1 State Machine Diagram

	13.3 UML Extensions
	13.3.1 Diagram Extensions
	13.3.1.1 State Machines and Parameters
	13.3.1.1.1 Notation

	13.4 Usage Examples
	13.4.1 State Machine Diagram

	14 Use Cases
	14.1 Overview
	14.2 Diagram Elements
	14.2.1 Use Case Diagram

	14.3 UML Extensions
	14.4 Usage Example

	15 Allocations
	15.1 Overview
	15.2 Diagram Elements
	15.2.1 Representing Allocation on Diagrams

	15.3 UML Extensions
	15.3.1 Diagram Extensions
	15.3.1.1 Tables
	15.3.1.2 Allocate Relationship Rendering
	15.3.1.3 Allocation Compartment Format
	15.3.1.4 Allocation Callout Format
	15.3.1.5 AllocatedActivityPartition Label

	15.3.2 Stereotypes
	15.3.2.1 AllocateActivityPartition (from Allocations)
	15.3.2.2 Allocate (from Allocations)

	15.4 Usage Examples
	15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks
	15.4.2 Allocate Flow
	15.4.2.1 Allocating Structure
	15.4.2.2 Automotive Example

	15.4.3 Tabular Representation

	16 Requirements
	16.1 Overview
	16.2 Diagram Elements
	16.2.1 Requirement Diagram

	16.3 UML Extensions
	16.3.1 Diagram Extensions
	16.3.1.1 Requirement Diagram
	16.3.1.2 Requirement Notation
	16.3.1.3 Requirement Property Callout Format
	16.3.1.4 Requirements on Other Diagrams
	16.3.1.5 Requirements Table

	16.3.2 Stereotypes
	16.3.2.1 AbstractRequirement
	16.3.2.2 Copy
	16.3.2.3 DeriveReqt
	16.3.2.4 TestCase
	16.3.2.5 Refine
	16.3.2.6 Requirement
	16.3.2.7 Satisfy
	16.3.2.8 Trace
	16.3.2.9 Verify

	16.3.3 Model Libraries
	16.3.3.1 Package Verdicts
	16.3.3.1.1 VerdictKind

	16.4 Usage Examples
	16.4.1 Requirement Decomposition and Traceability
	16.4.2 Requirements and Design Elements
	16.4.3 Requirements Reuse
	16.4.4 Verification Procedure - Test Case

	17 Profiles & Model Libraries
	17.1 Overview
	17.2 Diagram Elements
	17.2.1 Profile Definition in Package Diagram
	17.2.2 Stereotypes Used On Diagrams

	17.3 UML Extensions
	17.4 Usage Examples
	17.4.1 Defining a Profile
	17.4.2 Adding Stereotypes to a Profile
	17.4.3 Defining a Model Library that Uses a Profile
	17.4.4 Guidance on Whether to Use a Stereotype or Class
	17.4.5 Using a Profile
	17.4.6 Using a Stereotype
	17.4.7 Using a Model Library Element

	Annex A: Diagrams
	A.1 Overview
	A.2 Guidelines

	Annex B: SysML Diagram Interchange
	B.1 Overview
	B.2 Stereotypes
	B.2.1 SysMLActivityDiagram
	B.2.2 SysMLBehaviorDiagram
	B.2.3 SysMLBlockDefinitionDiagram
	B.2.4 SysMLDiagram
	B.2.5 SysMLDiagramElement
	B.2.6 SysMLDiagramWithAssociations
	B.2.7 SysMLInteractionDiagram
	B.2.8 SysMLInternalBlockDiagram
	B.2.9 SysMLPackageDiagram
	B.2.10 SysMLParametricDiagram
	B.2.11 SysMLRequirementDiagram
	B.2.12 SysMLStateMachineDiagram
	B.2.13 SysMLStructureDiagram
	B.2.14 SysMLUseCaseDiagram

	B.3 SysML DI usage notes
	B.4 SysML Notation and DI Representation

	Annex C: Deprecated Elements and Migration
	C.1 Overview
	C.1.1 Flow Ports
	C.1.2 Conjugated Ports
	C.1.3 ConnectorProperty

	C.2 Diagram Elements
	C.2.1 Block Definition Diagram
	C.2.2 Internal Block Diagram

	C.3 UML Extensions
	C.3.1 Diagram Extensions
	C.3.1.1 Conjugated Ports
	C.3.1.2 FlowPort
	C.3.1.3 FlowSpecification

	C.3.2 Stereotypes
	C.3.2.1 Package Ports&Flows
	C.3.2.2 FlowPort
	C.3.2.3 FlowSpecification
	C.3.2.4 ItemFlow (deprecated compatibility rule)
	C.3.2.5 ConnectorProperty

	C.4 Transitioning SysML1.2 Flow Ports to SysML 1.3 Ports (informative)
	C.5 Transitioning SysML 1.3 Viewpoint and View to SysML 1.4 (informative)
	C.6 Transitioning SysML 1.3 Units and QuantityKinds to SysML 1.4 (informative)
	C.7 Transitioning SysML 1.5 conjugated port typed by InterfaceBlock to SysML 1.6 conjugated InterfaceBlock (informative)

	Annex D: Sample Problem
	D.1 Purpose
	D.2 Scope
	D.3 Problem Summary
	D.4 Diagrams
	D.4.1 Package Overview (Structure of the Sample Model)
	D.4.1.1 Package Diagram - Applying the SysML Profile
	D.4.1.2 Package Diagram - Showing Package Structure of the Model

	D.4.2 Setting the Context (Boundaries and Use Cases)
	D.4.2.1 Internal Block Diagram - Setting Context
	D.4.2.2 Use Case Diagram - Top Level Use Cases
	D.4.2.3 Use Case Diagram - Optional Use Cases

	D.4.3 Elaborting Behavior (Sequence and State Machine Diagrams)
	D.4.3.1 Sequence Diagram - Drive Black Box
	D.4.3.2 State Machine Diagram - HSUV Operational States
	D.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

	D.4.4 Establishing Requirements (Requirements Diagrams and Tables)
	D.4.4.1 Requirement Diagram - HSUV Requirement HIerarchy
	D.4.4.2 Requirement Diagram - Derived Requirements
	D.4.4.3 Requirement Diagram - Acceleration Requirement Relationships
	D.4.4.4 Table - Requirements Table

	D.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams)
	D.4.5.1 Block Definition Diagram - Automotive Domain
	D.4.5.2 Block Definition Diagram - Hybrid SUV
	D.4.5.3 Internal Block Diagram - Hybrid SUV
	D.4.5.4 Block Definition Diagram - Power Subsystem
	D.4.5.5 Internal Block Diagram for the "Power Subsystem"

	D.4.6 Defining Ports and Flows
	D.4.6.1 Block Definition Diagram - ICE Flow Properties
	D.4.6.2 Internal Block Diagram - CANbus
	D.4.6.3 Block Definition Diagram - Fuel Flow Properties
	D.4.6.4 Parametric Diagram - Fuel Flow
	D.4.6.5 Internal Block Diagram - Fuel Distribution

	D.4.7 Analyze Perfomance (Constraint Diagrams, Timing Diagrams, Views
	D.4.7.1 Block Definition Diagram - Analysis Context
	D.4.7.2 Package Diagram - Performance View Definition
	D.4.7.3 Package Diagram - Viewpoint Definition
	D.4.7.4 Package Diagram - View Definition
	D.4.7.5 Package Diagram - View Hierarchy
	D.4.7.6 Parametric Diagram - Measures of Effectiveness
	D.4.7.7 Parametric Diagram - Economy
	D.4.7.8 Parametric Diagram - Dynamics
	D.4.7.9 (Non-Normative) Non-SysML Diagram - 100hp Acceleration

	D.4.8 Defining, Decomposing, and Allocating Activities
	D.4.8.1 Activity Diagram - Acceleration (top level)
	D.4.8.2 Block Definition Diagram - Acceleration
	D.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)
	D.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation
	D.4.8.5 Table - Acceleration Allocation
	D.4.8.6 Block Definition Diagram: Slot Values - EPA Fuel Economy Test

	Annex E: Non-normative Extensions
	E.1 Overview
	E.2 Activity Diagram Extensions
	E.2.1 Overview
	E.2.2 Stereotypes
	E.2.3 Stereotype Examples

	E.3 Requirements Diagram Extensions
	E.3.1 Overview
	E.3.2 Stereotypes
	E.3.3 Stereotype Examples

	E.4 Parametric Diagram Extension for Trade Studies
	E.4.1 Overview
	E.4.2 Stereotypes
	E.4.3 Stereotye Examples

	E.5 Model Library for Quantities, Units, Dimensions, and Values (QUDV)
	E.5.1 Overview
	E.5.2 Abstract Syntax
	E.5.2.1 AffineConversionUnit
	E.5.2.2 ConversionBasedUnit
	E.5.2.3 DerivedQuantityKind
	E.5.2.4 DerivedUnit
	E.5.2.5 Dimension
	E.5.2.6 GeneralConversionUnit
	E.5.2.7 LinearConversionUnit
	E.5.2.8 Prefix
	E.5.2.9 PrefixedUnit
	E.5.2.10 QuantityKind
	E.5.2.11 QuantityKindFactor
	E.5.2.12 Rational
	E.5.2.13 SimpleQuantityKind
	E.5.2.14 SimpleUnit
	E.5.2.15 SystemOfQuantities
	E.5.2.16 SystemOfUnits
	E.5.2.17 Unit
	E.5.2.18 UnitFactor

	E.5.3 References
	E.5.4 Usage Examples
	E.5.4.1 SI Unit and QuantityKind examples
	E.5.4.2 Spring Example

	E.6 Model Library of SysML Quantity Kinds and Units for ISO 80000
	E.6.1 Overview
	E.6.2 Unit and Quantity Kinds
	E.6.3 ISO 80000-1 Prefixes
	E.6.4 ISO 80000-2 Mathematical Signs and Symbols
	E.6.5 Summary of the covered parts of ISO 80000
	E.6.5.1 ISO 80000-3 Space and Time
	E.6.5.1.1 Normative Quantity kinds

	E.6.5.2 ISO 80000-4 Mechanics
	E.6.5.2.1 Normative Quantity kinds ISO 80000-4

	E.6.5.3 ISO 80000-5 Thermodynamics
	E.6.5.3.1 Normative Diagram Kinds

	E.6.5.4 ISO 80000-6 Electromagnetism
	E.6.5.4.1 Quantity Kind ISO 80000-6

	E.6.5.5 ISO 80000-7 Light
	E.6.5.6 ISO 80000-9 Physical Chemistry and Molecular Physic
	E.6.5.7 ISO 80000-10 Atomic and Nuclear Physics
	E.6.5.8 ISO 80000-13 Information Science and Technology

	E.7 Distribution Extensions
	E.7.1 Overview
	E.7.2 Stereotypes
	E.7.2.1 Package Distributions

	E.7.3 Usage Example

	E.8 Building Non-Normative Extensions for Property-Based Requirements
	E.8.1 Overview
	E.8.2 An Example PBR Profile Based on ConstraintBlock
	E.8.2.1 Profile/Stereotypes of PBR Based on ConstraintBlock
	E.8.2.2 Usage Example using PBR profile based on ConstraintBlock

	E.8.3 An Example PBR Profile Based on Constraint
	E.8.3.1 Profile/Stereotypes of PBR based on Constraint
	E.8.3.2 Example using PBR profile based on Constraint

	E.8.4 An Example Property Based Requirement based on Block

	Annex F: Requirements Traceability
	Annex G: Model Interchange
	G.1 Overview
	G.2 Context for Model Interchange
	G.3 XMI Serialization of SysML
	G.4 SysML Model Interchange Using AP233
	G.4.1 Scope of AP233
	G.4.2 STEP Architecture
	G.4.3 EXPRESS
	G.4.4 SysML-AP233 Mapping

	Annex H: Precise Semantics of SysML
	H.1 Overview
	H.2 References
	H.3 Semantics
	H.3.1 Actions
	H.3.1.1 Overview
	H.3.1.2 Additional Constraints
	H.3.1.3 Class descriptions
	H.3.1.3.1 SysML_AddStructuralFeatureValueActionActivation
	H.3.1.3.2 SysML_CallOperationActivation
	H.3.1.3.3 SysML_ClearStructuralFeatureActionActivation
	H.3.1.3.4 SysML_InputPinActivation
	H.3.1.3.5 SysML_OutputPinActivation
	H.3.1.3.6 SysML_ReadStructuralFeatureActionActivation
	H.3.1.3.7 SysML_RemoveStructuralFeatureValueActionActivation
	H.3.1.3.8 SysML_SendSignalActionActivation

	H.3.2 Activities
	H.3.2.1 Overview
	H.3.2.2 Class descriptions
	H.3.2.2.1 SysML_ActivityExecution
	H.3.2.2.2 SysML_ActivityParameterNodeActivation
	H.3.2.2.3 SysML_ExpansionNodeActivation
	H.3.2.2.4 SysML_ObjectNodeActivation

	H.3.3 Blocks
	H.3.3.1 Overview
	H.3.3.2 Class descriptions
	H.3.3.2.1 AdjunctBinding
	H.3.3.2.2 ObjectNodeAdjunctBinding
	H.3.3.2.3 ParameterAdjunctBinding
	H.3.3.2.4 SysML_FeatureValue
	H.3.3.2.5 SysML_Object
	H.3.3.2.6 SysML_ReferencePropertyPair
	H.3.3.2.7 SysML_StructuredValue
	H.3.3.2.8 ValueBinding

	H.3.4 Loci
	H.3.4.1 Overview
	H.3.4.2 Class descriptions
	H.3.4.2.1 SysML_ExecutionFactory
	H.3.4.2.2 SysML_Locus

	H.3.5 Ports and Flows
	H.3.5.1 Overview
	H.3.5.2 Additional Constraints
	H.3.5.3 Class descriptions

