An OMG Systems Modeling LanguageT'\’I Publication

=
mowmo

==

™

0
SYSTE
MODELI
LANGUA

==

OMG Systems Modeling Language (OMG SysML™)
Version 1.7

OMG Document Number: ptc/2022-08-02

Date: August 2022

Standard document URL: https://www.omg.org/spec/SysML/1.7/
Machine Readable File(s):

Normative:
https://www.omg.org/spec/SysML/20220801/SysML.xmi
Non-normative:
https://www.omg.org/spec/SysML/20220801/SysMLDI.xmi
https://www.omg.org/spec/SysML/20220801/QUDV.xmi
https://www.omg.org/spec/SysML/20220801/1ISO80000.xmi

Refer to the Roadmap located in the Preface for a list of documents that were generated as part of the

adoption, finalization, and revision process.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://www.omg.org/spec/SysML/1.7/
https://www.omg.org/spec/SysML/20220801/SysML.xmi
https://www.omg.org/spec/SysML/20220801/SysMLDI.xmi
https://www.omg.org/spec/SysML/20220801/QUDV.xmi
https://www.omg.org/spec/SysML/20220801/ISO80000.xmi

Copyright © 2003-2022, American Systems Corporation
Copyright © 2003-2022, PTC Inc.

Copyright © 2003-2022, BAE SYSTEMS

Copyright © 2003-2022, The Boeing Company

Copyright © 2003-2022, Ceira Technologies

Copyright © 2022, Dassault Systemes

Copyright © 2003-2022, Deere & Company

Copyright © 2003-2022, Airbus

Copyright © 2003-2022, EmbeddedPlus Engineering
Copyright © 2007-2022, European Aeronautic Defence and Space Company N.V.
Copyright © 2003-2022, Eurostep Group AB

Copyright © 2003-2022, Gentleware AG

Copyright © 2003-2022, I-Logix, Inc.

Copyright © 2022, INCOSE

Copyright © 2003-2022, International Business Machines
Copyright © 2003-2022, International Council on Systems Engineering
Copyright © 2003-2022, Israel Aircraft Industries

Copyright © 2003-2022, Lockheed Martin Corporation
Copyright © 2003-2022, Mentor Graphics

Copyright © 2003-2022, Motorola, Inc.

Copyright © 2007-2022, National Aeronautics and Space Administration
Copyright © 2007-2022, No Magic, Inc.

Copyright © 2003-2022, Northrop Grumman

Copyright © 1997-2022, Object Management Group
Copyright © 2003-2022, oose Innovative Informatik eG
Copyright © 2003-2022, PivotPoint Technology Corporation
Copyright © 2003-2022, Raytheon Company

Copyright © 2022, Ronnie Gill

Copyright © 2003-2022, Sparx Systems

Copyright © 2003-2022, Telelogic AB

Copyright © 2003-2022, THALES

Copyright © 2022, Thematix Partners LLC

Copyright © 2022, Universidad de Cantabria

Copyright © 2022, Webel IT Australia

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the
terms, conditions and notices set forth below. This document does not represent a commitment to
implement any portion of this specification in any companys products. The information contained in this
document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document
and distribute copies of the modified version. Each of the copyright holders listed above has agreed that
no person shall be deemed to have infringed the copyright in the included material of any such copyright
holder by reason of having used the specification set forth herein or having conformed any computer
software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby
grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications
that are based upon this specification, and to use, copy, and distribute this specification as provided under
the Copyright Act; provided that: (1) both the copyright notice identified above and this permission notice
appear on any copies of this specification; (2) the use of the specifications is for informational purposes
and will not be copied or posted on any network computer or broadcast in any media and will not be
otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these
terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in
your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be responsible for
identifying patents for which a license may be required by any OMG specification, or for conducting legal
inquiries into the legal validity or scope of those patents that are brought to its attention. OMG
specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and
communications regulations and statutes. This document contains information which is protected by
copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or
used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne
by you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this
specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in
subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights
clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement
and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its
successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management
Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or
through its designees) is and shall at all times be the sole entity that may authorize developers, suppliers
and sellers of computer software to use certification marks, trademarks or other special designations to
indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable
compliance points may claim only that the software was based on this specification, but may not claim
compliance or conformance with this specification. In the event that testing suites are implemented or
approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing
suites.

https://www.omg.org/legal/tm_list.htm

OMG’S ISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by

completing the Issue Reporting Form listed on the main web page https://www.omqg.org, under
Documents, Report a Bug/Issue.

http://www.omg.org/

Table of Contents

0 PIEIACE. ...ttt ettt ettt et h etk a e h ekt a bt h e s e st h et b et s e bt eb et s e a e bt tene 29
L S 00D ettt h et a ettt etk h e bt st ea e a e e st et e bt bt eh e eh e ek £ ea s ea b ea b et e ke ekt bt ebeeh e eh e e nten b et e b e eheeh e eb e eatea s et et entenaenee 1
2 NOIMALIVE REIEIEIICES ... vttt ettt ettt ettt s ettt e stk e e e et s e ea e ek et es e et e st e b et e st ebene e bt s eseeb et eneaseneenennas 3
3 Additional INTOTMALIONcouiuiiiiieiiitiiee ettt b et s bt b et s bbb st e bt b e b et b ettt e ettt b s ae e ebenaene 5
3.1 Relationships to Other StANAATASccieieieieieieieereese ettt st e st et et e e e tesessesbesseeseeneeseessensensensensensanes 5
3.2 How to Read this International Standardccoeieiiiiiiiiniiiee ettt sttt ettt saesbe st e 5

3.2.1 Organization

3.3 ACKNOWIEAZMENLS.e.eetiiiitiiieeiteteet ettt ettt ettt b bt bt e a et e et e b e s b e e bt s bt e bt e bt ebt e st e e et et e bt e bt e bt ebeebteatentennententenee 6

4 LaNGUAZE ATCHITECIUIE ... c.veiteiieeteetietieeieietetetesteeteeteeteeteeseessessessessessessesseassaseessassessassensenseasessesssessessessensensensessaseaseassessensensensensensensn 9
AT GOIETAL ..ttt h etk e b h et bt h et s h et h b s e bt h e bt b et bbbt b et benaene 9
4.2 DESIZN PIINCIPIES ...ttt sttt st b et b et bt b et b et eb et et e bbbt ettt ae et nee 12
4.3 ATCRITECTUTC. ...ttt et ettt b e bt e bt e bt e bt e st e st e st et et e s b e ebe e bt eb e estemtem s et e b e bt ebeebeestestententenbentenbenbene 12
4.4 EXTENSION MECHAMISINISueeuiieiiitiaietiteiietei ettt ettt ettt st et et et bt et e st e b et es e e s ese e b e e es e beseebenses e et eneesenseseabeneebensesenaeneetenes 14
4.5 SYSML DIAGIAIMSvecvievievieiieiieieiestestestesteseeeteeseestestessessesseeseeseaseessessessessessassessessassesseessensensensensenseaseeseessessensensensensensensenss 14

S CONTOIIINIANCEc.veeuienteiietetiett ettt ettt et et e te s te s bt s bt ebeest e st et e tesb et e ebeeb e ese et e eseesten b e st e seseeseeseeneeneentensensenbenbeebeebeeaeeseeseententensenbensenseanean 17
5.1 OVRIVIEW ..ottt sttt ettt ettt et et b e b e bt et e st es e st et et e sbesb e e bt e bt estesteneen s e b e bt e bt eh e eatentententen b et e b e ebeebeebeestententensenbebenbeeneens 17
5.2 CONTOTINANCE TYPES ..cuverveiirrieiieiteietenteet ettt ettt ettt ettt ettt b e bt es e et et et e e bt e bt e bt eb e eatea b eaben b et e st e sbeebeebeebtebeententenbebenbenbeenes 17

6 Language FOTMALISINccvicviiieiieieieieiesie ettt et et et et e b e st e st e et e eseesaesaessessessessessesseeseessaseessensensansaseaseesaeseesseseessensensensensenseaseas 19
6.1 Levels Of FOIMALISINc.oouiiiiiiiiiiiie ettt b et b bbbt bt b et et b ettt et st e b et etenes 19
6.2 Clause Structure......

6.2.1 Overview

6.2.2 DIaGram EIEIMENLSc.coiiiiiiiertiieiteet ettt ettt ettt st b e bt bt e bt e st e b et e b e e b e bt bt e bt eaten b et et e ntesbesbe e 19

6.2.3 UML EXEENSIONS ...veuteuitenietetetieteietestettete et eeteseeteseeseete st eb et es e besees e ses e senees e sesessene et emtes e st eme et e eenente e esesteneateneeneanan 19
6.2.4 USAZE EXAMPIESveevieiieiieiieieieeieeie sttt ettt et et e et e ese et e st essessessessessessesseeseensessensensanseaseaseaseessansensensensensensessenen 19

6.3 Conventions and TYPOZIAPIYc.ccueiriiriiiriiiiiieertee ettt ettt ettt s et b et a et sa e ae e eaenee 20
T IMOGAEL ELBIMEINLS ...ttt ettt ettt b ettt b e b e bt e bt eh e e bt e st e st et et e s b e bt e bt ebe e bt ea e eaten b e b e b e ebeebeebeebeebe e st e e etenbenbeabeebeas 23
T 1 OVEIVIEW ...ttt ettt ettt b e bbbt ea et et et e st e s bt e bt e bt e bt es b e st et et e b e e bt e b e e bt ea e ea b eatem b et e et sbeebeebeebeemeentent et e benbenbeenes 23
7. 1.1 VIEW A0 VIEWPOINE ...ttt ettt ettt bt es et s b e e st et eaees et esesbeme et e e es e abeme et e e ene et e e esenbeneeseneenenan 23

7.2 DIAGIAM EICINENLS ... c.ueivieiieeieiieieietesteeteett et et et etetestestestessesseeseeseessessenseseaseeseaseaseessessensassensessessessesseessensensensensensensensenses 24
7.3 UML EXEEINISIONS ..veuveveiieiietieitenietetestesteeteettetteneestentastassestessesseestestastensensenseseeseeseeseensentansansensensessesseeseesteneensensansansensessesnes 27
7.3.1 Diagram EXtenSionsccccevevererererieienienienesiesieseeeeneen .27
7.3.1.1 UML Diagram Elements not Included in SYSMLcccooiiiiiinininiiiiiieeeeeeee et 27

7.3.2 SEEICOLYPES -uveuvereerieteeuteiteut et st et steeb e ebeebtes e e te sttt e bt e bt eb e e st eateatest et e sb e st e sbeeb e ebeebt e st em b et e b e e bt e bt ebeebeeaten b et ebententenbenne 27
7.3.2.1 COMTOTIMN ..ttt ettt h ettt st e e b et e st ek et e bt et en e b et es et eneebe e eseabeneeseneneabens 28

7.3.2.2 EICMENTGTOUPovvevveieierieeieeieeteetteseesiestessessesseeseeseessessensessessassessessessesssessensensensessessesseessessessessensessessessensense 28

7323 EXPOSE .ttt e e b bbbttt ettt sa e she b sae et 30

7.3 2.4 PODICIN ..ttt ettt b ettt b e bt bt bt e st et et e bbbt bt e bt ea s et et et et e saesbeene 30

7.3.2.5 RALIONALC.eueetiieiiteeeiee etttk s et e ekt s et e e bt st en e e b et e b et e st b e e bt be st b et eneabene 30

7.3.2.0 StAKEROLART ...ttt ettt sttt ettt b et b ettt be e 31

7.3.2.7 VECW ettt etttk h etttk e bbbkt b bbbt skt b ettt nn 31

7.3.2.8 VIBWPOINE ...ttt ettt ettt ettt b e bt b e at et e b et et et e s be s b e e bt eb e ebtemtem b et e b e b e e bt eb e ebtestenbenbebenbenbesbene 32

OMG Systems Modeling Language, v1.7 vii

B BIOCKS ...ttt ettt ettt et et e et et e tt e et e e eteeahe e beebeeateeabeeabeeat e st e ehs e teebeeabeebeeabeesseeaaeeaeeets e reeeteereeareenteenns 35
B L OVEIVIEW ...ttt ettt e e et e et e et e eeaeeeeaaeeeateseteeeeaseeeaseseateeeeaseeeaseeenaeeeeaseeenseeeseeeeaseeenseseeseeennseeenseeeseeeeneens 35

8.2 Diagram Elements..........c.ccecevereeenne
8.2.1 Block Definition Diagram

8.2.2 Internal BIOCK DIAGIAMN.......ccuecuieuiitieieeieietetestesteete st seeeeesteae s e testesseeseeseeseessessessessessessessessasssessessensensensessensensenses 40
8.3 UML EXIEISIONS ...ttt bbbttt s st sa bt b et en e ne 41
8.3.1 DIagram EXEENSIONS ...c..c.evueuiiuiiiiiieiiitit ettt ettt ettt ettt et ettt ettt be st ettt be e se bt eb s st enens 41
8.3.1.1 Block Definition DIBIAIMcceeieieieiiietietiettetteteiet ettt sttt este et et et b e bt st estensensensensessessessene 41
8.3.1.1.1 Block and ValueType Definitions.cceeieieieiierienierierienieeteeitetetete ettt 41

8.3.1.1.2 Default «block» stereotype on unlabeled DOXccooeiiiririreiiiieeeee e 41

8.3.1.1.3 Labeled COMPAIIMENLSceerverrirreerietierieiieietestestestesteseeseesseeseesaessessessessessesseeseessessessessessessessessanes 42

8.3.1.1.4 Behavior COMPATIMENL ...c.eeuveieietitietietietietientetetestesteseeseeeseeseestessesessessesseeseeseeseensensensasessessessenes 42

8.3.1.1.5 ConStraints COMPATTITIENE.......c..eruertirtirtierietiettettetestestestestesteeseeseestentetensesbessesseeseeseensensensensensessessenes 42

8.3.1.1.6 Namespace COMPATLINIEILc.uerueruirtirrerrietieiieitetetestestestesieeteeseestestetetensessesseeseeseessensesensessessensenee 42

8.3.1.1.7 Structure COMPATMENEcccueriireierieriereerieteesteetesteeeee st e steeseeesseesseeseeneeenseensesnsesneesseesseenseenseenes 43

8.3.1.1.8 BoundReference COMPATTMENLc.eeuieieieieieiertesiesieseeeeeereetetestenaestesseeseeseeseensensessessessessessees 43

8.3.1.1.9 ReCeptions COMPAITINICIILc.vetertirtirtietietietieitetestestestestestesbeebeesteseetenbesbesbeebeeseeseensensensensensessessenne 43

8.3.1.1.10 Default MUITIPIICIIES ...c.eoueeeuieteietieiei ettt ettt sttt ee e ene e 43

8.3.1.1.11 Property-SPECIfIC tYPC. . eeurerrererirrirtietietieieietetestestestestesteeseeseeseessessensessesseeseeseessessansessensessessensenes 43

8.3.1.1.12 UNitS ON VAU PIOPEITICS.cuveureriritietietienieiieietestestesteseeeseeseestetensensessessesseeseeseessensessensessessessenes 43

8.3.1.1.13 UNItS ON VAIUEScoeiiiiniiiiciieicieieecce ettt sttt 43

8.3.1.2 Internal BIOCK DIaZIAMocueiiiiieiiieiirieeiete ettt sttt ettt et s et e st be e e st e be e s eseneebens 44
8.3, 1. 2.1 PIOPEITY LY PES . cureterierierieeiteiteitetet ettt ettt ettt ettt e st st st e bt be e st et et e a et b e e bt e bt e bt eetennenenaestestenae e 44

8.3.1.2.2 Block reference in dia@ram frameccoecveverierieriereseneeeeteteieste sttt eve e eseestesnessessesseseessens 44

8.3.1.2.3 Compartments on internal PrOPETLIESc.cceerueieuirieuirienieiirieerieteienteee et ere ettt reseeesseneenenees 44

8.3.1.2.4 Compartments on a diagram frameccoeceeieiierierininereeeeteteet ettt 44

8.3.1.2.5 Property Path NAIME.coueuirieuiiieietieiei ettt ettt ettt sttt et st et e st st e st et e eenenean 44

8.3.1.2.6 Nested CONNECLOT ©11Acueuiivueiiiiiiiiiiieieiree ettt 45

8.3.1.2.7 PrOPEItY-SPECITIC LYPC..c.veeutemieuietititieteet ettt et et ettt sttt st et e et et st b e bt e bt e st entensesasbestestensene 45

8.3.1.2.8 Initial values COMPATTIMENLTccueruiriirtirtieiieiieiiet ettt ettt b bbbt et et e be b sbesbesae e 45

8.3.1.2.9 Default MUIIPIICITICS .. eevvevrerieieiestietietietieeetetestest e st e st e ste e eseeseesaessesessessesseeseeseessessassessessessessessees 45

8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams.............cceceeververreriereneneens 46
8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams.............cccoccccvvenveineenenecnnns 46
8.3.2 SEETEOLYPES ettt ettt ettt ettt et et et et st e s bt e bt e bt e bt e st e st et et e e b e e bt e bt e bt ehtea b ea b et e b e b e ek e e bt e bt eb e e bt et en b et e b b e eheens 46
8.3.2.1 AQJUNCEPIOPETLY ...ttt ettt etttk et stk e e bt et en et et e s e b eneebe s eseebeneeseseneabens 49
8.3.2.2 BINAING CONMMECLOTvevirvieieeiieieeiieieietentesteeteeseestestessesessessessessessasseessessessessessessessesseessessessessessessessessensanss 52
8.3.2.3 BIOCK ... 52
8.3.2.4 BOUNA RETETENCEeviniiiiiiciiteectee ettt sttt ettt 55
8.3.2.5 ClassifierBehaviOrPIOPEILYccuerieuirieirieieterieeteet ettt sttt s et b e st et e b neneebene 57
8.3.2.6 DirectedRelationShipPropertyPathc.ocuieieieieieieieieseeeseseeeet ettt sresressees 57
8.3.2.7 DiStIIDULEAPTOPEILYveuvevietieiieiieitetetee ettt ettt ettt te st ee e st es e e st e b e benbesbeeseeseeneensensensansessessessens 59

viii OMG Systems Modeling Language, v1.7

8.3.2.8 ElementPropertyPath.........ccooiiiiiieieieieiesteet ettt ettt ettt e testeere e 60

8.3.2.9 ENdPathIMUILIPLICILYvveiteteiiiiieteiiriet ettt ettt ettt ettt ettt eeenes 60
8.3.2.10 NestedConneCtOTENG.oveueuiriiieiiiieieiieicci ettt ettt 61
8.3.2. 11 PartiCIPANTPIOPEILY .. .evevieieeeeeiteeieieiete sttt ettt et e et e testestesteeseeseeseensensenseseseeseessessessensensesensessessaes 61
8.3.2.12 PropertySPECIIICTYPE ..c.veuevinieiirieiciiteerte ettt ettt sttt sttt se e b 63
8.3.2.13 VAIUCTYPC ..ottt b bbbt e ettt s b bt e bt eb e e st en e et et e bt b e e bt ebeebtea s e st e b et e naenbenbene 63
8.3.3 MOME] LIDTATIEScurvieeiitcteiiinteiei ettt ettt sttt bbbttt skt s bttt b et na bt ne s seae e eaenenean 65
8.3.3.1 PrimitiVeVAIUETYPESceevieiemiiiieiiinieictciectcte ettt ettt ettt 65
8.3.3. 1.1 BOOICAN ...ttt 65
8.3.3. 1.2 COMPLEX .eourenieieieeieeieeitett ettt ettt ettt et e et e b e st e s testeeseeseeseeseentensenseaseseeseeseeseensensensansensessessees 65
8.3 3. 1.3 IO ...ttt et etttk b e bbbt e st e a et et e bbbt bt heen s et et e nbententenbe et 66
8.3.3 1.4 INUIMIDET ...ttt ettt bttt st e b et b b eenenes 66
8.3 3. 1.5 Rttt 66
8.3.3.1.0 SHIING ..o 66
8.3.3.2 Package UnitAndQuantityKind...........c.ccoioiiiniiiiniiniiiicieeeceereee ettt 67
8.3.3.2.1 QUANLILYKINGeuiieteiiiicteiiiret ettt ettt ettt etttk 67
8.3.3.2.2 UNIE ..ttt ettt ettt 67
8.4 TUSAZE EXAIMPIESivievieiieiieieieieie ettt ettt et e et e st e et e e st et e e st et s essestestesessesseeseeseeneentensensensenseeseeseeseeseesaensensensensenseeseenean
8.4.1 Wheel Hub Assembly
8.4.2 Example Value TYPe DEfINItIONScceeciiiiiierierierentiiieeite ettt ettt ettt et sttt be st et et e e nbesbesbesbeenes 69
8.4.3 Design Configuration for SUV EPA Fuel ECONOMY TeSt.....c.ccouevuiririnininiiieieieieriesieseseeeeeete e 70
844 WALET DICIIVETY ...veveevieeieiieieieteett ettt et et este st e s testeeseeseesae st e sesseeseeseeseeseessessessessessesseesaesaeseessessensensansansensensenses 70
8.4.5 ConStraining DECOMPOSILION.icuieierieieiertertesieeteeeeeettetetetestestesteeseeseeseeseestessesessessessessesseeseensensensensessessessenses 70
8.4.6 Units and QUANtIty KINAScoueeuiiuiiiiieieieieere sttt ettt et et sttt et b e st et et e b et e besbeebeenes 72
8.4.7 PrOPEITY-SPECITIC TYPES ..envemtintitiitietietieitet ettt ettt b e bt ettt ettt st e s bt e bt e bt e st et et et e besbesbeeaes 74
O POTES QNG FIOWS ...tttk s ket b btttk et eea bt ne s bese e ne
9.1 Overview
9.1.1 Ports
9.1.2 Flow Properties, Provided and Required Features, and Nested Ports...........cceceeoieienieniinininieieieieeieese e 77
9.1.3 Proxy Ports and FUIL POTEScociiiiiiiiiieee ettt ettt ettt ettt sbe b b ene 77
0. 1.4 TEEIM FLOWS.c.vviiiiciiiiietctc ettt ettt ettt b ettt n st eenenen 78
9.1.5 Deprecation of Flow Ports and FIOW SpecifiCations.........c.ccecueierierierienisieieieieiesieieste et eesese e sseseeseessenns 78
9.2 DHAGIAM EIETNENLSc..etiiiiiieiieiieietete ettt ettt ettt sttt a e e s et et et e e bt e bt e bt eatentententen s e tesbeebesbeeseestententenbenbesesbeeneens 78
9.2.1 Block Definition DIQGIAIM.......cceviriiririieiieietetetestest ettt ettt sttt eb et e et et b s b e bt e bt e st eate st e s enbestesbesbene 78
9.2.2 Internal BIOCK DIAGIAIM.......c.eiuiuiiiiieiiiteiete ettt ettt ettt ettt b bbbttt e st et et es e ss e e eb e e ene st e e esesbeneeseneeneanan 80
9.3 UML Extensions..................... .82
9.3.1 Diagram Extensions........ .82
9.3.1.1 DIr€CtEAFCALUIEeemiiiiiiiiiciiececee ettt 82
0.3.1.2 FLOWPTOPETLY ...ttt ettt sttt ettt ettt et b e bbbt e s e st et e b et e ebesbeebeeseeseentententenbenbesaeeneas 82
0.3 1.3 FUIIPOIE ..ttt ettt stttk a bttt ettt bbb b s e e 82
9.3.1.4 InvocationONNEStEAPOITACHON «......cveueririereiiirieieiireeteteer ettt ene 83
9.3 1.5 THEIMFIOW ...t 83

OMG Systems Modeling Language, v1.7 ix

9.3 1.0 POT .o 83

0.3 1.7 PIOXYPOTT. ..ttt b bttt et et b e bbbt bt st et e b e b e b e e b e ebeeb e e bt e st et e tenbenbe b b 83
9.3.1.8 Trig@eTONNESEAPOIT ..ottt ettt ettt ettt ettt ee bbb 83
L 0) (S0 o1 PSSR SS 83
9.3.2.1 AcceptChangeStructural Feature EVENTACHIONccveieierienieriiriietieieeieieie et stesee e sse e eae e sessessesaeeneas 85
9.3.2.2 AddFlowProperty ValueOnNestedPOTTACHONcovuiieuirieiriinieirieieientee ettt et 86
0.3.2.3 BIOCK .ttt bbbttt b et skttt b ettt be e eee 88
9.3.2.4 ChangeStructuralFeatUrEEVENL.cceoiiuiiieiitiieiie ettt 88
9.3.2.5 DIr@CIEAFCALUIEc.omiiiiiiiiiei ettt 88
9.3.2.6 FeatureDireCtionKind.cc.eouieuiiiiieieieese ettt ettt ettt b e st sttt ettt ettt eaeeaeas 90
9.3.2.7 FIoWDIrectionKInd.c.ccoouiiiiiiiiiiiiiieiictece ettt s 90
0.3.2.8 FIOWPTOPETLY ...ttt b ettt ettt b et s et e e st st et e e eneeteeenenan 90
0.3.2.9 FUIIPOIT ...ttt 91
9.3.2.10 INEETTACEBLOCKcuteiieniititeetet ettt sttt s et et et e b e s b e st e st e st e st e tetenbesbeeaeeneas 92
9.3.2.11 InvocatioNONNEStEAPOITACHIONceiuiiiiiiiiiiciieiciie ettt 93
0.3 2. 12 EIMFIOW ..ttt ettt ettt skt n et n e 94
0.3.2. 13 PIOXYPOTL. ...ttt ettt ettt e a e st e bttt e bttt et et e et eeateetteeaeenaeenheenbeenaeenne 96
9.3.2.14 Trig@erONNESIEAPOIL ...c..evitietieiieieee ettt ettt ettt b e sttt e bt e st e st e tetenbesbesaeeneas 97
9.3.2.15 ~INteITACEBIOCK ..ot e 98
0.4 USAZE EXAIMPIESevieeieeieiieiieiieiestesteete et et ette st ete s essesteetestesseeseeseessessessessesseeseassassessessassansesseeseesaeseessessessensensesensesseaseasean 101
9.4.1 Ports with Required and Provided FEaturescocieieieiierienieieseeiceieeetetetei et b e e sneessens 101
9.4.2 Ports and Item FIOWS........c.ccooiiiiiiiiiiiiiiiiiic et 102
9.4.3 POrts With FIOW PIOPETLIESeoveitiriiiiieiieiietetetestet ettt ettt sttt ettt et e e b e b ebesbeeaeeas 102
9.4.4 Proxy and FULL POTES......co.iiiiiieiieieeee ettt ettt ettt b e b et et et e st e ene et e e eneeteneenens 102
9.4.5 Association and Port DECOMPOSILIONecveruerierieriierieieieiesiesiestesteeteeeeseessessessessessessesseeseeseessessensessessessessessesnes 104
9.4.6 Item FIOW DECOMPOSILION......c.ecuiiiuiiiiiiiiitiiitentcicetet ettt ettt ettt sttt ettt ebe ettt et ettt eaesaeneenens 107
10 Constraint Blocks

LO.T OVETVIBW ...ttt ettt st h et et e ettt b e e sttt e b e e es e s eseea e s e st e b eneea e s esesae e eaeeenenaen
10.2 DIa@ram EICIMENTSc.eiiuirieiiiteietirteeie ettt ettt ettt ettt bt eb et s bbb e st e b e s e b et eae et e e e st s s ene et et ene st eme et e e enesteneanens 112
10.2.1 Block Definition DIAGIAM........cceoveriiriiriietietietieietetetesteste e steseesseeseeseessessessessessesseesessasseessessessessessessessesseeseases 112
10.2.2 Parametric DIAGIAIMNccieuieeieieieieiertese ettt ettt et e bt eae e st eseest et e testessessesseeseeneessensensensasensesseasesneenes 112
10.3 UML EXEEIISIONS ...ttt ettt sttt sttt ettt ettt b e ea et et be e e st s et ebe s es e b eseea e s e st e b esseue s st saenneaesenenaen 112
10.3.1 DIagram EXTETISIONSccueeuiruiruiriieiieietertesteste st st ettt et e et et s b s bt ebeebe et e es b et et entesbesbesbeebeeseeaeentensebenbenbesbesbeeaeens 112
10.3.1.1 Block Definition DIa@rami.........cccoevereririiiiieieiestesiest ettt sttt et ettt sb e sbe e eae 112
10.3.1.1.1 Constraint block definition.........ccoeueueiririeueniniiieiirinic et aene 113
10.3.1.1.2 Parameters COMPATIMENLcerueeruierieerieeieeieeteeteetesseesseesseesseesseesseeseenseenseensesnsesneesnsesseesseenns 113
10.3.1.2 Parametric DIaGIAM..........ccveierierieriesieeieeieei ettt ettt ettt et et et e testestesaeebesseeseeneensensansesesseeseeseeneenes 113
10.3.1.2.1 Round-cornered rectangle notation for Constraint Propertyccccoeeeeereeerveenrereeenrerenennenenne 113
10.3.1.2.2 «constraint» keyword notation for constraint Propertyccoceeerereeeeeeieiesieneneneseneseneens 113
10.3.1.2.3 Small square box notation for an internal Propertycceceeeeereeereririreereneeeneeseeeeeseeeees 113
10.3.2 SEEIEOLYPES -.eveeeueeeteeetietteste et ete et e e te et e s tteste e tee et e st et e easeeneesaseestesseansee s e enseenseenseenseentesaeesseenneensee st enseenseensennnenn 113
10.3.2.1 ConstraintBIOCK.ccoouiiiiiiiiiiiicc s 114

X OMG Systems Modeling Language, v1.7

10.4 USAZE EXAMPIESeeuienieiieieiesie ettt ettt ettt et et e st e e te st e st e s b e s st eseente st ensens e sasseebeebeeseeseensentensensesessesseeseeneenean 114

10.4.1 Definition of Constraint Blocks on a Block Definition Diagramccoccveieineininieiincninineeneeeeneeenes 114
10.4.2 Usage of Constraint Blocks on a Parametric Diagram...........cocevereririiiiniiniiniininieeseeieeteteesee e 114
TT ACHIVIEIES ..ottt ettt ettt ettt s ettt s e st b e e bt b ea e eh et e st e e e m e ekt s em e e b e m e eb e s en e e b et eh e et em e e b et e st b e st eb e b e st e b et bt b e st b e e s e 119
L1 T OVEIVIEW .tttk ettt ettt h et a ekt h e et s e b et e bt e st e bt s e bt b e st eb et es e b en e eb et e st ben e eb et en e st et ebe e enenten 119
11.1.1 Control @8 DIALAc.eiuiiiiiieiitereeete ettt ettt ettt ettt b ettt b et b et ne st ene 119
11.1.2 CONLINMUOUS SYSTEITIS ..c.vvvimriirienieientettrteatete st et ettt st ettt st st et et e st e be st ebe s e st eb et eb e b e st ebe s bt esese ettt st saeneebenseneseen 119
L1 1.3 PTODADILIEY «...cuvteeiitetcieistet ettt etttk b etttk et s e b bttt ettt nebenen 119
11.1.4 ACHVITIES @S BIOCKSveueiiieiietieee ettt b ettt e e st e et e e eneeteneenens 119
L1105 TAMIELINES .ttt b ettt bbbt h e st b ekt s et et e bt e st et et eb e neent et et enesteneenene 119
11.2 DiIaram EICIMENLScc.euiiuiiiiiieiitiietiret ettt sttt ettt b et b et b s eb bttt et e bt eb et b e sttt eenenaen 120
11.2.1 ACHIVIEY DIAGIAIN ..eoutiuiitiiiitietieiietetet ettt sttt ettt et ettt b e bt e bt eue e st es s et e b estesaesbesbeeseeneentensensensebesbeenesneeneenes 120
11,3 UML EXEEINISIONS ..uvtuteuteuteteterteriesteeteeit ettt te st s b sbeebeehtesteate st e testesbesbe e bt ebeebeestenten b e ben b e bt ebeebeebeestesbenbetenbenbeabeebeebeenean 125
11.3.1 Dia@ram EXIEINSIONSc.eruiieuiitiieiirietieteieteetee i ete et ete e te st et e ete s eb e s e s e ebe st eseeseseebenseseabesees e s eseaseneeseseseeseneesenseneean 125
L1311 ACHVILY oottt ettt ettt stttk sttt a b st e b e s eneeen 125
L1301 10T INOTAIOM .ttt bbbt b et s b e st b e e b et e st ettt e s st e ebeneeneneen 125
11.3.1.2 CallBERAVIOTACHON ...ttt ettt ettt sttt sa et b et bbb e b e 126
T1.3.1.3 COMEIOIEFLIOW. ...ttt ettt et b e bbbt e at et et e b et e stesbe s bt es e e st e st ent et enbenbesbeeneeneeneenes 126
11.3.1.3.1 Presentation OPLIONc..coueruiruirrietietieiieiieietent et sttt et etesteste st st sbeebeebe et estesbensentesbesaesbesbeeneans 126
11.3.1.4 ObjectNode, Variables, and Parameters

11,3014 T INOTATIOM 1.ttt ettt b bbbt e st e b e e s e b e st b e s e st et et et et e st sbeneeseseneneen
L1.3.2 SEEICOLYPES ..veuveeueetieetierttete et et et e e et e s tteste et te et e ae et e ease e st e saeeeaeesaeesae e seen st enseenseamsesmsesaeesseeeneenseenseenseenseensennnenn 127
11.3.2.1 COMUMUOUS. ...ttt ettt ettt ettt ettt ettt et et be ettt be e st e b et eb et et e bbbttt be e ebe e 128
11.3.2.2 CONLIOIOPETALOTcveetieuieiteiteteteste st ste st et et eateste st e s besbesbeebe e st eateatestentestesaesbesbeeseeseentententenbensenseeseeneeneens 128
T1.3.2.3 DHSCIELR...cueeueeutetiteeteettett ettt ettt b et b et et et b e bt e bt e bt ehe e st e st et et e seesae s bt e bt ebeeseent et et e benbeebeebeeneens 129
T1.3.2.4 NOBUTTRT ...ttt sttt b et b e bttt b et bttt be e ebe e 129
T1.3.2.5 OPONAL ..ottt ettt ettt s b et et e e bt et e e st e st e s s e bensessesseeseeseeseentensensensenbesseeseeneeneenes 130
L1.3.2.6 OVETWIILE ...ttt ettt etttk bbbt b ettt b bttt b bt b bttt bt e s ebean 130
11.3.2.7 PIODADILILY ..vviuiieiciiiicecieintctci ettt ettt sttt ettt neneeen 131
L1328 RAE..c.cuiieieeecice ettt 132
11.3.3 MOAEL LIDIATIESc.eveneiiiieicreeetete ettt ettt ekttt b et et aeaenaes 133
11.3.3.1 Package ControlVALUES.........c..ccueirieiriiiiinieiricieeret ettt sttt sttt 133
11.3.3.1.1 Control VaIUEKING........cooiuiriiriiriieiieiieeeeese sttt ettt st s see s eneene 133
11.4 USAZE EXAIMPIES ...ttt ettt ettt b e bt bt e bt e st et et e b e b e e bt ebeebe e bt eb e e st et et enbesbeabeebeebeenean 134
12 TIEETACKIONS ...ttt ettt ettt b et bttt b et s et e bt e st eh e e st eeem e eb e s es e et em e bt e en ek emees e et e st e bt e eseebe st eb e s e st b et e bt ase st b e e ne e 139
121 OVETVIEW ..ttt ettt ettt etttk h e 4o s ek et h e et s e b et eb et e st e b et e bt b e st eb et eb e b es e eb e e e st b en e eb et enesbe e et e teneneen 139
12.2 DiIa@ram EICINEILSeuveuieieierieiteeiteiteiteite ettt ste et ete et est et estestestessessesseeseeseensensansensassaseeseeseeseessensensensensessesseeseeneanean 139
12.2.1 SEQUENCE DIAZTAINc.uiiinieiiiiieiiniet ettt ettt sttt b et ettt sa st eeb et ettt be bt ebensenenaes 139
12.3 UML EXEEIISIONScuteuteuieteierterteste sttt ettt ettt s b sbe bt ett e st e st et et et e sbesbe e bt ebeebeeateaten b e b e b e bt ebeebeebtesbenbentebebenbeabeebeebeenean 143
12.3.1 DIagram EXTETISIONSccueruirtirtieiieiieiteteiteste sttt sttt ettt b e s bbbt bt ea et et e st e st e s bt sbeebeebeebeemte st e b enbenbesbesbesaeens 143
12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing Diagram 143
12.3.1.2 Interactions and ParameELerscccoueieirieiriiieierieert ettt ettt b et ebe e 143
12.3.1.2.1 NOTALIOM ..ottt sttt ettt b et b s bbbt bt b et b bbb be e b e 143
12.4 USAZE EXAMPIEScueitiiiiiiiieiit ettt sttt ettt b e bbbttt et eb et se s e et enenaen 144
12.4.1 SEQUENCE DIAGIAMSooviviitieiieiieiieieterte ettt ettt et et b e bttt e it e st et et e s testesbesbeebeeseeseententenbebesbesbeeneeneenes 144

OMG Systems Modeling Language, v1.7 xi

13 StAtE IMACKINESovviviiiiietieeieeete ettt ettt et e et e te e bt e beebeeabeesbeeaseessaeaseessessessesseenseesseeaseesseesseesseetseesaesssenseesseenseenseenseessens 147

I3.1 OVETVIEW ..ttt ettt et te ettt e e tt e e te e bt e beebeesbeeaseesseeaseessesseease e seessaesseanseesseeaseesseessassesssenseesseeaseanseenseesseessesseesssanns 147
13.2 Diagram Elements...........ccccceuene
13.2.1 State Machine Diagram
13.3 UML EXEEIISIONS ...ttt ettt etttk ettt sttt s et s e b et es et e s e e b e e st be st eb e s eb e b eneeb e b e st e benees et ene st e e ebeeeneneen 150
13.3.1 DiIa@ram EXIENSIONSccverviriiriiiieieiesiestestieteeteeteeseetessestestessessesseeseeseeseessessensessasseasessessessesssensensensessessessesseeseeses 150
13.3.1.1 State Machines and Parameters...........cc.eeveiririiinieiniieeree ettt ettt 150
133010101 NNOALIOM ..ottt ettt ettt et sttt b e s bbbttt b e et b et be et et be e b e 150
13.4 USAZE EXAMPIESeuieuienieieieste ettt sttt ettt et et et s b e bt s bt e bt e st e st et et e b e b e ebeebeebeebeentenbentenbenbesbeabeeneeneenean 151
13.4.1 State Machine DIAGIAIM......cc.eeuirieieieieierere ettt ettt ettt et et et s te bt be e bt e bt e st ene et ebenbesbesbeebeeaeens 151
14 TUSE CASES ..ttt ettt s bbbt et eh ettt e e st s bt e bt b e e bt e st e st et e b e b e e bt e bt e bt e bt e bt e st e st et e ettt bt bt e bt e bt bt et et et et e st s b e naeebeebeene
14.1 Overview
14.2 DiIa@ram EICINEILSeveieieierieeieeteeiteteietete et et eteeteeteestestestessessessessessesseeseeseensensansensasseaseeseeseessessensensensensessesseeseeneanean 153
14.2.1 USE CaSE DIAGIAM.....c.eitiiieiieiieiieieieieste ettt et e ettt et e ete e st e st es s et e tessesaessesseeseeneentensensensesensesseeneeneenes 153
14.3 UML EXEENISIONScuteuienieieteitesieste ettt ette e te st e st e s besbe et e ettestestes e e te st esbesbeebeebeeatententen b e benbeebeebeebeeseestensensenbenbesbeabeebeeneenean 154
14.4 USAZE EXAMPIE ...ttt ettt b bbbt b et e et e bt b e e bt e bt e bt e bt e bt e st et et et e naeeb e bt ebeenean 154
15 ATLOCALIONS ...ttt ettt ettt ettt b e bt a e bt b e s et e bt e st et et e bt e e st ek et eb e st e st e bt eb e b et e b et e st b et b b st b e e b e 159
I5.1 OVETVIBW ...ttt ettt ettt h et h et h e s 4o b et b bbbt e bt b e st eb et e bt b e st eb et e bt e b e st b et e bt s b et et e teneneen 159
15.2 DIa@ram EICINEILSceeoueiierieriirieitieiteietiete ettt ettt et ett et et et e testesaesbe s bt estesteneensensensasbe st ebeeseestensensentensensesaesseeneeneenean 159
15.2.1 Representing Allocation 0n DIQGIAMSccceeereruiiieierieieieeteet ettt sttt sttt ettt e be b sbesbeeaeeaeenes 159
15.3 UML EXEEIISIONScvtiienteteriertertesteete ettt ettt besb e eb e ehteat et et et et et e s bt s bt eb e eb e e st em e et et e b e bt ebeebeebeebtestesb et enbenaeabeebeebeenean 160
15.3.1 DIagram EXEENSIONScuveuiieuiitiieiirietieteieteeteetete ettt e et st ete et e et et e s e e be st eseeseseebenses e beneeb e s eseaseneeseseseaseneeseseneaean 160
I5.3.1.1 TADIES etttk h ettt b et a et h et n bt b et ne bt s et b e b e 160
15.3.1.2 Allocate Relationship RENAEIINGc.coueeuiiiiieieiiriecieieeteetee ettt ene 160
15.3.1.3 Allocation Compartment FOIMAtccccviiiiniiininiinieineeeneet ettt 160
15.3.1.4 Allocation Callout FOTMALcc.evirireririiieieteesesteet ettt sttt ettt ettt sb s b b eae 160
15.3.1.5 Allocated ActivityPartition Labelccooeiiiiiirieirieeee e e 160
15.3.2 SEOTEOLYPES ..veveeeueeeteeetieteete ettt et e te et e st este et e et e e ae et e eabeeseesaeeeatess e e st e et en st emseemseenseembesaeesseeeneenseenbeenbeenseenseennenn 160
15.3.2.1 AllocateActivityPartition (from AIIOCAtIONS)........ccueruiruieuierieieieieienie ettt ettt eae e eneens 161
15.3.2.2 Allocate (from ALLOCAIONS)ccuerueriirierieriieiieieteste ettt ettt ettt et et este e s bt s bt bte st et et e besbesbeebeeaeeneene 161
15.4 USAZE EXAMPIES ...c..eeieiieiieieiertere ettt ettt ettt b s bt b e bt et e et e b e b e e b e e bt e bt e bt e bt e st et et et e naeabeebeebeenean 163
15.4.1 Behavior Allocation of Actions to Parts and Activities to BIOCKScccoeriiineiiiniiicee e 163
15.4.2 Allocate Flowccoeveueenene.
15.4.2.1 Allocating Structure
15.4.2.2 AULOMOLIVE EXAMPIE ...coeiiiiiiiiiiiieee ettt sttt sttt ettt besb e e b b eaeens 166
15.4.3 Tabular RePIESEIEATION.ccutetieuieiieiietertesierterie sttt ettt et bbbt bt et et et e st e s ae s bt st e eb e e bt ebteae et ebenbeebeebesbeeaeens 166
16 REQUITECITICNITSveuvieiiieiieiieiteitetestesteeteeteeteeteestesaessessessessesseeseaseaseessessessassasseaseeseeseeseessessessansessesseseseeseassessensensansensensensansansenseans

16.1 Overview

16.2 DIa@ram EICINEILSe.veieieieiieiteiteeitetete ettt e it et et et e st estestetessessessesseeseestentensansansassess e et eeseeseensensensensensesseaseeseeneenean 170
16.2.1 ReqUIrement DIAGIAINcc.eiruiiiiirieiiicieicneet ettt ettt ettt ettt eb ettt ettt et ebe s aenaen 170

16.3 UML EXEEISIONSviniiiiiiietiieierteiet ettt sttt sttt ettt ettt b e e sttt b e s s e b e e ea e s st e b et ea e s esesae e es e eeaeenen 172
16.3.1 DIagram EXTETISIONSccueeuirtirtiriieiieiieteitesteste ettt ettt et b e bbbt ea et e st e st e s bt sbeeb e e bt ebteme et et enbenbesbesbeeaeens 172
16.3.1.1 Requirement DIAGIAIMccerieiiieiitiieieie ettt ettt et a ettt e st seebe e e s beseese e ene e 172

16.3.1.2 ReqUIreMENt NOTATIONeveveierieriesieeieeeeetetetestestestestesseeseeseessessessessessessessessessaessessensensensensesseeseesesseenes 172

16.3.1.3 Requirement Property Callout FOImatccceciveiininiiiiniiiicncncecncteee e 172

xii OMG Systems Modeling Language, v1.7

16.3.1.4 Requirements on Other DIAGIAMSccoueiriieirieiniiieene ettt sttt 172

16.3.1.5 ReqUIrements TaBIE..........cccueieriiriiriirereeieei ettt ettt st b et et et et be b sbe b eaeeae 172
10.3.2 STETEOLYPES c..euveveentenieteteeteet ettt ettt ettt sttt s b bt b ettt e b bt e bt e bt e bt e bt e bt e st et et e st e s bt sb e eb e e bt ebtemtem b et e b e e b e ebesbeebeene 172
16.3.2.1 AbStraCtREQUITEIMENLc.veuiitiiieiiieiiieeiee ettt ettt s et b e e s et be e s e 173
16.3.2.2 COPY -euvvnnieeieiitrieietee ettt ettt 174
16.3.2.3 DEIIVEREAL «..veuvintitietietieieeitete ettt sttt ettt et b e bt e a et eat et et e s e besaesbeebeeseestententensenbebesseeneeneeneenee 175
160.3.2.4 TESECASEevueeiieiiieieetee ettt st ettt a e st b e bt e et ettt e 176
16.3.2.5 REFINE ...ttt sttt ettt neneen 176
16.3.2.0 REQUITEINIENEo.vievieeieeieiieieeiieteiestesteste sttt eseetetestessesaeeseeseeseeseensessensansessessessesseeseensensensansansenseeseaseeseenes 177
16.3.2.7 SALISTY ...ttt ettt sttt b ettt eae e 178
16.3.2.8 TIACE ...ttt sttt b e et a et bt s et h et e 178
16.3.2.9 VBTILY c.voeeeectece ettt 179

16.3.3 MOAEL LIDTATIES ...ttt

16.3.3.1 Package Verdicts
16.3.3.1.1 VerdictKind

16.4 USAZE EXAMPIESeuieiiiieieieitestert ettt ettt ettt b e bt bt e bt e st et et e b e b e e bt e bt ebe e bt estesben b et enbesbeabeebeebeenean 180
16.4.1 Requirement Decomposition and Traceability...........ccoeveriririnininieieieeerereree e 180
16.4.2 Requirements and Design EISIMENLS.ccccieieiieieieierieriesesieeeee ettt eae e stestestestaesaeseesaessessessessessessaeseeseaseas 181
16.4.3 REQUITEIMENES REUSE.....cviuietieiieiieiieieierte e et st et et etes e e te st e e st eseeseeseeseensessensessessesseeseeseensensensensasensesseaseeseenes 183
16.4.4 Verification Procedure = TESt CaSEccueruiriereririeeiieiieieieie ettt ettt et et e et te st be bttt e st e st e e e benbesbesbesbesaeeneenes 183
17 Profiles & MOAE] LIDIATIESccucviuiieiiiiiieiiieieiteieiee ettt sttt sttt s et ee e n e eee 187
L7, 1 OVEIVIEW ..ttt ettt ettt stttk h et b et s bkt s e bt sa ket b bttt ettt seb b et na et eseaenneneaenens 187
17.2 DIAGram ELICINENLSeeveieieiesiesieeteitetestetetestes e eteeteeteeseessessessessessessessesseessassensensansensansesseasensassssssessensensensessesseeseeseansan 187
17.2.1 Profile Definition in Package DIagram...........c.ccecieieierienierierieseeeeeeteieet ettt eresseeae st sesaessesseeseeneeneeneas 187
17.2.2 Stereotypes Used On DIAZTAIMSc.coeoiiiriiiiiiniiinieieiene ettt ettt ettt ettt sae ettt ettt sae s b e nenees 188
17.3 UML EXEEISIONS ...ttt sttt sttt sttt ettt a et e sttt b e e s e b eseee e s st e b et ea e e ese s e e ebeeenennen 189
17.4 USAZE EXAIMPLEScuveieinieieieiiete ettt h ettt bbb s bbb e st e e s et eat et et es e s b eme et et es e st et et e e enesteneenens 189
17.4.1 DefiNINg @ PrOfIlE.....coviiiiiiiieieiieieeetee ettt ettt ettt ettt e e b e s b e ebeesessaesaessessensensessessesseeseaseaseas 189
17.4.2 Adding Stereotypes t0 @ PrOTILEcc.eoveriiriiiiiiiieieeee ettt sttt ettt sb bbb ene s ens 190
17.4.3 Defining a Model Library that Uses @ Profile..........ccooiriiiiiiiiniiiiieceeeeeeee e 191
17.4.4 Guidance on Whether to Use a Stereotype OF Classcoueireiiirieieieieiieieeetet ettt 191
17.4.5 USING @ PrOTIIC....cueeieieeieciecieteeee ettt ettt ettt et et e e st e st e st ess e s e b e eseebeeseesaesaesaensensensessesseeseeseaneaseas 192
17.4.6 USING @ STETCOLYPE «..veuvenvitierierieuieientetestestestessesseeseestestessessasesseeseeseeseessensensensessessessessesseeneensensensensensessessessesseenes 192
17.4.7 Using a Model Library EISIMENL.cc.ooiriiiriiieiiiieteeteest ettt sttt sttt ettt sb e bbb e ens 193
ANNEX A DIAGTAINS ...ttt ettt ettt et ettt e e e st et e s eseete st et e e et e b en e es e e eseeaem e ee e e eseeeemeeh e s em e eeemeeb et ent et eneese s eneebenses e beneenenseneaee 197
AT OVEIVIEW ..ttt ettt ettt et b et a et a ekt h bt a bt sea ket s e b bttt et b et s e s b et na b st e enenenenens 197
AL2 GUIRLINES ...ttt ettt b et a et n ettt nen e 200
Annex B: SysML Diagram INEICRANGEccoeiriiiriiiiiniiiietcctrtet ettt ettt ettt sttt ettt ettt be sttt enens 203
BT OVEIVIEW ...ttt ettt sttt ettt e it et e st e et e st e e bt bt e st eaten e e e e b e b e ebe e bt eh e ebtestentent e s e sbeabeebeese e st entent et e bebeebeeneeneenes 203
B2 SEEICOLYPES ...evtemtentitiiteeteet ettt ettt sttt eh e bt e st et e ettt e bt b e eb e e st e st et et e b e e b s bt e bt eb e e bt e st e st et e nheeb e bt e bt bt e aten e et e b b e b e ebeebeeaee 204
B.2.1 SYSMLACHVIEYDIAZIAIMueeeuiieiietiteiiete ettt ettt ettt ettt eb e e st e st s e e es e et e st eee s esessent et e eeneeseneeteneeneeseneenens 205
B.2.2 SYSMLBERAVIOTDIAZIANN......c.veiviitieiiieieiieieieteteete ettt et et et et estesaestesseeseeseestensensasessesseeseessessessessessessessessessenseens 205

OMG Systems Modeling Language, v1.7 Xiii

B.2.3 SysMLBIoCKDefInitionDIa@Iamcceverieriiriiniieiieiieieteteteste ettt ettt e testesae st sseese et estensensessessessessesseesnens 206

B.2.4 SYSIMLDIAZIAINc..etieiieiienieieiest ettt ettt b ettt et et et et e s te s bt s bt ebe e st esten e et et e beebeebe e st e st e st enbebentesbesbeebeeneent 206
B.2.5 SysSMLDIaGIamEICIMENLc..cuiiiiuieiiieiieteietertei ettt ettt e et e et s et et et e e esesbeme et et e st eteneebeneeneeteneenens 207
B.2.6 SysMLDiIagramWith ASSOCIAtIONSccuveveierrertistietieietetetestestestessessesseeseessessesessessessesseessessessessessessessessessasseens 207
B.2.7 SysMLINtEractioNDIAZIAIIL.......c.eoveuiriiuieiinieiirteietertet ettt ettt ettt ettt bttt et eb bt eb et ettt et ettt sesaessetenaeaeneen 207
B.2.8 SysMLINternalBIOCKDIAZIAMc..ecuiiuiriieiieiieiitieteeteet ettt sttt ettt ettt be bt s bt ettt e b e ntesbesbesbesbeeneans 208
B.2.9 SySMLPaCKAZEDIAZIAIMNcveitiriiiiriiiiieiietetet ettt ettt ettt st st e be et et e bbb e sbesbeeaeene 208
B.2.10 SySMLParametriCDIAIAMc.ecvirieieieieietieteeteeteeeetetetestessessesseeseeseestensensensessessesseessessessessessessessessessanseens 208
B.2.11 SysMLRequireMentDIAZIam.........co.ccvvirieuiriiieirieinteieteneetetet ettt sttt b et b ettt ettt sae et saeaenaes 209
B.2.12 SysMLStateMachineDIaGIammcc.eeuieieiiiiiinienieeieetet ettt ettt b e s b ettt et et e stesbesbeebeeneene 209
B.2.13 SySMLSHIUCTUIEDIAZIAINLuitenietieciieten ettt ettt ettt ettt et e bt be st s e es e e te st et e e esessene et e eeseseeneebeneeneeseneanens 209
B.2.14 SYSMLUSECASEDIAGIAIMc.veuvivieieeieeieieieiestesteeteeteeseessessestessessessessesseeseessensensessessessesseessessessessessessessessessasseens 210

B.3 SYSML DI USBZE NOLESc.veviiiiiiiiiiiiieiieitt ettt s a et a et sb e sa e sb e ea e bttt ae b e b s b saeeaeeae 210
B.4 SysML Notation and DI REPIESENTALIONce.eeteieriirieriirtieiieiteiieteste ettt sttt ettt et et sbesbesbe bt e st et et enbenbesbesbesbeeseeas 211
Annex C: Deprecated Elements and MIZEAtIONc..o.iiueiiirieirieirieiet ettt ettt ettt ettt e b b e st e b e e eseebeseene e eneaee 213

C.1 OVEIVIEW .ot
C.1.1 Flow Ports

C.1.2 CONJUZALEA POTLSovieiieiieieieeteet ettt ettt ettt ettt et e st e bt e bt et e e st es e e st et esbesbesaeeseeseeneensensansanbenseesesneeneenes 213

C. 1.3 COMNECLOTPTOPETLY ...ttt ettt ettt ettt et e et e s b e s bt s bt e bt ehteb b e st e e et e st e sbeebeebeestententenbenbenbeebesneeaeens 213

C.2 DIagram EIBIMENLScceveveueririereiiirieteiirieteteient st etes ettt sttt st e ettt bt s s b et se b bttt et ese st es b sentnaebeseaeeseseaeenene 213

C.2.1 Block Definition DIQZIAIMc.couiiiuiriiiiiieieiieie ettt ettt ettt s ettt e e st e e s et e e enesteneenens 213

C.2.2 Internal BIOCK DIQGIAMccvevuieiieiieieiieieiesiesteste st ettette et e e stestesteeseesesseessessensensessessesseeseaseansensansensensessessesseenes 214

C.3 UML EXEEISIONS ...euvevirteetieiieitentestenteeteettettetteute e tetestestestesteestestestensesseseaseeseeseestentensansansesseeseeseeseestententensesensesseeseeneenean 215

C.3.1 DIagram EXEEIISIONS.c.eeuertirtertirtieteeiteteteste sttt sttt et et e e et e s be s b e s bt e bt eatestestensentesbesbeebeeseestententanbenbenbesbesneeneenes 215

C.3.1.1 ConJUGAEd POTLS ..ottt sttt et et et et b e s bt bt e bt e st ea et et e stesbesbeebeeneane 215

CL3UL2 FIOWPOTT ..ttt etttk b et b ettt e s enesn 215

C.3.1.3 FIOWSPECIHICALIONevventiiieietieeieieteieste sttt e it et et et e testesseeseeseeseensensessessesseeseaseessensessensessessessessesseans 216

C.3.2 STETEOLYPES .nvvenvtentietieteete ettt ettt et s it e st e esbe e s bt et et e et e eaeeeateeatese e e s bt e sh e e bt e bt e bt en bt ea bt eateeabeeatesetesaeesbeenbeenbeenbeentes 216

C.3.2.1 Package POItSEFIOWS.......c.couiuiiiiieiiieiiic ettt sttt sttt b 216

C.3.2. 2 FIOWPOTIT ..ttt bbbtttk ettt b et st b ettt s enesen 216

C.3.2.3 FIOWSPECIHTICALION ...vevviiiiiiieeieeieieieiestesteeteeteeteeseestestessessessessesseeseessessensensessesseaseessassassessessessessessessessenns 217

C.3.2.4 ItemFlow (deprecated cOMPatiDIlity TULE)ceeveieiierierieriereceeeeeetee ettt ettt seeenens 218

C.3.2.5 CONNECLOIPTOPEITY ...ttt ettt ettt ettt ettt ettt a et et sttt aesae et e st saeeerene 218

C.4 Transitioning SysML1.2 Flow Ports to SysML 1.3 Ports (InfOormative).........cc.ceeeeeierienenenienienineeeetenenieseeseseeieenen 220

C.5 Transitioning SysML 1.3 Viewpoint and View to SysML 1.4 (informative)..........ccccoceevieererinineenereecseceeseeeen 220

C.6 Transitioning SysML 1.3 Units and QuantityKinds to SysML 1.4 (informative)...........cccoeceeveeeeiierienienieneneneseeeeeenen 221
C.7 Transitioning SysML 1.5 conjugated port typed by InterfaceBlock to SysML 1.6 conjugated InterfaceBlock

(INTOTTIIATIV) ..ottt ettt ettt ettt b e st e s bt s bt e bt es e e st e st et et e eb e bt e bt e st ea e enten b e b e beebesbeebeestentenbensebenbesbeebeeueenean 222

ANNEX D: SaMPIE PTODICII ..ottt b ettt et b e s bbbt bt bt et ese e e a e bbb b eneen 223

D.1 Purpose
D2 1703 o TSP PSRRI 223
D.3 ProDICm SUIMMATYeueiuiieiiitiieiiteieeiet ettt ettt ettt ettt sttt a st et ebe sttt e bt st st e b et ebe et eseebe s ese et et ebena et bennenenne 223

Xiv OMG Systems Modeling Language, v1.7

D14 DIAGIAIMSoeititciietee ettt ettt ettt ettt ettt ettt ettt be et et et a e st et e bt st a e e bt e bt e st bt bt et s e bt b e bttt a e b e b e 223

D.4.1 Package Overview (Structure of the Sample Model)..........coeoirieiiriiiiniiiiiiieincneececee e 223
D.4.1.1 Package Diagram - Applying the SYSML Profile..........ccccoceviririiiiieieieieceeeeeeee e 223
D.4.1.2 Package Diagram - Showing Package Structure of the Modelccooeiiriiiiiiniiiiceceeee 224

D.4.2 Setting the Context (Boundaries and USe CaSes).........cevrurueueiriereuiinieieriinrereieereeerteseeseesesseseseeseeseseseeneseseens 225
D.4.2.1 Internal Block Diagram - Stting CONEXL.......c.ecververierierierierererieeeiesiessessessesseeseessesessessessessessessessassenns 225
D.4.2.2 Use Case Diagram - TOp Level USE CaSES.......ceveieierierierieriesiieieeiteieiesiesteste ettt eseeneessesesseseestessesseesnens 226
D.4.2.3 Use Case Diagram - Optional USE CaSESceeeieieierierienierierieeiteteee et sttt et estesseste e stesiesbeeneene 227

D.4.3 Elaborting Behavior (Sequence and State Machine Diagrams)coceoererieireiinenieenieieene e 227
D.4.3.1 Sequence Diagram - Drive BIack BOXccoieriiiriiiiiiiieeee et 227
D.4.3.2 State Machine Diagram - HSUV Operational Statesccceecereerierierienierienieeeeeeeeeeeestesiesieseeseeseeesnens 228
D.4.3.3 Sequence Diagram - Start Vehicle Black Box & White BOXcccccccuvinieiininiiineiincccncnciecncenne 229

D.4.4 Establishing Requirements (Requirements Diagrams and Tables)ccceovevienerinininenneeeccnceeeeeee 230
D.4.4.1 Requirement Diagram - HSUV Requirement HIerarchyccocooiineiiiinniineieeceeeeceee 230
D.4.4.2 Requirement Diagram - Derived REqUITEMENTSccuevierereririeieieieiesieste et ee e eaesesaesse e sresseseaesnens 230
D.4.4.3 Requirement Diagram - Acceleration Requirement Relationshipscccoeevvvenccincniicnenncnnnencnnens 231
D.4.4.4 Table - Requirements Tableccoieriiiiiiieieieeteresee ettt ettt ettt st s seeenene 231

D.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams).........c.c.coeveeevruereeinenrenecnens 232
D.4.5.1 Block Definition Diagram - Automotive DOMAIN.cerueiiinieinieireneeeieseseee e 232
D.4.5.2 Block Definition Diagram - HYBrid SUVccccooiiiiiiiiienicenereeeeetete ettt st ssaennens 232
D.4.5.3 Internal Block Diagram - Hybrid SUVccccccoiiiiiiiiiiiiiicneeencee sttt 233
D.4.5.4 Block Definition Diagram - POWer SUDSYSIEIMc.ceoueriirieriniiiiiieieieeestesieeieeie ettt 233
D.4.5.5 Internal Block Diagram for the "Power SUbSYStemM..........cccoiiiiiriniiiieieeeeeeeee e 234

D.4.6 Defining Ports and FLOWS........cc.ociiiiieieieieriesiestesteee ettt sttt e s esa e ae s estessesseeseeseeseessensensansansessessesseenes 235
D.4.6.1 Block Definition Diagram - ICE FLOW PTOPEIties.......c.coerverieriririeieieiesiesieeeeeeeeteeeste e siesee e sseennns 235
D.4.6.2 Internal Block Diagram = CAINDUScccooieiririeieieieriesesie sttt tet et ettt e bt eae et entesbestestesbesaesseeneans 236
D.4.6.3 Block Definition Diagram - Fuel FIOW PrOpertiesccocverereririinienieniinineececetetetesese e 236
D.4.6.4 Parametric Diagram = FUCL FIOWcc.couiiuiiiieiiieicieieseces ettt sa e s ssestessesseennns 237
D.4.6.5 Internal Block Diagram - Fuel DiStriDUtiONccceoveierieriereiiiieieieieiesie sttt st enene 237

D.4.7 Analyze Perfomance (Constraint Diagrams, Timing Diagrams, VIEWS.........ccccevereririnirieienienienienesesiesieeeens 238
D.4.7.1 Block Definition Diagram - Analysis CONEXT........euerterierereriririeieieriestesteeteeteeteeiteteste e seesiesiesieeneene 238
D.4.7.2 Package Diagram - Performance View Definitioncccoeoiririeiniiiiiineceeeeeee e 239
D.4.7.3 Package Diagram - Viewpoint DefiNitionccecverierieriereneniiieieieiesiesteste e eeeaesessesse e seessessaennens 240
D.4.7.4 Package Diagram - VIew DEefINitionccoeoiiinieininiiinieiiiecniceeeentce ettt 241
D.4.7.5 Package Diagram - VIEW HICTAICHYcccooiririiiiiiiiiesesese ettt 242
D.4.7.6 Parametric Diagram - Measures of EffectiVenesscouveirireiiiiiineeeee e 242
D.4.7.7 Parametric Diagram - ECONOMYcc.cciruirieieieieieieriese st seseeesteseetessessessesseeseeseessensessessessessessessassenns 243
D.4.7.8 Parametric Diagram - DYNAIMICScccecirueuirieieiinieiirieietentetetetetestet ettt sttt st ereseenesaeeenens 243
D.4.7.9 (Non-Normative) Non-SysML Diagram - 100hp AcCelerationccoceverererinerieienienenenenieseeene 245

D.4.8 Defining, Decomposing, and Allocating Activities
D.4.8.1 Activity Diagram - Acceleration (top level)

D.4.8.2 Block Definition Diagram = ACCELEIAtIONcceeveierierierierierieeiteieiesiesiestesteste et eseessesesessessessessessessnens 247

OMG Systems Modeling Language, v1.7 XV

D.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)coccovenieeniiiiineieniiiieneineeee et 247

D.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation...........cccecevevenenenennenne 248
D.4.8.5 Table - Acceleration AIIOCALIONc.cccvveueuiiririeeinieieieireeteettrt ettt ese et sa b ee st sesnenenen 248
D.4.8.6 Block Definition Diagram: Slot Values - EPA Fuel Economy Testcccoceviineiinennineinenecnecnne 249
Annex E: Non-normative EXENSIONSc..cccoiriiiriiiriiiincietetei ettt ettt ettt ettt sttt s ettt ebe st st ebe e euesaeneenens 253

BT OVEIVIBW ...ttt ettt ettt ettt b e bt ea e st ea et et e b e e bt eb e e bt es e e st enben b e b e sbeebeebeene e st enten b et e bebeebeeneeneenes 253

E.2 Activity Diagram EXEENSIONS.c.ccueiiuiriiiiriiiiiiiceiet sttt ettt sttt e et 253

E.2. 1 OVEIVIEW. ...ttt e et h e et e e e b e et e e st e st et e e enesaeneenens 253

S <) (101 01U 253

E.2.3 Stereotype EXAMPIEScc.ccueriieiieiieiieieieietete ettt ettt et e e st e ae b e saesbesaeeseeseentensensansensanseeseeneeneenes 254

E.3 Requirements Diagram EXLENSIONScoeruiririeierieieriertesteet ettt ettt et st ettt et e et st sbesbesbeest e st e st entebenbesbeebeebeeneens 255

E.3. T OVEIVIEW. ...ttt ettt et b et a e bt a et et e bt et et e e bt s e st ebe e euesaeneeuens 255

B3 S IO YPES .ttt ettt ettt ettt b bbbttt a e bbbt bbbt s et a e h e bbbt a et e bbb e b sbe bt eae 255

E.3.3 StereotyPe EXAMPIESccvevviriieiieiieiieteieieie ettt ettt et et e st e st eteeteeseesaesaessessessessesseeseaseessensansansensensensensennes 258

E.4 Parametric Diagram Extension for Trade StUAIESeceririeieieiieieieeeseeeeeet ettt ene 259
E.4.1 Overview

B S eI YPES .ttt ettt ettt ettt b bbbt b et e et e b b e bt e h e e bt e bt e s et et bbbt bt e bt ea e n e et bbb ebeeaeeaes 259

E.4.3 StEreOtye EXAMPIEScvecveiiiiiiieiieiieieiietet ettt sttt tte et et e sesbesbeetaesaesaessessessessessessesseeseassassensansansansensensensenses 260

E.5 Model Library for Quantities, Units, Dimensions, and Values (QUDV)ccoccviriiiniininiiincicccneececseeeeeee 260
E.5.1 Overview

E.5.2 ADSIACE SYIMEAX....cueeuieuieiieieiteeteete ettt ettt ettt ettt bt bte st et et et e s be e b e ebeeb e ehees b esten e e besbesbeebeebeentententenbenbenbeebeeneeaeens 261

E.5.2.1 AffineConversionUNItccooiiiiiiiiiiiicceere ettt st st 263

E.5.2.2 ConversionBasedUNILceeueiririeuiiniiieieineieitin ettt ettt s ettt n s 264

E.5.2.3 DerivedQUantity Kind...........ccccieierierieierieseeieieiet ettt sttt ettt sae b e sbeeseeseeseesaessensensessessessesseeneens 264

E.5.2.4 DEIIVEAUINILeuiiiienieieitesteeteet ettt ettt ettt ettt et te s bt st e st e st et et et e be e bt ebeeseentensensensensestesbesseeneans 265

E.5.2.5 DIMENSION ...ttt ettt b et b et a et e e b s et st e bt see st et e e enesae e enens 265

E.5.2.6 GeneralConverSIONUIILc.c.eciririeueiriiieieinecieetereeteeessereiet ettt st sae et sa e ee s seessesesenens 266

E.5.2.7 LinearConversioNUILccoeiriiieuiiiiiiiiinieieeieeeetsee ettt 266

EL5.2.8 PO X e iiitiitieiieietet ettt ettt ettt bt bt h e a et e b et e b e bt bt e bt e st ea b et e ntentesbenbeebeeneene 267

E.5.2.9 PrefiX@dUNIt......coouiiiiiiicce ettt sttt st 267

E.5.2.10 QUANtItYKINA ...c.oouiiiiiiiiiieee ettt ettt n ettt enan 268

E.5.2.11 QUantityKinAFACtOrcc.eiuieuieieieieieteeie ettt sttt ettt et et et e s besaeeseeseesaensensensessessessessaennans 269

E.5.2.12 RALIONAL...c..iiiiiieiieieieieseet ettt ettt ettt s b e e bt e st e st et et et e s b e ebe e bt eseententenbensestesbesaesseeneane 269

E.5.2.13 SIMpleQUantityKindccoeeeieiiieieieeeieetet ettt ettt st ebeene 270

E.5.2.14 SIMPIEUNIL....eeuiiiieiiieiteieceetete et e ie e steeteeteeteesaessestesessessessesseeseessessensassesesseaseassessessessassessessessessensenns 270

E.5.2.15 SyStemMOTQUANTILIESevervieeieieieierieieeteeteeteeteteteteste s e stessesseeseessessensensessesseeseeseessensensensessessessessesseens 270

E.5.2.16 SYStEMOTUNILS......c..euietiiiiiteiietiict ettt ettt ettt ettt ettt et sttt besae st ebe e enesaeeerens 272

ELS. 2017 UNIE ottt et b etk ettt b ket na bbbt nebesn 276

E.5.2. 18 UNIFACIOT ...ttt ettt sttt n s 277

E.5.3 REIETEIICES. ..ottt ettt 277

XVi OMG Systems Modeling Language, v1.7

E.5.4 USAZE EXAMPLES......eoiiiiriiiiiiiiiiitcieeee ettt ettt ettt ettt ettt sttt ettt et a et b e ettt eben 278

E.5.4.1 SI Unit and QuantityKind eXamples...........cccoeoiiireininiiineiiicnieeesee ettt 278
E.5.4.2 SPring EXAMPIE......c.coouiriiiiiiiieieeeeeteet ettt sttt ettt et b e s bbbttt ettt st sbesbe b ene 279
E.6 Model Library of SysML Quantity Kinds and Units for ISO 80000............ccecereiririreneinieeerieeeeree e 279
EL60.1 OVEIVIEW.euiiieiieteiet ettt ettt et h et h et h bbb et bt e st e b e bt b e st e bt e bt e st et et e bt st emt et et es e st ene et et enenteneanens 279
E.6.2 Unit and QUAantity KINdS.........ccceeiriririeieieriesteseseee ettt ettt te st e stesbesae st e st eneessensansensensessesneeneenes 279
E.6.3 ISO 80000-1 PIEIIXEScueeveieiirtiriieiieiieitetet ettt sttt ettt et st b e s bt et e bt es b et et e aesbesbe e bt eseestestentenbenbenbeebeeneeneens 287
E.6.4 ISO 80000-2 Mathematical Signs and SYMDOIS.......cc.coeeiiiiiiinininieeeeee e 288
E.6.5 Summary of the covered parts 0f ISO 80000cecveieierieriereriieieieteeet et e ste e sre e esaesseaessessesseesesseeseenes 289
E.6.5.1 ISO 80000-3 SPACE ANA TIMEeecverreiiieeiierieiieiieieiteieriesiesre st sseeseeseessessessessesseeseeseessessessessessessessessasseens 290
E.6.5.1.1 Normative QUantity KiNdSccecverierierierieeieieieietetestee ettt aesaesaestesresseeseennens 292
E.6.5.2 ISO 80000-4 MECRANICSc..eeuieuieuieiieieieteeteeteetteitetet ettt sttt esteate e tesbesbe s bt e bt eseestensensensessestesaesseeneans 295
E.6.5.2.1 Normative Quantity kinds ISO 800004cceririeieirinieieenirieieireneeteecresseeeese e seeseieneenene 298
E.6.5.3 ISO 80000-5 TheTMOAYNAMICS.......ccueruirtirrerrintiriieiieietetesterte sttt ettt ettt s bbbt ie et et e e e saesbesbesbeenene 303
E.6.5.3.1 Normative Diagram Kindscccoieiiiiiiieiieeese et 305
E.6.5.4 ISO 80000-6 EleCtrOmMAaZNETISIN.c.eveteetierierieeieeeietesiesiesseseesseeseeseesensensessesseeseeseessessessessessessessessassenns 310
E.6.5.4.1 Quantity Kind ISO 80000-6...........cceiriiriinieiiriiieiereirteeeree ettt 317
E.6.5.5TSO 80000-7 LIZNLc.ertiteiiiririeiiiriiteiert ettt ettt ettt b ettt b et sttt ebesn 322
E.6.5.6 ISO 80000-9 Physical Chemistry and Molecular PhySiC........c.cceereriirienieneninininieieieieienesiesesieeiene 323
E.6.5.7 ISO 80000-10 Atomic and NUCIEAr PRYSICScccecveriirierierieiisieieieieiesteste st eseeesaessesaessessesreseesseesnens 323
E.6.5.8 ISO 80000-13 Information Science and TeChNOlOZYcccceviririeiiiieieieceeeeeeeeee e 324
E.7 Distribution Extensions
E.7.1 OVEIVIBW ...ttt ettt ettt b e bbbt e st et et et e e bt e bt e bt e bt eh e es b e st emt et e st e ebe e bt e bt estententen b et e beebeebeeneens
B S eI YPES ettt ettt ettt ettt b bbbt ettt b e bbbt e bt bttt a e et h e bt bbbt ea b et e b b e b sheeaeeae 324
E.7.2.1 Package DiStriDULIONSceiuiuiiiiieiieieiet ettt ettt ettt ettt ettt s s b e ebe e eneenan 324
E.7.3 USAZE EXAMPIEccueeuieiieiieieieeieeteeie ettt ettt sttt ettt et et e st e et e eteeseeseesaesaensensesseeseeseeseaseensensansansanseeseaseeseenes 326
E.8 Building Non-Normative Extensions for Property-Based RequUirementsccocuevuevenerineninieienienienieseseeeeeeeenes 326
EL8.1 OVEIVIEWttt ettt ettt et b e bbbt e st e et e b e e b e e bt e bt e bt eh e es b e st et et e besbeebe e bt entententanbenbenbeebeeneeneens 326
E.8.2 An Example PBR Profile Based on ConstraintBlock.....................
E.8.2.1 Profile/Stereotypes of PBR Based on ConstraintBlock
E.8.2.2 Usage Example using PBR profile based on ConstraintBlocKcceeerviririeiieiiecieiienienieseseseseeeene 329
E.8.3 An Example PBR Profile Based 0n CONSIAINEc..cooueeriiieuinieiniiieiinietrteeetentet sttt ettt saeseenens 330
E.8.3.1 Profile/Stereotypes of PBR based 0n CONSIIAINccoeerueiriirieiiniiiiinieenicieieneee ettt eenens 330
E.8.3.2 Example using PBR profile based 0n CONStraint...........coevererereririenienienienenieeeeieeieeteiesee e s sieeneene 330
E.8.4 An Example Property Based Requirement based on BIOCKccooiiiiiiiiniiiniinieeeeeeeene 331
Annex F: ReqUIremMents TIACEADIIILYc.ccuerviriiririiriieieietetete ettt te et e st et e st e steeteeseeseessessessessesseeseeseeneessensansasesesseaneaneenes 333
ANNEX G: MOAEL INTETCRANZE. ... ettt ettt b et b e e bt e bt e st e st e st et e tesbesbeebeebeeat e st en s e be b e beeneeneeneenes 335
G.1 OVETVIEW ...ttt ettt ettt ettt b e bt a et et et e st e ekt sb e e bt e bt e st e st em e et e b e b e bt eb e ea e ea e mtem b et e beebeebeebeestestentenbebenbeabeebeeneenean 335
G.2 Context for Model INtEICRANGZEc.eiuiiiiiieiieieette ettt bbbt e et e st b et ettt e e e et esesbeneeseaaeneaean 335
G.3 XMI Serialization Of SYSMLccueouiiuiiieieieieiteieteste ettt et et et e st et sbe et ese e st e st essessesbesseeseesasseessessessensensensesseaseaseanean 335
G.4 SysML Model Interchange USING AP233c.ooioiiiiiiieieeetetete ettt ettt te st e e st et e benaenbesbesaeeseeneenean 335
GL4.1 SCOPE OF AP233 ...ttt ettt ettt ettt ettt be et ettt a et b ettt eae 336
G.4.2 STEP ATCRILECIUTE......c..eouiiiteieieiteeteeeee ettt ettt et b e bbbt h e bt et et et e st e s bt e bt e bt ebtes e et et e b e b e ebeebesaeens 336

OMG Systems Modeling Language, v1.7 xvii

GA3 EXPRESS ..o 337

G.4.4 SYSML-AP233 MAPPING -...veuvenretirtiniieitesietertestestesteetteteestetetestessesbesbesbeaseestessensensesbesbesbeeseestententanbenbenbesbesneeneenes 338
Annex H: Precise Semantics 0F SYSML.......ccoouviiiiriieininiieiinieicernteteitt ettt sttt sttt st s e ennene 339
H T OVEIVIEW .ttt ettt h et s bbb e s e b et e st b e st b et e st b ea e ee et es e b ea e e b et ene et emeeb et es e et emeebe st eneebe e eneneeneanens 339
H.2 RETEICIICES ...ttt ekt a st b et b et e bt st s e b et e bt e b st e bt eb e e b et e bbbt b e b e 340
H.3 SEMANTICSeeuieiieieiiieeeet ettt et ettt s b e bt b e st e st ea e s et et e bt e bt eh e estes b e st ent et e ebeebeebeent e st enten b et et e beebeeneeneenes 340
HL3.T ACHIONS .ttt h e bt ettt e a e st et e b e s ae s bt s bt eb e e bt e st entea b et e bt e bt e bt eat e st e st e st enbentenbenbeebeeneent 340
H.3U LT OVEIVIEW ..ttt ettt ettt ettt be ettt be et et e e enesaeneenen 341
H.3.1.2 Additional CONSIIAINLS.......ccrveveuemirreuerenirieietienieteteseeseretest et estaeseesese e s sebeae et eseseeseseseesaesestaesaesenesensenenen 341
H.3.1.3 Class AESCIIPHIONSveuvevevieteeeiesieieteietesteeteeteeseesaesaessesessessessesseeseessensensensessesseeseaseessessessensessessessessassenns 341
H.3.1.3.1 SysML_AddStructuralFeature Value ACtiONACHVALION......c..erververeeeeieeieeieieieieiesiesie e seeseeeeeneens 341
H.3.1.3.2 SysML_CallOperationACHIVALION.......c..ccveerieutrieieierieiinteieienteeeteeeie et ese s e eenene 344
H.3.1.3.3 SysML_ClearStructuralFeature ACtIONACHVALIONeeveieiiriiriiriiriinieeiceiteietetete et ee e 345
H.3.1.3.4 SySML_INputPinACtIVALION.c.ciuiiieiiriiieiiiei ettt 347
H.3.1.3.5 SySML_OUtpUtPINACHVALIONeeuieuieiieieieetieiceteeeeteteteae ettt ettt eseessesessessessessessessesseennens 348
H.3.1.3.6 SysML_ReadStructuralFeature ACtIONACHVALION.ceveveieierierieriieteetteiieteieee e stesee e sieeeeneene 349
H.3.1.3.7 SysML_RemoveStructuralFeature Value ACtIONACtIVALIONcc.evvereiriirerieieieieieneseneneeeeene 349
H.3.1.3.8 SysML_SendSignal ActionACIVALIONcc.eiruirieiirieirieieierieceteee ettt 352
HL3.2 ACHVIIES ..ttt ettt b et b et bttt b et b e bbbt bt bt b bbbt b et et e et eaen
H.3.2.1 Overview
H.3.2.2 Class AESCTIPTIONSeeuveuteietietieueeiieitetestest et e ete et ettettest e testestesbeebeeseesteaeeneenbenbeebeebeeseessentensensenaesbesbesbeeneans 354
H.3.2.2.1 SySML_ ACHVIEYEXECULION ...ttt ettt ettt ettt st b b ebeeneene 354
H.3.2.2.2 SysML_ActivityParameterNOdEACtIVAtIONcceoveuirieieiiieiiiieieiceesee e 355
H.3.2.2.3 SysML_ExpansionNOAEACHVALIONc.ccerierierieieieieieiesiestestesteeseeseeseessesessessessessessessessesseens 355
H.3.2.2.4 SySML_ObjectNOAEACHVALIONc..eueruiuieiiieiiriiieierieie ettt ettt ebe e ae e sse e ee 356
H3.3 BIOCKS ..ttt sttt he e ae e enea 357
H.3.3.T OVEIVIEW ..ottt b e st e et b st a e nesae e nene 357
H.3.3.2 ClasS AESCIIPHIONSvevvevevetieeietieieteiestesteeteeteesaesaessessessessessessesseeseessessessessessesseeseessessessessessessessessessansenns 359
H.3.3.2.1 AdJUNCIBINAING ...c.veveieiieiieiieiieiieieieie ettt ettt ste b st eseeseessensessessensessassessesseesnans 359
H.3.3.2.2 ObjectNode AdjunctBINdingccccvuiiriirieiiiininieiniceicneeeeee ettt 359
H.3.3.2.3 Parameter AdjunctBIndingccoceeierieriirienineiieeieeieet ettt st 360
H.3.3.2.4 SYSML_FeatureValUec.ceiuiiiiiieiiieieiie ettt ettt 360
H.3.3.2.5 SYSML_ODBJECL.....ccveuiiiieiciiiieieiiireeettte ettt ettt 360
H.3.3.2.6 SysML_ReferencePropertyPair............covirieiriiirinieinicieicneeteeee ettt 361
H.3.3.2.7 SysSML_StructuredValUe...........cceeiiiiiiiiienenieeieseeeet ettt st 361
H.3.3.2.8 ValUCBINAING ...ttt ettt b et b et b et s e b e b e s e 362
H314 LOCH ittt bbb h bbbt bbbttt h ettt h et b et n et eben
H.3.4.1 Overview
H.3.4.2 Class AESCTIPTIONSeuvetetetietieuieitetetestesteeteete et ettestestetestesbesbeeseeseestensentenbesbeebeebeeseestensensensentesbesaesseeneans 364
H.3.4.2.1 SySML_ EXECUONFACIOTY ..c..cviiuiiiiiiieieieieeieetesieee ettt ettt st s ene 364
H.3.4.2.2 SYSML LOCUSooutiiiiiieniirieeteetteitet ettt ettt ettt sttt be bttt et nbe b st e saesbeebeeneene 365

xviii OMG Systems Modeling Language, v1.7

H.3.5 POTtS QA FIOWS ...c.veiiiiiiiiicceeccie ettt ettt et e b e e saeeateeteeets e seeeseeseesseenseenseeaseesseensesssesssanns 372

H.3.5.1 OVEIVIEW «.veeeeveeeeieeeeee et ettt e et e et e e et eeeaeeeeaeeeeaeeesteeeaeeeeaseeenseeeeaseeeaseeenseeesseeenseeenraeeseeens 372
H.3.5.2 Additional CONSIIAINES.eoeiiiitieeitie et ettt et e et e et e e et e e eteeeeaeeeeaveeeteeeeaseeeaseeesseeeasseeesseeeaseaeseeaas 372
H.3.5.3 ClaS5 AESCTIPLIONScuvveeteiitiietitei ettt ettt ettt sttt s et e e e st et eb et ese et e st e b et es e e b et e st b eneebeneenenee 373

OMG Systems Modeling Language, v1.7 Xix

List of Tables

4.1. UML 2 metaclasses excluded from the UMLASYSIML SUDSELcceeieierierienienieniieieeiteteetetetete e seesee sttt seeseeee e sbesbessesaeenes 10
4.2. UML 2 metaclasses and datatypes included in the UMLASYSML SUDSELcc.cceruiruiriirieiiieieienesiesie sttt 11
4.3. SysML stereotypes, blocks, valuetypes, and datatyPesccecereerieiriirieirieeieree ettt ettt se s ne e s enene 12
7.1. Graphical nodes defined by MOdEIEICMENtS PACKAZEccveevierierieeieieieierieriere sttt eeetetete e ssesseetesteeseesaesaessensensessessesseaseas 24
7.2. Graphical paths defined by ModelElements PACKAZEcoeirieiririiinieiierietetcee ettt 26
8.1. Graphical nodes defined in Block Definition diag@ramis.coeeiririeieienieiienesiesiesieeeete ettt sttt 36
8.2. Graphical paths defined in Block Definition dia@Iams...........cccoeieirieirieieieneieie ettt eeenes 38
8.3. Graphical nodes defined in Internal BIOCK QIQgIams..........c.ecvieieieieieieieieiesesiese sttt ste et e ste s e sseeseesaesaessessensessessesseeseas 40
8.4. Graphical paths defined in Internal BIock diagrams............coeciriiiriiniiiniiiiineinice ettt 41
9.1. Graphical nodes defined in Block Definition diarams...........ccocevereriiieiiiniienienieseeie ettt ettt 78
9.2. Graphical nodes defined in Internal BIOCK dia@Iams.cc.eovruirieuirieiriiieirieeiere ettt ettt 81
10.1. Graphical nodes defined in Block Definition dia@rams...........ccecueieruerierieeeieieieiteiestesiestestesteeseeseeeessesessessessessessessassesseens 112
10.2. Graphical nodes defined in Parametric diagIammsccoueverueirienieiriiiieniet ettt ettt sttt sttt ebe s e 112
11.1. Graphical notation 0f ACHVILY QIAZIAIMIS.cuiiieriiriiriirierieeieete ettt ettt ettt st et b e b bt e bt eae et et et e sbesbesbesbesbeeneene 120
11.2. Graphical paths included in ACtiVity QIAZIAMISc.eiueuiitiieiiiieieiee ettt et s bbb e bbb e e s e 123
11.3. Other graphical elements included in ACtiVIty dIQZIAMS........ccuecieierierieriieieeieeeeet ettt sttt ettt e ssebesaestesressesseeseens 124
12.1. Graphical notation of SEqUENCE AIAZIAMSccoeiriiiriirieirieiieee ettt ettt sttt ettt b et b ettt se et ebe e s e 139
12.2. Graphical paths included in SEqUENCE AIAZTAMScc.eviiriiiiiiiiieieee ettt ettt ettt st sbe b eneene 142
12.3. Other graphical elements included in Sequence diagramsc.cccoveriririeiriereie et 143
13.1. Graphical notation of State Machine diaGIamS...........cevirieieieiieieriesese ettt et et e stestestesbeeseeseeseessesessessessessessasseeseens 147
13.2. Graphical paths included in state machine diagrams............coccveerieiriiiiineiinieieetee ettt 149
13.3. Other graphical elements included in state Machine diagrams...........coceeereririririieieterereeseee ettt 150
14.1. Graphical nodes included in Use Case dIQZIAMScevuirieuirieirierieiirieietertei ettt sttt s st e e eb et ese e b e e s ebeseebeeenenee 153
14.2. Graphical paths included in Use Case dIa@IamS...........cceeieieierierierieriesteeteeteeeeeetetetessessessesseeseeseeseessessensessessessessessassesseens 154
15.1. Extension to graphical nodes included in dia@rams.ceueeuieirieierierierceieeie ettt ettt sttt ettt et e e sae st sbeseeeseeneene 159
16.1. Graphical nodes included in Requirement diagramsccceeeeieienierininenieneeieet ettt ettt ettt st sbe s ene 170
16.2. Graphical paths included in Requirement diaramsc.coeovrerieiriinirineree ettt ee 171
17.1. Graphical nodes used in Profile definition..........ccceveriiiiiiieieieeeseeee ettt ettt e e saeete st e sseeseeneens 187
17.2. Graphical paths used in Profile definitionccccoeiiiiriiiiieiiineinceee ettt 188
17.3. NOtations fOT STETEOLYPE USE ...uuevirrirtiriiriieiieiieiet ettt ettt b s b bt bt e bt e st et et e s e et e e bt e bt e bt e bt eat e st et et enbesbesbesbeebeeneene 188
B.1. SySML Diagram EISIMENTSc.ccuciiuiiiiiieiiiieietiete ettt ettt ettt a sttt e st et et e bt s e st et et e bt b e st eb et e st beneeneneeneane 211
C.1. Graphical nodes defined in Block Definition diagrams...........cccceceeieierienienieniesiieieieieieteie et ete e seereetesaesaessessessesseeneeneas 213
C.2. Graphical nodes defined in Internal BIOCK dia@ramscccooceeiriiiiiiiienieieiesieee ettt st 215
E.1. Additional Stereotypes fOr EFFBIDS. ..ottt ettt be bbbt bt et et et b st st sbeebeenean 253
E.2. Streaming OPtions fOr ACHVILIESc.eveuirieiiteietirieeete ettt a ettt sttt b e e e st et et bt st e st e b et ese b e s ebeneeneaee 254
E.3. Additional REqUITEIMENt STETCOLYPES.ververvietierierieieieiertestestesteesteseestetestessessesseeseeseeseessensessessessessessessesseessensensensessessessesseanen 256
E.4. Requirement Property ENUMEration TYPESceveieieriereririerieeieeitetete ettt et et sb e st sae et ese et e e e sbesbesbesbeebeeneenean 257

XX OMG Systems Modeling Language, v1.7

E.5. Stereotypes for Measure Of EFECtIVENESScc.viiiiiieieieceeeeeeee ettt ettt ettt ettt ebesbesbesbeeseeneenean 260

E.6. The decimal and binary prefixes in scope of the International System of Units (SI) which uses the ISO 80000 system of units

and its included systems of units such as ISO 80000-13cc.iiiriiiiiiieee ettt ettt s eaean 287
E.7. Normative units in ISO 80000-3 (1 0 2) ...icieieieieierieseee sttt ettt et e e et e s e b e besbessesseeseeseessessensensassesseaseesenssenes 290
E.8. Normative units in ISO 80000-3 (2 0T 2) ...cuicuiiieieieieierierte ettt et ste et sttt e st et et et essessessessesseesaeseessensensensessessesseeseanean 292
E.9. Normative quantity kinds in ISO 80000-3 (1 0T 2) ...cc.eoieuiriiiriiiiiieieieeerte ettt ettt 292
E.10. Normative quantity kinds in ISO 80000-3 (2 0 2) ...eeuiriiririerieeieteteteteee ettt ettt st 294
E.11. Normative units in ISO 80000-4 (1 0 2) ..cuieieieieierieeieeese ettt ettt ettt e et et e s e s e s e stessessaeseeseessessensessasessesseessnssenes 295
E.12. Normative units in ISO 800004 (2 0F 2) ...ecuieieieieieieriesieeie et et ettt ste et sttt et e s et et esessesseesesseesaeseessensensesessessesseeseanean 296
E.13. Normative quantity kinds in ISO 80000-4 (1 0F 4)c..eiriiimiriiirieiieeereeeee ettt 298
E.14. Normative quantity kinds in ISO 800004 (2 0T 4)cueeiirererieeietetee ettt 299
E.15. Normative quantity kinds in ISO 80000-4 (3 0F 4)c.eeuiriiiiiieereeee ettt ee 301
E.16. Normative quantity kinds in ISO 80000-4 (4 0T 4)cveriereeiieieeieietetestest ettt ettt ae e e et eaesaesbessesseeneeneenean 302
E.17. Normative units in ISO 80000-5 (1 0F 2) ...eouiiuieieieieieeseeeee ettt ettt et e b st sae e bt e st e st e e e sbesbesbesbeebeeneenean 303
E.18. Normative units in ISO 80000-5 (2 0F 2) c..eeeiiiieiieeieeiiesieese ettt et et e s esteesteebeesteesseesseesseessassseassesssesssesssenseeseesennses 304
E.19. Normative quantity kinds in ISO 80000-5 (1 0F 5)eeeuirieiiiieireeee ettt e 305
E.20. Normative quantity kinds in ISO 80000-5 (2 0 5) .eueerierierieieeieieieteterte ettt ettt et et esaessesbesbeeseeneenean 307
E.21. Normative quantity kinds in ISO 80000-5 (3 0F5) ...eeterieririreeieteete ettt sttt ettt bbb eaean 308
E.22. Normative quantity kinds in ISO 80000-5 (4 O 5) «..eeieiiririrereeteteteeee ettt et 309
E.23. Normative quantity kinds in ISO 80000-5 (5 0 5) .e.eeriererieieeeeeteeteesteste ettt et te et eaessessesbessesseeseenees 310
E.24. Normative units in ISO 80000-6 (1 OF 5) 1..iouieieieieieieieseeieee ettt ettt ettt et e be s s e ebeeaeeseeseestensensensessessesseeneanean 311
E.25. Normative units in ISO 80000-6 (2 0F 5) ...euieuiiuieieietetesesteeee ettt et et st s b s et e bt e st et et e nbesbesbesbeebeeneenean 312
E.26. Normative units in ISO 80000-0 (3 0F 5) cueeeiiiieiieiieeieseere ettt ettt ste e e e beesteesbeesteesseesseessesssesssenseessaenseeseenseenses 313
E.27. Normative units in ISO 80000-6 (4 OF 5) ...ecuieieieieieierieseee et ettt et ste st te et seestessessessesseesassaesaesaessessessensessessesseaseasens 314
E.28. Normative units in ISO 80000-6 (5 0F 5) ...eeuiiuieieieieierieseeeeeet ettt sttt ettt et et e st e st e saeeseesaestensesensessesseeseeneanean 316
E.29. Normative quantity kinds in ISO 80000-6 (1 0T 4)cuiriiriririiieeteeee ettt sttt ettt sttt 317
E.30. Normative quantity kinds in ISO 80000-6 (2 0F 4)eeuirieiitiieieieee ettt ettt ettt s e be e e e 318
E.31. Normative quantity kinds in ISO 80000-6 (3 0T 4)ccvererieiieeeeeeeeiestetestesee ettt et testeesaesae s e s esessessesseeseeseaneas 320
E.32. Normative quantity kinds in ISO 80000-6 (40T 4)coverieririieiieieietetese ettt ettt aesaesbesbesseeseeneenean 321
E.33. UNIts i ISO 80000-7......c.euiriieteiiriitetiirietet ettt ettt ettt ettt ettt eb bt b ket eb b e st e bt e st st e b b s et et ebes et ebeben e st et esenentebeaenennene 322
E.34. Quantity Kinds in ISO 80000-7........c.cccrrueueririiueriirieieriinieteierentereststseetestsesseseestssesestssssese st seeseseeeseesesesessesesensssesentasssesenenensene 322
E.35. Units in ISO 80000-........c.ooviieiiiiieiiinieieieireeceree ettt ettt sttt s ettt ene 323
E.36. Quantity Kinds in ISO 80000-9.........ccuertiriirieiieieieieterte ettt ettt et ste st e s te sttt e st eseestessensassessessesseeseeseestensensensensessesseeneanean 323
E.37. Units in ISO 80000-10......c.courueiiiriiteiiirietete ettt ettt ettt ettt ettt b sttt b et st b bttt et be et ebeb et st ebe sttt et eseneenene 323
E.38. Quantity Kinds in ISO 80000-10.........cccceueueririrueriirieieuiinieieierintereset ettt seseeesessesesessssesetsessesesesessesesessesesentsaesestasssesenenensene 324
E.39. Units in ISO 80000-13......c.ooiieiiiiieiiieeere ettt ettt ettt s e nene 324
E.40. Quantity Kinds in ISO 80000-13..........ccceuiiiiiiiiiiiiiiieeee ettt 324
E.41. DiStrTDULION STETEOLYPES ...veuveevteuteutentetentertiettettetieitetetestestestestesteestestestestesbesbeabeebeeseeseestentens e bessesbesaeeseestestensenbensenbeabeebeeneenean 325
E.42. Example of Requirement in TabUlar FOIM.........coooiiiiiiiiiiiie ettt 327

OMG Systems Modeling Language, v1.7 XXi

List of Figures

4.1. Overview of SySML/UML INterrelationShipc.co.ccevuirieiriiiiiieinieieieet sttt sttt ettt b et 9
4.2. SYSML EXtension Of UML.........cotiiiiiiiiiiitiettet ettt sttt ettt et s b s b e bt e heeh e st e st es b en s e te st e sbesbeebe e st ententenbenbenbesbesneens 13
4.3, SYSML PaCKAZE SIIUCIUIC........coueiieiiiiiiiieietieteeteet ettt ettt bbbt bt et et et e st et e st e s bt sb e e bt e bt emt et et et enbenbesbeenes 13
4.4. Non-normative PACKAZE STIUCLUIEccvevvirtietieeieeieiieieteteste ettt et et et e st et e et e eseeseeseessessessesessassesseeseeseansensensensensensensenses 14
7.1. Stereotypes defined in package MOAEIEICINENLSc..ccvririeiriiiiiniiiniceereeete ettt ettt sttt eeene 28
8. 1. NEStEA PIOPETLY TETETEIICEc..eveiieiieiieierie ettt ettt bbbt bt et e s et et e te st e bt bt e bt e st e st eaten b e b e b e ebeebeeheebeeseent et entenbesbesbeeneas 45
8.2. Abstract syntax extensions for SYSML DIOCKS...........ctiuiirireiieeere ettt ettt ettt se e ae e eeenes 46
8.3. Abstract syntax extensions for SYSML PIOPEITIESccuecueriiririeieieieieiertestere e steseeeeetestessessessesseesesseesaesaessessensensessessesseeseas 47
8.4. Abstract syntax extensions for SYSML VAU LYPESc..cueruirieuiriiiiiriiirieieentetetet ettt ettt ettt sttt st eeenee 47
8.5. Abstract syntax extensions for SYSML Property Pathiscoooioioieiiiiiiieeeee ettt 48
8.6. Abstract syntax extensions for SYSML CONNECLOr @NASccueiriiiiiriiiiieietereiee ettt nes 48
8.7. Abstract syntax extensions for SYSML property-SpecifiC TYPEScuecververierererierereeteteieiesiestestestessessessessaesaesessessessessesseeseas 48
8.8. Abstract syntax extensions for SYSML bound referenCes...........covviriiiriiiiiniiinic ettt 49
8.9. Abstract syntax extensions for SysML adjunct properties and classifier behavior propertiescoceevevereeienienenenenenennens 49
8.10. Model library for primitive VAIUE tYPESceiuetriirieirieieieriet ettt ettt ettt s bt b et e st b et e st et ese e b e e es e be st ebensesesseneesenes 65
8.11. Model library for Unit and QUantityKindcccceerieriiriiririiiieieieietetee ettt et et stesbeesessaesaesaeneensessessesseeneas 67
812, WREEL PACKAZEcueentitietieiieieeieete ettt ettt ettt et e it e st et et e te s be e b e e st eae e st ententen b et e b e ebeebeeseeseeseententesenbessesseenean 69
8.13. Internal Block Diagram for WheelHUDASSEMDLYcc.coiiiiiiiiiiiieeeeee ettt 69
8.14. Defining Value Types with units of measure from the International System of Units (SI)........cccceovveeinnecrinneicnnrecennn 70
8.15. Example Value TYPE DETIMItIONSccverieriiriiriieiieieieieiesteste sttt et et etesteteste s e ssessesseeseeseeseensensasaseesessessessasssessensensessessessessens 70
8.16. VEhiCle dECOMPOSITIONeuviiiiiieiiieititeietert ettt sttt ettt ettt b et ea et b e e bt bbbt b et e st b esesb e s et e s st st ensebenaeneesenee 71
8.17. Vehicle INtErNAl STITUCTUIEc.couiiiiiieiiiiiieieeceeteee ettt sttt a bbb e s ea e b e sae e eaenee 71
8.18. VENICIE SPECIAIIZATION.ttt ettt ettt s et e bt st s et et b s es e b e st bt b es e e b enees et eseebenees e benesbensesenseneeeenes 72
8.19. Example of Unit, QuantityKind and ValueType definitionsccccuevierierieriererenerieteieieieiesi ettt eneas 72
8.20. Instance-level view of the Unit, QuantityKind and ValueType definitions.........c.ccccoccreiiiniiininiiinciniecnceneceeneeeeenee 73
8.21. Example of equivalent UNit TPIESENTATIONSce.eeuteieiertertirtieteeteettettestete st st st stesbe bt estes e et e be b esbesbesbesbeebeeseesteneenseneenbesbeeneas 73
8.22. Instance-level representation of equivalent Unit defINTHONSccveveierierieriiieieceecetetete et ea e e ese e 74
8.23. Property-specific types in faCility €XAMPIE........ccccieierieriiriiricietieieteeetete ettt ettt et et s teebesseesaeseenaeneensensesseeseeneas 74
8.24. Changes in classification over time due to property-specific tyPeS........cccevereirieiririeinieieieceee ettt eeene 75
0. 1. POTE STETEOLYPIES ..ottt ettt et ettt b e eb bt et et et e b et e st e s bt s bt ebe e bt e st ea e et et e b e eb e eb e e bt eaeeaten b en b et e st e sbeebeebe e bt emtemt et enbenbenbesbeenes 84
9.2. Stereotypes for Actions 0N NEStEA POTLScouiuiiiiiiiiieee ettt sttt ebe s enene 84
9.3. Stereotypes for Property Value Change EVENTSccccvrieririiiiiiniiieieieiee ettt ettt ettt e stessestesseese et eneensesessessessesseens 84
9.4. Provided and ReqUITEd FEALUIESccuiriiriiiieiietieiieie ettt b ettt et ettt et e st e s besbeebe e st e st et e bebesbesbeeneens 85
0.5, TEEIMEFIOW SEEICOTYPE ...cuveuteterterteetteiteitet ettt ettt ettt et ettt h e bt b e e bt et e st et e b e b e bt e bt e bt e bt eates b en s et e st e sbesbeeb e e bt emten e et et ebenbesbeenes 85
9.6. Usage example of ports with provided and required fEatUIEs.ccuvirieiiiiiireee e 102
9.7. Usage example of ProxXy and fUll POTESc.ecuieieieieieiereseceee ettt ettt sttt ettt e et e s e s s e etessesseesaessensensensessesseeseeneanean 104
9.8. Water Delivery asSOCIation DIOCKccueiuiruiiirieieieeteseste sttt ettt ettt et e b e st s et e st e st e st et etenbesbesbeebeeneenean 105

xxii OMG Systems Modeling Language, v1.7

9.9. Internal structure of Water Delivery association DIOCK..........ceiviiiiieiiiieieiesiesteeeeeee ettt 105

9.10. Two views of Water Delivery connector within HOuse BlOCKcccueiiiiiiiiiiiiiiiiiieeeeeeetee e 106
9.11. Specializations of Water Client in NOUSE €XAMPLEcerueiiuirieiiiieieieee ettt ettt ettt ee 106
9.12. Water Delivery association block with internal PIumbing CONNECLOT...........ccvivirieieieieieieresie ettt seenees 107
9.13. Internal structure of Plumbing association DIOCK...........ccoueciririiiriiiiinieiniceeneee ettt e 107
9.14. Water Delivery association block with internal PIumbing CONNECLOT........c..couiiuiririeieieieierereseseeeetet e 107
9.15. Usage example of item flows in internal block diagrams...........ceiueiririeiiiiiere et 108
9.16. Usage example of item flowW deCOMPOSITION.......c..ccveiiriirieriieiieieeietetete e ste sttt eseeseetessesessessessessessaesaessensersensessessesseeseenees 109
9.17. Usage example of item floW deCOMPOSILION.......c..eieiirierieriertieieetieiteitete ettt ettt esee e e besbessesbesaeeseeseestensesensessesseeseeneenean 109
10.1. Stereotypes defined in SysML ConstraintBlocks packageccuevueriiririiiniiiiicieeeseee e 113
11.1. Block definition diagram with activities @s DIOCKSerueiiueiiiieirieeee ettt 126
11.2. CallBehaviorAction notation With BeNavior STEIEOLYPEevrieieierieriertieteeteeeeeet et estestesteeseeseeseeseessensessesessessessessesseeseens 126
11.3. CallBehaviorAction notation With aCtIOMN NAIMNCevvereririeieieieiertest et ettt et et etestestesbesbeebeeseeseeneensensensessessessessesseeneens 126
11.4. Control fIOW NOLATIONeutiuiiiiiitiiciietee ettt ettt ettt sttt st be et ebe s et e b e e st st et e b e e e b e e bt s st ene e s e 126
11.5. Block definition diagram with activities as blocks associated with types of object nodes, variables, and parameters.......... 127
11.6. ObjectNode notation iN ACHIVILY QIAGIAIMScververierierierieeietetetetestestestesteeteeteeseessessessessessessessesseeseessessensensensessensessessassessenns 127
11.7. ObjectNode notation with stereotype in activity diAZIAMSc..c.evueuiriiriririeirieieentet ettt ettt ettt ee 127
11.8. Abstract Syntax for SYSML ACtiVity EXTENSIONScuervirtirtiriieiiiieieiesteetestest ettt ettt ettt ettt et ettt saesbe st sbesbeeneene 128
11.9. CONLIOL VALUCScuvveviieietiiiietctetet ettt ettt ettt ettt sttt e ekt b et s b et s s b bt e skt e b bt e ea bt sene bt ne b st st nneneseennene 133
11.10. ContinuOUS SYSLEIM EXAMPLE 1...c.vicuieuieieieieieieriesie sttt eteettete et et e ste st e s testeeseeseesaessessessessessesseeseeseassensensensensensessessessassesseens 135
11.11. ContinuoUS SYStEM EXAMPIE 2......eviuiriiiiiiieiiitiieieniet ettt ettt sttt ettt st ettt e ettt ebe st et e b e st sb et eb e e e st e b et bt s st enenenenne 136
11.12. ContinuoUS SYSEIM EXAMPLE 3......eiuirtiriieiieiieiieieterte ettt ettt et e st s b e bt e bt e bt e bt e st et et et e be bt ebe e bt ebeest e st et enbenbesbesbesbeebeeneene 136
11.13. Example block definition diagram for activity deCOMPOSIION.........co.eiruirieuirieietirieietee et 137
11.14. Example block definition diagram for ObJECt NOAE tYPESeeuveureierierieriieieetieieeetetete sttt ste ettt e s ss e bessestestessesseeneens 137
11,15, ACHIVILY GENETAIIZATIONetiiiiiieiiiteieiet ettt ettt ettt sttt sttt ebe et be e bt s b et b et e bt ettt st ene e s e 137
12.1. Block definition diagram with interactions as blocks associated with used interactions and types of parameters................. 144
13.1. Block definition diagram with state machines as blocks associated with submachines and types of parameters.................. 151
15.1. Abstract syntax extensions for SYSML ATIOCAtIONccccieieieiierierierierteeteeeee et ettt estesaestesteese et eseessensesessessessessessasseeseens 161
15.2. Abstract syntax expression for Allocated ACVIEYPAItItIONcceoeriririiirieieietetese ettt st 161
15.3. Generic Allocation, including /from and /t0 aSSOCIAtION NSeoueruirririiriririeietet ettt 163
15.4. BERAVIOT AlLOCALION ...ttt ettt ettt ettt ettt skt b et e e bt s s bt s b st nn s se e enene 164
15.5. Example of flow allocation from ObjectFIoW t0 CONNECLOTcc.evverieriiriieiieiieieieieiesie e ste sttt eestesessesesaesteseessesseeneens 165
15.6. Example of flow allocation from ObjectFlow to ItemMFIOW..........cccciriiiiniiiiniiicccceeeecee e 165
15.7. Example of Structural ALLOCALIONce.eruiiuieiiieieiieitest ettt ettt et et ettt b e bbbt e st et e b et e sbesbesbesbesbeeneene 166
15.8. TabUIAr REPIESEINEALIONecviveriictietietieieieetetetestestestesteeteeseeseestestessessesseeseesessaeseessessessessessesseseaseeseassassensensassansessessassansensenns 167
16.1. Abstract Syntax for REQUITEMENtS StETCOLYPES ...everververrirrieeieieieieiesiesteete et et eeetetesestessessesseeseeseeneessensensessensessessessessesseens 173
102, VETAICESeuteeeieteieeiee ettt ettt ettt ettt et et e st e st e e bt e bt ea e st e s e a b e b e b e e b e e bt eh e eb e es e e st enten s e s e b e bt be e bt e st entenben b et enbeebesbesbeeneeneent 180
16.3. ReQUITEMENES DIETIVATIONeoutiitititietietieieetiet ettt h e e bbbt e bt e st et e b et e b e bt e bt e bt e bt eat e st et et enbenbesbenbeebeeneane 181
16.4. Links between requiremMents and AESIZIcveverierererieiieieieietetestestestesteetesseeseeseessesessessessessessesseessessessessessessessessassassesseens 182

OMG Systems Modeling Language, v1.7 xxiii

16.5. Requirement satisfaction in an internal blOCK dIagram...........cccecueierierieriirieieeeeetetete ettt ettt saeste st seesneeneene 182

L6.6. SATEEY REUSE....c.eetiiiitieiieieeee ettt b bbb e et e b e e bt e bt eh e e bt eh e e st en e e st e b et e ebeebe e bt e st enteatenbenbenbenbenbesbeebeeneane 183
16.7. Linkage of a Test Case to a requirement: This figure shows the Requirement Diagramccceceveniineinenninencneene 183
16.8. Linkage of a Test Case to a requirement: This figure shows the Test Case as a State Diagram..........cccceevevvererenenesiennnnnns 184
17.1. Definition 0F @ PrOTILE ...co.eoiiuiiiiiiiiiciitet ettt sttt sttt b e st b e a e sb et b et b et bt sa et ene e s e 190
17.2. PTOFIIE CONLENLS ...ttt ettt ettt ettt st b ettt b e etk ebesa et e b e e st et et b e s st b e e b e st ene e ene e 190
17.3. TWO MOAET LIDTATIES ...ttt ettt ettt et ettt b bbbt s s b et ne b st nnebese e nnene 191
17.4. EstabliShing HSUYV MOGE]cc.ooieieiieieieieieiestese ettt ettt et s b e e testeeteesaessessessessessesseeseeseessessensensensensensessessassenseans 192
17.5. Using two stereotypes on @ MOAE] ELEMENL..........cceiuiriiriiriiieieieieere ettt ettt sttt ettt e e enee s e benbesbesbestessesseeneens 192
17.6. USINg MOAEL IIDTATY CLETNENILSc..evitieiieiieiieiieieteste ettt sttt b e it et e et et et e bt bt e bt e st eateas et et enbesbesbesbeebeeneane 193
A.1. SYSML Diagram TAXOMOIMYcueuteteueeuirtertatentetiateseasesesesteseesesesesseseeseeesessensasessasesseneasessentaseneesesseseeseneeseaseseasenseseseneasensesenne 197
A2, DIAGIAM FTAIMEvveviieiiieiieiietetetete ettt ettt et et e st e et e st e s teeseesaestesse s esse s eeseeseeseessensensansenseeseeseesaeseensensensensesseaseaseaseanean 198
A3, DIAGIAM USAEESuveriiiieieiirt ettt ettt ettt ettt ettt et b et a e e bttt a e bt b et e bt eh e e bt ettt e et et eb ettt ettt st b et ue st enene 200
A4, Optional FOrmM Of LINE CTOSSINEveuveietirtirtirieeiieit ettt ettt sttt ettt et et et e s be s bt sbeebtest e st et e tesbesbeebeebeeate st entenbenbebeebeeneeneene 201
B.1. SYSML DI GICHIEECTUIEcviuctieeiietei ettt ettt ettt a et e st ettt e st e e et e b e e e st et emeeb et eme ek eneese s emeebensesebeneanenseneaee 203
B.2. Abstract Syntax Extension for SysSMLDIagramEISIMENLcccceeveiiiierienieniintieieieieieiesieste e e seeeeeseeaeaessessessessesseeseesees 204
B.3. Abstract syntax extensions for SySML diagrams (1)cccocciririeiniininieineieene ettt 204
B.4. Abstract syntax extensions for SYSML dia@rams (2)cceeeeereririetiiterienerest ettt sttt ettt st 205
C.1. DEPIeCated STEICOLYPES .. e.veveueetirerietesietiateseetentetesteseateseeseatese et e seseaseae et e eesessen e et e eese et emeeb e s es e et emeebeasese et enees e s eneebenseseseneanenseneane 216
D.1. Establishing the User Model by importing and applying SysML Profile & Model Library (Package Diagram)................... 224
D.2. Defining value Types and units to be used in the Sample Problem............c.ccvireiiniiiniiniiininicnceceeeeeceeeee e 224
D.3. Model Package OrZaniZationcoueruerueruiruiriieiieieieiesteste sttt et es et et et ettt e bt bt eb e e st es e benbesbesbesbeebeebeestensenbenbenbeabeebeeneenean 225
D.4. Establishing the Context of the Hybrid SUV SYStIMc.coueiiiiiiiieiiie ettt 226
D.5. EstabliShing TOP LEeVE] USE CaASESecverviruireieiieieieieiesiesiestesieseeeseestestessessessessesseeseessessensessassessessessessesseessensensessessessessesseenes 226
D.6. Establishing Operational USE CaSEScceeieuirieiriiieiirieiirieietenteit ettt sttt st sttt st sttt see st st st e st st ebe e ese st eaenneneane 227
D.7. Elaborating Black Box Behavior for the "Drive Vehicle" USE Casecceviriririririeieieieniesiesiesieeieeitet e 228
D.8. HSUYV OPETAtIONAL STALEScueeviiirtiirierietietietetetestestestessestessesseeseessessessessessessesssessessessessessessessessessesssessessessensessessessessessenssnses 229
D.9. Start Vehicle BIACK BOXc.cccoueiiiiiiiiiiiiiiiieerec ettt 229
D.10. Start VEhicle WRILE BOX.......cetiiiieiiieiiiietiette ettt ettt ettt b bt e s e st e s et e be s b e ebesaeeseententensensebenbeebeeneeneenean 230
D.11. Establishing HSUV Requirements Hierarchy (CONtAINMENL)ceveierieriiriiniininiieiieieieientestesie sttt eieeneas 230
D.12. Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchyccccoceoeinecincnnns 231
D.13. Acceleration Requirement RelationNSRIPScecveieierieriirieieieeieteete ettt st et se e e sae s e bessessesseeseeneanean 231
D.14. Requirements Relationships Expressed in Tabular FOIMAtccoeoiiiiiiiiiiiiininieieeieeeees ettt 232
D.15. Defining the AUtOmMOtIVE DOIAIN.c.uirviitirtiitietieiiet ettt ettt b bt b et e et et e s b e s b e sbe e bt ebte st e e etebesbeabeebeebeenean 232
D.16. Defining Structure of Hybrid SUV SYSEIMcoueiiiiiiiieiiie ettt sttt ee 233
D.17. Internal Structure Of HYDIIA SUVoviiiiiiieieeieeeese ettt sttt ettt b e st e e beseeesaeseestensensensensesseeseeneanean 233
D.18. Defining Structure 0f POWET SUDSYSIEIM.......cc.iiuiiiiieieiesieeteeeet ettt ettt ettt et e st besee e bt e st e st et ebesbesbesbeebeeneenean 234
D.19. Internal Structure of the POWETr SUDSYSIEIN......cc.eeiiiiiiiiieiirieretet ettt sttt ettt 234
D.20. PCU POrt TYPE DEIINILIONSvveveiuieieiitistietieieietetestestesteste s e steeseestessessessessessesseeseessessessessassessessesssssassasssessessessessessessesseesees 235

XXiv OMG Systems Modeling Language, v1.7

D.21. Initially Port Types with Flow Properties for the CANBUSccccciviriiiniiinineceerc ettt e 236

D.22. Consolidating Connectors int0 the CAN BUSc.ccouiiiiiiiiiriiteeeeee ettt sttt ettt st bbb eaean 236
D.23. Elaborating Definition of FUEL FIOWcoiiiiiiee ettt ee 237
D.24. Defining FUEl FIOW CONSIIAINTScc.ecveevirtietieieieietertestestestestesseeseessessessessessessesseeseessessessessessessessessessasssessensessessessessessessseses 237
D.25. Detailed Internal Structure of Fuel Delivery SUDSYSIEIMcc.eviiieiiieieieriestteceteetee ettt ettt st 238
D.26. Defining Analyses for Hybrid SUV Engineering Development............coeririririririeieieiesiesesesieeieeitet e 239
D.27. PerfOIMANCE VIEWcvoveuiviiieiiiiieietiinieeetestet ettt ettt ettt ebe ettt b et b et st h bt e b bt s b beatna b st aesenesennene 240
D.28. Defining Requirements and V'V VIEWPOINLSc.ccverieriiririririeeeietesiestestesteeseeseesaesessessessessessessessasssessessessessessessessesssenees 241
D.29. Requirements and VnV views eXposing MOdel CleMENLS............ceveirrierieriiriiriieiieieieieiete ettt seenean 241
D.30. The Requirements and VNV views With SUPPOTTING VIEWSc..ceueruieutirierierieriintieteeteetietetetestessestesiesseestesteaestensessessessesseenean 242
D.31. Measures Of EffECHIVENESSc.ccvrviieuiiririeieiriiteieirieieittnt ettt ettt ettt b et s bbbt b e e nnene 243
D.32. ECONOMYCONEEXL. ... eetieieeiieieeteeie et eteette et te st e st e stte st e e st et e enseestesaseemtesaeeaseesseesseesseanseenseenseanseenseentesnseaneesseesaeesseenseenseenseenses 243
D.33. Straight Line VEhicCle DYNAIMIICSc.ceeruiiriiiiiiniiiriiieiinetrte ettt ettt sttt sttt s a et b et ene e 244
D.34. Defining Straight-Line Vehicle Dynamics Mathematical CONStIAINES.c..evuervirrerieieieieieneniese ettt 245
D.35. 100 WRHEEL HOTSEPOWETcueeuinieiitenietitettetetettet ettt ettt st et s e tes et e e st s aen e et e e ese et et et e s es e et emeeb e e ese et enees e b emeebeneeseseneenenseneane 246
D.36. Behavior Model for Accelerate FUNCHION.c.coiriiieiiiiiiiiiceireccceee et 247
D.37. Decomposition of Provide POWeEr FUNCHONc.cccviiiiiriiiiiiiiicitcc ettt 247
D.38. Detailed Behavior for Provide POWer FUNCHON............ccooiiiiiiiiiiicneesce et e 248
D.39. Flow All0Cation t0 POWET SUDSYSIEIML......c.ciuiiiiiieiiitiieterieieteet ettt ettt b e s et et b et e st e b e e e s b eseebe s eneaee 248
D.40. Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Subsystem (Table)..........cccceevveueenenen. 249
DT, TSt RESUILS ...ttt ettt ettt ste bttt e bt e et es e e st et et e b e b e bt e st ese e st entens e b e eseebeeseeseeneentententebesbeabeeneeneenean 250
E.1. Example activity with «effbd» Stereotype appliedc.coeveriririiieiceee ettt 255
E.2. Example activity with «streaming» and «nonStreamingy stereotypes applied to SUbACIVItIESccerveererieireniierieirecnne 255
E.3. Example eXtensions t0 REQUITEIMENLc.ccieieieiieieierieseeteeeetetetete e stestesteeseeseeseestessessessessessessessassaessensensensessessesseeseanen 259
E.4. Example Parametric Diagram using Stereotypes for Measures of Effectivenessccoccverirircinennicnicnnenecnecnenenenne 260
E.5. QUDYV CONCEPLS DIAGTAM....c..couiiuiiiiiniitititiettet ettt ettt h ettt ettt b e bt b e bt e st e st et et e s b e s besbe e bt ebtes b e e enbebenbeabeebeebeenean 262
E.6. QUDV UNIES ...teuvetisiesiesieseiettestetetestessestesteeseeseestessessassassessessesssassassessessassessessessesssessessessessessessessessessssssessessessensensessessenseesensenses 262
E.7. QUDYV QUANTIEYKING. ... cctieiieiieiieieieiestesteste ettt tet et e st estestestessesseessessesaesessesseeseeseessessensensansensessessessaesaensensensansensessesseeseanean 263
E.8. Base Unit and Quantity Kinds of the SI and ISQ reSpectiVely.........ccvuirieiriiiiniinieiiniiiienctnceeenecceeeee et 278
E.9. Example of a derived unit and derived quantity Kind...........coccoeriiiiiiiiiieeeee et 278
E.10. Spring Length EXAMIPLEcooeiriiiiieieee ettt bttt ettt ettt et et s e st et et et ene st et et e neenenteneenens 279

E.11. Model libraries of SysML Quantity Kinds and Units for the covered content of ISO 80000 parts 3,4,5,6,7,9,10 and 13280

E.12. Organization of the definitions of units and quantities from the normative parts of ISO 80000 covered in SysML 1.4, which
includes all the normative content of parts 3,4,5,6; the subset of parts 7,9,10 corresponding to the content from SysML 1.3 and
the subset of part 13 pertaining to commonly used units of information. Parts 8,11 and 12 are not covered because none of their
units and quantities were referenced in previous versions of SysML nor in the summary tables in ISO 80000-1c.cc.c....... 281

E.13. Content relationships for the systems of units and quantities in from the different parts of ISO 80000 in relation to ISO

80000 as a whole and to the International System of Units (SI) and quantities (ISQ)cccevvevuerieriirrinieieieieieieresie e se e eeeeneens 282
E.14. Table 1 (from ISO 80000-1) SI base units for the ISQ base qUANTILIEScc.eevierieieieiieieiereee ettt 283
E.15. Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (1)......cccccceevvererenenencneenen. 284

OMG Systems Modeling Language, v1.7 XXV

E.16. Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (2).......cccecvevvereereereerereeeenenn 285

E.17. Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (3)......cccccceevveverenenereneenen. 286
E.18. Table 3 (from the SI brochure) SI derived units with special names and Symbolsccoceorireiieneinecceeee 287
E.19. Constant numbers used throughout the SySML ISO 80000 LIDIATY........ccecueriirrieieieieieieriesiese e eeseeeeseseesaessessessesseeseesees 289
E.20. Example of value type definitions for a quantity and applicable units and prefixed Unitsc..cccoeeeeerecnenncnccnenneenn 290
E.21. Basic diStrTDULION SEEICOTYPESeeuteutetertertirtietietieutestetestestestestesteete et testestentesbesseebeeseeseestentenbebesbesbesaeebeestestensentebenbeabeabeeneenean 325
E.22. Distribution EXAMIPLE........ccueiiuiiiiieiiietie ettt a etk et e st et et b et e st ek et e bt et e st b et e st e st ne e s e 326
E.23. Example of Requirement in GraphiCal FOTINc.ccueviiriiriiiiiiieieeieiesie ettt ettt sae e sa e s essessessessesseeneennas 328
E.24. Example of a PBR Profile Based on ConstraintBIOCKcccciiiiiniiiiiiiiiicerc ettt 329
E.25. Example of Parametric Diagram Using PBR based on Constraint BIOCK...........ccccceeiiiiiiiiiiininininnceieeeneseeeee 329
E.26. Example of Requirement Evaluation Context Using PBR Based on Constraint BIOcK.........c.cccooeoiiiiiincinineicee 330
E.27. Example of @ PBR profile based 0n CONSLIAINTScc.eeereriirierieieieiesieniesieeteeseeseestetessessessessessessessasssessensessessessessessesseeses 330
E.28. Example of PBR based on Constraint used in different CONtEXS.coeviriiririeiiniininenieinicieeneccneeeeseeeere e 331
E.29. Establishing an Analysis Context for evaluating requirement compliance using PBR based on Constraint...............c........ 331
E.30. Property Based ReqUITCMENt StEICOLYPE.......eveuirueieitiietirteirteiet ettt ettt ekttt sttt sttt et et e st b et e s e b e st eb e e es e beseebeneeneaee 331
E.31. Property Based ReqUITEMENt LIDIATYc.ccieieieieieieriesie ettt ettt et e st este e s e sessessesseesaesaessensensesensessesseeseeneas 332
G.1. SYSML/AP233 Data OVEIIAPS....c..cueeuiuiiuiieiiiieieiintetitet ettt ettt ettt sttt ettt sttt sa et b e et s bt be et ebe e ebe s st eae s eneane 336
H.T. SYSIMLL S@IMANTICSveuviieiitiitieiteitetest ettt ettt ettt et ettt bt eb e e bt e st e st et et et e e bt e bt e bt eb e e st en e m b et e e b e e besbeebeebtestensenbebenbeabeebeebeenean 340
H2. ACHONS vttt ettt ettt e s bt a bt a bt h bttt h et seh ket b ettt ene 341
HL30 ACHVITIES 1.ttt b ettt skttt 354
HA BIOCKS. ..ttt ettt ettt et et e sk s bt et e bt e st e st en e et et e bt bt bt st ea e e n b en s e b e b e b e ekt ehe e st eRe e st et e tebeebeebeeneeneenean 359
H5. LOCT ottt a et h e ek eeh e e et h et h et h e e h et b et h e st et eneeee 364

Xxvi OMG Systems Modeling Language, v1.7

OMG Systems Modeling Language, v1.7 xxvii

xxviii OMG Systems Modeling Language, v1.7

0 Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML®
(Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. All OMG
Specifications are available from the OMG website at: https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters

9C Medway Road, PMB 274
Milford, MA 01757

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page https://www.omg.org, under Specifications, Report an Issue.

SysML Roadmap

Requirements for SysML were originally specified by: ad/2003-03-41 (UML for Systems Engineering RFP)
The source documents for this specification include:
Alpha:
* ad/2006-03-01 (submission)
» ad/2006-04-07 (errata)
+ ad/2006-03-04 (glossary)
» Associated Schema files: ad/2006-03-02 (XMI)
The Finalization Task Force (FTF) process generated the following documents:
* Beta I: ptc/2006-05-04 (a.k.a. Final Adopted Specification)
* Beta 2: ptc/2007-03-19 (FTF Report - full record of FTF votes and issue resolutions

OMG Systems Modeling Language, v1.7 XxXix

https://www.omg.org/
https://www.omg.org/spec
mailto:pubs@omg.org
https://www.iso.org/
https://www.omg.org/

* ptc/2007-02-03, ptc/2007-03-04 (a.k.a. convenience document, with and without change bars)
* ptc/2007-02-05 (XMI)
* ptc/2007-03-09 (Annex E - Requirements Traceability)
» Version 1.0 Formal Specification: formal/2007-09-01

The SysML 1.1 Revision Task Force (RTF) process generated the following documents:
* ptc/2008-05-15 (RTF Report - full record of RTF votes and issue resolutions)
* ptc/2008-05-16, ptc/2008-05-17 (a.k.a. convenience document, with and without change bars)
* ptc/2008-05-18 (XMI)
* Version 1.1 Formal Specification: formal/2008-11-01, formal/2008-11-02

Associated schema files for this specification, at https://www.omg.org/spec/SysML/1.1/, include the following files:
» SysML-profile.xmi XMI 2.1 serialization of the SysML Profile

* Activities-model.xmi XMI 2.1 serialization of the Activities model library
* Blocks-model.xmi XMI 2.1 serialization of the Blocks model library

+ UMLA4SysML-metamodel.xmi XMI 2.1 serialization of the merged UML4SysML subset of UML 2 (used to
define the SysML Profile)

The SysML 1.2 Revision Task Force (RTF) process generated the following documents:
* ptc/2008-05-15 (RTF Report - full record of RTF votes and issue resolutions)
* ptc/2008-05-16, ptc/2008-05-17 (a.k.a. convenience document, with and without change bars)
* ptc/2008-05-18 (XMI)
* Version 1.2 Formal Specification: formal/2010-06-01, formal/2010-06-02
Associated schema file for this specification, at https://www.omg.org/spec/SysML/1.2, include the following files:
» SysML-profile.uml XMI 2.1 serialization of the SysML Profile

+ UMLA4SysML-metamodel.uml XMI 2.1 serialization of the merged UML4SysML subset of UML 2 (used to
define the SysML Profile)

* Activities-model.xmi XMI 2.1 serialization of the Activities model library

* Blocks-model.xmi XMI 2.1 serialization of the Blocks model library
The SysML 1.3 Revision Task Force (RTF) process generated the following documents:
* ptc/2011-08-08 (RTF Report - full record of RTF votes and issue resolutions)

ptc/2011-08-07 (Submission inventory document)

ptc/2011-08-09, ptc/2011-08-10 (Beta “convenience document,” with and without change bars)
ptc/2011-08-11, ptc/2011-08-12 (Normative and non-normative XMI)
ptc/2012-04-07, ptc/2012-04-08 (Normative and non-normative XMI)
* Version 1.3 Formal Specification: formal/2012-06-01, formal/2012-06-02
Associated schema files for this specification, at https://www.omg.org/spec/SysML/1.3/, include the following files:

* SysML.xmi (Normative)
* ISO-80000-1-QUDV.xmi (Non-normative)
+ ISO-80000-1-SysML.xmi (Non-normative)
* QUDV.xmi (Non-normative)
The SysML 1.4 Revision Task Force (RTF) process generated the following documents:
* ptc/2013-12-08 (RTF Report - full record of RTF votes and issue resolutions)

XXX OMG Systems Modeling Language, v1.7

https://www.omg.org/spec/SysML/1.1/
https://www.omg.org/spec/SysML/1.2
https://www.omg.org/spec/SysML/1.3/

* ptc/2013-12-10, ptc/2013-12-09 (Beta “convenience document,” with and without change bars)
* ptc/2013-12-11, ptc/2013-12-12 (Normative and non-normative XMI)
* Version 1.4 Formal Specification: formal/2015-06-03, formal/2015-06-04

Associated schema files for this specification, at https://www.omg.org/spec/SysML/1.4/, include the following files:

* SysML.xmi (Normative)
* SysMLDIL.xmi (Normative)
* ISO-80000-1-QUDV.xmi (Non-normative)
+ ISO-80000-1-SysML.xmi (Non-normative)
* QUDV.xmi (Non-normative)
The SysML 1.5 Revision Task Force (RTF) process generated the following documents:
o ptc/2016-11-01 (RTF Report - full record of RTF votes and issue resolutions)
o ptc/2016-11-02, ptc/2016-11-03 (Beta “convenience document,” with and without change bars)
* ptc/2016-11-05, ptc/2016-11-06, pte/16-11-07, ptc/16-11-08 (Normative and non-normative XMI)

Associated schema files for this specification, at https://www.omg.org/spec/SysML/1.5/, include the following files:

* SysML.xmi (Normative)
* SysMLDI.xmi (Normative)
+ ISO-80000-1-QUDV.xmi (Non-normative)
+ ISO-80000-1-SysML.xmi (Non-normative)
* QUDV.xmi (Non-normative)
The SysML 1.6 Revision Task Force (RTF) process generated the following documents:
* ptc/2018-10-01 (RTF Report - full record of RTF votes and issue resolutions)
* ptc/2018-10-02, ptc/2018-10-03 (Beta “convenience document,” with and without change bars)

* ptc/2018-10-04, ptc/2018-10-05, ptc/2018-10-06, ptc/2018-10-07, ptc/2018-10-08 (Normative and non-
normative XMI)

Associated schema files for this specification, at https://www.omg.org/spec/SysML/1.6/, include the following files:

* SysML.xmi (Normative)
* ISO-80000-1-QUDV.xmi (Non-normative)
+ ISO-80000-1-SysML.xmi (Non-normative)
* QUDV.xmi (Non-normative)
The SysML 1.7 Revision Task Force (RTF) process generated the following documents:
* ptc/2022-08-01: RTF Report - full record of RTF votes and issue resolutions
* ptc/2022-08-02: SysML v1.7 convenience document without change bars
* ptc/2022-08-03: SysML v1.7 convenience document with change bars

* ptc/2022-08-04, ptc/2022-08-05, ptc/2022-08-06, ptc/2022-08-07, ptc/2022-08-08, ptc/2022-08-09 (Normative
and non- normative XMI and files)

Associated schema files for this specification, at https:/www.omg.org/spec/SysML/1.7, include the following files:

* SysML.xmi (Normative)
+ ISO-80000.xmi (Non-normative)
* QUDV.xmi (Non-normative)

* SysML 1.7 Precise Semantic model (Non-normative)

OMG Systems Modeling Language, v1.7 XXXi

https://www.omg.org/spec/SysML/1.4/
https://www.omg.org/spec/SysML/1.5/
https://www.omg.org/spec/SysML/1.6/
https://www.omg.org/spec/SysML/1.7/

» Ancillary attachment file (Non-normative)

Xxxii OMG Systems Modeling Language, v1.7

This page intentionally left blank.

OMG Systems Modeling Language, v1.7 xxxiii

XXXiV OMG Systems Modeling Language, v1.7

1 Scope

The purpose of this International Standard is to specify the Systems Modeling Language (SysML), a general-
purpose modeling language for systems engineering. Its intent is to specify the language so that systems engineering
modelers may learn to apply and use SysML; modeling tool vendors may implement and support SysML; and both
can provide feedback to improve future versions. Note that a definition of “system” and “systems engineering” can
be found inISO/IEC 15288.

SysML reuses a subset of UML 2.5.1 and provides additional extensions to address the requirements in UML for
SE. SysML uses the UML 2.5.1 extension mechanisms as further elaborated in Clause 17 as the primary mechanism
to specify the extensions to UML 2.5.1. This revision of SysML relies on several new features incorporated into
UML 2.5.1. Any use of the term “UML 2” or “UML” in this specification, unless otherwise noted, will refer to
UML 2.5.1 in general and the UML 2.5.1 specification in particular.

Since SysML uses UML 2.5.1 as its foundation, systems engineers modeling with SysML and software engineers
modeling with UML 2.5.1 will be able to collaborate on models of software-intensive systems. This will improve
communication among the various stakeholders who participate in the systems development process and promote
interoperability among modeling tools. It is anticipated that SysML will be customized to model domain-specific
applications, such as automotive, acrospace, communication, and information systems.

SysML is designed to provide simple but powerful constructs for modeling a wide range of systems engineering
problems. It is particularly effective in specifying requirements, structure, behavior, allocations, and constraints on
system properties to support engineering analysis. The language is intended to support multiple processes and
methods such as structured, object-oriented, and others, but each methodology may impose additional constraints on
how a construct or diagram kind may be used. This version of the language supports most, but not all, of the
requirements of the UML for Systems Engineering RFP, as shown in the Requirements Traceability referenced by
Annex F. These gaps are intended to be addressed in future versions of SysML as indicated in the matrix.

The following sub clauses provide background information about this International Standard. Instructions for both
systems engineers and tool vendors who read this International Standard are provided in “How to Read this
International Standard.” The main body of this International Standard describes the normative technical content. The
annexes include additional information to aid in understanding and implementation of this International Standard.

OMG Systems Modeling Language, v1.7 1

This page intentionally left blank.

OMG Systems Modeling Language, v1.7

2 Normative References

The following normative documents contain provisions, which through reference in this text, constitute provisions
of this International Standard. Subsequent amendments to, or revisions of, any of these publications do not apply.

» ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 7th Edition 2016

« ISO/IEC 10303-233:2012, STEP AP233, Product data representation and exchange: application protocol:
Systems engineering

» ISO/IEC IEEE 15288:2015, Systems and software engineering - System life cycle process

* OMG Specification formal/2017-12-01, Unified Modeling Language, (UML) v2.5.1 (https://www.omg.org/spec/
UML/2.5.1/)

* OMG Specification formal/2014-02-03, Object Constraint Language (OCL), v2.4 (https://www.omg.org/spec/
OCL/2.4/)

* OMG Specification formal/2015-06-05, Meta Object Facility (MOF), v2.5 (https://www.omg.org/spec/MOF/
2.5/)

* OMG Specification formal/2015-06-01, Diagram Definition, v1.1 (http://www.omg.org/spec/DD/1.1/)

* OMG Document ad/03-03-41, UML for Systems Engineering RFP (https://www.omg.org/cgi-bin/doc?ad/
2003-03-41)

* OMG Document ormsc/2014-06-01, Model Driven Architecture (MDA) Guide rev. 2.0 (https:/www.omg.org/
cgi-bin/doc?ormsc/2014-06-01)

+ VIM Edition 3 (VIM3), “International vocabulary of metrology - Basic and general concepts and associated
terms (VIM)”, JCGM 200:2012 (JCGM 200:2008 with minor corrections)

* [Dybkaer-2010] Rene Dybkaer, “ISO terminological analysis of the VIM3 concepts of ‘quantity’ and ‘kind-of-
quantity’”, Metrologia 47, (2010) 127-143

OMG Systems Modeling Language, v1.7 3

https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/OCL/2.4/
https://www.omg.org/spec/OCL/2.4/
https://www.omg.org/spec/MOF/2.5/
https://www.omg.org/spec/MOF/2.5/
http://www.omg.org/spec/DD/1.1/
https://www.omg.org/cgi-bin/doc?ad/2003-03-41
https://www.omg.org/cgi-bin/doc?ad/2003-03-41
https://www.omg.org/cgi-bin/doc?ormsc/2014-06-01
https://www.omg.org/cgi-bin/doc?ormsc/2014-06-01

This page intentionally left blank.

OMG Systems Modeling Language, v1.7

3 Additional Information

3.1 Relationships to Other Standards
SysML is defined as an extension of the OMG UML 2 standard. See Clause 2 for the current version of the UML 2
standard.

SysML is intended to be supported by two evolving interoperability standards including the OMG XMI 2 model
interchange standard for UML 2 modeling tools and the ISO 10303 STEP AP233 data interchange standard for
systems engineering tools. Overviews of the approach to model interchange and relevant references are included in
Annex G.

SysML supports the OMG’s Model Driven Architecture (MDA) initiative by its reuse of UML and related standards.
See OMG MDA Guide rev 2.0.

3.2 How to Read this International Standard

This International Standard is intended to be read by systems engineers so they may learn and apply SysML, and by
modeling tool vendors so they may implement and support SysML.

Although the clauses are organized into logical groupings that can be read sequentially, this International Standard
can be used for reference and may be read in a non-sequential manner.

3.2.1 Organization

This International Standard is organized as follows:
Preface

INTRODUCTION

1 Scope

2 Normative References

3 Additional Information - includes Relationships to Other Standards, How to Read this International Standard, and
Acknowledgments

4 Language Architecture - General Information, Design Principles, Architecture, and SsyML Diagrams
5 Conformance - General Information and Conformance Types
6 Language Formalism -
* Levels of Formalism
+ Clause Structure
* Conventions and Typography
STRUCTURAL CONSTRUCTS

7 Model Elements - Refactors the kernel package from UML 2 and includes some extensions to provide some
foundation capabilities for model management.

8 Blocks - Reuses and extends structured classes from UML 2 composite structures to provide the fundamental
capability for describing system decomposition and interconnection, and to define different types of system
properties including value properties with optional units of measure.

9 Ports and Flows - Provides the semantics for defining how blocks and parts interact through ports and how items
flow across connectors.

10 Constraint Blocks - Defines how blocks are extended to be used on parametric diagrams. Parametric diagrams
model a network of constraints on system properties to support engineering analysis, such as performance,
reliability, and mass properties analysis.

BEHAVIORAL CONSTRUCTS

OMG Systems Modeling Language, v1.7 5

11 Activities - Defines the extensions to UML 2 activities, which represent the basic unit of behavior that is used in
activity, sequence, and state machine diagrams. The activity diagram is used to describe the slow of control and flow

of inputs and outputs among actions.

12 Interactions - Defines the constructs for describing message based behavior used in sequence diagrams.

13 State Machines - Describes the constructs used to specify state based behavior in terms of system states and their

transitions.

14 Use Cases - Describes behavior in terms of the high level functionality and uses of a system, that are further

specified in the other behavioral disgrams referred to above.

CROSSCUTTING CONSTRUCTS
15 Allocations

16 Requirements

17 Profiles & Model Libraries
ANNEXES

Annex A - Diagrams

Annex B - SysML Diagram Interchange
Annex C - Deprecated Elements
Annex D - Sample Problem

Annex E - Non-normative Extensions
Annex F - Requirements Traceability

Annex G - Model Interchange
3.3 Acknowledgments

The following companies and organizations submitted or supported parts of the original version of this International

Standard:
Industry
. American Systems Corporation
. BAE SYSTEMS
. Boeing
. Deere & Company
. EADS Astrium
. Eurostep
. Israel Aircraft Industries

. Lockheed Martin Corporation

. Motorola
. Northrop Grumman
. oose Innovative Informatik eG

. PivotPoint Technology
. Raytheon
. THALES

US Government

. NASA/Jet Propulsion Laboratory

OMG Systems Modeling Language, v1.7

. National Institute of Standards and Technology (NIST)
. DoD/Office of the Secretary of Defense (OSD)

Vendors
. ARTiISAN Software Tools
. Ceira Technologies

. EmbeddedPlus Engineering

. Gentleware
. IBM
. I-Logix

. Mentor Graphics
. Telelogic

. Structured Software Systems Limited
. Sparx Systems
. Vitech

Academia

. Georgia Institute of Technology

Liaisons
. Consultative Committee for Space Data Systems (CCSDS)
. Embedded Architecture and Software Technologies (EAST)
. International Council on Systems Engineering (INCOSE)
. ISO STEP AP233
. Systems Level Design Language (SLDL) and Rosetta

The following persons were members of the team that designed and wrote this International Standard: Vincent
Arnould, Laurent Balmelli, Ian Bailey, James Baker, Cory Bialowas, Conrad Bock, Carolyn Boettcher, Roger
Burkhart, Murray Cantor, Bruce Douglass, Harald Eisenmann, Anders Ek, Brenda Ellis, Marilyn Escue, Sanford
Friedenthal, Eran Gery, Hal Hamilton, Dwayne Hardy, James Hummel, Cris Kobryn, Michael Latta, John Low,
Robert Long, Kumar Marimuthu, Alan Moore, Véronique Normand, Salah Obeid, Eldad Palachi, David Price, Bran
Selic, Chris Sibbald, Joseph Skipper, Rick Steiner, Robert Thompson, Jim U’Ren, Thomas Weigert, Tim Weilkiens
and Brian Willard.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content
and the quality of this International Standard: Perry Alexander, Michael Chonoles, Mike Dickerson, Orazio Gurrieri,
Julian Johnson, Jim Long, Henrik Lonn, Stephen Mellor, Dave Oliver, Jim Schier, Matthias Weber, Peter Shames,
and the Georgia Institute of Technology research team including Manas Bajaj, Injoong Kim, Chris Paredis, Russell
Peak, and Diego Tamburini.

The SysML team would also like to thank Pavel Hruby for his contribution - the Visio template for UML 2 - which
was used for most of the illustrations in the first versions of The SysML. We would also like to thank the
OpenMBEE community and Dassault, whose support made it possible to generate this specification from a model.
Special thanks go to Chris Delp, Charles Galey, Ivan Gomes, Jason Han, Robert Karban, Erik Karlsson, and Doris
Lam.

Additional organizations and individuals have contributed to further revisions of this International Standard, as
completed by Finalization and Revision Task Forces listed under the OMG SysML Roadmap in the Preface above.
Besides those already acknowledged above for their contributions to the original International Standard, the
following additional persons have contributed to the Finalization or Revision Task Forces: Awele Anyanhum, Dave
Banham, Yves Bernard, Graham Bleakley, Emilee Bovre, Fraser Chadburn, Amanda Crawford, Chris Delp, Hans
Peter de Koning, Sébastien Demathieu, Peter Denno, Huascar Espinoza, Allison Barnard Feeney, Sébastien Gérard,

OMG Systems Modeling Language, v1.7 7

Ronnie Gill, Ivan Gomes, Matthew Hause, Emma Herrick, Kenn Hussey, Nerijus Jankevicius, Steve Jenkins, Robert
Karban, Darren Kelly, Andreas Korff, Emily Lambert, Myra Lattimore, Leah De Laurell, Frédéric Mallet, Sam
Mancarella, Julio Medina, Jishnu Mukerji, Chris Paredis, Axel Reichwein, Pete Rivett, Tanner Rosenberg, Nicolas
Rouquette, George Sawyer, Axel Scheithauer, Andrius Strazdauskas, Kritsana Uttamang, John Watson, Bernd
Wenzel.

Additional organizations who supported the work of contributors to the Finalization and Revision Task Forces, not
already listed for the original submission above, include 88solutions, Adaptive, Atego, EADS, CEA LIST, European
Southern Observatory, European Space Agency, Fachhochschule Vorarlberg, INRIA, Mathworks, Tecnalia Research
and Innovation, No Magic, and Universidad de Cantabria.

8 OMG Systems Modeling Language, v1.7

4 Language Architecture

4.1 General

SysML reuses a subset of UML 2 and provides additional extensions needed to address requirements in the UML for
Systems Engineering RFP. This International Standard documents the language architecture in terms of the parts of
UML 2 that are reused and the extensions to UML 2. This clause explains design principles and how they are
applied to define the SysML language architecture.

To visualize the relationship between the UML and SysML languages, consider the Venn diagram shown in Fig. 4.1,
where the sets of language constructs that comprise the UML and SysML languages are shown as the circles marked
“UML” and “SysML,” respectively. The intersection of the two circles, shown by the region marked “UML reused
by SysML,” indicates the UML modeling constructs that SysML reuses, called the UML4SysML subset. The region
marked “SysML extensions to UML” in Fig. 4.1 indicates the new modeling constructs defined for SysML that have
no counterparts in UML, or which replace UML constructs. Note that there is also a part of UML 2 that is not
required to implement SysML, which is shown by the region marked “UML not required by SysML.”

UML not required
by SysML
(UML -
UML4SysML)

UML reused by
SysML
(UML4SysML)

SysML
extensions to
UML
(SysML Profile)

Figure 4.1. Overview of SysML/UML Interrelationship

Table 4.1 lists the metaclasses excluded from the UML4SysML subset. Table 4.2 lists the metaclasses and datatypes

included in the UML4SysML subset. Table 4.3 lists the stereotypes, blocks, valuetypes, and datatypes included in
SysML.

OMG Systems Modeling Language, v1.7 9

Table 4.1. UML 2 metaclasses excluded from the UML4SysML subset
UML 2 metaclasses excluded from the UML4SysML subset

Artifact, ClassifierTemplateParameter, Collaboration, CollaborationUse, CommunicationPath, Component,
ComponentRealization, ConnectableElementTemplateParameter, Deployment, DeploymentSpecification, Device,
ExecutionEnvironment, ExpansionNode, ExpansionRegion, Manifestation, Node, OperationTemplateParameter,
ProtocolConformance, ProtocolStateMachine, Protocol Transition, QualifierValue,
ReadLinkObjectEndQualifierAction, RedefinableTemplateSignature, StringExpression, TemplateBinding,
TemplateParameter, TemplateParameterSubstitution, TemplateSignature, UMLActivityDiagram,
UMLAssociationEndLabel, UMLAssociationOrConnectorOrLinkShape,
UMLAssociationOrConnectorOrLinkShapeKind, UMLBehaviorDiagram, UMLClassDiagram,
UMLClassifierShape, UMLCompartment, UMLCompartmentableShape, UMLComponentDiagram,
UMLCompositeStructureDiagram, UMLDeploymentDiagram, UMLDiagram, UMLDiagramElement,
UMLDiagramWithAssociations, UMLEdge, UMLInteractionDiagram, UMLInteractionDiagramKind,
UMLInteractionTableLabel, UMLKeywordLabel, UMLLabel, UMLMultiplicityLabel, UMLNameLabel,
UMLNavigabilityNotationKind, UMLObjectDiagram, UMLPackageDiagram, UMLProfileDiagram,
UMLRedefinesLabel, UMLShape, UMLStateMachineDiagram, UMLStateShape,

UMLStereotypeProperty ValueLabel, UMLStructureDiagram, UMLStyle, UMLTypedElementLabel,
UMLUseCaseDiagram

10 OMG Systems Modeling Language, v1.7

Table 4.2. UML 2 metaclasses and datatypes included in the UML4SysML subset
UML 2 metaclasses and datatypes included in the UML4SysML subset

Abstraction, AcceptCallAction, AcceptEventAction, Action, ActionExecutionSpecification, ActionlnputPin,
Activity, ActivityEdge, ActivityFinalNode, ActivityGroup, ActivityNode, ActivityParameterNode,
ActivityPartition, Actor, AddStructuralFeatureValueAction, AddVariableValueAction, AggregationKind,
AnyReceiveEvent, Association, AssociationClass, Behavior, BehaviorExecutionSpecification, BehavioralFeature,
BehavioredClassifier, BroadcastSignal Action, CallAction, CallBehaviorAction, CallConcurrencyKind, CallEvent,
CallOperationAction, CentralBufferNode, ChangeEvent, Class, Classifier, Clause, ClearAssociationAction,
ClearStructuralFeatureAction, ClearVariableAction, CombinedFragment, Comment, ConditionalNode,
ConnectableElement, ConnectionPointReference, Connector, ConnectorEnd, ConnectorKind,
ConsiderIgnoreFragment, Constraint, Continuation, ControlFlow, ControlNode, CreateLinkAction,
CreateLinkObjectAction, CreateObjectAction, DataStoreNode, DataType, DecisionNode, Dependency,
DeployedArtifact, DeploymentTarget, DestroyLinkAction, DestroyObjectAction,
DestructionOccurrenceSpecification, DirectedRelationship, Duration, DurationConstraint, DurationInterval,
DurationObservation, Element, ElementImport, EncapsulatedClassifier, Enumeration, EnumerationLiteral, Event,
ExceptionHandler, ExecutableNode, ExecutionOccurrenceSpecification, ExecutionSpecification, Expression,
Extend, Extension, ExtensionEnd, ExtensionPoint, Feature, FinalNode, FinalState, FlowFinalNode, ForkNode,
FunctionBehavior, Gate, GeneralOrdering, Generalization, GeneralizationSet, Image, Include, InformationFlow,
Informationltem, InitialNode, InputPin, InstanceSpecification, InstanceValue, Interaction, InteractionConstraint,
InteractionFragment, InteractionOperand, InteractionOperatorKind, InteractionUse, Interface,
InterfaceRealization, InterruptibleActivityRegion, Interval, IntervalConstraint, InvocationAction, JoinNode,
Lifeline, LinkAction, LinkEndCreationData, LinkEndData, LinkEndDestructionData, LiteralBoolean,
Literallnteger, LiteralNull, LiteralReal, LiteralSpecification, LiteralString, LiteralUnlimitedNatural, LoopNode,
MergeNode, Message, MessageEnd, MessageEvent, MessageKind, MessageOccurrenceSpecification,
MessageSort, Model, MultiplicityElement, NamedElement, Namespace, ObjectFlow, ObjectNode,
ObjectNodeOrderingKind, Observation, OccurrenceSpecification, OpaqueAction, OpaqueBehavior,
OpaqueExpression, Operation, OutputPin, Package, Packagelmport, PackageMerge, PackageableElement,
Parameter, ParameterDirectionKind, ParameterEffectKind, ParameterSet, ParameterableElement,
PartDecomposition, Pin, Port, PrimitiveType, PrimitiveTypes::Boolean, PrimitiveTypes::Integer,
PrimitiveTypes::Real, PrimitiveTypes::String, PrimitiveTypes::UnlimitedNatural, PrimitiveValueTypes::Boolean,
Profile, ProfileApplication, Property, Pseudostate, PseudostateKind, RaiseExceptionAction, ReadExtentAction,
ReadlsClassifiedObjectAction, ReadLinkAction, ReadLinkObjectEndAction, ReadSelfAction,
ReadStructuralFeatureAction, ReadVariableAction, Realization, Reception, ReclassifyObjectAction,
RedefinableElement, ReduceAction, Region, Relationship, RemoveStructuralFeatureValueAction,
RemoveVariableValueAction, ReplyAction, SendObjectAction, SendSignalAction, SequenceNode, Signal,
SignalEvent, Slot, StartClassifierBehaviorAction, StartObjectBehaviorAction, State, StateInvariant, StateMachine,
Stereotype, StructuralFeature, StructuralFeatureAction, StructuredActivityNode, StructuredClassifier,
Substitution, Testldentity Action, TimeConstraint, TimeEvent, TimeExpression, Timelnterval, TimeObservation,
Transition, TransitionKind, Type, TypedElement, UnmarshallAction, Usage, UseCase, ValuePin,
ValueSpecification, ValueSpecificationAction, Variable, VariableAction, Vertex, VisibilityKind, WriteLinkAction,
WriteStructuralFeatureAction, WriteVariableAction

OMG Systems Modeling Language, v1.7 1

Table 4.3. SysML stereotypes, blocks, valuetypes, and datatypes
SysML stereotypes, blocks, valuetypes, and datatypes

AcceptChangeStructuralFeatureEventAction, AdjunctProperty, Allocate, AllocateActivityPartition,
BindingConnector, Block, BoundReference, ChangeStructuralFeatureEvent, ClassifierBehaviorProperty,
Conform, ConstraintBlock, Continuous, ControlOperator, ControlValue, Copy, DeriveReqt, DirectedFeature,
DirectedRelationshipPropertyPath, Discrete, DistributedProperty, ElementGroup, ElementPropertyPath,
EndPathMultiplicity, Expose, FeatureDirection, FlowProperty, FullPort, InterfaceBlock,
InvocationOnNestedPortAction, [temFlow, NestedConnectorEnd, NoBuffer, Optional, Overwrite,
ParticipantProperty, PrimitiveValueTypes::Boolean, Primitive ValueTypes::Complex,
PrimitiveValueTypes::Integer, PrimitiveValueTypes::Number, PrimitiveValueTypes::Real,
PrimitiveValueTypes::String, Probability, Problem, PropertySpecificType, ProxyPort, Rate, Rationale, Refine,
Requirement, Satisfy, Stakeholder, TestCase, Trace, TriggerOnNestedPort, ValueType, VerdictKind, Verify, View,
Viewpoint

4.2 Design Principles

The fundamental design principles for SysML are:
* Requirements-driven - SysML is intended to satisfy the requirements of the UML for SE RFP.

* UML reuse - SysML reuses UML wherever practical to satisfy the requirements of the RFP, and when
modifications are required, they are done in a manner that strives to minimize changes to the underlying
language. Consequently, SysML is intended to be relatively easy to implement for vendors who support UML 2.

* UML extensions - SysML extends UML as needed to satisfy the requirements of the RFP. The primary extension
mechanism is the UML 2 profile mechanism as further refined in Section 17

+ Partitioning - The package is the basic unit of partitioning in this International Standard. The packages partition
the model elements into logical groupings that minimize circular dependencies among them.

» Layering - SysML packages are specified as an extension layer to the UML metamodel.

* Interoperability - SysML inherits the XMI interchange capability from UML. SysML is also intended to be
supported by the ISO 10303-233 data interchange standard to support interoperability among other engineering
tools.

SysML provides three model libraries:
* PrimitiveValueTypes, see Section 8.3.3.1
+ UnitAndQuantityKind, see Section 8.3.3.2

» ControlValues, see Section 11.3.3.1

4.3 Architecture

The relationship between SysML and UML 2 is shown in Fig. 4.2. SysML extends UML 2’s StandardProfile (see
Clause 22 in the UML 2.5 specification) whose Trace and Refine stereotypes provide the basis for Requirement
traceability in SysML (see Section 16 in this International Standard).

Although SysML indirectly imports the UML 2 PrimitiveTypes library (see Clause 21 in the UML 2.5 specification)
due to the transitivity of package import, SysML provides a PrimitiveValueTypes model library that systems
engineers can extend via SysML’s ValueType stereotype. In the remainder of this document, the unqualified
references to Boolean, Integer, Real, and String should be interpreted as follows:

* In the context of the definition of a SysML Stereotype, the name refers to the definition of a
UML::PrimitiveType in the UML 2 PrimitiveTypes library.

» Elsewhere, the name refers to the definition of a SysML::ValueType sterecotype of UML::DataType in the SysML
PrimitiveValueTypes library.

12 OMG Systems Modeling Language, v1.7

T~
I
I
I
I
I

UML A «import»
NI .
«import»
~
~
«import»

«import» ~
~

PrimitiveTypes
> imitiveTyp

1]

1

«profile»
StandardProfile

7

—| ~ —|
I - «apply»
«profile» < — — — — «ModelLibrary»
SysML Libraries
Figure 4.2. SysML Extension of UML
|
«profile»
SysML
1] 1] 1] 1]
ModelElements Blocks Activities Allocations
7 N
«import» - I
7
_ | «import»
1 1 [1] []
ConstraintBlocks Ports&Flows Requirements DeprecatedElements
N
l «apply»
|
| |
«ModelLibrary»
Libraries

[]

1

[]

«ModelLibrary»
PrimitiveValueTypes

«ModelLibrary»
ControlValues

«ModelLibrary»
UnitAndQuantityKind

Figure 4.3. SysML Package Structure

As previously stated, the design approach for SysML is to reuse a subset of UML and create extensions to support
the specific concepts needed to satisfy the requirements in the UML for SE RFP. The SysML package structure
shown in Fig. 4.3 contains a set of packages that correspond to concept areas in SysML that have been extended.

The SysML packages extend UML as follows:

* SysML::Model Elements extends Classifications, Common Structure

» SysML::Blocks extends Classifications, Structured Classifiers, Common Structure, Simple Classifiers

OMG Systems Modeling Language, v1.7

* SysML::ConstraintBlocks extends Structured Classifiers

* SysML::Ports and Flows extends Actions, Common Behavior, Classifications

+ SysML::Activities extends Activities.

» SysML::Allocations extends Common Structure, Activities

* SysML::Requirements extends Common Structure, Classifications, Common Behavior, Structured Classifiers

+ SysML::DeprecatedElements extends Common Structure, Simple Classifiers, Classifications, Structured
Classifiers, Actions, and SysML Item Flows

Fig. 4.4 shows non-normative packages in this International Standard that depend on SysML and UML. Note that
the QUDYV and ISO-80000 libraries are described in non-normative annexes to this specification.

DI UML A
N «import» =7 7N
. -
| «import» - | «import»
-
| - .
«profile» «apply»
umLbl | | e K — — — P
SysML |
«importy 7
i > A |
I«|mport» _ - | «apply»
[
1., - [1 []
«profilex» «ModelLibrary» «import» «ModelLibrary»
SysMLDI QUDV - 1SO-80000

Figure 4.4. Non-normative Package Structure

4.4 Extension Mechanisms

This International Standard uses the following mechanisms to define the SysML extensions:
* UML stereotypes
+ UML diagram extensions
* Model libraries

SysML stereotypes define new modeling constructs by extending existing UML 2 constructs with new properties
and constraints. SysML diagram extensions define new diagram notations that supplement diagram notations reused
from UML 2. SysML model libraries describe specialized model elements that are available for reuse. Additional
non- normative extensions are included in Annex E.

The SysML user model is created by instantiating its metamodel and applying the stereotypes specified in the
SysML profile, and optionally referencing or subclassing the model elements in the SysML model library. Section
17 describes how profiles and model libraries are applied and how they can be used to further extend SysML.

4.5 SysML Diagrams

The SysML diagram taxonomy is shown in Overview . The concrete syntax (notation) for the diagrams along with
the corresponding specification of the UML extensions is described in Parts II - IV. The Diagrams in Annex Annex
A describes generalized features of diagrams, such as their frames and headings. A model of SysML diagrams to
support interchange is in SysML Diagram Interchange Annex Annex B.

14 OMG Systems Modeling Language, v1.7

OMG Systems Modeling Language, v1.7

This page intentionally left blank.

15

16

OMG Systems Modeling Language, v1.7

5 Conformance

5.1 Overview

Conformance with SysML requires that the subset of UML required for SysML is implemented, and that the SysML
extensions to this subset are implemented. SysML has three types of conformance, listed in Conformance Types,
which shall all be supported to fully conform to SysML. Conformance does not include DeprecatedElements.

5.2 Conformance Types

An implementation of SysML shall comply with both the subset of UML4SysML and the SysML extensions. The
types of SysML conformance extend corresponding types in UML as follows:

+ Abstract syntax conformance. A tool demonstrating abstract syntax conformance provides a user interface and/or
API that enables instances of concrete SysML stereotypes (which are applications of stereotypes to instances of
UML metaclasses) and model library elements to be created, read, updated, and deleted. The tool shall also
provide a way to validate the well-formedness of models that corresponds to the constraints defined in SysML.

» Concrete syntax conformance. A tool demonstrating concrete syntax conformance provides a user interface and/
or API that enables instances of SysML notation to be created, read, updated, and deleted. This includes
conformance to the notation defined in the “Diagram Elements” tables and diagrams extension sub clauses in
each clause of this International Standard. Note that a conforming tool may provide the ability to create, read,
update, and delete additional diagrams and notational elements that are not defined in SysML.

* Model interchange conformance. A tool demonstrating model interchange conformance can import and export
conformant XMI for all valid SysML models, including models with profiles defined and/or applied. Model
interchange conformance implies abstract syntax conformance. See more information in Annex G.

OMG Systems Modeling Language, v1.7 17

https://mms.openmbee.org/alfresco/mmsapp/mms.html#/projects/PROJECT-7f0f4015-5aae-46f9-bfea-f9587678fd0f/master/documents/MMS_1495132688220_ec2e9416-998c-473f-b4aa-ef4c6b7add6b/full#MMS_1495132688220_ec2e9416-998c-473f-b4aa-ef4c6b7add6b

18

This page intentionally left blank.

OMG Systems Modeling Language, v1.7

6 Language Formalism

6.1 Levels of Formalism

SysML is specified using a combination of UML modeling techniques and precise natural language to balance rigor
and understandability. Use of more formal constraints and semantics may be applied in future versions to further
increase the precision of the language

6.2 Clause Structure

The clauses are organized according to the SysML packages as described in the language architecture and selected
reusable portions of UML 2 packages. This sub clause provides information about how each clause is organized.

6.2.1 Overview

This sub clause provides an overview of the SysML modeling constructs defined in the subject package, which are
usually associated with one or more SysML diagram types.

6.2.2 Diagram Elements

This sub clause provides tables that summarize the concrete syntax (notation) and abstract syntax references for the
graphic nodes and paths associated with the relevant diagram types. The diagram elements tables are intended to
include all of the diagrammatic constructs used in SysML. However, they do not represent all the different
combinations in which they can be used. The reader should refer to the usage examples in the clauses and the sample
problem (Annex D) for typical usages of the concrete syntax. General diagram information on the use of diagram
frames and headings can be found in Annex A.

The diagram elements tables and the additional usage examples fill an important role in defining the scope of
SysML. As described in Section 4, SysML imports many entire packages from the UML metamodel, which it then
reuses and extends. Only a subset of the entire UML metamodel, however, is required to support the notations
included in SysML.

Unless a type of diagram element is shown in some form in one of the SysML diagram elements tables, or in a usage
example in one of the normative SysML clauses, it is not considered to be part of the subset of UML included within
SysML, even if the UML metamodel packages support additional constructs. For example, SysML imports the
entire Dependencies package from UML, but it includes diagram elements for only a subset of the dependency types
defined in this package.

6.2.3 UML Extensions

This sub clause specifies the SysML extensions to UML in terms of diagram extensions and semantic extensions.
Diagram extensions are included when the concrete syntax uses notation other than the standard stercotype notation
as defined in the Profiles & Model Libraries clause. Semantic extensions consist of stereotype and model library
extensions. Stereotype extensions always include the abstract syntax that identifies which metaclasses a stereotype
extends. Each stereotype includes a general description with a definition and semantics, along with stereotype
properties (attributes), and constraints. Each constraint consists of a textual description and may be followed by a
formal constraint expressed in Object Constraint Language (OCL). If there is any ambiguity between the two, the
OCL statement of the constraint takes precedence. The model libraries are defined as subclasses of existing
metaclasses.

6.2.4 Usage Examples

This sub clause shows how the SysML modeling constructs can be applied to solve systems engineering problems
and is intended to reuse and/or elaborate the sample problem in Annex D.

OMG Systems Modeling Language, v1.7 19

6.3 Conventions and Typography

In the description of SysML, the following conventions have been used:

* When referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as
they appear in the model are used.

* No visibilities are presented in the diagrams, since all elements are public.
+ Ifasub clause is not applicable, it is not included, except for the top-level sub clauses outlined in Section 6.2.

+ Stereotype, metaclass, and metaassociation names: initial embedded capitals are used (e.g., “ModelElement,”
“ElementReference”).

* Boolean metaattribute names: always start with “is” (e.g., “isComposite”).

* Enumeration types: always end with “Kind” (e.g., “DependencyKind”).

20 OMG Systems Modeling Language, v1.7

OMG Systems Modeling Language, v1.7

STRUCTURAL CONSTRUCTS

21

22

This page intentionally left blank.

OMG Systems Modeling Language, v1.7

7 Model Elements

7.1 Overview

The ModelElements package of SysML defines general-purpose constructs that may be shown on multiple SysML
diagram types. These include package, model, various types of dependencies (e.g., import, access, refine,
realization), constraints, and comments. The package diagram defined in this clause is used to organize the model by
partitioning model elements into packageable elements and establishing dependencies between the packages and/or
model elements within the package. The package defines a namespace for the packageable elements. Model
elements from one package can be imported and/or accessed by another package. This organizational principle is
intended to help establish unique naming of the model elements and avoid overloading a particular model element
name. Packages can also be shown on other diagrams such as the block definition diagram, requirement diagram,
and behavior diagrams.

Constraints are used to capture simple constraints associated with one or more model elements and can be
represented on several SysML diagrams. The constraint can represent a logical constraint such as an XOR, a
condition on a decision branch, or a mathematical expression. The constraint has been significantly enhanced in
SysML as specified in Section 10, “Constraint Blocks” to enable it to be reused and parameterized to support
engineering analysis.

Comments can be associated with any model element and are quite useful as an informal means of documenting the
model. SysML has introduced an extension to a comment called rationale to facilitate the system modeler in
capturing decisions. The rationale may be attached to any entity, such as a system element (block), or to any
relationship, such as the satisfy relationship between a design element and a requirement. In the latter case, it may be
used to capture the basis for the design decision and may reference an analysis report or trade study for further
elaboration of the decision. In addition, SysML includes an extension of a comment to reflect a problem or issue that
can be attached to any other model element.

7.1.1 View and Viewpoint

The concepts of viewpoint and view are articulated in ISO-42010 (formerly IEEE-1471). SysML viewpoint and
view constructs are consistent with the ISO-42010 standard. Typical examples may include an operational,
manufacturing, or security viewpoint and view.

Systems engineers use SysML to make models of systems - the result is the system model, which is what we mean
most of the time when we speak of “the model.” Along with that model, systems engineers may also use SysML to
make a model of the information to be presented to the stakeholders to address their concerns. The result is the
viewpoint and view model, which helps systems engineers assure that stakeholders get the understanding they need
from the system model.

The viewpoint and view model can also be thought of as a description model, which augments a system model. A
viewpoint and view model exposes elements of one or more system models. In particular, a viewpoint is a
specification of rules for constructing a view to address a set of stakeholder concerns. The view is intended to
represent the system from this viewpoint. This enables stakeholders to specify aspects of the system model that are
important to them from their viewpoint, and then represent those aspects of the system in a specific view.

The viewpoint describes the point of view of a set of stakeholders by framing the concerns of the stakeholders along
with the method for producing a view that addresses those concerns. The method describes the expectation of what
stakeholder(s) wish to see exposed from the model, how the stakeholder wishes the information to be structured and
presented, and in what kind of artifact the stakeholder wants to consume the information. In other words, the method
is the set of rules that describe how the view should express the information from the model to address the
stakeholder concerns. The method can be specified as a process and/or a set of constraints for producing a view,
which may include rules or instructions for analyzing or verifying the view content.

The view is the modeling element that represents the artifact that is presented to the stakeholder. A view conforms to
only one viewpoint to ensure that only one method is applied to the view. The view shall be related to the model that
contains the information and the method that produces the view. The view is used by a rendering application to
generate the artifact, such as a document.

OMG Systems Modeling Language, v1.7 23

In summary, the viewpoint description specifies the following:

1. What kind of information the view should contain.

2. How the information should be expressed, i.e., what modeling language is required for the model that will
appear in the view. (Note: this is not to be confused with the language used for specifying the viewpoint
method).

3. The presentation format that specifies how the information should be presented in an artifact, e.g., specifying
that data values should be plotted on a graph or a particular tabular style, or that both English and Spanish text
should be provided, or that photographs be shows in color with minimum dimensions of 100 millimeters square.

4. The file format of the artifacts that are generated from the view (e.g., set of slides in ppt, a PDF, a Word
document, a web viewable format, ...).

It is important to understand that while the view is a SysML construct that exists within a SysML model, artifacts
generated from views potentially live outside of the modeling environment as the means to satisfy stakeholder
concerns. An artifact such as a movie or a PDF document is not directly incorporated in a SysML model, while the
view which represents the artifact does reside in the model as a specification of that artifact. The relationship
between the viewpoint and view model and the corresponding artifact is similar to the relationship between the
system model and the system that is the subject of the model.

7.2 Diagram Elements
Table 7.1. Graphical nodes defined by ModelElements package

ElementName Concrete Syntax Abstract Syntax Reference
N\ /

\ /
N\ /

Comment UMLA4SysML::Comment

Comment text.

AN /
AN /

N\ /
ConstraintNote N\ / UMLA4SysML::Constraint

{C1>{L1} E1.x > EZ.)Iﬁ

Element1
(any graphical node)

{constraint text}

ConstraintTextualNote UMLA4SysML::Constraint

{constraint text}

(any graphical path)

24 OMG Systems Modeling Language, v1.7

ElementName

ElementGroup

Model

PackageDiagram

PackageWith NameInTab

PackageWith Namelnside

OMG Systems Modeling Language, v1.7

Concrete Syntax

«elementGroup»
{name = "MyGroup",
size = 3}

Group criterion discription

| N
N

Element3

[]

Model A

pkg [Name]]
1

Subpackage2

; 7
«|mp0rt¢

— °

Subpackage1

Package1

1

Subpackage2

«import»
~

Subpackage1

Package1
{uri=http://www.abc.com/models/Package1}

[]

Package1

Abstract Syntax Reference

SysML::ModelElements::
ElementGroup

UML4SysML::Model

UMLA4SysML::Package

UML4SysML::Package

UMLA4SysML::Package

25

ElementName

Problem

Rationale

Stakeholder

View

Viewpoint

Concrete Syntax

«problem»
The problem is that...

«rationale»
Description of rationale

«stakeholder»
Name

«stakeholder»

concern = UL
/concernList =,

«viewy
Name

«viewy»
/stakeholder = Name1, Name2
/viewPoint = Name

property1 : View1

«viewpoint»
Name

«viewpoint»
/concern ="...","...", "..."
concernList = ,,,
language ="..."
/method = Name
presentation="...", "..."
purpose ="..."

stakeholder = Name

«Create»View()

Abstract Syntax Reference

SysML::ModelElements::Problem

SysML::ModelElements::Rationale

SysML::ModelElements::
Stakeholder

SysML::ModelElements::View

SysML::ModelElements::Viewpoint

Table 7.2. Graphical paths defined by ModelElements package

ElementName

Conform

26

Concrete Syntax

«conform»

Abstract Syntax Reference

UML4SysML::Conform

OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax
- _«eﬂ)os_e»_ _
Expose
«stereotype1»
dependency1
Dependenecy | - - - - - - = — =
o _«impoﬁ»_ o
PublicPackageImport

PrivatePackagelmport

(]

PackageContainment

Realization

Refine | - == —- === = =

7.3 UML Extensions

7.3.1 Diagram Extensions
7.3.1.1 UML Diagram Elements not Included in SysML

Abstract Syntax Reference

SysML::ModelElements::Expose

UMLA4SysML::Dependency

UMLA4SysML::PackageImport
with visibility = public

UML4SysML::PackageImport
with visibility = private

UMLA4SysML::Package::
ownedElement

UMLA4SysML::Realization

UMLA4SysML::Refine

The notation for a “merge” dependency between packages, using a «merge» keyword on a dashed-line arrow, is not
included in SysML. UML uses package merge in the definition of its own metamodel, which SysML builds on, but

SysML does not support this capability for user-level models.

NOTE: Combining packages that have the same named elements, resulting in merged definitions of the same names,
could cause confusion in user models and adds no inherent modeling capability, and so has been left out of SysML.

7.3.2 Stereotypes
Package ModelElements

OMG Systems Modeling Language, v1.7

27

«Metaclass» «Metaclass» «Metaclass» «Metaclass»

UML4SysML::Generalization UML4SysML::Class UML4SysML::Class UMLA4SysML::Classifier
1 I ! f
«stereotype» «stereotype» «stereotype» «stereotype»
Conform View Viewpoint Stakeholder
attributes attributes attributes
/stakeholder : Stakeholder [0..*] /concern : String [0..*] /concern : String [0..*]
/viewpoint : Viewpoint [1] concernList : Comment [0..*] concernList : Comment [0..*]
language : String [0..*]
«Metaclass» /method : Behavior [0..]
UML4SysML::Dependency presentation : String [0..*]
purpose : String [1]
ry stakeholder : Stakeholder [0..*]
«stereotype» «Metaclass»
Expose UML4SysML::Comment
A
«stereotype» «stereotype» «stereotype»
Rationale Problem ElementGroup
attributes

[criterion : String [0..1]

/member : Element [0..*]

name : String [1]

orderedMember : Element [0..*]{subsets member,ordered
/size : Integer [1]

Figure 7.1. Stereotypes defined in package ModelElements
7.3.2.1 Conform

Description

A Conform relationship is a generalization between a view and a viewpoint. The view conforms to the specified
rules and conventions detailed in the viewpoint. When this is done, the view is said to conform to the viewpoint.
Conform extends UML generalization.

Association Ends

» base Generalization : Generalization [1]

Constraints
* 1 general is viewpoint
The general classifier shall be an element stereotyped by Viewpoint.
Viewpoint.allInstances ()->exists(v | v.base Class =
self.base Generalization.general)
* 2 specific is view
The specific classifier shall be an element that is stereotyped by View.
View.alllInstances()->exists (v | v.base Class =

self.base Generalization.specific)

7.3.2.2 ElementGroup

28 OMG Systems Modeling Language, v1.7

Description

The ElementGroup stereotype provides a lightweight mechanism for grouping various and possibly heterogeneous
model elements by extending the capability of comments to refer to multiple annotated elements. For example, it can
group elements that are associated with a particular release of the model, have a certain risk level, or are associated
with a legacy design. The semantics of ElementGroup is modeler-defined. In particular, the body text is not
restricted. It can describe the grouped elements as well as elements or values related to the grouped elements.

Element groups are named using the name property. The criterion for membership in an element group is specified
by the body of the comment the stereotype is applied to. By grouping elements, the modeler asserts that the criterion
of the group applies to the member. Optionally, members of an element group can be ordered using its
orderedMember property.

ElementGroups appear in diagrams as comments, and properties of the stereotype appear in the notation for
stereotype properties. Grouped elements are the annotated elements of the comment to which the stereotype is
applied. This has several implications:

» Element groups do not own their elements and thus an element can participate in an unlimited number of groups.
* The elements in a group are identified by the modeler, as opposed to being the result of a query, as in views.

+ Element groups can be members of other element groups, but this does not imply that members of the first are
members of the second.

Elements related to the grouped elements are not included in the group, even though the body text can address them.
In particular, element groups annotating deeply nested properties or properties with bindings are grouping only the
properties, rather than their nesting or their bound properties.

Grouped elements are also limited to elements of models, rather than instances of values of those model elements. In
particular, element groups annotating blocks or properties are not grouping the instances of the blocks or the values
of the properties. However, since the semantics of ElementGroup is left to the modeler, the body text can refer to
related elements outside the group, such as instances and values of the grouped elements, or to bound properties.
The modeler is then responsible for writing body text that explains the implications for the related elements. For
instance:

* A group with the criterion: "Authored by John" could annotate any model element added in the model by John.
This body text does not address any related elements. For example, if the annotated element is a property bound
to another property, the group would not imply authorship of the second property.

* A group with the criterion: "Instances are manufactured in a foreign country" could annotate Blocks to indicate
that any instances of those Blocks are produced in a foreign country. This body text does not address the Block
itself, which is not necessarily "manufactured" in a foreign country.

* A group with criterion: "Values are manufactured in a foreign country" could annotate properties, including part
properties, to indicate the values of the property are produced in a foreign country. This body text does not
address the property itself, which is not necessarily "manufactured" in a foreign country. Since the text is about
values of the property, it is also about values of other properties that might be bound to the annotated property,
because the values of bound properties are the same.

Attributes

* /criterion : String [0..1]
Specifies the rationale for being member of the group. Adding an element to the group asserts that the criterion
applies to this element. Derived from Comment::body.

* /member : Element [0..*]
Set specifying the members of the group. Derived from Comment::annotatedElement.

* name : String [1]
Name of the element group.

» orderedMember : Element [0..*] {ordered, subsets member}
Organize member according to an arbitrary order.

OMG Systems Modeling Language, v1.7 29

+ /size : Integer [1]
Number of members in the group.
Association Ends

* base Comment : Comment [1]

Operations

+ allGroups (in e : Element) : ElementGroup [0..*]
The query allGroups() returns the set of all the groups an element is member of.

+ criterion () : String [0..1]
The query criterion() returns the text describing the criterion defining the group.

* member () : Element [0..*]
The query member() returns the set of all the members of the group.

+ size () : Integer [1]
The query size() returns the number of elements which are members of the group.

7.3.2.3 Expose

Description

The expose relationship relates a view to one or more model elements. Each model element is an access point to
initiate the query. The view and the model elements related to the view are passed to the constructor when it is
invoked. The method describes how the exposed elements are navigated to extract the desired information.

Association Ends

* base Dependency : Dependency [1]

Constraints
* 1 client is view
The client shall be an element stereotyped by View.
View.alllInstances()->exists (v | v.base Class =
self.base Dependency.client)

7.3.2.4 Problem

Description

A Problem documents a deficiency, limitation, or failure of one or more model elements to satisfy a requirement or
need, or other undesired outcome. It may be used to capture problems identified during analysis, design, verification,
or manufacture and associate the problem with the relevant model elements. Problem is a stereotype of comment
and may be attached to any other model element in the same manner as a comment.

Association Ends

* base_Comment : Comment [1]

7.3.2.5 Rationale

Description

A Rationale documents the justification for decisions and the requirements, design, and other decisions. A Rationale
can be attached to any model element including relationships. It allows the user, for example, to specify a rationale
that may reference more detailed documentation such as a trade study or analysis report. Rationale is a stereotype of
comment and may be attached to any other model element in the same manner as a comment.

30 OMG Systems Modeling Language, v1.7

Association Ends

* base_Comment : Comment [1]

7.3.2.6 Stakeholder

Description
A stakeholder represents a role, group, or individual who has concerns that will be addressed by the View of the
model.
Attributes
+ /concern : String [0..¥]

» concernList : Comment [0..*]

Association Ends

+ base Classifier : Classifier [1]

Constraints
* 1 not association
A Stakeholder stereotype can only be applied to UML::Actor or UML::Class which are not a UML::Association.

(self.base Classifier.oclIsKindOf (UML: :Actor) or
self.base Classifier.oclIsKindOf (UML::Class))
and not self.base Classifier.oclIsKindOf (UML::Association)

7.3.2.7 View

Description

A View is a model element that represents a real world artifact that can be presented to stakeholders. The view is the
result of querying one or more models that are defined by a viewpoint method. The view shall conform to the
viewpoint in terms of the viewpoint stakeholders, concerns, method, language, and presentation requirements.

It is sometimes desirable to construct views from other views, and to establish an order for presenting the views.
Views may include one or more views as properties, each of which conforms to their viewpoint. The order of the
referenced views is reflected in the property order.

The information may be presented to the stakeholder in any format specified by the viewpoint, which may include
figures, tables, plots, entire documents, presentation slides, or video.
Attributes

+ /stakeholder : Stakeholder [0..*]
The list of stakeholders is derived from the viewpoint the view conforms to.

+ /viewpoint : Viewpoint [1]
The viewpoint for this View is derived from the conform relationship.
Association Ends
* base Class : Class [1]

Constraints
* 1 single viewpoint
A view shall only conform to a single viewpoint.

Conform.alllInstances()->select (base Generalization.specific =
self.base Class)->size() =1

OMG Systems Modeling Language, v1.7 31

2 viewpoint derived from conform

The derived value of the viewpoint shall be the classifier stereotyped by Viewpoint that is the general classifier
of the generalization relationship stereotyped by Conform for which the View is the specific classifier.

self.viewpoint = Viewpoint.alllInstances()->any(base Class =
Conform.alllInstances()->any(base Generalization.specific =
self.base Class) .base Generalization.general)

3 _stakeholder derived from conform

The derived values of the stakeholder attribute shall be the classifiers stereotyped by Stakeholder that are the
values of the stakeholder attribute of the general classifier of the generalization relationship stereotyped by
Conform for which the View is the specific classifier.

self.stakeholder = Viewpoint.alllInstances()->any(base Class =
Conform.alllInstances ()->any(base Generalization.specific =
self.base Class) .base Generalization.general) .stakeholder

7.3.2.8 Viewpoint

Description

A Viewpoint is a specification of the conventions and rules for constructing and using a view for the purpose of
addressing a set of stakeholder concerns. They specify the elements expected to be represented in the view, and may
be formally or informally defined. For example, the security viewpoint may require the security requirements,
security functional and physical architecture, and security test cases.

Attributes

/concern : String [0..*]
The interest of the stakeholders displayed as the body of the comments from concernList.

concernList : Comment [0..*]

The interests of the stakeholders addressed by this viewpoint.

language : String [0..*]

The languages used to express the models that represent content which is represented by the view. The language
specification such as its metamodel, profile, or other language specification is referred to by its URI.

/method : Behavior [0..%]
The behavior is derived from the method of the operation with the Create stereotype.

presentation : String [0..%]

The specifications prescribed for formatting and styling the view.
purpose : String [1]

The purpose addresses the stakeholder concerns.

stakeholder : Stakeholder [0..*]
Set of stakeholders whose concerns are to be addressed by the viewpoint.

Association Ends

base Class : Class [1]

Constraints

32

1 method derived from create operations

The derived values of the method attribute shall be the names of the methods of the operations stereotyped by
the UML Create stereotype on the classifier stereotyped by Viewpoint.

self.method = self.base Class.allFeatures()->select (f |
f.oclIsKindOf (UML: :Operation))->select (o |

OMG Systems Modeling Language, v1.7

Standard: :Create.alllnstances () .base BehavioralFeature->
includes (0)) .oclAsType (UML: :Operation) .method
* 2 create view operation

The property ownedOperation shall include at least one operation named "View" with the UML Create
stereotype applied.

self.base Class.ownedOperation->exists(o | o.name='View' and
Standard::Create.allInstances () .base BehavioralFeature->includes (0))

OMG Systems Modeling Language, v1.7

33

34

This page intentionally left blank.

OMG Systems Modeling Language, v1.7

8 Blocks

8.1 Overview

Blocks are modular units of system description. Each block defines a collection of features to describe a system or
other element of interest. These may include both structural and behavioral features, such as properties and
operations, to represent the state of the system and behavior that the system may exhibit.

Blocks provide a general-purpose capability to model systems as trees of modular components. The specific kinds of
components, the kinds of connections between them, and the way these elements combine to define the total system
can all be selected according to the goals of a particular system model. SysML blocks can be used throughout all
phases of system specification and design, and can be applied to many different kinds of systems. These include
modeling either the logical or physical decomposition of a system, and the specification of software, hardware, or
human elements. Parts in these systems may interact by many different means, such as software operations, discrete
state transitions, flows of inputs and outputs, or continuous interactions.

The Block Definition Diagram in SysML defines features of blocks and relationships between blocks such as
associations, generalizations, and dependencies. It captures the definition of blocks in terms of properties and
operations, and relationships such as a system hierarchy or a system classification tree. The Internal Block Diagram
in SysML captures the internal structure of a block in terms of properties and connectors between properties. A
block can include properties to specify its values, parts, and references to other blocks. Ports are a special class of
property used to specify allowable types of interactions between blocks, and are described in Section 9, “Ports and
Flows.” Constraint Properties are a special class of property used to constrain other properties of blocks, and are
described in Section 10, “Constraint Blocks.” Various notations for properties are available to distinguish these
specialized kinds of properties on an internal block diagram.

A property can represent a role or usage in the context of its enclosing block. A property has a type that supplies its
definition. A part belonging to a block, for example, may be typed by another block. The part defines a local usage
of its defining block within the specific context to which the part belongs. For example, a block that represents the
definition of a wheel can be used in different ways. The front wheel and rear wheel can represent different usages of
the same wheel definition. SysML also allows each usage to define context-specific values and constraints
associated with the individual usage, such as 25 psi for the front tires and 30 psi for the rear tires.

Blocks may also specify operations or other features that describe the behavior of a system. Except for operations,
this clause deals strictly with the definition of properties to describe the state of a system at any given point in time,
including relations between elements that define its structure. Section 9, “Ports and Flows” specifies specific forms
of interactions between blocks, and the Behavioral Constructs including activities, interactions, and state machines
can be applied to blocks to specify their behavior. Section 15, “Allocations” describes ways to allocate behavior to
parts and blocks.

SysML blocks are based on UML classes as extended by UML composite structures. Some capabilities available for
UML classes, such as more specialized forms of associations, have been excluded from SysML blocks to simplify
the language. SysML blocks always include an ability to define internal connectors, regardless of whether this
capability is needed for a particular block. SysML Blocks also extend the capabilities of UML classes and
connectors with reusable forms of constraints, multi-level nesting of connector ends, participant properties for
composite association classes, and connector properties. SysML blocks include several notational extensions as
specified in this clause.

8.2 Diagram Elements
8.2.1 Block Definition Diagram

OMG Systems Modeling Language, v1.7 35

Table 8.1. Graphical nodes defined in Block Definition diagrams

ElementName

BlockDefinitionDiagram

Block

ValueType

Enumeration

36

Concrete Syntax

bdd [Namespace 1]]

«block» part1 «block»
Block1 1 0.* Block2

«block»
Block1
{isEncapsulated}

constraints

x>y}

parts
property1 : Block1
property2 : Block2{subsets property1}
prop3 : Block3{redefines property0}

properties
roperty5a : Block3a
property6 : Block4

references
property4 : Block1 [0..*{ordered}
property5 : Block2 [1..5]{subsets property4,nonunique}
\prop6 : Block3{union}

values
property7 : Integer = 99{readOnly}
property8 : Real = 10.0
prop9 : Boolean{redefines property00}

operations
op4()
operation2(q1 : Type1) : Type3{redefines operation2}
operation1(p1: Type1) : Type2

signal receptions
Activate()
Notify(message)

«valueType»
ValueType1

«valueType»
unit = UnitName

properties
property1 : Type3
property2 : Type4{subsets property0}
prop3 : Type5{redefines property00}
Iprop6 : Type6{union}
prop7 : Type7

operations
operation1(p1: Type1) : Type2
operation2(q1 : Type1) : Type3{redefines operation2}
op3(q1: Typel) : Type2{redefines ValueType0::0p3}

«enumeration»
Enumeration1

literalName1
literalName2

Abstract Syntax Reference

SysML::Blocks::Block,
UMLA4SysML::Package

SysML::Blocks::Block

SysML::Blocks::ValueType

UMLA4SysML::Enumeration

OMG Systems Modeling Language, v1.7

ElementName

PropertySpecificType

AbstractDefinition

StereotypeProperty Compartment

Behavior Compartment

Namespace Compartment

Structure Compartment

OMG Systems Modeling Language, v1.7

Concrete Syntax

Type
values
x : Integer

|

«pst»
APST2
values

x : Integer{redefines x}
y : Real

Name

{abstract}
Name

Name
{abstract}

«stereotype1»
Block1

«stereotype1»
property1 = "value"

Block1

classifier behavior
«statemachine»MySM1

owned behaviors

«activity»MyAct1(x : Integer)
«statemachine»MySM2(p1 : P2

Block1

Namespace

«block» part1 «block»
Block2 " Block3

Block1

structure

1

Abstract Syntax Reference

SysML::Blocks::
PropertySpecificType

UMLA4SysML::Classifier with
isAbstract equal true

UML4SysML::Stereotype

SysML::Blocks::Block

SysML::Blocks::Block

SysML::Blocks::Block

37

ElementName Concrete Syntax

BoundReference

Unit

QuantityKind

Instance Specification

Instance Specification

Instance Specification

Instance Specification

Block 1

references
property 9 : Block 1 [*]
property 11 [24..32){lower = 6, upper = 12}

I

Block 2

«endPathMultiplicity» property 11 [*}{redefines property 11,lower = 6, upper = 8}

unit1 : Unit unit2 : Unit

definitionURI ="" definitionURI =".."
description ="..." description ="..."
quantityKind = gk1, gk2 symbol =".."
symbol ="

k1 : QuantityKind

definitionURI ="..."
description ="..."
symbol ="..."

i1: Typel — 3 i2 : Type2
P

instance1 : Type1
value

instance1 : Type1
property1 =10
property2 = "value"

: Type1

instance1/property1 : Type2

instance2/property?2 : Type3
property1 = 10.0
property2 = "value"

Abstract Syntax Reference

SysML::Blocks::Blocks,
SysML::Blocks::BoundReference,
SysML::Blocks::
EndPathMultiplicity

UML4SysML::
InstanceSpecification

UMLA4SysML::
InstanceSpecification

UML4SysML::
InstanceSpecification

UMLA4SysML::
InstanceSpecification

UML4SysML::
InstanceSpecification

UMLA4SysML::
InstanceSpecification

Table 8.2. Graphical paths defined in Block Definition diagrams

ElementName Concrete Syntax

Dependency

38

«stereotype1»
dependency1

Abstract Syntax Reference

UMLA4SysML::Dependency

OMG Systems Modeling Language, v1.7

ElementName

ReferenceAssociation

PartAssociation

SharedAssociation

MultibranchPart Association

MultibranchShared Associations

Generalization

Multibranch Generalization

GeneralizationSet

BlockNamespace Containment

OMG Systems Modeling Language, v1.7

Concrete Syntax

association 1 > property1
0..1 {ordered} 1..*
Iproperty2 < association1 property1
1 {union} {subsets property0, ordered}0..*
property2 < association property1

1{redefines Block0::property0} {ordered} 0..

association1 property1
0.1 {ordered}1..*
property2 association1 property1

1 {ordered, 0.*
subsets Block0::property0}
property2

association1 property1

1{redefines property0} {ordered} 0..*

association1 property1
0..1 {ordered} 1..*
Iproperty2 association1 property1
1{union} {subsets property0, ordered} 0..*
property2 association1 property1

1{redefines property0} {ordered} 0..*

property3 association1 property1
1 0.*
association2 property2
0.
property3 association1 property1
1 0.*
association2 property2
0.~
>
{complete, disjoint} —| = {overlapping}

Abstract Syntax Reference

UMLA4SysML::Association and
UML4SysML::Property with
aggregationKind = none

UMLA4SysML::Association and
UMLA4SysML::Property with
aggregationKind = composite

UMLA4SysML::Association and
UMLA4SysML::Property with
aggregationKind = shared

UML4SysML::Association and
UML::Kernel::Property with
aggregationKind = composite

UMLA4SysML::Association and
UML::Kernel::Property with
aggregationKind = shared

UMLA4SysML::Generalization

UMLA4SysML::Generalization

UMLA4SysML::GeneralizationSet

UMLA4SysML::Class::
nestedClassifier

39

ElementName Concrete Syntax

«block» | property2 < Association1 property1| «block»
B2 |4 {ordered} 0.* | _B1
\

Association1

references

«participant» p1: B2{end = property2}
«participant» p2 : B1{end = property1}

«block»| Property2 property ™[block»)
B2 |1 {ordered} 0..* B1

. . Association1
ParticipantProperty

«block»| Property2 < propertyf (block»
B2 |1 \ {ordered) 0.*| B1
\

Association1

™ cparicpans 1~ epariiparts |
| p1:B2 | p2:B1

| {end = property2} I | {end = property1} I
|

8.2.2 Internal Block Diagram

Abstract Syntax Reference

UML4SysML::Property,
UMLA4SysML::AssociationClass

Table 8.3. Graphical nodes defined in Internal Block diagrams

ElementName Concrete Syntax

ibd Block1 J
InternalBlockDiagram c1:at P3
1

p1: Type 1 0.”

p3 : Type3
initialValues
x1=5.0
X2 = "today"

p1': Type 1 | rM:Type2 |
:values - - - =

Propert X : Integer = 4
perty Ay :Real =4.2 Apd : Type 4

part4 : Type 3

:classifier behavior
«statemachine»MySM1
Towned benaviors

«activitypMyAct1(x : Integer)
«statemachine»MySM2(p1 : P2)

«actor»
ActorPart ActorName

ActorName

40

Abstract Syntax Reference

SysML::Blocks::Block

UMLA4SysML::Property

SysML::Blocks::PartProperty
typed by UML4SysML::Actor

OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

p1: APST2 (Type)

:values

. x : Integer = 5 {redefines x} SysML::Blocks::
PropertySpecificType y @ Integer PropertySpecificType
p1: Typel
BoundReference b8 Subtyed 10,81 = | [miTeien] SysML.::Blocks::BoundReference

Table 8.4. Graphical paths defined in Internal Block diagrams

ElementName Concrete Syntax Abstract Syntax Reference
«stereotype1»
Dependency — — _ _dependenoyl _ _ UMLA4SysML::Dependency
BindingConnector «equal» UML4SysML::Connector
1 1
p1 c1: association1 p2
BidirectionalConnector 01 0 UML4SysML::Connector
c1: association1 p1
UnidirectionalConnector 0.1 0.r UML4SysML::Connector

8.3 UML Extensions

8.3.1 Diagram Extensions
8.3.1.1 Block Definition Diagram

A block definition diagram is based on the UML class diagram, with restrictions and extensions as defined by
SysML.

8.3.1.1.1 Block and ValueType Definitions

A SysML Block defines a collection of features to describe a system or other element of interest. A SysML
ValueType defines values that may be used within a model. SysML blocks are based on UML classes, as extended
by UML composite structures. SysML value types are based on UML data types. Diagram extensions for SysML
blocks and value types are described by other subheadings of this sub clause.

8.3.1.1.2 Default «block» stereotype on unlabeled box

If no stereotype keyword appears within a definition box on a block definition diagram (including any stereotype
property compartments), then the definition is assumed to be a SysML block, exactly as if the «block» keyword had
appeared before the name in the top compartment of the definition.

OMG Systems Modeling Language, v1.7 4

8.3.1.1.3 Labeled compartments

SysML allows blocks to have multiple compartments, each optionally identified with its own compartment name.
The compartments may partition the features shown according to various criteria. Some standard compartments are
defined by SysML itself, and others can be defined by the user using tool-specific facilities. Compartments may
appear in any order. SysML defines two additional compartments, namespace and structure compartments, which
may contain graphical nodes rather than textual constraint or feature definitions. See separate sub clauses for a
description of these compartments.

Compartment names shall comply with the following notation: Shown in italics, where permitted by the font in use.

1. Centered
2. All lower case

3. Words separated by spaces

8.3.1.1.4 Behavior compartment

A compartment with the label “classifier behavior” or “owned behaviors” may appear as part of a block definition to
list the classifier behavior or owned behaviors, respectively. This compartment may contain text representations of
any kind of behavior.

Behaviors represented in this compartment are shown as a text string of the form:

<name> ‘(’ [<parameter-list>])’ [:” [<return-type-list>]] [<behavior-constraint>]

where:

* <name> is the name of the Behavior.
* <parameter-list> is a list of Parameters of the Behavior in the format defined in UML.
» <return-type-list> is list of types, multiplicities, and other properties of parameters with return direction.

<return-type-list> ::= <return-type-mult-prop> [, <return-type-mult-prop> | *
<return-type-mult-prop> =
<return-type> [‘[<multiplicity-range> ‘]’] [*{‘ <param-prop-list> ‘}’]]

(see UML for definition of <multiplicity-range>)

<param -prop-list> ::= <param -prop> [‘,” <param -prop>]*

<param -prop> ::= ‘ordered’ | “‘unordered’ | “‘unique’ | ‘nonunique’ | ‘seq’ | ‘sequence’

* <behavior-constraint> is a constraint that applies to the behavior.

Other syntax defined by UML can be included, such as for applied stereotypes or the behavior's metaclass as a
keyword before the name (for example «stateMachine»).

8.3.1.1.5 Constraints compartment

SysML defines a special form of compartment, with the label “constraints,” which may contain one or more
constraints owned by the block. A constraint owned by the block may be shown in this compartment using the
standard text-based notation for a constraint, consisting of a string enclosed in brace characters. The use of a
compartment to show constraints is optional. The note-based notation, with a constraint shown in a note box outside
the block and linked to it by a dashed line, may also be used to show a constraint owned by a block.

A constraints compartment may also contain declarations of constraint properties owned by the block. A constraint
property is a property of the block that is typed by a ConstraintBlock, as defined in Section 10. Only the declaration
of the constraint property may be shown within the compartment, not the details of its parameters or binding
connectors that link them to other properties.

8.3.1.1.6 Namespace compartment

A compartment with the label “namespace” may appear as part of a block definition to show blocks and other
NamedElements that are defined in the Namespace of a containing block. This compartment may contain any of the
graphical elements of a block definition diagram. All NamedElements that are shown in this compartment belong to
the Namespace of the containing block, provided this is legal. Elements that cannot be owned by a Block, like
Dependencies, may still be shown in the compartment, but without implications for their owner. Relationships

42 OMG Systems Modeling Language, v1.7

between Elements inside and outside of the block’s Namespace may also be shown. Since the relationship is then
half outside of the compartment, no conclusion about ownership can be drawn from the diagram.

Because this compartment contains graphical elements, a wider compartment than typically used for feature
definitions may be useful. Since the same block can appear more than once in the same diagram, it may be useful to
show this compartment as part of a separate definition box than a box that shows only feature compartments. Both
namespace and structure compartments, which may both need a wide compartment to hold graphical elements, could
also be shown within a common definition box.

8.3.1.1.7 Structure compartment

A compartment with the label “structure” may appear as part of a block definition to show connectors and other
internal structure elements for the block being defined. This compartment may contain any of the graphical elements
of an internal block diagram.

Because this compartment contains graphical elements, a wider compartment than typically used for feature
definitions may be useful. Since the same block can appear more than once in the same diagram, it may be useful to
show this compartment as part of a separate definition box than a box that shows only feature compartments. Both
namespace and structure compartments, which may both need a wide compartment to hold graphical elements, could
also be shown within a common definition box.

8.3.1.1.8 BoundReference compartment

A compartment with the label “bound references” may appear as part of a block definition to show properties with
the BoundReference stereotype applied. The properties omit the “«boundReference»” prefix.

8.3.1.1.9 Receptions compartment

A compartment with the label “receptions” may appear as part of a block definition to show signal receptions. The
“«signal»” keyword is optional in this compartment.

8.3.1.1.10 Default multiplicities

SysML defines defaults for multiplicities on the ends of specific types of associations. A part or shared association
has a default multiplicity of [0..1] on the black or white diamond end. A unidirectional association has a default
multiplicity of 1 on its target end. These multiplicities may be assumed if not shown on a diagram. To avoid
confusion, any multiplicity other than the default should always be shown on a diagram.

8.3.1.1.11 Property-specific type

The notation for properties typed by a property-specific type shows the name of the most specific generalization of
the property-specific type that is not a property-specific type (or nothing if there is no generalization) between
parentheses after the name of the property-specific type (or after the colon if the property-specific type has no
name).

The keyword for PropertySpecificType is «pst».
8.3.1.1.12 Units on value properties

Value properties can optionally display the unit’s symbol in parentheses if value type has a unit defined.
If no unit symbol is defined, then the unit name can optionally be displayed.

<vpname> ":" <valueTypename> [" (" <unitSymbol | unitName> ")"]

e.g., distance:Length (m)

8.3.1.1.13 Units on values

Any ValueSpecification can optionally display the unit's symbol if it has a type which is a ValueType.

If ValueSpecification has no type and it is used as a value of a slot, then it takes the unit from defining feature type.
If ValueSpecification has no type and it is used as a default value of a value property, it takes the unit from that
property type.

If no unit symbol is defined, then the unit name may be displayed.

OMG Systems Modeling Language, v1.7 43

<value> [" " <unitSymbol | unitName>]
e.g., distance:Length = 10 m

8.3.1.2 Internal Block Diagram

An internal block diagram is based on the UML composite structure diagram, with restrictions and extensions as
defined by SysML.

8.3.1.2.1 Property types

Four general categories of properties of blocks are recognized in SysML: parts, references, value properties, and
constraint properties. (See Section 8.3.2.3 for definitions of these property types.) A part or value property is always
shown on an internal block diagram with a solid-outline box. A reference property is shown by a dashed-outline
box, consistent with UML. Ports are special cases of properties, and have a variety of notations as defined in Section
9, “Ports and Flows.” Constraint properties and their parameters also have their own notations as defined in Section
10, “Constraint Blocks.”

8.3.1.2.2 Block reference in diagram frame

The diagram heading name for an internal block diagram (the string contained in the tab in the upper-left-hand
corner of the diagram frame) shall identify the name of a SysML block as its modelElementName. (See Annex A for
the definition of a diagram heading name including the modelElementName component.) All the properties and
connectors that appear inside the internal block diagram belong to the block that is named in the diagram heading
name

8.3.1.2.3 Compartments on internal properties

SysML permits any property shown on an internal block diagram to also show compartments within the property
box. These compartments may be given standard or user-customized labels just as on block definitions. All features
shown within these compartments shall match those of the block or value type that types the property. An unlabeled
compartment on an internal property box is by default a structure compartment. A behavior compartment label and
content shall match the corresponding behavior compartment of the block that types the part. A compartment with
the label “classifier behavior” or “owned behaviors” may contain the classifier behavior or owned behaviors of the
block that types the part which will then appear as specified in Section 8.3.1.1.4, Behavior compartment.

The label of any compartment shown on the property box that displays contents belonging to the type of the property
is shown with a colon character (“:””) preceding the compartment label. The compartment name is otherwise the
same as it would appear on the type on a block definition diagram.

8.3.1.2.4 Compartments on a diagram frame

SysML permits compartments to be shown across the entire width of the diagram frame on an internal block
diagram. These compartments shall always follow an initial compartment that always shows the internal structure of
a referenced block. These compartments may have all the same contents as could be shown on a block definition
diagram for the block defined at the top level of the diagram frame.

8.3.1.2.5 Property path name

A property name shown inside or outside the property box may take the form of a multi-level name. This form of
name references a nested property accessible through a sequence of intermediate properties from a referencing
context. The name of the referenced property is built by a string of names separated by “.”, resulting in a form of
path name that identifies the property in its local context. A colon and the type name for the property may optionally
be shown following the dotted name string. If any of the properties named in the path name string identifies a
reference property, the property box is shown with a dashed-outline box, just as for any reference property on an

internal block diagram.

This notation is purely a notational shorthand for a property that could otherwise be shown within a structure of
nested property boxes, with the names in the dotted string taken from the name that would appear at each level of
nesting. In other words, the internal property shown with a path name in the left-hand side of Fig. 8.1 is equivalent
to the innermost nested box shown at the right.

44 OMG Systems Modeling Language, v1.7

If the property has no name, the property’s type name can be used instead.
e.g., car:Engine:Cylinder:Piston.length car.e.c.p.length

P1 : Block 1 P1 : Block 1
Name 1
Name 2
A
Name 1.Name 2.Name 3 Name 3

Figure 8.1. Nested property reference
8.3.1.2.6 Nested connector end

Connectors may be drawn that cross the boundaries of nested properties to connect to properties within them. The
connector is owned by the most immediate block that owns both ends of the connector. A NestedConnectorEnd
stereotype of a UML ConnectorEnd is automatically applied to any connector end that is nested more than one level
deep within a containing context.

Use of nested connector ends does not follow strict principles of encapsulation of the parts or other properties that a
connector line may cross. The need for nested connector ends can be avoided if additional properties can be added to
the block at each containing level. Nested connector ends are available for cases where the introduction of these
intermediate properties is not feasible or appropriate.

The ability to connect to nested properties within a containing block requires that multiple levels of decomposition
be shown on the same diagram.

8.3.1.2.7 Property-specific type

The notation for properties typed by a property-specific type shows the name of the most specific generalization of
the property-specific type that is not a property-specific type (or nothing if there is no generalization) between
parentheses after the name of the property-specific type (or after the colon if the property-specific type has no
name).

8.3.1.2.8 Initial values compartment

A compartment with a label of “initial Values” may be used to show values of properties belonging to a containing
block. These values override any default values that may have been previously specified on these properties on their
originally defining block. Initial value compartments may be specified within nested properties, which then apply
only in the particular usage context defined by the outermost containing block.

Values are specified in an initial Values compartment by lines in the form <property-name> = <value-specification>
or <property-name> : <type> = <value-specification>, each line of which specifies the initial value for one property
owned either by the block that types the property or by any of its supertypes. This portion of concrete syntax is the
same as may be shown for values within the UML instance specification notation, but this is the only element of
UML InstanceSpecification notation that may be shown in an initial values compartment. See Section 8.3.2.3 for
details of how values within initial Values compartments are represented in the SysML metamodel.

8.3.1.2.9 Default multiplicities

SysML defines default multiplicities of 1 on each end of a connector. These multiplicities may be assumed if not
shown on a diagram. To avoid confusion, any multiplicity other than the default should always be shown on a
diagram.

OMG Systems Modeling Language, v1.7 45

8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams

The supported variety of notations for associations and association annotations has been reduced to simplify the
burden of teaching, learning, and interpreting SysML diagrams for the systems engineering user. Notational and
metamodel support for n-ary associations and qualified associations has been excluded from SysML. The use of
navigation arrowheads on an association has been simplified by excluding the case of arrowheads on both ends, and
requiring that such an association always be shown without arrowheads on either end. An “X” on a single end of an
association to indicate that an end is not navigable has similarly been dropped, as has the use of a small filled dot at
the end of an association to indicate that the end is owned by the associated classifier.

UML allows representing owned attributes using an association-like notation (see UML 2.5.1, Figure 9-12). This
notation does not show any multiplicity on the opposite end since there is no corresponding property. In such a case,
the multiplicity on the opposite side of the association-like notation is the less constrained possible. That is: "0..1" if
the attribute has a composite aggregation and "0..*" otherwise. However, it is a common practice for modelers to
assume that, when not shown, the multiplicity of an association end is the default multiplicity (i.e., "1..1"). This
might create ambiguity because there is no practical way to distinguish between the association-like notation and a
"true" association. The association-like notation is excluded from SysML to avoid it.

The use of a «primitive» keyword on a value type definition (which in UML specifies the PrimitiveType
specialization of UML DataType) is not supported. Whether or not a value type definition has internal structure can
be determined from the value type itself.

8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

The UML Composite Structure diagram has many notations not included in the subset defined in this clause. Other
SysML clauses add some of these notations into the supported contents of an internal block diagram.

8.3.2 Stereotypes
Package Blocks

«Metaclass»
UML4SysML::Class

«stereotype»
Block

attributes
isEncapsulated : Boolean [0..1]

Figure 8.2. Abstract syntax extensions for SysML blocks

46 OMG Systems Modeling Language, v1.7

«Metaclass»
UML4SysML::Property

«stereotype» «stereotype»
ParticipantProperty DistributedProperty
attributes

end : Property [1]

Figure 8.3. Abstract syntax extensions for SysML properties

«Metaclass»
UML4SysML::DataType

T

«stereotype»

ValueType

quantityKinql,O.J

«Metaclass»
UML4SysML::InstanceSpecification

unitTO..1

Figure 8.4. Abstract syntax extensions for SysML value types

OMG Systems Modeling Language, v1.7

47

«Metaclass»
UML4SysML::Element

A
«Metaclass»
«stereotype» propertyPath: UMLA4SysML::Property
ElementPropertyPath 1.*
{ordered, nonunique}
sourcePropertyPath | 0..* 0..*
{ordered, nonunique}
«Metaclass»
UML4SysML::DirectedRelationship
«stereotype»
DirectedRelationshipPropertyPath |q =«
0..*
«Metaclass»
sourceContext| 1 4SysML::Classifier
0..* 0.1
targetContext
0..* 0..1

Figure 8.5. Abstract syntax extensions for SysML property paths

«Metaclass»
UML4SysML::Connector

UML4SysML::ConnectorEnd

«Metaclass»

«stereotype»
ElementPropertyPath

«stereotype»
BindingConnector

NestedConnectorEnd

«stereotype»

Figure 8.6. Abstract syntax extensions for SysML connector ends

«Metaclass»

UML4SysML::Classifier

A

«stereotype»

PropertySpecificType

Figure 8.7. Abstract syntax extensions for SysML property-specific types

48

OMG Systems Modeling Language, v1.7

targetPropertyPath
{ordered, nonunique}

«Metaclass»
UML4SysML::Property
A

«stereotype»
EndPathMultiplicity

attributes
lower : Integer [0..1] = 0
upper : UnlimitedNatural [0..1] = *

i

«stereotype»
BoundReference

attributes
/bindingPath : Property [1..*]{ordered,nonunique
boundEnd : ConnectorEnd [1]

Figure 8.8. Abstract syntax extensions for SysML bound references

«Metaclass»
UML4SysML::Property

r 1

«stereotype» «stereotype» principal «Metaclass»
ClassifierBehaviorProperty AdjunctProperty |0..* 1 UML4SysML::Element

Figure 8.9. Abstract syntax extensions for SysML adjunct properties and classifier behavior properties

8.3.2.1 AdjunctProperty

Description

The AdjunctProperty stereotype can be applied to properties to constrain their values to the values of connectors
typed by association blocks, call actions, object nodes, variables, or parameters, interaction uses, and submachine
states. The values of connectors typed by association blocks are the instances of the association block typing a
connector in the block having the stereotyped property. The values of call actions are the executions of behaviors
invoked by the behavior having the call action and the stereotyped property (see Section 11.3.1.1.1 Notation for
more about this use of the stereotype). The values of object nodes are the values of tokens in the object nodes of the
behavior having the stereotyped property (see Section 11.3.1.4.1 Notation for more about this use of the stereotype).
The values of variables are those assigned by executions of activities that have the stereotyped property. The values
of parameters are those assigned by executions of behaviors that have the stereotyped property. The keyword
«adjunct» before a property name indicates the property is stereotyped by AdjunctProperty.

Association Ends
+ base Property : Property [1]
* principal : Element [1]
Gives the element that determines the values of the property.
Constraints
* 10 multiplicity same or less restrictive

Properties with AdjunctProperty applied that have a Variable or Parameter as principal shall have a lower
multiplicity the same as or lower than the lower multiplicity of their principal, and an upper multiplicity the
same as or higher than the upper multiplicity of their principal.

OMG Systems Modeling Language, v1.7 49

50

self.principal.oclIsKindOf (UML: :MultiplicityElement) implies
self.base Property.lower <=
self.principal.oclAsType (UML: :MultiplicityElement) .lower and
self.base Property.upper >=
self.principal.oclAsType (UML: :MultiplicityElement) .upper

11 submachine and interactionuse composite and compatible type

Properties with AdjunctProperty applied that have an InteractionUse or submachine State as principal shall be
composite and be typed by the interaction or state machine invoked by the interaction use or submachine State or
one of their generalizations.

self.principal.oclIsKindOf (UML: :InteractionUse) or
self.principal.oclIsKindOf (UML::State) implies let behavior:
UML: :Behavior = 1if self.principal.oclIsKindOf (UML::InteractionUse)

then self.principal.oclAsType (UML: :InteractionUse) .refersTo else
self.principal.oclAsType (UML: :State) .submachine endif in if
behavior.oclIsUndefined() then self.base Property.type->isEmpty() else
self.base Property.type->notEmpty () and behavior->closure (generalization)->
including (behavior)->includes (self.base Property.type) endif

1 principal kind

The principal of an applied AdjunctProperty shall be a Connector, CallAction, ObjectNode, Variable, Parameter,
submachine State, or InteractionUse.

self.principal.oclIsKindOf (UML: :Connector) or
self.principal.oclIsKindOf (UML: :CallAction) or
self.principal.oclIsKindOf (UML: :ObjectNode) or
self.principal.oclIsKindOf (UML: :Variable) or
self.principal.oclIsKindOf (UML: :Parameter) or
self.principal.oclIsKindOf (UML: :InteractionUse) or
(self.principal.oclIsKindOf (UML: :State) and
self.principal.oclAsType (UML: :State) .isSubmachineState)

2 _same name

Properties to which AdjunctProperty applied shall have the same name as the principal, if the principal is a
NamedElement.

self.principal.oclIsKindOf (UML: :NamedElement) implies
self.base Property.name =
self.principal.oclAsType (UML: :NamedElement) .name
3_connector_and callaction composite
Properties with AdjunctProperty applied that have a Connector or CallAction as principal shall be composite.
self.principal.oclIsKindOf (UML: :Connector) or
self.principal.oclIsKindOf (UML::CallAction) implies
self.base Property.isComposite ()
4 same owner

Properties with AdjunctProperty applied shall be owned by an element that owns the principal, at least indirectly,
or one of that elements specializations.

let owners: Set(UML::Element) = self.principal->closure (owner) in let
specializations: Set (UML::Element) = UML::Classifier.allInstances()->

OMG Systems Modeling Language, v1.7

select (c | c->closure(general)->intersection (owners)->notEmpty()) in
owners->union (specializations)->includes (self.base Property.owner)

* 5 compatible type

Properties with AdjunctProperty applied that have as principal a Connector, ObjectNode, Variable, or Parameter
shall have the same type as the principal or one of that types generalizations.

self.principal.oclIsKindOf (UML: :Connector) or
self.principal.oclIsKindOf (UML: :Variable) or
self.principal.oclIsKindOf (UML: :Parameter) implies 1let principal type:
UML::Classifier = if self.principal.oclIsKindOf (UML: :Connector) then
self.principal.oclAsType (UML: :Connector) .type else
self.principal.oclAsType (UML: :TypedElement) .type.oclAsType (UML: :Classifier)
endif in principal type->closure(general)->including(principal type)->
includes (self.base Property.type)

* 6 _connector principal associationblock
Connectors that are principals of an applied AdjunctProperty shall have association blocks as types.

self.principal.oclIsKindOf (UML: :Connector) implies let type:
UML: :Association = self.principal.oclAsType (UML: :Connector) .type in
Block.allInstances () .base Class->includes (type)

* 7 adjunctproperty connectorproperty consistent

AdjunctProperty and ConnectorProperty applied to the same property shall have the same values for principal
and connector, respectively.

AdjunctProperty.allInstances ()->forAll (ap | let cp: ConnectorProperty =
ConnectorProperty.allInstances ()->any(base Property=ap.base Property) in
(not cp.oclIsUndefined()) implies cp.connector = ap.principal)

* 8 callAction composite and consistent type

Properties with AdjunctProperty applied that have a CallAction as principal shall be composite and be typed by
the behavior invoked by the call action or one of that behaviors generalizations (for CallOperationActions, this
shall generalize all behaviors that might be dispatched), and an upper multiplicity of one if the CallAction
invokes a nonreentrant behavior.

self.principal.oclIsKindOf (UML::CallAction) implies if
self.principal.oclIsKindOf (UML: :CallOperationAction) then 1let called:
Set (UML: :Behavior) =
self.principal.oclAsType (UML: :CallOperationAction) .operation.method in

if called->isEmpty () then self.base Property.type->isEmpty() else
self.base Property.type->notEmpty() and called->forAll(b | b.general->
including (b)->includes (self.base Property.type)) endif else 1let called:

UML: :Behavior = if self.principal.oclIsKindOf (UML::CallBehaviorAction)
then self.principal.oclAsType (UML::CallBehaviorAction) .behavior
else
self.principal.oclAsType (UML: :StartObjectBehaviorAction) .behavior ()
endif in if called.oclIsUndefined() then

self.base Property.type.oclIsUndefined() else let behaviors:

Set (UML: :Behavior) = called->

closure (generalization) .oclAsType (UML: :Behavior)->including (called)->
asSet () in self.base Property.type->notEmpty () and behaviors->

includes (self.base Property.type) endif endif

OMG Systems Modeling Language, v1.7 51

* 9 objectnode multiplicity

Properties with AdjunctProperty applied that have an ObjectNode as principal shall have a lower multiplicity of
zero and an upper multiplicity the same as or higher than the upperBound of the ObjectNode.

self.principal.oclIsKindOf (UML: :ObjectNode) implies
self.base Property.lower = 0 and self.base Property.upper >=
self.principal.oclAsType (UML: :ObjectNode) .upperBound.unlimitedValue ()

8.3.2.2 Binding Connector

Description

A Binding Connector is a connector which specifies that the properties at both ends of the connector have equal
values. If the properties at the ends of a binding connector are typed by a ValueType, the connector specifies that the
instances of the properties shall hold equal values, recursively through any nested properties within the connected
properties. If the properties at the ends of a binding connector are typed by a Block, the connector specifies that the
instances of the properties shall refer to the same block instance. As with any connector owned by a SysML Block,
the ends of a binding connector may be nested within a multi-level path of properties accessible from the owning
block. The NestedConnectorEnd stereotype is used to represent such nested ends just as for nested ends of other
SysML connectors.

Association Ends

* base Connector : Connector [1]

Constraints
* 1 compatible types

The two ends of a binding connector shall have either the same type or types that are compatible so that equality
of their values can be defined.

self.base Connector.end->

at(l) .role.type.conformsTo (self.base Connector.end->at(2) .role.type) or
self.base Connector.end->

at (2) .role.type.conformsTo (self.base Connector.end->at (1) .role.type)

8.3.2.3 Block

Description

A Block is a modular unit that describes the structure of a system or element. It may include both structural and
behavioral features, such as properties and operations, which represent the state of the system and behavior that the
system may exhibit. Some of these properties may hold parts of a system, which can also be described by blocks that
type the properties. Properties without types do not restrict the instances that can be values of the properties, as if
they had the most general type possible. A block may include a structure of connectors between its properties to
indicate how its parts or other properties relate to one another.

SysML blocks provide a general-purpose capability to describe the architecture of a system. They provide the ability
to represent a system hierarchy, in which a system at one level is composed of systems at a more basic level. They
can describe not only the connectivity relationships between the systems at any level, but also quantitative values or
other information about a system.

SysML does not restrict the kind of system or system element that may be described by a block. Any reusable form
of description that may be applied to a system or a set of system characteristics may be described by a block. Such
reusable descriptions, for example, may be applied to purely conceptual aspects of a system design, such as
relationships that hold between parts or properties of a system.

Connectors owned by SysML blocks may be used to define relationships between parts or other properties of the
same containing block. Connectors can be typed by associations, which can specify more detail about the links
between parts or other properties of a system, along with the types of the connected properties. Associations can also

52 OMG Systems Modeling Language, v1.7

be blocks, and when used to type connectors give relationships their own interconnected parts and other properties.
Connectors without types do not restrict the way the connected properties are linked together, as if they had the most
general type possible. Connectors have both structural and behavioral functions, which can be used together or
separately. Connectors as structure specify links between parts or other properties of a system. Connectors as
behavior specify communication and item flow between parts or other properties. Connected properties can be
linked without specifying communication and item flow, or can specify communication and item flow without
specifying a particular kind of link, or both.

SysML excludes variations of associations in UML in which navigable ends can be owned directly by the
association. In SysML, navigation is equivalent to a named property owned directly by a block. The only form of an
association end that SysML allows an association to own directly is an unnamed end used to carry an inverse
multiplicity of a reference property. This unnamed end provides a metamodel element to record an inverse
multiplicity, to cover the specific case of a unidirectional reference that defines no named property for navigation in
the inverse direction. SysML enforces its equivalence of navigation and ownership by means of constraints that the
block stereotype enforces on the existing UML metamodel.

SysML establishes four basic classifications of properties belonging to a SysML Block or ValueType. A property
typed by a SysML Block that has composite aggregation is classified as a part property, except for the special case
of a constraint property. Constraint properties are further defined in Section 10. A port is another category of
property, as further defined in Section 9. A property typed by a Block that does not have composite aggregation is
classified as a reference property. A property typed by a SysML ValueType is classified as a value property, and
always has composite aggregation. Part, reference, value, and constraint properties may be shown in block definition
compartments with the labels "parts," "references," "values," and "constraints" respectively. Properties of any type
may be shown in a "properties" compartment or in additional compartments with user-defined labels.

On a block definition diagram, a part property is shown by a black diamond symbol on an association. As in UML,
an instance of a block may be included in at most one instance of a block at a time, though possibly as a value of
more than one part property of the containing block. A part property holds instances that belong to a larger whole.
Typically, a part-whole relationship means that certain operations that apply to the whole also apply to each of the
parts. For example, if a whole represents a physical object, a change in position of the whole could also change the
position of each of the parts. A property of the whole such as its mass could also be implied by its parts. Operations
and relationships that apply to parts typically apply transitively across all parts of these parts, through any number of
levels. A particular application domain may establish its own interpretation of part-whole relationships across the
blocks defined in a particular model, including the definition of operations that apply to the parts along with the
whole. For software objects, a typical interpretation is that delete, copy, and move operations apply across all parts
of a composite object.

SysML also supports properties with shared aggregation, as shown by a white diamond symbol on an association.
Like UML, SysML defines no specific semantics or constraints for properties with shared aggregation, but particular
models or tools may interpret them in specific ways.

In addition to the form of default value specifications that SysML supports on properties of a block (with an optional
"=" <value-specification> string following the rest of a property definition), SysML supports an additional form of
value specification for properties using initialValue compartments on an internal block diagram (see Section
8.3.1.2.8). An entire tree of context-specific values can be specified on a containing block to carry values of nested
properties as shown on an internal block diagram.

Context-specific values are represented in the SysML metamodel by means of the InstanceValue subtype of UML
ValueSpecification. Selected slots of UML instance specifications referenced by these instance values carry the
individual values shown in initial Value compartments.

If a property belonging to a block has a specification of initial values for any of the properties belonging to its type,
then the default value of that property shall be a UML InstanceValue element. This element shall reference a UML
InstanceSpecification element created to hold the initial values of the individual properties within its usage context.

Selected slots of the referenced instance specification shall contain value specifications for the individual property
values specified in a corresponding initialValues compartment. If a value of a property is shown by a nested property
box with its own initial Values compartment, then the slot of the instance specification for the containing property
shall hold a new InstanceValue element. Selected slots of the instance specification referenced by this value shall
contain value specifications for any nested initial values, recursively through any number of levels of nesting. A tree

OMG Systems Modeling Language, v1.7 53

of instance values referencing instance specifications, each of which may in turn hold slots carrying instance values,
shall exist until self-contained value specifications are reached at the leaf level.

Attributes

isEncapsulated : Boolean [0..1]

If true, then the block is treated as a black box; a part typed by this black box can only be connected via its ports
or directly to its outer boundary. If false, or if a value is not present, then connections can be established to
elements of its internal structure via deep-nested connector ends.

Association Ends

base Class : Class [1]

Constraints

54

1 associations binary
For an association in which both ends are typed by blocks, the number of ends shall be exactly two.

UML: :Association.allInstances ()->select (al a.memberEnd->forAll(e| e.type->
notEmpty () and Block.alllInstances () .base Class->includes (e.type)))->
forAll (a | a.memberEnd->size ()=2)

2 connectors binary

The number of ends of a connector owned by a block shall be exactly two. (In SysML, a binding connector is not
typed by an association, so this constraint is not implied entirely by the preceding constraint.)

self .base Class.ownedConnector->forAll(c | c.end->size()=2)

5 uml connector constraint removed

The following constraint under 11.8, "Connector" in the UML 2 standard is removed by SysML: "The
ConnectableElements attached as roles to each ConnectorEnd owned by a Connector must be roles of the
Classifier that owned the Connector, or they must be ports of such roles.

-- Cannot be expressed in OCL

6 _valueproperties composite

If a property owned by a SysML Block or SysML ValueType is typed by a SysML ValueType, then the
aggregation attribute of the property shall be "composite."

self.base Class.ownedAttribute->select (al
ValueType.alllnstances () .base DataType->includes (a.type))->
forAll (ala.isComposite())

7 _composition acyclic

Within an instance of a SysML Block, the values of any property with composite aggregation (aggregation =
composite) shall not contain the block in any of its own properties that also have composite aggregation, or
within any unbroken chain of properties that all have composite aggregation. (Within an instance of a SysML
Block, the instances of properties with composite aggregation shall form an acyclic graph.)

self.base Class->closure (part->
select (plp.type.oclIsKindOf (UML: :Class)) .type.oclAsType (UML: :Class))->
excludes (self.base Class)

8 specializations_are blocks

Any classifier that specializes a Block shall also have the Block stereotype or one of its specializations applied.

OMG Systems Modeling Language, v1.7

UML: :Classifier.allInstances()->select(c | c.general->
includes (self.base Class))->forAll(c | Block.allInstances ()->includes(c))

* 9 valueproperties composite

The following constraint under 11.8,"ConnectorEnd" in the UML 2 standard is removed by SysML: "[3] The
property held in self.partWithPort must not be a Port."

self.base Class.ownedAttribute->select (a]
ValueType.alllnstances () .base DataType->includes (a.type))->
forAll (ala.isComposite())

8.3.2.4 Bound Reference

Description

The BoundReference stereotype can be applied to properties that have binding connectors, to highlight their usage as
constraining other properties. The bound end of the stereotype is a connector end of one of the binding connectors,
path of the bound end, if it is a nested connector end.

The type of stereotyped property constrains the type of the values of the bound properties. The multiplicity of the
stereotyped property constrains the number of values of the bound properties, which is the total number of values
reached by navigation through property paths of nested connector ends, if any. The multiplicities at the end of path
can be constrained, because bound references are end path multiplicities (see Section 8.3.2.9, EndPathMultiplicity).

Properties with BoundReference applied and upper multiplicity greater than one are ordered, with values ordered
according to when they are reached in navigating the binding path (and how they are ordered within their blocks),
and non-unique, to support paths that lead to or pass through the same object.

Generalizations

* EndPathMultiplicity (from Blocks)

Attributes

* /bindingPath : Property [1..*] {ordered, nonunique}
Gives the propertyPath of the NestedConnectorEnd applied, if any, to the boundEnd, appended to the role of the
boundEnd.

* boundEnd : ConnectorEnd [1]
Gives a connector end of a binding connector opposite to the end linked to the stereotyped property, or linked to
a property that generalizes the stereotyped one through redefinition.

Association Ends

+ base Property : Property [1]

Constraints
* 1 bindingconnector end

Properties to which BoundReference is applied shall be the role of a connector end of at least one binding
connector, or generalized by such a property through redefinition.

BindingConnector.alllInstances () .base Connector.end.role->exists(r |
r=self.base Property or self.base Property->closure(redefinedElement)->
includes (r))

* 2 opposite bindingconnector end

The value of boundEnd shall be a connector end of a binding connector, as identified in constraint 1, opposite
the property, as identified in constraint 1.

OMG Systems Modeling Language, v1.7 55

56

let opposite: UML::ConnectorEnd =
BindingConnector.alllInstances () .base Connector.end->any(e |
e.role=self.base Property or self.base Property->

closure (redefinedElement)->includes (e.role)) in self.boundEnd =
opposite.owner.oclAsType (UML: :Connector) .end->any (e | e<>opposite)

3 _navigable

The role of boundEnd shall be a property accessible by navigation from instances of the block owning the
property to which BoundReference is applied, but shall not be the property to which BoundReference is applied,
or one that it is related to by redefinition.

self.base Property.association->notEmpty () and
self.boundEnd.definingEnd->notEmpty () and
self.base Property.association.navigableOwnedEnd->
includes (self.boundEnd.definingEnd)

4 propertypath consistency

The last value of bindingPath shall be the role of boundEnd, and the other values shall be the propertyPath of the
NestedConnectorEnd applied to boundEnd, if any.

self.boundEnd = self.bindingPath->last() and (let nce:
NestedConnectorEnd = NestedConnectorEnd.allInstances ()->any(n]
n.base ConnectorEnd=self.boundEnd) in nce->oclIsUndefined() or
self.bindingPath->subSequence (1, self.bindingPath->size()-1) =
nce.propertyPath)

5 reference or valueproperty

Properties to which BoundReference is applied shall either be reference properties or value properties.
ValueType.alllInstances () .base DataType->includes (self.base Property.type)
or not self.base Property.isComposite ()

6_ordered nonunique

Properties with BoundReference applied that have an upper multiplicity greater than one shall be ordered and
non-unique.

self.base Property.upper > 1 implies self.base Property.isOrdered and
not self.base Property.isUnique

7 cannot redefine boundreference

BoundReferences shall not be applied to properties that are related by redefinition to other properties with
BoundReference applied.

self.base Property.redefinedElement->notEmpty() implies
BoundReference.allInstances () .base Property->
excludesAll (self.base Property.redefinedElement)

8 notbounded to itslef

The binding connector identified in constraint 1 shall not have the same property on both ends, or properties
related by redefinition.

let el: UML::ConnectorEnd =
self.boundEnd.owner.oclAsType (UML: :Connector) .end->at (1) in let e2:

UML: :ConnectorEnd = self.boundEnd.owner.oclAsType (UML: :Connector) .end->
at(2) in el.role <> e2.role and (el.role.oclIsKindOf (UML::Property) and
e2.role.oclIsKindOf (UML: :Property) implies

OMG Systems Modeling Language, v1.7

el.role.oclAsType (UML: : Property) .redefinedElement->excludes (e2.role) and
e2.role.oclAsType (UML: :Property) .redefinedElement->excludes (el.role))

8.3.2.5 ClassifierBehaviorProperty

Description

The ClassifierBehaviorProperty stereotype can be applied to properties to constrain their values to be the executions
of classifier behaviors. The value of properties with ClassifierBehaviorProperty applied are the executions of
classifier behaviors invoked by instantiation of the block that owns the stereotyped property or one of its
specializations.

Association Ends

* base Property : Property [1]

Constraints
* 1 owner classifierbehavior

ClassifierBehaviorProperty shall only be applied to properties owned (not inherited) by blocks that have
classifier behaviors.

Block.allInstances () .base Class->exists(c | c.ownedAttribute->
includes (self.base Property) and c.classifierBehavior->notEmpty())

* 2 _composite

Properties to which ClassifierBehaviorProperty is applied shall be composite.

self.base Property.isComposite

* 3 typed by classifierbehavior

Properties to which ClassifierBehaviorProperty applied shall be typed by the classifier behavior of their owning
block or a generalization of the classifier behavior.

let clBehavior: UML::Behavior =

self.base Property.owner.oclAsType (UML::Class) .classifierBehavior in
self.base Property.type->notEmpty() and clBehavior->closure (general)->
including(clBehavior)->includes (self.base Property.type)

8.3.2.6 DirectedRelationshipPropertyPath

Description

The DirectedRelationshipPropertyPath stereotype based on UML DirectedRelationship enables directed
relationships to identify their sources and targets by a multi-level path of properties accessible from context blocks
for the sources and targets. Context blocks are typically the owner of the first property in the path of properties, but
can be specializations of the owner to limit the scope of the relationship.

Association Ends

+ base DirectedRelationship : DirectedRelationship [1]

+ sourceContext : Classifier [0..1]
Gives the context for sourcePropertyPath to begin from.

+ sourcePropertyPath : Property [0..*] {ordered, nonunique}
A series of properties that identifies the source of the directed relationship in the context of the block specified
by the sourceContext property. The ordering of properties is from a property of the sourceContext block, through
a property of each intermediate block that types the preceding property, ending in a property with a type that
owns or inherits the source of the directed relationship. The source is not included in the propertyPath list. The

OMG Systems Modeling Language, v1.7 57

same property might appear more than once because a block can own a property with the same or specialized
block as a type.

targetContext : Classifier [0..1]
Gives the context for targetPropertyPath to begin from.

targetPropertyPath : Property [0..*] {ordered, nonunique}

A series of properties that identifies the target of the directed relationship in the context of the block specified by
the targetContext property. The ordering of properties is from a property of the targetContext block, through a
property of each intermediate block that types the preceding property, ending in a property with a type that owns
or inherits the target of the directed relationship. The target is not included in the propertyPath list. The same
property might appear more than once because a block can own a property with the same or specialized block as

a type.

Constraints

58

1 sourcecontext iif property
sourceContext shall have a value when source is a property, otherwise it shall not have a value
self.base DirectedRelationship.source->exists (s |
s.0clIsKindOf (UML: :Property)) xor self.sourceContext->isEmpty ()
2 targetcontext iif property
targetContext shall have a value when target is a property, otherwise it shall not have a value.
self.base DirectedRelationship.source->exists (s |
s.oclIsKindOf (UML: :Property)) xor self.sourceContext->isEmpty ()
3 sourcepropertypath implies property
source shall be a property when sourcePropertyPath has a value.

self.sourcePropertyPath->notEmpty () implies
self.base DirectedRelationship.source->forAll (s |
s.oclIsKindOf (UML: : Property))

4 targetpropertypath implies property

target shall be a property when targetPropertyPath has a value.

self.targetPropertyPath->notEmpty () implies
self.base DirectedRelationship.target->forAll(s |
s.0clIsKindOf (UML: : Property))

5 sourcecontext owns sourcepath first

The property in the first position of the sourcePropertyPath list, if any, shall be owned by the sourceContext or
one of its generalizations.

self.sourcePropertyPath->notEmpty () implies
self.sourceContext.allAttributes ()->includes (self.sourcePropertyPath->
first())

6 _targetcontext owns targetpath first

The property in the first position of the targetPropertyPath list, if any, shall be owned by the targetContext or one
of its generalizations.

self.targetPropertyPath->notEmpty () implies
self.targetContext.allAttributes ()->includes (self.targetPropertyPath->
first())

OMG Systems Modeling Language, v1.7

7 path and owners consistency

The property at each successive position of the sourcePropertyPath and targetPropertyPath, following the first
position, shall be owned by the Block or ValueType that types the property at the immediately preceding
position, or a generalization of the Block or ValueType.

(self.sourcePropertyPath->size () >1 implies self.sourcePropertyPath->
subSequence (2, self.sourcePropertyPath->size())->forAll(p | let pp:
UML: : Property = self.sourcePropertyPath->at (self.sourcePropertyPath->
indexOf (p)-1) in let owners: Set (UML::Classifier) =
pp.type.oclAsType (UML: :Classifier)->

including (pp.type.oclAsType (UML: :Classifier)) in owners->

includes (p.owner))) and (self.targetPropertyPath->size() >1 implies
self.targetPropertyPath->subSequence (2, self.targetPropertyPath->size())->
forAll(p | 1let pp: UML::Property = self.targetPropertyPath->

at (self.targetPropertyPath->indexOf (p)-1) in 1let owners:

Set (UML: :Classifier) = pp.type.oclAsType (UML::Classifier)->
including (pp.type.oclAsType (UML: :Classifier)) in owners->

includes (p.owner)))

8 sourcepath last type owns_ source

The type of the property at the last position of the sourcePropertyPath list shall own or inherit the source of the
stereotyped directed relationship.

self.sourcePropertyPath->notEmpty () implies self.sourcePropertyPath->
last () .type.oclAsType (UML: :Classifier) .allAttributes()->
includesAll (self.base DirectedRelationship.source)

9 targetpath last type owns_ target
The type of the property at the last position of the targetPropertyPath list shall own or inherit the target of the
stereotyped directed relationship.

self.targetPropertyPath->notEmpty () implies self.targetPropertyPath->
last () .type.oclAsType (UML: :Classifier) .allAttributes()->
includesAll (self.base DirectedRelationship.target)

8.3.2.7 DistributedProperty

Description

DistributedProperty is a stereotype of Property used to apply a probability distribution to the values of the property.

Specific distributions should be defined as subclasses of the DistributedProperty stereotype with the operands of the
distributions represented by properties of those stereotype subclasses. A sample set of probability distributions that

could be applied to value properties is given in Section E.7.

Association Ends

base Property : Property [1]

Constraints

1 block or valuetype

The DistributedProperty stereotype shall only be applied to properties of classifiers stereotyped by Block or
ValueType.

Block.allInstances () .base Class.oclAsType (UML::Classifier)->
union (ValueType.allInstances () .base DataType)->
includes (self.base Property.owner)

OMG Systems Modeling Language, v1.7

59

8.3.2.8 ElementPropertyPath

Description

The ElementPropertyPath stereotype based on UML Element enables elements to identify other elements by a multi-
level path of properties accessible from a context block. The context block is described in specializations of
ElementPropertyPath.

Association Ends
* base Element : Element [1]

» propertyPath : Property [1..*] {ordered, nonunique}
A series of properties that identifies elements in the context of a block described in specializations of
ElementPropertyPath. The ordering of properties is from a property of the context block, through a property of
each intermediate block that types the preceding property, ending in a property with a type that owns or inherits
the fully nested property. The fully nested property is not included in the propertyPath list, but is given by the
element to which the ElementPropertyPath is applied in a way described in specializations of
ElementPropertyPath. The same property might appear more than once because a block can own a property with
the same or specialized block as a type.

Constraints
* 1 path consistency

The property at each successive position of the propertyPath attribute, following the first position, shall be
owned by the Block or ValueType that types the property at the immediately preceding position, or a
generalization of the Block or ValueType.

self.propertyPath->size() >1 implies self.propertyPath->subSequence (2,
self.propertyPath->size())->forAll(p | let pp: UML::Property =
self.propertyPath->at (self.propertyPath->indexOf (p)-1) in let owners:
Set (UML::Classifier) = pp.type.oclAsType (UML::Classifier)->

including (pp.type.oclAsType (UML: :Classifier)) in owners->

includes (p.owner))

8.3.2.9 EndPathMultiplicity

Description

The EndPathMultiplicity stereotype can be applied to properties that are related by redefinition to properties that
have BoundReference applied. The lower and upper properties of the stereotype give the minimum and maximum
number of values, respectively, of the property at the bound end of the related bound reference, for each object
reached by navigation along its binding path.

Attributes

* lower : Integer [0..1]
Gives the minimum number of values of the property at the end of the related bindingPath, for each object
reached by navigation along the bindingPath from an instance of the block owning the property to which
EndPathMultiplicity is applied.

+ upper : UnlimitedNatural [0..1]
Gives the maximum number of values of the property at the end of the related bindingPath, for each object
reached by navigation along the bindingPath from an instance of the block owning the property to which
EndPathMultiplicity is applied.
Association Ends

* base Property : Property [1]

60 OMG Systems Modeling Language, v1.7

Constraints
* 1 redefinition

Properties to which EndPathMultiplicity is applied shall be related by redefinition to a property to which
BoundReference is applied.

self.base Property.redefinedProperty->notEmpty () and
BoundReference.alllInstances () .base Property->exists(p |
self.base Property.redefinedProperty->includes (p))

* 2 non negative

endPathLower shall be non-negative.

self.lower >= 0
8.3.2.10 NestedConnectorEnd

Description

The NestedConnectorEnd stereotype of UML ConnectorEnd extends a UML ConnectorEnd so that the connected
property may be identified by a multi-level path of accessible properties from the block that owns the connector. The
propertyPath inherited from ElementPropertyPath gives a series of properties that identifies the connected property
in the context of the block that owns the connector. The ordering of properties is from a property of the block that
owns the connector, through a property of each intermediate block that types the preceding property, ending in a
property with a type that owns or inherits the property that is the role of the connector end (the property that the
connector graphically attaches to at that end). The property that is the role of the connector end is not included in the
propertyPath list.

Generalizations

+ ElementPropertyPath (from Blocks)

Association Ends

+ base ConnectorEnd : ConnectorEnd [1]

Constraints
* 1 propertypath first owned by connector owner

The first property in propertyPath shall be owned by the block that owns the connector, or one of the blocks
generalizations.

let owningBlock: UML::Class =

self.base ConnectorEnd.owner.oclAsType (UML::Connector) .owner.oclAsType (UML: :Class)
in (not owningBlock.oclIsUndefined()) and owningBlock->closure (general)->
including (owningBlock)->includes (self.propertyPath->first () .owner)

* 2 propertypath last type owns role

The type of the property at the last position of the propertyPath list shall own or inherit the role property of the
stereotyped connector end.

let type: UML::Classifier = self.propertyPath->
last () .type.oclAsType (UML: :Classifier) in (not type.oclIsUndefined())
and type.allFeatures ()->includes (self.base ConnectorEnd.role)

8.3.2.11 ParticipantProperty

OMG Systems Modeling Language, v1.7 61

Description

The Block stereotype extends Class, so it can be applied to any specialization of Class, including Association
Classes. These are informally called "association blocks." An association block can own properties and connectors,
like any other block. Each instance of an association block can link together instances of the end classifiers of the
association.

To refer to linked objects and values of an instance of an association block, it is necessary for the modeler to specify
which (participant) properties of the association block identify the instances being linked at which end of the
association. The value of a participant property on an instance (link) of the association block is the value or object at
the end of the link corresponding to this end of the association.

Participant properties can be the ends of connectors owned by an association block. The association block can be the
type of multiple other connectors to reuse the same internal structure for all the connectors. The keyword
«participanty» before a property name indicates the property is stereotyped by ParticipantProperty. They are always
the same as the corresponding association end type.
Attributes
* end : Property [1]
A member end of the association block owning the property on which the stereotype is applied.

Association Ends

* base Property : Property [1]

Constraints
* 1 associationblock
ParticipantProperty shall only be applied to properties of association classes stereotyped by Block.

self.base Property.class.oclIsKindOf (UML::AssociationClass) and
Block.allInstances () .base Class->includes (self.base Property.class)

2 _memberend

ParticipantProperty shall not be applied to properties that are member ends of an association.
UML: :Association.allInstances () .memberEnd->flatten ()->
excludes (self.base Property)

* 3 aggregationkind none

The aggregation of a property stereotyped by ParticipantProperty shall be none.
self.base Property.aggregation = UML::AggregationKind: :none

* 4 end owner

The end attribute of the applied stereotype shall refer to a member end of the association block owning the
property on which the stereotype is applied.

self.base Property.association.memberEnd->includes (self.end)

* 5 same_ type

A property stereotyped by ParticipantProperty shall have the same type as the property referred to by the end
attribute.

self.base Property.type = self.end.type

6 multiplicity 1
A property to which the ParticipantProperty is applied shall have a multiplicity of 1.

62 OMG Systems Modeling Language, v1.7

self.base Property.lower = 1 and self.base Property.upper = 1
8.3.2.12 PropertySpecificType

Description

The PropertySpecificType stereotype can be applied to classifiers that type exactly one property and that are owned
by the owner of that property. Classifiers with this stereotype applied shall be generalized by at most one other
classifier.

Instances of a property-specific type are exactly those that are values of the property it types, in all instances of the
property owner. Values are (de)classified under property-specific types as they are (removed from) added to the

property they type:

+ quantityKind : InstanceSpecification [0..1]
A kind of quantity, represented by an InstanceSpecification classified by a kind of SysML QuantityKind, that
may be stated by means

* Added values are classified as instances of the property-specific type.
* Removed values are:
o Declassified as instances of the property-specific type.

o Classified as instances of the most specific generalization of the property-specific type that is not a property-
specific type, unless the instances are indirectly classified by that generalization already. If there is no such
property-specific type, unless the instances are indirectly classified by that generalization already. If there is
no such property-specific type, removed values are not additionally classified.

» This enables values of the property to:
o Support more features than they would when they are not values of the property.

o Have redefined or constrained features only while they are values of the property.

Association Ends
+ base_Classifier : Classifier [1]

Constraints
* 1 only one property
A classifier to which the PropertySpecificType stereotype is applied shall be referenced as the type of one and
only one property.

UML: :Property.allInstances ()->select(p | p.type = self.base Classifier)->
size() = 1

8.3.2.13 ValueType

Description

A ValueType defines types of values that may be used to express information about a system, but cannot be
identified as the target of any reference. Since a value cannot be identified except by means of the value itself, each
such value within a model is independent of any other, unless other forms of constraints are imposed.

Value types may be used to type properties, operation parameters, or potentially other elements within SysML.
SysML defines ValueType as a stereotype of UML DataType to establish a more neutral term for system values that
may never be given a concrete data representation. For example, the SysML "Real" ValueType expresses the
mathematical concept of a real number, but does not impose any restrictions on the precision or scale of a fixed or
floating-point representation that expresses this concept. More specific value types can define the concrete data
representations that a digital computer can process, such as conventional Float, Integer, or String types.

SysML ValueType adds an ability to carry a unit of measure and quantity kind associated with the value. A quantity
kind is a kind of quantity that may be stated in terms of defined units, but does not restrict the selection of a unit to

OMG Systems Modeling Language, v1.7 63

state the value. A unit is a particular value in terms of which a quantity of the same quantity kind may be expressed.
A SysML ValueType and its quantityKind establishes, via UML typing, the associative relationship between a
particular "quantity" [VIM3-1.1] (modeled as a SysML value property typed by a ValueType) and a "kind of
quantity" [VIM3-1.2] (the ValueType::quantityKind of the SysML value propertys type). This UML/SysML
associative relationship reflects the terminological distinction made in VIM3 between the concepts of "quantity”
[VIM3-1.1] and "kind-of-quantity" [VIM3- 1.2] that "cannot be in a generic or partitive hierarchical relation to each
other" [Dybkaer-2010].

A SysML ValueType may define its own properties and/or operations, just as for a UML DataType. See Section
8.3.2.3, Block for property classifications that SysML defines for either a Block or ValueType.

Association Ends

base DataType : DataType [1]
quantityKind : InstanceSpecification [0..1]

A kind of quantity, represented by an InstanceSpecification classified by a kind of SysML QuantityKind, that
may be stated by means of units. A value type may optionally specify a quantity kind without any unit. Such a
value type may be used to type a value specification to represent it in an abstract form independent of any
specific units.

Value types may be used to type properties, operation parameters, or potentially other elements within SysML.
SysML defines ValueType as a stereotype of UML DataType to establish a more neutral term for system values
that may never be given a concrete data representation. For example, the SysML "Real" ValueType expresses the
mathematical concept of a real number, but does not impose any restrictions on the precision or scale of a fixed
or floating-point representation that expresses this concept. More specific value types can define the concrete
data representations that a digital computer can process, such as conventional Float, Integer, or String types.

SysML ValueType adds an ability to carry a unit of measure and quantity kind associated with the value. A
quantity kind is a kind of quantity that may be stated in terms of defined units, but does not restrict the selection
of a unit to state the value. A unit is a particular value in terms of which a quantity of the same quantity kind
may be expressed. A SysML ValueType and its quantityKind establishes, via UML typing, the associative
relationship between a particular "quantity" [VIM3-1.1] (modeled as a SysML value property typed by a
ValueType) and a "kind of quantity" [VIM3-1.2] (the ValueType::quantityKind of the SysML value propertys
type). This UML/SysML associative relationship reflects the terminological distinction made in VIM3 between
the concepts of "quantity" [VIM3-1.1] and "kind-of-quantity" [VIM3- 1.2] that "cannot be in a generic or
partitive hierarchical relation to each other" [Dybkaer-2010].

A SysML ValueType may define its own properties and/or operations, just as for a UML DataType. See 8.3.2.4,
Block for property classifications that SysML defines for either a Block or ValueType.

unit : InstanceSpecification [0..1]
A unit, represented by an InstanceSpecification classified by a kind of SysML Unit, in terms of which the
magnitudes of other quantities that have the same quantity kind can be stated.

Constraints

64

1 specializations_are valuetypes

Any classifier that specializes a ValueType shall also have the ValueType stereotype applied.
UML: :Classifier.allInstances()->forAll(c | c.general->
includes (self.base DataType) implies
ValueType.alllnstances () .base DataType->includes (c))

2 unit

The unit of a ValueType, if any, shall be an InstanceSpecification classified by SysMLs Unit block in the
UnitAndQuantityKind model library or a specialization of it.

OMG Systems Modeling Language, v1.7

self.unit->notEmpty () and self.unit.classifier->notEmpty () implies
self.unit.classifier->forAll (c |
c.o0clIsKindOf (Libraries::UnitAndQuantityKind: :Unit))

* 3 quantitykind

The quantityKind of a ValueType, if any, shall be an InstanceSpecification classified by SysMLs QuantityKind
block in the UnitAndQuantityKind model library or a specialization of it.

self.quantityKind->notEmpty () and self.quantityKind.classifier->
notEmpty () implies self.quantityKind.classifier->forAll (c |
c.o0clIsKindOf (Libraries: :UnitAndQuantityKind: :QuantityKind))

8.3.3 Model Libraries
8.3.3.1 PrimitiveValueTypes

bdd [Package] PrimitiveValueTypes[Model library for primitive value types])
«primitive» «primitive»
Boolean String
«ValueType» «ValueType» «ValueType»
Number Boolean String
AN
«ValueType» «ValueType» «ValueType»
Real Integer Complex
attributes
imaginaryPart : Real [1
realPart : Real [1]
AV
«primitive» «primitive»
Real Integer

Figure 8.10. Model library for primitive value types
8.3.3.1.1 Boolean

Description

A Boolean value type consists of the predefined values true and false.

Generalizations

* Boolean (from PrimitiveTypes)

8.3.3.1.2 Complex

Description

A Complex value type represents the mathematical concept of a complex number. A complex number consists of a
real part defined by a real number, and an imaginary part defined by a real number multiplied by the square root of
-1. Complex numbers are used to express solutions to various forms of mathematical equations.

OMG Systems Modeling Language, v1.7

65

Generalizations

* Number (from PrimitiveValueTypes)

Attributes

+ imaginaryPart : Real [1]
A real number used to express the imaginary part of a complex number.

» realPart : Real [1]
A real number used to express the real part of a complex number.

8.3.3.1.3 Integer

Description
An Integer value type represents the mathematical concept of an integer number. An Integer value type may be used
to type values that hold negative or positive integer quantities, without committing to a specific representation such
as a binary or decimal digits with fixed precision or scale.
Generalizations

 Integer (from PrimitiveTypes)

* Number (from PrimitiveValueTypes)

8.3.3.1.4 Number

Description

Number is an abstract value type from which other value types that express concepts of mathematical numbers are
specialized.

8.3.3.1.5 Real

Description
A Real value type represents the mathematical concept of a real number. A Real value type may be used to type
values that hold continuous quantities, without committing a specific representation such as a floating point data
type with restrictions on precision and scale.
Generalizations

* Number (from PrimitiveValueTypes)

* Real (from PrimitiveTypes)
8.3.3.1.6 String

Description

A String value type consists of a sequence of characters in some suitable character set. Character sets may include
non-Roman alphabets and characters.

Generalizations

+ String (from PrimitiveTypes)

66 OMG Systems Modeling Language, v1.7

8.3.3.2 Package UnitAndQuantityKind

bdd [Package] UnitAndQuantityKind[Model library for Unit and QuantityKing)

«block» «block»
Unit QuantityKind
quantityKind
values values
definitionURI : String [0..1] 0..* 0..* |definitionURI : String [0..1
description : String [0..1] description : String [0..1]
symbol : String [0..1] symbol : String [0..1]

Figure 8.11. Model library for Unit and QuantityKind
8.3.3.2.1 QuantityKind

Description

A QuantityKind is a kind of quantity that may be stated by means of defined units. For example, the quantity kind of
length may be measured by units of meters, kilometers, or feet. QuantityKind is defined as a non-abstract SysML
Block defined in the SysML UnitAndQuantityKind model library. QuantityKind, or a specialization of it, classifies
an InstanceSpecification to define a particular "kind-of-quantity"” in the sense of an "aspect common to mutually
comparable quantities" [VIM3-1.2], where a SysML value property is understood to correspond to the VIM concept
of "quantity" defined as a "property of a phenomenon, body or substance, where the property has a magnitude that
can be expressed as a number and a reference" [VIM3-1.1]. Modelers specialize QuantityKind as done in SysMLs
QUDY model library or in a similar manner in other model libraries.

The definitionURI of an InstanceSpecification classified by a kind of QuantityKind identifies the particular "kind-
of-quantity" [VIM3-1.2] that the InstanceSpecification represents. Two such InstanceSpecifications represent the
same "kind-of-quantity” if and only if their definitionURIs have values and their values are equal. The only valid use
of a QuantityKind instance is to be referenced by the quantityKind property of a ValueType or Unit.

See the non-normative model library in E.5 for an optional way to specify more comprehensive definitions of units
and quantity kinds as part of systems of units and systems of quantities. The name of a QuantityKind, its
definitionURI, or other means may be used to link individual quantity kinds to additional sources of documentation
such as this optional model library.

Attributes
+ definitionURI : String [0..1]

* description : String [0..1]
* symbol : String [0..1]

8.3.3.2.2 Unit

Description

QuantityKind is a kind of quantity that may be stated by means of defined units. For example, the quantity kind of
length may be measured by units of meters, kilometers, or feet. QuantityKind is defined as a non-abstract SysML
Block defined in the SysML UnitAndQuantityKind model library. QuantityKind, or a specialization of it, classifies
an InstanceSpecification to define a particular "kind-of-quantity" in the sense of an "aspect common to mutually
comparable quantities" [VIM3-1.2], where a SysML value property is understood to correspond to the VIM concept
of "quantity" defined as a "property of a phenomenon, body or substance, where the property has a magnitude that
can be expressed as a number and a reference" [VIM3-1.1]. Modelers specialize QuantityKind as done in SysMLs
QUDYV model library or in a similar manner in other model libraries.

The definitionURI of an InstanceSpecification classified by a kind of QuantityKind identifies the particular "kind-
of-quantity" [VIM3-1.2] that the InstanceSpecification represents. Two such InstanceSpecifications represent the

OMG Systems Modeling Language, v1.7 67

same "kind-of-quantity” if and only if their definitionURIs have values and their values are equal. The only valid use
of a QuantityKind instance is to be referenced by the quantityKind property of a ValueType or Unit.

See the non-normative model library in Section E.5 for an optional way to specify more comprehensive definitions
of units and quantity kinds as part of systems of units and systems of quantities. The name of a QuantityKind, its
definitionURI, or other means may be used to link individual quantity kinds to additional sources of documentation
such as this optional model library.

A Unit is a quantity in terms of which the magnitudes of other quantities that have the same quantity kind can be
stated. A unit often relies on precise and reproducible ways to measure the unit. For example, a unit of length such
as meter may be specified as a multiple of a particular wavelength of light. A unit may also specify less stable or
precise ways to express some value, such as a cost expressed in some currency, or a severity rating measured by a
numerical scale. Unit is defined as a non-abstract SysML Block defined in the SysML UnitAndQuantityKind model
library. Unit, or a specialization of it, classifies an InstanceSpecification to define a particular "measurement unit" in
the sense of a "real scalar quantity, defined and adopted by convention, with which any other quantity of the same
kind can be compared to express the ratio of the two quantities as a number" [VIM3-1.9], where a SysML value
property is understood to correspond to the VIM concept of "quantity" defined as a "property of a phenomenon,
body or substance, where the property has a magnitude that can be expressed as a number and a reference"
[VIM3-1.1]. Modelers specialize Unit as done in SysMLs QUDYV model library or in a similar manner in other
model libraries.

The definitionURI of an InstanceSpecification classified by a kind of Unit identifies the particular "measurement
unit" [VIM3-1.9] that the InstanceSpecification represents. Two such InstanceSpecifications represent the same
"measurement unit" if and only if their definitionURIs have values and their values are equal.

The only valid use of a Unit instance is to be referenced by the unit property of a ValueType stereotype. See the non-
normative model library in Section E.5 for an optional way to specify more comprehensive definitions of units and
quantity kinds as part of systems of units and systems of quantities. The name of a Unit, its definitionURI, or other
means may be used to link individual units to additional sources of documentation such as this optional model
library.
Attributes

+ definitionURI : String [0..1]

* description : String [0..1]

* symbol : String [0..1]

Association Ends

+ quantityKind : QuantityKind [0..*]
8.4 Usage Examples

8.4.1 Wheel Hub Assembly

In Fig. 8.12 a block definition diagram shows the blocks that comprise elements of a Wheel. The block property
LugBoltJoint.torque has a specialization of DistributedProperty applied to describe the uniform distribution of its
values. Examples of such distributions can be found in Section E.5. Connectors from the lugBoltJoints part go to
nested parts, and use NestedConnectorEnd to specify the path of properties to reach those parts. For the
threadedHole end of the connector going to part h, the property path is (hub). For the mountingHole end of the
connector going to mountingHoles, the property path is (wheel, w). Similarly, the connector between the rim and
bead parts has property paths (w) and (t) on its ends.

68 OMG Systems Modeling Language, v1.7

bdd [Wheel Packagd J

WheelHubAssembly |

0.1] Tire
values bead]| N
; Lt Qi TireBead |
WheelAssembly tireSpecification : String 01 2’|
wheel Values operations 1
1" |inflationPressure : psi|0..1 mountTire() PressureSeat
1
Wheel fim ™ TireMountingRim |
w values 0.1 2/|
1 di_ameter :mm
width : mm H InflationValve |
1

BandMount] Hwe(i)g:st BalanceWeight |

WirelessTirePressureMonitor .
operations mountingHole LugBoltMountingHole

transmitPressure() 5 values

lugBoltSize : mm

-

mountingHole

lugBoltJoints 0.1
5 LugBoltJoint
Hub LugBoltThreadedHol e
u ugboltihreadedHole «uniformy» torque : ft-Ib{max = 85.0, min = 75.0
hub h values threadedHole boltTension : Ib
1 0.1 57| lugBoltSize : mm 1 0.1
threadSize : mm
Figure 8.12. Wheel Package
ibd [Internal Block Diagram forWheeIHubAssembI]/)
hub : Hub wheel : WheelAssembly
h : LugBoltThreadedHole [5] | w : Wheel t: Tire
threadedHole| 1
| mountingHole : LugBoltMountingHole [5] |
mountingHolg 1
rim : TireMountingRim [2] | | bead : TireBead [2]
: PressureSeat
0..1 0..1

| lugBoltJoints : LugBoltJoint [5]

Figure 8.13. Internal Block Diagram for WheelHubAssembly

In Fig. 8.13 an internal block diagram (ibd) shows how the blocks defined in the Wheel package are used. This ibd
is a partial view that focuses on particular parts of interest and omits others from the diagram, such as the “v”
InflationValve and “weight” BalanceWeight, which are also parts of a Wheel.

8.4.2 Example Value Type Definitions

In Fig. 8.14, several value types that use standard units of measure from the International System of Units (SI) are
defined to be available in the Example Value Type Definitions package. The value types in this package could be

OMG Systems Modeling Language, v1.7 69

imported into other contexts for typing properties of SysML Blocks. Because a SysML Unit can already identify a
type of quantity, or QuantityKind, that the unit measures, a value type only needs to identify the unit to identify a
quantity kind as well. The value types in this example refer to units that are assumed to be defined in an imported
package, such as the Model Library defined in Section E.6.

bdd [Package] [Example Value Type Definitiong)

«valueType»

Real
s N m kg
«valueType» «valueType» «valueType» «valueType»
unit = second unit = newton unit = metre unit = kilogram

Figure 8.14. Defining Value Types with units of measure from the International System of Units (SI)

bdd [Package] [Example Value Type Definitiong)

«valueType»

Real
s N m kg
«valueType» «valueType» «valueType» «valueType»
unit = second unit = newton unit = metre unit = kilogram

Figure 8.15. Example Value Type Definitions
8.4.3 Design Configuration for SUV EPA Fuel Economy Test

SysML internal block diagrams may be used to specify blocks with unique identification and property values. Fig.
D.41 shows an example used to specify a unique vehicle with a vehicle identification number (VIN) and unique
properties such as its weight, color, and horsepower. This concept is distinct from the UML concept of instance
specifications in that it does not imply or assume any run-time semantic, and can also be applied to specify design
configurations.

In SysML, one approach is to capture system configurations by creating a context for a configuration in the form of
a context block. The context block may capture a unique identity for the configuration, and utilizes parts and initial
value compartments to express property design values within the specification of a particular system configuration.
Such a context block may contain a set of parts that represent the block instances in this system configuration, each
containing specific values for each property. This technique also provides for configurations that reflect hierarchical
system structures, where nested parts or other properties are assigned design values using initial value
compartments. The following example illustrates the approach.

8.4.4 Water Delivery

Association blocks can be decomposed into connectors between properties of the associated blocks. These properties
can be ports, as in the water delivery example in Section 9.4.5, Association and Port Decomposition.

8.4.5 Constraining Decomposition

70 OMG Systems Modeling Language, v1.7

Fig. 8.16 shows an example decomposition for vehicles in a block definition diagram. Fig. 8.17 shows the same
decomposition in an internal block diagram that includes bound references. The binding connectors have nested
connector ends, because they link inside the parts of the vehicle.

bdd [Package] [Vehicle decomposition])
Vehicle
chs (1 eng|1
Chassis Assembly Engine
w|4 rb|0..1 cyl [4..8
Wheel RollBar Cylinder
Ib|6..10 ,L\
LugBolt HeavyRollBar LightRollBar

Figure 8.16. Vehicle decomposition

ibd [Block] Vehicle J

eng : Engine [1]

«boundReference» =
f cyl : Cylinder [4..8
| cylinderBR : Cylinder [*] ' yl : Cylinder [4..8]

|

chs : Chassis Assembly [1]

«boundReference» -
| = b : RollBar [0..1
| rrollBarBR [*] b : RollBar [0..1]

w : Wheel [4]

«boundReference» -
_ Ib : LugBolt [6..10
| lugBoltBR[6.8] ugBolt [6..10]

Figure 8.17. Vehicle internal structure

Fig. 8.18 shows specializations for vehicles that restrict aspects of nested parts by redefining bound references. Paths
for bound references are based on the property paths of the corresponding binding connectors. The general block on
the top does not restrict the bound properties, except the total number of lug bolts is required to be between 24 and
32, rather than 24 and 40 as the associations in Fig. 8.17 allow. The specialization on the lower left restricts the
number of cylinders to four, requires a light roll bar, and a total of 24 lug bolts over all the wheels. The
specialization on the lower right restricts the number of cylinders to between six and eight, rules out any roll bar, and
limits lug bolts per wheel to between 6 and 7, by giving the end path upper and lower values.

OMG Systems Modeling Language, v1.7 7

bdd [Package] [Vehicle specialization])

Vehicle

references
cylinderBR : Cylinder [*{bindingPath = eng, cyl
rrollBarBR [*{bindingPath = chs, rb}
lugBoltBR [6..8]{bindingPath = chs, w, Ib}

I

Vehicle Model 1 Vehicle Model 2
references references
cylinderBR : Cylinder [*[{redefines cylinderBR}| |«boundReference» cylinderBR : Cylinder [*{redefines cylinderBR}
rroliBarBR [*]{redefines rroliBarBR} «boundReference» «endPathMultiplicity» rrollBarBR [*[{redefines rroliBarBR
lugBoltBR [6..8]{redefines lugBoltBR} «boundReference» lugBoltBR [6..8){redefines lugBoltBR}

Figure 8.18. Vehicle specialization
8.4.6 Units and Quantity Kinds

The following shows a minimal example of definitions a Unit, QuantityKind, and ValueType based on them.

pkg [Example of Unit, QuantityKind and ValueType definitioni;) —|
«profile»
SysML
«apply» ~
e
Model 1 -
metre : Unit length : QuantityKind
{definitionURI = "http://www.bipm.org/en/si/base_units/metre.html", {definitionURI = "..."}
quantityKind = length}

«valueType»
Length

quantityKind = length
unit = metre

Figure 8.19. Example of Unit, QuantityKind and ValueType definitions

In terms of the UML4SysML metamodel and of the SysML profile, the following figure shows a partial account of
the instance-level representation of the above example. This instance-level representation is important for model
interchange, particularly across different implementations of SysML.

72 OMG Systems Modeling Language, v1.7

pkg [Instance-level view of the Unit, QuantityKind and ValueType definitions])

«ModelLibrary»
UnitAndQuantityKind
base_Class b: Cl
:Class — : Block : Block ase_ass : Class
- extension_Block extension_Block —
name = "Unit" type | NAme = "QuantityKind"
: Property
ownedAttribute fope ati
=" ityKind" association
name = "quantityKind A itvKind m ementUnit -
Association
association
ownedEnd
: Property
name = "measurementUnit"
type
ownedAttribute Property +Property ownedAttribute
name = "definition URI" name = "definition URI"
classifier definingFeature definingFeature; Classifier
Model 1 |
< InstanceSpecification : Slot : InstanceSpecification
name = "metre" name = "length"
value,
: LiteralStrin : LiteralStrin
value = "http://bipm.org/en/si/base_units/metre.html" value ="

:A_quantityKind_measurementUnit

|
unit : ValueType

base_DataType

quantityKind

extension_ValueType

: DataType

name = "length"

Figure 8.20. Instance-level view of the Unit, QuantityKind and ValueType definitions

The following example shows a minimal example of the semantics of Unit equivalence (A similar example for

QuantityKind is omitted).

pkg [Example of equivalent Unit representation?,)

Model 1

«block»
metre : Unit

definitionURI = "http://www.bipm.org/en/si/base_units/metre.htmI""
quantityKind = length

Model 2

«block»
metre : Unit

definitionURI = "http://www.bipm.org/en/si/base_units/metre.html"

:]

«apply»

«profile»
SysML

«apply»

Figure 8.21. Example of equivalent Unit representations

In terms of the UML4SysML metamodel and of the SysML profile, the following figure shows a partial account of

the instance-level representation of the above example. This instance-level representation is important for model

interchange, particularly across different implementations of SysML.

OMG Systems Modeling Language, v1.7

73

pkg [Instance-level representation of equivalent Unit definitiong)

«ModelLibrary»
UnitAndQuantityKind
- base_Class
Gl [£Bioa |
name = "Unit ownedAttribute
: Property
name = "definitionURI"
classifier classifier definingFeature] definingFeature
N—1
Model 1 Model 2
: InstanceSpecification : InstanceSpecification
Slot name = "metre" name = "metre" iSlot
value | | value
: LiteralStrin | | : LiteralStrin
value = "http://www.bipm.org/en/si/base_units/metre.html" | | | | value = "http://www.bipm.org/en/si/base_units/metre.html"
| |

For model interchange purposes, the semantics of Unit
implies that these two representations correspond to the
same unit because they have the same definitionURI.

Figure 8.22. Instance-level representation of equivalent Unit definitions
8.4.7 Property-Specific Types

Fig. 8.23 shows property-specific types in a model of facilities that includes factories and warehouses. Items flow
through facilities, while resources operate on items. Items in warehouses are assigned a location, while resources in
factories indicate own much they are being used as a percentage of time. Only objects that are items in warchouses
or resources in factories have these location and utilization properties. The properties appear when an item arrives in
a warehouse or a resource is used in a factory, because they are classified as Warehouseltems and FactoryResources
at that time, respectively. The properties disappear once an item leaves a warehouse or a resource is no longer used
in a factory, because they are declassified as Warehouseltems and FactoryResources at that time, respectively.

bdd Logistics]
«block»
Object
«block» item «block» resource «block»
«pst» Facility «pst»
Facilityltem a 25Y FacilityResource
«block» item T T resource, T
«pst» - - «block» «block» «block» «block»
Warehouseltem {redefines item} Warehouse Factory {redefines resource} «pst» Machine
" & N FactoryResource values
values
storeAt : Location .. values s/n : Integer
utilization : Percentage

Figure 8.23. Property-specific types in facility example

Fig. 8.24 shows the classification of a particular machine over time, identified by its serial number. At first it is not
an item or resource and is classified only as a machine. Before delivery to the factory, a new machine is stored in a
warehouse, classified additionally as a warehouse item, and is assigned a storage location. Then it is delivered to a

74 OMG Systems Modeling Language, v1.7

factory, reclassified from a warehouse item to a factory resource (while still being a machine), and records the
percentage of time it is operating.

bdd [Package] Logistics Example[t1])

«block»
aWarehouse : Warehouse «block»
aMachine : Machine
s/n = 12345
«block»
aFactory : Factory
bdd [Package] Logistics Example[t2])
«block» iten Time
aWarehouse : Warehouse «block»
aMachine : Machine, Warehouseltem
s/n = 12345
<block» storeAt = "15F
aFactory : Factory
bdd [Package] Logistics Example[t3])
«block»
aWarehouse : Warehouse «block»
aMachine : Machine. FactoryResource
s/n = 12345
resource St wmmosn
<block» utilization = "75%
aFactory : Factory

Figure 8.24. Changes in classification over time due to property-specific types

OMG Systems Modeling Language, v1.7

76

This page intentionally left blank.

OMG Systems Modeling Language, v1.7

9 Ports and Flows

9.1 Overview

The main motivation for specifying ports and flows is to enable design of modular, reusable blocks with clearly
defined ways of connecting and interacting with their context of use. This clause extends UML ports to support
nested ports, and extends blocks to support flow properties, and required and provided features, including blocks
that type ports. Ports can be typed by blocks that support operations, receptions, and properties as in UML. SysML
defines a specialized form of Block (InterfaceBlock) that can be used to support nested ports. SysML identifies two
kinds of ports, one that exposes features of the owning block or its internal parts (proxy ports), and another that
supports its own features (full ports). Default compatibility rules are defined for connecting block usages, such as
parts and ports. These can be overridden with association blocks specifying connections. These additional
capabilities in SysML enable modelers to specify a wide variety of interconnectable components, which can be
implemented through many engineering and social techniques, such as software, electrical or mechanical
components, and human organizations. This clause also extends UML information flows for specifying item flows
across connectors and associations.

9.1.1 Ports

Ports are points at which external entities can connect to and interact with a block in different or more limited ways
than connecting directly to the block itself. They are properties with a type that specifies features available to the
external entities via connectors to the ports. The features might be properties, including flow properties and
association ends, as well as operations and receptions. The remaining overview sub clauses introduce other aspects
of ports and flows.

9.1.2 Flow Properties, Provided and Required Features, and Nested Ports

SysML extends blocks to support flow properties and provided and required features. Blocks with ports can type
other ports (nested ports). Flow properties specify the kinds of items that might flow between a block and its
environment, whether it is data, material, or energy. The kind of items that flow is specified by typing flow
properties. For example, a block specifying a car’s automatic transmission could have a flow property for Torque as
an input, and another flow property for Torque as an output. Required and provided features are operations,
receptions, and non-flow properties that a block supports for other blocks to use, or requires other blocks to support
for its own use, or both. For example, a block might provide particular services to other blocks as operations, or
have a particular geometry accessible to other block, or it might require services and geometries of other blocks.
Ports nest other ports in the same way that blocks nest other blocks. The type of the port is a block (or one of its
specializations) that also has ports. For example, the ports supporting torque flows in the transmission example
might have nested ports for physical links to the engine or the driveshaft.

9.1.3 Proxy Ports and Full Ports

SysML identifies two usage patterns for ports, one where ports act as proxies for their owning blocks or its internal
parts (proxy ports), and another where ports specify separate elements of the system (full ports). Both are ways of
defining the boundary of the owning block as features available through external connectors to ports. Proxy ports
define the boundary by specifying which features of the owning block or internal parts are visible through external
connectors, while full ports define the boundary with their own features. Proxy ports are always typed by interface
blocks, a specialized kind of block that has no behaviors or internal parts. Full ports cannot be behavioral in the
UML sense of standing in for the owning object, because they handle features themselves, rather than exposing
features of their owners, or internal parts of their owners. Ports that are not specified as proxy or full are simply
called “ports.”

In either case, users of a block are only concerned with the features of its ports, regardless of whether the features
are surfaced by proxy ports, or handled by full ports directly. Proxy and full ports support the capabilities of ports in
general, but these capabilities are also available on ports that are not declared as proxy or full. Modelers can choose
between proxy or full ports at any time in the development lifecycle, or not at all, depending on their methodology.

OMG Systems Modeling Language, v1.7 77

9.1.4 Item Flows

Item flows specify the things that flow between blocks and/or parts and across associations or connectors. Whereas
flow properties specify what “can” flow in or out of a block, item flows specify what “does” flow between blocks
and/or parts in a particular usage context. This important distinction enables blocks to be interconnected in different
ways depending on its usage context. For example, tanks might include a flow property that can accept fluid as an
input. In a particular use of tanks, “gasoline” flows across a connector into a tank, and in another use of tanks,
“water” flows across a connector into a tank. The item flow in each case specifies what “does” flow on the
connector in the particular usage (e.g., gas, water) and the flow property specifies what can flow (e.g., fluid). This
enables type matching between the item flows and between flow properties to assist in interface compatibility
analysis.

Item flows may be allocated from object nodes in activity diagrams or signals sent from state machines across a
connector. Flow allocation is described in Section 15, “Allocations,” and can be used to help ensure consistency
across the different parts of the model.

9.1.5 Deprecation of Flow Ports and Flow Specifications

Flow ports and flow specifications are included in SysML, but are deprecated. Annex C defines them, along with
transition guidelines to non-deprecated elements. In particular, the functionality of non-atomic flow ports is
supported with proxy ports typed by interface blocks owning flow properties. Flow properties are not deprecated.

9.2 Diagram Elements
9.2.1 Block Definition Diagram

Table 9.1. Graphical nodes defined in Block Definition diagrams

ElementName Concrete Syntax Abstract Syntax Reference

Transmission

Port 1 Transmission UML4SySML: :Port
P p3
p2

Ports with FlowProperties

Transmission

Port (Compartment Notation) ports UML4SysML::Port
p1: ITransCmd

p1: Type 1

‘values
X : integer

flow properties
in live : Electricity

Port (with Compartment) g, Transmission UMLA4SysML::Port

78 OMG Systems Modeling Language, v1.7

ElementName

Port (Nested)

ProxyPort

ProxyPort (Compartment
Notation)

FullPort

FullPort (Compartment Notation)

FlowProperty

Required and Provided Features

OMG Systems Modeling Language, v1.7

Concrete Syntax

p1

Transmission

«proxy»

p1 .
Transmission

Transmission

proxy ports
p1: ITransCmd

«full»

p1
Transmission

Transmission

full ports
p1:ITransCmd

Transmission

flow properties
in gearSelect : Gear
in engineTorque : Torque
out wheelsTorque : Torque

Transmission

properties
prov temperature : Integer
reqd geometry : Spline

operations

prov selectGear(g : Gear) : Boolean

reqd getTorque() : Torque

Abstract Syntax Reference

UML4SysML::Port

SysML::Ports&Flows

SysML::Ports&Flows

SysML::Ports&Flows

SysML::Ports&Flows

::ProxyPort

::ProxyPort

::FullPort

::FullPort

SysML::Ports&Flows::

FlowProperty

SysML::Ports&Flows::

DirectedFeature

79

ElementName

InterfaceBlock

Item Flow

Interface

Required and Provided Interfaces

9.2.2 Internal Block Diagram

80

Concrete Syntax

«interfaceBlock»
ISpeedObserver
operations
notifySpeedChange()
«block» «block»
Engine Transmission
references references
tran : Transmission [1] eng : Engine [1]
Torque
«block» eng tran [«block»

|

L
«block»
Association-1

references
«participant» englnLink : Engine [1]{end = eng}
«participant» traninLink : Transmission [1]{end = tran}

I «participant» | | «participanty |
| englnLink : - ’_ | traninLink :

| Engine [1] | Vibration Transmission [1] I
| Heat | :
****** Current - - - - =

«interface»
ISpeedObserver

operations

notifySpeedChange() : void

ITransCmd
p1 «block»
Transmission
ITransData
ITransCmd
O «block»
Transmission
ITransData

Abstract Syntax Reference

SysML::Ports&Flows::
InterfaceBlock

SysML::Ports&Flows::ItemFlow

UMLA4SysML::Interface

UMLA4SysML::Interface

OMG Systems Modeling Language, v1.7

Table 9.2.

ElementName

Port

Port (Compartment Notation)

Port (with Compartment)

ProxyPort

ProxyPort (isBehavior = true)

FullPort

OMG Systems Modeling Language, v1.7

Graphical nodes defined in Internal Block diagrams

Concrete Syntax

t : Transmission
4
P

2
p1 t2 : Transmission
p3

| J
Ports with FlowProperties

t : Transmission
p1.1
p1.2 p1
p1.3
[t : Transmission
p1: Type 1
:values
X : integer

:flow properties
in live : Electricity

structure

«Proxy»
p1 t : Transmission
«pr°;31’» t : Transmission

«full»
p1 IJ_;| t : Transmission

Abstract Syntax Reference

UMLA4SysML::Port

UML4SysML::Port

UMLA4SysML::Port

SysML::Ports&Flows::ProxyPort

SysML::Ports&Flows::ProxyPort

SysML::Ports&Flows::FullPort

ElementName Concrete Syntax Abstract Syntax Reference

’ eng : Engine ‘ ’ eng : Engine ‘
{I] {1}
P p1
Torque torque : Torque
P pi
i i
trns : Transmission trns : Transmission
ItemFlow ItemFlow with an itemProperty

eng : Engine trns : Transmission

ItemFlow SysML::Ports&Flows::ItemFlow

c1 : Association-1

references
«participant» eplnLink : EP [1}{end = ep}
«participant» tpinLink : TP [1{end = tp}

r a)argcip;nt»i ﬁ‘ r i(pairtici;ant: 0
| epinLink : EP [1] | tpinLink : TP [1] I
| fend=ep) | | fend=tp} |

| ep. 1H tp.1 |
Vibration |
‘ ep.Zt}—}—D 2
| Heat I I
| |

,,,,, J Current N

ITransCmd

t : Transmission

p1

ITransData

Required and Provided Interfaces UMLA4SysML::Interface
ITransCmd

t1 : Transmission

ITransData

9.3 UML Extensions

9.3.1 Diagram Extensions
9.3.1.1 DirectedFeature

A DirectedFeature has the same notation as other non-flow properties and behavioral features with a feature
direction prefix (prov | reqd | provreqd), which corresponds to one the FeatureDirectionKind literals “provided,”
“required,” and “providedrequired,” respectively. Directed features can appear in compartments for the various
kinds of properties and behavioral features.

9.3.1.2 FlowProperty

A FlowProperty signifies a single flow element to/from a block. A flow property has the same notation as a Property
only with a direction prefix (in | out | inout). Flow properties are listed in a compartment labeled flow properties.

9.3.1.3 FullPort

Full ports can appear in block compartments labeled full ports. The keyword «full» before a property name can also
indicate the property is stereotyped by FullPort.

82 OMG Systems Modeling Language, v1.7

9.3.1.4 InvocationOnNestedPortAction

The nested port path is notated with a string ““via’ <port-name> [‘,” <port-name>]+" in the name string of the icon
for the invocation action. It shows the values of the onNestedPort property in order, and the value of the onPort
property at the end.

9.3.1.5 ltemFlow

An ItemFlow describes the flow of items across a connector or an association. The notation of an item flow is a
black arrowhead on the connector or association. The arrowhead is towards the target element. For an item flow with
an item property, the label shows the name and type of the item property (in name: type format). Otherwise the item
flow is labeled with the name of the classifier of the conveyed items. When several item flows having the same
direction are represented, only one triangle is shown, and the list of item flows, separated by a comma is presented.

9.3.1.6 Port

Ports are notated by rectangles overlapping the boundary of their owning blocks or properties (parts or ports) typed
by the owning block. Port labels appear in the same format as properties on the end of an association. Port labels can
appear inside port rectangles. Nested ports that are not on proxy ports can appear anywhere on the boundary of the
owning port rectangle that does not overlap the boundary of the rectangle the owning port overlaps.

Port rectangles can have port rectangles overlapping their boundaries, to notate a port type that has ports (nested
ports).

Ports with types that have flow properties all in the same direction, either all in or all out, can have an arrow inside
them indicating the direction of the properties with respect to the owning block. (See FlowProperty on page 90 for
definition of owning block of proxy ports in this case.) This includes the direction of flow properties on nested ports,
and if the port is full and its type is unencapsulated, ports on parts of the port, recursively. The arrows are
perpendicular to the boundary lines they overlap. Ports with types that have flow properties in different directions or
flow properties that are all in both directions, including have two open arrow heads inside them facing away from
each other (<>). This includes the directions of nested and contained flow properties as described above for one-way
arrows. Ports appearing in block compartments can have their direction appear textually before the port name as

[I3PE L INT3

in,” “out,” or “inout” determined in the same way as the arrow direction.
Ports that are not proxy or full can appear in block compartments labeled ports.

Ports are specialized kinds of properties, and can be shown in same way as other properties. They can appear in
block compartments in the same format as other properties of their owning blocks, or as the ends of associations,
with the port appearing in the same format as other association ends, on the end opposite the owning block.

All ports and nested ports (i.e., proxy, full, and ports with no stereotype applied), and their type definitions (e.g.,
interface blocks, blocks) can include compartments with textual and graphical representations to display their
features in the same way as other properties and types, including rectangles used to display properties in structure
compartments.

9.3.1.7 ProxyPort

Proxy ports can appear in block compartments labeled proxy ports. The keyword «proxy» before a property name
can also indicate the property is stereotyped by ProxyPort. Nested ports on proxy ports can appear on the portion of
the boundary of the owning port rectangle that is outside the rectangle the owning port overlaps.

9.3.1.8 TriggerOnNestedPort

1133

The nested port path is notated following a trigger signature with a string “‘«from» (* <port-name> [*,” <port-
name>]+ ©)’” in the name string of the icon for the trigger. It shows the values of the onNestedPort property in order,
and the value of the port property at the end.

9.3.2 Stereotypes
Package PortsAndFlows

OMG Systems Modeling Language, v1.7 83

«Metaclass» «Metaclass»
UML4SysML::Port UMLA4SysML::Property
«enumeration»
FlowDirectionKind
«stereotype» «stereotype» «stereotype» —
enumeration literals
ProxyPort FullPort FlowProperty in
attributes inout
direction : FlowDirectionKind [1] = inouf out
«stereotype» «stereotype» «stereotype»
Block InterfaceBlock 4 ~InterfaceBlock
attributes N attributes
isEncapsulated : Boolean [0..1] original : InterfaceBlock [1]

Figure 9.1. Port Stereotypes

«Metaclass» «stereotype» «Metaclass»
UML4SysML::InvocationAction ElementPropertyPath UML4SysML::Trigger

I

«Metaclass»
AddStructuralFeatureValueAction

«stereotype»
AddFlowPropertyValueOnNestedPortAction

«stereotype» «Metaclass» «stereotype»
InvocationOnNestedPortAction UMLA4SysML::Port TriggerOnNestedPort
0..x 1.* 1.* 0.
onNestedPort onNestedPort
{redefines propertyPath, ordered, nonunique} {redefines propertyPath, ordered, nonunique}

Figure 9.2. Stereotypes for Actions on Nested Ports

«Metaclass» «Metaclass»
UML4SysML::ChangeEvent UML4SysML::AcceptEventAction
«stereotype» structuralFeature «Metaclass» «stereotype»
ChangeStructuralFeatureEvent 1 UML4SysML::StructuralFeature AcceptChangeStructuralFeatureEventAction

Figure 9.3. Stereotypes for Property Value Change Events

84 OMG Systems Modeling Language, v1.7

«Metaclass»
UML4SysML::Feature

«enumeration»
FeatureDirectionKind

«stereotype» enumeration literals
DirectedFeature provided
attributes providedRequired
featureDirection : FeatureDirectionKind [1] required

Figure 9.4. Provided and Required Features

. source |1..*
«Metaclass» conveyed «Metaclass» «Metaclass»
UML4SysML.::Classifier | 1.* * | UML4SysML::InformationFlow UML4SysML::NamedElement
represented | * * target|1..*
representation | *
«Metaclass» «stereotype» The UML metaclasses are
UML4SysML::Informationltem ItemFlow shown for completeness.
attributes

itemProperty : Property [0..1]

Figure 9.5. ItemFlow Stereotype
9.3.2.1 AcceptChangeStructuralFeatureEventAction

Description

Accept change structural feature event actions handle change structural feature events (see Section 9.3.2.5). The
actions have exactly two output pins. The first output pin holds the values of the structural feature just after the
values changed, while the second pin holds the values just before the values changed. The action only accepts events
for structural features on the blocks owning the behavior containing the action, or on the behavior itself, if the
behavior is not owned by a block.

Association Ends

* base AcceptEventAction : AcceptEventAction [1]

Constraints
* 1 one trigger
The action has exactly one trigger, the event of which shall be a change structural feature event.

self.base AcceptEventAction.trigger->size()=1 and let trigger:
UML: :Trigger = self.base AcceptEventAction.trigger->any (true) in
ChangeStructuralFeatureEvent.allInstances () .base ChangeEvent->
includes (trigger.event)

* 2 _two_resultpins

The action has two result pins with type and ordering the same as the type and ordering of the structural feature
of the trigger event, and multiplicity compatible with the multiplicity of the structural feature.

OMG Systems Modeling Language, v1.7 85

let event: ChangeStructuralFeatureEvent =

ChangeStructuralFeatureEvent.allInstances()->any(e | e.base ChangeEvent =
self.base AcceptEventAction.trigger->any (true).event) in
self.base AcceptEventAction.result->size() = 2 and

self.base AcceptEventAction.result->forAll(r | r.type =
event.structuralFeature.type and r.isOrdered =
event.structuralFeature.isOrdered and r.lower <=
event.structuralFeature.lower and r.upper >=
event.structuralFeature.upper)

* 3 context owns_ structuralfeature

The structural feature of the trigger event shall be owned by or inherited by the context of the behavior
containing the action. (The context of a behavior is either its owning block or itself if it is not owned by a block.
See definition in the UML 2 standard.)

let event: ChangeStructuralFeatureEvent =
ChangeStructuralFeatureEvent.allInstances()->any(e | e.base ChangeEvent =
self.base AcceptEventAction.trigger->any (true).event) in

self.base AcceptEventAction. 'context'->notEmpty() and

self.base AcceptEventAction. 'context'.allFeatures()->

includes (event.structuralFeature)

* 4 can_access_structuralfeature
Visibility of the structural feature of the trigger event shall allow access to the object performing the action.

let event: ChangeStructuralFeatureEvent =
ChangeStructuralFeatureEvent.allInstances()->any(e | e.base ChangeEvent =
self.base AcceptEventAction.trigger->any (true).event) in if
event.structuralFeature.visibility = UML::VisibilityKind::private then
self.base AcceptEventAction. 'context'.feature->

includes (event.structuralFeature) else if
event.structuralFeature.visibility = UML::VisibilityKind: :protected

then self.base AcceptEventAction. 'context'.allFeatures()->

includes (event.structuralFeature) else if
event.structuralFeature.visibility = UML::VisibilityKind:: 'package'

then 1let thePackage: UML: :Package
event.structuralFeature.allNamespaces ()->select (n |

n.oclIsKindOf (UML: : Package))->first () .oclAsType (UML: : Package) in (not
thePackage.oclIsUndefined()) and (let index: Integer =
event.structuralFeature.allNamespaces ()->indexOf (thePackage) in
event.structuralFeature.allNamespaces ()->subOrderedSet (1, index) ->
iterate (n; acc: Boolean=true | acc and not
(n.visibility=UML::VisibilityKind: :private or
n.visibility=UML::VisibilityKind: :protected))) else true endif endif
endif

* 5 uml constraint removed

The constraint under 11.3.2, "AcceptEventAction" in the UML 2 standard, "[2] There are no output pins if the
trigger events are only ChangeEvents," shall be removed for accept event actions that have
AcceptChangeStructuralFeatureEventAction applied.

-- cannot be expressed in OCL

9.3.2.2 AddFlowPropertyValueOnNestedPortAction

86 OMG Systems Modeling Language, v1.7

Description

This enables values added to a flow property to propagate out through a specified behavioral port of an object
executing the action, rather than all behavior ports exposing the flow property. It also enables values added to a flow
property to propagate into objects. Values flowing out of an object are added to an out or inout flow property of the
executing object. In this case, the applied stereotype specifies a (possibly nested) behavioral port at the end of a
(possibly multi-level) path of behavioral ports from a block that supports the flow property. Values flowing into an
object are added to an in or inout flow property of that object, specifying a (possibly nested) port of that object.

Generalizations

* ElementPropertyPath (from Blocks)

Attributes

» onNestedPort : Port [1..*] {ordered, nonunique}
Gives a series of ports that end in one supporting the flow property to which a value is being added. The
ordering of ports is from a port of the object of the stereotyped action, through a port of each intermediate block
that types the preceding port, ending in a port with a type that owns or inherits the flow property. The same port
might appear more than once because a block can own a port with the same block as a type, or another block that
has the same property.
(redefines: ElementPropertyPath::propertyPath)

Association Ends
* base AddStructuralFeatureValueAction : AddStructuralFeatureValueAction [1]

Constraints
* 1 feature flowproperty
The structural feature referred by actions with this stereotype applied must have FlowProperty applied.
FlowProperty.allInstances () .base Property->
includes (self.base AddStructuralFeatureValueAction.structuralFeature)
* 2 onnestedport first owned by target type

The port at the first position in the onNestedPort list shall be owned by the block that types the object pin of the
stereotyped action, or one of that blocks generalizations.

self.base AddStructuralFeatureValueAction.object.type.oclAsType (UML::Classifier)->
allFeatures ()->includes (self.onNestedPort->first()))

* 3 path consistency

The port at each successive position of the onNestedPort attribute, following the first position, shall be owned by
the Block that types the port at the immediately preceding position, or a generalization of that Block.

self.onNestedPort->size () >1 implies self.propertyPath->subSequence (2,
self.onNestedPort->size ())->forAll (p |

let pp: UML::Property = self.onNestedPort->at (self.onNestedPort->
indexOf (p)-1) in

let owners: Set(UML::Classifier) = pp.type.oclAsType (UML::Classifier)->
including (pp.type.oclAsType (UML: :Classifier)) in

owners->includes (p.owner))

* 4 onnestedport last type owns invocation onPort

The type of the port at the last position of the onNestedPort list shall own or inherit the flow property that is the
structural feature of the stereotyped action.

OMG Systems Modeling Language, v1.7 87

self.onNestedPort->last () .type.oclAsType (UML: :Classifier) .allFeatures()->
includes (self.base AddStructuralFeatureValueAction.structuralFeature)

9.3.2.3 Block

Description

Blocks (including specializations of Block) can own ports, including but not limited to proxy ports and full ports.
These blocks can be the type of ports (specifying nested ports), with some restrictions described in other stereotypes
in this sub clause. All links and interactions with a behavioral port (in the UML sense of standing in for the owning
object) are links and interactions with the owner, so the semantics of behavioral ports is the same as if the value of
the port as a property were always the owning block instance (the owning block instance for behavioral ports on
proxy ports is the value of the block usage the proxy port is standing in for, which might be an internal part). Blocks
loosen UML constraints on connectors to support nested ports. See Section 8, "Blocks" for further details of blocks.

9.3.2.4 ChangeStructuralFeatureEvent

Description

A ChangeStructuralFeatureEvent models changes in values of structural features.

Association Ends
+ base_ChangeEvent : ChangeEvent [1]
* structuralFeature : StructuralFeature [1]
The event models occurrences of changes to values of this structural feature.
Constraints
* 1 not static
The structural feature shall not be static.

not self.structuralFeature.isStatic

* 2 one_ featuringclassifier
The structural feature shall have exactly one featuringClassifier.

self.structuralFeature.featuringClassifier->size()=1
9.3.2.5 DirectedFeature

Description

A DirectedFeature indicates whether the feature is supported by the owning block (provided) for other connected
blocks to use, or is to be supported by a connected block for the owning block to use (required), or both
(providedRequired). A providedRequired feature specifies a symmetric dependency between two connected blocks
whereby a block’s internal use of such a feature is delegated to the connected block with the corresponding feature
and conversely that block’s internal use of the feature is delegated to the other connected block.

The owning block for features on types of proxy ports is the type of the block usage the proxy port is standing in for,
which might be an internal part.

Using non-flow properties means to read or write them, and using behavioral features means to invoke them.
Provided non-flow properties are read and written on the owning block, while required non-flow properties are read
or written on an external block. Provided behavioral features are invoked with the owning block as target, while
required behavioral features are invoked with an external block as target (required).

Blocks owning or inheriting required behavioral features can have behaviors invoking the behavioral features on
instances of the block. This sends invocations out along connectors from usages of the block in internal structures of
other blocks, provided the behavioral features match on the other end of the connectors.

88 OMG Systems Modeling Language, v1.7

Invocations of provided behavioral features due to required behavioral features can only occur when the features
match. A single provided behavioral feature shall match each required one according to the following conditions:

* The kind of behavioral feature is the same (operation or reception).

* Names are the same, including parameter names, in the same order.

o Parameter directions are the same, in the same order.

* Provided parameter types for parameters with:
° in direction are the same or more general than the required ones, in order.
° out or return direction are the same or more specialized than the required ones, in order.
o inout direction are the same as the required ones, in order.

» Parameters without types are treated as if their type is more general than all other types.

* Provided parameter multiplicity has the same condition as type, where wider multiplicities are “more general”
than narrower ones.

* Provided parameter order (of each parameter separately) has the same condition as type, where unordered
parameters are “more general” than ordered ones.

* Provided parameter uniqueness (of each parameter separately) has the same condition as type, where non-unique
parameters are “more general” than unique ones.

* Provided operation preconditions are the same as or more general than required ones.
* Provided operation body conditions and postconditions are the same or more specialized than required ones.

If corresponding parameters in provided and required behavioral features both have defaults, the default value
specification of the required feature is used for in parameters, and the default value specification of the provided
feature is used for out and return parameters.

Reading or writing provided non-flow properties due to required non-flow properties can only occur when the
features match. Matching non-flow properties shall have the same name. For reading non-flow properties, the types,
multiplicities, uniqueness, and ordering shall match in the same way as out parameters for behavioral features above.
For writing non- flow properties, the types, multiplicities, uniqueness, and ordering shall match in the same way as
in parameters for behavioral features above. For both reading and writing non-flow properties, the types,
multiplicities, uniqueness, and ordering shall be the same. If provided and required non-flow properties both have
defaults, the default value specification of the required feature is used for writing and the default specification of the
provided feature is used for reading.

Features that are not denoted as a DirectedFeature are implicitly provided features. As such they can be matched
against a corresponding required feature.
Attributes

+ featureDirection : FeatureDirectionKind [1]
Specifies whether the feature is supported by the owning block (featureDirection="provided"), or is to be
supported by other blocks for the owning block to use (featureDirection="required"), or both
(featureDirection="providedrequired").
Association Ends

* base Feature : Feature [1]

Constraints
* 1 behavioralfeature or not flowproperty

DirectedFeature shall only be applied to behavioral features, or to properties that do not have FlowProperty
applied, including on subsetted or redefined features.

self.base Feature.oclIsKindOf (UML::BehavioralFeature) or
(self.base Feature.oclIsKindOf (UML: :Property) and let property:

OMG Systems Modeling Language, v1.7 89

UML: :Property = self.base Feature.oclAsType (UML::Property) in
FlowProperty.allInstances () .base Property->

excludesAll (property.redefinedProperty->

union (property.subsettedProperty)->including (property)))

* 2 method if provided

A non-provided operation shall not be associated with a behavior as its method.

self.base Feature.oclIsKindOf (UML::0peration) and
self. featureDirection=FeatureDirection::required implies
self.base Feature.oclAsType (UML: :0Operation) .method->isEmpty ()

9.3.2.6 FeatureDirectionKind

Description

FeatureDirectionKind is an enumeration type that defines literals used by directed features for specifying whether
they are supported by the owning block, or is to be supported by other blocks for the owning block to use.
Literals

+ provided
Indicates that the feature shall be supported by the owning block.

+ providedRequired

Indicates that the feature shall be both provided and required.
* required

Indicates that the feature shall be supported by other blocks.

9.3.2.7 FlowDirectionKind

Description

FlowDirectionKind is an enumeration type that defines literals used for specifying the direction that items can flow
to or from a block. FlowDirectionKind is used by flow properties to indicate the direction that its items can flow to
or from its owner. (See Section 9.3.2.13 for definition of owning block of proxy ports in this case.)

Literals
* in
Indicates that items of the flow property can flow into the owning block.

* inout
Indicates that items of the flow property can flow into or out of the owning block.

e out
Indicates that items of the flow property can flow out of the owning block.

9.3.2.8 FlowProperty

Description

A FlowProperty signifies a single kind of flow element that can flow to/from its owning instance that is specified by
the block defining that flow property. A flow propertys values are either received from or transmitted to another
instance. An "in" flow property value cannot be modified by the owning instance of that flow property, or by parts of
that instance. An "out" flow property can only be modified by the owning instance of that flow property, or by parts
of that instance. An "inout" flow property can be used as an "in" flow property or an "out" flow property, and there

is no restriction regarding the way it can be modified.

Flow due to flow properties can only occur when flow properties match. Matching flow properties shall have
matching direction and types. Matching direction is defined below. Flow property types match when the target flow
property type has the same, or a generalization of, the source flow property type. (See 9.3.2.11, ItemFlow for looser

90 OMG Systems Modeling Language, v1.7

constraints on flow property types across connectors with item flows.) If multiple flow properties on either end of a
connector match by direction and type, then the names of the flow properties shall also be the same for flow to
occur. If multiple flow properties on either end match by direction, type, and name, which can happen for unnamed
flow properties, then no flow will occur.

Flow properties enable item flows across connectors between usages typed by blocks having the properties. For
Block and ValueType flow properties, setting an "out" or "inout" FlowProperty value of a block usage on one end of
a connector will result in assigning the same value of an "in" or "inout" FlowProperty of a block usage at the other
end of the connector, provided the flow properties are matched. It is not specified whether send/receive signal events
are generated when values are written to out/in flow properties typed by Signal (implementations might choose to do
this, but it is not required). This paragraph does not apply to internal connectors of proxy ports, see next paragraph.

Items going to or from behavioral ports (UML isBehavior = true) are actually going to or from the owning block.
(See Section 9.3.2.3 for definition of owning block of proxy ports in this case.) Items going to or from non-
behavioral ports (UML isBehavior = false) are actually going to the port itself (for full ports) or to internal parts
connected to the port (for proxy ports). Because of this, flow properties of a proxy port are the same as flow
properties on the owning block or internal parts, so the flow property directions shall be the same on the proxy port
and owning block or internal parts for items to flow. See Section 9.3.2.13 for the definition of internal connectors
and the semantics of proxy ports.

The flow property semantics above applies to each connector of a block usage, including when the block usage has
multiple connectors.

The binding of flow properties on ports to behavior parameters can be achieved in ways not dictated by SysML. One
approach is to perform name and type matching. Another approach is to explicitly use binding relationships between
the ports properties and behavior parameters or block properties.

Attributes

* direction : FlowDirectionKind [1]
Specifies if the property value is received from an external block (direction="in"), transmitted to an external
Block (direction="out") or both (direction="inout").
Association Ends

* base Property : Property [1]

Constraints
* 1 restricted types
A FlowProperty shall be typed by a ValueType, Block, or Signal.

Block.allInstances () .base Class->includes (self.base Property.type) or
ValueType.alllnstances () .base DataType->includes (self.base Property.type)
or self.base Property.oclIsKindOf (UML::Signal)

9.3.2.9 FullPort

Description

Full ports specify a separate element of the system from the owning block or its internal parts. They might have their
own internal parts and behaviors to support interaction with the owning block, its internal parts, or external blocks.
They cannot be behavioral ports, or linked to internal parts by binding connectors, because these constructs imply
identity with the owning block or internal parts. However, full ports can be linked to non-full ports by binding
connectors, because this does not necessarily imply identity with other parts of the system.

Association Ends

* base Port: Port [1]

OMG Systems Modeling Language, v1.7 91

Constraints
* 1 not proxy

Full ports shall not also be proxy ports. This applies even if some of the stereotypes are on subsetted or redefined
ports.

ProxyPort.allInstances ()->excludes (self.base Port)

* 2 not bound to fullport

Binding connectors shall not link full ports (either directly or indirectly through other binding connectors) to
other composite properties of the block owning the full port (or that blocks generalizations or specializations),
unless the composite properties are non-full ports.

let fullPorts: Set(UML::Port) = FullPort.allInstances().base Port->
asSet () in BindingConnector.allInstances () .base Connector->select(c |
c.end.role->includes (self.base Port))->forAll(c | fullPorts->
excludesAll (c.end.role->reject (r | r=self.base Port)))
* 3 not behavioral
Full ports shall not be behavioral (isBehavior=false).

not self.base Port.isBehavior
9.3.2.10 InterfaceBlock

Description

Interface blocks are blocks that cannot have internal parts or behaviors, including classifier behaviors or methods,
but otherwise have the same capabilities as blocks. In particular, they can have operations, receptions and properties
(like UML interfaces), as well as ports. They can type any kind of property, but are mandatory as types of proxy
ports, and can type ports to any level of nesting.

Generalizations

* Block (from Blocks)

Operations
+ getConjugated () : InterfaceBlock [0..*]
bodyCondition:
~InterfaceBlock.allInstances ()->any(ib | ib.original = self)
Constraints
* 1 no behavior

Interface blocks shall not own or inherit behaviors, have classifier behaviors, or methods for their behavioral
features.

self.base Class.inheritedMember->select (m | m.oclIsKindOf (UML::Behavior))
->isEmpty () and self.base Class.operation.method->flatten()->isEmpty ()
* 2 no part
Interface blocks composite properties are either ports, value properties or flow properties.
self.base Class.ownedAttribute->select(ala.isComposite)->forAll(a |

a.oclIsKindOf (UML: :Port) or a.oclIsKindOf (ValueType))

* 3 interfaceblock typed ports

92 OMG Systems Modeling Language, v1.7

Ports owned by interface blocks shall only be typed by interface blocks.

self.base Class.ownedPort->
forAll (plInterfaceBlock.alllInstances () .base Class ->includes (p.type))

* 4 isconjugated not used
Any port typed by an InterfaceBlock shall have its isConjugated property set to false.
Port.allInstances ()->forAll(p | p.type = self.base Class implies
p.1isConjugated=false)
9.3.2.11 InvocationOnNestedPortAction

Description

This extends the capabilities of UMLs onPort property of InvocationAction to support nested ports. It identifies a
nested port by a multi-level path of ports from the block that executes the action. Like UMLs onPort property, this
extends invocation actions to send invocations out of ports of objects executing the actions, or to ports of those
objects or other objects. Invocations intended to go out of the object executing the action shall be sent to the
executing object on a proxy port. Invocations intended to go directly to a target object are sent to that object on a
port of that object.

Generalizations

* ElementPropertyPath (from Blocks)

Association Ends
* base InvocationAction : InvocationAction [1]

+ onNestedPort : Port [1..*] {ordered, nonunique}
Gives a series of ports that identifies the port receiving the invocation in the context of the target object of the
invocation. The ordering of ports is from a port of the target object, through a port of each intermediate block
that types the preceding port, ending in a port with a type that owns or inherits the port given by the onPort

property of the invocation action. The onPort port is not included in the onNestedPort list. The same port might

appear more than once because a block can own a port with the same block as a type, or another block that has
the same property.
(redefines: ElementPropertyPath::propertyPath)
Constraints
* 1 onPort defined
The onPort property of an invocation action shall have a value when this stereotype is applied.

self.base InvocationAction.onPort->notEmpty ()

* 2 onnestedport first owned by target type

The port at the first position in the onNestedPort list shall be owned (directly or via inheritance) by a block that

types the target pin of the invocation action, or one of the blocks generalizations.

let target: UML::InputPin = if
self.base InvocationAction.oclIsKindOf (UML::CallOperationAction) then

self.base InvocationAction.oclAsType (UML::CallOperationAction) .target
else if self.base InvocationAction.oclIsKindOf (UML: :SendSignalAction)
then

self.base InvocationAction.oclAsType (UML::SendSignalAction) .target
else if self.base InvocationAction.oclIsKindOf (UML: :SendObjectAction)
then

self.base InvocationAction.oclAsType (UML::SendObjectAction) .target
else

OMG Systems Modeling Language, v1.7

93

invalid
endif endif endif in
not target.oclIsUndefined() and (
let target type: UML::Class = Block.allInstances()->any (b |
b.base Class = target.type) .base Class in
not target type.oclIsUndefined() and target type.allFeatures()->
includes (self.onNestedPort->first ()))

* 3 path consistency

The port at each successive position of the onNestedPort attribute, following the first position, shall be owned by
the Block that types the port at the immediately preceding position, or a generalization of that Block.

self.onNestedPort->size () >1 implies self.propertyPath->subSequence (2,
self.onNestedPort->size ())->forAll(p |

let pp: UML::Property = self.onNestedPort->at (self.onNestedPort->
indexOf (p)-1) in

let owners: Set (UML::Classifier) = pp.type.oclAsType (UML::Classifier)->
including (pp.type.oclAsType (UML: :Classifier)) in

owners->includes (p.owner))

* 4 onnestedport last type owns_ invocation onPort

The type of the port at the last position of the onNestedPort list shall own or inherit the onPort port of the
stereotyped invocation action.

self.onNestedPort->last () .type.oclAsType (UML::Classifier) .allFeatures()->
includes (self.base InvocationAction.onPort)

9.3.2.12 ItemFlow

Description

An ItemFlow describes the flow of items across a connector or an association. It may constrain the item exchange
between blocks, block usages, or ports as specified by their flow properties. For example, a pump connected to a
tank: the pump has an "out" flow property of type Liquid and the tank has an "in" FlowProperty of type Liquid. To
signify that only water flows between the pump and the tank, we can specify an ItemFlow of type Water on the
connector.

One can label an ItemFlow with the classifiers of the items that may be conveyed. For example: a label Water would
imply that instances of Water might be transmitted over this ItemFlow. In addition, if the item flow identifies an item
property, then one can label the item flow with the item property. For example, a label of "liquid: Water" means
Water items might flow and these items are the values of the property "liquid," i.e., the values of the "liquid" item
property are the instances of Water flowing at any given time. Item properties are owned by the common (possibly
indirect) owner of the source and target of the item flow, rather than by the source and target types, as flow
properties are.

Item flows on connectors shall be compatible with flow properties of the blocks usages at each end of the connector,
if any. The direction of the item flow shall be compatible with the direction of flow specified by the flow properties.
(See Section 9.3.2.7 and Section 9.3.2.8 about flow property direction.) Each classifier of conveyed items on an item
flow shall be the same as, a specialization of, or a generalization of at least one flow property type on each end of
the connected block usages (or their accessible nested block usages recursively, see Section 9.3.2.3 about
encapsulated blocks). The target flow property type shall be the same as, or a generalization of, a classifier of the
item flow or the source flow property type, whichever is more specialized. (See Section 9.3.2.8, for tighter
constraints on flow property types across connectors without item flows.)

Attributes

 itemProperty : Property [0..1]
An optional property that relates the flowing item to the instances of the connectors enclosing block. This

94 OMG Systems Modeling Language, v1.7

property is applicable only for item flows realized by connectors. The itemProperty attribute has no values if the
item flow is realized by an Association.

Association Ends

* base InformationFlow : InformationFlow [1]

Constraints
* 1 source and target linked

A Connector or an Association, or an inherited Association shall exist between the source and the target of the
InformationFlow.

let target: UML::NamedElement =

self.base InformationFlow.informationTarget->any (true) in let targets:
Set (UML: :NamedElement) = if target.oclIsKindOf (UML::Classifier) then
target.oclAsType (UML: :Classifier)->closure (general)->including (target)
else target->asSet() endif in let source: UML::NamedElement =
self.base InformationFlow.informationSource->any (true) in let sources:
Set (UML: :NamedElement) = if source.oclIsKindOf (UML::Classifier) then
source.oclAsType (UML: :Classifier)->closure (general)->including (source)
else source->asSet() endif in UML::Association.alllInstances|()->exists(a
| a.memberEnd->intersection (targets)->notEmpty() and a.memberEnd->
intersection (sources)->notEmpty()) or UML::Connector.alllInstances()->
exists(c | c.end->intersection(targets)->notEmpty () and c.end->
intersection (sources)->notEmpty())

* 2 type restricted

An ItemFlow itemProperty shall be typed by a ValueType, Block, or Signal.

ValueType.alllnstances () .base DataType->includes (self.itemProperty.type)
or Block.allInstances () .base Class->includes (self.itemProperty.type) or
UML::Signal.allInstances()->includes (self.itemProperty.type)

* 3 itemproperty common_owner

If itemProperty has a value it shall be a property of the common (possibly indirect) owner of the source and the
target.

self.itemProperty->notEmpty () implies (let target: UML::Element =
self.base InformationFlow.informationTarget->any(true) in let source:

UML: :Element = self.base InformationFlow.informationSource->any (true) in
target.oclIsKindOf (UML: :Property) and source.oclIsKindOf (UML: :Property)
and let owners: Set(UML::Classifier) = target->closure (owner)->select (ol
| 0l.0clIsKindOf (UML::Classifier))->asSet () ->intersection (source->
closure (owner)->select (02 |

02.0clIsKindOf (UML: :Classifier))) .oclAsType (UML::Classifier)->asSet () in

owners.attribute->flatten ()->includes (self.itemProperty))

* 4 association xor itemproperty
itemProperty shall not have a value if the item flow is realized by an Association.

self.base InformationFlow.realization->exists(r |
r.oclIsKindOf (UML: :Association)) implies self.itemProperty->isEmpty ()

* 5 same_ type

OMG Systems Modeling Language, v1.7 95

If an ItemFlow has an itemProperty, one of the classifiers of conveyed items shall be the same as the type of the
item property.
self.itemProperty->notEmpty () implies self.base InformationFlow.conveyed->
includes (self.itemProperty.type)

* 6_same_ name
If an ItemFlow has an itemProperty, its name shall be the same as the name of the item flow.

self.itemProperty->notEmpty () implies self.itemProperty.name =
self.base InformationFlow.name

9.3.2.13 ProxyPort

Description

Proxy ports identify features of the owning block or its internal parts that are available to external blocks through
external connectors to the ports. They do not specify a separate element of the system from the owning block or
internal parts. Actions on features of a proxy port have the same effect as if they were acting on features of the
owning block or internal parts the port stands in for, and changes to features of the owning block or internal parts
that the proxy port makes available to external blocks are visible to those blocks via connectors to the port. (This
applies to provided features; for required features, see Section 9.3.2.5.) Proxy ports do not specify their own
behaviors or internal parts, and shall be typed by interface blocks. Their nested ports shall also be proxy ports.

A completely specified proxy port shall describe how any interaction through the port is handled or initiated. This
can be achieved in several ways. For instance by making it behavioral, by binding it to a fully specified internal part
or by having all its properties individually bound to internal parts. However, blocks can be defined with non-
behavioral proxy ports that do not have internal connectors, with the expectation that these will be added in
specialized blocks. Internal connectors to ports are the ones inside the ports owner (specifically, they are the ones
that do not have a UML partwithPort on the connector end linked to the port, assuming NestedConnectorEnd is not
applied to that end, or if NestedConnectorEnd is applied to that end, they are the connectors that have only ports in
the property path of that end). The rest of the connectors linked to a port are external.

Proxy ports can be connected to internal parts or ports on internal parts, identifying features on those parts or ports
that are available to external blocks. When a proxy port is connected to a single internal part, the connector shall be
a binding connector, or have the same semantics as a binding connector (the value of the proxy port and the
connected internal part are the same; links of associations typing the connector are between all objects and
themselves, and no others). When a proxy port is connected to multiple internal parts, the connectors have the same
semantics as a single binding connector to an aggregate of those parts, supporting all their features, and treating
flows and invocations from outside the aggregate as if they were to those parts, and flows and invocations it receives
from those parts as if they were to the outside. This aggregate is not a separate element of the system, and only
groups the internal parts for purposes of binding to the proxy port. Internal connectors to proxy ports can be typed
by association blocks, including when the connector is binding.

Association Ends

* base Port: Port [1]

Constraints
* 1 not fullport

Proxy ports shall not also be full ports. This applies even if some of the stereotypes are on subsetted or redefined
ports.

FullPort.allInstances ()->excludes (self.base Port)

* 2 interfaceblock
Proxy ports shall only be typed by interface blocks.

InterfaceBlock.allInstances () .base Class->includes (self.base Port.type)

96 OMG Systems Modeling Language, v1.7

* 3 subports are proxyports
Ports owned by the type of a proxy port shall be proxy ports.
ProxyPort.allInstances () .base Port->
includesAll (self.base Port.class.ownedPort)

9.3.2.14 TriggerOnNestedPort

Description

This extends trigger to support nested ports. It identifies a nested port by a multi-level path of ports from the object
receiving the triggering events. It is not applicable to full ports.

Generalizations

+ ElementPropertyPath (from Blocks)

Association Ends
+ base Trigger : Trigger [1]
» onNestedPort : Port [1..*] {ordered, nonunique}
Gives a series of ports that identifies a port on which the event is occurring, in the context of a block in which
the trigger is used. The ordering of ports is from a port of the receiving object, through a port of each
intermediate block that types the preceding port, ending in a property with a type that owns or inherits the port
given by the port property of the trigger. The port property is not included in the onNestedPort list. The same
port might appear more than once because a block can own a port with the same block as a type, or another
block that has the same property.
(redefines: ElementPropertyPath::propertyPath)
Constraints
* 1 single proxyport
The port property of the stereotyped trigger shall have exactly one value, and the value cannot be a full port.
self.base Trigger.port->size()=1 and FullPort.alllInstances() .base Port->
excludes (self.base Trigger.port)
* 2 no fullport
The values of the onNestedPort property shall not be full ports.
FullPort.allInstances () .base Port->excludesAll (self.onNestedPort)

* 3 onnestedport first owned by context

The port at the first position in the onNestedPort list shall be owned by a block in which the trigger is used, or
one of the blocks generalizations.

let theContext: UML::Classifier = if
self.base Trigger.owner.oclIsKindOf (UML::Action) then

self.base Trigger.owner.oclAsType (UML::Action). 'context'.oclAsType (UML::Class)

else

self.base Trigger.owner.oclAsType (UML::Transition) .containingStateMachine (). 'context'
endif in let owners: Set(UML::Classifier) = theContext->closure (general)->

including (theContext) in owners->includes (self.onNestedPort->

first () .owner)

* 4 path consistency

The port at each successive position of the onNestedPort attribute, following the first position, shall be owned by
the Block that types the port at the immediately preceding position, or a generalization of the Block.

OMG Systems Modeling Language, v1.7 97

self.onNestedPort->size () >1 implies self.onNestedPort->subSequence (2,
self.onNestedPort->size ())->forAll (p |

let np: UML::Port = self.onNestedPort->at (self.onNestedPort->
indexOf (p)-1) in

let owners: Set(UML::Classifier) = np.type.oclAsType (UML::Classifier)->
including (np.type.oclAsType (UML: :Classifier)) in

owners->includes (p.owner))

* 5 onnestedport last type owns trigger port

The type of the port at the last position of the onNestedPort list must own or inherit the port of the stereotyped
trigger.

self.onNestedPort->last () .type.oclAsType (UML: :Classifier) .allFeatures()->
includes (self.base Trigger.port)

9.3.2.15 ~InterfaceBlock

Description

The ~InterfaceBlock stereotype (shall be pronounced: "conjugated interface block") is a specialization of
InterfaceBlock that has the same features as its original InterfaceBlock except that its DirectedFeatures and
FlowProperties are reversed (conjugated), for example, in flow properties are conjugated as out flow properties and
provided features are conjugated as required features. Conjugation is specified by a constraint giving the features of
~InterfaceBlocks according to those of their original InterfaceBlocks (see the Constraints subsection below). It is
expected that tools conforming to this specification automatically create features of ~InterfaceBlocks.

Generalizations

* InterfaceBlock (from Ports&Flows)

Attributes
+ original : InterfaceBlock [1]
The InterfaceBlock that this is a conjugation of.
Association Ends
* base Class : Class [1]

Operations

+ areConjugated (in df1 : DirectedFeature, in df2 : DirectedFeature) : Boolean [1]
DirectedFeature overloaded version of the areConjugated query used for specifying the inverted feature
invariant that checks whether one feature definition is the conjugated definition of the other.

bodyCondition:

if (dfl.oclIsUndefined()) then (not df2.oclIsUndefined() and
df2.featureDirection = FeatureDirection::required) else if
(df2.0clIsUndefined()) then (not dfl.oclIsUndefined() and
dfl.featureDirection = FeatureDirection::required) else
(dfl.featureDirection = FeatureDirection::provided and df2.featureDirection

= FeatureDirection::required) or (dfl.featureDirection =
FeatureDirection::required and df2.featureDirection =
FeatureDirection: :provided) or (dfl.featureDirection =
FeatureDirection: :providedRequired and df2.featureDirection =
FeatureDirection: :providedRequired) endif endif

+ areConjugated (in fpl : FlowProperty, in fp2 : FlowProperty) : Boolean [1]
FlowProperty overloaded version of the areConjugated query used for specifying the inverted feature invariant
that check whether one feature definition is the conjugated definition of the other.

98 OMG Systems Modeling Language, v1.7

bodyCondition:

(fpl.direction = FlowDirection:: in and fp2.direction = FlowDirection::out)
or (fpl.direction = FlowDirection::out and fp2.direction =
FlowDirection:: in) or (fpl.direction = FlowDirection::inout and
fp2.direction = FlowDirection::inout)

areConjugated (in ol : Operation, in 02 : Operation) : Boolean [1]

Operation overloaded version of the areConjugated query used for specifying the inverted feature invariant that
check whether one feature definition is the conjugated definition of the other.

bodyCondition:

let dfl: DirectedFeature = DirectedFeature .alllInstances|()-

>any (base Feature = ol) in let df2: DirectedFeature = DirectedFeature
.allInstances () ->any (base_ Feature = 02) in ol.concurrency = 02.concurrency
and ol.isAbstract = o2.isAbstract and ol.ownedParameterSet->forAll (psl |
02.ownedParameterSet->exists (ps2 | areSameParameterSets(ol, psl, 02, ps2)))
and areSameConstraintSets (ol.bodyCondition->asSet (), o2.bodyCondition-
>asSet ()) and areSameConstraintSets (ol.precondition, o2.precondition) and
areSameConstraintSets (ol.postcondition, o2.postcondition) and
haveSameSignatures (ol, 02) and ol.raisedException->forAll (el |
02.railsedException->exists(e2 | e2 = el)) and ol.isQuery = 02.isQuery and
areConjugated(dfl, df2)

areConjugated (in p1 : Property, in p2 : Property) : Boolean [1]

Property overloaded version of the areConjugated query used for specifying the inverted feature invariant that
checks whether one feature definition is the conjugated definition of the other.

bodyCondition:

let fpl: FlowProperty = FlowProperty.alllInstances()->any(base Property =
al) in let fp2: FlowProperty = FlowProperty.allInstances() -

>any (base Property = a2) in let dfl: DirectedFeature = DirectedFeature
.allInstances () ->any (base Feature = al) in let df2: DirectedFeature =
DirectedFeature .alllnstances()->any(base Feature = a2) in al.name =
az.name and al.type = a2.type and al.isStatic = a2.isStatic and
al.isOrdered = a2.isOrdered and al.isUnique = a2.isUnique and al.lower =
a2.lower and al.upper = a2.upper and al.isReadOnly = a2.isReadOnly and
al.aggregation = a2.aggregation and al.isDerived = a2.isDerived and
al.isDerivedUnion = a2.isDerivedUnion and al.isID = a2.isID and ((not
fpl.oclIsUndefined () and not fp2.oclIsUndefined() and areConjugated(fpl,
fp2)) or (fpl.oclIsUndefined() and fp2.oclIsUndefined())) and ((not
dfl.oclIsUndefined() and not df2.oclIsUndefined() and areConjugated(dfl,
df2)) or (dfl.oclIsUndefined() and df2.oclIsUndefined()))

areConjugated (in r1 : Reception, in r2 : Reception) : Boolean [1]
Reception overloaded version of the areConjugated query used for specifying the inverted feature invariant that
check whether one feature definition is the conjugated definition of the other.

bodyCondition:

let dfl: DirectedFeature = DirectedFeature.alllInstances()->any(base Feature
= rl) in let df2: DirectedFeature = DirectedFeature.allInstances/()-

>any (base Feature = r2) in rl.concurrency = r2.concurrency and
rl.isAbstract = r2.isAbstract and rl.ownedParameterSet->forAll (psl |
r2.ownedParameterSet->exists (ps2 | areSameParameterSets(rl, psl, r2, ps2)))
and haveSameSignatures (rl, r2) and rl.signal = r2.signal and

areConjugated (dfl, df2)

areSameConstraintSets (in cs1 : Constraint, in cs2 : Constraint) : Boolean [1]
The areSameConstraintSets query is used for specifying the inverted feature invariant. It checks whether two
sets of constraints are equivalent.

OMG Systems Modeling Language, v1.7 99

bodyCondition:

(csl->isEmpty () and cs2->isEmpty()) or (csl->size() = cs2->size() and
csl->forAll (cl | csl->exists(c2 | c2.name = cl.name and
c2.specification.booleanValue ()=true implies
cl.specification.booleanValue ()=true and
c2.specification.booleanValue ()=false implies

()

cl.specification.booleanValue ()=false)))

areSameParameterSets (in ps1 : ParameterSet, in ps2 : ParameterSet) : Boolean [1]

The areSameParameterSets query is used for specifying the inverted feature invariant. It checks whether two
sets of parameters are identical.

bodyCondition:

(psl->isEmpty () and ps2->isEmpty()) or (psl->size() = ps2->size() and
areSameConstraintSets (psl.condition, ps2.condition and psl.parameter-
>forAll (pl | ps2.parameter->exists(p2 | bfl.ownedParameter->indexOf (pl) =
bf2.ownedParameter->indexOf (p2)))))

haveSameSignatures (in bfl : BehavioralFeature, in bf2 : BehavioralFeature) : Boolean [1]
The areSameConstraintSignatures query is used for specifying the inverted feature invariant. It checks whether
two behavioral features have the same signature.

bodyCondition:

bfl.name = bf2.name and bfl.ownedParameter->size () = bf2.ownedParameter-
>size () and bfl.ownedParameter->forAll (pl | let p2: UML::Parameter =
bf2.ownedParameter->at (bfl.ownedParameter->indexOf (pl)) in pl.name =

p2.name and pl.type = p2.type and pl.direction = p2.direction and
pl.isOrdered = p2.isOrdered and pl.isUnique = p2.isUnique and pl.lower =
p2.lower and pl.upper = p2.upper and pl.effect = p2.effect and
pl.isException = p2.isException and pl.isStream = p2.isStream)

Constraints

100

enforced name

The name of an ~InterfaceBlock shall be the name of its original InterfaceBlock with a tilde ("~") character
prepended.

self.base Class.name = '~'+self.original.base Class.name

inverted features

An ~InterfaceBlock has same features and owned rules than its original InterfaceBlock except that — where
applicable — both its DirectedFeatures and FlowProperties have inverted directions (i.e., are "conjugated").

let allAttributes: Set(UML::Property) = self.base Class.allFeatures()->
select (oclIsKindOf (UML: :Property)) .oclAsType (UML: : Property)->asSet () in
let allOperations: Set(UML::Operation) = self.base Class.allFeatures()->
select (oclIsKindOf (UML: :Operation)) .oclAsType (UML: :Operation)->asSet () in
let allReceptions: Set(UML::Reception) = self.base Class.allFeatures()->

select (oclIsKindOf (UML: :Reception)) .oclAsType (UML: :Reception)->asSet () in
let inheritedRules: Set (UML::Constraint) =
self.base Class.inherit (self.base Class.inheritedMember->

select (0oclIsKindOf (UML: :Constraint))) .oclAsType (UML: :Constraint)->asSet ()
in
let allRules: Set(UML::Constraint) = self.base Class.ownedRule->

union (inheritedRules) in
let allOriginalAttributes: Set (UML: :Property) =
self.original.base Class.allFeatures()->

select (oclIsKindOf (UML: :Property)) .oclAsType (UML: : Property)->asSet () in

OMG Systems Modeling Language, v1.7

let allOriginalOperations: Set (UML::Operation) =

self.original.base Class.allFeatures()->

select (oclIsKindOf (UML: :Operation)) .oclAsType (UML: :Operation)->asSet () in
let allOriginalReceptions: Set (UML: :Reception) =

self.original.base Class.allFeatures()->

select (oclIsKindOf (UML: :Reception)) .oclAsType (UML: :Reception)->asSet () in
let originalInheritedRules: Set (UML::Constraint) =

self.original.base Class.inherit (self.original.base Class.inheritedMember->
select (0oclIsKindOf (UML: :Constraint))) .oclAsType (UML: :Constraint)->asSet ()
in

let allOrignalRules: Set (UML::Constraint) =

self.original.base Class.ownedRule->union(originalInheritedRules) in

allAttributes->size () = allOriginalAttributes->size()
and allOperations->size () = allOriginalOperations->size ()
and allReceptions->size() = allOriginalReceptions->size ()

and (allAttributes->isEmpty () or allAttributes->forAll (a |
allOriginalAttributes->exists(oa | areConjugated(a, oa))))
and (allOperations->isEmpty () or allOperations->forAll (o |
allOriginalOperations->exists (oo | areConjugated (o, 00))))
and (allReceptions->isEmpty () or allReceptions->forAll (r |
allOriginalReceptions->exists(ro | areConjugated(r, ro))))
and areSameConstraintSets(allRules, allOrignalRules)

)
(
)
(
)

9.4 Usage Examples

9.4.1 Ports with Required and Provided Features

Fig. 9.6 is a fragment of the ibd:PwrSys diagram used in the HybridSUV Sample Problem in Annex D. (The
complete diagram is in Fig. D.19.) The ecu:PowerControlUnit part has three ports with required and provided
features, each connected to a port of another part. Each of the ports in this example is typed by a block specifying
provided and required features available via connectors to the ports. For example, the ICE block specifies the
provided operations setMixture and setThrottle, the provided properties RPM, temperature, and isKnocking, and
required property isControlOn, as shown in Fig. D.20. This block types the ctrl port of InternalCombustionEngine
while its conjugation (~ICE) types the ice port of PowerControlUnit.. This means the provided features of ICE are
provided by the ctrl port of Internal CombustionEngine, and required by the ice port of PowerControlUnit, while the
required features of ICE are required by the ctrl port of InternalCombustionEngine, and provided by the ice port of
PowerControlUnit. Since the ecu:PowerControlUnit part and ice:Internal CombustionEngine part are connected via
these ports, the ecu:PowerControlUnit part may invoke setThrottle and setMixture on the
ice:InternalCombustionEngine part via its ice port, across the connector to the ctrl port of
ice:InternalCombustionEngine. By invoking these operations, the PowerControlUnit can set the throttle and mixture
of the Internal CombustionEngine. The PowerControlUnit can also read properties of the InternalCombustionEngine
across the connector to find out the its rpm, temperature, and whether it is knocking. Inversely, the

Internal CombustionEngine can read the isControlOn property of the PowerControlUnit across the connector to
determine if the unit is still operating, and possibly shut down if it is not.

OMG Systems Modeling Language, v1.7 101

ibd [Block] PowerSubsystem [Usage example of ports with provided and required features])
epc : ElectricalPowerController
[]
ctrl : EPC
c3
epc : ~EPC
L trsm : ~TRSM ctrl : TRSM trsm : Transmission
ecu : PowerControlUnit ’
c2
ctrl : ~ICE ctrl : ICIE:I ice : InternalCombustionEngine
c1

Figure 9.6. Usage example of ports with provided and required features
9.4.2 Ports and Item Flows

Fig. D.25 shows the usage of ItemFlow. Here each of the item flows has an item property (fuelSupply:Fuel and
fuelReturn:Fuel) that signify the actual flow of fuel across the fuel lines. We see how Fuel may flow between the
FuelTankAssy and the InternalCombustionEngine. The FuelPump ejects Fuel via p1 port of FuelTankAssy, the Fuel
flows across the fuelSupplyLine connector to the fuelFittingPort of InternalCombustionEngine and from there it is
distributed via other ports to internal parts of the engine. Some of the fuel is returned to the FuelTankAssy from the
fuelFitting port across the fuelReturnLine connector. Note that it is possible to connect a single port to multiple
connectors: in this example the direction of the flow via the fuelFitting port on the external connectors is implied by
the direction of the ports on the other side of the fuel lines as well as by the directions of the item flows on the fuel
lines. The direction of the flow on the internal connectors is implied by the direction of the ports of the engine’s
internal parts.

9.4.3 Ports with Flow Properties

Fig. D.22 shows a way to connect the PowerControlUnit to other parts over a CAN bus. Since connections over
buses are characterized by broadcast asynchronous communications, ports with flow properties are used to connect
the parts to the CAN bus. To specify the flow between the ports, we need to specify flow properties as done in Fig.
D.21. Here FS_ICE has three flow properties: an “out” flow property of type signal (ICEData) and two “in” flow
properties of type Real. This allows the InternalCombustionEngine to transmit an ICEData signal via its fp port that
will be transmitted over the CAN bus to the ice port of PowerControlUnit (a port typed by the conjugation
~FS_ICE). This single signal carries the temperature, rpm, and knockSensor information of the engine. In addition,
the PowerControlUnit can set the mixture and throttle of the InternalCombustionEngine via the mixture and
throttlePosition flow properties of FS_ICE.

9.4.4 Proxy and Full Ports

Modelers have the option of applying stereotypes for proxy and full ports to indicate whether ports are specifying
features of their owners and internal parts (proxy), or for themselves separately (full). This is a concern when
defining ports, rather than using existing blocks with ports already defined on them. Using existing blocks with ports
only requires knowing the port types, because they define the features available for linking or communication with
those ports via connectors. The stereotypes of proxy and full ports might be elided in these cases to simplify
diagrams.

The ProxyPort and FullPort stereotypes can be applied at any level in a block taxonomy, whether on ports of the
most general blocks, the most specialized, or at intermediate levels of generalization. Ports can be specialized

through redefinition and subsetting if desired, as long they are not proxy and full at the same time, including the
stereotypes they inherit. Fig. 9.7 shows an example of a general block for an electrical plug specialized into two
other blocks. The general block can be contained in its own package, for export to users of electrical plugs. The

102 OMG Systems Modeling Language, v1.7

specialized blocks are for plug designers. This example has two designs, one using proxy ports and the other full.
The proxy design adds internal parts exposed by the ports. The full design redefines the ports with specialized types.
The same type is used for the internal parts of the proxy design and the redefined ports of the full design. The net
result for the systems as-built are the same.

Modelers can apply stereotypes for proxy and full ports at any stage of model development, or not all if the
stereotype constraints are not needed. Fig. 9.7 happens to use unstereotyped ports on a general block distributed to
users, and stereotyped ports on its specializations for implementation, but the modelers might have not used
stereotypes at all, if they did not care whether the model met those constraints (such as no behaviors on proxy ports,
or no internal binding connectors to full ports).

Unstereotyped ports do not commit to whether they are proxy or full, and do not prevent or dictate future application
of the stereotypes, except for ports that violate constraints of the stereotypes. For example, if the port types on the
general block in Fig. 9.7 had behaviors defined, then the proxy specialization would be invalid. If the general ports
had binding connectors to internal parts, then the full specialization would be invalid. If the general ports had both
behaviors and internal binding connectors, then both specializations would be invalid. Unstereotyped ports have the
basic functionality of stereotyped ones, including flow properties and nested ports, so they can be used as long as the
modeler is not concerned with the distinction between proxy and full, and the constraints they impose.

OMG Systems Modeling Language, v1.7 103

bdd [Package] Plug Taxonomy[Usage example of proxy and full ports])

«block» _
Plug p1:P1
values 2 P2
isOutdoor : Boolean P
p3:P3
I I
«block» «block»
Plug Design 1 Plug Design 2
- «proxy» «full»
:P1S ——<] p1: P1 [<]p1:P1S
{redefines p1} {redefines p1}
= «Proxy» «fully»
5P23—E|p2:P2 <|p2:P2S
{redefines p2} {redefines p2}
= «proxy» «full»
: P38 <| p3:P3 «| p3: P3S
{redefines p3} {redefines p3}
«block»
P
flow properties

in p : Electricity

references
sp : Surface

AN

«interfaceBlock»
P1

«interfaceBlock»
P2

«interfaceBlock»
P3

flow properties
in live : Electricity

flow properties
in neutral : Electricity

flow properties
in ground : Electricity

references
sp : Surface{redefines sp}

references
sp : Surface{redefines sp}

references
sp : Surface{redefines sp}

i

i

i

«block» «block» «block»
P1S P2s P3S
parts parts parts

material : Steel

material : Steel

material : Steel

references
sp : Surface{redefines sp}

references

sp : Surface{redefines sp}

references
sp : Surface{redefines sp}

Figure 9.7. Usage example of proxy and full ports

9.4.5 Association and Port Decomposition

Fig. 9.8 shows an association block Water Delivery between a bank of spigots and a faucet. The «port» keyword
indicates which association ends are ports (associations use properties as ends, which can be ports). Fig. 9.9 shows
the internal structure of Water Delivery defining connectors between the spigots in the bank and inlets on the faucet.

104 OMG Systems Modeling Language, v1.7

The participant properties identify the spigot bank and faucet being connected. The end property on the stereotype
refers to the corresponding association end in Fig. 9.8. The type of participant properties is shown for clarity, but is
always the same as the association end type and can be elided. They are shown with dashed rectangles because they

are reference properties. The internal structure connects hot and cold ports of the participants.

bdd [Water Supply and Clien{)
«block» «block»
WaterSupply Water Client
«block»
«port» : «port»
sbank |1 Water Delivery faucet [1
/
«block» suppliedBy y deliveredTo «block»
Spigot Bank |4 1.* Faucet
«port» «port» «port» «port»
hot 1 1| cold hot |1 1| cold
«block» from to «block»
Spigot 1 1 Faucet Inlet

Figure 9.8. Water Delivery association block

ibd [Block] Water Delivery[Internal structure of Water Delivery association block])

| suppliedByLink : Spigot Bank | I

[{end = suppliedBy} [hot from to hot

deliveredToLink : Faucet
{end = deliveredTo}

Figure 9.9. Internal structure of Water Delivery association block

Fig. 9.10 shows two views of a block House with a connector of type Water Delivery. The connector in the top view

“decomposes” into the subconnectors in the lower view according to the internal structure of Water Delivery. The

subconnectors relate the nested ports of :WaterSupply to the nested ports of :WaterClient.

OMG Systems Modeling Language, v1.7

105

ibd [Block] House[House1])

: WaterSupply : Water Client
: Water Delive
sbank | _ very [faucet
suppliedBy deliveredTo
ibd [Block] House[House2])
: WaterSupply : Water Client

sbank

faucet

hot from

from

cold

Figure 9.10. Two views of Water Delivery connector within House block

The top portion of Fig. 9.11 shows specializations of the block WaterClient into Bath, Sink, and Shower. These are
used as part types in the internal structure of the block House 2 shown in the lower portion of the figure. The

composite connector for Water Delivery is reused three times to establish connections between spigots on the water
supply and the inlets of faucets on the bath, sink, and shower.

bdd [Package] Water Client[Water Client])

Water Client

AN

Bath

Sink Shower

ibd [Block] House[House] J

: WaterSupply

sbank

: Water Delive :_I_ : Bath
very faucet
: Water Delive i : Sink
oy faucet
: Water Delivery : Shower
faucet

Figure 9.11. Specializations of Water Client in house example

106

OMG Systems Modeling Language, v1.7

Fig. 9.12 adds a Plumbing association block for the association between Spigot and Faucet Inlet in Fig. 9.11. Fig.
9.13 shows the internal structure for the Plumbing association block, which includes a pipe and two fittings (the
additional part and connector definitions are omitted for brevity).

bdd [Package] Water Supply and Clienf Plumbing association blocli)

Plumbing

fromPlumbing 7 toPlumbin

1 1

Spigot Faucet Inlet

Figure 9.12. Water Delivery association block with internal Plumbing connector

ibd [Block] Plumbing Internal structure of Plumbing association bIocR)

«participant» | «participant» [
frominLink : Spigot | sf : Fitting pp : Pipe ff : Fitting tolnLink : Faucet Inlet |
{end = fromPlumbing} I {end = toPlumbing} I

Figure 9.13. Internal structure of Plumbing association block

Fig. 9.14 modifies Fig. 9.9 to use Plumbing as a connector type within the Water Delivery association block. The
lower connector shows its connector property explicitly, enabling the pipe it contains to be connected to a mounting
bracket (the additional part and connector definitions are omitted for brevity).

ibd [Block] Water Delivery[Water Delivery association block with internal Plumbing connecto])

————————— 1 : Plumbin - - - = = = — —

[suppliedByLink : Spigot Bank ! P) 9) | deliveredToLink : Faucet |
{end = suppliedBy} ot {end = deliveredTo}

| hor fromPlumbing toPlumbin h

|

fromPlumbi toPlumbi |

| @ romPlumbing | oPlum qu‘:’El |
|

|
«connector»
p2 : Plumbing

pp : Pipe m : Mounting Bracket

Figure 9.14. Water Delivery association block with internal Plumbing connector
9.4.6 Item Flow Decomposition

Item flows in internal block diagrams specify flows local to a block. For example, in Fig. 9.15 the connector to the
output of the water heater has an item flow indicating distilled water is flowing, even though the out flow property
of the water heater indicates it produces water. The water heater is fed from a water distiller in this particular usage,
so the modeler knows the output will always be distilled water, rather than other kinds of water. The radiator on the
left requires distilled water, and its connection to the water heater is compatible because the item flow narrows the
items to distilled water. Item flows can also be more general than the actual flow, as shown by the connector on the

OMG Systems Modeling Language, v1.7 107

right. The water distiller produces distilled water, but the item flow is for any kind of fluid. The connection to the
water heater is compatible because it accepts any kind of water, including distilled. The item flow does not require
the heater to accept any kind of fluid, because the source of flow is still producing water, regardless of the generality
of the item flow.

Connectors with item flows can be decomposed by association blocks that have additional item flows. The
relationship between an item flow and those in the association block is determined by the modeler. Fig. 9.16 and Fig.
9.17 are examples of item flow decomposition that modelers might choose, but they are not the only possible
decompositions and are not required. In Fig. 9.16, the item flow classifier (EnginePart) is a supertype of the
classifiers of the item flows in the decomposition. The flow properties are all in the types of the nested ports, while
the composing item flow summarizes the kinds of items flowing by generalization. In Fig. 9.17, the item flow
classifier (Engine) composes the classifiers of the items flows in the decomposition from Fig. 9.17. The port types
have an additional flow property that is not in the nested ports. These are for the flow of the engine, as opposed to its
parts. Constraints can be added between the flow properties for the engine and those for the parts, to indicate the
flowing parts are inside the flowing engine, or are separate, for example as spare parts.

ibd [Block] Context[Internal structure of Context])

DistilledWat Fluid
: Radiator ;—| 1St : ater ,J—| : Water Heater — ;“ d] : Water Distiller
I Y - P20 - P2i ' P3

bdd [Package] Port Types|[Port Types])

«block» «block» «block» «block»
P1 P20 P2i P3
flow properties flow properties flow properties flow properties
in pf1 : DistilledWater out p2fo : Water in p2fi : Water out p3f : DistilledWater
Fluid
Water
DistilledWater

Figure 9.15. Usage example of item flows in internal block diagrams

108 OMG Systems Modeling Language, v1.7

ibd [Block] Context[Internal structure of Context])

b1 : b2
p1:P1 c1 Al p2: P2
<« <

Engine

bdd [Connection Specification])
«block» «block»
P1 P2 Engine
flow properties A1 flow properties
in p1f : Engine \ out p2f : Engine
oorts ae1 \ ae2 ports :

p1.1:P1.1 — p2.1:P2.1 EnginePart
p1.2:P1.2 «Dblock» p2.2:P2.2
p1.3:P1.3 A1 p2.3:P2.3

Figure 9.16. Usage example of item flow decomposition

ibd [Block] Context[Internal structure of Context])

b1 : b2
p1:P1 c1:A1 p2:P2
«— —

EnginePart

bdd [Connection Specification 1])

«block» | aet A1l ae2 | «block» «<block
P1 l P2 EnginePart
ports | ports %
p1.1:P1.1 p2.1:P2.1
p1.2:P1.2 I p2.2: P2.2 [I |
p1.3:P1.3 | p2.3:P2.3 «block» «block» «block»
| Piston | [Crankshaft Cam
«block»
A1

references
«participant» e2InLink : P2 [1{end = ae2}
«participant» e1lnLink : P1 [1{end = ae1}

[etinLink : P1 [1] 7 r eanﬁk:_Pz_[ﬂ_i
ond=aety [PIIPIY o p21:P2 fond = 202}

Dp1.2:P1.2 Pi;ton p2.2: P22

|
|
! O p1.3: P13 Cra"fhaﬂ p2.3:P2.3
|

[

_____] Cam |

Figure 9.17. Usage example of item flow decomposition

OMG Systems Modeling Language, v1.7 109

This page intentionally left blank.

110 OMG Systems Modeling Language, v1.7

10 Constraint Blocks

10.1 Overview

Constraint blocks provide a mechanism for integrating engineering analysis such as performance and reliability
models with other SysML models. Constraint blocks can be used to specify a network of constraints that represent
mathematical expressions such as {F=m*a} and {a=dv/dt}, which constrain the physical properties of a system.
Such constraints can also be used to identify critical performance parameters and their relationships to other
parameters, which can be tracked throughout the system life cycle.

A constraint block includes the constraint, such as {F=m*a}, and the parameters of the constraint such as F, m, and
a. Constraint blocks define generic forms of constraints that can be used in multiple contexts. For example, a
definition for Newton’s Laws may be used to specify these constraints in many different contexts. Reusable
constraint definitions may be specified on block definition diagrams and packaged into general-purpose or domain-
specific model libraries. Such constraints can be arbitrarily complex mathematical or logical expressions. The
constraints can be nested to enable a constraint to be defined in terms of more basic constraints such as primitive
mathematical operators.

Parametric diagrams include usages of constraint blocks to constrain the properties of another block. The usage of a
constraint binds the parameters of the constraint, such as F, m, and a, to specific properties of a block, such as a
mass, that provide values for the parameters. The constrained properties, such as mass or response time, typically
have simple value types that may also carry units, quantity kinds, or probability distributions. A pathname dot
notation can be used to refer to nested properties within a block hierarchy. This allows a value property (such as an
engine displacement) that may be deeply nested within a containing hierarchy (such as vehicle, power system,
engine) to be referenced at the outer containing level (such as vehicle-level equations). The context for the usages of
constraint blocks shall also be specified in a parametric diagram to maintain the proper namespace for the nested
properties.

Time can be modeled as a property that other properties may be dependent on. A time reference can be established
by a local or global clock that produces a continuous or discrete time value property. Other values of time can be
derived from this clock, by introducing delays and/or skew into the value of time. Discrete values of time as well as
calendar time can be derived from this global time property. SysML includes the time model from UML, but other
UML specifications offer more specialized descriptions of time that may also apply to specific needs.

A state of the system can be specified in terms of the values of some of its properties. For example, when water
temperature is below 0 degrees Celsius, it may change from liquid to solid state. In this example, the change in state
results in a different set of constraint equations. This can be accommodated by specifying constraints that are
conditioned on the value of the state property.

Parametric diagrams can be used to support trade-off analysis. A constraint block can define an objective function to
compare alternative solutions. The objective function can constrain measures of effectiveness or merit and may
include a weighting of utility functions associated with various criteria used to evaluate the alternatives. These
criteria, for example, could be associated with system performance, cost, or desired physical characteristics.
Properties bound to parameters of the objective function may have probability distributions associated with them
that are used to compute expected or probabilistic measures of the system. The use of an objective function and
measures of effectiveness in parametric diagrams are included in Annex E: “Non-normative Extensions.”

SysML identifies and names constraint blocks, but does not specify a computer interpretable language for them. The
interpretation of a given constraint block (e.g., a mathematical relation between its parameter values) shall be
provided. An expression may rely on other mathematical description languages both to capture the detailed
specification of mathematical or logical relations, and to provide a computational engine for these relations. In
addition, the block constraints are non-causal and do not specify the dependent or independent variables. The
specific dependent and independent variables are often defined by the initial conditions, and left to the
computational engine.

A constraint block is defined by a keyword of «constraint» applied to a block definition. Properties of this block
define parameters of the constraint, with the exception of properties that hold internally nested usages of constraint
blocks. The usage of a constraint block is distinguished from other parts by a box having rounded corners rather than

OMG Systems Modeling Language, v1.7 11

the square corners of an ordinary part. A parametric diagram is a restricted form of internal block diagram that
shows only the use of constraint blocks along with the properties they constrain within a context.

10.2 Diagram Elements

10.2.1 Block Definition Diagram
Table 10.1. Graphical nodes defined in Block Definition diagrams

ElementName

ConstraintBlock

10.2.2 Parametric Diagram

Concrete Syntax

«constraint»
ConstraintBlock1

constraints

{L1} x>y}
nested : ConstraintBlock2

parameters
x : Real
y : Real

Abstract Syntax Reference

SysML::ConstraintBlocks::
ConstraintBlock

The diagram elements described in this sub clause are additions to the Internal Block Diagram described in Section
8. The Parametric Diagram includes all of the notations of an Internal Block Diagram, subject only to the restrictions

described in Section 10.3.1.2.

Table 10.2. Graphical nodes defined in Parametric diagrams

ElementName

ParametricDiagram

ConstraintProperty

10.3 UML Extensions

10.3.1 Diagram Extensions
10.3.1.1 Block Definition Diagram

112

Concrete Syntax

par [Block] Block1[Parametric examplq)

C1: Constraint1

D length : Real = X
Dwidlh : Real = y

]
]

C1 : Constraint1

:I x : Real
:I y : Real

«constraint»
C1': Constraint1

:' X : Real
jy:ReaI

Abstract Syntax Reference

SysML::ConstraintBlocks::
ConstraintBlock,
SysML::Blocks::Block

UMLA4SysML::Property typed by
SysML::ConstraintBlocks::
ConstraintBlock

OMG Systems Modeling Language, v1.7

10.3.1.1.1 Constraint block definition

The «constraint» keyword on a block definition states that the block is a constraint block. An expression that
specifies the constraint may appear in the constraints compartment of the block definition, using either formal
statements in some language, or informal statements using text. This expression can include a formal reference to a
language in braces as indicated in Table 10.1. Parameters of the constraint may be shown in a compartment with the
predefined compartment label “parameters.”

10.3.1.1.2 Parameters compartment

Constraint blocks support a special form of compartment, with the label “parameters,” which may contain
declarations for some or all of its constraint parameters. Properties of a constraint block should be shown either in
the constraints compartment, for nested constraint properties, or within the parameters compartment.

10.3.1.2 Parametric Diagram

A parametric diagram is defined as a restricted form of internal block diagram. A parametric diagram may contain
constraint properties and their parameters, along with other properties from within the internal block context. All
properties that appear, other than the constraints themselves, shall either be bound directly to a constraint parameter,
or contain a property that is bound to one (through any number of levels of containment).

10.3.1.2.1 Round-cornered rectangle notation for constraint property

A constraint property may be shown on a parametric diagram using a rectangle with rounded corners. This graphical
shape distinguishes a constraint property from all other properties and avoids the need to show an explicit
«constraint» keyword. Otherwise, this notation is equivalent to the standard form of an internal property with a
«constrainty keyword shown. Compartments and internal properties may be shown within the shape just as for other
types of internal properties.

10.3.1.2.2 «constraint» keyword notation for constraint property

A constraint property may be shown on a parametric diagram using a standard form of internal property rectangle
with the «constraint» keyword preceding its name. Parameters are shown within a constraint property using the
standard notations for internal properties.

10.3.1.2.3 Small square box notation for an internal property

A constraint parameter may optionally be shown by a small square box, with the name and other specifications
appearing in a text string close to the square box. The text string for such a constraint parameter may include all the
elements that could ordinarily be used to declare the parameter in a compartment of a block, including an optional
default value. The box may optionally be shown with one edge flush with the boundary of a containing property.
Placement of constraint parameter boxes is purely for notational convenience, for example, to enable simpler
connection from the outside, and has no semantic significance. If a connector is drawn to a region where an internal
constraint parameter box is shown flush with the boundary of a containing property, the connector is always
assumed to connect to the innermost constraint parameter.

10.3.2 Stereotypes

Package ConstraintBlocks

«stereotype»
SysML::Blocks::Block

T

«stereotype»
ConstraintBlock

Figure 10.1. Stereotypes defined in SysML ConstraintBlocks package

OMG Systems Modeling Language, v1.7 113

10.3.2.1 ConstraintBlock

Description

A constraint block is a block that packages the statement of a constraint so it may be applied in a reusable way to
constrain properties of other blocks. A constraint block typically defines one or more constraint parameters, which
are bound to properties of other blocks in a surrounding context where the constraint is used. Binding connectors, as
defined in Section 8 are used to bind each parameter of the constraint block to a property in the surrounding context.
All properties of a constraint block are constraint parameters, with the exception of constraint properties that hold
internally nested usages of constraint blocks.

A constraint property is a property of any block that is typed by a constraint block. It holds a localized usage of the
constraint block. Binding connectors may be used to bind the parameters of this constraint block to other properties
of the block that contains the usage.
Generalizations

* Block (from Blocks)

Association Ends
* base Class : Class [1]

Constraints
* 1 constraintparameters only

A constraint block shall not own any structural or behavioral elements beyond the properties that define its
constraint parameters, constraint properties that hold internal usages of constraint blocks, binding connectors
between its internally nested constraint parameters, constraint expressions that define an interpretation for the
constraint block, and general-purpose model management and crosscutting elements.

-- Cannot be expressed in OCL

* 2 specializations_are constraintblocks
Any classifier that specializes a ConstraintBlock shall also have the ConstraintBlock stereotype applied.
UML: :Classifier.allInstances()->forAll(c | c.general->
includes (self.base Class) implies
ConstraintBlock.allInstances () .base Class->includes (c))
* 3 composite
Any property of a block that is typed by a ConstraintBlock shall have composite aggregation.
self.base Class.ownedAttribute->forAll (p| p.isComposite)

10.4 Usage Examples

10.4.1 Definition of Constraint Blocks on a Block Definition Diagram

Constraint blocks can only be defined on a block definition diagram or a package diagram, where they shall have the
«constraint» keyword shown. The strings in braces in the compartment labeled “constraints” are ordinary UML
constraints, using a special compartment to hold the constraint. This is shown in Section D.4.7.8. These particular
constraints are specified only in an informal language, but a more formal language such as OCL or MathML could
also be used. The compartment labeled “parameters” shows the parameters of this constraint, which are bound on
the parametric diagram.

10.4.2 Usage of Constraint Blocks on a Parametric Diagram

Fig. D.32 shows the use of constraint properties on a parametric diagram. This diagram shows the use of nested
property references to the properties of the parts; parametric diagrams can make use of the nested property name

114 OMG Systems Modeling Language, v1.7

notation to refer to multiple levels of nested property containment, as shown in this example. A parametric diagram
is similar to an internal block diagram with the exception that the only connectors that may be shown are binding
connectors. The Sample Problem in Annex D provides definitions of the containing EconomyContext block for
which this parametric diagram is shown.

OMG Systems Modeling Language, v1.7 115

This page intentionally left blank.

116 OMG Systems Modeling Language, v1.7

BEHAVIORAL CONSTRUCTS

OMG Systems Modeling Language, v1.7 117

This page intentionally left blank.

118 OMG Systems Modeling Language, v1.7

11 Activities

11.1 Overview

Activity modeling emphasizes the inputs, outputs, sequences, and conditions for coordinating other behaviors. It
provides a flexible link to blocks owning those behaviors. The following is a summary of the SysML extensions to
UML Activity diagrams. For additional information, see extensions for Enhanced Functional Flow Block Diagrams
in Annex E, Activity Diagram Extensions.

11.1.1 Control as Data

SysML extends control in activity diagrams as follows:

+ In UML Activities, control can only enable actions to start. SysML extends control to support disabling of
actions that are already executing. This is accomplished by providing a model library with a type for control
values that are treated like data (see ControlValueKind in Fig. 11.9).

* A control value is an input or output of a control operator, which is how control acts as data. A control operator
can represent a complex logical operation that transforms its inputs to produce an output that controls other
actions (see ControlOperator in Fig. 11.8).

11.1.2 Continuous Systems

SysML provides extensions that might be very loosely grouped under the term “continuous,” but are generally
applicable to any sort of distributed flow of information and physical items through a system. These are:

* Restrictions on the rate at which entities flow along edges in an activity, or in and out of parameters of a
behavior (see Rate in Fig. 11.8). This includes both discrete and continuous flows, either of material, energy, or
information. Discrete and continuous flows are unified under rate of flow, as is traditionally done in
mathematical models of continuous change, where the discrete increment of time approaches zero.

» Extension of object nodes, including pins, with the option for newly arriving values to replace values that are
already in the object nodes (see Overwrite in Fig. 11.8). SysML also extends object nodes with the option to
discard values if they do not immediately flow downstream (see NoBuffer in Fig. 11.8). These two extensions
are useful for ensuring that the most recent information is available to actions by indicating when old values
should not be kept in object nodes, and for preventing fast or continuously flowing values from collecting in an
object node, as well as modeling transient values, such as electrical signals.

11.1.3 Probability
SysML introduces probability into activities as follows (see Probability in Fig. 11.8):

» Extension of edges with probabilities for the likelihood that a value leaving the decision node or object node will
traverse an edge.

+ Extension of output parameter sets with probabilities for the likelihood that values will be output on a parameter
set.

11.1.4 Activities as Blocks

In UML, all behaviors including activities are classes, and their instances are executions. Behaviors can appear on
block definition diagrams, and participate in generalization and associations. SysML clarifies the semantics of
composition association between activities, and between activities and the type of object nodes in the activities, and
defines consistency rules between these diagrams and activity diagrams. See Section 11.3.1.1, Activity.

11.1.5 Timelines

The simple time model in UML can be used to represent timing and duration constraints on actions in an activity
model. These constraints can be notated as constraint notes in an activity diagram. Although the UML 2 timing
diagram was not included in this version of SysML, it can complement SysML behavior diagrams to notate this
information. More sophisticated SysML modeling techniques can incorporate constraint blocks from Section 10,

OMG Systems Modeling Language, v1.7 119

“Constraint Blocks” to specify resource and related constraints on the properties of the inputs, outputs, and other
system properties. (Note: refer to Section 11.3.1.4, ObjectNode, Variables, and Parameters for constraining
properties of object nodes).

11.2 Diagram Elements
11.2.1 Activity Diagram

Table 11.1. Graphical notation of Activity diagrams

ElementName Concrete Syntax Abstract Syntax Reference

Action action name :
behavior name
th UML4SysML::Action,

UML4SysML::CallBehaviorAction

Action, CallBehaviorAction,

g::sngJ::::&t)fn’ | Signal > > Event | UMLA4SysML::AcceptEventAction
g UMLA4SysML::SendSignalAction
X TimeEvent
act Activity1 [Activity Diagram1] J
Activity Frame and Heading UMLA4SysML::Activity
ActivityFinal @ UMLA4SysML::ActivityFinalNode
ActivityNode See ControlNode and ObjectNode UML4SysML::ActivityNode

act [ActivityParameterNode])

UMLA4SysML::

E':I ActivityParameterNode

See DecisionNode, FinalNode, ForkNode,

ControlNode InitialNode, JoinNode, and MergeNode. UML4SysML::ControlNode

ActivityParameterNode

«ControlOperator»
CallBehaviorAction1

ControlOperator UML4SysML::ControlOperator
act [controlOperator])

120 OMG Systems Modeling Language, v1.7

ElementName

DecisonNode

ExceptionHandler

FinalNode

FlowFinal

ForkNode

InitialNode

isControl

isStream

OMG Systems Modeling Language, v1.7

Concrete Syntax

[guard]

[else]

Protected Node 5 HandlerBody
L] Node

ExceptionType

See ActivityFinal and FlowFinal

®

e

{controly {controly
— " P

{stream} Action {stream}
L] [

act

Abstract Syntax Reference

UMLA4SysML:

UMLA4SysML::

UML4SysML:

UML4SysML:

UMLA4SysML:

UML4SysML::

UML4SysML::

UMLA4SysML::

:DecisionNode

ExceptionHandler

:FinalNode

:FlowFinal

:ForkNode

InitialNode

Pin.isControl

Parameter.isStream

121

ElementName

JoinNode

Local pre- and postconditions

MergeNode

NoBuffer

ObjectNode

Optional

122

Concrete Syntax

{joinspec=...}

Local Precondition
«constraint»constraint
\
\
e

Action 1
N

\
\

Local Postcondition
«constraint»constraint

«nobuffer» m «nobuffer»

object node name : type name

[state1, state2, ...]

pin name : type name

[state1, state2, ...]
)
«optional» Action «optional»

act |

«Optional»

Abstract Syntax Reference

UMLA4SysML::JoinNode

UMLA4SysML::
Action.localPrecondition,
UMLA4SysML::
Action.localPostcondition

UMLA4SysML::MergeNode

SysML::Activities::NoBuffer

UMLA4SysML::ObjectNode and its

children,
SysML::Activities::ObjectNode

SysML::Activities::Optional

OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

«overwrite» «overwrite»
OverWrite SysML::Activities::Overwrite

ParameterSet UMLA4SysML::ParameterSet

act J
Action
{probability=
valueSpecification}
{probability=
valueSpecification}
Probability = SysML::Activities:: Probability
{probability=
valueSpecification}
{probability=
valueSpecification}

activity [Rate]

«discrete»
parameter1 «discrete»
{stream} parameter4
te= 3
«conlir‘mous» fra e(:‘\,,:;ym) me) Y.
parameter2 SysML::Activities::Rate,
{stream} «continuous» .. e ele . .
Rate : parameters SysML::Activities::Continuous,
«rate» =1.2 m? o ey .
parameterd e 2 SysML::Activities::Discrete
{rate=10/s}
{stream}

«discrete» .m. «continuous»
{rate = every 3 ms} {rate = 1.2 m¥h}

Table 11.2. Graphical paths included in Activity diagrams

ElementName Concrete Syntax Abstract Syntax Reference

ActivityEdge See ControlFlow and ObjectFlow UML4SysML::ActivityEdge

OMG Systems Modeling Language, v1.7

123

ElementName

ControlFlow

ObjectFlow

Probability

Rate

Concrete Syntax

C) s
C} o D SysML::Activities::ControlFlow

C =)

{probability = "valueSpecification"}

{probability = "valueSpecification"}

{probability = "valueSpecification"}

Action

{probability = "valueSpecification"}

Object {probability = "valueSpecification"}

Node

{probability = "valueSpecification"}

«continuous»
«discrete»

{rate = constant}
{rate = distribution}

Abstract Syntax Reference

:ControlFlow,

UMLA4SysML::ObjectFlow

SysML::Activities::Probability

SysML::Activities::Rate,
SysML::Activities::Continuous,
SysML::Activities::Discrete

Table 11.3. Other graphical elements included in Activity diagrams

ElementName

In Block Definition Diagrams,
Activity, Association,
AdjunctProperty

124

Concrete Syntax

bdd [BDD, Activity, Assoc, Adjunct])

«activity» «activity»

activity name

activity name

«adjunct» «adjunct»
call action name variable name
«activity» «block»
activity name block name

«activity»
activity name

«activity»
activity name

«adjunct» «adjunct»
parameter name object node name
«block» «block»
block name block name

Abstract Syntax Reference

UMLA4SysML::Activity,
UMLA4SysML::Association,
SysML::Blocks

OMG Systems Modeling Language, v1.7

ElementName Concrete Syntax Abstract Syntax Reference

Q
E
(1]
=z
c
L
.E
ActivityPartition o UMLA4SysML::ActivityPartition
e —
(Partition Name)
Action
N
I’ T 7 Tregionname |
I
. . . . I z UMLA4SysML::
InterruptibleActivityRegion ! - _:_ -2 InterruptibleActivityRegion
|
- «_stru:turgd»_ -
Node Name

StructuredActivityDiagram

|
I
| UML4SysML::
| StructuredActivityNode
|

11.3 UML Extensions

11.3.1 Diagram Extensions

The following specify diagram extensions to the notations defined in Section 17, “Profiles & Model Libraries”.
11.3.1.1 Activity

11.3.1.1.1 Notation

In UML, all behaviors are classes, including activities, and their instances are executions of the activity. This follows
the general practice that classes define the constraints under which the instances must operate. Creating an instance
of an activity causes the activity to start executing, and vice versa. Destroying an instance of an activity terminates
the corresponding execution, and vice versa. Terminating an execution also terminates the execution of any other
activities that it invoked synchronously, that is, expecting a reply.

Activities as blocks can have associations between each other, including composition associations. Composition
means that destroying an instance at the whole end destroys instances at the part end. When composition is used
with activity blocks, the termination of execution of an activity on the whole end will terminate executions of
activities on the part end of the links.

Combining the two aspects above, when an activity invokes other activities, they can be associated by a composition
association, with the invoking activity on the whole end, and the invoked activity on the part end. If an execution of
an activity on the whole end is terminated, then the executions of the activities on the part end are also terminated.
The upper multiplicity on the part end restricts the number of concurrent synchronous executions of the behavior
that can be invoked by the containing activity. See Constraints below.

OMG Systems Modeling Language, v1.7 125

Activities in block definition diagrams appear as regular blocks, except the «activity» keyword may be used to
indicate the Block stereotype is applied to an activity, as shown in Fig. 11.1. See example in Section 11.4, Usage
Examples. This provides a means for representing activity decomposition in a way that is similar to classical
functional decomposition hierarchies. Properties with AdjunctProperty applied, where the principal of the
AdjunctProperties are call actions, including call behavior actions, can be used as the part end of the associations.
See Section 8.3.2.1 for constraints when AdjunctProperty is used with call actions. Activities in block definition
diagrams can also appear with the same notation as CallBehaviorAction, except the rake notation can be omitted, if
desired. Also see use of activities in block definition diagrams that include ObjectNodes.

bdd [Block definition diagram with activities as blocks])

«activity» «activity»

activity name activity name

«adjunct» «adjunct» «adjunct» «adjuncty»
call action name call action name call action name call action name
«activity» «activity» «activity»
activity name activity name activity name

Figure 11.1. Block definition diagram with activities as blocks
11.3.1.2 CallBehaviorAction

Stereotypes applied to behaviors may appear on the notation for CallBehaviorAction when invoking those
behaviors, as shown in Fig. 11.2.

«stereotype name»
behavior name

th

Figure 11.2. CallBehaviorAction notation with behavior stereotype

CallBehaviorActions in activity diagrams may optionally show the action name with the name of the invoked
behavior using the colon notation shown in Fig. 11.3.

[action name : behavior name]

th

Figure 11.3. CallBehaviorAction notation with action name
11.3.1.3 ControlFlow
11.3.1.3.1 Presentation Option

Control flow may be notated with a dashed line and stick arrowhead, as shown in Fig. 11.4.

Figure 11.4. Control flow notation

11.3.1.4 ObjectNode, Variables, and Parameters

126 OMG Systems Modeling Language, v1.7

11.3.1.4.1 Notation

See Section 11.3.1.1, Activity with regard to activities appearing in block definition diagrams. Associations can be
used between activities and classifiers (blocks or value types) that are the type of object nodes, variables, or
parameters in the activity, as shown in Fig. 11.5. This supports linking the execution of the activity with items that
are flowing through the activity or assigned to variables or parameters, and happen to be contained by an object
node or assigned to a variable or parameter at the time the link exists. Properties with AdjunctProperty applied,
where the principal of the AdjunctProperty is an object node, variable, or parameter, can be used as the end of the
associations toward the object node, variable, or parameter type. Like any association end or property these can be
the subject of parametric constraints, design values, units, and quantity kinds. The associations may be composition
if the intention is to delete instances of the classifier flowing the activity when the activity is terminated. See
example in Section 11.4, Usage Examples.

bdd [Block definition diagram with activities as blocks associated with types of object nodes, variables, and parameters])
«activity» «activity»
activity name activity name
«adjunct» «adjunct» «adjunct» «adjunct»
object node name object node name variable name parameter name
«block» «block» «block»
block name block name block name

Figure 11.5. Block definition diagram with activities as blocks associated with types of object nodes, variables,
and parameters

Object nodes in activity diagrams can optionally show the node name with the name of the type of the object node as
shown in Fig. 11.6.

object node name : type name

Figure 11.6. ObjectNode notation in activity diagrams

Stereotypes applying to parameters can appear on object nodes in activity diagrams, as shown in Fig. 11.7, when the
object node notation is used as a shorthand for pins. The stereotype applies to all parameters corresponding to the
pins notated by the object node. Stereotype applying to object nodes can also appear in object nodes, and applies to
all the pins notated by the object node.

«stereotype name»

object node
name

Figure 11.7. ObjectNode notation with stereotype in activity diagrams

11.3.2 Stereotypes

The following abstract syntax defines the stereotypes in this clause and which metaclasses they extend. The
descriptions, attributes, and constraints for each stereotype are specified below.

OMG Systems Modeling Language, v1.7 127

Package Activities

«Metaclass» «Metaclass» «Metaclass»
UML4SysML::Parameter UML4SysML::ActivityEdge UML4SysML::ParameterSet
«stereotype» «stereotype» «stereotype»
Optional Rate Probability
attributes attributes
rate : InstanceSpecification [1] probability : ValueSpecification [1]
«stereotype» «stereotype»
Discrete Continuous
«Metaclass» «Metaclass» «Metaclass»
UML4SysML::Behavior | | UML4SysML::Operation UML4SysML::ObjectNode
«stereotype» «stereotype»
v t
«siereolyper Overwrite NoBuffer
ControlOperator

Figure 11.8. Abstract Syntax for SysML Activity Extensions
11.3.2.1 Continuous

Description

Continuous rate is a special case of rate of flow (see Rate) where the increment of time between items approaches
zero. It is intended to represent continuous flows that may correspond to water flowing through a pipe, a time
continuous signal, or continuous energy flow. It is independent from UML streaming, see Section 11.3.2.8. A
streaming parameter may or may not apply to continuous flow, and a continuous flow may or may not apply to
streaming parameters.

UML places no restriction on the rate at which tokens flow. In particular, the time between tokens can approach as
close to zero as needed, for example to simulate continuous flow. There is also no restriction in UML on the kind of
values that flow through an activity. In particular, the value may represent as small a number as needed, for example
to simulate continuous material or energy flow. Finally, the exact timing of token flow is not completely prescribed
in UML. In particular, token flow on different edges may be coordinated to occur in a clocked fashion, as in time
march algorithms for numerical solvers of ordinary differential equations, such as Runge-Kutta.

Generalizations

* Rate (from Activities)

11.3.2.2 ControlOperator

Description

A control operator is a behavior that is intended to represent an arbitrarily complex logical operator that can be used
to enable and disable other actions. When the «controlOperator» stereotype is applied to behaviors, the behavior
takes control values as inputs or provides them as outputs, that is, it treats control as data (see Section 11.3.3.1.1).
When the «controlOperator» stereotype is not applied, the behavior may not have a parameter typed by
ControlValue. The «controlOperator» stereotype also applies to operations with the same semantics.

128 OMG Systems Modeling Language, v1.7

The control value inputs do not enable or disable the control operator execution based on their value, they only
enable based on their presence as data. Pins for control parameters are regular pins, not UML control pins. This is so
the control value can be passed into or out of the action and the invoked behavior, rather than control the starting of
the action, or indicating the ending of it.

Association Ends

* base Behavior : Behavior [1]

» base Operation : Operation [1]

Constraints
* 1 one parameter controlvalue

When the «controlOperator» stereotype is applied, the behavior or operation shall have at least one parameter
typed by ControlValue. If the stereotype is not applied, the behavior or operation may not have any parameter
typed by ControlValue.

UML: :Behavior.allInstances ()->forAll (b | not
(ControlOperator.alllnstances () .base Behavior->includes (b) xor
b.ownedParameter->exists (p |

p.type=SysML: :Libraries::ControlValues::ControlValue))) and
UML: :Operation.allInstances ()->forAll (o | not
(ControlOperator.alllnstances () .base Operation->includes (o) xor
o.ownedParameter->exists(p |

p.-type=SysML: :Libraries::ControlValues::ControlValue)))

* 2 controloperator operation method

A behavior shall have the «controlOperator» stereotype applied if it is a method of an operation that has the
«controlOperator» stereotype applied.

(self.base Operation->notEmpty () and self.base Operation.method->
notEmpty()) implies self.base Operation.method->forAll (b |
ControlOperator.allInstances () .base Behavior->includes (b))

11.3.2.3 Discrete

Description

Discrete rate is a special case of rate of flow (see Section 11.3.2.8) where the increment of time between items is a
non-zero. Examples include the production of assemblies in a factory and signals set at periodic time intervals.
Generalizations

+ Rate (from Activities)

Constraints
* 1 not continuous
The «discrete» and «continuousy stereotypes shall not be applied to the same element at the same time.

(self.base ActivityEdge->notEmpty() implies
Continuous.alllnstances () .base ActivityEdge->

excludes (self.base ActivityEdge)) and (self.base Parameter->notEmpty ()
implies Continuous.alllInstances () .base Parameter->

excludes (self.base Parameter))

11.3.2.4 NoBuffer

OMG Systems Modeling Language, v1.7 129

Description

When the «nobuffer» stereotype is applied to object nodes, tokens arriving at the node are discarded if they are
refused by outgoing edges, or refused by actions for object nodes that are input pins. This is typically used with fast
or continuously flowing data values, to prevent buffer overrun, or to model transient values, such as electrical
signals. For object nodes that are the target of continuous flows, «nobuffer» and «overwrite» have the same effect.
The stereotype does not override UML token offering semantics; it just indicates what happens to the token when it
is accepted. When the stereotype is not applied, the semantics are as in UML.

Association Ends
* base_ObjectNode : ObjectNode [1]

Constraints
* 1 not overwrite
The «nobuffer» and «overwrite» stereotypes cannot be applied to the same element at the same time.

Overwrite.allInstances () .base ObjectNode->excludes (self.base ObjectNode)

11.3.2.5 Optional

Description

When the «optional» stereotype is applied to parameters, the lower multiplicity shall be equal to zero. This can be
used on an object node with an upper bound of 1 to ensure that stale data is overridden at the object node.
Otherwise, the lower multiplicity shall be greater than zero, which is called "required." The absence of this
stereotype indicates a constraint, see below.

Association Ends

* base Parameter : Parameter [1]

Constraints
* 1 lower is O

A parameter with the «optional» stereotypes applied shall have multiplicity.lower equal to zero, otherwise
multiplicity.lower shall be greater than zero.

UML: : Parameter.allInstances ()->forAll (p |
Optional.alllnstances () .base Parameter->includes(p) xor p.lower > 0)

11.3.2.6 Overwrite

Description

When the «overwrite» stereotype is applied to object nodes, a token arriving at a full object node removes one that is
already there before being added (a full object node has as many tokens as allowed by its upper bound). This is
typically used on an input pin with an upper bound of 1 to ensure that stale data is overridden at an input pin. For
upper bounds greater than one, the token removed is the one that has been in the object node the longest. For FIFO
ordering, this is the token that is next to be selected, for LIFO it is the token that would be last to be selected. Tokens
arriving at a full object node with the Overwrite stereotype applied take up their positions in the ordering as normal,
if any. The arriving tokens do not take the positions of the removed tokens. A null token removes all the tokens
already there. The number of tokens replaced is equal to the weight of the incoming edge, which defaults to 1. For
object nodes that are the target of continuous flows, «overwrite» and «nobuffer» have the same effect. The
stereotype does not override UML token offering semantics, just indicates what happens to the token when it is
accepted. When the stereotype is not applied, the semantics is as in UML, specifically, tokens arriving at object
nodes do not replace ones that are already there.

Association Ends
* base ObjectNode : ObjectNode [1]

130 OMG Systems Modeling Language, v1.7

Constraints
* 1 not nobuffer
The «overwrite» and «nobuffer» stereotypes cannot be applied to the same element at the same time.

NoBuffer.allInstances () .base ObjectNode->excludes (self.base ObjectNode)
11.3.2.7 Probability

Description

When the «probability» stercotype is applied to edges coming out of decision nodes and object nodes, it provides an
expression for the probability that the edge will be traversed. These shall be between zero and one inclusive, and add

up to one for edges with same source at the time the probabilities are used. When the «probability» stereotype is
applied to output parameter sets, it gives the probability the parameter set will be given values at runtime. These

shall be between zero and one inclusive, and add up to one for output parameter sets of the same behavior at the time

the probabilities are used.

Attributes
+ probability : ValueSpecification [1]
Value of the probability
Association Ends
+ base ActivityEdge : ActivityEdge [1]

* base ParameterSet : ParameterSet [1]

Constraints

* 1 source decisionnode or objectnode

The «probability» stereotype shall only be applied to activity edges that have decision nodes or object nodes as

sources, or to output parameter sets.

(self.base ActivityEdge->notEmpty () implies

self.base ActivityEdge.source.oclIsKindOf (UML: :DecisionNode)) and
(self.base ParameterSet->notEmpty () implies

self.base ParameterSet.parameter->forAll(p |

p.direction=UML: :ParameterDirectionKind: :out))

* 2 all outgoing edges

When the «probability» stereotype is applied to an activity edge, then it shall be applied to all edges coming out

of the same source.

self.base ActivityEdge->notEmpty() implies
Probability.alllInstances () .base ActivityEdge->
includesAll (self.base ActivityEdge.target.incoming)

* 3 all parametersets

When the «probability» stereotype is applied to an output parameter set, it shall be applied to all the parameter

sets of the behavior or operation owning the original parameter set.

self.base ParameterSet->notEmpty () implies
Probability.alllInstances () .base ParameterSet->

includesAll (self.base ParameterSet.namespace.ownedMember->select (m |
m.oclIsKindOf (UML: : ParameterSet)))

* 4 all outputparameter in parametersets

OMG Systems Modeling Language, v1.7

131

When the «probability» stereotype is applied to an output parameter set, all the output parameters shall be in
some parameter set.

(self.base ActivityEdge->notEmpty () implies
Continuous.allInstances () .base ActivityEdge->

excludes (self.base ActivityEdge)) and (self.base Parameter->notEmpty ()
implies Continuous.allInstances() .base Parameter->

excludes (self.base Parameter))

11.3.2.8 Rate

Description

When the «ratey stereotype is applied to an activity edge, it specifies the expected value of the number of objects
and values that traverse the edge per time interval, that is, the expected value rate at which they leave the source
node and arrive at the target node. It does not refer to the rate at which a value changes over time. When the
stereotype is applied to a parameter, the parameter shall be streaming, and the stereotype gives the number of objects
or values that flow in or out of the parameter per time interval while the behavior or operation is executing.
Streaming is a characteristic of UML behavior parameters that supports the input and output of items while a
behavior is executing, rather than only when the behavior starts and stops. The flow may be continuous or discrete,
see the specialized rates in Section 11.3.2.1 and Section 11.3.2.3. The «rate» stereotype has a rate property of type
InstanceSpecification. The values of this property shall be instances of classifiers stereotyped by «valueType» or
«distributionDefinition», see Section 8. In particular, the denominator for units used in the rate property shall be
time units.

Attributes
+ rate : InstanceSpecification [1]
Value of the rate
Association Ends
» base ActivityEdge : ActivityEdge [1]
* base_ObjectNode : ObjectNode [1]

* base Parameter : Parameter [1]

Constraints
* 1 streaming
When the «rate» stereotype is applied to a parameter, the parameter shall be streaming.

self.base Parameter->notEmpty () implies self.base Parameter.isStream

* 2 edges_rates

The rate of a parameter shall be less than or equal to rates on edges that come into or go out from pins and
parameters nodes corresponding to the parameter.

self.base Parameter->notEmpty() implies (
let nodes: Set (UML::0ObjectNode) =
if self.base Parameter.owner.oclIsKindOf (UML::Behavior) then
let pOwner: UML::Behavior =
self.base Parameter.owner.oclAsType (UML::Behavior) in
UML: :CallBehaviorAction.allInstances ()->select(a | a.behavior =
pOwner)
->collect(a | a.argument->at (pOwner.ownedParameter->
indexOf (self.base Parameter)))
->union (UML: : StartObjectBehaviorAction.allInstances ()->select(a |
a.behavior () = pOwner)

132 OMG Systems Modeling Language, v1.7

->collect(a | a.argument->at (pOwner.ownedParameter->
indexOf (self.base Parameter))))
->union (UML: :ActivityParameterNode.allInstances ()->select(n |
n.parameter = self.base Parameter))->asSet()
else if self.base Parameter.owner.oclIsKindOf (UML::Operation) then
let pOwner: UML::Operation =
self.base Parameter.owner.oclAsType (UML::0Operation) in
UML: :CallOperationAction.allInstances ()->select(a | a.operation =

pOwner)
->collect(a | a.argument->at (pOwner.ownedParameter->
indexOf (self.base Parameter)))->asSet ()
else

Set (UML: :ObjectNode) {}
endif endif in
nodes.incoming->flatten ()->union (nodes.outgoing->flatten())
->forAll (e | let eRate: Rate = Rate.alllnstances()->any(r |
r.base ActivityEdge=e) in
(not eRate.oclIsUndefined() and self.rate.specification.realValue() <=
eRate.rate.specification.realValue())))

11.3.3 Model Libraries
11.3.3.1 Package ControlValues
The SysML model library for activities is shown in Fig. 11.9.

«modelLibrary»
bdd ControlValues [Control values]

«ValueType»
ControlValueKind

{
enumeration literals
disable
enable

Figure 11.9. Control values

11.3.3.1.1 ControlValueKind

Description

The ControlValueKind enumeration is a type for treating control values as data (see Section 11.3.2.2) and for UML
control pins. It can be used as the type of behavior and operation parameters, object nodes, and attributes, and so on.
The possible runtime values are given as enumeration literals. Modelers can extend the enumeration with additional
literals, such as suspend, resume, with their own semantics. The disable literal means a termination of an executing
behavior that can only be started again from the beginning (compare to suspend). The enable literal means to start a
new execution of a behavior (compare to resume).

Literals

+ disable
The disable literal means a termination of an executing behavior that can only be started again from the
beginning (compare to suspend).

OMG Systems Modeling Language, v1.7 133

* cnable
The enable literal means to start a new execution of a behavior (compare to resume).

Constraints
* 1 node is controltype

UML::ObjectNode::isControl Type is true for object nodes with type ControlValue.

11.4 Usage Examples

The following examples illustrate modeling continuous systems (see Section 11.1.2, Continuous Systems). Fig.
11.10 shows a simplified model of driving and braking in a car that has an automatic braking system. Turning the
key on has a duration constraint specifying that this action lasts no more than 0.1 seconds. Turning the key on starts
two behaviors, Driving and Braking. These behaviors execute until the key is turned off, using streaming parameters
to communicate with other behaviors. The Driving behavior outputs a brake pressure continuously to the Braking
behavior while both are executing, as indicated by the «continuous» rate and streaming properties (streaming is a
characteristic of UML behavior parameters that supports the input and output of items while a behavior is executing,
rather than only when the behavior starts and stops). Brake pressure information also flows to a control operator that
outputs a control value to enable or disable the Monitor Traction behavior. No pins are used on Monitor Traction, so
once it is enabled, the continuously arriving enable control values from the control operator have no effect, per UML
semantics. When the brake pressure goes to zero, disable control values are emitted from the control operator. The
first one disables the monitor, and the rest have no effect. While the monitor is enabled, it outputs a modulation
frequency for applying the brakes as determined by the ABS system. The rake notations on the control operator and
Monitor Traction indicate they are further defined by activities, as shown in Fig. 11.11 and Fig. 11.12. An alternative
notation for this activity decomposition is shown in Fig. 11.13.

The duration constraint notation associated with the Turn Key To On action is supported by the UML Simple Time
model. The Operate Car activity owns a duration constraint specifying that the “Turn Key To On” action lasts no
more than 0.1 seconds. The concrete UML element used in this example is a DurationConstraint owned by Operate
Car that constrains the Turn Key To On action. The DurationConstraint owns a DurationlInterval, which specifies
that the action is constrained to last between 0 seconds and 0.1 seconds (both being Duration expressions).

134 OMG Systems Modeling Language, v1.7

act [Activity] Operate Car[Continuous system example 1])

«interruptibleRegion» \

{0..0.1s}
\

._ Turn KeytoOn |

brakePressure : BrakePressure
{stream}

«continuous»

BrakePressure BrakePressure
{stream} {stream}

|

I

I

I

I

I

I

I

Braking «controlOperator» |

Enable on Brake |
Pressure >0

rh I

I

I

I

I

I

|

I

I

I

«continuous» ControlValue
modulationFreq
uency :
ModulationFreq
uency

Monitor

! {control}
Traction

Figure 11.10. Continuous system example 1

The activity diagram for Monitor Traction is shown in Fig. 11.11. When Monitor Traction is enabled, it begins
listening for signals coming in from the wheel and accelerometer, as indicated by the signal receipt symbols on the
left, which begin listening automatically when the activity is enabled. A traction index is calculated every 10 ms,
which is the slower of the two signal rates. The accelerometer signals come in continuously, which means the input
to Calculate Traction does not buffer values. The result of Calculate Traction is filtered by a decision node for a
threshold value and Calculate Modulation Frequency determines the output of the activity.

OMG Systems Modeling Language, v1.7 135

act [Activity] Monitor Traction[Continuous system example 23)

Input from
optical sensor on
wheel

Angular
Velocity

{rate = per 10ms}

Input from
Accelerometer

- «continuous»
Acceleration

®é [ilse] [loss of traction]

Calculate
Traction

Traction
Index

Calculate .
" Modulation
Modulation Frequency
Frequency

Figure 11.11. Continuous system example 2

The activity diagram for the control operator Enable on Brake Pressure > 0 is shown in Fig. 11.12. The decision
node and guards determine if the brake pressure is greater than zero, and flow is directed to value specification
actions that output an enabling or disabling control value from the activity. The edges coming out of the decision
node indicate the probability of each branch being taken.

act [Activity] ControlOperator[Continuous system example 3)

[Brake Pressure > 0] 9[«valueSpecification»]

{probability = "10%"}

Brake Pressure %
«valueSpecification»
{probability = "90%"}

enable

—> ControlValue

disable

Figure 11.12. Continuous system example 3

Fig. 11.13 shows a block definition diagram with composition associations between the activities and
AdjunctProperty applied to the part ends in Fig. 11.10, Fig. 11.11, and Fig. 11.12, as an alternative way to show the
activity decomposition of Fig. 11.10, Fig. 11.11, and Fig. 11.12. Each instance of Operating Car is an execution of
that behavior. It owns the executions of the behaviors it invokes synchronously, such as Driving. Like all
composition, if an instance of Operating Car is destroyed, terminating the execution, the executions it owns are also

terminated.

136

OMG Systems Modeling Language, v1.7

bdd [Example block definition diagram for activity decompositioh)

«activity»
Operate Car

«adjunct» «adjunct»

«adjunct»

monitorTraction

«adjuncty» «adjunct»

0.1 enableOnBrakePressure

turnKeyOn 01 driving braking / 0..1
«activity» h «activity» «activity»
Turn Key to On Driving Braking

«activity»
Monitor Traction

«controlOperator»
Enable on Brake Pressure > 0

mt

«adjunct»
calculateTraction/ 0..1

1mt

«adjunct»

0..1\ calculateModulationFrequency

«activity»
Calculate Traction

«activity»
Calculate Modulation Frequency

Figure 11.13. Example block definition diagram for activity decomposition

Fig. 11.14 shows a block definition diagram with composition associations between the activity in Fig. 11.10 and the
types the object nodes in that activity, with AdjunctProperty applied to the object node type end. In an instance of
Operating Car, which is one execution of it, instances of Brake Pressure and Modulation Frequency are linked to the

execution instance when they are in the object nodes of the activity.

bdd [Example block definition diagram for object node type$)

«activity»
Operate Car
oc/1 1\oc

«adjunct»
brakePressure/ 0..1

«adjunct»

0..1 \ modulationFrequency
«valueType»

ModulationFrequency

«valueType»
BrakePressure

Figure 11.14. Example block definition diagram for object node types

bdd [Package] Activity Generalization[Activity Generalization])

«activity»
Braking

«activity»
Smooth Braking

Figure 11.15. Activity Generalization

OMG Systems Modeling Language, v1.7

137

138 OMG Systems Modeling Language, v1.7

12 Interactions

12.1 Overview

Interactions are used to describe interactions between entities. UML Interactions are supported by four diagram
types including the Sequence diagram, Communications diagram, Interaction Overview diagram, and Timing
diagram. The Sequence diagram is the most common of the Interaction diagrams. SysML includes the Sequence
diagram only and excludes the Interaction Overview diagram and Communication diagram, which were considered
to offer significantly overlapping functionality without adding significant capability for system modeling
applications. The Timing diagram is also excluded due to concerns about its maturity and suitability for systems
engineering needs.

The Sequence diagram describes the flow of control between actors and systems (blocks) or between parts of a
system. This diagram represents the sending and receiving of messages between the interacting entities called
lifelines, where time is represented along the vertical axis. The sequence diagrams can represent highly complex
interactions with special constructs to represent various types of control logic, reference interactions on other
sequence diagrams, and decomposition of lifelines into their constituent parts.

12.2 Diagram Elements

12.2.1 Sequence Diagram
Table 12.1. Graphical notation of Sequence diagrams

ElementName Concrete Syntax Abstract Syntax Reference

sd Interaction1 J

SequenceDiagram Frame and

Heading UMLA4SysML::Interaction

b1 : Block1

|
Lifeline |
|
|
|
1

UMLA4SysML::Lifeline

b1 : Block1 b1 : Block1

: execSpec

UML4SysML.::

ExecutionSpecification ExecutionSpecification

OMG Systems Modeling Language, v1.7 139

ElementName

InteractionUse

CombinedFragment

StateInvariant/Continuations

140

Concrete Syntax

ref
Interaction3

ref
:xx.xc=a_op_b(31,w:12):9

sd Interaction1 J

| b1 :Block1| | bZ:BIockZl | b3 :
T

Block3 |

alt |
ifx<10] |
1

[else]

/20—

stm [State Machine] Y[Y] J

Abstract Syntax Reference

UMLA4SysML::InteractionUse

An InteractionUse with just the
<interaction-name>.

An InteractionUse with
<attribute-name>, the value of
arguments, the <return-value>, etc.

UMLA4SysML::
CombinedFragment

A combined fragment is defined by
an interaction operator and
corresponding interaction operands.

Interaction Operators include:

seq - Weak Sequencing
alt - Alternatives

opt - Option

break - Break

par - Parallel

strict - Strict Sequencing
loop - Loop

critical - Critical Region
neg - Negative

assert - Assertion
ignore - Ignore
consider - Consider

UML4SysML::Continuation,
UMLA4SysML::StateInvariant

OMG Systems Modeling Language, v1.7

ElementName

Coregion

Concrete Syntax

m3

m2

'_____E_T__T_]___‘E

b1 : Block1

Creation message, Deletion

I
[

create

b2 : Block2

message
1
: code d=duration
{d.37d} CardOut
DurationObservation, .13
DurationConstraint
OK

TimeConstraint TimeObservation

OMG Systems Modeling Language, v1.7

L

CardOut
{0.13s}

Ok

N/
7\

{t = now}

Abstract Syntax Reference

UMLA4SysML::
CombinedFragment (under
parallel)

UML4SysML::Message (with
messageSort equals
createMessage),
UMLA4SysML::Message (with
messageSort equals
deleteMessage)

UMLA4SysML::Interactions

UML4SysML::Interactions

141

ElementName

SequenceDiagram (advanced)

InteractionUse (advanced)

Concrete Syntax

sd [a_op_b(int x, inout int w):Verdict])

| []
T

e

msg(x)

|

msg2

|

w
T
I
I
I
I
I
I
I
|
I
I
I
I
I
I
|

sd [some_op(int x, intout int w)])

sulssin s

ref

XX .XC = a_op_b(31,w:12):9

Abstract Syntax Reference

UMLA4SysML::Interactions

Shows usage of arguments and
assignment to return value.

UMLA4SysML::InteractionUse

Shows usage of arguments and
assignment to attribute value upon
return.

Table 12.2. Graphical paths included in Sequence diagrams

ElementName

Message

LostMessage, FoundMessage

GeneralOrdering

142

Concrete Syntax

b1 : Block1

asyncSignal

1 1
1 1
1 N|
I I
I I
: syncCall(param=42) _:
:é o reBIy o ::
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Lost :
Found

b2 : Block2

Abstract Syntax Reference

UML4SysML::Message

UML4SysML::Message

UMLA4SysML::GeneralOrdering

OMG Systems Modeling Language, v1.7

Table 12.3. Other graphical elements included in Sequence diagrams
ElementName Concrete Syntax Abstract Syntax Reference

bdd [Other Graphical Elements]

«interaction»
Interaction Name

«adjunct»
interaction use name

«interaction»
Interaction Name

«adjunct»
parameter name

«block»
Block Name

In Block Definition Diagrams, UML4SysML::Interactions,
Interaction, Association, UML4SysML::Association,
AdjunctProperty SysML::Blocks::AdjunctProperty

12.3 UML Extensions

12.3.1 Diagram Extensions
The following specify diagram extensions to the notations defined in Section 17, "Profiles & Model Libraries."
12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing Diagram

Communication diagrams and Interaction Overview diagrams are excluded from SysML. The other behavioral
diagram representations were considered to provide sufficient coverage without introducing these diagram kinds.
Timing diagrams are also excluded due to concerns about their maturity and suitability for systems engineering
needs.

12.3.1.2 Interactions and Parameters
12.3.1.2.1 Notation

In UML, all behaviors are classes, including interactions, and their instances are executions of the interaction.
Interactions as blocks and associations between interactions corresponding to interaction uses have an analogous
semantics to activities as blocks and associations between activities corresponding to call actions, see Section
11.3.1.1.1. Similarly, associations between interactions and classifiers (blocks or value types) have an analogous
semantics to associations between activities and blocks or value types, see Section 11.3.1.4.1.

Interactions in block definition diagrams appear as regular blocks, except the «interaction» keyword may be used to
indicate the Block stereotype is applied to an interaction, as shown in Fig. 12.1 Properties with AdjunctProperty
applied, where the principal of the AdjunctProperty is an interaction use, can be used as the end of the associations
towards the interaction being used. Properties with AdjunctProperty applied, where the principal of the
AdjunctProperty is a parameter of the interaction, can be used as the end of the associations towards the parameter
type. See Section 8.3.2.1, AdjunctProperty for constraints when AdjunctProperty is used with interaction uses and
parameters. Interactions in block definition diagrams can also appear with the same notation as InteractionUses.

OMG Systems Modeling Language, v1.7 143

bdd [Block definition diagram with interactions as blocks associated with used interactions and types of parameters])

«adjunct»
interaction use name1

«interaction»
Interaction Name1

«interaction»
Interaction NameA

«adjunct»

interaction use name2

«interaction»
Interaction Name2

«interaction»
Interaction NameB

«adjunct»

interaction use name

«adjunct»
parameter name

«block»
Block Name

Figure 12.1. Block definition diagram with interactions as blocks associated with used interactions and types
of parameters

12.4 Usage Examples

12.4.1 Sequence Diagrams

Fig. D.7 illustrates the overall system behavior for operating the vehicle in Sequence diagram format. To manage the
complexity, a hierarchical sequence diagram is used which refers to other interactions that further elaborate the
system behavior (“ref StartVehicleBlackBox™). CombinedFragments are used to illustrate that steering can take
place at the same time as controlling the speed and that controlling speed can be either idling, accelerating/cruising,
or braking.

Section D.4.3.3 shows an interaction that includes events and messages communicated between the driver and
vehicle during the starting of the vehicle. The “hybridSUV™ lifeline represents another interaction which further
elaborates what happens inside the “hybridSUV” when the vehicle is started.

Section D.4.3.3 shows the sequence of communication that occurs inside the HybridSUV when the vehicle is started
successfully.

144 OMG Systems Modeling Language, v1.7

This page intentionally left blank.

OMG Systems Modeling Language, v1.7 145

146 OMG Systems Modeling Language, v1.7

13 State Machines

13.1 Overview

The StateMachine package defines a set of concepts that can be used for modeling discrete behavior through finite
state transition systems. The state machine represents behavior as the state history of an object in terms of its
transitions and states. The activities that are invoked during the transition, entry, and exit of the states are specified
along with the associated event and guard conditions. Activities that are invoked while in the state are specified as
“do Activities,” and can be either continuous or discrete. A composite state has nested states that can be sequential
or concurrent.

The UML concept of protocol state machines is excluded from SysML to reduce the complexity of the language.
The standard UML state machine concept, called behavior state machines in UML, is thought to be sufficient for
expressing protocols.

13.2 Diagram Elements

13.2.1 State Machine Diagram
Table 13.1. Graphical notation of State Machine diagrams

ElementName Concrete Syntax Abstract Syntax Reference
stm [Block] ThisBlock[OwnedStateMachine])
StateMachlneDlagram Frame and UMLA4SysML::StateMachine
Heading
. [id>10]
Choice pseudo state UMLA4SysML::PseudoState
[ld<=101]

())

Composite State 1

Composite state UMLA4SysML::State

Entry point again UMLA4SysML::PseudoState
Exit point abf% ed UMLA4SysML::PseudoState

OMG Systems Modeling Language, v1.7 147

ElementName

Final state

History, Deep Pseudo state

History, Shallow Pseudo state

Initial pseudo state

Junction pseudo state

Receive signal action

Send signal action

Action

Region

148

Concrete Syntax

®

> Req(ld)

TurnOn >

MinorReq : = Id;

Abstract Syntax Reference

UMLA4SysML:

UML4SysML::

UMLA4SysML::

UMLA4SysML::

UML4SysML:

UML4SysML::

UMLA4SysML::

UMLA4SysML:

UMLA4SysML:

OMG Systems Modeling Language, v1.7

:FinalState

FinalState

PseudoState

PseudoState

:PseudoState

Transition

Transition

:Transition

:Region

ElementName

Simple State

State list

State Machine

Terminate node

Submachine state

Composite State with a hidden
decomposition indicator icon

Concrete Syntax

State 1

State 2

entry / entryActivity
do / doActivity
exit / exitActivity

\. J

[State 1, State 2]

ReadAmount
aborted

ReadAmount :
ReadAmountSM

oo

aborted

[HiddenComposite]

entry / start dial tone
exit / stop dial tone

O

Abstract Syntax Reference

UMLA4SysML::

UMLA4SysML::

UMLA4SysML::

UMLA4SysML::

UML4SysML.::

UMLA4SysML::

Table 13.2. Graphical paths included in state machine diagrams

ElementName

Transition

OMG Systems Modeling Language, v1.7

Concrete Syntax

trigger [guard] / activity

Abstract Syntax Reference

UMLA4SysML:

State

State

StateMachine

PseudoState

State

State

:Transition

149

ElementName Concrete Syntax Abstract Syntax Reference

(via again)
Alternat.lve entl:y point UMLA4SysML::
Connection- PointReference A .
. ConnectionPointReference
notation ReadAmount :
ReadAmountSM
A\ J
ReadAmount :
ReadAmountSM
A\ J
Alternat.lve eX}t point UML4SysML::
ConnectionPoint Reference . . .
notation (wa abor‘[ed) ConnectionPointReference

Table 13.3. Other graphical elements included in state machine diagrams
ElementName Concrete Syntax Abstract Syntax Reference
bad [Other graphical elomentq
stat machin name

In Block Definition Diagrams, / UMLA4SysML::StateMachine,

Interaction, Association, UML4SysML::Association,
AdjunctProperty SysML::Blocks::AdjunctProperty

«adjuncty

«adjunct
parameter name

submachine state nam

«block»
block name

«statemachine»
state machine name

13.3 UML Extensions

13.3.1 Diagram Extensions
13.3.1.1 State Machines and Parameters

13.3.1.1.1 Notation

In UML, all behaviors are classes, including state machines, and their instances are executions of the state machine.
State machines as blocks and associations between state machines corresponding to submachine states have an
analogous semantics to activities as blocks and associations between activities corresponding to call actions, see
Section 11.3.1.1.1. Similarly, associations between state machines and classifiers (blocks or value types) have an
analogous semantics to associations between activities and blocks or value types, see Section 11.3.1.4.1.

State machines in block definition diagrams appear as regular blocks, except the «stateMachine» keyword may be
used to indicate the Block stereotype is applied to a state machine, as shown in Fig. 13.1. Properties with
AdjunctProperty applied, where the principal of the AdjunctProperty is a submachine state, can be used as the end of
the associations towards the sub state machine. Properties with AdjunctProperty applied, where the principal of the
AdjunctProperty is a parameter of the state machine, can be used as the end of the associations towards the

150 OMG Systems Modeling Language, v1.7

parameter type. See Section 8.3.2.1, AdjunctProperty for constraints when AdjunctProperty is used with submachine
states and parameters. State machines in block definition diagrams can also appear with the same notation as
submachine states.

bdd
«statemachine» «statemachine»
state machine name state machine name
«adjunct» «adjunct» «adjunct» «adjunct»
submachine state name1 submachine state name2 submachine state name parameter name
«statemachine» «statemachine» «block»
state machine name state machine name block name

Figure 13.1. Block definition diagram with state machines as blocks associated with submachines and types of
parameters

13.4 Usage Examples
13.4.1 State Machine Diagram

The high level states or modes of the HybridSUV including the events that trigger changes of state are illustrated in
the state machine diagram in Fig. D.8.

OMG Systems Modeling Language, v1.7 151

This page intentionally left blank.

152 OMG Systems Modeling Language, v1.7

14 Use Cases

14.1 Overview

The use case diagram describes the usage of a system (subject) by its actors (environment) to achieve a goal, that is
realized by the subject providing a set of services to selected actors. The use case can also be viewed as functionality
and/or capabilities that are accomplished through the interaction between the subject and its actors. Use case
diagrams include the use case and actors and the associated communications between them. Actors represent
classifier roles that are external to the system that may correspond to users, systems, and or other environmental
entities. They may interact either directly or indirectly with the system. The actors are often specialized to represent
a taxonomy of user types or external systems.

The use case diagram is a method for describing the usages of the system. The association between the actors and
the use case represent the communications that occur between the actors and the subject to accomplish the
functionality associated with the use case. The subject of the use case can be represented via a system boundary. The
use cases that are enclosed in the system boundary represent functionality that is realized by behaviors such as
activity diagrams, sequence diagrams, and state machine diagrams.

The use case relationships are “communication,” “include,” “extend,” and “generalization.” Actors are connected to
use cases via communication paths, which are represented by an association relationship. The “include” relationship
provides a mechanism for factoring out common functionality that is shared among multiple use cases, and is
required for the goals of the actor of the base use case to be met. The “extend” relationship provides optional
functionality (optional in the sense of not being required to meet the goals), which extends the base use case at
defined extension points under specified conditions. The “generalization” relationship provides a mechanism to
specify variants of the base use case.

The use cases are often organized into packages with the corresponding dependencies between the use cases in the
packages.

14.2 Diagram Elements
14.2.1 Use Case Diagram

Table 14.1. Graphical nodes included in Use Case diagrams

ElementName Concrete Syntax Abstract Syntax Reference
Use Case UML4SysML::UseCase
UseCaseName

extension points

Use Case with Extension Points p1 UML4SysML::UseCase

p2

«actor»

Actor ActorName UMLA4SysML::Actor
ActorName

OMG Systems Modeling Language, v1.7 153

ElementName Concrete Syntax Abstract Syntax Reference

SubjectName
Subiect Association end name on
i UML4SysML::Classifier
Table 14.2. Graphical paths included in Use Case diagrams
ElementName Concrete Syntax Abstract Syntax Reference
Communication Path UMLA4SysML::Association
Include - e UML4SysML::Include
Extend PR S UMLA4SysML::Extend
condition: {boolean expression}ﬁ
extension point p1, p2
Extend with Condition et UML4SysML::Extend
B A
«extend»
Generalization > UMLA4SysML::Generalization

14.3 UML Extensions

None.

14.4 Usage Example

Fig. D.5 is a top-level set of use cases for the Hybrid SUV System. Fig. D.6 shows the decomposition of the Operate
the Vehicle use case. In this diagram, the frame represents the package that contains the lower level use cases. The
convention of naming the package with the same name as the top level use case has been employed. This practice
offers an implicit tracing mechanism that complements the explicit trace relationships in SysML.

In Fig. D.6 the Extend relationship specifies that the behavior of a use case may be extended by the behavior of
another (usually supplementary) use case. The extension takes place at one or more specific extension points defined
in the extended use case. Note, however, that the extended use case is defined independently of the extending use
case and is meaningful independently of the extending use case. On the other hand, the extending use case typically
defines behavior that may not necessarily be meaningful by itself. Instead, the extending use case defines a set of
modular behavior increments that augment an execution of the extended use case under specific conditions. The
“Start the Vehicle” use case is modeled as an extension of “Drive the Vehicle.” This means that there are conditions
that may exist that require the execution of an instance of “Start the Vehicle” before an instance of “Drive the
Vehicle” is executed.

The use cases “Accelerate,” “Steer,” and “Brake” are modeled using the include relationship. Include is a

DirectedRelationship between two use cases, implying that the behavior of the included use case is inserted into the
behavior of the including use case. It is also a kind of NamedElement so that it can have a name in the context of its
owning use case. The including use case may only depend on the result (value) of the included use case. This value

154 OMG Systems Modeling Language, v1.7

is obtained as a result of the execution of the included use case. This means that “Accelerate,” “Steer,” and “Brake”
are all part of the normal process of executing an instance of “Drive the Car.”

In many situations, the use of the Include and Extend relationships is subjective and may be reversed, based on the
approach of an individual modeler.

OMG Systems Modeling Language, v1.7 155

This page intentionally left blank.

156 OMG Systems Modeling Language, v1.7

CROSSCUTTING CONSTRUCTS

OMG Systems Modeling Language, v1.7 157

This page intentionally left blank.

158 OMG Systems Modeling Language, v1.7

15 Allocations

15.1 Overview

Allocation is the term used by systems engineers to denote the organized cross-association (mapping) of elements
within the various structures or hierarchies of a user model. The concept of “allocation” requires flexibility suitable
for abstract system specification, rather than a particular constrained method of system or software design. System
modelers often associate various elements in a user model in abstract, preliminary, and sometimes tentative ways.
Allocations can be used early in the design as a precursor to more detailed rigorous specifications and
implementations. The allocation relationship can provide an effective means for navigating the model by
establishing cross relationships, and ensuring the various parts of the model are properly integrated.

This clause does not try to limit the use of the term “allocation,” but provides a basic capability to support allocation
in the broadest sense. It does include some specific subclasses of allocation for allocating behavior, structure, and
flows. A typical example is the allocation of activities to blocks (e.g., functions to components). This clause
specifies an extension for an allocation relationship and selected subclasses of allocation, along with the notation to
represent allocations in a SysML model.

15.2 Diagram Elements
The diagram elements defined in this clause may be shown on some or all SysML diagram types, in addition to the
diagram elements that are specific for each diagram type.

In the following table, «elementType» is a placeholder for a keyword used to specify the kind of element it prefixes.
For uniformity, the «elementType» displayed for the allocated-to or allocated-from elements should be from the
following list, as applicable: «activity», «action», «objectFlowy, «controlFlow», «objectNode», «operationy,
«block», «property», «itemFlow», «connector», «porty, «valuey.

Other «elementType» designations may be used, if none of the above apply. Note that it is important to use fully
qualified names to avoid ambiguity when required. An example of a fully qualified name is the form:
(PackageName::ElementName.PropertyName).

15.2.1 Representing Allocation on Diagrams
Table 15.1. Extension to graphical nodes included in diagrams

ElementName Concrete Syntax Abstract Syntax Reference

BlockName

Allocation derived properties «elementType»ElementName

displayed in compartment of a SysML::Allocation:Allocate
Block. «elementType»ElementName
Allocation derived properties allocatedElements)
. . prop «elementType» ElementName | | QysM[.:: Allocation:Allocate

displayed in Comment. E - ToElement;

«elementType» ElementName

«block»

BlockName

Allocation derived properties
displayed in compartment of Part PartName SysML::Allocation:Allocate

on Internal Block Diagram. «elementType»ElementName

OMG Systems Modeling Language, v1.7 159

ElementName Concrete Syntax Abstract Syntax Reference

ActivityName
Allocation derived properties Y

dlsp.layed mn C(.)n.lpart.ment of L«elementType» ElementName
Action on Activity Diagram.

SysML::Allocation::Allocate

— 1

«allocate»
: ElementName

SysML::Allocation:Allocate
ActivityPartition

Allocation Activity Partition [ActionName]

Client «allocate» > Supplier

Allocation (general) SysML::Allocation:Allocate

15.3 UML Extensions

15.3.1 Diagram Extensions
15.3.1.1 Tables

Allocation relationships may be depicted in tables. A separate row is provided for each «allocate» dependency.
“from” is the client of the «allocate» dependency, and “to” is the supplier. Both ElementType and ElementName for
client and supplier appear in this table.

15.3.1.2 Allocate Relationship Rendering

The “allocate” relationship is a dashed line with an open arrow head. The arrow points in the direction of the
allocation. In other words, the directed line points “from" the element being allocated “to” the element that is the
target of the allocation.

15.3.1.3 Allocation Compartment Format

When the allocations of a model element are displayed in a compartment, a shorthand notation is used as shown in
Table 15.1. This shorthand groups and lists the elements allocated to that element together (in the
“allocatedElements” compartment), then the elements allocated from that element (in the “allocatedToElements”
compartment), per the result of Allocate::getAllocatedElements() and getAllocatedToElements() respectively, called
with that element as parameter.

15.3.1.4 Allocation Callout Format

When the allocation compartment is not used, a callout notation may be used. An allocation callout notation uses the
same shorthand notation as the allocation compartment. This notation is also shown in Table 15.1. For brevity, the
«elementType» portion of allocated-elements or allocated-to-elements may be elided from the diagram.

15.3.1.5 AllocatedActivityPartition Label

For brevity, the keyword used on an AllocatedActivityPartition is «allocate», rather than the stereotype name
(«allocateActivityPartition»). For brevity, the «elementType» portion of the allocatedElements or
allocatedToElements property may be elided from the diagram.

15.3.2 Stereotypes

160 OMG Systems Modeling Language, v1.7

Package Allocations

«stereotype» «Metaclass»
DirectedRelationshipPropertyPath UML4SysML::Abstraction
«stereotype»
Allocate

Figure 15.1. Abstract syntax extensions for SysML Allocation

UML4SysML::ActivityPartition

«Metaclass»

AllocateActivityPartition

«stereotype»

Figure 15.2. Abstract syntax expression for AllocatedActivityPartition

15.3.2.1 AllocateActivityPartition (from Allocations)

Description

AllocateActivityPartition is used to depict an «allocate» relationship on an Activity diagram. The
AllocateActivityPartition is a standard UML:: ActivityPartition, with modified constraints as stated below.

Association Ends

* base_ActivityPartition : ActivityPartition [1]

Constraints

1 actions_on client ends

An Action appearing in an "AllocateActivityPartition" shall be the /client (from) end of an "allocate"
dependency. The element that represents the "AllocateActivityPartition" shall be the /supplier (to) end of the
same "allocate" dependency. In the «AllocateActivityPartition» name field, Properties are designated by the use
of a fully qualified name (including colon, e.g., "part name:Block Name"), and Classifiers are designated by a
simple name (no colons, e.g., "Block Name").

self.base ActivityPartition.node->select(n|n.oclIsKindOf (UML::Action)) ->
forAll(a | let allocs: Set (UML::Abstraction) =
Allocate.alllInstances () .base Abstraction->select (x |x.client->

includes (a))->asSet () in allocs->exists(x | x.supplier->

includes (self.base ActivityPartition.represents)))

2 not uml semantics

The «AllocateActivityPartition» shall maintain the constraints, but not the semantics, of the
UML::ActivityPartition. Classifiers or Properties represented by an «AllocateActivityPartition» do not have any
direct responsibility for invoking behavior depicted within the partition boundaries. To depict this kind of direct
responsibility, the modeler is directed to the UML 2 standard, semantic description of the model element
ActivityPartition.

-- Cannot be expressed in OCL

15.3.2.2 Allocate (from Allocations)

OMG Systems Modeling Language, v1.7 161

Description

Allocate is a dependency based on UML::Abstraction. It is a mechanism for associating elements of different types,
or in different hierarchies, at an abstract level. Allocate is used for assessing user model consistency and directing
future design activity. It is expected that an «allocate» relationship between model elements is a precursor to a more
concrete relationship between the elements, their properties, operations, attributes, or sub-classes. Allocate is a
stereotype of a UML4SysML::Abstraction that is permissible between any two NamedElements. It is depicted as a
dependency with the "allocate" keyword attached to it. Allocate is directional in that one NamedElement is the
"from" end (no arrow), and one NamedElement is the "to" end (the end with the arrow). The Allocate stereotype
specializes DirectedRelationshipPropertyPath to enable allocations to identify their sources and targets by a multi-
level path of accessible properties from context blocks for the sources and targets. The following paragraphs
describe types of allocation that are typical in systems engineering. Behavior allocation relates to the systems
engineering concept segregating form from function. This concept requires independent models of "function"
(behavior) and "form" (structure), and a separate, deliberate mapping between elements in each of these models. It is
acknowledged that this concept does not support a standard object-oriented paradigm, not is this always even
desirable. Experience on large scale, complex systems engineering problems have proven, however, that segregation
of form and function is a valuable approach. In addition, behavior allocation may also include the allocation of
Behaviors to BehavioralFeatures of Blocks (e.g., Operations).

Flow allocation specifically maps flows in functional system representations to flows in structural system
representations. Flow between activities can either be control or object flow. The figures in the Usage Examples
show concrete syntax for how object flow is mapped to connectors on Activity Diagrams. Allocation of control flow
is not specifically addressed in SysML, but may be represented by relating an ItemFlow to the Control Flow using
the UML relationship InformationalFlow.realizingActivityEdge. Note that allocation of ObjectFlow to Connector is
an Allocation of Usage, and does NOT imply any relation between any defining Blocks of ObjectFlows and any
defining associations of connectors. The figures in the Usage Examples illustrate an available mechanism for
relating the objectNode from an activity diagram to the ItemFlow on an internal block diagram. ItemFlow is
discussed in 9, "Ports and Flows." Pin to Port allocation is not addressed in this release of SysML. Structure
allocation is associated with the concept of separate "logical" and "physical" representations of a system. It is often
necessary to construct separate depictions of a system and define mappings between them. For example, a complete
system hierarchy may be built and maintained at an abstract level. In turn, it shall then be mapped to another
complete assembly hierarchy at a more concrete level. The set of models supporting complex systems development
may include many of these levels of abstraction. This International Standard will not define "logical" or "physical"
in this context, except to acknowledge the stated need to capture allocation relationships between separate system
representations.

Generalizations

+ DirectedRelationshipPropertyPath (from Blocks)

Association Ends

+ base Abstraction : Abstraction [1]

Operations
+ getAllocatedElements (in ref : NamedElement) : NamedElement [0..*]
bodyCondition:

getAllocatedElements = Allocate.alllInstances()->select (supplier
ref) .client

+ getAllocatedToElements (in ref : NamedElement) : NamedElement [0..*]
bodyCondition:

getAllocatedToElements = Allocate.alllInstances()->select(client =
ref) .supplier

162 OMG Systems Modeling Language, v1.7

Constraints
* 2 binary
A single «allocate» dependency shall have only one client (from) and one supplier (to).

self.base Abstraction.source->size() = 1 and
self.base Abstraction.target->size() =1

15.4 Usage Examples

The following examples depict allocation relationships as property callout boxes (basic), property compartment of a
Block (basic), and property compartments of Activities and Parts (advanced). Fig. 15.3 shows generic allocation for
Blocks.

allocatedFrom
«elementType»Element2

allocatedTo
«elementType»Element3
v Block1
allocatedFrom
Block1 «elementType»Element2
allocatedTo
«elementType»Element3

Figure 15.3. Generic Allocation, including /from and /to association ends

15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks

Specific behavior allocations of Actions to Parts and Activities to Blocks are depicted in Fig. 15.4.

The allocation from actionl goes to a nested part, and uses the attributes of DirectedRelationshipPropertyPath to
specify the path of properties to reach that part. The targetContext of the allocation is Block 0 and the
targetPropertyPath is partl. Note that the AllocateActivityPartition, if used in this manner, is unambiguously
associated with behavior allocation.

OMG Systems Modeling Language, v1.7 163

allocation of definition (Activity to Block) allocation of usage (action to part)

bdd [allocations]] act ActivityO]

«activity» «allocate» «block» Block0
Activity1 Block2 ‘ structure
part1 : Block1

action1 : Activity1 «allocate»

callout notation

bdd [activities]] bdd [blocks]] act ActivityO] ibd BlockO]

«activity» «block» ’ part1 : Block1

Activity1 Block2
\
action1 : Activity1 part2 : Block2

Vi

allocatedFrom

allocatedTo d - /
«block»Block2 «activity» Activity1 é
allocatedTo allocatedFrom
«part»Block0.part1.part2 «callBehaviorAction»action1
AllocateActivityPartition
act ActivityO]
«allocate» The property path cannot
part2 : Block2 be shown in the partition

action1 : Activity1

Figure 15.4. Behavior Allocation
15.4.2 Allocate Flow

Fig. 15.5 shows flow allocation of ObjectFlow to a Connector, or alternatively to an ItemFlow. Allocation of
ControlFlow is not shown as an example, but it is not prohibited in SysML.

164 OMG Systems Modeling Language, v1.7

act ActivityO [Example1])

ObjectFlow3
\

\

allocatedTo
«connector»Connector8

ibd [Block] BlockO[Example1])

«blocky»
Block5

allocatedFrom
«objectFlow»ObjectFlow3

/

Part6 / Part7
Connector8

Figure 15.5. Example of flow allocation from ObjectFlow to Connector

act [Activity] ActivityO [Example2])

\

\

allocatedTo
«itemFlow»ltemFlow9
«connector»Connector8

ibd [Block] BlockO[Example2)

Block5 : Block5

allocatedFrom
«objectFlow»ObjectFlow3

/

Part6 ‘ @ Part7
j ItemFlow9

Figure 15.6. Example of flow allocation from ObjectFlow to ItemFlow

OMG Systems Modeling Language, v1.7 165

15.4.2.1 Allocating Structure

Systems engineers have frequent need to allocate structural model elements (e.g., blocks, parts, or connectors) to
other structural elements. For example, if a particular user model includes an abstract logical structure, it may be
important to show how these model elements are allocated to a more concrete physical structure. The need also

arises, when adding detail to a structural model, to allocate a connector (at a more abstract level) to a part (at a more
concrete level).

ibd [Block] Block1[Example of Structural Allocation])

«block»
Concrete Example

«block»
Abstract Reference

«allocate»

—_

«allocate» __ 4 —

—
—

— «allocate»

— — __ «allocate»

pa—
—_

— — __ «allocate»

—_— -
—_

Figure 15.7. Example of Structural Allocation
15.4.2.2 Automotive Example

Example: consider the functions required to portion and deliver power for a hybrid SUV. The activities for providing
power are allocated to blocks within the Hybrid SUV, as shown in Fig. D.38.

Fig. D.39 shows an internal block diagram showing allocation for the HybridSUV Accelerate example.
15.4.3 Tabular Representation

The table shown in Section D.4.8.5 is provided as a specific example of how the «allocate» dependency may be
depicted in tabular form, consistent with the automotive example above.

The allocation table can also be shown using a sparse matrix style as in the following example shown in Fig. 15.8.

166 OMG Systems Modeling Language, v1.7

Legend Q
/" Allocate % o 8
£ 4 5
2 o 6 8 5
c = =
0 £ Y @ O
= = a @]
o £ 3 € 8
2 £ & g =
B89 8 ® &
2 ¢ 5 £ E
2 3 2 3
0 o wm S w
-7 & Al: ProportionPower (context PowerControlUnit) Ve
- & A2: ProvideGasPower (context InternalCombustionEngine) Ve

N

~ @ & A3: ControlElectricPower (context ElectricalPowerController)

N

-2 & Ad4: ProvideElectricPower (context ElectricalMotorGenerator)

~ @ & driveCurrent(context I1:ElectricCurrent) /!
Figure 15.8. Tabular Representation

OMG Systems Modeling Language, v1.7 167

168 OMG Systems Modeling Language, v1.7

16 Requirements

16.1 Overview

A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify a
function that a system must perform or a performance condition a system must achieve. SysML provides modeling
constructs to represent text-based requirements and relate them to other modeling elements. The requirements
diagram described in this clause can depict the requirements in graphical, tabular, or tree structure format. A
requirement can also appear on other diagrams to show its relationship to other modeling elements. The
requirements modeling constructs are intended to provide a bridge between traditional requirements management
tools and the other SysML models.

A requirement is defined as a stereotype of UML Class subject to a set of constraints. A standard requirement
includes properties to specify its unique identifier and text requirement. Additional properties such as verification
status, can be specified by the user.

Several requirements relationships are specified that enable the modeler to relate requirements to other requirements
as well as to other model elements. These include relationships for defining a requirements hierarchy, deriving
requirements, satisfying requirements, verifying requirements, and refining requirements.

A composite requirement can contain subrequirements in terms of a requirements hierarchy, specified using the
UML namespace containment mechanism. This relationship enables a complex requirement to be decomposed into
its containing child requirements. A composite requirement may state that the system shall do A and B and C, which
can be decomposed into the child requirements that the system shall do A, the system shall do B, and the system
shall do C. An entire specification can be decomposed into children requirements, which can be further decomposed
into their children to define the requirements hierarchy.

There is a real need for requirement reuse across product families and projects. Typical scenarios are regulatory,
statutory, or contractual requirements that are applicable across products and/or projects and requirements that are
reused across product families (versions/variants). In these cases, one would like to be able to reference a
requirement, or requirement set in multiple contexts with updates to the original requirements propagated to the
reused requirement(s).

The use of namespace containment to specify requirements hierarchies precludes reusing requirements in different
contexts since a given model element can only exist in one namespace. Since the concept of requirements reuse is
very important in many applications, SysML introduces the concept of a slave requirement. A slave requirement is a
requirement whose text property is a read-only copy of the text property of a master requirement. The text property
of the slave requirement is constrained to be the same as the text property of the related master requirement. The
master/slave relationship is indicated by the use of the copy relationship.

The “derive requirement” relationship relates a derived requirement to its source requirement. This typically
involves analysis to determine the multiple derived requirements that support a source requirement. The derived
requirements generally correspond to requirements at the next level of the system hierarchy. A simple example may
be a vehicle acceleration requirement that is analyzed to derive requirements for engine power, vehicle weight, and
body drag.

The satisfy relationship describes how a design or implementation model satisfies one or more requirements. A
system modeler specifies the system design elements that are intended to satisfy the requirement. In the example
above, the engine design satisfies the engine power requirement.

The verify relationship defines how a test case or other model element verifies a requirement. In SysML, a test case
or other named element can be used as a general mechanism to represent any of the standard verification methods
for inspection, analysis, demonstration, or test. Additional subclasses can be defined by the user if required to
represent the different verification methods. The return parameter of type VerdictKind of a test case can be used to
represent the verification result. The SysML test case is defined consistent with the UML testing profile to facilitate
integration between the two profiles.

The refine requirement relationship can be used to describe how a model element or set of elements can be used to
further refine a requirement. For example, a use case or activity diagram may be used to refine a text-based

OMG Systems Modeling Language, v1.7 169

functional requirement. Alternatively, it may be used to show how a text-based requirement refines a model element.
In this case, some elaborated text could be used to refine a less fine-grained model element.

A generic trace requirement relationship provides a general-purpose relationship between a requirement and any
other model element. The semantics of trace include no real constraints and therefore are quite weak. As a result, it
is recommended that the trace relationship not be used in conjunction with the other requirements relationships
described above.

The rationale construct that is defined in Section 7, “Model Elements” is quite useful in support of requirements. It
enables the modeler to attach a rationale to any requirements relationship or to the requirement itself. For example, a
rationale can be attached to a satisfy relationship that refers to an analysis report or trade study that provides the
supporting rationale for why the particular design satisfies the requirement. Similarly, this can be used with the other
relationships such as the derive relationship. It also provides an alternative mechanism to capture the verify
relationship by attaching a rationale to a satisfy relationship that references a test case.

Modelers can customize requirements taxonomies by defining additional subclasses of the Requirement stereotype.
For example, a modeler may want to define requirements categories to represent operational, functional, interface,
performance, physical, storage, activation/deactivation, design constraints, and other specialized requirements such
as reliability and maintainability, or to represent a high level stakeholder need. The stereotype enables the modeler to
add constraints that restrict the types of model elements that may be assigned to satisfy the requirement. For
example, a functional requirement may be constrained so that it can only be satisfied by a SysML behavior such as
an activity, state machine, or interaction. Some potential Requirement subclasses are defined in Annex Section E.3.

Some users may want a more explicit way to model numerical values and equations as expressed in requirements.
Annex Section E.8 provides examples of non-normative extensions to SysML that meet this need.

16.2 Diagram Elements

16.2.1 Requirement Diagram
Table 16.1. Graphical nodes included in Requirement diagrams

ElementName Concrete Syntax Abstract Syntax Reference

req Requirement Diagram)

SysML::Requirements::
Requirement Diagram Requirement,
SysML::ModelElements::Package

«requirement»
Requirement Name

Derived
«requirement»Derived Reqt Name
DerivedFrom
«requirement»DerivedFrom Regt Name
Master
«requirement»Master Reqt Name

RefinedBy .
«namedElement»Element Name SysML::Requirements::

SatisfiedBy Requirement
«namedElement»Element Name
TracedTo
«namedElement»Element Name
VerifiedBy
«namedElement»Element Name
Id = "62j32"
Text = "The system shall do..."

Requirement

170 OMG Systems Modeling Language, v1.7

Table 16.2. Graphical paths included in Requirement diagrams

ElementName

Requirement Containment
Relationship

Copy Dependency

MasterCallout

Derive Dependency

Derive Callout

Satisfy Dependency

Satisfy Callout

Verify Dependency

Verify Callout

Refine Dependency

Refine Callout

OMG Systems Modeling Language, v1.7

Concrete Syntax

«requirement»
Parent

I—QP |

«requirement» «requirement»
Child1 Child2

«requirement» «copy»
Slave

«requirement»
Master

Master
«requirement»Master

«requirementyf— —
Slave

«requirement»

Supplier
DerivedFrom

- “lerequirementyRegA E

ReqB RegA

—
Derived
«requirement»ReqB

NamedElement «satisfy»

«requirement»
Supplier

Satisfies
«requirementyReqA

SatisfiedBy
NamedElement
NamedElement | «verify»

\

«requirement»
RegA

«requirement|
Supplier

Verifies
“|«requirement»RegA «requirement»
RegA
VerifiedBy
NamedElement

NamedElement «refine» «requirement’
Client

Refines
~|«requirement»RegA «requirementy
ReqA

NamedElement
RefinedBy
NamedElement

Abstract Syntax Reference

UMLA4SysML::NestedClassifier

SysML::Requirements::Copy

SysML::Requirements::Copy

SysML::Requirements::DeriveReqt

SysML::Requirements::DeriveReqt

SysML::Requirements::Satisfy

SysML::Requirements::Satisfy

SysML::Requirements::Verify

SysML::Requirements:: Verify

UML4SysML::Refine

UMLA4SysML::Refine

171

ElementName Concrete Syntax Abstract Syntax Reference

«requirement» «trace» «requirement:
Trace Dependency @ | | Giem [~ 77 7~ UMLA4SysML::Trace

TracedTo
«requirementy— ~| NamedElement NamedElement
ReqA
TracedFrom
«requirement»RegA

Trace Callout UML4SysML::Trace

16.3 UML Extensions

16.3.1 Diagram Extensions
16.3.1.1 Requirement Diagram

The Requirement Diagram can only display requirements, packages, other classifiers, test cases, and rationale. The
relationships for containment, deriveReqt, satisfy, verify, refine, copy, and trace can be shown on a requirement
diagram. The callout notation can also be used to reflect the relationship of other model elements to a requirement.

16.3.1.2 Requirement Notation

The requirement is represented as shown in Table 16.1. The «requirement» compartment label for the stereotype
properties compartment (e.g., id and text) can be elided.

16.3.1.3 Requirement Property Callout Format

A callout notation can be used to represent derive, satisfy, verify, refine, copy, and trace relationships as indicated in
Table 16.2. For brevity, the «elementType» may be elided.

16.3.1.4 Requirements on Other Diagrams

Requirements can also be represented on other diagrams to show their relationship to other model elements. The
compartment and callout notation described in Section 16.3.1.2, Requirement Notation and Section 16.3.1.3,
Requirement Property Callout Format can be used. The callouts represent the requirement that is attached to another
model element such as a design element.

16.3.1.5 Requirements Table

The tabular format is used to represent the requirements, their properties and relationships, and may include:
* Requirements with their properties in columns.
* A column that includes the supplier for any of the dependency relationships (Derive, Verify, Refine, Trace).
* A column that includes the model elements that satisfy the requirement.

* A column that represents the rationale for any of the above relationships, including reference to analysis reports
for trace rationale, trade studies for design rationale, or test procedures for verification rationale.

The relationships between requirements and other objects can also be shown using a sparse matrix style that is
similar to the table used for allocations (Section 15.4.3, Tabular Representation). The table should include the source
and target elements names (and optionally kinds) and the requirement dependency kind.

16.3.2 Stereotypes

Package Requirements

172 OMG Systems Modeling Language, v1.7

«stereotype» «stereotype»

. >) «Metaclass» «Metaclass»
UML4SysML::Trace DirectedRelationshipPropertyPath UML4SysML::Operation UML4SysML::Behavior
«stereotype» «stereotype»
Trace TestCase
«stereotype» «stereotype» «stereotype» «stereotype» «Metaclass» «Metaclass»
Copy DeriveReqt Verify Satisfy UML4SysML::NamedElement UML4SysML::Class
A
«stereotype» «stereotype»
UML4SysML::Refine DirectedRelationshipPropertyPath
«stereotype»
AbstractRequirement
attributes
text : String [1]
«stereotype» id : String [1){id}
Refine /derived : AbstractRequirement [0..*] K——— «ster.eotype»
/derivedFrom : AbstractRequirement [0..*] Requirement

/satisfiedBy : NamedElement [0..*]
IrefinedBy : NamedElement [0..*]
/tracedTo : NamedElement [0..*]
IverifiedBy : NamedElement [0..*]
/master : AbstractRequirement [0..*]

Figure 16.1. Abstract Syntax for Requirements Stereotypes

16.3.2.1 AbstractRequirement

Description

An AbstractRequirement establishes the attributes and relationships essential to any potential kind of requirement.
Any intended requirement kind should subclass AbstractRequirement. The only normative stereotype based on
AbstractRequirement is the Requirement stereotype, described in Section 16.3.2.6. Examples of additional non-
normative stereotypes based on AbstractRequirement are included in Section E.8.

Attributes

/derived : AbstractRequirement [0..*]
Derived from all requirements that are the client of a «deriveReqt» relationship for which this requirement is a
supplier.

/derivedFrom : AbstractRequirement [0..*]

Derived from all requirements that are the supplier of a «deriveReqt» relationship for which this requirement is a
client.

id : String [1]

The unique id of the requirement.

/master : AbstractRequirement [0..*]

This is a derived property that lists the master requirement for this slave requirement. The master attribute is
derived from the supplier of the Copy dependency that has this requirement as the slave.

/refinedBy : NamedElement [0..*]
Derived from all elements that are the client of a «refine» relationship for which this requirement is a supplier.

/satisfiedBy : NamedElement [0..*]
Derived from all elements that are the client of a «satisfy» relationship for which this requirement is a supplier.

text : String [1]
The textual representation or a reference to the textual representation of the requirement.

/tracedTo : NamedElement [0..*]
Derived from all elements that are the client of a «trace» relationship for which this requirement is a supplier.

OMG Systems Modeling Language, v1.7 173

+ /verifiedBy : NamedElement [0..*]
Derived from all elements that are the client of a «verify» relationship for which this requirement is a supplier.
Association Ends

» base NamedElement : NamedElement [1]

Operations

+ getDerived () : AbstractRequirement [0..*]

bodyCondition:
DeriveRegt.allInstances () -
>select (base Abstraction.supplier=self) .base Abstraction.client

» getDerivedFrom () : AbstractRequirement [0..*]

bodyCondition:
DeriveReqgt.allInstances () -
>select (base Abstraction.client=self) .base Abstraction.supplier

» getMaster () : AbstractRequirement [0..*]

bodyCondition:
Copy.allInstances () -
>select (base Abstraction.client=self) .base Abstraction.supplier

+ getRefinedBy () : NamedElement [0..%]

bodyCondition:
Refine.allInstances () -
>select (base Abstraction.supplier=self) .base Abstraction.client

+ getSatisfiedBy () : NamedElement [0..*]

bodyCondition:
Satisfy.allInstances () -
>select (base Abstraction.supplier=self) .base Abstraction.client

+ getTracedTo () : NamedElement [0..*]

bodyCondition:
Trace.allInstances () -
>select (base Abstraction.client=self) .base Abstraction.supplier

+ getVerifiedBy () : NamedElement [0..*]

bodyCondition:
Verify.alllInstances() -
>select (base Abstraction.supplier=self) .base Abstraction.client

16.3.2.2 Copy

Description

A Copy relationship is a dependency between a supplier requirement and a client requirement that specifies that the
text of the client requirement is a read-only copy of the text of the supplier requirement.

A Copy dependency created between two requirements maintains a master/slave relationship between the two
elements for the purpose of requirements re-use in different contexts. When a Copy dependency exists between two

174 OMG Systems Modeling Language, v1.7

requirements, the requirement text of the client requirement is a read-only copy of the requirement text of the
requirement at the supplier end of the dependency.

Generalizations

* Trace (from Requirements)

Association Ends

* base Abstraction : Abstraction [1]

Operations

» isCopy (in reql : AbstractRequirement, in req2 : AbstractRequirement) : Boolean [1]

bodyCondition:

let subReqgl: Set (AbstractRequirement) = AbstractRequirement.allInstances ()
->select(r | regl.base NamedElement.ownedElement-
>includes (r.base NamedElement)) in let subReqg2: Set (AbstractRequirement) =
AbstractRequirement.allInstances () ->select(r |

reg2.base NamedElement.ownedElement->includes (r.base NamedElement)) in
regl.text = reqg2.text and subRegl->size() = subReg2->size () and

subReqgl->forAll (rl | subReg2->exists(r2 | self.isCopy(rl, r2)))

Constraints
* 1 source and taget are requirements

A Copy dependency may only be created between two NamedElements that have a subtype of the
abstractRequirement stereotype applied.

AbstractRequirement.allInstances () .base NamedElement->
includesAll (self.base Abstraction.client) and
AbstractRequirement.allInstances () .base NamedElement->
includesAll (self.base Abstraction.supplier)

* 2 same_ text

The text property of the client requirement is constrained to be a read-only copy of the text property of the
supplier requirement and this applies recursively to all subrequirements.

let cltReq: AbstractRequirement = AbstractRequirement.allInstances/()->

any(r | self.base Abstraction.client->includes(r.base NamedElement)) in
let supReq: AbstractRequirement = AbstractRequirement.allInstances/()->
any(r | self.base Abstraction.supplier->includes (r.base NamedElement)) in

self.isCopy(cltReq, supReq)
16.3.2.3 DeriveReqt

Description

A DeriveReqt relationship is a dependency between two requirements in which a client requirement can be derived
from the supplier requirement. For example, a system requirement may be derived from a business need, or lower-
level requirements may be derived from a system requirement. As with other dependencies, the arrow direction
points from the derived (client) requirement to the (supplier) requirement from which it is derived.
Generalizations

* Trace (from Requirements)

OMG Systems Modeling Language, v1.7 175

Association Ends
* base Abstraction : Abstraction [1]

Constraints
* 1 supplier is requirement
The supplier shall be an element stereotyped by a subtype of AbstractRequirement.
AbstractRequirement.allInstances () .base NamedElement->
includesAll (self.base Abstraction.client)
* 2 client is requirement
The client shall be an element stereotyped by a subtype of AbstractRequirement.

AbstractRequirement.allInstances () .base NamedElement->
includesAll (self.base Abstraction.supplier)

16.3.2.4 TestCase

Description

A test case is a method for verifying a requirement is satisfied.

Association Ends
» base Behavior : Behavior [1]

* base Operation : Operation [1]

Constraints
* 1 return verdictkind

The type of return parameter of the stereotyped model element shall be VerdictKind. (note this is consistent with
the UML Testing Profile).

(self.base Behavior->notEmpty() implies

self.base Behavior.ownedParameter->exists(p |

p.direction=UML: :ParameterDirectionKind: :return and p.type = VerdictKind
)) and (self.base Operation->notEmpty() implies

self.base Operation.ownedParameter->exists(p |

p.direction=UML: :ParameterDirectionKind::return and p.type = VerdictKind

))

16.3.2.5 Refine

Description
The Refine stereotype specializes UML4SysML Refine and DirectedRelationshipPropertyPath to enable refinements
to identify their sources and targets by a multi-level path of accessible properties from context blocks for the sources
and targets.
Generalizations

 DirectedRelationshipPropertyPath (from Blocks)

* Refine (from StandardProfile)

Association Ends

* base Abstraction : Abstraction [1]

176 OMG Systems Modeling Language, v1.7

Operations

+ getRefines (in ref : NamedElement) : AbstractRequirement [0..*]
The query getRefines() gives all the requirements that are suppliers ("to"end of the concrete syntax) of a
«Refine» relationships whose client is the element in parameter. This is a static query.
bodyCondition:
Refine.alllInstances () -
>select (base Abstraction.client=ref) .base Abstraction.supplier

Constraints
* 2 binary

Abstractions with a Refine stereotype or one of its specializations applied shall have exactly one client and one
supplier.

self.base Abstraction.client->size()=1 and
self.base Abstraction.supplier->size()=1

16.3.2.6 Requirement

Description

A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify a
function that a system must perform or a performance condition that a system must satisfy. Requirements are used to
establish a contract between the customer (or other stakeholder) and those responsible for designing and
implementing the system.

A requirement is a stereotype of both Class and Abstract Requirement. Compound requirements can be created by
using the nesting capability of the class definition mechanism. The default interpretation of a compound
requirement, unless stated differently by the compound requirement itself, is that all its subrequirements shall be
satisfied for the compound requirement to be satisfied. Subrequirements shall be accessed through the
"nestedClassifier" property of a class. When a requirement has nested requirements, all the nested requirements
apply as part of the container requirement. Deleting the container requirement deleted the nested requirements, a
functionality inherited from UML.

Generalizations

* AbstractRequirement (from Requirements)

Association Ends
* base Class : Class [1]

Constraints
* 1 no operation
The property "ownedOperation" shall be empty.

self.base Class.ownedOperation->isEmpty ()

* 2 no_attribute
The property "ownedAttribute" shall be empty.
self.base Class.ownedAttribute->isEmpty ()

* 3 no_association
Classes stereotyped by «requirement» shall not participate in associations.

UML: :Association.allInstances () .memberEnd->flatten () .type->
excludes (self.base Class)

OMG Systems Modeling Language, v1.7 177

* 4 no generalization
Classes stereotyped by «requirement» shall not participate in generalizations.
UML::Classifier.allInstances () .general->flatten()->
excludes (self.base Class)
* 5 nestedclassifiers are requirements

A nested classifier of a class stereotyped by Requirement or one of its specializations shall also be stereotyped
by Requirement or one of its specializations.

self.base Class.nestedClassifier->forAll(c |
Requirement.allInstances () .base Class->includes(c))
* 6 not a type
Classes stereotyped by «requirement» shall not be used to type any other model element.

UML: : TypedElement.allInstances () . type->excludes (self.base Class)
16.3.2.7 Satisfy

Description

A Satisfy relationship is a dependency between a requirement and a model element that fulfills the requirement. As
with other dependencies, the arrow direction points from the satisfying (client) model element to the (supplier)
requirement that is satisfied.

Generalizations

* Trace (from Requirements)

Association Ends

* base Abstraction : Abstraction [1]

Operations

+ getSatisfies (in ref : NamedElement) : AbstractRequirement [0..*]

bodyCondition:
Satisfy.alllInstances () -
>select (base Abstraction.client=ref) .base Abstraction.supplier
Constraints
* 1 supplier is requirement
The supplier shall be an element stereotyped by any subtype of «AbstractRequirementy.
AbstractRequirement.allInstances () .base NamedElement->
includes (self.base Abstraction.supplier)

16.3.2.8 Trace

Description

The Trace stereotype specializes UML4SysML Trace and DirectedRelationshipPropertyPath to enable traces to
identify their sources and targets by a multi-level path of accessible properties from context blocks for the sources
and targets.

Generalizations

+ DirectedRelationshipPropertyPath (from Blocks)

178 OMG Systems Modeling Language, v1.7

* Trace (from StandardProfile)

Association Ends

* base Abstraction : Abstraction [1]

Operations

+ getTracedFrom (in ref : NamedElement) : AbstractRequirement [0..*]
The query getTracedFrom() gives all the requirements that are clients ("from" end of the concrete syntax) of a
«Trace» relationship whose supplier is the element in parameter. This is a static query.
bodyCondition:
AbstractRequirement.allInstances () ->select (tracedTo->includes (ref))
Constraints
* 2 binary

Abstractions with a Trace stereotype or one of its specializations applied shall have exactly one client and one
supplier.

self.base Abstraction.client->size()=1 and
self.base Abstraction.supplier->size()=1

16.3.2.9 Verify

Description

A Verify relationship is a dependency between a requirement and a test case or other model element that can
determine whether a system fulfills the requirement. As with other dependencies, the arrow direction points from the
(client) element to the (supplier) requirement.

Generalizations

* Trace (from Requirements)

Association Ends

* base Abstraction : Abstraction [1]

Operations

+ getVerifies (in ref : NamedElement) : AbstractRequirement [0..*]
The query getVerifies() gives all the requirements that are suppliers ("to" end of the concrete syntax) of a
«Verify» relationships whose client is the element in parameter. This is a static query.
bodyCondition:
Verify.allInstances() -
>select (base Abstraction.client=ref) .base Abstraction.supplier

Constraints

* 1 supplier is requirement

The supplier shall be an element stereotyped by any subtype of «AbstractRequirement.

AbstractRequirement.allInstances () .base NamedElement->
includes (self.base Abstraction.supplier)

16.3.3 Model Libraries
16.3.3.1 Package Verdicts
The SysML model library for Verdicts is shown in Fig. 16.2.

OMG Systems Modeling Language, v1.7 179

«ModelLibrary»
bdd [Package] Verdicts [Verdicts]

«enumeration»
VerdictKind

enumeration literals
error

fail

inconclusive
pass

Figure 16.2. Verdicts
16.3.3.1.1 VerdictKind

Description

The VerdictKind is an enumeration that contains the values fail, inconclusive, pass, and error indicating how this test
case execution has performed.

A pass indicates that the test case is successful and that the system under test has behaved according to what should

be expected. A fail on the other hand shows that the system under test is not behaving according to the specification.
An inconclusive means that the test execution cannot determine whether the system under test performs well or not.

An error tells that the test system itself and not the system under test fails.

The VerdictKind is derived from the Verdict element from the UTP specification v1.2.

Literals
e error
o fail
* inconclusive

* pass

16.4 Usage Examples

The examples in this clause show the use of the normative Requirement stereotypes. Examples showing the
definition and use of non-normative requirement stereotypes based on AbstractRequirement are shown in
Annex Section E.8. All the examples in this clause are based on a set of publicly available (on-line) requirement
specifications from the National Highway Traffic Safety Administration (NHTSA). Excerpts of the original
requirement text used to create the models are shown in Fig. 16.3. The name and ID of these requirements are
referred to in the SysML usage examples that follow. See NHTSA specification 49CFR571.135 for the complete
text from which these examples are taken.

16.4.1 Requirement Decomposition and Traceability

180 OMG Systems Modeling Language, v1.7

req [Package] Safety Test [Requirements Derivatior]) - "
«requirement»

Adhesion utilization

«requirement» Id = "S7.4"

ASTM R1337-90 d _S
Text="...

Id ="A. 24241" o ©
Text = "This test method covers the measurement
of peak braking coefficient of paved surfaces using

a standard reference test tire (SRTT) as described «requirement»
in Specification E1136 that represents current Vehicle conditions
technolo assenger car radial ties. "
gy p 9 Id ="S7.4.2"
) Text=".."

\ «deriveReqt»

«requirement»

Pavement friction
Id ="S6.2.1" «requirement»
Text = "The road test surface produces a peak «deriveReqt» Test and procedure conditions
friction coefficient (PFC) of 0.9 when measured < - - - - - Id ="S7.4.3"
using an American Society for Testing and Text ="(a) IBT: 65 °C (149 °F), 100 °C (212 °F)
Materials (ASTM) E1136 standard reference test (b) Test Surface: PFC of at least 0.9 "

tire, in accordance with ASTM Method E 1337 -90 "

Figure 16.3. Requirements Derivation

16.4.2 Requirements and Design Elements

The diagram in Fig. 16.4 shows derived requirements and refers to the design elements that satisfy them. The
rationale is also shown as a basis for the design solution.

OMG Systems Modeling Language, v1.7 181

req [Package] MasterCylinderSafety[Links between requirements and design])

Decelerate Car

\ «refine»

N
«requirement» B
Master Cylinder Efficacy «rationale»
Id = "S5.4.1" Body = "This _dgsign of the brake
Text = "A master cylinder assembly S?tISerS the federal «block»
shall have a reservoir safety requirements” BrakeSystem
compartment for each 7 parts
service brake subsystem < — _ _ r: BrakeLine
servicedbythemaster | T T T — l— — - _ _ _ _ I1: BrakeLine
—112 : BrakeLine

cylinder. Loss of fluid from «satisfy»

one compartment shall not

m : MasterCylinder|
f: FrontBrake

result in a complete loss of B operations
brake fluid from another) activateBrake()
compartment" «rationale» releaseBrake()
7 IS Body = "The best-practice solution
. consists in assigning one
| \ «deriveReqt» . g
reservoir per brakeline.
I S N
. | «reqwremr.ent» | SatisfiedBy
«deriveReqt» Reservor | - ———— "7 BrakeSystem::12
| Id ="S5.4.1B" - BrakeSystem::l1

I
I
|

Text = "Separate

reservoir compartment”

«rationale»

Body = "The best-practice solution

- consists in using a set of springs
«reqmremer.‘lt» and pistons to confine the loss to
LossOfFluid a single compartment. "

Id ="S5.4.1a" o ~

Text = "Prevent

complete loss of fluid"

SatisfiedBy
BrakeSystem::m

Figure 16.4. Links between requirements and design

ibd [Block] BrakeSystem[Requirement satisfaction in an internal block diagrar]\)

f : FrontBrake r : BrakeLine Lo
Satisfies
[[] _l«requirement»Reservoir
P -
- -~
L L
11 : BrakeLine 12 : BrakeLine
[] []
Satisfies
— — l«requirement»LossOfFluid
L L
m : MasterCylinder

Figure 16.5. Requirement satisfaction in an internal block diagram

182 OMG Systems Modeling Language, v1.7

16.4.3 Requirements Reuse

Fig. 16.6 illustrates the use of the Copy dependency to allow a single requirement to be reused in several
requirements hierarchies. The master tag provides a textual reference to the reused requirement.

req [Safety Reuse]]

i y

/

«requirement»
NHTSASafetyRequirements
Id ="157.135"
Text="..."
71 N
/ \
«requirement» «copy» N «copy» «requirement»
Hybrid Engine A type 4 \ Hybrid Engine B type
/

\\ P

AN

«requirement»
Safety Requirements

«requirement»
Shared Safety Requirement

«requirement»
Shared Safety Requirement

for type A

«requirement»NHTSASafetyRequirements

Master

«requirement»NHTSASafetyRequirements

Master

«requirement»

Safety Requirements
for type B

Figure 16.6. Safety Reuse

16.4.4 Verification Procedure - Test Case

The example in Fig. 16.7 is taken from the automotive safety domain, and shows a Burnish requirement contained in
the NHTSASafetyRequirements requirement. Note that the text of the Burnish requirement indicates a specific

sequence of steps and transition criteria. The Burnish requirement is shown as having a Verify relationship to the
BurnishTest test case using callout notation on the diagram, indicating that the Burnish requirement is verified by
the BurnishTest test case.

Fig. 16.8 is a state machine diagram of the BurnishTest test case, which expresses the textual sequence and criteria
of the Burnish requirement in state machine form. The Verify relationship is shown on Fig. 16.8 using callout
notation anchored to the diagram frame, which indicates that the BurnishTest test case verifies the Burnish

requirement.

req [BurnishSafety])

«requirement»

NHTSASafetyRequirements

(b) Test speed: 80 km/h (49.7 mph)
(c) Pedal force: Adjust as necessary
to maintain specified constant
deceleration rate"

Id ="157.135"
TeXt = Il---ll
7 VerifiedBy
«deriveReqty «testCase»BurnishTest
7
-
«requirement» «requirement» ~
RoadTestSequence Burnish
Id ="S9.1" Id="87.1"
Text=".." Text = "(a) IBT: 100 °C (212 ° F)

Figure 16.7. Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram

OMG Systems Modeling Language, v1.7

183

«TestCase»
stm BurnishTest / ~ __

Verifies

Accelerate }H[Speed =80] Maintain

«requirement»Burnish

H Initial condition

]
)

[IBT=1000rd
[count < 200] >=2km]
{ Brake }
[count =200]
Adjust brake >@

Figure 16.8. Linkage of a Test Case to a requirement: This figure shows the Test Case as a State Diagram

184

OMG Systems Modeling Language, v1.7

This page intentionally left blank.

OMG Systems Modeling Language, v1.7 185

186 OMG Systems Modeling Language, v1.7

17 Profiles & Model Libraries

17.1 Overview

The Profiles package contains mechanisms that allow metaclasses from existing metamodels to be extended to adapt
them for different purposes. This includes the ability to tailor the UML metamodel for different domains. The
profiles mechanism is consistent with the OMG Meta Object Facility (MOF). SysML has added some notational
extensions to represent stereotype properties in compartments as well as notes.

The stereotype is the primary mechanism used to create profiles to extend the metamodel. Stereotypes are defined
by extending a metaclass, and then have them applied to the applicable model elements in the user model. A
stereotype of a requirement could be extended to create a «functionalRequirement» as described in Annex E: “Non-
normative Extensions.” This would allow specific properties and constraints to be created for a functional
requirement. For example, a functional requirement may be constrained such that it must be satisfied by an operation
or behavior. When the stereotype is applied to a requirement, then the requirement would include the notation
«functionalRequirement» in addition to the name of the particular functional requirement. Extending the metaclass
requirement is different from creating a subclass of requirement called functionalRequirement.

The Usage Examples sub clause provides guidance both on how to use existing profiles and how to create new
profiles. In addition, the examples provide guidance on the use of model libraries. A model library is a library of
model elements including class and other type definitions that are considered reusable for a given domain. These
guidelines can be applied to further customize SysML for domain specific applications such as automotive, military,
or space systems.

17.2 Diagram Elements

17.2.1 Profile Definition in Package Diagram

Table 17.1. Graphical nodes used in Profile definition

ElementName Concrete Syntax Abstract Syntax Reference
«stereotype»
Stereotype StereotypeName UMLA4SysML::Stereotype
«Metaclass»
Metaclass MetaClassName UMLA4SysML::Class

]

«profile»
ProfileName

Profile UML4SysML::Profile

]

«ModelLibrary»
LibraryName

Model Library UML::StandardProfile

OMG Systems Modeling Language, v1.7 187

Table 17.2. Graphical paths used in Profile definition

ElementName Concrete Syntax Abstract Syntax Reference

«Metaclass»
MetaClassName

Extension UML4SysML::Extension
{required}

«stereotype»
StereotypeName

«stereotype»
GeneralizedStereotypeName

Generalization UMLA4SysML::Generalization

«stereotype»
SpecializedStereotypeName

«apply»

ProfileApplication Y UMLA4SysML::ProfileApplication

o _ weferencer UMLA4SysML::Packagelmport,
9
MetamodelReference UMLA4SysML::ElementImport

Unidirectional Association propertyName UMLA4SysML::Association

NOTE: In the above table, boolean properties can be displayed alternatively as BooleanPropertyName=[True|False].
17.2.2 Stereotypes Used On Diagrams

Table 17.3. Notations for Stereotype Use

ElementName Concrete Syntax Abstract Syntax Reference

«stereotypeName»
MultiPropertyName = "ValueString", "ValueString"
PropertyName = "ValueString"

StereotypeNode BooleanPropertyName j UML4SysML::Element
[Femeneme }——Z—{Eementare]

PathName

188 OMG Systems Modeling Language, v1.7

ElementName

StereotypeNode

StereotypelnNode

Stereotypeln
CompartmentElement

StereotypeOnEdge

StereotypeCompartment

17.3 UML Extensions

None.
17.4 Usage Examples
17.4.1 Defining a Profile

OMG Systems Modeling Language, v1.7

Concrete Syntax

«stereotypeName»
MultiPropertyName = "ValueString", "ValueString"
PropertyName = "ValueString"
BooleanPropertyName

-

ElementName

«stereotypeName»
NodeName

{PropertyName="ValueString",
BooleanPropertyName}

NodeName

properties
= "Valuest

= "ValueStrin

ElementName

«stereotypeName»
{BooleanPropertyName,
PropertyName = "ValueString"}
PathName

ElementName

«stereotypeName»
NodeName

«stereotypeName»

PropertyName = "ValueString"
BooleanPropertyName

MultiPropertyName = "ValueString", "ValueString"

Abstract Syntax Reference

UMLA4SysML::Element

UMLA4SysML::Element

UMLA4SysML::Element

UMLA4SysML::Element

UMLA4SysML::Element

189

pkg [Package] SE Toolkif Definition of a profile])
PrimitiveTypes
N
_| I«impor’[» _|
UML A «import» «profile»
~ 7 7| standardProfile
A DN «import» 4\.
| ~ - I«|mp0rt»
| 1.
«profile» «apply» «modelLibrary»
b SysML <~ | PrimitiveValueTypes
A)
«import» ~
~ g | «import»
I
«profile»
SEToolKit

Figure 17.1. Definition of a profile

In this example, the modeler has created a new profile called SE Toolkit, which imports the SysML profile, so that it
can build upon the stereotypes it contains. The set of metaclasses available to users of the SysML profile is
identified by a reference to a metamodel, in this case a subset of UML specific to SysML. The SE Toolkit can
extend those metaclasses from UML that the SysML profile references.

17.4.2 Adding Stereotypes to a Profile

pkg [Profile] SEToolKit[Profile Contents])

«Metaclass» «Metaclass» «stereotype» «stereotype»
NamedElement DirectedRelationship Block Requirement
attributes

isEncapsulated : Boolean [0..1]

«stereotype»
Configurationltem

S

I

«stereotype»
System

«stereotype»
Context

«stereotype»
FunctionalRequirement

function

«Metaclass»
Behavior

author : String
version : String
lastChanged : date

Figure 17.2. Profile Contents

In SE Toolkit, both the mechanisms for adding new stereotypes are used. The first, exemplified by
configurationltem, is called an extension, shown by a line with a filled triangle; this relates a stereotype to a
reference (called base) class or classes, in this case NamedElement and DirectedRelationship from UML and adds
new properties that every NamedElement or DirectedRelationship stereotyped by configurationltem must have.
NamedElement and DirectedRelationship are abstract classes in UML so it is their subclasses that can have the
stereotype applied. The second mechanism is demonstrated by the system and context stereotypes which are sub-
stereotypes of an existing SysML stereotype, Block; sub-stereotypes inherit any properties of their super-stereotype
and also extend the same base class or classes. Note that TypedElements whose type is extended by «system» do not
display the «system» stereotype; this also applies to InstanceSpecifications. Any notational conventions of this have
to be explicitly specified in a diagram extension.

190 OMG Systems Modeling Language, v1.7

There is also an example of how stereotypes (in this case FunctionalRequirement) can have unidirectional
associations to metaclasses in the reference metamodel (in this case Behavior).

17.4.3 Defining a Model Library that Uses a Profile

pkg [Profile] SEToolKit] Two model libraries])
«ModelLibrary»
Sl Definitions
. t 7
«ModelLibrary» «import» , «ModelLibrary»
Sl Value Types / Physical
«valueType»
«block»
A PhysicalObject
values
«import» volume : SIVolume
- — density : SIDensity
«valueType» «valueType» «valueType» supplier : String]
SIVolume SlDensity SiLength modelNumber : String
serialNumber : String
«valueType» «valueType» «valueType» lotNumber : String
unit = CubicMeter unit = kilogramPerCubicMetre unit = Meter

Figure 17.3. Two model libraries

The model library SI Value Types imports a model library called SI Definitions, so it can use model elements from
them in its own definition. It defines value types having specific units which can be used when property values are
measured in SI units. SI Definitions is a separately published model library, containing definitions of standard SI
units and quantity kinds such as shown in Annex D, subclause Section D.4. A further model library, Physical,
imports SI Value Types so it can define properties that have those types. One model element, PhysicalObject, is
shown, a block that can be used as a supertype for a physical object.

17.4.4 Guidance on Whether to Use a Stereotype or Class

This sub clause provides guidance on when to use stereotypes. Stereotypes can be applied to any model element.
Stereotyping a model element allows the model element to be identified with the «guillemet» notation. In addition,
the stereotyped model element can have stercotype properties, and the stereotype can specify constraints on the
model element.

The modeler must decide when to create a stereotype of a class versus when to specialize (subclass) the class. One
reason is to be able to identify the class with the «guillemet» notation. In addition, the stereotype properties are
different from properties of classes. Stereotype properties represent properties of the class that are not instantiated
and therefore do not have a unique value for each instance of the class, although a class thus stereotyped can have a
separate value for the property.

SE Toolkit::functionalRequirement, which extends Class through its superstereotype, Requirement, is an example
where a stereotype is appropriate because every modeling element stereotyped by SE
Toolkit::functionalRequirement has a reference to another modeling element. In another example, SE
Toolkit::configurationltem defined above, which applies to classes among other concepts, is a stereotype because its
properties characterize the author, version, and last changed date of the modeling element themselves. One test of
this is whether the new properties are inheritable; in this case author, version, and last-changed date are not, because
it is only those classes under configuration control that need the properties. To summarize, in the following
circumstances a stereotype is appropriate:

* Where the model concept to be extended is not a class or class-based.
* Where the extensions include properties that reference other model elements.

* Where the extensions include properties that describe modeling data, not system data.

OMG Systems Modeling Language, v1.7 191

An example where a class is more appropriate is PhysicalObject from Defining a Model Library that Uses a Profile .
In this case, the properties density and volume, and the component numbers, have distinct values for each system
element described by the class, and are inherited by every subclass of PhysicalObject.

17.4.5 Using a Profile

pkg [Package] ModelingDomairj Establishing HSUV Mode}l)

]

«profile»
Local SysML

«apply» AR
—| {strict} 4 |
«ModelLibrary» \

Sl Definitions «apply»
{strict}

N~
«import»\ |

1.

HSUV Model

Figure 17.4. Establishing HSUV Model

The HSUVModel is a systems engineering model that needs to use stereotypes from SysML. It therefore needs to
have the SysML profile applied to it. In order to use the predefined SI units, it also needs to import the SI
Definitions model library. Having done this, elements in HSUVModel can be extended by SysML stereotypes and
types like SIVolume can be used to type properties. Both the SI Definitions model library and HSUVModel have

applied the profile strictly, which means that only those metaclasses directly referenced by SysML can be used in
those models.

17.4.6 Using a Stereotype

req [Package] HSUVRequirementy Using two stereotypes on a model elemenf{)

D

«Configurationltem»
«FunctionalRequirement» author
«Configurationltem» Jones
StoppingDistance | _ - - — —lastChanged
4/4/04

«AbstractRequirement» .
: " " version
id ="102.1

text = "The car shall stop within 100 feet from 20 mph" 12
«FunctionalRequirement»
function = StopCar

Figure 17.5. Using two stereotypes on a model element

StoppingDistance has two stereotypes applied:
+ functionalRequirement, which identifies it as a requirement that is satisfied by a function, and
+ configurationltem, which allows it to have configuration management properties.

The modeler has provided values for all the newly available properties; those for criticalRequirement are shown in a
compartment in the node symbol for StoppingDistance; those for configurationltem are shown in a separate note.

192 OMG Systems Modeling Language, v1.7

17.4.7 Using a Model Library Element

bdd [Package] Physics [Using model library elements})

«block»
PhysicalObject

values
volume : SIVolume
density : SIDensity
supplier : String
modelNumber : String
serialNumber : String
lotNumber : String

T

«blocky»
Shot

values
circumference : SlLength

Figure 17.6. Using model library elements
Model library elements can be used just like any other model element of the same type. In this case, Shot is a

specialization of PhysicalObject from the Physical model library. It adds a new property, circumference, of type
SILength to measure the circumference of the (spherical) shot.

OMG Systems Modeling Language, v1.7

193

ANNEXES

194 OMG Systems Modeling Language, v1.7

This page intentionally left blank.

OMG Systems Modeling Language, v1.7 195

196 OMG Systems Modeling Language, v1.7

Annex A: Diagrams

(informative)

A.1 Overview

SysML diagrams contain diagram elements (mostly nodes connected by paths) that represent model elements in the
SysML model, such as activities, blocks, and associations. The diagram elements are referred to as the concrete
syntax.

The SysML diagram taxonomy is shown in Fig. A.1. This taxonomy is one example of how to organize the SysML
diagrams. Other categories could also be defined, such as a grouping of the use case diagram and the requirement
diagram into a category called Specification Diagrams.

SysML reuses many of the major diagram types of UML. In some cases, the UML diagrams are strictly reused, such
as use case, sequence, state machine, and package diagrams, whereas in other cases they are modified so that they
are consistent with SysML extensions. For example, the block definition diagram and internal block diagram are
similar to the UML class diagram and composite structure diagram respectively, but include extensions as described
in Section 8, “Blocks.” Activity diagrams have also been modified via the activity extensions. Tabular
representations, such as the allocation table, are used in SysML but are not considered part of the diagram taxonomy.

SysML does not use all of the UML diagram types such as the object diagram, communication diagram, interaction
overview diagram, timing diagram, deployment diagram, and profile diagram. This is consistent with the approach
that SysML represents a subset of UML. In the case of deployment diagrams, the deployment of software to
hardware can be represented in the SysML internal block diagram. In the case of interaction overview and
communication diagrams, it was felt that the SysML internal block diagram. In the case of interaction overview and
communication diagrams, it was felt that the SysML behavior diagrams provided adequate coverage for representing
behavior without the need to include these diagram types. In the case of the profile diagram, profile definitions can
be captured on a package diagram and the parametric diagram.

SysML
~ | New Diagram Type Diagram
[] same as UML 2 T
[Z] Modified from UML 2
Behavior | Requirement | Structure
Diagram I Diagram 1 Diagram
Activity Sequence State Machine Use Case Block Definition Internal Block Package
Diagram Diagram Diagram Diagram Diagram Diagram Diagram
| Parametric
Diagram

Figure A.1. SysML Diagram Taxonomy

The requirement diagram is a new SysML diagram type. A requirement diagram provides a modeling construct for
text-based requirements, and the relationship between requirements and other model elements that satisfy or verify
them.

The parametric diagram is a new SysML diagram type that describes the constraints among the properties associated
with blocks. This diagram is used to integrate behavior and structure models with engineering analysis models such
as performance, reliability, and mass property models.

OMG Systems Modeling Language, v1.7 197

Although the taxonomy provides a logical organization for the various major kinds of diagrams, it does not preclude
the careful mixing of different kinds of diagram types, as one might do when one combines structural and behavioral
elements (e.g., showing a state machine nested inside a compartment of a block). However, it is critical that the
types of diagram elements that can appear on a particular diagram kind be constrained and well-specified. The
diagram elements tables in each clause describe what symbols can appear in the diagram, but do not specify the
different combinations of symbols that can be used.

The package diagram and the callout notation are two mechanisms that SysML provides for adding flexibility to
represent a broad range of diagram elements on diagrams. The package diagram can be used quite flexibly to
organize the model in packages and views. As such, a package diagram can include a wide array of packageable
elements. The callout notation provides a mechanism for representing relationships between model elements that
appear on different diagram kinds. In particular, they are used to represent allocations and requirements, such as the
allocation of an activity to a block on a block definition diagram, or showing a part that satisfies a particular
requirement on an internal block diagram. There are other mechanisms for representing this including the
compartment notation that is generally described in Section 17, “Profiles & Model Libraries,” Section 16,
“Requirements,” and Section 15, “Allocations” provide specific guidance on how these notations are used.

The model elements and corresponding concrete syntax that are represented in each of the nine SysML diagram
kinds are described in the SysML clauses as indicated below.

* activity diagram - activity

* block definition diagram - block, package, constraint block, or activity
+ internal block diagram - block or constraint block

» package diagram - package, model, modelLibrary, profile

* parametric diagram - block or constraint block

* requirement diagram - package, requirement, modelLibrary, model

+ sequence diagram - interaction

* state machine diagram - state machine

+ use case diagram - package, block, model, modelLibrary

Each SysML diagram has a frame, with a contents area, a heading, and a Diagram Description (see Fig. A.2).

Diagram Description
Version:
Diagram Header Description:
. , / Completion Status:
Kind , , 4 Reference:
4 , (User defined fields)
4 ’
’
’ , ’ 7

’ ‘
} «diagramUsage»

pkg [modelElementType] modelElementNamediagramNamég

Contents

Figure A.2. Diagram Frame

The frame is a rectangle that is required for SysML diagrams (Note: the frame is optional in UML). The frame shall
designate a model element that is the default namespace for the model elements enclosed in the frame. A qualified
name for the model element within the frame shall be provided if it is not contained within default namespace

198 OMG Systems Modeling Language, v1.7

associated with the frame. The following are some of the designated model elements associated with the different
diagram kinds:

* Activity diagram - activity
* Block definition diagram - block, package, or constraint block
+ Internal block diagram - block or constraint block
» Package diagram - package or model
* Parametric diagram - block or constraint block
* Requirement diagram - package or requirement
» Sequence diagram - interaction
+ State machine diagram - state machine
+ Use case diagram - package
The frame may include border elements associated with the designated model element, like:
 Ports for blocks
» Entry/exit points on statemachines
* Gates on interactions
+ Parameters for activities
+ Constraint parameters for constraint blocks.
The frame may sometimes be defined by the border of the diagram area provided by a tool.

The diagram contents area contains the graphical symbols. The diagram type and usage define the type of primary
graphical symbols that are supported, e.g., a block definition diagram is a diagram where the primary symbols in the
contents area are blocks and association symbols along with their adornments.

The heading name is a string contained in a name tag (rectangle with cutoff corner) in the upper leftmost corner of
the rectangle, with the following syntax:

[modelElementType] [diagramName]

A space separates each of these entries. The diagramKind is bolded. The modelElementType and diagramName are
in brackets. The heading name should always contain the diagram kind and model element name, and include the
model element type and additional information to remove ambiguity. Ambiguity can occur if there is more than one
model element type for a given diagram kind, or where there is more than one diagram for the same model element.
If a model element type has a stereotype applied to the base model element, such as “modelLibrary” applied to a
package or “controlOperator” applied to an activity, then either the stereotype name or the base model element may
be used as the name for the model element type. In either case, the initial character of the name is shown in lower
case. For a stereotype name, guillemet characters (« and ») are not shown. If more than one stereotype has been
applied to the base model element, either the name of one of the applied stereotypes or a comma-separated list of
any or all of the applied stereotype names may be shown. If a base model element name is used, this element is
either a UML metaclass which SysML uses directly, such as package or activity, or a stereotype which SysML
defines on a UML metaclass, such as block or view.

SysML diagram kinds should have the following names or (abbreviations) as part of the heading:
» Activity diagram (act)
* Block definition diagram (bdd)
+ Internal block diagram (ibd)
» Package diagram (pkg)
* Parametric diagram (par)
* Requirement diagram (req)

* Sequence diagram (sd)

OMG Systems Modeling Language, v1.7 199

+ State machine diagram (stm)
* Use case diagram (uc)

The diagram description can be defined by a comment attached to a diagram frame as indicated in Fig. A.2 that
includes version, description, references to related information, a completeness field that describes the extent to
which the modeler asserts the diagram is complete, and other user defined fields. In addition, the diagram
description may identify the view associated with the diagram, and the corresponding viewpoint that identifies the
stakeholders and their concerns (refer to Model Elements clause). The diagram description can be made more
explicit by the tool implementation.

SysML also introduces the concept of a diagram usage. This represents a unique usage of a particular diagram type,
such as a context diagram as a usage of a block definition diagram, internal block diagram, or use case diagram. The
diagram usage can be identified in the header above the diagramKind as «diagramUsage». An example of a diagram
usage extension is shown in Figure A.3. For this example, the header in Figure A.2 would replace diagram kind with
“uc” and «diagramUsage» with «ContextDiagramy. Applying a stereotype approach to specify a diagram usage can
allow a tool implementation to check that the diagram constraints defined by the stereotype are satisfied.

Diagram usage can be represented by creating stercotypes that extend SysMLDiagram (see Annex B).

«stereotype»
SysMLUseCaseDiagram

I

«stereotype»
Context Diagram

Figure A.3. Diagram Usages

Some typical diagram usages may include:
+ Activity diagram usage with swim lanes - SwimLane Diagram.

* Block definition diagram usage for a block hierarchy - Block Hierarchy where block can be replaced by system,
item, activity, etc.

» Use case diagram or internal block diagram to represent a Context Diagram.

A.2 Guidelines

200 OMG Systems Modeling Language, v1.7

The following provides some general guidelines that apply to all diagram types.

* Decomposition of a model element can be represented by the rake symbol. This does not always mean
decomposition in a formal sense, but rather a reference to a more elaborated diagram of the model element that
includes the rake symbol. This notation adds to the existing decomposition notations defined in UML
(Composite state symbol for States that refer to StateMachines and rake symbol for CallBehaviorActions that
refer to Activities). In SysML, the rake on a model element may also include the following:

o Activity diagram - call behavior actions that can refer to another activity diagram.

° Internal block diagram - parts that can refer to another internal block diagram.

o Package diagram - package that can refer to another package diagrams.

o Parametric diagram - constraint property that can refer to another parametric diagram.
o Requirement diagram - requirement that can refer to another requirement diagram.

o Sequence diagram - interaction fragments that can refer to another sequence diagram.
o State machine diagram - state that can refer to another state machine diagram.

o Use case diagram - use case can that may be realized by other behavior diagrams (activity, state,
interactions).

* The primary mechanism for linking a text label outside of a symbol to the symbol is through proximity of the
label to its symbol. This applies to ports, item flows, pins, etc.

+ Page connectors (on-page connectors and off-page connectors) can be used to reduce the clutter on diagrams, but
should be used sparingly since they are equivalent to go-to(s) in programming languages, and can lead to
“spaghetti diagrams.” Whenever practical, elaborate the model element designated by the frame instead of using
a page connector. A page connector is depicted as a circle with a label inside (often a letter). The circle is shown
at both ends of a line break and means that the two line end connect at the circle.

* When two lines cross, the crossing optionally may be shown with a small semicircular jog to indicate that the
lines do not intersect (as in electrical circuit diagrams), as shown in Fig. A.4.

Figure A.4. Optional Form of Line Crossing

» Diagram overlays are diagram elements that may be used on any diagram kind. An example of an overlay may
be a geographic map to provide a spatial context for the symbols.

+ SysML diagrams including the enhancements described in this sub clause are intended to conform to diagram
definition and interchange standards to facilitate exchange of diagram and layout information.

+ Tabular and matrix representation is an optional alternative notation that can be used in conjunction with the
graphical symbols as long as the information is consistent with the underlying metamodel. Tabular and matrix
representations are often used in systems engineering to represent detailed information and other views of the
model such as interface definitions, requirements traceability, and allocation relationships between various types
of model elements. They also can be convenient mechanisms to represent property values for selected properties,
and basic relationships such as function and inputs/outputs in N2 charts. UML contains a tabular representation
of a sequence diagram in an interaction matrix (refer to UML Annex with interaction matrix). The
implementations of tabular and matrix representations are defined by the tool implementations and are not
standardized in SysML at this time. However, tabular or matrix representations may be included in a frame with
the heading designator «table» or «matrix» in bold.

» Graph and tree representations are also optional, alternative notations that can be used in conjunction with
graphical symbols as long as the information is consistent with the underlying metamodel. These representations
can be used for describing complex series of relationships that represent other views of the model. One example

OMG Systems Modeling Language, v1.7 201

is the browser window in many tools that depicts a hierarchical view of the model. The implementations of
graphs and trees are defined by the tool implementations and are not standardized in SysML at this time.
However, graph and tree representations may be included in a frame with the heading designator «graph» or
«treey» in bold.

202 OMG Systems Modeling Language, v1.7

Annex B: SysML Diagram Interchange

(informative)

B.1 Overview

This annex provides information regarding the exchange of SysML diagrams. It is an extension of the UML

Diagram Interchange (DI) to support the graphical notation specific to SysML. A first part presents stereotypes that

extend the UML DI. A second part presents modifications in the use of UML DI in SysML diagrams.

M3

M2

M1

MOF

Abstract syntax

Diagram syntax

UML

- — — —»

UML DI

SysML DI

!

Model Diagram
— — —» | —= Instantiates || [] DD Spec
——p | = Specializes ||[| UML Spec
—— | = References SysML Spec
— | = Extends

DD: Diagram Definition
6f4b505d-f0ee-4eb5-bed5-05b48c8abea
a: Diagram Interchange

Figure B.1. SysML DI architecture

OMG Systems Modeling Language, v1.7

203

B.2 Stereotypes

«Metaclass»
UMLDiagramElement

«stereotype»
SysMLDiagramElement

attributes
isDecompositionSymbolShown : Boolean [1] = false

Figure B.2. Abstract Syntax Extension for SysMLDiagramElement

«stereotype»
SysMLDiagramElement

attributes
isDecompositionSymbolShown : Boolean [1] = false

«stereotype»
SysMLDiagram

«Metaclass»

attributes UMLDiagram
defaultNamespace : Namespace [1] g

isLineJogShown : Boolean [1] = false

AN
«stereotype» «Metaclass»
SysMLDiagramWithAssociations UMLDiagramWithAssociations
AN
«stereotype» «Metaclass»
SysMLStructureDiagram UMLStructureDiagram
«stereotype» «stereotype» «stereotype»
SysMLRequirementDiagram SysMLBIlockDefinitionDiagram SysMLPackageDiagram
«Metaclass» «stereotype» «Metaclass»
UMLClassDiagram SysMLInternalBlockDiagram UMLPackageDiagram
«Metaclass» «stereotype»
UMLCompositeStructureDiagram SysMLParametricDiagram

attributes
isConstraintPropertyRounded : Boolean [1] = false

Figure B.3. Abstract syntax extensions for SysML diagrams (1)

204 OMG Systems Modeling Language, v1.7

«stereotype»
SysMLDiagram
«Metaclass» «stereotype» «stereotype»
UMLBehaviorDiagram SysMLBehaviorDiagram SysMLDiagramWithAssociations

Zﬁ

«stereotype» «stereotype» «stereotype»
SysMLActivityDiagram SysMLStateMachineDiagram SysMLUseCaseDiagram

attributes
+isControlFlowDashed : Boolean [1] = false

«Metaclass» «Metaclass»
UMLStateMachineDiagram UMLUseCaseDiagram
«Metaclass» «stereotype»
UMLActivityDiagram SysMLInteractionDiagram
«Metaclass»

UMLInteractionDiagram

Figure B.4. Abstract syntax extensions for SysML diagrams (2)
B.2.1 SysMLActivityDiagram

Description

A SysMLActivityDiagram represents an activity diagram. It extends UMLActivityDiagram.

Generalizations

» SysMLBehaviorDiagram (from SysMLDI)

Attributes

 isControlFlowDashed : Boolean [1]
Specifies whether the control flows in the activity diagram are dashed (isControlFlowDashed=true) or not
(isControlFlowDashed=false).

Association Ends
» base UMLActivityDiagram : UMLActivityDiagram [1]
(redefines: SysMLBehaviorDiagram::base UMLBehaviorDiagram)
Constraints
[1] A SysMLActivityDiagram shall have as a defaultNamespace an Activity.
[2] SysMLActivityDiagram shall only be applied to a UMLActivityDiagram.The principal of an applied

AdjunctProperty shall be a Connector, CallAction, ObjectNode, Variable, Parameter, submachine State, or
InteractionUse.

B.2.2 SysMLBehaviorDiagram

Description

SysMLBehaviorDiagram is an abstract stereotype for all SysML behavior diagrams. It extends
UMLBehaviorDiagram.

OMG Systems Modeling Language, v1.7 205

Generalizations
* SysMLDiagram (from SysMLDI)

Association Ends

* base UMLBehaviorDiagram : UMLBehaviorDiagram [1]
(redefines: SysMLDiagram::base UMLDiagram)

Constraints

[1] SysMLBehaviorDiagram shall only be applied to a UMLBehaviorDiagram.

B.2.3 SysMLBIlockDefinitionDiagram

Description

A SysMLBlockDefinitionDiagram represents a block definition diagram. It extends UMLClassDiagram.

Generalizations

» SysMLStructureDiagram (from SysMLDI)

Association Ends
* base UMLClassDiagram : UMLClassDiagram [1]
(redefines: SysMLStructureDiagram::base UMLStructureDiagram)
Constraints
[1] A SysMLBIlockDefinitionDiagram shall have as a defaultNamespace a Class with a Block stereotype or one of

its specializations applied or a Package.

[2] SysMLBlockDefinitionDiagram shall only be applied to a UMLClassDiagram.

B.2.4 SysMLDiagram

Description

SysMLDiagram is an abstract stereotype for all SysML diagrams. It extends UMLDiagram.

Generalizations

» SysMLDiagramElement (from SysMLDI)

Attributes

 defaultNamespace : Namespace [1]
Specifies the default namespace of the SysML diagram.

+ isLineJogShown : Boolean [1]
Show semi-circular jogs in the stereotyped diagram when two lines are crossing (see Annex A).

Association Ends

* base UMLDiagram : UMLDiagram [1]
(redefines: SysMLDiagramElement::base UMLDiagramElement)

Constraints

[11 A UMLDiagram stereotyped by a specialization of SysMLDiagram shall have isFrame=true.

[2] A UMLDiagram stereotyped by a specialization of SysMLDiagram shall have a heading.

206 OMG Systems Modeling Language, v1.7

[3] A SysMLDiagram that stereotypes a UMLDiagram with a modelElement shall have this modelElement as
defaultNamespace.

[4] SysMLDiagram shall only be applied to a UMLDiagram.
B.2.5 SysMLDiagramElement

Description

SysMLDiagramElement is an abstract generalization of all the other SysML 6f4b505d-
fOee-4eb5-bed5-05b48c8abeaa stereotypes.

Attributes

+ isDecompositionSymbolShown : Boolean [1]
Display a decomposition symbol in a diagram element to indicate the corresponding model element is
decomposed in another diagram. Diagram elements that may have a decomposition symbol are listed in Annex
A.
Association Ends

* base UMLDiagramElement : UMLDiagramElement [1]
B.2.6 SysMLDiagramWithAssociations

Description

SysMLDiagramWithAssociations is an abstract stereotype for all SysML diagrams with associations. It extends
UMLDiagramWithAssociations.

Generalizations
+ SysMLDiagram (from SysMLDI)

Association Ends

* base UMLDiagramWithAssociations : UMLDiagramWithAssociations [1]
(redefines: SysMLDiagram::base UMLDiagram)

Constraints

[1] A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations shall
have isAssociationDotShown=false.

[2] A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations shall
have navigabilityNotation=oneWay.

[3] A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations shall
have nonNavigabilityNotation=never.

[4] SysMLDiagramWithAssociations shall only be applied to a UMLDiagramWithAssociations.
B.2.7 SysMLInteractionDiagram

Description

A SysMLInteractionDiagram represents an interaction diagram. It extends UMLInteractionDiagram.

Generalizations
* SysMLBehaviorDiagram (from SysMLDI)

OMG Systems Modeling Language, v1.7 207

Association Ends

* base_UMLInteractionDiagram : UMLInteractionDiagram [1]
(redefines: SysMLBehaviorDiagram::base UMLBehaviorDiagram)

Constraints

[1]7 A SysMLInteractionDiagram shall have as a defaultNamespace an Interaction.
[2] A UMLInteractionDiagram stereotyped by SysMLInteractionDiagram shall have kind=sequence.

[3] SysMLInteractionDiagram shall only be applied to a UMLInteractionDiagram.

B.2.8 SysMLInternalBlockDiagram

Description

A SysMLlInternalBlockDiagram represents an internal block diagram. It extends UMLCompositeStructureDiagram.

Generalizations

» SysMLStructureDiagram (from SysMLDI)

Association Ends

* base UMLCompositeStructureDiagram : UMLCompositeStructureDiagram [1]

Constraints

[1] A SysMLInternalBlockDiagram shall have as a defaultNamespace a Class with a Block stereotype or one of its
specializations applied.

[2] SysMLInternalBlockDiagram shall only be applied to a UMLCompositeStructureDiagram.

B.2.9 SysMLPackageDiagram

Description

A SysMLPackageDiagram represents a package diagram. It extends UMLPackageDiagram.

Generalizations

» SysMLStructureDiagram (from SysMLDI)

Association Ends
* base UMLPackageDiagram : UMLPackageDiagram [1]

Constraints

[1] A SysMLPackageDiagram shall have as a defaultNamespace a Package.
[2] SysMLPackageDiagram shall only be applied to a UMLPackageDiagram.
B.2.10 SysMLParametricDiagram

Description

A SysMLParametricDiagram represents a parametric diagram. It is a specialization of SysMLInternalBlockDiagram.

Generalizations

» SysMLInternalBlockDiagram (from SysMLDI)

208 OMG Systems Modeling Language, v1.7

Attributes

+ isConstraintPropertyRounded : Boolean [1]
Specifies whether the constraint properties in the parametric diagram have rounded corners
(isConstraintPropertyRounded=true) or not (isConstraintPropertyRounded=false).

Constraints

[1] A SysMLParametricDiagram shall have as a defaultNamespace a Class with a Block stereotype or one of its
specializations applied.

[2] SysMLParametricDiagram shall only be applied to a UMLCompositeStructureDiagram.

B.2.11 SysMLRequirementDiagram

Description

A SysMLRequirementDiagram represents a requirement diagram. It is based on the UML class diagram.

Generalizations
» SysMLStructureDiagram (from SysMLDI)

Association Ends
* base UMLClassDiagram : UMLClassDiagram [1]

Constraints

[1]7 A SysMLRequirementDiagram shall have as a defaultNamespace a Package or a Class with a Requirement
stereotype or one of its specializations applied.

[2] SysMLRequirementDiagram shall only be applied to a UMLClassDiagram.

B.2.12 SysMLStateMachineDiagram

Description

A SysMLStateMachineDiagram represents a state machine diagram. It extends UMLStateMachineDiagram.

Generalizations

+ SysMLBehaviorDiagram (from SysMLDI)

Association Ends

* base UMLStateMachineDiagram : UMLStateMachineDiagram [1]
(redefines: SysMLBehaviorDiagram::base UMLBehaviorDiagram)

Constraints

[1] A SysMLStateMachineDiagram shall have as a defaultNamespace a StateMachine.

[2] SysMLStateMachineDiagram shall only be applied to a UMLStateMachineDiagram.

B.2.13 SysMLStructureDiagram

Description

SysMLStructureDiagram is an abstract stereotype for all SysML structure diagrams. It extends
UMLStructureDiagram.

OMG Systems Modeling Language, v1.7 209

Generalizations
* SysMLDiagramWithAssociations (from SysMLDI)

Association Ends
* base UMLStructureDiagram : UMLStructureDiagram [1]
(redefines: SysMLDiagramWithAssociations::base UMLDiagramWithAssociations)
Constraints

[1] SysMLStructureDiagram shall only be applied to a UMLStructureDiagram.

B.2.14 SysMLUseCaseDiagram

Description

A SysMLUseCaseDiagram represents a use case diagram. It extends UMLUseCaseDiagram.

Generalizations
» SysMLBehaviorDiagram (from SysMLDI)
* SysMLDiagramWithAssociations (from SysMLDI)

Association Ends

* base UMLUseCaseDiagram : UMLUseCaseDiagram [1]
(redefines: SysMLBehaviorDiagram::base UMLBehaviorDiagram)
(redefines: SysMLDiagram::base UMLDiagram)

Constraints

[17 A SysMLUseCaseDiagram shall have as a defaultNamespace a Package.

[2] SysMLUseCaseDiagram shall only be applied to a UMLUseCaseDiagram.

B.3 SysML DI usage notes

This clause provides additional notes on how the SysML notation is modeled.

A UMLEdge with a Connector as modelElement may be the source or the target of a UMLEdge with no
modelElement. The target or the source of the latter UMLEdge is a UMLShape with a Property stereotyped by
AdjunctProperty with a connector as the principal or one of its specializations as modelElement. This UMLEdge is
rendered as a dotted line.

Property names with property-specific types (in parentheses) are modeled with UMLTypedElementLabels.

UMLCompartmentableShapes that have a modelElement stereotyped by Allocated or one of its specializations may
have a compartment titled “allocatedElements” and a compartment titled “allocatedToElements.” These
compartments contain UMLLabels with modelElements that are the values of the allocatedElements and
allocatedToElements properties, respectively, of the Allocated stereotype.

A UMLShape with a modelElement stereotyped by Allocated or one of its specializations may be the source or the
target of a UMLEdge with no modelElements. The target or the source of this UMLEdge is a UMLShape with no
modelElement. This UMLShape may contain UMLLabels with text “allocatedFrom” and “allocatedTo,” each being
followed by UMLLabels with modelElements that are the values of the allocatedFrom properties of the Allocated
stereotype or the values of the allocatedTo properties, respectively, of the Allocated stereotype.

SysML callout notation (MasterCallout, DeriveCallout, SatisfyCallout, VerifyCallout, RefineCallout, TraceCallout)
can be modeled by a UMLShape with no modelElement. This UMLShape contains a UMLLabel with text specified
by the callout notation, followed by a UMLLabel with modelElement that is the element with text shown by the
callout notation.

210 OMG Systems Modeling Language, v1.7

B.4 SysML Notation and DI Representation

This sub clause summarizes Annex B by showing how SysML-specific notations shall be modeled using UML and
SysML UML DI. It does not cover all of Annex B or all notations in previous Clauses. The left column shows an
example of SysML notation. The middle column shows UML DI and SysML DI elements corresponding to the
notation. These elements are presented in a containment hierarchy. Elements with the same container are ordered
according to the notation shown in the left column, read from left to right, top to bottom. For each element, the type
of diagram element is given, followed by the type of modelElement and sometimes other constraints that apply to
the diagram element, put between parentheses. The type of modelElement is followed by a '+' when multiple
modelElements of this type can be assigned to one diagram element. A '+' sign between a metaclass and a stereotype
corresponds to an element that instantiates the metaclass and that has the stereotype applied. The right column
references “Notation” clauses and figures where the notation is defined.

Table B.1. SysML Diagram Elements

Notation Diagram Elements Ref.

UMLEdge (ControlFlow,
isControlFlowDashed=false)

UMLEdge+SysMLControlFlowEdge Section 11.3.1.3.1
(ControlFlow,
isControlFlowDashed=true)

UMLClassifierShape
(Property+ConstraintProperty,
isConstraintPropertyRounded=false)
- UMLLabel (Stereotype)
- UMLTypedElementLabel
(Property)
«Constraint» UMLClassifierShape

Constraint (Property+ConstraintProperty,
isConstraintPropertyRounded=true)
- UMLLabel (Stereotype)
- UMLTypedElementLabel
(Property)

«Constraint»
Constraint1

Section 10.3.1.2.1

UML ClassifierShape (Class+Block)
- UMLNameLabel (Class)

- UMLShape+SysMLPort (Port, in
flows, isIcon=true)

- UMLShape+SysMLPort (Port, out
flows, isIcon=true)

- UMLShape+SysMLPort (Port,
inout flows, islcon=true)

Section 9.3.1.6

OMG Systems Modeling Language, v1.7 211

Notation
b1 Block1
p1.p1
p1.p2
p1.p3

Block1

Property1:Type1 Connectort:Type4 Property2:Type2

Property3:Type3

Block1

allocatedFrom
Element1

allocatedTo
Element2

allocatedFrom
_|Element1
allocatedFrom
Element2

|Callout name
Element1 - Element2

212

Diagram Elements Ref.

UMLClassifierShape (Class+Block)
- UMLNameLabel (Class)

- UMLShape (Port)

- UMLNameLabel (Port)

- UMLShape (Port)

- UMLNameLabel (Port)

- UMLShape (Port)

- UMLNameLabel (Port)

- UMLShape (Port)

- UMLNameLabel (Port)

Section 9.3.1.6

UMLClassifierShape (Class)

- UMLNameLabel (Class)

- UMLCompartment

--- UMLShape (Property)
----- UMLTypedElementLabel
(Property)

--- UMLEdge (Connector)
----- UMLTypedElementLabel Section 8.3.2.2
(Property)

--- UMLShape (Property)
----- UMLTypedElementLabel
(Property)

--- UMLEdge

--- UMLShape (Property)
----- UMLTypedElementLabel

UMLClassifierShape (Class)
- UMLNameLabel (Class)

- UMLCompartment

--- UMLLabel

--- UMLLabel (Element)

- UMLCompartment

--- UMLLabel

--- UMLLabel (Element)

Section 15.3.1.3

UMLClassifierShape (Class)
- UMLNameLabel (Class)
UMLEdge

UMLShape

- UMLLabel

- UMLLabel (Element)

- UMLLabel

- UMLLabel (Element)

Section 15.3.1.4

UMLShape (Element)

- UMLNameLabel (Element)
UMLEdge

UMLShape

- UMLLabel

- UMLLabel (Element)

Section 16.3.1.3

OMG Systems Modeling Language, v1.7

Annex C: Deprecated Elements and Migration

(informative)

C.1 Overview

This annex

* Defines SysML elements that are deprecated, but included for backward compatibility (see Subannexes Section
C.1.1 through Section C.1.3).

* Provides guidelines for migrating elements to this version of SysML that are deprecated (see above) or that
changed significantly between versions of SysML (see Subannexes Section C.4 through Section C.7).

C.1.1 Flow Ports

Flow Port and Flow Specification are deprecated in this version of SysML and are defined for backward
compatibility. This annex contains the definition of these concepts as they are defined by SysML 1.2. In addition it
provides some guidelines on how to convert FlowPort to ports in this version of SysML.

A flow port specifies the input and output items that may flow between a block and its environment. Flow ports are
interaction points through which data, material, or energy can enter or leave the owning block. The specification of
what can flow is achieved by typing the flow port with a specification of things that flow. This can include typing an
atomic flow port with a single type representing the items that flow in or out, or typing a nonatomic flow port with a
flow specification which lists multiple items that flow. A block representing an automatic transmission in a car could
have an atomic flow port that specifies “Torque” as an input and another atomic flow port that specifies “Torque” as
an output. A more complex flow port could specify a set of signals and/or properties that flow in and out of the flow
port. In general, flow ports are intended to be used for asynchronous, broadcast, or send-and-forget interactions.
Flow ports exten UML 2 ports.

C.1.2 Conjugated Ports

UMLs conjugated ports (UML::Port::isConjugated) are deprecated in this version of SysML and included for
backward compatibility. This annex contains the description of port conjugation in SysML 1.5. In addition it
provides guidelines on how to convert conjugated ports to ports in this version of SysML.

C.1.3 ConnectorProperty

ConnectorProperty is deprecated in this version of SysML and is defined for backward compatibility. This annex
contains the definition of these concepts as they are in SysML 1.6. AdjunctProperty with a connector as principal
provides the same capability as ConnectorProperty.

C.2 Diagram Elements
C.2.1 Block Definition Diagram

Table C.1. Graphical nodes defined in Block Definition diagrams

Node Name Concrete Syntax Abstract Syntax Reference

p1:~T1 «block»
A p2:~T2
Port ﬁ;‘ Transmission UMLA4SysML::Port

Conjugated Port

OMG Systems Modeling Language, v1.7 213

Node Name

FlowPort

FlowPort (Compartment Notation)

FlowSpecification

ConnectorProperty

C.2.2 Internal Block Diagram

214

Concrete Syntax

p: rrransmission Transmission
<)

Flow Port

p: ~|Transrmsswon Transmission
[<>]

Conjugated FlowPort

inout networkType : ElectricNetworkType

Abstract Syntax Reference

SysML::Ports & Flows::FlowPort

T e

Atomic Flow Ports

Transmission

«FlowPort»
p : ITransmission

Flow Port

Transmission

«FlowPort»
p : ~ITransmission

Conjugate Flow Port

SysML::Ports & Flows::FlowPort

Transformer

«FlowPort»
in ac : ACVoltage

out dc : DCVoltage

inout networkType : ElectricNetworkType

Atomic Flow Ports

«flowSpecification»
Name

flow properties
in gearSelect : Gear
in engineTorque
out wheelsTorque

«block»
Block1

parts
«connector» ¢1: Association1
«connector» c2 : Association2

o1 : Typel c1: Association1 e11 p2: Type2
el
p3 : Type3 1 p4 : Typed

€2 : Association2

SysML::Ports &
Flows::FlowSpecification

UMLA4SysML::Property,
UMLA4SysML::Connector

OMG Systems Modeling Language, v1.7

Table C.2. Graphical nodes defined in Internal Block diagrams

Node Name Concrete Syntax Abstract Syntax Reference

: i t:
p:Im e

Flow Port

p -ITransmiSSion
[<>]

Conjugated Flow Port

FlowPort SysML::Ports & Flows::FlowPort

inout networkType : ElectricNetworkType
x

in ac : ACVoltage tr : Transformer out dc : DCVoltage

Atomic Flow Ports

| eng : engine | | Eng : engine
Tl

[
p : Torque p1: Torque
Torque torque : Torque
ItemFlow SysML::Ports & Flows::ItemFlow
p : Torque v p1: Torque

L]
Trns : Transmission

trns : Transmission

Item Flow Item Flow with an Item Property

p1: .:|—1 : Transmission p2:~T2
Port UMLA4SysML::Port

Conjugated Ports

C.3 UML Extensions

C.3.1 Diagram Extensions
C.3.1.1 Conjugated Ports

Conjugated ports have UMLs Port::isConjugated property equal to true. Arrows in port rectangles indicated flow
property direction are reversed in conjugated ports. Conjugated ports in conjugated ports (nested conjugated ports)
behave as if they were not conjugated. Full ports also cannot be conjugated, because their types can have behaviors
and can be reused on non-conjugated ports. This would require the same behaviors to use the directed features and
flow properties in opposite directions at the same time.

The meaning of DirectedFeature::featureDirection property is reversed for conjugated ports. On conjugated ports,
directed features with a feature direction "provided" are required and those with a feature direction "required" are
provided. Port conjugation has no impact on "providedrequired" directed features. The meanings of the "required"
and "provided" literals in FeatureDirection are switched for conjugated ports. In these cases the actual use is in the
opposite direction than the one specified by the enumeration literal.

The meaning of FlowProperty::direction is reversed for conjugated ports. On conjugated ports, flow properties with
direction "in" are out flow properties and those with direction "out" are in flow properties. Port conjugation has no
impact on "inout" flow properties. The meanings of the "in" and "out" literals in FlowDirection are switched for
conjugated ports. In these cases the actual flow direction is in the opposite direction than the one specified by the
enumeration literal.

C.3.1.2 FlowPort

A FlowPorts is an interaction point through which input and/or output of items such as data, material, or energy may
flow. The notation of flow port is a square on the boundary of the owning block or its usage. The label of the flow
port is in the format portName: portType. Atomic flow ports have an arrow inside them indicating the direction of
the port with respect to the owning Block. A nonatomic flow port has two open arrow heads facing away from each
other (i.e., <>). The fill color of the square is white and the line and text colors are black.

OMG Systems Modeling Language, v1.7 215

In addition, flow ports can be listed in a special compartment labeled “flow ports.” The format of each line is:
in | out | inout portName:portType [{conjugated}]
C.3.1.3 FlowSpecification

A FlowSpecification specifies inputs and outputs as a set of flow properties. It has a “flowProperties” compartment
that lists the flow properties.

C.3.2 Stereotypes
C.3.2.1 Package Ports&Flows

«Metaclass» «Metaclass»
UML4SysML::Port UML4SysML::Interface
«stereotype» «stereotype»
FlowPort FlowSpecification
attributes

direction : FlowDirection [1] = inout
/isAtomic : Boolean

Figure C.1. Deprecated Stereotypes
C.3.2.2 FlowPort

Description

A FlowPort is an interaction point through which input and/or output of items such as data, material, or energy may
flow. This enables the owning block to declare which items it may exchange with its environment and the interaction
points through which the exchange is made.

We distinguish between atomic flow port and a nonatomic flow port. Atomic flow ports relay items that are
classified by a single Block, ValueType, or Signal classifier. A nonatomic flow port relays items of several types as
specified by a FlowSpecification.

The distinction between atomic and nonatomic flow ports is made according to the flow port’s type: If a flow port is
typed by a flow specification, then it is nonatomic; if a flow port is typed by a Block, ValueType, or Signal classifier,
then it is atomic.

Flow ports and associated flow specifications define “what can flow” between the block and its environment,
whereas item flows specify “what does flow” in a specific usage context.

Flow ports relay items to their owning block or to a connector that connects them with their owner’s internal parts
(internal connector).

The isBehavior attribute inherited from UML port is interpreted in the following way: if isBehavior is set to true,
then the items are relayed to/from the owning block. More specifically, every flow property within the flow port is
bound to a property owned by the port’s owning block or to a parameter of its behavior. If isBehavior is set to false,
then the flow port shall be connected to an internal connector, which in turn related the items via the port. The need
for isBehavior is mainly to allow specification of internal parts relaying items to their containing part via flow ports.

The isConjugated attribute inherited from the UML Port metaclass is interpreted as follows: It indicates if the flows
of items of a nonatomic flow port maintain the directions specified in the flow specification or if the direction of

every flow property specified in the flow specification is reversed (IN becomes OUT and vice versa). If set to True,
then all the directions of the flow properties specified by the flow specification that types a nonatomic flow port are
relayed in the opposite direction (i.e., an “in” flow property is treated as an “out” flow property by the flow port and

216 OMG Systems Modeling Language, v1.7

vice-versa). By default, the value is False. This attribute applies only to nonatomic flow ports since atomic flow
ports have a direction attribute signifying the direction of the flow.

In case of flow properties or atomic flow ports of type Signal, inbound properties or atomic flow port are mapped to
a Reception of the signal type (or a subtype) of the flow property’s type. Outbound flow properties only declare the
ability of the flow port to relay the signal over external connectors attached to it and are not mapped to a property of
the flow port’s owning block.

Semantic Variation Points

The binding of the flow properties on the ports to behavior parameters and/or block properties is a semantic
variation point. One approach is to perform name and type matching. Another approach is to explicitly use binding
relationships between the ports properties and behavior parameters or block properties.

Attributes

+ /isAtomic : Boolean (derived)
This is a derived attribute (derived from the flow port’s type). For a flow port typed by a flow specification the
value of this attribute is False, otherwise the value is True.

+ direction : FlowDirection
Indicates the direction in which an atomic flow port relays its items. If the direction is set to “in,” then the items
are relayed from an external connector via the flow port into the flow port’s owner (or one of its parts). If the
direction is set to “out,” then the items are relayed from the flow port’s owner, via the flow port, through an
external connector attached to the flow port. If the direction is set to “inout,” then items can flow both ways. By
default, the value is inout.

Constraints
[1] A FlowPort shall be typed by a FlowSpecification, Block, Signal, or ValueType.

[2] If the FlowPort is atomic (by its type), then isAtomic=True, the direction shall be specified (has a value), and
isConjugated is not specified (has no value).

[3] If the FlowPort is nonatomic, and the FlowSpecification typing the port has flow properties with direction “in,”
the FlowPort direction shall be “in” (or “out” if isConjugated=true). If the flow properties are all out, the FlowPort
direction shall be out (or in if isConjugated=true). If flow properties are both in and out, the direction shall be inout.

[4] A FlowPort can be connected (via connectors) to one or more flow ports that have matching flow properties. The
matching of flow properties shall be done in the following steps:
1. Type Matching: The type being sent shall be the same type or a subtype of the type being received.

2. Direction Matching: If the connector connects two parts that are external to one another, then the direction of the
flow properties shall be opposite, or at least one of the ends should be inout. If the connector is internal the
owner of one of the flow ports, then the direction shall be the same or at least one of the ends shall be inout.

3. Name Matching: In case there is type and direction match to several flow properties at the other end, the
property that has the same name at the other end shall be selected. If there is no such property, then the
connection is ambiguous (ill-formed).

[5] If a flow port is not connected to an internal part, then isBehavior shall be set to true.

The item flows specified as flowing on a connector between flow ports shall match the flow properties of the ports
at each end of the connector: the source of the item flow should be the port that has an outbound/bidirectional flow
property that matches the item flow’s type and the target of the item flow should be the port that has an inbound/
bidirectional flow property that matches the type of the item flow.

If a flow port is connected to multiple external and/or internal connectors, then the items are propagated (broadcast)
over all connectors that have matching properties at the other end.

C.3.2.3 FlowSpecification

Description

OMG Systems Modeling Language, v1.7 217

A FlowSpecification specifies inputs and outputs as a set of flow properties. A flow specification is used by flow
ports to specify what items can flow via the port.

Constraints
[1] Flow specifications shall not own operations or receptions (they can only own FlowProperties).

[2] Every “ownedAttribute” of a FlowSpecification shall be a FlowProperty.
C.3.2.4 ItemFlow (deprecated compatibility rule)

ItemFlows are not deprecated, but when used with atomic flows ports, have a deprecated modification of item flow
compatibility rules that treats types of source and target atomic ports as if they were types of flow properties on
types of those ports.

C.3.2.5 ConnectorProperty

Description

Connectors can be typed by association classes that are stereotyped by Block (association blocks, see
ParticipantProperty in subclause Section 8.3.2.11). These connectors specify instances of the association block
created within the instances of the block that owns the connector. The values of a connector property are instances of
the association block created due to the connector referred to by the connector property.

A connector property can optionally be shown in an internal block diagram with a dotted line from the connector
line to a rectangle notating the connector property. The keyword «connector» before a property name indicates the
property is stereotyped by ConnectorProperty.
Attributes
+ connector : Connector [1]
A connector of the block owning the property on which the stereotype is applied.
Association Ends

* base Property : Property [1]

Constraints
* 1 block property
ConnectorProperty shall only be applied to properties of classes stereotyped by Block.
Block.allInstances () .base Class->exists(c | c.ownedAttribute->
includes (self.base Property))
* 2 owned or inherited

The connector attribute of the applied stereotype shall refer to a connector owned or inherited by a block owning
the property on which the stereotype is applied.

let owner: UML::Class = Block.allInstances () .base Class->any(c |
c.ownedAttribute->includes (self.base Property)) in owner->
closure (general)->
select (oclIsKindOf (UML::Class)) .oclAsType (UML: :Class) .ownedConnector->
flatten()->includes (self.connector)
* 3 composite
The aggregation of a property stereotyped by ConnectorProperty shall be composite.

self.base Property.isComposite

* 4 typed by associationblock

The type of the connector referred to by a connector attribute shall be an association class stereotyped by Block.

218 OMG Systems Modeling Language, v1.7

Block.allInstances () .base Class->exists(c |
c.oclIsKindOf (UML: :AssociationClass) and self.connector.type = c)
* 5 same name

A property stereotyped by ConnectorProperty shall have the same name and type as the connector referred to by
the connector attribute.

self.base Property.name = self.connector.name

OMG Systems Modeling Language, v1.7 219

C.4 Transitioning SysML1.2 Flow Ports to SysML 1.3 Ports
(informative)

To convert a SysML 1.2 flow port to ports in this version of SysML it is recommended to use the following
guidelines:

1. Decide if the port should be converted to a proxy port, a full port, or an unstereotyped port.

2. Based on the decision in step 1, create a block (for proxy ports, it shall be an interface block specifically).

If the original flow port is non-atomic:
a. Copy all the flow properties owned by the flow port’s type, a flow specification, to the block created in step
2 (meaning the flow properties will be owned by the newly created block).

b. Replace the type of the port with the block created in step 2.
Remove the flow port stereotype from the port.

d. Based on the decision in step 1, apply the ProxyPort or FullPort stereotype, or do nothing if the decision is
not to use either one.

e. If the proxy stereotype is applied in step 3d, and there is a single connector from the port to a part, the
BindingConnector may be applied to the connector.

If the flow specification is not referenced by other model elements, delete it.

4. If the original flow port is atomic:
a. On the block created in step 2, specify a flow property typed by the same type as the flow port and with the
same direction as the original flow port.

b. Do steps b to d from step 3 about non-atomic flow ports.

C.5 Transitioning SysML 1.3 Viewpoint and View to SysML 1.4
(informative)

Refactoring a view model build from the SysML 1.3 defined viewpoint, view, conforms, and the UML package
import mechanism could be performed as follows:

+ Conform

o Replace v1.3 Conform with v1.4 Conform. The conform target in 1.3 becomes the general classifier in 1.4.
* View

o Replace v1.3 View package with 1.4 View class
* Viewpoint

o For each Stakeholder string, create a stakeholder with the string as the name

o Update the stakeholder property on the new viewpoint with the created stakeholder

o For each method string of the 1.3 viewpoint, create the operation «create» View() and append the string to
the body of a comment that annotates the operation.

* Element and package import

o Replace each package and element import with an expose relationship.

220 OMG Systems Modeling Language, v1.7

C.6 Transitioning SysML 1.3 Units and QuantityKinds to SysML 1.4
(informative)

Changing units and quantity kinds from SysML 1.3 to SysML 1.4 can be accomplished as follows, depending on the
kind of element being changed:

* An InstanceSpecification stereotyped by SysML 1.3 Unit:
o Unapply the SysML 1.3 Unit stereotype.
o Classify the instance specification by SysML::Libraries::UnitAndQuantityKind::Unit.

o Set the values of SysML 1.4 Unit properties (symbol, description, definitionURI) to the values of the Unit
stereotype properties of the same name (symbol, description, definitionURI).

* An InstanceSpecification stereotyped by SysML 1.3 QuantityKind:
o Unapply the SysML 1.3 QuantityKind stereotype.
o Classifying the instance specification by SysML::Libraries::UnitAndQuantityKind::QuantityKind.

o Set the values of SysML 1.4 QuantityKind properties (symbol, description, definitionURI) to the values of
the QuantityKind stereotype properties of the same name (symbol, description, definitionURI).

* An InstanceSpecification classified by SysML 1.3 QUDV::Unit or one of its specializations:

o If the instance specification has no value for the SysML 1.3 QUDV::Unit::name property, no further changes
are needed.

o If the instance specification has a value for the SysML 1.3 QUDV::Unit::name property and the instance
specification has no name, then set its name to the value of the SysML 1.3 QUDV::Unit::name property.

o If the instance specification has a value for the SysML 1.3 QUDV::Unit::name property and the instance
specification has a name, then choose whether to keep the same name for the instance specification or use the
value of the SysML 1.3 QUDV::Unit::name property.

* An InstanceSpecification classified SysML 1.3 QUDV::QuantityKind or one of its specializations:

o If the instance specification has no value for the SysML 1.3 property QUDV::QuantityKind::name, then no
further changes are needed.

o If the instance specification has a value for the SysML 1.3 property QUDV::QuantityKind::name and the
instance specification has no name, then set the name of the instance specification to the value of the SysML
1.3 QUDV::QuantityKind::name property.

o If the instance specification has a value for the SysML 1.3 property QUDV::QuantityKind::name and the
instance specification has a name, then choose whether to keep the same name for the instance specification
or use the value of the SysML 1.3 QUDV::QuantityKind::name property.

* An InstanceSpecification An InstanceSpecification classified by SysML 1.3 QUDV::Scale. Each SysML 1.3
QUDV::ScaleValueDefinition becomes an EnumerationLiteral such that:

o The numeric value of SysML 1.3 QUDV::ScaleValueDefinition::value becomes a specification of the
corresponding EnumerationLiteral.

o The string value of SysML 1.3 QUDV::ScaleValueDefinition::description becomes a comment on the
corresponding EnumerationLiteral.

* Blocks defined as specializations of SysML 1.3 QUDV::Unit do not require changes in SysML 1.4.

* Blocks defined as specializations of SysML 1.3 QUDV::QuantityKind do not require changes in SysML 1.4
except for the following:

o Blocks defined specializations of QUDV::SpecializedQuantityKind in SysML 1.3 become corresponding
Blocks defined as specializations of QUDV::QuantityKind in SysML 1.4.

o Usages of SysML 1.3 QUDV::SpecializedQuantityKind::general property become corresponding usages of
QUDV::QuantityKind::general in SysML 1.4.

OMG Systems Modeling Language, v1.7 221

C.7 Transitioning SysML 1.5 conjugated port typed by InterfaceBlock
to SysML 1.6 conjugated InterfaceBlock (informative)

Here are the migration rules from former versions of SysML in pseudo-code, they can be easily automated:

For each port with isConjugated=true
do {
assume tl is the type the port
if t1 is a kind of InterfaceBlock then

{
if tl.getConjugated() return an empty result then

{
create a new InterfaceBlock t2 with the name of tl
prepended by a tilde symbol (~)
For each feature of tl
do {
create the exact same feature f' in t2
if f£f' has the FlowProperty stereotype applied
{
if the direction of f' is "in" then
set f' direction to "out"
else if direction of f' is "out" then
set f' direction to "in"
else do nothing

}
else if f' has the DirectedFeature stereotype applied

{
if the direction of f' is "provided" then
set f' direction to "required"
else if direction of f' is "required" then
set f' direction to "provided"
else do nothing
}
else

{
apply the DirectedFeature stereotype to f'

set f' direction to "required"

}

For each owned rule r of tl
do {
create the exact same owned rule r' in t2

}
create a dependency from t2 to tl with the Conjugation stereotype applied

}
set this port type to t2
set this port isConjugated to false

222 OMG Systems Modeling Language, v1.7

Annex D: Sample Problem

(Informative)

D.1 Purpose

The purpose of this annex is to illustrate how the nominal usage of SysML model can support the specification,
analysis, and design of a system. This focuses on using the basic features of the language in building a system
model, and then rendering the model as SysML diagrams.

While this annex focuses on diagrams, the reader should remember that these diagrams are rendered from an
integrated model using tooling available at the time this specification was published. No post-processing has been
applied to these diagrams; they appear just as they are represented in the modeling tool. This was done to streamline
the generation and maintenance of this appendix. Effort has been made to suppress tool-specific graphic artifacts on
these diagrams, but some such artifacts may be unavoidable.

D.2 Scope

The scope of this example is a single SysML system model that can be used to render at least one diagram of each
diagram type. The intent is to model simplified fragments of the problem to illustrate how a model can be
constructed, and to demonstrate some of the possible inter-relationships among the model elements. The sample
problem is not intended to exercise all of the features of the language. The reader should refer to the individual
clauses for more detailed features of the language. The diagrams rendered for representing a particular aspect of the
model, and the ordering of the diagrams are intended to be representative of applying a nominal systems engineering
process, but is not intended to endorse any specific process or methodology.

D.3 Problem Summary

The sample problem describes the use of SysML as it applies to the development of an automobile, in particular a
Hybrid gas/electric powered Sport Utility Vehicle (SUV). This problem is interesting in that it has inherently
conflicting requirements, viz. desire for fuel efficiency, but also desire for large cargo carrying capacity and off-road
capability. Technical accuracy and the feasibility of the actual solution proposed were not high priorities. This
sample problem focuses on design decisions surrounding the power subsystem of the hybrid SUV; the requirements,
performance analyses, structure, and behavior.

This annex is structured to show each diagram in the context of how it might be used on such an example problem.
The first sub clause shows SysML diagrams as they might be used to establish the system context; establishing
system boundaries, and top level use cases. The next sub clause is provided to show how SysML diagrams can be
used to analyze top level system behavior, using sequence diagrams and state machine diagrams. The following sub
clause focuses on use of SysML diagrams for capturing and deriving requirements, using diagrams and tables. A sub
clause is provided to illustrate how SysML is used to depict system structure, including block hierarchy and part
relationships. The relationship of various system parameters, performance constraints, analyses, and timing
diagrams are illustrated in the next sub clause. A sub clause is then dedicated to illustrating definition and depiction
of interfaces and flows in a structural context. The final sub clause focuses on detailed behavior modeling,
functional and flow allocation.

D.4 Diagrams

D.4.1 Package Overview (Structure of the Sample Model)
D.4.1.1 Package Diagram - Applying the SysML Profile

As shown in Fig. D.1 the HSUVModel is a package that represents the user model. The SysML Profile is applied to
this package in order to include stereotypes from the profile. The HSUVModel also requires the use model libraries,
such as the SI Units Types model library. The model libraries are imported into the user model as indicated.

OMG Systems Modeling Language, v1.7 223

pkg [Package] Modeling Domair Establishing HSUV Moddl)
«profilex»
SysML
N ~
~N
| ~ ,
ly» {strict}
apl “app
I« pply» N
{strict} ~N
| ~
—| | N
«ModelLibrary» _ HSUV Model
Sl Definitions | __«impor> _ | th

Figure D.1. Establishing the User Model by importing and applying SysML Profile & Model Library
(Package Diagram)

Fig. D.2 shows the specification of automotive units and valueTypes employed in this sample problem.

pkg [Package] Automotive Value Types [Automotive domain units of measure])

Automotive Value Types

«valueType» —l
SysML::Libraries:;:rimitiveVaIueTypes::Real Automotive Units
«unity «unity»
| [} mph
{quantityKind = Acceleration} {quantityKind = Velocity}
«valueType» «valueType» «valueType» «valueType» «valueType»
Horsep A leration Weight Volume Temperature «unity» «unity
«valueType» «valueType» «valueType» «valueType» «valueType» °E ft
unit = hp unit=g unit = Ib unit = ft"3 unit = °F {quantityKind = Temperature, {quantityKind = Distance}
symbol = "°F "}
«unity
«valueType» «valueType» «valueType» «valueType» «unity hp
Global Time Velocity Distance Pressure psi {quantityKind = Power}
alueTyper alueTyper alueTyper «walueType» {quantityKind = Pressure}
unit = sec unit = mph unit = ft unit = psi «unity
«unit» sec
ft23 {quantityKind = Time}
{quantityKind = Volume}
«unity»
b
{quantityKind = Mass}

Figure D.2. Defining value Types and units to be used in the Sample Problem
D.4.1.2 Package Diagram - Showing Package Structure of the Model

The package diagram Fig. D.3 shows the structure of the model for this sample problem. Model elements are
contained in packages, and relationships between packages (or specific model elements) are shown on this diagram.
Note that the «view» models contain no model elements of their own, and that changes to the model in other
packages are automatically updated in the Operational and Performance Views.

224 OMG Systems Modeling Language, v1.7

pkg [Package] HSUV Model[Model Package Organization])

HSUV Behavior HSUV Structure HSUV Interfaces HSUV Requirements HSUV Use Cases
Deliver Power «domain» o -
Behavior Automotive Domain HSUV Specification HSUV Analysis
parts
HSUV : Hybrid SUV
vehicle cargo : Baggage
driving conditions : Environment "
«requirement» Aut tive Val
properties Performance u om.ro fve Value
vehicle driver : Driver ypes
vehicle passenger : Passenger
vehicle mechanic : Maintainer

HSUV Views i i - -
HSUV Viewpoints HSUV Viewpoint Methods
«view» <I<VIewpo.|nt» . «activity»
Hybrid SUV Functional View Functional Viewpoint Requirements Query
«view» «viewpoint»
Hybrid SUV Performance Performance Viewpoint «activity»
Performance Query
«view» «viewpoint»
Hybrid SUV Requirements VnV «activity»
- VnV Query
) - «\/-lew» e «viewpoint»
Hybrid SUV Verification and Validation Plan Requirements

Figure D.3. Model Package Organization
D.4.2 Setting the Context (Boundaries and Use Cases)
D.4.2.1 Internal Block Diagram - Setting Context

The term “context diagram,” in Fig. D.4, refers to a user-defined usage of an internal block diagram, which depicts
some of the top-level entities in the overall enterprise and their relationships. The diagram usage enables the
modeler or methodologist to specify a unique usage of a SysML diagram type using the extension mechanism
described in Annex A, “Diagrams.” The entities are conceptual in nature during the initial phase of development, but
will be refined as part of the development process. The «system» stereotype is user defined, not specified in SysML,
but helps the modeler to identify the system of interest relative to its environment. Each model element depicted
may include a graphical icon to help convey its intended meaning. The spatial relationship of the entities on the
diagram sometimes conveys understanding as well, although this is not specifically captured in the semantics. Also,
a background such as a map can be included to provide additional context. The associations among the classes may
represent abstract conceptual relationships among the entities, which would be refined in subsequent diagrams. Note
how the relationships in this diagram are also reflected in the Automotive Domain Model Block Definition
Diagram, Fig. D.15, which is rendered from the same underlying model.

OMG Systems Modeling Language, v1.7 225

«ContextDiagram» J

ibd [Block] Automotive Domain Establishing the Context of the Hybrid SUV Systenh driving conditions : Environment

weather : Weather object : External Object [1..*]

«system»

vehicle driver : Dri... x HSUV : Hybrid SUV
% road : Road [1..*]

vehicle passenger : Passe... —
x3:
x5:

vehicle cargo : Bagga...

x4:

|Diagram name || Establishing the Context of the Hybrid SUV System|

T
/{é |Auth0r ||janderson |

\\ vehicle mechanic : Maintai... -
|Creation date || 314120 1:43 AM |

[Modification date || 3/15/22 8:30 AM |

Figure D.4. Establishing the Context of the Hybrid SUV System
D.4.2.2 Use Case Diagram - Top Level Use Cases

The use case diagram “Establishing Top Level Uses Cases” in Fig. D.5 depicts usage in the Automotive Domain.
The subject (Hybrid SUV) and the actors (Driver, Registered Owner, Maintainer, Insurance Company, Department
of Motor Vehicles) interact to realize the use case.

uc [Package] HSUV Use Cases| Establishing Top Level Use Caseg)

Hybrid SUV

% Drive the Vehicle
Driver

Insure the vehicle %
% / InsuranceCompany
- \
R
egisteredOwner Register the vehicle
Department of Motor Vehicle

% Maintain the vehicle
Maintainer

Figure D.5. Establishing Top Level Use Cases

226 OMG Systems Modeling Language, v1.7

D.4.2.3 Use Case Diagram - Optional Use Cases

Goal-level Use Cases associated with “Operate the Vehicle” are depicted in the following diagram. These use cases
help flesh out the specific kind of goals associated with driving and parking the vehicle. Maintenance, registration,
and insurance of the vehicle would be covered under a separate set of goal-oriented use cases.

uc [Package] HSUV Use Cases [Establishing Operational Use Cases])

Hybrid SUV
7O< - - «extend»
Driver 4’\\6\ \«include»

| < «nclude»

«refinex»

~
~N
~N
N

| ~
|
«interaction» o

~ «inclodey_
Drive Black Box N

Start the Vehicle

Accelerate

it

Brake

0

«refine»

«interaction»
Start Vehicle Black Box

Figure D.6. Establishing Operational Use Cases

D.4.3 Elaborting Behavior (Sequence and State Machine Diagrams)

D.4.3.1 Sequence Diagram - Drive Black Box

Fig. D.7 shows the interactions between driver and vehicle that are necessary for the “Drive the Vehicle” Use Case.

This diagram represents the “Drive Black Box™ interaction, with is owned by the Automotive Domain block. “Black
Box” for the purpose of this example, refers to how the subject system (Hybrid SUV) interacts only with outside

elements, without revealing any interior detail.

The conditions for each alternative in the alt controlSpeed sub clause are expressed in OCL, and relate to the states

of the Hybrid SUV block, as shown in Fig. D.8.

OMG Systems Modeling Language, v1.7

227

sd [Interaction] Drive Black Box[Elaborating Black Box Behavior for the "Drive Vehicle" Use Casé)
| venicle driver : Driver % | | HSUV : Hybrid SUV
T T
I I
PN N
ref
Start Vehicle Black Box
]]
I I
& A
| par T T
[] Fat FaY
alt] : :
[Self.ocllslnffate(ldle)] I
ref
Idle
T T
_ —_ — 4+ —- e Mmoo e e e — — — - — —
[Self.oclIsIn$tate(AcceIerating/Cuising)] :
I I
O
ref
Acceleration / Cruise
. - - - - - - - - - - - - - O — — = N
[Self.oclIslnétate(Braking)] :
I I
I I
ref
Brake
o _____1_
I 1
[I I
| |
o_
ref
Steer
1 1
I I
A &—
ref
Park / Shutdown Vehicle
i i
I I

Figure D.7. Elaborating Black Box Behavior for the "Drive Vehicle" Use Case
D.4.3.2 State Machine Diagram - HSUV Operational States

Fig. D.8 depicts the operational states of the HSUV block, via a State Machine named “HSUV Operational States.”
Note that this state machine was developed in conjunction with the DriveBlackBox interaction in Fig. D.7. Also note
that this state machine refines the requirement “Power Source Managment,” which will be elaborated in the
requirements sub clause of this sample problem. This diagram expresses only the nominal states. Exception states,
like “accelerator Failure,” are not expressed on this diagram.

228 OMG Systems Modeling Language, v1.7

. S Off

Operate

accelerate

releaseBrake

stopped

Accelerating /
Cruising

engageBrake

Braking

) keyOff C

shut...

stm [State Machine] HSUV Operational State§ HSUV Operational Stateg)

Refines
«requirement»Power
Source Management

4 «comment»
Nominal states only

Figure D.8. HSUV Operational States

D.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

Fig. D.9 shows a “black box” interaction, but references “Start Vehicle White Box” (Fig. D.10), which will
decompose the lifelines within the context of the HybridSUV block.

The lifelines on Fig. D.10 (“whitebox” sequence diagram) need to come from the Power System decomposition.
This now begins to consider parts contained in the HybridSUV block.

sd [Interaction] Start Vehicle Black Box[Start Vehicle Black Box])

vehicle driver : Driver % |

1: StartVehicle()

| HSUV : Hybrid SUV

|
|
o

ref

Start Vehicle White Box

Figure D.9. Start Vehicle Black Box

OMG Systems Modeling Language, v1.7

229

sd [Interaction] Start Vehicle White Box[Start Vehicle White Box])

pcu : Power Control Unit | | epc : Electrical Power Controller

1: StartVehicle() _ |

|
|
|
2: Enable() !

Figure D.10. Start Vehicle White Box
D.4.4 Establishing Requirements (Requirements Diagrams and Tables)
D.4.4.1 Requirement Diagram - HSUV Requirement Hlerarchy

The vehicle system specification contains many text based requirements. A few requirements are highlighted in Fig.
D.11, including the requirement for the vehicle to pass emissions standards, which is expanded for illustration
purposes.

req [Package] HSUV Requirementy Establishing HSUV Requirements Hierarchy (containmen]))

1

HSUV Specification

f
| | | |

«requirement» «requirement» «requirement» «requirement» «requirement»
Eco-Friendliness Performance Ergonomics Qualification Capacity
D T 5]
«requirement» «requirement» «requirement» «requirement» «requirement» «requirement» «requirement»
Braking Fuel Economy Off-Road Capability Acceleration Safety Test Cargo Capacity Passenger Capacity
«requirement»
«requirement» Fuel Capacity

Emissions
Id="R1.2.1"

Text = "The vehicle shall meet Ultra-low
Emissions vehicle standards."

Figure D.11. Establishing HSUV Requirements Hierarchy (containment)
D.4.4.2 Requirement Diagram - Derived Requirements

Fig. D.12 shows a set of requirements derived from the lowest tier requirements in the HSUV specification. Derived
requirements, for the purpose of this example, express the concepts of requirements in the HSUV Specification in a
manner that specifically relates them to the HSUV system. Various other model elements may be necessary to help
develop a derived requirement, and these model element may be related by a «refinedBy» relationship. Note how
Power Source Management is “RefinedBy” the HSUV Operational States model (Fig. D.8). Note also that rationale

230 OMG Systems Modeling Language, v1.7

can be attached to the «deriveReqt» relationship. In this case, rationale is provided by a referenced document

“Hybrid Design Guidance.”

req [Package] HSUV Requirementq Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarcriy)

«requirement»

«requirement»

RefinedBy
HSUV Operational States

«requirement» «requirement»

«requirement»

«requirement»

«requirement»
Power Source Managem...

Braking Fuel Economy Fuel Capacity Off-Road Capability Acceleration Cargo Capacity
N ANT A N N N
| | 1 | «deriveReqt» N | |
«deriveReqt» «deriveReqt» T ederiveRea
| - o - | | a | «deriveReqt» | «deriveReqt» | «deriveReqt»
| Il «requirement»| — — — — — = - |_ !
«requirement» Il Range
Regenerative Braking | | | |
(. I
o '
_____ «proplem» «requirement»
| Power needed for acceleration, off-road performance & — — = Power
| cargo capacity conflicts with fuel economy T
«deriveReqt» «deriveReqty
| «deriveR deriveReqty
__________________ —_ — - — — —
7| N
I «rationale»

Power delivery must happen by
coordinated control of gas and electric
motors. See "Hybrid Design Guidance"

Figure D.12. Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchy

D.4.4.3 Requirement Diagram - Acceleration Requirement Relationships

Section D.4.4.2 focuses on the Acceleration requirement, and relates it to other requirements and model elements.

The “refine” relation, introduced in Fig. D.12, shows how the Acceleration requirement is refined by a similarly
named use case. The Power requirement is satisfied by the part property pwr-ss:Power Subsystem, and a Max
Acceleration test case verifies the Acceleration requirement.

req [Package] HSUV Requirements[Acceleration Requirement Relationships])

«system»
Hybrid SUV

parts

pwr-ss : Power Subsystem ¢

Accelerate

«satisfy»

«refine»

«requirement»
Acceleration

: a
«deriveReqt» y

7/

«requirement»
N q

Power

\ «verify»

\

«testCase»

Max Acceleration

Figure D.13. Acceleration Requirement Relationships

D.4.4.4 Table - Requirements Table

SysML allows the representation of relationships using tables without constraining the exact layout of such a table.

Section D.4.4.4 provides two examples showing requirement containment (decomposition), and requirements
derivation in tabular form. This is a more compact representation than the requirements diagrams shown previously.

OMG Systems Modeling Language, v1.7

231

| W | £ Name Text
The Hybrid SUV shall have the braking, acceleration, and off-road capability of a

12 &l [’l 2 Performance typical SUV, but have dramatically better fuel economy.
2 21 [R] 2.1 Acceleration The Hybrid SUV shall have the braking capability of a typical SUV.
3 23 [2.2 Braking The Hybrid SUV shall have dramatically better fuel economy than a typical SUV.
4 2.3 (Rl 2.3 Fuel Economy The Hybrid SUV shall have dramatically better fuel economy than a typical SUV.
5 2.4 [Rl 2.4 Off-Road Capability | The Hybrid SUV shall have the off-road capability of a typical SUV.

|~ Name | R11d | Derived | R21d | Derived 2

1 1 [&l Acceleration d4 [R] Powver d.2 |[&] Power Source Management

2 22 [R] Braking d.1 [R] Regenerative Braking

d.2 [R] Power Source Management
3 2.3 [®] Fuel Economy j; [R] Regenerative Braking
: (&l Range
4 |24 [& off-Road Capability d4 [R] Power d.2 |[&] Power Source Management
5 |41 [&l cargo Capacity d4 [R] Power d.2 |[R] Power Source Management

Figure D.14. Requirements Relationships Expressed in Tabular Format

Please Note: Tables are not a normative part of the SysML specification. So all tables are for illustration and
reference only.

D.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block
Diagrams)

D.4.5.1 Block Definition Diagram - Automotive Domain
Fig. D.15 provides definition for the concepts previously shown in the context diagram. Note that the interactions

Drive Black Box and Start Vehicle Black Box (described in, Fig. D.9 and Fig. D.10) are depicted as owned by the
AutomotiveDomain block.

bdd [Package] HSUV Structure [Defining the Automotive Domair])

«domain»
Automotive Domain

owned behaviors
«interaction»Drive Black Box
«interaction»Start Vehicle Black Box

vehicle driver vehicle mechanig, vehicle passenger, HSUV vehicle cargo driving conditions
«system» «external» «external»
Driver Maintainer Passenger Hybrid SUV Baggage Environment
weather 1.* | object 1.* | road
«external» «external» «external»
Weather External Object Road

Figure D.15. Defining the Automotive Domain
D.4.5.2 Block Definition Diagram - Hybrid SUV

Fig. D.16 defines components of the Hybrid SUV block. Note that the Brake Pedal and Wheel Hub Assembly are
used by, but not contained in, the Power Subsystem block.

232 OMG Systems Modeling Language, v1.7

bdd [Package] HSUV Structure[Defining Structure of Hybrid SUV System])

«system»
Hybrid SUV

T

pwr-ss brk-ss, bdy-ss. intr-ss, Ight-ss, chs-ss
«block» «block» «block» «block» «block» «block»
Power Subsystem Brake Subsystem Body Subsystem Interior Subsystem Lighting Subsystem Chassis Subsystem

] L

brkpdl|,1 brkpdl!
«block»
Brake Pedal

«rationale»
2 wheel drive is the only way to get
acceptable fuel economy, even though it
limits off-road capability

l24

«block»
Wheel Hub
Assembly

Figure D.16. Defining Structure of Hybrid SUV System

D.4.5.3 Internal Block Diagram - Hybrid SUV

Fig. D.17 shows how the top level model elements in the above diagram are connected together in the Hybrid SUV

block.

ibd [System] Hybrid SUV[Internal Structure of Hybrid SUV])

chs-ss : Chassis Subsystem

brk-ss : Brake Subsystem

bdy-intr - -
bdy-ss : Body Subsystem intr-ss : Interior Subsystem
bdy-chs | bdy-Ight
Y 79 intr-Ight
chs-brk brk-Ight

pwr-chs

pwr-brk

pwr-ss : Power Subsystem

Ight-ss : Lighting Subsystem

Figure D.17. Internal Structure of Hybrid SUV

D.4.5.4 Block Definition Diagram - Power Subsystem

Fig. D.18 defines the next level of decomposition, namely the components of the Power Subsystem block. Note how
the use of white diamond (shared aggregation) on Front Wheel, Brake Pedal, and others denotes the same “use-not-
composition” kind of relationship previously shown in Fig. D.16

OMG Systems Modeling Language, v1.7

233

bdd [Package] HSUV Structure[Defining Structure of Power Subsystem])

«block»

Wheel Hub Assembly

out fout : Fluid

values
capacity : volume[gallon (US)]
level : volumel[gallon (US)]

fuelPressure : psi

2
«block»
0.1 Power Subsystem
brkpd|(,1 bp pcu epc rfw |1 Ifw |1
«block» «block» «block» «block» «block»
Brake Pedal Battery Pack Power Control Unit Electrical Power Controller Front Wheel
acIJ/ ft J/ ice emg, dif
«block» «block» ft «block» «block» «block»
Accelerator Fuel Tank Assembly Internal Combustion Engine Electric Motor Generator Differential
values
fuelFlowRate : gpm
shell fp fi |4 fra fre trsm.
«block» «block» «block» «block» «block» «block»
Tank Fuel Pump Fuel Injector Fuel Rail Fuel Regulator Tr issi
flow properties values
in fin : Fluid

Figure D.18. Defining Structure of Power Subsystem

D.4.5.5 Internal Block Diagram for the "Power Subsystem"

Fig. D.19 shows how the parts of the Power Subsystem block, as defined in the diagram above, are used. It shows
connectors between parts, ports, and connectors with item flows. The dashed borders on Front Wheel and Brake

Pedal denote the “use-not-composition” relationship depicted elsewhere in Fig. D.16 and Fig. D.18.

ibd [Block] Power Subsystem [Internal Structure of the Power Subsystem] J

acl : Accelerator

acl-pou

i_regen : Elec Power

T ot : ~EPC otrl IF

ra_epc: EPC ctrl IF
|KA}

pcu : Power Control Unit

rsm - TRSM

=1
Lc_Ji

bkp-pcu

ice : ICE ctrl IF

c1

i_motive : Elec Power

bp : Battery Pack bp-epc epc : Electrical Power Controller * < epc-emg » :|2* emg : Electric Motor Generator
1 p1:12 %1

p3:T2

g1: Torque

p1:TH

l ice : Internal C:

Engine

ot : ~ICE ctr IF.L_

ft : Fuel Tank Assembly

p1:F2 fuelReturn : Fuel
<
<

fuel delivery

regen : Torque

| rfw : Front Wheel [1]

| {} _ _ | p2:Tire Patch

p1:T2
right half shaft

pR:T2

dif : Differential

drive : Torque

pL:T2

left half shaft

p1:T2

—— —

Itp : Tire Patch

| Ifw : Front Wheel [1]

p2 : Tire Patch

tp : Tire Patch

]

-]

Figure D.19. Internal Structure of the Power Subsystem

Fig. D.20 provides definition of the block that types the ports linked by connectors c1, ¢2 and ¢3 in Fig. D.19. Note

the use of conjugate (~) interface blocks, the composition of interface blocks, and the use of signals & value types

for flow properties.

234

OMG Systems Modeling Language, v1.7

bdd [Package] Pwr Sys Logical Interfaces [PCU Port Type Definition$)

«InterfaceBlock»

«~InterfaceBlock»
~EPC ctrl IF

«signal»
motor status

attributes
rpm : revolutions per minute
temp : celsiusTemperature
current : rms current[ampere]

out rpm : motor status

EPC ctrl IF
{original = EPC ctrl IF}
«proxy» «proxy» «proxy» «Proxy»
data cmd data cmd
«InterfaceBlock» «InterfaceBlock» «~InterfaceBlock» «~InterfaceBlock»
EPC data IF EPC cmd IF ~EPC data IF ~EPC cmd IF
flow properties flow properties {original = EPC data IF} {original = EPC cmd IF}
in ms : motor status out drive : motor command flow properties flow properties

in sc : motor command

«signal»
motor command

attributes
accel : Percentage
regen brake : Percentage

«interfaceBlock»
TRSM ctrl IF

«proxy»
data

«proxy»

cmd

«~InterfaceBlock» «signal»
«InterfaceBlock» ~ICE ctrl IF ice status
ICE ctrl IF {original = ICE ctrl IF} attributes
rpm : revolutions per minute
coolant temp : celsiusTemperature
«proxy» | «proxy» «Proxy» «Proxy» knockSensor : Boolean
data cmd data cmd iat : celsiusTemperature
- - ~ ~ egt : celsiusTemperature
«interfaceBlock» «interfaceBlock» «~InterfaceBlock» «~InterfaceBlock» maf : volume flow rate(cubic metre per second)
ICE data IF ICE cmd IF ~ICE data IF ~ICE cmd IF
flow properties flow properties {original = ICE data IF} {original = ICE cmd IF}
inis : ice status out ic : ice command flow properties flow properties «signal»
outis : ice status in ic : ice command ice command
attributes

throttle position : Percentage
injector rate : Percentage

injector timing : crankshaft degrees
valve timing : crankshaft degrees
ign timing : crankshaft degrees

«interfaceBlock»
TRSM data IF

«interfaceBlock»
TRSM cmd IF

flow properties
in ts : trsm status

flow properties
out tc : trsm command

«~InterfaceBlock»

~TRSM ctrl IF

{original = TRSM ctrl IF}
«proxy» «proxy»
data cmd

«~InterfaceBlock» «~InterfaceBlock»
~TRSM data IF ~TRSM cmd IF
{original = TRSM data IF} {original = TRSM cmd IF}
flow properties flow properties

out ts : trsm status

in tc : trsm command

«signal»
trsm command

attributes
gear command : gear
mode command : mode
regen brake

«signal»
trsm status

attributes
oil temp : celsiusTemperature
selected mode : mode

«valueType» [(E]
«valueType» [E] gear
mode enumeration literals
enumeration literals | | Park
touring reverse
sport drive
mountain low

Figure D.20. PCU Port Type Definitions

D.4.6 Defining Ports and Flows
D.4.6.1 Block Definition Diagram - ICE Flow Properties

For purpose of example, the ports, flows, and related point-to-point connectors in Fig. D.19 are being refined into a
common bus architecture. For this example, ports with flow properties have been used to model the bus architecture.
Fig. D.21 is an incomplete first step in the refinement of this bus architecture, as it begins to specify the flow
properties for Internal Combustion Engine, the Transmission, and the Electrical Power Controller.

Note that the table provided is not a SysML diagram, but is a quite useful list of CAN Message interface
specifications depicting various messages that may be used on the CAN bus.

OMG Systems Modeling Language, v1.7

235

bdd [Package] CAN Message Library[Defining Port Types for the CANBus])

«interfaceBlock»
CANIF «comment»

allocatedFrom = || CAN spec - Application,

EJePC ctrl IF Transport, and Physical layers

ESlicE ctrl IF Physical layer: ISO 11898

EETRSM ctrl IF Automotive implementation: SAE

flow properties J2284

inout can_msg : CAN Message

«block»
CAN Frame

parts
start of frame : Subframe
id : Subframe
remote transmission request : Subframe
control : Subframe
data : Subframe
cyclic redundancy check : Subframe
ack : Subframe
end of frame : Subframe

i

«block»
CAN Message

Classifier 4 Name V;‘tgiig: ‘
1 & can Message E = accel_position

2 Q Subframe = accel_position message.data 0

3 Q Subframe =] accel_position message.id 000205
4 & can Message E = battery_discharge_amps

5 & subframe =1 battery_discharge_amps.data 0

6 | subframe = battery_discharge_amps.id 222414
7 & can Message E = battery_temp

8 & subframe =) battery_temp.data 60

9 & subframe = battery_temp.id 22434F
10 Q CAN Message [E =1 battery_volts

11] subframe = battery_volts.data 425

12] subframe =) battery_volts.id 222429
13 | can Message E =1 engine_coolant_temp

14 = subframe =] engine_coolant_temp.data 60

15 Q Subframe =] engine_coolant_temp.id 220005
16] cAN Message E = engine_oil_temp

17 Q Subframe = engine_oil_temp.data 60

18 & subframe =1 engine_oil_temp.id 221154
19 Q CAN Message = =1 engine_rpm

20 [subframe =] engine_rpm.data 0

21 & subframe = enginge_rpm.id 22000C
22 Q CAN Message = = intake_air_temp

23 & subframe =] intake_air_temp message.data 120

24 & subframe =) intake_air_temp message.id 22000F

Figure D.21. Initially Port Types with Flow Properties for the CANBus

Please Note: Tables are not a normative part of the SysML specification. So all tables are for illustration and

reference only.

D.4.6.2 Internal Block Diagram - CANbus

Fig. D.22 continues the refinement of this Controller Area Network (CAN) bus architecture using ports. The explicit
structural allocation between the original connectors of Fig. D.19 and this new bus architecture is shown in Fig.

D.39.

ibd [Block] Power Subsystem [Consolidating Connectors into the CAN Bus}s)

epc : Electrical Power Controller

[A1]

trsm : Transmission

[A1]

ice : Internal Combustion Engine

[A]

v
epc_can : CAN IF

v

trsm_can : CAN IF ice_can : CAN IF

A2

can : CAN Bus

in i_msg : CAN Message
out o_msg : CAN Message

:flow properties

J_p‘cu_can :~CAN IF
A

Lv |
pcu : Power Control Unit

Figure D.22. Consolidating Connectors into the CAN Bus

D.4.6.3 Block Definition Diagram - Fuel Flow Properties

The ports on the Fuel Tank Assembly and Internal Combustion Engine (as shown in Fig. D.19) are defined in Fig.

D.23.

236

OMG Systems Modeling Language, v1.7

bdd [Package] HSUV Structure[Elaborating Definition of Fuel Flow)

«block» «block»
Power Subsystem Fluid
constraints values
fuelFlow : FuelFlow fPressure : pressure[pascal]
fDensity : density[kilogram per cubic metre]
__ values fVolume : volume[litre]
sn:ID
ice
ft «block» T
«block» «proxy» Internal Combustion Engine
Fuel Tank Assembly «proxy» p2: F2EEI references «block»
values E‘E' p1:F2 ft : Fuel Tank Assembly Fuel
fuelFlowRate : gpm proxy ports
proxy ports inout ctrl : ~ICE ctrl IF
inout p1 : F2 outp1:T1)
«interfaceBlock» :Egﬂ: il::%a.('::an -CAN IF
F2 -
flow properties
in fln : Fluid
«interfaceBlock» out fOut : Fluid «block»
F1 proxy ports Petroleum
- outp1.1:F1
flow properties inp1.2:~F1 values
out fOut : Fluid vscsty : kinematic viscosity [pascal second kilogram per cubic metre] = 0.006

Figure D.23. Elaborating Definition of Fuel Flow
D.4.6.4 Parametric Diagram - Fuel Flow

Fig. D.24 is a parametric diagram showing how fuel flow rate is related to FuelDemand and FuelPressure value
properties.

par [Block] Power Subsystem [Defining Fuel Flow Constraints])

ice.fi.fuelDemand : gpm

ice.fre.fuelPressure : psi

ft.fuelFlowRate : gpm injectorDemand : gpm

L]

«constraint»
fuelFlow : FuelFlow
flowrate : gpm {flowrate=press/(4*injectorDemand)} press : psi

Figure D.24. Defining Fuel Flow Constraints
D.4.6.5 Internal Block Diagram - Fuel Distribution

Fig. D.25 shows how the connectors fuelDelivery and fdist on Fig. D.19 have been expanded to include design
detail. The fuel delivery connector is allocated to two connectors, one carrying fuel supply and the other carrying
fuel return. The fdist connector inside the Internal Combustion Engine block has been allocated into the fuel
regulator and fuel rail parts. These more detailed design elements are related to the original connectors using the
allocation relationship. Fuel in the tank portion of the Fuel Tank Assembly is drawn by the Fuel Pump for use in the
engine, and is refreshed, to some degree, by fuel returning to the Fuel Tank Assembly.

OMG Systems Modeling Language, v1.7 237

ibd [Block] Power Subsystem [Detailed Internal Structure of Fuel Delivery Subsysterm)

ice : Internal Combustion Engine

— - — 4+ p1: ~F1 fi1 : Fuel Injector
«connector» fdist
— p1: ~F1 fi2 : Fuel Injector
—— p1:~F1 fi3 : Fuel Injector
N, — — — 7] p1:~F1 —5] fi4 : Fuel Injector
allocatedElements I

«connectory fdist p3:F1 p4: F1
ator

— _ - - 11 —] |
I fra : Fuel Rail P L p1:F1

allocatedElements =

allocatedElements

allocatedElements |
«connector» fdist

«connector» fdist R
= p2 : F1
aIIocatedEIemgnts p2:F2
«connector» fdist p1.1:F1
ft : Fuel Tank Assembly allocatedElements
p1:F2 «connector» fuel delivery

p2: ~F1 p1:F1
shell : Tank r
fp : Fuel Pum I:LI p1.1:F1
:values
capacity : volume[gallon (US)] <>

level : volume[gallon (US)] p1.2:~F1

allocatedElements
«connector» fuel delivery

Figure D.25. Detailed Internal Structure of Fuel Delivery Subsystem
D.4.7 Analyze Perfomance (Constraint Diagrams, Timing Diagrams, Views

D.4.7.1 Block Definition Diagram - Analysis Context

Fig. D.26 defines the various model elements that will be used to conduct analysis in this example. It depicts each of
the constraint blocks/equations that will be used for the analysis, and key relationships between them. The types of
the constraint parameters have defaulted to Real, but will need to be updated to the actual value types of the

properties to which they are bound.

238 OMG Systems Modeling Language, v1.7

bdd [Package] HSUV Analysis [Defining Analyses for Hybrid SUV Engineering Developmen})

«block»
CapacityContext

cap

«block»
«domain»
Automotive Domain

parts
HSUV : Hybrid SUV
vehicle cargo : Baggage
driving conditions : Environment!

properties
vehicle driver : Driver
vehicle passenger : Passenger
vehicle mechanic : Maintainer

«constraint»
vol

_Il

HSUV Structure

constraints
{vc = sum(vi)}

parameters
v1 : volume
v2 : volume
v3 : volume
vc : volume

dt

«valueType»

«block»
UnitCostContext «blockn
EconomyContext Oe
0..1 1
ad
rdragl fe dyn J/
«constraint» «constraint» «constraint»
RollingFrictionEquation FuelEfficiency i Strai ineVehicle Dy
parameters parameters
Cf : dynamic friction fact... acc : acceleration
tw : force ebpwr : power
mpg : mpg .
n_eg : power efficiency
n_em : power efficiency
n_ice : power efficiency
vel : velocity
whipwr : power
pl w adra rb

Global Time

t1

0.1

«testCase»
Max Acceleration

|
|
V2

«requirement»
Acceleration

«verif...

«constraint»
PayloadEquation

«constraint»
TotalWeight

«constraint»
AeroDr i

«constraint»
RegenBrakeEfficiency

parameters
cgoWt : mass cgoWt : mass Cd : coefficent of drag
pcap : volume fw : mass volume : volume
psgrWt : mass psgrWt : mass
volume : volume tw : mass
vdw : mass

parameters
acc : acceleration
ebpwr : power
incline : plane angle

Figure D.26. Defining Analyses for Hybrid SUV Engineering Development

D.4.7.2 Package Diagram - Performance View Definition

Fig. D.27 shows the user-defined Performance Viewpoint, and the elements that populate the HSUV specific Hybrid
SUV Performance View. This view may contain a number of other views, as well as exposing specific
model elements or package contents.

OMG Systems Modeling Language, v1.7

239

pkg [Package] HSUV Views [Performance View])

«stakeholder»
«viewpoint» Customer
Performance Viewpoint «stakeholder»

language = "SysML" /cqncern =
/method = Performance Query Will the system perform adequately?

presentation = "BDD high-level stylesheet in slide format" | | What are the system requirements?
purpose = "Highlight the performance of the system"

/stakeholder = Customer
Drive the Vehicle

-
«expose» —

«conform» _ - «requirement»
- - Performance
«view»
Hybrid SUV Performance Id="2"
«iews — LOW0SE2 |Text = "The Hybrid SUV shall have the
/viewPoint = Performance Viewpoint braking, acceleration, and off-road
capability of a typical SUV, but have
NS dramatically better fuel economy.
N ~ "
~
. N < “expose»
hsuv functions ~
«view» \ ~
. . . \ «expose» ~ -
Hybrid SUV Functional View ~ Q HSUV Analysis
i A
. . wew» - . AccelerationE ion
viewPoint = Functional Viewpoint «system» % Eggﬁoen?; Equgtl:gao
Hybri \"
ybrid SU E] EconomyContext
«expose» | fuelEaoes E2 FuelEfficiencyEquation
v quarterMiteTime % Max Acceleration Analysis
- i Unit Cost Equation
HSUV Behavior ZeronTl-me = UnitCostCo?ltext

Figure D.27. Performance View
D.4.7.3 Package Diagram - Viewpoint Definition

Fig. D.28 shows the Requirements and VnV viewpoint definitions and their conforming views. The Customer
stakeholder is referenced by both viewpoints and both views.

Note that the value of the stakeholder property is an instance of the stereotype not the class to which the stereotype
is applied.

240 OMG Systems Modeling Language, v1.7

pkg [Package] HSUV Views [Defining Requirements and VnV viewpoints])

«stakeholder»
Customer

«viewpoint»
Requirements

«stakeholder»
/concern =

«viewpoint»
language = "SysML"
/method = Requirements Query

/stakeholder = Customer

presentation = "Requirements table report stylesheet in slide format"
purpose = "Describe the system requirements"

Will the system perform adequately?
What are the system requirements?

«view»
«conform»

Hybrid SUV Requirements

«view»

«viewpoint»
VnV

«viewpoint»
language = "SysML"
/method = VnV Query

purpose = "Describe the VnV"
/stakeholder = Customer

presentation = "VnV report stylesheet in slide format"

«conform»

/stakeholder = Customer

/viewPoint = Requirements

«view»

Hybrid SUV Verification and Validation Plan

«viewn»
/stakeholder = Customer
/viewPoint = VnV

Figure D.28. Defining Requirements and VnV viewpoints

D.4.7.4 Package Diagram - View Definition

Fig. D.29 shows the Requirements and VnV views and the model elements they expose. Note that the expose

relationship relies on the viewpoint method to identify the entire set of elements that appear in the view.

pkg [Package] HSUV Views [Requirements and VnV views exposing model elementg)

«view»

Hybrid SUV Verification and
Validation Plan

Drive the Vehicle

1]

HSUV Requirements

«view»
Hybrid SUV Requirements VnV Trace

«view» «ExXposey
stakeholder = Customer - _ Y, exposes -~
viewPoint = VnV = - A -
<o / B _ - «testCase»
~ - /\/‘ - _ EPA Fuel Economy Test
oo - «expose» attributes
. / /«-/ +testAuthorityl_lam_e : String
+system requirement / _ ~ +verdict : VerdictKind
«view» N\ «expose» +testDate : date
Hybrid SUV Requirements N N
«view» N
stakeholder = Customer «requirement»
viewPoint = Requirements LEXPOseN
q - Performance
Id = |I2I|
Text = "The Hybrid SUV shall have the
+requirements test trace braking, acceleration, and off-road capability

of a typical SUV, but have dramatically better
fuel economy.

Figure D.29. Requirements and VnV views exposing model elements

OMG Systems Modeling Language, v1.7

241

D.4.7.5 Package Diagram - View Hierarchy
Fig. D.30 shows the composition Hybrid SUV Verification and Validation Plan view and supporting views.

pkg [Package] HSUV Views [The Requirements and VnV views with supporting views])
«view»

Hybrid SUV Verification and Validation Plan
I) | I

system requirement: requirements test trace,

«view» «view»
Hybrid SUV Requirements Hybrid SUV Requirements VnV Trace
'
performance mode suv rationale, suv tests
«view» «view» «view»
Hybrid SUV Performance Hybrid SUV Requirements Rationale Hybrid SUV Tests
t
hsuv functions functional mode
«view»
Hybrid SUV Functional View

Figure D.30. The Requirements and VnV views with supporting views
D.4.7.6 Parametric Diagram - Measures of Effectiveness

Measure of Effectiveness is a user defined stereotype. Fig. D.31 shows how the overall cost effectiveness of the
HSUV will be evaluated. It shows the particular measures of effectiveness for one particular alternative for the
HSUV design, and can be reused to evaluate other alternatives. Value types for the moe value properties are not
shown on this diagram.

242 OMG Systems Modeling Language, v1.7

par [Block] Measures of Effectiveness [Measures of Effectiveness |)

«constraint»

fuel economy : Economy Equati...

«moe»

«moe»

costEffectiveness

fuelEconomy

«constraint»
maximum acceleration : Max
Acceleration Analysis

]
=i

«moe»

CE

p1:|

p2

quarterMileTime

P3:|

M

L]

«constraint»
«objectiveFunction»

costEffectivenessEvaluation :
MyObjectiveFunction

{CE = Sum(Wi*pi)

M

p4

Cost Equation

z
«moe»
zero60Time
«constraint» ve «moe»
cargo space : vol E cargoCapacity
«constraint» |: uc «moe»
cost per unit : Unit unitCost

p5

Figure D.31. Measures of Effectiveness

D.4.7.7 Parametric Diagram - Economy

Since overall fuel economy is a key requirement on the HSUV design, this example applies significant detail in
assessing it. Fig. D.32 shows the constraint blocks and properties necessary to evaluate fuel economy. Value

types for the value properties are not shown on this diagram.

par [Block] EconomyContext] EconomyContexﬂ)

motorEfficiency

- «constraint»
payloadCapacity «constrainty incline| rh: ici
volume adrag : AeroDragEquation cd
S wa oy L
_ o acc ebp... ICEEfficiency
l incline
pcap volume cd dt ebp... n_ice
[l L] ace ace
N I;(ColnSt(rlaE‘m» " «constraint»] il «constraint»
pl: PayloadEquation incline:] dyn: i icle D [: v vel :] fe : FuelEfficiencyEquation mpg
[: whip. whip... :]
psgrwt cgoWt m m H m m
tw cf X
cgoWt «constraint» n-e9 nem
psgrwt tw Cf
«constraint» l generatorEfficiency ‘ l mpg
vdw fw rdrag : RollingFrictionEquation
vehicleDryWeight

Figure D.32. EconomyContext

D.4.7.8 Parametric Diagram - Dynamics

The StraightLineVehicleDynamics constraint block from Fig. D.32 has been expanded in Fig. D.33. Each constraint
is identified using curly brackets {}. In addition, Rationale has been used to explain the meaning of each constraint

maintained.

OMG Systems Modeling Language, v1.7

243

par [Constraint Block] StraightLineVehicle Dynamics| Straight Line Vehicle Dynamics])

tw

Cf

Cd

whipwr

LILTLIL]

incline

| whlpwr Cd

Cf

tw

tw

«rationale»
a(g)=F/M=
P*t/m

L U L

«constraint»
pwrEq : PowerEquation

{tp=whipwr-(Cd*v)-(C*tw)}

M

L]

accEq : AccelerationEquation

«constraint» dt
{a=(550/32)*tp(hp)*dt*tw}

M

I
|

v

a

a

AN

«rationale»
tp(hp) = Wheel
power - drag-friction

AN

«rationale»
v(n+1)(mph) =
v(n)+delta-v=v(n)=a*delta-t

{v(n+1)=v(n)+a(g)*32*3600/5280*dt} — |

L]

«constraint»
velEq : VelocityEquation dt dt

M

\

«rationale» —_

x(n+1)(ft)=x(n)+delta-x=x(n)+v*delta-t

v

L]

«constraint»
posEq : PositionEquation dt
{X(n+1)=x(n)+v(mph)*5280/3600*dt}

M

X

[]

Figure D.33. Straight Line Vehicle Dynamics

The constraints and parameters in Fig. D.33 are detailed in Section D.4.7.8 in Block Definition Diagram format.

Note the use of valueTypes originally defined in Fig. D.2.

244

OMG Systems Modeling Language, v1.7

bdd [Package] HSUV Analysis [Defining Straight-Line Vehicle Dynamics Mathematical Constraint}s)

«constraint»
StraightLineVehicle Dynamics

parameters
acc : Acceleration
Cd : Real
Cf: Real
dt : Global Time
incline : Real
tw : Weight
v : Velocity
whlpwr : Horsepower
x : Distance

PW...

posE

velE

accE

«constraint»
PowerEquation

«constraint»
PositionEquation

«constraint»
VelocityEquation

«constrainty
AccelerationEquation

constraints
{tp=whlpwr-(Cd*v)-(Cf*tw)}

constraints
{x(n+1)=x(n)+v(mph)*5280/3600*dt}

constraints

{v(n+1)=v(n)+a(g)*32*3600/5280*dt}

constraints
{a=(550/32)*tp(hp)*dt*tw}

parameters
Cd : Real
Cf: Real
i:Real
tp : Horsepower
tw : Weight
v : Velocity
whipwr : Horsepower

parameters
dt : Global Time
v : Velocity
x : Distance

parameters
a : Acceleration
dt : Global Time
v : Velocity

parameters
a : Acceleration
dt : Global Time
tp : Horsepower
tw : Weight

Figure D.34. Defining Straight-Line Vehicle Dynamics Mathematical Constraints

D.4.7.9 (Non-Normative) Non-SysML Diagram - 100hp Acceleration

Timing diagrams, while included in UML 2, are not directly supported by SysML. For illustration purposes,
however, the interaction shown in Fig. D.35 was generated based on the constraints and parameters of the
StraightLineVehicleDynamics constraintBlock, as described in the Fig. D.33. It assumes a constant 100hp at the

drive wheels, 40001b gross vehicle weight, and constant values for Cd and Cf.

OMG Systems Modeling Language, v1.7

245

0.5
0.45 -| |

0.35

Accelleration (g)
o
[i~]
o

=
n

=
o
)

Velocity (mph)

1800 -
1800

1400
1200

1000
800

Distance (ft)

600

200

o d 1 1

Figure D.35. 100 Wheel Horsepower

Please Note: This diagram are not a normative part of the SysML specification. So this diagram is for illustration
and reference only.

D.4.8 Defining, Decomposing, and Allocating Activities

246 OMG Systems Modeling Language, v1.7

D.4.8.1 Activity Diagram - Acceleration (top level)

Fig. D.36 shows the top level behavior of an activity representing acceleration of the HSUV. It is the intent of the

systems engineer in this example to allocate this behavior to parts of the PowerSubsystem. It is quickly found,
however, that the behavior as depicted cannot be allocated, and must be further decomposed.

act [Activity] Behavior Model for Accelerate Function[Behavior Model for Accelerate Function])

«continuous»

«continuous»

o1 : Accel Position i1 : Accel Position Vs - N
a1 : Push {stream} {stream} - a3 : Provide Power
Accelerator 1 «continuous»
motive : Mech Power -
{stream} «continuous»
«continuous» «continuous» j motive : Mech Power
o1: Veh Cond i2 : Veh Cond {stream}
a2 : Measure {stream} {stream}
Vehicle S
Conditions
\. J
Figure D.36. Behavior Model for Accelerate Function
D.4.8.2 Block Definition Diagram - Acceleration
Fig. D.37 defines a decomposition of the activities from the activity diagram in Fig. D.36.
bdd [Package] HSUV Behavior[Decomposition of Provide Power Functior])
«activity»
Provide Power
«adjunc1t» «adjunct» «adjunct» «adjuncty»
a — a2 a4 a3
«activity» «activity» «activity» «activity»

Proportion Power

Provide Gas Power

[

Provide Electric Power

Control Electric Power

«adjunct» «adjunct» «adjunct» «adjunct»| «adjunct»| «adjunct» «adjunct» «adjunct» | «adjunct» | «adjunct» «adjunctxdadjunct»
i2 i1 03 g e g e o1 motive| o1 i1 o1
«block» «block» «block» «block» «block» «block»
Accel Position Veh Cond Trans Mode Cmd Throttle Mech Power Elec Power

Figure D.37. Decomposition of Provide Power Function

D.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)

SysML allows the representation of relationships using tables without constraining the exact layout of such a table.

Section D.4.4.4 provides an example showing allocation relationships in tabular form. This is a more compact
representation than the requirements diagrams shown previously.

OMG Systems Modeling Language, v1.7

247

ot {Acii] Provds Pover] Detaled Behavior fo Provids Pover Farcion J

“calocater allocater allocater “allocater
peu : Power Control Unit ice Internal Combustion Engine ope : Electrical Power Controller emg : Electric Motor Generator trsm : Transmission

Figure D.38. Detailed Behavior for Provide Power Function
Note hierarchical consistency with Fig. D.36
D.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation

SysML allows the representation of relationships using tables without constraining the exact layout of such a table.

Section D.4.4.4 provides two examples showing requirement containment (decomposition), and requirements
derivation in tabular form. This is a more compact representation than the requirements diagrams shown previously.

ibd [Block] Power Subsystem [Flow Allocation to Power Subsystem])
allocatedElements
«objectFlow»06
: \ -
epc : Electrical Power Controller | i_regen : Elec Power \ i_motive : Elec Power | emg : Electric Motor Generator
P12 P R p1:12
«callBehaviorAction»a3 -~ epc-emg v «callBehaviorAction»a4
A
v
epc_can : CAN IF can : CAN Bus
«connector»c2
«connector»c3
«connector»c1
pcu : Power Control Unit | | ice : Internal Combustion Engine
= Pcu_can : ~CAN IF ice_can : CAN IF=
«callBehaviorAction»a1 I—|—' L|-' «callBehaviorAction»a2

Figure D.39. Flow Allocation to Power Subsystem
D.4.8.5 Table - Acceleration Allocation

SysML allows the representation of relationships using tables without constraining the exact layout of such a table.

Fig. D.40 is a simple table showing each end of the allocation relationships also shown in Fig. D.38 and Fig. D.39.
This table is a more compact representation than the diagrams shown previously.

Section D.4.4.4 also provided two examples showing requirement containment (decomposition), and requirements
derivation in tabular form.

248 OMG Systems Modeling Language, v1.7

Applied Stereotype Client Supplier
== Allocate [Abstraction]| 0 al:Proportion Power [Pl pcu : Power Control Unit
== Allocate [Abstraction] 2 a2:Provide Gas Power [Fl ice : Internal Combustion Engine

) a3:Control Electric Power [Pl epc : Electrical Power Controller

<> Allocate [Abstraction]| a4:Provide Electric Power |[F] emg : Electric Motor Generator

) a5:Combine Power [F] trsm : Transmission

= pAllocate [Abstraction]| &
"~ Object Flow:o6[o1 -> i1] :,F Connector:epc-emg[epc.pl - emg.pl]

#

1]
2]
3 |[== Allocate [Abstraction]|¢
4]|¢
5]|
&]

== Allocate [Abstraction

Figure D.40. Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Subsystem
(Table)

Please Note: Tables are not a normative part of the SysML specification. So all tables are for illustration and
reference only.

D.4.8.6 Block Definition Diagram: Slot Values - EPA Fuel Economy Test

Fig. D.41 demonstrates the use of InstanceSpecifications to show a particular Hybrid SUV (VIN number provided as
a slot value) satisfying the EPA fuel economy test. Serial numbers of specific relevant parts are also indicated as slot
values.

OMG Systems Modeling Language, v1.7 249

bdd [Package] SUV EPA Fuel Economy Tes{ Test Results])
«testCase»
testRun060401 : EPA Fuel Economy Test
Satisfies Verifies — — 4 testAuthorityName = "Arthur Dent"
«requirement»Emissions «requirement»Emissions testDate = "2001.06.04"
verdict = pass
\
\
TestVehicle1 : Hybrid SUV
VIN = "G12345"
b : Body Subsystem b i : Interior Subsystem
-i
b-c sn = "b12345" — sn = "i23456"
¢ : Chassis Subsystem ‘ bk : Brake Subsystem b | : Lighting Subsystem
c-l -i
sn = "c34567" — sn = "bk45678" — sn = "It56789"
p-c p-bk
p_: Power Subsystem
sn = "p67890"
t : Transmission
em-t ice-t
sn = "sn89012"
em : Electric Motor Generator ice : Internal Combustion Engine
sn = "sn90123" sn = "eid78901"

Figure D.41. Test Results

250 OMG Systems Modeling Language, v1.7

This page intentionally left blank.

OMG Systems Modeling Language, v1.7 251

252 OMG Systems Modeling Language, v1.7

Annex E: Non-normative Extensions

(informative)

E.1 Overview
This annex describes useful non-normative extensions to SysML that may be considered for standardization in
future versions of the language.

Non-normative extensions consist of stereotypes and model libraries and are organized by major diagram type,
consistent with how the main body of this International Standard is organized. Stereotypes in this sub clause are
specified using a tabular format, consistent with how non-normative stereotypes are specified in the UML 2
standard. Model libraries are specified using the guidelines provided in the Profiles & Model Libraries clause of this
International Standard.

E.2 Activity Diagram Extensions

E.2.1 Overview

Two non-normative extensions to activities are described for:
* Enhanced Functional Flow Block Diagrams.
+ Streaming activities that accept inputs and/or provide outputs while they are active.

More information on these extensions and the standard SysML extensions is available at [Bock. C., “SysML and
UML 2.0 Support for Activity Modeling,” vol. 9, no. 2, pp. 160-186, Journal of the International Council of Systems
Engineering, 2006].

E.2.2 Stereotypes

Enhanced Functional Flow Block Diagrams (EFFBD) are a widely-used systems engineering diagram, also called a
behavior diagram. Most of its functionality is a constrained use of UML activities, as described below. This
extension does not address replication, resources, or kill branches. Kill branches can be translated to activities using
interruptible regions and join specifications.

Table E.1. Additional Stereotypes for EFFBDs

Stereotype Base class Properties Constraints Description
UML4SysML:: Specifies that the
Activity (or subtype activity cor.lforms to
«eftbd» . N/A See below. the constraints
of «nonStreamingy»
below) necessary for
EFFBD.

When the «effbd» stereotype is applied to an activity, its contents shall conform to the following constraints:
[1] (On Activity) Activities shall not have partitions.

[2] (On Activity) All decisions, merges, joins, and forks shall be well-nested. In particular, each decision and merge
shall be matched one-to-one, as are forks and joins, accounting for the output parameter sets acting as decisions, and
input parameters and control acting as a join.

[3] (On Action) All actions shall have exactly one control edge coming into them, and exactly one control edge
coming out,except when using parameter sets.

[4] (Execution constraint) All control shall be enabling.
[5] (On ControlFlow) All control flows into an action target a pin on the action that shall have isControl = true.
[6] (On ObjectNode) Ordering shall be first-in first out, ordering = FIFO.

OMG Systems Modeling Language, v1.7 253

[7] (On ObjectNode) Object flow shall be never used for control, isControlType = false, except for pins of
parameters in parameter sets.

[8] (On Parameter) Parameters shall take and produce no more than one item, multiplicity.upper =1.

[9] (On Parameter) Output parameters shall produce exactly one value, multiplicity.lower = 1. The «optional»
stereotype cannot be applied to parameters.

[10] (On Parameter) Parameters shall not be streaming or exception.
[11] (On ParameterSet) Parameter sets shall only apply to output parameters.

[12] (On ParameterSet) Parameter sets shall only apply to control. Parameters in parameter sets shall have pins with
is ControlType = true.

[13] (On ParameterSet) Parameter sets shall have exactly one parameter, and it shall not be shared with other
parameter sets.

[14] (On ParameterSet) If one output parameter is in a parameter set, then all output parameters of the behavior or
operation shall be in parameter sets.

[15] (On ActivityEdge) Edges shall not have time constraints.
[16] The following SysML stereotypes shall not be applied: «rate», «controlOperator», «noBuffer», «overwrite».

A second extension distinguishes activities based on whether they can accept inputs or provide outputs after they
start and before they finish (streaming), or only accept inputs when they start and provide outputs when they are
finished (nonstreaming). EFFBD activities are nonstreaming. Streaming activities are often terminated by other
activities, while nonstreaming activities usually terminate themselves.

Table E.2. Streaming Options for Activities
Stereotype Base Class Properties Constraints Description
Used for activities

The activity has no that accept inputs

«nonStreamingy UM.LftSYSML:: N/A streaming only whe'n they start,
Activity and provide outputs
parameters.
only when they
finish.
Used for activities
. UMLASysML : The activity has at that can accept inputs
«streamingy Activit N/A least one streaming | or provide outputs
Y parameter. after they start and
before they finish.

E.2.3 Stereotype Examples

Fig. E.1 shows an example activity diagram with the «effbd» stereotype applied, translated from [Long. J.,
“Relationships between common graphical representations in system engineering,” 2002]. The stereotype applies the
constraints specified in Stereotypes Stereotypes, for example, that the data outputs on all functions are required and
that queuing is FIF.

254 OMG Systems Modeling Language, v1.7

«effod»
act [Example activity with «effbd» stereotype applied]

2.4 Function in
Multi-exit

(22 Muitiexit) {1
. 1
. Construct

Item 1
«optional»

result

argument

i result . .
External Input i:ns;r('fn' [before third time]

{cc#2}

2.5 Function in [after third time]

an lterate

-
. 2.6 Output
Function
(oaF—)
2.3 Function in External Output
Concurrency | T «optionaly|
N Item 4
N J «optional»

Figure E.1. Example activity with «effbd» stereotype applied

Fig. E.2 shows an example activity diagram with the «streaming» and «nonStreamingy stereotypes applied, adapted
from [MathWorks, “Using Simulink,” 2004]. It is a numerical solution for the differential equation x'(t) = -2x(t) +
u(t). Item types are omitted for brevity. The «streaming» and «nonStreaming» stereotypes indicate which
subactivities take inputs and produce outputs while they are executing. They are simpler to use than the {stream}
notation on streaming inputs and outputs.

The example assumes a default of zero for the lower input to Add, and that the entire activity is executed with
clocked token flow, to ensure that actions with multiple inputs receive as many of them as possible before
proceeding. See the article referenced in Section E.2.1 Overview.

act [Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivitie}s)

«streaming»
Generate u(t)

«streaming»

[| Integrate Over | |
Time

o

«nonStreaming»
Multiply

Figure E.2. Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities

E.3 Requirements Diagram Extensions

E.3.1 Overview

This sub clause describes an example of a non-normative extension for a requirements profile.

E.3.2 Stereotypes

This non-normative extension includes stereotypes for a simplified requirements taxonomy that is intended to be
further adapted as required to support the particular needs of the application or organization. The requirements
categories in this example include functional, interface, performance, physical requirements, and design constraints
as shown in Table E.3. As shown in the table, each category is represented as a stereotype of the generic SysML
«requirement». The table also includes a brief description of the category. The table does not include any stereotype
properties or constraints, although they can be added as deemed appropriate for the application. For example, a
constraint that could be applied to a functional requirement is that only SysML activities and operations can satisfy
this category of requirement. Other examples of requirements categories may include operational, specialized
requirements for reliability and maintainability, store requirements, activation, deactivation, and a high level
category for stakeholder needs.

OMG Systems Modeling Language, v1.7 255

Some general guidance for applying a requirements profile is as follows:

* The categories should be adapted for the specific application or organization and reflected in the table. This
includes agreement on the categories and their associated descriptions, stereotype properties, and constraints.
Additional categories can be added by further subclassing the categories in the table below, or adding additional

categories at the pier level of these categories.

* The default requirement category should be the generic «requirementy.

» Apply the more specialized requirement stereotype (functional, interface, performance, physical, design
constraint) as applicable and ensure consistency with the description, stereotype properties, and constraints.

* A specific text requirement can include the application of more than one requirement category, in which case,

each stereotype should be shown in guillemets.

Table E.3. Additional Requirement Stereotypes

Stereotype Base class Properties
source: String risk:
RiskKind
verifyMethod:

VerifyMethodKind

«extendedRequirementurequirementy

«functionalRequiremenkextendedrequirementyN/A

«interfaceRequirementxextendedrequirement»N/A

«performanceRequiremeettendedrequirementyN/A

«physicalRequirementxextendedrequirement»N/A

256

Constraints

N/A

satisfied by an
operation or behavior

satisfied by a port,
connector, item flow,
and/ or constraint

property

satisfied by a value
property

satisfied by a
structural element.

Description

A mix-in stereotype
that contains
generally useful
attributes for
requirements.

Requirement that
specifies an
operation or behavior
that a system, or part
of a system, must
perform.

Requirement that
specifies the ports for
connecting systems
and system parts and
the optionally may
include the item
flows across the
connector and/or
Interface constraints.

Requirement that
quantitatively
measures the extent
to which a system, or
a system part,
satisfies a required
capability or
condition.

Requirement that
specifies physical
characteristics and/or
physical constraints
of the system, or a
system part.

OMG Systems Modeling Language, v1.7

Stereotype Base class Properties Constraints Description

Requirement that
specifies a constraint
on the
implementation of
the system or system
part, such as the
system must use a
commercial off the
shelf component.

satisfied by a block

«designConstraint» | «extendedrequirement»N/A
or part

Table E .4 provides the definition of the non-normative enumerations that are used to type properties of
“extendedRequirement” stereotype of Fig. E.3.

Table E.4. Requirement Property Enumeration Types
Enumeration Enumeration Literals Example Description

High indicates an unacceptable level

RiskKind High of risk

Medium indicates an acceptable

RiskKind Medium level of risk

Low indicates a minimal level of

RiskKind Low . .
risk or no risk

Analysis indicates that verification
will be performed by technical
evaluation using mathematical
representations, charts, graphs,
circuit diagrams, data reduction, or
representative data. Analysis also
includes the verification of
requirements under conditions,
which are simulated or modeled;
where the results are derived from
the analysis of the results produced
by the model.

VerificationMethodKind Analysis

Demonstration indicates that
verification will be performed by
operation, movement or adjustment
of the item under specific conditions

VerificationMethodind Demonstration to perform the design functions
without recording of quantitative
data kind. Demonstration is typically
considered the least restrictive of the
verification types.

OMG Systems Modeling Language, v1.7 257

Enumeration

VerificationMethodKind

VerificationMethodKind

E.3.3 Stereotype Examples

Enumeration Literals

Inspection

Test

Example Description

Inspection indicates that verification
will be performed by examination of
the item, reviewing descriptive
documentation, and comparing the
appropriate characteristics with a
predetermined standard to determine
conformance to requirements
without the use of special laboratory
equipment or procedures.

Test indicates that verification will
be performed through systematic
exercising of the applicable item
under appropriate conditions with
instrumentation to measure required
parameters and the collection,
analysis, and evaluation of
quantitative data to show that
measured parameters equal or
exceed specified requirements.

Fig. E.3 shows the use of several subtypes of requirements extended to include the properties risk:RiskKind,

verifyMethod: VerficationMethodKind, and a text attribute source:String, used to capture the source of the

requirement.

258

OMG Systems Modeling Language, v1.7

req [Package] Requirement Diagram Top-Level User RequiremerjtExample extensions to Requiremen})
«requirement»
HybridSUV
«functionalRequirement» «performanceRequirement» «performanceRequirement» «requirement»
Load Eco-Friendliness Performance Ergonomics
Id ="UR1.1" Id ="UR1.2" Id ="UR1.3"
risk = Low risk = High risk = Medium
source = "Marketing" source = "Marketing" source = "Marketing"
Text = "Load" Text = "Eco-Freindliness" Text = "Performance”
verifyMethod = Test verifyMethod = Analysis verifyMethod = Test
D D
]
- «performanceRequirement» «requirement»| | «requirement»
— «requirement» L. — . A
Emissions Acceleration Braking
Passengers
Id="UR1.2.1" .
. . «performanceRequirement»
«requirement» risk = Me?'um o FuelEconomy
— Cargo source = "Marketing — -
Text = "The car shall meet Id ="UR1.3.1
- 2010 Kyoto Accord risk = High
|__| «requirement» emissions standards." |___|source = "Marketing”
FuelCapacity verifyMethod = Test Text = "User shall obtain
fuel economy better than
that provided by 95% of
cars built in 2004."
verifyMethod = Test
]
«requirement»| | «requirement»
] Range Power

Figure E.3. Example extensions to Requirement

E.4 Parametric Diagram Extension for Trade Studies

E.4.1 Overview

This sub clause describes a non-normative extension of a parametric diagram (refer to the Constraint Blocks clause)
to support trade studies and analysis, which are an essential aspect of any systems engineering effort. In particular, a
trade study is used to evaluate a set of alternatives based on a defined set of criteria. The criteria may have a
weighting to reflect their relative importance. An objective function (aka optimization or cost function) can be used
to represent the weighted criteria and determine the overall value of each alternative. The objective function can be
more complex than a simple linear weighting of the criteria and can include probability distribution functions and
utility functions associated with each criteria. However, for this example, we will assume the simpler case.

A measure of effectiveness (moe) represents a parameter whose value is critical for achieving the desired mission
cost effectiveness. It will also be assumed that the overall mission cost effectiveness can be determined by applying
an objective function to a set of criteria, each of which is represented by a measure of effectiveness.

This non-normative extension includes stereotypes for an objective function and a measure of effectiveness. The
objective function is a stereotype of a ConstraintBlock and the measure of effectiveness is a stereotype of a block
property.

E.4.2 Stereotypes

OMG Systems Modeling Language, v1.7 259

Table E.5. Stereotypes for Measure of Effectiveness
Stereotype Base class Properties Constraints Description

A measure of
effectiveness (moe)
represents a
UMLA4SysML:: N/A N/A param;ter .v&./hose
Property value is critical for
achieving the desired
mission cost
effectiveness.

«moce»

An objective
function (aka
optimization or cost
function) is used to

«objectiveFunction» | «ConstraintBlock» N/A N/A determine the overall
value of an
alternative in terms
of weighted criteria
and/or moe’s.

E.4.3 Stereotye Examples

par Effectiveness Model[System Alternative J])

«objectiveFunction»

: ResponseTimeModel r «moe» p1 : MyObjectiveFunction
I: sj.responseTime {CE=sum(Wi*Pi)}

\ J

: AvailabilityModel a «moe» p2

sj.avaliabilty

I: CE «moe»
sj.costEffectiveness

: SecurityModel «moe» p3
sj.security
: CostModel c «moe» p4

I I B

sj.cost

LD W U

Figure E.4. Example Parametric Diagram using Stereotypes for Measures of Effectiveness

E.5 Model Library for Quantities, Units, Dimensions, and Values
(QUDV)

E.5.1 Overview

For any system model, a solid foundation of well-defined quantities, units, and dimensions system is very important.
Properties that describe many aspects of a system depend on it. At the same time, such a foundation should be a
shareable resource that can be reused in many models within and across organizations and projects.

The most widely accepted, scrutinized, and globally used system of quantities and system of units are the
International System of Quantities (ISQ) and the International System of Units (SI). They are formally standardized
through [ISO31] and [IEC60027]. The harmonization of these two sets of standards into one new set [ISO/
IEC80000] has been published by ISO in 2009 and 2010. The present QUDV model in SysML is based on ISO/IEC
80000-1:2009, which refers normatively to the ISO/IEC Guide 99:2007. The ISO/IEC 80000-1:2009 document is
also the baseline for the 2010 revision of the IEEE/ASTM American National Standards for Metric Practice SI-10.

260 OMG Systems Modeling Language, v1.7

All the relevant concepts underlying ISQ and SI are publicly available in [VIM]. See Section E.5.3, References for
references to these documents.

At a minimum, SysML should provide the means to support the imminent international standard [ISO/IEC80000]. In
addition, many other systems of quantities and units are still in use for particular applications and for historical
reasons. A prime example is the system based on UK Imperial units, which is still widely used in North America.
SysML should provide the means to support all such specific systems of quantities and units, including precise
definitions of the relationships between different systems of units, and with explicit and unambiguous unit
conversions to and from SI as well as other systems.

To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in SysML
is explicitly based on the concepts defined in [VIM], which have been written by the authoritative Working Group 2
of the Joint Committee for Guides in Metrology (JCGM/WG 2), in which the JCGM member organizations are
represented: BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. At the same time, the model library is
designed in such a way that extensions to the ISQ and SI can be represented, as well as any alternative systems of
quantities and units.

The model library can be used to support SysML user models in various ways. A simple approach is to define and
document libraries of reusable systems of units and quantities for reuse across multiple projects, and to link units
and quantity kinds from these libraries to Unit and QuantityKind stereotypes defined in SysML user models. The
name of a Unit or QuantityKind stereotype, its definitionURI, or other means may be used to link it with definitions
made using this library. Instances of blocks conforming to this model library may be created by instance
specifications, as shown in Section E.5.4 Usage Examples, or by other means.

Even though this model library is specified in terms of SysML blocks, its contents could equally be specified by
UML classes without dependencies on any SysML extensions. This annex specifies the model library using SysML
blocks to maintain compatibility with the SysML standard. UML and other forms of this same conceptual model are
important and useful to align different standards with each other and with those of [VIM].

Separate forms of this model library, including a UML class model generated as a simple transformation from the
model library specified in this annex, together with additional mappings and resources, example applications, and
reference libraries of systems of units and quantities built using this model, are expected to be published via the
SysML Project Portal wiki at https://www.omgwiki.org/OMGSysML/.

E.5.2 Abstract Syntax
Fig. E.5 - Fig. E.7 present the QUDV model library in a series of block definition diagrams.

The QUDYV Concepts diagram in Fig. E.5 presents the core concepts of System of Units, Unit, SystemOfQuantities,
and QuantityKind. The QUDV concepts of Unit and QuantityKind are specialized by restriction from their
respective SysML concepts shown in gray in Fig. E.5. The QUDV concepts form the basis of the QUDV subset of
the Vocabulary of International Metrology (VIM) from ISO 80000-1 and JCGM 200:2012. In SysML, a value
property typed by a given ValueType, with stereotype properties that refer to a SysML Unit and/or QuantityKind,
defines a quantity in the sense of ISO 80000-1, Sub clause 3.1. If specified, the unit of the ValueType designates the
measurement unit assumed for the numerical value of such a quantity.

In the QUDYV Unit diagram in Fig. E.6, SimpleUnit provides the basis for defining other units via conversion or
derivation. Additionally, QUDV provides support for specifying a coherent derived unit as a product of the
baseUnit(s) of a given SystemOfUnits. In a coherent SystemOfUnits, there is only one base unit for each base
quantity kind.

In the QUDV QuantityKind diagram in Fig. E.7, SimpleQuantityKind provides the basis for defining other quantity
kinds via specialization or derivation. QUDV provides a declarative specification of dimensional analysis to assign
to each QuantityKind an expression of its dependence on the baseQuantityKind(s) of a SystemOfQuantities. This
dependence is expressed as a list of QuantityKindFactor(s) corresponding to a product of powers of the base
quantities. Section E.5.2.15 SystemOfQuantities, specifies the derivation of quantity dimensions using an algorithm
specified in OCL.

OMG Systems Modeling Language, v1.7 261

https://www.omgwiki.org/OMGSysML/

bdd [Package] QUDV[QUDV Concepts Diagrarv])

«block» «block»
SysML::Libraries::UnitAndQ Init SysML::Libraries::UnitAndQuantityKind::Qi
A ityKi i
Values unit _quantityKind_unit quantityKind .
definitionURI : String [0..1] 0.4 LS 0.* |definitionURI : String [0..1]
description : String [0..1] description : String [0..1]
symbol : String [0..1] symbol : String [0..1]
A_generalUnit_specificUnit A_generalQuantityKind_specificQuantityKind
specific |0..* generalo..'
«block» «block»
QUDV::Unit QUDV::QuantityKind
properties . o properties
isUnitCountOfEntities : Boolean [1] = false :zgﬂ:ﬂzﬁr(&%ﬁ“:ﬁsi;‘g‘;ﬁ"ﬂglé ;anlsﬁ] - false
isUnitForQuantityOfDimensionOne : Boolean [1] = fals¢ neasurementUnit quantityKind ly - specific
=5 references 0. A_quantityKind_measurementUnit ~ 0..* e erences i 0.*
0.+ | /dependsOnUnits : Unit [0.."]{readOnly} g d yKind_r "+ |/dependsOnQuantityKinds : QuantityKind [0..*readOnly} -
unit} {redefines quantityKind}
baseUnitf0.. ! unit10..* quantityKind[0. baseQuantityKind[0..*
{subsets unit, ordered} {ordered} {ordered} {subsets quantityKind, ordered}
A_systemOfUnits_baseUnit b——n—————__ A systemOfUnits_unit A_systemOfQuantities_quantityKind 4 A_systemOfQuantities_baseQuantityKind
{subsets systemOfUnits} {subsets systemOfQuantities}
systemOfUnits| 0..1 systemOfUnits | 0..1 systemOfQuantities| 0..1 systemOfQuantities|0..1
«block» «block»
QUD y OfUnits systemOfUnits _ systemeQuantities QUDV::SystemOfQuantities
N — propertes 0.% A_systemOfUnits_systemOfQuantities (4 oroperties
definitionURI : String [0..1] | definitionURI : String [0..1] -
systemOfUnits| description String [0..1] systemOfUnits systemOfQuantities | description : String [0..1] systemOfQuantities
o symbol : String [0..1] x 0.+ |symbol : String [0..1]
-] references | Teferonces
prefix : Prefix [0..*[{ordered} /dimension : Dimension [0..*}{readOnly,ordered,nonunique}
OfQuantities]0.* inclt OfQuantitie:
incl ofUnito..* OfUnits]0..

A_includedSystemOfUnits_systemOfUnits

A_usedSystemOfUnits_systemOfUnits

A_usedSystemOfQuantities_systemOfQuantities

A_includedSystemOfQuantities_systemOfQuantities

Figure E.5. QUDV Concepts Diagram

bdd [Package] QUDV[QUDV Unitg

specific [0..* general|0..*

«block»
Unit

measurementUnit quantityKind| «block»

. properties
«block» unit isUnitCountOfEntities : Boolean [1] = false 0. .+ | QuantityKind
SystemOfUnits [0..1 0..* |isUnitForQuantityOfDimensionOne : Boolean [1] = fals noQuantityKind[0
0. {ordered} references {redefines quantityKind}
IdependsOnUnits : Unit [0..*}{readOnly}
referenceUnit |1 unit |1
0.*
{ordered} «block»
prefix [0..* UnitFactor
«block» values
Prefix exponent : Rational [1]|
oroperties factor 1..*
symbol : String [0..1]
values 0.* 0.*
factor : Rational [1] «block» «block» «block» «alueType»
prefix |1 ConversionBasedUnit SimpleUnit DerivedUnit Rational
properties attributes
isinvertible : Boolean [1] denominator : Integer [1]
numerator : Integer [1]
operations
equivalent(r : Rational [1]) : Boolean [1]
0. | ; ; 1 plus(r : Rational [1]) : Rational [1]
times(r : Rational [1]) : Rational [1]
«block» «block» «block» «block»
PrefixedUnit AffineC i GeneralC Jnit LinearConversionUnit
properties propertie:
factor : Number [1] expression : String [1 factor : Number [1]
offset : Number [1] expressionLanguageURI : String [0..1

measurementUnit 0

{redefines measurementUnit}

Figure E.6. QUDYV Units

A QuantityKindFactor represents a factor in the product of powers that defines a DerivedQuantityKind.

262

OMG Systems Modeling Language, v1.7

bdd [Package] QUDV[QUDV QuantityKind)

«block» «block»
SystemOfQuantities Dimension
properties systemOfQuantities /dimension| properties
definitionURI : String [0..1] 1. 0. | symbolicExpression : String [0..1]

description : String [0..1]
symbol : String [0..1]

{readOnly, ordered, nonunique}

dimension| 1

{ordered}
factor | 0..*

«block»
QuantityKindFactor

values

0..1 0..1
{subsets systemOfQuantities}
{ordered} {subsets quantityKind, ordered}
quantityKind|0..* baseQuantityKind|0..*
«block»
QuantityKind
properties
general|[isNumberOfEntities : Boolean [1] = false quantityKind
0.* isQuantityOfDimensionOne : Boolean [1] = false 1
references
/dependsOnQuantityKinds : QuantityKind [0..*]{readOnly]
specific [0..* T

A_generalQuantityKind_specificQuantityKind

«block»
SimpleQuantityKind

«block»

0..* |exponent : Rational [1]

factor |1..*

DerivedQuantityKind [0..”

Figure E.7. QUDV QuantityKind
E.5.2.1 AffineConversionUnit

Description

An AffineConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect
to another reference measurement unit through an affine conversion relationship with a conversion factor and offset.

The unit conversion relationship is defined by the following equation:

valuery = factor

where:

- valuecy + offset

valueRry is the quantity value expressed in the referenceUnit, and,

valuecy is the quantity value expressed in the AffineConversionUnit.

For example, in the definition of the AffineConversionUnit for “degree Fahrenheit” with respect to the referenceUnit
“degree Celsius,” the factor would be 5/9 and the offset would be -160/9, because

TCeIsius = 5/9 . TFahrenheit - 160/9 which is equivalent with TFahrenheit = 9/5 . TCeIsius + 32/1

Generalizations

» ConversionBasedUnit (from QUDV)

Attributes

» factor : Number [1]
Number that specifies the factor in the unit conversion relationship.

 offset : Number [1]
Number that specifies the offset in the unit conversion relationship.

OMG Systems Modeling Language, v1.7

263

Constraints
e invertible

isInvertible = true
E.5.2.2 ConversionBasedUnit

Description

A ConversionBasedUnit is an abstract classifier that is a Unit that represents a measurement unit that is defined with
respect to another reference unit through an explicit conversion relationship.

Generalizations

* Unit (from QUDV)

Attributes

+ islnvertible : Boolean [1]
Specifies whether the unit conversion relationship is invertible. For LinearConversionUnit and
AffineConversionUnit this is always true.

Association Ends

* referenceUnit : Unit [1]
Specifies the unit with respect to which the ConversionBasedUnit is defined.

Operations

* dependsOnUnits () : Unit [0..*] {redefines dependsOnUnits}
A ConversionBasedUnit transitively depends on its referenceUnit and all of the Units that its referenceUnit
depends on.
bodyCondition:
result = referenceUnit.dependsOnUnits ()->including(referenceUnit)->asSet ()

E.5.2.3 DerivedQuantityKind

Description

A DerivedQuantityKind is a QuantityKind that represents a kind of quantity that is defined as a product of powers of
one or more other kinds of quantity. A DerivedQuantityKind may also be used to define a synonym kind of quantity
for another kind of quantity.

For example “velocity” can be specified as the product of “length” to the power one times “time” to the power
minus one, and subsequently “speed” can be specified as “velocity” to the power one.

Generalizations
* QuantityKind (from QUDV)

Association Ends

« factor : QuantityKindFactor [1..¥]
Set of QuantityKindFactor that specifies the product of powers of other kind(s) of quantity that define the
DerivedQuantityKind.

Operations

* dependsOnQuantityKinds () : QuantityKind [0..*]
A DerivedQuantityKind transitively depends on its factors' QuantityKinds and all of the QuantityKinds that its
factors' QuantityKinds depend on.
bodyCondition:

264 OMG Systems Modeling Language, v1.7

result = factor.quantityKind.dependsOnQuantityKinds ()->flatten ()->asSet()
->union (factor.quantityKind->flatten () ->asSet ())->asSet ()

E.5.2.4 DerivedUnit

Description

A DerivedUnit is a Unit that represents a measurement unit that is defined as a product of powers of one or more
other measurement units.

For example the measurement unit “metre per second” for “velocity” is specified as the product of “metre” to the
power one times “second” to the power minus one.

Generalizations

Unit (from QUDV)

Attributes

hasReducedFactors : Boolean [1]

If true, the UnitFactors specifying the product of powers of other measurement units that define the DerivedUnit
cannot be simplified. If false, the DerivedUnit is non-reduced; some UnitFactors can be simplified. A non-
reduced DerivedUnit can have as a general unit other DerivedUnits defined in terms of simplified UnitFactors,
possibly in reduced form.

Association Ends

factor : UnitFactor [1..*]
Set of UnitFactor that specifies the product of powers of other measurement units that define the DerivedUnit.

Operations

allAccessibleQuantityKinds () : QuantityKind [0..*]
The query accessibleQuantityKinds() gives all the QuantityKinds directly defined in the SystemOfQuantities or
transitively in any included or used SystemOfQuantities.

bodyCondition:
result = allAccessibleSystemOfQuantities () ->collect (quantityKind) -
>flatten()->asSet () inv SoU3 3: getEffectiveSystemOfQuantities() = null or

let agk : Set(QuantityKind) =
getEffectiveSystemOfQuantities () .allQuantityKinds () in ->allUnits ()
->forAll (u | agk>includesAll (getKindOfQuantitiesForMeasurementUnit (u)))

dependsOnUnits () : Unit [0..*] {redefines dependsOnUnits}

A DerivedUnit transitively depends on its factors' Units and all of the Units that its factors' Units depend on.
bodyCondition:

result = factor.unit.dependsOnUnits ()->flatten()->asSet () -

>union (factor.unit->flatten () ->asSet ())->asSet ()

Constraints

mustSpecifyQuantityKind

Since a DerivedUnit is defined as a product factor of one or more other Units, it must specify explicitly its
QuantityKinds.

quantityKind <> null and quantityKind->notEmpty ()

E.5.2.5 Dimension

OMG Systems Modeling Language, v1.7 265

Description

A Dimension represents the [VIM] concept of “quantity dimension” that is defined as “expression of the dependence
of a quantity on the base quantities of a system of quantities as a product of powers of factors corresponding to the
base quantities, omitting any numerical factor.”

For example in the ISQ the quantity dimension of “force” is denoted by dim F = L-M -T2, where “F”is the symbol
for “force,” and “L,” “M,” and “T” are the symbols for the ISQ base quantities “length,” “mass,” and “time”
respectively.

The Dimension of any QuantityKind can be derived through the algorithm that is defined in E.5.2.15
SystemOfQuantities with SystemOfQuantities. The actual Dimension for a given QuantityKind depends on the
choice of baseQuantityKind specified in a SystemOfQuantities.

Attributes

» symbolicExpression : String [0..1]
Symbolic expression of the quantity dimension's product of powers, in terms of symbols of the kinds of quantity
that represent the base kinds of quantity and their exponents. In tool implementations, the symbolicExpression
may automatically derived from the associated factor set.
Association Ends

« factor : QuantityKindFactor [0..*] {ordered}
If true Ordered set of QuantityKindFactor that specifies the product of powers of base dimensions that define the
Dimension. The possible base dimensions are represented by the ordered set of baseQuantityKind defined in the
SystemOfQuantities for which the Dimension is specified. The order of the factors should follow the ordered set
of baseQuantityKind in SystemOfQuantities.

E.5.2.6 GeneralConversionUnit

Description

A GeneralConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect
to another reference measurement unit through a conversion relationship expressed in some syntax through a general
mathematical expression.

The unit conversion relationship is defined by the following equation:
valuery / valuecy = f(valuery, valuecy)

where:

valuery is the quantity value expressed in the referenceUnit and

valuecy is the quantity value expressed in the GeneralConversionUnit and

f(valuery, valuecy) is a mathematical expression that includes valuery and valuecy

Generalizations
* ConversionBasedUnit (from QUDV)

Attributes

+ expression : String [1]
Specifies the unit conversion relationship in some expression syntax.

+ expressionLanguageURI : String [0..1]
URI that specifies the language for the expression syntax.

E.5.2.7 LinearConversionUnit

266 OMG Systems Modeling Language, v1.7

Description

A LinearConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect
to another measurement reference unit through a linear conversion relationship with a conversion factor.

The unit conversion relationship is defined by the following equation:
valuery = factor - valuecy
where:
valuery is the quantity value expressed in the referenceUnit, and,
valuecy is the quantity value expressed in the LinearConversionUnit.
For example, in the definition of the LinearConversionUnit for “inch” with respect to the referenceUnit “metre,” the
factor would be 254/10000, because 0.0254 metre = 1 inch.
Generalizations
* ConversionBasedUnit (from QUDV)

Attributes
» factor : Number [1]
Number that specifies the factor in the unit conversion relationship.
Constraints
* invertible

isInvertible = true
E.5.2.8 Prefix

Description

A Prefix represents a named multiple or submultiple multiplication factor used in the specification of a PrefixedUnit.
A SystemOfUnits may specify a set of prefixes.

Attributes

 factor : Rational [1]
Specifies the multiple or submultiple multiplication factor.

» symbol : String [0..1]
Short symbolic name of the prefix.

E.5.2.9 PrefixedUnit

Description

A PrefixedUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to another
measurement reference unit through a linear conversion relationship with a named prefix that represents a multiple
or submultiple of a unit.

[VIM] defines “multiple of a unit” as “measurement obtained by multiplying a given measurement unit by an integer
greater than one” and “submultiple of a unit” as “measurement unit obtained by dividing a given measurement unit
by an integer greater than one.”

The unit conversion relationship is defined by the following equation:
valuery = factor - valuecy
where:

valuery is the quantity value expressed in the referenceUnit and

OMG Systems Modeling Language, v1.7 267

valuecy is the quantity value expressed in the PrefixedUnit.

For example, in the definition of the PrefixedUnit for “megabyte” with respect to the referenceUnit “byte,” the
prefix would be the Prefix for “mega” with a factor 1 0%, because 10° byte = 1 megabyte.

See [VIM] for all decimal and binary multiples and decimal submultiples defined in SI.

Generalizations
» ConversionBasedUnit (from QUDV)

Association Ends

+ noQuantityKind : QuantityKind [0]
(redefines: Unit::quantityKind)

 prefix : Prefix [1]
Specifies the prefix that defines the name, symbol, and factor of the multiple or submultiple.
Constraints
e PU1

The referenceUnit shall not be a PrefixedUnit, i.e., it is not allowed to prefix an already prefixed measurement
unit. In general the referenceUnit should be a SimpleUnit.

not referenceUnit.oclIsTypeOf (PrefixedUnit)

* noQuantityKind
The PrefixedUnit has not quantity kind.
self.quantityKind = null

E.5.2.10 QuantityKind

Description
In QUDYV, the concept of QuantityKind is an abstract specialization of SysML QuantityKind to support designating
a primary QuantityKind for a given Unit within the scope of a system of units and quantities and to support a richer
vocabulary for defining QuantityKinds.
Generalizations

* QuantityKind (from UnitAndQuantityKind)

Attributes

* /dependsOnQuantityKinds : QuantityKind [0..*] {readOnly}
The set of all QuantityKinds that this QuantityKind directly or indirectly depends on according to its definition.

 isNumberOfEntities : Boolean [1]
If true, indicates that the QuantityKind represents a number of entities (see ISO 80000-1, 3.8, Note 4).

+ isQuantityOfDimensionOne : Boolean [1]
If true, indicates that the QuantityKind has dimension one (see ISO 80000-1, 3.8).
Association Ends

+ general : QuantityKind [0..¥]
A quantity can be defined to represent a combination of specific characteristics from one or more aspects defined
by general QuantityKinds (see ISO 80000-1, 3.2).

268 OMG Systems Modeling Language, v1.7

Operations
* dependsOnQuantityKinds () : QuantityKind [0..*]
Abstract operation specified in SimpleQuantityKind and DerivedQuantityKind to calculate the value of the
derived property QuantityKind:/dependsOnQuantityKinds.
Constraints
* acyclic quantity kind dependencies

A QuantityKind cannot be defined in terms of itself. This follows from the quantity calculus used for expressing
a derived QuantityKind in terms of base QuantityKinds chosen for a SystemOfQuantities by means of non-
contradictory equations (See ISO 80000-1, 4.3).

dependsOnQuantityKinds->excludes (self)
E.5.2.11 QuantityKindFactor

Description

A QuantityKindFactor represents a factor in the product of powers that defines a DerivedQuantityKind.

Attributes
+ exponent : Rational [1]
Rational number that specifies the exponent of the power to which the quantityKind is raised.
Association Ends

+ quantityKind : QuantityKind [1]
Reference to the QuantityKind that participates in the factor.

E.5.2.12 Rational

Description

A Rational value type represents the mathematical concept of a number that can be expressed as a quotient of two
integers. It may be used to express the exact value of such values, without issues of rounding or other
approximations if the result of the division were used instead.

Attributes

* denominator : Integer [1]
An integer number used to express the denominator of a rational number.

* numerator : Integer [1]
An integer number used to express the numerator of a rational number.
Operations
+ equivalent (in r : Rational) : Boolean [1]
bodyCondition:
result = (self.numerator * r.demonimator = r.numerator * self.denominator)

* plus (in r : Rational) : Rational [1]

bodyCondition:
result.numerator = self.numerator * r.demonimator + r.numerator *
self.denominator and result.denominator = self.denominator * r.denominator

 times (in r : Rational) : Rational [1]

bodyCondition:

OMG Systems Modeling Language, v1.7 269

result.numerator = self.numerator * r.numerator and result.denominator =
self.denominator * r.denominator

E.5.2.13 SimpleQuantityKind

Description

A SimpleQuantityKind is a QuantityKind that represents a kind of quantity that does not depend on any other
QuantityKind. Typically a base quantity would be specified as a SimpleQuantityKind.

Generalizations

* QuantityKind (from QUDV)

Operations

* dependsOnQuantityKinds () : QuantityKind [0..*] {redefines dependsOnQuantityKinds}
A SimpleQuantityKind does not depend on any other QuantityKind.
bodyCondition:
result = Set{}

E.5.2.14 SimpleUnit

Description

A SimpleUnit is a Unit that represents a measurement unit that does not depend on any other Unit. Typically, a base
unit would be specified as a SimpleUnit.

Generalizations

* Unit (from QUDYV)

Operations

* dependsOnUnits () : Unit [0..*] {redefines dependsOnUnits}
A SimpleUnit is a Unit that represents a measurement unit that does not depend on any other Unit. Typically, a
base unit would be specified as a SimpleUnit.
bodyCondition:
result = Set{}

E.5.2.15 SystemOfQuantities

Description

A SystemOfQuantities represents the [VIM] concept of “system of quantities” that is defined as a “set of quantities
together with a set of non-contradictory equations relating those quantities.” It collects a list of QuantityKind that
specifies the kinds of quantity that are known in the system.

The International System of Quantities (ISQ) is an example of a SystemOfQuantities, defined in [ISO31] and [ISO/
IEC80000].
Attributes

* definitionURI : String [0..1]
URI that references an external definition of the system of quantities. Note that as part of [ISO/IEC80000]
normative URIs for each of the ISQ quantities and SI units are being defined.

* description : String [0..1]
Textual description of the system of quantities.

* symbol : String [0..1]
Short symbolic name of the system of quantities.

270 OMG Systems Modeling Language, v1.7

Association Ends

baseQuantityKind : QuantityKind [0..*] {ordered, subsets quantityKind}
Ordered set of QuantityKind that specifies the base quantities of the system of quantities. This is a subset of the
complete quantityKind list. The base quantities define the basis for the quantity dimension of a kind of quantity.

/dimension : Dimension [0..*] {ordered, readOnly, nonunique}
Derived ordered set of Dimension. The actual dimension of a QuantityKind depends on the list of
baseQuantityKind that are specified in an actual SystemOfQuantities, see the DerivedDimensions constraint.

includedSystemOfQuantities : SystemOfQuantities [0..*]
Including a SystemOfQuantities means including all of the QuantityKind it defines and includes from other
SystemOfQuantities.

quantityKind : QuantityKind [0..*] {ordered}
Ordered set of QuantityKind that specifies the kinds of quantity that are known in the system.

usedSystemOfQuantities : SystemOfQuantities [0..*]
A QuantityKind can be defined in a SystemOfQuantities in terms of QuantityKinds defined in that

SystemOfQuantities or from other SystemOfQuantities it uses or includes. See for example the units used with
the SI in ISO 80000-1, Table 5.

Operations

allAccessibleQuantityKinds () : QuantityKind [0..*]

The query accessibleQuantityKinds() gives all the QuantityKinds directly defined in the SystemOfQuantities or
transitively in any included or used SystemOfQuantities.

bodyCondition:
result=allAccessibleSystemOfQuantities () ->collect (quantityKind)->flatten()-
>asSet ()

allAccessibleSystemOfQuantities () : SystemOfQuantities [0..*]

The query allAccessibleSystemOfQuantities() gives all the SystemOfQuantities directly or transitively included
or used.

bodyCondition:

result=self->closure (includedSystemOfQuantities-

>union (usedSystemOfQuantities)) ->asSet ()

allBaseQuantityKinds () : QuantityKind [0..*]

The query allBaseQuantityKinds() gives all the QuantityKinds directly adopted or transitively adopted from any
included SystemOfQuantities as base QuantityKinds.

bodyCondition:
result=allIncludedSystemOfQuantities () ->collect (baseQuantityKind) -

>flatten () ->asSet () ->union (baseQuantityKind) ->asSet ()

alllncludedSystemOfQuantities () : SystemOfQuantities [0..*]

The query alllncludedSystemOfQuantities() gives all the SystemOfQuantities directly or transitively included.
bodyCondition:

result=self->closure (includedSystemOfQuantities)->asSet ()

allQuantityKinds () : QuantityKind [0..*]

The query allQuantityKinds() gives all the QuantityKinds in scope of a SystemOfQuantities; that is, each
QuantityKind is either directly defined in the SystemOfQuantities, selectively used from another
SystemOfQuantities or part of the scope of all the QuantityKinds included from another SystemOfQuantities.
bodyCondition:
result=allIncludedSystemOfQuantities () ->collect (quantityKind)->flatten() -
>asSet () ->union (quantityKind) ->asSet ()

getDimension (in gk : QuantityKind) : Dimension [1]

OMG Systems Modeling Language, v1.7 271

Constraints

acyclicProvenance

For a QuantityKind to have a provenance to a single SystemOfQuantities, the use and includes relationships
among SystemOfQuantities shall be acyclic.

allAccessibleSystemOfQuantities ()->excludes (self)

allBaseQuantitiesAreQuantities

The set of all QuantityKinds in a given SystemOfQuantities shall be partitioned into two disjoint, covering
subsets: the set of base QuantityKinds (typically chosen to be mutually independent) and its complement, the set
of derived QuantityKinds, each of which can be expressed in terms of the base QuantityKinds (See ISO 80000-1,
4.3).

allQuantityKinds ()->includesAll (allBaseQuantityKinds ())

includedSystemOfQuantities transitivelyDisjoint usedSystemOfQuantities

For a QuantityKind to have a provenance to a single SystemOfQuantities, all included systems of quantities shall
be transitively disjoint with all used systems of quantities.

allIncludedSystemOfQuantities ()->intersection (self.oclAsSet ()->
closure (usedSystemOfQuantities))->isEmpty ()

singleProvenance

Every QuantityKind shall be defined in only one SystemOfQuantities but it can be in the scope of several
SystemOfQuantities. A given QuantityKind is in scope of a SystemOfQuantities either because it is defined or
used in a SystemOfQuantities or because it is included from the scope of another SystemOfQuantities.

includedSystemOfQuantities->collect (allQuantityKinds ())->
intersection (quantityKind)->isEmpty ()

E.5.2.16 SystemOfUnits

Description

A SystemOfUnits represents the [VIM] concept of “system of units” that is defined as “set of base units and derived
units, together with their multiples and submultiples, defined in accordance with given rules, for a given system of
quantities.” It collects a list of Units that are known in the system. A QUDV SystemOfUnits only optionally defines
multiples and submultiples.

Attributes
*+ definitionURI : String [0..1]

A URI that references an external definition of the system of units. Note that as part of [[SO/IEC80000]
normative URIs for each of the quantities in the ISQ and units in the SI are being defined.

description : String [0..1]
Textual description of the system of units.

symbol : String [0..1]
Short symbolic name of the system of units.

Association Ends

* baseUnit : Unit [0..*] {ordered, subsets unit}

272

Ordered set of Unit that specifies the base units of the system of units. A “base unit” is defined in [VIM] as a
“measurement unit that is adopted by convention for a base quantity.” It is the (preferred) unit in which base
quantities of the associated systemOfQuantities are expressed.

OMG Systems Modeling Language, v1.7

+ includedSystemOfUnits : SystemOfUnits [0..*]
Including a SystemOfQuantities means including all of the QuantityKind it defines and includes from other
SystemOfQuantities.

+ prefix : Prefix [0..*] {ordered}
Ordered set of Prefix that specifies the prefixes for multiples and submultiples of units in the system.

+ systemOfQuantities : SystemOfQuantities [0..1]
Reference to the SystemOfQuantities for which the units are specified.

* unit : Unit [0..*] {ordered}
Ordered set of Unit that specifies the units that are known in the system.

+ usedSystemOfUnits : SystemOfUnits [0..*]
A Unit can be defined in a SystemOfUnits in terms of Units defined in that SystemOfUnits or from other
SystemOfUnits it uses or includes. See for example the units used with the SI in ISO 80000-1, Table 5.

Operations

+ allAccessibleSystemOfUnits () : SystemOfUnits [0..*]
The query allAccessibleSystemOfUnits() gives all the SystemOfUnits directly or transitively included or used.
bodyCondition:
result=self->closure (includedSystemOfUnits->union (usedSystemOfUnits)) -
>asSet ()

+ allAccessibleUnits () : Unit [0..*]
The query accessibleUnits () gives all the units directly defined in a system of units or transitively in any
included or used system of units.
bodyCondition:
result=allAccessibleSystemOfUnits () ->collect (unit)->flatten()->asSet ()

+ allBaseQuantityKinds () : QuantityKind [0..*]
The query allBaseQuantityKinds() gives all the QuantityKinds directly adopted or transitively adopted from any
included SystemOfQuantities as base QuantityKinds in the effective SystemOfQuantities associated to a
SystemOfUnits.
bodyCondition:
result=getEffectiveSystemOfQuantities () ->allBaseQuantityKinds ()->flatten() -
>asSet ()

 allBaseUnits () : Unit [0..*]
The query allBaseUnits() gives all the Units directly adopted or transitively adopted from any included
SystemOfUnits as base Units.
bodyCondition:
result=allIncludedSystemOfUnits () ->collect (baseUnit)->flatten()->asSet () -
>union (baseUnit) ->asSet ()

+ alllncludedSystemOfUnits () : SystemOfUnits [0..*]
The query alllncludedSystemOfUnits() gives all the SystemOfUnits directly or transitively included.
bodyCondition:
result=self->closure (includedSystemOfUnits->union (usedSystemOfUnits)) -
>asSet ()

+ allMeasurementUnitsDefinedForSomeQuantityKind () : Boolean [1]
The predicate allMeasurementUnitsDefinedForSomeQuantityKind() determines whether, in a SystemOfUnits,
every Unit shall be defined, by convention, as a multiplicable reference for at least one QuantityKind (see ISO
80000-1, 3.9).
bodyCondition:
result=allUnits ()->forAll (quantityKind <> null)

* allPrefixes () : Prefix [0..*]
The query allPrefixes() gives all the Prefixes in scope of a SystemOfUnits; that is, each Prefix is either directly

OMG Systems Modeling Language, v1.7 273

274

defined in the SystemOfUnits or in any accessible SystemOfUnits.

bodyCondition:
result=allAccessibleSystemOfUnits () ->including (self)->collect (prefix) -
>flatten () ->asSet ()

allUnits () : Unit [0..*]

The query allUnits() gives all the Units in scope of a SystemOfUnits; that is, each Unit is either directly defined
in the SystemOfUnits, selectively used from another SystemOfUnits or part of the scope of all the Units included
from another SystemOfUnits.

bodyCondition:
result=allIncludedSystemOfUnits () ->collect (unit)->flatten()->asSet()-
>union (unit) ->asSet ()

getAdoptedBaseUnitForMeasurementUnit (in u : Unit) : Unit [0..1]

The query getAdoptedBaseUnitForMeasurementUnit() determines for a Unit u in scope of a SystemOfUnits the
base Unit, if any, corresponding to u, which can be u itself if it is a baseUnit in that SystemOfUnits or its
reference Unit if it is a base Unit and u is a PrefixUnit.

bodyCondition:

result = let abu : Set(Unit) = allBaseUnits () in if (abu->includes(u)) then
u else if (u.oclIsKindOf (PrefixedUnit)) then abu-

>intersection (u.oclAsType (PrefixedUnit) .referenceUnit->asSet ())->any(true)

else null endif endif

getAdoptedQuantityKindForAdoptedBaseUnitOfMeasurementUnit (in u : Unit) : QuantityKind [0..*]

The query getAdoptedQuantityKindForAdoptedBaseUnitOfMeasurementUnit() determines for a Unit u in scope
of a SystemOfUnits the base QuantityKind, if any, corresponding to the base Unit of u.

bodyCondition:

result=let bu : Unit = getAdoptedBaseUnitForMeasurementUnit (u) in if (bu =
null) then Set{} else let gks : Set(QuantityKind) =
getKindOfQuantitiesForMeasurementUnit (bu) in allBaseQuantityKinds () -
>intersection (gks) endif

getEffectiveSystemOfQuantities () : SystemOfQuantities [0..1]
The query getEffectiveSystemOfQuantities() determines for a SystemOfUnits the SystemOfQuantities, if any,
that it is directly or indirectly associated with via included SystemOfUnits.

bodyCondition:
result=if systemOfQuantities = null then includedSystemOfUnits-
>collect (getEffectiveSystemOfQuantities ())->flatten()->asSet ()->any (true)

else systemOfQuantities endif

getKindOfQuantitiesForMeasurementUnit (in u : Unit) : QuantityKind [0..*]

The query getKindOfQuantitiesForMeasurementUnit() determines for a Unit u in scope of a SystemOfUnits the
set of QuantityKinds corresponding to u, if specified, or to the Units that u is defined in terms of, if any.
bodyCondition:

result=if (u.oclIsKindOf (SimpleUnit)) then u.quantityKind-

>collect (oclAsType (QuantityKind))->asSet () else if

(u.o0clIsKindOf (DerivedUnit)) then let du : DerivedUnit =

u.oclAsType (DerivedUnit) in if (du.quantityKind <> null) then
du.quantityKind->collect (oclAsType (QuantityKind))->asSet () else
getKindOfQuantitiesForMeasurementUnit (du.factor->any (true) .unit) endif else
if (u.oclIsKindOf (ConversionBasedUnit)) then let cu : ConversionBasedUnit =
u.oclAsType (ConversionBasedUnit) in if (cu.oclIsKindOf (PrefixedUnit)) then
getKindOfQuantitiesForMeasurementUnit (cu.referencelnit) else if
(cu.quantityKind <> null) then cu.quantityKind-

>collect (oclAsType (QuantityKind))->asSet () else
getKindOfQuantitiesForMeasurementUnit (cu.referenceUnit) endif endif else
Set (QuantityKind) {} endif endif endif

OMG Systems Modeling Language, v1.7

+ getUnit (in name : String) : Unit [0..1]

bodyCondition:
result=allUnits () ->select(u | u.name = name)->any (true)

* isCoherent () : Boolean [1]
In a coherent system of units, there shall be only one base unit for each base quantity.
bodyCondition:
result = baseUnit->size() = systemOfQuantities.baseQuantityKind->size () and
baseUnit ->forAll (bU|systemOfQuantities.baseQuantityKind
->one (bQK |bU.primaryQuantityKind=bQK)) and
systemOfQuantities.baseQuantityKind ->forAll (bQK|baseUnit-
>one (bU | bQK=bU.primaryQuantityKind))

* isCoherent (in du : DerivedUnit) : Boolean [1]
A coherent derived unit shall be a derived unit that, for a given system of quantities and for a chosen set of base
units, is a product of powers of base units with no other proportionality factor than one.
bodyCondition:
result = baseUnit->includesAll (du.factor->collect (unit)) and du.factor-
>collect (exponent) ->forAll (numerator=1 and denominator=1)
Constraints
+ SoU3 1
In a well-formed SystemOfUnits, all of the prefixes of PrefixedUnits shall be defined in the SystemOfUnits.
allPrefixes ()->includesAll (allUnits ()->select (oclIsTypeOf (PrefixedUnit))->
collect (oclAsType (PrefixedUnit) .prefix))
* SoU3 2
All the dependent Units of a SystemOfUnits shall be in the scope of that SystemOfUnits.
allUnits ()->includesAll (allUnits ()->collect (dependsOnUnits())->flatten()->
asSet ())
* SoU3 3

All of the quantityKinds that are measurementUnits of Units in the SystemOfUnits shall be defined in the
systemOfQuantities of that SystemOfUnits.

getEffectiveSystemOfQuantities () = null or let agk : Set(QuantityKind) =
getEffectiveSystemOfQuantities () .allQuantityKinds () in allUnits()->
forAll (u | agk->includesAll (getKindOfQuantitiesForMeasurementUnit (u)))

* acyclicProvenance

For a Unit to have a provenance to a single SystemOfUnits, the use and includes relationships among
SystemOfUnits shall be acyclic.

allAccessibleSystemOfUnits ()->excludes (self)

* allBaseUnitsAreUnits

The set of all Units in a given SystemOfUnits shall be capable of being partitioned into two disjoint, covering
subsets: the set of base Units (typically chosen to be mutually independent) and all its complement, the set of
derived Units, each of which can be expressed in terms of the base Units (See ISO 80000-1, 6.4).

allUnits ()->includesAll (allBaseUnits())

* includedSystemOfUnits transitivelyDisjoint usedSystemOfUnits

OMG Systems Modeling Language, v1.7 275

For a Unit to have a provenance to a single SystemOfUnits, all included systems of units shall be transitively
disjoint with all used systems of units.

allIncludedSystemOfUnits ()->intersection (self.oclAsSet ()->
closure (usedSystemOfUnits))->isEmpty ()

singleProvenance

Every Unit shall be defined in only one SystemOfUnits but it can be in the scope of several SystemOfUnits. A
given Unit is in scope of a SystemOfUnits either because it is defined or used in a SystemOfUnits or because it
is included from the scope of another SystemOfUnits.

includedSystemOfUnits->collect (allUnits())->intersection (unit)->isEmpty ()

systemOfQuantitiesIncludesAllUnitsQuantityKinds

For a Unit to have a provenance to a single SystemOfUnits, includedSystemsOfUnits must be transitively
disjoint with usedSystemsOfUnits.

let agks : Set(QuantityKind) =
getEffectiveSystemOfQuantities () .allQuantityKinds () in allUnits()->
forAll (u | getKindOfQuantitiesForMeasurementUnit (u)->intersection (agks)->
notEmpty ())

E.5.2.17 Unit

Description

In QUDYV, the concept of Unit is an abstract specialization of SysML Unit to support designating a primary
QuantityKind for a given Unit within the scope of a system of units and quantities and to support a richer vocabulary
for defining Units.

Generalizations

Unit (from UnitAndQuantityKind)

Attributes

/dependsOnUnits : Unit [0..*] {readOnly}
The set of all Units that this Unit directly or indirectly depends on according to its definition.

1sUnitCountOfEntities : Boolean [1]
If true, indicates that the measurement unit represents a number of entities (see ISO 80000-1, 3.10, Note 3).

isUnitForQuantityOfDimensionOne : Boolean [1]
If true, indicates that the corresponding QuantityKind has dimension one (see ISO 80000-1, 3.8).

Association Ends

general : Unit [0..*]
A Unit can be defined as a specialization of zero or more Units. This capability is important for specifying the
meaning of a unit for a quantity of dimension one (see ISO 80000-1, 3.8 and 3.10).

quantityKind : QuantityKind [0..*]
(redefines: Unit::quantityKind)

Operations

276

dependsOnUnits () : Unit [0..%]
Abstract operation specified in SimpleQuantityKind and DerivedQuantityKind to calculate the value of the
derived property QuantityKind:/dependsOnQuantityKinds.

OMG Systems Modeling Language, v1.7

Constraints
* acyclic unit dependencies

A Unit cannot be defined in terms of itself. This follows from the requirement that, in a coherent SystemOfUnits,
the Units of all derived QuantityKinds are expressed in terms of the base Units in accordance with the equations
in the SystemOfQuantities (see ISO 80000-1, 6.4).

dependsOnUnits->excludes (self)
E.5.2.18 UnitFactor

Description

A UnitFactor represents a factor in the product of powers that defines a DerivedUnit.

Attributes
+ exponent : Rational [1]
Rational number that specifies the exponent of the power to which the unit is raised.
Association Ends
e unit : Unit [1]
Reference to the Unit that participates in the factor.

E.5.3 References

[VIM]

JCGM 200:2012, International vocabulary of metrology - Basic and general concepts and associated terms (VIM),
3rd edition (JCGM 200:2008 with minor corrections), 2012, BIPM, Paris, France. http:/www.bipm.org/utils/
common/documents/jcgm/JCGM_200_2012.pdf.

[ISO/IEC80000]

ISO/IEC 80000, Quantities and units. 15 parts, some published, some still in progress, harmonized replacement of
[ISO31] and [IEC60027], the new international system of quantities and units.

[ISO31]
ISO 31, Quantities and units (Third edition 1992-08-01). Specifies the international system of units - SI - in 14 parts.
[IEC60027]

IEC 60027-2:2005, Letter symbols to be used in electrical technology - Part 2: Telecommunications and electronics
(Third edition 2005-08).

[SI-Brochure]

Le Systéme international dunités (SI) / The International System of Units (SI), 8th edition 2006, BIPM, (French and
English). Available for download in PDF format from http://www.bipm.org/en/si/si_brochure.

[NIST330]

The International System of Units (SI), NIST Special Publication 330, 2008 Edition. NOTE: U.S. version of the
English language text of [SI-Brochure]. Available for download in PDF format from http://physics.nist.gov/cuu/
Units/bibliography.html.

[NIST822]

Guide for the Use of the International System of Units (SI), NIST Special Publication 811, 2008 Edition. Available
for download in PDF format from http://physics.nist.gov/cuu/Units/bibliography.html.

[Dybkaer-2010] Rene Dybkaer, “ISO terminological analysis of the VIM3 concepts of ‘quantity’ and ‘kind-of-
quantity’”, Metrologia 47, (2010) 127-143, http://dx.doi.org/10.1088/0026-1394/47/3/003. See also:

http://www.bipm.org/en/publications/guides/rationale_vim3.html.

OMG Systems Modeling Language, v1.7 277

http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/en/si/si_brochure
http://physics.nist.gov/cuu/Units/bibliography.html
http://physics.nist.gov/cuu/Units/bibliography.html
http://physics.nist.gov/cuu/Units/bibliography.html
http://dx.doi.org/10.1088/0026-1394/47/3/003
http://www.bipm.org/en/publications/guides/rationale_vim3.html

E.5.4 Usage Examples
E.5.4.1 Sl Unit and QuantityKind examples

Fig. E.8 shows an approach for defining base units of the System International of Units defined in
http://www.bipm.org/en/si/si_brochure/chapter2/2-1/ and http://physics.nist.gov/cuu/Units/units.html. This approach
involves instantiating the concrete classes of Unit shown in Fig. E.6.

Fig. E.9 diagram shows the definition of “newton” as a DerivedUnit (Section E.5.2.4) corresponding to the “force”
DerivedQuantityKind (Section E.5.2.3). Derived units and quantity kinds are defined as products of factors on other
units and quantity kinds respectively. In the QUDYV, the product factors of a DerivedUnit (resp.
DerivedQuantityKind) are all of the UnitFactor (resp. DerivedUnitFactor) at the “factor” ends of association link
mstances.

bdd [Package] 1SO-80000-1-QUDV Diagranf Base Unit and Quantity Kinds of the SI and ISQ respectively J

S| SystemOfUnits systemOfQuantities 1SQ : SystemOfQuantities
description = "International description = "International
System of Units" unit e TSioUm System of Quantities”
symbol = "SI’ I — quantityKind [jength : SimpleQuantityKind wantitykind symbol = "ISQ

| definitionURI = "http://www.bipm. i_brocht -1/metre_html" orima Toymbol =} 9
|_baseUnit | gescription = "metre” quiniyiking| '
symbol = "m" baseQuantityKind
unit kilogram : PrefixedUnit mass : SimpleQuantityKind quantityKind
definitionURI = "http:/www.bipm i/si_brocht 2-1/kilogram.html" primary | symbol = "m"
|_baseUnit] jescription = “kilogram" baseQuantityKind
symbol = "kg"
prefix
kilo : Prefix
prefix o ctor = 10731 referenceUnit
symbol = "k"‘ gram : Si " quantityKind
_ unit | description

symbol = "g"

Figure E.8. Base Unit and Quantity Kinds of the SI and ISQ respectively

bdd ISO-80000-1-QUDV Diagrani Example of a derived unit and derived quantity kinQI)
newton : DerivedUnit
symbol = "N"
factor factor factor
metre?1 : UnitFactor kilogram”1 : UnitFactor second”-2 : UnitFactor
exponent = 1/1 exponent = 1/1 exponent = -2/1
unitl unitl unitl
metre : SimpleUnit kilogram : PrefixedUnit second : SimpleUnit
symbol ="m" prefix = kilo symbol ="s"
referenceUnit = gram
symbol = "kg"
primary primary
quantityKin quantityKin quantityKind|, quantityKin
length : SimpleQuantityKind mass : SimpleQuantityKind time : SimpleQuantityKind
symbol ="I" symbol = "m" symbol = "t"
quantityKin quantityKin quantityKin
length”1 : QuantityKindFactor mass”1 : QuantityKindFactor time?-2 : QuantityKindFactor
exponent = 1/1 exponent = 1/1 exponent = -2/1
primary
quantityKind], quantityKin factor factor factor
force : DerivedQuantityKind
symbol = "F"

Figure E.9. Example of a derived unit and derived quantity kind

278 OMG Systems Modeling Language, v1.7

http://www.bipm.org/en/si/si_brochure/chapter2/2-1/
http://physics.nist.gov/cuu/Units/units.html

E.5.4.2 Spring Example

Fig. E.10 shows a simple model of the length of a spring defined as the linear distance between the linear position of
its two flange ends. QUDYV supports defining arbitrary systems of units and quantities. Although this example uses
only one unit, “metre” and one quantity kind, “lengthQK;” this example illustrates specialized value types to make
additional distinctions such as “LinearPosition” vs. “LinearDistance,” two distinct quantities that have the same unit
and quantity kind. This example illustrates an instance of a spring and uses the dot pathname property notation
defined for IBDs (Section 8.3.1.2, Internal Block Diagram) to clearly indicate the role of each instance specification.

bdd SpringExample] Spring Length Examplg)

«block» systemOfQuantities «block» «valueType» «valueType»
SpringQuantities : SystemOfQuantities SpringUnits : SystemOfUnits LinearPosition LinearDistance
«valueType» «valueType»
quantityKind unit = metre unit = metre
baseQuantityKin quantityKind baseUni unit rbutes rbutes
lengthQK : SimpleQuantityKind ||< [metre : SimpleUni value : Real value : Real
primary
quantityKind
«block» «block»
Spring spring1 : Spring
values
length : LinearDistance X
springLengtl
1 l) mt «constraint»
a b springl.engt spring1.springLength :
«block» «constraint» SpringLength
Flange SpringLength a lengt b
. values " constraints " «block» «valueType» «block»
position : LinearPosition| |{length.value= | a.position.value - b.position.value | soringl.a : Flange sprinal.lenath : LinearDistance sorinalb : Flange
parameters _
a: Flange value = 42.0
b : Flange - -
length : LinearDistance position positio
«valueType» «valueType»
spring1.a.position : LinearPosition spring1.b.position : LinearPosition
value = 8.0 value = 50.0

Figure E.10. Spring Length Example

E.6 Model Library of SysML Quantity Kinds and Units for ISO 80000

E.6.1 Overview

This non-normative extension defines a model library of SysML QuantityKind and Unit definitions for a subset of
quantities and units defined by the International System of Quantities (ISQ) and the International System of Units
(SI). The specific quantities and units in this library are defined by ISO 80000-1 Quantities and units - Part1:
General. ISO/IEC 80000 currently has fourteen parts that define many quantities and units for use within various
fields of science and technology. Part 1 defines base quantities and units used by other parts as well as a starting set
of derived quantities and units with special names and symbols.

E.6.2 Unit and Quantity Kinds

The model library defined in this sub clause contains SysML QuantityKind and Unit elements as defined by Section
8, “Blocks.” Each QuantityKind or Unit element may optionally carry a “definitionURI” property to document each
quantity kind and unit using additional information available from some external source. One option is for this
definitionURI to identify an element of a QUDV model (see Section E.5, Model Library for Quantities, Units,
Dimensions, and Values (QUDV)) that more fully describes the same quantities and units, including the systems of
quantities and units they belong to, and the means by which they may be derived from each other. Section E.5.4
Usage Examples contains examples of such QUDYV definitions that could be referenced by these definitionURIs.

OMG Systems Modeling Language, v1.7 279

pkg

{uri=https://www.omg.org/spec/SysML/20220801/ISO80000.xmi}

|
«profile» «apply» «ModelLibrary»
SysML <= QuDv
{uri=https://lwww.omg.org/spec/SysML/20220801/SysML.xmi} {uri=https://lwww.omg.org/spec/SysML/20220801/QUDV.xmi}
/I\«apply» N
| | «import»
|
«ModelLibrary»
1SO-80000

Figure E.11. Model libraries of SysML Quantity Kinds and Units for the covered content of ISO 80000 parts

3,4,5,6,7,9,10 and 13

280

OMG Systems Modeling Language, v1.7

pkg [Package] ISO 80000] SysML QuantityKinds and Units for the covered content of ISO 80000)
1S080000-3 Space and Time 1SO80000-1 General 1S080000-2 Mathematical Signs and
Symbols
«import», i \
_| |) «impo A _l _«mi)orb _l
. «import» et
Units >| Quantities Prefixes importy 2| Constant Numbers
N N
| «import» Neimport» | <import»
1S080000-4 Mechanics | ! I
| |
1 1
. import . import;
Units & — — — P _ 3 Quantities & T - — — — — — — — —~
=~ - «import» N A
N - - _ N < — — —| IEC80000-13 Information Science and Technology |
| «import» Nimport» = — _|«import» ~ -
~ — _ «import:
IS080000-5 Thermodynamics | ~mpor> [1 - ~
—~ . «import» .
| | Units [— — — — — — — — — > Quantities
1, .
Units — — — —dmeat > Quantities
N N Prefixes
| «import» 4\«import» | «import»
IEC80Q00-6 Electromagnetism |
| |
1 1
Units — — — — dmeatb > Quantities
N N
| «import» 4\«import» | «import»
1S080000-9 Physical Chemestry and Molecular Physics
| |
1 1
Units — — — — dmea> > Quantities
N N
| «import» 4\«import» | «import»
1S080000-10 Atomic and Nuclear Physics | |
| |
1 1
Units — — — — dmeoty - _ > Quantities
N N
| «<import» 4\«impon» | «import»
1S080000-7 Light I I
| |
1, .
import
Units - — — — T2 _ _ 3f Quantities

Figure E.12. Organization of the definitions of units and quantities from the normative parts of ISO 80000

covered in SysML 1.4, which includes all the normative content of parts 3,4,5,6; the subset of parts 7,9,10
corresponding to the content from SysML 1.3 and the subset of part 13 pertaining to commonly used units of
information. Parts 8,11 and 12 are not covered because none of their units and quantities were referenced in

previous versions of SysML nor in the summary tables in ISO 80000-1

OMG Systems Modeling Language, v1.7

281

bdd [Package] ISO 80000[Systems of Units and Quantities for the covered parts of ISO 80000])

| ISO 80000-3 Units : SystemOfUnits

| 1SO 80000-4 Units : SystemOfUnits

incliidedSystemOfUnits includedSystemOfUnits

includedSystemOfUnits

includedSystemOfUnits

includedSystemOfUnits

includedSystemOfUnits

| 1SO 80000-7 Units : SystemOfUnits

includedSystemOfUnits|

systemOfQuantities 1SO 80000-3 Quantities : SystemOfQuantities |

Hsy“emom“ammes ISO 80000-4 Quantities

| ISO 80000-5 Units : SystemOfUnits |—>Y3emOfQuantities|™ o 5 60000-5 Quantities : SystemOfQuantities |

IEC 80000-6 Units : SystemOfUnits | SYSemOfQuantities™ F ~36000-6 Quantities : SystemOfQuantities |

systemOfQuantities

1SO 80000-9 Units : SystemOfUnits H 1SO 80000-9 Quantities : SystemOfQuantities |

systemOfQuantities

1SO 80000-10 Units : SystemOfUnits H 1SO 80000-10 Quantities :

systemOfQuantities

includedSystemOfQuantities

systemOfQuantities

includedSystemOfQuantitieg

: SystemOfQuantities |

includedSystemOfQuantities /[
includedSystemOfQuantities

includedSystemOfQuantities

includedSystemOfQuantities

includedSystemOfQuantities

SystemOfQuantities |

includedSystemOfQuantities

1SO 80000-7 Quantities : SystemOfQuantities |

| IEC 80000-13 Units Subset : SystemOfUnits |_/

includedSystemOfUnits|

| 1S0-80000 Units : SystemOfUnits

usedSystemOfUnits

Sl : SystemOfUnits

systemOfQuantities

\e| IEC 80000-13 QuantityKinds Subset : SystemOfQuantities |

includedSystemOfQuantities

1SO-80000 QuantityKinds : SystemOfQuantities |

usedSystemOfQuantities|

systemOfQuantities|

A I1SQ : SystemOfQuantities |

Figure E.13. Content relationships for the systems of units and quantities in from the different parts of ISO
80000 in relation to ISO 80000 as a whole and to the International System of Units (SI) and quantities (ISQ)

282

OMG Systems Modeling Language, v1.7

bdd [Package] SysML Quantity Kinds and Units for the covered content of ISO 80000 Table 1 (from ISO 80000-1) S| base units for the ISQ base quantilie;)
sa:s o — Sis OfUni
— — systemOfQuantities - " e
definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter1/1-2.html" definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter1/1-2.html"
symbol = "ISQ" symbol = "S|"
usedSystemOfQuantitie: tomOiQuantit usedSystemOfUnits
1S0-80000 QuantityKinds : SystemOfQuantities w{ 1S0-80000 Units : SystemOfUnits
prefix,
kilo ; Prefix prefix| kilogram : PrefixedUnit
symbol = g definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/kilogram.html" | baseUnit
description = "ISO 80000-4, 4-1.a"
isinvertible = true
J/ referenceUnit
baseQuantityKind mass : Simpl ntityKin quantityKind gram : SimpleUnit
description = "ISO 800004, 4-1" description = "ISO 80000-4, 4-1.a"
baseQuantityKind length : SimpleQuantityKind quantityKind metre : SimpleUnit
3 description = "ISO 80000-3, 3-1.1" definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/metre.html" baseUnit
description = "ISO 80000-3, 3-1.a, 3-17.a"
baseQuantityKind time : SimpleQuantityKind quantityKind second : SimpleUnit ‘
description = "ISO 80000-3, 3-7" definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/second.html" | baseUnif]
description = "ISO 80000-3, 3-7.a, 3-12.a, 3-13.a"
- - . SimpleQuantityKi o in - Si -
baseQuantityKind SimpleQuantityKind quantityKind kelvin : SimpleUnit ‘
description = "ISO 80000-5, 5-1" definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/kelvin.html" baseUnit
description = "ISO 80000-5, 5-1.a, 5-33.2"
baseQuantityKind electric current : SimpleQuantityKind quantityKind ampere : SimpleUnit
description = "IEC 80000-6, 6-1" definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/ampere.html" | baseUnif|
description = "IEC 80000-6, 6-1.a"
amount of substance : SimpleQuantityKind o mole : SimpleUnit
baseQuantityKind description = "ISO 80000-9, 9-1" quantityKind definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/mole.html"
isNumberOfEntities = true description = "ISO 80000-9, 9-1.a" baseUnit
isUnitCountOfEntities = true
baseQuantityKind quantityKind ndel: impleUni
definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/candela.html" | baseUnit
description = "ISO 80000-7, 7-35.a"

Figure E.14. Table 1 (from ISO 80000-1) SI base units for the ISQ base quantities

OMG Systems Modeling Language, v1.7

283

bdd SysML Quantity Kinds and Units for the covered content of ISO 8000(Table 2 (from ISO 80000-1) ISQ derived quantities and S| derived units with special names (1]))
| 1SQ : SystemOfQuantities |I<systemOfQuant|t|es I S| : SystemOfUnits |
usedSystemOfQuantitite/ . usedSystemOfUnits\I/
| ISO-80000 QuantityKinds : SystemOfQuantities PVStemOfQ“a”"“es I ISO-80000 Units : SystemOfUnits |
T \
indirectly includedSystemOfQuantities| indirectly includedSystemOfUnits|
| 1SO 80000-5 Quantities : SystemOfQuantities | /
incIudedSystemOfQuantitieé/ - /
| ISO 80000-4 Quantities : SystemOfQuantities FSyStemOfQ”am'“es I ISO 80000-4 Units : SystemOfUnits |
includedSystemOfQuantitieq, -
| 1SO 80000-3 Quantities : SystemOfQuantities Fysmmomua”t'"es I ISO 80000-3 Units : SystemOfUnits |
quanfitying lane angle : DerivedQuantityKin quantityKind radian : DerivedUnit)
description = "ISO 80000-3, 3-5" description = "ISO 80000-3, 3-5.a" Ln't
isQuantityOfDimensionOne = true isUnitForQuantityOfDimensionOne = true
quantityKind
solid angle : DerivedQuantityKind quantityKind steradian : DerivedUnit
description = "ISO 80000-3, 3-6" description = "ISO 80000-3, 3-6.a"
isQuantityOfDimensionOne = true isUnitForQuantityOfDimensionOne = true
quanfitying frequency : DerivedQuantityKind quantityKind hertz : DerivedUnit unit
description = "ISO 80000-3, 3-15.1" description = "ISO 80000-3, 3-15.a"
quantityKind force : DerivedQuantityKind quantityKind newton : DerivedUnit &It
description = "ISO 80000-4, 4-9.1" description = "ISO 80000-4, 4-9.a"
. unit
quantityKind|__Rressure : DerivedQuantityKind quantityKind pascal : DerivedUnit N
description = "ISO 80000-4, 4-15.1" description = "ISO 80000-4, 4-15.a, 4-18.a"
. unit
quantityKind work : Simpl ntityKin quantityKind joule : DerivedUnit —
description = "ISO 80000-4, 4-27.1" description = "ISO 80000-4, 4-27.a, 4-34.a, 4-36.a"
generarr
quantityKind mechanical energy : SimpleQuantityKind
description = "ISO 80000-4, 4-27.4"
genera
quantityKind otential energy : DerivedQuantityKind
description = "ISO 80000-4, 4-27.2"
quantityKind| Kinetic energy : Deriv ntity Kin general
description = "ISO 80000-4, 4-27.3"
quantityKind| _amount of heat : SimpleQuantityKind
description = "ISO 80000-5, 5-6" general

Figure E.15. Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (1)

284 OMG Systems Modeling Language, v1.7

bdd SysML Quantity Kinds and Units for the covered content of ISO 8000(Table 2 (from ISO 80000-1) ISQ derived quantities and S| derived units with special names (21))
| 1SQ : SystemOfQuantities |I<systemOfQuant|t|es I S| : SystemOfUnits |
usedSystemOfQuantitite/ . usedSystemOfUnits\I/
| ISO-80000 QuantityKinds : SystemOfQuantities PVStemOfQ“a”"“es I ISO-80000 Units : SystemOfUnits |
T T
indirectly includedSystemOfQuantities| indirectly includedSystemOfUnits|
 systemOfQuantities r
| IEC 80000-6 Quantities : SysteémOfQuantities r | IEC 800Q0-6 Units : SystemOfUnits |
! systemOfQuantities
| 1SO 80000-4 Quantities : SystemOfQuantities ||< Y I ISO 80000-4 Units : SystemOfUnits |
p : ivedQl ityKi L - .
ower ; DerivedQuantityKind quantityKind newton metre per second : DerivedUnit unit
e ipti =" - -26" —
quantityKind| description = "ISO 80000-4, 4-26 description = "ISO 80000-4, 4-26.a"
general|
joule per second : DerivedUnit unit
description = "ISO 80000-4, 4-26.2"
general|
watt : SimpleUnit unit
description = "ISO 80000-4, 4-26.a, 4-56.a"
quantityKind
electric charge : DerivedQuantityKind | quantityKind coulomb : DerivedUnit unit
description = "IEC 80000-6, 6-2" description = "IEC 80000-6, 6-2.a"
quantityKind| electric potential : DerivedQuantityKind quantityKind volt : SimpleUnit unit
description = "|[EC 80000-6, 6-11.1" description = "|[EC 80000-6, 6-11.a"
genera(r
quantityKind| electric potential difference : SimpleQuantityKind
description = "IEC 80000-6, 6-11.2"

Figure E.16. Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (2)

OMG Systems Modeling Language, v1.7

285

bdd SysML Quantity Kinds and Units for the covered content of ISO 8000(Table 2 (from ISO 80000-1) ISQ derived quantities and S| derived units with special names (:1))

1SQ : SystemOfQuantities

systemOfQuantities

usedSystemOfQuantitite/

Sl : SystemOfUnits |

1S0-80000 QuantityKinds : SystemOfQuantities

usedSystemOfUnits\I/

systemOfQuantities

includedSystemOfQuantitie:

N

1SO-80000 Units : SystemOfUnits |

indirectly includedSystemOfQuantities|

| 1SO 80000-7 Quantities : SystemOfQuantities

T

indirectly includedSystemOfUnits

includedSystemOfUnit

/
| 1SO 80000-5 Quantities : System@fQuantities K

] systemOfQuantities
[

] systemOfQuantities

I 1SO 80000-7 Units : SystemOfUnits |

includedSystemnguantitieQ\

| IEC 80000-6 Quantities : SystemOfQuantities K

] systemOfQuantities

WY
I ISO 80000-5 Units : SystemOfUnits |

includedSystemOf\UnitsT

quantityKind

I IEC 80000-6 Units : SystemOfUnits |

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind

quantityKind
capacitance : DerivedQuantityKind farad : DerivedUnit unit
description = "IEC 80000-6, 6-13" description = "IEC 80000-6, 6-13.a"
electric resistance : DerivedQuantityKind quantityKind ohm : SimpleUnit unit
description = "IEC 80000-6, 6-46" description = "IEC 80000-6, 6-46.a"
lectri n nce : Deriv ntityKin quantityKind siemens : SimpleUnit unit
description = "IEC 80000-6, 6-47" description = "IEC 80000-6, 6-47.a"
N - s quantityKind " -
magnetic flux : DerivedQuantityKind weber : SimpleUnit unit
description = "IEC 80000-6, 6-22.1" description = "IEC 80000-6, 6-22.a"
magnetic flux density : DerivedQuantityKind L tesla : SimpleUnit unit
quantityKind 6
description = "IEC 80000-6, 6-21" description = "IEC 80000-6, 6-21.a"
inductance : DerivedQuantityKind quantityKind henry : SimpleUnit unit
description = "IEC 80000-6, 6-41.1" description = "IEC 80000-6, 6-41.a"
celsiusTemperature : SimpleQuantityKind . dearee celsius : AffineConversionUnit
quantityKind .
description = "ISO 80000-5, 5-2" description = "ISO 80000-5, 5-2.a" unit
isinvertible = true
offset = 273.16
i : i ityKi L umen : DerivedUnit .
lumin flux : Derive ntityKin quantityKind lumen : Deriv ni unit
description = "ISO 80000-7, 7-32" description = "ISO 80000-7, 7-32.a"
illuminance : DerivedQuantityKind quantityKind lux : DerivedUnit unit

description = "ISO 80000-7, 7-36"

description = "ISO 80000-7, 7-36.a"

Figure E.17. Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (3)

286

OMG Systems Modeling Language, v1.7

bdd SysML Quantity Kinds and Units for the covered content of ISO 80000 Table 3 (from the Sl brochure) Sl derived units with special names and symbolg)

| 1SQ : SystemOfQuantities |SystemOfQuantities I Sl : SystemOfUnits
usedSystemOfQuantitieQL n usedSystemOfUnitgl/
| 1S0-80000 QuantityKinds : SystemOfQuantities FSVS'emOfQ”a”t'“es I ISO-80000 Units : SystemOfUnits
* «
indirectly incIudedSystemOfQuantit‘% indirectly incIudedSystemOfUr‘ﬂa
L systemOfQuantities
1SO 80000-10 Quantities : SystemOfQuantities ||< 4 1SO 80000-10 Units : SystemOfUnits
S radionuclide activity : DerivedQuantityKind - becquerel : DerivedUnit .
quantityKind quantityKind unit
description = "ISO 80000-10, 10-29" description = "ISO 80000-10, 10-29.a"
quantityKind gray : DerivedUni .
uantityKind absorbed dose : DerivedQuantityKind — ray : DerivedUnit unit
T description = “ISO 80000-10, 10-81.1" description ="ISO 80000-10, 10-84.2"
quantityKind f . : P
quantityKind dose equivalent : DerivedQuantityKind sievert : DerivedUnit unit
description = "ISO 80000-10, 10-86" description = "ISO 80000-10, 10-86.a

Figure E.18. Table 3 (from the SI brochure) SI derived units with special names and symbols

E.6.3 1SO 80000-1 Prefixes

Table E.6. The decimal and binary prefixes in scope of the International System of Units (SI) which uses the
ISO 80000 system of units and its included systems of units such as ISO 80000-13

yocto
zepto
atto
femto
pico
nano
micro
milli
centi
deci
deca
hecto
kilo
mega
giga
tera
peta

€xa

Prefix name

Prefix Factor (num, den)

1,10°24
1,10°21
1,10°18
1,10715
1,10°12
1,109
1,10%6
1,103
1,10°2
1,101
1071,1
1072,1
10°3,1
1076,1
1079,1
10712,1

10715,1

10718,1

OMG Systems Modeling Language, v1.7

Defining Part
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General
ISO 80000-1 General

287

Prefix name
zetta

yotta

kibi

mebi

gibi

tebi

pebi

exbi

zebi

yobi

E.6.4 ISO 80000-2 Mathematical Signs and Symbols

ISO 80000 part 2 defines Mathematical Signs and Symbols used in other ISO 80000 parts. In the SysML library, this
part contains definitions of constant numbers used across all other parts.

288

Prefix Factor (num, den)
10°21,1
10°24,1

Q70,1

(2710)°2,1

(2710)"3,1

(2710)"4,1

(2710)°5,1

(2710)°6,1

(2710)"7,1

(2710)°8,1

Defining Part
ISO 80000-1 General
ISO 80000-1 General

IEC80000-13 Information Science
and Technology

IEC80000-13 Information Science
and Technology

IEC80000-13 Information Science
and Technology

IEC80000-13 Information Science
and Technology

IEC80000-13 Information Science
and Technology

IEC80000-13 Information Science
and Technology

IEC80000-13 Information Science
and Technology

IEC80000-13 Information Science
and Technology

OMG Systems Modeling Language, v1.7

bdd [Package] Constant Numbers[Constant numbers used throughout the SysML ISO 80000 library})

0711 : Intege!

0712 : Integer

denominator = 1
numerator = 10"6

denominator = 1
numerator = 10*18

denominator = 106

numerator = 1

denominator = 10*18

numerator = 1

denominator = 1
numerator = -3

1071 : Integer 1071.1 : Rational 10713.1 : Rational 1,101 : Rational 1.10713 : Rational | -3 : Integer | | (2210)*1 : Integer |
denominator = 1 denominator = 1 denominator = 10 denominator = 1013
1042 : Integer numerator = 10M numerator = 1073 numerator = 1 numerator = 1 -2 : Integer 2110)"2 : Integer
" R N " R N . N A4 N N 2210)73 : Inf r
1073 : Integer 1072.1 : Rational 10”14.1 : Rational 1,102 : Rational 1.10714 : Rational | -1: Integer |
denominator = 1 denominator = 1 denominator = 1072 denominator = 1014 27074 - Integer
104 : In " numerator = 102 numerator = 104 numerator = 1 numerator = 1 1: Integer *
(2*10)75 : Integer
10715.1 : Rational 1.1073 : Rational 1.10715 : Rational 2: Integer
1075 : Integer 1 ——
denominator = 1 denominator = 1 denominator = 10"3 denominator = 105 (2210)"6 : Integer
numerator = 10"3 numerator = 10*5 numerator = 1 numerator = 1 3 : Integer
1076 : Integer
(2210)77 : Integer
10741 al 10716.1 : Rational 1.1074 : Rational 1.10716 : Rational 8 : Integer
1077 : Intege; N " " " (2210)"8 : Intege!
denominator = 1 denominator =1 denominator = 10%4 denominator = 106 2710128 : Integer
numerator = 104 numerator = 10"16 numerator = 1 numerator = 1 24 : Integer
1078 : Integer
1075.1 : Rational 10”17.1 : Rational 1,10%5 : Rational 1.10717 : Rational :In r (2210)*1,1 : Rational
: lenominator = lenominator = lenominator = lenominator = lenominator =
109 : integer d tor = 1 d tor = 1 d tor = 1075 d tor = 10M7 d tor = 1
numerator = 10"5 numerator = 107 numerator = 1 numerator = 1 27316 : Integer numerator = (2*10)M
10710 : Integer
1076.1 : Rational 10718.1 : Rational 1.10%6 : Rational 1.10718 : Rational -3.1 : Rational (2210)*2.1 : Rational

denominator = 1
numerator = (2210)"2

= =
2

10713 : Integer

1047.1 : Rational

1019.1 : Rational

11077 : Rational

1.10”19 : Rational

-2,1 : Rational

(2210)*3.1 : Rational

denominator = 1
numerator = 10°7

denominator = 1
numerator = 10*19

denominator = 10%7
numerator = 1

denominator = 1019
numerator = 1

denominator = 1
numerator = -2

denominator = 1
numerator = (2*10)"3

10714 : Integer

0715 : Intege

0716 : Intege

= = =
= = =

0717 : Intege

1078.1 : Rational

10720.1 : Rational

1.1078 : Rational

1.10720 : Rational

-1.1 : Rational

(2210)*4.1 : Rational

denominator = 1
numerator = 108

denominator = 1
numerator = 10720

denominator = 10"8
numerator = 1

denominator = 1020
numerator = 1

denominator = 1
numerator = -1

denominator = 1
numerator = (2A10)"4

1079.1 : Rational

denominator = 1
numerator = 10°9

10421.1 : Rational

denominator =1
numerator = 1021

1.1079 : Rational

denominator = 10"9

numerator = 1

1.10421 : Rational

denominator = 1021

numerator = 1

1.1 : Rational

denominator = 1
numerator = 1

(2210)A5.1 : Rational

denominator = 1
numerator = (210)*5

10718 : Integer

1019 : Integer

10710.1 : Rational

denominator = 1
numerator = 10*10

1022.1 : Rational

denominator = 1
numerator = 1022

1.10”10 : Rational

denominator = 1010
numerator = 1

110”22 : Rational

denominator = 10"22
numerator = 1

2.1 : Rational

denominator = 1
numerator = 2

(2%10)"6.1 : Rational

denominator = 1
numerator = (2*10)"6

0720 : Intege

=
2

10721 : Integer

0722 : Intege

0723 : Intege

= =
= =

10724 : Integer

10711.1 : Rational

denominator = 1
numerator = 10*11

10723.1 : Rational

denominator = 1
numerator = 1023

1,10”11 : Rational

denominator = 10*11

numerator = 1

1,10723 : Rational

denominator = 10%23

numerator = 1

3.1 : Rational
denominator = 1
numerator = 3

(2%10)77.1 : Rational

denominator = 1
numerator = (2*10)"7

10712.1 : Rational

1024.1 : Rational

1.10”12 : Rational

1.10724 : Rational

1.60 : Rational

(2210)"8.1 : Rational

denominator = 1
numerator = 10*12

denominator = 1
numerator = 1024

denominator = 102
numerator = 1

denominator = 10%24
numerator = 1

denominator = 60
numerator = 1

denominator = 1
numerator = (2*10)"8

| Pi/180 : Real || Pi/200 : Real || In(10) : Real |

273.16 : Rational

denominator = 10*2
numerator = 27316

Figure E.19. Constant numbers used throughout the SysML ISO 80000 library.

E.6.5 Summary of the covered parts of ISO 80000

The following sub clauses provide a summary overview of all definitions of units and quantity kinds grouped by
ISO 80000 part (3,4,5,6,7,9,10,13). Note that “quantities” in the ISO documents correspond to “QuantityKinds” in
QUDV. As explained in Section 8.3.3.2.1, QuantityKind, the type of a SysML value property (i.e., a VIM
“quantity”), a SysML ValueType, specifies the QUDV QuantityKind aspects that this “quantity”” has in common
with other “quantities” typed by SysML ValueTypes referencing the same QUDV QuantityKind aspect.

The SysML definitions are indexed and ordered according to their corresponding ISO 80000 definition. The ISO

80000 part document provides the authoritative reference for the meaning of the corresponding SysML definitions
of units and quantity kinds.

Prefixes apply for all units except for units corresponding to quantities of dimension one or for units in non-reduced
form. The 20 decimal prefixes apply to such units in parts 3,4,5,6,7,9,10; the 8 binary prefixes apply to such units in
parts 13. For a derived unit defined in terms of N other units, there are 20"N possible prefixed derived units; far too
many to create explicitly. This library contains only the combinations for the first factor for each derived unit.

OMG Systems Modeling Language, v1.7 289

Finally, the library includes value type definitions for the possible combinations of quantity kinds and compatible
units, and prefixed units represented in the library.

All value type definitions follow the same pattern: a top-level value type is defined with only the quantity kind. This
value type is compatible with values typed by specializations of that top-level value type that specify a particular
unit. The following diagram shows the resulting taxonomy for the value types about mass (ISO 80000-4, 4-1) and all
applicable prefixes for the corresponding unit, gram (ISO 80000-4, 4-1.a).

bdd [Package] mass[mass value types])

«ValueType»
mass
{quantityKind = mass}
FAN FAN AN AN

«ValueType» «ValueType» «ValueType» «ValueType» «ValueType»

mass(gram) | | mass(yottagram) mass(zettagram) | | mass(zeptogram) mass(yoctogram)
{quantityKind = mass, {quantityKind = mass, {quantityKind = mass, {quantityKind = mass, [| {quantityKind = mass,
unit = gram} unit = yottagram} unit = zettagram} unit = zeptogram} unit = yoctogram}

«ValueType»
mass(exagram)

{quantityKind = mass,

unit = exagram}

«ValueType»
mass(petagram)
{quantityKind = mass,

unit = petagram}

«ValueType»
mass(femtogram)
{quantityKind = mass,
unit = femtogramy}

«ValueType»
mass(attogram)
{quantityKind = mass,

unit = attogram}

«ValueType»
mass(teragram)

{quantityKind = mass,

unit = teragram}

«ValueType»
mass(gigagram)
{quantityKind = mass,

unit = gigagram}

«ValueType»
mass(nanogram)
{quantityKind = mass,
unit = nanogram}

«ValueType»
mass(picogram)
{quantityKind = mass,

unit = picogram}

«ValueType»
mass(megagram)

{quantityKind = mass,

unit = megagram}

«ValueType»
mass(kilogram)
{quantityKind = mass,

unit = kilogram}

«ValueType»
mass(milligram)
{quantityKind = mass,

unit = milligram}

«ValueType»
mass(microgram)
{quantityKind = mass,
unit = microgram}

«ValueType»
mass(hectogram)

| {quantityKind = mass,

unit = hectogram}

«ValueType»

|| mass(decagram)

{quantityKind = mass,
unit = decagram}

«ValueType»
mass(decigram)
{quantityKind = mass,

unit = decigram}

«ValueType»
mass(centigram)
{quantityKind = mass,
unit = centigram}

Figure E.20. Example of value type definitions for a quantity and applicable units and prefixed units

E.6.5.1 ISO 80000-3 Space and Time

All 25 entries (including sub-entries) in the normative contents of ISO 80000-3 are modeled as summarized below.
Table E.7. Normative units in ISO 80000-3 (1 of 2)

is unit for

Unit name Description Symbol General units Qm.mtlty quantity of L3 IR IGe
Kinds . b form?
dimension 1?

metre ISO 80000-3, m ISO 80000-3
3-1.a,3-17.a 3-1.1

metre to Fhe ISO 80000-3, 1SO 80000-3

power minus | 3-2.a, 3-18.a, |m-1 30 [5

one 3-19.a,3-25.a 3251

square metre ISO 80000-3, . ISO 80000-3

q 33a 33

290 OMG Systems Modeling Language, v1.7

Unit name

cubic metre

litre

radian
degree angle

minute angle

second angle

gon

steradian

second

minute

hour

day

metre per
second

metre per
second
squared

radian per
second

radian per
second
squared

number of
turns

Description

ISO 80000-3,
3-4.a

ISO 80000-3,
3-4b

ISO 80000-3,
3-5.a

degree angle

ISO 80000-3,
3-5.¢c

ISO 80000-3,
3-5d

ISO 80000-3,
3-5.e

ISO 80000-3,
3-6.a

ISO 80000-3,
3-7.a,3-12.a,
3-13.a

ISO 80000-3,
3-7b

ISO 80000-3,
3-7.c

ISO 80000-3,
3-7d

ISO 80000-3,
3-8.a,3-20.a

ISO 80000-3,
3-9.a

I1SO 80000-3,
3-10.a, 3-16.a

ISO 80000-3,
3-11.a

ISO 80000-3,
3-14.a

is unit for

. Quantity 5 is reduced
Symbol General units Kinds (.1uant1.ty of form?
dimension 1?
m ISO 80000-3
3-4
1
rad ISO 80000-3 | true
o} true
! true
" true
gon true
ISO 80000-3
srad true
3-6
s ISO 80000-3
3-7
min
h
d
/s ISO 80000-3
3-8.1
m/s2 ISO 80000-3
3-9.1
ISO 80000-3, |ISO 80000-3,
rad/s 3-15.b, 3-16.b, | 3-15.b, 3-16.b,
3-23.\a [4\] 3-23.\a [4\]
ISO 80000-3
rad/s2 311
ISO 80000-3 true
3-14 4

OMG Systems Modeling Language, v1.7

291

Unit name

revolution

hertz

Unit name

number of
turns per
second

second to the
power minus
one

revolution per
second

revolution per
minute

neper

bel

bel per
second

neper per
second

Description Symbol

ISO 80000-3,
3-14.a

ISO 80000-3,
3-15.a

Description Symbol

ISO 80000-3, o1
3-15b

ISO 80000-3,
3-15.b, 3-
16.b, 3-23.a

s-1

1SO 800003, |
3-15b s
ISO 80000-3,
3-15.b

ISO 80000-3,
321, 3-
22.a,3-24.b

r/min

Np

ISO 80000-3,
3-21.b, 3-22.b

ISO 80000-3,

3-23.b.324b B8

ISO 80000-3,

3-23b Np/s

is unit for

. Quantity . is reduced
General units Kinds (.1uant1.ty of form?
dimension 1?
ISO 80000-3 true
3-14.a 4
ISO 80000-3 true
3-14.a
Table E.8. Normative units in ISO 80000-3 (2 of 2)
. is unit for .
General units Qu:‘mtlty quantity of is reduced
kinds . . form?
dimension 1?

ISO 80000-3, |ISO 80000-3,
3-15.b,3-16.b | 3-15.2 [6]

ISO 80000-3

3-23 [6]
ISO 80000-3
3-15.b
ISO 80000-3

ISO 80000-3

3-24

ISO 80000-3

3-24 [6] true
ISO 80000-3
3-15.b, 3-16.b
3-23.a[4
ISO 80000-3
3-15.b,3-16.b
3-23.a

E.6.5.1.1 Normative Quantity kinds

Quantity Kinds

name

length

292

Table E.9. Normative quantity kinds in ISO 80000-3 (1 of 2)

Description

ISO 80000-3, 3-1.1

L

Symbol

General is dimension of 1?

OMG Systems Modeling Language, v1.7

Quantity Kinds

name

breadth

height

thickness

radius

radial distance

diameter

length of path

distance

cartesian coordinates

position vector

displacement

radius of curvature

curvature
area
volume
plane angle
solid angle

time

Description

ISO 80000-3, 3-1.2

ISO 80000-3, 3-1.3

ISO 80000-3, 3-1.4

ISO 80000-3, 3-1.5

ISO 80000-3, 3-1.6

ISO 80000-3, 3-1.7

ISO 80000-3, 3-1.8

ISO 80000-3, 3-1.9

ISO 80000-3, 3-1.10

ISO 80000-3, 3-1.11

ISO 80000-3, 3-1.12

ISO 80000-3, 3-1.13

ISO 80000-3, 3-2
ISO 80000-3, 3-3
ISO 80000-3, 3-4
ISO 80000-3, 3-5
ISO 80000-3, 3-6
ISO 80000-3, 3-7

OMG Systems Modeling Language, v1.7

Symbol

b,B

h,H

d,5

r,R

rQ,p

d,D

dr

X?y’z

Ar

X
ALS)
%
o,B,7,0,¢
Q

t

General

ISO 80000-3.

3-1.1

[5]

ISO 80000-3.

3-1.1

[5]

ISO 80000-3,

3-1.1

[5]

ISO 80000-3.

3-1.1

[5]

ISO 80000-3,

3-1.1

[8]

ISO 80000-3.

3-1.1

[5]

ISO 80000-3,

3-1.1

[5]

ISO 80000-3.

[5]

ISO 80000-3.

3-1.1

[5]

ISO 80000-3,

3-1.1

[5]

ISO 80000-3.

3-1.1

[5]

ISO 80000-3,

3-1.1

[8]

is dimension of 1?

true

true

293

Quantity Kinds
name

speed

velocity

speed of propagation

of waves
acceleration

acceleration of free
fall

angular velocity

angular acceleration
period duration

time constant for an

expoentially varying

quantity
rotation

frequency

Quantity Kind
name

rational frequency

angular frequency

wavelength

linear repetency

angular repetency

phase velocity

group velocity

level of a field
quantity

level of a power
quantity

294

Description

ISO 80000-3, 3-8.1

ISO 80000-3, 3-8.1

ISO 80000-3, 3-8.2

ISO 80000-3, 3-9.1

ISO 80000-3, 3-9.2

ISO 80000-3, 3-10
ISO 80000-3, 3-11

ISO 80000-3, 3-12

ISO 80000-3, 3-13

ISO 80000-3, 3-14
ISO 80000-3, 3-15.1

Table E.10. Normative quantity kinds in ISO 80000-3 (2 of 2)

Description

Symbol

uwv,w

©(T)

N
f,v

Symbol

ISO 80000-3,3-15.2 |n

ISO 80000-3, 3-16

ISO 80000-3, 3-17

ISO 80000-3, 3-18
ISO 80000-3, 3-19

ISO 80000-3, 3-20.1

ISO 80000-3, 3-20.2

ISO 80000-3, 3-21

ISO 80000-3, 3-22

(0}

C,V,Co,vp

cg, vg

LF

LP

General

ISO 80000-3, 3-8.1

[5]

ISO 80000-3, 3-8.1

[5]

ISO 80000-3, 3-9.1

[5]

ISO 80000-3, 3-7 [5]

ISO 80000-3, 3-7 [5]

General

ISO 80000-3, 3-1.1

[5]

ISO 80000-3, 3-8.1

[5]

ISO 80000-3, 3-8.1

[5]

OMG Systems Modeling Language, v1.7

is dimension of 1?

true

is dimension of 1?

true

true

Quantity Kind
name

damping coefficient
for an exponentially
varying quantity

logarithmic
decrement for an
exponentially
varying quantity

attenuation
coefficient for an
exponentially
varying quantity

phase coefficient for
an exponentially
varying quantity

propagation
coefficient for an
exponentially
varying quantity

Description

ISO 80000-3, 3-23

ISO 80000-3, 3-24

ISO 80000-3, 3-25.1

ISO 80000-3, 3-25.2

ISO 80000-3, 3-25.3

E.6.5.2 ISO 80000-4 Mechanics

Symbol

\del

\Lambda

\alpha

\beta

\gamma

General is dimension of 1?

ISO 80000-3, 3-23
[6]

true

ISO 80000-3, 3-25.3
[6]

ISO 80000-3, 3-25.3
[6]

All 37 entries (including sub-entries) in the normative contents of ISO 80000-4 are modeled as summarized below.
Table E.11. Normative units in ISO 80000-4 (1 of 2)

Unit name Description Symbol
am ISO 80000-4,
& 4-1.a
¢ ISO 80000-4, ¢
onne 4-1.b
kilogram per | ISO 80000-4,
cubic metre 4-2.a kg/m3
mass density | ISO 80000-4,
ratio 4-3.a
cubic metre ISO 80000-4, m3/k
per kilogram |4-4.a &
kilogram per | ISO 80000-4, ke/m2
square metre | 4-5.a
kilogram per | ISO 80000-4,
metre 4-6.a keg/m

OMG Systems Modeling Language, v1.7

General units

is unit for
quantity of
dimension 1?

is reduced
form?

Quantity
Kinds

ISO 80000-4
4-1[10]

ISO 80000-4
4-2[10]

ISO 80000-4
4-3[10]

ISO 80000-4
4-410]

ISO 80000-4
4-5[10]

ISO 80000-4
4-6 [10]

295

Unit name

kilogram
metre squared

kilogram
metre per
second

newton

newton metre
squared per
kilogram
squared

newton second

kilogram
metre squared
per second

newton metre

newton metre
second

pascal

cubic metre
strain factor

strain factor

metre strain
factor

Unit name

contraction to
elongation
metre ratio

296

Description

ISO 80000-4,
4-7.a

ISO 80000-4,
4-8.a

ISO 80000-4,
4-9.a

ISO 80000-4,
4-10.a

ISO 80000-4,
4-11.a

ISO 80000-4,
4-12.a

I1SO 80000-4,
4-13.a

ISO 80000-4,
4-14.a

ISO 800004,
4-15.a,4-18.a

ISO 80000-4,
4-16.a

ISO 80000-4,
4-16.a

factor ISO
80000-4,
4-16.a

Symbol

kg.m2

kg.m/s

N - m2/kg2

N.m.s

Pa

ISO 80000-4,

General units

is unit for
quantity of
dimension 1?

Quantity
Kinds

ISO 80000-4
4-7[10]

ISO 80000-4
4-8 [10]

ISO 80000-4
4-9.1110

ISO 80000-4
4-10[10

ISO 80000-4
4-11110

ISO 80000-4
4-12 10

ISO 80000-4
4-13.1[10]

ISO 80000-4
4-14 10

ISO 80000-4
4-15.1[10]

ISO 80000-4,

4-16.a [7]

4-163[11] Tue

ISO 80000-4

ISO 80000-4
4-16.1.2,3[10

true

ISO 80000-4,

4-16.a [7]

4-16.1[11] e

Table E.12. Normative units in ISO 80000-4 (2 of 2)

Description

ISO 80000-4,
4-17.a

Symbol

General units

. is unit for
Qll:?:(:;ty quantity of
dimension 1?
ISO 80000-4
4-17[11

OMG Systems Modeling Language, v1.7

is reduced
form?

is reduced
form?

Unit name

cubic metre
strain factor
per pascal

pascal to the
power minus
one

metre to the

power of four

newton ratio

pascal second

metre per
second per
metre

square metre
per second

pascal second
kilogram per
cubic metre

newton per
metre

watt

joule per
second

newton metre
per second

joule

output watt

Description

ISO 80000-4,
4-19.a

ISO 80000-4,
4-19.a

ISO 80000-4,
4-20.a

ISO 80000-4,
4-22.a

ISO 80000-4,
4-23.a

ISO 80000-4,
4-23.a

ISO 80000-4,
4-24.a

ISO 80000-4,
4-24.a

ISO 80000-4,
4-25.a

ISO 80000-4,
4-26.a, 4-56.a

ISO 80000-4,
4-26.a

ISO 80000-4,
4-26.a

ISO 80000-4,
4-27.a,4-34.a,
4-36.a

ISO 80000-4,
4-28.a

Symbol

m4

Pa.s

m2/s

m2/s

N/m

N.m/s

Wout

OMG Systems Modeling Language, v1.7

is unit for

General units Qu.antlty quantity of is reduced
kinds . . form?
dimension 1?
ISO 80000-4, |ISO 80000-4,
4-19.a [8] 4-19[11]
ISO 80000-4
4-20.1 [11
ISO 80000-4
true
4-22.1[13]
ISO 80000-4
4-23[13
ISO 80000-3 1SO 80000-4
3-15.b, 3-16.b 423 (13 false
3-23.a[4 4-23 [13]
ISO 80000-4, |ISO 80000-4,
4-24.a [8] 4-24 [13]
ISO 80000-4
4-25[13
ISO 80000-4
4-26.a [8
ISO 80000-4
4-26.a[8
ISO 80000-4
4-26[13
ISO 80000-4
4-34114
1526210?8(5)_6421 ISO 80000-4
18] * = 14-28 [13

297

Unit name

output input
watt ratio

input watt

kilogram per
second

cubic metre
per second

joule second

Description

ISO 80000-4,
4-28.a

ISO 80000-4,
4-28.a

ISO 80000-4,
4-29.a

1SO 80000-4,
430.a

ISO 80000-4,
4-37.a

Symbol General units

ISO 80000-4
4-26.a,4-56.a

[8]

Win

kg/s

m3 /s

J.s

E.6.5.2.1 Normative Quantity kinds ISO 80000-4
Table E.13. Normative quantity kinds in ISO 80000-4 (1 of 4)

Quantity Kinds

name Description Symbol
mass ISO 80000-4, 4-1 m
density ISO 80000-4, 4-2
mass density of a ISO 80000-4, 4-2, 0
reference substance | 4-3 P
mass density ISO 80000-4, 4-2 p
relative mass density | ISO 80000-4, 4-3
specificVolume ISO 80000-4, 4-4 v
surface density ISO 80000-4, 4-5 pA
linear density ISO 80000-4, 4-6 pl
mass momentof 150 80000-4,4-7 1,7
nertia
momentum ISO 80000-4, 4-8 p
force ISO 80000-4,4-9.1 |F
weight ISO 80000-4,4-9.2 | Fg,G
gravitational constant
between two mass ISO 80000-4, 4-10 G

particles

298

is unit for
quantity of
dimension 1?

is reduced
form?

Quantity
kinds

ISO 80000-4
4-28 [13

true

ISO 80000-4
4-28 [13

ISO 80000-4
4-29[14

ISO 80000-4
4-30 [14]

ISO 80000-4
4-3714

General is dimension of 1?

ISO 800004, 4-2
[10]

ISO 80000-4, 4-2
[10]

true

OMG Systems Modeling Language, v1.7

Quantity Kinds
name

impulse
moment of
momentum
moment of force

torque

bending moment of
force

angular impulse

pressure

normal stress

sheer stress

length of item in a
reference state

increase in length

strain

Quantity Kind

name

linear strain

thickness of a layer
between two surfaces

sheer strain

parallel displacement
between two surfaces
of a layer

increase in volume

Description
ISO 80000-4, 4-11
ISO 80000-4, 4-12

ISO 800004, 4-13.1

ISO 800004, 4-13.2

ISO 80000-4, 4-13.3

ISO 80000-4, 4-14
ISO 80000-4, 4-15.1

ISO 80000-4, 4-15.2

ISO 80000-4, 4-15.3

ISO 80000-4, 4-16

ISO 80000-4, 4-16

I1SO 80000-4,
4-16.1,2,3

Symbol
I
L

M

T

Mb

H
p

\sigma

\tau

10

Al

General

ISO 80000-4, 4-13.1

[10]

ISO 80000-4, 4-13.1

(o]

ISO 80000-4, 4-15.1

[10]

ISO 80000-4, 4-15.1

(0]

ISO 80000-3, 3-1.1
[5]

ISO 80000-3. 3-1.1
5]

Table E.14. Normative quantity kinds in ISO 80000-4 (2 of 4)

Description

ISO 80000-4, 4-16.1

ISO 80000-4, 4-16.2

ISO 80000-4, 4-16.2

ISO 80000-4, 4-16.2

ISO 80000-4, 4-16.3

OMG Systems Modeling Language, v1.7

Symbol

&,(¢)

AX

AV

General

ISO 80000-4
4-16.1.2,3[10

ISO 80000-3, 3-1.4
5]

ISO 80000-4
4-16.1.2,3 10

ISO 80000-3, 3-1.12

[5]

ISO 80000-3, 3-4 [5]

is dimension of 1?

true

is dimension of 1?

true

299

Quantity Kind
name

volume strain

volume in a
reference state

elongation

lateral contraction

poisson number

modulus of elasticity

modulus

modulus of rigidity

modulus of
compression

compressibility

increase in pressure

surface considered

second axial moment
of area

radial distance from
a Q-axis in the plane
of the surface
considered

second polar moment
of area

radial distance from
a Q-axis
perpendicular to the
plane of the surface
considered

300

Description

ISO 80000-4, 4-16.3

ISO 80000-4, 4-17

ISO 80000-4, 4-17

ISO 80000-4, 4-17

ISO 800004, 4-18.1

ISO 80000-4,
4-18.1,2,3

ISO 80000-4, 4-18.2

ISO 80000-4, 4-18.3

ISO 80000-4, 4-19

ISO 80000-4, 4-19

ISO 80000-4, 4-20

ISO 80000-4, 4-20.1

ISO 80000-4, 4-20.1

ISO 80000-4, 4-20.2

ISO 80000-4, 4-20.2

0

Al

AS

1w(v)

G

K

Ia

rQ

Ip

Q

Symbol

General is dimension of 1?
ISO 80000-4 true
4-16.1,2,3[10

ISO 80000-3, 3-1.1

[5]

ISO 80000-3, 3-1.1

[5]

true

ISO 80000-4

4-18.1,2,3 [11

ISO 80000-4, 4-15.1

[10]

ISO 80000-4

4-18.1,2,3 [11

ISO 80000-4

4-18.1.2,3[11

ISO 80000-4, 4-15.1

[10]

ISO 80000-3, 3-3 [5]

ISO 80000-3, 3-1.6

[5]

ISO 80000-3, 3-1.6

[5]

OMG Systems Modeling Language, v1.7

Quantity Kind
name

section modulus

maximum radial
distance from a Q-
axis in the plane of
the surface
considered

maximum tangential

component of the
contact force
between two bodies
at rest

tangential component

of the contact force
between two sliding
bodies

contact force
between two sliding
bodies

tangential component

of the contact force
between two bodies
at rest

tangential component

of the contact force
between two bodies

contact force
between two bodies

normal component of

the contact force
between two sliding
bodies

maximum contact
force between two
bodies

contact force
between two bodies
at rest

normal component of

the contact force
between two bodies
at rest

normal component of

the contact force
between two bodies

Table E.15. Normative quantity kinds in ISO 80000-4 (3 of 4)

Description

ISO 80000-4, 4-21

ISO 80000-4, 4-21

ISO 80000-4, 4-22

ISO 80000-4, 4-22

ISO 80000-4, 4-22

ISO 80000-4, 4-22

ISO 80000-4, 4-22

ISO 80000-4, 4-22

ISO 80000-4, 4-22

ISO 80000-4, 4-22

ISO 80000-4, 4-22

ISO 80000-4, 4-22

ISO 80000-4, 4-22

OMG Systems Modeling Language, v1.7

Symbol

Z(W)

1Q, max

F

Fmax

General

ISO 80000-4,

is dimension 1?

4-20.1

1]

ISO 80000-4,

4-22

[2]

ISO 80000-4,

4-22

[z]

ISO 80000-4.

4-22

[z]

ISO 800004,

4-22

(2]

ISO 80000-4,

4-22

[12]

ISO 80000-4,

4-9.1

[0}

ISO 80000-4,

4-22

(3]

ISO 80000-4,

4-22

(2]

ISO 80000-4,

4-22

[2]

ISO 80000-4,

4-22

(3]

ISO 80000-4.

4-22

[z]

301

Quantity Kind
name

dynamic friction
factor

static friction factor
velocity gradient
dynamic viscosity
kinematic viscosity
surface tension

force component
perpendicular to a
line element in a
surface

length of line
element in a surface

power

work

potential energy

kinetic energy

mechanical energy

power efficiency

output power

input power

mass flow rate
volume flow rate

generalized
coordinate

generalized velocity
generalized force

generalized potential
energy

302

Table E.16. Normative quantity kinds in ISO 80000-4 (4 of 4)

Description

ISO 80000-4, 4-22.1

ISO 80000-4, 4-22.2
ISO 80000-4, 4-23
ISO 80000-4, 4-23
ISO 80000-4, 4-24
ISO 80000-4, 4-25

ISO 80000-4, 4-25

ISO 80000-4, 4-25

ISO 80000-4, 4-26
ISO 800004, 4-27.1

ISO 80000-4, 4-27.2

ISO 80000-4, 4-27.3

ISO 80000-4, 4-27.4

ISO 80000-4, 4-28

ISO 80000-4, 4-28

ISO 80000-4, 4-28
ISO 80000-4, 4-29
ISO 80000-4, 4-30
ISO 80000-4, 4-31

ISO 80000-4, 4-32
ISO 80000-4, 4-33

ISO 80000-4, 4-34

Symbol

w(f)

us,(fs)

Y,0

W

Ep

Ek

Pout

Pin
gqm
qVv
qi

qi
Qi

V(qi, qi dot)

General

is dimension 1?

true

true

ISO 80000-4, 4-9.1

[10]

ISO 80000-3, 3-1.1

[5]

ISO 80000-4, 4-27.4

(3]

ISO 80000-4, 4-27.4

[13]

ISO 80000-4, 4-27.1

[13]

ISO 800004, 4-26

[13]

ISO 80000-4, 4-26

[13]

OMG Systems Modeling Language, v1.7

Quantity Kind
name

generalized kinetic
energy

Lagrange function
generalized

momentum

generalized
momentum of
velocity

Hamilton function

action functional

Description

ISO 80000-4, 4-34

ISO 80000-4, 4-34

ISO 80000-4, 4-35

ISO 80000-4, 4-36

ISO 80000-4, 4-36

ISO 80000-4, 4-37

Contact force between two bodies is an example of a taxonomy of specialized quantity kinds induced by different

measurement procedures.

Symbol

T(qi, qi dot)

L(qi, qi dot)

pi

pi, qi dot

H

S

General

ISO 80000-4, 4-34

is dimension 1?

[14]

ISO 80000-4, 4-36

[14]

ISO 800004, 4-36

[14]

Per ISO 80000-4, 4-31, 4-32, 4-33 and 4-35, there are no measurement units defined for these generalized quantity

kinds; the unit of a particular quantity (i.e., SysML value property) typed by a SysML ValueType referencing a

generalized quantity kind depends on the dimension of that particular quantity.

E.6.5.3 ISO 80000-5 Thermodynamics

All 33 entries (including sub-entries) in the normative contents of ISO 80000-5 are modeled as summarized below.
Table E.17. Normative units in ISO 80000-5 (1 of 2)

Unit name

kelvin

degree celsius

cubic metre
coefficient per
kelvin

pascal ratio
per kelvin

kelvin to the
power minus
one

metre
coefficient per
kelvin

Description Symbol
ISO 80000-5, K
5-1.a,5-33.a
ISO 80000-5, | C
5-2.a
ISO 80000-5, _
5-3.2 K-
ISO 80000-5, _
533 K-l
ISO 80000-5, B
5-3.a K=l
ISO 80000-5, B
53.a K-l

OMG Systems Modeling Language, v1.7

. Quantity

General units Kinds

ISO 80000-5

5-1[17]

ISO 80000-5

5-2 [17]
ISO 80000-5, | ISO 80000-5,
5-3.a[15] 5-3.2[17]
ISO 80000-5, | ISO 80000-5,
5-3.a[15] 5-3.3[17]
ISO 80000-5, |ISO 80000-5,
5-3.a[15] 5-3.1[17]

quantity of
dimension 1?

is reduced

303

Unit name

pascal ratio

pascal per
kelvin

cubic metre
ratio per
pascal

watt per
square metre

watt per metre
kelvin

kelvin per
metre

watt per
square metre
per kelvin

square metre
kelvin per
watt

kelvin per
watt

watt per
kelvin

watt square

metre per
joule

joule per
kelvin

Unit name

joule per
kilogram
kelvin

304

Description

ISO 80000-5,
5-3.a

ISO 80000-5,
5-4.a

ISO 80000-5,
5-5.a

ISO 80000-5,
5-8.a

ISO 80000-5,
5-9.a

ISO 80000-5,
5-9.a

ISO 80000-5,
5-10.a

ISO 80000-5,
5-11.a

ISO 80000-5,
5-12.a

ISO 80000-5,
5-13.a

ISO 80000-5,
5-14.a

ISO 80000-5,
5-15.a, 5-18.a,
5-21.a, 5-22.a,
5-23.a

Symbol

Pa/K

General units

ISO 80000-4,

is unit for
quantity of
dimension 1?

Quantity
Kinds

ISO 80000-5
5-3.3[17

true

ISO 80000-5
5-4[17]

ISO 80000-5,

Pa-l 4-19.a [8]

5-5.1[17]

W/m2

W/(m-K)

K/m

W/m2 -K

m2 -K/W

K/'W

W/K

ISO 80000-4,

ISO 80000-5
5-8 [18]

ISO 80000-5
5-9[18]

ISO 80000-5
5-9 [18]

ISO 80000-5
5-10.1[18]

ISO 80000-5
5-11[18

ISO 80000-5
5-12 18

ISO 80000-5
5-13[18

ISO 80000-5,

Wem2/J 4-24.a [8]

5-14 [18]

J/K

ISO 80000-5
5-18[19

Table E.18. Normative units in ISO 80000-5 (2 of 2)

Description

ISO 80000-5,
5-16.a

Symbol

J/(kg-K)

General units

. is unit for
Q;?:;lsty quantity of
dimension1?
ISO 80000-5
5-16.1 [18]

OMG Systems Modeling Language, v1.7

is reduced
form?

is reduced
form?

Unit name

cubic metre
per pascal
ratio

cubic metre
per pascal

joule per
kilogram
kelvin ratio

pascal per
cubic metre

kelvin joule
per kelvin

pascal cubic
metre

kelvin joule
per kelvin
kilogram

joule per
kilogram
kilogram ratio
kilogram ratio
fraction
kilogram per

cubic metre
ratio

Description

ISO 80000-5,
5-17.a

ISO 80000-5,
5-17.a

ISO 80000-5,
5-17.a

ISO 80000-5,
5-17.a

ISO 80000-5,
5-20.a

ISO 80000-5,
5-20.a

ISO 80000-5,
5-21.a

ISO 80000-5,
5-21.a

ISO 80000-5,
5-26.a, 5-27.a,
5-28.a, 5-29.a

ISO 80000-5,
5-28.a,5-32.a

ISO 80000-5,
5-31.a

Symbol

m3/Pa

Pa/m3

e

Pa-m3

J/K

J/K

General units

ISO 80000-4
4-27.a4-34.a

4-36.a [8

ISO 80000-4
4-27.a,4-34.a

4-36.a [8

ISO 80000-5

is unit for
quantity of
dimension1?

is reduced
form?

Quantity
Kinds

ISO 80000-5
5-17.2[19]

ISO 80000-5
5-17.2[19]

ISO 80000-5
5-17.1119]

true

ISO 80000-5
5-17.2119]

ISO 80000-5
5-20.[45][19

false

ISO 80000-5
5-20.3 [19]

ISO 80000-5,

5-21.a[16]

5.21.5 [20] false

ISO 80000-5
5-21.1[19]

ISO 80000-5
5-26 [20

ISO 80000-5
5-28 [21

true

ISO 80000-5
5-31[21

E.6.5.3.1 Normative Diagram Kinds
Table E.19. Normative quantity kinds in ISO 80000-5 (1 of 5)

Quantity Kinds Description Symbol General is dimension of 1?
name
thermodynamic 1SO 80000-5, 5-1 T,(©)
temperature

OMG Systems Modeling Language, v1.7 305

Quantity Kinds
name

celsius Temperature

linear expansion
coefficient

increase in
temperature

cubic expansion
coefficient

pressure in a
reference state

relative pressure
coefficient

pressure ratio

increase in pressure
at constant volume

increase in
temperature at
constant volume

pressure coefficient

isothermal
compressibility

increase in pressure
at constant
temperature

increase in volume at
constant temperature

increase in pressure
at constant entropy

isentropic
compressibility

increase in volume at
constant entropy

306

Description

ISO 80000-5, 5-2

ISO 80000-5, 5-3.1

ISO 80000-5,
5-3.1,2,3,4

ISO 80000-5, 5-3.2

ISO 80000-5, 5-3.3

ISO 80000-5, 5-3.3

ISO 80000-5, 5-3.3

ISO 80000-5, 5-3.3

ISO 80000-5, 5-3.3

ISO 80000-5, 5-4

ISO 80000-5, 5-5.1

ISO 80000-5, 5-5.1

ISO 80000-5, 5-5.1

ISO 80000-5, 5-5.2

ISO 80000-5, 5-5.2

ISO 80000-5, 5-5.2

Symbol

t,0

ol

oT ,dT

aV o,y

ap

(0P) V

OT)V

xT

(oP) T

@V) T

(0P)S

xS

@V)S

General is dimension of 1?

ISO 80000-5, 5-1
07

ISO 80000-5, 5-1
7

ISO 80000-4, 4-15.1
[10]

true

ISO 80000-4, 4-19
(1]

ISO 80000-5
5-3.1.2.3.4[17

ISO 80000-4, 4-19
oy

ISO 800004, 4-16.3
[11]

ISO 80000-4, 4-19
(1]

ISO 800004, 4-16.3
[11]

OMG Systems Modeling Language, v1.7

Quantity Kind
name

amount of heat

heat flow rate

surface density of
heat flow rate

areic heat flow rate

thermodynamic
temperature gradient

thermal conductivity

coefficient of heat
transfer

thermodynamic
temperature
difference

surface coefficient of
heat transfer

surface
thermodynamic
temperature
difference

surface thermo-
dynamic temperature

reference thermo-
dynamic temperature

coefficient of thermal
insulance

thermal resistance
thermal conductance
thermal diffusivity
heat capacity

specific heat capacity

specific heat capacity
at constant pressure

Table E.20. Normative quantity kinds in ISO 80000-5 (2 of 5)

Description

ISO 80000-5, 5-6

ISO 80000-5, 5-7

ISO 80000-5, 5-8

ISO 80000-5, 5-8
ISO 80000-5, 5-9
ISO 80000-5, 5-9

ISO 80000-5, 5-10.1

ISO 80000-5, 5-10.1

ISO 80000-5, 5-10.2

ISO 80000-5, 5-10.2

ISO 80000-5, 5-10.2

ISO 80000-5, 5-10.2

ISO 80000-5, 5-11

ISO 80000-5, 5-12
ISO 80000-5, 5-13
ISO 80000-5, 5-14
ISO 80000-5, 5-15
ISO 80000-5, 5-16.1

ISO 80000-5, 5-16.2

OMG Systems Modeling Language, v1.7

9.9

9.9

A (0

K,(k)

h,(a)

h,(a)

C

cp

Symbol

General

ISO 80000-4, 4-27.4

[13]

ISO 80000-4, 4-26
[3]

ISO 80000-5, 5-8
[18]

ISO 80000-5, 5-1
07

ISO 80000-5, 5-10.2

[18]

ISO 80000-5, 5-1
7]

ISO 80000-5, 5-1
07

ISO 80000-5, 5-16.1
[18]

is dimension of 1?

307

Quantity Kind
name

specific heat capacity
at constant volume

specific heat capacity
at saturation

ratio of the specific
heat capacities

pressure per volume
increase at constant
entropy

volume per pressure
in a reference state

isentropic exponent

entropy

heat received

specific entropy

energy
internal thermo-
dynamic energy

volumetric pressure

enthalpy

Helmbholtz energy

Gibbs energy

system enthalpy at
thermodynamic
temperature

specific energy

specific internal
thermodynamic
energy

308

Table E.21. Normative quantity kinds in ISO 80000-5 (3 of 5)

Description

ISO 80000-5, 5-16.3

ISO 80000-5, 5-16.4

ISO 80000-5, 5-17.1

ISO 80000-5, 5-17.2

ISO 80000-5, 5-17.2

ISO 80000-5, 5-17.2
ISO 80000-5, 5-18

ISO 80000-5, 5-18

ISO 80000-5, 5-19

ISO 80000-5, 5-20.1

ISO 80000-5, 5-20.2

ISO 80000-5, 5-20.3

ISO 80000-5, 5-20.3

ISO 80000-5, 5-20.4

ISO 80000-5, 5-20.5

ISO 80000-5, 5-20.
[45]

ISO 80000-5, 5-21.1

ISO 80000-5, 5-21.2

cV

csat

dQ

pV

AF

TS

Symbol

General

ISO 80000-5, 5-16.1
(18]

ISO 80000-5, 5-16.1
[s8]

ISO 80000-5., 5-6
[18]

ISO 80000-4, 4-27.4

(3]

ISO 80000-5. 5-18
[19]

ISO 80000-5, 5-20.2

[19]

ISO 80000-5, 5-20.2

(9]

ISO 80000-5, 5-20.3

[9]

ISO 80000-5, 5-21.1

(9]

OMG Systems Modeling Language, v1.7

is dimension 1?

true

Quantity Kind
name

specific enthalpy

specific Helmholtz
energy

Quantity Kind
name

specific Gibbs
energy

Massieu function
Planck function

mass of water
irrespective of the
form of aggregation

mass concentration
of water at saturation

total volume of water
and dry matter

mass concentration
of water

mass of water vapour
mass concentration
of water vapour
mass concentration
of water vapour at

saturation

mass of water at
saturation

mass of water vapour
at saturation

mass ratio of water to
dry matter

mass of dry matter

Description

ISO 80000-5, 5-21.3

ISO 80000-5, 5-21.4

h

a f

Symbol

General is dimension 1?

ISO 80000-5, 5-21.2
[19]

Table E.22. Normative quantity kinds in ISO 80000-5 (4 of 5)

Description

ISO 80000-5, 5-21.5

ISO 80000-5, 5-22
ISO 80000-5, 5-23

ISO 80000-5, 5-24

ISO 80000-5, 5-24

ISO 80000-5, 5-24

ISO 80000-5, 5-24

ISO 80000-5, 5-24

ISO 80000-5, 5-25

ISO 80000-5, 5-25

ISO 80000-5, 5-25

ISO 80000-5, 5-25

ISO 80000-5, 5-26

ISO 80000-5, 5-26

OMG Systems Modeling Language, v1.7

wsat

vsat

msat

msat

md

Symbol

General is dimension 1?

ISO 80000-4. 4-1
[10]

ISO 80000-4, 4-2
[10]

ISO 80000-3, 3-4 [5]

ISO 80000-4, 4-2
[10]

ISO 80000-5, 5-24
120]

ISO 800004, 4-2
[10]

ISO 80000-4. 4-2
[10]

ISO 80000-5, 5-24
120]

ISO 80000-5, 5-24
[20]

true

ISO 80000-4, 4-1
[10]

309

Quantity Kind
name

mass ratio of water to

Description

Symbol

General

ISO 80000-5, 5-26

is dimension 1?

dry gas at saturation ISO 80000-5, 5-26 usat 120] true
mass ratio of water ISO 80000-5, 5-26
vapour to try gas ISO 80000-5, 5-27 w 120] true
mass ratio of water 1SO 80000-5. 5-27
vapour to dry gas at | ISO 80000-5, 5-27 wsat : true

saturation

[20]

Table E.23. Normative quantity kinds in ISO 80000-5 (5 of 5)

Quantity Kind Description Symbol General is dimension of 1?
name
ISO 80000-5, 5-26

mass of dry gas ISO 80000-5, 5-27 md 120]
mass fraction of 11565 80000-5, 528 | wH20 true
water
mass fraction of dry ISO 80000-5, 5-28
matter ISO 80000-5,5-29 | wd 21 true
partial pressure of a s s
gas inamixtureat SO 80000-5, 5-30 psat g)l SUOUO-3, 3-30
saturation
partial pressure of a << ISO 80000-4, 4-15.1
gas in a mixture 150 80000-5, 3-30 p [10]
relative partial ISO 80000-5, 5-3.3
pressure of a gas ISO 80000-5, 5-30 07 true
relative mass
concentration of ISO 80000-5, 5-31 0] true
water vapour
relative mass ratio of ISO 80000-5, 5-32 true
water vapour
dew point
thermodynamic ISO 80000-5, 5-33
temperature of humid 150 80000-5, 3-33 Td 21]
air
thermodynamic
temperature of humid | ISO 80000-5, 5-33 T 150 80000-3, 5-1

air

7

E.6.5.4 ISO 80000-6 Electromagnetism

All 62 entries (including sub-entries) in the normative contents of ISO 80000-6 are modeled as summarized below.

310 OMG Systems Modeling Language, v1.7

Unit name

ampere

coulomb

coulomb per
cubic metre

coulomb per
square metre

coulomb per
metre

coulomb
metre

coulomb per
square metre

per second

coulomb per
metre squared

ampere per
square metre

coulomb per
metre per
second

volt per metre

newton per
coulomb

volt

volt metre per
metre

Description

IEC 80000-6,
6-1.a

IEC 80000-6,
6-2.a

IEC 80000-6,
6-3.a

IEC 80000-6,
6-4.a

IEC 80000-6,
6-5.a

IEC 80000-6,
6-6.a

IEC 80000-6,
6-7.a

IEC 80000-6,
6-7.a

IEC 80000-6,
6-8.a

IEC 80000-6,
6-9.a

IEC 80000-6,
6-10.a

IEC 80000-6,
6-10.a

IEC 80000-6,
6-11.a

IEC 80000-6,
6-11.a

Table E.24. Normative units in ISO 80000-6 (1 of 5)

Symbol

C/m3

C/m2

C/m

C/ (m2-s)

C/m2

A/m2

C/(m-s)

V/m

N/C

V-m/m

OMG Systems Modeling Language, v1.7

General units

IEC 80000-6,

is unit for
quantity of
dimension 1?

is reduced
form?

Quantity
Kinds

IEC 80000-6
6-1 [27]

IEC 80000-6
6-3 [27]

IEC 80000-6
6-4 [27]

IEC 80000-6
6-5 [27]

IEC 80000-6
6-6 [27]

IEC 80000-6,

6-8.a [22]

6-8 [27]

IEC 80000-6,

IEC 80000-6,

6-4.a [22]

6-7[27]

IEC 80000-6,

IEC 80000-6
6-8 [27]

IEC 80000-6,

6-25.a [23]

6-9 [27]

IEC 80000-6,

IEC 80000-6
6-10 [27

IEC 80000-6,

6-10.a [22]

6-10 [27]

IEC 80000-6
6-11.a[22

IEC 80000-6
6-11.1 [27

false

311

Unit name

farad volt per
metre squared

farad

farad per
metre

coulomb per
volt per metre

coulomb per
volt per metre
ratio

Unit name

coulomb per
metre squared
ratio

square metre
coulomb per
metre squared

coulomb per
metre squared
per second

square metre
ampere per
square metre

volt second
per metre
squared

newton per
ampere per
metre

tesla

weber

312

Description

IEC 80000-6,
6-12.a

IEC 80000-6,
6-13.a

IEC 80000-6,
6-14.a

IEC 80000-6,
6-14.a

IEC 80000-6,
6-15.a

Description

IEC 80000-6,
6-16.a

IEC 80000-6,
6-17.a

IEC 80000-6,
6-18.a

IEC 80000-6,
6-19.a

IEC 80000-6,
6-21

IEC 80000-6,
6-21.a

IEC 80000-6,
6-21.a

IEC 80000-6,
6-22.a

Symbol

F-V/m2

F/m

C/(V-m)

Symbol

C/ (m2-s)

V-s/A-m2

N/(A-m)

is unit for

. Quantity . is reduced
General units Kinds (.1uant1.ty of form?
dimension 1?

IEC 80000-6, |IEC 80000-6,
6-7.a [22] 6-12 [27]

IEC 80000-6

6-13 [27
IEC 80000-6, | IEC 80000-6,
6-14.a [22] 6-14.1 [27]

IEC 80000-6

6-14.2 [28]

IEC 80000-6

6-15 [28

Table E.25. Normative units in ISO 80000-6 (2 of 5)
. is unit for .
General units Quz:mtlty quantity of is reduced
Kinds K . form?
dimension 1?

IEC 80000-6 true

6-16 [28
IEC 80000-6 false
6-2.a[22
IEC 80000-6
6-8.a [22
IEC 80000-6 false
6-1.a[22
IEC 80000-6
6-21.a[23
IEC 80000-6
6-21.a[23

IEC 80000-6

6-21[28

IEC 80000-6

6-22.1 [28]

OMG Systems Modeling Language, v1.7

Unit name

newton metre
per ampere

volt second

ampere square
metre

ampere square
metre per
cubic metre

newton per
weber

ampere per
metre

ampere metre
per metre
squared

volt second
metre squared
per ampere per
metre cube

Unit name

volt second
per ampere per
metre

newton weber
per ampere per
metre per
newton

henry per
metre

weber per
ampere per
metre

is unit for

Description Symbol General units Qu:.mtlty quantity of is reduced
Kinds . . form?
dimension 1?
IEC 80000-6, N-m/A IEC 80000-6
6-22.a m 6-22.a [23]
IEC 80000-6, v IEC 80000-6
6-22.a s 6-22.a [23]
IEC 80000-6, A-mD IEC 80000-6
6-23.a m 6-23 [28]
IEC 80000-6, IEC 80000-6
6-24.2 Am2/m3 695 a23] false
IEC 80000-6, IEC 80000-6
6-25 N /Wb 6-25.a[23
IEC 80000-6, A/m IEC 80000-6
6-25.a 6-25[28
IEC 80000-6, Aem/m2 IEC 80000-6 false
6-25.a ‘m/im 6-25.a [23]
IEC 80000-6, IEC 80000-6
6-26.a A-sm2/ A-m3 | ¢ e o[04 false
Table E.26. Normative units in ISO 80000-6 (3 of 5)
. is unit for .
Description Symbol General units Qu:.mtlty quantity of is reduced
Kinds . . form?
dimension 1?
IEC 80000-6, Ves/ A IEC 80000-6
6-26.a SPAM 6-26.a [24]
IEC 80000-6, IEC 80000-6
6-26.2 N-Wb/ Am-N 6 76 4 [24] false
IEC 80000-6, H/m IEC 80000-6
6-26.a 6-26.2 [28]
IEC 80000-6, IEC 80000-6
6-26.2 Wb/ A:m 6-26.2 [24]

OMG Systems Modeling Language, v1.7

313

Unit name

henry per
metre ratio

ampere per
metre ratio

weber per
metre squared

volt second
ampere per
ampere per
metre squared

volt second
metre

weber metre

weber per
metre

newton per
ampere

volt second
per metre

newton
ampere per
metre squared

newton
coulomb per
metre squared

joule per cubic
metre

Unit name

newton per
metre squared

314

Description

IEC 80000-6,
6-27.a

IEC 80000-6,
6-28.a

IEC 80000-6,
6-29.a

IEC 80000-6,
6-29.a

IEC 80000-6,
6-30.a

IEC 80000-6,
6-30.a

IEC 80000-6,
6-32.a

IEC 80000-6,
6-32.a

IEC 80000-6,
6-32.a

IEC 80000-6,
6-33.a

IEC 80000-6,
6-33.a

IEC 80000-6,
6-33.a

Description

IEC 80000-6,

is unit for

Symbol General units Qu:.mtlty quantity of is reduced
Kinds . . form?
dimension 1?
IEC 80000-6 true
6-27 [28
IEC 80000-6 true
6-28 [29
IEC 80000-6
Wh/m2 6-21.a [23]
IEC 80000-6
V-s-A/ A-m2 6-21 [23] false
v IEC 80000-6
sm 6-30.a [24]
IEC 80000-6
Wh-m 6-30 [29]
IEC 80000-6
Wo/m 6-32 [29]
N/A IEC 80000-6
6-32.a[24
Ves/ IEC 80000-6
sm 6-32.2[24]
IEC 80000-6
N-A/m2 6-33.a [25]
IEC 80000-6
N-C/m2 6-33.a [25]
IEC 80000-6
J/m3 6-33 [29
Table E.27. Normative units in ISO 80000-6 (4 of 5)
. is unit for .
Symbol General units Qus:lntlty quantity of is reduced
Kinds . . form?
dimension 1?
IEC 80000-6
N/m2 6-33.a [24]

6-33.a

OMG Systems Modeling Language, v1.7

Unit name

volt ampere
per square
metre

ampere metre
per metre

turns

ampere per
volt per
second

henry to the
power minus
one

volt second
per ampere

weber per
ampere

henry

henry factor
squared

henry factor

ampere metre
per volt per
square metre

siemens per
metre

ampere per
volt per metre

metre per
siemens

ohm metre

Description

IEC 80000-6,
6-34.a

IEC 80000-6,
6-37.a

IEC 80000-6,
6-38.a

IEC 80000-6,
6-39.a

IEC 80000-6,
6-39.a

IEC 80000-6,
6-41.a

IEC 80000-6,
6-41.a

IEC 80000-6,
6-41.a

IEC 80000-6,
6-42.2

IEC 80000-6,
6-42.a

IEC 80000-6,
6-43.a

IEC 80000-6,
6-43.a

IEC 80000-6,
6-43.a

IEC 80000-6,
6-44

IEC 80000-6,
6-44.a

Symbol

N-A/m2

A-m/m

A/V-s)

1/H

V-s/A

Wb/A

A-m/V-m2

S/m

A/(V-m)

m/S

Q'm

OMG Systems Modeling Language, v1.7

is unit for

. Quantity . is reduced
General units Kinds (.1uant1.ty of form?
dimension 1?
ISO 80000-5, | IEC 80000-6,
5-8.a [15] 6-34 [29]
IEC 80000-6 false
6-1.a[22
IEC 80000-6 true
6-38 [29
IEC 80000-6
6-39.a [25
IEC 80000-6
6-39 [29
IEC 80000-6
6-41.a [25
IEC 80000-6
6-41.a[25
IEC 80000-6
6-41.1[29]
IEC 80000-6
6-42.2 [29]
IEC 80000-6 true
6-42.1 [29] 4
IEC 80000-6 fal
6-43.a [25] 5
IEC 80000-6
6-43 [29
IEC 80000-6
6-43.a [25
IEC 80000-6
6-44.a [25
IEC 80000-6
6-44 [29

315

Unit name

volt ampere

ohm

volt per
ampere

Unit name

siemens to the
power minus
one

siemens

ampere per
volt

ohm to the
power minus
one

ohm ratio

watt per volt
per ampere

var

second joule

per second

watt hour

316

Description Symbol

IEC 80000-6,
6-45.a, 6-57.a,
6-59.a, 6-61.a

V-A

IEC 80000-6,
6-46.a

IEC 80000-6,

6-46.2 VIA

is unit for

General units Qua:mtlty quantity of
Kinds 3 q
dimension 1?
o SO0 BC 80000-6
18] 6-59 [30
IEC 80000-6
6-46 [30
IEC 80000-6
6-46.a [25

Table E.28. Normative units in ISO 80000-6 (5 of 5)

Description Symbol

IEC 80000-6,

6-46.a I8

IEC 80000-6,
6-47.a

IEC 80000-6,

6-47.a AV

IEC 80000-6,

6-47.2 1/

IEC 80000-6,
6-53.a

IEC 80000-6,
6-58.a

IEC 80000-6,
6-60.b

IEC 80000-6,
6-62.a

IEC 80000-6,
6-62.b

var

s.J/s

W.h

. is unit for
General units Qus-lntlty quantity
Kinds 5 5
dimension 1?
IEC 80000-6
6-46.a [25
IEC 80000-6
6-47 [30
IEC 80000-6
6-47.a [26
IEC 80000-6
6-47.a [26
IEC 80000-6 True
6-53 [30
IEC 80000-6 true
6-58 [30
IEC 80000-6
6-45.a, 6-57.a, | IEC 80000-6,
6-59.a, 6-61.a | 6-60 [30]
[25]
o O | [EC 80000-6
4-36.a [8 6-62[31]
IEC 80000-6
6-62 [31

OMG Systems Modeling Language, v1.7

is reduced
form?

is reduced
form?

false

E.6.5.4.1 Quantity Kind ISO 80000-6
Table E.29. Normative quantity kinds in ISO 80000-6 (1 of 4)

Quantity Kinds
name

electric current in a
thin conducting loop
n

electric current

rms current

electric charge

volumic electric
charge

areic electric charge
lineic electric charge

electric dipole
moment

electric polarization

electric current
density

areic electric current

lineic electric current
electric field strength

electric potential

electric potential
difference

electric tension

voltage

rms voltage

electric flux density

Description

IEC 80000-6, 6-1 In

IEC 80000-6, 6-1 Li

IEC 80000-6, 6-1 I

IEC 80000-6, 62 Q.
IEC 80000-6, 6-3 p,pV

IEC 80000-6, 6-4 pA,c
IEC 80000-6, 6-5 pl,t

IEC 80000-6, 6-6 p
IEC 80000-6, 6-7 P
IEC 80000-6, 6-8 J

IEC 80000-6, 6-8 J

IEC 80000-6, 6-9 Js
IEC 80000-6, 6-10 E
IEC 80000-6, 6-11.1 |V,

IEC 80000-6, 6-11.2 | Vab

IEC 80000-6, 6-11.3 | U,Uab

IEC 80000-6, 6-11.3 | U,Uab

IEC 80000-6, 6-11.3 | U

IEC 80000-6, 6-12 D

OMG Systems Modeling Language, v1.7

General is dimension of 1?

IEC 80000-6, 6-1
[27]

IEC 80000-6. 6-1
[27]

IEC 80000-6, 6-8
[27]

IEC 80000-6, 6-11.1
[27]

IEC 80000-6, 6-11.1
[27]

IEC 80000-6, 6-11.3
[27]

IEC 80000-6, 6-11.3
27

IEC 80000-6, 6-7
[27]

317

Quantity Kinds
name

electric flux density
in vacuum

capacitance

permittivity of
vacuum
permittivity

relative permittivity

electric susceptibility

electric flux

displacement current
density

displacement current

total current

total current density

Quantity Kind
name

magnetic flux density
magnetic flux

linked flux in a loop
caused by an electric
current in that loop

linked flux

linked flux in a loop
m caused by an
electric current in
another loop n

magnetic area
moment

318

Description

IEC 80000-6, 6-12

IEC 80000-6, 6-13

IEC 80000-6, 6-14.1

IEC 80000-6, 6-14.2
IEC 80000-6, 6-15
IEC 80000-6, 6-16

IEC 80000-6, 6-17

IEC 80000-6, 6-18

IEC 80000-6, 6-19.1

IEC 80000-6, 6-19.2

IEC 80000-6, 6-20

Symbol

C

€0

er

X

]

D

ID

Itot It

Jtot ,Jt

General

IEC 80000-6, 6-12
27

IEC 80000-6, 6-14.2
[28]

true

true

IEC 80000-6, 6-2
[27]

IEC 80000-6, 6-20
[28]

IEC 80000-6, 6-19.2
[28]

IEC 80000-6, 6-1
[27]

IEC 80000-6, 6-8
[27]

Table E.30. Normative quantity kinds in ISO 80000-6 (2 of 4)

Description

IEC 80000-6, 6-21
IEC 80000-6, 6-22.1

IEC 80000-6, 6-22.2

IEC 80000-6, 6-22.2

IEC 80000-6, 6-22.2

IEC 80000-6, 6-23

Symbol

B
()

xm,y

m

General

IEC 80000-6, 6-22.2
28]

IEC 80000-6, 6-22.2
[28]

OMG Systems Modeling Language, v1.7

is dimension of 1?

is dimension of 1?

Quantity Kind
name

magnetization

magnetic field
strength in vaccum

magnetic field
strength

permeability of
vaccum
permeability

magnetic flux density
of magnetic field
strength

relative permeability

magnetic
susceptibility

magnetic
polarization

magnetic dipole
moment

coercivity

magnetic vector
potential

energy density of
electric field

energy density of
magnetic field

electromagnetic
energy density
Poynting vector

phase speed of
electromagnetic
waves

phase speed of light
in vaccum

Description

IEC 80000-6, 6-24

IEC 80000-6, 6-25

IEC 80000-6, 6-25

IEC 80000-6, 6-26.1

IEC 80000-6, 6-26.2

IEC 80000-6, 6-26.2

IEC 80000-6, 6-27

IEC 80000-6, 6-28

IEC 80000-6, 6-29

IEC 80000-6, 6-30

IEC 80000-6, 6-31

IEC 80000-6, 6-32

IEC 80000-6, 6-33

IEC 80000-6, 6-33

IEC 80000-6, 6-33

IEC 80000-6, 6-34

IEC 80000-6, 6-35.1

IEC 80000-6, 6-35.2

OMG Systems Modeling Language, v1.7

Symbol

M, Hi

HO

no

ur

K5,(xm)

Jm

jm j

Hc,B

General is dimension of 1?

IEC 80000-6, 6-25
28]

IEC 80000-6, 6-25
[28]

IEC 80000-6, 6-26.2
28]

IEC 80000-6, 6-26.2
[28]

true

true

IEC 80000-6, 6-25
[28]

IEC 80000-6, 6-33
[29]

IEC 80000-6. 6-33
[29]

ISO 80000-3, 3-8.2
5]

IEC 80000-6, 6-35.1
[29]

319

Quantity Kind
name

source voltage

scalar magnetic
potential

magnetic tension

magnetomotive force

current linkage

Quantity Kind
name

number of turns in a
winding

reluctance
permeanance

inductance

mutual inductance

self inductance

coupling factor
leakage factor
conductivity

resistivity

electric power

electric resistance
electric conductance

initial phase of
electric voltage

320

Description

IEC 80000-6, 6-36

IEC 80000-6, 6-37.2

IEC 80000-6, 6-37.3

IEC 80000-6, 6-37.4

Symbol

Us

Vm,o

Um

(¢}

General is dimension of 1?

IEC 80000-6, 6-11.3
27

IEC 80000-6, 6-1
[27]

IEC 80000-6, 6-1
[27]

IEC 80000-6, 6-1
[27]

IEC 80000-6. 6-1
[27]

Table E.31. Normative quantity kinds in ISO 80000-6 (3 of 4)

Description

IEC 80000-6, 6-38

IEC 80000-6, 6-39
IEC 80000-6, 6-40
IEC 80000-6, 6-41.1

IEC 80000-6, 6-41.1

IEC 80000-6, 6-41.1

IEC 80000-6, 6-42.1
IEC 80000-6, 6-42.2
IEC 80000-6, 6-43
IEC 80000-6, 6-44

IEC 80000-6, 6-45

IEC 80000-6, 6-46
IEC 80000-6, 6-47

IEC 80000-6, 6-48

Symbol

Rm,R

L,Lm

Lmn

ou

General is dimension 1?

IEC 80000-6, 6-41.1
[29]

IEC 80000-6, 6-41.1
[29]

ISO 800004, 4-26
[13]

ISO 80000-3, 3-5 [5]

OMG Systems Modeling Language, v1.7

Quantity Kind
name

phase difference

initial phase of
electric current

electric current

phasor

voltage phasor

complex impedance

resistance to
alternating electric
current

reactance to
alternating electric
current

modulus of
impedance

Quantity Kind
name

complex admittance

conductance to
alternating current

susceptance to
alternating current

modulus of
admittance

quality factor

loss factor

loss angle

active power

apparent power

Description

IEC 80000-6, 6-48

IEC 80000-6, 6-48

IEC 80000-6, 6-49

IEC 80000-6, 6-50

IEC 80000-6, 6-51.1

IEC 80000-6, 6-51.2

IEC 80000-6, 6-51.3

IEC 80000-6, 6-51.4

oi

V4

General

ISO 80000-3, 3-5 [5]

ISO 80000-3, 3-5 [5]

IEC 80000-6, 6-1 [27

]

IEC 80000-6. 6-11.3
[27]

IEC 80000-6, 6-46
[30]

IEC 80000-6, 6-51.1
[30]

IEC 80000-6, 6-51.1
[30]

IEC 80000-6, 6-51.1
[30]

Table E.32. Normative quantity kinds in ISO 80000-6 (40f 4)

Description

IEC 80000-6, 6-52.1

IEC 80000-6, 6-52.2

IEC 80000-6, 6-52.3

IEC 80000-6, 6-52.4

IEC 80000-6, 6-53
IEC 80000-6, 6-54

IEC 80000-6, 6-55

IEC 80000-6, 6-56

IEC 80000-6, 6-57

OMG Systems Modeling Language, v1.7

General

IEC 80000-6, 6-52.1
[30]

IEC 80000-6, 6-52.1
[30]

IEC 80000-6, 6-52.1
[30]

ISO 80000-3, 3-5 [5]

IEC 80000-6, 6-59
[30]

is dimension 1?

is dimension 1?

true

true

true

321

Quantity Kind
name

power factor

complex power

reactive power

non-active power

active energy

Description

IEC 80000-6, 6-58
IEC 80000-6, 6-59

IEC 80000-6, 6-60

IEC 80000-6, 6-61

IEC 80000-6, 6-62

E.6.5.5 1ISO 80000-7 Light

Symbol General is dimension 1?
A true
S
Q IEC 80000-6, 6-59
[30]
Q IEC 80000-6, 6-56
[30]
W

The subset of the normative contents of ISO 80000-7 is identical to that of SysML 1.4 as summarized below.
Table E.33. Units in ISO 80000-7

is unit for

Unit name Description Symbol General units Quz:mtlty quantity of is reduced
Kinds & . form?
dimension 1?

refractive ISO 80000-7, ISO 80000-7 true
index 7-5.a 7-5 [33]
lume ISO 80000-7, Im ISO 80000-7
Hmen 7-32.a 7-32 [33]
candela ISO 80000-7, od ISO 80000-7

7-35.a 7-35[33
lux ISO 80000-7, Ix ISO 80000-7

7-36.a 7-36 [33
candela per ISO 80000-7, ed/m™2 ISO 80000-7
square metre | 7-37.a 7-37 [33

Table E.34. Quantity Kinds in ISO 80000-7
Quarlllt;l);eKmd Description Symbol General units Quantity kinds

speed of light in 1SO 80000-7, 7-4.1 | ¢0 ISO 80000-3, 3-8.1
vaccum [5]
phase speed of light 1SO 80000-7, 7-42 ¢ ISO 80000-3, 3-8.2
in medium 5]
refractive index ISO 80000-7, 7-5 n true

322

OMG Systems Modeling Language, v1.7

Quantity Kind
name

radiant flux

luminous flux
luminous intensity
illuminance

luminance

Description

ISO 80000-7, 7-13

ISO 80000-7, 7-32
ISO 80000-7, 7-35
ISO 80000-7, 7-36
ISO 80000-7, 7-37

Symbol

Dv (D)
Iv,(I)
Ev,(E)
Lv,(L)

General units

ISO 800004, 4-26

[13]

Quantity kinds

E.6.5.6 ISO 80000-9 Physical Chemistry and Molecular Physic

The subset of the normative contents of ISO 80000-9 is identical to that of SysML 1.4 as summarized below.
Table E.35. Units in ISO 80000-9

Quanti e T is reduced
Unit name Description Symbol General units b ty quantity of U
Kinds K . form?
dimension 1?
ISO 80000-9, ISO 80000- 9
mole mol
9-l.a 9-1
mole per cubic | ISO 80000-9, mol/m3 ISO 80000- 9
metre 9-13.a 9-13
Table E.36. Quantity Kinds in ISO 80000-9
Qual:}:zeKmd Description Symbol General units Quantity kinds

amount of substance |ISO 80000-9, 9-1 n

amount of substance

. ISO 80000-9, 9-13 cB
concentration

E.6.5.7 ISO 80000-10 Atomic and Nuclear Physics

The 3 units and 3 quantity kind definitions included were in the non-normative ISO 80000-10 library of SysML 1.3.
Table E.37. Units in ISO 80000-10

Quanti [it is reduced
Unit name Description Symbol General units . ty quantity of
Kinds . . form?
dimension 1?
becquerel ISO 80000-10, B ISO 80000-
d 10-29.a d 10. 10-29
- ISO 80000-10, G ISO 80000-
gray 10-84.a y 10.10-84
sievert ISO 80000-10, S ISO 80000-
v 10-86.a v 10. 10-86

OMG Systems Modeling Language, v1.7 323

Table E.38. Quantity Kinds in ISO 80000-10

Quantity Kind
name

radionuclide activity | ISO 80000-10, 10-29 | A

ISO 80000-10,
10-81.1

dose equivalent ISO 80000-10, 10-86 H

Description Symbol General units Quantity kinds

absorbed dose D

E.6.5.8 ISO 80000-13 Information Science and Technology

SysML 1.4 adds commonly used 3 units (bit, byte and octet) of information and 3 of their associated quantity kinds.
Table E.39. Units in ISO 80000-13

is unit for

Unit name Description Symbol General units Qua:mtlty quantity of is reduced
Kinds k . form?
dimension 1?
. IEC 80000-13, |, . IEC 80000-
bit 13-9.b bit 13.13-9 true
IEC 80000-13, IEC 80000-
byte 13-9.c B 13.13-9 true
octet IEC 80000-13, o IEC 80000- true
13-9.c 13,139
Table E.40. Quantity Kinds in ISO 80000-13
Qual:l:zemnd Description Symbol General units Quantity kinds
storage capacity IEC 80000-13, 13-9 true
storage size IEC 80000-13,13-9 M IEC 80000- 13, 13-9 | true
equivalent binary 5 g4000.13, 13-10 | Me true

storage capacity

E.7 Distribution Extensions

E.7.1 Overview

This sub clause describes a non-normative extension to provide a candidate set of distributions (see Section 8.3.2.7,
DistributedProperty). It consists of a profile containing stereotypes that can be used to specify distributions for
properties of blocks.

E.7.2 Stereotypes
E.7.2.1 Package Distributions

324 OMG Systems Modeling Language, v1.7

«stereotype»

DistributedProperty
«stereotype» «stereotype»
Basiclnterval Normal
min : Real mean : Real
max : Real standardDeviation : Real

«stereotype»
Interval

«stereotype»
Uniform

Figure E.21. Basic distribution stereotypes

Stereotype

«Basiclnterval»

«Interval»

«Uniform»

«Normal»

Table E.41. Distribution Stereotypes

Base class

«DistributedProperty»

«BasicInterval»

«BasiclInterval»

«DistributedProperty»

OMG Systems Modeling Language, v1.7

Properties

min:Real max:Real

N/A

N/A

mean:Real standard
Deviation:Real

N/A

N/A

N/A

N/A

Constraints

Description

Basic Interval
distribution - value
between min and
max inclusive

Interval distribution -
unknown probability
between min and
max

Uniform distribution
- constant probability
between min and
max

Normal distribution -
constant probability
between min and
max

325

E.7.3 Usage Example

bdd [Block] FiringRange)

«block»
Cannon

values
«normal» force : force[newton]{mean = 100.0, standardDeviation = 1.0}

«block»
Shot

values
«interval» volume : volume[cubic metre]{max = 105.0, min = 101.0}
density : density[kilogram per cubic metre]
acceleration : acceleration[metre per second squared]

Figure E.22. Distribution Example

Fig. E.22 shows a simple example of using distributions; the force of the Cannon is specified using a Normal
distribution with parameters mean and standard deviation. Whereas the use of a Normal distribution can be inferred
from the names of its parameters, an Interval distribution shares parameters with a Uniform distribution, hence the
stereotype keyword «intervaly is used to distinguish it.

E.8 Building Non-Normative Extensions for Property-Based
Requirements

E.8.1 Overview

Annex Section E.3 addresses extending requirements that are fundamentally textual in nature. They may be
extended with various enumerations (for example RiskKind or VerifyMethodKind), and they may have different
modeling constraints applied to the requirements relationships, but the requirements are only expressed as text
strings.

Expressing requirements as text strings alone fundamentally limits their ability to be evaluated and verified. This
Annex addresses a more formal expression of requirements generally referred to as property based requirements
(PBR); one that includes quantitative specification of numerical parameters, relationships, equations and/or
constraints.

Current users of text-based requirements have frequently expressed a basic need to represent numerical requirements
more precisely, both to reduce ambiguity and facilitate verification by analysis and other methods. This basic need
can be decomposed into three primary needs: 1) Requirements shall have numerical properties (properties capable of
representing numerical values), 2) these numerical properties shall be typeable (preferably by ValueType) to account
for quantity kind and units, and 3) these numerical properties shall be bindable (preferably using BindingConnector)
to other model elements (e.g., ConstraintParameters) so they can be evaluated using analysis tools. For the purpose
of this discussion, a requirement that meets these three conditions is said to be a property-based requirement.

This kind of property-based requirement is intended to be used with the overall system model to assist in specifying
and architecting systems. More generally, the system model may be used as a model-based specification, such as
when block instances with specific property values represent the requirement. In this latter case, the model-based
specification can further refine the property-based requirement.

Users of property-based requirements may desire a more elaborate capability than the primary need described above.
For example, it may be desirable for the requirement to contain a constraint or mathematical expression that
formally states an acceptance condition, threshold, or goal. This may alternatively need to be expressed as a set of
valued pairs, elaborating both the conditions and the acceptance thresholds for each condition, or by an arbitrary

326 OMG Systems Modeling Language, v1.7

graphical relationship. Some users may want the property-based requirement to formally own a behavior
representing the functionality of the requirement, or the behavior by which it is satisfied or verified.

The need for this kind of property-based requirement is illustrated in the simple example of specifying a vehicle’s

required stopping distance for various initial speeds and road conditions. The requirement can be expressed in a

table as follows:

The Vehicle stopping distance shall not exceed the values in Table E.42 as a function of initial speed and pavement

condition.

Initial Speed
(mph)

0
10
20
30
40
50
60
70
80
90
100

Condition (wet/

dry
dry
dry
dry
dry
dry
dry
dry
dry
dry
dry

Table E.42. Example of Requirement in Tabular Form

Pavement

dry)

Distance-Dry

0

4
17
38
67
104
150
205
267
338
418

Required
Stopping

(feet)

An alternative expression in plot format can be:

Initial Speed

10
20
30
40
50
60
70
80
90
100

(mph)

Condition (wet/

wet
wet
wet
wet
wet
wet
wet
wet
wet
wet

wet

Pavement

dry)

Required
Stopping

Distance-Wet

22
50
&9
139
201
273
357
451
557

(feet)

The Vehicle stopping distance shall not exceed the values in Overview as a function of initial speed and pavement

condition.

OMG Systems Modeling Language, v1.7

327

600

500
£
S 400
..
g 200 - = R?q'd Stopping
a9 Distance-Wet (feet)
§ 200 Req'd Stopping
b Distance-Dry (feet)
100
0

0 10 20 30 40 50 60 70 80 S0 100
Initial Velocity (mph)

Figure E.23. Example of Requirement in Graphical Form

The input/output parameter relationship or constraint can be specified in equation form, such as in the following
example:

Stopping distance <= (1/(2%32.174*alpha)*(5280*Initial Speed/3600)"2)
Start Speed = 0..100

alpha
dry 0.8
wet 0.6

More generally, the input and output parameter values may be complex functions of other parameters, and may have
probability distributions associated with them.

This annex addresses mechanisms and approaches for building SysML profiles to enable property-based
requirements. While examples of property-based requirement profiles are provided in this annex, these are not to be
considered normative or even authoritative. Instead, they are intended to be illustrative of the kind of extensions that
some users may find desirable. Ultimate responsibility for the compatibility of any property-based requirement
profile with a particular requirements management process or toolset rests fully with the user.

E.8.2 An Example PBR Profile Based on ConstraintBlock

Using «constraintBlock» as a base class for PBR may prove compact, simple, and intuitive. The following example
first establishes a PBR user profile, and then employs that profile for a simple user example.

E.8.2.1 Profile/Stereotypes of PBR Based on ConstraintBlock

Fig. E.24 shows use of both «abstractRequirement» and «constraintBlock» to define a new PBR stereotype, named
RequirementConstraintBlock in this example for clarity.

328 OMG Systems Modeling Language, v1.7

bdd [Profile] PBR Profilgl Example of a PBR Profile Based on ConstraintBquk)

«stereotype» «stereotype»
AbstractRequirement ConstraintBlock
[NamedElement] [Class]
attributes {-- Cannot be expressed in OCL,
text : String [1] UML::Classifier.allinstances()->forAll(c | c.general->includes(self.base_Class) implies ConstraintBlock.alllnstances().base_Class->includes(c)),
id : String [1){id} self.base_Class.ownedAttribute->forAll(p| p.isComposite) }

Iderived : AbstractRequirement [0..*]
/derivedFrom : AbstractRequirement [0..*]
/satisfiedBy : NamedElement [0..*]
IrefinedBy : NamedElement [0..*]
IltracedTo : NamedElement [0..*]
IverifiedBy : NamedElement [0..*]
/master : AbstractRequirement [0..*]
«stereotype»
RequirementConstraintBlock

Figure E.24. Example of a PBR Profile Based on ConstraintBlock

Basing PBR on ConstraintBlock provides flexibility in expressing the name of required numerical values as
ConstraintParameters, which can be typed by ValueTypes and related to properties or parameters of other model
elements using binding connectors. Textual requirement statements may be restated as constraint expressions that
reference these ConstraintParameters. The value bindings can then be used to evaluate the constraint expression and
determine compliance with the requirement.

The numerical required value may then be stored as a DefaultValue of the ConstraintParameter. It may alternatively
be specified directly in a constraint expression, rather than a default value, e.g., {requiredWeight = 1450} where
requiredWeight is defined as a constraint parameter typed by a value type. Complex requirement criteria may be
represented by a series of constraint expressions.

It is also noted that constraint blocks can have owned behavior, and that a constraint expression can be a value
expression (with opaque behavior).

E.8.2.2 Usage Example using PBR profile based on ConstraintBlock

The following example leverages the above PBR user profile based on ConstraintBlock to specify and evaluate the
weight of a vehicle.

The requirement is captured via a PBR (RequirementConstraintBlock), which includes a constraint expression that
reflects the textual requirements statement in terms of two defined parameters, actualMass and requiredMass. Both
of these parameters are typed by the kilogram value type from the SI value types library. The required value for
mass is expressed as a default value of the requiredMass parameter. Note that the required value may have
alternatively been expressed as a second constraint expression, e.g., {requiredMass = 1450}. The vehicle itself is
represented in the model by a block with a value property for mass, also typed by the kilogram SI value type.

As shown in Fig. E.25, the context for evaluating if the requirement has been met is established using a Requirement
Context block. This method of context setting is a best practice that is not essential to this example. Both the Vehicle
and the Vehicle Mass Requirement are used in this Requirement Context.

par [Block] Requirement Contex{ Example of Parametric Diagram Using PBR based on Constraint BIo}:Q

requiredMass
v01 : Vehicle Default Value = 1450.0

[

actualMass «RequirementConstraintBlock»
r1.01 : Vehicle Mass Requirement
{actualMass < requiredMass}

vehicleMass : mass[kilogram]

Figure E.25. Example of Parametric Diagram Using PBR based on Constraint Block

Fig. E.26 shows a parametric diagram of the Requirement Context block, useful for establishing the method of
evaluating compliance of the vehicleMass value with the Vehicle Mass Requirement. As with any parametric model,

OMG Systems Modeling Language, v1.7 329

it does not actually perform the evaluation/analysis, but it does specify the key relationships so that an evaluation
tool may determine if the weight requirement has been met.

bdd [Package] Vehicle Example[Example of Requirement Evaluation Context Using PBR Based on Constraint BIQC}J

«block»
Requirement Context

v01

r1.01

«block»
Vehicle

vehicleMass : mass[kilogram]

values

Vehicle Mass Requirement

«RequirementConstraintBlock»

constraints
{actualMass < requiredMass}

id="1"

than or equal to 145 kilograms."

text = "The vehicle mass shall be less

parameters
actualMass : mass[kilogram]

requiredMass : masslkilogram] = 1450.0 kg

Figure E.26. Example of Requirement Evaluation Context Using PBR Based on Constraint Block

E.8.3 An Example PBR Profile Based on Constraint

Constraints are arguably the most straightforward way for representing system requirements. Their specification
may be provided by opaque constraint expressions, which can be expressed in formal (and computable) languages
like OCL. This allows the constraint statement to be applied directly to a specific design, without necessarily

applying a formal evaluation context.

E.8.3.1 Profile/Stereotypes of PBR based on Constraint

Fig. E.27 shows use of both «abstractRequirement» and «constraint» to define a new PBR stereotype, named

CbRequirement in this example.

«stereotype»
AbstractRequirement
[NamedElement]

attributes
text : String [1]
id : String [1Kid}
/derived : AbstractRequirement [0..*]
/derivedFrom : AbstractRequirement [0..*]
/satisfiedBy : NamedElement [0..*]
/refinedBy : NamedElement [0..*]

IverifiedBy : NamedElement [0..%]
/master : AbstractRequirement [0..*]

«Metaclass»
Constraint

«stereotype»
CbRequirement

/tracedTo : NamedElement [0..*] 4

attributes

text : String [1]

Figure E.27. Example of a PBR profile based on Constraints

E.8.3.2 Example using PBR profile based on Constraint

330

OMG Systems Modeling Language, v1.7

Fig. E.28 shows how requirements are specified on the model representing a specification. Note that, as modeled
here, the requirement represented by Constraint2 applies to any instance of the Vehicle block while the one
represented by Constraint] applies to instances of Vehicle block which are “used” as defined by the “vehicle” role of
the Context block, such as the design weight of the vehicle on a bridge or vehicle transporter.

«block» «block»
Vehicle vehicle Auses context Context _ «CbRequirement»
values 1 * — — — 1Constraint1
weight : Real [1] {{OCL}self.vehicle. weight<=3200}
\
\

«CbRequirement»

Constraint2
{{OCL}self.weight<5000}

Figure E.28. Example of PBR based on Constraint used in different contexts

Fig. E.29 shows a particular case where tested Vehicle is an instance of the Vehicle block and AnalysisContext an
instance of the Context block, as specified above. A simple evaluation of model constraints using a classical OCL
evaluator would produce a report showing that Requirement/Constraint2 is met, while Requirement/Constraintl is
violated.

AnalysisContext : Context - A uses testedVehicle : Vehicle
context vehicle Welght . Rea|[1] = 3500.0

Figure E.29. Establishing an Analysis Context for evaluating requirement compliance using PBR based on
Constraint

E.8.4 An Example Property Based Requirement based on Block

Property based requirements can be based on a Block which allows to define additional properties like value
properties.

Fig. E.30 shows use of both “abstractRequirement” and “Block™ to define a new PBR stereotype, named «PBR» in
this example.

bdd [Model] Data Property Based Requirement Stereotypd_J

o tereotyper «stereotyper
«commenty AbstractRequirement Block
New in SysML 1.5 = [NamedElement] [Class]

attributes {UML: i lect(al a forAlle] e.typ pty() and Block).base_Cl forAll(a | a. =2,
text : String [1] self.base_Class.ownedConnector->forAll(c | ¢.end:)=2).

id : String [1]{id} ~ Cannot be expressed in OCL
self base_Class. i lect(a| ValueTyp).base_DataTyp: isComposite(),
self.base_Cl: I t ‘ype.ocl K\ndOi(UML Class)). type chAsType(UML C\ass)) >exc|udes(sew base_Class),
DML: Classifir. (c|c. | e_Cl li(c | Bl
«comments _Cla i lect 'ValueType alllnstan \;base DataType ~includes(a. typej) >forAll(ala.isComposite()}
«comment» = User defined Properly Based
SysML 1.4 - —— Requirement stereotype M
«stereotype» botyper L~~~ " 77" |
PBR rement
[Class] fass]
{self.base_Class.ownedOperation->isEmpty(),
self base _Class.ownedAttribute->isEmpty(),
UML: iati). tten().typ base_Class)|
UML::Classifier.).g I base_Class),
self.base_Class.nestedClassifier->forAll(c |)-base_Cl
UML:T,) type base_Class)

Figure E.30. Property Based Requirement Stereotype
Fig. E.31 gives an example where a requirement element “Max Peak Power Requirement is created. It defines “id,”
“text,” and “maxPeakPwr.”

It also has additionally a constraint property “maxPower” which permits to define constraints for the value
properties. The requirement is contextualized in the block “System Specification.” The block “Verification Context”
contextualizes the block “System Design” which holds the as-designed “totalPower” value property. In this context

OMG Systems Modeling Language, v1.7 331

the as-designed value is bound to the requirement constraint for the purpose of analysis to verify that the designed
value satisfies the required value.

bdd [Model] Data[Property Based Requirement Library)

«block»
System Specification

max Peak Power Requirement

«PBR » ibd [Block] Max Peak Power Requiremenu
«block»
Max Peak Power Requirement «constraint

values .
id=1 maxPeakPwr : W ©B : maxPower p1
text = The maximum peak power shall be less than 8.5 kW {p1<=p2}

maxPeakPwr : W = 8500.0

s

«constraint»
maxPower
«comment»

constraints .)

{p1 <=p2} Parametric model of requirement can
relate properties of requirement

parameters
p1
p2

«block» par [Block] Verification Context)
Verification Context

system Specification : System Specification system Design :
System Design

tem Specificati tem Desi
system Specification system Design max Peak Power Requirement : Max Peak Power Requirement

«block» «block»
System Specification System Design

values cB : maxPower p1
totalPower : W maxPeakPwr : W] (p1<=p2) totalPower : W

«constraint»

Figure E.31. Property Based Requirement Library

332 OMG Systems Modeling Language, v1.7

Annex F: Requirements Traceability

(Informative)

The OMG SysML requirements traceability matrix traces this International Standard to the original source
requirements in the UML for Systems Engineering RFP (ad/2003-03-41). The traceability matrix is included by
reference in a separate document (ptc/2007-03-09).

OMG Systems Modeling Language, v1.7 333

This page intentionally left blank.

334 OMG Systems Modeling Language, v1.7

Annex G: Model Interchange

(informative)

G.1 Overview

This annex describes two methods for exchanging SysML models between tools. The first method discussed is XML
Metadata Interchange (XMI), which is the preferred method for exchanging models between UML-based tools. The
second approach describes the use of ISO 10303-233 Application Protocol: Systems engineering (AP233), which is
one of the series of STEP (Standard for the Exchange of Product Model Data) engineering data exchange standards.
Other model interchange approaches are possible, but the ones described in this annex are expected to be the
primary ones supported by SysML.

G.2 Context for Model Interchange

Developing today’s complex systems typically requires engineering teams that are distributed in time and space and
that are often composed of many companies, each with their own culture, methods, and tools. Effective
collaboration requires agreement on, and a thorough understanding of, the various work assignments and resulting
artifacts.

Many of these artifacts pertain to shared engineering data (e.g., requirements, system structural and behavioral
models, verification & validation) that transcend the entire life cycle of the system of interest and are the basis for
important systems engineering considerations and decisions. So it is critical that the system information contained in
these artifacts and information models be accurately captured and readable by all appropriate team members in a
timely manner.

Today, this information resides in an array of tools where each is only concerned with a portion of systems
engineering data and can’t share its data with other tools because they only understand their own native schema. To
mitigate this situation, collaborating organizations are usually forced to either adopt a common set of tools or
develop a unique, bidirectional interface between many of the tools that each organization uses. This can be an
expensive and untimely approach to data exchange between team members. So, there is a need to define
standardized approaches for model interchange between the different data schemas in use.

G.3 XMI Serialization of SysML

UML 2.5.1 is formally defined using the OMG Meta Object Facility (MOF). MOF can be considered a language for
specifying modeling languages. The OMG XML Metadata Interchange (XMI) 2.5.1 standard specifies an XML-
based interchange format for any language modeled using MOF. This results in a standard, convenient format for
serializing UML user models as XMI files for interchange between UML tools. The XMI specification also includes
rules for generating an XML Schema that can be used for basic validation of the structure of those UML user model
XMI files.

The UML language includes an extension mechanism called UML Profiles. UML Profiles are themselves defined as
UML models (MOF is not used). However, their intent is to specify extensions to the UML language semantics in
much the same way one could extend the UML language by adding to the MOF definition of UML. As UML
Profiles are valid UML models, XMI does provide a mechanism for exchanging the UML Profiles between UML
tools. However, as they are extensions to concepts defined in the UML language itself, the definition of a UML
Profile refers to the UML language definitions. An XMI 2.5.1 representation of the SysML profile (i.e., the UML
Profile for SysML), as well as XMI 2.5.1 representations of Model Libraries defined by SysML, are provided as
support documents to this International Standard. As with UML, XMI provides a convenient serialized format for
model interchange between SysML tools and basic validation of those files using an XML Schema as well.

The namespace for the standard profile is: https://www.omg.org/spec/SysML/1.7/SysML.xmi.

G.4 SysML Model Interchange Using AP233

AP233 is a data exchange standard designed to support the exchange of systems engineering data between the many
and varied software tools that systems engineers use in the course of their work. Data from systems modeling tools

OMG Systems Modeling Language, v1.7 335

https://www.omg.org/spec/SysML/1.7/SysML.xmi

is included in the scope of AP233, in fact, requirements for AP233 and SysML have been largely aligned by the
OMG and the ISO teams working together and in close cooperation with the INCOSE Model Driven System Design
working group.

G.4.1 Scope of AP233

package AnnexG [SysMLIAP233 Data Overlapy J

/ AP233 ><'—— SysML
/{r Lifecycle Stages mw

¢
Eng Confia Mamt /[System Structures/Blocks E Diagrams
(Or;anizations |J V&V | [Activities]) Allocations
|’ Schedule ﬂ Text-based Reguirements |]| Parametricsg
Change Management [Function Models]j ll Views and Viewpoints]j

(Approvals, Security, Status |J

b \ | State Machines I] >

[T Requirements Management) { Model Organization]J

— A} L, Property & Units J

| Property-based Requirements |J
\I >

[[Interfaces/Ports & Flows ﬂ

Figure G.1. SysML/AP233 Data Overlaps
AP233 includes support for assigning program management information as well as system modeling information to
systems engineering data.

Program management capabilities include issue management, risk management, and aspects of project management
such as project breakdown, project resource information, organization structure, schedule, and work structure.

System modeling capabilities include requirements and requirements allocation, trade studies with measures of
effectiveness, interface to analysis, function-based behavior, state-based behavior, system hierarchies for the design
system, the realized system, and all interfaces.

Additional information about AP233 can be found at https://www.ap233.org/.

G.4.2 STEP Architecture

AP233 is standardized under ISO Technical Committee 184 (Industrial Automation Systems and Integration),
Subcommittee 4 (Industrial Data). AP233 is part of the family of ISO 10303 standards, referred to as STEP, that
include standardized models and infrastructure for the exchange of product model data.

The STEP architecture is modular. This enables the component information models to be reused across disciplines
and life-cycle stages in different application protocols, which are the models used for implementation. STEP models
are written using the ISO 10303-11 EXPRESS language.

STEP also standardizes a series of implementation methods: a text file structure (ISO 10303-21), a data access
interface (ISO 10303-22) and an XML file format (ISO 10303-28). The data access interface has bindings that
provide standardized APIs for accessing EXPRESS-based data in various programming languages. A conforming
STEP implementation is the combination of a STEP application protocol and one or more of the implementation
methods.

336 OMG Systems Modeling Language, v1.7

https://www.ap233.org/

The scope of STEP is very large and a number of data exchange standards (e.g., geometry, product life-cycle
support, structural, electrical, and engineering analysis) have been in wide use in industry for more than 15 years.
Support for several systems engineering viewpoints within the scope of AP233 are shared with other application
protocols. Since AP233 is part of STEDP, it is easy to relate systems engineering data to that of other engineering
disciplines over the life cycle of a system and to related product models.

For more information on the STEP architecture see the ISO TC184/SC4 Industrial Data subcommittee web page at
https://www.tc184-sc4.org.

G.4.3 EXPRESS

AP233, like all STEP application protocols, is defined using the EXPRESS modeling language. EXPRESS is a
precise text-based information modeling language with a related graphical representation called EXPRESS-G.

An example of the text-based format follows:

SCHEMA Ap233 systems engineering arm excerpt;
ENTITY Product;

id : STRING;
name : STRING;
description : OPTIONAL STRING;

END_ENTITY;

ENTITY Product version;
id : STRING;
description : OPTIONAL STRING;
of product : Product;

END_ENTITY;

ENTITY Product view definition;
id : OPTIONAL STRING;
name : OPTIONAL STRING;
additional characterization : OPTIONAL STRING;
initial context : View definition context;
additional contexts : SET [0:?] OF View definition context;
defined version : Product version;

WHERE

WR1: NOT (initial context IN additional contexts);
WR2: EXISTS(id) OR (TYPEOF(SELF\Product_view_definition) <> TYPEOF (SELF)) ;

END_ENTITY;

ENTITY View definition context;
application domain : STRING;
life cycle stage : STRING;
description : OPTIONAL STRING;

WHERE

WR1: (SIZEOF (USEDIN(SELF, 'AP233 SYSTEMS ENGINEERING ARM EXCERPT.' +

'"PRODUCT VIEW DEFINITION.INITIAL CONTEXT')) > 0) OR
(SIZEOF (USEDIN(SELF, 'AP233 SYSTEMS ENGINEERING ARM EXCERPT.' +
'"PRODUCT VIEW DEFINITION.ADDITIONAL CONTEXTS')) > 0);

OMG Systems Modeling Language, v1.7 337

https://www.tc184-sc4.org/

END_ENTITY;

ENTITY System
SUBTYPE OF (Product);

END_ENTITY;

ENTITY System version
SUBTYPE OF (Product version);
SELF\Product version.of product : System;

END_ENTITY;

ENTITY System view definition
SUBTYPE OF (Product view definition);

SELF\Product view definition.defined version : System version;
END ENTITY;

END SCHEMA;

EXPRESS expressions are similar in nature to OCL expressions and the two languages have similar expressiveness.
EXPRESS has also been approved as an OMG standard with a September 2009 publication of Version 1.0 of the
Reference Metamodel for the EXPRESS Information Modeling Language Specification. This will enable the use of
OMG Model Driven Architecture technologies against AP233 and other STEP models written in EXPRESS.

G.4.4 SysML-AP233 Mapping

A formal and standardized mapping between SysML and AP233 is being developed within the OMG. The mapping
is a specification for SysML and other tool vendors to implement so that their tools can import from and export to
AP233 data exchange files. AP233 usage is aimed primarily at scenarios where SysML data is fed to downstream
applications such as those used in manufacturing, life cycle management, or systems maintenance. Additional
information can be found at the OMG SysML Portal at https://www.omgwiki.org/OMGSysML/.

338 OMG Systems Modeling Language, v1.7

https://www.omgwiki.org/OMGSysML/

Annex H: Precise Semantics of SysML

(informative)

H.1 Overview

This annex defines the precise semantics of the abstract syntax of a subset of SysML stereotypes. This semantic
definition is given as an extension to the semantic model for PSCS (see [PSCS], Clause 8), which is itself an
extension of the execution model for f{UML (see [fUML], Clause 8). This annex includes only the extensions to the
PSCS model necessary for SysML. However, the full semantics of the SysML subset included in this annex are
given by the f{UML execution model as extended for PSCS, which is then a complete, executable f{UML model of
the operational semantics for the combined PSCS and SysML subset.

The SysML execution model is given as an extension of the PSCS model in order to ensure that SysML semantics
are compatible with PSCS semantics.

The SysML semantics specified by this annex does not depend on PSSM. However it is possible for an execution
engine to conform to both PSSM and this specification.

The circularity of defining SysML semantics by extending the fUML execution model, which is itself a f{UML
model, is handled as it is in fUML. That is, the execution model is defined using only the further subset of fUML
whose semantics are separately specified by the f{UML base semantics (see [fUML], Clause 10), which is not
extended further for the purposes of SysML. This further subset, known as Base UML (or “bUML”) includes a
subset of UML activity modeling that is used to specify the detailed behavior of all concrete operations in the
execution model. However, rather than using activity diagram notation to represent such activity models, they are
specified in the execution model extensions for SysML using the Java-syntax textual notation whose mapping to
UML is given in Annex A of [fUML].

The SysML extensions to the PSCS execution model are organized into five packages. Figure H.1 shows each of
these packages and their dependencies on packages from the SysML profile and from fUML and PSCS semantic
models. These dependencies are represented as package-import relationships, which also make the unqualified
names of the necessary syntactic and semantics elements visible for use in the detailed behavioral code of each of
the SysML semantics packages.

The subsequent clauses in this annex describe each of the SysML semantics packages in turn. The description
includes a class model for the contents of the package and an explanation of the operational semantics defined by the
functionality of the classes in the model. Those packages are organized as follows:

+ the "Actions" package specifies additional constraints on the UML::Actions package that restrict the scope of
models on which this operational semantics applies. It defines also a set of semantics visitors that extends some
from the f{UML::Semantics::Actions package according to semantics defined by SysML stereotypes.

» The "Activities" package defines a set of semantics visitors that extends some from the
fUML::Semantics::Activities package according to semantics defined by SysML stereotypes.

» The "Blocks" package extends the CS_Object visitor define by the PSCS specification and defines a set of
construct that can support the semantics defined by SysML stereotypes from the SysML::Blocks package.

» The "PortsAndFlows" package specifies additional constraints on ports, Flow properties and directed features
that restrict the scope of models on which this operational semantics applies.

* The "Loci" package is added for specifying necessary extensions of the Loci package of PSCS together with a
set of utility operations that simplify the specification of teh semantics visitors

OMG Systems Modeling Language, v1.7 339

package [Package] SysML_Semantics| SysMLisemamics]J
PSCS_Semantics
Semantics
Actions _ _ wmport» | | | Actions fUML_Semantics A
(SysML_Semantics)]
«profile» .
SysML Semantics
Activities) Activities «import» Activities
| _mport> | (SysML_Semantics) [T T — — 7T r-— === =7 = 1|
Blocks «import» Blocks) o
<l—-— - - (SysML_Semantics) |— — «import» | StructuredClassifiers
)
|
«import» |
Ports&Flows) PortsAndFlows | _ _ _ _ | | _ _ _ _ |
| _«import> | (SysML_Semantics)
i
Loci «import» N Logi
***** oci
(SysML_Semantics)

Figure H.1. SysML_Semantics

H.2 References

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification. For versioned references, subsequent amendments to, or revisions of, any of these publications
do not apply.

[fUML] Semantics of a Foundational Subset for Executable UML Models (fUML), version 1.5,
http://www.omg.org/spec/FUML

[PSCS] Precise Semantics of UML Composite Structures (PSCS), version 1.2, http://www.omg.org/spec/PSCS
[PSSM] Precise Semantics of UML State Machines, version 1.0, https://www.omg.org/spec/PSSM/1.0/PDF
[UML] Unified Modeling Language, version 2.5.1, https://www.omg.org/spec/UML/2.5.1/PDF

H.3 Semantics

This clause is organized in sub-clauses that include this overview and a set of sub-clauses chapter that specifies the
structural and behavioral constructs of this specification and/or a sub-clause that defines additional constraints that
restrict the scope on which the semantics defined by this specification applies.

Those semantics are defined as an extension of the PSCS semantics that are themselves defined as an extension of
fUML. A SysML model that syntactically conforms to this subset shall have an abstract syntax representation that
consists solely of instances of metaclasses that are (imported) members of the either the f{UML_Syntax::Syntax or
the PCSC_Syntax packages, as described in the corresponding specifications. Also only the SysML Stereotypes
listed in the sub-clauses below shall be used.

H.3.1 Actions

340 OMG Systems Modeling Language, v1.7

http://www.omg.org/spec/FUML
http://www.omg.org/spec/PSCS
https://www.omg.org/spec/PSSM/1.0/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

H.3.1.1 Overview

The Actions package introduces extensions to various fUML action activation classes defined in PSCS or in f{UML.

SysML does not specify any stereotype for actions. However, the semantics of a number of SysML stereotypes

actually impact the semantics of some actions that are performed on elements those stereotypes are applied on. For
instance, binding connectors can link together a pair of properties so that their values shall be the same at any time.
The operational consequence of this semantics is that any action modifying the value of one of those properties shall
be replicated to the value of the property it is bound to.

H.3.1.2 Additional Constraints

upperbound equal upper

The value of a Pin for its upperbound and upper properties shall be the same

context Pin inv: self.upperBound = self.upper

H.3.1.3 Class descriptions

class [Package] Actions [@ Aciions])

SysML_AddStructuralF

‘cs_‘ ActionActivati ’qi

operations
+doAction(){redefines doAction)

: [1], visi :
+doFlowAction(targetObject : Value, featureValue : FeatureValue [1])
+doDirectedFeatureAction(targetObject : Value, featureValue : FeatureValue [1])

0.1

SysML_Cl ActionActi

operations
+doAction(){redefines doAction)

H: [1], visitedFeatures : F
+doFlowAction(targetObject : Value, featureValue : FeatureValue [1])
+doDirectedFeatureAction(targetObject : Value, featureValue : FeatureValue [1])

0.1

SysML_| ActionActi

operations
+doAction(){redefines doAction)

SysML_| ionActi

operations

+doFlowAction(targetObject : Value, featureValue : FeatureValue [1])
+doAction(}{redefines doAction)
+doDirectedFeatureAction| targetObiect : Value, featureValue : FeatureValue [1])

0.1

SysML_ i ionActit

o

(%]

[
e

operations
+doAction(){redefines doAction)

SysML_InputPinActivation

InputPinActivation

operations
+sendOffers(tokens : Token [*]){redefines sendOffers}

SysML_OutputPinActivation

OutputPinActivation F

operations
+sendOffers(tokens : Token [*]){redefines sendOffers}
+addToken(token : Token)redefines addToken}

Figure H.2. Actions

H.3.1.3.1 SysML_AddStructuralFeatureValueActionActivation

Description

This semantics visitor extends the PSCS CS_AddStructuralFeatureValueActionActivation class in order to support
semantics of binding connectors, flow properties and directed features.

Generalizations

* CS_AddStructuralFeatureValueActionActivation (from Actions)

Operations
* doAction () {redefines doAction}

OMG Systems Modeling Language, v1.7

341

// If the feature has a binding connector attached
// a coordinated update is done
// otherwise, behaves as usual

// get the value of the target pin before the super.doAction() is called
AddStructuralFeatureValueAction action = (AddStructuralFeatureValueAction)
(this.node);

Value target = this.getToken (action.object) .getValue (0);

super.doAction () ;

StructuralFeature feature = action.structuralFeature;
if (feature instanceof Property & object instanceof StructuredValue) {
FeatureValue featureValue = action.object.getFeatureValue (feature);

FeatureValuelist visitedFeatures = new FeatureValuelList ();
this.doBoundAction (featureValue, visitedFeatures);

//Flow property management
this.doFlowAction (target, featureValue);

//Directed feature management
this.doDirectedFeatureAction (target, featureValue);

» doBoundAction (in featureValue : FeatureValue, in visitedFeatures : FeatureValue)

// check that this feature value has not been visited yet
// otherwise stop the recursion here
for (int k=0; k < visitedFeature.size(); k++) {
if (featureValue == visitedFeature.get (k)) {
return;

// add the feature value to the visited list
visitedFeatures.addValue (featureValue) ;

// retrieve all the bindings for this feature value
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
ValueBindingList bindings = locus.getAllValueBindings (featureValue);

for (int 1 = 0; 1 < bindings.size(); 1i++) {
// get the feature value bound by this binding
FeatureValue otherFeatureValue =

bindings.get (i) .getOppositeBoundFeatureValue (featureValue) ;

// Loop on values...
for (int j = 0; j < featureValue.values.size(); j++) {

otherFeatureValue.values = featureValue.values;

342 OMG Systems Modeling Language, v1.7

// execute recursively
doBoundAction (otherFeatureValue, visitedFeatures);

+ doDirectedFeatureAction (in targetObject : Value, in featureValue : FeatureValue)

// If the feature is a required feature the value has to be added to the
matched feature, if any

Feature feature = featureValue.feature;

SysML Locus locus = (SysML Locus) this.getExecutionLocus();

if (feature instanceof Property && locus.isRequiredFeature ((Property)
feature) && targetObject instanceof StructuredValue) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =
locus.getMatchingFeatureValue (targetObject, feature);

if (matchingFeatureValue != null) {
// Loop on values...
for (int j = 0; j < featureValue.values.size(); Jj++) {
matchingFeatureValue.values = featureValue.values;

// trigger binding connections, if any
FeatureValuelist visitedFeatures = new FeatureValuelist () ;
doBoundAction (matchingFeatureValue, visitedFeatures);

» doFlowAction (in targetObject : Value, in featureValue : FeatureValue)

// Looks for the value of the owner of the property,

// i.e. typicaly the value passed to the action

// using its "target" input pin.

// The link to be used connects this "target"

// rather than the feature value itself.

// It is check whether it is a flow property

Feature feature = featureValue.feature;

SysML Locus locus = (SysML Locus) this.getExecutionLocus ()

if (feature instanceof Property &&
locus.isFlowProperty ((Property) feature) &&
targetObject instanceof StructuredvValue) {

// retrieve the matching feature value

FeatureValue matchingFeatureValue =
locus.getMatchingFeatureValue (targetObject, feature);

OMG Systems Modeling Language, v1.7 343

if (matchingFeatureValue != null) {
// Loop on values...
for (int j = 0; j < featureValue.values.size(); Jj++) {

matchingFeatureValue.values.get (j) = featureValue.values.get(j);

// trigger binding connections, if any
FeatureValuelist visitedFeatures = new FeatureValuelist () ;
doBoundAction (matchingFeatureValue, visitedFeatures);

H.3.1.3.2 SysML_CallOperationActivation

Description

This semantics visitor extends the PSCS CS_CallOperationActionActivation class in order to support semantics of
binding connectors, flow properties and directed features.

Generalizations

+ CallOperationActionActivation (from Actions)

Operations
+ getCallExecution () : Execution [1] {redefines getCallExecution}
// Check whether the operation is a required feature.

// If so, call from the matching feature instead, if any.
// If it is not a required feature, invoke the regular getCallExecution

CallOperationAction action = (CallOperationAction) (this.node);
Value target = this.takeTokens (action.target) .getValue (0);
Execution execution = null;

if (action.operation != null) {

// If the operation is a required feature the matching feature shall be
called
SysML Locus locus = (SysML Locus) this.getExecutionLocus () ;
if (locus.isRequiredFeature ((Property) feature)) {
// retrieve the matching feature value
FeatureValue matchingOperation = locus.getMatchingFeatureValue (target,
action.operation);

target = locus.getObjectWithFeatureValue (matchingOperation) ;

execution = ((Reference) target) .dispatch (matchingOperation);

344 OMG Systems Modeling Language, v1.7

else {
execution = super.getCallExecution();

return execution;

H.3.1.3.3 SysML_ClearStructuralFeatureActionActivation

Description

This semantics visitor extends the PSCS CS_ClearStructuralFeatureActionActivation class in order to support
semantics of binding connectors, flow properties and directed features.

Generalizations

* CS_ClearStructuralFeatureActionActivation (from Actions)

Operations
* doAction () {redefines doAction}
// If the feature has a binding connector attached

// a coordinated update is done
// otherwise, behaves as usual

// get the value of the target pin before the super.doAction() is called

ClearStructuralFeatureValueAction action =

(ClearStructuralFeatureValueAction) (this.node);

Value target = this.getToken (action.object) .getValue (0);

super.doAction () ;

StructuralFeature feature = action.structuralFeature;

if (feature instanceof Property && object instanceof StructuredvValue) {
FeatureValue featureValue = action.object.getFeatureValue (feature);
FeatureValuelList visitedFeatures = new FeatureValuelList();

this.doBoundAction (featureValue, visitedFeatures);

//Flow property management
this.doFlowAction (target, featureValue);

//Directed feature management
this.doDirectedFeatureAction (target, featureValue);

* doBoundAction (in featureValue : FeatureValue, in visitedFeatures : FeatureValue)

// Check that this feature value has not been visited yet
// otherwise stop the recursion here

OMG Systems Modeling Language, v1.7 345

for (int k=0; k < visitedFeature.size(); k++) {
if (featureValue == visitedFeature.get (k)) {
return;

// add the feature value to the visited list
visitedFeatures.addValue (featurevValue) ;

// retrieve all the bindings for this feature value
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
ValueBindingList bindings = locus.getAllValueBindings (featurevalue) ;
for (int i = 0; i < bindings.size(); i++) {

// get the feature value bound by this binding

FeatureValue otherFeatureValue =
bindings.get (i) .getOppositeBoundFeatureValue (featureValue) ;

otherFeatureValue.values = new Valuelist () ;

// execute recursively
doBoundAction (otherFeatureValue, visitedFeatures);

+ doDirectedFeatureAction (in targetObject : Value, in featureValue : FeatureValue)

// If the feature is a required feature the values of the matched feature,

if any,

// have to be cleared

Feature feature = featureValue.feature;

SysML Locus locus = (SysML Locus) this.getExecutionLocus();

if (feature instanceof Property && locus.isRequiredFeature ((Property)
feature) && targetObject instanceof StructuredValue) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =

locus.getMatchingFeatureValue (targetObject, feature);

if (matchingFeatureValue != null) {
matchingFeatureValue.values = new ValuelList();

// trigger binding connections, if any
FeatureValuelist visitedFeatures = new FeatureValuelList () ;
doBoundAction (matchingFeatureValue, visitedFeatures);

» doFlowAction (in targetObject : Value, in featureValue : FeatureValue)

346 OMG Systems Modeling Language, v1.7

// Get the value of the owner of the property,

// i.e. typicaly the value passed to the action using its "target" input

pin.

// The link to be used connects this "target" rather than the feature value
itself.

// check whether this is a flow property

Feature feature = featureValue.feature;

SysML Locus locus = (SysML Locus) this.getExecutionLocus();

if (feature instanceof Property &&
locus.isFlowProperty ((Property) feature) &&
targetObject instanceof Structuredvalue) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =

locus.getMatchingFeatureValue (targetObject, feature);

if (matchingFeatureValue != null) {
matchingFeatureValue.values = new ValueList () ;

// trigger binding connections, if any

FeatureValuelist visitedFeatures = new FeatureValuelList();
doBoundAction (matchingFeatureValue, visitedFeatures);

H.3.1.3.4 SysML_InputPinActivation

Description

This semantics visitor extends the fUML InputPinActivation class in order to support semantics of the NoBuffer

stereotype.

Generalizations

* InputPinActivation (from Actions)

Operations
+ sendOffers (in tokens : Token) {redefines sendOffers}

// call the original sendOffer operation

// then, if the NoBuffer stereotype is applied,
// discard remaining tokens, if any
super.sendOffers (tokens);

ObjectNode node = (ObjectNode) this.node;

if (node.owner instanceof StructuredActivityNode)

{

SysML Locus locus = (SysML Locus) this.getExecutionLocus () ;

if (locus.isNoBuffer (node)) {
this.clearToken () ;

OMG Systems Modeling Language, v1.7

347

H.3.1.3.5 SysML_OutputPinActivation

Description

This semantics visitor extends the fUML OutputPinActivation class in order to support semantics of both the
NoBuffer and the Overwrite stereotypes.

Generalizations

* OutputPinActivation (from Actions)

Operations
+ addToken (in token : Token) {redefines addToken}

// 1f the Overwrite stereotype is applied and the node holds at least one
token,

// remove the "oldest" token in the list,

// depending on the node ordering

// then call the original addToken operation

ObjectNode node = (ObjectNode) this.node;
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
if (locus.isOverwrite (node) && his.heldTokens.size () > 0) {
//this.clearToken () ;
if (node.ordering == ObjectNodeOrderingKind::FIFO) {

this.heldTokens.remove (0) ;

}
else {
if (node.ordering == ObjectNodeOrderingKind::LIFO) {
this.heldTokens.remove (this.heldTokens.size()-1);

super.addToken (tokens) ;

+ sendOffers (in tokens : Token) {redefines sendOffers}
// call the original sendOffer operation
// then, if the NoBuffer stereotype is applied,

// discard remaining tokens, 1f any

super.sendOffers (tokens);

ObjectNode node = (ObjectNode) this.node;
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
if (locus.isNoBuffer (node)) {

this.clearToken () ;

348 OMG Systems Modeling Language, v1.7

H.3.1.3.6 SysML_ReadStructuralFeatureActionActivation

Description

This semantics visitor extends the fUML ReadStructuralFeatureActionActivation class in order to support semantics

of required directed features.

Generalizations

» ReadStructuralFeatureActionActivation (from Actions)

Operations

* doAction () {redefines doAction}

// Check whether the feature is a required feature
// 1f so, get the value from a matching feature, if any.
// If it is not a required feature, invoke the regular doACtion

ReadStructuralFeatureAction action = (ReadStructuralFeatureAction)
(this.node) ;
StructuralFeature feature = action.structuralFeature;

if (feature != null && action.object instanceof StructuredvValue) ({

// If the feature is a required feature,
// the values of the matched feature, if any, have to be cleared
SysML Locus locus = (SysML Locus) this.getExecutionLocus () ;

if (locus.isRequiredFeature ((Property) feature)) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =
locus.getMatchingFeatureValue (targetObject, feature);

if (matchingFeaturevValue != null) {
matchingFeatureValue.values = new ValuelList();
this.putTokens (action.result, matchingFeatureValue.values);

}
else {
super.doAction () ;

H.3.1.3.7 SysML_RemoveStructuralFeatureValueActionActivation

Description

This semantics visitor extends the PSCS CS_RemoveStructuralFeatureValueActionActivation class in order to

support semantics of binding connectors, flow properties and directed features.

OMG Systems Modeling Language, v1.7

349

Generalizations

* CS_RemoveStructuralFeatureValueActionActivation (from Actions)

Operations

* doAction () {redefines doAction}

// If the feature has a binding connector attached
// a coordinated update is done
// otherwise, behaves as usual

// get the value of the target pin before the super.doAction() is called
RemoveStructuralFeatureValueAction action =
(RemoveStructuralFeatureValueAction) (this.node);

Value target = this.getToken (action.object) .getValue (0);

super.doAction () ;

StructuralFeature feature = action.structuralFeature;

if (feature instanceof Property && object instanceof StructuredvValue) {
FeatureValue featureValue = action.object.getFeatureValue (feature);
FeatureValuelList visitedFeatures = new FeatureValuelList();

this.doBoundAction (featureValue, visitedFeatures);

//Flow property management
this.doFlowAction (target, featureValue);

//Directed feature management
this.doDirectedFeatureAction (target, featureValue);

* doBoundAction (in featureValue : FeatureValue, in visitedFeatures : FeatureValue)

// check that this feature value has not been visited yet
// otherwise stop the recursion here
for (int k=0; k < visitedFeature.size(); k++) {
if (featureValue == visitedFeature.get (k)) {
return;

// add the feature value to the visited list
visitedFeatures.addValue (featureValue) ;

// retrieve all the bindings for this feature value

SysML Locus locus = (SysML Locus) this.getExecutionLocus ()
ValueBindingList bindings = locus.getAllValueBindings (featureValue);

350 OMG Systems Modeling Language, v1.7

for (int 1 = 0; 1 < bindings.size(); 1i++) {
// get the feature value bound by this binding
FeatureValue otherFeatureValue =

bindings.get (i) .getOppositeBoundFeatureValue (featureValue) ;

// Loop on values...

otherFeatureValue.values = new ValuelList ()
for (int j = 0; j < featureValue.values.size(); Jj++) {
otherFeatureValue.values.get (j) = featureValue.values.get (j);

// execute recursively
doBoundAction (otherFeatureValue, visitedFeatures):;

+ doDirectedFeatureAction (in targetObject : Value, in featureValue : FeatureValue)

// If the feature is a required feature the values of the matched feature,

if any,

// have to be cleared

Feature feature = featureValue.feature;

SysML Locus locus = (SysML Locus) this.getExecutionLocus();

if (feature instanceof Property &&
locus.isRequiredFeature ((Property) feature) &&
targetObject instanceof StructuredvValue) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =
locus.getMatchingFeatureValue (targetObject, feature);

if (matchingFeaturevValue != null) {
matchingFeatureValue.values = matchingFeatureValue.values;

// trigger binding connections, if any
FeatureValuelist visitedFeatures = new FeatureValuelList () :;
doBoundAction (matchingFeatureValue, visitedFeatures);

» doFlowAction (in targetObject : Value, in featureValue : FeatureValue)

// Get the value of the owner of the property, i.e. typicaly the value
passed to teh action using its "target" input pin

// the link to be used will connect this "target" rather than the feature
value itself.

//check whether this is a flow property

Feature feature = featureValue.feature;

SysML Locus locus = (SysML Locus) this.getExecutionLocus();

OMG Systems Modeling Language, v1.7 351

if (feature instanceof Property && locus.isFlowProperty((Property) feature)
&& targetObject instanceof StructuredValue) {

// retrieve the matching feature value
FeatureValue matchingFeatureValue =
locus.getMatchingFeatureValue (targetObject, feature);

if (matchingFeatureValue != null) {
matchingFeatureValue.values = featureValue.values;

// trigger binding connections, if any
FeatureValuelList visitedFeatures = new FeatureValuelList();
doBoundAction (matchingFeatureValue, visitedFeatures);

H.3.1.3.8 SysML_SendSignalActionActivation

Description

This semantics visitor extends the PSCS CS_RemoveStructuralFeatureValueActionActivation class in order to
support semantics of proxy ports. Note: the final target of the Signal shall be have Reception for this Signal in order
to trigger a behavior when the signal occurrence is received.

Generalizations

» CS SendSignalActionActivation (from Actions)

Operations

* doAction () {redefines doAction}

// If onPort is not specified, behaves like in fUML/PSCS
// If onPort is specified:

// - if it is a behavior port,
// get the value from the onPort pin.
// - else (i.e. if it is not a behavior port),

// get the value from the target pin.

// If the value is not a reference then do nothing.

// Otherwise, looks for all links connected to the referenced object

// 1f links are found, construct a signal using the values from the
argument pins

// and send it to the referenced object on the opposite side of each of
those links

SendSignalAction action = (SendSignalAction) (this.node);
Port port = action.getOnPort();

if (port == null) {

// Behaves like in fUML
super.doAction () ;

352 OMG Systems Modeling Language, v1.7

} else {
FeatureValuelist actualTargets;

// Get all links (available at the locus of this object) that are attached
to this port

// (i.e. the port is an end such links)

// and get their opposite ends as actual targets

// Note: SysML links are binary

ExtensionalValuelist extensionalValues = this.locus.extensionalValues ;
Integer 1 =1 ;
while (i <= extensionalValues.size()) {
ExtensionalValue value = extensionalValues.getValue (i-1) ;
if (value instanceof CS Link) {
CS_Link link = (CS_Link)value;
if (link.getFeatureValues.size() > 1) {
if (link.getFeatureValues.get (0).feature == port) {

actualTargets.addValue (link.getFeatureValues.get (1))
}
else {
if (link.getFeatureValues.get (1l).feature == port) {
actualTargets.addValue (link.getFeatureValues.get (0)) ;

// Send the a signal instance to all the targets identified that are

CS References
for (int j=0; j < actualTargets.size(); j++) {

Value target = actualTargets.get(j) .value;

if (target instanceof CS _Reference) {
// Constructs the signal instance
Signal signal = action.getSignal ();
SignalInstance signallnstance = new SignalInstance();
signallInstance.type = signal;

List attributes = signal.getOwnedAttributes();

List argumentPins = action.getArguments () ;
Integer j = 0;
while (j < attributes.size()) {

Property attribute = attributes.get (j);
InputPin argumentPin = argumentPins.get (j);

List values = this.takeTokens (argumentPin) ;
signalInstance.setFeatureValue (attribute, wvalues, 0);
J=73 + 1;

}

CS _Reference targetReference = (CS _Reference) target;

OMG Systems Modeling Language, v1.7 353

targetReference.send(signalInstance);

H.3.2 Activities
H.3.2.1 Overview

This sub-clause addresses the semantics of both the NoBuffer and the Overwrite stereotypes from the Activities
package of SysML. The fact that f{UML does not includes foundational semantics for time prevent from describing
those for the stereotypes Rate, Discrete and Continuous. Also the way the fUML execution model is built would not
make it possible to describe the semantics of ControlOperator without an in-deep revision. The semantics of the
Optional stereotype is redundant with that of the multiplicity lower bound and so, already handled in fUML. The
semantics of Probability have no direct impact on the model execution even if it can be exploited by analysis tools.

The semantics of NoBuffer, is described in the extensions of both InputPinActivation and OutputPinActivation.
Their sendOffers operations is redefined so that remaining tokens are removed if the NoBuffer stereotype is applied.
The same extension is done for ActivityParameterNodeActivation but will be effective only for Input parameter
nodes.

With the Overwrite stereotype applied on an ObjectNode, a conforming execution engine shall replace tokens stored
in a "full" object node by incoming tokens. "Full" means that the number of tokens held within the node is equal to
the value of its upperBound property. The tokens to be removed depend whether it has a FIFO or a LIFO ordering.
This is supported by the redefinition of the addToken() operation in the SysML_OutputPinActivation. It shall also be
done for InputPin, CentralBuffer, and activity parameter nodes (Datastore already has an overwrite semantics).

SysML Stereotypes Supported: NoBuffer, Overwrite
H.3.2.2 Class descriptions

class [Package] Activities [[£ Activities] J

SysML_ActivityExecution

ActivityExecution operations
+setParameterValue(parameterValue : ParameterValue [1]){redefines setParameterValue}

SysML_ActivityParameterNodeActivation

’ ActivityParameterNodeActivation E— operations
+sendOffers(tokens : Token [*] }{redefines sendOffers}

SysML_ObjectNodeActivation

’ ObjectNodeActivation E— operations
+addToken(token : Token [1]){redefines addToken}

+removeToken(token : Token [1]) : Integer [1]{redefines removeToken}
+clearTokens(){redefines clearTokens}

’ ExpansionNodeActivation Fi SysML_ExpansionNodeActivation
operations

+sendOffers(tokens : Token [*]){redefines sendOffers}

Figure H.3. Activities
H.3.2.2.1 SysML_ActivityExecution

Description

This semantics visitor extends the fUML ActivityExecution class in order to support semantics of adjunct properties.

Generalizations

+ ActivityExecution (from Activities)

354 OMG Systems Modeling Language, v1.7

Operations

+ setParameterValue (in parameterValue : ParameterValue) {redefines setParameterValue}

// Call the regular SetParalmeterValue first
super.setParameterValue (parameterValue) ;

// then find looks for any adjunct bindings
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
AdjunctBindinglList bindings = locus.getAllAdjunctBindings (link);

for (int 1 = 0; 1 < bindings.size(); i++) {
// get the feature value bound by this binding

FeatureValue adjunctFeatureValue = bindings.get (i) .adjunctFeatureValue;

// then copy its value to those of the adjunct feature
adjunctFeatureValue.values = parameterValue.values;

H.3.2.2.2 SysML_ActivityParameterNodeActivation

Description

This semantics visitor extends the f{UML ActivityParameterNodeActivation class in order to support semantics of

adjunct properties.

Generalizations

+ ActivityParameterNodeActivation (from Activities)

Operations
+ sendOffers (in tokens : Token) {redefines sendOffers}

// Call the original sendOffer operation.

// Then, if the NoBuffer stereotype is applied,
// discard remaining tokens, 1if any
super.sendOffers (tokens);

ObjectNode node = (ObjectNode) this.node;

SysML Locus locus = (SysML Locus) this.getExecutionLocus();

if (locus.isNoBuffer (node)) {
this.clearToken () ;

H.3.2.2.3 SysML_ExpansionNodeActivation

Description

This semantics visitor extends the fUML ExpansionNodeActivation class in order to support semantics of the
NoBuffer stereotype.

OMG Systems Modeling Language, v1.7

355

Generalizations

+ ExpansionNodeActivation (from Actions)

Operations
+ sendOffers (in tokens : Token) {redefines sendOffers}
// Call the original sendOffer operation.
// Then, if the NoBuffer stereotype is applied,

// discard remaining tokens, 1if any

super.sendOffers (tokens);

ObjectNode node = (ObjectNode) this.node;
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
if (locus.isNoBuffer (node)) {

this.clearToken() ;

H.3.2.2.4 SysML_ObjectNodeActivation

Description

This semantics visitor extends the fUML ObjectNodeActivation class in order to support semantics of adjunct
properties.

Generalizations

* ObjectNodeActivation (from Activities)

Operations
» addToken (in token : Token) {redefines addToken}

// Execute a addToken as defined in the base class
// then add the corresponding value to the adjunct property

super.addToken (token) ;
// retrieve all the adjuncts for this node
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
AdjunctBindinglList bindings = locus.getAllAdjunctBindings (this);
for (int 1 = 0; 1 < bindings.size(); 1i++) {

// get the feature value bound by this adjunct binding

FeatureValue adjunctFeatureValue = bindings.get (i) .adjunctFeatureValue;

// add the token value
adjunctFeatureValue.values.addValue (token.getValue()) ;

356 OMG Systems Modeling Language, v1.7

+ clearTokens () {redefines clearTokens}

// call the clearTokens operation of the base class and remove all
// the values from the adjunct property

super.clearTokens () ;

// retrieve all the adjuncts for this node
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
AdjunctBindingList bindings = locus.getAllAdjunctBindings (this);

for (int 1 = 0; 1 < bindings.size(); i++) {
// get the feature value bound by this adjunct binding
FeatureValue adjunctFeatureValue = bindings.get (i) .adjunctFeatureValue;

// clear all the token values
adjunctFeatureValue.values.clear();

» removeToken (in token : Token) : Integer [1] {redefines removeToken}

// Call the base class version of removeToken then

// 1if it return a index > 1 then remove the value at that position in the
adjunct property

// Note that index in "1 based" so adjust for java arrays that are "0
based"

int i = super.removeToken (token);

if (1 > 0) {
// retrieve all the adjuncts for this fnode
SysML Locus locus = (SysML Locus) this.getExecutionLocus();
AdjunctBindingList bindings = locus.getAllAdjunctBindings (this);

for (int j = 0; Jj < bindings.size(); Jj++) {
// get the feature value bound by this adjunct binding
FeatureValue adjunctFeatureValue = bindings.get (j).adjunctFeatureValue;

// remove the token value at i-1
adjunctFeatureValue.values.removeValue (i-1);
}

}

return 1i;

H.3.3 Blocks
H.3.3.1 Overview

The Blocks sub-clause is focused on the semantics for AdjunctProperty and BindingConnector that link together
values of the elements they involve. The Block PropertySpecificType, DistributedProperty and ValueType
stereotypes do not add any specific executable semantics to Class, Property and DataType, respectively.
BoundReference, NestedConnectorEnd, EndPathMultiplicity, DirectedRelationshipPropertyPath and

OMG Systems Modeling Language, v1.7 357

ElementPropertyPath provide mechanisms that allow extending the UML syntax but they have no semantics
implication by themselves.

The semantics for ConnectorProperty is redundant to that of an AdjunctProperty having a Connector as its principal.
Also, the semantics of ParticipantProperty is linked to AssociationBlock, but AssociationClass is not included in
fUML. AdjunctProperty for Connector would also require AssociationClass. They will not be addressed further in
this annex.

The semantics specified for BindingConnector is based on those given to FeatureValue by fUML. A FeatureValue
owns its value (composite aggregation) and so it cannot share it with another FeatureValue. So, the only way to
realize the binding connector semantics is to have one distinct value for each and to maintain them as exact copies.
Feature that are typed by Classes have references to objects as values. Changing their value means changing that
reference, so the copy mechanism used for ValueProperties will work as well. Based on that approach, the
BindingConnector semantics is fully handled by actions modifying the value of the bound properties. That is:
AddStructuralFeatureValue, ClearStructuralFeatureValue and RemoveStructuralFeatureValue.

The semantics of AdjunctProperty are quite similar to those of BindingConnector. However this sub-clause excludes
adjunct for AssociationBlocks , InteractionUse and Variables, because fUML does not support them. It excludes
also CallAction because it would need to either override the doAction() operation of CallActionActivation semantic
visitor class which would implies a significant amount of rework of some classes of the f{UML execution model that
would require a new version of this standard. The semantics of ClassifierBehaviorProperty is not included in this
annex for the same reason. The semantics of Adjunct for SubmachineState are also out of scope of this subclause in
order to avoid inducing a dependency on PSSM.

In order to support the semantics of AdjunctProperty, an AdjunctBinding abstract class is provided. It is specialized
for each kind of principal for which the semantics is described. That is: Parameter and ObjectNode. The
adjunctFeatureValue of an AdjunctBinding shall refer to the feature value that is the adjunct for that model element.
When the value referred by the principal Value property is modified, that value is copied to the value referred by
adjunctFeature.

Note: semantics for parameter adjunct property is provided for parameters owned by activities only.

In addition the following classes of the execution f{UML model are extended (see Actions and Activities paragraphs
in this annex):

- for supporting adjunct of a Parameter: ActivityExecution

- for supporting adjunct of an ObjectNode: ObjectNodeActivation, ActivityParameterNodeActivation,
CentralBufferNodeActivation, ExpansionNodeActivation, PinActivation, InputPinActivation, OutputPinActivation

Supported stereotypes: BindingConnector, AdjunctProperty

358 OMG Systems Modeling Language, v1.7

H.3.3.2 Class descriptions

class [Package] Blocks [BIocks]J

AdjunctBinding indi
operations operations
+isBoundTo(principal) : Boolean [1{query} +isBound(featureValue : FeatureValue [1]) : Boolean [1}{query}
+principalValue() +getO] i : FeatureValue [1]) : FeatureValue [1]{query}
T +getOppositeBoundFeature(featureValue : FeatureValue [1]) : StructuralFeature [1]

ParameterAdjunctBinding

operations
+principalValue() : ParameterValue [1){redefines principalValue}

ObjectNodeAdjunctBinding

operations
+princip:) : SysML_ObjectNo ivation [1]{redefines princip: ue}

+principalValue

1

ParameterValue

+principalValue |1
SysML_ObjectNodeActivation

operations
+addToken(token : Token [1]){redefines addToken}
+removeToken(token : Token [1]) : Integer [1){redefines removeToken}
+clearTokens(){redefines clearTokens}

operations
+copy() : ParameterValue

CS_Object SysML_Object
operations

reatef c
#new_() : Value{redefines new_}

Figure H.4. Blocks
H.3.3.2.1 AdjunctBinding

Description

This class is added in order to support semantics of adjunct properties. Note: bUML does not allow property
redefinition, only operation redefinition => principal Value shall be defined as an operation that will return an
untyped value (because ParameterValue and Link are not semantic visitors).isBound parameter shall also have no

type (for the exact same reason)

Generalizations

» ExtensionalValue (from StructuredClassifiers)

Association Ends

+ adjunctFeatureValue : FeatureValue [1]

Operations

+ isBoundTo (in principal) : Boolean [1]

return this.principalValue == principal;

+ principalValue () [1]

Abstract operation intended to return the value of the principal

H.3.3.2.2 ObjectNodeAdjunctBinding

Description

This class is added in order to support semantics of adjunct properties for object nodes.

Generalizations
* AdjunctBinding (from Blocks)

OMG Systems Modeling Language, v1.7

359

Association Ends
+ principalValue : SysML_ObjectNodeActivation [1]

Operations

* principalValue () : SysML_ObjectNodeActivation [1] {redefines principal Value}

return this.principalValue;

H.3.3.2.3 ParameterAdjunctBinding

Description

This class is added in order to support semantics of adjunct properties for parameters. Note: the changes of
parameter values (and so update of the adjunct property) are managed within SysML_ActivityExecution by
overriding the setParameterValue() operation.

Generalizations

* AdjunctBinding (from Blocks)

Association Ends

* principalValue : ParameterValue [1]

Operations

+ principalValue () : ParameterValue [1] {redefines principalValue}

return this.principalValue;

H.3.3.2.4 SysML_FeatureValue
Description

Generalizations

* FeatureValue (from SimpleClassifiers)
Attributes

* path : StructuralFeature [0..*]
H.3.3.2.5 SysML_Object

Description

This semantics visitor extends the PSCS CS_Object class in order to support semantics of proxy ports.

Generalizations

* CS_Object (from StructuredClassifiers)

Operations

» createFeatureValues () {redefines createFeatureValues}
// Create empty feature values for all structural features of the types

// of this structured value and all its supertypes (including private
// features that are not inherited).

360 OMG Systems Modeling Language, v1.7

super.createFeatureValues|() ;

SysML Locus locus = (SysML Locus) this.getExecutionLocus();

//

Initialize the values for behavioral proxy ports only

for (int i=0; 1 < this.featureValues.size(); i++) {

Port port = (Port) this.featureValues.get(i);
if (port != null && locus.isProxyPort (port) {
if (port.isBehavior) {
port.values = new ValuelList (this);

* new_ () : Value [1] {redefines new_}

//

Create a new object with no type, feature values or locus.

SysML Object newObject = new SysML Object ();

H.3.3.2.6 SysML_ReferencePropertyPair

Description

Association Ends

+ property : Property [1]

+ reference : Reference [1]

H.3.3.2.7 SysML_StructuredValue

Description

Generalizations

 StructuredValue (from SimpleClassifiers)

Operations

+ addFeatureValuesForType (in type : Classifier, in oldFeatureValues : FeatureValue) {redefines
addFeatureValues}
// Add feature values for all structural features of the given type and
// all of its supertypes (including private features that are not
// inherited). If a feature has an old feature value in the given list,
// then use that to initialize the values of the corresponding new
// feature value. Otherwise leave the values of the new feature value
// empty.

// Set feature values for the owned structural features of the given
// type. (Any common structural values that have already been added
// previously will simply have their values set again.)
NamedElementList ownedMembers = type.ownedMember;

OMG Systems Modeling Language, v1.7 361

for (int j = 0; Jj < ownedMembers.size(); J++) {
NamedElement ownedMember = ownedMembers.getValue (J);
if (ownedMember instanceof StructuralFeature) {
this.setFeatureValue ((StructuralFeature) ownedMember,
this.getValues (ownedMember, oldFeatureValues), 0);

// Add feature values for the structural features of the supertypes
// of the given type. (Note that the feature values for supertype
// features always come after the feature values for owned features.)
ClassifierlList supertypes = type.general;
for (int 1 = 0; 1 < supertypes.size(); i++) {
Classifier supertype = supertypes.getValue (i) ;
this.addFeatureValuesForType (supertype, oldFeatureValues);

+ getBoundElements (in feature) : ConnectableElement [0..*]

//Check whether there is a binding connector attached to this feature
ConnectableElementlList = new ConnectableElementList () ;

if (feature instanceof ConnectableElement) {
ConnectableElement connectableElement = (ConnectableElement) feature;

for (int i = 0; 1 < connectableElement.end.size(); i++) {
ConnectorEnd thatEnd = connectableElement.end.getValue (i) ;
Connector connector = (Connector) thatEnd.owner;

if |

return result;

H.3.3.2.8 ValueBinding

Description

This class is added in order to support semantics of binding connectors.

Generalizations

+ ExtensionalValue (from StructuredClassifiers)

Association Ends

* boundFeatureValues : FeatureValue [2]

Operations

» getOppositeBoundFeature (in featureValue : FeatureValue) : StructuralFeature [1]

StructuralFeature oppositeFeature = null ;

362 OMG Systems Modeling Language, v1.7

FeatureValue oppositeFeatureValue =
this.getOppositeFeatureValue (featurevValue) ;

if (oppositeFeatureValue != null) {
oppositeFeature = oppositeFeatureValue.feature ;

return oppositeFeature ;

+ getOppositeBoundFeatureValue (in featureValue : FeatureValue) : FeatureValue [1]

FeatureValue oppositeFeatureValue = null ;

if (this.boundFeatureValue.get (0) == featureValue) ({
oppositeFeatureValue = this.boundFeatureValue.get (l) ;

}

else i1if (this.boundFeatureValue.get(l) == featureValue) ({
oppositeFeatureValue = this.boundFeatureValue.get (0) ;

return oppositeFeatureValue ;

+ isBound (in featureValue : FeatureValue) : Boolean [1]

return this.boundFeatureValue.get (0) == featureValue ||
this.boundFeatureValue.get (1) == featureValue;
H.3.4 Loci

H.3.4.1 Overview

The Loci package includes extensions to fUML CS_Locus and CS_ExecutionFactory in order to account for
new semantic visitors introduced by this specification. The extended Locus class also provides an additional set of
utility operations that facilitate the specification of semantic visitors' operations.

OMG Systems Modeling Language, v1.7 363

H.3.4.2 Class descriptions

class [Package] Loci[Loci])

CS_ExecutionFactory SysML_ExecutionFactory

operations
+instantiateVisitor(element : Element [1]) : SemanticVisitor [1]{redefines instantiate}

SysML_Locus
operations

+instantiate(type : Class [1]) : Object [1]{redefines instantiate}
+isBlock(type : Class [1]) : Boolean [1]

+isInputFlowProperty(property : Property [1]) : Boolean [1]
+isProxyPort(port : Port [1]) : Boolean [1]

+isOutputFlowProperty(property : Property [1]) : Boolean [1]
CS_Locus i +isFlowProperty(property : Property [1]) : Boolean [1]

+isBindingConnector(connector : Connector [1]) : Boolean [1]
+isAdjunctProperty(property : Property [1]) : Boolean [1]
+isClassifierBehaviorProperty(property : Property [1]) : Boolean [1]
+isConnectorProperty(property : Property [1]) : Boolean [1]
+isParticipantProperty(property : Property [1]) : Boolean [1]
+isPropertySpecificType(type : Classifier [1]) : Boolean [1]
+isDirectedFeature(feature : Feature [1]) : Boolean [1]
+isFullPort(port : Port [1]) : Boolean [1]
+isInterfaceBlock(type : Class [1]) : Boolean [1]
+isTriggerOnNestedPort(trigger : Port [1]) : Boolean [1]
+isRequiredDirectedFeature(feature : Feature [1]) : Boolean [1]
+isProvidedDirectedFeature(feature : Feature [1]) : Boolean [1]
+isltemFlow(flow : InformationFlow [1]) : Boolean [1]
+isConstraintBlock(type : Class [1]) : Boolean [1]
+isContinuous(parameter : Parameter [1]) : Boolean [1]
+isNoBuffer(node : ObjectNode [1]) : Boolean [1]
+hasRate(parameter : Parameter [1]) : Boolean [1]
+isOverwrite(node : ObjectNode [1]) : Boolean [1]
+hasRate(edge : ActivityEdge [1]) : Boolean [1]
+isContinuous(edge : ActivityEdge [1]) : Boolean [1]
+getAllValueBindings(featureValue : FeatureValue [1]) : ValueBinding [*]
+getObjectWIthFeatureValue(featureValue : FeatureValue [1]) : SysML_Object [1]
+getAllAdjunctBindings(callActionActivation)
+getAllAdjunctBindings(parameterValue)
+getAllAdjunctBindings(link)
+getAllAdjunctBindings(objectNode : SysML_ObjectNodeActivation [1])
+getMatchingFeatureValue(targetObject : StructuredValue [1], feature : FeatureValue [1])
+isMatchingFeature(sourceFeature : Feature [1], targetFeature : Feature [1]) : Boolean [1]

Figure H.5. Loci
H.3.4.2.1 SysML_ExecutionFactory

Description

This class extends the PSCS CS_ExecutionFactory class in order to support the semantics visitors added by this
annex.

Generalizations

* CS_ExecutionFactory (from Loci)

Operations

* instantiateVisitor (in element : Element) : SemanticVisitor [1] {redefines instantiate}
<<TextualRepresentation>>public instantiateVisitor (in element : Element) : SemanticVisitor { / TODO return
super.instantiate Visitor(element) ; }

// Extends CS_ExecutionFactory to instantiate
// SysML semantic visitors

SemanticVisitor visitor = null ;
if (element instanceof Activity) {
visitor = new SysML ActivityExecution() ;
}
else 1if (element instanceof ActivityParameterNode) {
visitor = new SysML ActivityParameterNodeActivation() ;
}
else 1if (element instanceof AddStructuralFeatureValueAction) {
visitor = new SysML AddStructuralFeatureValueActionActivation() ;
}

else if (element instanceof CallOperationAction) {

364 OMG Systems Modeling Language, v1.7

visitor = new SysML CallOperationActionActivation() ;
}
else 1if (element instanceof ClearStructuralFeatureAction) {
visitor = new SysML ClearStructuralFeatureActionActivation() ;
}
else if (element instanceof ExpansionNode) ({
visitor = new SysML ExpansionNodeActivation() ;
}
else if (element instanceof InputPin) {
visitor = new SysML InputPinActivation() ;
}
else if (element instanceof ObjectNode) {
visitor = new SysML ObjectNodeActivation() ;
}
else 1if (element instanceof OutputPin) {
visitor = new SysML OutputPinActivation() ;
}
else if (element instanceof ReadStructuralFeatureAction) {
visitor = new SysML ReadStructuralFeatureActionActivation() ;
}
else 1f (element instanceof RemoveStructuralFeatureValueAction) {
visitor = new SysML RemoveStructuralFeatureValueActionActivation() ;
}

else if (element instanceof SendSignalAction) {

visitor = new SysML SendSignalActionActivation() ;
}
else {

visitor = super.instantiateVisitor (element) ;

}

return visitor ;

H.3.4.2.2 SysML_Locus

Description

This class extends the PSCS CS_Locus class in order to provide a set of utility operations for SysML stereotypes.

Generalizations
* CS_Locus (from Loci)

Operations
+ getAllAdjunctBindings (in callActionActivation) [0..*]
+ getAllAdjunctBindings (in link) [0..*]
+ getAllAdjunctBindings (in objectNode : SysML_ObjectNodeActivation) [0..*]
// Return the set of ajunct bindings at this locus which involve the

// given object node
getAllAdjunctBindings bindings = new AdjunctBindingList();

ExtensionalValuelist extensionalValues = this.extensionalValues;

for (int i = 0; 1 < extensionalValues.size(); i++) {
ExtensionalValue value = extensionalValues.getValue (i)

OMG Systems Modeling Language, v1.7 365

if (value instanceof ObjectNodeAdjunctBinding) {
ObjectNodeAdjunctBinding binding = (ObjectNodeAdjunctBinding) value;

if (binding.isBound (objectNode)) {
bindings.addValue (binding) ;

return bindings;

+ getAllAdjunctBindings (in parameterValue) [0..*]
// Return the set of ajunct bindings at this locus which involve the
// given parameter
getAllAdjunctBindings bindings = new AdjunctBindingList();
ExtensionalValuelist extensionalValues = this.extensionalValues;
for (int 1 = 0; i < extensionalValues.size(); i++) {

ExtensionalValue value = extensionalValues.getValue (i);

if (value instanceof ParameterAdjunctBinding) {
ParameterAdjunctBinding binding = (ParameterAdjunctBinding) value;

if (binding.isBound (parameterValue)) {
bindings.addValue (binding) ;

return bindings;

+ getAllValueBindings (in featureValue : FeatureValue) : ValueBinding [0..*]

// Return the set of value bindings at this locus which involve the
// given feature value

ValueBindingList bindings = new ValueBindingList();
ExtensionalValuelist extensionalValues = this.extensionalValues;
for (int i = 0; 1 < extensionalValues.size(); 1i++) {

ExtensionalValue value = extensionalValues.getValue (i)

if (value instanceof ValueBinding) {
ValueBinding binding = (ValueBinding) value;

if (binding.isBound (featureValue)) {
bindings.addValue (binding) ;

366 OMG Systems Modeling Language, v1.7

return bindings;

+ getMatchingFeatureValue (in targetObject : StructuredValue, in feature : FeatureValue)

// First check whether the property provided as a parameter is a flow
property

// or a required feature

// 1f so look for the links attached to the targetObject

// for each link found, check whether there is a property on the other side
that is a "matching" flow property

// according to SysML, "matching" flow properties have compatible
directions and conforming types

//
FeatureValuelist matchingFeatures = new FeatureValuelList();

if (feature instanceof Property && (this.isOutFlowProperty ((Property)
feature))
| | this.isRequiredFeature (feature) {
LinkList links = new LinkList () ;

ExtensionalValuelList extensionalValues = this.extensionalValues;
for (int i = 0; 1 < extensionalValues.size(); 1i++) {
ExtensionalValue value = extensionalValues.getValue (i)

if (value instanceof Link) {
Link link = (Link) wvalue;
FeatureValuelist linkFeatureValues = link.getFeatureValues();
FeatureValue candidateFeatureValue null;

if (linkFeatureValues.getValue (0) .equals (targetObject)) {
candidateFeatureValue = linkFeatureValues.getValue(l);

} else if (linkFeatureValues.getValue (l).equals (targetObject)) {
candidateFeatureValue = linkFeatureValues.getValue (0);

if (candidateFeatureValue != null) {
//now we can check whether this feature "matches"
if (this.isMatchingFeature (feature, candidateFeatureValue.feature))

matchingFeatures.addValue (candidateFeatureValue) ;

OMG Systems Modeling Language, v1.7 367

return matchingFeatures;

+ getObjectWIthFeatureValue (in featureValue : FeatureValue) : SysML_Object [1]

// Return the object at this locus which owns the
// given feature value

SysML Object object = null;

ExtensionalValuelList extensionalValues = this.extensionalValues;
int i = 0;

while (i < extensionalValues.size() && object = null) {

ExtensionalValue value = extensionalValues.getValue(i);

if (value instanceof SysML Object) {

SysML Object candidate = (SysML Object) value;
FeatureValuelList featureValues = candidate.featureValues;
int 3 = 0;
while (j < featureValues.size() && object = null) ({
if (featureValues.get(j) == featureValue) {
object = candidate;
}
J++;
}
}
i++;

return object;

+ hasRate (in edge : ActivityEdge) : Boolean [1]
Check whether the activity edge has the Rate stereotype applied. // The algorithm of this operation is
implementation specific

* hasRate (in parameter : Parameter) : Boolean [1]
Check whether the parameter has the Rate stereotype applied. // The algorithm of this operation is
implementation specific

+ instantiate (in type : Class) : Object [1] {redefines instantiate}

// If the type is a Block, instantiate a SysML Object.
// Otherwise behaves like in CS_Locus
if (isBlock (type)) {
Object object = null;
object = new SysML Object() ;
object.types.add (type);
this.add (object);
object.createFeatureValues();
this.assignBehaviorProxyPorts (object) ;
return object;
}
else {
return super.instantiate (type);

368 OMG Systems Modeling Language, v1.7

 isAdjunctProperty (in property : Property) : Boolean [1]
Check whether the property has the AdjunctProperty stereotype applied // The algorithm of this operation is
implementation specific

+ isBindingConnector (in connector : Connector) : Boolean [1]
Check whether the connector has the Block stereotype applied. // The algorithm of this operation is
implementation specific

« isBlock (in type : Class) : Boolean [1]
Check whether the class has the Block stereotype applied. // The algorithm of this operation is implementation
specific

+ isClassifierBehaviorProperty (in property : Property) : Boolean [1]
Check whether the property has the ClassifierBehaviorProperty stereotype applied // The algorithm of this
operation is implementation specific

+ isConnectorProperty (in property : Property) : Boolean [1]
Check whether the property has the ConnectorProperty stereotype applied / The algorithm of this operation is
implementation specific

+ isConstraintBlock (in type : Class) : Boolean [1]
Check whether the class has the ConstraintBlock stereotype applied. // The algorithm of this operation is
implementation specific

+ isContinuous (in edge : ActivityEdge) : Boolean [1]
Check whether the activity edge has the Continuous stereotype applied. // The algorithm of this operation is
implementation specific

+ isContinuous (in parameter : Parameter) : Boolean [1]
Check whether the parameter has the Continuous stereotype applied. // The algorithm of this operation is
implementation specific

* isDirectedFeature (in feature : Feature) : Boolean [1]
Check whether the feature has the DirectedFeature stereotype applied // The algorithm of this operation is
implementation specific

« isFlowProperty (in property : Property) : Boolean [1]
Check whether the property has the FlowProperty stereotype applied // The algorithm of this operation is
implementation specific

+ isFullPort (in port : Port) : Boolean [1]
Check whether the port has the FullPort stereotype applied. // The algorithm of this operation is implementation
specific

+ isInputFlowProperty (in property : Property) : Boolean [1]
Check whether the property has the FlowProperty stereotype applied and the flow direction is "in" // The
algorithm of this operation is implementation specific

« isInterfaceBlock (in type : Class) : Boolean [1]
Check whether the class has the InterfaceBlock stereotype applied. // The algorithm of this operation is
implementation specific

* isltemFlow (in flow : InformationFlow) : Boolean [1]
Check whether the information flow has the ItemFlow stereotype applied. // The algorithm of this operation is
implementation specific

+ isMatchingFeature (in sourceFeature : Feature, in targetFeature : Feature) : Boolean [1]
//"Matching" applies to flow properties and directed features

//Flow properties "match" when they have opposite directions and compatible
types. That is:

OMG Systems Modeling Language, v1.7 369

370

// - the source flow property shall be out or inout

// - the target flow property shall be in or inout

// - the type of the source flow property shall be the same or a
specialization of the type of the target flow property

boolean result = false;
boolean directionChk = false
boolean typeChk = false;

if (this.isFlowProperty(sourceFeature) &&
this.isFlowProperty (targetFeature)) {
FlowDirectionKind srcDirection = this.getDirection (sourceFeature);

FlowDirectionKind tgtDirection = this.getDirection (targetFeature);
Type srcType = ((StructuralFeature) sourceFeature) .type;
Type tgtType = ((StructuralFeature) targetFeature).type;
directionChk = (srcDirection == FlowDirectionKind.out || srcDirection ==
FlowDirectionKind.inout) &&
(tgtDirection == FlowDirectionKind.in || tgtDirection ==

FlowDirectionKind.inout) ;

typeChk = (tgtType == null || srcType != null &&
srcType.conformsTo (tgtType)) ;

result = directionChk & typeChk;
}
else {
if (this.isDirectedFeature (sourceFeature) &&
this.isDirectedFeature (targetFeature)) {
FeatureDirectionKind srcDirection =
this.getFeatureDirection (sourceFeature) ;
FeatureDirectionKind tgtDirection =
this.getFeatureDirection (targetFeature) ;

Type srcType = ((StructuralFeature) sourceFeature).type;
Type tgtType ((StructuralFeature) targetFeature) .type;

directionChk = (srcDirection == FeatureDirectionKind.provided ||
srcDirection == FeatureDirectionKind.provrequired) &&
(tgtDirection == FeatureDirectionKind.required || tgtDirection ==

FeatureDirectionKind.provrequired) ;

if (sourceFeature instanceof BehavioralFeature and targetFeature
instanceof BehavioralFeature) {

BehavioralFeature sourceBFeature = (BehavioralFeature) sourceFeature;
BehavioralFeature targetBFeature = (BehavioralFeature) targetFeature;
boolean paramChk = sourceBFeature.ownedParameter.size () ==

targetBFeature.ownedParameter.size () ;

OMG Systems Modeling Language, v1.7

for (int i=0; paramChk && 1 < sourceBFeature.ownedParameter.size();

i++) |

Parameter sourceParam = sourceBFeature.ownedParameter.get (i);
Parameter targetParam = targetBFeature.ownedParameter.get (i),

paramChk = paramChk &é&

sourceParam. type.conformsTo (targetParam. type) ;

paramChk = paramChk && sourceParam.lower >= targetParam.lower;
paramChk && sourceParam.upper <= targetParam.upper;

paramChk

paramChk
targetParam.direction;

}

result = directionChk && paramChk;
}

else {

if (sourceFeature instanceof StructuralFeature and targetFeature

instanceof StructuralFeature) {

StructuralFeature sourceSFeature
sourceFeature;

StructuralFeature targetSFeature
targetFeature;

typeChk = sourceSFeature.type.conformsTo (targetSFeature.type)

paramChk && sourceParam.direction ==

(StructuralFeature)

(StructuralFeature)

sourceSFeature.lower >= targetSFeature.lower &&
targetSFeature.upper <= targetSFeature.upper;

result = directionChk && typeChk;

return result;

+ isNoBuffer (in node : ObjectNode) : Boolean [1]

Check whether the object node has the NoBuffer stereotype applied. / The algorithm of this operation is

implementation specific

* isOutputFlowProperty (in property : Property) : Boolean [1]

Check whether the property has the FlowProperty stereotype applied and the flow direction is "out" / The

algorithm of this operation is implementation specific

+ isOverwrite (in node : ObjectNode) : Boolean [1]

Check whether the object node has the Overwrite stereotype applied. // The algorithm of this operation is

implementation specific

OMG Systems Modeling Language, v1.7

371

+ isParticipantProperty (in property : Property) : Boolean [1]
Check whether the property has the ParticipantProperty stereotype applied // The algorithm of this operation is
implementation specific

+ isPropertySpecificType (in type : Classifier) : Boolean [1]
Check whether the classifier has the PropertySpecific stereotype applied // The algorithm of this operation is
implementation specific

+ isProvidedDirectedFeature (in feature : Feature) : Boolean [1]
Check whether the feature has the DirectedFeature stereotype applied with direction "provided" // The algorithm
of this operation is implementation specific

 isProxyPort (in port : Port) : Boolean [1]
Check whether the port has the ProxyPort stereotype applied. // The algorithm of this operation is
implementation specific

* isRequiredDirectedFeature (in feature : Feature) : Boolean [1]
Check whether the feature has the DirectedFeature stereotype applied with direction "required" // The algorithm
of this operation is implementation specific

 isTriggerOnNestedPort (in trigger : Port) : Boolean [1]
Check whether the port has the TriggerOnNestedPort stereotype applied. // The algorithm of this operation is
implementation specific

H.3.5 Ports and Flows
H.3.5.1 Overview

This clause specifies executable semantics for FlowProperty and ProxyPort. With regard to the executable
semantics, a FullPort is the same a a classical part.

Writing a value to an "out" flow property is the same as writing this value to a matching "in" flow property, if there
is one and only one. This can be realized by extending WriteStructuralFeatureActionActivation using a mechanism
similar to the one use for the binding connectors, taking care to avoid infinite loop in case of "inout" flow properties.
In order to avoid inconsistencies an additional constraint prevents flow properties to have a composite aggregation
kind. It is assumed that a flow may occur if there is a link, whatever the way it has been created. So, there is no need
to retrieve the corresponding connector.

A proxy port stands for another element in the model that can be: either the port owner, if the port is behavioral (i.e.
its isBehavior property is true), or a part of the block owning the port, if it is not behavioral. This can be realized by
initializing the value of a proxy port with a reference to its owner, if it is behavioral, or with the the reference to its
bound part otherwise. It is managed in the extension SysML_Object.

In order to avoid inconsistencies with proxy ports, the following constraints shall be enforced.

* In case of a behavioral port, the type of that port shall also classify the owner of the port

* A non behavioral proxy-port shall be bound to a part of its owner

 In case of a non behavioral port, the type of the port shall also classify the part to which that port is bound
Supported stereotypes: FlowProperty, ProxyPort

H.3.5.2 Additional Constraints
behavioral port owner has compatible type
For a behavioral port, the type of that port shall also classify the owner of the port

context ProxyPort inv: self.base Port.isBehavior implies
self.base Port.class.conformsTo(self.base Port.type))

bound part has compatible type
In case of a non behavioral port, the type of the port shall also classify the part to which that port is bound

372 OMG Systems Modeling Language, v1.7

context ProxyPort inv: not self.base Port.isBehavior implies
BindingConnector.allInstances () ->exists(b | b.base Connector.end->exists (el
| el.role = self.base Port) and b.base Connector.end->exists(e2 | e2.role <>
self.base Port and eZ.role.type.conformsTo (self.base Port.type)))

bound to owner part
A non behavioral proxy-port shall be bound to a part of its owner

context ProxyPort inv: let internalParts: Set (Property) =

self.base Port.owner.allFeatures() ->selectByKind(Property)->reject (f |
f.oclIsKindOf (Port) in not self.base Port.isBehavior implies
BindingConnector.alllInstances () ->exists(b | b.base Connector.end->exists (el
| el.role = self.base Port) and b.base Connector.end->exists(e2 | e2.role <>
self.base Port and internalParts->includes(e2.role))

flowproperty not composite
Flow properties shall not have a composite aggregation kind

context FlowProperty inv: not self.base Property.isComposite

provrequired not supported
No semantics is specified for features with direction providedRequired

context Feature inv: let df: DirectedFeature =
DirectedFeature.allInstances()->any(f | f.base Feature = self) in
df.oclIsUndefined() or df.direction <> DirectedFeatureKind#providedRequired

H.3.5.3 Class descriptions

OMG Systems Modeling Language, v1.7 373

	Table of Contents
	List of Tables
	List of Figures
	0 Preface
	OMG Specifications

	1 Scope
	2 Normative References
	3 Additional Information
	3.1 Relationships to Other Standards
	3.2 How to Read this International Standard
	3.2.1 Organization

	3.3 Acknowledgments

	4 Language Architecture
	4.1 General
	4.2 Design Principles
	4.3 Architecture
	4.4 Extension Mechanisms
	4.5 SysML Diagrams

	5 Conformance
	5.1 Overview
	5.2 Conformance Types

	6 Language Formalism
	6.1 Levels of Formalism
	6.2 Clause Structure
	6.2.1 Overview
	6.2.2 Diagram Elements
	6.2.3 UML Extensions
	6.2.4 Usage Examples

	6.3 Conventions and Typography

	7 Model Elements
	7.1 Overview
	7.1.1 View and Viewpoint

	7.2 Diagram Elements
	7.3 UML Extensions
	7.3.1 Diagram Extensions
	7.3.1.1 UML Diagram Elements not Included in SysML

	7.3.2 Stereotypes
	7.3.2.1 Conform
	7.3.2.2 ElementGroup
	7.3.2.3 Expose
	7.3.2.4 Problem
	7.3.2.5 Rationale
	7.3.2.6 Stakeholder
	7.3.2.7 View
	7.3.2.8 Viewpoint

	8 Blocks
	8.1 Overview
	8.2 Diagram Elements
	8.2.1 Block Definition Diagram
	8.2.2 Internal Block Diagram

	8.3 UML Extensions
	8.3.1 Diagram Extensions
	8.3.1.1 Block Definition Diagram
	8.3.1.1.1 Block and ValueType Definitions
	8.3.1.1.2 Default «block» stereotype on unlabeled box
	8.3.1.1.3 Labeled compartments
	8.3.1.1.4 Behavior compartment
	8.3.1.1.5 Constraints compartment
	8.3.1.1.6 Namespace compartment
	8.3.1.1.7 Structure compartment
	8.3.1.1.8 BoundReference compartment
	8.3.1.1.9 Receptions compartment
	8.3.1.1.10 Default multiplicities
	8.3.1.1.11 Property-specific type
	8.3.1.1.12 Units on value properties
	8.3.1.1.13 Units on values

	8.3.1.2 Internal Block Diagram
	8.3.1.2.1 Property types
	8.3.1.2.2 Block reference in diagram frame
	8.3.1.2.3 Compartments on internal properties
	8.3.1.2.4 Compartments on a diagram frame
	8.3.1.2.5 Property path name
	8.3.1.2.6 Nested connector end
	8.3.1.2.7 Property-specific type
	8.3.1.2.8 Initial values compartment
	8.3.1.2.9 Default multiplicities

	8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams
	8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

	8.3.2 Stereotypes
	8.3.2.1 AdjunctProperty
	8.3.2.2 Binding Connector
	8.3.2.3 Block
	8.3.2.4 Bound Reference
	8.3.2.5 ClassifierBehaviorProperty
	8.3.2.6 DirectedRelationshipPropertyPath
	8.3.2.7 DistributedProperty
	8.3.2.8 ElementPropertyPath
	8.3.2.9 EndPathMultiplicity
	8.3.2.10 NestedConnectorEnd
	8.3.2.11 ParticipantProperty
	8.3.2.12 PropertySpecificType
	8.3.2.13 ValueType

	8.3.3 Model Libraries
	8.3.3.1 PrimitiveValueTypes
	8.3.3.1.1 Boolean
	8.3.3.1.2 Complex
	8.3.3.1.3 Integer
	8.3.3.1.4 Number
	8.3.3.1.5 Real
	8.3.3.1.6 String

	8.3.3.2 Package UnitAndQuantityKind
	8.3.3.2.1 QuantityKind
	8.3.3.2.2 Unit

	8.4 Usage Examples
	8.4.1 Wheel Hub Assembly
	8.4.2 Example Value Type Definitions
	8.4.3 Design Configuration for SUV EPA Fuel Economy Test
	8.4.4 Water Delivery
	8.4.5 Constraining Decomposition
	8.4.6 Units and Quantity Kinds
	8.4.7 Property-Specific Types

	9 Ports and Flows
	9.1 Overview
	9.1.1 Ports
	9.1.2 Flow Properties, Provided and Required Features, and Nested Ports
	9.1.3 Proxy Ports and Full Ports
	9.1.4 Item Flows
	9.1.5 Deprecation of Flow Ports and Flow Specifications

	9.2 Diagram Elements
	9.2.1 Block Definition Diagram
	9.2.2 Internal Block Diagram

	9.3 UML Extensions
	9.3.1 Diagram Extensions
	9.3.1.1 DirectedFeature
	9.3.1.2 FlowProperty
	9.3.1.3 FullPort
	9.3.1.4 InvocationOnNestedPortAction
	9.3.1.5 ItemFlow
	9.3.1.6 Port
	9.3.1.7 ProxyPort
	9.3.1.8 TriggerOnNestedPort

	9.3.2 Stereotypes
	9.3.2.1 AcceptChangeStructuralFeatureEventAction
	9.3.2.2 AddFlowPropertyValueOnNestedPortAction
	9.3.2.3 Block
	9.3.2.4 ChangeStructuralFeatureEvent
	9.3.2.5 DirectedFeature
	9.3.2.6 FeatureDirectionKind
	9.3.2.7 FlowDirectionKind
	9.3.2.8 FlowProperty
	9.3.2.9 FullPort
	9.3.2.10 InterfaceBlock
	9.3.2.11 InvocationOnNestedPortAction
	9.3.2.12 ItemFlow
	9.3.2.13 ProxyPort
	9.3.2.14 TriggerOnNestedPort
	9.3.2.15 ~InterfaceBlock

	9.4 Usage Examples
	9.4.1 Ports with Required and Provided Features
	9.4.2 Ports and Item Flows
	9.4.3 Ports with Flow Properties
	9.4.4 Proxy and Full Ports
	9.4.5 Association and Port Decomposition
	9.4.6 Item Flow Decomposition

	10 Constraint Blocks
	10.1 Overview
	10.2 Diagram Elements
	10.2.1 Block Definition Diagram
	10.2.2 Parametric Diagram

	10.3 UML Extensions
	10.3.1 Diagram Extensions
	10.3.1.1 Block Definition Diagram
	10.3.1.1.1 Constraint block definition
	10.3.1.1.2 Parameters compartment

	10.3.1.2 Parametric Diagram
	10.3.1.2.1 Round-cornered rectangle notation for constraint property
	10.3.1.2.2 «constraint» keyword notation for constraint property
	10.3.1.2.3 Small square box notation for an internal property

	10.3.2 Stereotypes
	10.3.2.1 ConstraintBlock

	10.4 Usage Examples
	10.4.1 Definition of Constraint Blocks on a Block Definition Diagram
	10.4.2 Usage of Constraint Blocks on a Parametric Diagram

	11 Activities
	11.1 Overview
	11.1.1 Control as Data
	11.1.2 Continuous Systems
	11.1.3 Probability
	11.1.4 Activities as Blocks
	11.1.5 Timelines

	11.2 Diagram Elements
	11.2.1 Activity Diagram

	11.3 UML Extensions
	11.3.1 Diagram Extensions
	11.3.1.1 Activity
	11.3.1.1.1 Notation

	11.3.1.2 CallBehaviorAction
	11.3.1.3 ControlFlow
	11.3.1.3.1 Presentation Option

	11.3.1.4 ObjectNode, Variables, and Parameters
	11.3.1.4.1 Notation

	11.3.2 Stereotypes
	Package Activities
	11.3.2.1 Continuous
	11.3.2.2 ControlOperator
	11.3.2.3 Discrete
	11.3.2.4 NoBuffer
	11.3.2.5 Optional
	11.3.2.6 Overwrite
	11.3.2.7 Probability
	11.3.2.8 Rate

	11.3.3 Model Libraries
	11.3.3.1 Package ControlValues
	11.3.3.1.1 ControlValueKind

	11.4 Usage Examples

	12 Interactions
	12.1 Overview
	12.2 Diagram Elements
	12.2.1 Sequence Diagram

	12.3 UML Extensions
	12.3.1 Diagram Extensions
	12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing Diagram
	12.3.1.2 Interactions and Parameters
	12.3.1.2.1 Notation

	12.4 Usage Examples
	12.4.1 Sequence Diagrams

	13 State Machines
	13.1 Overview
	13.2 Diagram Elements
	13.2.1 State Machine Diagram

	13.3 UML Extensions
	13.3.1 Diagram Extensions
	13.3.1.1 State Machines and Parameters
	13.3.1.1.1 Notation

	13.4 Usage Examples
	13.4.1 State Machine Diagram

	14 Use Cases
	14.1 Overview
	14.2 Diagram Elements
	14.2.1 Use Case Diagram

	14.3 UML Extensions
	14.4 Usage Example

	15 Allocations
	15.1 Overview
	15.2 Diagram Elements
	15.2.1 Representing Allocation on Diagrams

	15.3 UML Extensions
	15.3.1 Diagram Extensions
	15.3.1.1 Tables
	15.3.1.2 Allocate Relationship Rendering
	15.3.1.3 Allocation Compartment Format
	15.3.1.4 Allocation Callout Format
	15.3.1.5 AllocatedActivityPartition Label

	15.3.2 Stereotypes
	15.3.2.1 AllocateActivityPartition (from Allocations)
	15.3.2.2 Allocate (from Allocations)

	15.4 Usage Examples
	15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks
	15.4.2 Allocate Flow
	15.4.2.1 Allocating Structure
	15.4.2.2 Automotive Example

	15.4.3 Tabular Representation

	16 Requirements
	16.1 Overview
	16.2 Diagram Elements
	16.2.1 Requirement Diagram

	16.3 UML Extensions
	16.3.1 Diagram Extensions
	16.3.1.1 Requirement Diagram
	16.3.1.2 Requirement Notation
	16.3.1.3 Requirement Property Callout Format
	16.3.1.4 Requirements on Other Diagrams
	16.3.1.5 Requirements Table

	16.3.2 Stereotypes
	16.3.2.1 AbstractRequirement
	16.3.2.2 Copy
	16.3.2.3 DeriveReqt
	16.3.2.4 TestCase
	16.3.2.5 Refine
	16.3.2.6 Requirement
	16.3.2.7 Satisfy
	16.3.2.8 Trace
	16.3.2.9 Verify

	16.3.3 Model Libraries
	16.3.3.1 Package Verdicts
	16.3.3.1.1 VerdictKind

	16.4 Usage Examples
	16.4.1 Requirement Decomposition and Traceability
	16.4.2 Requirements and Design Elements
	16.4.3 Requirements Reuse
	16.4.4 Verification Procedure - Test Case

	17 Profiles & Model Libraries
	17.1 Overview
	17.2 Diagram Elements
	17.2.1 Profile Definition in Package Diagram
	17.2.2 Stereotypes Used On Diagrams

	17.3 UML Extensions
	17.4 Usage Examples
	17.4.1 Defining a Profile
	17.4.2 Adding Stereotypes to a Profile
	17.4.3 Defining a Model Library that Uses a Profile
	17.4.4 Guidance on Whether to Use a Stereotype or Class
	17.4.5 Using a Profile
	17.4.6 Using a Stereotype
	17.4.7 Using a Model Library Element

	Annex A: Diagrams
	A.1 Overview
	A.2 Guidelines

	Annex B: SysML Diagram Interchange
	B.1 Overview
	B.2 Stereotypes
	B.2.1 SysMLActivityDiagram
	B.2.2 SysMLBehaviorDiagram
	B.2.3 SysMLBlockDefinitionDiagram
	B.2.4 SysMLDiagram
	B.2.5 SysMLDiagramElement
	B.2.6 SysMLDiagramWithAssociations
	B.2.7 SysMLInteractionDiagram
	B.2.8 SysMLInternalBlockDiagram
	B.2.9 SysMLPackageDiagram
	B.2.10 SysMLParametricDiagram
	B.2.11 SysMLRequirementDiagram
	B.2.12 SysMLStateMachineDiagram
	B.2.13 SysMLStructureDiagram
	B.2.14 SysMLUseCaseDiagram

	B.3 SysML DI usage notes
	B.4 SysML Notation and DI Representation

	Annex C: Deprecated Elements and Migration
	C.1 Overview
	C.1.1 Flow Ports
	C.1.2 Conjugated Ports
	C.1.3 ConnectorProperty

	C.2 Diagram Elements
	C.2.1 Block Definition Diagram
	C.2.2 Internal Block Diagram

	C.3 UML Extensions
	C.3.1 Diagram Extensions
	C.3.1.1 Conjugated Ports
	C.3.1.2 FlowPort
	C.3.1.3 FlowSpecification

	C.3.2 Stereotypes
	C.3.2.1 Package Ports&Flows
	C.3.2.2 FlowPort
	C.3.2.3 FlowSpecification
	C.3.2.4 ItemFlow (deprecated compatibility rule)
	C.3.2.5 ConnectorProperty

	C.4 Transitioning SysML1.2 Flow Ports to SysML 1.3 Ports (informative)
	C.5 Transitioning SysML 1.3 Viewpoint and View to SysML 1.4 (informative)
	C.6 Transitioning SysML 1.3 Units and QuantityKinds to SysML 1.4 (informative)
	C.7 Transitioning SysML 1.5 conjugated port typed by InterfaceBlock to SysML 1.6 conjugated InterfaceBlock (informative)

	Annex D: Sample Problem
	D.1 Purpose
	D.2 Scope
	D.3 Problem Summary
	D.4 Diagrams
	D.4.1 Package Overview (Structure of the Sample Model)
	D.4.1.1 Package Diagram - Applying the SysML Profile
	D.4.1.2 Package Diagram - Showing Package Structure of the Model

	D.4.2 Setting the Context (Boundaries and Use Cases)
	D.4.2.1 Internal Block Diagram - Setting Context
	D.4.2.2 Use Case Diagram - Top Level Use Cases
	D.4.2.3 Use Case Diagram - Optional Use Cases

	D.4.3 Elaborting Behavior (Sequence and State Machine Diagrams)
	D.4.3.1 Sequence Diagram - Drive Black Box
	D.4.3.2 State Machine Diagram - HSUV Operational States
	D.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

	D.4.4 Establishing Requirements (Requirements Diagrams and Tables)
	D.4.4.1 Requirement Diagram - HSUV Requirement HIerarchy
	D.4.4.2 Requirement Diagram - Derived Requirements
	D.4.4.3 Requirement Diagram - Acceleration Requirement Relationships
	D.4.4.4 Table - Requirements Table

	D.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams)
	D.4.5.1 Block Definition Diagram - Automotive Domain
	D.4.5.2 Block Definition Diagram - Hybrid SUV
	D.4.5.3 Internal Block Diagram - Hybrid SUV
	D.4.5.4 Block Definition Diagram - Power Subsystem
	D.4.5.5 Internal Block Diagram for the "Power Subsystem"

	D.4.6 Defining Ports and Flows
	D.4.6.1 Block Definition Diagram - ICE Flow Properties
	D.4.6.2 Internal Block Diagram - CANbus
	D.4.6.3 Block Definition Diagram - Fuel Flow Properties
	D.4.6.4 Parametric Diagram - Fuel Flow
	D.4.6.5 Internal Block Diagram - Fuel Distribution

	D.4.7 Analyze Perfomance (Constraint Diagrams, Timing Diagrams, Views
	D.4.7.1 Block Definition Diagram - Analysis Context
	D.4.7.2 Package Diagram - Performance View Definition
	D.4.7.3 Package Diagram - Viewpoint Definition
	D.4.7.4 Package Diagram - View Definition
	D.4.7.5 Package Diagram - View Hierarchy
	D.4.7.6 Parametric Diagram - Measures of Effectiveness
	D.4.7.7 Parametric Diagram - Economy
	D.4.7.8 Parametric Diagram - Dynamics
	D.4.7.9 (Non-Normative) Non-SysML Diagram - 100hp Acceleration

	D.4.8 Defining, Decomposing, and Allocating Activities
	D.4.8.1 Activity Diagram - Acceleration (top level)
	D.4.8.2 Block Definition Diagram - Acceleration
	D.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)
	D.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation
	D.4.8.5 Table - Acceleration Allocation
	D.4.8.6 Block Definition Diagram: Slot Values - EPA Fuel Economy Test

	Annex E: Non-normative Extensions
	E.1 Overview
	E.2 Activity Diagram Extensions
	E.2.1 Overview
	E.2.2 Stereotypes
	E.2.3 Stereotype Examples

	E.3 Requirements Diagram Extensions
	E.3.1 Overview
	E.3.2 Stereotypes
	E.3.3 Stereotype Examples

	E.4 Parametric Diagram Extension for Trade Studies
	E.4.1 Overview
	E.4.2 Stereotypes
	E.4.3 Stereotye Examples

	E.5 Model Library for Quantities, Units, Dimensions, and Values (QUDV)
	E.5.1 Overview
	E.5.2 Abstract Syntax
	E.5.2.1 AffineConversionUnit
	E.5.2.2 ConversionBasedUnit
	E.5.2.3 DerivedQuantityKind
	E.5.2.4 DerivedUnit
	E.5.2.5 Dimension
	E.5.2.6 GeneralConversionUnit
	E.5.2.7 LinearConversionUnit
	E.5.2.8 Prefix
	E.5.2.9 PrefixedUnit
	E.5.2.10 QuantityKind
	E.5.2.11 QuantityKindFactor
	E.5.2.12 Rational
	E.5.2.13 SimpleQuantityKind
	E.5.2.14 SimpleUnit
	E.5.2.15 SystemOfQuantities
	E.5.2.16 SystemOfUnits
	E.5.2.17 Unit
	E.5.2.18 UnitFactor

	E.5.3 References
	E.5.4 Usage Examples
	E.5.4.1 SI Unit and QuantityKind examples
	E.5.4.2 Spring Example

	E.6 Model Library of SysML Quantity Kinds and Units for ISO 80000
	E.6.1 Overview
	E.6.2 Unit and Quantity Kinds
	E.6.3 ISO 80000-1 Prefixes
	E.6.4 ISO 80000-2 Mathematical Signs and Symbols
	E.6.5 Summary of the covered parts of ISO 80000
	E.6.5.1 ISO 80000-3 Space and Time
	E.6.5.1.1 Normative Quantity kinds

	E.6.5.2 ISO 80000-4 Mechanics
	E.6.5.2.1 Normative Quantity kinds ISO 80000-4

	E.6.5.3 ISO 80000-5 Thermodynamics
	E.6.5.3.1 Normative Diagram Kinds

	E.6.5.4 ISO 80000-6 Electromagnetism
	E.6.5.4.1 Quantity Kind ISO 80000-6

	E.6.5.5 ISO 80000-7 Light
	E.6.5.6 ISO 80000-9 Physical Chemistry and Molecular Physic
	E.6.5.7 ISO 80000-10 Atomic and Nuclear Physics
	E.6.5.8 ISO 80000-13 Information Science and Technology

	E.7 Distribution Extensions
	E.7.1 Overview
	E.7.2 Stereotypes
	E.7.2.1 Package Distributions

	E.7.3 Usage Example

	E.8 Building Non-Normative Extensions for Property-Based Requirements
	E.8.1 Overview
	E.8.2 An Example PBR Profile Based on ConstraintBlock
	E.8.2.1 Profile/Stereotypes of PBR Based on ConstraintBlock
	E.8.2.2 Usage Example using PBR profile based on ConstraintBlock

	E.8.3 An Example PBR Profile Based on Constraint
	E.8.3.1 Profile/Stereotypes of PBR based on Constraint
	E.8.3.2 Example using PBR profile based on Constraint

	E.8.4 An Example Property Based Requirement based on Block

	Annex F: Requirements Traceability
	Annex G: Model Interchange
	G.1 Overview
	G.2 Context for Model Interchange
	G.3 XMI Serialization of SysML
	G.4 SysML Model Interchange Using AP233
	G.4.1 Scope of AP233
	G.4.2 STEP Architecture
	G.4.3 EXPRESS
	G.4.4 SysML-AP233 Mapping

	Annex H: Precise Semantics of SysML
	H.1 Overview
	H.2 References
	H.3 Semantics
	H.3.1 Actions
	H.3.1.1 Overview
	H.3.1.2 Additional Constraints
	H.3.1.3 Class descriptions
	H.3.1.3.1 SysML_AddStructuralFeatureValueActionActivation
	H.3.1.3.2 SysML_CallOperationActivation
	H.3.1.3.3 SysML_ClearStructuralFeatureActionActivation
	H.3.1.3.4 SysML_InputPinActivation
	H.3.1.3.5 SysML_OutputPinActivation
	H.3.1.3.6 SysML_ReadStructuralFeatureActionActivation
	H.3.1.3.7 SysML_RemoveStructuralFeatureValueActionActivation
	H.3.1.3.8 SysML_SendSignalActionActivation

	H.3.2 Activities
	H.3.2.1 Overview
	H.3.2.2 Class descriptions
	H.3.2.2.1 SysML_ActivityExecution
	H.3.2.2.2 SysML_ActivityParameterNodeActivation
	H.3.2.2.3 SysML_ExpansionNodeActivation
	H.3.2.2.4 SysML_ObjectNodeActivation

	H.3.3 Blocks
	H.3.3.1 Overview
	H.3.3.2 Class descriptions
	H.3.3.2.1 AdjunctBinding
	H.3.3.2.2 ObjectNodeAdjunctBinding
	H.3.3.2.3 ParameterAdjunctBinding
	H.3.3.2.4 SysML_FeatureValue
	H.3.3.2.5 SysML_Object
	H.3.3.2.6 SysML_ReferencePropertyPair
	H.3.3.2.7 SysML_StructuredValue
	H.3.3.2.8 ValueBinding

	H.3.4 Loci
	H.3.4.1 Overview
	H.3.4.2 Class descriptions
	H.3.4.2.1 SysML_ExecutionFactory
	H.3.4.2.2 SysML_Locus

	H.3.5 Ports and Flows
	H.3.5.1 Overview
	H.3.5.2 Additional Constraints
	H.3.5.3 Class descriptions

