An OMG® Systems Modeling Publication

OMG Systems Modeling Language™
(SysML®)

Version 2.0 Beta 2
(Release 2024-02)

Part 1: Language Specification

OMG Document Number: None
Date: February 2024

Standard document URL: https://www.omg.org/spec/SysML/2.0/Language/

Machine Readable File(s): https://www.omg.org/spec/SysML/20240201/

Normative:

https://www.omg.org/spec/SysML/20240201/SysML.xmi
https://www.omg.org/spec/SysML/20240201/Systems-Library.kpar
https://www.omg.org/spec/SysML/20240201/Analysis-Domain-Libary.kpar
https://www.omg.org/spec/SysML/20240201/Cause-and-Effect-Domain-Library.kpar
https://www.omg.org/spec/SysML/20240201/Geometry-Domain-Library.kpar
https://www.omg.org/spec/SysML/20240201/Metadata-Domain-Library.kpar
https://www.omg.org/spec/SysML/20240201/Quantities-and-Units-Domain-Library.kpar
https://www.omg.org/spec/SysML/20240201/Requirement-Derivation-Domain-Library.kpar
https://www.omg.org/spec/SysML/20240201/SysML .json

Non-normative:
https://www.omg.org/spec/SysML/20240201/SimpleVehicleModel.sysml

https://www.omg.org/spec/SysML/2.0/Language/
https://www.omg.org/spec/SysML/20230201/
https://www.omg.org/spec/SysML/20230201/SysML.xmi
https://www.omg.org/spec/SysML/20230201/Systems-Library.kpar
https://www.omg.org/spec/SysML/20230201/Analysis-Domain-Libary.kpar
https://www.omg.org/spec/SysML/20230201/Cause-and-Effect-Domain-Library.kpar
https://www.omg.org/spec/SysML/20230201/Geometry-Domain-Library.kpar
https://www.omg.org/spec/SysML/20230201/Metadata-Domain-Library.kpar
https://www.omg.org/spec/SysML/20230201/Quantities-and-Units-Domain-Library.kpar
https://www.omg.org/spec/SysML/20230201/Requirement-Derivation-Domain-Library.kpar
https://www.omg.org/spec/SysML/20230201/SysML.json
https://www.omg.org/spec/SysML/20230201/SimpleVehicleModel.sysml

Copyright © 2019-2024, 88solutions Corporation

Copyright © 2019-2024, Airbus

Copyright © 2019-2024, Aras Corporation

Copyright © 2019-2024, Association of Universities for Research in Astronomy (AURA)
Copyright © 2019-2024, BigLever Software

Copyright © 2019-2024, Boeing

Copyright © 2022-2024, Budapest University of Technology and Economics
Copyright © 2021-2024, Commissariat a l'énergie atomique et aux énergies alternatives (CEA)
Copyright © 2019-2024, Contact Software GmbH

Copyright © 2019-2024, Dassault Systémes (No Magic)

Copyright © 2019-2024, DSC Corporation

Copyright © 2020-2024, DEKonsult

Copyright © 2020-2024, Delligatti Associates LLC

Copyright © 2019-2024, The Charles Stark Draper Laboratory, Inc.
Copyright © 2020-2024, ESTACA

Copyright © 2023-2024, Galois, Inc.

Copyright © 2019-2024, GfSE e.V.

Copyright © 2019-2024, George Mason University

Copyright © 2019-2024, IBM

Copyright © 2019-2024, Idaho National Laboratory

Copyright © 2019-2024, INCOSE

Copyright © 2019-2024, Intercax LLC

Copyright © 2019-2024, Jet Propulsion Laboratory (California Institute of Technology)
Copyright © 2019-2024, Kenntnis LLC

Copyright © 2020-2024, Kungliga Tekniska hogskolon (KTH)

Copyright © 2019-2024, LightStreet Consulting LLC

Copyright © 2019-2024, Lockheed Martin Corporation

Copyright © 2019-2024, Maplesoft

Copyright © 2021-2024, MID GmbH

Copyright © 2020-2024, MITRE

Copyright © 2019-2024, Model Alchemy Consulting

Copyright © 2019-2024, Model Driven Solutions, Inc.

Copyright © 2019-2024, Model Foundry Pty. Ltd.

Copyright © 2023-2024, Object Management Group, Inc.

Copyright © 2019-2024, On-Line Application Research Corporation (OAC)
Copyright © 2019-2024, oose Innovative Informatik eG

Copyright © 2019-2024, Ostfold University College

Copyright © 2019-2024, PTC

Copyright © 2020-2024, Qualtech Systems, Inc.

Copyright © 2019-2024, SAF Consulting

Copyright © 2019-2024, Simula Research Laboratory AS

Copyright © 2019-2024, System Strategy, Inc.

Copyright © 2019-2024, Thematix Partners, LLC

Copyright © 2019-2024, Tom Sawyer

Copyright © 2023-2024, Tucson Embedded Systems, Inc.

Copyright © 2019-2024, Universidad de Cantabria

Copyright © 2019-2024, University of Alabama in Huntsville

Copyright © 2019-2024, University of Detroit Mercy

Copyright © 2019-2024, University of Kaiserslauten

Copyright © 2020-2024, Willert Software Tools GmbH (SodiusWillert)

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the
terms, conditions and notices set forth below. This document does not represent a commitment to
implement any portion of this specification in any companys products. The information contained in this
document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document
and distribute copies of the modified version. Each of the copyright holders listed above has agreed that
no person shall be deemed to have infringed the copyright in the included material of any such copyright
holder by reason of having used the specification set forth herein or having conformed any computer
software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby
grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications
that are based upon this specification, and to use, copy, and distribute this specification as provided
under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will
not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these
terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in
your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be responsible for
identifying patents for which a license may be required by any OMG specification, or for conducting legal
inquiries into the legal validity or scope of those patents that are brought to its attention. OMG
specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and
communications regulations and statutes. This document contains information which is protected by
copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or
used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR

OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne
by you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this
specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in
subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights
clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement
and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its
successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 9C Medway Road, PMB 274, Milford, MA 01757,
U.S.A

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, Financial Instrument Global
Identifier®, 11OP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language™, UML®, UML Cube Logo®,
VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or
through its designees) is and shall at all times be the sole entity that may authorize developers, suppliers
and sellers of computer software to use certification marks, trademarks or other special designations to
indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable
compliance points may claim only that the software was based on this specification, but may not claim
compliance or conformance with this specification. In the event that testing suites are implemented or
approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing
suites.

https://www.omg.org/legal/tm_list.htm

OMG’S ISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by

completing the Issue Reporting Form listed on the main web page https://www.omg.org, under
Documents, Report a Bug/Issue.

http://www.omg.org/

Table of Contents

0 PIEIACE. ...ttt et h e et h e e sttt h et et eh et s e e st b e en e n et n e s nene 23
L S0P ettt bttt ettt h e bbbt h e Rt e st et b bt e b e e bt eh e eh e Rt e et et e E ekt e h e e bt e bt e bt e st e n e et e bt e bt eb e e bt e bt ea s et et et e nte et 1
2 CONTOTIMANCE ...ttt ettt b et e et s e et b e e st s e et e b e s e st et e e e st s e meeh e e ea e se e st e b e e e st b et e b e e eseebeseeneneneenennan 3
3 NOIMALIVE RETEIENCES ...ttt a st s e e e s e b e s e n e en e e sesae e eaenene 5
4 Terms and DEFINTHIONScc.coiiiiiiiiii ettt sttt b e st a s et b e e bt se st b e e eae e e neanen 7
S SYIMDOLS ..ttt ettt ettt ettt a ket s e e a ekt A e R e e R en e e R e A e R e ke a e eh e R e R e R enteR e b en e ehensee e b e Rt eb et es e ben e et et eneetentetennene 9
6 Introduction........c.cceeuevreenenees el
6.1 DOCUMENE OVETVIEWeiiiiiiiiiitiieie ettt sttt b e s st b e e s et et e s e e e st e e se e e e e st seeseeee e e eaens 11
6.2 DOCUMENE OTZANIZATION ..c.euveiteiientiteteeteet ettt ettt ettt ettt sbesbeebees e et et et eab e e bt ebeebeeaeestessess e te st esbesbeebeebeentemtentensenbenbenbennes 12
6.3 ACKINOWIEBZEIMENES ...c..c.eiiiiiiieiieitetetete ettt ettt et b et et b e bt e bt e bt e bt eae e st e st et et e st e st e ebeebeebeebeemt et enbebenbenbesues 13
7 LanGUAZE DIESCIIPLION . ..cuveutititietieiieit ettt sttt ettt ettt b s b e bt e bt e bt eb e e st e st et et e st e e bt e bt ebe e st es e e st ea b et e b e e bt e bt ebeebeebe e st et eaentenbeabeaneas 15
7.1 LanGUAZE OVEIVIEW ..c..euiriiriieiieiientitentesteet ettt ettt et et e s testeste s bt e bt es e es e et et e b e eb e e bt e bt ebeeates b e st enb et e st e st e ebeebeebeeneententenbebenbenbenues 15
7.2 Elements and ReIAtIONSIIPSeviuiiieuiiiiiiieee ettt b et ettt b e st b et s et e st et et e s et e st b e e e e e ae e eeenes 16
7.2.1 Elements and Relationships Overview16
T2 2 BIEIMENLSuiiiiicieee ettt et e et ettt st et h e st et ae et ne e eneeen 17
7.2.3 RELAHIONSIIPS 1.ttt ettt st b e bt bt e bt e st et et et e e bt e bt e bt e bt eateat et ebestesaenbenne 18
7.3 DIEPEIIACIICIESveuventeieiinieetteiteitet ettt ettt ettt ettt et et et e st b e s bt e bt eb e es e e st et e bt b e e bt e bt eheeaeea b e st en b et et e sbeebeebeebeebten b et et e benbesbeeaes 18
7.3.1 DEPendENCIES OVEIVIEW.cueeeuiiiuietiiteuieteiettetettetetetteteseeteseseabeseeseseseesenees e sesessene et enseseesene et e sene et eneeseaseneeseneenenan 18
7.3.2 Dependency DECIATAIONc..cuiiuiieiiieeieteeteet ettt ettt ettt ettt ettt et et et e b e st eb et et e eeneete e eaesbeneeseneeneanan 19
T4 ANNOTATIONS ...ttt st e et b b e e e b e e e s st s e e es e e st ee e e st e e se e et st e e e e e s 19
7.4.1 ANNOLAtIONS OVEIVIEWcuiiiiiiiiiiiiitiitciieiee ettt ettt e e b s e e e e st se et et e e eaesae e eaeseeseene e enenen 20
7.4.2 Comments and DOCUMENTALIONe.cuiirieueuiririereiinirieteaineeteteeereetetestesetetestseerestae et seesseseseesaebestssseseseseeseneseasenesen 22
7.4.3 Textual Representation...
7.5 Namespaces and PACKAZEScuoruiriiriiiiiieiit ettt et ettt b s bt bbbt ettt be b b e
7.5.1 NAMESPACES OVETVIEWuieutinietiriirierieeiteitestetentestesteeseetteutestestestestestestesbeebeebeestestententebeabeabeebeebeestententensentesaesbene
7.5.2 OWned Members and ALIASES...........eueueiriereiriniereiniiieieie ettt ettt s ettt be et b et a bt b bt eeaeten 27
T.5.3 TIMPOTES ettt ettt ettt ettt b e bt e b e eb e e bt e st es b e st et e st e s bt s bt e bt eb e ebtes b em b em b e bt e bt e bt e bt e bt ea s en b et e be st e naesbenne 28
7.5.4 TMPOTE FIIEETING ...ttt ettt ettt ettt s b e bt bt e bt e st et et e bt e bt e bt e bt e bt eateat et etentesaesbenne 29
7.5.5 ROOE NAIMESPACES ...ttt ettt ettt b e bbb st e et e st e st e sb e ebeeb e ebtes e et et e bt ebeebeebeebeeatentenbenbentesaesbene 31
7.6 Definition and Usage31
7.6.1 Definition and USAZE OVETVIEWc..ccueruiiuiiiiiiietertieteettett ettt et ste st sbesbt bt este st et e be bt ebeebeebeebeententensensestesaesbenne 31
T.6.2 DETINITIONS ...ttt e e b et a e b et e e s e e et e b e e st se e e eae s e n e a e ne e 41
T.60.3 USAZES ...ueemeentintitietiett ettt et ettt st e e bt b e bt e st et et b e bt e bt e bt e h e et ea s Rt et ekt h e bt bt bt e bt e st en b ettt e bt e bt e bt e bt eaten b et et e ntesaenbe e 42
7.6.4 RETETENCE USAZES ...ttt ettt ettt et b bttt ettt ettt s b e bt eb e e bt e st et et e b e e bt e bt ebeebeeatest et ebentesbenbenne 44
7.6.5 EffECIVE INAIMIES ..ottt st sttt se e s s et ae e ne e 44
7.6.6 FEAtUTE CRAINS.......oouiiiiiiiiiiic ettt sttt sttt s ae s et n e ene e 45
7.6.7 Variations and VATTANTSccooiiiiiiiiiiieiicieee ettt e e a et et e e se e s s e ae e ene e 45
7.6.8 IMPIICIt SPECIAIIZALIONeouteniiiiiiiirieeieeeetet ettt ettt ettt b et ettt e b e bt e bt e bt e st et et eaestesaesbenee 46
7.7 AUIIDULES. ..o
7.7.1 Attributes Overview
7.7.2 Attribute Definitions and USAZESc.eoeruirieuirieietiieeietei ettt ettt ettt ste ettt be e sesbe st sseneeseseenesse e esesseneeseneeneanan 48
7.8 BIIUIMETATIONSc.viuiiiiiiitiietiee ettt sttt b et e s e b e e e s s s b e e e st s e st ea e e e st e aese e e e esesae e eeesaeaeeaeaes 49
7.8.1 ENUMETAtIONS OVEIVIBWuiuiiuiiiiiiiiiciiiteeete ettt s e e e s e et e e e e e ae s e eae e eneees 49
7.8.2 Enumeration Definitions and USAZESccueirueiruirieuirieieieieeteteietese et ete ettt sttt este st ste st eteseeseseeneesesseneeseeeneanan 50
7.9 OCCUITEIICES........c.eeeiiieie ettt ettt a e st h e s et h e e st b e b e se st e s e e e s e s e st b e e es e s e st ea e e eseeae e es e e eseseeseeee e e eaeaes 51
7.9.1 Occurrences Overview51
7.9.2 Occurrence Definitions and USAZESc.ceueiiriiiiriininieiieieteteteste sttt ettt ettt bbbt bt et et e st esaestesaesbenne 56
7.9.3 Time SLCes and SNAPSIOLSc.eiuiieiiiieiete ettt ettt ettt ettt ettt et et e st b et et et ene et e e esesbeneeseneeneanan 56
7.9.4 Individual Definitions and USAZEScceerieuirieieiiieiieieietet ettt ettt ettt et ettt st e ete st e st eseneeteneesesteneesesseneeseeeneanan 57
7.9.5 EVENt OCCUITENCE USAZEScuveuventiriiriiriiiiieiteiteteteste et ettt ettt et et e st stesbeebeebeebtest et et et e ebe e bt ebeebeeutenbensebentesaesbenne 57

OMG Systems Modeling Language (SysML) v2.0 Beta 1 i

T L0 TEOIMIS ...eieeieeeitee et ettt e ettt ettt e ettt e e teeeetbeeesaee e tbeeassaeasseeessse e sseeanseeeasseeasseeensee e sseeanbeeenseeenbeeensaeennaeeenbeeentaeensseeesbeeanseeeten 57

7.10.1 Items OVerviewcecvevennene. ...58
7.10.2 Ttem Definitions and USAZESccceveeieierieierieierteettettettetetestetestestestestesseeseessessesesessesseeseeseeseensensensensessessessenes 59

T 1T PATES oottt sttt h b btk Rtk a £ Ao h A A ekt e b bt E kst b st e A b stttk en et eb st s etene e 59
T 11T PArtS OVEIVIBWcviniiiienietenteitet ettt ettt sttt et a et b e eb et et b et ekttt b ekt s et ettt s e st et et et eae st et ebe st est et et ebenaes 59
7.11.2 Part Definitions and USAZESccceeirieieieierieiesteeteettettetetetetestestestestesseeseentessesesessesseeseeseeseensensansensensessessenes 62

T 12 POTES oottt etttk b etttk h b h stttk s Aok h £k h At A ekt S b bt ek h etk s et et h stttk en et eben et etenenea 63
T 12,1 POIES OVETVIEW ...ttt sttt ettt st b et b et b e eb bt b et ekttt eb ekt e st ettt eb e st et eb et bt st et e bt st ent et et ebenaen 63
7.12.2 Port Definitions and Usages... .64
7.12.3 Conjugated Port Definitions and USAZESc.ccuevuerieririeieieieieieiesie ettt eteeseestessessessessessessessesseeseeneens

7.13 CONNECLIONS.....ceveveveeerereerenienieiereeneeeeas
7.13.1 Connections Overview
7.13.2 Connection Definitions and USAZEScueverieriiriietieieieieieietesieste st steeeteseestetestessessesseeseeseeseessensensessessessessenes 72
7.13.3 BINAINGS @S USAZESuveuveuienieierieriirieeitetiestetestetesteestestestestessessassessessessessesseeseensensensensesesseeseeseessensensensensessessessense 74
T 13,4 FEALUIE VALUES....ccuieuieuieiieieiete ettt ettt et ettt ettt et ete e st e st e st es s e st et e st e steeseeseeseentensensensenseebeeseeseeneentensansansensessessens 74
7.13.5 SUCCESSIONS QS USAZES.euveurenrerierierieeiieiieientestetesteeteestestestessessassessessessessesseeseensensensensansesseeseeseeneensensensensensessessane 75
7.13.6 Flow Connection Usages and IMESSAZESccuerverrerririeieieieieiesiestesiessesseeseestessessensessessesseeseessessessessessessessessens 76
7.14 Interfaces......ccoceveeeeeenennene
7.14.1 Interfaces Overview
7.14.2 Interface Definitions and USAZESceeveieieriertirtietietieieietetetestestestestesseeseestessessensessesseeseeseeseessensensessessessessenee 80
T 15 ALLOCALIONSeuveuieiesieeeeeieeetententeste e te et et e et estestestastessessessesseeseeseeseentensense s e seeseeseeseensansensansensa s esseeseeseesteneensensansansensenseans 81
T.15.1 AlLOCALIONS OVETVIBW......cueeuieiertirierieeitestententetesestesseesteseeneessessansessessessessesseessensensensansansesseeseeseensensensensensessessessens 81
7.15.2 Allocation Definitions and USAZES.........cecveierieriirtintieiieieieieiete e ste st seesteeseesteseetessessesseeseeseeseessensensessessessessenes 82
T 160 ACLIONS ...ttt sttt ettt et et et e e te et e et e esees e e st e st an s et e ssesseeseeseen e en e e s s e s s en s e s e e st es e e st entensenten s et e te ke eheeseententente s e bebenaeeneenes 83
7.16.1 Actions Overview......83
7.16.2 Action Definitions and USAGES..........cceririeieiieieierteeteeteeteeieeieetetestestessessesseeseeseeseessensensassessassessessessesseensens ...95
T.16.3 CONTOL NOGES ...ttt sttt sttt ettt ettt s bt e bt ete e st esee st ente st e sbesbeeseeseeseeneensensensensessassassessesseeneensans .97
7.16.4 SUCCESSION SNOTLNANASeeviiieiieiieiieiietee ettt ettt e s te et e st e st et e b e besbeebeebeeseeneensensensesensessessens 98
7.16.5 CONAILIONAL SUCCESSIONS.cuveveiiriirieeiierienietestetesteeteestestestestessasessessessessesseeseessessensanseseaseeseeseensensensensessessessessens 99
7.16.6 Perform ACLION USAZESccveeveeririeeieieieieriestestesteestestestetetessestesteeseesesseessessensensessessesseeseaneensensansansensessessesneenes 100
T.16.7 SENA ACHON USAZESeouveueeieieeiieiieiteitetete e teste sttt et estetetessestesseeteeseeseessessensesessesseeseeseeneensensansansanseeseaneeneenes 101
7.16.8 ACCEPt ACLION USAGESeuveuveietieiieiieiienieteste e steeteettette e stestessessesseeteeseeseessessensesessesseeseeseeneensensansansansesseaneeneenes 102
7.16.9 ASSIGNMENt ACLION USAZES ...c.veevieieeiieeierieieietertesteettettetetetessestesteeseeseeseessessensessessessesseeseeseessensansansensessesseeneenes 105
7.16.10 If Action Usages.........

7.16.11 Loop Action Usages

7.17.2 State Definitions and USAZESccceeierierierierierieitieiieieieietestestesteete st eseestessetessessessesseeseeseensensansansensessessesneenes 112
T.17.3 TranSItION USAGES......ccueoueruerreriertirieeitetestetestestestesseeseeseestestessassessesseeseeseessessessensensessessesseeseeneensensansensensessessessesnes 113
7.17.4 EXNIDIt STALE USAZES ..veuveuvereiiriieiieiieiieieteste e st st ettettestetestessestesteeteeseeseessestensessessessesseeseeseensensansansensessesseeneenes 116
T 18 CalCUIALIONS......c.veueieeeieieeiteitetete ettt ettt e et e et et e e teste e e e e st eseentessesbe s e s e st eseententensansenseeseeseeseeseententenbensesensesseeseeneenean 116
7.18.1 CalCulations OVETVIEWcc.eeuieuiriiriieieientestertestesteestestestetestessessessesseeseeseessensensensessessesseeseentensensansansensessesseeneenes 116

7.18.2 Calculation Definitions and USAZESccueruerueriiriirieieieierieseste ettt et eieestetestessessessesseeseeseensensansassessessessesseenes
719 COMSIAINES ...ttt ettt ettt sttt et ee et et b et s et et besees b et e bt et es e e b e e eh b e st e bt s e bt b et eb et e st e b et eb et e st ettt ebenbentebenaenenten
7.19.1 CONSIAINES OVETVIEWuitiriuitenietentettetestete st eitete ettt s et s eb et es e sbe st b et e st sb et et e st et et et ebestent et et enesaeatebentesesteneenens
7.19.2 Constraint Definitions and USAZES........ccueruerueriiriririeieieieriese ettt eteste e stestestesaesseeseeseensensensessessessessesseenes
7.19.3 ASSErt CONSIIAINT USAZES ...euvevereirieeiieiieieiesiestestesteettettestestetessestesteeteeseeseessessensensessessesseeseaseensensansansensessesseeseenes
7.20 REQUITEIMIENESeuvevieietieiieiienteiestenteeteeteettestestestessassessestessesseeseessensensensenseseeseeseeneensensansensensessesseeseestentensensensensessesseeneanean
7.20.1 REQUITEMENES OVETVIEWeuveieetirtieiieieenieietestestesteesteseestestessessessesseesesseeseessessensensessessesseeseeseensensansensensessessessesnes
7.20.2 Requirement Definition and Usage
7.20.3 Concern Definitions and USAZEScveuerierieriiririieieieieieiese sttt ettt eieesteaestestessesaesseeseeseensensansansessesseesesneenes
7.20.4 Satisfy ReqUITEMENT USAZESccvevviriieiieieieieriesieeteettette e te e stestesteete s et et estesaetessessessesseeseeneensensensansensessesseeneenes

OMG Systems Modeling Language (SysML) v2.0 Beta 1

7.21.2 Case Definitions and USAZES.........ceecveverierierierierieeiieteeietetestestestesteetesseeseessessesessessessesseeseeseensensensensensessessesseenes 131

7.22 Analysis Casescoceverreerereeneennnn
7.22.1 Analysis Cases Overview
7.22.2 Analysis Case Definitions and USAZES.ccerververririeieieieienesieeteeteeieeieesteaestessessessesseeseeseensensansessessessessesseenes 133
7.22.3 Trade-Off ANALYSESccveiieieeiieiieieeitetetete ettt ettt et et st et e e bt e et e et e st e s b e tessessesaeeseeseentensensansansansesseeneeneenes 134
7.23 VI ICATION CASES ...euvivereieuienieieteteeteettettestentestetetestestesteseeeseestentensensenseaseeseeseentensensansensesseeseeseeseestentensensensensesseeseeneanean 135
7.23.1 Verification Cases OVETVIEWcccceerierierierueriertesteesietetetestessessessessessesseessessessessessessesseeseeseessensessessessessesseseenes 135
7.23.2 Verification Case Definitions and USAZESccceevirieieierienienierieeiceieeteeeteteste st st see st eseestesesesbessessesseeneenes 137
T.24 TUSE CASES ..envveeueeenteeuteeite et sitestte st et et et e eat e et e eat e s atesatesa e e sa e e bt et e ea bt ea st e ateea st eateee b e sa e e et e eh e e bt e bt e bt et e et e enb e et e enaenateeneeneeenne 138
7.24.1 USE CASES OVETVIEWcuveuvenreiieiietieiieitentetestestessesseeseestestestessessessessesseeseessessessensensessessesseeseansessensansenssensessessessennes 138
7.24.2 Use Case Definitions and USAZESc.ccueruerieriiririeieieieiesiesiesteste et eieeeesteaessessessessesseeseeseessensansessessessessesseenes 141
7.24.3 INCIUAE USE CaSE USAZES ...cuveuveviieeiieiienieietesiesteeteettettestestesessestesseeseeseeseessessensessessessesseeseentensensansansensessessesseenes 142
7.25 VIEWS QN VIEWPOINESeevieniiniiietirtietietietieietetestestestestesteeseestestessessessesseeseeseestensensensensassessessesseestensensensensensessessesseenen 142
7.25.1 Views and VIEWPOINLS OVEIVIEW........cverierieruerierterteetieieietestestestesteesesseeseessessessessessessessesseessessensessessessessesseseenes 142
7.25.2 View Definitions and USAZES........ccecveierierierierierieeiieiieieietertesteste st et st eseessestestessessessesseeseeseensensansansessessessesseenes 145
7.25.3 Viewpoint Definitions and USAZES........ccuevuerieriiririirieieieieiesesie ettt et testeste e ste e eseeseensensensesessessesseeneenes 146
7.25.4 Rendering Definitions and USAZES........ccuevueruerierieriieieieieieiesieste ettt st eieestetestessestesaesseeseeneessensansessessessesseeseenes 147
7.25.5 Diagrams
T.20 MELAQALA.......cueeuieieieeieeieettet ettt ettt ettt et et e e et e st e e te e bt e et eseestente st e be s e bt s e e st en e e st en s en b e b e eheeheeReeReententententebenbeeaeeneeneenean
7.26.1 MEtadata OVEIVIEWeeveieieeieriieieeieeitentetestestestesteeseestestestessessessesseeseeseeseessessensensessessesseeseantansensansansansessessesneenes 149
7.26.2 Metadata Definitions and USAZES........c.ecverierieriiriiriietieieieieriesiesteete e et eieesteaestessessesaesseeseeseensensansansessessessesseenes 151
7.26.3 SeMANTIC IMETAQALAcveieiiieeiieieeieteet ettt ettt ettt et et s b e et e bt et e eaees e e s te st e ssesbesseeseeseentensensansansanseeseeneeneenes 152
7.26.4 USEr-DefiNed KEYWOTMS.ccuieiiiiiriieiieieiesiesieste sttt ettt sttt et e teste s besae st eseeseensensansanbenseeseeneeneenes 153
B IMELAIMOMEL ...ttt ettt ettt ettt s et e b e st e s b e et e e bt e st e st e st e st en s e be et e et e ebeehees e e Rt en s e st en b et e bt eneeneententantentenbenheeteeseeneeneene 155
8.1 MEtAMOAE] OVEIVIEWeeuieuieuieieiesiesieeieeitetteteste e steste e st e st eseestentessassessessessesseeseeseeneensensansanseseeseeseeseensansansensensessessessasseans 155
8.2 COMCTELE SYINEAX ..e.uveiteeieieestiettet et ettt et et e st e e st e e s bt e st e e bt eteeabeeateeaseesteseteaseeshe e st et e enseenteeaseemsesaseentesesesaeenseanseenseenseennes 155
8.2.1 CONCTELE SYNLAX ODVETVIEW ...veuvivirieuieuienieientestestestesseestestestessessessesseeseeseeseensensansessessessessesseeseensensensessessessessesseenen 155
8.2.2 TEXIUAL INOTALION.evteuienienietiteeteet ettt et et et e st s e s te et e eseesteaebesbesb e e st eseeseensensansensessesseeseeseeneentensensensensenseaseeneanean 155
8.2.2.1 TexXtual NOtation OVETVIEWccverierieriertertietietietetetestestestessesteestessessessessessessessesseeseensensensessessessesseseenes 155
8.2.2.1.1 EBNF CONVENTIONSveevieuienienieienieetietietietientetetestestessesseeseessessessensessessessesseeseensensensensessessesseseenes 156
8.2.2.1.2 LeXiCal STIUCTUIEveeuieiieuienieietesteeteettettetient et et e stestestestesseentenaestebessesseeseeseeneensensansensesseesesseeneenes 157
8.2.2.2 Elements and Relationships TeXtual NOtationc.ccuerueriririririieieiesienie ettt eeeens 157
8.2.2.3 Dependencies TeXtual INOAtIONccuerviriiruirieieieieterteste ettt ettt te st stesbe st et eseeneesebebesseeseeneeneenes
8.2.2.4 Annotations Textual Notation....
8.2.2.4. 1 ANNOTATIONS ..c.veuveiieiieiieiieiieietestesteeteeteestestestestessessesteesesseeseessessensansessessesseeseeneensensansansessessessesneenes
8.2.2.4.2 Comments and DOCUMENTATIONc.ecuiruieieieieienteeteeteeieeeeetete e ste e stesee et seeseesesesbessessesseeneenes 158
8.2.2.4.3 Textual RePreSENtatiOn.ccevverieriiriieiieiieieieieteste et ete et et et e e stestestesteseeeseeseeseensensesesseesesseeneenes 158
8.2.2.5 Namespaces and Packages Textual NOtAtIONecuevveriiriiriieieieieieiesieste ettt eeeens 158
B.2.2.5. 1 PACKAZESeuveuveieeiieiieiieiteitete ettt ettt et e b ettt ettt et et et e ebe st e st e st e st e st e b e b e ebeebeeneeneenes 159
8.2.2.5.2 PaCKAZE EICIMENLS.....cc.eevieuieieieiesieeieetietteiieete ettt ettt ettt et s te st ese e st e st e anbe b esbeeseeneeneenes 160
8.2.2.6 Definition and Usage Textual NOTAtIONc.coeciririiirieiniiicnicineec ettt e
8.2.2.6.1 Definitionsccceceeeeveruerueniereeneenne
8.2.2.6.2 Usagesccceeuvnee.
8.2.2.6.3 Reference Usages
8.2.2.6.4 BOAY ELCIMENLScouieviiiieiieiieieriesteeieetcetieitete ettt et ettt ettt et e besbeeseese e st entensansebesseesesneeneenes
8.2.2.6.5 SPECIAIIZALION ..c.veuvieiiieiieiieieieste sttt ettt et et e e st et e st e bessesbeeseeseeneentensansebesseeseeneeneenes
8.2.2.6.6 MUILIPLICILY ...evveveiieieeieeiteitetete ettt ettt ettt et e bt et e s e e st e se st e bessesbeeseeseeneensensensenbesseeseeneeneenes
8.2.2.7 Attributes TeXtual NOALION......cverierieriertirtietietieieieiet ettt ettt et ete e stesbesbesseeneeneensesensenbesseesesseeneenes 165
8.2.2.8 Enumerations TeXtual NOTATIONevuerviriiriiriieieieieierieete ettt et et te e stestessesse et eseeneesesenbessesseeseeneenes 165
8.2.2.9 Occurrences Textual Notation.......
8.2.2.9.1 Occurrence Definitions
8.2.2.9.2 OCCUITENCE USAZESevverireiieriieiienieeteeteeteete st e stte st estte s et e bt esteeateeatesatesatesseesaeenbeenseenseenseensesnnens
8.2.2.9.3 OCCUITENCE SUCCESSIONSeevverrerrevirrietiatienientatetessessessesseeseessessessensessessesseeseeseensensensensessessessesennes 166
8.2.2.10 Items TeXtUAl NOTALIONeeuieieieieietesteet ettt ettt ste et ste et et estetesbesbesseeseeseeneeneensensensenseesesseeneenes 166

OMG Systems Modeling Language (SysML) v2.0 Beta 1 iii

8.2.2.11 Parts TeXtUal NOLALIOMc.eeieieieieiertesteetteteettetete et steeteste et et esaestesbessessesseeseeneeneensensensenseesessesneenes 167
8.2.2.12 POrtS TeXtUAL NOTALIONevieeieiieiieieiesiesteettettettette ettt et et et et et este e bessesseeseeseeneensensensesenseesesseeneenes 167
8.2.2.13 Connections TeXtual NOAION......ccueruiruiriiriiriieieieieterteee ettt ettt ste e ste st et e st eneeaensebessesseeneeneenes 167
8.2.2.13.1 Connection Definition and USAZEccccveverierieririeieieteeeiesiente ettt sneeneens 167
8.2.2.13.2 BiNding CONNECLOTSceuveuierietertietietierieuienietetestestessesseeseessessensensessessesseeseeseensensensensessessessesseenes 168
8.2.2.13.3 SUCCESSIONS. ...cuveviiieieeeeenientetertesteeteeteeseestessestessassessessesseeseessensensansensessesseeseeneensensansensensessesseeneenes 168
8.2.2.13.4 Messages and FIOW CONNECLIONSceeieierierierientieiieiieiieteiestestestesseseeeseeseeneensensessessessessesneenes 168
8.2.2.14 Interfaces TeXtUal NOTATIONccverieriertirieetieiietieieiet et ete et et et et etestestestesseeseeneeneensesensesesseesesseeneenes
8.2.2.14.1 Interface Definitions
8.2.2.14.2 TNLEIfACE USAZES ..eoveeveeueerienieieriesteetiettetieiie et et et et et st eseest et etenbessesseeseeseeneensensansensenseesesseeneenes
8.2.2.15 Allocations TeXtual NOLALIONerveieriiriiriieiieieieietete ettt ete et et ete e stestesee st eseeneeneesensesessessesseeneenes
8.2.2.16 Actions TeXtUAl NOLALION ...c.eeuveieieieierteetteitetieieie et ete et ete et et estetestestesseeseeseeneeneensensensensessessesneenes
8.2.2.16.1 ACtION DETINITIONSeevieuienienieiesteetieieetieitetete ettt ettt et e te e e tesbestesseeseeseensensansensesseesesneeneenes
8.2.2.16.2 ACHION USAZES...cuieuieiieeieiieieieniesteeteettettettenteteteste st e etesteeseestessensesessesseeseeseeneensensansansessessesseeneenes
8.2.2.16.3 CONLIOL NOAES. ... eeuieiieiieiieieierieste ettt ettt ettt ettt et e e et e besbesbeeseeneeneentensansensesseesesseeneenes
8.2.2.16.4 Send and Accept ACLION USAZESc.eeeeuieuierieieniertieteeieeitetetestestessessesseeseeseessesensessessessesseeneenes
8.2.2.16.5 AsSignment ACHION USAZESccververviruieeieuieieieienteete et eieeetentetestestessestesseeseeneeseessensessessessesseeneenes
8.2.2.16.6 Structured Control Action Usages....
8.2.2.16.7 ACHION SUCCESSIONS....ccueeureuierieterteetieteesiententatetessessessesseeseestessessassessessesseeseeseensensansensessessessesneenes
8.2.2.17 States TeXtUal NOLAIONee.veieieieierierteeiteieetetete ettt et et et et ete e stestesbe st eseeneeneessensensesseesesseeneenes
8.2.2.17.1 State DEfINITIONS ...veeveeeieiieieiertesteeeeteeteeete ettt ettt et et e e e besbesbeeeeeseeseestensensebessesseeneeneenes
8.2.2.17.2 SHALE USAZES ..veeuvieureeiteiiteeiiesitent ettt ettt st e et e st et e st e e bt et e e ateeatesatesatesbeesaee bt e bt enbeenteenteenne s
8.2.2.17.3 TranSition USAZESeeveuieieierierteetietietietienietetestesteetesteeseestessesessessessesseeseeneensensansensessessessesneenes
8.2.2.18 Calculations TeXtual NOAtION......cc.erueruiriiriirieieieietertesteete ettt et et ete e stestesbe st et eseeneeaensesbessesseeneeneenes
8.2.2.19 Constraints Textual Notation
8.2.2.20 Requirements Textual Notation
8.2.2.20.1 Requirement DEfINTHIONSecverviruiririeieieieieste ettt ettt ettt steeee et e et ensesbesbesseeneeneenes

8.2.2.20.2 REQUITEMENT USAZES......cuveurerreierrertietietienienieietestestestesteeseestessensensessessesseeseeseessensansensessessessesseenes
8.2.2.20.3 COMCERINS ..cnveeutieneteuieeite sttt st et e bt e et et e e atese e e aee s et e bee st enaeenbeeabeeatesetesatesseenaeenbeeseenseenseensesnnens
8.2.2.21 Cases TeXtUAL NOTALIONeeveeieieieieiesteeteeteetteeete et steeteste et et etetestesbesseeseeseeneeneensensensensessessesneenes
8.2.2.22 Analysis Cases TeXtUal NOTATIONcc.ervirveruiriieieieieierieste ettt et et ete e stesteste st et eneeneessensesbessesseeseeneenes
8.2.2.23 Verification Cases TeXtual NOLAtIONc.eiuirieieieieieieseeie ettt ettt see ettt seenbesbesbeesesseeneenes
8.2.2.24 Use Cases TeXtUAl NOTALIONcverierieriiriirtiriieieieietestesteete et et eetesetestestessessessesseeneensensensensessessessesneenes
8.2.2.25 Views and Viewpoints Textual Notation
8.2.2.25.1 VIEW DEIINITIONSevieeieiienieieieiteetietietietieniete et st st steese et estetessessessesseeseeneensensansesesseesesseeneenes
B.2.2.25.2 VIEW USAZES..cuveeuieuieuieiienieieientesteeteettestentestestesassestessesseeseessessensasessessesseeseeseensensansensessessessesneenes
8.2.2.25.3 VICWPOINES. ...veuveiietieieeiienienietertesteeteeseestentestastessessessessesseeseessensensensessessesseeseeneensensansensessessessesneenes
8.2.2.25.4 RENACTINGS.....eveiieiieiieiieiieieterte sttt etteates e tebesbe st e ste et eeseestessessasessesseeseeseeneensensensesenseeseaseeneenes
8.2.2.26 Metadata TeXtUal NOTALIONecverierietirieetieieeiieietet ettt ettt et et etetestesbesbeeseeaeeneensensensesesseesesseeneenes

8.2.3 GraphiCal NOLALION ... ceuveuieuietitietietietiet et et et e st et st et e st e testebesse st e e s eeseeseestensensessessesseeseeseeneentensensesensessesseeneanean

8.2.3.1 Graphical Notation Overview

8.2.3.2 Elements and Relationships Graphical NOtation.........c.ccuererieiririieieieniesiesie sttt eeeens 186
8.2.3.3 Dependencies Graphical NOTAtION.cc.eiuiruirieieieieierieeteete et eteetetete e stestesseeseeneeseeseessensessessessesseeneenes 186
8.2.3.4 Annotations Graphical NOLAtION.ccueruiriiriirieieieietetee ettt ettt sttt ettt saebesbesbeebeseeeneens 187
8.2.3.5 Namespaces and Packages Graphical NOtationcccceeeeieiririienienienieniesie ettt eeeens 188
8.2.3.6 Definition and Usage Graphical NOtAtIONceerieierierieriiriieiieieieeeie ettt be e eeeens 191
8.2.3.7 Attributes Graphical NOTAtIONecveriertiriiriiriieieieiet ettt ettt ettt stestesbe st et eseeneesebenbesbeeseeseeneenes 193
8.2.3.8 Enumerations Graphical NOAtIONcc.eiuiruiriirieiieieierieseeteee ettt sttt be b b beeeeeneens 194
8.2.3.9 Occurrences Graphical NOAtIONcc.evvirieruiiieieieieierieee ettt ettt ettt et ese et e sebebesseeseeseeneenes 195

8.2.3.10 Items Graphical Notation
8.2.3.11 Parts Graphical Notation
8.2.3.12 Ports Graphical Notation
8.2.3.13 Connections Graphical NOTATIONccuerverririieieieieierteste ettt et et ete e stestesbeese et eseeneessensesbesseesesseeneenes 205
8.2.3.14 Interfaces Graphical NOALIONccueviiriiriirieieieieierieee ettt ettt sttt et et et et e bebesbeeseeseeneens 210

OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.2.3.15 Allocations Graphical NOTAtION.cc.evviruiriirieieieieterterte ettt ettt st sttt et e st et e sebesbesbeesesseeneenes 211
8.2.3.16 Actions Graphical Notation
8.2.3.17 States Graphical NOTATION.c..erverierieriertertieieieietet et ete et et st et etestestestesseeseeseeneensesensesessessesseeneenes
8.2.3.18 Calculations Graphical NOTATIONccuerveruiruieieieieietesteete ettt et ete e ste st see st eaeeseeseessesesbessessesneeneenes
8.2.3.19 Constraints Graphical NOTAtIONc..ecviiiruirieieieieiertese ettt et ete e stestesbe st seeseeseessesessessessesseeneenes
8.2.3.20 Requirements Graphical NOTAtIONecueruiruieieieieieieste ettt ettt st ste st et esee st e stebesbesseeseeseeneenes
8.2.3.21 Cases GraphiCal NOLALIONecverierieriiriirtieieieieiet ettt ettt et et e testestesbeeseeseeneeneensensesesseeseeseeneenes
8.2.3.22 Analysis Cases Graphical NOtAtIONecuiruieieieieieriese ettt ettt sttt ettt saebesbesseesesseeneens
8.2.3.23 Verification Cases Graphical Notation
8.2.3.24 Use Cases Graphical NOTAtION.evuervirieriiriieieieietesteete ettt etetete e stestessesseeseeneeneessensessessessesseeneenes
8.2.3.25 Views and Viewpoints Graphical NOTAtION.cc.ecuerverierereeieieteeeiesie ettt see et neeeeens 236
8.2.3.26 Metadata Graphical NOLALIONccveieriiriiriiriieieieieiert ettt ettt et ete e stestesbe st et eseeneesensesbessessesseeneenes
8.3 ADSIIACE SYINTAX ..uvitietietieiieieietes ettt ettt et e et e st et e e bt e st eseestentassasse st e st e st esseeseeseeneentensansanseseeseeneeseentensansansensestessesseeneene
8.3.1 ADSIract SYNTAX OVEIVIEW ..cuvevieierieuieuieieiesiestestesteeteestestestestessessesseeseeseestessensensensessessessesseessensensensessessessessesseenen

8.3.2 Elements and Relationships ADSIIACt SYNEAX........ceceeieierieiierierieniestietieiieceietete et eeesee et et estestessessessesseeseeneenean
8.3.3 Dependencies ADSLIACE SYNTAX.........ccuerierieriereriereeeeeetetete e stesteste et eseestentestessessessessesseeseeseensensensensessessessesneenean
8.3.4 ANNOtAtioNS ADSIIACT SYNAX.....ccuietieuieieierierierte st et et etetete e stestesbe et e st e st estestessesse st essessesseeseentensensensensessesseeneenean
8.3.5 Namespaces and Packages Abstract Syntax
8.3.6 Definition and Usage ADSIIACT SYNTAXccuerueriirerereeieieieriertestesteeteeseeseestestesessessessessesseeseensensensessessessesseeseenean
8.3.0.1 OVEIVIBW ..ottt ettt ettt ettt ettt ettt ettt st b et bt s a et b et bt et et be e bt b et ebenae st ebe e enenee
8.3.0.2 DIETINILION .e.eutiiiititcictcet ettt sttt st b ettt b et b et be e bbbt et be e eae e
8.3.6.3 RefEIENCEUSAZE.cuvevetetieiieiieiietetete ettt ettt ettt et e et ete e et e st et e tesbessesseeseeneeneensensensenbenseesesneeneenes
830,84 TUSAZE ...ttt ettt ettt ettt ettt a e s h e e a e bbbttt e a bttt e a et e Rt e eht e bt e e bt e bt e bt e bt en bt eabeenteeatenaeenaeenne
8.3.6.5 VariantMeEmMDEISIIP.c.coiiieiieieieiee ettt ettt ettt e et et sbe bt e ae st e st e e be b e beebeeneeneenes
8.3.7 Attributes Abstract Syntax
8.3.7.1 OVEIVIBW ..cuiniiiiiititci ettt ettt ettt sttt h e et b et ae et b et eb et e be st eb e b et e bt na s ebe e enenee
8.3.7.2 AtrIDULEDETINITION ... vttt ettt sttt sttt
8.3.7.3 AIIDULEUSAZEuveuveteieeiieieeiieitetet ettt sttt ettt ettt et et e st e e beebeese e st e st estentessessesseeseeseeneensensensensenseeseeneeneenes
8.3.8 ENUMErations ADSIIACT SYNEAXccuieuieieieierieriesiesieettetetete e stestesteeteeseeseestessensessessessesseeseeseensensensessessessesseeneenean
8.3.8.1 OVEIVIBW ..ottt ettt ettt st h e st b et ae et b et ebt et et be e b e bt e bt nn st be e b e
8.3.8.2 EnumerationDefINItionc..c.eoveiriiiiiniiiriiieiereentc ettt
8.3.8.3 ENUMETAIONUSAZEveveviiieiieiieteieieste sttt ettt et et et e te st e steeteeteeaeeseessentebessesseeseeseeseensensensansansessesneeneenes
8.3.9 OCCUITENCES ADSITACT SYNEAX ...vivietieuieiieieiesteste st et eieettestestestestestesteeteeseeseestessessessessessesseeseeseensensensensensessesseeneenean
8.3.9.1 Overviewcccceeeruennnee.
8.3.9.2 EventOccurrenceUsage
8.3.0.3 LITRCIASS. c.cventteteietee ettt sttt st h et b e et b et b et bttt b e ene e
8.3.9.4 OccuITenCeDETINItION ...c.cuuitiiiiiicii ettt ettt sttt sttt e b ee
8.3.9.5 OCCUITENCEUSAZEeueereieniieieetiettete et ettt st e ste e st e bt e bt et e e tesateeseesaeesbeesaee bt et e enseentesaseennesasenaeenaeenne
8.3.9.0 POTtIONKING ...ttt ettt ettt
8.3.10 Items Abstract Syntax
8.3.10.1 Overview
8.3.10.2 ItemDefinition
8.3.10.3 TEEIMUSAZE ...ttt ettt ettt sttt e h et e e et e et e sat e e st e saeesbtesbe e bt e bt enbeenteenseennesanenaeenneenne
8.3. 11 Parts ADSIIACE SYMEAXvevetitietietieuieietetestestestesteeteeseestestestessessesseeseeseeseessensensessessessessesseeneensensensensessessesseeneenean
83111 OVEIVIEW c.cntitiiiie ettt ettt et b et s a et b et eb et et b e e bt b et be st et ebe e b e
8.3.11.2 PartDEfINItIONc.eviutciiiiiiitiie ettt ettt sttt
83113 PATtUSAZE ...ceeeeeiieeeieeeeet ettt sttt h et et ettt s et e st e s at e e bt e s bt e bt et e et et e eabeeateeatenaeesaeenne
8.3.12 POTtS ADSIIACT SYMEAXveuvititietietieuieietetesteste st et et ettestestestesbestesbeeseeseeseessensansesassessesseeseeseensensensensensessesseeneenean
8.3 12,1 OVEIVIEW c.cntitiiiee ettt ettt ettt sttt b et ettt b et eb et be e bt b et e bt s st be e b e
8.3.12.2 ConjugatedPortDefinition
8.3.12.3 ConjuAtCAPOTTTYPINGeeveeveeeieieieiertesteettettettete et et steetesteett et estetesbessessesseeseeneeneensensensensessesseeneenes
8.3.12.4 POTtCONJUZALIONeuveieeieeietieieeiietetesteste s et eteeseestestessesessesseeseesesstensessensensessessesseeseeneensensensensensessessesseenes
8.3.12.5 POItDEFINITION.c.couiuiiiitiiiitit ettt sttt st b ettt b e et b et besa e be e b e
8.3.12.60 POTTUSAZE ...cvveeeeieeeeieeiteet ettt ettt ettt h et e e ettt esat e estesaeesbeesbe e bt e beenbeenteenbeennesanesaeenaeenne

OMG Systems Modeling Language (SysML) v2.0 Beta 1 v

8.3.13 CoNNECtiONS ADSIIACE SYIEAXeevieuieuieieierierieeieeieeeetetetestessestesseeseeseeseestessensessessessessesseeseensensensensessessessesseenean 280

8.3.13.1 OVEIVIEW ..vteieiieiieteete et ettt et et et e te st e s te st e e ae e st e st e st e st e b e b e sbeaseeseeseensensensensenseeseeseeneentensensensansensesseeneeneenes 281
8.3.13.2 BindingConneCtOrASUSAZEccuerverieriirtintietieiieieietestestesteetesteseeeseestestessessesseeseeseeneensensensensessessesseeseenes 282
8.3.13.3 ConNECtiONDETINItIONeevieiieeieiieieietesteet ettt ettt ettt et et et e tesbessesseese e st eneeneensensensenseesesneeneenes 282
8.3.13.4 CONNECLIONUSAZE ...cuveuvevireeiieiieiieieiesteste et et et estestentestestesteeteeseeseestestensesessesseeseeneeneensensensansensesseeseeneenes 283
8.3.13.5 CONNECLOTASUSAZEceuveentieniietiettete ettt ettt stt et e st e bt et e bt e tesateestesaeesbeesb e e bt e beenbeenteeaseennesasesaeenaeenne 284
8.3.13.6 FlowConnectioNDEfINItION.ecverieieiirtiriieiieiieieietet et ettt eit et ae e stestesbe e st eseeneeneesensenbessessesneeneenes 284
8.3.13.7 FIOWCONNECHIONUSAZEe.vevieveerienienieiesteetteteettestestetestestestessestesseessessensessessesseeseeseeneensensansensensessessesneenes 285
8.3.13.8 SUCCESSIONASUSAZE.....vevivieiieiieiieieiertesteeteettett et et etetestesteeteeteeseeseessentesessesseeseeneeneensensensensenseeseeseeneenes 286
8.3.13.9 SuccessionFIoOWCONNECHIONUSAZEc.evverviruierienieieieriesteeteeteeteeitetetestestestessesseeseeneensesesessessessesseeneenes 286
8.3.14 INterfaces ADSIIACT SYNTAX ...ecuieuieuierieieieiestesteste et eteetestetestestestesteeteeseeseestessensessessessessesseeneensensensensensessessesneenean 286
8.3 14,1 OVEIVIEW c..cntititiit ettt ettt ettt ettt sttt st b et et s a et b ettt be e bbbttt e b e b e 287
8.3.14.2 INterfaceDE INILIONocvevieiieiieiieieieiet ettt ettt ettt e et e st e sbeese e st e st e st et e bebesbeeseeneeneenes 287
8.3.14.3 INLEITACEUSAZE.euveretetieiieieeitetet ettt ettt ettt et et et et e s besbeeseestestestentenbessesseeseeneeneensensensensenseeseeseeneenes 288
8.3.15 AllOCAtIONS ADSIIACE SYMEAX.....cuieuieuieuieieiertestesteeeeteetetetestessestesseeseeseeseestessensessessessessesseeseensensensessessessessesseenean 288
8315, 1 OVEIVIEW c.cntiiiiiee ettt st sttt st b et et s a et b e bbbt be e b e e b et ebe st b ebe e b e 289
8.3.15.2 AllOCAtiONDETINILION. ... c.viitieiieiieiieieiet ettt ettt ettt e e besbesbeese e st eneeneensensebesseesesseeneenes 289

8.3.15.3 AllocationUsage
8.3.16 Actions Abstract Syntax

8.3.160.1 OVEIVIEW c..cnviiiiiit ettt ettt ettt st b et bt a et b et eb et et be e b e bt ebe st bt ebe e b e
8.3.160.2 ACCEPLACHIONUSAZE. ..c.vevievieeieiieiieieiete sttt ettt ettt et et e teetestesteeseestestestenbessesseeseeseeneensensensansenseeseeseeneenes 293
8.3.16.3 ACHIONDETINITION.c.cuitiiiitiieiirtet ettt ettt b ettt e et b et b e be e ene e 295
8.3.160.4 ACLIONUSAZEcuveuveieieeteetieieeitetet et et ste et e ett e st e st e st et e be et e sbeeteeseeseentententensessesseeseeseeneensensensensansensesseeneenes 296
8.3.16.5 ASSIZNMENTACHIONUSAZEccveeueeuierieieiertesteettettetetet et et estesteeteeste st estetesbessesseeseeseeneensensensansenseesesseeneenes 298
8.3.16.6 ControlNode......................
8.3.16.7 DecisionNode
8.3.160.8 FOTKINOME. ...ttt ettt b ettt ettt b et b et b et b e ese e
8.3.16.9 FOrLOOPACHONUSAZEeoveevieeieiienieieieiteettettettettete e stestestesteetesst et esaetessessesseeseeneeneensensensensensessessesneenes 303
8.3.160.10 TEACHONUSAZE ...cvvenveeetieiieiieiieieteie ettt ettt ettt et e te st e s teebeeteestestestentesessesseeseeseeneensensensensenseeseeneeneenes 304
8.3.16. 11 JOINNOMAE.ttt ettt etttk ettt ekttt b et e b bt st b s et s ebene et enenen 306
8.3.16.12 LOOPACLONUSAZE. ...c.veviiieiieiienieieietesteeteettetteseestetestestestesseesesseensessensesessesseeseeneeneensensensensensessesseeneenes 307
8.3.160.13 MEIZENOGC.uieuieieieetieieeeett ettt ettt et et s b e e bt e bt e st e st et e tebesbesseeseeseeneensensensanseseesesseeneenes 307
8.3.16.14 PerfOrmMACHONUSAZEccveeeieiierieieieterteeiteteettete et e et steeteete et et etetesbesbesseeseeseeneeneensensensenseesessesneenes 308
8.3.16.15 SENAACHONUSAZEc.vevevieiieiieiieieierte sttt ettt et et et e stestestestesteeseeseestentessessesseeseeseeneensensensesensessessesneenes 309
8.3.16.16 TriggerInVoCatiONEXPIESSIONeveietirtirtietietieieietetestesteete et eitentestetestestesseeseeseeneeneensensensensessesseeneenes 310
8.3.160.17 TrIGETKING ...ttt ettt ettt et et e e besbesseese e st eneensensenbebesbeeseeneeneenes 312
8.3.16.18 WhileLOOPACLIONUSAZEcueeuienienieiisieriieieeiteiieiietest e teste et ete et et estetestessesseeseeseeneeneensensansessessesnesneenes 312
8.3.17 States ADSIIACE SYNEAK....c.veitirtietietietieieteteste e st et eteettestestestestestesteeseeseeseessensensessesseesesseeseeseensensensensensensesseeseenean 314
83,171 OVEIVIEW c..cntitiiiee ettt ettt st sttt st b et ettt b ettt bt et b et besa et be e b e 314
8.3.17.2 EXNIDItSLALEUSAZEevevevieiieiieiieieieste sttt ettt et et et ste e bt steeate st esbetesbesbesseeseeseeneensensensansenseeseeseeneenes 316
8.3.17.3 StateSubactioNKINd.........ccveiiiiieieieieseceeee ettt ettt sttt n ettt e b e beebeeneeneenes 317
8.3.17.4 StateSubactioNMEMBETSIIPccverieriiiiriietieiieieieiet ettt ettt et et ete e stesbesbe e st eseeneensensensenbesseesesseeneenes 317
8.3.17.5 StateDETINIIONcoviuiiiitiiiitiiciirtet ettt sttt st b ettt b ettt be e ee 318
8.3.17.6 STALEUSALE ..c..veeeeieeeeteeitetee sttt ettt ettt ettt s et e bt et e et e bt e e tesat e e st e saeesbee s bt e bt et e et e en et eabeenteeetenaeenaeenne 320
8.3.17.7 TransitionFeatureKindccoeiiiiriiiiniiiiinicreeere ettt 323
8.3.17.8 TransitionFeatureMembBEISHIPccuerviriiriirieieieieieteee sttt ettt st sttt ettt te bt beebeeneeneens 323
8.3.17.9 TranSTHIONUSAZEecvevveiieiieiieiieieieieste st ete et et este et e be st esteeteeseeseentestentesessesseeseeseeneensensensensenseesesseeneenes
8.3.18 Calculations Abstract Syntax
8.3 18,1 OVEIVIEW c..cneitiii ettt ettt sttt b et ettt b e sttt b e bbbt st ebe e b e
8.3.18.2 CalculationDefinition
8.3.18.3 CalCUlatiONUSAZEeoveeviriieiieiieieieierte sttt ettt et et esbeeteebeeae e st estentesbessesseeseeneeneensensensesenseeseeneeneenes
8.3.19 ConStraints ADSLIACE SYNTAXc.eeieieieierierieeieseeieeeetetete et teste bt e st et estest e sestesseesessesseeseensensensessensessesseeneenean
8.3.19. 1 OVEIVIEW c..entiiiiiie ettt ettt sttt st b ettt b et eb et be e bbbt nn st be e ebe e
8.3.19.2 ASSCItCONSIIAINTUSAZE ... eveeveeererienieietesteeteeteettestentetestestesteetesseeseensestentessessesseeseeseeneensensensansensessessesneenes 331

OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.19.3 ConStraiNtDE INItION........c.eeiiiieieerieie ettt ettt ettt ettt te et e e teeetaesteeeteesseeeseeseenseesseesseensessseensanns 332

8.3.19.4 CONSIAIMEUSAZEvevvevetieiieiieiieieiete st ste et et et et et et e testesteeteeteesteseestentessessesseeseeseeneensensensansensessesseeneenes 333
8.3.20 ReqUIrements ADSIIACE SYIMEAXceveverierierierierieeieeteetetetestestestesteeseeseeseestessessessessessessesseeseensensensessessessessesseenen 334
8.3.20.1 OVEIVIEW c..cntiiitiee ittt sttt sttt st b et bt s a et b e bbbt be e bt e b et e bt nae st be e b e 335
8.3.20.2 ACLOrMEMDETSIIP.evitieiieiieiieieieiest ettt ettt ete e bt ete e et et et e tesbessesseeseeseeneensensensensenseeseeneeneenes 337
8.3.20.3 CoNCEIrNDETINITIONcouiuiitiieiirtiictit ettt ettt ettt st b ettt b e b et sa e be e ene e 337
8.3.20.4 CONCEINUSAZEevveeeeiietieiteteettete et st e et et e st e ste e s bt e bt e bt eateeatesateestesaeesseesaee bt enseenseentesaseennesanenaeesaeenne 338
8.3.20.5 FramedConcernMeEmDBEISIIDccveriiriiriiriiiiieiieieietete ettt ettt sttt ettt et ebesbeebeeneeneens 339
8.3.20.6 RequirementConstraintKing...........ecueriiririiirieieieieeseee ettt ens 339
8.3.20.7 RequirementConstraintMemMDEISIIDcc.eeieieirieieierieciceieecete ettt ens 340
8.3.20.8 RequiremMentDefINItIONceeieieieieterteeteeitettetete ettt ettt ettt e e besbesbe st eneeneeneesenbebesbeeseeneeneens 341
8.3.20.9 REQUITEMENTUSAZE ...c.veviiieiieiieiieieiete sttt ettt e tte et e ste st e sbeeteeteeseeseestentesessesseeseeneeneensensensensensessesseeneenes 344
8.3.20.10 SatisfyREqUITEMENTUSAZEeevereieiirieeiieiieiieieieteste st steeteeteeetesestetestestesseeseeseeneensensensensensessesseeneenes 347
8.3.20.11 SUbJECtMEMBDETSIIP. ...c..ievieiieiieieieieiesteet ettt ettt ettt ettt et e e besbesseese e st eneeneensensebensessesneeneenes 348
8.3.20.12 StakeholderMemDETSIIP.cceiirieriiiiriiriieiieieeet ettt ettt sttt ettt e sae b e besbeeseeneeneens 349
8.3.21 Cases Abstract Syntax
8.3.21.1 OVEIVIEW c.entitiiii ettt ettt sttt sttt et b et et a et b ettt be et b et benn et ebe e b e
8.3.21.2 CaseDefinition
8.3.21.3 CASEUSAZE ..e.vveueeiteeiesiteitestee it et et et st ea e s et e s at e st e e bt e bt et e eat e e et e sa st ea e e sat e bt e e bt e bt e bt e bt et e eateenteeatenaeenaeenne
8.3.21.4 ObJectiVEMEMDEISIIPecvieiieiieieieieiesteeteeet ettt ettt ettt et be st s be st e st e st e st ensenbesbesbeeseeneeneenes
8.3.22 Analysis Cases ADSITACT SYNTAXcuecierierierierierereeeetetetestestestesteeteeseeseestessessessessessessesseeseensensensensessessesseeseenean
8.3.22.1 OVEIVIEW c.entitiiiie ettt ettt ettt sttt st st b et et s a et b et eb et et be e bt b et bt nn et ebe e b e
8.3.22.2 ANalysiSCaseDEfINItION.cccveierieriertirieetieteeeeie ettt ettt ettt et testesbesbe st e st eneensesenbebesseesesneeneenes
8.3.22.3 ANALYSISCASCUSAZE ..c.vevivieiieiieiieieieste sttt ettt ettt et et e s testeeteeteestestestentebessesseeseeseeneensensensensenseesesseeneenes
8.3.23 Verification Cases Abstract Syntax
8.3.23.1 OVEIVIEW c.cneiiiiii ettt ettt sttt st b et et s a et b ettt be e bt b et b et et ebe e b e
8.3.23.2 RequirementVerificationMemDberShip..........cceveieierieriiriieieeeeeete ettt ene 359
8.3.23.3 VerificationCaseDefINItIONccoviriiiriiiiiieiriieerc ettt 360
8.3.23.4 VerificatioNCaSEUSAZEceeeieieieieterteeitettettetteteteste st eteetestesseestestestessessesseeseeseeneensensensensensessesseeneenes 361
8.3.24 USE CaSEs ADSITACT SYMEAX......eeuierieuieieieriertestesteseeteestestestestessessesseeseeseeseessensensessessessesseeseeseensensensessessessessesseenen 362
8.3.24.1 OVEIVIEW c..cntiiiiiiecieete ettt sttt st h et et s a et b ettt be e bt e bt eb et s e b e e b e 362
8.3.24.2 INCIUACUSECASEUSAZEevevieeeeiienieieiestesteettettettete e ste st e s teetesteesteseestestesbessesseeseeseeneensensensensenseesesnesneenes 362
8.3.24.3 USECaSEDETINITIONeouiuiitiieiirtiiitiieertet ettt ettt b ettt ettt sa e b b e 363
8.3.24.4 USECASEUSAZE ... veeeeiietieieettet ettt sttt st e st e ste e bt e bt et et e e atesateeseesaeesaeeshee bt e bt enbeenteeaseennesasenanenaeenne 364
8.3.25 Views and ViewWpoints ADSIIACt SYNEAX........ccceriririeieieierieriertesteettetetetetetestessessesseeseeseensensessessessessesseeseeneas 365
8.3.25.1 OVEIVIEW c..cntitiiiie ettt ettt ettt a et st b et et a et b et eb et be e bt b et e bttt b e ene e 365
8.3.25.2 EXPOSE c.uveeutteuieeiteeiteeit ettt ettt ettt et ettt st sa e h e bttt et e a bt a e e a e e bt e eheeehe e e bt e bt et e e bt enteenbeenneeatenaeenaeenne 367
8.3.25.3 MembEISHIPEXPOSE ...c.vevieiieiieiieiieieieste sttt ettt ettt et ete et et esbetesbessesseeseeneeneeneensensebenseeseeneeneenes 368
8.3.25.4 NaMESPACCEXPOSE.eeuvietieiietiettete ettt ettt ettt et et sat e s bt e s bt e bt et e enbeentesaseennesanesaeenaeenne 368
8.3.25.5 ReNderingD e INItiONc.eevieuieiieieietertesteetteieettete ettt ettt et e e tetestesbesseeseeseeneeneensensebeeseeseeneeneenes 369
8.3.25.6 RenderingUsage
8.3.25.7 VIBWDIETINILIONcueutiiiiiiiitiieiitet ettt ettt ettt b ettt st b et b e b s e
8.3.25.8 VIieWPOINIDETINIION. ... cuirtieiiiiieieieieriestert ettt ettt ettt ettt e st st sbesse e st e st eneensenbebesseesesneeneenes 372
8.3.25.9 VICWPOINEUSAZEcuveveeieiieiieiieiietete st ste ettt et estestetastestestesteeseeseeseestensesessesseeseeneeneensensensansenseesessesneenes 373
8.3.25.10 ViewRenderingMEMDETSIIPccvevueriiriiriiriieieieieterteeteete ettt et et eteseestesteseeeseeneeneeneesensesessessesseeneenes 374
8.3.25.11 VIEWUSAZE ..ottt ettt sttt ettt et et et et e st e sbeebe e st es e e st e s tenbesseeseeseeneeneensensensensenseeseeneeneenes 375
8.3.26 Metadata ADSIIACE SYNTAXecvirvieuieuieieieieriese ettt et te et e e st e e bt e st et e st estensesbessessesseeseeseensensensensessessesseeneenean 377
8.3.20.1 OVEIVIEW ..cntiiiiiiecitteet ettt ettt st sttt st b et et s a et b et ebt et et be e bt b et bena e ebe e b e 377
8.3.26.2 MetadataD @ INItioN.couetruiieiirteiititeiertet ettt ettt ettt 377
8.3.26.3 MetadataUsage....

84 SEIMANTICS ...ttt ettt ettt ettt b bbbt b bt e bt b st btk et aeeh et e bt eb et ek et e st et et ebe e s e et et e bt ne st e bt eaesa et ebe
8.4.1 SEMANTICS OVEIVIEW.....euiuiiitiuiititeiietet ettt ettt ettt ettt et ettt st et b et ettt et s e st et et e bt sa et e b et eb e st e st et et ebe et eseebenseneane
8.4.2 Definition and USAZE SEMANTICSc.ecverierierierieriereeeeietetestestestesteeteeseeseestessessessessessessesseeseessensensessessessessesseenen 386

8i4.2.1 DIETINILIONS 1.ttt st sttt st b ettt b ettt b e st b et be st st be e b e 386

OMG Systems Modeling Language (SysML) v2.0 Beta 1 vii

B4.2.2 TUSAZES ..euveeueeeuieeiteeiteeit et ettt et e bttt et s et e e a e s et e s a e bt e bt e bt et e a bt e et e eat e eh e e ehteehe e ekt e bt e bt e bt e et eabeenneeatenaeenaeenne
8.4.2.3 Variation Definitions and Usages
8.4.3 AHIIDULES SEIMANTICSveuveuviritietietietieietetestestestesteeteeseestestesessessesseeseeseeseensensansesessessessesseeseensensensensessensessesseenean
8.4.3.1 AtribULe DEfINTLIONS ...oviviieieiieiieieietesteses ettt ettt ettt ettt sbeese e st e st et et e benbesbeesesneeneenes
8.4.3.2 AIIDULE USAZESeuveuveietietieiieiietetete e steete et ettest et et e bestesteeteeseeseessessentensessesseeseeneeneensensensensansessesneeneenes
8.4.4 ENUMETAtIONS SCIMANTICS ...uveuvivietierietienieiestestestestesteeseesteseessessesessessesseeseeseensessensensessessessesseessensensensessessessessesseenen
8.4.5 OCCUITENCES SCIMANTICS ..veuveuvititietieuieieietestestestesteeseeseesaestesesessesseeseeseeseensensensesessessessesseessensensensensessessessesseenen
8.4.5.1 OCCUITENCE DETINITIONSevieeieiieieieietesteeteettettete et et et esteetesteesee st estetessessesseeseeseeneensensensensenseesesseeneenes
8.4.5.2 Occurrence Usages...........
8.4.5.3 Event Occurrence Usages
84,6 TLEIMS SEIMANTICSveevreuienteiertieteetietiettettetestestestestestesseeseeseessessesseseaseeseeseeseensensensansessessesseeseeneensensensensessessessesneanean
8.4.6.1 TLEM DETINTLIONS.euvetieteetietieiieitetete ettt ettt et et e b e e te e bt ese e st estestesbessesseeseeneeneensensensansenseesesseeneenes
8.4.0.2 TEEIM USAZES ..e.vveeveiieiieetteiee sttt ettt ettt et stt e st e bt et et eab e e s tesateestesaeeaseeshe e bt et e enbeenteeabeennesetenaeenaeenne
84,7 PAItS SCIMANTICS ...eeveeureuieieieteetietietiettetetestestestestesteeteestesaestessesesesseeseeseeseensensensessessessesseeseeneentensensensessensesseeneenean
8.4.7.1 PaIt DETINITIONSeuveveieetieiieiieitetetete ettt ettt ettt et e te st e steeteeseeseestestentessessesseeseeseeneensensensansensesseeseeneenes
B4 7.2 PaIt USAZES ..euteeueeeiieeiieeitet ettt ettt ettt et sa et e bt e bt et e st e e a e e satees e e saeeebee s bt e bt et e et e enteeateentesanenaeenaeenne
84,8 POTLS SCIMANTICSveeveeuienieietitietietietiette et et e st e stestesteesteseestessessessesseeseeseeseensensensansessessesseeseeneentensensensessenseeseeneanean
8.4.8.1 Port Definitions
8.4.8.2 POTt USAZES....cueiiueeriieeiieittettestte ittt ettt ettt s e st e s bt et e et et e tesa bt e st e saeesbeesh e e bt et e et e enteeabeenteeatenaeenaeenne
8.4.9 Connections Semantics
8.4.9.1 Connection DETINITIONSc.ceveierierieriertirtenteettetieteiet et et eeteeteste et eneetetessessesseeseeseeseensensensensessessesseeneenes
8.4.9.2 CONNECLION USAZES ...cuvevivieiieiieiieieieriestestesteettestestestestessessestestessesseestessensessessessesseeseeneansensensensessessessesseenes
8.4.9.3 Binding Connectors AS USAZES.......cuerueruirueruiruieieieietertestestestesseestesessessessessessessesseessensessensessessessesseseenes
8.4.9.4 SUCCESSIONS AS USAZES...c.vievieiieiieiieieieteiteettettettette et et e s testeetestesaeestestentesbessesseeseeseeneensensensansenseesesseeneenes
8.4.9.5 Flow Connection Definitions
8.4.9.6 FIOW CONNECHION USAZES.......eeveeuieuienieietentertietietientetetestestestessestesstestessensessessessesseeseeseensensensensessessessesseenes
8.4.9.7 Succession FIow Connection USAZEceeueruieieierienienienieeieeieeitetetetestestestessessesseeseeneensensessessessessesneenes 401
8.4.10 INLEIfACES SCIMANTICS. ..euveutetitietietietieieietesteste st et eteettestestestessessesseeseeseeseentensensensessessessesseeneensensensensensensesseeneenean 401
8.4.10.1 INterface DEfINITIONS.ccueeuieiieiieieieiete sttt ettt et s e e teete et et etetebessesseeseeseeneeneensensensensesseeseeneenes 401
8.4.10.2 INLEITACE USAZES ..uveuvevetieiieiieiieieitete ettt ettt et et et et e st e steeteeteestestestentensessesseeseeseeneensensensenseseesesseeneenes 402
8.4 11 AlLOCALIONS SEIMAINTICSuveuvietitietieuieuieietestestestesteeseeseeseestessesessesseeseeseeseensensensensessessessesseeneensensensensessessessesseenean 403
8.4.11.1 AllOCAtion DEfINTTIONSeeveeeieeieieieieiesteet ettt ettt ettt et et et e testesbesbeeseeseeneeneensensensenseesesneeneenes 403
8.4.11.2 Allocation Usages
8.4.12 Actions Semantics..................
8.4.12.1 Action Definitions
8.4 12.2 ACLION USAZESeouveuveietieieeiieiieiestetestestestteteestestentessasessesseeseeseeseensentensensessesseeseeseeneansensensansensessessesseenes
8.4.12.3 Decision Transition USAZES.......ccueruerierterieriirieieieietestestesteeteesesseesetessessessessesseeseeseensensensessessessessesseenes 406
8.4.12.4 CONIOL INOAESovventeieiieiieiteitetet ettt ettt st e et e e ae e st et e tesbessesseeseeseeneensensensensenseeseeneeneenes
8.4.12.5 SeNd ACLION USAZESvevervieiiriieiieieietesteeteeteettestestetestestesteetessesstessessentessessesseeseeseentansensensansessessessesseenes
8.4.12.6 ACCEPt ACLION USAZESeoveevieeienieienieiesteeteettettestetetestestesteeteeseestestestensessessessesseeneeneensensensensessessessesneenes
8.4.12.7 Assignment Action Usages
84 12.8 T ACHION USAZES....veviietirtietieiieieterterte st et ettt est et et e te st e steeteeseestestestentesessesseeseeseeneensensensansenseesessesneenes
8.4.12.9 LOOP ACHION USAZESvevivieiieiieiieieieiesteettettettestetetestessestessestesseessessensessessessesseeseessensensensensessessessesseenes
8.4.12.10 Perform ACION USAZESc.ceveierierieriiriertieiietietieietestestesteetestesseessestetessessessesseeseeneensensensensessessessesneenes
84,13 StALES SEIMANTICS ...evveuieurenietietietietietietet et et e s teste s et eteestestestesesessesseeseeseeseensensensensessessesseeseeseensensensensensensesseeneanean
8.4.13.1 State DEfINILIONSeveveetieiieiieiieieiete ettt ettt et e st ste e bt e te e et et estetesbessesseeseeseeneensensensensenseesesseeneenes
8.4.13.2 StALE USAZES ...evveieeeieiietieieet ettt ettt ettt s et b et e e et e et e ea b e e st e s aeesbe e s bt e bt et e et e enteeabeenteeanenaeenaeenne
8.4.13.3 TranSItion USAZESc.eeveevirrereieieieieiertestesteettestestestentessessestessessesseessessensensessessesseeseeneansensensensessessessesneenes
8.4.13.4 EXNIDIt StAtE USAZES....veovievieiieiieieieiertesteettettettestetetestestestestestessteseestetessessesseeseeseeneensensensensensessessesneenes
8.4.14 Calculations Semantics
8.4.14.1 Calculation DEfINTLIONScceoverierierieriiriiriieieieietet ettt ettt et et testestesbe st eaeeseeneesebenbesseesesneeneenes
8.4.14.2 Calculation USAZESccueeueerieieieieiertestesttettettestetetestestestesteesesstestessensessessesseeseeseeneensensensensessessessesneenes
8.4.15 CONSLIAINLS SEIMANTICSeuveuvivierietietieieietesteste st eteeteestestestestessessesseeseeseeseessensansessessessessesseeseensensensensessessessesseenean
8.4.15.1 Constraint DEfINItIONScccveierierieriertirertieeetetetet ettt ettt ettt e stestesbesse e st eseeneensensebesseesesseeneenes

viii OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.4.15.2 CONSIAINE USAZES....c.vevetirrieiieiieieieiestestesteettettestetetestestesteeseesesstestessentessessessesseeseentansensensensessessessesseenes
8.4.15.3 Assert Constraint Usages

8.4.16 REQUITEIMENTS SEIMANTICSveuvivievieuieuieietestestesteeteeteestestestestessessesseeseeseeseessensansensessessessesseessensensensessessessessesseeneas
8.4.16.1 Requirement Definitions
8.4.160.2 REQUITEMENT USAGES.....cvieveeiieeieieieietesteettettettestentetestestesteeseeseeseessessentessessesseeseeneeneensensensensensessesseeneenes
8.4.16.3 Satisfy ReqUIremMent USAZES......ccuerverieriiriiriiriieiieieietertesteete et steeitesetestessessesseeseeseeneensensensesessessessesseenes 433
8.4.16.4 CoNCEIN DELINILIONSvevvieeieiieiieieieiertesteet ettt ettt st e et s bt et et estetesbestesseeseeseeneensensensensensessesseeneenes 434
8.4.16.5 CONCEIN USAZES ... eeuieiietieiietiettete et sttt e st e ste e st e bt et e bt e s tesateestesaeesbeessee bt e seenseentesaseennesasesanenaeenne 434
84,17 CASES SCIMANLICS ..c.vveuveurenietietietietietieutentestestestestestesseeseeseestensensensesseeseaseestensensensensassessessesseeseensensensensessessessesseenean 434
8.4.17.1 CaSE DETINILIONSeuvevetieeieiieiieietete sttt ettt ettt et e te st e steeteeseeseeseestentesessesseeseeseeneensensensansensessesseeneenes 434
8.4.17.2 CaSE USAZES....eueerueeuieiiettenitest ettt et et et st st e st e e s bt e nte et e st e atesat e e st e saeesbeesh e e bt e bt enbeenteeabeenteeanenaeesaeenne 435
8.4.18 ANALYSIS CASES SCIMANTICS ...veuvivierieuieuieieiestestesteeteeteestestestestessessesseeseeseeseessensensesessessesseeseeseensensensensessessessesseeneas 436
8.4.18.1 Analysis Case DEfINITIONSc.ecverierieriiriirtieiieieieietert et ete ettt et et etestestestesseeseeseeneensensensensessessesseeneenes 436
8.4.18.2 ANALYSIS CaSE USAZES...cveeveeiieiieieieiertesteeieettettettetet et e st e s testesteesee st estetensessesseeseeneeneensensensansenseesesseeneenes 437
8.4.19 Verification Cases SEIMAMNTICS.........ccueruerierierterteriereeeetetetestessessesseeseeseeseestessansessessessessesseessensessensessessessessesseenes 438
8.4.19.1 Verification Case DefINItIONSccuerveriirieriirieieieieierteste ettt ettt st stesse et eseeseesaebesbesbesseeseeneenes 438
8.4.19.2 Verification Case USAZESccceruerierieruirieriieiieieietetestestestessessesstessessessessessessesseeseessensessensessessessessesseenes 439
8.4.20 Use Cases Semantics..................
8.4.20.1 Use Case Definitions
8.4.20.2 USE CaASE USALES ...eeuveervienrieiietieteeteeteeiteettesitesttesteesseeste e st esteeatesaseestesaeesseesseesstenseenseensesaseensesasesaeenaeenne
8.4.20.3 INCIUAE USE CaSE USAZES ...evvevrerierienieiirieriietieiiettetetestestestesteetesstentestetessessessesseeseeneensensensensensessessesneenes 440
8.4.21 Views and VIEWPOINS SEIMANTICSc..ecverierierierierierieeieieieriestestesteeteeseestestestesessessessessessesseessensensessessessessesseenes 441
8.4.21.1 VIEW DEIINITIONSeuviiiiiitieiieiieieieieste sttt ettt et ettt st eee et et e tesbesbesseeseeseeneeneensensensenseesesseeneenes 441
84.21.2 VICW USAZES....ecuveuieieieetieieeiieitetetetestestestteteestestestessassesseeteeseeseeseensestensensessesseeseeseeneensensensensenseesesseeneenes 441
8.4.21.3 VIieWPOoint DEfINITIONSecuieuieieieieiertesteettetteteetet ettt ettt et et ete e testesbeeseeseeseeneesensenbesseesesseeneenes 441
8.4.21.4 VIEWPOINE USAGESevevirreerieiieieieiertesteeteeteestestestentassessestessessesseessessensessessessesseeseessensensensensessessessesseenes 442
8.4.21.5 Rendering DEfINItIONSccveieierierierierieeiieieeieie ettt st ettt et et eaetestestesbeeseeseeneeneensensensesseesesneeneenes 442
8.4.21.60 RENACTING USAZES.......eoveviriieiieiieieieiestestesttettettestetetestestesteetessesseestessensessessesseeseeseeneensensensensessessessesseenes 442
8.4.22 MeEtadata SEIMANTICSecvervirtierietieuieieieterte e st et eteesteseestestessessesseeseeseeseessensensessessessessesseeneensensensensessessesseeneenean 443
8.4.22.1 Metadata DEefINItIONSeeueeeieieieieieitesteeteettettete et e et s e et ste et et estetesbessesseeseeseeneeneensensensenseesesseeneenes 443
8.4.22.2 Metadatad USAZESccvevveeviriieiieieieieientestesttettettestestetestestestestesseesteneestentesessesseeseeseeneensensensansensessessesneenes 443
O IMOAEL LIDTATIES......cueeuteietesieeieeteetteitette ettt ettt et et e st e sesestessessesseeseestensensensense s e st eseeneentensansanseeseeseeseeseenaentensensensenseasesseeneanean 445
9.1 MOAEL LiDTATIES OVEIVIEWeuveueenietitietietieuienietetessestestestesseeseessensensessensesseeseeseeneessensansessessessessesseessensensensensessessessesseenees 445
9.2 SYSLEMS MOAE] LIDIATY ...c..eivieiiiieieietictie ettt ettt et ettt a e st e st e st e s b e b e eseesesseeseeseentenbensensensesseeseeneenean 445
9.2.1 Systems Mode]l LIDIrary OVEIVIEWc.ccuerieruerierieriietieieieieriesiestesteetesseeseessessessessessessesseeseeseessensensessessessessesseenes 446
0.2.2 ALITIDULESveuveteetieieeetetet ettt ettt et et e st et e tesbesbe e s e et e esee st e st ens e b e b e e b e ekt e st eRees s e st en s e teeseeReeReeseentententenbenbeebeeseeneeneenes 446
0.2.2.1 ALIDULES OVEIVIEW ...uveuviniiiietieuieiienieietesteeteeteeteeseestestetestessesseeseeseensensensensansesseeseeseassensensensessessessessesseens 446
0.2.2.2 ELCIMEILSc.vevieiieiienieiesteeie sttt tte et et e bt e et e et e et e e st estess e tetessesseeseeseentensensens e seeseeseeneentensensententestenneeseeneens 446
0.2.2.2.1 AHIIDULEVAIUEC ..ottt ettt b et b e e st e st e st eneessenbestesaesaesneeneans 446
0.2.2.2.2 attrIDULEVAIUES.evieieieeieiieeiet ettt ettt et et e b bt eae e st ens et entestesaeeaeeneeneens 446

9.2.3 Items
9.2.3.1 Items Overview
9.2.3.2 Elements

OMG Systems Modeling Language (SysML) v2.0 Beta 1 ix

0.2.5.2 EIEIMEILSc.vivieeieiienieieteete sttt tte et et et e et e bt et e st e st e st e testessesseeseeneentensensenb e beeae e st eseentensenbetentestenseeneeneans
9.2.5.2.1 Port......

9.2.5.2.2 ports

0.2.60 COMMECLIONSvevieuieuieueeuieteteeteetesteeaeestestestessessesseaseeseeseentensensansessesseeseeseessessensensensessesseeseeseentensensansansanseeseaseeneanes

9.2.6.1 CONNECLIONS OVETVIEWcuveuvieieuienienienietesteeteeteesteseestestessessessessesseeseestensesensassesseeseeseessensensessessessessessesseens 451
0.2.60.2 EICINEINLSc.vevieeieiieieieste ettt ettt et et e bttt e st e st e st e st e tesessesseeseeseentensense b e beeseeseeneentensenseteetestesseeseeneens 451
9.2.6.2.1 BIiNaryCONNECLION.ccueeuieuieuietetenteeteeteeteeitesetetestessesseeseeseeseensensansasesseeseeseessessensensessessessessessaens 451
9.2.6.2.2 DINATYCONNECTIONSe.vevieuienientetestesteeteeteeitestestetessessesseeseeseeseessessansesesseeseessessessensensessessessessesseens 452
9.2.6.2.3 Connection...............
9.2.6.2.4 connections
9.2.6.2.5 FIOWCONNECLIONeuvievieieuieiieietesteete et eteeitestestetestessesseeseeseeseensensasansesseeseeseensensensensessessessessesseens 453
9.2.6.2.6 TlOWCONNECTIONS.....e.vivieeieuienieteteeteete et eteeitestestestestessesseeseeseeseensensansesesseeseeseensensensensessessessessesseens 453
9.2.6.2.7 MESSAZECONNECTION.e.veeuieuienreteteeteeteeteeitestestetestessesseeseeseeseensensasesesseeseeseessensensensessessessessesseens 454
9.2.6.2.8 MESSAZECONNECTIONSveeuieuienrereteetieteeteeitetetestestessesseeseeseeseensensasasesseeseeseessensessensessessessessesseens 455
9.2.6.2.9 SuCCeSSIONFIOWCONNECHON.eviteeeieiietieiieieiesiesiesie st eeeeeteseeeesessesbeeseeseeseensensensensessessessessesseens 455
9.2.6.2.10 successIONFIOWCONNECIONS........ccueruieiieeieieieieiesiesieeieeeteetesteeestestesbeeseeseeseeneensessensessessessessesseens 456
0. 2.7 IIEEITACES ..cuveuvetieeeettetteiiete ettt ettt et e et et et et e s be e bt et e e st e st e st ens e s e b e e b e et e e st esees s ensentenseeseeseeseeseentensensanbenbenbeeseeneeneenes
9.2.7.1 Interfaces Overview
0.2.7.2 ELEIMEILSc.vievieeieiienieieste ettt ettt ettt et et e b et e st e st estest e tetessesseeseeseentensensenb e beeseeseeseeneensensenseesestenseeseeneens
0.2.7.2.1 BINAryINtEITACEueiuietieeieiieiieiestee ettt ettt ettt et et e bt e st e st enteneensensessesaesaesseennans
9.2.7.2.2 binaryInterfaces
0.2.7.2.3 INEEITACE ...ttt ettt ettt et et e e te s te st e e ae e st e st e st e e e b e b e beeseeseeneeneensensensensessessesseeneens
0.2.7. 2.4 INEETTACES ..eeuvenveneesieeieetietieie ettt ettt et et et et e testesbeeae e st es e e st eneens e b e beeseeseeneeneensensensensessessessesnnans
0.2.8 ATLOCALIONSveuvieieeieuieiieiietete et ete et et et et et e tesbesbe et e et eeseestessessanseasesbeeseeseeseessessensensessesseeseeseentansensansanbenseeseeneeneenns
9.2.8.1 Allocations Overview...
0.2.8.2 ELCIMENLSc.evieiieiienieieste ettt et ettt ekt et et e st e st et e tessesseeseese e st ent e b e b e beeae e st eneentententeteeteetenseereeneens
0.2.8.2.1 ATLOCALIONvventetetisiietietietteie et ettt et et et et et e testesbesae e st eseeseeneensansansesseeseeneensensensensessessessessasnnans
0.2.8.2.2 Al10CALIONSveuverteeeeiietietietieiet et et eeteete et et et e tetestesseeaeeseeseeneensensansanbesseeseeneensensensensensessessessenneans
0.2.9 ACHIONS ...uteutenteteetietteeteitet et et e e te e bt eteeaeesee st estetebesbees e e st es e e st en s e st e s e s e b e ekt es e e Rt en s e st e st e teeseeaeeReeneentententenbenbeeteeneeneeneenes
0.2.9.1 ACLIONS OVEIVIEW ...c.eeutenieiitieuieuieuientetestasteeteeteeseeseestessessessessesseaseeseentensensensensesseeseaseessensensensessessessessasseens
0.2.9.2 EICIMEILSc.veeeieiieiieieteste ettt et et e e bt et e st et e e st e st e testessesseeseeseentensensens e beeaeeseeneentensenbentensestesseeseeneens
9.2.9.2.1 ACCEPTACLIONc.eiititietieuieiieiietet et eteeteete et et e tetestesseeseeseeseeseensensansasesseeseeseensensensensessessessessesseans
0.2.9.2.2 ACCEPLACLIONS ...euveuvititietienienietesteeteeteete e st eetestestetestessesseeseeseeseensensansansesseeseeseensensensensessessessessesseans
9.2.9.2.3 AcceptMessageAction....
9.2.9.2.4 ACHION ..ttt ettt ettt e vt et et a e n et et e teese e st e st en e e st et e s e b e b e bt eheeneentente st ententesteeaeereeneene
0.2.9.2.5 ACHIONSuteueeuienieteete ettt et te et et et e s teeteete e st estestensestessesseeseeseesteneensensans e beeseeseeneensensensensenteseeeaeeraeneens
9.2.9.2.6 ASSIZNIMENTACLIONevieieuienieteteeteeteeteeteeitetestetestessesseeseeseeseensensasesesseeseeseensensensensensessessessesseens
9.2.9.2.7 aSSIZNIMENTACLIONS. ... cueeuieuieuieterteeteeteeteeteetetetestestesseeseeseeseeseensensansesesseeseeseensensensensessessessessesseens
9.2.9.2.8 CONLIOLACHIONeivitieeietieiieiietesteete ettt et et et etetesteste s st eseeseeseensensesesesseeseeneensensensensessessessessesseans
9.2.9.2.9 DECISIONACHIONe.vititietieuieiietestesteete et et etestestetestessesseeseeseeseensensansasesseeseeneensensansensessessessessesseens
9.2.9.2.10 DecisionTransitionAction ...
9.2.9.2.11 FOTKACHON. ..c.entitiititietietieete ettt ettt ettt ettt ettt e et e b e b e b e saeebeeneensensensensessesaessessasnnans
9.2.9.2.12 FOTLOOPACHONevitieiieuieiieteteete ettt et et etetetestesseseesseeseeseesensasasesseeseeneensensensensensessessessesseans
9.2.9.2.13 fOTLOOPACLIONS ..ottt ettt ettt ettt sttt et es et ete b e besbeeseeseeneensensensensessessessessasseans
9.2.9.2.14 TETRENACHON ..ottt ettt ettt ettt sttt et s e st et e b e b e beeseeseeneensensensensessesaessessessnans
0.2.9.2.15 HTRENACHONSevetieietieiieietet ettt ettt et et et e e teste s et e st eseeseessesasasseeseeseeneensensensensensessessessesseens
9.2.9.2.16 IfTRENEISEACHIONeuvitieuieiieieieeteete ettt eiteitete e stesteeae st eseeseetesasesbesseeseeneeneensensensessessessessesseans
9.2.9.2.17 HTRENEISEACLIONSevieeieiieieieeteete ettt ettt b et e be bt eae e st e st ensensestessessesseennens
9.2.9.2.18 JOIMACLION ..vtenteiiiieiietieiieeete st ete et et et et et etestesbeeae e st eseeseeneensansanbesseeseeneensensensensensessessessasseans
9.2.9.2.19 LoopAction
9.2.9.2.20 loopActions
0.2.9.2.21 MEIZEACLION.ecuiitieuieuieuieiieteteete et et et et entestetestesseeaeeseeseeneensensansenbesseeseeseensensensensensessessessessnans
9.2.9.2.22 SENAACHONouvetitietietieiieietest et ete et et et estestetestessesseeseesteseensensansasesseeseeseensensensensessessessessesseans
0.2.9.2.23 SENAACHIONS ...evteviiieietieiieiietestesteeteeteeteettentestetestesseeseeseeseeseeneensansansesseeseeneensensensensessessessessesseans

OMG Systems Modeling Language (SysML) v2.0 Beta 1

0.2.9.2.24 TranSTtIONACHONccueiiierieieeiictte ettt et et eaeeteeae et e eteeetsesseeesseseesseenseesseessesssesssesseesseeseensas

9.2.9.2.25 transitionActions
9.2.9.2.26 WhileLoopAction
9.2.9.2.277 WHIlECLOOPACHONSevieuieniereteetesteetteteetetetestestesteeaeeseeseeseesesesasesseeseeneensensensensessessessessesseens 473
0. 2,10 STALES ...vvieveeieiiteeietestett et et ete st ettt ete et e st et e st ese b e s e e b et te s s e s et ese b e st s e st es e b e st s e st et e s e st s et ese s ent et et eseesene et et eneeseneesens 474
0.2.10.1 StAtES OVEIVIEW.....cuveuteieiertietieuieieietestastestesteeseeseessessessessessesseaseaseestensensensassesseeseeseassensensensessessessessesseens 474
0.2.10.2 EICINENLSeveevieiienieietesteeteette e tentete st e te et e eteeseeseessestestesessesseeseeseentensensansanseeseeseeseansensensensensessessessesneans 474
9.2.10.2.1 STALCACHIONevteveeiteetienieteet et et e et ete e st et estestetestesseeseeseeseentensensansensesseeseeseensensansensensessessessenseans 474
9.2.10.2.2 SALEACHIONS ...veuvevieietietienienietertestesteeteeteeetestestessessesseesesseeseeseensensansensesseeseeseensensensensessessessessesseens 474
9.2.10.2.3 StateTranSItiONACHON.c.eeverreterteeteeteeteeteteteste e stesee et eseeseeeesessessesseeseeseensensensensessessessessesseens 475
0.2.11 CalCUIALIONS ...ttt ettt ettt ettt et et et e st e b e s b e et e et e e st eseessensensensesseeseeseeseentensensansansaseeseeneeneenes 475
9.2.11.1 CalCulations OVEIVIEWcceecuerierueruerierteeteeteestetetesestessessessesseeseensensensansessesseeseeseessensenssessessessessessesseens 475
0. 2.1 1.2 EIBIMENLS ...ttt ettt tte et et et et et et e st estestestestessesseeseeseentensensansenseeseeseaneensensensensensessessessessnans 476
9.2.11.2.1 CalCUIAION.eentitiiiiieiieiieet ettt ettt ettt es et e et e b e beeseeseeneeneensensensessesaessesseeneans 476
9.2.11.2.2 CALCULALIONS ...ttt et ete ettt et et et e testesbeeaeeseeseeseeneensansanseeseeseeneensensensensessassessessanseans 476
0.2.12 CONSIIAINES ...euvitieuieuieuieietesteeteeteeteeeeeseestetessestessesseeseestestessessansessesseeseeseassessessensensessessesseeseantensensansansansessesseeneenes 477
0.2.12.1 CONSLIAINES OVEIVIEW ...euviutitieuienienieietesteeteeteeteestestessessessessessesseeseestensensansessesseeseaseessensensessessessessessesaens 477
0.2.12.2 EIIMENLS ...c.evevieiienieieteste et et tte et et et et e et e ete et e eseestessestessessesseeseeseentensensansanseeseeseaseeneensensensensessessessesnnans 477
9.2.12.2.1 assertedConstraintCRECKS.ccevirieieieieieiee ettt st eneene 477
9.2.12.2.2 CONSAINECRECK ..ottt ettt ettt et e bbbt e bt e st eneensensensessessesaessesnnans 477
9.2.12.2.3 CONSIAINTCRECKSvevieeieiieiieieieeteste ettt ettt be e st e st entenae s ensestesaessesseennans 478
9.2.12.2.4 negatedConStraintCRECKSccieirieieieieieese ettt ettt eeennens 478
0.2.13 REQUITEINIENILS.eveevieuieneenteteeteeteeteeetestestestestestessesseeseeseestessessensessasseeseaseeseessensensensessesseeseeseentensensansansasessesneeneenes 478
9.2.13.1 REQUITEIMENES OVEIVIEWveevieuieuienieietenteetieteeteeseesestetessessessesseeseessensensansessesseeseeseessensensessessessessessesseens 478
9.2.13.2 Elements..........ccceceruerune
9.2.13.2.1 ConcernCheck
9.2.13.2.2 CONCEINCRECKS.etitieiieiieieietee ettt ettt ettt b e bt eae e st eneensenbestesaesaesneennens 479
9.2.13.2.3 DesignConstraintCRECKcc.ovuiiiiirieieieieeee ettt st s eneene 479
9.2.13.2.4 Functional RequiremMentCRECKccceeirieieieieeceeecee e e 480
9.2.13.2.5 InterfaceRequireMentCRECKecieiririeieieiesieseee ettt st st eeeneene 480
9.2.13.2.6 PerformanceRequirementCheckccoivieieiiiiiiececee e 481
9.2.13.2.7 Physical RequiremMeENtCRECK.cc.eririeeieieieieieriesie sttt sttt ettt eaesaesteseessesseennens 481
9.2.13.2.8 ReqUIrEMENtCHECKcueeuieiieieieieeieeteeietetete ettt ettt et ae et e s e sbensestasaesaesseennens 481
9.2.13.2.9 reqUITEMENTCRECKSeuieuieiieieieeete ettt ettt ae et e st et e e b e nsestesaesaesseeneans
0.2, 14 CASES ..ottt ettt ettt ettt et a e h ettt et at e e et e a e eh e e e bt ekt e bt e bt e bt et e e a bt ea bt eateeaeesateehtenh e e bt e bt enbeentes
0.2.14.1 CaSES OVEIVICWvveutenteietietieutenientetestesteeteeteeseeseessessessensessesseaseeseentensensansasesseeseeseessensensensessessessessesseens
0.2.14.2 EICIMENLSeveevieiienienietesieeteette e te et e te st e ete et e et e eseessessestessessesseeseeseentensensansanseeseeseaseensensensensensessessessesneans
0.2.14.2.1 CASC ..ottt ettt ettt ettt ettt e a e bt sh e bt et e et et e et ent e eateeateshte e bt e nteebeenees
0.2.14.2.2 CASES...eueeueettettete ettt ettt ettt e s a et e e ettt et a e ea e e bt e et e bt et e e bt et e et e ent e eateeatenaee bt e beeneenees
0.2.15 ANALYSIS CASES ...evrevieuieuieieieeieeteeteeiteitestetestesteste s st et eeseestessassansesseebeese et easeestessensensesseeseeseeseentensensansansenseeseeneeneenes
9.2.15.1 Analysis Cases Overview
0.2.15.2 EICIMENLS ..ottt ettt tte et et et et e et e et e e st et e estest e tessessesseeseeseentensensanseseeseeseaseessensensensensessessessesnnans
9.2.15.2.1 ANALYSISACHON ..c.vevieieeieiieiieteteete ettt ettt et ete e testeste e st eseeseeneensesebesseeseeneensensensensensessessessesseans
0.2.15.2.2 ANALYSISCASEvevevieienienieiieiesteete ettt et eit et et e testestesaeeaeeseeseesensasebeeseeseeseensensensensessessessessenneans
0.2.15.2.3 ANALYSISCASESvevevieierieuieiietesteete st et et et estestestestesse e st eseeseeseessensansanbesseeseeseensensensensensessessesrenneens
0.2.16 VEIITICALION CASESeuveureureteieetieieeiteitentetestestestesteestestestessessasessesseeseeseaseessessensensessessesseeseantensensansansensessesseeneenes
9.2.16.1 Verification Cases OVETVIEWceceruerierrieieieieietesiestestessesseeseestesessessessesseesessesssesessessessessessesseseens 486
0.2.160.2 EICINENLSevevieiienienietecie ettt tte et et e et e et e eteete e st e st estestessessesseeseeseentensensansanseeseeseeseansensensensensessessessesneans 486
0.2.16.2.1 PASSIE ..ottt ettt ettt b et b e s b s b et s b es e s e st s e s eneenen 486
9.2.16.2.2 VETdIiCtKANGccoovinieiiieiiiiiieieeiei ettt ettt ettt sa et s s be s ese s eseesessesebeseesensesesensenas 486
9.2.16.2.3 VErifiCAIONCASE ... eoueeuieuieuieietesteste et et etetete e steste s et et eseeseesesasassesseeseeneensensensensessessessessesseans 487
9.2.16.2.4 VETIfICAtIONCASESeveevienienieietesteeteeteeteeitetetertestesteseeeseeseeseeseensaseseeseeseeseessensensensessessessessesseans 487
9.2.16.2.5 VerifiCatiONCRECKcoeieiiiiieieeieeeeetetete ettt ettt ettt et eaestestesaesaeeseeneens 488
9.2.16.2.6 VerificatioNMETNOMcooiiieiiiiciieieeeee ettt ettt e saestesaesaeeneeneens 488

OMG Systems Modeling Language (SysML) v2.0 Beta 1 xi

xii

9.3 Metadata Domain Library...

9.2.16.2.7 VerificationMethodKindc.covuiiiiiiiiiiiiecie ettt ettt et et ere e 489

9.2.17 Use Casesccocververeereeenneene
9.2.17.1 Use Cases Overview
0.2.17.2 EIBIMENLS ..ottt ettt tte et et et et e et e et e et e e st esaest e tessessesseeseeseentensensansenseeseeseaseessensensensensessessessesneans
0.2.17.2.1 USECASE ..ottt ettt ettt ettt ettt et et et e it e s et e s bt e sh e e bt et e e bt enteeateentesatesaeesaeenaeenbeenseenees
0.2.17.2.2 USECASES «..enveentienteenteete et ettt ettt e st et et et et et e st e satesbteshe e bt et e e bt en et eat e enteeateeatenate bt e beeneenees
0.2.18 VIBWS...cuteutenteteetieiteeteiteit et et e te e bt e bt e ae e st e st et e te b e sbe e st e st e st e st e st e st e se b e ebeeheeseeseen s enben s et e s e eaeeseeseentententenbenbenteeneeneeneenes
0.2.18.1 VICWS OVETVIEW ...uveutenietitietieuieienieietesteeteeteeseeseessessessessessesseeseestentensensansansesseeseeseassensensessessessessessesneans
9.2.18.2 Elements...................
9.2.18.2.1 @SEIEMENLTADIEc..euieiieiieiieieieetecte ettt ettt be ettt et e estensesteseesaesneennens 490
9.2.18.2.2 asInterconneCtioNDIAGIAIM.c.ecueruieuieeieieieieriesie st eeeeetesteeeeestesbeeseeseeseeneensensensessessessessessnens 491
9.2.18.2.3 aSTEXtUAINOLALION ...c.vevieuieiieeeiiteett ettt et et ete e steste st et eseeseeeebebebeeseeseeneensensensensessessessessessnans 491
9.2.18.2.4 aSTTEEDIAZIAIMNeviviiieiieiieieteeteete ettt ettt et et e beeseebeentensensensensessessessessennnans 492
9.2.18.2.5 GraphiCalRENAEIING.ceeieieieteeiietieteetetete ettt ettt et be bt eseeaeeneessensensessessessessesnnens 492
9.2.18.2.0 RENACTINGcuvenviiiiiiieiieiieiete ittt ettt et et te st te ettt st e st et e b e b e beeseeseeneeneensensensensesaessessasnnans 493
9.2.18.2.7 TENACTINGS ...eeuvenvevetieuietienieiietestestesteeteeteeetestestessessesseeseeseeseeseensensansansesseeseeneensensensensessessessessesseans 493
9.2.18.2.8 TabularRENAETING........ceeiieieietiieetieieeieetetete ettt ettt ettt et e st e st e s ensensestesaessesseennens 493
9.2.18.2.9 TextualRendering
9.2.18.2.10 VIBW .ttt ettt ettt et e ettt et et e e testesbeeseeaeeseeneensensanb e beeseeseeseensensensensensessesaesnenneans
9.2.18.2.11 VIEWPOINECRECKuiuieuieiieieieeieete ettt ettt ettt e bbbt e bt ese et ensensensessassessessennnans 495
9.2.18.2.12 VIEWPOINTCRECKSvevieiieiieieieieete ettt ettt b ettt e e sae s e ntestesaesaeeseennans 495
9.2.18.2.13 VieWPOINTCONTOIINAINCEcverveterrieiieeieieieiesiesie st sie et esteneeeesessesbesseeseeneensensensensessessessessesseens 496
0.2.18.2.14 VIBWS....eeueeueenieteiteeteeteettenteatete st e s teeteete e st e st e s tensestessesseeseeseeseentensensansenbeeseeseeneensensensensensessessessesnnans 496
9.2.19 Standard VIEW DEfINITONScceeiririeierierierteste ettt e ste sttt e et et estestetessessesseeseeseeneensensansensensessesseeneenes 497
9.2.19.1 Standard View Definitions OVEIVIEWccccceeieierierierienieniesieeiteseetetesiessessesseeseeseessensessessessessessessesseens 497
0.2.19.2 EICIMENLSeveeieiienienietesteete et tte et et et et e et e et e e st eseessensestesessesseeseeseentensensansanseeseeseaseensensensensensessessessessnans 498
9.2.19.2.1 ACHONFIOWVIEW ..c.vitiiuieiieiieieteeteett ettt ettt ettt ettt et e b e e be e bt eseeneensensensestesaessessaennans 498
0.2.19.2.2 BIOWSETVIEWeeviiuiiietieuienietestestesteeteeteestestestetestessesseeseeseeneensensansansesseeseeseensensensensessessessessesseans 498
9.2.19.2.3 GENETAIVICWeviiiiieiieiieiieteste ettt ettt et et e e e testeste et es e e st e neense b e besseeseeneensensensensensessessessenneans 499
9.2.19.2.4 GEOMEITYVICW ...vevivieuieuieuieiestenteeteeteeteeitentestetessessesseeseesteseessensansasesseeseeseensensensensessessessessesseens 499
0.2.19.2.5 GIIAVIEW ..ntenieieitieieeieet ettt ettt ettt et et et e te s beeae e st es e e st enee b e b e beeseeseeneensensensensensessessessannnans 500
9.2.19.2.6 INtErCONNECLIONVIEWeouieuieuieiiteeteetieeeeitetetestestesseseeeseeseeseessensesesesseeseeseensensensensessessessessesseens 501
9.2.19.2.7 SEQUENCEVIBWeuvieieiienieiieiesteeteeteeteeteeetentestestestessesseeseesteseensensasansesseeseeseensensensensessessessessesseens
9.2.19.2.8 StateTransitionView
0.2.20 MELAAALAc.eetieietieeieiieiete ettt ettt et et et et et e s be et e e st e st e st en s e s e b e be b e ekt et e eRe e st e st et e beeheeheeseeseentententan b e beebeeneeneeneenes
0.2.20.1 Metadata OVEIVIEWccveiueruieuieuieieieietesteeteeteeseestestessessessessessesseeseestensensensassesseeseaseessensensessessessessessasseens
0.2.20.2 EICINENLSeveevieiienienieiesieettettettetentetestesteete ekt eteeseessessestessessesseeseeseentensensansansesseeseaseessensensensensessessessesnnans
9.2.20.2.1 Metadataltem........cceeuieiieieieieteeeete ettt ettt et b et neent et e st e testesaesaeeneeneene
9.2.20.2.2 MEtAAAtAILEIMIS.......eovieeieiieiieiieteteete ettt ettt te sttt es et e b et e b e beebeebeeseentensensensentessessesneeneene
0.2.21 SYSML ...ttt ettt ettt sttt ettt e e b e b e b ekttt R e e st e st et e beeheehe Rt st en e e st entanbenbente e bt eneeneenes

9.3.1 Metadata Domain Library Overview

9.3.2 Modeling Metadataccccevuerererenereeennnnne
9.3.2.1 Modeling Metadata OVEIVIEWccuerueruerierrietieieietetesiestestesseeseeseestessessessessesseeseeseessensessessessessessessesseens 504
0.3.2.2 EICIMEILSc.veiieiieiienieieste ettt ettt et et e bt et e e st e st estest e tessessesseeseeseentensense b e beeaeeaeeneentensenbetenteetenneeseeneene 504
0.3.2. 2.1 ISSUEC ..ttt ettt ettt ettt ettt ettt et e a e eh e he e sh e e bttt e bttt et enteeateeateshee bt e teenreenees 504
0.3.2.2.2 RAIONAIC.ueenieieiieieeiieieiee ettt ettt ettt et ettt te ettt e st e st e e e b e b e beeseebeeneensensensensensessessessennnans 505
9.3.2.2.3 REFINEIMENL ..covtiniiiiiiieiieiieieete ettt ettt ettt sttt et s e st et e b e b e b e saeeseeneeneensensensessessessessessnans 505
0.3.2.2.4 StAtUSINTO. ...ttt b ettt e ae et st b e testesaeeaeereeneene
9.3.2.2.5 StatusKind
0.3.3 RISK MELAQALA.eeuieeieiieiieteteete ettt ettt ettt et e et e b e b e e b e e be et e eseesa e st e st esessesseeseeseeneensensansanseseeseeneeneenes
9.3.3.1 RiSK Metadata OVEIVIEWcceeieieieieiesieetiettetteeeteteste e stestesseeseestensesesessesseeseeseesaensensensessessessessesseens 507
0.3.3.2 ELCIMEILS ...ttt ettt ettt et e it et e st e st et e bessesseeseeseenten s et et e beeheeheeneenten s e st eteeteetenneereeneene 507
0.3.3. 2.1 LEVEL ..ttt bbbttt b s b et et b s s e st te b eseese st s e seneenen 507

OMG Systems Modeling Language (SysML) v2.0 Beta 1

0.3.3.2.2 LEVEIEINUIM ...coutiiiiisiieiietieiiee ettt ettt et ettt te e ae et e st e st e e e b e b e beeseeseeneeneensensensessessessessesnnans 508

9.3.3.2.3 Risk............

9.3.3.2.4 RiskLevel

9.3.3.2.5 RISKLEVEIENUMouiitieiieiieiieieteete ettt ettt bbbt ne e st enaensensestasaesaesseennans 510

9.3.4 Parameters Of INterest MEtadata...........ccveierierieriiriiniieieieieiee ettt ettt sttt se et e b enbebesbeebeeneeneenes 510

9.3.4.1 Parameters of Interest Metadata OVETVIEWccecveruerierieriereieriieietete ettt esteaestestesaeseessesreennens 510
0.3.4.2 ELCIMENLSc.vieieiieiienieiete ettt ettt ettt e b e et e et e et e st e st e teteesesseeseeseentensenbe b e beeaeeseeneentensenbeteetestenheereeneene

9.3.4.2.1 MeasureOfEffectiveness

9.3.4.2.2 MeasureOfPerformance.....

9.3.4.2.3 measuresOfEffectiveness

9.3.4.2.4 measuresOfPerformance

0.3.5 IMAZE MELAAALAeeuieuieiieieteeieeteetee ettt sttt ettt et e b e st e et e et e et e e st es e e st et e sessesseeseeseentensensansenbeebeeneeneeneenes

9.3.5.1 ITMage Metadata OVEIVIEWccuerieierierierieetietieteeeeteteste e stesteeseeseentesesesesseeseeseeseessensensensessessessessesneens

0.3.5.2 ELCIMEILS ...ttt ettt ettt ekt e st et e e st e st e tetestesseeseese e st ens e b e b e beehe e bt eneentensenteteeteebenseeseeneene

0.3.5. 2. T TCOM ettt ettt ettt ettt s a e bt s h e bttt e b e et e et e at e eateeatenhte bt e beebeenees

0.3.5. 2.2 TIMAZE .ottt ettt e ettt e a e bttt e bttt e bttt et e nteeateeateshte bt e teereenees

9.4 Analysis DOMAIN LIDIAIYccveouiriiriiriiitieieieeeete sttt sttt ete e st st ettt e st e st ese et e b e b essesseesesseeseentensensensensesseeseeneanean

9.4.1 Analysis Domain Library Overview
9.4.2 ANALYSIS TOOINGeevieuieiieieteeteetieteee ettt ettt ettt e e et et e st e e b e ete e st eseessestentensessesseeseeseentensensansansenseeseeneeneenes
9.4.2.1 ANALySiS TOOING OVEIVIEWecuieuieieieriiniietietieeteietetestesteseessesseeseestensensesessesseeseeseessensensessessessessesseseens
0.4 2.2 EIBIMIENES ...ttt ettt ettt ekttt ettt h et h et sttt s ae b
9.4.2.2.1 TOOIEXECULIONcuvuitiniiiriiiietent ettt ettt ettt ettt ettt ettt ettt sa ettt eaen
9.4.2.2.2 TOOIVAATIADIE. ..ottt ettt ettt
9.4.3 SAMPIEA FUNCHIONSeouiiuieieieieetieieeeeet ettt ettt ettt et st et e e te et e eaees s e s aentessessesseeseeseeneensensansansanseeseeneeneenes
9.4.3.1 Sampled Functions Overview
9.43.2 Elements.......cccoccoueereenenniniccnennencnne
9.4.3.2.1 Domain.................
9.4.3.2.2 Interpolate
9.4.3.2.3 INtErPOIAtELINEALeouieeieiieiieieteeteete ettt ettt et et eb e et eneeaeeneensenbestesaesaeeneeneene
0.4.3. 2.4 RANEE ...c.eeeeieieettetee ettt ettt ettt ettt et a e s a e bt et e bttt ettt et nteea b e eatenhte bt e nteebeenees
0.4.3.2.5 SAMPIEevieiieieiecieeece ettt ettt ettt ettt ettt et e b e b e h e e bt ene e st e st entententeeteeseereeneene
9.4.3.2.6 SAMPIEAFUNCLION........eouiiuieiieieieieeteete ettt ettt et et e e bt e bt eseeneensessensessessessessesnnans
9.4.3.2.7 SAMPIEPAIT.c.eiiiitiiiiiieieeee ettt ettt b e e bttt aeent et et e besteeteeaeeneeneene
9.4.4 State Space Representationccceceeeeeenene
9.4.4.1 State Space RepreSentation OVETVIEW..........ceeveieierierierieriereneeeteeetesestessessesseeseeseessensessessessessessesseseens 519
0.4 4.2 EIBIMENES ...ttt ettt ettt ettt ettt ekt a ettt sttt h et sttt b e st be
0.4.5 TTAAE STUAIES. ...c.ecuitiieiitiietere ettt ettt ettt ettt b e bttt ettt ebe sttt e st se et e b et besaeseenene
0.4.5.1 Trade StUAIES OVETVIEWcoviuiiuiiiiirtiiiiiteitntet ettt ettt ettt ettt ettt et ettt et be ettt be et et st euesaeeenene
0.4.5.2 EIEIMEIES ...ttt ettt ettt ekttt h ettt st b ettt st be
9.4.5.2.1 EvaluationFUNCHIONc..ccovuiiiiiiiiriiiierccec ettt
9.4.5.2.2 MaximizeObjective
9.4.5.2.3 MinimizeObjective...................
9.4.5.2.4 TradeStudycccevvvvvrierennnenn
9.4.5.2.5 TradeStudyObjective
9.5 Cause and Effect DOMAIn LIDIATYc.cccieieieiieieieiesesesieeeet ettt ettt ettt et e besbesaesseeseestentensensensessesseeseeseenean
9.5.1 Cause and Effect DOmain Library OVEIVIEWcceeieieierierienienieeieeteeitetestetestestessesaesseeseeseessensensansessessessesseenes 524
9.5.2 Causation COMNECLIONS......c.ceuirteuirteuietertettetest ettt et ettt sttt et et eb et e st ebe e ettt e st eb et et e st e st et et ebe st est et et eneseentebentenesteneebens 524

9.5.2.1 Causation CONNECIONS OVEIVIEWccvervirterrierierieieietertessestessesseestentessensessessesseeseeseessensessessessessessesassaens 524

0.5.2.2 ELCIMEILSc.vevieiieiieieieste ettt ettt ettt ekt et e e st e st e st e tesbessesseeseese e st ensensen b e beeaeeseeneentensenbeteeteebenseeseeneens
9.5.2.2.1 Causation
9.5.2.2.2 causations
0.5.2.2.3 CAUSES...eueeuieteetieteet ettt ettt e ettt e s a e bt et ettt et e a e ea e e bt et e bt e bt e bt et e et ent e ea s e eaeeshee bt e beenneenees
0.5.2.2.4 @FFCCLS .ottt ettt ettt sttt et n ettt e b b e h e e bt ene e st ententeteeteereeseereeneene
0.5.2.2.5 MUILICAUSALION ..c.veuvetitietietienietestesteeteeteete et estestestestessesseeseeseeseensensasensesseeseeneensensensensessessessessesseans 526

OMG Systems Modeling Language (SysML) v2.0 Beta 1 Xiii

0.5.2.2.6 MUILICAUSALIONSe.vevieieeienieiietesteeteeteeteeteeetestestetessessesseeseeseeseensessasensesseeseeneensensensensessessessessesseens
9.5.3 Cause and Effectccccevvevuvurnenne.

9.5.3.1 Cause and EffECt OVEIVIEWccecieierierierieetietieiietetete et ste sttt et este e stesbesbesaeeseeseessensensensessessessessesnnens

0.5.3.2 ELCIMEILScovivieiieiienietestecte ettt ettt et ettt et et e st e st e st e s tetessesseeseeseenten s e b e b e beeae e st eneentententeteetestenneereeneens

9.5.3.2.1 CausatioNMEtadAtacecueierieriirteeeeiieieetetete ettt ettt et esbesbesbeeseeneeneensesbentestessesseeneeneene

9.5.3.2.2 CausationSemantiCMEtadataccceeieieieienienieriesieee ettt ettt saeaestesteseesieseeeneene

0.5.3.2.3 CAUSEMELAQALAc.vevieieeieiieiieieteete ettt ettt sttt et s et e e b e b et e e bt e st eneeneensensentestesaesseeneeneene

9.5.3.2.4 EffECtIMETAQALAo.veveeieiieiieiietet ettt ettt ettt et et et e e b e e bt eneentensensentestesaesaeereeneene

9.5.3.2.5 MulticausationSemanticMetadata ...

9.6 Requirement Derivation Domain LIDIATYc.cceceriiriiriririeieteieie ettt ettt s teste st ese et estenaessessesaeeseeneenean

9.6.1 Requirement Derivation Domain LIDrary OVEIVIEWccevuereririirieieiieieienieniesiesieseeeseeneeseesesessessessessesseenes 530
9.6.2 DEriVation CONMECTIONS.ecverteetirteeieetetetertestestesteestestestestessessessessesseeseeseessessensesessessesseeseeneensensansensensessessesseenes 530
9.6.2.1 Derivation CONNECIONS OVEIVIEWc..ecuirtirrierierieieietestesiessessesseeseensessessessessesseeseesesssessessessessessessessessaen 530
0.6.2.2 EICINEINLSc.vieieiieiieieiete ettt tte et et et et e et e et e e et e st e st estestessessesseeseeseentensensenb e beeae e st eneentensensetentestenseereeneene
0.6.2.2.1 DIETIVALIONveuteneeteetieiietietieieteste st eeteeteeteeetestestestessesseeseeseeseeseensensansansesseeseeseensensensensensessessessesseans
9.6.2.2.2 AETIVALIONSveuteneetiiieiietietieitetestestesteeteeteettestestetessesseeseeseeseeseensensansansesseeseeneensensensensessessessessesseans
9.6.2.2.3 derivedRequirements
9.6.2.2.4 originalRequirements

9.6.3 REQUITEMENT DIETIVATIONc.veuviiieiieiieiieiteteieste ettt et et e st e st e te e et eseestestentessessesseeseeseeneensensansansansesseeneeneenes
9.6.3.1 Requirement Derivation OVEIVIEWccceeeeieierierieierieniesiesieeseeseetesessessessesseeseesesssensessessessessessessaseens 532
0.6.3.2 EIEIMIEIES ...ttt ettt ekttt ettt bbbt et eb et sa et b 532

9.6.3.2.1 DerivatioNMEtadataccceoverieriirieeieieieetetete ettt ettt ettt et ae et e et e ntestesaesaeereeneene 532

9.6.3.2.2 DerivedRequirementMetadata............cceeieierierienienieneeeeeeeete ettt ettt ettt eeeeneene 533

9.6.3.2.3 Original RequireMentMEtadatalcceeeeieieiienierierieseee ettt ettt eaestesteseeseesseeneene 533
9.7 Geometry Domain Library..........cccceeevverieieeeeenennnne.

9.7.1 Geometry Domain Library Overview

0.7.2 SPAIAL TECIMS ...c.vetietieeieiieietete ettt ettt s ettt et e st et e e b e s b e et e ebe e st eseestentensensessesaeeseeseeneensensensanbenbeeseeneeneenes
9.7.2.1 SPatial IteMS OVEIVIEWecuieuieuieuieieietenteetieteetteeestestestestessessesseeseensensensensessesseeseeseessensensensessessessessasseens
0.7 2.2 EIBIMIEIES ...ttt ettt ettt ettt ettt ekttt b ettt st b et a et be

9.7.2.2.1 CurrentDisplacementOf.

9.7.2.2.2 CurrentPoSItIONOTcc.oiiiiiiiiei ettt
9.7.2.2.3 DiSplacemeEntOf.........cc.eiieieieieieeeete ettt ettt ettt et aeea et e b e testesresaeeneeneene
9.7.2.2.4 POSIHIONON ..ottt ettt ettt ettt ettt 536
9.7.2.2.5 Spatialltem

0.7.3 SNAPE TLEIMIS ...ttt ettt ettt ettt et e e b e s b e e b e e bt e st esees s e st e st e be e s e eae e st eseentententenb et e nbeeneeneeneenes
9.7.3.1 ShAPE IEIMS OVETVIEWevivieuieuieuienieieiesteete et etteieestestestestestesseeseeseestensesensessesseeseeseesaensensesensessessessesneans 538
0.7.3.2 ELBIMIEIES ...ttt ettt ettt ekttt b e bttt ettt st be 538

9.7.3.2.1 CHICLE .ttt h et b et b ettt sttt e 538
9.7.3.2.2 CIrCUIATCONEc.eviiiinieiiiiieiee ettt ettt ettt ettt ettt sa et et eaes 538
9.7.3.2.3 CArCUlArCYHNAETe.vieieeieiieiieteteete ettt ettt ettt eb e e st eneeneeneensensesseseesaessennnans 539
9.7.3.2.4 CircularDisc

9.7.3.2.5 COME..eiiiiiiietetet ettt ettt saesaesae et et ene
9.7.3.2.6 CONEOTCYIHNARTovieieeieiieiieieieete ettt ettt ettt ettt e bt eae e bt eneeneensessensesseseesaessesnnans 540
9.7.3.2.77 COMICSECIIONuertiieiinieiintet ettt ettt b ettt ettt ettt et ettt et sa et et ae e 541
9.7.3.2.8 COMICSUITACEeviuiiiiiiieietert ettt ettt ettt ettt bt et eaes 542
9.7.3.2.9 CUDOIA ...ttt ettt ettt 542
9.7.3.2.10 CuboidOrTrianguUIarPIiSI.......cc.eouirieieieieieieie ettt ettt ettt et et neetentestesaesaesseennene 543
0.7.3.2.11 CYLINACT ..ottt ettt ettt sttt et s et e et e b e be e bt eseeseeneensensensesseseessessennnans 544
0.7.3.2.12 DHSCuuvniutteieieietettte ettt ettt ettt ettt s ettt b stk a bbb h et h bt b ettt n et e 545
9.7.3.2.13 ECCONITICCOMNE ...c.vevivieienieiieieteeteeteeteeteeetentestetestessesaeeseeseeseeneensansansesseeseeneensensensensessessessessesseans 545
9.7.3.2.14 ECCONMIICCYIINARTc.vivieeieiieieieeteete ettt ettt b et a e st e st aeeseensensestassessessaeneens 546
0.7.3.2.15 EIIIPSE.cuvuvteuiieteiiiieteie ettt ettt ettt stttk t bbbt b sttt n et e 546
9.7.3.2.16 EIIIPSOTA ...euiiriiiietciesetet ettt ettt s et 546
0.7.3.2.17 HYPEIDOLA ...ttt ettt ettt et et e beese e st eneeneensensensessesaessessenneans 547

Xiv OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.7.3.2. 18 HYPEIDOLOIA.eeviiiiieiieiieieiet ettt sttt ettt et et eb e e st e st eneessensensestessessessennnans 547
9.7.3.2.19 Line..........
9.7.3.2.20 Parabola
9.7.3.2.21 ParabolOid........c.couiiiiirieiriiiiiete ettt et 549
0.7.3.2.22 Pathl .ottt ettt 549
9.7.3.2.23 PIANATCUIVE ...c..cuentiiitiieiirictetert ettt ettt ettt ettt ettt sa et eb et eaen 550
9.7.3.2.24 PIANAISUITACE.c..eueitiieiiiiieiet ettt ettt ettt ettt ettt sttt naes 550
0.7.3.2.25 POLYZOM .. .iiuieiiieitieiieteettetete ettt ettt ettt et et e teste s beete e st es e e st et et e b e beeaeeheentente st entetenteeaeeseereeneene
9.7.3.2.26 Polyhedron
0.7.3.2.27 PYTAMIA ...ttt ettt ettt ettt sttt et s et e et e b e b e e bt eseese e st ensensensensesaesseeneeneene
9.7.3.2.28 QUAITIAtEIAl......ccveiviiiiiiiciicee ettt ettt et e be et et e e e e aa e teeereereenns 552
0.7.3.2.29 RECLANGICouventitiiiiieiieeet ettt ettt ettt ettt s et a et e b e besaeeseeneeneensensesessessessessennnans 553
9.7.3.2.30 RectangularCuboid.........ccueierierierieeieieieteiee ettt ettt et ettt e ntestestesteeneeneene 553
9.7.3.2.31 RectangularPyramidcc.ooerueririeieieieietese ettt ettt ettt stesaesieeeeeneene 554
9.7.3.2.32 RectanguUlarTOrOId.c.veieieietieteeie ettt sttt ettt et et ebe e st e st entensensensessessesaesseennans 555
9.7.3.2.33 RiIGhtCITCUIATCONE.cvieuieiienreteteete ettt et e ste st te st et es e st eeebabebesseeseeneensensensensessessessessesnnans 555
9.7.3.2.34 RightCirCUlarCylINAETc.eoveriirieeiieiieiieietete ettt ettt ee et et eae et eaee st e s ensensessesaessesseennans 555
9.7.3.2.35 RightTriangle...................
9.7.3.2.36 RightTriangularPrism
9.7.3.2.37 SHEIL....coiiiiiii ettt
0.7.3.2.38 SPRETC ...ttt ettt ettt ettt ettt ettt a et et e b b e h e e bt eneent e st enbetentenaeeaeereeneene
9.7.3.2.39 TErANEAIONc.eviiiiiiieiiieietet ettt b ettt ettt ettt a et eaes
9.7.3.2.40 TOTIOM ...ttt ettt ettt ettt ettt eaen
9.7.3. 241 TOTUS ..ottt sttt ettt st b e et sae st saesaeebeeneene
9.7.3.2.42 Triangle ...
9.7.3.2.43 Trian@UIArPTIISIN.......ccuiiuieiieieieteeteete ettt ettt et et et e e bt e bt eneeseeneensensessessessesseennans
9.8 Quantities and Units DOMAIN LIDIATYcoeieieierierierieeieeieeeetetete ettt ettt et e e bestestesse s st estentessensessessesseeseeneenean

9.8.1 Quantities and Units Domain LiDrary OVEIVIEWccecuerierierenieriieiieieeeieiesieste e seesseeseeseessesesessessessessesseenes 561
0.8.2 QUANTILIESevvieiiivieetieteeeteete ettt et ette et e e tteeteeeteeete e beeseeaseeaseeaseesseessaesseessesseessenseenseenseeaseesseesseessasssesssesseseenseenss 561
0.8.2.1 QUANTILIES OVETVIEWviiveiiuiieiieitieeteecteeeteeteeteeeeeteeteesteesteeeseesseeseeseesseesseesseessessseessesssenseesseenseesseenseesseas 562
0.8.2.2 EICIMENLS ...ttt ettt ettt et e et e st e st e st et e bestesseeseesten e en s et et e beeheeheententensentetenteetenneereeneens 563
9.8.2.2.1 3dVectorQUAantity VALc.eoverueriieiieiieiieieteterie ettt ettt ee st ettt e st eseeneensensensessessessessesnnans 563
9.8.2.2.2 QUANTLYDIMENSION ...euvevieuieuieieteeteeteeteetteetetetestestesteseeeseeseeseensessesasesseeseeseensensensensessessessessesseens
9.8.2.2.3 QuantityPowerFactor
9.8.2.2.4 SCAlATQUANTITIESveoviiiiiiiieetieiie et eetee et e eteeeteeeteeaeeteesaeeaseeteeessesseesssebeesseenseenseensessseessesseesseenseenss
9.8.2.2.5 ScalarQuantityValue
9.8.2.2.6 SysteMOTQUANTITICS.eeueeuieuieteteeteeteettettetetete e steste et et eseeseetebessesbesseeseeseessensensensessessessessesseens
0.8.2.2.7 teNSOTQUANTILIESveiviiiiieieetieiieetieetee et eeteeeteeeteeseeteesaeeaseeteeessesseesssebeesseenseesseensessseessesseesseeseensas
9.8.2.2.8 TensorQUANLItYVAIUEccueiirieriirieeiieiieiietetete ettt ettt ettt ettt e st eneeneensensensessesaessesseennans
9.8.2.2.9 VECTOTQUANTITIES.eeuveeerieeieeetieiee et eetee et eeteeeteeeteeseebeesseeaseeseeessesseessseseenseenseesseensasssesssesseesseeseenss
9.8.2.2.10 VectorQuantityValue....
9.8.3 Measurement RETETENCESccevuiriirieieieieieiestesee ettt ettt ettt ettt s besaeese e st e st e st e s ensanbeebeebeeneeneens

9.8.3.1 Measurement References OVETVIEW.........cceeieieieieiieienienienesieeeeeieetete e stesteste et eseesaensesessesaestessesseeneens 569

0.8.3.2 ELCIMEILScuvieiiieiienieteste ettt ettt ettt ettt et e s e st et e s bestesseeseeseenten s e b e b e beehe e bt eneentententebeeteetenneereeneens 569
9.8.3.2.1 3dC00IdINALEFTAMEccuieuieiieieieieete ettt ettt ettt b e bt eaeeneensensensestesaessesseennens 569
9.8.3.2.2 AffineTransformationMatriX3d.......ccceeieirieieieieriesese ettt ste e sae e eneene 569
9.8.3.2.3 ConversioNBYCONVENTIONecuertirrieiieeieieieieiesiesiesieeeeeseeseeeessessessesseeseeseessessessensessessessessesseens
9.8.3.2.4 ConversioNBYPIETIXc.coiieiiriiiiiicieieeeee ettt ettt et et stestesreeneeneene
9.8.3.2.5 COOTAINAtEFTAMEevieeieiieiieieteeteete ettt ettt et et e b e e bt e st eneeseensensensessessessessesnnans
9.8.3.2.6 CoordinateFramePlacement
9.8.3.2.7 Coordinate TranSfOrmMAatioNccceeeeieieieiieiesiesie ettt ettt et et et e eaentesteseesaesseennene
0.8.3.2.8 COUNTQUANTITIESveeuveieiieiieeetieiteeeeeetee et eeteeeteeeteeseebeesaeessesseeessesseesseesseenseenseenseensesssesssesseesseeseenss
0.8.3.2.9 COUNEVALUC.......otiiiiieiietieiieiete ettt ettt ettt ettt ettt e st e st e e e b e b e b e eseeseeseensensensensessessessessasneans
9.8.3.2.10 CYCHCRAOSCALEccveeienienieieteeieete ettt ettt ettt ebe e st e st entessenaensestesaessesseennans

OMG Systems Modeling Language (SysML) v2.0 Beta 1 XV

XVi

9.8.41SQ

9.8.3.2.11 DefinitionalQUantity ValUecccceeieirieieieriesesieee ettt ettt stestesee e seeeneene 575
9.8.3.2.12 DerivedUnit.........ccceeuenenne.

9.8.3.2.13 dimensionOneQuantities
9.8.3.2.14 DIimenSIONONEUNIL........cecieiiriertirteetieieeiteteteteste e se et et esteseeeessessessesseeseeseensessensensessessessessesseens
9.8.3.2.15 DIiMenSioNONEVALUEc.cocueriiriiriieiieiieiieieieie ettt tete st besaeeseeseeneensensensessessessessesneens
9.8.3.2.160 INETVAISCALL......ecuiuitieiieiieeteteete ettt ettt et et et e e bt e bt eneensensensenbestessessesneeneans
9.8.3.2.17 LOarithmICSCaLE.......eeuieuieiieieieeteete ettt ettt ettt et st eb e e bt eseeneensensensessesaessessesnnans
9.8.3.2.18 MEaSUIEMENESCALL.c.eeieuieieieieett ettt sttt ettt et et et e bt e bt eseeneensensensesteseessesseeneens
9.8.3.2.19 MeasurementUnit
9.8.3.2.20 NullTransformation
9.8.3.2.21 NUIITIANSTOIMAIONcvieuieiieieteeteete ettt ettt ettt et et et be e bt ebeeneeneessensensessessessessesneans
0.8.3.2.22 OMC ..ttt ettt ettt a e e a e bttt e bttt et et e et ent e ea s e eaeeshtenteenbeeteenees
9.8.3.2.23 OrdiNalSCAleocveuieieiieiieieiesteee ettt ettt ettt ettt et et et e testesaesaeeneeneene
9.8.3.2.24 QUAntity ValUeMaPPINgccveruerieriieiieiieieieiesiesiesie et eeesteeeeessessessesseeseeseensensensensessessessessesseens
0.8.3.2.25 ROLALION c..evtenieiiieeiieteetieite et ettt ettt et et et e e tesbesaeeseeseeseeneensansanbeeseeseeseensensensensessessessessasnnans
9.8.3.2.26 ScalarMeasuremMentRETEICIICEcc.eeuiruirieieieierieeieee ettt ettt ettt steseeseeeeeeneene 583
9.8.3.2.27 SIMPIEUNIL ...ventiiiitieiieiieieetest ettt ettt ettt ettt et st et e e e b e b e beeseeseeneeneensensensensessessessesseans 583
9.8.3.2.28 SYSLEMOTUNILSvevieieiieiieiieieteeteete ettt et ete e steste e et et eseeseeeebesebesseeseeneensensensensessessessessesseens 584
9.8.3.2.29 TensorMeasuremMentRETEICNCEccveirieieieierierieee ettt ettt ste e seeeeeeneene 585
9.8.3.2.30 TranSIAtIONevertiruieeietieieietest ettt et et et et e e testesbe s et e st eseeseeseessansenbesseeseeneensensensesessessessessassaans 585
9.8.3.2.31 TranslatioNOTROLAIONcuerteriirtieiieiieiietetete ettt ettt e st eseeneeseessensesseseessesseennens 586
9.8.3.2.32 TranslatioNROtaAtiONSEQUENCE.eeuiruieeieieieieieriesieee et eeteee e te e te et eseeseeneensensensessessessessessnens 586
9.8.3.2.33 UNTECOMNVETSIONeuvievietienienietetentesteeteeseeitestestesessessesseeseeseeseessessansasesseeseeseensessensensessessessessasseens 587
9.8.3.2.34 UNTPOWETFACTOTevieuieiieiieieieeteete ettt ettt et a e e bt eaeent e s enaentestesaesaesseennans 587
9.8.3.2.35 UnitPrefix

0.8.4.1 ISQ OVEIVIEW.....ecuvieirieiiieeieeieeetteete et eeteeete e bt eteeaeeteeeteeeasaeteeesseeseeseeseesseesseeaseesseesseassessseseeseenseenseenseensens
0.8.4.2 EIEIMENEScuveiiiieeiieiie et et ettt ettt e vt et e et e e e e et e eteeeasasaeeeseebeeseeaseeaseeaseeaseesseeaseeseeesseseeseenseenseenseenneas

9.8.4.2.1 amOUNTOTSUDSIANCE.eeieuiiieriiieeteeiteieetet ettt ettt ettt et be e bt ebeeseeseensessensessessessessesneens
9.8.4.2.2 AMOoUNtOTSUDSTANCEUNILeveviiieiieiieiieieieie ettt ettt et ettt eaentestesaesaeeseennens
9.8.4.2.3 AMountOfSubStANCEVAUEcovieiiiieiieiieieeee ettt ettt steseesie e eneene
9.8.4.2.4 ANGUIArMEaSUIEVAlUE......c.cociiiieiiriieiieiieitetetete ettt ettt ettt ettt e be e st et e e esaestestesaessesseeneans
9.8.4.2.5 Cartesian3dSpatial CoordinateFrame
9.8.4.2.6 DisSplacemMent3dVECtOTc.ceviieiiiietieiieiietetete ettt ettt ettt ettt et e s ebentestesresaeeneeneene
0.8.4.2.7 QUIALION.eeutenieieitieteettet ettt et et et e it et e et e testesbe e st eseeseeseeneensansenbeeseeseeneensensensensessessessessesneens
0.8.4.2.8 DUTAIONUIL.....euvititieietietieietest et ete et et et et estestestesseeaeeseeseeseeneensansensesseeseeseensensensensessessessessesseans
9.8.4.2.9 DUAIONVALUEoviiiiieiieiieieieteete ettt ettt ettt sttt es et e e et e b e beeseeseeneensensensensessassessessesseans
9.8.4.2.10 ClECtIICCUITENEevieieeieuieiieteteete ettt et et et et e e testeeae et eseeseeeesesebeeseeseeneensensensensessessessessesseans
9.8.4.2.11 ELeCtriCCUITENEUNIEc.veeuieiieieieteete ettt ettt et ee b et beeae e st eneeneensensensessessessessesnnans
9.8.4.2.12 ElectricCurrentValue....
0.8 4. 2. 13 TENGEN ...ttt ettt b b h e bt entent e st et e ntestesteeaeereeneene
9.8.4.2.14 LeNGENUNIL. ..ottt ettt ettt st sttt ettt e b e b e b e sbeebeeseensensensensessassessessesseans
9.8.4.2.15 LeNGENVAIUECocviiiiieiieieeeeeeee ettt ettt bttt et e b e sbestesaeeaeeneeneene
9.8.4.2.16 TUMINOUSINLEINSILYevivieiieiieieieeteete ettt ettt ettt et et be s bt e bt eseeneensensensestessessesseennans
9.8.4.2.17 LuminouSINtenSIty UNIL.........cceruiririeieieieieiesie ettt ee et sae et eseeneessessensessessessesseeseens
9.8.4.2.18 LuminouSINtenSity VaAIUEcceveririeieieieieriese ettt sttt et e st estestesaesaesseennene
0.8.4.2. 19 IMASS ..ottt ettt ettt ettt et ea e ht e et e bttt ettt e et e nteeateeatenhte bt e beeneenees
9.8.4.2.20 MASSUNILeeuteneeiisiietietietieiet et et e sttt et e et et estetestesseeseeseeseeseeneensansansesseeseeneensensensensensessessessesseans
9.8.4.2.21 MassValue.............
9.8.4.2.22 POSItIONIAVECIOT ...ttt ettt ettt sttt es et et e b e b e e bt eseeseeneeneensensessessessesseeneans
9.8.4.2.23 Spatial3dCo0ordinateFTaMEc.eceeuieieiieieieieiesie ettt ettt eaestestesaesaeeeeennene
9.8.4.2.24 thermodynamiCTEMPETALUIEccceeieieierierierieriesieeieeeeeteeetestestesteeteeseeseeneensensensessessessessessnens

9.8.4.2.25 ThermodynamicTemperaturelUNitccververierieriererireeeeierietet ettt eaeaesteseeseeseeereennens

OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.8.4.2.26 ThermodynamicTemperatureValUe..........ccccververierierenirieieieieiesieete ettt ae e seeseesieseeeneene

9.8.4.2.27 universalCartesianSpatial3dCoordinateFrame

0.8.5 ST PIEIIXES c.euvetitietieeieiee ettt ettt ettt ettt et e st et e e b e b e e b e et e e st enees s e st et e beeseehe st eseententen s e b et eeteeheeneeneenes
0.8.5.1 ST PIEIIXES OVEIVIEW ...euviviiieuieuieieieietesteeteeteettestestestestestessesseeseeseentensensensasseeseeseeseassensensesessessessessessnans
0.8.5.2 ELEIMENLSc.veeieeieiieieiete ettt ettt ekt e et e e st et estesteeseeseest e st en s et e b e beeae et e ententen s e st eteetestenseeneeneens

9.8.7 US Customary Units ...
9.8.7.1 US Customary Units OVErvieW.........cccceeerreereeeeeennes
9.8.7.2 EICMENLScveevieeieiienieiesiecieeieeieece e
O.8.8 THIMC ..ottt ettt ettt et et e et et e s be e bt e bt e st e st e st e st e s e b e b e ekt e et eseen s e st en s et e seeheeRe e st entententenbenbeebeeneeneeneenes
0.8.8.1 TIME OVETVIBW.......eeuierieteietietieuienietetetesteeteeteeseeseessessestessessesseeseestentensensansaseeseeseeseassensensensensessessessesnnans
0.8.8.2 ELCIMENLSc.iviiieiienteieste ettt ettt ekttt et e e st et e s tesbe s st es e e st e st en b et et e beeae e bt eneenten s et eteeteetenseereeneens
9.8.8.2.1 CLOCK ..ttt ettt ettt et ettt sttt e a e e st e st et e b et et e eh e e bt entent e st enteteeteeteeseereeneene
0.8.8.2.2 DIALE ..vevieiieieeiete sttt ettt ettt ettt te ettt a e n e e st et et e b e b e bt e st eneentententetenteeaeeseereeneene
0.8.8.2.3 DIAETIIME ...ecuveueenteteeiietietieiteeet et et e et et e te e st est e testestesteeseeseeseeseeneensansanbesseeseeseensensensensensessessessessnans
9.8.8.2.4 DurationOf..........
9.8.8.2.5 ISOBO0 TDAtETIIME ...ttt ettt ettt ettt e e besbeeae e bt eseeneensensensestessessessesneans
9.8.8.2.6 1508601 DateTIMEENCOMING........ccvietieiieiieiieiieieierie ettt ettt aessesteseeseeseeennene
9.8.8.2.7 [30860 1 DAtETIMESIITUCIUIEevevieeieiieiieiieieieie ettt ettt te et et eae et eseeneeneessessesseseessesseennens
9.8.8.2.8 tIMEIMSTANTeuteieiiitiiieiieie ettt ettt et et e b e b e beeb e eseeseensensensensessessessessesnnans
9.8.8.2.9 TIMEINStANtVAIUEoouiiiieiieiieieeeee ettt ettt et bestestesaesaeseeennans
9.8.8.2.10 TIMEOT ...ttt ettt ettt ettt ettt et es e st et e b e b e b e eseeseeneeneensensensessessessessannnans
9.8.8.2.11 TimeOfDay.....
9.8.8.2.12 TimeScale.......cccevereirieieieieieeeeee e
9.8.8.2.13 universalClocK..........cccevveveienienieneneeeeeenenes
0.8.8.2. 14 UTIC .ttt ettt ettt ettt ettt e st e se e st es e e st e e e s e b e beeaeeseeneentensensensessesaessessennnans
9.8.8.2.15 ULCTIMEINSTANL......euitietieiieieieteete ettt ettt ettt et et e bt e bt eseeneensensensessessessessesnnans
9.8.8.2.16 UtcTIMEINSTANTVALUEeouiiiiiiiieiieiieiecteeteie ettt ettt ettt et stesaesaeeneennene
9.8.9 QUANTLY CaAICUIALIONSetiieieetieiieiieitetete ettt ettt ettt et et e st e st e ete e st eseestesaentensessesseeseeseeneensensansansensesseeneeneenes
9.8.9.1 Quantity Calculations OVETVIEWcceeueeuieirieieieiesiesiestesteeseeseestesessessessesseeseaseessensessessessessessessesseens
0.8.9.2 ELCINENLSc.vevieiieiienieietecie ettt et ettt et e et e et e st e st e tesbestesseeseesee st ensensen b e beeae e st eneentensenteteetestenseeseeneene
9.8.10 Vector Calculations..........ccccevververueruennene
9.8.10.1 Vector Calculations OVETVIEWcc.eeeeueeuieieieieietesiesiesieseesseestestesessessessesseeseeseessensessessessessessessesseens
0.8.10.2 EICIMENLSeveeieiienieieteete ettt tte et et et et e e bt et e eet e st estestestessessesseeseeseensensensansanseeseeseeseessensensensensessessessesnnans
9.8.11 TeNSOT CAICULALIONS......cuveteteteetieteeiteiietete e rte sttt ettt et etetesaesbesbesteeseeseessesaensesessesseeseeseeneensensansansanseeseeneeneenes
9.8.11.1 Tensor CalCulations OVEIVIEWcc.eruerueruierieieieietesiesiestesseestestessesessessessessesseesesssensessessessessessessasanns
0.8 11,2 EICIMENLS ...ttt ettt tte et et et e et e et e et e st es s e st e testessesseeseeseentensensensaseeseeseaneensensensensessessessessesnnans
9.8.12 Measurement Ref CalCUlationsc.ecuerierieriiriinieieieieeese ettt ettt st sttt ettt e e besbeebeeneeneens
9.8.12.1 Measurement Ref Calculations Overview....
9.8.12.2 Elements
A Annex: Example Model
ALT INETOAUCLION ...ttt ettt ettt et et et et e et e st e et e e st es e e st e s s ensess e b eebeebeeseeseessensense s e sseeseeseeneeneensensensansenseaseeseeneenes
A2 MOAEL OTZANIZALIONveutieieiieiienieteteste et eteettettestetestestesteeseeseeseeseessessessassesseaseeseeseessessensensessessesseeseentensensensensensessessesneenes
A3 DETINILIONS .. .eeuteuieietieteet ettt ettt ettt et et et et e teste st e esee st eseestessensess e s eeseebeeseeseeseenbense s e sseeseeseeneentensensenb e benbeeseeneeneenes
F N o | OO OSSPSR UPRRRTRO
ALS Parts INTETCONMECTION.eouieuieuieuieteteete et eteett et etete e testestee st esteseessessessesseeseeseeseeseessensensensessesseeseeneentensensensansanseaseeseeneenes
LD ACTIONS ...ttt ettt et e et eat e st e st e st et et e b e bt e st e st eneea s et e b e b ekt e ke e Rt eR e e Rt en b en b e beeheebeeseene e st entent et e beeheeseeseeneenes
A.7 States...............
A8 REQUITEIMEIILS.evveniitietietieiietieiiet et e te e it e bt eteestestestesteste st eeseeseeseeseensansessasseeseeseeseeseessensensensesseaseeseeneentensensenbansensesseeseeneenes
ALLD ANALYSIS ...ttt ettt ettt et ettt h et e e st eatea s et e b e b e ke ekt eh e eR e e st ententebeebeebeeReent e st e st ent et e benbeeneeneeneenes
ALTO VETITICALION ...ttt ettt ettt et et et e et e st e ettt e e st es e e s e e s e s e b eebeebeeseeseessenbensensesseeseeseeneentensensansensenseaseeseeneenes
ALTT VIEW QNG VIEWPOINL ...titieiieiieiieieteeteeteeteeiteitetestestestestesteeseestestessessessassessessesseeseessensensensessessesseeneentensensensensensessessesneenes

OMG Systems Modeling Language (SysML) v2.0 Beta 1 xvii

xviii

A.12 Variability
A.13 Individuals

OMG Systems Modeling Language (SysML) v2.0 Beta 1

List of Tables

1. Dependencies — Representative INOTATIONco.evuireriririeietetertert ettt ettt ettt eb ettt et sbe bbbt e bt et et e benbesbesbeenes 19
2. Annotations — Representative INOTALIONeouiiuirirtiriieiieietet ettt ettt ettt bbbt bt et e et et e st e saesbeebe e bt ebe et et enbenbesbesbeenes 20
3. Packages — Representative INOTATIONcc.erueriiriirtirieeiteitete ettt ettt ettt ettt b e bt e bt et e et e b e b e b e s bt sbeeb e e bt e st et enaenaesbeabeaneas 24
4. Definition and Usage — Representative NOATIOMN.ciuiiieiieieiieiiiteieteieie ettt ettt ettt e st be st e st et e e ebe s eseebeneesenseneanens 34
5. Attributes — Representative NOTATIONc.ciuiieiiieieieiet it ettt ettt ettt et e b e et e eese et et es e b eseebenses e beseesens et easeneesenseseaseneasenes 47
6. Enumerations — RepreSentative INOTAIOM.c..co.evuererieieieietestesteet ettt eb ettt ettt b e s b s b sbeeb e bt et et enaeneesbesbeeneas 50
7. Occurrences — RepreSentative INOTAIOMc..co.eruirtererieietetetest ettt ettt b ettt et et et be s b e s bt s bt eb e e bt et e e enaeneesbesbeeneas 53
8. Items — Representative Notation

9. Parts — Representative INOTALIONce.titiriirtitirteeteetiete ettt ettt ettt ettt b e s bt s bt e bt e bt e st e s b e s et e st e saesbeebe e bt emeent et et ebenbesbeenes
10. POrts — RePIeSENtAtIVE INOTALIOM. .. .cveuietieiieiieieteetest et ettt ettt ettt bbbt b e s bt s bt s bt e bt e st e st e e e st e st e s bt e bt ebeebee st ententenbenbeebeenes
11. Connections — RePreSentative INOTATIONcouiruiririririeitet ettt ettt ettt b e st b et e et et sbesb e s bt eb e e bt e st et e benbesbesbeenes
12. Interfaces — Representative INOTALIONeueriiriirireriieieei ettt ettt ettt b e s bt et e st et et st e st e s bt e bt ebeebee st e st e benbesbesbeenes
13. Allocations — RepreSentative INOTATIONcc.eiiuirieirieietitetertei ettt ettt et et et ea et e seeseeteneebeseeseebeseeseeseneebeneeseabeneaseseneanans
14. Actions — Representative INOTATIONcc.eeviteriiriirertert ettt ettt ettt e bttt et b e s b s bt bt eb e es e et e e e st e st e s bt e bt ebeebee st entensenbenbeebeenes
15, Control NOAE DEfINILIONS.c.c.ervriereuiriiieiiirieieteitrt ettt ettt v ettt te st b ettt s st bt e b e st et ettt ea b st s st ebese e ebebeaeneeaebenennne
16. States — Representative Notation

17. Calculations — Representative INOTATIONc.eeieieriirierterierieeieei ettt sttt ettt et et ettt b e bbbt oot et e b e sbesbesbesbeeneene

18. Constraints — RePreSentative NOTALION.co.eeteieieriererterteet ettt ettt ettt et et s e bbbt e bt e bt eat et et et esbesbesbesbesbeeneene

19. Requirements — Representative INOTATION.cueieriiririertirieeieeitete ettt ettt ettt et ettt bbbt st et et et esbesbesbesbesbeeneene

20. Analysis Cases - Representative INOTATIONco.eeieieierieniertenterieei ettt ettt ettt ettt ettt b e s bbbt e bt et e e esaesaesbesbeebeebeeneas

21. Verification Cases — Representative Notation .

22. Use Cases — Representative INOTATIONcc.evvirereieieiieietetestestesiest ettt ettt et b bbb e st e s bt sbesae e bt ebee st et et enaesbeebeebeebeeneas

23. Views and Viewpoints — Representative NOTATIONcc.eoirereriririeieietentestest ettt sttt ettt beeneas 143
24. Diagrams — Representative EXAMPIEScc.eiiiiriiiiiiieienenee ettt ettt et ae st be e 148
25. Metadata — RepreSentative INOTATIONc.ioueuiiuiieiieieiceteeteete ettt ettt ekt e st et e et e e e st et e e e bt ssese et et e st b eneebensesebeneenenseneaee 150
26. EBNF NOtation CONVENTIONSc.ecuiiiiiiiuiieiieteeetieteieeteeeteseeie sttt seese s e se st sseseesesae st esesee st saeseeseseesteseseesesseseeseseeseseneenenneneane 156
27. Abstract SyntaxX SYNthesiS INOATIOMN.c.irueuiiuiieiieteiet ettt etttk e ettt e e be st e st et e e ebeesese et eneeseeseseebensesebeneesensenenee 156
28. Grammar Production DEfINIEIONSc.ccuririeueririiueiiirieiciinetee ettt ettt ettt sttt sb et s bbb s eae e b aeesnene 157
29. GraphiCal BNF COMVENTIONSccutveuieteuietitetietetetiatettatetetesteseesetesesseseeseeeseasene et esseseaseneesessese et emees et est et aneeseaseneebensesenseneesenseneaee 185
30. Implied Definition Subclassification RelationShips.cceerieiiieiririeiee ettt 380
31. Implied Usage Subsetting RelationSIIPScoueiiirieiiieiieere ettt ettt ettt b e es et e st e e eseneeneeean 381
32. Other Implied REIAtIONSIIPSc.eiuiiieiieiieee ettt ettt ettt b et s et e s e b e b e st e b e st eb e b eseebensesebenesbenseseseneaean 385
33. Standard VIEW DEfINILIONS........c.coueveueuiiirieieuirinieteeninteteit ettt ettt tes ettt be et sa bt b bttt eb bt ns b besesaebestaesaebeaeensenenes 497

OMG Systems Modeling Language (SysML) v2.0 Beta 1 Xix

List of Figures

1. SYSML Language ATCRITECIUIEc.evtertieuieiieieteetestesteet ettt ettt ettt bbbt b e s bt s bt s bt e bt e st et et et e st e sbe e bt ebeebee st emtenbenbenbesbeenes 12
2. EIBIMEIES. ... vttt ettt etttk k et b et e b st h ekt e e bttt ettt b ket sk bttt nne 241
3. DEPEINACTICIES ...c..entntiniititieteett ettt ettt sttt e bt eb et et et s bt s bt e bt e bt e bt ea e ea s e st et e st e s bt sb e sb e eb e e bt emtem b et e b e e bt e bt eb e eb e ea b en b et et e st e ntenbeebeebeene 242
A ANNOTATION. ...ttt e ettt b e st et e e bt s et e e e a e s e et e h e e a e ee et eh e se st a et h et s e b e n st n e eneeee 242
5. INAINIESPACES. .. veeveentententetietteteett ettt et et et e st e ste s bt ebeebeebeestes e et e abeabeebeeb e e bt eateaten b et e st e s bt sbesheeb e ebeemtemtem b e b e bt e bt eb e eb e ea b enten b et e st e ntenbeebeebeene 243
6. TINPOTES ..ttt ettt b bbbt et et e s bt e bt e bt e bt e bt e et e st ea b et e et e s bt sb e eb e eb e e bt ea e en b ettt e bt e bt bt e bt ea b ea b et et et e st e nbeebeebeene 244
T PACKAZES ...ttt ettt b et b ettt b e bbbt bt a e stttk h e eh e e bt eb e e bt st en bbbt b e e bt eb e eb e ea s ea b et et e st e stenbeebeebeene 244
8. DEfINItiON ANA USAZEveueuieeiieiiiteieteete ettt ettt ettt e s et et eh e et e st e b e e e st et eseeb e s es e b esees e s eseebenees e s eseebensese s eneebeneeseseneeean 245
9. VaTTiant MEIMDETSIIDcouieeuiiteiietitet ettt ettt ettt ettt st e sttt e b et e st et e e es e e s em e et e e eae et eme et e s es e et emees e s ene et eneeseaseneabensesenseneenenseneaee 245
10. Attribute DefInition and USAZE.......c.coieuiririiieieieteresert ettt sttt ettt s e ettt b e bt e bt e bt et et et e nbesbesbesbeebeeneene 261
11. Enumeration Definition and USAZE........cceoieuirieiiiiieiieieietei ettt ettt sttt et ae et et eseete st e b et es e et enees e s eseebeneeseaseseabensesenes 263
12. Occurrence Definition and USAZEcceerieirieiriiieireietet ettt ettt sttt se et e et be st et et eseeteseebeseest et et es e s eseebeneeseaseneesensesenes 265
13, EVEINE OCCUITEIICESuviieieiiciiieiietet ettt ettt ettt e et a e s et ea e oo ae s e et e s e s e st s e e e s e sa e st e s e e st b et e s e e eneene e e aeen st ene e eneane

14. Ttem Definition and Usage....

15. Part Definition and USAZEccuevuiruirtiririeiieiieitetet ettt ettt ettt h e s bbbt bt e st et et e s e et e b e bt e bt e bt ent e st et et enbesbesbesbeebeebeene

16. Port Definition and USAZE........coueruirrirtiriniieieeitet ettt ettt h s bbbt e bt e st et et e st e bt e bt e bt e bt e bt e bt e st et et enbesbesbenbeebeeneene

17, POTE CONJUZALION ..eventeiiiieiieitetetet et ettt ettt ettt ettt st b e bt bt e st e st et e b e b e e b e s bt eb e e bt eb e e st e st e st e e et e ab e eb e e bt e bt eutent et enbenbenbenbenbeebeebeane

18. CONNECLOTS AS USAZESeuveueiueinietentintinteetiett ettt et et s bt st e bt eb e et estes b et et e s b e e b e s bt sb e e bt ehtes e es e e st e b et e bt ebeeb e e bt enteatenbenbenbenbenbesbesbeeneene

19. Connection Definition and USAZE........coccerieirieiriiieieieietet ettt ettt ettt et e e st s e et e b et es e e te st ebe e eseebe st eseeseneebeneeseaseneasensesenes 281
20. FIOW CONMECLIONS «.uvvenirveiirieteuieetettitrteteuestnseueseseseetestaessesesesesseses et seebes e e sebese e saebestasesesest st e b ebeae e et ebestesesebeatsaebestannaesenesensene 282
21. Interface Definition and USAZEc.ccouiruiruiruiririeiieiet ettt ettt ettt ettt b bbb et e b e b e s bt s bt sb e e bt e bt e st e b et e nbenbeabeebeebeenean 287
22. Allocation Definition and USAZEcoveuirieiiieieiieieiete ettt ettt ettt et ettt e e ebe s e st et enees e ssese et eneeseeseneebenseseebeneesenseneaee 289
23. Action DefInition and USAEZEc.ccoueiiriiriiriirietieietet sttt ettt ettt b bbbt e st e et et e s bt s b e sbe e bt e bt e st enb et et e st e abeebeebeenean 291
24, CONLIOL INOGES ...ttt ettt ettt ettt ettt bbbt b b et s bbbt s et bt s e b bttt et bt s e bk et saebestae st enenennene 291
25. PerformMed ACHIONSc.eouiiiuiiiieic ettt b et b e e s h e et e et n et eae e 291
26. SENA ANA ACCEPE ACHOMNSc.veueetieetieteieetieteteet ettt et et e e esestese et e seseesea e et e eeseeaea e et e s eseesene et e s eseesemees e s ene et eneeseaseneabenseseseneesenseneaee 292
27, ASSIZNIMEIE ACHIONS ..uveuventeterteeteetteitetert ettt et e et e et e e st eat et et esbesbesbesbeebeeseestesees b e bt beebeebeebees b enteabebenbesbesbeebeebeestensenbenbenbeabeebeebeenean 292
28. Structured CONLIOL ACHIONSc.couiiiiiiiiiititciec ettt sttt st e et s e et a et s e e et e b e e n e s e ne e eneeee 293
29. State Definition ANd USAZEccerueuiiueieeiieiietetet ittt ettt ettt st s et et et e st e s e et e e e st et et et e s s es e et emeeseesene et eneeseabeneebensesebeneesenseneaee 314
30. State Membership

3 1. EXRIDIEEA SEALES ...vveuiriteniiiieteteiee ettt ettt ettt ettt etttk b bttt b et h ekttt b btttk b bttt seneeen

32, TTANSTHION USAZEuveuvintiiietietietieitet ettt ettt ettt ettt ettt b e bbbt e st e st e st et e st e s bt sb e sb e e bt ebeemtem b et et e eb e e bt eb e ebteutentenbenbentestenbesbeeneene

33. Calculation Definition nd USAZEcceiuiieuirieuieiiieieiteiete ettt ettt et et se et e st et e seseebeseese s eseebeneeseseseesenseseseneabensesenseneaean

34. Constraint Definition and USAZE.......c..coeriereririiiiietetestertest ettt ettt ettt sbe bt e bt et et et e b e s bt e bt ebeebeeatest et ebesaesbesbesbeeseene

35. ASSEITEA COMNSIIAINES ...ttt st b e e e e e et b e e st b e s e e s e e es e s e s e ea e e e s e eaeseea e e eneseemeeaenneneseen

36. Requirement Definition and USAZE.........coerereririiiiieiertesient ettt ettt ettt ettt ettt b e bt eb e ebeea s et et ebesaesbesbeebeeneene

37. SAtiSTIEd REGUITEIMEIIEScueeuieiieiieiieieiertesteeieet ettt ettt b et b ettt et et s b et sb e sbeeb e e bt e st em b et e b e e bt e bt ebeebeeatestenbenbenaestenbesbeeneene

38. Concern Definition aNd USAZE........c.eerueiiueieierieii ettt ettt ettt ettt e b et e st et eseeb e s eseeseseeseaseseebeneeseseseesenseseseneabenseseaseneaean

39. Requirement Constraint Membership.....

40. Requirement Parameter MEmMDETISIIPScviuiieirieiitiiei ettt ettt ettt ettt ettt e st et e st e st b e st e b e e eseebe st bensenenee

41. Case DefINItion ANd USAZE........ccerueuieueietiieiieteiettet ettt s te st ete e et e teseete e esessen e et e seese et et ebe s ene et emees e s ene et eneeseaseneebenseseseneenenseneaee

42, CaSE MEIMDEISIIP.eeuetieetieteietit et ettt ettt ettt ettt ettt e st et et e s e b e st et e e es e e e em e et e s es e e s emeeb e s ese et emeeb e s ene et enees e b eneebensen e beneebenseneaee

43. Analysis Case Definition and USAZE.ccevuiririririeieierieneeterteete ettt ettt b bt b et e et et s bt s besbeebeebe et e e et eneesbeabesbeebeeneas

44. Verification Case Definition and Usage

45. Verification MEMDEISIIPccoiiiiriet ettt ettt et ettt e et e e e st et et e st s es e et et e st b eneebensese b e st aenneneaee

46. Use Case Definition and Usage ...

A7, INCTUACA USE CASE......vvimirreiiirieteiireetettiere ettt ettt sttt ettt eb et b et b bt s bbbt s stk et eeb bttt et bt s b b emesaebestae st esenennene

48. View DefINItion and USAZE.......c.eetitiriiriiriiriirtietieitet ettt sttt ettt et ettt e bt bt e bt e st e st e b et e s bt e bt sbeebeebe e st estentenbesbeabeebeebeenean

49. Viewpoint Definition and USAZEcoueruiruiriiriiiirieieietestestestese ettt ettt ettt b bt et et et e s bt s bt sbeeb e e bt et e e et enaesbeabesbeebeeneas

50. Rendering Definition and USAZE.......c..coeruereriririiietetertestest ettt ettt ettt ettt st e b et e st et et et e s bt e bt eb e ebeeatest et ebestestesbesbeeneene

51, EXPOSE RELATIONSIID. c..cuvititieiieiieiieteee ettt ettt s b e sb e bt b e st et ettt e bt e bt eb e ebe e bt est et et e saesbesbeebeebeene

XX OMG Systems Modeling Language (SysML) v2.0 Beta 1

52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.

View Rendering MEMDEISIIDccooveiiriiriiiieietieieieiete ettt ettt et ettt et e st e s e sse b e besbesseeseeseeseeneensensesensesseeseeneanean 367
Metadata Definition and USAZEccuerueriiruirieieieieieieste sttt etetete st e testesbe e st esteseestessensessesbessessesseeseensensensensensesseeseeneanean 377
State Space Representation action and calculation definitions..........ccuevuerueriirieieieieieetere ettt ens 520
Model Organization for SIMPIEVENICIEMOAELc..ccuiriiriiriiiieieiieeeee ettt st sttt ettt esbesaesbesseeneeneenean 619
Part DefInition fOr VERICIE.c.couiiiiiiiiiiiic ettt ettt sttt ettt st ettt sa et ettt st et ene e 621
Part Definition for FuelTank Referencing FUEL it SEOTESccuiviririeieierieriesieeieeteetecee ettt ettt be b saeeneenean 622
Axle and its SUDCIASS FTOMTAXIEcoueiitiriiiriiiitiie ettt ettt ettt ettt ettt sttt et sa et enene

Example Definition EIEMENTSc..cccouiiiiiiiiiiiireetcees ettt sttt ettt ettt sa et et e ettt enens

Part Usage for vehicle b...........

Parts Tree for vehicle b.......ccocevvevenenienieniennene

Variant enginedCyl........ccocevvevvivcierienenenenennne

Parts Interconnection fOr VERICIE Dcc.oiuiiiiiiiieieieieeece ettt s b e s te et e st ese et et e besbenbeeseeneeneenean
ACHION PIOVIACPOWETevviiiitieiieieeiteiete ettt ettt et et e st e st e e bt et e eseestestesse b e b e eseeseesteseentensensensesbesseeseeseeseentensensensensenseeseeneanean
ACtiON flOW fOr PrOVIAEPOWETeiuiiiiiiiiiiictiete ettt sttt et a st et e b e b e s beeteeseeseeseentensenbensenseeseeseeneanean
Action floW fOr trANSPOTTPASSEIZETevervirtieiietietieietete e ste ettt et et et et e b e besbeebe et e esteseestessensessesbessesseeseeseensensensesensesseeseeneanean
VBRICIE SEALES.cuetiteiiitiieiert ettt ettt b et b et b e bbb bbbt s s e e bt ekt et s e ettt b et t et et ae et ettt ae et ebe
Requirement Definition MaSSREQUITEIMENEcoeiiiiriirieieeiieieeitetetetete ettt ettt e et e st e stessesseeseeneensesessessesseeseeneenean
Requirements Group vehicleSpecification ...
Analysis Case fUCIECONOMYANALYSISccueruiruieuieieieieiesteste ettt ettt ettt ettt at e s et e b e besbeeteeseeseeseeseensensesessesseeseeneanean
Vehicle Mass VErTICAtION TESEc.cruiiriiriiiitiiitirieiete sttt ettt ettt ettt ettt ettt ettt ettt sa et et eeaesaeneenens
VENICIE SATELY VIEW ..euviiiiiitieieeitetee ettt sttt et et e e st et e st et et e e s e e bt es e e st es s e st en s e s eebeeseeseeseeseentensensensenbesseeneeneanean
Rendering of view VEhiClePartSTIee SafEty.........cceoieriiriiririiiicieeeeee ettt sttt et e e besbesbeeseeneeneenean
Variability Model for VEhICIEFAMILYcciiiiieieieieieeseeeeeeee ettt st e st s st e st et ebesbesaesbesseeseeneenean
Vehicle Individuals and SNaPSROLScc.ecuiruiriiieieieieeese ettt ettt ettt et et e besbeetesseeseestententebensesbeeseeneeneenean

OMG Systems Modeling Language (SysML) v2.0 Beta 1 XXi

xxii OMG Systems Modeling Language (SysML) v2.0 Beta 1

0 Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s

specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and

networking infrastructures, and software development environments. OMG’s specifications include: UML®

(Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. All OMG
Specifications are available from the OMG website at: https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters

9C Medway Road, PMB 274
Milford, MA 01757

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page https://www.omg.org, under Specifications, Report an Issue.

OMG Systems Modeling Language (SysML) v2.0 Beta 1 xxiii

https://www.omg.org/
https://www.omg.org/spec
mailto:pubs@omg.org
https://www.iso.org/
https://www.omg.org/

XXiv OMG Systems Modeling Language (SysML) v2.0 Beta 1

1 Scope

The purpose of this standard is to specify the Systems Modeling Language™ (SysML), to guide the implementation
of conformant modeling tools, and to provide the basis for the development of material and other resources to train
users in the application of SysML.

SysML is a general-purpose modeling language for modeling systems that is intended to facilitate a model-based
systems engineering (MBSE) approach to engineer systems. It provides the capability to create and visualize models
that represent many different aspects of a system. This includes representing the requirements, structure, and
behavior of the system, and the specification of analysis cases and verification cases used to analyze and verify the
system. The language is intended to support multiple systems engineering methods and practices. The specific
methods and practices may impose additional constraints on how the language is used.

SysML is defined as an extension of the Kernel Modeling Language (KerML), which provides a common, domain-
independent language for building semantically rich and interoperable modeling languages. SysML also provides

a capability to provide further language extensions. It is anticipated that SysML will be customized using this
language extension mechanism to model more specialized domain-specific applications, such as automotive,
aerospace, healthcare, and information systems, as well as discipline specific extensions such as safety and
reliability.

Note. Definitions of system and systems engineering can be found in ISO/IEC 15288 Systems and Software
Engineering — System Life Cycle Process.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 1

OMG Systems Modeling Language (SysML) v2.0 Beta 1

2 Conformance

This specification defines the Systems Modeling Language (SysML), a language used to construct models of
systems (whether they are real, planned or imagined). The specification comprises this document together with the
content of the machine-readable files listed on the cover page. If there are any conflicts between this document and
the machine-readable files, the machine-readable files take precedence.

A SysML model shall conform to this specification only if it can be represented according to the syntactic
requirements specified in Clause 8. The model may be represented in a form consistent with the requirements for the
SysML concrete syntax (which includes both textual and graphical notation), in which case it can be parsed (as
specified in 8.2) into an abstract syntax form, or it may be represented directly in an abstract syntax form.

A SysML modeling tool is a software application that creates, manages, analyzes, visualizes, executes or performs
other services on SysML models. A tool can conform to this specification in one or more of the following ways.

1. Abstract Syntax Conformance. A tool demonstrating Abstract Syntax Conformance provides a user
interface and/or API that enables instances of SysML abstract syntax metaclasses to be created, read,
updated, and deleted. The tool must also provide a way to validate the well-formedness of models that
corresponds to the constraints defined in the SysML metamodel. A well-formed model represented
according to the abstract syntax is syntactically conformant to SysML as defined above. (See 8.3.)

2. Concrete Syntax Conformance. A tool demonstrating Concrete Syntax Conformance provides a user
interface and/or API that enables instances of SysML concrete syntax notation to be created, read,
updated, and deleted. Note that a conforming tool may also provide the ability to create, read, update and
delete additional notational elements that are not defined in SysML. Concrete Syntax Conformance
implies Abstract Syntax Conformance, in that creating models in the concrete syntax acts as a user
interface for the abstract syntax. However, a tool demonstrating Concrete Syntax Conformance need not
represent a model internally in exactly the form modeled for the abstract syntax in this specification. (See
8.2)

There are two variants of Concrete Syntax Conformance:

a. Textual Notation Conformance. A tool demonstrating Textual Notation Conformance provides
Concrete Syntax Conformance for the SysML textual notation. (See 8.2.2)

b. Graphical Notation Conformance. A tool demonstrating Graphical Notation Conformance
provides Concrete Syntax Conformance for the SysML graphical notation. As part of this, the
tool shall also support the textual notation at least to the extent necessary to properly render text
in the graphical notation, and may also fully support the textual notation in conjunction with the
graphical notation. (See 8.2.3.)

3. Semantic Conformance. A tool demonstrating Semantic Conformance provides a demonstrable way to
interpret a syntactically conformant model (as defined above) according to the SysML semantics, e.g., via
semantic model analysis or model execution. Semantic Conformance implies Abstract Syntax
Conformance, in that the semantics for SysML are only defined on well-formed models represented in the
abstract syntax. (See 8.4 and 9.2.)

4. Model Interchange Conformance. A tool demonstrating model interchange conformance can import and/
or export syntactically conformant SysML models (as defined above) as a project interchange file as

specified in [KerML, Clause 10], with the following further conditions:

o The project interchange file shall use the standard . kpar (KerML Project Archive) extension.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 3

o All model interchange files in the project interchange file shall be SysML models. Textual
notation files shall use the extension . sysml.

o The metadata for the project interchange file shall identify the metamodel using the normative
SysML metamodel URI as given for this specification (i.e., https://www.omg.org/spec/
SysML/yymmnn, where yymmnn is the current date-based version identifier).

5. Domain Library Support. In addition to the Systems Model Library, a conformant tool may provide one or
more of the domain model libraries specified in Clause 9.

Every conformant SysML modeling tool shall demonstrate at least Abstract Syntax Conformance and Model
Interchange Conformance. In addition, such a tool may demonstrate Concrete Syntax Conformance and/or Semantic

Conformance, both of which are dependent on Abstract Syntax Conformance. The tool may also provide Domain
Library Support.

4 OMG Systems Modeling Language (SysML) v2.0 Beta 1

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification.

[ISO15897] ISO/IEC 15897:2011 Information technology — User interfaces — Procedures for the registration of
cultural elements
https://www.iso.org/standard/50707.html

[KerML] Kernel Modeling Language (KerML), Version 1.0
https://www.omg.org/spec/KerML/1.0

[MOF] Meta Object Facility, Version 2.5.1
https://www.omg.org/spec/MOF/2.5.1

[OCL] Object Constraint Language, Version 2.4
https://www.omg.org/spec/OCL/2.4

[SMOF] MOF Support for Semantic Structures, Version 1.0
https://www.omg.org/spec/SMOF/1.0

[SysML v1] OMG Systems Modeling Language (SysML), Version 1.7
https://www.omg.org/spec/SysML/1.7

[SysML v1 to v2] OMG Systems Modeling Language (SysML), Version 2.0
Part 2: SysML v1 to SysML v2 Transformation
https://www.omg.org/spec/SYSML/2.0/Transformation

[UML] Unified Modeling Language (UML), Version 2.5.1
https://www.omg.org/spec/UML/2.5.1

The following references were used in the definition of the Quantities and Units model library (see 9.8):

[GUM] JCGM 100:2008 and ISO/IEC Guide 98-3, Evaluation of measurement data - Guide to the expression of
uncertainty in measurement
https://www.bipm.org/en/publications/guides/#gum

[ISO 80000-1] ISO 80000-1:2009, Quantities and units - Part 1: General
https://www.iso.org/obp/ui/#iso:std:is0:80000:-1:ed-1:v1:en

[ISO 80000-2] ISO 80000-2:2019, Quantities and units - Part 2: Mathematical signs and symbols to be used in the
natural sciences and technology
https://www.iso.org/obp/ui/#iso:std:is0:80000:-2:ed-2:v1:en

[ISO 80000-3] ISO 80000-3:2019, Quantities and units - Part 3: Space and Time
https://www.iso.org/obp/ui/#iso:std:is0:80000:-3:ed-2:v1:en

[ISO 80000-4] ISO 80000-4:2019, Quantities and units - Part 4: Mechanics
https://www.iso.org/obp/ui/#iso:std:is0:80000:-4:ed-2:v1:en

[ISO 80000-5] ISO 80000-5:2019, Quantities and units - Part 5: Thermodynamics
https://www.iso.org/obp/ui/#iso:std:is0:80000:-5:ed-2:v1:en

OMG Systems Modeling Language (SysML) v2.0, Beta 1

https://www.iso.org/standard/50707.html
https://www.omg.org/spec/KerML/1.0
https://www.omg.org/spec/MOF/2.5.1
https://www.omg.org/spec/OCL/2.4
https://www.omg.org/spec/SMOF/1.0
https://www.omg.org/spec/SysML/1.7
https://www.omg.org/spec/SYSML/2.0/Transformation
https://www.omg.org/spec/UML/2.5.1
https://www.bipm.org/en/publications/guides/#gum
https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-3:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-4:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-5:ed-2:v1:en

[IEC 80000-6] IEC 80000-6:2008, Quantities and units - Part 6. Electromagnetism
https://www.iso.org/obp/ui/#iso:std:iec:80000:-6:ed-1:v1:en.fr

[ISO 80000-7] ISO 80000-7:2019, Quantities and units - Part 7: Light
https://www.iso.org/obp/ui/#iso:std:is0:80000:-7:ed-2:v1:en

[ISO 80000-8] ISO 80000-8:2020, Quantities and units - Part 8: Acoustics
https://www.iso.org/obp/ui/#iso:std:is0:80000:-8:ed-2:v1:en

[ISO 80000-9] ISO 80000-9:2019, Quantities and units - Part 9: Physical chemistry and molecular physics
https://www.iso.org/obp/ui/#iso:std:is0:80000:-9:ed-2:v1:en

[ISO 80000-10] ISO 80000-10:2019, Quantities and units - Part 10: Atomic and nuclear physics
https://www.iso.org/obp/ui/#iso:std:is0:80000:-10:ed-2:v1:en

[ISO 80000-11] ISO 80000-11:2019, Quantities and units - Part 11: Characteristic numbers
https://www.iso.org/obp/ui/#iso:std:is0:80000:-11:ed-2:v1:en

[ISO 80000-12] ISO 80000-12:2019, Quantities and units - Part 12: Solid state physics
https://www.iso.org/obp/ui/#iso:std:is0:80000:-12:ed-2:v1:en

[TIEC 80000-13] IEC 80000-13:2008, Quantities and units - Part 13: Information science and technology
https://www.iso.org/obp/ui/#iso:std:iec:80000:-13:ed-1:v1l:en

[TIEC 80000-14] IEC 80000-14:2008, Quantities and units - Part 14: Telebiometrics related to human physiology
https://www.iso.org/obp/ui/#iso:std:iec:80000:-14:ed-1:v1:en

[NIST SP-811] NIST Special Publication 811, The NIST Guide for the use of the International System of Units
(In particular its Appendix B "Conversion Factors")
https://www.nist.gov/pml/special-publication-811

[VIM] JCGM 200:2012 and ISO/IEC Guide 99, International vocabulary of metrology - Basic and general concepts
and associated terms (VIM)
https://www.bipm.org/en/publications/guides/#vim

[ISO 8601-1] ISO 8601-1:2019 (First edition) Date and time — Representations for information interchange —
Part 1: Basic rules
https://www.iso.org/standard/70907.html

6 OMG Systems Modeling Language (SysML) v2.0 Beta 1

https://www.iso.org/obp/ui/#iso:std:iec:80000:-6:ed-1:v1:en,fr
https://www.iso.org/obp/ui/#iso:std:iso:80000:-7:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-8:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-9:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-10:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-11:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-12:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iec:80000:-13:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iec:80000:-14:ed-1:v1:en
https://www.nist.gov/pml/special-publication-811
https://www.bipm.org/en/publications/guides/#vim
https://www.iso.org/standard/70907.html

4 Terms and Definitions

Various terms and definitions are specified throughout the body of this specification.

OMG Systems Modeling Language (SysML) v2.0, Beta 1

OMG Systems Modeling Language (SysML) v2.0 Beta 1

5 Symbols

A concrete syntax for SysML is specified in subclause 8.2 of this specification.

OMG Systems Modeling Language (SysML) v2.0, Beta 1

10

OMG Systems Modeling Language (SysML) v2.0 Beta 1

6 Introduction

6.1 Document Overview

The Systems Modeling Language (SysML) is a general-purpose modeling language for modeling systems that is
intended to facilitate a model-based systems engineering (MBSE) approach to engineer systems. This document
provides the standard specification for SysML Version 2 (SysML v2). SysML v2 is intended to enhance the
precision, expressiveness, interoperability, and the consistency and integration of the language relative to SysML
Versions 1.0 to 1.7 [SysML v1].

SysML v1 was specified as a profile of the Unified Modeling Language v2 [UML]. SysML v2, on the other hand, is
specified as a metamodel extending the Kernel metamodel from the Kernel Modeling Language [KerML]. In order
to facilitate the transition from SysML v1 to SysML v2, this standard also specifies a formal transformation from
models using the SysML v1.7 profile of UML to models using the SysML v2 metamodel [SysML v1 to v2].

This document specifies the textual and graphical concrete syntax, abstract syntax, and semantics for SysML v2.
The SysML v2 textual notation (see 8.2.2) and the SysML v2 graphical notation (see 8.2.3) provide the concrete
syntax representation of the SysML v2 abstract syntax (see 8.3). The SysML v2 abstract syntax extends the Kernel
abstract syntax, providing specialized constructs for modeling systems (as shown in Fig. 1). Further, the Systems
Library (see 9.2) is a model library that extends the Kernel Library to provide the semantic specification for SysML
v2 (see 8.4; see also [KerML] on the use of model libraries for semantic specification). Finally, SysML v2 provides
an additional set of Domain Libraries (see 9.4 and following) to provide a set of reference models in various
domains important to systems modeling (such as Analysis and Quantities and Units).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 1

]

Systems

[7 DefinitionAndUsage

[7 Attributes

7 Enumerations
[Occurrences
7 Items

1 Parts

7 Ports

[Connections
[7 Interfaces

[7 Allocations

[7 Actions

[States

[7 Calculations
[J Constraints

7 Requirements
[Cases

[7 AnalysisCases
[7 VerificationCases
[UseCases

[Views

[Metadata

[

Domain
Libraries

I
|
Imrrpurtn

|
1w

Systems
Library

I
|«irrpurtn
I

A

Kernel
Semantic
Library

Figure 1. SysML Language Architecture

6.2 Document Organization

The rest of this document is organized into three major clauses.

12

+ Clause 7 describes SysML from a user point of view. Its subclauses describe the modeling constructs in

SysML, including for each a general overview, related abstract syntax diagrams and a description of the
textual and graphical notation. The overviews in this clause should be considered informative. The
abstract syntax and notation subclauses, however, are normative, including descriptions of the processing
of the textual notation and its relationship to the graphical notation and the abstract syntax.

Clause 8 provides the normative specification of the metamodel that defines the SysML language. This
includes the concrete syntax (textual and graphical notations), the abstract syntax and the semantics for the
language. The SysML abstract syntax and semantics are formally extensions of the Kernel abstract syntax
and semantics provided by KerML (as discussed in 6.1). However, this clause does not cover details of the
Kernel metamodel, which are included by normative reference to the KerML specification [KerML].

+ Clause 9 specifies a set of model libraries defined in SysML itself. The Systems Library extends the

Kernel Library from [KerML] in order to provide systems-modeling-specific semantics to SysML
language constructs. The Domain Libraries provide domain-specific models on which users can draw

OMG Systems Modeling Language (SysML) v2.0 Beta 1

when creating their own models. Each model library is described with a set of subclauses that covers each

of the top-level packages in the model library, referred to as its library models.

These clauses are followed by informative Annex A, which presents an example model using the SysML language

as defined in this specification to illustrate how the language features can be used to model a system.

In addition, Clause 10 of [KerML] on Model Interchange is included by reference as a normative part of this

specification in order to define allowable methods for interchanging SysML models.

6.3 Acknowlegements
The primary authors of this specification document and the syntactic and semantic models defined in it are:

+ Sanford Friedenthal, SAF Consulting
» Ed Seidewitz, Model Driven Solutions
* Roger Burkhart, Thematix Partners

* Eran Gery, IBM

 Hisashi Miyashita, Mgnite

* Hans Peter de Koning, DEKonsult

Other contributors include:

+ Oystein Haugen, @stfold University College
* Tomas Juknevicius, Dassault Systémes
+ Charles Krueger, BigLever Software

The specification was formally submitted for standardization by the following organizations:

+ 88Solutions Corporation

* Dassault Systémes

+ GfSEe.V.

+ IBM

+ INCOSE

* Intercax LLC

* Lockheed Martin Corporation
* MITRE

e Model Driven Solutions, Inc.
+ PTC

+ Simula Research Laboratory AS
* Thematix Partners LLC

However, work on the specification was also supported by over 200 people in over 80 organizations that participated

in the SysML v2 Submission Team (SST), by contributing use cases, providing critical review and comment, and

validating the language design. The following individuals had leadership roles in the SST:

* Manas Bajaj, Intercax LLC (API and services development lead)

* Yves Bernard, Airbus (v1 to v2 transformation co-lead)

* Bjorn Cole, Lockheed Martin Corporation (metamodel development co-lead)

+ Sanford Friedenthal, SAF Consulting (SST co-lead, requirements V&V lead)

* Charles Galey, Lockheed Martin Corporation (metamodel development co-lead)
» Karen Ryan, Siemens (metamodel development co-lead)

» Ed Seidewitz, Model Driven Solutions (SST co-lead, pilot implementation lead)
* Tim Weilkiens, oose (v1 to v2 transformation co-lead)

OMG Systems Modeling Language (SysML) v2.0, Beta 1

13

The specification was prepared using CATIA No Magic modeling tools and the OpenMBEE system for model
publication (http:/www.openmbee.org), with the invaluable support of the following individuals:

* Tyler Anderson, No Magic/Dassault Systémes

* Christopher Delp, Jet Propulsion Laboratory

* Ivan Gomes, Twingineer

* Doris Lam, Jet Propulsion Laboratory

+ Robert Karban, Jet Propulsion Laboratory

* Christopher Klotz, No Magic/Dassault Systémes
+ John Watson, Lightstreet Consulting

The following individuals made significant contributions to the SysML v2 pilot implementation developed by the
SST in conjunction with the development of this specification:

* Ivan Gomes, Twingineer

+ Hisashi Miyashita, Mgnite

+ Miyako Wilson, Georgia Institute of Technology
+ Santiago Leon, Tom Sawyer

e William Piers, Obeo

» Tilo Schreiber, Siemens

+ Zoltan Ujhelyi, IncQuery Labs

14 OMG Systems Modeling Language (SysML) v2.0 Beta 1

http://www.openmbee.org/

7 Language Description

(Informative)

7.1 Language Overview

The System Modeling Language (SysML) contains concepts that are used to model systems, their components, and
the external environment in a context. It extends the Kernel Modeling Language (KerML) as specified in the KerML
specification [KerML]. SysML directly uses some elements of KerML, but most SysML elements are
specializations of KerML elements.

This clause provides an informative description of all these language concepts in their context of use in SysML.
Clause 8 gives the full definition of the SysML metamodel, which is the normative specification for implementing
the language. In contrast, the description in this clause focuses on how the various constructs of the language are
used, along with the Systems Model Library (see 9.2), to construct models. While non-normative, it is intended to be
precise and consistent with the normative specification of the language.

SysML directly uses the following concepts from KerML:

» Elements and relationships that define the basic graph structure of a model (see 7.2).

* Dependencies between modeling elements (see 7.3).

* Annotations for attaching metadata to a model, including comments and textual representations (see 7.4).

* Namespaces that contain and name elements, and, particularly, packages used to organize the elements in
a model (see 7.5).

» Specialization of elements that specify types, including subclassification, subsetting, redefinition and
feature typing (see 7.6).

» FExpressions can be used to specify calculations, case results, constraints and formal requirements. The full
KerML expression sub-language is available in SysML, as described in the KerML specification. The
description of this sub-language is not repeated in the SysML specification document.

The modeling constructs specific to SysML, as specified in subclauses 7.6 through 7.26, are built on the
KerML foundation, and cover the following areas:

» Fundamental aspects of constructing a model, including:

o The general pattern of definition and usage, which is applied to many of the SysML language
constructs (see 7.6). The pattern of definition and usage elements facilitates model reuse, such
that a concept can be defined once and then used in many different contexts. A usage element
can be further specialized for its specific context.

o The modeling of variability, which includes the definition of variation points within a
model where choices can be made to select a specific variant, and the selection of a particular
variant may constrain the allowable choices at other variation points. A system can be
configured by making appropriate choices at each of the variation points of a variability model,
consistent with specified constraints. Variation points can be defined in any of the specific
modeling areas listed below, so the ability to model variability is built into the base syntax of
definitions and usages (see 7.6).

* The modeling of attributive information about things, including:

o Attributes that specify characteristics of something that can be defined by simple or compound
data types, and dimensional quantities such as mass, length, etc. (see 7.7).

o Enumerations that are attributes restricted to a specified set of enumerated values (see 7.8).

* The modeling of occurrences with temporal and spatial extent. Temporal extent enables an occurrence to
be represented at specific points in time, over a duration in time, or over an entire lifetime. Spatial extent
enables an occurrence to be represented at a position and orientation with respect to a coordinate frame,
and to have a shape and size (see 7.9).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 15

The modeling of individuals with specific identities (see 7.9).
The modeling of structure to represent how parts are decomposed, interconnected and classified, and
includes:
o [tems that may flow through a process or system or be stored by a system (see 7.10).
o Parts that are the foundational units of structure, which can be composed and interconnected, to
form composite parts and entire systems (see 7.11).
o Ports that define connection points on parts that enable interactions between parts (see 7.12).
o Connections (see 7.13) and interfaces (see 7.14) that define how parts and ports are
interconnected.
o Allocations that assign responsibility for realizing the features of one element by another
element (see 7.15).
The modeling of behavior, which specifies how parts interact and includes:
o Actions performed by a part, including their temporal ordering, and the flows of items between
them (see 7.16).
o States exhibited by a part, the allowable fransitions between those states, and the actions enabled
in a state or during a transition (see 7.17).
The modeling of calculations that are parameterized expressions that can be evaluated to produce specific
results (see 7.18).
The modeling of constraints, which specify conditions that can be evaluated as true or false, or asserted to
be true or false (see 7.19).
The modeling of requirements, which is a special kind of constraint that a subject must satisfy to be a
valid solution (see 7.20).
The modeling of cases, which define the steps required to produce a desired result relative to a subject,
possibly also involving external acfors, to achieve a specific objective (see 7.21), including:
o Analysis cases, whose steps are the actions necessary to analyze a subject (see 7.22).
o Verification cases, whose objective is to verify how a requirement is satisfied by the subject (see
1.23).
o Use cases, that specify required behavior of the subject with the objective of providing a
measurable benefit to one or more external actors (see 7.24).
The modeling of viewpoints that specify information of interest by a set of stakeholders, and views that
specify a query of the model, and a rendering of the query results, that is intended to satisfy a particular
viewpoint (see 7.25).
The modeling of user-defined metadata that allows for both simple tagging of elements with additional
model-level information and more sophisticated semantic extension of the SysML language. In a similar
way that SysML extends KerML, modelers can use this metadata capability to build domain and user-
specific extensions of SysML, both syntactically and semantically. This allows SysML to be highly
adaptable for specific application domains and user needs, while maintaining a high level of underlying
standardization and tool interoperability. (See 7.26.)

It should be noted that SysML does not contain specific language constructs called system, subsystem, assembly,
component, and many other commonly used terms. An entity with structure and behavior in SysML is represented
simply as a part (see 7.11). The language provides straightforward extension mechanisms to specify terminology
that is appropriate for the domain of interest.

7.2 Elements and Relationships

7.2.1 Elements and Relationships Overview

Metamodel references:

16

Textual notation, 8.2.2.2
Graphical notation, 8.2.3.2
Abstract syntax, 8.3.2
Semantics, none

OMG Systems Modeling Language (SysML) v2.0 Beta 1

Elements are the constituents of a model. Some elements represent relationships between other elements, known as
the related elements of the relationship. One of the related elements of a relationship may be the owning related
element of the relationship. If the owning related element of a relationship is deleted from a model, then the
relationship is also deleted. Some of the related elements of a relationship (distinct from the owning related element,
if any) may be owned related elements. If a relationship has owned related elements, then, if the relationship is
deleted from a model, all its owned related elements are also deleted.

The owned relationships of an element are all those relationships for which the element is the owning related
element. The owned elements of an element are all those elements that are owned related elements of the owned
relationships of the element (notice the extra level of indirection through the owned relationships). The owning
relationship of an element (if any) is the relationship for which the element is an owned related element (of which
the element can have at most one). The owner of an element (if any) is the owning related element of the owning
relationship of the element (again, notice the extra level of indirection through the owning relationship).

The deletion rules for relationships imply that, if an element is deleted from a model, then all its owned relationships
are also deleted and, therefore, all its owned elements. This may result in a further cascade of deletions until all
deletion rules are satisfied. An element that has no owner acts as the root element of an ownership tree structure,
such that all elements and relationships in the structure are deleted if the root element is deleted. Deleting any
element other than the root element results in the deletion of the entire subtree rooted in that element.

Graphically, non-relationship elements are generally represented using a box-like shape or other icon, while
relationships are shown using lines connecting the symbols for the related elements. However, in some cases,
additional shapes may be attached to relationship lines in order to present additional information. The specific
conventions for such graphical notations are covered in subsequent subclauses.

7.2.2 Elements

Various specific kinds of model elements in SysML are described in subsequent subclauses. However, there are
certain concepts that apply to all model elements.

Every element has a unique identifier known as its element ID. The properties of an element can change over its
lifetime, but its element ID does not change after the element is created. An element may also have additional
identifiers, its alias IDs, which may be assigned for tool-specific purposes. The SysML notation, however, does not
have any provision for specifying element or alias IDs, since these are expected to be managed by the underlying
modeling tooling. Instead, an element can be given a name and/or a short name, and it can also have any number of
alias names relative to one or more namespaces (see 7.5).

In most cases, an element is declared using a keyword indicating the kind of element it is (e.g., part def or
attribute). The declaration of an element may also specify a short name and/or name for it, in that order. The
short name is distinguished by being surrounded by the delimiting characters < and >.

part <'1.2.4'> myName;

While the language makes no formal distinction between names and short names, the intent is that the name of an
element should be fully descriptive, particularly in the context of the definition of the element, while the short name,
if given, should be an abbreviated name useful for referring to the element. Note also that it is not required to specify
either a name or a short name for an element. However, unless at least one of these is given, it is not possible to
reference the element using the textual notation (though it is still possible to show it in relationships on graphical
diagrams).

Names and short names can contain essentially any printable characters (and certain control characters). However,

when written in the textual notation, they must be represented with a specific lexical structure, which has two
variants.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 17

1. A basic name is one that can be lexically distinguished in itself from other parts of the textual notation.
The initial character of a basic name must be a lowercase letter, an uppercase letter or an underscore. The
remaining characters of a basic name can be any character allowed as an initial character or any digit.
However, a reserved word may not be used as a name, even though it has the form of a basic name (see
8.2.2.1.2 for the list of the reserved words in SysML).

Vehicle
power line

2. An unrestricted name provides a way to represent a name that contains any character. It is represented as a
non-empty sequence of characters surrounded by single quotes. The name consists of the characters within
the single quotes — the single quotes are not included as part of the represented name. The characters
within the single quotes may not include non-printable characters (including backspace, tab and newline).
However, these characters may be included as part of the name itself through use of an escape sequence.
In addition, the single quote character or the backslash character may only be included within the name by
using an escape sequence.

l+l

'circuits in line'
'On/0Off Switch'
'Angstrom’

An escape sequence is a sequence of two text characters starting with a backslash as an escape character,
which actually denotes only a single character (except for the newline escape sequence, which represents
however many characters is necessary to represent an end of line in a specific implementation). See [KerML,
8.2.2.3] for a complete description of unrestricted names and escape sequences.

In addition to its declaration, the representation for an element may also list other elements owned by the containing
element. In the textual notation, such owned elements are shown represented as a body delimited by curly braces
{...}, particularly when the owning element is a namespace (see 7.5). In the graphical notation, owned elements may
be shown in compartments within the symbol representing the owning element, particularly when the owning
element is a package, definition or usage (see 7.5 and 7.6.1).

7.2.3 Relationships

A relationship is a kind of element that relates two or more other elements. Some relationships are constrained to
have exactly two related elements (i.e., binary relationships) while others may have more. The related elements of
relationships are ordered. A relationship may designate certain of its related elements as sources with the rest being
targets. In this case, the relationship is said to be directed from the sources to the targets. An undirected relationship
simply designates all its related elements to be targets, with no source elements.

A relationship may also be the source or target of other relationships. In particular, a relationship may be annotated

by being the target of an annotation relationship (see 7.4). In some cases, the annotating element may be owned by

the annotated relationship via the annotation relationship, particularly in the case of a documentation comment (see
8.2.2.4.2).

7.3 Dependencies
7.3.1 Dependencies Overview
Metamodel references:

e Textual notation, 8.2.2.3

* Graphical notation, 8.2.3.3
» Abstract syntax, 8.3.3

18 OMG Systems Modeling Language (SysML) v2.0 Beta 1

e Semantics, none

A dependency is a kind of relationship between any number of client (source) and supplier (target) elements. This
implies that a change to a supplier element may result in a change to a client element. Dependencies can be useful
for representing relationships between elements in an abstract way. For example, a dependency can be used to
represent that an upper layer of an architecture stack may depend on a lower layer of the stack. A dependency can
also be extended to reflect more specialized relationships, such as refinement (e.g., by using user-defined keywords,
see 7.20).

Table 1. Dependencies — Representative Notation

Element Graphical Notation Textual Notation
dependency Package?2
Pack 1;
Dependency Package2 + — — — = > Package1 to Fackage
Package1 -
9 NN _-7 Package3
AN e dependency Packagel,
Dependency - nary T’ Package?
-7 Sel to Package3, Package4;
Package2 | 7
9 Package4

7.3.2 Dependency Declaration

A dependency is declared textually using the keyword dependency. The client elements of the dependency are then
given as a comma-separated list of qualified names following the keyword £rom, followed by a similar list of the
supplier elements after the keyword to. If no short name or name is given for the dependency, then the keyword
from may be omitted.

dependency Use
from 'Application Layer' to 'Service Layer';

// 'Service Layer' is the client of this dependency, not its name.
dependency 'Service Layer'
to 'Data Layer', 'External Interface Layer';

A dependency declaration may also optionally have a body containing any annotating elements owned by the
dependency via annotation relationships (see 7.4).

dependency 'Service Layer'
to 'Data Layer', 'External Interface Layer' {

/* 'Service Layer' is the client of this dependency,
* not its name. */

7.4 Annotations

OMG Systems Modeling Language (SysML) v2.0, Beta 1 19

7.4.1 Annotations Overview
Metamodel references:

* Textual notation, 8.2.2.4

* Graphical notation, 8.2.3.4
» Abstract syntax, 8.3.4

» Semantics, none

An annotating element is an element that is used to provide additional information about other elements. An
annotation is a relationship between an annotating element and an annotated element that is being described. An
annotating element can annotate multiple annotated elements, and each element can have multiple annotations.

A comment is one kind of annotating element that is used to provide textual descriptions about other elements.
Comments can be members of namespaces and, therefore, can be named. Such member comments may be about the
namspace that owns them, or they may be about different elements. Documentation is a distinguished kind of
comment used to document the annotated element. Documentation comments always annotate a single element,
which is their owning element.

A textual representation is an annotating element whose textual body provides a representation of the annotated
element in a specifically named language. This representation may be in the SysML textual notation or it may be in
another language. If the named language is machine-parsable, then the body text should be legal input text as
defined for that language. In particular, annotating a SysML model element with a textual annotation in a language
other than SysML can be used as a semantically "opaque" element specified in the other language.

It is also possible to annotate elements with user-defined metadata, allowing both syntactic and semantic extension
of SysML. This capability is described in 7.26.

Table 2. Annotations — Representative Notation

Element Graphical Notation Textual Notation
Comment This is a commentl% /*This is a comment.*/
«commenty»
C ¢ Comment1 comment Commentl
ommen This is a comment /*This is a comment.*/
«doc»
D tati doc /*This 1is
ocumentation This is documentation. documentation.*/
«docy»
Document1 doc Documentl
Documentation /*This is
This is documentation. documentation.*/

20 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element

Documentation with
locale (in French,
region Belgium)

Textual
Representation

Annotation

Annotation-
Documentation

Annotation-Textual
Representation

Documentation
Compartment

Graphical Notation

<:d|:}|:n-
locale "fr_BE"

Ceci n'est pas une pipe.

«rep»

language="language1"
body1

«part»
«comment» pan1: Part1
_The alnnotated element attributes
is attribute1. .

““l-attribute1 : Attribute1
attribute2 : Attribute2

«docy p1: P1
documentation-text ~ f-o------ «part»
part1 : Part1
02 : P2

EEXRem

«rep»
«calc def»
CalcDef1

language="Python"
def square(x:float) -> float:
return x**2

EE}Rem

doc
This is a documentation compartment.

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

doc locale "fr BE"
/* Ceci n'est pas une
pipe. */

rep language
"languagel" /* bodyl */

or

language "languagel" /*
bodyl */

comment about
partl::attributel

/* The annotated element

* is attributel. */

part partl
doc /*
documentation-text */
port pl : P1l;
port p2 : P2;

Partl {

calc def square {
in attribute x
ScalarValues::Real;
return
:ScalarValues: :Real;
rep square language
"Python"
/*
* def
square (x:float) ->
float:
return x**2

*/

doc

/*This is a

documentation
compartment./

21

7.4.2 Comments and Documentation

The full declaration of a comment begins with the keyword comment, optionally followed by a short name and/or
name (see 7.2). One or more qualified names of annotated elements for the comment, separated by commas, are then
given after the keyword about, indicating that the comment has annotation relationships to each of the identified
elements. The body of the comment is written lexically as text between /* and */ delimiters.

item A;
part B;
comment Commentl about A, B
/* This is the comment body text. */

If the comment is an owned member of a namespace (see 7.5), then the explicit identification of annotated elements
can be omitted, in which case the annotated element is implicitly the containing namespace. Further, in this case, if
no short name or name is given for the comment, then the comment keyword can also be omitted.

package P {
comment C /* This is a comment about P. */

/* This is also a comment about P. */

A locale can also be specified for a comment, using the keyword locale followed by the locale string, placed
immediately before the comment body (whether or not the comment keyword is used). The locale identifies the
language of the body text and, optionally, the region and/or encoding. The format is

language[territory][.codeset] [@modifier] (conformant to [ISO15897]).

comment C US English locale "en US"
/* This is US English comment text */

A documentation comment is notated similarly to a regular comment, but using the keyword doc rather than
comment. The documenting element of documentation is always the owning element of the documentation.

part X {
doc X Comment
/* This is a documentation comment about X. */
doc /* This is more documentation about X. */

}

When a comment is written in the textual notation, the actual body text of the comment is extracted from the lexical
comment body according to the rules given in the KerML specification [KerML, 8.2.3.3.2]. The body text of a
comment can include markup information (such as HTML), and a tool may graphically display such text as rendered
according to the markup. However, marked up "rich text" for a comment is stored in the comment body in plain text
including all mark up text, with all line terminators and white space included as entered, other than what is removed
according to the rules referenced above.

7.4.3 Textual Representation

A textual representation is notated similarly to a regular comment, but with the keyword rep used instead of
comment. As for documentation, a textual representation is always owned by its represented element. In particular,
if the textual representation is an owned member of a namespace (see 7.5), then the represented element is the
containing namespace. A textual representation declaration must also specify the 1anguage as a literal string
following the keyword 1anguage. If the textual representation has no short name or name, then the rep keyword
can also be omitted.

22 OMG Systems Modeling Language (SysML) v2.0 Beta 1

part def C {
attribute x: Real;
assert x constraint {
rep inOCL language "ocl"
/* self.x > 0.0 */
}
}
action def setX(c : C, newX : Real) {
language "alf"

/* c.x = newX;
* WriteLine ("Set new x");
*/

The lexical comment text given for a textual representation is processed as for regular comment text, and it is the
result after such processing that is the textual representation body expected to conform to the named language.

Note. Since the lexical form of a comment is used to specify the textual representation body, it is not possible to
include comments of a similar form in the body text.

The language name in a textual representation is case insensitive. The name can be of a natural language, but will
often be for a machine-parsable language. In particular, there are recognized standard language names.

If the language is "sysml", then the body of the textual representation must be a legal representation of the
represented element in the SysML textual notation. A tool can use such a textual representation to record the original
SysML notation text from which an element is parsed. Other standard language names that can be used in a textual
representation include "kerml", "ocl", and "al£f", in which case the body of the textual representation must be
written in the Kernel Modeling Language [KerML], Object Constraint Language [OCL] or the Action Language for
fUML [Alf], respectively. (This is the same set of standard language names as in [KerML, 7.2.4.3, 8.3.2.3], with the
addition of "sysm1".)

However, for any other language than "sysml", the SysML specification does not define how the body text is to be
semantically interpreted as part of the model being represented. An element with no other definition than a textual
representation in a language other than SysML is essentially a semantically "opaque" element specified in the other
language. Nevertheless, a conforming SysML tool may (but is not required to) interpret such an element consistently
with the specification of the named language.

7.5 Namespaces and Packages
7.5.1 Namespaces Overview
Metamodel references:

o Textual notation, 8.2.2.5

* Graphical notation, 8.2.3.5
» Abstract syntax, 8.3.5

o Semantics, none

A namespace is a kind of element that can contain other elements and provide names for them. The elements
contained in a namespace are referred to as its member elements. Membership is a kind of relationship that relates a
namespace to its members. A membership relationship can specify the name by which its member element is known
relative to the containing namespace and whether the element membership is visible outside the namespace or not
(see 7.5.2).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 23

An element may be owned via its membership in a namespace. When a namespace is deleted, all such owned
members will also be deleted. An element may also have a membership in a namespace without being owned by the
namespace. In this case, the membership may introduce an alias name for the element relative to the namespace.
Note that it is possible for an element to have both owning and non-owning memberships with the same namespace,
but it can have at most one owning membership across all namespaces.

An import relationship allows one namespace to import memberships from another namespace (see 7.5.3). The
member elements from imported memberships become (unowned) members of the importing namespace in addition
to being members of the imported namespace. In particular, this allows members of the imported namespace to be
referenced in textual notations within the scope of the importing namespace without having to qualify the member
names with the name of the imported namespace. An import can also be recursive, which means that, in addition to
importing members of the referenced namespace itself, all namespaces that are owned members of the imported
package are also recursively imported.

A package is a kind of namespace that is used solely as a container for other elements to organize the model. In
addition, a package has the capability to filter imported elements based on certain conditions (see 7.5.4), usually
defined in terms of the metadata provided by annotations of those elements (see 7.4 and 7.26). Only elements that
meet all filter conditions actually become imported members of the package. Together, recursive import and filtering
provide a general capability for specifying that a package automatically contain a set of elements identified from
across a model by their metadata.

In addition to packages, all kinds of SysML definitions and usages are also namespaces (see 7.6 and following
subclauses). All rules discussed generically for namespaces in this subclause 7.5 apply generically to packages,
definitions and usages (even though the examples in this subclause are given using packages).

In general, an element may have different names in different namespaces, and the same name may identify different
elements relative to different namespaces. Therefore, to unambiguously identify an element by name, the element
name must be qualified by the namespace relative to which the element name is to be resolved. Such a qualified
name is notated by specifying a name to identify the namespace, followed by the symbol : :, followed by the
element name. Since the namespace name may also be qualified, a qualified name is most generally a sequence of
segment names separated by : : punctuation, of which all but the last must identify namespaces. An unqualified
name can be considered the degenerate case of a qualified name with just one element name in its sequence, for
which the namespace to be used is implicit.

Note that qualified names do not appear in the abstract syntax. Instead, the abstract syntax representation contains
actual references to the identified elements. Name resolution is the process of determining the element that is
identified by a qualified name. An unqualified name used within the body of a namespace is resolved in the context
of that namespace and, potentially, other namespaces in which the first namespace is lexically nested, taking into
account imported (see 7.5.3) and inherited (see 7.6) memberships. A qualified name with more than one segment is
resolved by recursively resolving the name of the qualifying namespace and then resolving the element name in that
context. The full name resolution process is specified in [KerML, 8.2.3.5].

Table 3. Packages — Representative Notation

Element Graphical Notation Textual Notation

Package (name in

body) Package1

package Packagel;

24 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element
Package (name in

tab)

Package with owned
package

Package with owned
members

Package with alias
member (unowned)

Package with alias
member (unowned)

Graphical Notation

Package1

Package1

package Package2

Package1

[]

Package2

«part def
Part2

«part»
. part2 : Part2

J

Package1 |

[

«alias»
Package2Alias
for Package?2

Packagel |

[

«alias»
PackageZ2Alias

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

package Packagel;

package Packagel {
package Package?2;
}

package Packagel {
package Package 2;
part def Part2;
part part2 : Part2;

package Packagel {
package Package2;
alias Package2Alias
for Package2;

package Packagel {
package Package2;
alias Package2Alias
for Package2;

25

Element

Package with
imported package
(nested notation)

Membership (owned
member)

Membership
(unowned member
with alias name)

Import (recursive)
Note:

- no star is element
import

- single star is
package import
(content of package)
- double star is
recursive including
outer package

Package with
compartment

26

Graphical Notation

Package1 |

«private»
Package3

]

Package0

]

Package0

]

Package1

Package1Alias

]

Package1

]

«import» **
Package2 +— — — — = > Package1
Package1
compartment stack

Textual Notation

package Packagel {
import Package2::*;
private import

Package3::*;

}

package PackageO {
package Packagel;
}

package Package0 {
package Packagel;
alias PackagelAlias
for Packagel;

package Package2 {

import
PackageO::Packagel::**;
}

package Packagel {
/* members */

}

OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Package1
package Packagel {
members part def PartDefl;
Package with part def PartDef1 part def Partbef2;
members . E;rif'-lpartl :
r e ;
compartment part def PartDef2 a et s
part part1 : PartDef1 fartDefZ:
part part2 : PartDef2

7.5.2 Owned Members and Aliases

A package is declared using the keyword package, with the owned members of the package listed in its body.

package Configurations {
attribute def ConfigEntry {
attribute key: String;
attribute value: String;
}
item ConfigData {
attribute entries[*]: ConfigEntry;
}
}

In general, declaring an element within the body of a namespace denotes that the element is an owned

member of the namespace—that is, that there is an owning membership relationship between the namespace and the
member element. The visibility of the membership can be specified by placing one of the keywords public,
protected or private before the public element declaration. If the membership is public (the default), then it is
visible outside of the namespace. If it is private, then it is not visible. For namespaces other than definitions and
usages, protected visibility is equivalent to private. For definitions and usages, protected visibility has a
special meaning relating to member inheritance (see 7.6).

package P {
public part def A;
private attribute def B;
part a : A; // public by default

An alias for an element is a non-owning membership of the element in a namespace, which may or may not be the
same namespace that owns the element. An alias name or short name is determined only relative to its membership
in the namespace, and can therefore be different than the name or short name defined on the element itself. Note that
the same element may be related to a namespace by multiple alias memberships, allowing the element to have
multiple, different names relative to that namespace.

An alias is declared using the keyword alias followed by the alias short name and/or name, with a qualified
name identifying the element given after the keyword for. An alias declaration may also optionally have a body
containing annotating elements for the alias (see 8.2.2.4.1). The visibility of the alias membership can be specified
as for an owned member.

package Pl {
item A;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 27

item B;
alias <C> CCC for B {
doc /* Documentation of the alias. */

}

private alias D for B;

A comment (see 7.4), including documentation, declared within a namespace body also becomes an owned member
of the namespace. If no annotated elements are specified for the comment (with an about clause), then, by default,
the comment is considered to be about the containing namespace.

package P9 {
item A;
comment Commentl about A
/* This is a comment about item A. */

comment Comment 2
/* This is a comment about package P9. */

/* This is also a comment about package P9. */

doc P9 Doc
/* This is documentation about package P9. */

}
7.5.3 Imports

An owned import of a Namespace is denoted using the keyword import followed by a qualified name, optionally
suffixed by ": : " and/or ": : x*",

If the qualified name in an import does not have any suffix, then this specifies a membership import whose
imported membership is identified by the qualified name. Such an import results in the identified membership
becoming an imported membership of the namespace owning the import. That is, the member element of this
membership becomes an imported member of the importing namespace. Note that the imported membership may be
an alias membership (see 7.5.2), in which case the element is imported with that alias name.

package P2 {
import P1l::A;
import P1::C; // Imported with name "C".
package Q {
import C; // "C" is re-imported from P2 into Q.

}

If the qualified name in an import is further suffixed by " : : *", then then this specifies a namespace import in
which the qualified name identifies the imported namespace. In this case, all visible memberships of the imported
namespace of the import become imported memberships of the importing namespace.

package P3 {
// Memberships A, B and C are all imported from P1.
import Pl::*;

If the declaration of either a membership or namespace import is further suffixed by ": : **", then the import

is recursive. Such an import is equivalent to importing memberships as described above for either an imported
membership or namespace, followed by further recursively importing from each imported member that is itself a
namespace.

28 OMG Systems Modeling Language (SysML) v2.0 Beta 1

package P4 {

item A;

item B;

package QO {
item C;

}
}
package P5 {
import P4::**;
// The above recursive import is equivalent to all
// of the following taken together:

// import P4;
// import P4::*;
// import P4::Q::*;

}
package P6 {
import P4::*::**;
// The above recursive import is equivalent to all
// of the following taken together:
// import P4::*;
// import P4::Q::*;
// (Note that P4 itself is not imported.)

The visibility of an import can be specified by placing the keyword public or private before the import
declaration. If the import is public (the default), then all the imported memberships become public for the
importing namespace. If import is private, then the imported memberships become private relative to the
importing namespace. An import declaration may also optionally have a body containing annotating element owned
by the import (see 8.2.2.4.1).

package P7 {
public import Pl::A {
/* The imported membership is visible outside P7. */

}

private import P4::* ({
doc /* ©None of the imported memberships are visible
* outside of P7. */

}

7.5.4 Import Filtering

A package may also contain filter conditions that filter the imports for the package. A filter condition is a Boolean-
valued, model-level evaluable expression (see [KerML. 7.4.9]) declared using the keyword £ilter followed by a
Boolean-valued, model-level evaluable expression (see [KerML. 7.4.9]). The filter conditions of a package are
evaluated on the member elements of all memberships that are potentially to be imported into the package (see
7.5.3). Only those memberships that for which all the filter conditions evaluate to true are actually imported.

Filter conditions can, for example, be used to select which elements to import into a package based on metadata
applied to those elements (see also 7.26 on metadata).

package ApprovalMetadata {
metadata def Approval {
attribute approved : Boolean;
attribute approver : String;
attribute level : Natural;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 29

package DesignModel ({
import ApprovalMetadata::*;
part System {
@Approval {
approved = true;
approver = "John Smith";
level = 2;

package UpperlLevelApprovals {

// This package imports all direct or indirect members

// of the DesignModel package that have been approved

// at a level greater than 1.

import DesignModel::**;

filter (@ApprovalMetadata::Approval and
ApprovalMetadata: :Approval: :approved and
ApprovalMetadata: :Approval::level > 1;

Note that a filter condition in a package will filter all imports of that package. That is why full qualification is used
for ApprovalMetadata: :Approval in the example above, since an imported element of the ApprovalMetadata
package would be filtered out by the very filter condition in which the elements are intended to be used. This may be
avoided by combining one or more filter conditions with a specific import in a filter import declaration.

A filter import includes one or more filter conditions in the import declaration, listed after the imported membership
or namespace specification, each surrounded by square brackets [... 1. For such a filtered import, memberships are
imported, from that specific import, if and only if they satisfy all the given filter conditions.

package P8 {
import Annotations::*;

// Only import elements of NA that are annotated as Approved.
import NA::*[QApproved];
}

package UpperLevelApprovals {
// Recursively import all annotation data types and all
// features of those types.
import ApprovalMetadata::**;

// The filter condition for this import applies only to
// elements imported from the DesignModel package.
import DesignModel::** [@Approval and approved and level > 1];

The sysML package from the Systems Model Library (see 9.2.21) contains a complete model of the SysML abstract
syntax represented in SysML itself, and it publicly imports the KerML package from the Kernel Library containing
the Kernel abstract syntax model (see [KerML, 9.2.17]). When a filter condition is evaluated on an element, abstract
syntax metadata for the element can be tested as if the element had an implicit metadata usage (see 7.26) defined by
the definition from the sysML package corresponding to the abstract syntax metaclass of the element.

30 OMG Systems Modeling Language (SysML) v2.0 Beta 1

package PackageApprovals {
import ApprovalMetadata::*;
import SysML::*;

// This imports all part definitions from the DesignModel that have
// at least one owned part usage and have been marked as approved.
import DesignModel::**[@PartDefinition and
@PartDefinition::ownedPart != null and
@Approval and
Approval: :approved];

Note. Namespaces other than packages cannot have filter conditions (except for their special use in view definitions
and usages — see 7.25). However, any kind of namespaces may have filtered imports.

7.5.5 Root Namespaces

A root namespace is a namespace that has no owner. The owned members of a root namespace are known as fop-
level elements. Any element that is not a root namespace has an owner and, therefore, must be in the ownership tree
of a top-level element of some root namespace.

The declaration of a root namespace is implicit and no identification of it is provided in the SysML notation. Instead,
the content of a root namespace is given simply by the list of its top-level elements. For the purposes of model
interchange (see [KerML, Clause 10]), a single project may contain one or more root namespace, though there is no
syntax for defining a project in the SysML syntax.

doc /* This is a model notated in SysML textual notation. */
item def I;

attribute def A;

item i: I;

package P;

While a root namespace has no explicit owner, it is considered to be within the scope of a single global namespace.
This global namespace may contain several root namespaces (such as those being managed as a project), and always
contains at least all of the KerML and SysML model libraries (see [KerML, Clause 9] and Clause 9). Any root
namespace within the global namespace may refer to the name of a top-level element of any other root namespace
using an unqualified name (since root namespaces are themselves never named).

7.6 Definition and Usage
7.6.1 Definition and Usage Overview
Metamodel references:

o Textual notation, 8.2.2.6

* Graphical notation, 8.2.3.6
» Abstract syntax, 8.3.6

» Semantics, 8.4.2

Definitions and Usages
The modeling capabilities of SysML facilitate reuse in different contexts. Definition and usage elements provide a
consistent foundation for many SysML language constructs to provide this capability, including attributes,

occurrences, items, parts, ports, connections, interfaces, allocations, actions, states, calculations, constraints,
requirements, concerns, cases, analysis cases, verification cases, use cases, views, viewpoints and renderings.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 31

In general, a definition element classifies a certain kind of element (e.g., a classification of attributes, parts, actions,
etc.). A usage element is a usage of a definition element in a certain context. A usage must always be defined by at
least one definition element that corresponds to its usage kind. For example, a part usage is defined by a part
definition, and an action usage is defined by an action definition. If no definition is specified explicitly, then the
usage is defined implicitly by the most general definition of the appropriate kind from the Systems Library (see
9.2). For example, a part usage is implicitly defined by the most general part definition Part from the model library
package Parts.

Features

A definition may have owned usage elements nested in it, referred to as its features. A usage may also have nested
usage elements as features. In this case, the context for the nested usages is the containing usage. A simple example
is illustrated by a parts tree that is defined by a hierarchy of part usages. A vehicle usage defined by

Vehicle could contain part usages for engine, transmission, frontAxle, and rearaAxle. Each part usage has
its own (implicit or explicit) part definition.

A feature relates instances of its featuring definition or usage to instances of its definition. For example, a mass
feature with definition MassvValue, featured by the definition Vehicle, relates each specific instance of Vehicle
to the specific Massvalue for that vehicle, known as the value of the mass feature of the vehicle.

A usage can also be contained directly in an owning package. In this case, the usage element is considered to be an
implicit feature of the most general kernel type Anything. That is, a package-level usage is essentially a generic
feature that can be applied in any context, or further specialized in specific contexts (as described under
Specialization below).

A usage may have a multiplicity that constrains its cardinality, that is, the allowed number of values it may have for
any instance of its featuring definition or usage. The multiplicity is specified as a range, giving the lower and upper
bound expressions that are evaluated to determine the lower and upper bounds of the specified range. The bounds
must be natural numbers. The lower bound must be finite, but the upper bound may also have the infinite value *.
An upper bound value of * indicates that the range is unbounded, that is, it includes all numbers greater than or
equal to the lower bound value. If a lower bound is not given, then the lower bound is taken to be the same as the
upper bound, unless the upper bound is *, in which case the lower bound is taken to be 0. For example, a vehicle
definition could include a usage element called wheels with multiplicity 4, meaning each vVehicle has exactly four
wheels. A less restrictive constraint, such as a multiplicity of 4. . 8, means each Vehicle can have 4 to 8 wheels.

A usage may be referential or composite. A referential usage represents a simple reference between a featuring
instance and one or more values. A composite usage, on the other hand, indicates that the related instance is integral
to the structure of the containing instance. As such, if the containing instance is destroyed, then any instances related
to it by composite usages are also destroyed. For example, a vehicle would have a composite usage of its

wheels, butonly a referential usage of the road on which it is driving.

Note. The concept of composition only applies to occurrences that exist over time and can be created and destroyed
(see 7.9). Attribute usages are always referential and any nested features of attributes definitions and usages are also
always referential (see 7.7).

Specialization
Definition and usage elements can be specialized using several different kinds of specialization relationships.

A definition is specialized using the subclassification relationship. The specialized definition inherits the features of
the more general definition element and can add other features. For example, if Vehicle has a feature called fuel,
that is defined by Fuel, and Truck is a specialized kind of Vehicle, then Truck inherits the feature fuel. An
inherited feature can be subsetted or redefined as described below. The Truck definition can also add its own
features such as cargoSize.

32 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A definition can specialize more than one other definition, in which case the definition inherits the features from
each of the definitions it specializes. All inherited features must have names that are distinct from each other and
any owned features of the specializing definition. Name conflicts can be resolved by redefining one or more of the
otherwise conflicting inherited features (see below).

A usage inherits the features from its definition in the same way that a specialized definition inherits from a more
general definition element. For example, if a part usage vehicle is defined by a part definition vehicle, and
Vehicle has a mass defined by Massvalue, then vehicle inherits the feature mass. In some cases, a usage may
have more than one definition element, in which case the usage inherits the features from each of its definition
elements, with the same rules for conflicting names as described above for subclassification. A usage can also add
its own features, and subset or redefine its inherited features. This enables each usage to be modified for its context.

A usage can be specialized using the subsetting relationship. A subsetting usage has a subset of the values of the
subsetted usage. The subsetting usage may further constrain its definition and multiplicity. For the example

above, Truck inherits the feature wheels with multiplicity 4. . 8 from Vehicle. The part usage truck further
inherits wheels with multiplicity 4. . 8 from Truck. The part usage truck can subset wheels by defining
frontLeftWheel, frontRightWheel, rearLeftwheell, and rearRightWheell, each with multiplicity 1..1,
together giving the minimum total multiplicity of 4. The truck usage can then define additional subsets of wheels,
such as rearLeftwheel2, and rearRightwheel2, with multiplicity 0..1, indicating they are optional.

Redefinition is a kind of subsetting. While, in general, a subsetting usage is an additional feature to the subsetted
usage, a redefining usage replaces the redefined usage in the context of redefining usage. For the example above,
Vehicle contains a feature called fuel that is defined by Fuel. Truck inherits fuel from Vehicle. The part
usage truck would then normally inherit fuel as defined by Fuel from Truck. However, truck can instead
redefine fuel to restrict its definition to DieselFuel, a subclassification of Fuel. In this case, the new redefining
feature replaces the fuel feature that would otherwise be inherited, meaning that the fuel of the truck part must
be defined by DieselFuel.

A usage, particularly one with nested usages, can be reused by subsetting it. For example, subsetting the part usage
vehicle is analogous to specializing the part definition Vehicle. Suppose vehiclel is a part usage that subsets
vehicle, with the parts-tree decomposition described above. This enables vehiclel to inherit the features and
structure of vehicle. The part usage vehiclel can be further specialized by adding other part usages to it, such as
abody and chassis, and it can redefine parts from vehicle as needed. For example, vehiclel may redefine
enginetobea 4-cylinder engine. The original part vehicle remains unchanged, but vehiclel is a unique
design configuration that specializes vehicle. Other part usages, such as vehicle?2, could be created in a similar
way to represent other design configurations.

Note. If the part definition Vehicle is modified, the modification will propagate down through the specializations
described above. However, it is expected that if vehicle is baselined in a configuration management tool, then a
change to Vehicle is a new revision, and it is up to the modelers to determine whether to retain the previous
version of Vehicle or move to the next revision.

Variability

Variation and variant are used to model variability typically associated with a family of design configurations. A
variation (sometimes referred to as a variation point) identifies an element in a model that can vary from one design
configuration to another. One example of a variation is an engine in a vehicle. For each variation, there are design
choices called variants. For this example, where the engine feature is designated as a point of variation, the design
choices are a 4-cylinder engine variantora 6-cylinder engine variant.

Variation can apply to any kind of definition or usage in the model (except for enumeration, see 7.8). The variation

element then specifies all possible variants (i.c., choices) for that variation point. For example, the specified variants
for the engine variation are the 4-cylinder engine andthe 6-cylinder engine.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 33

Variants are usage elements. If the containing variation is a definition, then each of its variants is implicitly defined
by the variation definition. If the containing variation is a usage, then each of its variants implicitly subsets the
variation usage. For example, the 4-cylinder engine and the 6-cylinder engine are subsets of all possible
engines.

Variations can be nested within other variations, to any level of nesting. For example, the 6-cylinder engine
variant may in turn contain cylinders with a variation for bore diameter that includes variants for small-bore
diameter and large-bore diameter. Alternatively, the bore diameter variation could be applied more
generally to the cylinder of engine, enabling both the 4-cylinder engine andthe 6-cylinder engine to
have this variation point.

A model with variability can be quite complex since the variation can extend to many other aspects of the model
including its structure, behavior, requirements, analysis, and verification. Also, the selection of a particular

variant often impacts many other design choices that include other parts, connections, actions, states, and attributes.
Constraints can be used to constrain the available choices for a given variant. For example, the choice of a
6-cylinder engine may constrain the choice of transmission to be an automatic transmission, whereas
the choice of a 4-cylinder engine may allow for both an automatic transmission oramanual

transmission.

Variations and variants are used to construct a model that is sometimes referred to as a superset model,

which includes the variants to configure all possible design configurations. A particular configuration is selected by
selecting a variant for each variation. SysML provides validation rules that can evaluate whether a particular
configuration is a valid configuration based on the choices and constraints provided in the superset model.
Variability modeling in SysML can augment other external variability modeling applications, which provide robust
capabilities for managing variability across multiple kinds of models such as CAD, CAE, and analysis models, and
auto-generating the variant design configurations based on the selections.

Note. The approach to variability modeling in SysML is intended to align with industry standards such as ISO/IEC
26580:2021 Software and systems engineering — Methods and tools for the feature-based approach to software and
systems product line engineering.

Graphical Compartments

The graphical notation for a definition or usage may include one or more compartments, which show member
elements (if any) using textual or graphical notation. In the graphical symbols in all Representative Notation tables

in Clause 7, the term compartment stack is a placeholder for any valid compartment for the model element.

Table 4. Definition and Usage — Representative Notation

Element Graphical Notation Textual Notation
«part def»
PartDef1
Name Compartment part def PartDefl;

- Definition (without
and with short name)

part def <PD2> PartDef2;
«part def»

<PD2> PartDef2

34 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element

Name Compartment
- Definition

Name Compartment
- Definition
(qualified name)

Name Compartment
- Definition
(abstract)

Name Compartment
- Definition
(variation)

Name Compartment

- Usage (without and

with short name)

Name Compartment
- Usage

Graphical Notation

«part def»
PartDef1 :> PartDef0
«alias»
P::PartDefAlias1, Q::PartDefAlias2

«part def»
Package1::Package2::PartDef3

«abstract»
«part def»
PartDef1

«variation»
«part def»
PartDef1

«part»
part1 : PartDef1

«part»
<'p#2'> part2 : PartDef2

«part»
part1::part2::part3 : PartDef3

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

abstract part def
PartDefl :> PartDefO;

package P {
alias PartDefAliasl
for PartDefl;

}

package Q {
alias PartDefAlias?2
for PartDefl;

package Packagel {
package Package2 {
part def PartDef3;
}

abstract part def
PartDefl;

variation part def
PartDefl;

part partl : PartDefl;

part <'p#2'> part2
PartDef?2;

part partl {
part part2 {
part part3
PartDef3;
}
}

35

Element

Name Compartment
- Usage (abstract)

Name Compartment
- Usage (variation)

Name Compartment
- Usage (variant)

Name Compartment
- Inherited Usage

Name Compartment
- Subsetted Usage

Name Compartment
- Redefined Usage
(with binding)

36

«variation»
«part»
part1 : PartDef1

«variant»

«part»
part1:PartDef1

«part»
Apart1 : PartDef1

«part»
part1S : PartDef1S [m]
subsets part1

«part»
part1R : PartDef1R[m]

redefines part1 = part2
N P P J

Graphical Notation Textual Notation
abstract part partl :
PartDefl; package P {
«abstract» alias partAliasl
«part» for partl;
part1 : PartDef1 }
«alias» package Q {
P::partAlias1, Q::partAlias2 alias partAlias2
for partl;

variation part partl
PartDefl;

variant part partl
PartDefl;

No textual notation.

part partlS : PartDeflS
[m]
subsets partl;

part partlR : PartDeflR
[m]

redefines partl =
part2;

OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element

Subclassification

Part defined by Part
Definition

Graphical Notation

«part def»
Part2

attributes
attribute1 : Attribute1

perform actions
action1 : Action1

I

«part def»
Part2S

attributes
Aattribute1 : Attribute1
attribute2 : Attribute2

perform actions
Aaction1 : Action1

items
item1 : Iltem1 [0..¥]

«part» I N «part def»
part1 Part1
attributes attributes

Aattribute : Attribute1
attribute2 : Attribute2

attribute1 : Attribute1

perform actions
Aaction1 : Action1

perform actions
action1 : Action1

parts

\part2 : Part2 [0..]

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

part def Part2 {
attribute attributel
Attributel;
perform action

actionl Actionl;

}

part def Part2s :>

Part2 {
attribute attribute?2
Attribute?2;
item iteml Iteml
[0..*%];
}
or

part def Part2s
specializes Part2 {

part def Partl ({
attribute attributel

Attributel;
perform action
actionl Actionl;
}
part partl Partl {
attribute attribute2
Attribute2;
part part2 Part?2
[0..%];
}
or
part partl

defined by Partl ({

37

Element Graphical Notation Textual Notation

(1\
«part»
part1 : Part1
attributes
Aattribute1 : Attribute1
attribute2 : Attribute2 part partl : Partl {
- fi attribute attribute2
periorm actions : Attribute2;
Aaction1 : Action1 part part2 : Part2
[0..%];

parts
| part2 : Part2 [0..*]

part partlS :> partl ({
attribute attribute3

Subsetti : Attribute3;
ubsetiing e A part part3 : Part3
«part» [0..%];
part1S J
attributes or
Aattribute1 : Attribute1 .)
tls
Aattribute?2 : Attribute2 Pa:ubZZis partl {
attribute3 : Attribute3
perform actions)
Aaction1 : Action1
parts
Apart2 : Part2 [0..%]
\part3 : Part3 [0..”])
part partl : Partl
[0..*] {
part part2 : Part2
[0..*1;
}
[«part»]<F——————{ «part J part partlS : PartlS
part1 :P‘?rt1 [0..7] part1S : Part1S [1] [1] :> partl {
part part2R : Part2R
Redefinition :>> part2;
}

[«part»

«part»
part2 : Part2 [0..%]

part2R : Part2R or

part partlS : PartlS

[1] subsets partl {
part part2R : Part2R

redefines part2;

}

38 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element

Feature Membership
(isComposite=true)

Feature Membership
(isComposite=true)

Feature Membership
(isComposite=false)

Graphical Notation

«part defy
PartDef1

«part»
part2 : Part2 [0..%]

«part»
part1 : Part1 [0..1]

«part»
part2 : Part2 [0..%]

«part»
part1 : Part1 [0..1]

«part»
part2 : Part2 [0..%]

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

part def PartDefl ({
part part2 : Part2

part partl : Partl
[0..1]
part part2 : Part2

part partl : Partl
[0..1]1

ref part part2
Part2 [0..*];
}

39

Element

Variant Membership

Variants
Compartment

40

Graphical Notation Textual Notation

«variation»
«part»
part1 : Part1

«variant» «variant»
«part» «part» ..
partia : Part1a partib : Partip | J2Tration part parct
artl {
variant part partla
or : Partla;
variant part partlb
«variation» «part» : Partlb;
part1 : Part1 }

«varianty «part» «variant» «part»
partia : Part1a part1b : Part1b

variation item

itemChoice : ItemDef {
variants variant partl;
variant iteml;
part1)
item1
or
or variation item
itemChoice : ItemDef {
variants variant part
part references part1 references partl;
item references item1 variant item
references iteml;
}
or or
variants variation item
part part1 : Part1 itemChoice : ItemDef ({
item item1 : ltem1 variant part partl
Partl;
variant item iteml
Iteml;

}

OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

variation part

variant parts partChoice : PartDef {
Variant Parts part1 : PartDef1 Par‘t’;:;??t part partl
part2 : PartDef2 ’
Compartment . variant part part2
PartDef2;
}
relationships
defines part2
specializes PartDef1
part def PartDefl;
part def PartDef2 :>
PartDefl;
Relationships part partl : PartDefl;
Compartment . - part part2 : PartDef2
relationships > partl;
defined by PartDef2 connect part2 to part3;
subsets part1 part part3;
connect to part3

7.6.2 Definitions

There is a basic common notation for all kinds of definitions, as described here in subclause 7.6, with additional
special notations for certain kinds of definitions described in the later subclauses specifically related to those kinds
of definitions. As a kind of Namespace (see 7.5), the representation of a definition includes a declaration and a
body.

A definition is declared using a keyword specific to the kind of definition (e.g., item, part, action, etc.) followed
by the keyword de£. One or more owned subclassifications may also optionally be included in the declaration of a
definition by giving a comma-separated list of qualified names of the general definitions after the keyword
specializes (or the symbol :>). A definition is specified as abstract by placing the keyword abstract before its
kind keyword.

abstract part def Vehicle;
part def Automobile specializes Vehicle;
part def Truck :> Vehicle;

A definition that is not abstract is called a concrete definition. Declaring a definition to be abstract means that all
instances of the definition must also be instances of at least one concrete definition or usage that directly or
indirectly specializes the abstract definition.

The body of a definition is specified generically as for any namespace. In the textual notation, this is done by listing
the members and imports between curly braces {... } (see 7.5), or alternatively by a semicolon ; if the definition has
no members or imports. Usages declared within the body of a definition are owned usages that specify features of
the Definition.

item def Super {
private package N {

OMG Systems Modeling Language (SysML) v2.0, Beta 1 4

item def Sub specializes Super;

}
item f : N::Sub;
}

7.6.3 Usages

There is a basic common notation for all kinds of usages, as described here in subclause 7.6, with additional special
notations for certain kinds of usage described in the later subclauses specifically related to those kinds of usages. As
a kind of namespace (see 7.5), the representation of a usage includes a declaration and a body.

A usage is declared using a keyword specific to the kind of usage (e.g., item, part, action, etc.). One or more
owned specializations may also optionally be included in the declaration of a usage. There are three kinds of
specializations relevant to usages:

1. Feature typings specify the definitions of a usage (also known as its types). Textually, they are declared by
giving a comma-separated list of the qualified names of the definition elements after the keyword
defined by (or the symbol :). The definitions given must be consistent with the kind of usage being
defined.

2. Subsettings specify other usages subsetted by the owning usage. Textually, they are declared by giving a
comma-separated list of the qualified names of the subsetted usages after the keyword subsets (or the
symbol :>).

3. Redefinitions specify other usages redefined by the owning usage. Textually, they are declared by giving a
comma-separated list of the qualified names of the redefined usages after the keyword redefines (or the
symbol :>>). (Note that redefinition is a kind of subsetting, so the owned redefinitions of a usage will be a
subset of the owned subsettings in the abstract syntax.)

item x : A, B :> f :>> g;

// Equivalent declaration:
item x defined by A defined by B subsets f redefines g;

The multiplicity of a usage can be given in square brackets [...] after the name part of the declaration of a usage (if
it is named) or after one of the owned specialization clauses in the declaration (but, in all cases, only one multiplicity
may be specified). (This allows for a notation style consistent with previous modeling languages, in which the
multiplicity is always placed after the declared type.)

A multiplicity range is written in the form [lowerBound. . upperBound], where each of 1owerBound and
upperBound is either a literal or the identification of a usage. Literals can be used to specify a multiplicity range
with fixed lower and/or upper bounds. The values of the bounds of a multiplicity range must be natural numbers. If
only a single bound is given, then the value of that bound is used as both the lower and upper bound of the range,
unless the result is the infinite value *, in which case the lower bound is taken to be 0. If two bounds are given, and
the value of the first bound is *, then the meaning of the multiplicity range is not defined.

item def Person {
ref item parent[2] : Person;
ref item mother : Person([l..l] subsets parent;
attribute numberOfChildren : Natural;
ref item children[O0..numberOfChildren] : Person;
}
item def ChildlessPerson specializes Person {
ref item redefines children[0];
}

42 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A multiplicity may be optionally followed by one or both of the following keywords (in either order), or they can be
used without giving an explicit muiltiplicity, at any place in the declaration a multiplicity would be allowed.

* nonunique — If a usage is non-unique, then the same value may appear more than once as a value of the
usage. The default is that the usage is unique, meaning that no two values of the usage may be the same.

* ordered — If a usage is ordered, then the values of the usage can be placed in order, indexed from 1 to the
number of values. The default is that the feature is unordered.

If a multiplicity is not declared for a usage, then the usage inherits the multiplicity constraints of any other usages it
subsets or redefines. If no tighter constraint is inherited, the effective default is the most general multiplicity
[0..*]. However, a tighter default of [1..1] is implicitly declared for the usage if all of the following conditions
hold:

1. The usage is an attribute usage, an item usage (including a part usage, except if it is a connection usage),
or a port usage.

2. The usage is owned by a definition or another usage (not a package).

3. The usage does not have any explicit owned subsettings or owned redefinitions.

There are a number of additional properties of a usage that can be flagged by adding specific keywords to its
declaration. If present these are always specified in the following order, before the kind keyword in the usage
declaration.

1. in, out, inout — Specifies a directed usage with the indicated direction, which determines what things
are allowed to change its values relative to its featuring instance.

o in— Things "outside" the featuring instance. These usages identify things input to an instance.

o out — The featuring instance itself or things "inside" it. These usages identify things output by
an instance.

° inout — Both things "outside" and "inside" the featuring instance. These usages identify things
that are both input to and output by an instance.

2. abstract — Specifies that the usage is abstract. A usage that is not abstract is called a concrete usage.
Similarly to an abstract definition (see 7.6.2), declaring a usage to be abstract means that any value of the
usage must also be a value of some concrete usage that directly or indirectly specializes (subsets or
redefines) the abstract usage.

3. readonly — Specifies that the usage is read only. Values of read only usage are the same during the entire
existence of that featuring instance.

4. derived — Specifies that the usage is derived. Such a feature is typically expected to have a bound value
expression that completely determines its value at all times (see also 7.13.3 on binding a usage to a value).

5. end — Specifies that the usage is an end feature of its owning definition or usage. See 9.2.6 for further
discussion on end features of connection definitions and usages.

6. ref — Specifies that the usage is referential. A usage that is not referential is composite. Values of a
composite usage, for each featuring instance, cannot exist after the featuring instance ceases to exist. This
only applies to values at the time the instance goes out of existence, not to other things that may have been
values of the usage before that, but are not any longer. (Note also that a directed usage is always
referential, whether or not the keyword ref is also given explicitly in its declaration.)

abstract part def Container ({
abstract ref item content;

}

part def Tank :> Container {
in item fuelFlow : Fuel;
ref item fuel : Fuel :>> content;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 43

The body of a usage is specified generically as for any namespace. In the textual notation, this is done by listing the
members and imports between curly braces {... } (see 7.5), or alternatively by a semicolon ; if it has no members or
imports. Usages declared within the body of another Usage are owned (nested) usages that specify features of the
owning usage.

part vehicle : Vehicle {
part wheelAssembly[2] {
part axle : Axle;
part wheel : Wheel;

}

7.6.4 Reference Usages

A reference usage is a usage that is declared without any kind keyword. Unlike other kinds of usages, the definitions
(types) of a reference usage are not restricted to be of a particular kind. The declaration of a reference usage may,
but is not required, to include the ref keyword. However, a reference usage is always, by definition, referential. A
reference usage is otherwise declared like any other usage, as given above.

abstract part def Container ({
abstract ref content : Base::Anything;

}

part def OrderedContainer ({
// By default, the following is a reference usage.
orderedContent ordered :>> content;

}

7.6.5 Effective Names

If a name and/or short name are declared for an element, these are used in the name resolution process to identify the
element (as discussed in 7.6.1). However, if neither a name or a short name are given in the declaration of a usage
with an owned redefinition, then its effective name and short name are implicitly determined by the name and short
name of the redefining usage of its first owned redefinition (which may itself be an implicit name, if the redefined
usage is itself a redefining usage). This is useful when redefining a usage in order to constrain it, while maintaining
the same naming as for the original usage.

part def Engine {
part cylinders : Cylinder([2..*];

}

part def FourCylinderEngine :> Engine ({
// This redefines Engine::cylinders with a
// new usage, restricting the multiplicity
// to 4. It's declared name is empty,
// but its effective name is "cylinders".
part redefines cylinders[4];

}

part def SixCylinderEngine :> Engine {
part redefines cylinders[6];

}

Certain other kinds of usages (such as perform action usages) specify an alternate effective name rule, as described
in the subclauses relevant to those usages (e.g., 7.16.6 describes the rule for perform action usages).

44 OMG Systems Modeling Language (SysML) v2.0 Beta 1

7.6.6 Feature Chains

A feature chain is a textual notation specified as a sequence of two or more qualified names separated by dot (.)
symbols. Each qualified name in a feature chain must resolve to a Usage (or, more generally, a KerML Feature). The
first qualified name in a feature chain is resolved in the local namespace as usual (see 7.6.1). Subsequent qualified
names are then be resolved using the previously resolved usage (feature) as the context namespace, but considering
only public memberships.

A feature chain is similar to a qualified name but, unlike a qualified name, the path of usages (features) in the chain
is recorded in the abstract syntax, not just the reference to the final usages. This means that different paths to the
same usage can be distinguished in the abstract syntax representation of a model. Feature chains can be used to
specify the target for most kinds of relationships involving usages, including subsetting and redefinition. However,
their use is particularly important when specifying the related features of a connection usage that are more deeply
nested than the connection usage itself (see 7.13). (See also [KerML, 7.3.4.6].)

item uncles subsets parents.siblings;
item cousins redefines parents.siblings.children;
connect vehicle.wheelAssembly.wheels to vehicle.road;

In general, when a textual notation is described as including the identification of a usage, this can be done by using
either a qualified name or a feature chain.

7.6.7 Variations and Variants

A definition or usage is specified as a variation by placing the keyword variation before its kind keyword. A
variation is always abstract, so the abstract keyword is not used on a variation.

All usages declared within the body of a variation definition or usage are declared as variant usages by placing the
keyword variant at the beginning of their declarations. Variant usages may only be declared within a variation.
The kind of a variant usage must be consistent with the kind of its owning variation.

variation part def TransmissionChoices :> Transmission {
variant part manual : ManualTransmission;
variant part automatic : AutomaticTransmission;

A non-variant usage can also be declared to act as a variant of a variation by not including a kind keyword in the
variant declaration and, instead, following the variant keyword with the identification of a separately declared
usage. Such a variant declaration may also optionally further constrain the variant usage by including a multiplicity
and/or further specializations.

// These are non-variant usages.
part smallEngine : FourCylinderEngine;
part bigEngine : SixCylinderEngine;

part def Vehicle {
variation part engine : Engine {
// These are variant usages within the variation part "engine",
// based on the referenced non-variant usages.
variant smallEngine;
variant bigEngine;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 45

7.6.8 Implicit Specialization

The meaning or semantics of a definition is given by what things it classifies relative to the system being modeled.
Specific kinds of definitions are already restricted to classifying specific kinds of things. E.g., an attribute definition
classifies attributive values, a part definition classifies systems and parts of systems, etc.

The Systems Model Library (see 9.2), which is based on the KerML Kernel Semantic Library (see [KerML, 9.2]) is
a set of ontological SysML models that define the basic kinds of things relevant for systems modeling. The
semantics of definition elements in SysML is given by requiring that each such element (directly or indirectly)
specialize the corresponding base definition from the Systems Model Library (or base classifier from the Kernel
Semantic Library) corresponding to its kind.

At the highest level, every definition element must directly or indirectly specialize the most general classifier
Anything from the Base model in the Kernel Semantic Library (see [KerML, 9.2.2]). Specific kinds of definition
then have more specific requirements for what more specific base definition they must specialize. For example, an
attribute definition must specialize the base attribute definition Attributevalue from the Attributes model in
the Systems Model Library, while a part definition must specialize the base part definition Part from the Parts
model.

The Systems Model Library also includes a parallel hierarchy of base usages (or base features in the Kernel
Semantic Library). So, every usage element must directly or indirectly specialize (subset) the most general feature
things from the from the Base model in the Kernel Semantic Library. And specific kinds of usage then also have
more specific requirements for what more specific base usage they must specialize. For example, an attribute usage
must subset the base attribute usage attributevValues from the Attributes model in the Systems Model
Library, while a part usage must subset the base part usage parts from the Parts model. In general, each base
usage is defined by the corresponding base definition. E.g., the base usage parts is defined by the base definition
Part, so that every part usage is ultimately a direct or indirect usage of Part.

These and other semantic constraints are fully described in 8.4. However, it is not generally necessary for a modeler
to explicitly satisfy these constraints when constructing a model. Rather, the violation of a semantic constraint
implies the need for a specific relationship, which may then be added to the model automatically by tooling (see also
[KerML, 8.4.2]). In particular, if a definition or usage, as explicitly declared, does not directly or indirectly
specialize the required base definition or usage, then the declaration is considered to include an implicit
subclassification or subsetting of the appropriate base definition or usage.

attribute def 2; // Implicitly subclassifies Attributes::AttributeValue.
part def P { // Implicitly subclassifies Parts::Part.
ref x; // Implicitly subsets Base::things.
attribute a : A; // Implicitly subsets Attributes::attributeValues.
part p; // Implicitly subsets Parts::parts.
part g :> p; // No implicit specialization.
t
part def Q :> P; // No implicit specialization.
7.7 Attributes

7.7.1 Attributes Overview

Metamodel references:

o Textual notation, 8.2.2.7

* Graphical notation, 8.2.3.7
o Abstract syntax, 8.3.7

o Semantics, 8.4.3

46 OMG Systems Modeling Language (SysML) v2.0 Beta 1

An attribute definition defines a set of data values, such as numbers, quantitative values with units,

qualitative values such as text strings, or data structures of such values. An attribute usage is a usage of an attribute
definition. An attribute usage is always referential and any nested features of an attribute definition or usage must
also be referential (see also 7.6 on referential and composite usages).

The data values of an attribute usage are constrained to be in the range specified by its definition. The range of data
values for an attribute definition can be further restricted using constraints (see 7.19). An enumeration definition is a
specialized kind of attribute definition that further restricts the values of the data type to a discrete set of data values
(see 1.8).

Attribute usages can be defined by KerML data types as well as SysML attribute definitions. This allows them to be
typed by primitive data types from the Kernel Data Type Library (see [KerML, 9.3]), such as String, Boolean,
and numeric types including Integer, Rational, Real and Complex. The Kernel Data Type Library also includes
basic structured data types for collections.

Attribute usages representing quantities with units are defined using the SysML Quantities and Units Domain
Library or extensions of the elements in this library (see 9.8). The library provides base attribute definitions for
scalar, vector and tensor quantity values, along with other models that specify the full set of international standard
quantity kinds and units. Fundamental to this approach is the principle that only the kind of unit (e.g., MassUnit,
LengthUnit, TimeUnit, etc.) is associated with an attribute definition, while a specific unit (e.g., kg, m, s, etc.) is
only given with an actual quantity value. This means that an attribute usage for a quantity value is independent of
the specific units used, allowing for automatic conversion and interoperability between different units of the same
kind (e.g., kilograms and pounds mass, meters and feet, etc.).

The values of an attribute usage are data values, whether primitive values like integers or structured values with
nested attributes, that do not themselves change over time. However, the owner of an attribute usage may be an
occurrence definition or usage (or a specialized kind of occurrence, such as an item, part or action). In this case, the
value of the attribute usage may vary over the lifetime of its owning occurrence, in the sense that it can have
different values at different points in time, reflecting the changing condition of the occurrence over time. (See also
the discussion in 7.9.)

Table 5. Attributes — Representative Notation

Element Graphical Notation Textual Notation

«attribute def»

AttributeDef1 attribute def

AttributeDefl;

Attribute Definition «attribute def» attribute def
AttributeDef1 AttributeDefl {

/* members */

compartment stack }

OMG Systems Modeling Language (SysML) v2.0, Beta 1 47

Element Graphical Notation Textual Notation

(«attribute»)
| attribute1 : AttributeDef1 artridute atiributed
ributeDefl;
s N
Attribute «attribute» attribute attributel
attribute1 : AttributeDef1 AttributeDefl {
/* members */
compartment stack }
-)
attributes
Aattribute? : AttributeDef2
attribute1 : AttributeDef1 [1..*] ordered nonunique
attribute3R : AttributeDef3R redefines attribute3 {
attribute4R : AttributeDef4R :>> attribute5 attribute attributel
:>> attributed :
Attributes attribute6S : AttributeDef6S [m] subsets attribute6 AttributelDef
Compartment attribute7S : AttributeDef7S [m] :> attribute? [1..%] _
attribute8 : AttributeDef8 = expression ordered nonunique;
attribute10 : AttributeDef10 := expression2 AT
lattribute12 J
readonly attribute13
abstract attribute14

7.7.2 Attribute Definitions and Usages

An attribute definition is declared as described in 7.6.2, using the kind keyword attribute. An attribute definition
may only specialize other attribute definitions (including enumeration definitions) or KerML data types (see
[KerML, 7.4.2]). An attribute usage may be declared as described in 7.6.3, using the kind keyword attribute. An
attribute usage may only be defined by attribute definitions or KerML data types. (See also 7.8 on enumeration
definitions and enumeration usages.

An attribute usage is always referential, whether or not the ref keyword (see 7.6.3) is used explicitly in its
declaration. The default multiplicity of an attribute usage is [1. .11, under the conditions described in 7.6.3. In
general, any kind of usage may be declared in the body of an attribute definition or attribute usage, but all such
usages shall be referential. (There are further restrictions on what can be nested in an enumeration definition — see
1.8.)

attribute def SensorRecord ({
ref part sensor : Sensor;
attribute reading : Real;
}

The base attribute definition is AttributeValue from the Attributes library model (see 9.2.2), which is simply
an alias for the data type Datavalue from the KerML Base library model (see [KerML, 9.2.2]). The base attribute
usage is attributeValues from the Attributes library model, which is simply an alias for the feature
datavalues from the KerML Base library model.

48 OMG Systems Modeling Language (SysML) v2.0 Beta 1

7.8 Enumerations

7.8.1 Enumerations Overview
Metamodel references:

o Textual notation, 8.2.2.8

* Graphical notation, 8.2.3.8
» Abstract syntax, 8.3.8

o Semantics, 8.4.4

An enumeration definition is a kind of attribute definition (see 7.7) whose instances are limited to specific set of
enumerated values. An enumeration usage is an attribute usage that is required to have a single definition that is an
enumeration definition.

An enumeration usage is restricted to only the set of enumerated values specified in its definition. Since an
enumeration definition is a kind of attribute definition, it can also be used to define a regular attribute usage. Even if
the attribute usage is not syntactically an enumeration usage, it is still semantically restricted to take on only the
values allowed by its enumeration definition.

An enumeration definition can specialize an attribute definition that is not itself an enumeration definition. In this
case, the enumerated values of the enumeration definition will be a subset of the attribute values of the specialized
attribute definition. Which enumerated values correspond to which attribute values may be specified by binding the
enumerated values to expressions that evaluate to the desired values of the specialized attributed definition (see also
7.13 on binding usages to values). In this case, the results of all the expressions must be distinct (typically they will
just be literals).

For example, an enumeration definition DiameterChoices may specialize the attribute definition Lengthvalue.
DiameterChoices may include literals that are equal to 60 mm, 80 mm, and 100 mm. An attribute usage called
cylinderDiameter can be defined by DiameterChoices, and its value can equal one of the three enumerated
values.

An enumeration definition may not contain anything other than the declaration of its enumerated values. However, if
the enumeration definition specializes an attribute definition with nested usages, then those nested usages will be
inherited by the enumeration definition, and they may be bound to specific values within each enumerated value of
the enumeration definition.

An enumeration definition may not specialize another enumeration definition. This is because the semantics of
specialization require that the set of instances classified by a definition be a subset of the instances of classified by
any definition it specializes. The enumerated values defined in an enumeration definition, however, would add to the
set of enumerated values allowed by any enumeration definition it specialized, which is inconsistent with the
semantics of specialization.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 49

Element

Enumeration
Definition

Enums Compartment

Enums Compartment

Table 6. Enumerations — Representative Notation

Graphical Notation

«enumeration def»
EnumerationDef1

«enumeration def»
EnumerationDef1

compartment stack

enums
enum1
enum2

enums
= value1 [unit1]
= value2 [unit2]

7.8.2 Enumeration Definitions and Usages

Textual Notation

enum def
EnumerationDefl;

enum def
EnumerationDefl {
/* members */

}

enum def

EnumerationDefl ({
enum enuml;
enum enum?2;

or

enum def EnumerationDefl {
enuml;
enum?2;

enum def
EnumerationDefl ({
enum = valuel
[unitl];
enum = value?
[unit2];
}

or
enum def EnumerationDefl {

= valuel [unitl];
= value?2 [unit2];

An enumeration definition is declared as described in 7.6.2, using the kind keyword enum, with the additional
restrictions described below. As a kind of attribute definition, an enumeration definition may generally subclassify
other attribute definitions or KerML data types. However, an enumeration definition must not subclassify another
enumeration definition. An enumeration usage is declared as described in 7.6.3, using the kind keyword enum.

Any owned members declared in the body of an enumeration definition must be enumeration usages, which are the
enumerated values of the enumeration definition. An enumeration definition is always considered to be a variation
and its enumerated values are its variants. The keywords abstract and variation may not be used with an
enumeration definition. The declaration of an enumeration usage as an enumerated value of an enumeration

50

OMG Systems Modeling Language (SysML) v2.0 Beta 1

definition may not include the keyword variant nor any of the other property keywords given in 7.6.3 (i.e, any
direction keywords, abstract, derived, etc.).

Since the body of an enumeration definition may only declare enumeration usages, the declaration of an enumerated
value may omit the enum keyword. An enumerated usage declared as an enumerated value is considered to be
implicitly defined by its owning enumeration definition and, therefore, may not have any explicitly declared
definition other than that enumeration definition (and need not have any explicitly declared definition at all).

enum def ConditionColor { red; green; yellow; }
attribute def ConditionLevel {
attribute color : ConditionColor;
}
enum def RiskLevel :> ConditionLevel {
enum low { color = ConditionColor::green; }
enum medium { color = ConditionColor::yellow; }
enum high { color = ConditionColor::red; }

There are no special restrictions on the declaration of an enumeration usage outside the body of an enumeration
definition, other than as for an attribute usage in general (see 9.2.2), except that such an enumeration usage must be
explicitly defined by a single enumeration definition. As a kind of attribute usage, an enumeration usage is always
referential, whether or not ref is included in its declaration, and all the nested usages of an enumeration usage must
also be referential.

enum assessedRisk : RiskLevel {
// The following feature is added for this usage.
// It is legal, since all attribute usages are
// referential.
attribute assessment : String;

7.9 Occurrences
7.9.1 Occurrences Overview
Metamodel references:

e Textual notation, 8.2.2.9

* Graphical notation, 8.2.3.9
» Abstract syntax, 8.3.9

o Semantics, 8.4.5

Occurrences

An occurrence definition is a definition of a class of occurrences that have an extent in time and may have spatial
extent. An occurrence usage is a usage of an occurrence definition.

The extent of an occurrence in time is known as its /ifetime, which covers the period in time from the occurrence's
creation to its destruction. An occurrence maintains its identity over its lifetime, while the values of its features may
change over time. The lifetime of an occurrence begins when the identity of the occurrence is established, and the
the lifetime ends when the occurrence loses its identity. For example, the lifetime of a car could begin when it leaves
the production-line, or when a vehicle identification number is assigned to the car. Similarly, the lifetime of a car
could end when the car is disassembled or demolished.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 51

The performance of a behavior is also an occurrence that takes place over time. The lifetime of a behavior
performance begins at the start of the performance and ends when the performance is completed. Structural and
behavioral occurrences are often related. For example, a machine on an automobile assembly line, during its
lifetime, will repeatedly perform a behavioral task, each performance of which has its own respective lifetime,
which then affects the construction of some car being assembled on the line.

If an occurrence definition or usage has nested composite features, then those features must also be usages of
occurrence definitions (including the various specialized kinds of occurrences, such as parts, items and actions). If
an occurrence has values for any composite features at the end of its lifetime, then the lifetime of those composite
values must also end. However, if a composite suboccurrence is removed from its containing occurrence before the
end of the lifetime of the containing occurrence, then the former suboccurrence can continue to exist. For example,
if a wheel is attached to a car when the car is destroyed, then the wheel is also destroyed. However, if the wheel is
removed before the car is destroyed, then the wheel can continue to exist even after the car is destroyed. (See also
7.6 on referential and composite usages.)

Time Slices and Snapshots

The lifetime of an occurrence can be partitioned into time slices which correspond to some duration of time. These
time slices represent periods or phases of a lifetime, such as the deployment or operational phase. Time slices can be
further partitioned into other time slices. For example, the lifetime of a car might be divided into time slices
corresponding to its assembly, being in inventory before being sold, and then sequential periods of ownership with
different owners.

A time slice with zero duration is a snapshot. Start, end and intermediate snapshots can be defined for any time slice
to represent particular instants of time in an occurrence's lifetime. For example, the start snapshot of each ownership
time slice of a car corresponds to the sale of the car to a new owner, which happens at the same time as the end
snapshot of the previous ownership (or inventory) time slice.

Individuals

Any kind of occurrence definition can be restricted to define a class that represents an individual, that is, a single
real or perceived object with a unique identity. For example, consider the part definition Car modeling the class of
all cars (parts are kinds of items which are kinds of occurrences, see 7.11). An individual car called Carl with a
unique vehicle identification number can then be modeled as an individual part definition that is a subclassification
of the general part definition Car. As such, Car1 inherits all the features of Car (such as its parts engine,
transmission, chassis, wheels, etc.), but has individual values for each of those features (individual engine,
individual transmission, individual chassis, four individual wheels, etc.), each of which is itself a uniquely
identifiable subclassification of a more general part definition (Engine, Transmission, Chassis, Wheel, etc.).

An occurrence usage can also be restricted to be the usage of a single individual. In this case, exactly one of the
definitions of the occurrence usage must be an occurrence definition for that individual. Such an individual usage
can be used to model a role that an individual plays for some period of time. For example, the individual part
definition Car1 can be used in different contexts, such as the usage of Car1 when it is in for service and the usage
of carl when it is used for normal operations. Let car1InService be the usage of Carl when it is in for service
to have its tires rotated. For this usage, car1InService has four wheels that play different roles, including front-
left, front-right, rear-left, and rear-right. The four wheels of Car1 are individual Wheel usages defined by the
individual definitions Wheell, Wheel2, Wheel3, and Wheel4. Each of these individual definitions is a
subclassification of Wheel. When carlInService enters the shop, the front-left wheel individual usage is
initially defined by the individual definition Wheel1, but after the tires are rotated, the front-left wheel is
defined by the individual definition Wheel2.

The lifetime of an individual and any of its time slices can be actual or projected. For example, the individual car

Carl may be purchased as a used car. Carl has had an actual lifetime up to that time. A mechanic may
perform diagnostics and obtain some measurements, and may estimate the remaining life of the car or its parts based

52 OMG Systems Modeling Language (SysML) v2.0 Beta 1

on the measurements. For example, the mechanic may estimate the remaining lifetime of the tires, based on the tread
measurements and the estimated tire wear rate.

At a given point in time, the condition of an individual (sometimes called its "state", which should not be confused
with a behavioral state usage, as described in 7.17) can be specified by the values of its attributes. As an example,
the condition of carlinOperation at different points in time can be specified in terms of its acceleration,
velocity, and position. In addition, its finite (i.e., discrete) state (in the sense that can be modeled with state
definitions and usages, see 7.17) can be specified at different points in time as o£ £ or on, and any nested state such
as forward or reverse. The condition of the car can continue to change over its lifetime, and can be specified as a
function of discrete and/or continuous time.

Events

An event is a reference from one occurrence to another occurrence that represents some relevant happening during
the lifetime of the first occurrence. Such an event model makes no commitment as to how the event actually
happens. Different specializations of the containing occurrence may realize the modeled event in different ways.

In particular, occurrences may collaborate by transferring information between each other via messages (see 7.13).
The sending of such a message is an event in the lifetime of the sending occurrence, while the receipt of such a
message is an event in the lifetime of the receiving occurrence. These events can possibly be realized as the
performance of a send action and corresponding accept action, respectively, with the message being the resulting
transfer between them (see 7.16). However, it could also be realized as the start and end of an explicitly modeled
flow connection (see 7.13 on flow connections and messages).

Table 7. Occurrences — Representative Notation

Element Graphical Notation Textual Notation

«occurrence def»

OccurenceDef1 occurrence def
OccurrenceDefl;

BCE‘UI’.I'E'BHCB «ocecurrence def» occurrence def
elinition OccurrenceDef1 OccurrenceDefl {
/* members */
compartment stack }
«occurrence»
occurrence1 : OccurrenceDef1 occurrence occurrencel
OccurrenceDefl;
Occurrence «occurrence» occurrence occurrencel
occurrencel : OccurrenceDef1 : OccurrenceDefl ({

/* members */

L compartment stack J }

OMG Systems Modeling Language (SysML) v2.0, Beta 1 53

Element Graphical Notation Textual Notation

«occurrence def»

OccurenceDef1
Individual individual def
Occurrence 7 'OccurrenceDefl-1"
Definition «individual» :> OcurrenceDefl;
«occurrence defy
OccurenceDef1-1
«occurrence» individual occurrencel
occurrence1 : OccurrenceDef1 : OccurrenceDefl;
individual def
.. 'OccurrencebDefl-1" :>
gldwldual Zr OccurrenceDefl;
ccurrence L
«individual» individual
'occurrencel-1"
«occurrence» 'OccurrenceDefl-1"' :>
‘occurrence1-1": 'OccurenceDef1-1' occurrencel;
. . N\
Timeslice «timeslice» timeslice timeslicel
timeslice1 : OccurenceDef1 OccurrenceDefl;
~
Snanshot «snapshot» snapshot snapshotl
P snapshot1 : OccurenceDef1 | OccurrenceDefl;
«part» individual part
«individual» ind%v%duall
indvidual1 : Individual1 Individuall {
T T timeslice timeslicel
{
Portion Membership «timeslice» «timeslice» hSItl?E_’Shot
timeslice1 timeslice2 Snapshott;
snapshot
snapshot2;
}
«snapshot» «shapshot» timeslice timeslice2:
shapshot1 shapshot2 }

54 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element

Occurrences
Compartment

Individuals
Compartment (parts)

Timeslices
Compartment

Snapshots
Compartment

Graphical Notation

occurrences
Aoccur2 : OccurDef2
occur1 : OccurDef1 [1..*] ordered nonunique
occur3R : OccurDef3R redefines occur3
occurdR : OccurDef4R :>> occurd
:>> occurb
occur6S : OccurDef6S [m] subsets occur6
occur7S : OccurDef7S [m] :> occur7
occur8R = occur8
ref occur9 : OccurDef9
occur 10
Joccur1
readonly occur12
abstract occur13

individual parts
Apart2 : PartDef2_1
part1 : PartDef1_1 [1..*] ordered nonunique
part3R : PartDef3R_1 redefines part3
part4R : PartDef4R_1 :>> part4
:>> parts
part6S : PartDef6S_1 [m] subsets part6
part7S : PartDef7S_1 [m] :> part7
part8R_1 = part8
ref part9 : PartDef9_1
part10

timeslices
phase1
phase2

snapshots
snapshot1;
snapshot2;
shapshot3;

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

occurrence occurl
OccurDef [1..%*]
ordered nonunique;

/* o0 x/

{
individual part
partl
PartDefl 1 [1..%*]
ordered nonunique;

/* oo x/

part partl {
timeslice phasel;
timeslice phase?2;

VA

part partl {
snapshot snapshotl;
snapshot snapshot2;
snapshot snapshot3;
/* .. */

55

7.9.2 Occurrence Definitions and Usages

An occurrence definition or usage (that is not of a more specialized kind) can be declared as described in 7.6.2 and
7.6.3, using the kind keyword occurrence. An occurrence usage may only be defined by occurrence definitions (of
any kind) or KerML classes (see [KerML, 7.4.3]).

occurrence def Flight ({
ref part aircraft : Aircraft;

}

The base definition for occurence definitions is the class Occurrence from the Occurrences model in the Kernel
Semantic Library (see [KerML, 9.2.4]). The base usage for occurrence usages is the feature occurrences from the
Occurrences model.

7.9.3 Time Slices and Snapshots

An occurrence usage (of any kind) can be declared as a time slice or a snapshot using the keyword timeslice or
snapshot, respectively, placed immediately before the kind keyword of the declaration (after any of the other
usage property keywords described in 7.6.3). Alternatively, timeslice or snapshot may be used in place of the
kind keyword, in which case the declaration is equivalent to timeslice occurrence or snapshot occurrence
(that is, an occurrence usage not of a more specialized kind, but declared as a time slice or snapshot, respectively).

occurrence def Flight ({
ref part aircraft : Aircraft;
}
// The following are time slices of Flight.
timeslice preflight : Flight;
timeslice inflight : Flight;
timeslice postflight : Flight;

part aircraft : Aircraft;

// The following are snapshots of the part aircraft.
snapshot part aircraftTakeOff :> aircraft;

snapshot part aircraftlLanding :> aircraft;

A time slice or snapshot is normally considered to represent a portion of the lifetime of instances of its defining
occurrence definition(s). However, if such an occurrence usage has no explicitly declared definition, but is declared
in the body of an occurrence definition, then it is considered to implicitly represent a portion of instances of the
containing occurrence definition. If it is declared in the body of another occurrence usage, then it is considered to
implicitly represent a portion of the instances of the definition(s) of that containing occurrence usage.

occurrence def Flight ({
ref part aircraft : Aircraft;
// The following are time slices of Flight.
timeslice preflight;
timeslice inflight;
timeslice postflight;

part aircraft : Aircraft {
// The following are snapshots of the part aircraft.
snapshot part aircraftTakeOff;
snapshot part aircraftlLanding;

56 OMG Systems Modeling Language (SysML) v2.0 Beta 1

7.9.4 Individual Definitions and Usages

An occurrence definition (of any kind) can be declared as an individual definition using the keyword individual,
placed immediately before the kind keyword of the declaration. Alternatively, individual may be used in place of
the kind keyword, in which case the declaration is equivalent to individual occurrence (that is, an occurrence
usage not of a more specialized kind, but representing an individual).

individual def Flight 248 :> Flight;
individual part def TestPlane 1 :> Aircraft;

An occurrence usage (of any kind) is considered to be an individual usage if it has a definition that is an individual
definition. An occurrence usage must not have more than one definition that is an individual definition. An
occurrence usage may also be explicitly declared to be an individual usage using the keyword individual, placed
after any of the other usage property keywords described in 7.6.3, but before a timeslice or snapshot keyword
(if any). In this case, the occurrence usage must have exactly one definition that is an individual definition. If the
declaration of an occurrence usage includes the the keyword individual (and, possibly, timeslice or
snapshot), but no kind keyword, then this is equivalent to having included the occurrence keyword (that is, an
occurrence isage not of a more specialized kind, but representing an individual, and, possibly, a time slice or
snapshot).

individual flightRecord : Flight 248 ({
individual part redefines aircraft : TestPlane 1;
individual timeslice redefines preflight;
individual timeslice redefines inflight;
individual timeslice redefines postflight;

}
7.9.5 Event Occurrence Usages

An event occurrence usage is declared like an occurrence usage, as described in 7.9.2, 7.9.3, and 7.9.4, but using the
kind keyword event occurrence instead of just occurrence. It is related to another occurrence usage,
representing the occurring event, by a reference subsetting relationship, which is a special kind of subsetting
relationship specified using the keyword references or the symbol : : >. Or, if the event occurrence usage has no
such reference subsetting, then the referenced event occurrence is the event occurrence usage itself.

part client {
event occurrence request[l] references subscriptionMessage.source;
event occurrence delivery[*] ::> publicationMessage.target;

An event occurrence usage may also be declared using just the keyword event instead of event occurrence. In
this case, the declaration does not include either a name or a short name. Instead, the referenced event occurrence of
the event occurrence usage is identified by giving a qualified name or feature chain immediately after the event
keyword.

part client {

event subscriptionMessage.source[l];
event publicationMessage.target[*];

The ref keyword may be used in the declaration of an event occurrence usage, but an event occurrence usage is
always referential, whether or not ref is included in its declaration.

7.10 ltems

OMG Systems Modeling Language (SysML) v2.0, Beta 1 57

7.10.1 Items Overview
Metamodel references:

o Textual notation, 8.2.2.10

* Graphical notation, 8.2.3.10
* Abstract syntax, 8.3.10

» Semantics, 8.4.6

An item definition is a kind of occurrence definition (see 7.9) that defines a class of identifiable objects that may be
acted on over time, but which do not necessarily perform actions themselves. An item usage is a usage of one or
more item definitions.

Item usages can be used to represent inputs and outputs to actions such as water, fuel, electrical signals and data.
Item usages, such as fuel, may flow through a system and be stored by a system. An item may have attributes (see
7.7), states (see 7.17), and nested item usages.

An item that performs actions is normally modeled as a part (see 7.11). All parts are items, but not all items are
necessarily parts. An item may also be considered to be a part during some time slices of its lifetime but not others.
For instance, an engine being assembled can be modeled as an item moving along an assembly line. However, once
the engine assembly is completed, the engine can be considered to be a part that may be installed into a car, where it
is expected to perform the action providing power to propel the car. But later it may be removed from the car and
again be considered only an inactive item in a junkyard.

Items may also have an extent in space as well as time. The shape of an item is its boundary in three-dimensional
space. Items without shapes are closed enabling them to be boundaries of other items (for example, a two-
dimensional sphere has no boundary, but it is the shape of a three-dimensional ball). The Geometry Domain Library
(see 9.7) includes a model of basic kinds of geometric shapes that can be composed to construct compound spatial
1tems.

An item can also identify other items as enveloping shapes, which are closed items that are the boundary of a
hypothetical item occupying the same or larger space as the enveloped item. Some of these can be bounding shapes,
which overlap the bounded item on all sides. The spatial boundaries of items can break into separate closed items,
such as the inside and outside of an egg shell. These inner boundaries can be the boundary of a hypothetical item,
the interior of which is a void of the item. Items with no voids are solid.

Table 8. Items — Representative Notation

Element Graphical Notation Textual Notation
«item def»
ltemDef1
item def ItemDefl;
Item Definition «item def» item def TtemDefl {
ItemDef1 /* members */
}
compartment stack

58 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

. N\
«item»
. item1 : ItemDef1) _ ,
item iteml : ItemDefl;
N
Item «item» item iteml : ItemDefl {
item1 : ltemDef1 /* members */
}
compartment stack
o)
items
Aitem2 : ItemDef2
item1 : ltemDef1 [1..*] ordered nonunique
item3R : ltemDef3R redefines item3
item4R : ltemDef4R :>> item4 {
:>> itemb item iteml
item6S : ltemDef6S [m] subsets item6 Ttembefl [1..*]
Items Compartment item7S : ltemDef7S [m] :> item?7 P ?:If(ilef?d nonunique;
item8R = item8
ref item9 : itemDef9 }
item10

7.10.2 Item Definitions and Usages

An item definition or usage (that is not of a more specialized kind) is declared as a kind of occurrence definition or
usage (see 7.9.2), using the kind keyword item. An item usage must only be defined by item definitions (of any
kind) or KerML structures (see [KerML, 7.4.4]). The default multiplicity of an item usage is [1. .11, under the
conditions described in 7.6.3.

item def Fuel {
attribute pressure : PressureValue;

ref item impurities[0..*] : Material;

}

The base item definition and usage are ITtem and items from the Items library model (see 9.2.3). (For other
semantic constraints on item usages, see 8.4.6).

7.11 Parts
7.11.1 Parts Overview

Metamodel references:

* Textual notation, 8.2.2.11

* Graphical notation, 8.2.3.11
» Abstract syntax, 8.3.11

e Semantics, 8.4.7

OMG Systems Modeling Language (SysML) v2.0, Beta 1

59

A part definition represents a modular unit of structure such as a system, system component, or external entity that
may directly or indirectly interact with the system. A part definition is a kind of item definition (see 7.10) and, as
such, defines a class of part objects that are occurrences with temporal (and possibly spatial) extent. A part usage is
a kind of item usage that is a usage of one or more part definitions, but may also be a usage of item definitions that
are not part definitions. This allows a part to be treated like an item in some cases (e.g., when an engine under
assembly flows through an assembly line) and as a part in other cases (e.g., when an assembled engine is installed in
a vehicle).

A system is modeled as a composite part, and its part usages may themselves have further composite structure. The
parts of a system may have attributes (see 7.7) that represent different performance, physical and other quality
characteristics. The parts may have ports (see 7.12) that define the points at which those parts may be interconnected
(see 7.13 and 7.14). Parts may also perform actions (see 7.16) resulting in items flowing across the connections
between them, and exhibit states (see 7.17) that enable different actions.

A part can represent any level of abstraction, such as a purely logical component without implementation
constraints, or a physical component with a part number, or some intermediate abstraction. Parts can also be used to
represent different kinds of system components such as hardware components, software components, facilities,
organizations, or users of a system.

Table 9. Parts — Representative Notation

Element Graphical Notation Textual Notation
«part def»
PartDef1
part def PartDefl;
Part Definition «part def» part def PartDefl {
PartDef1 /* members */
}
compartment stack
s a
«part»
. part1: PartDef1)
part partl : PartDefl;
'd)
Part «part» part partl : PartDefl ({
part1 : PartDef1 /* members */
}
compartment stack
k... J

60 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

part partl {

P p4 - PortDef4 port pO : PortDef(({
p1 : PortDef1 port pl
o PortDefl;
© port p2
p2 : PortDef2 o t PortDef2;
Part with Ports S «part» °r epo,rt 3
& part1 .
ortDef3;
p3 : PortDef3 et
p5 : PortDef5 }
port p4 : PortDef4;
port p5 : PortDef5;
}
part partl : Partl{
port pl : PlDef;
port p6 : P6Def;
Part with Graphical «party
P part1 : Part1 part part2:Part2;
Compartment art part3:Part3;
showing a standard «part» «part» P P ’ !
: . : part2 : Part2 part3 : Part3
Interconnection view | Lo o 22:PaDef p3:PaDe! 04.paDel p5: P5Der T P6 : PODe! bind pl = part2.p2;
of partl. connect part2.p3 to
part3.p4;
bind part2.p5 = p6;
}
Part performs a
reference action «part»
(actionl) that can partO part part0 {
. perform action
subset or bind to .
R actionl;
another action, and perform action2;
an anonymous 7 T T }
reference action [«perform action»] { «perform»] Letion aotions;
(action2) that subsets action action2
another action.
«paﬁ» action action3
Part performs a Action3;
reference action part0
(actionl) that part part0 {
reference-subsets perform action
another action «perform action» v «action» aCE%O“; references
1 . [X) . . actionosy
(action3 action1 action3 : Action3]

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Element Graphical Notation Textual Notation
«part»
part2 : PartDef2
action flow
Part with Graphical
Compartment with part part2 : PartDef2 ({
perform actions and «perform action» actfig?m action
ﬂowsbgwwenthmn. action2 then perform action
This is informally . : action3;
referred to as a swim ' }
v
lane. - - ~
«perform action»
action3
parts

Apart2 : PartDef2

part1 : PartDef1 [1..*] ordered nonunique

part3R : PartDef3R redefines part3

part4R : PartDef4R :>> part4 {

>> partd part partl :

PartDefl [1..%*]

part6S : PartDef6S [m] subsets part6 .
ordered nonunique;

Parts Compartment |75 - paitDef7S [m] > part7?

/* L. %/
part8R = part8
ref part9 : PartDef9 }
part10

7.11.2 Part Definitions and Usages

A part definition or usage (that is not of a more specialized kind) is declared as a kind of occurrence definition or
usage (see 7.9.2), using the kind keyword part. As a kind of item usage (see 7.10), a part usage must only be
defined by item definitions (including part definitions) or KerML structures (see [KerML, 7.4.4]). The default
multiplicity of a part usage is[1. .11, under the conditions described in 7.6.3.

item def Person;

part def Vehicle {
ref part driver[0..1]
part engine : Engine;
part wheels[4] : Wheel;

: Person;

}

The base part definition and usage are Part and parts from the Parts library model (see 9.2.4). (For other
semantic constraints on part usages, see 8.4.7).

62 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Note. Because the base usage of a part usage is the part usage parts defined by the base part definition Part, every
part usage is always directly or indirectly defined by at least one part definition, implicitly if not explicitly, in
addition to any other item definitions.

7.12 Ports
7.12.1 Ports Overview

Metamodel references:

* Textual notation, 8.2.2.12

* Graphical notation, 8.2.3.12
* Abstract syntax, 8.3.12

e Semantics, 8.4.8

A port definition is a kind of occurrence definition (see 7.9) that defines a connection point to enable interactions
between occurrences (most commonly parts). A port usage is a kind of occurrence usage definition that is a usage of
a port definition.

A port usage may be connected to one or more other port usages (see 7.14). Such connections enable interactions
between the occurrences that own the ports. The features of the port usages (whether inherited from its definition or
declared locally for the usage) specify what can be exchanged in such interactions. Since ports are themselves kinds
of occurrences, port definitions and usages can contain nested port usages.

A feature of a port may be directed, with one of the directions in, out, or inout (see also 7.6.3). Connected ports
must conform: each feature of a port at one end of a connection must have a matching feature on a port at the other
end of the connection. Two features match if they have conforming definitions and either both have no direction or
they have conjugate directions. The conjugate of direction in is out and vice versa, while direction inout is its
own conjugate. A transfer can occur from the out features of one port usage to the matching in features of
connected port usages. Transfers can occur in both directions between matching inout features.

Each port definition has a conjugated port definition whose directed features are conjugate to those of the original
port definition. A conjugated port usage is a usage of a conjugated port definition. A conjugated port usage

automatically conforms to a usage of the corresponding original port definition.

Table 10. Ports — Representative Notation

Element Graphical Notation Textual Notation
«port defy
PortDef1
port def PortDefl;
Port Definition «port def» port def PortDefl {
PortDef1 /* members */
}
compartment stack

OMG Systems Modeling Language (SysML) v2.0, Beta 1 63

Element Graphical Notation Textual Notation

«port»
. port1: PortDef1)

port portl : PortDefl;

Port «port» port portl : PortDefl {
port1 : PortDef1 } /* members */
compartment stack
&)
ports
Aport2 : PortDef2
port1 : PortDef1 [1..*] ordered nonunique
port3R : PortDef3R redefines port3
port4R : PortDef4R :>> port4 {
:>> portd port portl
port6S : PortDef6S [m] subsets port6 PortDefl [1..*]
Ports Compartment port7S : PortDef7S [m] :> port7 L °rdef‘/3d nonunique;
port8R = port8 T
ref port9 : PortDef9 }
port10
port11 : ~PortDef11
{
directed features in attributel
in attribute1 : AttributeDef1 AttributeDefl;
out attribute2 : AttributeDef2 out attribute2
. .) . AttributeDef2;
Directed Features !nqut attribute3 : AttrributeDef3 inout attribute3 :
Compartment in item1 : [temDef1 AttributeDef3;
out item2 : ltemDef2 in iteml : ItemDefl;

out item2 : ItemDef2;
inout item3

ItemDef3;

}

inout item3 : ItemDef3

7.12.2 Port Definitions and Usages

A port definition or usage is declared as a kind of occurrence definition or usage (see 7.9.2), using the kind keyword
port. A port usage must only be defined by port definitions. The default multiplicity of a port usage is [1..1],
under the conditions described in 7.6.3. All the features of a port definition or port usage, other than any nested port
usages, must be referential (non-composite).

port def FuelingPort ({

attribute flowRate : Real;
out fuelOut : Fuel;

64 OMG Systems Modeling Language (SysML) v2.0 Beta 1

in fuelReturn : Fuel;
}
part def FuelTank ({

port fuelOutPort : FuelingPort;
}

The base port definition and usage are Port and ports from the Ports library model (see 9.2.5). (For other
semantic constraints on port usages, see 8.4.8.)

7.12.3 Conjugated Port Definitions and Usages

Every port definition also implicitly declares a single, nested conjugated port definition, which has the same features
as its original port definition, except that any directed features have conjugated directions (i.e., in and out are
reversed, with inout unchanged). The name of the conjugated port definition is always given by the name of the
original port definition with the character ~ prepended, in the namespace of the original port definition. For
example, if a port definition has the name P, then its conjugated port definition has the name p: : '~P"'.

A conugated port usage is a shorthand for declaring a port usage defined by a conjugated port definition. With this
shorthand, rather than using the actual name of the conjugated port definition, the name of the original port
definition can be used, preceded by the symbol ~. For example,

port p : ~P;
is equivalent to
port p : P::'~P';

Since the symbol ~ is not considered part of a name when used in a conjugated port usage, it does not have to be
placed within quotes, while quotes do have to be used to represent the actual name of the conjugated port definition
as a lexical unrestricted name (see 7.2.2). Note that, if the original port definition itself has a name that is itself
lexically represented as an unrestricted name, such as 'P-1", then its conjugated port definition has the (qualified)
name 'P-1"'::'~P-1", but the corresponding conjugated port usage is

port pl : ~'P-1"

where the ~ is not placed inside the quotes.

7.13 Connections

7.13.1 Connections Overview
Metamodel references:

» Textual notation, 8.2.2.13

* Graphical notation, 8.2.3.13
» Abstract syntax, 8.3.13

o Semantics, 8.4.9

Connection Definition and Usage
A connection definition is both a relationship and a kind of part definition (see 7.11) that classifies connections
between related things, such as items and parts. At least two of the owned features of a connection definition must

be connection ends, which specify the things that are related by the connection definition. Connection definitions
with exactly two connection ends are called binary connection definitions, and they classify binary connections.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 65

The features of a connection definition that are not connection ends characterize connections separately from the
connected things. Since a connection is a part, values of these non-end features can potentially change over the
lifetime of the connection. However, the values of connection ends (i.e., the things that are actually connected) do
not change over time (though they can potentially be occurrences that themselves have features whose values
change over time).

A connection usage is a part usage (see 7.11) that is a usage of a connection definition, connecting usage elements
such as item and part usages. A connection usage redefines the connection ends from its definition, associating those
ends with the specific usage elements that are to be connected. For example, a connection definition could have
connection ends that are part usages defined by part definitions Pump and Tank. A usage of this connection
definition would then associate corresponding connection ends with specific pump and tank part usages. Supposing
that the pump and tank part usages have multiplicity 1, then this means that the single value of the pump usage is to
be connected to the single value of the tank usage.

A connection usage that connects parts is often a logical connection that abstracts away details of how the parts are
connected. For example, plumbing that includes pipes and fittings may be used to connect a pump and a tank. It is
sometimes desired to model the connection of the pump to the tank at a more abstract level without including the
plumbing. This is viewed as a logical connection between the pump and the tank.

Alternatively, the plumbing can be modeled as a part (informally referred to as an interface medium) where the
pump connects to the plumbing, and the plumbing connects to the tank. As a part itself, a connection can contain the
plumbing either as a composite feature, or as a reference to the plumbing that is owned by a higher level pump-tank
system context. In this way, the logical connection without structure can be transformed into a physical connection.

Bindings and Successions

Bindings and successions are special kinds of connections. They are usages, but, unlike regular connection usages,
they are not part usages. The connections specified by bindings and successions are not occurrences and are not
created and destroyed. Rather, they assert specific relationships between the features that they connect, which must
be true at all times.

A binding is a binary connection that requires its two related usages to have the same values. A binding can also be
used to bind a referential feature in one context to a composite feature in another context to assert they are the same
thing. For example, the steering wheel in a car may be considered part of the interior of the car, while at the same
time it is considered part of the steering subsystem. The steering wheel can be a composite part usage of the interior,
and a reference part usage of the steering subsystem, and these two usages can be bound together to assert that they
are the same part.

A feature value is a shorthand for initializing or binding a usage to the result of an expression (see 7.18) as part of
the declaration of the usage. There are two types of feature value binding.

* A fixed feature value establishes the binding of the usage to the result of evaluating the given expression at
the point of declaration of the usage. Such a binding cannot be overridden in a redefinition of the usage
because, once asserted, a binding must be true for all instances of the usage.

* A default feature value also includes an expression, but it does not immediately establish the binding of
the usage. Instead, the evaluation of the expression and the binding of the usage is delayed until the
instantiation of a definition or usage that features the original usage. Unlike a fixed feature value, a default
feature value can be overridden in a redefinition of its original feature with a new feature value (fixed or
default). In this case, the new overriding feature value is used instead of the original feature value for
binding the redefining usage.

A succession is a binary connection that requires its two related usages to have values that are occurrences that
happen completely separated in time, with the first occurrence happening before the second. Successions can be

66 OMG Systems Modeling Language (SysML) v2.0 Beta 1

used to assert the ordering of any kind of occurrences in time, but are particularly useful for event occurrences (see
7.9) and performances of actions (see 7.16).

Flow Connection Usages

A flow connection usage is a connection usage that also represents the performance of a transfer of some payload
between the values of connected usages, which must be occurrences. The transferred payload can be anything
(attribute value, item, part, etc.). The transfer is directed from the first connection end (the source) to the second
connection end (the target). There are three kinds of flow connections.

1. A message is modeled as a flow connection usage that specifies that some transfer happens between the
source and target ends, and can define the payload that is to be transferred. However, a message does not
specify how the payload is to be obtained from the source or delivered to the target.

2. A streaming flow connection is modeled as a flow connection usage that not only specifies the source and
target of a transfer (and, optionally, the payload), but also identifies the source output feature of the source
usage from which the payload is obtained and the farget input feature of the target usage to which the
payload is to be delivered.

3. A succession flow connection is modeled as a succession flow connection usage, which is both a
connection usage and a succession. A succession flow connection is specified in the same way as a
streaming flow connection, but it adds the further constraint that the transfer source must complete before
the transfer starts, and the transfer must complete before the target can start.

Messages are typically used to model abstract logical interaction between part usages in a certain context, which
may be realized in a more detailed model using streaming or succession flow connections (or transfers from send

actions to accept actions, see 7.16).

Table 11. Connections — Representative Notation

Element Graphical Notation Textual Notation
«connection def»
ConnectionDef1 connection def
ConnectionDefl {
enads end endl : Partl;
end1 : Part1 end end2 : Part2;
Connection end2 : Part2 }
Definition
i connection def
«connection def» ConnectionDefl {
ConnectionDef1 /* members */
}
compartment stack
«part def»
Part1 connection def
ConnectionDefl {
. . end1 [0..1 end endl
onnection ConnectionDef1 Part1([0..1];
Definition end2 |1 * end end2
Part2([1..*];
«part def» }
Part2

OMG Systems Modeling Language (SysML) v2.0, Beta 1

67

Element Graphical Notation Textual Notation

«part def»
Part1 connection def
end110.1 ConnectionDefl {
Connection «part def» |end3 ‘ end endl
Definition (n-ary Part3 ¢ ConnectionDef1 | part1[0..1];
Wlth3ends) endz end end? : Part2;
end end3 : Part3;
«part def»)
Part2
(~\
«connection»
connection1 : ConnectionDef1 connection connectionl
: ConnectionDefl {
ends end endl ::> partl;
end1 ::> part1 end end?2 ::> part2;
Connection \end2 1> part2 J }
. connection connectionl
«connection» : ConnectionDefl {
connection1 : ConnectionDef1 /* members */
}
compartment stack
\...)
part1 : Part1 connection1 : partz : Partz connection connectionl
. ConnectionDef1 : ConnectionDefl
Connection
connect partl to
part2;
«part»
part1 : Part1
. connection connectionl
Connection (n-ary «part»] connection : : ConnectionDefl
with 3 ends) part3 : Part3 | ConnectionDef! connect (partl,
part2, part3);

«part»
part2 : Part2

68 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

part def Partl ({
part part2 : Part2 {
part part4
Parti4;

Part1 }
part part3 : Part3 {

part2 : Part2 part3 : Part3 part part5h
. Part5;
Nested Connection ar
part4 : Part4 part5 : Part5 }
connection
connectionl
ConnectionDefl
connect

part2.partd
to part3.parth;
}

part def Partl {
part part2 : Part2 {
part part4
Parti4;

Part1 }

) _ part part3 : Part3 {
part2 : Part2 part3 : Part3 part part5s

Parth;
.part4 .parts }
connection
connectionl
ConnectionDefl
connect
part2.part4d
to part3.parth;

Proxy Connection

}

Connections
Compartment

part partl : Partl {
(«part» J part part2 : Part2 {

part1 : Part1 ref part part4R :
' { Part4;
}
{ «part» 1 [«part»] part part3 : Part3 {
Binding Connection part2 : Part2 part3 : Part3 part parti
0 { Part4;
}
bind part2.part4R =

«part» = «part»] part3.parté;
part4R : Part4 part4 : Part4 }

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Element Graphical Notation Textual Notation

part def Partl ({

«part def» part part2:part2 {
Part1 ref part

«part»
part2 : Part2

Binding Connection ||| ~-------nmemeee-

«ref part»

«part» part4R:Part4;
part3 : Part3)
part part3:part3 {
«part» part part4:Part4d;

part4R : Part4 : part4 : Part4 }

bind part2.part4R =

part3.part4;

action1 : Action1

Flow

part1 : Part1

Message

70

action actionl:Actionl {

out iteml:Iteml;
action2 : Action2 }

item1 : Item1 action action2:Action2 {
in iteml:Iteml;

}

flow actionl.iteml
to action2.iteml;

part partl:Partl {
port p4:P4;

}

«message» part2 : Part2 part part2:Part2 {

«ofy item1 : Item1 port p2:P2;

}

message of iteml:Iteml
from partl.p4
to part2.p2;

OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation

«action»
action1 : Action1

item1 : ltem1

«action»
action2 : Action2

item2 : Item1

«flow»

flow1_2 : FlowConnection

Flow as Node P)
«refitem» 1

E subltem3

' v «refitem» E
! item1 : ltem1 i Subltem? subltem? & jtem2 : Item1 !
E E subltem2 subltem2 E H
E subltem3 E :

Flows Compartment

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

item def Iteml {
item subIteml;
item subItem2;
item subItem3;
}
action actionl
Actionl {
out iteml : Iteml;
}
action action2
Action2 {
in item2 : Iteml;
}
flow flowl 2 from
actionl.iteml to
action2.item2 {
flow
source.iteml.subIteml
to
target.item2.subIteml;
flow
source.iteml.subItem2
to
target.item2.subItem?2;
flow
source.iteml.subItem3
to
target.item2.subItem3;
}

flow actionl.output
to
action2.input;
succession flow
actionl.output
to action2.input;

/* o0 x/

7

Element Graphical Notation Textual Notation

occurrence {
part partl : Partl ({
«part» «part» event occurrence

part1 : Part1| |part2 : Part2 v

part part2 : Part2 {
event occurrence

msg1

Message

ev2;

}

message msgl from
partl.evl to part2.ev2;
}

7.13.2 Connection Definitions and Usages

A connection definition or usage (that is not of a more specialized kind) is declared as a kind of occurrence
definition or usage (see 7.9.2), using the kind keyword connection. A connection usage must only be defined by
connection definitions (of any kind) or KerML association structures (see [KerML, 7.4.5]).

Unless it is abstract, a connection definition or usage must have at least two end features (which may be owned or
inherited). A binary connection definition or usage is one that has exactly two end features. The end features of a
connection definition or usage are always considered referential (non-composite), whether or not their declaration
explicitly includes the ref keyword. (See also 7.6.3 on the notation for end features.)

Connection definitions and usages are also relationships. For a connection definition, its related elements are given
by the definitions of its end features. For a connection usage, its related elements are the features associated to each
of its end features via reference subsetting relationships, whose textual notation is the keyword references or the
equivalent symbol : :>.(See also 7.2 on Relationships.)

// The related elements of this connection definition
// are the part definitions Hub and Device.
connection def DeviceConnection {

end part hub : Hub[l];

end part devices : Device[0..*];

// This is a non-end feature of the connection definition.
attribute bandwidth : Real;
}

// The related elements of this connection usage
// are the part usages mainSwitch and sensorFeed.
connection connectionl : DeviceConnection {

end part hub ::> mainSwitch[1l];

end part device ::> sensorFeed[l];

There are two shorthand textual notations for connection usages.

Rather than using explicit end feature declarations in the body of a connection usage, the related features of the
connection usage may be identified in a comma-separated list, between parentheses (...), preceded by the keyword
connect, placed after the connection usage declaration and before its body. The identification of a related feature
may optionally be preceded by an end feature name followed by the keyword references or the symbol : : >, and/

72 OMG Systems Modeling Language (SysML) v2.0 Beta 1

or followed by a multiplicity. If the declaration part of the connection usage is empty when using this notation, then
the keyword connection may be omitted.

connection connectionl : DeviceConnection connect (
hub ::> mainSwitch[1l], device ::> sensorFeed[1]
)

// This is a ternary connection.
// It is equivalent to "connection connect (iteml, item2, item3);"
connect (axle, wheell, wheel2);

If the connection usage is binary, then a further special notation may be used in which the source related feature is
identified directly after the keyword connect and the target related feature is identified after the keyword to. As
above, if the declaration part of the connection usage is empty, then the keyword connection may be omitted.

connection connectionl : DeviceConnection
connect hub ::> mainSwitch[l] to device ::> sensorFeed[1l];

connect leftWheel to leftHalfAxle;

The base connection definition and usage are Connection and connections from the Connections library (see
9.2.6). For a binary connection definition or usage, the base definition and usage are further restricted to
BinaryConnection and binaryConnections, which enforce that the connection has exactly two ends.

If a connection definition has a single owned superclassification relationship with another connection definition, it
may inherit end features from this general connection definition. However, if it declares any owned end features,
then each of these must redefine an end feature of the general connection definition, in order, up to the number of
end features of the general connection definition. If no redefinition is given explicitly for an owned end feature, then
it is considered to implicitly redefine the end feature at the same position, in order, of the general connection
definition, if any.

// Implicitly specializes Connections::BinaryConnection by default.
connection def Ownership ({
attribute valuationOnPurchase : MonetaryValue;
end item owner([l..*] : LegalEntity; // Implicitly redefines BinaryConnection::source.
end item ownedAsset[*] : Asset; // Implicitly redefines BinaryConnection::target.
}
connection def SoleOwnership specializes Ownership {
end item owner[1]; // Implicitly redefines Ownership::owner.
// ownedAsset is inherited.

Note that any specialization of a binary connection definition must also be binary. That is, it can inherit or redefine
the two end features from the general connection definition, but it cannot add more end features than two.

If a connection definition has more than one owned superclassification with other connection definitions, then it
must declare a number of owned end features at least equal to the maximum number of end features of any of the
general connection definitions. Each of these owned end features must then redefine the corresponding end feature
(if any) at the same position, in order, of each of the general connections, either explicitly or implicitly.

Similar rules hold for the end features of a connection usage that is defined by one or more connection definitions
and/or subsets or redefines one or more connection usages.

connection connectionl : DeviceConnection ({
end part hub ::> mainSwitch[1l]; // Implicitly redefines DeviceConnection: :hub.
end part device ::> sensorFeed[l]; // Implicitly redefines DeviceConnection::device.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 73

7.13.3 Bindings as Usages

A binding can be declared as a usage as described in 7.6.3, using the kind keyword binding. Note that a binding is
not a kind of occurrence usage (unlike a regular connection usage), so the notations for time slices, snapshots and
individuals (described in 7.9) do not apply to it. Further, the two related features of a binding are specified using a
special notation.

The two related features of a binding are identified after its declaration part and before its body, following the
keyword bind and separated by the symbol =. If the declaration part is empty, then the keyword binding may be
omitted. The end features of a binding always have multiplicity [1..1].

part def Vehicle {
part fuelTank {
out fuelFlowOut : Fuel;

}
part engine {
in fuelFlowIn : Fuel;

}
binding fuelFlowBinding
bind fuelTank.fuelFlowOut = engine.fuelFlowlIn;

// The following is equivalent to the above, but
// without the name.
bind fuelTank.fuelFlowOut = engine.fuelFlowlIn;

}

The base usage for a binding is the the KerML feature selfLinks from the Links model in the Kernel Semantic
Library (see [KerML, 9.2.3]).

7.13.4 Feature Values

A feature value is a relationship between an owning usage and a value expression, whose result provides values for
the feature. The feature value relationship is specified as either bound or initial, and as either fixed or default. A
usage can have at most one feature value relationship.

A fixed, bound feature value relationship is declared using the symbol = followed by a representation of the value
expression (using the expression notation from [KerML, 7.4.9]). This notation is appended to the declaration of the
usage being bound by the feature value. Usages that have a feature value relationship of this form implicitly have a
nested binding between the feature and the result of the value expression.

attribute monthsInYear : Natural = 12;

item def TestRecord {
attribute scores[l..*] : Integer;
derived attribute averageScore[l] : Rational = sum(scores)/size (scores);
attribute cutoff : Integer default = 0.75 * averageScore;

Note. The semantics of binding mean that such a feature value asserts that a feature is equivalent to the result of the
value expression. To highlight this, a feature with such a feature value can be flagged as derived (though this is not
required, nor is it required that the value of a derived feature be computed using a feature value — see also 7.6.3).

A fixed, initial feature value relationship is declared as above but using the symbol : = instead of =. In this case, the
usage also has an implicit nested binding, but the binding only applies to the starting snapshot of the owning
definition or usage of the bound usage (which means that that the owner must be a kind of occurrence definition or
usage, see 7.9). That is, the result of the value expression gives the initial values of the declared feature but, unlike
in the case of a bound value, these initial values may subsequently change.

74 OMG Systems Modeling Language (SysML) v2.0 Beta 1

part def Counter {
attribute count[1l] : Natural := 0;
}

A default feature value relationship is declared similarly to the above, but with the keyword default preceding the
symbol = or : =, depending on whether it is bound or initial. However, for a default, bound feature value, the symbol
= may be elided.

part def Vehicle {

attribute mass : Real default 1500.0;

feature engine[l] : Engine default := standardEngine;
}

item def TestWithCutoff :> TestRecord {
attribute cutoff : Rational default = 0.75 * averageScore;

For a default feature value relationship, no implicit binding is added to the usage declaration, but the default will
apply when an instance of the owning definition or usage is constructed, if no other explicit values are given for the
defaulted usage.

7.13.5 Successions as Usages

A succession can be declared as a usage as described in 7.6.3, using the kind keyword succession. Note that a
succession is not a kind of occurrence usage (unlike a regular connection usage), so the notations for time slices,
snapshots and individuals (described in 7.9) do not apply to it. Further, the two related features of a succession are
specified using a special notation.

The two related features of a succession are identified after its declaration part and before its body, following the
keyword succession and separated by the keyword then. If the declaration part is empty, then the keyword
succession may be omitted. The related features of a succession must be occurrence usages. As for regular
connection usages, constraining multiplicities can also be defined on the end features of a succession.

part def Camera {
action focus[*] : Focus;
action shoot[*] : Shoot;
// Each focus may be preceded by a previous focus.
succession multiFocusing
first focus[0..1]] then focus[0..1];
// Each shoot must follow a focus.
first focus[1l] then shoot[0..1];
// The Camera can be focused after shooting.
first shoot[0..1] then focus;

If a succession is placed lexically directly between the two occurrence usages that are its related elements, then the
declaration of the succession can be shortened to just the keyword then, prepended to the declaration of the second
occurrence usage. A multiplicity for the source end of the succession can optionally be placed directly after the
then keyword.

occurrence def Flight ({
timeslice preflight[1l];
then timeslice inflight[1];
then timeslice postflight[1l];
}

// The above is equivalent to the following.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 75

occurrence def Flight ({
timeslice preflight[1l];
first preflight then inflight;
timeslice inflight[1];
first inflight then postflight;
timeslice postflight[1l];

Note. There are additional shorthands for the use of successions within the bodies of action definitions and usages
(see 7.16.4).

The base usage for a succession is the KerML feature happensBeforeLinks from the Occurrences model in the
Kernel Semantic Library (see [KerML, 9.2.4]).

7.13.6 Flow Connection Usages and Messages
A flow connection usage may be declared as either a message, a streaming flow or a succession flow.

A flow connection usage is declared as a message similarly to a regular connection usage (see 7.13.2), but with the
kind keyword message. In addition, the declaration of a message may also optionally include an explicit
specification of the name, type (definition) and/or multiplicity of the payload of the message, after the keyword of.
The payload name is followed by the keyword defined by (or the symbol :), but this keyword (or the symbol) is
omitted if the name is omitted. In the absence of a payload specification, the message declaration does not constrain
what kinds of values may be transferred between the source and target of the message.

A message is always abstract (whether or not the abstract keyword is included explicitly in its declaration), so its
declaration may or may not include identification of source and target related features. If they are included, then
they follow the payload specification (if any), with the source related feature identified after the keyword £rom,
followed by the target related feature after the keyword to. Alternative, if the source and target identification is not
included, then the message declaration may include a feature value (see 7.13.4) to provide a value for the message.

part def Vehicle {
attribute def ControlSignal;

part controller;
part engine;

message of ControlSignal from controller to engine;

}

A streaming flow is declared similarly to a message, but with the kind keyword £1ow. However, instead of
identifying the source and target features of the flow, such a flow declaration must identify (after the keyword £rom)
the output feature of the source from which the flow receives its payload and (after the keyword to) the input
feature of the target to which the flow delivers the payload. This is done by giving a feature chain with at least two
features, the last of which identifies the output or input feature, with the preceding part of the chain identifying the
source or target of the flow. If no declaration part or payload specification is included in the flow declaration, then
the from keyword may also be omitted.

part def Vehicle {
part fuelTank {
out fuelOut : Fuel;
}
part engine {
in fuellIn : Fuel;
}

// This flow connection usage actually connects the fuelTank to the

76 OMG Systems Modeling Language (SysML) v2.0 Beta 1

// engine. The transfer moves Fuel from fuelOut to fuelln.
flow fuelFlow of flowingFuel : Fuel
from fuelTank.fuelOut to engine.fuelln;

// The following is equivalent to the above, except without
// the name and leaving the payload implicit.
flow fuelTank.fuelOut to engine.fuelln;

A succession flow is declared like a flow declaration above, but using the keyword succession flow.

action def TakePicture {
action focus : Focus {
out image : Image;
}
action shoot : Shoot {
in image : Image;
}

// The use of a succession flow connection usage means that focus must
// complete before the image is transferred, after which shoot can begin.
succession flow focus.image to shoot.image;

The base flow connection usages are from the Connections library model (see 7.13):

* messageConnections for a message.
* flowConnections for a streaming flow.
* successionFlowConnections for a succession flow.

7.14 Interfaces

7.14.1 Interfaces Overview
Metamodel references:

* Textual notation, 8.2.2.14

* Graphical notation, 8.2.3.14
» Abstract syntax, 8.3.14

e Semantics, 8.4.10

An interface definition is a kind of connection definition (see?7.13) whose ends are restricted to be port definitions
(see 7.12). An interface usage is a kind of connection that is usage of an interface definition. The ends of an
interface usage are restricted to be port usages.

An interface is simply a connection all of whose ends are ports. As such, an interface facilitates the specification and
reuse of compatible connections between parts. For example, consider a Power interface definition between an
Appliance and Wall Power. The power port on one end of the interface represents the Appliance connection
point, and the outlet port on the other end represents the Wwall Power connection point. This interface can then be
used for connecting many different appliances to wall power.

When modeling physical interactions, an interface definition or usage can contain constraints (see 7.19) to constrain
the values of the features of the ports on its ends. For example, such features may be across and through variables,
which are constrained by conservation laws across the interface (e.g., Kirchhoff’s Laws). When specifying

an interface between electrical components, the across and through variables are port features defined as voltage
and Current quantities, respectively. The feature values on either port are constrained such that the voltages must
be equal, and the sum of the currents must equal zero.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 77

Element

Interface Definition

Interface

Interfaces
Compartment

Interface

78

Table 12. Interfaces — Representative Notation

Graphical Notation

«interface def»
InterfaceDef1

ends

port1 : Port1
port2 : Port2

«interface def»
InterfaceDef1

compartment stack

«interface»
interface1 : InterfaceDef1

ends

port1 :>pa
\Dort2 :>Db

Ve

«interface»
interface1 : InterfaceDef1

compartment stack

interfaces
interface1 : InterfaceDef1 [1..*]
interface?2 : InterfaceDef2

part1 : Part1

interface1:
InterfaceDef1
p4 P4] p2: P2

part2 : Part2

Textual Notation

interface def
InterfaceDefl {
end portl:Portl;
end port2:Port2;
}

interface def
InterfaceDefl {
/* members */

}

interface interfacel
InterfaceDefl {
end portl :> pa;
end port2 :> pb;
}

interface interfacel
InterfaceDefl {
/* members */

}

interface interfacel
InterfaceDefl [1..%*];
interface interface2
InterfaceDef?2;

/* oL %/

part partl:Partl {
port p4:P4;

}

part part2:Part2 {
port p2:P2;

}

interface interfacel

InterfaceDefl
connect partl.p4
to part2.p2;

OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element

Interface as Node

Graphical Notation

«part»
part0

«part»
part1 : Part1

interface? : InterfaceDef2

pa:Pa

«part»
part2 : Part2

pb :~Pa

«interface»
interface?2 : InterfaceDef2

i source ::> parti.pa !

| target ::> part2.pb

p1:P1 J——— Jp1:~P1

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

port def Pa {
port pl : P1l;
port p2 : P2;
port p3 : P3;

}

part def Partl {
port pa : Pa;

}

part def Part2 ({
port pb : ~Pa;

}

interface def

InterfaceDef2 {

end :>> source : Pa;
end :>> target : ~Pa;
}
part part0 {
part partl Partl;
part part2 Part2;

interface interface?2
InterfaceDef?2
connect source
::> partl.pa to target
::> part2.pb {
interface
source.pl to target.pl;
interface
source.p2 to target.p2;
interface
source.p3 to target.p3;
}

79

Element Graphical Notation

«part»
part0

«part»
part1 : Part1

«part»
part2 : Part2
pb :~Pa

if2 : Interface2

pa:Pa

«flow» «of» | «flow» «of»
dtem2 1 cltem1

Interface as Node
(with flow)

«interface»
if2 : Interface2

! «ref port» i _i10ut: Item1
1 supplierP ::> part1.pa |

«ref port» :
rconsumerP ::> part2.pb;
i10ut : Item1 :

L 2n:item2

e

i2In: Item2 S--memmemmeeeeaaon !

7.14.2 Interface Definitions and Usages

Textual Notation

port def Pa {
out item ilOut
Iteml;
in item i2In Item2;
}
interface def
Interface2 {
end supplierP : Pa;
end consumerP ~Pa;
flow supplierP.ilOut
to consumerP.ilOut;
flow consumerP.i2In
to supplierP.i2In;
}
part part0 {
part partl Partl {
port pa : Pa;
}
part part2
port pb

Part2 {
~Pa;

}

interface if2
Interface?2 connect
partl.pa to part2.pb;
}

An interface definition or usage is declared like a connection definition or usage (see 7.13.2), but using the kind
keyword interface. An interface usage must only be defined by interface definitions. All the end features of an
interface definition or usage must be port usages, so the use of the port keyword is optional on such end features.

The shorthand notations for connection usages described in (see 7.13.2) may also be used for interface usages.
However, if the declaration part of an interface usage is empty, then the interface keyword is still included, but

the connect keyword may be omitted.

port def FuelingPort ({
out fuel Fuel;
}

interface def FuelingInterface {

end fuelOutPort FuelingPort;
end fuelInPort ~FuelingPort;

}

interface fuelline FuelingInterface

connect fuelTank.fuelingPort to engine.fuelingPort;

// The following is equivalent to the above, except
// for not using a specialized interface definition.
interface fuelTank.fuelingPort to engine.fuelingPort;

The base interface definition and usage are Interface and interfacess from the Interfacess library (see

9.2.7). For a binary interface definition or usage, the base definition and usage are further restricted to
BinaryInterface and binaryInterfaces, which enforce that the interface has exactly two ends.

80 OMG Systems Modeling Language (SysML) v2.0 Beta 1

7.15 Allocations
7.15.1 Allocations Overview

Metamodel references:

o Textual notation, 8.2.2.15

* Graphical notation, 8.2.3.15
» Abstract syntax, 8.3.15

o Semantics, 8.4.11

An allocation definition is a connection definition (see 7.13) that specifies that a target element is responsible for
realizing some or all of the intent of the source element. An allocation usage is a usage of one or more allocation
definitions. An allocation definition or usage can be further refined using nested allocation usages that provide a

finer-grained decomposition of the containing allocation.

As used by systems engineers, an allocation denotes a "mapping" across the various structures and hierarchies of a
system model. This concept of "allocation" requires flexibility suitable for abstract system specification, rather than
a particular constrained method of system or software design. System modelers often associate various elements in a
user model in abstract, preliminary, and sometimes tentative ways. Allocations can be used early in the design as a
precursor to more detailed rigorous specifications and implementations.

Allocations can provide an effective means for navigating a model by establishing cross relationships and ensuring
that various parts of the model are properly integrated. Since these relationships are instantiable connections, they
can also be semantically related to other such relationships, including satisfying requirements (see 7.20), performing
actions (see 7.16) and exhibiting states (see 7.17). Modelers can also create specialized allocation definitions to
reflect conventions for allocation on specific projects or within certain system models.

Table 13. Allocations — Representative Notation

Element Graphical Notation Textual Notation

«allocation def»

AllocationDef1 allocation def

AllocationDefl;

Allocation Definition «allocation def» allocation def
AllocationDef1 AllocationDefl f{

/* members */

compartment stack }

4 . N\
«allocation»
__ allocation1 : AllocationDef1 allocation allocationl
: AllocationDefl;
s A
Allocation «allocation» allocation allocationl
allocation1 : AllocationDef1 : AllocationDefl ({
/* members */
compartment stack }
k‘..)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 81

Element Graphical Notation Textual Notation
part part3 {
allocated allocate partl to
Allocated from part1.partia part3;
Compartment to part2.part2a allocate part3 to
part2;
}
part partl Partl;
All . «part» «allocate» «part» part part2 Part2;
ocation part1 : Part1 part2 : Part2 allocate partl to part2;
part partl Partl {
perform actionl;
«part» «allocate» «part» !
part1 : Part1] part2 : Part2 part part2 : Part2 {
perform action2;
Allocation (with sub «perform» «performy }
allocation) «allocate» allocate partl to part2
«action» «action» t allocate
acton1 action2

7.15.2 Allocation Definitions and Usages

partl.actionl
to part2.action2;

}

An allocation definition or usage is declared like a connection definition or usage (see 7.13.2), but using the kind
keyword allocation. An allocation usage must only be defined by allocation definitions. Allocation definitions
and usages are always binary, having exactly two end features, even if abstract.

Shorthand notations similar to those for connection usages, as described in see 7.13.2, may also be used for
allocation usages, but using the keyword allocate instead of connect. If the declaration part of the allocation
usage is empty when using this notation, then the keyword allocation may be omitted.

part def LogicalSystem {
part component

}

part def PhysicalDevice {
part assembly

}

LogicalComponent;

PhysicalAssembly;

allocation def LogicalToPhysicalAllocation {

end part logical
end part physical

LogicalSystem;
PhysicalDevice;

// This is a nested sub-allocation.
allocate logical.component to physical.assembly;

}
part system
part device

82

LogicalSystem;
PhysicalDevice;

OMG Systems Modeling Language (SysML) v2.0 Beta 1

allocation systemToDevice : LogicalToPhysicalAllocation
allocate logical ::> system to physical ::> device;

The base allocation definition and usage are Allocation and allocations fromthe Allocations library
model (see 9.2.8).

7.16 Actions

7.16.1 Actions Overview
Metamodel references:

e Textual notation, 8.2.2.16

» Graphical notation, 8.2.3.16
» Abstract syntax, 8.3.16

e Semantics, 8.4.12

Action Definition and Usage

An action definition is a kind of occurrence definition (see 7.9) that classifies action performances. An action usage
is a kind of occurrence usage that is a usage of one or more action definitions.

An action definition may have features with directions in, out or inout that act as the parameters of the action.
Features with direction in or inout are input parameters, and features with direction out or inout are output
parameters. An action usage inherits the parameters of its definitions, if any, and it can also define its own
parameters to augment or redefine those of its definitions.

Actions are occurrences over time that can coordinate the performance of other actions and generate effects on items
and parts involved in the performance (including those items' existence and relation to other things). The features of
an action definition or usage that are themselves action usages specify the performance of the action in terms of the
performances of each of the subactions. If an action has parameters, then it may also transform the values of its input
parameters into values of its output parameters.

Action definitions and usages follow the same patterns that apply to structural elements (see 7.6). Action definitions
and action usages can be decomposed into lower-level action usages to create an action tree, and action usages can
be referenced by other actions. In addition, an action definition can be subclassified, and an action usage can be
subsetted or redefined. This provides enhanced flexibility to modify a hierarchy of action usages to adapt to its
context.

Performed Actions

A perform action usage is an action usage that specifies that an action is performed by the owner of the performed
action usage. A perform action usage is referential, which allows the performed action behavior to be defined in a
different context than that of the performer (perhaps by an action usage in a functionally decomposed action tree).
However, if the owner of the perform action usage is an occurrence, then the referenced action performance must be
carried out entirely within the lifetime of the performing occurrence.

In particular, a perform action usage can be a feature of a part definition or usage, specifying that the referenced
action is performed by the containing part during its lifetime. A perform action usage can also be a feature of an
action definition or usage. In this case, the perform action usage represents a "call" from the containing action to the
performed action.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 83

Sequencing of Actions

Since action usages are kinds of occurrence usages, their ordering can be specified using successions (see 7.13).
However, a succession between action usages may, additionally, have a guard condition, represented as a Boolean
expression (see 7.18). If the succession has a guard, then the time ordering of the source and target of the succession
is only asserted when the guard condition evaluates to true.

The sequencing of action usages may be further controlled using control nodes, which are special kinds of action
usages that impose additional constraints on action sequencing. Control nodes are always connected to other actions
usages by incoming and outgoing successions (with or without guards). The kinds of control nodes include the
following.

* A fork node has one incoming succession and one or more outgoing successions. The actions connected to
the outgoing successions cannot start until the action connected to the incoming succession has completed.

* A join node has one or more incoming successions and one outgoing succession. The action connected to
the outgoing succession cannot start until all the actions connected to the incoming successions have
completed.

* A decision node has one incoming succession and one or more outgoing successions. Exactly one of the
actions connected to an outgoing succession can start after the action connected to the incoming
succession has completed. Which of the downstream actions is performed can be controlled by placing
guards on the outgoing successions.

* A merge node has one or more incoming successions and one outgoing succession. The action connected
to the outgoing succession cannot start until any one of the actions connected to an incoming succession
has completed.

Bindings and Flows Between Actions

An output parameter of one action usage may be bound to the input parameter of another action usage (see 7.13 on
binding). Such a binding indicates that the values of the target input parameter will always be the same as the values
of the source output parameter. If the two actions are performed concurrently, then this equivalence will be
maintained over time throughout their performances. An input parameter of an action definition or usage can also be
bound to the input parameter of a nested action usage, passing the values of the input parameter into the nested
action, and an output parameter of a nested action usage can be bound an output parameter of a containing action
definition or usage, passing the values of the output parameter out.

The binding of action parameters, however, does not model the case when there is an actual transfer of items
between the actions that may itself take time or have other modeled properties. Such a transfer can be more properly
modeled using a flow connection between the two action usages (see 7.13), in which the transfer source output is an
output parameter of the source action usage and the transfer target input is the input parameter of the target action
usage. A streaming flow connection represents a flow in which the transfer can be ongoing while both the source
and target action are being performed. A succession flow connection represents a flow that imposes the additional
succession constraint that the transfer cannot begin until the source action completes and the target action cannot
start until the transfer has completed.

Transfers can also be performed using send and accept action usages. In this case, the source and target of the
transfer do not have to be explicitly connected with a flow. Instead, the source of the transfer is specified using a
send action usage contained in some some source part or action, while the target is given by an accept action usage
in some destination part or action (which may be the same as or different than the source). A send action usage
includes an expression that is evaluated to provide the values to be transferred, and it specifies the destination to
which those values are to be sent (possibly delegated through a port and across one or more interfaces — see also
7.12 and 7.14 on interfaces between ports). An accept action usage specifies the type of values that can be received
by the action. When a send action performed in the source is matched with a compatible accept action performed in
the destination, then the transfer of values from the origin to the destination can be completed.

84 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Assignment Actions

An assignment action usage is used to change the value of a referent feature of a target occurrence. The target is
specified as the result of an expression and the referent is specified as a feature chain relative to that target. The new
value for the feature is determined as the result of a different expression. When the assignment action usage
completes, the referent feature has the new assigned value for the target occurrence.

Note that the target must be an occurrence, because the values of the features of attributes do not change over time
(see also 7.7 on attributes and 7.9 on occurrences). If the referent feature has a multiplicity upper bound other than 1,
then an assignment action can assign multiple values to it, consistent with the multiplicity of the feature. The values
are all assigned atomically, at the same time.

A initializing feature value can be used as a shorthand for assigning an initial value to a usage as part of the
declaration of the usage that is a feature of an occurrence definition or usage. Unlike when feature is a bound using a
feature value (as described in 7.13), the initial value of a feature can be later assigned a different value.

As for a binding feature value, there are two types of initializing feature value.

* A fixed feature value assigns the result of evaluating the given expression to a usage at the point of
declaration of the usage. Such an assignment cannot be overridden in a redefinition of the usage because,
once asserted, it would be indeterminate which initialization is to be used.

* A default feature value also includes an initial-value expression, but it does not immediately assign an
initial value to the usage. Instead, the evaluation of the expression and the assignment of its result to the
usage is delayed until the instantiation of a definition or usage that features the original usage. Unlike a
fixed feature value, a default feature value can be overridden in a redefinition of its original feature with a
new feature value (fixed or default). In this case, the new overriding feature value is used instead of the
original feature value for initializing the redefining usage.

Structured Control Actions

Structured control action usages are used to control the performance of nested action usages in a structured way.
There are three kinds of structured control action usages:

1. An if action usage evaluates a condition expression and then performs a then clause action usage if the
expression evaluates to true, or, optionally, an else clause action usage if the expression evaluates to false.

2. A while loop action usage performs a body clause action usage iteratively, as long as its while expression
continues to evaluate to true and its until expression continues to evaluate to false.

3. A for loop action usage performs a body clause action usage iteratively, assigning a loop variable
successively for each iteration to the values resulting from the evaluation of a sequence expression.

Table 14. Actions — Representative Notation

Element Graphical Notation Textual Notation
«action def»
ActionDef1) ,
action def ActionDefl;
Action Definition «action def» action def ActionDefl {
ActionDef1 /* members */
}
compartment stack

OMG Systems Modeling Language (SysML) v2.0, Beta 1 85

Element Graphical Notation Textual Notation

«action»
(_action1 : ActionDef1) action actionl
ActionDefl;
(R
Action «action» action actionl
action1 : ActionDef1 ActionDefl ({
/* members */
compartment stack }
e)

h item def ItemDefl ({
in item 'iteml.l';
out item 'iteml.2';
param2 : ltemDef2 in item 'iteml.3';

«action» E }

. action actionl {
action1 inout paraml
:ItemDefl;

out param?2

ItemDef?2;
/ }

item1_1

. . item1_2
Action with -

Parameters

item1_3

action actionl
Actionl {
in inputl;
bind inputl =
action2.input2;
action action2
Action2 {
in input2;
out output2;

Action with

«action»

}

Graphical action1 : Action1
flow action2.output2
ompartmen «action» «action»
C part t N N N N to P
showine standard 2] action2 : Action2 [] action3 : Action3 [
A g . action3.input3;
action flow view action action3
Action3 {

in input3;
out output3;
}
bind action3.output3
= outputl;
out outputl;

86 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element

Actions
Compartment

Perform Actions
Compartment

Graphical Notation

actions
Aaction2 : ActionDef2 (in : ParamDef1, out :
ParamDef2)
action1 : ActionDef1 [1..*] ordered nonunique
action3R : ActionDef3R redefines action3
action4R : ActionDef4R :>> action4
:>> action5
action6S : ActionDef6S [m] subsets action6
action7S : ActionDef7S [m] :> action7
action8R = action8
ref action9 : ActionDef9
perform action10
action11

perform actions

Aaction2 : ActionDef2 (in : ParamDef1, out : ParamDef2)

action1 : ActionDef1 [1..*] ordered nonunique
action3R : ActionDef3R redefines action3
actiondR : ActionDef4R :>> action4

:>> action5

action6S : ActionDef6S [m] subsets action6
action7S : ActionDef7S [m] :> action7
action8R = action8

action11

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

action actionl
ActionDefl [1..%*]
ordered nonunique;
/* L.)/
perform action
actionlO;
action actionll {
action
'actionll.1l"';
action
'actionll.2"';
}
}

{
perform action
actionl
ActionDefl [1..%*]
ordered nonunique;

/* ... %/

87

Element Graphical Notation Textual Notation

«view» partOActionFlowView1 : ActionFlowView)

perform actions

«part» .
part0 : PartDef0 package SwimLanes {
oarts part def Part0;
part1 : PartDef1 part def Partl;
part2 : PartDef2 part def Part2;
part partO
perform actions PartDef0 {
«action» perform action0;
part0::action0 part partl
PartDefl {
1 «performer» «performery . pe:l':form
: part0::part1 part0::part2 ; action0O.actionl;
b T el 4 perform

; actionO.action4;

‘ «action» _____ «action» }
: action1 n action2 5 part part2
: PartDef2 ({

: : ; perform
©< «ac't|on» «acpon» i action0.action2;
5 action4 i action3 5 perform

: actionO.action3;

Perform Actions

Swimlanes || |\ Tt TN J }

}

action actionO {
action actionl;
action action2;
action action3;

«perform action» action action4;

part0::action0

«view» partOActionFlowView?2 : ActionFlowView)

S, S, . first start then
. «performer» & «performer» actionl;

: part0::part1 i part0::part2 first actionl

3 3

then action2;
first action2

‘ «action» | i «action» then action3;
: action1 i action2 : first action3

then action4;

©< «action» | i | «action» first actiond
; action4 i action3 : then done;

! perform actions ! perform actions

[A

}

Note. In View2, part0 has been elided.

88 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element

Parameters
Compartment

Actions with and
without Conditional
Succession

Graphical Notation

parameters
Ain param5 : ParamDef5
in param1 : ParamDef1 [1..*] ordered nonunique
out param2 : ParamDef2
inout param3 : ParamDef3
return param4 : ParamDef4
in param6R : ParamDef6R redefines param6
in param7R : ParamDef7R :>>param7
in :>> param8
in param9S : ParamDef9S [m] subsets param9
in param10S : ParamDef10S [m] :> param10
in param11 : ParamDef11 = expression1

«action»
action1 : Action1

[quard1]

S CREEEEE

action2 : Action2

«action»
action1 : Action1

[«action»]

A\

«action»
action2 : Action2

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

{

in paraml ParamDef
[1..*] ordered
nonunique;

/* L0 x/
}

action actionl

Actionl;

action action?2

Action2;

succession actionl
if guardl then

action?2;

or

action actionl

Actionl;

if guardl then action2;
action action?2

Action2;

89

Element

Actions with Control
Nodes

Performed By
Compartment

90

Graphical Notation

«action»

action1
::; join1 ::;
[guard?] [guard1]
E decision1 '
v \V4
«action» «action»
action3 action4

|

3
[©]
=
«Q
@
-

OMG Systems Modeling Language (SysML) v2.0 Beta 1

Textual Notation

first start;

then fork forkl;
then actionl;
then action2;

action actionl;
then joinl;

action action2;
then joinl;

join joinl;
then decide decisionl;
if guard2 then
action3;
if guardl then
action4;

action action3;
then mergel;
action action4;
then mergel;

merge mergel;
then done;

No textual notation

Element

Action with Loop
(body in textual
notation)

Graphical Notation

«action»
actionWithLoop

attributes
X : Integer
increment : Integer = 1
y : Integer

action flow

A4
[«assign»]

X:=1

A4
«loop»
loop1

body
{assigny := 2*x;
then assign x := x+increment; }

until x >=10;

®

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

package Loop {
action
actionWithLoop {
attribute
x:Integer := 1;
attribute
increment:Integer = 1;
attribute
y:Integer;
loop action loopl
{
assign y :=
2*%%;
then assign x
:= x+increment;
} until x >= 10;
then done;

91

Element Graphical Notation Textual Notation

«action»
actionWithLoop

attributes
X : Integer
increment : Integer = 1

y : Integer
action flow
\Y
[«assign»]
X'._1 package Loop {
E action
- \/ N actionWithLoop {
«loop» attribute
| 1 x:Integer := 1;
oop attribute
action flow increment:Integer = 1;
attribute
Action with Loop ‘ y:Integer;
(body in graphical : loop action loopl
notation) {
STt assign y :=
E ' 2*%x;
' Y then assign x
: [«aSSign»] := x+increment;
H — % } until x >= 10;
. y '_.2 X then done;
: : }
: b4)
! «assign»
' | X := x+increment
else
[e=10]
. J

92 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation

e A
«accept action»

trigger1 : Trigger

parameters

inout scene : Scene :>> payload

\in :>> receiver = viewPort

= «accept action»

Accept Action trigger1 : Trigger1

scene : Scene {} ’|‘ receiver

«accept action»

trigger1 : Trigger1

«accept» :Scene «via» viewPort

payload : Scene‘@_’ mreceiver

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

port viewPort;
item def Scene;

action triggerl

Trigger accept scene :

Scene wvia viewPort;

93

Element Graphical Notation Textual Notation

g
» «send action»

send1 : Send1

parameters

in :>> payload = Show(shoot.picture)

\in :>> receiver = displayPort

- «send action»
send1 : Send1
payloadm mreceiver
» ;
«send action item def Picture;
send1 : Send1 item picture : Picture;
«send» Show(shoot.picture) «to» displayPort port displayPort;
Send Action payloadm Mreceiver action def Sendl;
action sendl : Sendl
- send Show (picture) via
[H) displayPort;
«send action» pLay ’
send1 : Send1
parameters

in :>> payload = Show(shoot.picture)
in :>> receiver = displayPort

\in item picture

mpicture

» «send action»

send1 : Send1

payloadm mreceiver

94 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation
viewPort
()
(J
«part»
camera

B (accept action»
trigger

«accept» :Scene «via» viewPort

. I_Jscene : Scene
]

Vi I_-Iscene

«action»
focus : Focus

I_Jimage

\

: y
Accept and Send .
Action Flow \Vi N§|lmage
«action»
shoot : Shoot

I_incture

\:/ I_‘Ipicture
» «send action»
«send» Show(shoot.picture)

«via» displayPort

«part»
screen

7.16.2 Action Definitions and Usages

Textual Notation

part camera {
port viewPort;
port displayPort;

action takePicture
TakePicture {
action trigger
accept scene : Scene
via viewPort;
then action focus
Focus {
in item scene
= trigger.scene;
out item image;
}
flow from
focus.image to
shoot.image;
then action shoot
Shoot {
in item image
flow from focus.image;
out item
picture;
}
then send
Show (shoot.picture) wvia
displayPort;
}
}

part screen {
port displayPort;
}

calc def Show {

in item picture;

item
processedPicture;

/* process picture
*/

return
processedPicture;

}

An action definition or usage (that is not of a more specialized kind) can be declared as a kind of occurrence
definition or usage (see 7.9.2), using the kind keyword action. An action usage must only be defined by action

definitions (of any kind) or KerML behaviors (see [KerML, 7.4.7]).

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Any directed features declared in the body of an action definition or usage are considered to be owned parameters of
the action. Features with direction in are input parameters, those with direction out are output parameters, and
those with direction inout are both input and output parameters.

action def TakePicture {
// The following two features are considered parameters.
in scene : Scene;
out picture : Picture;

bind focus.scene = scene;

action focus : Focus { in scene; out image; }
first focus then shoot;

flow focus.image to shoot.image;

action shoot : Shoot { in image; out picture; }
bind picture = focus.picture;

If an action definition has superclassification relationships (implicit or explicit) with other action definitions (or
KerML behaviors), then each of the owned parameters of the specialized action definition must redefine, in order,
the parameter at the position of each of the general action definitions. The redefining parameters must have the same
direction as the redefined parameters.

action def A { in al; out a2; }
action def B { in bl, out b2; }
action def C specializes A, B {
in cl redefines al redefines bl;
out c2 redefines a2 redefines b2;

If an action definition has a single superclassification, then the specialized action definition may declare fewer
owned parameters than the general action definition, inheriting any additional parameters from the general definition
(which are considered to be ordered after any owned parameters). If there is more than one superclassification, then
every parameter from every general action definition must be redefined by an owned parameter of the specialized
action definition. If the required redefinitions are not explicitly declared for a parameter, then the parameter is
considered to implicitly have redefinitions sufficient to meet the stated requirements.

action def A1 :> A { in aa; } // aa redefines A::al, A::a2 1is inherited.
action def Bl :> B { in bl; out b2; inout b3); // Redefinitions are implicit.
action def Cl1 :> Al, Bl { in cl; out c2; inout c3; }

If an action usage has any type of specialization relationship (i.e., feature typing, subsetting or redefinition, implicit
or explicit) with an action definition or usage (or KerML behavior or step), the rules for the redefinition of the
parameters of the general definitions and usages are the same as given for the redefinition of parameters of an action
definition above.

action focus : Focus {
// Parameters redefine parameters of Focus.
in scene;
out image;

action refocus subsets focus; // Parameters are inherited.
Binding and flow connection usages (see 7.13.3 and 8.4.9.6) can be used to connect subactions in the body of an

action definition or usage. In addition, the feature value shorthand for binding (see 7.13.4) is often useful for action
parameters.

96 OMG Systems Modeling Language (SysML) v2.0 Beta 1

action providePower : ProvidePower {
in fuelCmd : FuelCmd;
action generatePower : GeneratePower {
in fuelCmd : FuelCmd = providePower::fuelCmd;
out generatedTorque : Torque;

flow generatePower.generatedTorque
to transmitPower.generatedTorque;

action transmitPower : TransmitPower {
in generatedTorque : Torque;
out transmittedTorque;

//

The base action definition and usage are Action and actions from the Actions library model (see 9.2.9). (For
other semantic constraints on action usages, see 8.4.12.)

7.16.3 Control Nodes

A control node is a special syntactic notation for an action usage whose definition is a concrete specialization of the
abstract action usage ControlAction from the Actions library model (see 9.2.9). A control node is declared like
a normal action usage (see 7.16.2), but using one of the keywords shown in Table 15 instead of the keyword
action. A control node can only be declared in the body of an action definition or usage and implicitly subsets the
action usage shown in the table corresponding to its keyword, thereby inheriting the corresponding definition. A
control node is always composite, so the ref keyword is never used in a control node declaration. A control node

declaration can have a body, but only containing annotating elements related to it via annotation relationships (see
8.2.2.4.1).

Table 15. Control Node Definitions

Keyword Subsetting Definition
merge Actions::Action::merges Actions::MergeAction
decide Actions::Action::decisions Actions::DecisionAction
join Actions::Action::joins Actions::JoinAction
fork Actions::Action::forks Actions::ForkAction

Control nodes are used to control the sequencing of other action usages connected to them via sucessions. The
following rules apply to these connections.

1. Incoming successions to a merge node must have source multiplicity 0..1 and subset the
incomingHBLink feature inherited by MergeAction from the Kernel Semantic Library Behavior
ControlPerformances: :MergePerformance (see [KerML, 9.2.9]).

2. Outgoing successions from a decide node must have target multiplicity 0..1 and subset the
outgoingHBLink feature inherited from the Kernel Library Behavior
ControlPerformances: :DecisionPerformance (see [KerML, 9.2.9)).

3. Incoming successions to a join node must have source multiplicity 1..1.

4. Outgoing successions from a fork node must have target multiplicity 1..1.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 97

These rules shall be enforced in the abstract syntax, even if not shown explicitly in the concrete syntax notation for a
model. (See also 8.4.12.4 on the semantic constraints related to control nodes.)

// Both actionl and action2 will proceed concurrently
// after forkl.

fork forkl;

first forkl then actionl;

first forkl then action2;

action actionl;
action action2;

// joinl will be performed after both actionl
// and action2 have completed.

first actionl then joinl;

first action2 then joinl;

join joinl;

first joinl then decisionl;

// One of action3 or action4 will be chosen

// (non-deterministically) to be performed after decisionl.
decide decisionl;

first decisionl then action3;

first decisionl then action4;

action action3;
action action4;

// mergel will be performed after either action3
// or action4 have completed.

first action3 then mergel;

first action4 then mergel;

merge mergel;

7.16.4 Succession Shorthands

The basic notation for successions (see 7.13.5) may be used to specify the sequencing of action usages within the
body of an action definition or usage. There are also additional textual notation shorthands that may be used only
within the body of an action definition or usage, as described below. Further, every action inherits the features
start and done from the base action definition Actions: : Action, which represent the start and end snapshots of
the action.

The source of a succession may be specified separately from the target by using the keyword £irst followed by a
qualified name or feature chain for the source action usage. Similarly, the target of a succession may be specified
separately from the source by using the keyword then followed by a qualified name or feature chain for the target
action usage.

first actionl;
then action2;

// The above two declarations are together
// equivalent to the following single succession.

first actionl then action2;

The then keyword may also be followed by a complete action usage declaration, rather than just the name.

98 OMG Systems Modeling Language (SysML) v2.0 Beta 1

first actionl;
then action action2;

// The above two declarations are together
// equivalent to the following.

first actionl then action2;

action action2;

The then shorthand can be used lexically following any action usage, not just following a £irst declaration, with

the preceding action usage becoming the source of the succession. This is particularly useful when a sequence of

actions is to be performed successively or in a loop.

first start;

then merge loop;

then action initialize;
then action monitor;
then action finalize;
then loop;

The source of a succession must be an occurrence usage. Therefore, the source of a succession represented using the

then shorthand is actually determined as the nearest occurrence lexically previous to the then, skipping over any

intervening non-occurrence usages (and conditional successions, see 7.16.5. Since a succession is not an occurrence

usage, this allows several then successions to be placed in a sequence after a common source action usage. This is

particularly useful for specifying multiple successions outgoing from fork and decide nodes.

// The two successions following forkl both have
// forkl as their source.
fork forkl;

then actionl;

then action2;

action actionl;
then joinl;

action action2;
then joinl;
join joinl;

// The two successions following decisionl both have
// decisionl as their source.
then decide decisionl;

then action3;

then action4;

action action3;
then mergel;

action action4;
then mergel;

merge mergel;

7.16.5 Conditional Successions

A succession within the body of an action definition or usage may be given a guard condition. A guard is given as a
Boolean-valued expression preceded by the keyword i£. It is placed in the declaration of the succession (see 7.13.5)

after the specification of the source of the succession and before the specification of the target.

OMG Systems Modeling Language (SysML) v2.0, Beta 1

99

succession conditionalOnActive
first initialize if isActive then monitor;

Such a conditional succession actually declares a special transition usage (see also 7.17.3 on transition usages in
state models), which is a kind of action usage defined by the action definition DecisionTransitionAction from
the Actions model library (see 9.2.9). The transition usage performs the evaluation of the guard expression and, if
true, asserts the existence of the succession. (See 8.4.12.3 on the semantic constraints related to decision transition
usages used for conditional successions.)

As usual, if the declaration part is empty, the keyword succession may be omitted. The source for the succession
may then be further omitted, in which case the source is identified from a lexically previous action usage, as for the
then shorthand described in 7.16.4. Further, the keyword else may be used in place of a guard expression to
indicate a succession to be taken if the guards evaluate to false on all of an immediately preceding set of conditional
successions. However, the target of a conditional succession must be specified as a qualified name or feature chain
and cannot be a full action usage declaration, even when the shorthand notation is used.

The conditional succession shorthand notation is particularly useful for notating several conditional successions
outgoing from a decide node.

merge loop;
action checkLevel { out level; }

decide;
if level <= refilllevel then refill;
if level >= maxLevel then drain;
else continue;

action refill;
then loop;

action drain;
then loop;

action continue;

7.16.6 Perform Action Usages

A perform action usage is declared as an action usage (see 7.16.2) but using the kind keyword perform action
instead of just action. A perform action usage is a kind of event occurrence usage (see 7.9.5) for which the event
occurrence is an action usage, known as the performed action. As for an event occurrence usage, the performed
action is related to the perform action usage by a reference subsetting relationship, specified textually using the
keyword references or the symbol : : >. Or, if the perform action usage has no such reference subsetting, then the
performed action is the perform action usage itself.

part def Vehicle {
perform action powerVehicle references VehicleActions::providePower;
abstract perform action moveVehicle; // Performed action is itself.

A perform action usage may also be declared using just the keyword perform instead of perform action. In this
case, the declaration does not include either a name or short name. Instead, the performed action of the perform
action usage is identified by giving a qualified name or feature chain immediately after the perform keyword.

part vehicle : Vehicle {
// The performed action is VehicleActions::move.

100 OMG Systems Modeling Language (SysML) v2.0 Beta 1

perform VehicleActions::move :> Vehicle::moveVehicle;

If a perform action usage is used in the body of a part definition or usage, then the part is considered to be the
performer of the performed action (see also 8.4.12.10 on the semantics of perform action usages). A perform action
usage may also be used in the body of another action definition or usage, in which case it acts like a referential "call"
of the performed action by the containing action.

action initialization {
in item device;
perform Utility::startUpCheck ({
in component = device;
out status;

The ref keyword may be used in the declaration of a performed action usage, but a perform action usage is always
referential, whether or not ref is included in its declaration.

7.16.7 Send Action Usages

A send action usage is declared as an action usage (see 7.16.2) implicitly defined by the action definition
SendAction from the Actions library model (see 9.2.9). A sendAction has three input parameters:

1. aset of payload values
2. asender occurrence
3. areceiver occurrence

The behavior of a SendAction is to transfer the payload from the sender to the receiver.

In the textual notation for a send action usage, values for the three SendAction parameters are given after the
action declaration part, identified by the keywords send (payload), via (sender) and to (receiver). If the declaration
part is empty, then the action keyword may be omitted.

part monitor {
action sendReadingTo {
in part destination;

perform getReading { out reading : SensorReading; }

// Send a reading from the monitor to the destination.
action sendReading
send getReading.reading via monitor to destination;

// The following send action is equivalent to the
// one above, but without a name.
send getReading.reading via monitor to destination;

A send action usage can specify both a sender (via) and receiver (to), but it will generally give only one or the
other. When a send action usage is directly or indirectly a composite feature of a part definition or usage, then the
default for the sender (via) of the send action usage is the containing part, not the send action itself. This is known
as the default sending context.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 101

part monitor {
action sendReadingTo {
in part destination;

perform getReading { out reading : SensorReading; }

// The sender for the following send action is, by default,
// the sending context, which is the part "monitor".
send getReading.reading to destination;

If a send action usage is not in the composition hierarchy of a part definition or usage (or any item definition or
usage), then the sending context is the highest-level containing action usage. Note that a perform action usage is

always referential, so that the sending context for subactions of a perform action usage is the perform action usage
itself, not the containing performing part.

part monitor {
ref part destination;
perform action sending {
perform getReading { out reading : SensorReading; }

// The sender for the following send action is, by default,
// the sending context, which is the action "sending",

// not the part "monitor".

send getReading.reading to destination;

When sending through a port (see 7.12 on ports), the port usage will usually be the sender (via), with the actual
receiver determined by interface connections having the port usage as their source (see 7.14).

part def MonitorDevice {
port readingPort;
action monitoring {

perform getReading { out reading : SensorReading; }
send getReading.reading wvia readingPort;

A send action usage must be one of the following:
1. An owned feature of an action definition or usage.
2. The owned entry, do or exit action of a state definition or usage (see 7.17).

3. The owned effect action of a transition usage (see 7.17).

The base send action usage is sendActions from the Actions library model (see 9.2.9), which is defined by
SendAction. (See 8.4.12.5 for additional semantic constraints on send action usages.)

7.16.8 Accept Action Usages

An accept action usage is declared as an action usage (see 7.16.2) implicitly defined by the action definition
AcceptAction from the Actions library model (see 9.2.9). An AcceptAction has two parameters:

1. an output parameter for a set of payload values
2. an input parameter giving a receiver occurrence

102 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The behavior of an AcceptAction is to accept the transfer of a payload received by the given receiver, and then
output that payload.

The textual notation for an accept action usage includes special notation for declaring a usage-specific payload
parameter and giving a value for the receiver parameter. The payload parameter declaration is identified by the
keyword accept, and the expression giving the transfer receiver is identified by the keyword via. If the action
declaration part is empty, then the action keyword may be omitted.

The payload parameter declaration for an accept action usage identifies the type of values accepted by the accept
action. It is declared as a reference usage (see 7.6), but without the ref keyword or any body. If the payload
parameter declaration has the form of a single qualified name (and, optionally, a multiplicity), then the qualified
name is interpreted as the definition (type) of the payload parameter (not its name).

part controller {
action accepting {
//
action acceptReading
accept reading : SensorReading wvia controller;

// The following accept action is equivalent to the

// one above, but it does not name the accept action or
// the payload parameter.

accept SensorReading via controller;

//

A payload parameter declaration can also include a feature value (see 7.13.4). In this case, the accept action usage
will only accept exactly the value that is the result of the feature value expression. The following special notations
can also be used for the feature value of a payload parameter:

* Change trigger. A change trigger is notated using the keyword when followed by an expression whose
result must be a Boolean value. A change trigger evaluates to a ChangeSignal (as defined in the
Observation model from the Kernel Semantic Library Library [KerML, 9.2.13]) that is sent when the
result of the given expression changes from false to true (or sent immediately if the expression is true
when first evaluated).

* Absolute time trigger. An absolute time trigger is notated using the keyword at followed by an expression
whose result must be a TimeInstantvValue (see 9.8.8). An absolute time trigger evaluates to a
TimeSignal (as defined in the Trigger model from the Kernel Semantic Library Library [KerML,
9.2.14]) that is sent when the current time (relative to the 1ocalClock, which defaults to the
defaultClock, see 9.8.8) reaches the TimeInstantValue that is the result of the given expression.

* Relative time trigger. A relative time trigger is notated using the keyword after followed by an
Expression whose result must be a Durationvalue (see 9.8.8). A relative time trigger evaluates to a
TimeSignal (as defined in the Trigger model from the Kernel Semantic Library Library [KerML,
9.2.14]) that is sent when the current time (relative to the 1ocalClock, which defaults to the
defaultClock, see 9.8.8) reaches the TimeInstantValue that is computed as the result of the given
expression added to the time at which the time trigger is evaluated.

part controller {
in level : Real;
attribute threshold : Real;

action {
// Both of the following accept actions trigger (once) when the

OMG Systems Modeling Language (SysML) v2.0, Beta 1 103

// given expression becomes true.
accept : ChangeSignal = Triggers::triggerWhen ({ level > threshold });
accept when level > threshold;

// The following accept action triggers at the given date and time.
accept at Iso8601lDateTime ("2024-02-01T00:00:002") ;

// The following accept action triggers 30 seconds after the evaluation
// of its time trigger.
accept after 30 [s];

When an accept action usage is directly or indirectly a composite feature of a part definition or usage, then the
default for the receiver (via) of the accept action usage is the containing part, not the accept action itself. This is
known as the default accepting context.

part controller {
action accepting {
// The receiver for the following accept action is, by default,
// the accepting context, which is the part "controller".
accept SensorReading;

//

If an accept action usage is not in the composition hierarchy of a part definition or usage (or any item definition or
usage), then the accepting context is the highest-level containing action usage. Note that a perform action usage is
always referential, so that the accepting context for subactions of a perform action usage is the perform action usage
itself, not the containing performing part.

part controller {
perform action accepting {
// The receiver for the following accept action is, by default,
// the accepting context, which is the "accepting" action,
// not the part "controller".
accept reading : SensorReading;

//

When accepting through a port (see 7.12 on ports), the port usage is the receiver (via).

part def ControllerDevice ({
port sensorPort;
action control ({
accept reading : SensorReading wvia sensorPort;

An accept action usage must be one of the following:
1. An owned feature of an action definition or usage.

2. The owned entry, do or exit action of a state definition or usage (see 7.17).
3. The owned effect action or accept action of a transition usage (see 7.17).

104 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The base accept action usage is acceptActions from the Actions library model (see 9.2.9), which is defined by
AcceptAction. (See 8.4.12.6 for additional semantic constraints on accept action usages.)

7.16.9 Assignment Action Usages

An assignment action usage is declared as an action usage (see 7.16.2) that is implicitly defined by the action
definition AssignmentAction from the Actions model (see 9.2.9). An AssignmentAction sets a referent
feature of a target occurrence to a new assigned value. In the textual notation for an assignment action usage, these
three things are specified in an assignment part between the usual action declaration part and the action body (if
any). An assignment part consists of the keyword assign followed by an expression that evaluates to the target and
a feature chain identifying the referent, separated by a dot (.), followed by the symbol := and an expression whose
result is the assigned value. If the declaration part is empty, then the action keyword may be omitted.

action def UpdateVehiclePosition {
in part sim : Simulation;
in attribute deltaT : TimeDurationValue;

// The target of the assignment below is "sim".
// The referent feature chain is "vehicle.position".
assign sim.vehicle.position :=

sim.vehicle.position + sim.vehicle.velocity * deltaT;

// After the above assignment "sim.vehicle.position" has the
// value of the result of the assigned value expression,
// evaluated at the time of the assignment.

action def RecordNames {
in item record : Record;
in item entries : Entry[l..*];

// "entries.name" evaluates to the names of all entries.
// These values are assigned to the "names" feature of "record".
assign record.names := entries.name;

If the target expression of an assignment action usage is omitted, then the target is implicitly the occurrence owning
the assignment action usage.

action counter {
// This attribute is initialized using a feature value.
attribute count : Natural := 0;

// The target of the following assign action usage is
// implicitly the action "counter".
assign count := count + 1;

!/

Every assignment action usage must be one of the following:
1. An owned feature of an action definition or usage.
2. The owned entry, do or exit action of a state definition or usage (see 7.17).

3. The owned effect of a transition usage (see 7.17).

The base assignment action usage is assignmentActions from the Actions library model (see 9.2.9). (See
8.4.12.7 for other semantic constraints on assignment action usages.)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 105

7.16.10 If Action Usages

An if action usage is an action usage that is implicitly defined by one of the action definitions I fThenAction or
IfThenElseAction from the Actions model (see 9.2.9). In the textual notation, an if action usage can have a
typical action declaration (see 7.16.2), but without the usual action body. Instead, the action declaration part is
followed by the keyword i £, which introduces a Boolean-valued condition expression, followed by a then clause
and, for an ITfThenElseAction, the keyword else and an else clause. The behavior of an if action usage is to first
evaluate the condition expression. If the result is true, then the then-clause is performed, otherwise the else-clause is
performed, if there is one.

Each of the then-clause and the else-clause is itself notated as an action usage, but with the body required to be
given using curly braces { ... }, with a semicolon not allowed for an empty body.

action test if speed < lowerLimit
action increase : IncreaseSpeed { }
else
action main : MaintainSpeed { }

If the if action usage does not include a declaration part, the leading action keyword can be omitted. If either or
both of the clauses have no declaration part, then the action keyword can be omitted for them, too, leaving only
their bodies surrounded by curly braces.

if selectedSensor != null ({

assign reading := selectedSensor.reading;
} else {

assign reading := undefinedValue;

}

With one except, only the basic form of action declaration can be used for the clauses of an if action usage, not the
special notations for perform action usages, send action usages, etc. The except is that, if the else-clause is itself an
if action usage, then the special if action usage notation can be used. This allows for a typical "else if" structure for
expressing the performance of a sequence of multiple tests.

if threat.level == high then {
perform soundAlarm {in cause = threat;}
} else if threat.level == medium then ({
action sendNotification {in msg = threat;}
} else {
action beginMonitoring {in target = threat;}

}

7.16.11 Loop Action Usages

A loop action usage is an action usage that is implicitly defined by one of the concrete specializations of the abstract
action definition LoopAction from the Actions model (see 9.2.9). There are two forms of loop action usages, the
while loop action usage and the for loop action usage. In the textual notation, both kinds of loop action can have a
typical action declaration (see 7.16.2), but without the usual action body. Instead, the body is replaced with special
notations specific to each kind of LoopAction.

While Loops
A while loop action usage is implicitly defined by the WhileLoopAction specialization of LoopAction. For a

while loop action usage, the action declaration part is followed by the keyword while, which introduces a Boolean-
valued while expression, followed by a body clause, and then, optionally, the keyword until, which introduces a

106 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Boolean-valued until expression terminated with a semicolon. The behavior of the while loop action usage is to
repeatedly perform the body clause as long as the while expression evaluates to true and the until expression (if there
is one) evaluates to false. The while expression is evaluated before the first iteration of the body clause, but the until
expression is not evaluated for the first time until after the first iteration of the body clause (if the while expression
evaluates to true).

Similarly to the then and else clauses of an if action usage (see 7.16.10), the body clause is itself notated as an action
usage, but with its body required to be given using curly braces { ... }, with a semicolon not allowed for an empty
body.

action advance while t < endTime
action step {
perform advanceState {
:>> stateVector = systemState;
:>> deltaT = dt;

}
then assign t := t + dt;
} until stateVector.position >= endPosition;

The action keyword can be omitted for the while loop action usage itself and/or for the body clause, if they have
no action declaration part.

while not ready {
assign ready := poll (device);

}

The keyword loop may be used as a shorthand for while true. This is useful for a while loop that is designed to
be non-terminating or will be terminated with just an until expression.

loop {
assign charge := MonitorBattery();
then if charge < 100 {
action AddCharge;

t
} until charge >= 100;

For Loops

A for loop action usage is implicitly defined by the ForLoopAction specialization of LoopAction. For a for loop
action usage, the action declaration part is followed by the keyword for, which introduces a loop variable
declaration followed by the keyword in and a sequence expression, and, after that, a body clause. The behavior of
the for loop action usage is to first evaluate the sequence expression, which should result in a sequence of values.
The body clause is then performed iteratively, with the loop variable assigned to each value sequentially for each
iteration.

As for a while loop action usage, the body clause is itself notated as an action usage, but with its body required to be
given using curly braces { ... }, with a semicolon not allowed for an empty body.

action dynamicScenario

for power : PowerValue in powerProfile
action dynamicsStep {
assign position := ComputeDynamics (position, power);

}

The action keyword can be omitted for the for loop action usage itself and/or for the body clause, if they have no
action declaration part.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 107

for power : PowerValue in powerProfile {
assign position := ComputeDynamics (position, power);

}

The . . operator can be used to construct a sequence of Integer values between two bounds (inclusive), which can be
useful as the sequence expression of a for loop (especially for indexing).

for i in 1..scenario->size() {
assign positionList :=
positionList->including (scenario.postion# (i));
assign velocityList :=
velocityList->including (scenario.velocity# (i));

7.17 States

7.17.1 States Overview
Metamodel references:

e Textual notation, 8.2.2.17

» Graphical notation, 8.2.3.17
» Abstract syntax, 8.3.17

e Semantics, 8.4.13

States

A state definition is a kind of action definition (see 7.16) that defines the conditions under which other actions can
execute. A state usage is a usage of a state definition. State definitions and usages are used to describe state-based
behavior, where the execution of any particular state is triggered by events.

A state definition or usage can contain specially identified action usages that are only performed while the state is
activated.

* An entry action starts when the state is activated.

* A do action starts after the entry action completes and continues while the state is active.

* An exit action starts when the state is exited, and the state becomes inactive once the exit action is
completed.

State definitions and usages follow the same patterns that apply to structural elements (see 7.6). States can be
decomposed into lower-level states to create a hierarchy of state usages, and states can be referenced by other states.
In addition, a state definition can be specialized, and a state usage can be subsetted and redefined. This provides
enhanced flexibility to modify a state hierarchy to adapt to its context.

Exhibited States

A state usage can be a feature of a part definition or a part usage, which can exhibit a state by referencing the state
usage or by containing an owned state usage. Whether owned or referenced, the state usage that the part exhibits
can represent a top state in a hierarchy of state usages.

An exhibit state usage is a state usage that specifies that a state is exhibited by the owner of the exhibit state usage.
An exhibit state usage is referential, which allows the exhibited state behavior to be defined in a different context
than that of the exhibitor (perhaps by a state usage in a state decomposition hierarchy). However, if the owner of the
exhibit state usage is an occurrence, then the referenced state performance must be carried out entirely within the
lifetime of the performing occurrence.

108 OMG Systems Modeling Language (SysML) v2.0 Beta 1

In particular, an exhibit state usage can be a feature of a part definition or usage, specifying that the referenced state
is exhibited by the containing part. Typically, the exhibited state and its substates will reflect conditions of the
exhibiting part, such as the operating states of a vehicle. The values of the exhibit state usage are then references to
occurrences of the state when the exhibiting part is "in" that state.

Transitions

State usages can be connected by transition usages, which can activate and deactivate the state usages. The
triggering of a transition usage from its source state usage to its target state usage deactivates the source state and
activates the target state. The trigger of a transition usage is an accept action usage (see 7.16), which accepts an
incoming transfer. The transition usage can contain a guard condition, which is a Boolean expression (see 7.18) that
must evaluate to true for the transition to occur. In addition, a transition usage may specify an effect action usage
that starts if the transition is triggered, after the source state is deactivated, and must complete before the target state
is activated. If the triggering transfer of a transition has a payload, then this payload is available for use in the guard
condition and effect action of the transition, and after the transition completes.

Parallel States
A parallel state is one whose substates are performed concurrently. As such, no transitions are allowed between the
substates of a parallel state. In contrast, if a non-parallel state has substates then, exactly one of the substates shall be

active at any point in time in the lifetime of the containing state after completion of the entry action (if any).

Table 16. States — Representative Notation

Element Graphical Notation Textual Notation
«state def»
StateDef1
state def StateDefl;
State Definition «state def» state def StateDefl {
StateDef1 /* members */
}
compartment stack
«state»
| state1 : StateDef1) state statel
StateDefl;
'd 2\
State «state» state statel
state1 : StateDef1 StateDefl ({
/* members */
compartment stack }
&)
4 \
«statex
state1 : StateDef1 state statel {
: - entry actiol;
State Wlth eptry, do actions do action?;
and exit actions. entry action1 exit action3;
do action2 }
exit action3
. y,

OMG Systems Modeling Language (SysML) v2.0, Beta 1 109

Element

State with Graphical
Compartment with
standard state
transition view
(sequential states)

State with Graphical
Compartment with
standard state
transition view
(parallel states)

Transition

110

Graphical Notation

«state»
compositeState1

state1
_

trigger1[guard1] / action1

[

~
«statex»
compositeState2
«parallel»

4 State1 h
state1.1

- J

(State2)
state2.1

N\ J)

«state»
state1 : State1

trigger1[guard1] / action1

«state»
state2 : State2

OMG Systems Modeling Language (SysML) v2.0 Beta 1

Textual Notation

state compositeStatel ({
entry; then statel;
state statel;
transition
first statel
accept triggerl
if guardl
do actionl
then state2;
state state2;
then done;

state compositeState?2
parallel ({
state statel {
entry; then
'statel.1l';
state 'statel.l';
}
state state2 {
entry; then
'state2.1';
state 'state2.1';

state statel
state state2
transition
first statel
accept triggerl
if guardl
do actionl
then state2;

Statel;
State2;

or

state statel Statel;
accept triggerl
if guardl
do actionl
then state2;

state state2 State2;

Element

Exhibit

Exhibit State

States Compartment

Graphical Notation
«part»
part1 : Part1
«exhibit»

«state»
state1 : State1

«part»
part1 : Part1

«exhibit»

«state»
state1 : State1

states
Astate? : StateDef?2

state1 : StateDef1 [1..*] ordered nonunique
state3R : StateDef3R redefines state3
state4R : StateDef4R :>> state4

>> stated

state6S : StateDef6S [m] subsets state6
state7S : StateDef7S [m] :> state7

state8R = state8

ref state9 : StateDef9

exhibit state10

state11

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

part partl : Partl ({
exhibit statel;
}

part partl : Partl ({
exhibit state statel

: Statel;

}

state statel :
StateDef [1..%*]
ordered nonunique;

/* .. %/

exhibit state

statel0;

state statell {
state 'statell.l';
state 'statell.2';

111

Element Graphical Notation Textual Notation

exhibit states
Astate? : StateDef?2

state1 : StateDef1 [1..*] ordered nonunique
state3R : StateDef3R redefines state3
state4R : StateDef4R :>> state4

>> state5

state6S : StateDef6S [m] subsets state6
state7S : StateDef7S [m] :> state7 .
Exhibit States state8R = state8 StateDef [1..*]

exhibit state statel

Compartment state11 P orde::c/ad nonunique;
}
exhibits
Astate2
state1
. exhibited by

Exhibited By item1 : [temDef1 No textual notation
Compartment

7.17.2 State Definitions and Usages

A state definition or usage is declared as an action definition or usage (see 7.16.2), but using the keyword state
instead of action. In addition, entry, do and exit actions can be declared (at most one of each) in the body of a state
definition or usage, using the keywords entry action,do action,and exit action, followed by an action
declaration and body, in the usual form.

state def Exercising {
entry action warmup : WarmUp;
do action exercise : Exercise {
action strengthTraining;
then action cardioTraining;
}
exit action cooldown : Cooldown;

}

In addition to the generic action notation as above, the special notations for send action usages (see 7.16.7), accept
action usages (see 7.16.8), and assignment action usages (see 7.16.9) can be used for entry, do, and exit actions.

state def Operating {

entry assign stateCode := StateCodes::Operating;
do send ReadySignal () to Controller;

112 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The entry, do, and exit keywords can also be used without any action keyword. If the keyword is immediately
followed by a semicolon ;, then they are empty actions. If they are followed by a qualified name or feature chain for
an action usage, then this is a shorthand for relating the entry, do, or exit action to the identified action usage via
reference subsetting (see also 7.13.2).

action monitorTemperature;

state def TurnedOn {
// This is an empty entry action.
entry;

// The following is equivalent to
// do action references monitorTemperature;
do monitorTemperature;

A state definition or usage may hierarchically contain state usages in its body. By default, these substate usages are
considered to be exclusive, that is, their performances do not overlap in time. However, if the keyword parallel is
added to a state definition or usage, just before the body part, then the containing state definition or usage becomes a
parallel state, and its contained state usages can be performed in parallel. (However, no transitions are allowed
between concurrent states; see 7.17.3.)

state def VehicleStates parallel ({
// These substates are performed concurrently.
state OperationalStates;
state HealhStates;

The base state definition and usage are State and states from the States library model (see 7.17). (For other
semantic constraints on state usages, see 8.4.13.)

7.17.3 Transition Usages

A transition usage is also a kind of action usage (see 7.16.2) that can be used within non-parallel states. (A parallel
state with concurrent substates is not allowed to have transitions to or from its substates.) A transition usage is
implicitly defined by the action definition StateTransitionAction from the States library model (see 7.17). A
transition usage also relates a source state usage to a farget state usage, declaring that it is possible to transition from
a performance of the source state to a new performance of the target state.

In addition, a transition usage can have an entry or exit action as a source or target. Indeed, for a non-parallel state
definition or usage with nested state usages, the initial state usage is indicated by a transition from the entry action to
that state usage, representing that this is the state that is entered on completion of the entry action.

A transition usage is identified with the keyword transition. The source and target states are identified using the
same keywords as for a succession (see 7.13.5), first and then.

state def OnOffl {
entry action init;

transition first init then off;

state off;
state on;

transition off on first off then on;
transition on off first on then off;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 113

A transition usage can also have a Boolean-valued guard expression. The guard expression is evaluated during the
performance of the source, and the transition usage is only enabled to possibly cause a transition out of the source
state when the guard evaluates to true. In the textual notation, the guard expression is given after the keyword if,
between the source and target parts.

state def OnOff2 {
in attribute isInitOff;
in attribute isEnabled;

entry action init;
transition first init if isInitOff then off;
transition first init if not isInitOff then on;

state off;
state on;

transition off on first off if isEnabled then on;
transition on off first on if isEnabled then off;

A transition usage can also have an accepter, which is an accept action usage use to trigger the transition. The
accepter action for a transition usage is placed after the guard expression and notated using the accept keyword,
with its payload and receiver parameters specified exactly as discussed in 7.16.8. Transition usages from the entry
action are not allowed to have accepters.

item def TurnOn;

state def OnOff3 {
in attribute isInitOff;
in attribute isEnabled;

port commPort;

entry action init;
transition first init if isInitOff then off;
transition first init if not isInitOff then on;

state off;
state on;

transition off on
first off
if isEnabled
accept TurnOn wvia commPort
then on;
transition on off
first on
if isEnabled
accept after 5[min]
then off;

Finally, a transition usage can have an effect action, which is an action usage that is performed if the transition usage
is triggered. An effect action is notated using the keyword do in the same way as a do action on a state definition or
usage (see 7.17.2). In the textual notation for a transition usage, it is also placed between the source and target parts,
after the guard and accepter (if the transition usage has those).

action def PowerUp;
item def TimeoutSignal;

114 OMG Systems Modeling Language (SysML) v2.0 Beta 1

state def OnOff4d {
in attribute isInitOff;
in attribute isEnabled;

port commPort;

entry action init;
transition first init if isInitOff then off;
transition first init if not isInitOff then on;

state off;
state on;

transition off on
first off
if isEnabled
accept TurnOn wvia commPort
do action powerUp : PowerUp;
then on;
transition on off
first on
if isEnabled
accept after 5[min]
do send TimeoutSignal () wvia commPort
then off;

In the textual notation, there is also a shorthand for a transition usage without a declaration part, in which both the
transition keyword and the source part can be omitted. In this case, the source is taken to be the closest lexically
previous state usage, which means the transition usages out of a certain state usage need to be placed essentially
immediately after their source states. This notation can also be used when the transition source is the entry action,
which is particularly useful, because it means the entry action does not need to be named.

state def OnOff5 {
in attribute isInitOff;
in attribute isEnabled;

port commPort;

entry;
if isInitOff then off;
if not isInitOff then on;

state off;
if isEnabled
accept TurnOn wvia commPort
do action powerUp : PowerUp;
then on;

state on;
if isEnabled
accept after 5[min]

do send TimeoutSignal () wvia commPort
then off;

In summary, the guard and accepter of a transition action usage determine whether a transition usage is triggered:

1. A transition usage can only be triggered during a performance of its source.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 115

2. If atransition usage has a guard expression, it can only be triggered if the guard expression evaluates to
true.

3. Ifatransition has an accepter, and it meets the above conditions, then it is triggered if the accepter can
accept in incoming transfer via its receiver parameter, in which case the accepter is performed as described
in 7.16.8 (see also 8.4.12.6).

If a transition usage is triggered, then it establishes a succession relationship between the source performance and a
new performance of the target, and a transition is performed as follows:

If the source state has a do action that is still being performed, that is interrupted.
Then, if the source state has an exit action, that is performed.

Once that completes, if the transition usage has an effect action, that is performed.
Once that completes, if the target state has an entry action, that is performed.
Once that completes, if the target state has a do action, that is performed.

SNk =

7.17.4 Exhibit State Usages

An exhibit state usage is declared as a state usage (see 7.17.2) but using the kind keyword exhibit state instead
of just state. An exhibit state usage is a kind of perform action usage (see 7.16.6) for which the action usage is a
state usage, known as the exhibited state. As for a perform action usage, the exhibited state is related to the exhibit
state usage by a reference subsetting relationship, specified textually using the keyword references or the symbol
: :>. Or, if the exhibit state usage has no such reference subsetting, then the exhibited state is the exhibit state usage
itself.

part def Vehicle {
exhibit state operatingState references VehicleStates::operating;
abstract exhibit state monitoringState; // Exhibited state is itself.
}

An exhibit state usage may also be declared using just the keyword exhibit instead of exhibit state. In this
case, the declaration does not include either a name or short name. Instead, the exhibited state of the exhibit state
usage is identified by giving a qualified name or feature chain immediately after the exhibit keyword.

part vehicle : Vehicle {
// The exhibited state is VehicleActions::monitoring.
exhibit VehicleStates::monitoring :> Vehicle::monitoringState;

If an exhibit state usage is used in the body of a part definition or usage, then the part is considered to be the
performer of the exhibit state usage (see also 8.4.13.4 on the semantics of exhibit state usages). The ref keyword
may be used in the declaration of a exhibit state usage, but a exhibit state usage is always referential, whether or not
ref is included in its declaration.

7.18 Calculations
7.18.1 Calculations Overview
Metamodel references:

* Textual notation, 8.2.2.18

* Graphical notation, 8.2.3.18

» Abstract syntax, 8.3.18
o Semantics, 8.4.14

116 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A calculation definition is a kind of action definition (see 7.16) that has a distinguished parameter with direction
out called the result parameter (which is usually the only out parameter). A calculation definition specifies a
reusable computation that returns a result in the result parameter. A calculation usage is an action usage that is a
usage of a calculation definition.

In addition to its parameters, a calculation definition or usage may have features that are calculation or action usages
that carry out steps in the computation of the result of the calculation. The calculation may also have other features
that are used to record intermediate results in the computation. The final result is specified as an expression written
in terms of the input parameters of the calculation and any intermediate results.

KerML includes extensive syntax for constructing expressions, including traditional operator notations for functions
in the Kernel Function Library, which is adopted in its entirety into SysML. In addition, a calculation definition is
also a KerML function, and a calculation usage is itself a KerML expression. This allows a calculation definition or
usage to also be invoked using the notation of a KerML invocation expression. (See the KerML Specification
[KerML, 7.4.9] for a complete description of the KerML expression sublanguage.)

Calculation definitions are often used to define mathematical functions, in which case the defined computation
should be pure. A pure calculation has the following properties:

1. Two invocations of the calculation definition with the same values for the input parameters always
produce the same values for the result parameter.

2. The performance of the calculation does not produce any side effects (that is, it does not effect any
occurrence that is not a composite part of its performance or that of a subaction or subcalculation).

Any subcalculations or subactions of a pure calculation must also be pure, including the final expression computing
the result. Further, the inputs of a pure calculation should either be attributes or the calculation should not rely on
features of input occurrences that may change from one invocation of the calculation definition to another.

Table 17. Calculations — Representative Notation

Element Graphical Notation Textual Notation

«calc def»

CalcDef1
calc def CalcDefl {
result expressionl
expression1 }

Calc Definition

calc def CalcDefl {

«calc def» /% members */

CalcDef1 }

compartment stack

OMG Systems Modeling Language (SysML) v2.0, Beta 1 117

Element Graphical Notation Textual Notation

4 1\
«calcy
calc1 : CalcDef1
calc calcl : CalcDefl {
result expressionl
expression1 }
Calc ~ ~
(|) calc calcl : CalcDefl {
«caic» /* members */
calc1 : CalcDef1 }
compartment stack
=)

7.18.2 Calculation Definitions and Usages

A calculation definition or usage is declared as an action definition or usage (see 7.16.2), but using the keyword
calc instead of action. As for an action definition or usage, directed usages declared in the body of a calculation
definition or usage are consider to be parameters. In addition, the result parameter for a calculation definition or
usage can be declared as an out parameter using the keyword return instead of out. Note that a calculation
definition or usage always has a result parameter, inherited if not owned.

calc def Velocity {
in v i : VelocityValue;
in a : AccelerationValue;
in dt : TimeValue;
return v_f : VelocityValue;

If a calculation definition has superclassification relationships (implicit or explicit) with action definitions (or
KerML behaviors), then the rules for the redefinition of the non-result parameters of the calculation definition are
the same as for an action definition (see 7.16.2). In addition, if a calculation definition specializes other calculation
definitions (or KerML functions), then its result parameter redefines the results parameters of the calculation
definitions it specializes, regardless of the positions of those parameters.

calc def Dynamics {
in initialState : DynamicState;
in time : TimeValue;
return : DynamicState;
}
calc def VehicleDynamics specializes Dynamics {
// Each parameter redefines the corresponding parameter of Dynamics
in initialState : VehicleState;
in time : TimeValue;
return : VehicleState;

If a calculation usage has any type of specialization relationship (i.e., feature typing, subsetting or redefinition,
implicit or explicit) with an action definition or usage (or KerML behavior or step), the rules for the redefinition of
the parameters of the general definitions and usages are the same as given for the redefinition of parameters of a
calculation definition above.

calc computation : Dynamics {
// Parameters redefine parameters of Dynamics.

118 OMG Systems Modeling Language (SysML) v2.0 Beta 1

in initialState;
in time;
return result;

}

calc vehicleComputation subsets computation {
// Input parameters are inherited, result is redefined.
return : VehicleState;

The body of a calculation definition or usage is like the body of an action definition or usage (see 7.16.2), with the
optional addition of the declaration of a result expression at the end, using the expression sublanguage from
[KerML, 7.4.9]. The result of the result expression is implicitly bound to the result parameter of the containing
calculation definition or usage..

calc def Average {
in scores[l..*] : Rational;
return : Rational;

sum(scores) / size(scores)

Note. A result expression is written without a final semicolon.

The result of a calculation definition or usage can also be explicitly bound, particularly using a feature value on the
result parameter declaration (see 7.13.4). In this case, the body of the calculation definition or usage should not
include a result expression.

calc def Average {
in scores[l..*] : Rational;
return : Rational = sum(scores) / size(scores);

The base calculation definition and usage are Calculation and calculations from the Calculations library
model (see 7.18).

7.19 Constraints

7.19.1 Constraints Overview
Metamodel references:

o Textual notation, 8.2.2.19

* Graphical notation, 8.2.3.19
» Abstract syntax, 8.3.19

e Semantics, 8.4.15

Constraint Definition and Usage

A constraint definition is a kind of occurrence definition (see 7.9) that defines a logical predicate. Similar to a
calculation definition (see 7.18), a constraint definition may have parameters with direction in. A constraint always
has an implicit Boolean-value result parameter with direction out. A constraint usage is an occurrence usage that is
the usage of a constraint definition.

Also similarly to a calculation, a constraint definition or usage may have features that are calculation or action

usages that carry out steps in the computation of the result of the calculation. The constraint may also have other
features that are used to record intermediate results in the computation. The final result is specified as an expression

OMG Systems Modeling Language (SysML) v2.0, Beta 1 119

written in terms of the input parameters of the calculation and any intermediate results. In addition, a constraint
definition is also a KerML predicate and a constraint usage is a KerML Boolean expression, which allows a
constraint definition or usage to also be invoked using the notation of a KerML invocation expression.

For a given set of input parameter values, a constraint usage is satisfied if its expression evaluates to true and is
violated otherwise. The parameters of a constraint usage may be bound to specific features whose values can be
constrained by the constraint expression. For the constraint expression {x < y}, the constraint usage may bind x to
the diameter of a bolt and bind y to the diameter of a hole that the bolt must fit into. This constraint can then be
evaluated to be true or false. E.g., if x is 3 and y is 5, then the expression x < y evaluates to true, and the
constraint is satisfied. In the general case, the expression used to define a constraint can be arbitrarily complicated,
as long as the overall expression returns a Boolean value.

A constraint usage that is a feature of another definition or usage may also directly reference features of its
containing context, in which case it may be used to effectively constrain the values of those features. In a context
with the features bolt diameter and hole diameter, a constraint usage may be defined directly without
parameters using the expression { 'bolt diameter' < 'hole diameter'}.

Asserted Constraints

In general, a constraint may be satisfied sometimes and violated other times. However, an assert constraint usage
asserts that the result of a given constraint must be always true at all times. If, at some point in time, it can be
determined that an assert constraint usage evaluates to other than its asserted value, this would be a logical
inconsistency in the model. Constraints associated with the laws of physics, for example, should be asserted to be
true, because they cannot be violated in any valid model of the real world. However, a constraint can also be
asserted simply if its satisfaction is expected to be implied within a model. That way, if the constraint is violated,
this can be flagged by tooling as needing resolution.

An assert constraint usage can also be negated, which means that the given constraint is asserted to be false rather
than true. A negated assert constraint usage can be used to assert that some condition must never happen if the
model is logically consistent.

Table 18. Constraints — Representative Notation

Element Graphical Notation Textual Notation

«constraint def»

ConstraintDef1 constraint def
ConstraintDefl;

Constraint Definition «constraint def» constraint def
ConstraintDef1 ConstraintDefl ({
/* members */
compartment stack }
(. N
«constraint»
(__constraint1 : ConstraintDef1) constraint constraintl
~ =~ ConstraintDefl;
Constraint _«constralnt» . constraint constraintl
constraint1 : ConstraintDef1 . ConstraintDefl {
/* members */
compartment stack }
\C.Q)

120 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

constraints
Aconstraint2 : ConstraintDef2
constraint1 : ConstraintDef1 [1..*] ordered nonunique

constraint3R : ConstraintDef3R redefines constraint3 {
constraint4R : ConstraintDef4R :>> constraint4 constraint
:>> constraintb constraintl
constraint6S : ConstraintDef6S [m] subsets constraint6 ConstraintDefl
constraint7S : ConstraintDef7S [m] :> constraint7 [1..%]
Constraints co:strairt1t8.Rt9=.cgnstrtair?tfiD o e ijf‘ef}ed nonunique;
Compartment ref constraint9 : ConstraintDe st eonctraint

assert constraint10

assert {boolean_expression1}
{boolean_expression1}
constraint11

require constraint12

assume constraint13

constraintl0;
constraint
{boolean expressionl}

}

{

assert constraint

constraintl
. ConstraintDefl
assert constraints [1..%]
Assert Constraints constraint10) ordered nonunique;
Compartment {boolean_expression1} Jx oL x)
assert
constraint

{boolean expressionl}

}

7.19.2 Constraint Definitions and Usages

A constraint definition or usage can be declared as a kind of occurrence definition or usage (see 7.9.2), using the
kind keyword constraint. A constraint usage must be defined by a single constraint definition or a KerML
predicate (see [KerML, 7.4.8]).

Constraint definitions and usages are not calculation definitions and usages, but, like calculation definitions and
usages, they are kinds of KerML functions and expressions (a predicate is a kind of function). As such, any directed
usages declared in the body of a calculation definition or usage are considered to be owned parameters of the
calculation. Furthermore, every constraint definition and usage has a result parameter, but, since this must have a
Boolean type, it is generally not necessary to redeclare it for a constraint definition or usage.

The body of a constraint definition or usage is also like the body of a calculation definition or usage (see 7.18.2),
including the addition of the declaration of a result expression at the end, using the expression sublanguage from
[KerML, 7.4.9]. For a constraint definition or usage, the result expression must be Boolean valued.

constraint def IsFull {

in tank : FuelTank;
tank.fuellLevel == tank.maxFuellevel // Result expression

OMG Systems Modeling Language (SysML) v2.0, Beta 1 121

}
part def Vehicle {
part fuelTank : FuelTank;
constraint isFull : IsFull {
in tank = fuelTank;

The base constraint definition and usage are Constraint and constraints from the Constraints model library
(see 7.19)

7.19.3 Assert Constraint Usages

An assert constraint usage is declared like a regular constraint usage (see 8.4.15.2), except using the kind keyword
assert constraint instead of just constraint. By default, an assert constraint usage asserts that it must
evaluate to true at all times. However, an assert constraint usage may be negated by inserting the keyword not
between assert and constraint, in which case the assertion is that the assert constraint usage evaluates to false
at all times.

part testObject {
attribute computedMass : MassValue;
assert constraint { computedMass >= 0[kg] }
// Alternatively, the following is equivalent.
assert not constraint { computedMass < 0[kg] }

An assert constraint usage may also be declared using just the keyword assert instead of assert constraint.
In this case, the declaration does not include either a name or short name for the assert constraint usage. Instead, the
constraint to be asserted is identified by giving a qualified name or feature chain immediately after the assert
keyword, and it is then related to the assert constraint usage by a reference subsetting relationship (see also 8.4.5.3).
A negated assert constraint usage of this form can be constructed using assert not.

constraint negativeMass {
attribute mass : MassValue;
mass < 0[kg]
}
part testObject {
attribute computedMass : MassValue;

// The following is equivalent to
// assert not constraint references negativeMass { ... }
assert not negativeMass {
:>> mass = computedMass;
}
}
part alienObject {
attribute antiMass : MassValue;

// The following is equivalent to
// assert constraint references negativeMass { ... }
assert negativeMass {

:>> mass = antiMass;

}

7.20 Requirements

122 OMG Systems Modeling Language (SysML) v2.0 Beta 1

7.20.1 Requirements Overview
Metamodel references:

» Textual notation, 8.2.2.20

* Graphical notation, 8.2.3.20
* Abstract syntax, 8.3.20

o Semantics, 8.4.16

Requirements

A requirement definition is a kind of constraint definition (see 7.19) that specifies stakeholder-imposed constraints
that a design solution must satisfy to be a valid solution. A requirement definition contains one or more features that
are constraint usages designated as the required constraints. These may be specified informally using text
statements (commonly known as "shall" statements) or more formally using constraint expressions. A requirement
definition may also optionally include assumed constraints. The required constraints of a requirement only apply if
all the assumed constraints are satisfied.

A requirement usage is a kind of constraint usage (see 7.19) that is a usage of a requirement definition in some
context. The context for multiple requirements can be provided by a package (see 7.5), a part (see 7.11) or another
requirement. A design solution must satisfy the requirement and all of its member requirements and constraints to be
a valid solution.

A requirement definition or usage may be decomposed into nested requirement usages, which may themselves be
further decomposed. Since a requirement usage is a kind of constraint usage, any nested composite requirement
usage is automatically considered to be a required constraint of the containing requirement definition or usage. A
requirement definition or usage may also reference another requirement usage as a required constraint. For the
overall requirement to then be satisfied, all such composite or referenced requirements must be satisfied.

Like any usage element, the features of a requirement usage can redefine the features of its requirement definition.
For example, a requirement definition MaximumMass may include the require constraint {massActual <=
massRequired}, written in terms of the attribute usages massActual and massRequired. A requirement usage
maximumVehicleMass defined by MaximumMass could restrict the subject of the requirement to be a Vehicle,
redefine the massActual attribute to be the mass of the subject vehicle, and redefine the massRequired
attribute and bind it to 2000 kilograms. In this way, the requirement definition serves as a requirement template that
can be reused and tailored to each context of use.

Subjects

A requirement definition or usage always has a subject, which is a distinguished parameter that identifies the entity
on which the requirement is being specified. A requirement usage can only be satisfied by an entity that conforms to
the definition of its subject. For example, if the subject of a requirement is defined to be a vehicle, then a standard
vehicle model or sports vehicle model can satisfy the requirement, as long as these usages are defined by vehicle
or a specialization of it. The subject can also be restricted to be a certain kind of definition element, if it is desired to
constrain what kind of entity can satisfy the requirement. For example, the subject can be restricted to be an action,
if it is desired to constrain the requirement to be satisfied only by action usages.

Constraining the subject of a requirement definition or usage is also useful to allow features of the subject definition
to be used in formal expressions for the assumed and required constraints of the requirement. However, this may not
be necessary if the requirement is specified more informally, or in terms of parameters or other features to be bound
later. In this case, it is not necessary to explicitly specify the subject of a requirement, in which case it the subject is

implicitly assumed to be defined as Anything.

Note. Cases also have subjects (see 7.21).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 123

Actors, Stakeholders and Concerns

Actors and stakeholders are additional distinguished parameters that may be specified for a requirement definition or
usage. Actor and stakeholder parameters are part usages representing entities that play special roles relative to the
requirement definition or usage. A requirement may have multiple actors and stakeholders, some of which may have
the same definition, representing the same kind of entity playing different roles relative to the requirement.

An actor parameter represents a role played by an entity external to the subject of the requirement but necessary for
the satisfaction of the requirement. For example, a requirement whose subject is a Vehicle may also specify an
actor that is the Driving Environment. Features of this actor may be used in, for example, the assumed
constraints of the requirement, to constrain the environment in which the required constraints apply. The satisfaction
of the requirement by a specific subject entity is then relative to the specific environment entity filling the actor role.

Note. Actor parameters may also be specified for cases (see 7.21) and, in particular, use cases (see 7.24).

A stakeholder parameter represents a role played by an entity (usually a person, organization or other group) having
concerns related to the containing requirement. Stakeholder concerns may also be explicitly modeled as special
kinds of requirements. A concern definition is a kind of requirement definition that represents a stakeholder concern.
A concern usage is a kind of requirement usage that is a usage of a concern definition. The stakeholder parameters
of a concern definition or usage then delineate the stakeholders that have a certain concern.

Rather than explicitly referencing specific stakeholders, a requirement definition or usage can be specified as
framing the modeled concerns of relevant stakeholders. All the framed concerns of a requirement must then be
addressed for the requirement to be satisfied.

Note. Stakeholder and concern modeling is frequently used in the context of view and viewpoint modeling (see
7.25). A viewpoint is a kind of requirement that frames certain stakeholder concerns to be addressed by one more
more views satisfying the viewpoint.

Requirement Satisfaction

Since a requirement is a kind of constraint, a requirement can be evaluated to be true or false. A requirement is
satisfied when it evaluates to true.

A satisfy requirement usage is a kind of assert constraint usage (see 7.19) that asserts that a requirement is satisfied
when a given feature is bound to the subject parameter of the requirement. Other parameters or features of the
requirement may also be bound in the body of the satisfy requirement usage. For example, the
maximumVehicleMass requirement above could be asserted to be satisfied by a specific vehicle c1 usage,
which means that the required constraint {massActual <= massRequired} must be true when massActual is
bound to the mass of vehicle cl.

Similarly to an assert constraint usage, a satisfy requirement usage can also be negated. A negated satisfy
requirement usage asserts that some entity does not satisfy the given requirement.

124 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element

Requirement
Definition

Requirement

Requirements
Compartment

Table 19. Requirements — Representative Notation

Graphical Notation

«requirement def»
<R1> RequirementDef1

«requirement def»
RequirementDef1

compartment stack

«requirement»
<r1> requirement1 : RequirementDef1

«requirementy
requirement1 : RequirementDef1

L compartment stack J

~ ~

«requirement»
requirement1 : RequirementDef1

documentation

subject
redefines s1 = mySubject

require constraints
require2

assume constraints

constraint1

. J

requirements
Arequirement2 : RequirementDef2

requirement?1 : RequirementDef1 [1..*] ordered nonunique
requirement3R : RequirementDef3R redefines requirement3
requirement4R : RequirementDef4R :>> requirement4

:>> requirementd

requirement6S : RequirementDef6S [m] subsets requirement6
requirement7S : ReqiuirementDef7S [m] :> requirement7
requirement8R = requirement8

ref requirement9 : RequirementDef9

requirement11

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

requirement def <R1>

RequirementDefl {
subject sl

Subjectl;

}

requirement def
RequirementDefl {
/* members */

}

requirement <rl>
requirementl
RequirementDefl ({
subject redefines sl
= mySubject;

requirement

requirementl
RequirementDefl ({
doc /* ... */
subject redefines sl

= mySubject;

require require2;
assume constraintl;

requirement
requirementl
RequirementDefl
[1..%]
ordered nonunique;

/* o0 x/

125

Element Graphical Notation Textual Notation

part partl {
satisfy requirementll

satisfy requirements by‘ partl {
requirement11 ' ‘bind '
Satisfy Requirements requirement11-1.x1 = a afequmementll_l x1 o=
Compartment requirement11-2.x2 = b bind
'requirementll1-2"'.x2 =
b;
}
}
«parb) requirement
part1 : Part1 requirementl

Requirementl;

Satisfy
part partl : Partl ({

«satisfy» satisfy requirementl;
requirement1 J

7.20.2 Requirement Definition and Usage

A requirement definition or usage is declared as a kind of constraint definition or usage (see 7.19.2), using the kind
keyword requirement. A requirement usage must be defined by a single requirement definition.

The informal fext of a requirement is given by any documentation comments written in the body of a requirement
definition or usage. If a requirement definition or usage is declared with a short name (see 7.2), then this is also
considered to be its requirement ID.

Formally, a requirement is a kind of constraint. However, rather than specifying its constraint expression directly, a
requirement constraint is built from two sets of other constraints: the assumed and required constraints of the
requirement. The effective constraint for the requirement is them a logical implication: if all the assumption
constraints are true, all the required constraints must be true. Required and assumed constraints are declared as
composite constraint usages in the body of a requirement definition or usage, by prefixing a regular constraint usage
declaration (see 7.19.2) with the keyword assume or require.

requirement def <'l1.1'> MaximumMass {
doc
/*
* Assuming the required mass is greater than O,
* the actual mass shall be less than or equal to
* the required mass.

*/

attribute massActual : MassValue;

attribute massRequired : MassValue;

assume constraint { massRequired > 0[kg] }
require constraint { massActual <= massRequired }

126 OMG Systems Modeling Language (SysML) v2.0 Beta 1

An assumed or required constraint may also be declared using just the keyword assume or require instead of
assume constraint or require constraint. In this case, the declaration does not include either a name or
short name for the constraint usage. Instead, the constraint to be assumed or required is identified by giving a
qualified name or feature chain immediately after the assume or require keyword, and it is then related to the
assumed or required constraint usage by a reference subsetting relationship (see also 8.4.5.3).

constraint massIsPositive {
attribute mass : MassValue;
mass > 0[kg];
}
constraint massLimit {
attribute mass : MassValue;
attribute massLimit : MassValue;
massActual <= massRequired
}
requirement def <'l.1'> MaximumMass {
attribute massActual : MassValue;
attribute massRequired : MassValue;
assume massIsPositive {
:>> mass = massRequired;
}
require massLimit {
:>> mass = massActual;
:>> massLimit = massRequired;

The subject of a requirement definition or usage is modeled as its first parameter. Following the general rule for
parameters (see 7.16.2), the subject parameter of a requirement definition or usage will redefine the subject
parameter of any requirement definitions or usages that it specializes. The base requirement definition in the
Requirements library model specifies the most general possible subject, with the default name subj and the most
general type Anything, and this can then be further specialized in specific requirement definitions and usages. A
subject parameter is always an in parameter, so it is not necessary to declare it with an explicit direction. Instead,
the keyword subject is used to identify the declaration of a subject parameter, which must come before the
declaration of any other parameters in a requirement definition or usage.

requirement <'vl.1'> vehicleMaximumMass : MaximumMass {
doc

/* The total mass of a Vehicle shall be no greater than
* its required mass.

*/

subject vehicle : Vehicle;

attribute :>> massActual = vehicle.totalMass;
attribute :>> massRequired = 2000[kgl;

// Required and assumed constraints are inherited.

A requirement definition or usage may also have one or more actor or stakeholder parameters. Similarly to the
declaration of a subject parameter, these distinguished parameters are declared using the keywords actor and
stakeholder rather than explicitly declaring their direction. Actor and stakeholder parameters are part usages, so
they must be (explicitly or implicitly) defined by part definitions (see 7.11.2).

requirement def BrakingRequirement {
subject vehicle : Vehicle;
actor environment : 'Driving Environment';
stakeholder driver : Person;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 127

attribute speedLimit : SpeedValue;
attribute maxBrakingDistance : DistanceValue;

assume constraint {
doc /* The environment conditions are poor. */

}
assume constraint {
doc /* The driver is an occupant of the vehicle. */
}
assume constraint {
doc /* The vehicle speed is less than the speed limit. */

require constraint {
doc /* The vehicle shall brake from its initial speed to zero
* speed in a distance less than the maxBrakingDistance.

*/

A composite requirement usage nested in a requirement definition or usage is a subrequirement of the containing
requirement definition or usage. Subrequirements are considered to automatically be required constraints of the
containing requirement definition or usage. This is useful for modeling groups of requirements that are intended to
be satisfied together on the same subject. To simplify doing this, if a subject parameter is not explicitly declared for
a subrequirement, it is assumed to have the same subject as its containing requirement definition or usage, with its
subject bound to that of the container.

requirement def VehicleRequirementsGroup {
subject vehicle : Vehicle;

// The subject of the following subrequirements
// are implicitly bound to the subject "vehicle"
// of the containing requirement definition.
requirement driving : DrivingRequirement;
requirement braking : BrakingRequirement;

// The subject of the following subrequirement

// is declared explicitly.

requirement engineRgts : EngineRequirementsGroup {
subject engine = vehicle.engine;

The base requirement definition and usage are RequirementCheck and requirementChecks from the
Requirements model library (see 9.2.13).

7.20.3 Concern Definitions and Usages

A concern definition or usage is declared as a requirement definition or usage (see 7.20.2) using the kind keyword
concern instead of requirement. Otherwise, a concern definition or usage is specified exactly like a regular
requirement definition or usage. The intent, however, is that the concerns of one or more stakeholders can be
modeled as the required constraints of a concern definition or usage with appropriate stakeholder parameters.

concern def BrakingConcern {

subject vehicle : Vehicle;
stakeholder driver : Person;

128 OMG Systems Modeling Language (SysML) v2.0 Beta 1

attribute maxBrakingDistance : DistanceValue;

assume constraint {
doc /* The driver is an occupant of the vehicle. */
}
require constraint {
doc /* The vehicle shall brake from its initial speed to zero
* speed in a distance less than the maxBrakingDistance.

*/

One or more concerns can then be framed in other requirement definitions and usages. A framed concern usage is a
subrequirement usage (see 7.20.2) indicated by prefixing a concern usage declaration with the keyword £rame. As
for an assumed or required constraint, the keyword £rame can be used rather than frame concern to declare a
framed concern using reference subsetting. In any case, since the framed concern usage itself is a subrequirement, it
will automatically be considered a required constraint of its containing requirement definition or usage.

requirement def BrakingRequirement {
subject vehicle : Vehicle;
actor environment : 'Driving Environment';

attribute speedLimit : SpeedValue;
attribute maxBrakingDistance : DistanceValue;

assume constraint {
doc /* The environment conditions are poor. */

frame concern brakingConcern : BrakingConcern {
// Subject is automatically bound to "vehicle".
:>> maxBrakingDistance = BrakingRequirement::maxBrakingDistance;

The base concern definition and usage are ConcernCheck and concernChecks from the Requirements model
library (see 9.2.13).

7.20.4 Satisfy Requirement Usages

A satisfy requirement usage is declared as a requirement usage (see 7.20.2), using the kind keyword satisfy
requirement. However, a satisfy requirement usage differs from a regular requirement usage in two ways:

1. The subject parameter of a satisfy requirement usage must be bound to a satisfying feature.
2. A satisfy requirement usage is a kind of assert constraint usage (see 7.19.3).

Together, these mean that a satisfy requirement usage asserts that it is satisfied as a requirement (that is, it always
evaluates to true) when the role of its subject is bound to the satisfying feature. The satisfying feature for a satisfy
requirement usage can be specified in its declaration, immediately before its body, after keyword by.

part vehiclel : Vehicle;

satisfy requirement braking : BrakingRequirement by vehiclel {
:>> speedLimit = 100 [km/h];
:>> maxBrakingDistance = 10[m];

OMG Systems Modeling Language (SysML) v2.0, Beta 1 129

A satisfy requirement usage may also be declared using just the keyword satisfy instead of satisfy
requirement. In this case, the declaration does not include either a name or short name for the satisfy requirement
usage. Instead, the requirement to be satisfied is identified by giving a qualified name or feature chain immediately
after the satisfy keyword, and it is then related to the satisfy requirement usage by a reference subsetting
relationship (see also 8.4.5.3).

satisfy vehicleMaximumMass by vehiclel;

A satisfy requirement usage can be negated by placing the keyword not before satis£fy. A negated satisfy
requirement usage asserts that the modeled requirement is not satisfied by the value of the given satisfying feature.

part vehicle2 : ExperimentalVehicle;
not satisfy vehicleMaximumMass by vehicle2;

A satisfy requirement usage can be declared without an explicit satisfying feature if it is nested in definition or
usage. In this case, the satisfying feature is considered to be given by the containing definition or usage (in the case
of a definition this is essentially the sel £ feature of the definition; see [KerML, 9.2.2]).

part vehicle3 : Vehicle {
part engine : Engine;

//

// "vehicle3" is implicitly the satisfying feature.
satisfy rqgts : VehicleRequirementsGroup;

7.21 Cases

7.21.1 Cases Overview
Metamodel references:

* Textual notation, 8.2.2.21

* Graphical notation, 8.2.3.21
» Abstract syntax, 8.3.21

e Semantics, 8.4.17

A case definition is a kind of calculation definition (see 7.18) that produces a result intended to achieve a specific
objective regarding a given subject. A case usage is a kind of calculation usage that is a usage of a case definition. A
case is a general concept that may be used in its own right, but also provides the basis for more specific kinds of
cases, including analysis cases (see 7.22), verification cases (see 7.23), and use cases (see 7.24).

The subject of a case is modeled as a distinguished parameter, similarly to the subject of a requirement (see 7.20).
The objective of a case is modeled as a requirement usage to be satisfied by the performance of the case. Depending
on the kind of case, the subject of the objective may be the same as the subject of the case (such as for a verification
case or a use case) or it may be the result of the case (such as for an analysis case).

A case definition or usage may also have one or more actor parameters that represent roles played by an entity
external to the subject of the case but necessary to the specification of the case. An actor parameter is a part usage
representing an entity that plays a designated actor role for the case. A case may have multiple actors representing
the same kind of entity playing different roles relative to the case.

Note. Actor parameters may also be specified for any kind of case, but they are used, in particular, in the
specification of use cases (see 7.24). Requirements may also have actor parameters (see 7.20).

130 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The body of a case can be specified using subactions and subcalculations needed to achieve the case objective. This
generally includes some combination of collecting information about the subject, evaluating it, and then producing a
result.

7.21.2 Case Definitions and Usages

A case definition or usage is declared as a kind of calculation definition or usage (see 7.18.2), using the kind
keyword case. A case usage must be defined by a single case definition.

The subject of a case definition or usage is modeled as its first parameter. Following the general rule for parameters
(see 7.16.2), the subject parameter of a case definition or usage will redefine the subject parameter of any case
definitions or usages that it specializes. The base case definition in the Cases library model specifies the most
general possible subject, with the default name subj and the most general type Anything, and this can then be
further specialized in specific case definitions and usages. A subject parameter is always an in parameter, so it is
not necessary to declare it with an explicit direction. Instead, the keyword subject is used to identify the
declaration of a subject parameter, which must come before the declaration of any other parameters in a case
definition or usage.

A case definition or usage may also have one or more acfor parameters. Similarly to the declaration of a subject
parameter, these distinguished parameters are declared using the keyword actor rather than explicitly declaring
their direction. Actor parameters are part usages, so they must be (explicitly or implicitly) defined by part definitions
(see 7.11.2).

The objective of a case definition or usage is declared as a requirement usage (see 7.20.2), but using the keyword
objective instead of requirement. The subject of an objective requirement is bound by default to the result of
the case definition or usage, meaning that the objective of the case concerns its result. However, this can be
overridden in specific case definitions or usages (but see 7.22.2 and 7.23.2 on the required bindings for analysis
cases and verification cases).

case def FaultRecovery {
subject system : AutomationSystem;
actor engineer : Person;
objective {
doc
/* The engineer determines the cause of the system
* fault and resolves it returning the system to
* nominal operation.

*/

The base case definition and usage for are Case and cases from the Cases model library (see 9.2.14).

7.22 Analysis Cases
7.22.1 Analysis Cases Overview
Metamodel references:

e Textual notation, 8.2.2.22

* Graphical notation, 8.2.3.22

* Abstract syntax, 8.3.22
e Semantics, 8.4.18

OMG Systems Modeling Language (SysML) v2.0, Beta 1 131

An analysis case definition is a kind of case definition (see 7.21) whose objective is to carry out an analysis on the
subject of the case. An analysis case usage is a kind of case usage that is a usage of an analysis case definition.

The subject of an analysis case identifies what is being analyzed. The subject can often be kept quite general in an
analysis case definition and then made more specific in usages of that definition. Performing an analysis case returns
a result about the subject. For example, a fuel economy analysis of a vehicle subject returns the estimated fuel
economy of the vehicle, given a set of analysis inputs and assumed conditions. The analysis result can be evaluated
to determine whether it satisfies the analysis objective.

The performance of an analysis case can be specified in a number of different ways.

+ The analysis case can include a set of analysis actions, each of which can specify calculations that return
results. For example, the fuel economy analysis referred to above may require both a dynamics analysis
and a fuel consumption analysis. The dynamics analysis determines the vehicle trajectory and the required
engine power versus time. The fuel consumption analysis determines the fuel consumed to achieve the
required engine power. Both the dynamics analysis and the fuel consumption analysis may require
multiple calculations.

+ An analysis can be specified in SysML and solved by external solvers. In this case, the analysis case
specifies the analysis to be performed, but does not define how the analysis is actually executed. For
example, the analysis case could specify that the analysis result is obtained by integrating a differential
equation, without detailing what integration algorithm is to be used to do this.

* An analysis case can also specify a set of simultaneous equations to be solved. This can be done defining
one or more constraint usages (see 7.19) that logically and each of the equations, and asserting that the
constraint must be true. A solver would be expected to solve the equations such that it returns values that
satisfy each equation.

Table 20. Analysis Cases - Representative Notation

Element Graphical Notation Textual Notation
«analys_ls def» analysis def
AnalysisDef1 AnalysisDefl {
; subject sl
Su'b"'ed Subjectl;
s :SUbjECt objective {
L d *roLuh K/
objective oc / /
. assume
Analysis Case D . .
Definition dog 'see assumptionl;
¢ assume assumptioni }

}

«analysis def» analysis def

AnalysisDef1 AnalysisDefl {
/* members */

compartment stack)

sss

132 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

s R
_«analySIS» . analysis analysisl
analysis1 : AnalysisDef1 AnalysisDefl {
subject subject redefines sl
)f = mySubject;
redefines s1 = mySubject objective {
,, doc /* '...' */
objective assume
Analysis Case dog 'ese assumptionl;
assume assumption1 }
. ~ }

«analysm» analysis analysisl
analysis1 : AnalysisDef1 AnalysisDefl {

J /* members */

t compartment stack

«analysis»
analysis1 : AnalysisDef1

subject

redefines s1 = mySubject analysis analysisl

AnalysisDefl {

Analyses objective R
Compartment dog e’ analysis analysis4
AnalysisDefd;
assume assumption1 }
analyses

Aanalysis3 : AnalysisDef3

| analysis4 : AnalysisDef4

7.22.2 Analysis Case Definitions and Usages

An analysis case definition or usage is declared as a case definition or usage (see 7.21.2), using the kind keyword
analysis. An analysis case usage must be defined by a single analysis case definition.

For an analysis case, the subject of the objective is always bound to the result of the analysis case definition or
usage. That is, the objective is always about the result that is produced by the analysis.

analysis def FuelEconomyAnalysis {
subject vehicle : Vehicle;
return fuelEconomyResult : DistancePerVolumeValue;

objective fuelEconomyAnalysisObjective {
doc
/*
* The objective of this analysis is to determine whether the
* subject vehicle can satisfy the fuel economy requirement.

*/

requirement : FuelEconomyRequirement;

OMG Systems Modeling Language (SysML) v2.0, Beta 1

133

//

The base analysis case definition and usage are AnalysisCase and analysisCases inthe AnalsysisCases
model library (see 9.2.15).

7.22.3 Trade-Off Analyses

A trade-off analysis is a special kind of analysis used to evaluate and compare alternatives. Such an analysis can be
modeled by a usage of the TradesStudy analysis case definition from the TradeStudies library model found in
the Analysis Domain Library (see 9.4.5).

The subject of a TradeStudy analysis case is the collection of alternatives to be analyzed. An evaluation function is
then provided that is used to evaluate each alternative, in order to find the alternative that meets the objective of the
analysis case. Common TradeStudy objectives are to maximize or minimize the value of the objective function.

An example of a trade-off analysis is an analysis that evaluates and compares alternatives for a vehicle engine in
terms of various criteria, such as power, mass, efficiency and cost. The evaluation function establishes a relative
weighting of each criterion based on its importance to the stakeholder. The evaluation result is computed for each
alternative based on a weighted sum of the normalized value for each of the criteria. The evaluation results for each
alternative are then compared with each other, based on the TradeStudy objective, to determine a preferred
solution.

analysis engineTradeStudy : TradeStudy {
// The subject is bound to the two alternatives to be studied.
subject : Engine = (enginedcyl, engineb6cyl);

// The objective is to find the alternative that has the
// maximum value for the evaluationFunction.
objective : MaximizeObjective;

// For each one of the alternatives, the evaluationFunction
// produces a numerical evaluation result.
calc :>> evaluationFunction {

in part anEngine : Engine :>> alternative;

calc powerRollup: PowerRollup {
in engine = anEngine;
return power;

}

calc massRollup: MassRollup {
in engine = anEngine;
return mass;

}

calc efficiencyRollup: EfficiencyRollup ({
in engine = anEngine;
return efficiency;

}

calc costRollup: CostRollup {
in engine = anEngine;
return cost;

return :>> result : Real = EngineEvaluation/(
power = powerRollup.power,
mass = massRollup.mass,
efficiency = efficiencyRollup.efficiency,

134 OMG Systems Modeling Language (SysML) v2.0 Beta 1

cost = costRollup.cost
)
}

// The selected alternative will be the one that has the
// maximum value for the evaluationFunction.
return part :>> selectedAlternative : Engine;

7.23 Verification Cases

7.23.1 Verification Cases Overview
Metamodel references:

* Textual notation, 8.2.2.23

» Graphical notation, 8.2.3.23
* Abstract syntax, 8.3.23

e Semantics, 8.3.23

A verification case definition is a kind of case definition (see 7.21) whose result is a verdict on whether the subject
of the case satisfies certain requirements. A verification case usage is a case usage that is a usage of a verification
case definition.

The subject of a verification case is an input parameter that identifies the system or other entity that is being
evaluated as to whether it satisfies certain requirements (often referred to as the "unit under test" or "unit under
verification"). The subject may be kept general in a verification case definition and then made more specific in
usages of that definition. The objective of a verification case is to verify that the verification subject satisfies one or
more specific requirements, which are specified as a special kind of required constraint in the objective. The result
of the validation case is a verdict, which is one of the following:

+ Pass indicates that the subject has been determined to satisfy the requirements to be verified.

* Fail indicates that the subject has been determined nof to satisfy the requirements to be verified.

* Inconclusive indicates that a determination could not be made as to whether the subject satisfies the
requirements to be verified.

* Error indicates that an error occurred during the performance of the verification.

A typical verification case includes a set of verification actions that perform the following steps.

1. Collect data about the subject as needed to support the verification objective, which is typically done
using verification methods such as analysis, inspection, demonstration, and test.

2. Analyze collected data. For example, the data may include multiple measurements that span a range of
conditions for a particular individual, or measurements of different individuals. This analysis step may
need to determine the probability distribution, mean, and standard deviation associated with the
measurements.

3. Evaluate the results of the analysis based on the objective to produce a verdict.

Each of the verification actions in the verification case requires a set of resources to perform the actions. This may

include verification personnel, equipment, facilities, and other resources. These resources may be represented in the
model as parts that perform actions, or more specifically, using actor parameters on the verification case.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 135

Element

Verification Case
Definition

Verification Case

Verified
Requirements
Compartment

136

Table 21. Verification Cases — Representative Notation

Graphical Notation

«verification def»
VerificationDef1

subject
s1: Subject1

objective
doc objective statement
verify requirement1

«verification def»
VerificationDef1

compartment stack

«verification»
verification1 : VerificationDef1

subject
redefines s1 = mySubject

&

objective
doc objective statement
verify requirement2

«verification»
verification1 : VerificationDef1

t compartment stack

— |

OMG Systems Modeling Language (SysML) v2.0 Beta 1

Textual Notation

verification def
VerificationDefl {
subject sl
Subjectl;
objective {
doc /* '...' */
verify
requirementl;
}
}

verification def
VerificationDefl {
/* members */

}

verification
verificationl
VerificationDefl ¢{
subject redefines sl
= mySubject;
objective {
doc /* '...' */
verify
requirementl;
}
}

verification

verificationl
VerificationDefl {
/* members */

Element Graphical Notation Textual Notation

verifications t verification
Averification2 : VerificationDef2 (in : ParamDef1, out : e)
verificationl
ParamDef2) VerificationDefl
verification1 : VerificationDef1 [1..*] ordered nonunique [1..%]
verifcation3R : VerficationDef3R redefines verification3 ordered nonunique;
verification4R : VerificationDef4R :>> verification4 /L. %)

. . :>> verificationd perform verification
Verifications verification6S : VerificationDef6S [m] subsets verification6 verificationl0;
Compartment verification7$: VerificationDef7S [m] :> verification? verification

verification8R = verification8 verificationll {
ref verification9 : VerificationDef9 verification
perform verification10 'verificationll.1l';
verification11 verification
'verificationll.2"';
}
}
‘ .veriﬁcation methods metadata
'nSplec_tlon VerificationMethod {

. . analysis kind = (inspection,
Verification Methods demonstration analysis, (1%
Compartment test

demonstration, test);
}
verifies . .
. requirement1 objective {
Verifies . verify requirementl;
requirement2 . .
Compartment verify requirement2;
}
requirement
[«verification» J feq;ire{“entl : o
. equirementl;
verificationCase1 : VerificationCase1) . .fication
verificationCasel
Verify «verify» VerificationCasel {
objective {
verify

requirementl;

[«requirement»]
}

requirement1 : Requirement1

}

7.23.2 Verification Case Definitions and Usages

A verification case definition or usage is declared as a case definition or usage (see 7.21.2), using the kind keyword
verification. A verification case usage must be defined by a single verification case definition.

For a verification case, the subject of the objective is always bound to the subject of the verification case definition
or usage. That is, the objective is always about the verification of requirements relative to the subject of the case.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 137

In addition to assumed and required constraint usages allowed in any requirement usage (see 7.20.2), the objective
of a verification case may also have requirement verification usages, which indicate the requirements to be verified
by the verification case. A requirement verification usage is a subrequirement of the objective that is indicated by
prefixing a requirement usage declaration with the keyword verify. As for an assumed or required constraint, the
keyword verify can be used rather than verify requirement to declare a verified requirement using reference
subsetting. In any case, since the requirement verification usage itself is a subrequirement, it is automatically
considered a required constraint of its containing objective. In addition, its subject is bound by default to the subject
of the objective, which is itself bound to the subject of the verification case.

The result of a verification case is a verdict that can have the values pass, fail, inconclusive, or error. In
simple cases, the PassIf calculation definition from the VerificationCases library model (see 9.2.16) can be
used to obtain a pass or fail verdict based on a Boolean value. In addition, the VerificationMethod metadata
definition can be used to annotate a verification case with the method used to carry out the verification, one of
inspect, analyze, demo, Or test (see also 7.26).

verification def VehicleMassTest {
import VerificationCases::*;

subject testVehicle : Vehicle;

objective vehicleMassVerificationObjective {
// The subject of the verify is automatically bound to "testVehicle".
verify vehicleMassRequirement;

metadata VerificationMethod {
kind = VerificationKind::test;

action collectData {
in part testVehicle : Vehicle = VehicleMassTest::testVehicle;
out massMeasured :> ISQ::mass;
}
action processData {
in massMeasured :> ISQ::mass = collectData.massMeasured;
out massProcessed :> ISQ::mass;
}
action evaluateData {
in massProcessed :> ISQ::mass = processData.massProcessed;
out verdict : VerdictKind =
// Check that "testVehicle" statisfies "vehicleMassRequirement"
// 1if its mass equals 'massProcessed'.
PassIf (vehicleMassRequirement (
vehicle = testVehicle,
massActual = massProcessed)

)

return verdict : VerdictKind = evaluateData.verdict;

7.24 Use Cases

7.24.1 Use Cases Overview
Metamodel references:

e Textual notation, 8.2.2.24

138 OMG Systems Modeling Language (SysML) v2.0 Beta 1

* Graphical notation, 8.2.3.24
» Abstract syntax, 8.3.24

e Semantics, 8.4.20

A use case definition is a kind of case definition (see 7.21) that specifies the required behavior of its subject relative
to one or more external actors. The objective of the use case is to provide an observable result of value to one or

more of its actors. A use case usage is a case usage that is a usage of a use case.

A use case is typically specified as a sequence of interactions between the subject and the various actors, which are
all modeled as part usages. Each interaction can be modeled as a message (see 7.13) that delivers some payload or
signal from an actor to the system or vice versa. The sources and target ends of these messages can either be
modeled simply as abstract events within the lifetime of the subject and actor occurrences (see 7.9), or more

concretely as actions performed to carry out the interaction (see 7.16).

An include use case usage is a use case usage that is also a kind of perform action usage (see 7.16). A use case

definition or usage may contain an include use case usage to specify that the behavior of the containing use case
includes the behavior of the included use case. The subject of the included use case is the same as the subject of the
containing use case, so the subject parameter of the included use case must have a definition that is compatible with
the definition of the containing use case. Actor parameters of the included use case may be bound to corresponding
actor parameters of the containing use case as necessary (see also 7.16 on parameter binding and 7.13 on binding in

general).

As a behavior, a use case can be performed with specific values for its subject and actor parameters. If a given
subject also has a design model that decomposes its internal structure, then it should be possible to construct an
interaction of the internal parts of the subject, consistent with the design model, that can be shown to be a
specialization of the behavior specified by the performance of the use case for that subject. This is known as a
realization of the use case relative to the design model. A system is properly designed to provide the behavior
required by a set of use cases if there is a legal realization of each use case relative to the design of the system.

Element

Use Case Definition

Table 22. Use Cases — Representative Notation

Graphical Notation

«use case def»
UseCaseDef1

subject
s1: Subject1

objective

doc This is the objective description.

require requirement1

«use case def»
UseCaseDef1

compartment stack

OMG Systems Modeling Language (SysML) v2.0, Beta 1

Textual Notation

use case def
UseCaseDefl {
subject sl:Subjectl;
objective {
doc /* This is
the objective
description. */
require
requirementl;
}
}

use case def
UseCaseDefl {
/* members */

}

139

Element

Use Case

Include Use Cases
Compartment

Includes
Compartment

140

Graphical Notation

«use casey»
useCase1 : UseCaseDef1

subject
redefines s1 = mySubject

objective
doc This is the objective description.
require requirement1

=

«use case»
useCase1 : UseCaseDef1

{ compartment stack J

include use cases
AuseCase?2 : UseCaseDef2 (in : ParamDef1, out :

ParamDef2)

useCase1 : UseCase1 [1..*] ordered nonunique
useCase3R : UseCaseDef3R redefines useCase3
useCase4R : UseCaseDef4R :>> useCase4

:>> useCaseb

useCasebS : UseCaseDef6S [m] subsets useCaseb
useCase’S : UseCaseDef7S [m] :> useCase7
useCase8R = useCase8

useCase11

includes
AuseCasel
useCase2
useCase3

OMG Systems Modeling Language (SysML) v2.0 Beta 1

Textual Notation

use case useCasel
UseCaseDefl {
subject redefines sl
= mySubject;
objective {
doc /* '...' */
require
requirementl;
}
}

use case useCasel
UseCaseDefl {
/* members */

}

{
include use case
useCasel
UseCasel [1..%*]

ordered nonunique;

VA

Element Graphical Notation
subject
system=system1
i e N
actor1 : Actor1 «use case»
Use Case Graphical useCase
Compartment
actor2 : Actor2 g
«include» «include»

—A

actor3 : Actor3

«use case»
useCase?

«use case»
useCase3

7.24.2 Use Case Definitions and Usages

A use case definition or usage is declared as a case definition or usage (see 7.21.2), using the kind keyword use

case. A use case usage must be defined by a single use case definition.

A use case definition will typically have an explicit declaration of its subject and one or more external actors (see

Textual Notation

use case useCasel {

subject system =
systeml;

actor actorl
Actorl;

actor actor2
Actor?2;

actor actor3
Actor3;

include useCase2;

include useCase3;
}
use case useCase2;
use case useCase3;

see 7.21.2 on the declaration of subject and actor parameters in case definitions). The objective of the use case is for
the subject to provide some result of value to one or more of the actors. The subject and the actors interact in order
to achieve this objective, and the use case definition may specify this interaction as, for example, messages passing

between them (see 7.13.6 on message declarations).

use case def 'Provide Transportation' {

subject vehicle Vehicle;
actor driver Person;
actor passengers Person[0..4];

actor environment Environment;

objective {
doc

/* Transport driver and passengers from starting location

* to ending location.

*/

message of Enter from driver to vehicle;

then message of Enter from passengers to vehicle;
then message of Drive from vehicle to environment;
then message of Exit from passengers to vehicle;
then message of Exit from driver to vehicle;

The base use case definition and usage are UseCase and useCases from the UseCases library model (see 9.2.17)

OMG Systems Modeling Language (SysML) v2.0, Beta 1

141

7.24.3 Include Use Case Usages

An include use case usage is declared as a use case usage (see 7.24.2) using the kind keyword include use case
instead of just use case. An include use case usage is a kind of perform action usage (see 7.16.6) for which the
action usage is a use case usage, known as the included use case. As for a perform action usage, the included use
case is related to the include use usage by a reference subsetting relationship, specified textually using the keyword
references or the symbol : : >. Or, if the include use case usage has no such reference subsetting, then the
included use case is the include use case usage itself.

An include use case usage may also be declared using just the keyword include instead of include use case.
In this case, the declaration does not include either a name or short name. Instead, the included use case of the
include use case usage is identified by giving a qualified name or feature chain immediately after the include
keyword.

The subject of an included use case usage is bound by default to the subject of its containing use case definition or
usage. However, the actor parameters of the included use case usages should be explicitly bound to appropriate
actors of the containing use case, as necessary.

use case 'provide transportation' : 'Provide Transportation' {
first start;

then include 'enter vehicle' {
actor :>> driver = 'provide transportation'::driver;
actor :>> passengers = 'provide transportation'::passengers;

then include 'drive vehicle' {
actor :>> driver = 'provide transportation'::driver;
actor :>> environment = 'provide transportation'::environment;

then include 'exit vehicle' {
actor :>> driver = 'provide transportation'::driver;
actor :>> passengers = 'provide transportation'::passengers;

then done;

7.25 Views and Viewpoints
7.25.1 Views and Viewpoints Overview
Metamodel references:

o Textual notation, 8.2.2.25

» Graphical notation, 8.2.3.25
» Abstract syntax, 8.3.25

» Semantics, 8.4.21

A viewpoint definition is a kind of requirement definition (see 7.20) that frames the concerns of one or more
stakeholders regarding information about a modeled system or domain of interest. A viewpoint usage is a
requirement usage that is a usage of a viewpoint definition. The subject of a viewpoint is a view that is required to
address the stakeholder concerns.

142 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A view definition is a kind of part definition (see 7.11) that specifies how to create a view artifact to satisfy one or
more viewpoints. A view artifact is a rendering of information that addresses some aspect of a system or domain of
interest of concern to one or more stakeholders. A view definition can include view conditions to extract the relevant
model content, and a rendering that specifies how the model content should be rendered in a view artifact. A view
condition is specified using metadata, in the same way as for a filter condition on a package (see 7.5).

A view definition and its rendering can preserve a correspondence between elements of the model and of the
graphical and/or textual elements of the view artifact. The implementation of a rendering can follow this
correspondence to propagate changes to a view artifact back to the model from which the view artifact was extracted
and rendered.

A view usage is a kind of part usage (see 7.11) that is a usage of a view definition. A view usage exposes a portion
of a model, which is a kind of import (see 7.5) without regard to visibility that provides the scope of application of
the view conditions. The view rendering can then be applied to those exposed elements that meet all the view
conditions to produce the view artifact. A view usage can add further view conditions to those inherited from its
view definition, and it can specify a view rendering if one is not provided by its definition.

View usages can be nested and ordered within a composite view to generate composite view artifacts. The view
usage also can contain further rendering specifications on the symbolic representation, style, and layout for a
particular view. For example, a complex view definition with deeply nested structures can be rendered as a
document, where each nested view usage corresponds to a section of a document, and the ordering represents the
order of the sections within the document. Within each section of the document, the nested view usages can then
specify the information that is rendered as a combination of text, graphical, and tabular information.

A rendering definition is a kind of part definition (see 7.11) that specifies how a view artifact is to be rendered. A
rendering usage is a kind of part usage that is a usage of a rendering definition. A rendering usage is used in a view

definition or usage to specify the view rendering.

Table 23. Views and Viewpoints — Representative Notation

Element Graphical Notation Textual Notation
«view def»
ViewDef1
viewpoints view def ViewDefl {
satisfy viewpointl;
Y
filters filter
ves filterExpressionl;
* *
View Definition : [,
rendering render renderingl;
rendering1)
view def ViewDefl {
«view def» /* members */
ViewDef1 }
compartment stack

OMG Systems Modeling Language (SysML) v2.0, Beta 1 143

Element

View

Viewpoint Definition

Viewpoint

Expose

144

Graphical Notation

«view»
view1 : ViewDef1

viewpoints
exposes
part1::**
filters
@PartUsage
rendering
asTable
(N\
«view»

view1 : ViewDef1

compartment stack

«viewpoint def»
ViewpointDef1

«viewpoint def»
ViewpointDef1

compartment stack

(. .
«viewpoint»

_ viewpoint1 : ViewpointDef1

-

«viewpoint»

viewpoint1 : ViewpointDef1

compartment stack

)

[«view»
view1 : View1
«expose» |

\
«part»
[part1 : Part1

Textual Notation

view viewl : ViewDefl {
satisfy viewpointl;
expose partl::**;
filter @PartUsage;
render asTable;

}

view viewl : ViewDefl {
/* members */

}

viewpoint def
ViewPointDefl;

viewpoint def
ViewPointDefl {
/* members */

}

viewpoint viewpointl
ViewPointDefl;

viewpoint viewpointl
ViewPointDefl {
/* members */

}

part partl : Partl;
view viewl : Viewl {
expose partl;

}

OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

«V|ewp0|nt» concern concernl
viewpoint1 : Viewpoint1 Concernl;

viewpoint viewpointl

Frame «frame» Viewpointl {

frame concernl;

«concern» }
concerni : Concern1

{

frame concern

frames concernl : Concernl
E concern1 : Concern1 [1..*] ordered nonunique [1..%]
rames .
ordered nonunique;
Compartment Jx L k)

7.25.2 View Definitions and Usages

A view definition or usage is declared as a kind of part definition or usage (see 7.11.2), using the kind keyword
view. A view usage must be defined by a single view.

A view definition includes filter conditions on what kinds of elements can be included in a view and identifies a
view rendering that determines how the included elements are to be rendered. The filter conditions are specified in
the same way as for packages (see 7.5.4), by using the keyword £ilter followed by a Boolean-valued, model-level
evaluable expression (see [KerML. 7.4.9]).

The view rendering is specified using the keyword render followed by a composite rendering usage declaration
(see 7.25.4). Alternatively, the keyword render may be followed by just a qualified name or feature chain
identifying a rendering usage, which establishes a reference subsetting relationship between the view rendering
usage and the identified rendering usage. The Views model in the Systems Model Library provides a limited
number of basic standard renderings (see 9.2.18).

view def 'Part Structure View' {
import Views::*;

filter @SysML::PartUsage;
render asTreeDiagram;

}

A view usage inherits any filter conditions from its view definition and can declare addition conditions of its own. If
a view usage does not declare a view rendering, then this will be inherited from the view definition, if it has one. If a
view usage does declare a view rendering, then this will redefine the view rendering from its view definition (if
any). Note that this means that the view rendering for a view usage must be consistent with the rendering specified
in the view definition, though it can be more specialized.

In addition, a view usage can specify which elements are actually to be exposed by the view. This is done using
expose relationships, which are a special kind of import relationships. Expose relationships are declared like import
relationships (see 7.5.3), but using the keyword expose instead of import. A view artifact is generated from a view
usage by first importing the exposed elements based on the expose relationships of the view usage, filtering those

OMG Systems Modeling Language (SysML) v2.0, Beta 1 145

based on the filter conditions that are owned and inherited by the view usage, and then generating a rendered view
artifact using the view rendering specified for the view usage.

view 'vehicle parts view' : 'Part Structure View' ({

// Recursive import is useful for exposing elements
// from hierarchical models.
expose VehicleDesignModel::**;

// This is an additional filter condition.
filter not @SysML::ConnectionUsage;

// This implicitly redefines the view rendering from
// the view definition.
render asMyTreeDiagram;

Since an expose relationship is a kind of import relationship, the filtered import notation can also be used with it (see
7.5.4). This provides an alternate way to filter the elements exposed by a view usage.

view 'vehicle parts view' : 'Part Structure View' {

// This applies the filter directly on the imported

// elements from the expose relationships. (The filter

// conditions from the view definition also still apply.)
expose VehicleDesignModel::**[not @SysML::ConnectionUsage];

render asMyTreeDiagram;

The base view definition and usage are View and views from the Views model library (see 9.2.18).

7.25.3 Viewpoint Definitions and Usages

A viewpoint definition or usage is declared as a kind of requirement definition or usage (see 7.20.2). A viewpoint
usage must be defined by a single viewpoint definition.

The subject of a viewpoint definition or usage must be a view. Otherwise, a viewpoint is specified with assumed and
required constraints, just like any requirement definition or usage. However, it is typical for a viewpoint definition to
be structured as framing a set of stakeholder concerns (see 7.20.3) regarding information about a modeled system or
domain of interest. The viewpoint then models the requirement for view needed in order to address the framed

concerns.

146

concern 'system breakdown' ({

}

stakeholder se : 'Systems Engineer';
stakeholder ivv : 'IV&V';

concern 'modularity' {

stakeholder se : 'Systems Engineer';

viewpoint def 'System Structure Perspective' ({

frame 'system breakdown';
frame 'modularity';

require constraint {
doc
/* A system structure view shall show the hierarchical
* part decomposition of a system, starting with a
* specified root part.

OMG Systems Modeling Language (SysML) v2.0 Beta 1

*/

Since a viewpoint usage is a kind of requirement usage, a view usage can be declared to satisfy a viewpoint usage
using a satisfy requirement usage (see 7.20.4). However, as a short cut, any composite viewpoint usage nested in a
view definition or usage is asserted to be satisfied by that view.

view def 'Part Structure View' {
// This viewpoint is asserted to be satisfied by any
// instance of the view definition.
viewpoint vp : 'System Structure Perspective';

/..

Alternatively, a satisfy requirement usage can be used explicitly between a viewpoint and a view. In particular, a
satisfy requirement usage for a viewpoint that is nested in a view definition or usage will, by default, have the
containing view as its satisfying feature (as described in general for nested satisfy requirement usages in 7.20.4).

viewpoint 'vehicle structure perspective'
'System Structure Perspective' {
subject : Vehicle;
}
view 'vehicle parts view' : 'Part Structure View' ({
// This asserts that the give viewpoint is satisfied by the
// 'vehicle parts view'.
satisfy 'vehicle structure perspective';

1/

The base viewpoint definition and usage are Viewpoint and viewpoints from the Views library model (see
9.2.18).

7.25.4 Rendering Definitions and Usages

A rendering definition or usage is declared as a kind of part definition or usage (see 7.11.2), using the kind keyword
rendering. A rendering usage must be defined by a single rendering definition.

While a rendering is intended to specify how a view is rendered as a view artifact, there are no specific constructs
provided in SysML for specifying that. A rendering definition or usage can be defined similarly to any other part
definition or usage, perhaps with nested subrenderings and references to related view usages. Nevetheless,
conforming tools can provide libraries of rendering usages that reflect the capabilities they provide for rendering
various kinds of views, which can then be identified in user models specifying those kinds of views. A small number
of basic standard rendering usages are provided in the Views library model (see 9.2.18).

The base rendering definition and usage are Rendering and renderings from the Views library model (see
9.2.18).

7.25.5 Diagrams
A diagram is a view usage (see 7.25.2) where the diagram name and type are the names of the view usage and view
definition, respectively. A view artifact is an individual view usage where the model content is rendered in a

compartment of the view usage. A view about a particular element can expose the element and be rendered as a
compartment of the rendering of that element. For example, the attributes view of a part can be rendered in an

OMG Systems Modeling Language (SysML) v2.0, Beta 1 147

attributes compartment of the graphical symbol for the part (see, for example, Table 9 in 7.11.2). The rendered

information can be in textual or graphical form.

The standardviewDefinitions model in the Systems Model Library (see 9.2.19) provides a small set of
standard view definitions for typical kinds of diagrams. However, visualization of SysML models is not limited to
these standard views. User models of view definitions and usages can be used to provide a wide range of user-

defined visualizations.

Table 24. Diagrams — Representative Examples

Standard View

General View

Tree View

Nested View

148

Diagram

«view» view1 : ViewDef1) N

«view» 'view1.1' J

«part def»
Part1

Y . . \ 1\
«view» 'view1.2 J

«part»
part1 : Part1

«action def»

Action1 Kle———

«action»

action1

parameters parameters
- J
«view» vehiclePartsTree : PartsTree) N
«part»
vehicle_b : Vehicle
«part» «part»
frontAxleAssembl rearAxleAssembl
] 4
«part» «party»
frontAxle : Axle rearAxle : Axle
[«part»] [«part»]
frontWheel : Wheel [2] rearWheel : Wheel [2]
J

«view» vehiclePartsInterconnection : Panslmerconneclion)

-

vehicle_b : Vehicle

«part»

«part»
frontAxleAssembly

«part»
frontAxle : Axle
2
«part»
frontWheel : Wheel [2]

«part»
rearAxleAssembly

«part»
rearAxle : Axle
«part»
rearWheel : Wheel [2]

OMG Systems Modeling Language (SysML) v2.0 Beta 1

Table View

Matrix View

Matrix View

Standard View

7.26 Metadata
7.26.1 Metadata Overview

Metamodel references:

Textual notation, 8.2.2.26
Graphical notation, 8.2.3.26
Abstract syntax, 8.3.26
Semantics, 8.4.22

Diagram

«view» vehiclePartsTree : PartsTreeTable)

i Part-Level1 Part-Level2 Part-Level3
1 |vehicle_b : Vehicle
2 rearAxleAssembly :
AxleAssembly
3 rearAxle : Axle
4 rearWheel[1] : Wheel
5 rearWheel[2] : Wheel
6 frontAxleAssembly :
AxleAssembly
7 frontAxle : Axle
8 frontWheel[1] : Wheel
9 frontWheel[2] : Wheel
«view» vehicleR i : Re
Specification-Level0 Specification-Level1 Specification-Level2 Satisfied By
1 i ification vehicle_b
2 physicalReqt massReqt yehicle b.mass
3 performanceReqt fuelEconomyReqt vehicle_b.fuelEconom:

«view» vehicleLogicalToPhysicalAllocation : AllocationMatrix)

Logical Component Physical Component
alternator engine

1 _|electricalGenerator 1

2 |torqueGenerator 1

A metadata usage is a kind of annotating element (see 7.4) that allows for the definition of structured metadata with
modeler-specified attributes. This may be used, for example, to add tool-specific information to a model that can be
relevant to the function of various kinds of tooling that may use or process a model, or domain-specific information
relevant to a certain project or organization. A metadata usage is defined by a single metadata definition. If the
definition has no nested features itself, then the metadata usage simply acts as a user-defined syntactic tag on the
annotated element. If the definition does have features, then the metadata usage must provide value bindings for all

of them, specifying metadata for the annotated element.

OMG Systems Modeling Language (SysML) v2.0, Beta 1

149

Table 25. Metadata — Representative Notation
Element Graphical Notation Textual Notation
metadata MetadataDefl {

attributel=valuel;
attribute2="value2";

«metadatay attribute3="http://...."
}
AttributeDef1
Metadata attribute1=value1 or
attribute2="value2"
attribute3="http : //....." @MetadataDefl {
attributel=valuel;

attribute2="value2";

attribute3="http://...."
}

analysis
vehicleAnalysis
VehicleAnalysis;
metadata ToolMetadata
about
vehicleAnalysis {
toolName="ToolX";

toolURL="http://..... ",
behaviorName=

"ComputeVehicleState";

«metadata» }
ToolMetadata «_analySiS»]
Annotation-Metadata | | toolName="Toolx" _...----| vehicleAnalysis :
toolURL="http : //...." VehicleAnalysis or
behaviorName="ComputeVehicleState"
analysis
vehicleAnalysis
VehicleAnalysis {
metadata

ToolMetadata {
toolName="ToolX";

toolURL="http://..... ",
behaviorName=
"ComputeVehicleState";
}

150 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

metadata
AttributeDef1 metadata MetadataDefl {
: _ attributel=valuel;
Metadata auﬂbUte1:YahJe1ll attribute2="value2";
Compartment attribute2="value2 attribute3=
attribute3="http : //....." "http://..... ";

7.26.2 Metadata Definitions and Usages

A metadata definition is declared like an item definition (see 7.10), but using the keyword metadata def.
metadata def SecurityRelated;

metadata def ApprovalAnnotation {
attribute approved : Boolean;
attribute approver : String;

A metadata usage is declared like an item usage (see 7.10) using the keyword metadata (or the symbol @) followed
by the keyword defined by (or the symbol :) and the qualified name of exactly one metadata definition or KerML
Metaclass (see [KerML], 7.4.13). If there is no declared name or short name, then the keyword defined by (or the
symbol :) may also be omitted. In addition, one or more annotated elements can be identified for the metadata usage
after the keyword about, indicating that the metadata usage has annotation relationships to each of the identified
elements (see also 7.4 on annotation relationships).

metadata securityDesignAnnotation : SecurityRelated
about SecurityRequirements, SecurityDesign;

If the specified metadata definition (or KerML metaclass) has features, then a body must be given for the metadata
usage that declares reference usages (see 7.0) that redefine each of the features of the definition and binds them to
the result of model-level evaluable expressions (see [KerML, 7.4.9]). These nested reference usages of a metadata
usage must always have the same names as the names of the features of its metadata definition, so the shorthand
prefix redefines notation (see 7.6) is always used

metadata ApprovalAnnotation about Design {
ref :>> approved = true;
ref :>> approver = "John Smith";

The keyword ref and/or redefines (or the equivalent symbol : >>) may be omitted in the declaration of a feature
of a metadata usage.

metadata ApprovalAnnotation about Design {
approved = true;
approver = "John Smith";

If the metadata usage is an owned member of a namespace (see 7.5), then the explicit identification of annotated
elements can be omitted, in which case the annotated element shall be implicitly the containing namespace.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 151

part def Design {
// This metadata usage is implicitly about the part def Design.
@ApprovalAnnotation {
approved = true;
approver = "John Smith";

The base metadata definition and usage are MetadataItem and metadataItems from the Metadata library (see
9.2.20). The base metadata definition Metadataltem specializes the KerML metaclass Metaobiject, and it inherits
the feature annotatedElement from Metaobject, which is typed by the reflected KerML metaclass

KerML: :Element (see [KerML, 9.2.17]). When a metadata usage is declared, its inherited annotatedElement
feature is implicitly bound to reflective instances representing its annotated elements.

metadata securityDesignAnnotation : SecurityRelated
about SecurityRequirements, SecurityDesign {
// The feature "annotatedElement" is implicitly bound to the list
// of SecurityRequirements meta KerML::Element and
// SecurityDesign meta KerML::Element.

A metadata definition can restrict the kind of elements that it can be applied to by subsetting
Metaobject::annotatedElement and restricting its type. If a metadata usage then inherits one or more concrete
features that directly or indirectly subset annotatedElement, any annotated element of the metadata usage must
conform to the type of at least one of these features. The restricted type should be one of the reflective metaclasses
from the KerML (see [KerML, 9.2.17]) or SysML (see 9.2.21) abstract syntax models.

metadata def CommandMetadata {
// A metadata usage of this definition may annotate
// an ActionDefinition or an ActionUsage.
:> annotatedElement : SysML::ActionDefinition;
:> annotatedElement : SysML::ActionUsage;

action def Save specializes UserAction {
@CommandMetadata; // This is wvalid.
redefine action doAction {
@CommandMetadata; // This is wvalid.

}
item def Options {

@CommandMetadata; // This is INVALID.
}

7.26.3 Semantic Metadata

If the metadata definition of a metadata usage is a direct or indirect specialization of KerML metaclass
SemanticMetadata from the Metaobjects model in the Kernel Semantic Library (see [KerML, 9.2.16]), then the
annotated elements of the metadata usage must all be types (e.g., definitions or usages), and the inherited feature
SemanticMetadata: :baseType must be bound to a value of type KerML: : Type (which is a generalization of
SysML::Definition and SysML: : Usage). Each annotated element is then considered to implicitly specialize a
definition or usage determined from the baseType value as follows:

+ If the annotated type is a definition and the baseType is a definition (or KerML classifier), then the
annotated definition implicitly subclassifies the baseType.

152 OMG Systems Modeling Language (SysML) v2.0 Beta 1

+ If the annotated type is a definition and the baseType is a usage (or KerML feature), then the annotated
definition implicitly subclassifies each definition (or type) of the baseType.

 If the annotated type is a usage and the baseType is a usage (or KerML feature), then the annotated usage
implicitly subsets the baseType.

* Otherwise no implicit specialization is added.

When evaluated in a model-level evaluable expression, the meta-cast operator meta (see [KerML, 7.4.9.2]) may be
used to cast a type element referenced as its first operand to the actual reflective metadata definition (or KerML
metaclass) value for the type, which may then be bound to the baseType feature of SemanticMetadata.

action def UserAction;
action userActions : UserAction[*] nonunique;

metadata def CommandMetadata :> SemanticMetadata ({
// The meta-cast operation "userAction meta SysML::Usage" has
// type Usage, which conforms to the type KermL::Type of baseType.
// Since userActions is an ActionUsage, the expression evaluates
// at model level to a value of type SysML::ActionUsage.
:>> baseType = userActions meta SysML::Usage;

// Save implicitly subclassifies UserAction
// (which is the definition of userActions).
action def Save {

@CommandMetadata;

// previousAction implicitly subsets userActions.
action previousAction[1l] {
@CommandMetadata;

7.26.4 User-Defined Keywords

A user-defined keyword is the (possibly qualified) name (or short name) of a metadata definition (or KerML
metaclass) preceded by the symbol #. Such a keyword can be used in package, dependency, definition and usage
declarations. The user-defined keyword is placed immediately before the language-defined (reserved) keyword for
the declaration and specifies a metadata annotation of the declared element. If the named metadata definition is a
kind of semanticMetadata, then the implicit specialization rules given in 7.26.3 for semantic metadata also apply.

occurrence def Situation;
occurrence situations : Situation[0..*] nonunique;

// It is often convenient to use a lower-case initial name or
// short name for semantic metadata intended to be used as a keyword.
metadata def <situation> SituationMetadata :> SemanticMetadata ({

:>> baseType = situations meta SysML::Usage;

// Failure is an OccurrenceDefinition that implicitly subclassifies Situation.
#situation occurrence def Failure;

// batteryLow is an OccurrenceUsage that implicitly subsets situations.
#situation occurrence batteryLow;

In addition, a user-defined keyword for semantic metadata may also be used to declare a definition or usage without
using any language-defined keyword.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 153

// Failure is a definition that implicitly subclassifies Situation.
#situation def Failure;

// batteryLow is a usage implicitly subsets situations.
#situation batteryLow;

It is also possible to include more than one user defined-keyword in a declaration.

#SecurityRelated #situation def Vulnerability;

154 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8 Metamodel

8.1 Metamodel Overview
The SysML metamodel extends the KerML metamodel as specified in the KerML specification [KerML].

* The SysML concrete syntax includes a textual notation (see 8.2.2), which is generally distinct from that of
KerML, though consistent on common elements (such as packages and expressions), and a complete
graphical notation (see 8.2.3).

* The SysML abstract syntax (see 8.3) imports the KerML abstract syntax, reusing some KerML
metaclasses directly, and further specializing most other KerML metaclasses.

* The SysML semantics (see 8.4) are defined by relating the SysML abstract syntax to the semantic models
in the Systems Model Library (see Clause 9), which is based on the Kernel Model Library from KerML,
and providing syntactic transformations from SysML models to syntactically equivalent KerML models
(including elements that are otherwise implicit in the SysML abstract syntax).

Throughout this clause, the names of elements from the SysML (and KerML) abstract syntax models appear in a
"code" font. Further:

1. Names of metaclasses appear exactly as in the abstract syntax, including capitalization, except possibly
with added pluralization. When used as English common nouns, e.g., "a Usage", "multiple
Subsettings", they refer to instances of the metaclass. E.g., "Usages can be nested in other Usages"
refers to instances of the metaclass Usage that reside in models. This can be modified with the term
"metaclass" as necessary to refer to the metaclass itself instead of its instances, e.g., "The Usage metaclass
is contained in the DefinitionAndUsage package."

2. Names of properties of metaclasses, when used as English common nouns, e.g., “an ownedUsage”,
“multiple nestedActions”, refer to values of the properties. This can be modified using the term
"metaproperty" as necessary to refer to the metaproperty itself instead of its values, e.g., "The
ownedUsage metaproperty is contained in the DefinitionAndUsage package."

Similar stylistic conventions apply to text about SysML (and KerML) models, except thatan "italic code" front
is used.

1. Convention 1 above applies to SysML Definitions (e.g., Action), using "definition" (or a more
specialized term) instead of "metaclass" (e.g., "the action definition Action").

2. Convention 2 above applies to SysML Usages (e.g, actions), using "usage" (or a more specialized term)
instead of "metaproperty" (e.g., "the action usage actions").

8.2 Concrete Syntax

8.2.1 Concrete Syntax Overview

Concrete syntax specifies the how the language appears to modelers. They construct and review models shown
according to the concrete syntax. The SysML concrete syntax includes both a textual notation, described in 8.2.2,

and a graphical notation, described in 8.2.3. Various views of a SysML model may be rendered entirely using the
textual notation, entirely using the graphical notation, or using a combination of the two.

8.2.2 Textual Notation

8.2.2.1 Textual Notation Overview

OMG Systems Modeling Language (SysML) v2.0, Beta 1 155

8.2.2.1.1 EBNF Conventions

The grammar definition for the SysML textual concrete syntax defines how lexical tokens for an input text are
grouped in order to construct an abstract syntax representation of a model (see 8.3). The concrete syntax grammar
definition uses an Extended Backus Naur Form (EBNF) notation (see Table 26) that includes further notations to
describe how the concrete syntax maps to the abstract syntax (see Table 27).

Productions in the grammar formally result in the synthesis of classes in the abstract syntax and the population of
their properties (see Table 28). Productions may also be parameterized, with the parameters typed by abstract syntax
classes. Information passed in parameters during parsing allows a production to update the properties of the
provided abstract syntax elements as a side-effect of the parsing it specifies. Some productions only update the
properties of parameters, without synthesizing any new abstract syntax element.

Table 26. EBNF Notation Conventions

Lexical element LEXICAL

Terminal element 'terminal'
Non-terminal element NonterminalElement
Sequential elements Elementl Element?2
Alternative elements Elementl | Element?2
Optional elements (zero or one) Element ?

Repeated elements (zero or more) Element *

Repeated elements (one or more) Element +

Grouping (Elements ...)

Table 27. Abstract Syntax Synthesis Notation

Assign the result of parsing the
Property assignment p = Element concrete syntax Element to abstract
syntax property p.

Add the result of parsing the
List property construction p += Element concrete syntax Element to the
abstract syntax list property p.

If the concrete syntax Element is
Boolean property assignment p ?= Element parsed, then set the abstract Boolean
property p to true.

Assign (or add) the given value to
the abstract syntax property p,
without parsing any input. The
value may be a literal or a reference
to another abstract syntax property.
The symbol "this" refers to the
element being synthesized.

. . = value
Non-parsing assignment { p = value }
P

+= value }

Parse a QualifiedName, then
resolve that name to an Element
reference for use as a value in an
assignment as above.

Name resolution [QualifiedName]

156 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Table 28. Grammar Production Definitions

Define a production for the
NonterminalElement that
synthesizes the
) AbstractSyntaxElement. If the
NonterminalElement

Production definition ’ NonterminalElement has the
AbstractSyntaxElement =
same name as the

AbstractSyntaxElement, then ":

AbstractSyntaxElement" may
be omitted.

Define a production for the
NonterminalElement that

NonterminalElement (.
P synthesizes the

Type)
AbstractSyntaxElement =

Parameterized production
definition

parameter named p, whose type is
an abstract syntax class.

8.2.2.1.2 Lexical Structure

The lexical structure of the SysML textual notation is identical to that of the KerML textual notation [KerML],
except for the following two points.

1. The reserved keywords of SysML are the following.

about abstract accept action actor after alias all allocate allocation
analysis and as assign assert assoc assume at attribute bind binding block
by calc case comment concern connect connection constraint decide def
default defined dependency derived do doc else end entry enum event exhibit
exit expose filter first flow for fork frame from hastype if implies import
in include individual inout interface istype item join language loop merge
message metadata nonunique not objective occurrence of or ordered out
package parallel part perform port private protected public readonly
redefines ref references render rendering rep require requirement return
satisfy send snapshot specializes stakeholder state subject subsets
succession then timeslice to transition until use variant variation
verification verify via view viewpoint when while xor

AbstractSyntaxElement, with a

2. The set of special lexical terminals matching either certain keywords or their symbolic equivalents are the

following in SysML.

DEFINED BY = ':' | 'defined' 'by'
SPECIALIZES = ':>' | 'specializes'
SUBSETS = "> | '"subsets'
REFERENCES = '::>' | 'references'
REDEFINES = ':>>'" | 'redefines'

8.2.2.2 Elements and Relationships Textual Notation
Identification : Element =

('<' declaredShortName = NAME '>')?
(declaredName = NAME)?

OMG Systems Modeling Language (SysML) v2.0, Beta 1

157

RelationshipBody : Relationship =
;' | '"{"'" (ownedRelationship += OwnedAnnotation)* '}'

8.2.2.3 Dependencies Textual Notation

Dependency =
(ownedRelationship += PrefixMetadataAnnotation)*
'dependency' DependencyDeclaration
RelationshipBody

DependencyDeclaration =
(Identification 'from')?
client += [QualifiedName] (',' client += [QualifiedName])* 'to'
supplier += [QualifiedName] (',' supplier += [QualifiedName])*

8.2.2.4 Annotations Textual Notation

8.2.2.4.1 Annotations

Annotation =
annotatedElement = [QualifiedName]

OwnedAnnotation : Annotation =
annotatingElement = AnnotatingElement
{ ownedRelatedElement += annotatingElement }

AnnotatingMember : OwningMembership =
ownedRelatedElement += AnnotatingElement

AnnotatingElement =
Comment
| Documentation
| TextualRepresentation
| MetadataFeature

8.2.2.4.2 Comments and Documentation

Comment =
('comment' Identification
('about' annotation += Annotation
{ ownedRelationship += annotation }
(','" annotation += Annotation
{ ownedRelationship += annotation })*
)?
) ?
("locale' locale = STRING VALUE)?
body = REGULAR COMMENT

Documentation =
'doc' Identification

("locale' locale = STRING VALUE)?
body = REGULAR_ COMMENT

8.2.2.4.3 Textual Representation

TextualRepresentation =
('rep' Identification)?
'language' language = STRING VALUE body = REGULAR COMMENT

8.2.2.5 Namespaces and Packages Textual Notation

158 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.2.2.5.1 Packages

RootNamespace : Namespace =
PackageBodyElement*

Package =

(ownedRelationship += PrefixMetadataMember)*

PackageDeclaration PackageBody

LibraryPackage =

(isStandard ?= 'standard') 'library'
(ownedRelationship += PrefixMetadataMember)*

PackageDeclaration PackageBody

PackageDeclaration : Package =
'package' Identification

PackageBody : Package =
';' | '"{' PackageBodyElement* '}'

PackageBodyElement : Package =

ownedRelationship += PackageMember
| ownedRelationship += ElementFilterMember
| ownedRelationship += AliasMember

| ownedRelationship += Import

MemberPrefix : Membership =

(visibility = VisibilityIndicator)?

PackageMember : OwningMembership
MemberPrefix

(ownedRelatedElement += DefinitionElement
| ownedRelatedElement = UsageElement)

ElementFilterMember : ElementFilterMembership

MemberPrefix

'filter' ownedRelatedElement += OwnedExpression

AliasMember : Membership =

MemberPrefix
'alias' ('<' memberShortName = NAME
(memberName = NAME)?
'for' memberElement = [QualifiedName]
RelationshipBody
Import =

(visibility = VisibilityIndicator)?
'import' (isImportAll ?= 'all')?

(ImportedNamespace
| ImportedFilterPackage)

RelationshipBody
ImportedNamespace : Import =
(importedNamespace = [QualifiedName]
(importedMemberName = NAME | '*')
('"::' isRecursive ?2= '**')?

ImportedFilterPackage : Import
importedNamspace = FilterPackage

OMG Systems Modeling Language (SysML) v2.0, Beta 1

159

{ ownedRelatedElement += FilterPackage }

FilterPackage : Package =
ownedRelationship += FilterPackagelImport
(ownedRelationship += FilterPackageMember)+

FilterPackageImport : Import =
ImportedNamespace

FilterPackageMember : ElementFilterMembership =
'['" ownedRelatedElement += OwnedExpression ']'
{ visibility = 'private' }

VisibilityIndicator : VisibilityKind =
'public' | 'private' | 'protected'

8.2.2.5.2 Package Elements

DefinitionElement : Element =
Package

LibraryPackage
AnnotatingElement
Dependency
AttributeDefinition
EnumerationDefinition
OccurrenceDefinition
IndividualDefinition
ItemDefinition
PartDefinition
ConnectionDefinition
FlowConnectionDefinition
InterfaceDefinition
PortDefinition
ActionDefinition
CalculationDefinition
StateDefinition
ConstraintDefinition
RequirementDefinition
ConcernDefinition
CaseDefinition
AnalysisCaseDefinition
VerificationCaseDefinition
UseCaseDefinition
ViewDefinition
ViewpointDefinition
RenderingDefinition
MetadataDefinition
ExtendedDefinition

UsageElement : Usage =

NonOccurrenceUsageElement
| OccurrenceUsageElement

8.2.2.6 Definition and Usage Textual Notation

8.2.2.6.1 Definitions

BasicDefinitionPrefix =
isAbstract ?= 'abstract' | isVariation ?= 'variation'

160 OMG Systems Modeling Language (SysML) v2.0 Beta 1

DefinitionExtensionKeyword : Definition =
ownedRelationship += PrefixMetadataMember

DefinitionPrefix : Definition =
BasicDefinitionPrefix? DefinitionExtensionKeyword*

Definition =
DefinitionDeclaration DefinitionBody

DefinitionDeclaration : Definition
Identification SubclassificationPart?

DefinitionBody : Type =
';' | '"{' DefinitionBodyItem* '}'

DefinitionBodyItem : Type =

ownedRelationship += DefinitionMember

| ownedRelationship += VariantUsageMember

| ownedRelationship += NonOccurrenceUsageMember

| (ownedRelationship += SourceSuccessionMember)?
ownedRelationship += OccurrenceUsageMember

| ownedRelationship += AliasMember

| ownedRelationship += Import

DefinitionMember : OwningMembership =
MemberPrefix
ownedRelatedElement += DefinitionElement

VariantUsageMember : VariantMembership =
MemberPrefix 'variant'
ownedVariantUsage = VariantUsageElement

NonOccurrenceUsageMember : FeatureMembership =
MemberPrefix
ownedRelatedElement += NonOccurrenceUsageElement

OccurrenceUsageMember : FeatureMembership =
MemberPrefix
ownedRelatedElement += OccurrenceUsageElement

StructureUsageMember : FeatureMembership =
MemberPrefix
ownedRelatedElement += StructureUsageElement

BehaviorUsageMember : FeatureMembership =

MemberPrefix
ownedRelatedElement += BehaviorUsageElement

8.2.2.6.2 Usages

FeatureDirection : FeatureDirectionKind =
'in' | 'out' | 'inout'

RefPrefix : Usage =

(direction = FeatureDirection)?

(isAbstract ?= 'abstract' | isVariation ?= 'variation')?
(isReadOnly ?= 'readonly')?

(isDerived ?= 'derived')?

(isEnd ?= 'end')?

OMG Systems Modeling Language (SysML) v2.0, Beta 1 161

BasicUsagePrefix : Usage =
RefPrefix
(isReference ?= 'ref')?

UsageExtensionKeyword : Usage =
ownedRelationship += PrefixMetadataMember

UsagePrefix : Usage =
BasicUsagePrefix UsageExtensionKeyword*

Usage =
UsageDeclaration UsageCompletion

UsageDeclaration : Usage =
Identification FeatureSpecializationPart?

UsageCompletion : Usage =
ValuePart? UsageBody

UsageBody : Usage =
DefinitionBody

ValuePart : Feature =
ownedRelationship += FeatureValue

FeatureValue =
([
| isInitial ?= ':='
| isDefault ?= 'default' ('=' | isInitial ?= ':=')?
)

ownedRelatedElement += OwnedExpression

8.2.2.6.3 Reference Usages

DefaultReferenceUsage : ReferenceUsage =
RefPrefix Usage

ReferenceUsage =
RefPrefix 'ref' Usage

VariantReference : ReferenceUsage =
ownedRelationship += OwnedReferenceSubsetting
FeatureSpecialization* UsageBody

8.2.2.6.4 Body Elements

NonOccurrenceUsageElement : Usage =
DefaultReferenceUsage
ReferenceUsage

AttributeUsage
EnumerationUsage
BindingConnectorAsUsage
SuccessionAsUsage
ExtendedUsage

OccurrenceUsageElement : Usage =
StructureUsageElement | BehaviorUsageElement

StructureUsageElement : Usage =
OccurrenceUsage

162 OMG Systems Modeling Language (SysML) v2.0 Beta 1

IndividualUsage
PortionUsage
EventOccurrenceUsage
ItemUsage

PartUsage

ViewUsage
RenderingUsage
PortUsage
ConnectionUsage
InterfaceUsage
AllocationUsage
Message
FlowConnectionUsage
SuccessionFlowConnectionUsage

BehaviorUsageElement : Usage =

ActionUsage
CalculationUsage
StateUsage
ConstraintUsage
RequirementUsage
ConcernUsage
CaseUsage
AnalysisCaseUsage
VerificationCaseUsage
UseCaseUsage
ViewpointUsage
PerformActionUsage
ExhibitStateUsage
IncludeUseCaseUsage
AssertConstraintUsage
SatisfyRequirementUsage

VariantUsageElement : Usage =

VariantReference
ReferenceUsage
AttributeUsage
BindingConnectorAsUsage
SuccessionAsUsage
OccurrenceUsage
IndividualUsage
PortionUsage
EventOccurrenceUsage
ItemUsage

PartUsage

ViewUsage
RenderingUsage
PortUsage
ConnectionUsage
InterfaceUsage
AllocationUsage
Message
FlowConnectionUsage
SuccessionFlowConnectionUsage
BehaviorUsageElement

8.2.2.6.5 Specialization

SubclassificationPart : Classifier =

SPECIALIZES ownedRelationship +=

OMG Systems Modeling Language (SysML) v2.0, Beta 1

OwnedSubclassification

163

(',' ownedRelationship += OwnedSubclassification)*

OwnedSubclassification : Subclassification =
superClassifier = [QualifiedName]

FeatureSpecializationPart : Feature =
FeatureSpecializationt+ MultiplicityPart? FeatureSpecialization*
| MultiplicityPart FeatureSpecialization*

FeatureSpecialization : Feature =
Typings | Subsettings | References | Redefinitions

Typings : Feature =
TypedBy (',' ownedRelationship += FeatureTyping)*

TypedBy : Feature =
DEFINED BY ownedRelationship += FeatureTyping

FeatureTyping =
OwnedFeatureTyping | ConjugatedPortTyping

OwnedFeatureTyping : FeatureTyping =
type = [QualifiedName]
| type = OwnedFeatureChain
{ ownedRelatedElement += type }

Subsettings : Feature =
Subsets (',' ownedRelationship += OwnedSubsetting)*
Subsets : Feature =

SUBSETS ownedRelationship += OwnedSubsetting

OwnedSubsetting : Subsetting =
subsettedFeature = [QualifiedName]
| subsettedFeature = OwnedFeatureChain
{ ownedRelatedElement += subsettedFeature }

References : Feature =
REFERENCES ownedRelationship += OwnedReferenceSubsetting

OwnedReferenceSubsetting : ReferenceSubsetting =
referencedFeature = [QualifiedName]
| referencedFeature = OwnedFeatureChain
{ ownedRelatedElement += referenceFeature }

Redefinitions : Feature =
Redefines (',' ownedRelationship += OwnedRedefinition)*
Redefines : Feature =

REDEFINES ownedRelationship += OwnedRedefinition

OwnedRedefinition : Redefinition =
redefinedFeature = [QualifiedName]
| redefinedFeature = OwnedFeatureChain
{ ownedRelatedElement += redefinedFeature }

OwnedFeatureChain : Feature =

ownedRelationship += OwnedFeatureChaining
('.' ownedRelationship += OwnedFeatureChaining)+

164 OMG Systems Modeling Language (SysML) v2.0 Beta 1

OwnedFeatureChaining : FeatureChaining =
chainingFeature = [QualifiedName]

8.2.2.6.6 Multiplicity

MultiplicityPart : Feature =
ownedRelationship += OwnedMultiplicity
| (ownedRelationship += OwnedMultiplicity)?
(isOrdered ?= 'ordered' ({ isUnique = false } 'nonunique')?
| { isUnique = false } 'nonunique' (i1sOrdered ?= 'ordered')?)

OwnedMultiplicity : OwningMembership =
ownedRelatedElement += MultiplicityRange

MultiplicityRange =
'[" (ownedRelationship += MultiplicityExpressionMember '..')?
ownedRelationship += MultiplicityExpressionMember ']'

MultiplicityExpressionMember : OwningMembership =
ownedRelatedElement += (LiteralExpression | FeatureReferenceExpression)

8.2.2.7 Attributes Textual Notation

AttributeDefinition : AttributeDefinition =
DefinitionPrefix 'attribute' 'def' Definition

AttributeUsage : AttributeUsage =
UsagePrefix 'attribute' Usage

8.2.2.8 Enumerations Textual Notation

EnumerationDefinition =
DefinitionExtensionKeyword*
'enum' 'def' DefinitionDeclaration EnumerationBody

EnumerationBody : EnumerationDefinition =
LI

| '"{" (ownedRelationship += AnnotatingMember
| ownedRelationship += EnumerationUsageMember)*

I}I

EnumerationUsageMember : VariantMembership =
MemberPrefix ownedRelatedElement += EnumeratedValue

EnumeratedvValue : EnumerationUsage =
'enum'? Usage

EnumerationUsage : EnumerationUsage =
UsagePrefix 'enum' Usage

8.2.2.9 Occurrences Textual Notation
8.2.2.9.1 Occurrence Definitions
OccurrenceDefinitionPrefix : OccurrenceDefinition =
BasicDefinitionPrefix?
(isIndividual ?= 'individual')?

DefinitionExtensionKeyword*

OccurrenceDefinition =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 165

OccurrenceDefinitionPrefix 'occurrence'

IndividualDefinition : OccurrenceDefinition
BasicDefinitionPrefix? isIndividual ?=

DefinitionExtensionKeyword*

8.2.2.9.2 Occurrence Usages

OccurrenceUsagePrefix : OccurrenceUsage

BasicUsagePrefix

(isIndividual ?= 'individual'

(portionKind = PortionKind
UsageExtensionKeyword*

OccurrenceUsage =

OccurrenceUsagePrefix 'occurrence'

IndividualUsage : OccurrenceUsage
BasicUsagePrefix isIndividual 7=

UsageExtensionKeyword* Usage

PortionUsage : OccurrenceUsage

BasicUsagePrefix (isIndividual 7=

portionKind = PortionKind
UsageExtensionKeyword* Usage

PortionKind =
'snapshot' | 'timeslice'

EventOccurrenceUsage =

OccurrenceUsagePrefix 'event'

'individual'

Definition

'individual'
Definition

'individual')7

(ownedRelationship += OwnedReferenceSubsetting

FeatureSpecializationPart?

| 'occurrence' UsageDeclaration?

UsageCompletion

8.2.2.9.3 Occurrence Successions

SourceSuccessionMember : FeatureMembership
'then' ownedRelatedElement += SourceSuccession

SourceSuccession : SuccessionAsUsage
ownedRelationship += SourceEndMember

SourceEndMember : EndFeatureMembership
ownedRelatedElement += SourceEnd

SourceEnd : ReferenceUsage =

(ownedRelationship += OwnedMultiplicity)?

8.2.2.10 Items Textual Notation
ItemDefinition =
OccurrenceDefinitionPrefix

'item' 'def' Definition

ItemUsage =

OccurrenceUsagePrefix 'item' Usage

166

OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.2.2.11 Parts Textual Notation

PartDefinition =
OccurrenceDefinitionPrefix 'part' 'def' Definition

PartUsage =
OccurrenceUsagePrefix 'part' Usage

8.2.2.12 Ports Textual Notation

PortDefinition =
DefinitionPrefix 'port' 'def' Definition
ownedRelationship += ConjugatedPortDefinitionMember
{ conjugatedPortDefinition.ownedPortConjugator.

originalPortDefinition = this }

(See Note 1)

ConjugatedPortDefinitionMember : OwningMembership =
ownedRelatedElement += ConjugatedPortDefinition

ConjugatedPortDefinition =
ownedRelationship += PortConjugation

PortConjugation =

{1

PortUsage =
OccurrenceUsagePrefix 'port' Usage

ConjugatedPortTyping : ConjugatedPortTyping =

originalPortDefinition = ~[QualifiedName]

(See Note 2)

Notes

Even though it is not explicitly represented in the text, a PortDefinition is always parsed as containing
anested ConjugatedPortDefinition with a PortDefinition Relationship pointing back to the
containing PortDefinition. The abstract syntax for ConjugatedPortDefinition sets its
effectiveName to the name of its originalPortDefinition with the symbol ~ prepended to it (see
8.3.12.2). (See also 8.4.8.1.)
The notation ~ [QualifiedName] indicates that a QualifiedName shall be parsed from the input text,
but that it shall be resolved as if it was the qualified name constructed as follows:

o Extract the last segment name of the given QualifiedName and prepend the symbol ~ to it.

o Append the name so constructed to the end of the entire original QualifiedName.
For example, if the ConjugatedPortTypingis ~A: :B: :C, then the given QualifiedName is A: :B: :C,
and ~ [QualifiedName] isresolved as A: :B::C::'~C"'. Alternatively, a conforming tool may first
resolve the given QualifiedName asusual to a PortDefinition and then use the
conjugatedPortDefinition of this PortDefinition as the resolution of ~ [QualifiedName].

8.2.2.13 Connections Textual Notation

8.2.2.13.1 Connection Definition and Usage

ConnectionDefinition =
OccurrenceDefinitionPrefix 'connection' 'def' Definition

ConnectionUsage =
OccurrenceUsagePrefix

OMG Systems Modeling Language (SysML) v2.0, Beta 1 167

('connection' UsageDeclaration ValuePart?
('connect' ConnectorPart)?

| 'connect' ConnectorPart)

UsageBody

ConnectorPart : ConnectionUsage =
BinaryConnectorPart | NaryConnectorPart

BinaryConnectorPart : ConnectionUsage =
ownedRelationship += ConnectorEndMember 'to'
ownedRelationship += ConnectorEndMember

NaryConnectorPart : ConnectionUsage =
' (' ownedRelationship += ConnectorEndMember ','
ownedRelationship += ConnectorEndMember
(',' ownedRelationship += ConnectorEndMember)* ')'

ConnectorEndMember : EndFeatureMembership
ownedRelatedElement += ConnectorEnd

ConnectorEnd : ReferenceUsage =
(declaredName = NAME REFERENCES)?
ownedRelationship += OwnedReferenceSubsetting
(ownedRelationship += OwnedMultiplicity)?

8.2.2.13.2 Binding Connectors

BindingConnectorAsUsage =
UsagePrefix ('binding' UsageDeclaration)?
'bind' ownedRelationship += ConnectorEndMember
'='" ownedRelationship += ConnectorEndMember
UsageBody

8.2.2.13.3 Successions

SuccessionAsUsage =
UsagePrefix ('succession' UsageDeclaration)?
'first' s.ownedRelationship += ConnectorEndMember
'then' s.ownedRelationship += ConnectorEndMember
UsageBody

8.2.2.13.4 Messages and Flow Connections

FlowConnectionDefinition
OccurrenceDefinitionPrefix 'flow' 'def' Definition

Message : FlowConnectionUsage =
OccurrenceUsagePrefix 'message'
MessageDeclaration DefinitionBody
{ isAbstract = true }

MessageDeclaration : FlowConnectionUsage =
UsageDeclaration ValuePart?
('of' ownedRelationship += FlowPayloadFeatureMember)?
('"from' ownedRelationship += MessageEventMember
'to' ownedRelationship += MessageEventMember
) ?
| ownedRelationship += MessageEventMember 'to'
ownedRelationship += MessageEventMember

168 OMG Systems Modeling Language (SysML) v2.0 Beta 1

MessageEventMember : ParameterMembership =
ownedRelatedElement += MessageEvent

MessageEvent : EventOccurrenceUsage =
ownedRelationship += OwnedReferenceSubsetting

FlowConnectionUsage =
OccurrenceUsagePrefix 'flow'
FlowConnectionDeclaration DefinitionBody

SuccessionFlowConnectionUsage =
OccurrenceUsagePrefix 'succession' 'flow'
FlowConnectionDeclaration DefinitionBody

FlowConnectionDeclaration : FlowConnectionUsage =
UsageDeclaration ValuePart?

('of! ownedRelationship += FlowPayloadFeatureMember)?

('from' ownedRelationship += FlowEndMember
'to! ownedRelationship += FlowEndMember)?
| ownedRelationship += FlowEndMember 'to'
ownedRelationship += FlowEndMember

FlowPayloadFeatureMember : FeatureMembership =
ownedRelatedElement += FlowPayloadFeature

FlowPayloadFeature : ItemFeature =
PayloadFeature

PayloadFeature : Feature =
Identification? PayloadFeatureSpecializationPart
ValuePart?
| ownedRelationship += OwnedFeatureTyping
(ownedRelationship += OwnedMultiplicity)?
| ownedRelationship += OwnedMultiplicity
ownedRelationship += OwnedFeatureTyping

PayloadFeatureSpecializationPart : Feature =
(-> FeatureSpecialization)+ MultiplicityPart?
FeatureSpecialization*
| MultiplicityPart FeatureSpecialization+

FlowEndMember : EndFeatureMembership =
ownedRelatedElement += FlowEnd

FlowEnd : ItemFlowEnd =
(ownedRelationship += FlowEndSubsetting)?
ownedRelationship += FlowFeatureMember

FlowEndSubsetting : ReferenceSubsetting =
referencedFeature = [QualifiedName]
| referencedFeature = FeatureChainPrefix
{ ownedRelatedElement += referencedFeature }

FeatureChainPrefix : Feature =
(ownedRelationship += OwnedFeatureChaining '.')+

ownedRelationship += OwnedFeatureChaining '.'

FlowFeatureMember : FeatureMembership =
ownedRelatedElement += FlowFeature

OMG Systems Modeling Language (SysML) v2.0, Beta 1

169

FlowFeature : ReferenceUsage =
ownedRelationship += FlowFeatureRedefinition
(See Note 1)

FlowFeatureRefefinition : Redefinition =
redefinedFeature = [QualifiedName]

Notes

1. To ensure that a FlowFeature passes the validateRedefinitionDirectionConformance
constraint (see [KerML, 8.3.3.3.8]), its direction must be set to the direction of its
redefinedFeature, relative to its owning FlowEnd, that is, the result of the following OCL expression:

owningType.directionOf (ownedRedefinition->at (1) .redefinedFeature)

8.2.2.14 Interfaces Textual Notation
8.2.2.14.1 Interface Definitions

InterfaceDefinition =
OccurrenceDefinitionPrefix 'interface' 'def'
DefinitionDeclaration InterfaceBody

InterfaceBody : Type =
';' | '"{' InterfaceBodyItem* '}'

InterfaceBodyItem : Type =

ownedRelationship += DefinitionMember

| ownedRelationship += VariantUsageMember

| ownedRelationship += InterfaceNonOccurrenceUsageMember

| (ownedRelationship += SourceSuccessionMember)?
ownedRelationship += InterfaceOccurrenceUsageMember

| ownedRelationship += AliasMember

| ownedRelationship += Import

InterfaceNonOccurrenceUsageMember : FeatureMembership =
MemberPrefix ownedRelatedElement += InterfaceNonOccurrenceUsageElement

InterfaceNonOccurrenceUsageElement : Usage =
ReferenceUsage

AttributeUsage

EnumerationUsage
BindingConnectorAsUsage
SuccessionAsUsage

InterfaceOccurrenceUsageMember : FeatureMembership =
MemberPrefix ownedRelatedElement += InterfaceOccurrenceUsageElement

InterfaceOccurrenceUsageElement : Usage =
DefaultInterfaceEnd | StructureUsageElement | BehaviorUsageElement

DefaultInterfaceEnd : PortUsage =

(direction = FeatureDirection)?
(isAbstract ?= 'abstract' | isVariation ?= 'variation')?
isEnd ?= 'end' Usage

170 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.2.2.14.2 Interface Usages

InterfaceUsage =
OccurrenceUsagePrefix 'interface'
InterfaceUsageDeclaration InterfaceBody

InterfaceUsageDeclaration : InterfaceUsage =
UsageDeclaration ValuePart?
('connect' InterfacePart)?
| InterfacePart

InterfacePart : InterfaceUsage =
BinaryInterfacePart | NaryInterfacePart

BinaryInterfacePart : InterfaceUsage =
ownedRelationship += InterfaceEndMember 'to'
ownedRelationship += InterfaceEndMember

NaryInterfacePart : InterfaceUsage =
' (' ownedRelationship += InterfaceEndMember ','
ownedRelationship += InterfaceEndMember
(',' ownedRelationship += InterfaceEndMember)* ')'

InterfaceEndMember : EndFeatureMembership =
ownedRelatedElement += InterfaceEnd

InterfaceEnd : PortUsage
(declaredName = Name REFERENCES)?
ownedRelationship += OwnedReferenceSubsetting
(ownedRelationship += OwnedMultiplicity)?

8.2.2.15 Allocations Textual Notation

AllocationDefinition =
OccurrenceDefinitionPrefix 'allocation' 'def' Definition

AllocationUsage =
OccurrenceUsagePrefix
AllocationUsageDeclaration UsageBody

AllocationUsageDeclaration : AllocationUsage =
'allocation' UsageDeclaration
('allocate' ConnectorPart)?
| 'allocate' ConnectorPart

8.2.2.16 Actions Textual Notation
8.2.2.16.1 Action Definitions

ActionDefinition =
OccurrenceDefinitionPrefix 'action' 'def'
DefinitionDeclaration ActionBody

ActionBody : Type =
;' | '"{' ActionBodyItem* '}'

ActionBodyIltem : Type =
NonBehaviorBodyItem
| ownedRelationship += InitialNodeMember
(ownedRelationship += ActionTargetSuccessionMember)*

OMG Systems Modeling Language (SysML) v2.0, Beta 1 171

| (ownedRelationship += SourceSuccessionMember)?
ownedRelationsuip += ActionBehaviorMember
(ownedRelationship += ActionTargetSuccessionMember)*
| ownedRelationship += GuardedSuccessionMember

NonBehaviorBodyItem =

ownedRelationship += Import

| ownedRelationship += AliasMember

| ownedRelationship += DefinitionMember

| ownedRelationship += VariantUsageMember

| ownedRelationship += NonOccurrenceUsageMember

| (ownedRelationship += SourceSuccessionMember)?
ownedRelationship += StructureUsageMember

ActionBehaviorMember : FeatureMembership =
BehaviorUsageMember | ActionNodeMember

InitialNodeMember : FeatureMembership =
MemberPrefix 'first' memberFeature = [QualifiedName]
RelationshipBody

ActionNodeMember : FeatureMembership =
MemberPrefix ownedRelatedElement += ActionNode

ActionTargetSuccessionMember : FeatureMembership =
MemberPrefix ownedRelatedElement += ActionTargetSuccession

GuardedSuccessionMember : FeatureMembership =
MemberPrefix ownedRelatedElement += GuardedSuccession

8.2.2.16.2 Action Usages

ActionUsage =
OccurrenceUsagePrefix 'action'
ActionUsageDeclaration ActionBody

ActionUsageDeclaration : ActionUsage =
UsageDeclaration ValuePart?

PerformActionUsage =
OccurrenceUsagePrefix 'perform'
PerformActionUsageDeclaration ActionBody

PerformActionUsageDeclaration : PerformActionUsage =
(ownedRelationship += OwnedReferenceSubsetting
FeatureSpecializationPart?
| 'action' UsageDeclaration)
ValuePart?

ActionNode : ActionUsage =
ControlNode
| AssignmentNode
| SendNode | AcceptNode
| IfNode | WhileLoopNode | ForLoopNode

ActionNodeUsageDeclaration : ActionUsage =
'action' UsageDeclaration?

ActionNodePrefix : ActionUsage =
OccurrenceUsagePrefix ActionNodeUsageDeclaration?

172 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.2.2.16.3 Control Nodes

ControlNode =
MergeNode | DecisionNode | JoinNode| ForkNode

ControlNodePrefix : OccurrenceUsage =
RefPrefix
(isIndividual ?= 'individual)?
(portionKind = PortionKind)?
UsageExtensionKeyword*

MergeNode =
ControlNodePrefix
isComposite ?= 'merge' UsageDeclaration

ActionNodeBody
DecisionNode =
ControlNodePrefix
isComposite ?= 'decide' UsageDeclaration
ActionNodeBody
JoinNode =
ControlNodePrefix
isComposite ?= 'join' UsageDeclaration
ActionNodeBody
ForkNode =
ControlNodePrefix
isComposite ?= 'fork' UsageDeclaration
ActionNodeBody

ActionNodeBody : ControlNode =
;' | '"{"'" (ownedRelationship += AnnotatingMember)* '}'

8.2.2.16.4 Send and Accept Action Usages

AcceptNode : AcceptActionUsage =
OccurrenceUsagePrefix
AcceptNodeDeclaration ActionBody

AcceptNodeDeclaration : AcceptActionUsage =
ActionNodeUsageDeclaration?
'accept' AcceptParameterPart

AcceptParameterPart : AcceptActionUsage =
ownedRelationship += PayloadParameterMember
('via' ownedRelationship += NodeParameterMember
| ownedRelationship += EmptyParameterMember)

PayloadParameterMember : ParameterMembership =
ownedRelatedElement += PayloadParameter

PayloadParameter : ReferenceUsage =
PayloadFeature
| Identification PayloadFeatureSpecializationPart?
TriggerValuePart

TriggerValuePart : Feature =
ownedRelationship += TriggerFeatureValue

OMG Systems Modeling Language (SysML) v2.0, Beta 1 173

TriggerFeatureValue : FeatureValue =
ownedRelatedElement += TriggerExpression

TriggerExpression : TriggerInvocationExpression =
kind = ('at | 'after')
ownedRelationship += ArgumentMember
| kind = 'when'

ownedRelationship += ArgumentExpressionMember

ArgumentMember : ParameterMembership =
ownedMemberParameter = Argument

Argument : Feature =
ownedRelationship += ArgumentValue

ArgumentValue : FeatureValue =
value = OwnedExpression

ArgumentExpressionMember : ParameterMembership =
ownedRelatedElement += ArgumentExpression

ArgumentExpression : Feature =
ownedRelationship += ArgumentExpressionValue

ArgumentExpressionValue : FeatureValue =
ownedRelatedElement += OwnedExpressionReference

SendNode : SendActionUsage =
OccurrenceUsagePrefix
SendNodeDeclaration ActionBody

SendNodeDeclaration : SendActionUsage =
ActionNodeUsageDeclaration?
'send' ownedRelationship += NodeParameterMember
('via' ownedRelationship += NodeParameterMember
| ownedRelationship += EmptyParameterMember)
('to' ownedRelationship += NodeParameterMember
| ownedRelationship += EmptyParameterMember)

NodeParameterMember : ParameterMembership =
ownedRelatedElement += NodeParameter

NodeParameter : ReferenceUsage =
ownedRelationship += FeatureBinding

FeatureBinding : FeatureValue =
ownedRelatedElement += OwnedExpression

EmptyParameterMember : ParameterMembership =
ownedRelatedElement += EmptyUsage

EmptyUsage : ReferenceUsage =
{1

Notes

1. TheproducﬁonsfbrArgumentMember,Argument,ArgumentValue,ArgumentExpressionMember,
ArgumentExpression and ArgumentExpressionValue are the same as given in [KerML, 8.2.5.8.1].

174 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.2.2.16.5 Assignment Action Usages

AssignmentNode : AssignmentActionUsage =
OccurrenceUsagePrefix
AssignmentNodeDeclaration ActionBody

AssignmentNodeDeclaration: ActionUsage =
(ActionNodeUsageDeclaration)? 'assign'
ownedRelationship += AssignmentTargetMember
ownedRelationship += FeatureChainMember ':='
ownedRelationship += NodeParameterMember

AssignmentTargetMember : ParameterMembership =
ownedRelatedElement += AssignmentTargetParameter

AssignmentTargetParameter : ReferenceUsage =
(ownedRelationship += AssignmentTargetBinding '.')?

AssignmentTargetBinding : FeatureValue =
ownedRelatedElement += NonFeatureChainPrimaryExpression

FeatureChainMember : Membership =
memberElement = [QualifiedName]
| OwnedFeatureChainMember

OwnedFeatureChainMember : OwningMembership =
ownedRelatedElement += OwnedFeatureChain

8.2.2.16.6 Structured Control Action Usages

IfNode : IfActionUsage =
ActionNodePrefix
'if' ownedRelationship += ExpressionParameterMember
ownedRelationship += ActionBodyParameterMember
('else' ownedRelationship +=
(ActionBodyParameterMember | IfNodeParameterMember))?

ExpressionParameterMember : ParameterMembership =
ownedRelatedElement += OwnedExpression

ActionBodyParameterMember : ParameterMembership =
ownedRelatedElement += ActionBodyParameter

ActionBodyParameter : ActionUsage =
('action' UsageDeclaration?)?
'{' ActionBodyItem* '}'

IfNodeParameterMember : ParameterMembership =
ownedRelatedElement += IfNode

WhileLoopNode : WhileLoopActionUsage =
ActionNodePrefix
('while' ownedRelationship += ExpressionParameterMember
| '"loop' ownedRelationship += EmptyParameterMember
)
ownedRelationship += ActionBodyParameterMember
('until' ownedRelationship += ExpressionParameterMember ';')?

OMG Systems Modeling Language (SysML) v2.0, Beta 1 175

ForLoopNode : ForLoopActionUsage =
ActionNodePrefix
'for' ownedRelationship += ForVariableDeclarationMember
'in' ownedRelationship += NodeParameterMember
ownedRelationship += ActionBodyParameterMember

ForVariableDeclarationMember : FeatureMembership =
ownedRelatedElement += UsageDeclaration

ForVariableDeclaration : ReferenceUsage =
UsageDeclaration

8.2.2.16.7 Action Successions

ActionTargetSuccession : Usage =
(TargetSuccession | GuardedTargetSuccession | DefaultTargetSuccession)
UsageBody

TargetSuccession : SuccessionAsUsage =
ownedRelationship += SourceEndMember
'then' ownedRelationship += ConnectorEndMember

GuardedTargetSuccession : TransitionUsage =
ownedRelationship += GuardExpressionMember
'then' ownedRelationship += TransitionSuccessionMember

DefaultTargetSuccession : TransitionUsage =
'else' ownedRelationship += TransitionSuccessionMember

GuardedSuccession : TransitionUsage =
('succession' UsageDeclaration)?
'first' ownedRelationship += FeatureChainMember
ownedRelationship += GuardExpressionMember
'then' ownedRelationship += TransitionSuccessionMember
UsageBody

8.2.2.17 States Textual Notation
8.2.2.17.1 State Definitions

StateDefinition =
OccurrenceDefinitionPrefix 'state' 'def'
DefinitionDeclaration StateDefBody

StateDefBody : StateDefinition =

LI}
’

| (isParallel ?= 'parallel')?
'{' StateBodyItem* '}'

StateBodyItem : Type =
NonBehaviorBodyItem
| (ownedRelationsup += SourceSuccessionMember)?
ownedRelationship += BehaviorUsageMember
(ownedRelationship += TargetTransitionUsageMember) *
| ownedRelationship += TransitionUsageMember
| ownedRelationship += EntryActionMember
(ownedRelationship += EntryTransitionMember)*
| ownedRelationship += DoActionMember
| ownedRelationship += ExitActionMember

176 OMG Systems Modeling Language (SysML) v2.0 Beta 1

EntryActionMember : StateSubactionMembership =
MemberPrefix kind = 'entry'
ownedRelatedElement += StateActionUsage

DoActionMember : StateSubactionMembership =
MemberPrefix kind = 'do'
ownedRelatedElement += StateActionUsage

ExitActionMember : StateSubactionMembership =
MemberPrefix kind = 'exit'
ownedRelatedElement += StateActionUsage

EntryTransitionMember : FeatureMembership
MemberPrefix
(ownedRelatedElement += GuardedTargetSuccession
| 'then' ownedRelatedElement += TargetSuccession

) ',.'

StateActionUsage : ActionUsage =
EmptyActionUsage ';'
| StatePerformActionUsage
| StateAcceptActionUsage
| StateSendActionUsage
| StateAssignmentActionUsage

EmptyActionUsage : ActionUsage =
{}

StatePerformActionUsage : PerformActionUsage =
PerformActionUsageDeclaration ActionBody

StateAcceptActionUsage : AcceptActionUsage =
AcceptNodeDeclaration ActionBody

StateSendActionUsage : SendActionUsage
SendNodeDeclaration ActionBody

StateAssignmentActionUsage : AssignmentActionUsage =
AssignmentNodeDeclaration ActionBody

TransitionUsageMember : FeatureMembership =

MemberPrefix ownedRelatedElement += TransitionUsage

TargetTransitionUsageMember : FeatureMembership =

MemberPrefix ownedRelatedElement += TargetTransitionUsage

8.2.2.17.2 State Usages

StateUsage =
OccurrenceUsagePrefix 'state'
ActionUsageDeclaration StateUsageBody

StateUsageBody : StateUsage =

T.t
’

| (isParallel ?= 'parallel')?
'{' StateBodyItem* '}'

ExhibitStateUsage =

OccurrenceUsagePrefix 'exhibit'
(ownedRelationship += OwnedReferenceSubsetting

OMG Systems Modeling Language (SysML) v2.0, Beta 1

177

FeatureSpecializationPart?
| 'state' UsageDeclaration)
ValuePart? StateUsageBody

8.2.2.17.3 Transition Usages

TransitionUsage =
'transition' (UsageDeclaration 'first')?
ownedRelationship += FeatureChainMember
ownedRelationship += EmptyParameterMember
(ownedRelationship += EmptyParameterMember
ownedRelationship += TriggerActionMember)?
(ownedRelationship += GuardExpressionMember)?
(ownedRelationship += EffectBehaviorMember)?
'then' ownedRelationship += TransitionSuccessionMember

ActionBody

TargetTransitionUsage : TransitionUsage =
ownedRelationship += EmptyParameterMember
('"transition'

(ownedRelationship += EmptyParameterMember
ownedRelationship += TriggerActionMember)?

(ownedRelationship += GuardExpressionMember)?

(ownedRelationship += EffectBehaviorMember)?
| ownedRelationship += EmptyParameterMember

ownedRelationship += TriggerActionMember

(ownedRelationship += GuardExpressionMember)?

(ownedRelationship += EffectBehaviorMember)?
| ownedRelationship += GuardExpressionMember

(ownedRelationship += EffectBehaviorMember)?
) ?

'then' ownedRelationship += TransitionSuccessionMember

ActionBody
TriggerActionMember : TransitionFeatureMembership =
'accept' { kind = 'trigger' } ownedRelatedElement += TriggerAction

TriggerAction : AcceptActionUsage =
AcceptParameterPart

GuardExpressionMember : TransitionFeatureMembership =
'if' { kind = 'guard' } ownedRelatedElement += OwnedExpression

EffectBehaviorMember : TransitionFeatureMembership =
'do' { kind = 'effect' } ownedRelatedElement += EffectBehaviorUsage

EffectBehaviorUsage : ActionUsage =
EmptyActionUsage
TransitionPerformActionUsage
TransitionAcceptActionUsage
TransitionSendActionUsage
TransitionAssignmentActionUsage

TransitionPerformActionUsage : PerformActionUsage =
PerformActionUsageDeclaration ('{' ActionBodyItem* '}')?

TransitionAcceptActionUsage : AcceptActionUsage =
AcceptNodeDeclaration ('{' ActionBodyItem* '}')?

TransitionSendActionUsage : SendActionUsage =

178 OMG Systems Modeling Language (SysML) v2.0 Beta 1

SendNodeDeclaration ('{' ActionBodyItem* '}')?

TransitionAssignmentActionUsage : AssignmentActionUsage =
AssignmentNodeDeclaration ('{' ActionBodyItem* '}')?

TransitionSuccessionMember : OwningMembership =
ownedRelatedElement += TransitionSuccession

TransitionSuccession : Succession =
ownedRelationship += EmptyEndMember
ownedRelationship += ConnectorEndMember

EmptyEndMember : EndFeatureMembership =
ownedRelatedElement += EmptyFeature

EmptyFeature : ReferenceUsage =

{}
8.2.2.18 Calculations Textual Notation

CalculationDefinition =
OccurrenceDefinitionPrefix 'calc' 'def'
DefinitionDeclaration CalculationBody

CalculationUsage : CalculationUsage =
OccurrenceUsagePrefix 'calc'
ActionUsageDeclaration CalculationBody

CalculationBody : Type =
';' | '"{' CalculationBodyPart '}'

CalculationBodyPart : Type =
CalculationBodyItem*
(ownedRelationship += ResultExpressionMember)?

CalculationBodyItem : Type =
ActionBodyItem
| ownedRelationship += ReturnParameterMember

ReturnParameterMember : ReturnParameterMembership =
MemberPrefix? 'return' ownedRelatedElement += UsageElement

ResultExpressionMember : ResultExpressionMembership =
MemberPrefix? ownedRelatedElement += OwnedExpression

8.2.2.19 Constraints Textual Notation

ConstraintDefinition =
OccurrenceDefinitionPrefix 'constraint' 'def'
DefinitionDeclaration CalculationBody

ConstraintUsage =
OccurrenceUsagePrefix 'constraint'
ConstraintUsageDeclaration CalculationBody

AssertConstraintUsage =
OccurrenceUsagePrefix 'assert' (isNegated ?= 'not')?
(ownedRelationship += OwnedReferenceSubsetting
FeatureSpecializationPart?
| 'constraint' ConstraintUsageDeclaration)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 179

CalculationBody

ConstraintUsageDeclaration : ConstraintUsage =
UsageDeclaration ValuePart?

8.2.2.20 Requirements Textual Notation
8.2.2.20.1 Requirement Definitions

RequirementDefinition =
OccurrenceDefinitionPrefix 'requirement' 'def'
DefinitionDeclaration RequirementBody

RequirementBody : Type =
';' | '"{' RequirementBodyItem* '}'

RequirementBodyItem : Type =

DefinitionBodyItem

ownedRelationship += SubjectMember
ownedRelationship += RequirementConstraintMember
ownedRelationship += FramedConcernMember
ownedRelationship += RequirementVerificationMember
ownedRelationship += ActorMember

ownedRelationship += StakeholderMember

SubjectMember : SubjectMembership =
MemberPrefix ownedRelatedElement += SubjectUsage

SubjectUsage : ReferenceUsage =
'subject' UsageExtensionKeyword* Usage

RequirementConstraintMember : RequirementConstraintMembership =
MemberPrefix? RequirementKind

ownedRelatedElement += RequirementConstraintUsage

RequirementKind : RequirementConstraintMembership =

'assume' { kind = 'assumption' }
| 'require' { kind = 'requirement' }
RequirementConstraintUsage : ConstraintUsage =

ownedRelationship += OwnedReferenceSubsetting
FeatureSpecializationPart? RequirementBody

| (UsageExtensionKeyword* 'constraint'
| UsageExtensionKeyword+)
ConstraintUsageDeclaration CalculationBody

FramedConcernMember : FramedConcernMembership =
MemberPrefix? 'frame'
ownedRelatedElement += FramedConcernUsage

FramedConcernUsage : ConcernUsage =
ownedRelationship += OwnedReferenceSubsetting
FeatureSpecializationPart? CalculationBody

| (UsageExtensionKeyword* 'concern'
| UsageExtensionKeyword+)
CalculationUsageDeclaration CalculationBody

ActorMember : ActorMembership =
MemberPrefix ownedRelatedElement += ActorUsage

180 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ActorUsage : PartUsage =
'actor' UsageExtensionKeyword* Usage

StakeholderMember : StakeholderMembership =
MemberPrefix ownedRelatedElement += StakeholderUsage

StakeholderUsage : PartUsage =
'stakeholder' UsageExtensionKeyword* Usage

8.2.2.20.2 Requirement Usages

RequirementUsage =
OccurrenceUsagePrefix 'requirement'
ConstraintUsageDeclaration RequirementBody

SatisfyRequirementUsage =
OccurrenceUsagePrefix 'assert' (isNegated ?= 'not') 'satisfy'
(ownedRelationship += OwnedReferenceSubsetting

FeatureSpecializationPart?

| 'requirement' UsageDeclaration)
ValuePart?
('by' ownedRelationship += SatisfactionSubjectMember)?
RequirementBody

SatisfactionSubjectMember : SubjectMembership =
ownedRelatedElement += SatisfactionParameter

SatisfactionParameter : ReferenceUsage =
ownedRelationship += SatisfactionFeatureValue

SatisfactionFeatureValue : FeatureValue =
ownedRelatedElement += SatisfactionReferenceExpression

SatisfactionReferenceExpression : FeatureReferenceExpression =
ownedRelationship += FeatureChainMember

8.2.2.20.3 Concerns

ConcernDefinition =
OccurrenceDefinitionPrefix 'concern' 'def'
DefinitionDeclaration RequirementBody

ConcernUsage =
OccurrenceUsagePrefix 'concern'
ConstraintUsageDeclaration RequirementBody

8.2.2.21 Cases Textual Notation

CaseDefinition =
OccurrenceDefinitionPrefix 'case' 'def'
DefinitionDeclaration CaseBody

CaseUsage =
OccurrenceUsagePrefix 'case'
ConstraintUsageDeclaration CaseBody

CaseBody : Type =

L

| '"{' CaseBodyIltem*
(ownedRelationship += ResultExpressionMember)?

OMG Systems Modeling Language (SysML) v2.0, Beta 1 181

'}'

CaseBodyItem : Type =
ActionBodyItem
| ownedRelationship += SubjectMember
| ownedRelationship += ActorMember
| ownedRelationship += ObjectiveMember

ObjectiveMember : ObjectiveMembership =
MemberPrefix 'objective'
ownedRelatedElement += ObjectiveRequirementUsage

ObjectiveRequirementUsage : RequirementUsage =
UsageExtensionKeyword* ConstraintUsageDeclaration
RequirementBody

8.2.2.22 Analysis Cases Textual Notation

AnalysisCaseDefinition =
OccurrenceDefinitionPrefix 'analysis' 'def'
DefinitionDeclaration CaseBody

AnalysisCaseUsage =
OccurrenceUsagePrefix 'analysis'
ConstraintUsageDeclaration CaseBody

8.2.2.23 Verification Cases Textual Notation

VerificationCaseDefinition =
OccurrenceDefinitionPrefix 'verification' 'def'
DefinitionDeclaration CaseBody

VerificationCaseUsage =
OccurrenceUsagePrefix 'verification'
ConstraintUsageDeclaration CaseBody

RequirementVerificationMember : RequirementVerificationMembership =
MemberPrefix 'verify' { kind = 'requirement' }
ownedRelatedElement += RequirementVerificationUsage

RequirementVerificationUsage : RequirementUsage =
ownedRelationship += OwnedReferenceSubsetting
FeatureSpecialization* RequirementBody

| (UsageExtensionKeyword* 'requirement'
| UsageExtensionKeyword+)
ConstraintUsageDeclaration RequirementBody

8.2.2.24 Use Cases Textual Notation

UseCaseDefinition =
OccurrenceDefinitionPrefix 'use' 'case' 'def'
DefinitionDeclaration CaseBody

UseCaseUsage =
OccurrenceUsagePrefix 'use' 'case'
ConstraintUsageDeclaration CaseBody

IncludeUseCaseUsage

OccurrenceUsagePrefix 'include'
(ownedRelationship += OwnedReferenceSubsetting

182 OMG Systems Modeling Language (SysML) v2.0 Beta 1

FeatureSpecializationPart?
| 'use' 'case' UsageDeclaration)
ValuePart?
CaseBody

8.2.2.25 Views and Viewpoints Textual Notation

8.2.2.25.1 View Definitions

ViewDefinition =
OccurrenceDefinitionPrefix 'view' 'def'
DefinitionDeclaration ViewDefinitionBody

ViewDefinitionBody : ViewDefinition =
';' | '"{' ViewDefinitionBodyItem* '}'

ViewDefinitionBodyItem : ViewDefinition =
DefinitionBodyItem
| ownedRelationship += ElementFilterMember
| ownedRelationship += ViewRenderingMember

ViewRenderingMember : ViewRenderingMembership =
MemberPrefix 'render'
ownedRelatedElement += ViewRenderingUsage

ViewRenderingUsage : RenderingUsage =
ownedRelationship += OwnedReferenceSubsetting
FeatureSpecializationPart?

UsageBody

| (UsageExtensionKeyword* 'rendering'
| UsageExtensionKeyword+)
Usage

8.2.2.25.2 View Usages

ViewUsage =
OccurrenceUsagePrefix 'view'
UsageDeclaration? ValuePart?
ViewBody

ViewBody : ViewUsage =
;' '"{' ViewBodyItem* '}'

ViewBodyItem : ViewUsage =
DefinitionBodyItem
| ownedRelationship += ElementFilterMember
| ownedRelationship += ViewRenderingMember
| ownedRelationship += Expose

Expose =

(visibility = VisibilityIndicator)?
'expose' (ImportedNamespace | ImportedFilterPackage) ';'

8.2.2.25.3 Viewpoints

ViewpointDefinition =
OccurrenceDefinitionPrefix 'viewpoint' 'def'
DefinitionDeclaration RequirementBody

ViewpointUsage =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 183

OccurrenceUsagePrefix 'viewpoint'
ConstraintUsageDeclaration RequirementBody

8.2.2.25.4 Renderings

RenderingDefinition =
OccurrenceDefinitionPrefix 'rendering' 'def'
Definition

RenderingUsage =
OccurrenceUsagePrefix 'rendering'
Usage

8.2.2.26 Metadata Textual Notation

MetadataDefinition =
(isAbstract ?= 'abstract')? DefinitionExtensionKeyWord*
'metadata' 'def' Definition

PrefixMetadataAnnotation : Annotation =
'"#' annotatingElement = PrefixMetadataUsage
{ ownedRelatedElement += annotatingElement }

PrefixMetadataMember : OwningMembership =
'#' ownedRelatedEleemnt = PrefixMetadataUsage

PrefixMetadataUsage : MetadataUsage =
ownedRelationship += OwnedFeatureTyping

MetadataUsage =
UsageExtensionKeyword* ('@' | 'metadata')
MetadataUsageDeclaration
('about' annotation += Annotation
ownedRelationship += Annotation
(','" annotation += Annotation
{ ownedRelationship += Annotation })*
) ?
MetadataBody

MetadataUsageDeclaration : MetadataUsage =
(Identification (':' | 'typed' 'by'))?
ownedRelationship += OwnedFeatureTyping

MetadataBody : Type =
l,.l |
'{'" (ownedRelationship += DefinitionMember
| ownedRelationship += MetadataBodyUsageMember
| ownedRelationship += AliasMember
| ownedRelationship += Import
)*
l}l

MetadataBodyUsageMember : FeatureMembership =
ownedMemberFeature = MetadataBodyUsage

MetadataBodyUsage : ReferenceUsage

'ref'? (':>>' | 'redefines')? ownedRelationship += OwnedRedefinition
FeatureSpecializationPart? ValuePart?
MetadataBody

184 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ExtendedDefinition : Definition =
BasicDefinitionPrefix? DefinitionExtensionKeyword+
'def' Definition

ExtendedUsage : Usage =

BasicUsagePrefix UsageExtensionKeyword+
Usage

8.2.3 Graphical Notation
8.2.3.1 Graphical Notation Overview

The SysML graphical notation is expressed using a simplified form of the EBNF notation used to define the SysML
textual notation (see 8.2.2.1.1). This graphical BNF has been extended to include productions with a mixture of
graphical and textual elements. Table 29 summarizes the conventions used.

Table 29. Graphical BNF Conventions

Non-terminal element non-terminal-element

Non-terminal element production (complete) non-terminal-element = elements
Non-terminal element production (partial) non-terminal-element =| elements
Grouping (elements)

Alternative elements elements | elements

Repeated elements (zero or more) element *

Repeated elements (one or more) element +

Optional elements (zero or one) element ?

Elements 2-D layout of graphical and textual elements
Graphical element graphical shape or graphical line
Graphical shape 2-D shape with optional nested elements
Graphical line 1-D shape with optional nested elements
Graphical line that connects other elements selement graphical-line &element
Sequential text elements elementl element?

Terminal text element as literal string 'terminal’

Terminal text element as lexical symbol LEXICAL

3 . . . raphical production <=> textual
Graphical Notation to Textual Notation mapping graphs , products e
production

These conventions make a distinction between a complete production, which must include all alternatives within the
production itself, and partial productions, which allow alternatives to be distributed across multiple productions
located anywhere within a specification. This distinction allows greater reuse of production symbols across sections
of a specification that build on partial productions given by earlier sections, while still making clear productions that
are already complete within a given section.

A graphical production contains a two-dimensional layout of graphical and textual elements including graphical

shapes and lines. Shapes may contain other elements nested within these shapes. Generally speaking, graphical
elements specify only containment and connectivity of graphical and textual elements out of which they are built.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 185

Shapes within the graphical notation may generally be relocated anywhere within a given graphical layout. They
may also have any of their graphical elements stretched as necessary to hold their contents.

Lines that connect other graphical elements may be composed of one or more straight or curved line segments. Any
of these line segments may contain a semicircular jump symbol where the segment overlaps a line segment of
another connecting line.

A textual production contains only other textual productions. All production symbols within the graphical BNF
follow a convention of all-lowercase names with optional internal hyphens. Elements of the textual notation defined
in subclause 8.2.2 of this specification may also be referenced by textual productions within the graphical BNF.
These imported textual notation elements can be distinguished from those of the graphical BNF by their use of one
or more uppercase letters within the name.

8.2.3.2 Elements and Relationships Graphical Notation
element =
dependencies-and-annotations-element
| general-element
| element-inside-textual-compartment

compartment =| general-compartment

general-compartment =

‘general

general-view
general-view =

(general-element) *

(dependencies-and-annotations-element) *

(ellipsis-at-lower-left-corner)?
ellipsis-at-lower-left-corner = '...'
general-element =

general-node

| general-relationship

element-inside-textual-compartment =

rel-name =
Identification
| QualifiedName

Note. An element inside a textual compartment is selected by graying out a substring containing the element. The
grayed-out section must cover a single element within the textual syntax inside the compartment.

8.2.3.3 Dependencies Graphical Notation
dependencies-and-annotations-element =| dependencies-element
dependencies-element =|

binary-dependency
| n-ary-dependency

186 OMG Systems Modeling Language (SysML) v2.0 Beta 1

binary-dependency =

(rel-name)?
&element-node ----------oomooaoooo > &element-node

n-ary-dependency =

&n-ary-association-dot (n-ary-dependency-client-or-supplier-link &element-node)+

n-ary-dependency-client-or-supplier-1link

n-ary-dependency-client-1link
| n-ary-dependency-supplier-link

n-ary-association-dot =
(rel-name)?
o

n-ary-dependency-client-link =

&element-node ----ccm e

n-ary-dependency-supplier-link =

&n-ary-association-dot ---------------------- > &element-node

Note. An n-ary dependency must have two or more client elements or two or more supplier elements.

8.2.3.4 Annotations Graphical Notation

dependencies-and-annotations-element =|

annotation-node
| annotation-1link

annotation-node =
comment-node
| documentation-node
| textual-representation-node

text-block = (LINE TEXT)*
comment-node =
comment-without-keyword

| comment-with-keyword

comment-without-keyword =

&n-ary-association-dot

text-block

comment-with-keyword =

OMG Systems Modeling Language (SysML) v2.0, Beta 1

187

'‘wcomment»’

text-block

Identification ('locale’ STRING_VALUE)?

documentation-node =

'wdocy'

text-block

Identification ('locale’' STRING VALUE)?

documentation-compartment =

'doc’

Identification
text-block

textual-representation-node =

'«rep»’
Identification

language-string
text-block

language-string = 'language' '=' STRING VALUE

annotation-link =

(rel-name)?
&annotation-node -------------------

annotated-element =
element
| element-inside-textual-compartment

......... &element

Note. A comment node may be attached to zero, one, or more than one annotated elements. All other annotation

nodes must be attached to one and only one annotated element.
8.2.3.5 Namespaces and Packages Graphical Notation
general-node =| namespace-node
namespace-node =| package-node

package-node =

188

OMG Systems Modeling Language (SysML) v2.0 Beta 1

package-with-name-inside
| package-with-name-in-tab
| imported-package-with-name-inside
| imported-package-with-name-in-tab

package-with-name-inside =

Identification

package-with-name-in-tab =

|[dentification

general-view

(package-compartment)*

imported-package-with-name-inside =

imported-package-with-name-in-tab =

OMG Systems Modeling Language (SysML) v2.0, Beta 1

189

| Iaantiﬁcaﬁon_ |

general-view |

I (package-compartment)* |

package-compartment =
general-compartment
documentation-compartment
packages-compartment
members-compartment
relationships-compartment

compartment =| package-compartment

packages-compartment =

'‘packages'

packages-compartment-contents

packages-compartment-contents = packages-compartment-element* '..'?
packages-compartment-element = el-prefix? Identification

members-compartment =

'members'

members-compartment-contents

members-compartment-contents = members-compartment-element* '..'?
members-compartment-element = el-prefix? (DefinitionElement | UsageElement)

relationships-compartment =

'relationships'

relationships-compartment-contents

relationships-compartment-contents = (relationships-compartment-element)* '..'?
relationships-compartment-element = el-prefix? relationship-name QualifiedName
relationship-name = 'defines', 'defined by', 'specializes', 'specialized by', 'connect

general-relationship =|
import
top-level-import
recursive-import
owned-membership
unowned-membership

190 OMG Systems Modeling Language (SysML) v2.0 Beta 1

to',

'subsets

import =

‘«import»'
&namespace-node — — — — — — > &namespace-node

top-level-import =

'«import» *'
&namespace-node — — — — — — > &namespace-node

recursive-import =
'‘«import» **

&namespace-node — — — —> &namespace-node

owned-membership =

&namespace-node H &element-node

unowned-membership =

&namespace-node O &element-node

8.2.3.6 Definition and Usage Graphical Notation
general-node =| type-node

type-node =
definition-node
| usage-node

namespace-node =| type-node

basic-name-prefix =
('"«variation»')?
("«variant»')?
('«abstract»')?

definition-name-with-alias =
Identification

('«alias»' (QualifiedName (',' QualifiedName)*))?

usage-name-with-alias =

Identification (':' QualifiedName)?

('"walias»' (QualifiedName (',' QualifiedName)*))?
compartment-stack = (compartment) *
compartment =|

| variants-compartment
| variant-elementusages-compartment

variants-compartment =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 191

'variants'

variants-compartment-contents

variants-compartment-contents = members-compartment-contents

variant-elementusages-compartment =

'variant elementusages'

variant-compartment-contents

general-relationship =|

type-relationship

type-relationship =

subclassification

subsetting

definition

redefinition
composite-feature-membership
noncomposite-feature-membership

subclassification =

&definition-node <] &definition-node

definition =

&definition-node <ls &usage-node
subsetting =

&usage-hode <} &usage-node

reference-subsetting =

&usage-node <lee &usage-node
redefinition =
&usage-node <} &usage-node

composite-feature-membership =

&type-node @ &usage-node

noncomposite-feature-membership =

192

OMG Systems Modeling Language (SysML) v2.0 Beta 1

&type-node < &usage-node

el-prefix = '~' | '/!
usage-cp = usageDeclaration ValuePart?
keyword = '#' QualifiedName

extended-def =

extended-def-name-compartment

compartment-stack

extended-def-name-compartment =
basic-name-prefix
'«' keyword+ 'def' '»!'
definition-name-with-alias

definition-node |= extended-def

extended-usage =

extended-usage-name-compartment

compartment-stack

extended-usage—name-compartment =
basic-name-prefix
'«' keyword+ '»'
usage-name-with-alias
usage—-node |= extended-usage
8.2.3.7 Attributes Graphical Notation

definition—-node =| attribute-def

attribute-def =

attribute-def-name-compartment

compartment-stack

attribute-def-name-compartment =

OMG Systems Modeling Language (SysML) v2.0, Beta 1

193

basic-name-prefix
'«' keyword* 'attribute' 'def' '»'
definition-name-with-alias

usage-node =| attribute

attribute =

attribute-name-compartment

compartment-stack

attribute-name-compartment =
basic-name-prefix
'«' keyword* 'attribute' '»'
usage-name-with-alias

compartment =| attributes-compartment

attributes-compartment =

‘attributes’

attributes-compartment-contents

attributes-compartment-contents = (attributes-compartment-element)* '..'?
attributes-compartment-element = el-prefix? UsagePrefix usage-cp

8.2.3.8 Enumerations Graphical Notation
definition—-node =| enumeration-def

enumeration-def =

enumeration-def-name-compartment

compartment-stack

enumeration-def-name-compartment =
basic-name-prefix

«' keyword* 'enumeration' 'def'
definition-name-with-alias

A\l |l]

»

usage-node =| enumeration

enumeration =

194 OMG Systems Modeling Language (SysML) v2.0 Beta 1

enumeration-name-compartment

compartment-stack

enumeration-name-compartment =
basic-name-prefix
'«' keyword* 'enumeration' '»'
usage-name-with-alias

compartment =| enums-compartment

enums—-compartment =

‘enums'

enums-compartment-contents

enums-compartment contents = (enums-compartment-element)™* '.'?
enums-compartment-element = el-prefix? UsagePrefix usage-cp

8.2.3.9 Occurrences Graphical Notation

definition-node =| occurrence-def
general-relationship =| portion-relationship
occurrence-name-prefix = basic-name-prefix («individual»)?

occurrence-def =

occurrence-def-name-compartment
sequence-view

compartment-stack

occurrence-def-name-compartment =
basic-name-prefix
'«' keyword* 'occurrence' 'def' '»'
usage-name-with-alias
usage-node =|
occurrence
| occurrence-ref

| timeslice-or-snapshot-node

occurrence =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 195

- A

occurrence—name—compartment

sequence-view

compartment-stack

o

occurrence-ref =

e

occurrence-name-compartment

sequence-view

P I s

compartment-stack

occurrence-name-compartment =

basic-name-prefix
'«'" 'ref'? keyword* 'occurrence' '»'
usage-name-with-alias

timeslice-or-snapshot-node =

timeslice
snapshot

timeslice =

rd
timeslice-name-compartment
compartment-stack
timeslice-name-compartment =
'«timeslice»'
usage-name-with-alias
snapshot =
rd

snapshot-name-compartment

compartment-stack

snapshots—-name-compartment

'«snapshot»'
usage-name-with-alias

OMG Systems Modeling Language (SysML) v2.0 Beta 1

portion-relationship =

&occurrence-node (×lice-or-snapshot-node

compartment =|
occurrences—-compartment
individuals-compartment
timeslices-compartment
snapshots-compartment
sequence-compartment

occurrences-compartment =

'‘occurrences’

occurrences-compartment-contents

occurrences—-compartment-contents = (occurrences-compartment-element)* '..'?
occurrences-compartment-element = el-prefix? OccurrenceUsagePrefix usage-cp

individuals-compartment =

'individuals'
individuals-compartment-contents

individuals-compartment-contents = (individuals-compartment-element)* '..'?
individuals-compartment-element = occurrences-compartment-element

timeslices-compartment =

'timeslices'

timeslices-compartment-contents

timeslices-compartment-contents = (timeslices-compartment-element)* '..'?
timeslices-compartment-element = occurrences-compartment-element

snapshots-compartment =

'snapshots'

snapshots-compartment-contents

snapshots-compartment-contents = (snapshots-compartment-element)* '.'?
snapshots-compartment-element = occurrences-compartment-element

sequence-compartment =

'sequence’

sequence-view
sequence-view = (sg-graphical-element)*
sg-graphical-element =

sg-graphical-node
| sg-graphical-relationship

OMG Systems Modeling Language (SysML) v2.0, Beta 1 197

| dependencies-and-annotations-element
sg-graphical-node = sg-head-node | sg-l-node
sg-head-node = sg-part | sg-port

sg-part =

part-name-compartment

sg-port*
sg-port =
sq-port-label
sg-port-label = UsageDeclaration
sg-l-node =
lifeline

| proxy

lifeline =

&sg-head-node

proxy =

@ oroxy-label

sg-proxy-label = QualifiedName

sg-ev-occurrence-label = UsageDeclaration

198 OMG Systems Modeling Language (SysML) v2.0 Beta 1

sg-graphical-relationship = message-connection| sg-succession
succession-label = UsageDeclaration?

sg-succession =

'«succession»'?
succession-label

&PrOXy ==-=-=-=-s-sssssososmssssoososo-o-o--o---------- 3> &prOXY

Note: the proxy nodes attached to a succession must refer to an event

8.2.3.10 Items Graphical Notation

definition-node =| item-def
interconnection-element = | item| item-ref
item-def =

item-def-name-compartment

compartment-stack

item-def-name-compartment =
basic-name-prefix
'«' keyword* 'item' 'def' '»'
definition-name-with-alias

usage-node =| item

item =

item-name-compartment

compartment-stack

item-name-compartment =
basic-name-prefix
'«'" 'ref'? keyword* 'item' '»'

usage-name-with-alias

item-ref =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 199

item-name-compartment

compartment-stack

compartment =| items-compartment

items-compartment =

—_— e = — -

'items'
items-compartment-contents
items-compartment-contents =

items-compartment-element =

8.2.3.11 Parts Graphical Notation

(items-compartment-element)* '..'

el-prefix? OccurrenceUsagePrefix usage-cp

definition-node =| part-def
interconnection-element = | part | part-ref
part-def =
port-t*
part-def-name-compartment
port-I* interconnection-view

compartment-stack

port-r*

port-b*
part-def-name-compartment =
basic-name-prefix
'«' keyword* 'part' 'def' "»'

definition-name-with-alias
usage-node =| part

part =

200

OMG Systems Modeling Language (SysML) v2.0 Beta 1

port-t*

part-name-compartment
port-I* interconnection-view port-r*

compartment-stack

o oortb* J

part-name-compartment =
basic-name-prefix
'«'" 'ref'? keyword* 'part' '»'
usage-name-with-alias

part-ref =
Jemmmmmm—eaaan port-t* .o .
l, ‘I
I part-name-compartment :
1
; :
port-I* interconnection-view port-r*
: !
E compartment-stack !
I e port-b* ------------- -
compartment =|

parts-compartment
| directed-features-compartment
| interconnection-compartment

parts-compartment =

'parts'

parts-compartment-contents

parts—-compartment-contents = (parts-compartment-element)* '.'?
parts-compartment-element = el-prefix? OccurrenceUsagePrefix usage-cp

directed-features-compartment =

'directed features'

directed-features-compartment-contents

directed-features-compartment-contents = (directed-features-compartment-element) *

directed-features-compartment-element =
el-prefix FeatureDirection Definition-Body-Item*

OMG Systems Modeling Language (SysML) v2.0, Beta 1

"o

201

interconnection-compartment =

'interconnection'
interconnection-view
interconnection-view =]
(interconnection-element) *
(dependencies-and-annotations-element) *
(ellipsis-at-lower-left-corner)?
general-view =| interconnection-view
8.2.3.12 Ports Graphical Notation

definition-node =| port-def

port-def =

port-t*

port-def-name-compartment
port-I* port-r*
compartment-stack

port-b*

port-def-name-comportment =
basic-name-prefix
'«' keyword* 'port' 'def'
definition-name-with-alias

|l |l

»

usage-node =| port-usage

port-usage =

ort-t*
- P

port-name-compartment
port-I* port-r*
compartment-stack

\ port-b*

port—-name-comportment =
basic-name-prefix
'«' keyword* 'port' '»'
usage-name-with-alias

compartment =| ports-compartment

202 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ports-compartment =

'ports’

ports-compartment-contents

ports—-compartment-contents = (ports-compartment-element)* '.'?
ports—-compartment-element = el-prefix? OccurrenceUsagePrefix usage-cp

interconnection-element =| port-def | port

pdh =

<>

v

0

pdv =
!
!
port-1 =
port-label
pdh
!
port-label |

Epdh:

-1+

OMG Systems Modeling Language (SysML) v2.0, Beta 1 203

|

§®]
o
=0

port-I*

port-label

pProxy

port-r =

port-label
pdh

.-, port-label

Epdh:

-1+

J

o
o
>

port-r*

port-label

proxy

port-t =

port-label

204

OMG Systems Modeling Language (SysML) v2.0 Beta 1

port-label

-——-

| pdv ;

port-t*
port-label ai
o
port-b =
e

|
pProxy

port-label
|’_ T
— i pdv —
' ,
port-label
=>
- ©
port-label Ji
port-b*
|
proxy
port-label = QualifiedName (':' QualifiedName)?

Note. Dotted line port productions (references) are only possible for nested ports
Note. The proxy option of a port production is valid only on a part usage contained within an interconnection view.

8.2.3.13 Connections Graphical Notation
definition-node =| connection-def

connection-def =

connection-def-name-compartment

compartment-stack

connection-def-name-compartment =
basic-name-prefix

OMG Systems Modeling Language (SysML) v2.0, Beta 1 205

«' keyword* 'connection' 'def' '»'

definition-name-with-alias
usage-node =| connection

connection =

connection-name-compartment

compartment-stack

connection-name-compartment =
basic-name-prefix
! keyword* 'connection' '»'
usage-name-with-alias

«!

compartment =| connections-compartment

connections-compartment =

'‘connections'

connections-compartment-contents

connections-compartment-contents = (connections-compartment-element)* '..'?
connections-compartment-element =
el-prefix? OccurrenceUsagePrefix UsageDeclaration

interconnection-element =|
connection-def
| connection
| connection-relationship
| attribute

connection-relationship =
binding-connection

| connection-graphical

| n-ary-connection

| flow-connection

| succession-flow-connection

| message-connection

| flow-on-connection

| connection-definition-elaboration

| connection-usage-elaboration

| connection-def-graphical

connection-graphical =

. rolename connection-label? rolename .
&connection-end — — &connection-end
multiplicity multiplicity
c-adornment c-adornment
c—-adornment =
(a-property | a-direction | a-subsetting |a-redefinition)*

206 OMG Systems Modeling Language (SysML) v2.0 Beta 1

a-property =
'«ordered»' |

a-direction =
'«in»' | 'wout»' |

a-subsetting =

'«nonunique»' | '«wabstract»' |

'«inout»'

'«subsets»' ownedRelationship (',' ownedRelationship)*
a-redefinition =
'«redefines»' ownedRelationship (',' ownedRelationship)*

connection-end = usage-node | usage-edge

usage-edge = |connection-graphical | flow-connection |

connection-label = UsageDeclaration

connection-def-graphical =

'«derived»' |

'«readonly»'

interface-connection |

rolename connection-label? rolename
&type-node — —
multiplicity multiplicity
c-adornment c-adornment
cdef-label = Identification

n-ary-connection =
n-ary-connection-dot n-ary-segment+

n-ary-connection-dot =

cdot-label .

cdot-label = UsageDeclaration

n-ary-segment =

rolename

&n-ary-connection-dot

binding-connection =

multiplicity

&usage-node

msg-end-node =
occurrence |
| use-case |

part | port | action |
analysis-case | proxy

sg-l-node| item |
verification-case |

message-connection =

'«message»'?
message-label

&usage-node

state

&msg-end-node

OMG Systems Modeling Language (SysML) v2.0, Beta 1

binding-connection

&type-node

&usage-node

> &msg-end-node

207

Note: proxy nodes and end of message connections must refer to occurrences

message-label =
UsageDeclaration? ('«of»' ItemFeatureMember)? | ItemFeatureMember

flow-connection =

'«flow»'?
flow-labe
&flow-end-node P &flow-end-node
flow-label =
UsageDeclaration? ('«of»' FlowPayloadFeatureMember)? | FlowPayloadF

flow-end-node =
parameter | proxy

Note: proxy nodes at end of flow connections must refer to directed features

succession-flow-connection =

'«succession flow»'?
succession-flow-label

&flow-end-node ------------=-""-------mm - P &flow-end-node

succession-flow-label = flow-label

flow-on-connection =

&port-node flow-node* ——— &port-node

flow-node =
flow-node-r
| flow-node-1
| sflow-node-r
| sflow-node-1
| message-node-r
| message-node-1

flow-node-r =

'«flow»'?
flow-label

———

flow-node-1 =

'«flow»'?
flow-label

—g—

sflow-node-r =

208 OMG Systems Modeling Language (SysML) v2.0 Beta 1

'«succession flow»'?

flow-label

—p—

sflow-node-1 =

'wsuccession flow»'?

flow-label

—<_

message-node-r =

'umessage»'?
message-label

____;>____

message-node-1 =

'«messagen»'?
message-label

—4__

flow-label =
Identification |

rolename = Identification?
multiplicity = MultiplicityRange?

connection-definition-elaboration

&connection-relationship

&definition-node

OMG Systems Modeling Language (SysML) v2.0, Beta 1

FlowPayloadFeatureMember

209

connection-usage-elaboration =

&connection-relationship

&usage-node

Note. The usage-nodes at the ends of a binding-connection must be of compatible types.

8.2.3.14 Interfaces Graphical Notation

definition-node =| interface-def

interconnection-element =| interface

interface-def =

interface-def-name-compartment

compartment-stack

interface-def-name-compartment =
basic-name-prefix

|}
definition-name-with-alias

usage-node =| interface

interface =

«' keyword* 'interface' 'def' '»'

interface-name-compartment

compartment-stack

interface-name-compartment =
basic-name-prefix
'«' keyword* 'interface' '»
usage-name-with-alias

compartment =|

interfaces-compartment
| ends-compartment

210

OMG Systems Modeling Language (SysML) v2.0 Beta 1

interfaces-compartment =

'interfaces'

interfaces-compartment-contents

interfaces-compartment-contents = (interfaces-compartment-element)* '..'?

interfaces-compartment-element =
el-prefix? OccurenceUsagePrefix InterfaceUsageDeclaration

ends-compartment =

'‘ends'

ends-compartment-contents
ends-compartment-contents = (ends-compartment-element)* '..'?
ends-compartment-element = QualifedName (':' QualifiedName)?

connection-relationship =
| interface-connection

interface-connection =

'«interface»'?

rolename interface-label
&port-node —— flow-node*
multiplicity
interface-label = UsageDeclaration?

8.2.3.15 Allocations Graphical Notation
definition-node =| allocation-def

allocation-def =

allocation-def-name-compartment

compartment-stack

allocation-def-name-compartment =
basic-name-prefix
'«' keyword* 'allocation' 'def' '»'
definition-name-with-alias

usage-node =| allocation

allocation

OMG Systems Modeling Language (SysML) v2.0, Beta 1

rolename

multiplicity

&port-node

211

allocation-name-compartment

compartment-stack

allocation-name-compartment =
basic-name-prefix
'«' keyword* 'allocation' '»'
usage-name-with-alias

compartment =| allocations-compartment

allocations-compartment =

'allocations'

allocations-compartment-contents
allocations-compartment-contents = (allocations-compartment-element)* '..'?

allocations-compartment-element =
el-prefix? OccurrenceUsagePrefix AllocationUsageDeclaration UsageBody*

general-relationship =| allocate-relationship

allocate-relationship =

. "«allocate»' _
&allocation-node > &allocation-node

allocation-node =
general-node
| element-in-textual-compartment

usage-edge = |allocate-relationship

8.2.3.16 Actions Graphical Notation

definition-node =| action-def

action-def =

212 OMG Systems Modeling Language (SysML) v2.0 Beta 1

param-t*
action-def-name-compartment

param

action-flow-view param-r*

compartment-stack

param-b*

action-def-name-compartment =
basic-name-prefix
'«' keyword* 'action' 'def' '»'
definition-name-with-alias

usage-node =|

action
| perform-action-usage

/— param-t* ﬁ

action-name-compartment

action =

I*

param action-flow-view param-r*

compartment-stack

; param-b* ——/

action-name-compartment =
basic-name-prefix
'«'" 'ref'? keyword* 'action' '»'
usage-name-with-alias

perform-action-usage =

perform-action-name-compartment

compartment-stack

action-ref =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 213

I, \\
: action-name-compartment |
1 1
! 1
param-I* action-flow-view param-r*
I :
:‘ compartment-stack :
!
AY ’
R Rt param-b* ---------- -

perform-action-name-compartment =
'«perform-action»'
action-name-compartment

compartment =|
actions-compartment
| perform-actions-compartment
| parameters-compartment
| action-flow-compartment

actions-compartment =

'actions'

actions-compartment-contents
actions-compartment-contents = (actions-compartment-element)* '..'?
actions-compartment-element =

el-prefix? OccurrenceUsagePrefix ActionUsageDeclaration

perform-actions-compartment =

'perform actions'

perform-actions-compartment-contents
perform-actions-compartment-contents = (perform-actions-compartment-element) *
perform-actions-compartment-element =

el-prefix? OccurrenceUsagePrefix PerformActionUsageDeclaration

parameters-compartment =

'parameters'

parameters-compartment-contents

parameters-compartment-contents = (parameters-compartment-element)* '..'?
parameters-compartment-element =

LI Y

el-prefix? FeatureDirection UsageDeclaration ValueOrFlowPart? DefinitionBodyItem*

performed-by-compartment =

'performed by'

performed-by-compartment-contents

214 OMG Systems Modeling Language (SysML) v2.0 Beta 1

performed-by-compartment-contents = QualifiedName* '..'?

action-flow-compartment =

'action flow'

action-flow-view

action-flow-view =
(dependencies-and-annotations-element) *
(action-flow-element) *
(perform-action-swimlanes) ?

action-flow-element =|
action-ref
| action
| action-flow-node
| action-flow-relationship

action-flow-node =
start-node

| done-node

| fork-node

| join-node

| decision-node

| merge-node

| send-action-node

| accept-action-node

| loop-action-node

| assign-action-node

action-flow-relationship =
flow-connection
| aflow-succession
| binding-connection

param-1 =

param-label

pdh

OMG Systems Modeling Language (SysML) v2.0, Beta 1 215

Y
pdh
©
O
param-I* <
£
Q
®
o
—
!
proxy
param-r =
param-label
pdh
)
pdh
©
Q
=
) *
3 param-r
o
o
@
—
!
pProxy
param-t =
param-label
pdv
216

OMG Systems Modeling Language (SysML) v2.0 Beta 1

label B
param-a e g

proxy
param-b =
pdv
param-label
|
>
param-label ©
o
param-b*
|
proxy
param-label = QualifiedName (‘:’ QualifiedName)*
start-node =
done-node =
fork-node =
]
join-node =
|

decision-node =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 217

merge-node =

send-action-node =

param-t*
/ » AN

send-action-name-compartment
param-I* param-r*
send-action-expression

; param-b* —j

send-action-name-compartment = ('«send»')? qualified-name (':'
('«alias»' (qualified-name (',' qualified-name)*))?

qualified-name) ?

send-action-expression = NodeParameterMember 'to' NodeParameterMember

accept-action-node =

param-t*
/ - AN

accept-action-name-compartment
param-|* param-r*
accept-action-expression

; param-b* —-/

accept-action-name-compartment = ('«accept»')? qualified-name (':' qualified-name)?
('«alias»' (qualified-name (',' qualified-name)*))?
accept-action-expression = AcceptParameterPart

loop-action-node =

218 OMG Systems Modeling Language (SysML) v2.0 Beta 1

I'k

param

('«alias»'

param-t* ﬁ

loop-action-name-compartment

action-flow-view

compartment-stack
~— param-p* ——
loop-action-name-compartment = ('«loop»')? qualified-
(qualified-name (',' qualified-name)*))?

assign-action-node =

/— param-t* ﬁ

param-*

assign-action-name-compartment

assign-action-expression

param-r*

name (':'

param-r*

; param-b* ——/

assign-action-name-compartment = ('«assign»')? qualified-name
('«alias»' (qualified-name (',' qualified-name)*))?

perform-actions-swimlanes = (swimlane) *

swimlane =

OMG Systems Modeling Language (SysML) v2.0, Beta 1

qualified-name) ?

(":

qualified-name) ?

219

Usage-name-
compartment

&action-flow-node*

parameter =
param-1 | param-r | param-t | param-b

aflow-succession =

guard-expression?

&action-flow-node -----~------------------- > &3ction-flow-node
usage-edge = |succession
guard-expression = '[' ExpressionParameterMember ActionBodyParameterMember ']'

Note. All swimlanes are attached to each other on vertical edges and aligned along the top and bottom horizontal
edges.

Note. The proxy option of a parameter production is valid only on an action usage contained within an action flow
view.

8.2.3.17 States Graphical Notation
definition-node =| state-def

state-def =

220 OMG Systems Modeling Language (SysML) v2.0 Beta 1

state-

usage-

state

state-

state-

state-def-name-compartment
state-transition-view

compartment-stack

def-name-compartment =
basic-name-prefix

'«' keyword* 'state' 'def' '»'

definition-name-with-alias

node =|
state
exhibit-state-usage

/’

state-name-compartment

state-transition-view

compartment-stack

-

ref =

state-name-compartment
] state-transition-view

' compartment-stack

\

name-compartment =

basic-name-prefix
'«' 'ref'? keyword* 'state' '»'
usage-name-with-alias

exhibit-state-usage =

OMG Systems Modeling Language (SysML) v2.0, Beta 1

221

exhibit-state-name-compartment

compartment-stack

exhibit-state-name-compartment =
'«exhibit-state»'
state-name-compartment

compartment =|

states-compartment
states-actions-compartment
exhibit-states-compartment
successions-compartment
state-transition-compartment

states-compartment =

'states’

states—-compartment—-contents
states-compartment-contents = (states-compartment-element)* '..'?
states-compartment-element =

el-prefix? OccurrencePrefix ActionUsageDeclaration

state-actions-compartment =

'states'

state-actions-compartment-contents

state-actions-compartment-contents = (state-actions-compartment-element)* '..'?
state-actions-compartment-element =
el-prefix? EntryActionMember | DoActionMember | ExitActionMember

exhibit-states-compartment =

'exhibit states'

exhibit-states-compartment-contents

exhibit-states-compartment-contents = exhibit-state-scompartment-element* '..'?
exhibit-states-compartment-element-compartment = UsageDeclaration

succession-compartment =

'successions'

succession-compartment-contents
succession-compartment-contents = QualifiedName* '.'?

state-transition-compartment =

222 OMG Systems Modeling Language (SysML) v2.0 Beta 1

'state transition'

state-transition-view

state-transition-view =
(state-transition-element) *
(dependencies-and-annotations-element) *

state-transition-element =
state-def-node
| state-node
| state-ref-node
| transition
| start-node
| done-node
| fork-node
| join-node
| decision-node
| merge-node

transition =

transition-label

&state

transition-label = trigger-expression '/' ActionUsage

> &state

trigger-expression = AcceptParameterPart (guard-expression)?

usage-edge = |transition
8.2.3.18 Calculations Graphical Notation
definition-node =| calc-def

calc-def =

param-t*
calc-def-name-compartment

I*

action-flow-view

param

compartment-stack

param-r*

param-b*

calc-def-name-compartment =
occurrence-name-prefix
'«' 'ref'? keyword* 'calc' 'def'
definition-name-with-alias

Ty !

usage-node =| calc

calc =

OMG Systems Modeling Language (SysML) v2.0, Beta 1

223

/— param-t* ﬁ

calc-name-compartment

param action-flow-view param-r*

compartment-stack
~— param-b* ——
calc-name-compartment =
occurrence-name-prefix

'«' 'ref'? keyword* 'calc' '»'
definition-name-with-alias

action-flow-element =|
calc-def
| calc

compartment =|
calcs-compartment

| result-compartment

calcs-compartment =

'calcs'

calcs-compartment-contents

calcs-compartment-contents = calcs-compartment-element* '..'?
calcs-compartment-element = el-prefix? OccurrenceUsagePrefix ActionUsageDeclaration

results-compartment =

'result

result-compartment-contents

result-compartment-contents = OwnedExpression

8.2.3.19 Constraints Graphical Notation
definition-node =| constraint-def

constraint-def =

224 OMG Systems Modeling Language (SysML) v2.0 Beta 1

param-t*

constraint-def-name-compartment

param-I* general-view param-r*

compartment-stack

param-b*

constraint-def-name-compartment =
basic-name-prefix
'«' keyword* 'constraint' 'def' '»'
definition-name-with-alias

usage—-node =
constraint
| assert-constraint-usage

constraint =
_— param-tf — ——
constraint-name-compartment
param-I* general-view param-r

compartment-stack
p param-b* —/

constraint-ref =

e param-t* ----------- -

:ll constraint-name-compartment '
paramj—l* general-view pairam—r*
! 1
compartment-stack
RS param-b* ----------- e

constraint-name-compartment =
basic-name-prefix
'«' 'ref'? keyword* 'constraint' '»'

OMG Systems Modeling Language (SysML) v2.0, Beta 1 225

usage-name-with-alias

assert-constraint-usage =

assert-constraint-name-compartment

compartment-stack

assert-constraint-name-compartment =
'«assert constraint»'
constraint-name-compartment

compartment =|
constraints—-compartment

| assert-constraints-compartment

constraints-compartment =

‘constraints'
constraints—-compartment-contents
constraints-compartment-contents = (constraints-usage-compartment-element)* '..'?
constraints-usage-compartment-element =

el-prefix? OccurrenceUsagePrefix ConstraintUsageDeclaration CalculationBody*

assert-constraints-compartment =

'assert constraints'

assert-constraints-compartment-contents

assert-constraints-compartment-contents = (assert-constraints-compartment-element) *
assert-constraints-compartment-element =

el-prefix? OccurrenceUsagePrefix ('not')?

(OwnedSubsetting FeatureSpecializationPart? | UsageDeclaration)

CalculationUsageParameterPart CalculationBody
interconnection-element =|

constraint-ref
| constraint

8.2.3.20 Requirements Graphical Notation
definition—-node =|
requirement-def

| concern-def

requirement-def =

v

)

226 OMG Systems Modeling Language (SysML) v2.0 Beta 1

param-t*

requirement-def-name-compartment

param general-view param-r*

compartment-stack

param-b*

requirement-def-name-compartment =
basic-name-prefix
'«' keyword* 'requirement' 'def' '»'
definition-name-with-alias
usage—-node =
requirement
| satisfy-requirement-usage

| concern

requirement =

/— param-t* ﬁ

requirement-name-compartment

I*

param general-view param-r*

compartment-stack
g param-b* —/

requirement-ref =

P —— param-t* ----------- -
' requirement-name-compartment '
! 1
1 1
param-I* general-view param-r*
: :
:\ compartment-stack '
R Rt param-b* ----------- -

requirement-name-compartment =
basic-name-prefix

OMG Systems Modeling Language (SysML) v2.0, Beta 1 227

'«'" 'ref' keyword* 'requirement' '»'

usage-name-with-alias

satisfy-requirement-usage =

satisfy-requirement-name-compartment

compartment-stack

satisfy-requirement-name-compartment =
'«satisfy requirement»'
requirement-name-compartment

concern-def =

concern-def-name-compartment

compartment-stack

concern-def-name-compartment =
occurrence-name-prefix
'«concern-def»'
definition-name-with-alias

concern =

concern-name-compartment

compartment-stack

concern-name-compartment =
occurrence-prefix
'«concern»'
definition-name-with-alias

compartment =|
constraints-compartment
| assert-constraints-compartment

compartment =|
requirements-compartment
require-constraints-compartment
assume-constraints-compartment
satisfy-requirements-compartment
satisfies-compartment

228

OMG Systems Modeling Language (SysML) v2.0 Beta 1

| actors-compartment

| subject-compartment

| stakeholders-compartment
| frames-compartment

requirements-compartment =

‘requirements'
requirements-compartment-contents
requirements-compartment-contents = (requirements-compartment-element)* '.'?
requirements-compartment-element =

OccurrenceUsagePrefix ConstraintUsageDeclaration

require-constraints-compartment =

'require constraints'
require-constraints-compartment-contents
require-constraints-compartment-contents = require-constraint-element* '..'?
require-constraint-element =

el-prefix? requireMemberPrefix? RequirementConstraintUsage

assume-constraints-compartment =

'‘assume constraints'

assume-constraints-compartment-contents
assume-constraints-compartment-contents = require-constraint-element* '..'?

satisfy-requirements-compartment =

'satisfy requirements'

satisfy-requirements-compartment-contents
satisfy-requirements-compartment-contents = text-block

satisfies-compartment =

'satisfies’

satisfies-compartment-contents
satisfies-compartment-contents = UsageDeclaration* '..'?

actors—-compartment =

'actors'

actors—-compartment-contents

actors-compartment-contents = (actors-compartment-element)* '..'?
actors-compartment-element = el-prefix? MemberPrefix usage-cp

subject-compartment =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 229

'subject

subject-compartment-contents

subject-compartment-contents = (subject-compartment-element)* '..'?
subject-compartment-element = el-prefix? MemberPrefix usage-cp

stakeholders-compartment =

'stakeholders'

stakeholders-compartment-contents

stakeholders-compartment-contents = (stakeholders-compartment-element)* '..'?
stakeholders-compartment-element = el-prefix? MemberPrefix usage-cp

frames-compartment =

'frames’

frames—-compartment-contents

frames-compartment-contents = (frames-compartment-element)* '..'?
frames-compartment-element = el-prefix* MemberPrefix? FramedConcernUsage

concerns—-compartment =

concerns concerns—-compartment-contents

interconnection-element =|
requirement-ref
| requirement
| concern
| distinguished-parameter
| distinguished-parameter-1link
| concern-stakeholder-1link

general-relationship =| frame-relationship
subject-actors-stakeholders-node =| requirement
distinguished-parameter =
subject
| actor

| stakeholder

subject =

«subject»

subject-name

actor =

230 OMG Systems Modeling Language (SysML) v2.0 Beta 1

actor-name

«actor»

actor-name

stakeholder =

«stakeholder»

stakeholder-name

subject-name = UsageDeclaration
actor-name = UsageDeclaration
stakeholder-name = UsageDeclaration

distinguished-parameter-link =

&subject-actors-stakeholders-node &distinguished-parameter

frame-relationship =

. "«frame»’
&subject-actors-stakeholders-node > &concern
concern-stakeholder-1ink =
&concern &stakeholder-node

8.2.3.21 Cases Graphical Notation
compartment =| objective-compartment

objective-compartment =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 231

‘objective’
objective-compartment-contents
objective-compartment-contents = (objective-compartment-element)* '..'?
objective-compartment-element =
comp-prefix? MemberPrefix ConstraintUsageDeclaration RequirementBody
8.2.3.22 Analysis Cases Graphical Notation

definition-node =| calc-def

analysis-def =

param-t*
analysis-def-name-compartment
I*

param action-flow-view param-r*

compartment-stack

param-b*

analysis-def-name-compartment =
occurrence-name-prefix
'«' keyword* 'analysis' 'def' '»'
definition-name-with-alias

usage-node =| analysis

analysis =

param-t*

—

analysis-name-compartment

\

param-|* action-flow-view param-r*
compartment-stack
! param-b* —J
analysis-name-compartment =
occurrence-name-prefix

'«' keyword* 'analysis' '»'
definition-name-with-alias

compartment =| analyses-compartment

analyses—-compartment =

232 OMG Systems Modeling Language (SysML) v2.0 Beta 1

‘analyses’

analyses-compartment-contents
analyses—-compartment-contents = analyses-compartment-element* '..'?
analyses-compartment-element =

el-prefix? OccurrenceUsagePrefix ConstraintUsageDeclaration CaseBody
action-flow-element =|

analysis-def

| analysis

subject-actors-stakeholders-node =| analysis | analysis-def
8.2.3.23 Verification Cases Graphical Notation

definition-node =| verification-def

verification-def =

param-t*

verification-def-name-compartment

I*

param action-flow-view param-r*

compartment-stack

param-b*

verification-def-name-compartment =
occurrence-name-prefix
'«' keyword* 'verification' 'def' '»'
definition-name-with-alias

usage-node =| verification

verification =

/— param-t* ﬁ

verification-name-compartment

param-I* action-flow-view param-r*

compartment-stack
~——— param-b* —
verification-name-compartment =
occurrence-name-prefix

'«' keyword* 'verification' '»'
definition-name-with-alias

OMG Systems Modeling Language (SysML) v2.0, Beta 1

233

compartment =|
verifications-compartment
| verifies-compartment
| verification-methods-compartment

verifications-compartment =

'verifications'
verifications-compartment-contents
verifications-compartment-contents = (verifications-compartment-element)* '..'?
verifications-compartment-element =

el-prefix? OccurrenceUsagePrefix ConstraintUsageDeclaration CaseBody '..'

verifies-compartment =

'verifies'
verifies-compartment-contents

verifies-compartment-contents = (verifies-compartment-element)* '..'?
verifies-compartment-element = el-prefix? MemberPrefix RequirementVerificationUsage '..'

verification-methods-compartment =

'verification methods'

verification-methods-compartment-contents

verification-methods-compartment-contents = (verification-methods-compartment-element)* '..'?
verification-methods-compartment-element = MetadataBody

action-flow-element =|
verification-def
| verification
general-relationship =| verify-relationship

verify-relationship =

e L '«verify»' _
&verification-case > &requirement

subject-actors-stakeholders-node =| verification | verification-def

8.2.3.24 Use Cases Graphical Notation
definition-node =| use-case-def

use-case-def =

234 OMG Systems Modeling Language (SysML) v2.0 Beta 1

param-t*

use-case-def-name-compartment

param action-flow-view param-r*

compartment-stack

param-b*

use-case-def-name-compartment =
basic-name-prefix
'«' keyword* 'use' 'case' 'def' '»'
definition-name-with-alias

usage-node =|
use-case
| include-use-case-usage

use—-case =
—param-t* —8 ——
use-case-name-compartment
param-|* action-flow-view param-r*

compartment-stack
~—— param-b* ———
use-case-name-compartment =
basic-name-prefix

'«' keyword* 'use' 'case' "'»'
usage-name-with-alias

include-use-case-usage =

include-use-case-name-compartment

compartment-stack

include-use-case-name-compartment =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 235

'«include use case»'
requirement-name-compartment

compartment =|
use-cases-compartment
| include-actions-compartment
| includes-compartment

use-cases-compartment =

'use cases'

use-cases-compartment-contents

use-cases-compartment-contents = use-cases-compartment-element* '..'?
use-cases-compartment-element = el-prefix? OccurrenceUsagePrefix ConstraintUsageDeclaration

include-use-cases-compartment =

'include use cases'

include-use-cases-compartment-contents

include-use-cases-compartment-contents = (include-use-cases-compartment-element* '..'?
include-use-cases-compartment-element =

el-prefix? OccurrenceUsagePrefix

(OwnedSubsetting FeatureSpecializationPart? | UsageDeclaration)

(ValuePart | ActionUsageParameterList)? CaseBody

includes-compartment =

'includes’
includes-compartment-contents
includes-compartment-contents = (includes-compartment-element)* '..'?
includes-compartment-element =

el-prefix? OccurrenceUsagePrefix
(OwnedSubsetting FeatureSpecializationPart? | UsageDeclaration)

action-flow-element =|
use-case-def
| use-case
general-relationship =| include-use-case-relationship

include-use-case-relationship =

'«include»'
&use-case > &use-case

subject-actors-stakeholders-node =| use-case | use-case-def

8.2.3.25 Views and Viewpoints Graphical Notation
definition-node =|

viewpoint-def
| view-def

236 OMG Systems Modeling Language (SysML) v2.0 Beta 1

viewpoint-def =

viewpoint-name-compartment

compartment-stack

viewpoint-def-name-compartment =
basic-name-prefix
'«' keyword* 'viewpoint' 'def' '»'
definition-name-with-alias

view-def =

view-def-name-compartment

compartment-stack

view-def-name-compartment =

basic-name-prefix
'«' keyword* 'view' 'def'
definition-name-with-alias

»

usage-node =
viewpoint
| view
| view-frame

viewpoint =

viewpoint-name-compartment

compartment-stack

viewpoint-name-compartment =
basic-name-prefix
('«' '"viewpoint' '»' | '«' keyword+ 'viewpoint' '»')
usage-name-with-alias

view =

view-name-compartment

compartment-stack

OMG Systems Modeling Language (SysML) v2.0, Beta 1 237

view-name-compartment=
basic-name-prefix
! keyword* 'view' '»'
usage-name-with-alias

«'

compartment =|

| views-compartment
viewpoints-compartment
exposes-compartment
filters-compartment
rendering-compartment

views-compartment =

'views'
views-compartment-contents

views-compartment-contents = (views-compartment-element)* '..'
views-compartment-element =
el-prefix? OccurrenceUsagePrefix UsageDeclaration? ValueOrFlowPart? ViewBody

viewpoints-compartment =

'viewpoints'
viewpoints-compartment-contents
viewpoints-compartment-contents = (viewpoints-compartment-element)* '..'?
viewpoints-compartment-element =

el-prefix? OccurrenceUsagePrefix ConstraintUsageDeclaration RequirementBody

exposes-compartment =

'‘exposes'

exposes-compartment-contents

exposes-compartment-contents = exposes-compartment-element* '..'?
exposes-compartment-element = VisibilityIndicator? (ImportedNamespace | ImportedFilterPackage)

filters-compartment =

"filters'

filters—-compartment-contents

filters-compartment-contents = (filters-compartment-element)* '..'?
filters-compartment-element = el-prefix? MemberPrefix OwnedExpression

rendering-compartment =

‘rendering'

rendering-compartment-contents
rendering-compartment-contents = usage-cp* '..'?

interconnection-element =|

238 OMG Systems Modeling Language (SysML) v2.0 Beta 1

viewpoint-def
| viewpoint
| view-def
| view

view-frame =

view—frame-name-compartment)

general-view
view-frame-name-compartment = '«view»' QualifiedName (':' QualifiedName)?
general-relationship =| expose-relationship
expose-relationship =
. '«expose»'
&view > &element

Note. A model library in Section 9.2.18 defines standard graphical view definitions for SysML. These may be
supplemented by further, customized View Definitions specific to a model.

8.2.3.26 Metadata Graphical Notation
annotation-node =| metadata-feature-annotation-node

metadata-feature-annotation-node =

'«metadatay’

metadata-feature-decl
metadata-feature-name-value-list

metadata-feature-decl = Identifier
metadata-feature-name-value-list =

(metadata-feature-name '=' expression-text)*
metadata-feature-name = Identifier
expression-text = text-block

OMG Systems Modeling Language (SysML) v2.0, Beta 1 239

8.3 Abstract Syntax
8.3.1 Abstract Syntax Overview

The abstract syntax is the common underlying syntactic representation for SysML models. The SysML textual or
graphical notations (see 8.2) provide for concrete presentation of models in the abstract syntax presentation. This
concrete syntax notation may also be parsed to create or update the abstract syntax representation of models. The
semantics for SysML models are then formally defined on the abstract syntax representation (see 8.4).

The SysML abstract syntax is specified as a MOF model [MOF] that is an extension of the KerML abstract syntax
model [KerML]. Each of the subsequent abstract subclauses describes one package in the abstract syntax model,
including one ore more overview diagrams and descriptions of each of the elements in the package. In the diagrams,
metaclasses and relationships from the KerML abstract syntax are shown in gray. See [KerML] for the description
of these elements.

The MOF-compliant class model for the abstract syntax defines the basic structural representation for any SysML
model. In addition to this basic structure, the abstract syntax also includes constraints defined on various
metaclasses. A conformant tool shall be able to accept any KerML model that conforms to the structural abstract
syntax class model, and it may then additionally report on and/or enforce the constraints on a model so represented
(as further described below).

The SysML abstract syntax model follows the conventions from [KerML, 8.3.1] on three kinds of constraints:

1. Derivation constraints. These constraints specify how the values of the derived properties of a metaclass
are computed from the values of other properties in the abstract syntax model. A tool conformant to the
SysML abstract syntax shall always enforce derivation constraints. However, the computed values of
derived properties may depend on whether implied relationships are included in the model or not (see
below). A derivation constraint has a name starting with the word derive, followed by the name of the
metaclass it constrains, followed by the name of the derived property it is for. The OCL specification of
such a constraint always has the form of an equality, with the derived property on the left-hand side and
the derivation expression on the right-hand side. For example, the derivation constraint for the derived
property Usage: : isReference is called deriveUsageIsReference and has the OCL specification
isReference = not isComposite.

Note. Derivation constraints are not included for derived properties in the following cases:

o The derived property subsets a property with multiplicity upper bound 1. In this case, if the
derived property has a value, it must be the same as that of the subsetted property.

o The derived property redefines another derived property. In this case, the derivation of the
redefined property also applies to the redefining property, though the redefining property will
generally place additional constraints on type and/or multiplicity.

2. Semantic constraints. These constraints specify relationships that are semantically required in a SysML
model (see 8.4.1), particularly relationships with elements in the Kernel Semantic Library (see [KerML,
9.2]) and Systems Model Library (see 9.2). These constraints may be violated by a model as entered by a
user or as interchanged. In this case, a tool may satisfy the constraints by introducing implied relationships
into the model, it may simply report their violation, or it may ignore the violations. Semantic constraints
have names that start with the word check, followed by the name of the constrained metaclass, followed
by a descriptive word or phrase. For example, checkPartDefinitionSpecialization.

3. Validation constraints. These constraints specify additional syntactic conditions that must be satisfied in
order to give a model a proper semantic interpretation. They are written presuming that all semantic
constraints are satisfied. A valid model is a model that satisfies all validation constraints. A tool
conformant to the SysML abstract syntax should report violations of validation constraints. A tool
conformant to the SysML semantics is only required to operate on valid models. Validation constraints

240 OMG Systems Modeling Language (SysML) v2.0 Beta 1

have names that start with the word validate, followed by the name of the metaclass, followed by a

descriptive word or phrase. For example, validateUsageOwningType.

8.3.2 Elements and Relationships Abstract Syntax

This is a Kernel abstract syntax model. For Elements and Relationships Abstract Syntax class descriptions, see

[KerML, 8.3.2.1].

{ordered}
+/ownedElement| 0..* +/owner|0..1
+target Element
0..* |+elementld : String{id}

{subsets relatedElement,

ordered}
+source

+aliaslds : String [0..*{ordered}
+declaredShortName : String [0..1]
+declaredName : String [0..1]

0.*

{subsets relatedElement,
ordered}

+/relatedElement
0..*
{ordered, nonunique}

+/shortName : String [0..1]

+/name : String [0..1]
+/qualifiedName : String [0..1]
+isImpliedincluded : Boolean = false
+/isLibraryElement : Boolean

+ownedRelatedElement

[3
0.*

{subsets relatedElement,

ordered}

+owningRelatedElement
0.1

o

Ny +escapedName() : String [0..1]

+effectiveShortName() : String [0..1]
+effectiveName() : String [0..1]
+libraryNamespace() : Namespace [0..1]

{subsets
relatedElement}

+/relationship

Relationship

0.
{union, nonunique}

+islmplied : Boolean = false

+ownedRelationship
0.*

+sourceRelationship

0.*
{subsets relationship}

+targetRelationship|
0..*

+libraryNamespace() : Namespace [0..1]{redefines libraryNamespace}

{subsets relationship,
ordered}

+owningRelationship

0..1
{subsets relationship}

{subsets relationship}

Figure 2. Elements

It is a general design principle of the KerML abstract syntax that non-Relationship Elements are related only by
reified instances of Relationships. All other meta-associations between Elements are derived from these reified
Relationships. For example, the owningRelatedElement/ownedRelationship meta-association between an
Element and a Relationship is fundamental to establishing the structure of a model. However, the
owner/ownedElement meta-association between two Elements is derived, based on the Relationship structure

between them.

8.3.3 Dependencies Abstract Syntax

This is a Kernel abstract syntax model. For Dependencies Abstract Syntax class descriptions, see [KerML, 8.3.2.2].

OMG Systems Modeling Language (SysML) v2.0, Beta 1

241

{redefines source,
ordered}

+client +supplier
:
1.* 1.*

{redefines target,
ordered}

Relationship

AN

+clientDependency
0..*

Dependency

+supplierDependency

0.*

{subsets sourceRelationship}

Figure 3. Dependencies

{subsets targetRelationship}

8.3.4 Annotations Abstract Syntax

+/representedElement

+/documentedElement
1
{subsets owner, redefines annotatedElement}

+/annotatedElement
1.*
{ordered}

Element

+/owningAnnotatedElement

1
{subsets owner, redefines annotatedElement}

0.1

+annotatedElement

{subsets annotatedElement, subsets owningRelatedElement}

1
{redefines target}

+/annotatingElemen
0.*
{ordered}

AnnotatingElement

+annotatingElement

{subsets annotation,

subsets ownedRelationship,

ordered}
+/ownedAnnotation

{subsets targetRelationship,

ordered} +annotation

0.x 0.*

+annotation| Annotation

1
{redefines source}

+/owningAnnotatingElement

0.*

{subsets sourceRelationship,
ordered}

+/ownedAnnotatingRelationship

0.1

{subsets annotatingElement,
subsets owningRelatedElement}

Comment

TextualRepresentation

+locale : String [0..1]
+body : String [1]

+language : String [1]

+/textualRepresentation

0.*

{subsets annotation,
subsets ownedRelationship}

Vi
Relationship

0.*

+body : String [1]

+/documentation
0.*

{subsets annotatingElement,
subsets ownedElement, ordered}

oCL

Figure 4. Annotation

{subsets annotatingElement,

subsets ownedElement, ordered}

This is a Kernel abstract syntax model. For Annotations Abstract Syntax class descriptions, see [KerML, 8.3.2.3].

8.3.5 Namespaces and Packages Abstract Syntax

This is a Kernel abstract syntax model. For Namespaces Abstract Syntax class descriptions, see [KerML, 8.3.2.4].
For Packages Abstract Syntax class descriptions, see [KerML, 8.3.4.13].

242

OMG Systems Modeling Language (SysML) v2.0 Beta 1

+/ownedMemberElement

{subsets ownedRelatedElement,
redefines memberElement}

+memberElement

1 Element

{redefines target}
{subsets member, ordered}

{subsets namespace}
+/owningNamespace | 0..1

1

+/ownedMember| 0..*

0..*] +/member
{ordered}

0..*] +/namespace

Namespace

+namesOf(element : Element) : String [0..*]
+visibilityOf(mem : Membership) : VisibilityKind
+visibleMemberships(excluded : Namespace [0..*], isRecursive : Boolean, includeAll : Boolean) : Membership [0..*
+importedMemberships(excluded : Namespace [0..*]) : Membership [0..*]
+resolve(qualifiedName : String) : Membership [0..1]
+resolveGlobal(qualifiedName : String) : Membership [0..1]
+resolveLocal(name : String) : Membership [0..1]
+resolveVisible(name : String) : Membership [0..1]
+qualificationOf(qualifiedName : String) : String [0..1]
+unqualifiedNameOf(qualifiedName : String) : String

+/membershipNamespace
{union}

{union, ordered}

+/membershipy0

1..* +/membershipOwningNamespace
{subsets membershipNamespace,
subsets owningRelatedElement,
redefines source}

{subsets membership, subsets
ownedRelationship, subsets
sourceRelationship, ordered}

+/ownedMembership

*

+/importingNamespace
{subsets
membershipNamespace}

{subsets membership,

ordered}
0% +/importedMembership

«enumeration»
VisibilityKind

private
protected
public

Membership

0..*
{subsets targetRelationship}

+/memberElementld : String
+membership| +memberShortName : String [0..1]
+memberName : String [0..1]
+visibility : VisibilityKind = public

+isDistinguishableFrom(other : Membership) : Boolean

OwningMembership

0.1

{subsets membership,

+/owningMembership +/ownedMemberElementld : String{redefines memberElementid}
+/ownedMemberShortName : String [0..1]{redefines memberShortName
+/ownedMemberName : String [0..1){redefines memberName}

subsets owningRelationship}

Figure 5. Namespaces

OMG Systems Modeling Language (SysML) v2.0, Beta 1

~| Relationship

243

Relationship
i

Import
+visibility : VisibilityKind = public N i
+/importedElement +/membershipimport| +isRecursive : Boolean = false fownedimport +/importO
Element \ﬁ 0.+ | ¥islmportAll : Boolean = false 0.7 1
+memberElement excludod XN p 07| (Subsets onnec g oo yaclatedetement +importedNamespace
{redefines target} T ordered} {redefines target}
‘ Membershipimport ‘ ‘ Namespacelmport
| excluded : 0.1): [0.*Jiredefines | excluded : ©0.17) [0."J{redefines ; R
+import]0..* {subsets
{redefines targetRelationship}
{redefines target)
+importedMembership| 1
+membershipr——
o
{subsets targetRelationship}
Figure 6. Imports
OwningMembership
Package
+importedMemberships(excluded : Namespace [0..*]) : Membership [0..*|{redefines importedMemberships} |EIementFiIterMembership|
+includeAsMember(element : Element) : Boolean
ES +/conditionedPackage|0..1 +/owningFilter|0..1
{subsets owningNamespace} {subsets owningMembership}
{redefines ownedMemberElement}
N + iti
LibraryPackage fcondition| 1
+isStandard : Boolean = false ffilterCondition Expression
- - 0.*
+libraryNamespace() : Namespace [0..1]{redefines libraryNamespace}
{subsets ownedMember,

ordered}
Figure 7. Packages
8.3.6 Definition and Usage Abstract Syntax

244 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.6.1 Overview

A

0.*
{redefines type,
ordered}
+/owningUsage
Definition +/definedUsage Usage
* 0..1
+isVariation : Boolean 0. +lisReference : Boolean .
{subsets typedFeature} | +isvariation : Boolean {subsets owningType}
+/owningDefinition +/ownedUsage |+namingFeature() : Feature [0..1Kredefines namingFeature}| +/nestedUsage
0.1 0.* 0.*
{subsets ownedFeature,

{subsets ownedFeature,

subsets usage, ordered} subsets usage, ordered}

{subsets featuringDefinition,
subsets owningType}

[featuringUsage
0.*
+/featuringDefinition +/usage {subsets typeWithFeature}
0.* 0.*
. +/usage
{subsets typeWithFeature} {subsets feature,
ordered} 0..
{subsets feature,
ordered}
/usageWithDirectedUsage
0.*
+/definitionWithDirectedUsage +/directedUsage {subsets featuringUsage,
0.* 0.* subsets
{subsets featuringDefinition, {subsets directedFeature, typeWithDirectedFeature}
subsets typeWithDirectedFeature} subsets usage, ordered} +/directedUsage

0.
{subsets directedFeature,
subsets usage, ordered}

+/referenceOwningDefinition| 0..1 +/I’§§£§!§:Sxf“:§3§:§; 0.1
{subsets owningDefinition}

{subsets nestedUsage,

ordered}
+/nestedReference|0..*

+/ownedReference ReferenceUsage

0.* +/isReference : Boolean = true{redefines isReference}

bset: dU: 3 - "
ffrlcjief:dj ownedLisage, +namingFeature() : Feature [0..1}{redefines namingFeature}

Figure 8. Definition and Usage

| +/owningVariationDefinition

OwningMembership +/own|ngVar|at|onDef|n|t|onA| Definition
- 0.1 lo.1

subsets {subsets
membershipOwningNamespace} owningNamespace}

{subsets ownedMembership} {subsets ownedMember}

0.x +/variantMembership +/variant|0..*
VariantMembership +/variantMembership +/lowningVariationUsage Usage | t/variant
0.* 0..1 0..*
{subsets ownedMembership} {subsets {subsets ownedMember}
membershipOwningNamespace}

+/owningVariantMembership +/ownedVariantUsage +/owningVariationUsage
0.1 1 0.1
{subsets owningMembership} {redefines ownedMemberElement} {subsets owningNamespace}

Figure 9. Variant Membership

8.3.6.2 Defini

on

Description

A DefinitionisaClassifier of Usages. The actual kinds of Definition that may appear in a model are
given by the subclasses of Definition (possibly as extended with user-defined SemanticMetadata).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 245

Normally, a Definition has owned Usages that model features of the thing being defined. A Definition may
also have other Definitions nested in it, but this has no semantic significance, other than the nested scoping
resulting from the Definition being considered as a Namespace for any nested Definitions.

However, ifa Definition has isvariation = true, then it represents a variation point Definition. In this
case, all of its members must be variant Usages, related to the Definition by VariantMembership
Relationships. Rather than being features of the Definition, variant Usages model different concrete
alternatives that can be chosen to fill in for an abstract Usage of the variation point Definition.

General Classes

Classifier

Attributes

/directedUsage : Usage [0..*] {subsets usage, directedFeature, ordered}

The usages of this Definition that are directedFeatures.

isVariation : Boolean

Whether this Definition is for a variation point or not. If true, then all the memberships of the Definition
must be VariantMemberships.

/ownedAction : ActionUsage [0..*] {subsets ownedOccurrence, ordered}

The ActionUsages that are ownedUsages of this Definition.
/ownedAllocation : AllocationUsage [0..*] {subsets ownedConnection, ordered}
The AllocationUsages that are ownedUsages of this Definition.
/ownedAnalysisCase : AnalysisCaseUsage [0..*] {subsets ownedCase, ordered}
The AnalysisCaseUsages that are ownedUsages of this Definition.
/ownedAttribute : AttributeUsage [0..*] {subsets ownedUsage, ordered}

The AttributeUsages that are ownedUsages of this Definition.
/ownedCalculation : CalculationUsage [0..*] {subsets ownedAction, ordered}
The CalculationUsages that are ownedUsages of this Definition.
/ownedCase : CaseUsage [0..*] {subsets ownedCalculation, ordered}

The code>CaseUsages that are ownedUsages of this Definition.
/ownedConcern : ConcernUsage [0..*] {subsets ownedRequirement}

The ConcernUsages that are ownedUsages of this Definition.

/ownedConnection : ConnectorAsUsage [0..*] {subsets ownedPart, ordered}

246 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The ConnectorAsUsages that are ownedUsages of this Definition. Note that this list includes
BindingConnectorAsUsages and SuccessionAsUsages, even though these are ConnectorAsUsages but not
ConnectionUsages.

/ownedConstraint : ConstraintUsage [0..*] {subsets ownedOccurrence, ordered}
The ConstraintUsages that are ownedUsages of this Definition.
/ownedEnumeration : EnumerationUsage [0..*] {subsets ownedAttribute, ordered}
The EnumerationUsages that are ownedUsages of this Definition.
/ownedFlow : FlowConnectionUsage [0..*] {subsets ownedConnection}

The FlowConnectionUsages that are ownedUsages of this Definition.
/ownedInterface : InterfaceUsage [0..*] {subsets ownedConnection, ordered}
The InterfaceUsages that are ownedUsages of this Definition.
/ownedItem : ItemUsage [0..*] {subsets ownedOccurrence, ordered}

The ItemUsages that are ownedUsages of this Definition.
/ownedMetadata : MetadataUsage [0..*] {subsets ownedItem, ordered}

The MetadataUsages that are ownedUsages of this Definition.
/ownedOccurrence : OccurrenceUsage [0..*] {subsets ownedUsage, ordered}
The OccurrenceUsages that are ownedUsages of this Definition.
/ownedPart : PartUsage [0..*] {subsets ownedItem, ordered}

The PartUsages that are ownedUsages of this Definition.

/ownedPort : PortUsage [0..*] {subsets ownedUsage, ordered}

The PortUsages that are ownedUsages of this Definition.
/ownedReference : ReferenceUsage [0..*] {subsets ownedUsage, ordered}

The ReferenceUsages that are ownedUsages of this Definition.
/ownedRendering : RenderingUsage [0..*] {subsets ownedPart, ordered}

The RenderingUsages that are ownedUsages of this Definition.
/ownedRequirement : RequirementUsage [0..*] {subsets ownedConstraint, ordered}
The RequirementUsages that are ownedUsages of this Definition.
/ownedState : StateUsage [0..*] {subsets ownedAction, ordered}

The stateUsages that are ownedUsages of this Definition.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 247

/ownedTransition : TransitionUsage [0..*] {subsets ownedUsage}

The TransitionUsages that are ownedUsages of this Definition.
/ownedUsage : Usage [0..*] {subsets ownedFeature, usage, ordered}

The Usages that are ownedFeatures of this Definition.

/ownedUseCase : UseCaseUsage [0..*] {subsets ownedCase, ordered}

The UseCaseUsages that are ownedUsages of this Definition.
/ownedVerificationCase : VerificationCaseUsage [0..*] {subsets ownedCase, ordered}
The VerificationCaseUsages that are ownedUsages of this Definition.
/ownedView : ViewUsage [0..*] {subsets ownedPart, ordered}

The ViewUsages that are ownedUsages of this Definition.
/ownedViewpoint : ViewpointUsage [0..*] {subsets ownedRequirement, ordered}
The ViewpointUsages that are ownedUsages of this Definition.

/usage : Usage [0..*] {subsets feature, ordered}

The Usages that are features of this Definition (not necessarily owned).
/variant : Usage [0..*] {subsets ownedMember}

The Usages which represent the variants of this Definition as a variation point Definition, if isVariation =
true. If isvariation = false, the there must be no variants.

/variantMembership : VariantMembership [0..*] {subsets ownedMembership}

The ownedMemberships of this Definition that are VariantMemberships. If isVariation = true, then this
must be all ownedMemberships of the Definition. If isvariation = false, then variantMembershipmust be

empty.

Operations

None.

Constraints

deriveDefinitionDirectedUsage

The directedUsages of a Definition are all its directedFeatures that are Usages.
directedUsage = directedFeature->selectByKind (Usage)
deriveDefinitionOwnedAction

The ownedActions of a Definition are all its ownedUsages that are ActionUsages.

248 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ownedAction = ownedUsage->selectByKind (ActionUsage)
deriveDefinitionOwnedAllocation

The ownedAllocations of a Definition are all its ownedUsages that are AllocationUsages.
ownedAllocation = ownedUsage->selectByKind (AllocationUsage)
deriveDefinitionOwned AnalysisCase

The ownedAnalysisCases of a Definition are all its ownedUsages that are AnalysisCaseUsages.
ownedAnalysisCase = ownedUsage->selectByKind (AnalysisCaseUsage)
deriveDefinitionOwnedAttribute

The ownedAttributes of a Definition are all its ownedUsages that are AttributeUsages.
ownedAttribute = ownedUsage->selectByKind (AttributeUsage)
deriveDefinitionOwnedCalculation

The ownedCalculations of a Definition are all its ownedUsages that are CalculationUsages.
ownedCalculation = ownedUsage->selectByKind (CalculationUsage)
deriveDefinitionOwnedCase

The ownedCases of a Definition are all its ownedUsages that are CaseUsages.

ownedCase = ownedUsage->selectByKind (CaseUsage)

deriveDefinitionOwnedConcern

The ownedConcerns of a Definition are all its ownedUsages that are ConcernUsages.
ownedConcern = ownedUsage->selectByKind (ConcernUsage)
deriveDefinitionOwnedConnection

The ownedConnections of a Definition are all its ownedUsages that are ConnectorAsUsages.
ownedConnection = ownedUsage->selectByKind (ConnectorAsUsage)
deriveDefinitionOwnedConstraint

The ownedConstraints of a Definition are all its ownedUsages that are ConstraintUsages.
ownedConstraint = ownedUsage->selectByKind (ConstraintUsage)
deriveDefinitionOwnedEnumeration

The ownedEnumerations of a Definition are all its ownedUsages that are EnumerationUsages.

ownedEnumeration = ownedUsage->selectByKind (EnumerationUsage)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 249

deriveDefinitionOwnedFlow

The ownedFlows of a Definition are all its ownedUsages that are FlowConnectionUsages.
ownedFlow = ownedUsage->selectByKind (FlowConnectionUsage)
deriveDefinitionOwnedInterface

The ownedInterfaces of a Definition are all its ownedUsages that are InterfaceUsages.
ownedInterface = ownedUsage->selectByKind (ReferenceUsage)
deriveDefinitionOwnedltem

The ownedItems of a Definition are all its ownedUsages that are ITtemUsages.

ownedItem = ownedUsage->selectByKind (ItemUsage)

deriveDefinitionOwnedMetadata

The ownedMetadata of a Definition are all its ownedUsages that are MetadataUsages.
ownedMetadata = ownedUsage->selectByKind (MetadataUsage)
deriveDefinitionOwnedOccurrence

The ownedOccurrences of a Definition are all its ownedUsages that are OccurrenceUsages.
ownedOccurrence = ownedUsage->selectByKind (OccurrenceUsage)
deriveDefinitionOwnedPart

The ownedParts of a Definition are all its ownedUsages that are PartUsages.

ownedPart = ownedUsage->selectByKind (PartUsage)

deriveDefinitionOwnedPort

The ownedPorts of a Definition are all its ownedUsages that are PortUsages.

ownedPort = ownedUsage->selectByKind (PortUsage)
deriveDefinitionOwnedReference

The ownedReferences of a Definition are all its ownedUsages that are ReferenceUsages.
ownedReference = ownedUsage->selectByKind (ReferenceUsage)
deriveDefinitionOwnedRendering

The ownedRenderings of a Definition are all its ownedUsages that are RenderingUsages.
ownedRendering = ownedUsage->selectByKind (RenderingUsage)

deriveDefinitionOwnedRequirement

250 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The ownedRequirements of a Definition are all its ownedUsages that are RequirementUsages.
ownedRequirement = ownedUsage->selectByKind (RequirementUsage)
deriveDefinitionOwnedState

The ownedStates of a Definition are all its ownedUsages that are StateUsages.
ownedState = ownedUsage->selectByKind (StateUsage)
deriveDefinitionOwnedTransition

The ownedTransitions of a Definition are all its ownedUsages that are TransitionUsages.
ownedTransition = ownedUsage->selectByKind (TransitionUsage)
deriveDefinitionOwnedUsage

The ownedUsages of a Definition are all its ownedFeatures that are Usages.

ownedUsage = ownedFeature->selectByKind (Usage)

deriveDefinitionOwnedUseCase

The ownedUseCases of a Definition are all its ownedUsages that are UseCaseUsages.
ownedUseCase = ownedUsage->selectByKind (UseCaseUsage)
deriveDefinitionOwnedVerificationCase

The ownedvalidationCases of a Definition are all its ownedUsages that are ValidationCaseUsages.
ownedVerificationCase = ownedUsage->selectByKind (VerificationCaseUsage)
deriveDefinitionOwnedView

The ownedvViews of a Definition are all its ownedUsages that are ViewUsages.

ownedView = ownedUsage->selectByKind (ViewUsage)

deriveDefinitionOwnedViewpoint

The ownedViewpoints of a Definition are all its ownedUsages that are ViewpointUsages.
ownedViewpoint = ownedUsage->selectByKind (ViewpointUsage)

deriveDefinitionUsage

The usages of a Definition are all its features that are Usages.

usage = feature->selectByKind (Usage)

deriveDefinitionVariant

The variants of a Definition are the ownedvariantUsages of its variantMemberships.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 251

variant = variantMembership.ownedVariantUsage
deriveDefinitionVariantMembership
The variantMemberships of a Definition are those ownedMemberships that are VariantMemberships.
variantMembership = ownedMembership->selectByKind (VariantMembership)
validateDefinitionVariationIsAbstract
Ifa Definition is a variation, then it must be abstract.
isVariation implies isAbstract
validateDefinitionVariationOwnedFeatureMembership
IfaDefinition is a variation, then all it must not have any ownedFeatureMemberships.
isVariation implies ownedFeatureMembership->isEmpty ()
validateDefinitionVariationSpecialization
A variation Definition may not specialize any other variation Definition.
isVariation implies

not ownedSpecialization.specific->exists(

oclIsKindOf (Definition) and
oclAsType (Definition) .isVariation)

8.3.6.3 ReferenceUsage

Description

A ReferenceUsage is a Usage that specifies a non-compositional (isComposite = false) reference to
something. The definition of a ReferenceUsage can be any kind of Classifier, with the default being the

top-level Classifier Base: :Anything from the Kernel Semantic Library. This allows the specification of a
generic reference without distinguishing if the thing referenced is an attribute value, item, action, etc.

General Classes

Usage

Attributes

/isReference : Boolean {redefines isReference}

Always true for a ReferenceUsage.

Operations

namingFeature() : Feature [0..1] {redefines namingFeature}

If this ReferenceUsage is the payload parameter of a TransitionUsage, then its naming Feature is the
payloadParameter of the triggerAction of that TransitionUsage (if any).

252 OMG Systems Modeling Language (SysML) v2.0 Beta 1

body: if owningType <> null and owningType.oclIsKindOf (TransitionUsage) and
owningType.oclAsType (TransitionUsage) .inputParameter (2) = self then
owningType.oclAsType (TransitionUsage) .triggerPayloadParameter ()

else self.oclAsType (Usage) .namingFeature ()

endif

Constraints
validateReferenceUsagelsReference

A ReferenceUsage is always referential.
isReference

8.3.6.4 Usage

Description

A Usage isausage of a Definition. A Usage may only be an ownedFeature of a Definition or another
Usage.

A Usage may have nestedUsages that model features that apply in the context of the owningUsage. A Usage
may also have Definitions nested in it, but this has no semantic significance, other than the nested scoping
resulting from the Usage being considered as a Namespace for any nested Definitions.

However, if a Usage has isvVariation = true, then it represents a variation point Usage. In this case, all of its
members must be variant Usages, related to the Usage by VariantMembership Relationships. Rather than
being features of the Usage, variant Usages model different concrete alternatives that can be chosen to fill in
for the variation point Usage.

General Classes

Feature

Attributes

/definition : Classifier [0..*] {redefines type, ordered}

The Classifiers that are the types of this Usage. Nominally, these are Definitions, but other kinds of Kernel
Classifiers are also allowed, to permit use of Classifiers from the Kernel Model Libraries.

/directedUsage : Usage [0..*] {subsets usage, directedFeature, ordered}

The usages of this Usage that are directedFeatures.

/isReference : Boolean

Whether this Usage is a referential Usage, that is, it has isComposite = false.
isVariation : Boolean

Whether this Usage is for a variation point or not. If true, then all the memberships of the Usage must be
VariantMemberships.

/nestedAction : ActionUsage [0..*] {subsets nestedOccurrence, ordered}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 253

The ActionUsages that are nestedUsages of this Usage.

/nestedAllocation : AllocationUsage [0..*] {subsets nestedConnection, ordered}
The AllocationUsages that are nestedUsages of this Usage.
/nestedAnalysisCase : AnalysisCaseUsage [0..*] {subsets nestedCase, ordered}
The AnalysisCaseUsages that are nestedUsages of this Usage.
/nestedAttribute : AttributeUsage [0..*] {subsets nestedUsage, ordered}

The code>AttributeUsages that are nestedUsages of this Usage.
/nestedCalculation : CalculationUsage [0..*] {subsets nestedAction, ordered}

The CalculationUsage that are nestedUsages of this Usage.

/nestedCase : CaseUsage [0..*] {subsets nestedCalculation, ordered}

The CaseUsages that are nestedUsages of this Usage.

/mestedConcern : ConcernUsage [0..*] {subsets nestedRequirement}

The ConcernUsages that are nestedUsages of this Usage.

/nestedConnection : ConnectorAsUsage [0..*] {subsets nestedPart, ordered}

The ConnectorAsUsages that are nestedUsages of this Usage. Note that this list includes
BindingConnectorAsUsages and SuccessionAsUsages, even though these are ConnectorAsUsages but not
ConnectionUsages.

/nestedConstraint : ConstraintUsage [0..*] {subsets nestedOccurrence, ordered }
The ConstraintUsages that are nestedUsages of this Usage.
/nestedEnumeration : EnumerationUsage [0..*] {subsets nestedAttribute, ordered}
The code>EnumerationUsages that are nestedUsages of this Usage.
/mestedFlow : FlowConnectionUsage [0..*] {subsets nestedConnection}

The code>FlowConnectionUsages that are nestedUsages of this Usage.
/nestedInterface : InterfaceUsage [0..*] {subsets nestedConnection, ordered}

The InterfaceUsages that are nestedUsages of this Usage.

/mestedItem : ItemUsage [0..*] {subsets nestedOccurrence, ordered}

The ItemUsages that are nestedUsages of this Usage.

/nestedMetadata : MetadataUsage [0..*] {subsets nestedItem, ordered}

The MetadataUsages that are nestedUsages of this of this Usage.

254 OMG Systems Modeling Language (SysML) v2.0 Beta 1

/mestedOccurrence : OccurrenceUsage [0..*] {subsets nestedUsage, ordered}
The OccurrenceUsages that are nestedUsages of this Usage.

/nestedPart : PartUsage [0..*] {subsets nestedItem, ordered}

The PartUsages that are nestedUsages of this Usage.

/nestedPort : PortUsage [0..*] {subsets nestedUsage, ordered}

The PortUsages that are nestedUsages of this Usage.

/nestedReference : ReferenceUsage [0..*] {subsets nestedUsage, ordered}

The ReferenceUsages that are nestedUsages of this Usage.
/nestedRendering : RenderingUsage [0..*] {subsets nestedPart, ordered}

The RenderingUsages that are nestedUsages of this Usage.
/nestedRequirement : RequirementUsage [0..*] {subsets nestedConstraint, ordered}
The RequirementUsages that are nestedUsages of this Usage.

/nestedState : StateUsage [0..*] {subsets nestedAction, ordered}

The StateUsages that are nestedUsages of this Usage.

/nestedTransition : TransitionUsage [0..*] {subsets nestedUsage}

The TransitionUsages that are nestedUsages of this Usage.

/mestedUsage : Usage [0..*] {subsets ownedFeature, usage, ordered}

The Usages that are ownedFeatures of this Usage.

/mestedUseCase : UseCaseUsage [0..*] {subsets nestedCase, ordered}

The UseCaseUsages that are nestedUsages of this Usage.
/nestedVerificationCase : VerificationCaseUsage [0..*] {subsets nestedCase, ordered}
The verificationCaseUsages that are nestedUsages of this Usage.
/mestedView : ViewUsage [0..*] {subsets nestedPart, ordered}

The ViewUsages that are nestedUsages of this Usage.

/nestedViewpoint : ViewpointUsage [0..*] {subsets nestedRequirement, ordered}
The ViewpointUsages that are nestedUsages of this Usage.
/owningDefinition : Definition [0..1] {subsets owningType, featuringDefinition}

The Definition that owns this Usage (if any).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 255

/owningUsage : Usage [0..1] {subsets owningType}

The Usage in which this Usage is nested (if any).

/usage : Usage [0..*] {subsets feature, ordered}

The Usages that are features of this Usage (not necessarily owned).
/variant : Usage [0..*] {subsets ownedMember}

The Usages which represent the variants of this Usage as a variation point Usage, if isVariation = true.If
isVariation = false, then there must be no variants.

/variantMembership : VariantMembership [0..*] {subsets ownedMembership}

The ownedMemberships of this Usage that are VariantMemberships. If isvariation = true, then this must
be all memberships of the Usage. If isVariation = false, then variantMembershipmust be empty.

Operations
namingFeature() : Feature [0..1] {redefines namingFeature}

If this Usage is a variant, then its naming Feature is the referencedFeature of its
ownedReferenceSubsetting.

body: if not owningMembership.oclIsKindOf (VariantMembership) then
self.oclAsType (Feature) .namingFeature ()

else 1f ownedReferenceSubsetting = null then null

else ownedReferenceSubsetting.referencedFeature

endif endif

Constraints
checkUsageVariationDefinitionSpecialization
If a Usage has an owningVariationDefinition, then it must directly or indirectly specialize that Definition.

owningVariationDefinition <> null implies
specializes (owningVariationDefinition)

checkUsageVariationUsageSpecialization

If a Usage has an owningVariationUsage, then it must directly or indirectly specialize that Usage.

owningVariationUsage <> null implies
specializes (owningVariationUsage)

deriveUsageDirectedUsage

The directedUsages of a Usage are all its directedFeatures that are Usages.
directedUsage = directedFeature->selectByKind (Usage)
deriveUsagelsReference

A Usage is referential if it is not composite.

256 OMG Systems Modeling Language (SysML) v2.0 Beta 1

isReference = not isComposite

deriveUsageNestedAction

The ownedActions of a Usage are all its ownedUsages that are ActionUsages.
nestedAction = nestedUsage->selectByKind (ActionUsage)
deriveUsageNestedAllocation

The ownedAllocations of a Usage are all its ownedUsages that are AllocationUsages.
nestedAllocation = nestedUsage->selectByKind(AllocationUsage)
deriveUsageNested AnalysisCase

The ownedAnalysisCases of a Usage are all its ownedUsages that are AnalysisCaseUsages.
nestedAnalysisCase = nestedUsage->selectByKind (AnalysisCaseUsage)
deriveUsageNestedAttribute

The ownedAttributes of a Usage are all its ownedUsages that are AttributeUsages.
nestedAttribute = nestedUsage->selectByKind (AttributeUsage)
deriveUsageNestedCalculation

The ownedCalculations of a Usage are all its ownedUsages that are CalculationUsages.
nestedCalculation = nestedUsage->selectByKind(CalculationUsage)
deriveUsageNestedCase

The ownedCases of a Usage are all its ownedUsages that are CaseUsages.

nestedCase = nestedUsage->selectByKind (CaseUsage)

deriveUsageNestedConcern

The ownedConcerns of a Usage are all its ownedUsages that are ConcernUsages.
nestedConcern = nestedUsage->selectByKind (ConcernUsage)
deriveUsageNestedConnection

The ownedConnections of a Usage are all its ownedUsages that are ConnectorAsUsages.
nestedConnection = nestedUsage->selectByKind (ConnectorAsUsage)
deriveUsageNestedConstraint

The ownedConstraints of a Usage are all its ownedUsages that are ConstraintUsages.

nestedConstraint = nestedUsage->selectByKind (ConstraintUsage)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 257

deriveUsageNestedEnumeration

The ownedEnumerations of a Usage are all its ownedUsages that are EnumerationUsages.
ownedNested = nestedUsage->selectByKind (EnumerationUsage)
deriveUsageNestedFlow

The ownedFlows of a Usage are all its ownedUsages that are FlowConnectionUsages.
nestedFlow = nestedUsage->selectByKind (FlowConnectionUsage)
deriveUsageNestedInterface

The ownedInterfaces of a Usage are all its ownedUsages that are InterfaceUsages.
nestedInterface = nestedUsage->selectByKind (ReferenceUsage)
deriveUsageNestedItem

The ownedItems of a Usage are all its ownedUsages that are ITtemUsages.
nestedItem = nestedUsage->selectByKind (ItemUsage)
deriveUsageNestedMetadata

The ownedMetadata of a Usage are all its ownedUsages that are MetadataUsages.
nestedMetadata = nestedUsage->selectByKind (MetadataUsage)
deriveUsageNestedOccurrence

The ownedOccurrences of a Usage are all its ownedUsages that are OccurrenceUsages.
nestedOccurrence = nestedUsage->selectByKind (OccurrenceUsage)
deriveUsageNestedPart

The ownedParts of a Usage are all its ownedUsages that are PartUsages.
nestedPart = nestedUsage->selectByKind (PartUsage)

deriveUsageNestedPort

The ownedPorts of a Usage are all its ownedUsages that are PortUsages.
nestedPort = nestedUsage->selectByKind (PortUsage)
deriveUsageNestedReference

The ownedReferences of a Usage are all its ownedUsages that are ReferenceUsages.
nestedReference = nestedUsage->selectByKind (ReferenceUsage)

deriveUsageNestedRendering

258 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The ownedRenderings of a Usage are all its ownedUsages that are RenderingUsages.
nestedRendering = nestedUsage->selectByKind (RenderingUsage)
deriveUsageNestedRequirement

The ownedRequirements of a Usage are all its ownedUsages that are RequirementUsages.
nestedRequirement = nestedUsage->selectByKind (RequirementUsage)
deriveUsageNestedState

The ownedStates of a Usage are all its ownedUsages that are StateUsages.

nestedState = nestedUsage->selectByKind (StateUsage)
deriveUsageNestedTransition

The ownedTransitions of a Usage are all its ownedUsages that are TransitionUsages.
nestedTransition = nestedUsage->selectByKind(TransitionUsage)
deriveUsageNestedUsage

The ownedUsages of a Usage are all its ownedFeatures that are Usages.

nestedUsage = ownedFeature->selectByKind (Usage)

deriveUsageNestedUseCase

The ownedUseCases of a Usage are all its ownedUsages that are UseCaseUsages.
nestedUseCase = nestedUsage->selectByKind (UseCaseUsage)

deriveUsageNested VerificationCase

The ownedvalidationCases of a Usage are all its ownedUsages that are ValidationCaseUsages.
nestedVerificationCase = nestedUsage->selectByKind (VerificationCaseUsage)
deriveUsageNestedView

The ownedvViews of a Usage are all its ownedUsages that are ViewUsages.

nestedvView = nestedUsage->selectByKind (ViewUsage)

deriveUsageNested Viewpoint

The ownedViewpoints of a Usage are all its ownedUsages that are ViewpointUsages.
nestedViewpoint = nestedUsage->selectByKind (ViewpointUsage)
deriveUsageUsage

The usages of a Usage are all its features that are Usages.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 259

usage = feature->selectByKind (Usage)

deriveUsageVariant

The variants of a Usage are the ownedvariantUsages of its variantMemberships.
variant = variantMembership.ownedVariantUsage
deriveUsageVariantMembership

The variantMemberships of a Usage are those ownedMemberships that are VariantMemberships.
variantMembership = ownedMembership->selectByKind (VariantMembership)
validaeUsageVariationIsAbstract

If a Usage is a variation, then it must be abstract.

isVariation implies isAbstract

validateUsagelsReferential

A Usage that is directed, an end feature or has no featuringTypes must be referential.

direction <> null or isEnd or featuringType->isEmpty () implies
isReference

validateUsageVariationOwnedFeatureMembership
If a Usage is a variation, then it must not have any ownedFeatureMemberships
isVariation implies ownedFeatureMembership->isEmpty ()
validateUsageVariationSpecialization
A variation Usage may not specialize any variation Definition or Usage.
isVariation implies
not ownedSpecialization.specific->exists(
0oclIsKindOf (Definition) and
oclAsType (Definition) .isVariation or

oclIsKindOf (Usage) and
oclAsType (Usage) .isVariation)

8.3.6.5 VariantMembership
Description

A variantMembership is a Membership between a variation point Definition or Usage and a Usage that
represents a variant in the context of that variation. The membershipOwningNamespace for the
VariantMembership must be either a Definition or a Usage with isvariation = true.

General Classes

OwningMembership

260 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Attributes
/ownedVariantUsage : Usage {redefines ownedMemberElement}

The Usage that represents a variant in the context of the owningvariationDefinition or

owningVariationUsage.

Operations

None.

Constraints
validateVariantMembershipOwningNamespace

The membershipOwningNamespace of a VariantMembership must be a variation-point Definition or Usage.

membershipOwningNamespace.oclIsKindOf (Definition) and
membershipOwningNamespace.oclAsType (Definition) .isVariation or

membershipOwningNamespace.oclIsKindOf (Usage) and
membershipOwningNamespace.oclAsType (Usage) .isVariation

8.3.7 Attributes Abstract Syntax

8.3.7.1 Overview

— +/attributeOwningDefinition
Definition Usage
0..1
A . .
{subsets owningDefinition} +/attributeOwningUsage|0..1

{subsets owningUsage}|

{subsets nestedUsage,
ordered}
+/nestedAttribute|0..*

AttributeDefinition +ownedAttribute AttributeUsage

0.* |+/isReference : Boolean = true{redefines isReference}

subsets ownedUsage, - -
f)rl:lered} W o +/definedAttribute{0..*

bsets definedU
+/attributeDefinition {subsets definedUsage}
DataType
0.*

{redefines definition,
ordered}

Figure 10. Attribute Definition and Usage
8.3.7.2 AttributeDefinition

Description
An AttributeDefinitionisaDefinition and a DataType of information about a quality or characteristic of a
system or part of a system that has no independent identity other than its value. All features of an

AttributeDefinition must be referential (non-composite).

As aDataType, an AttributeDefinition must specialize, directly or indirectly, the base DataType
Base: :DataValue from the Kernel Semantic Library.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 261

General Classes

Definition
DataType

Attributes

None.

Operations

None.

Constraints

validateAttributeDefinitionFeatures

All features of an AttributeDefinition must be non-composite.
feature->forAll (not isComposite)

8.3.7.3 AttributeUsage

Description

An AttributeUsage is a Usage whose type is a DataType. Nominally, if the type is an AttributeDefinition,
an AttributeUsage is a usage of a AttributeDefinition to represent the value of some system quality or
characteristic. However, other kinds of kernel DataTypes are also allowed, to permit use of DataTypes from the
Kernel Model Libraries. An AttributeUsage itself as well as all its nested features must be referential (non-
composite).

An AttributeUsage must specialize, directly or indirectly, the base Feature Base: :dataValues from the
Kernel Semantic Library.

General Classes

Usage

Attributes

/attributeDefinition : DataType [0..*] {redefines definition, ordered}

The DataTypes that are the types of this AttributeUsage. Nominally, these are AttributeDefinitions, but
other kinds of kernel DataTypes are also allowed, to permit use of DataTypes from the Kernel Model Libraries.

/isReference : Boolean {redefines isReference}
Always true for an AttributeUsage.
Operations

None.

Constraints

262 OMG Systems Modeling Language (SysML) v2.0 Beta 1

checkAttributeUsageSpecialization

An AttributeUsage must directly or indirectly specialize Base: :dataValues from the Kernel Semantic
Library.

specializesFromLibrary ('Base::dataValues')
validateAttributeUsageFeatures

All features of an AttributeUsage must be non-composite.
feature->forAll (not isComposite)
validateAttributeUsagelsReference

An AttributeUsage is always referential.

isReference

8.3.8 Enumerations Abstract Syntax

8.3.8.1 Overview

— +/enumerationOwningDefinition +/enumerationOwningUsage
Definition Usage
0.1 0.1
{subsets {subsets
attributeOwningDefinition} attributeOwningUsage}
AttributeDefinition AttributeUsage
+/ownedEnumeration
EnumerationDefinition 0~ EnumerationUsage
+isVariation : Boolean = true{redefines isVariation} {subsets ownedAttribute, ordered}
+/owningEnumerationDefinition +/enumeratedValue +/nestedEnumeration
0.1 0.* 0.*
{subsets owningVariationDefinition} {redefines variant, ordered} {subsets nestedAttribute,
ordered}
+/enumerationDefinition +/definedEnumeration
1 0.*
{redefines attributeDefinition} {subsets definedAttribute}

Figure 11. Enumeration Definition and Usage

8.3.8.2 EnumerationDefinition
Description

An EnumerationDefinition is an AttributeDefinition all of whose instances are given by an explicit list of
enumeratedvValues. This is realized by requiring that the EnumerationDefinition have isvariation =
true, with the enumeratedvalues being its variants.

General Classes
AttributeDefinition

Attributes

OMG Systems Modeling Language (SysML) v2.0, Beta 1 263

/enumeratedValue : EnumerationUsage [0..*] {redefines variant, ordered}

EnumerationUsages of this EnumerationDefinitionthat have distinct, fixed values. Each enumeratedvalue
specifies one of the allowed instances of the EnumerationDefinition.

isVariation : Boolean {redefines isVariation}

An EnumerationDefinition is considered semantically to be a variation whose allowed variants are its
enumerationValues.

Operations

None.

Constraints
validateEnumerationDefinitionIsVariation

An EnumerationDefinition must be a variation.
isVariation

8.3.8.3 EnumerationUsage

Description

An EnumerationUsage is an AttributeUsage whose attributeDefinition is an

EnumerationDefinition.

General Classes

AttributeUsage

Attributes

/enumerationDefinition : EnumerationDefinition {redefines attributeDefinition}
The single EnumerationDefinition that is the type of this EnumerationUsage.
Operations

None.

Constraints

None.

8.3.9 Occurrences Abstract Syntax

264 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.9.1 Overview

Definiti +/occurrenceOwningDefinition Usage
0.1
0.1

{subsets owningDefinition} +loccurrenceOwningUsage
{subsets owningUsage}

{subsets nestedUsage, ordered}
+/nestedOccurrence [0..*

+/individualDefinitior] ~ OccurrenceDefinition +/individualDefinition +/individualUsage|
0..1 [+isIndividual : Boolean = false| 0..1 0.*
{subsets {subsets occurrenceDefinition}

owningNamespace}

+/ownedOccurrence OccurrenceUsage «enumeration»
0-" " [Visindividual : Boolean = false PortionKind
{subsets ownedUsage, ordered} |+portionKind : PortionKind [0..1] timeslice
snapshot

+/occurrenceDefinition +/definedOccurrence
Class
0..* 0..*
{redefines {subsets definedUsage}
definition, ordered}
LifeClass

+/lifeClass
0.1
{subsets ownedMember}

+isSufficient : Boolean = true{redefines isSufficient}

+effectiveName() : String [0..1]{redefines effectiveName}

Figure 12. Occurrence Definition and Usage

+/eventOccurrence
1

OccurrenceUsage

+/referencingOccurrence EventOccurrenceUsage

0. | +/isReference : Boolean = true{redefines isReference}

Figure 13. Event Occurrences

8.3.9.2 EventOccurrenceUsage

Description

An EventOccurrenceUsage is an OccurrenceUsage that represents another OccurrenceUsage occurring as a

suboccurrence of the containing occurrence of the EventOccurrenceUsage. Unless it is the

EventOccurrenceUsage itself, the referenced OccurrenceUsage is related to the EventOccurrenceUsage by

a ReferenceSubsetting Relationship.

If the EventOccurrenceUsage is owned by an OccurrenceDefinition or OccurrenceUsage, then it also
subsets the timeEnclosedOccurrences property of the Class Occurrence from the Kernel Semantic Library

model Occurrences.
General Classes
OccurrenceUsage
Attributes

/eventOccurrence : OccurrenceUsage

OMG Systems Modeling Language (SysML) v2.0, Beta 1

265

The OccurrenceUsage referenced as an event by this EventOccurrenceUsage. It is the referenceFeature of
the ownedReferenceSubsetting for the EventOccurrenceUsage, if there is one, and, otherwise, the
EventOccurrenceUsage itself.

/isReference : Boolean {redefines isReference}
Always true for an EventOccurrenceUsage.
Operations

None.

Constraints
checkEventOccurrenceUsageSpecialization

If an EventOccurrenceUsage has an owningType that is an OccurrenceDefinition or OccurrenceUsage,
then it must directly or indirectly specialize the Feature

Occurrences::Occurrence: :timeEnclosedOccurrences
owningType <> null and
(owningType.oclIsKindOf (OccurrenceDefinition) or

owningType.oclIsKindOf (OccurrenceUsage)) implies
specializesFromLibrary ('Occurrences: :0Occurrence: :timeEnclosedOccurrences')

deriveEventOccurrenceUsageEventOccurrence

If an EventOccurrenceUsage has no ownedReferenceSubsetting, then its eventOccurrence is the
EventOccurrenceUsage itself. Otherwise, the eventOccurrence is the referencedFeature of the
ownedReferenceSubsetting (which must be an OccurrenceUsage).
eventOccurrence =
if ownedReferenceSubsetting = null then self
else if ownedReferenceSubsetting.referencedFeature.oclIsKindOf (OccurrenceUsage) then
ownedReferenceSubsetting.referencedFeature.oclAsType (OccurrenceUsage)

else null
endif endif

validateEventOccurrenceUsagelsReference

An EventOccurrenceUsage must be referential.
isReference
validateEventOccurrenceUsageReference

If an EventOccurrenceUsage has an ownedReferenceSubsetting, then its referencedFeature must be an
OccurrenceUsage.

ownedReferenceSubsetting <> null implies
ownedReferenceSubsetting.referencedFeature.oclIsKindOf (OccurrenceUsage)

8.3.9.3 LifeClass

Description

266 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A LifeClass is a Class that specializes both the Class Occurrences: : Li fe from the Kernel Semantic Library
and a single OccurrenceDefinition, and has a multiplicity of 0..1. This constrains the
OccurrenceDefinition being specialized to have at most one instance that is a complete Li fe.

General Classes

Class

Attributes

isSufficient : Boolean {redefines isSufficient}

Always true for a LifeClass.

Operations

effectiveName() : String [0..1] {redefines effectiveName}
The name of a LifeClass is Life.

body: "Life"

Constraints

checkLifeClassLifeSpecialization

A LifeClass must specialize the Class Occurrences: : Life from the Kernel Semantic Model Library.
specializesFromLibrary ('Occurrences::Life')
checkLifeClassMultiplicitySpecialization

The multiplicity ofaLifeClass is zeroOrOne.

multiplicity <> null and
multiplicity.specializesFromLibrary('Base::zeroOrOne')

checkLifeClassOccurrenceSpecialization

A LifeClass must specialize its individualDefinition.
specializes (individualDefinition)
validateLifeClassIsSufficient

A LifeClass always has isSufficient = true.
isSufficient

8.3.9.4 OccurrenceDefinition

Description

An OccurrenceDefinitionisaDefinition of a Class of individuals that have an independent life over time
and potentially an extent over space. This includes both structural things and behaviors that act on such structures.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 267

If isIndividual is true, then the OccurrenceDefinition is constrained to represent an individual thing. The
instances of such an OccurrenceDefinition include all spatial and temporal portions of the individual being
represented, but only one of these can be the complete Li fe of the individual. All other instances must be portions
of the "maximal portion" that is single Li fe instance, capturing the conception that all of the instances represent one
individual with a single "identity".

An OccurrenceDefinition must specialize, directly or indirectly, the base Class Occurrence from the Kernel
Semantic Library.

General Classes

Class
Definition

Attributes

isIndividual : Boolean

Whether this OccurrenceDefinition is constrained to represent single individual.
/NlifeClass : LifeClass [0..1] {subsets ownedMember}

If isIndividual is true, a LifeClass that specializes this OccurrenceDefinition, restricting it to represent an
individual.

Operations

None.

Constraints

deriveOccurrenceDefinitionLifeClass

The 1ifeClass of an OccurrenceDefinition is its single ownedMember that is a LifeClass (if any).

lifeClass =
let lifeClasses: OrderedSet (LifeClass) =
ownedMember->selectByKind (LifeClass) in
if lifeClasses->isEmpty () then null
else lifeClasses->first ()
endif

validateOccurrenceDefinitionLifeClass

If an OccurrenceDefinition has isIndividual = true, then it has exactly one ownedMember that is a
LifeClass. Otherwise it has none.

let n : Integer = ownedMember->selectByKind (LifeClass) in
if isIndividual then n = 1 else n = 0 endif

8.3.9.5 OccurrenceUsage

Description

268 OMG Systems Modeling Language (SysML) v2.0 Beta 1

An OccurrenceUsage is a Usage whose types are all Classes. Nominally, ifa type is an
OccurrenceDefinition, an OccurrenceUsage is a Usage of that OccurrenceDefinition within a system.
However, other types of Kernel Classes are also allowed, to permit use of Classes from the Kernel Model
Libraries.

General Classes

Usage

Attributes

/individualDefinition : OccurrenceDefinition [0..1] {subsets occurrenceDefinition}
The at most one occurrenceDefinition that has isIndividual = true.
isIndividual : Boolean

Whether this OccurrenceUsage represents the usage of the specific individual (or portion of it) represented by its
individualDefinition.

/occurrenceDefinition : Class [0..*] {redefines definition, ordered}

The Cclasses that are the types of this OccurrenceUsage. Nominally, these are OccurrenceDefinitions, but
other kinds of kernel C1lasses are also allowed, to permit use of Classes from the Kernel Model Libraries.

portionKind : PortionKind [0..1]

The kind of (temporal) portion of the life of the occurrenceDefinition represented by this OccurrenceUsage,
if it is so restricted.

Operations

None.

Constraints
checkOccurrenceUsageSpecialization

An OccurrenceUsage must directly or indirectly specialize Occurrences: :occurrences from the Kernel
Semantic Library.

specializesFromLibrary ('Occurrences: :occurrences')
checkOccurrenceUsageSuboccurrenceSpecialization

A composite OccurrenceUsage, whose ownedType is a Class, another OccurrenceUsage, or any kind of
Feature typed by a Class, must directly or indirectly specialize
Occurrences: :0Occurrence: : suboccurrences.

isComposite and

owningType <> null and

(owningType.oclIsKindOf (Class) or

owningType.oclIsKindOf (OccurrenceUsage) or

owningType.oclIsKindOf (Feature) and
owningType.oclAsType (Feature) .type->

OMG Systems Modeling Language (SysML) v2.0, Beta 1 269

exists (oclIsKind(Class))) implies
specializesFromLibrary ('Occurrences: :0Occurrence: :suboccurrences')

checkOccurrenceUsageTypeFeaturing

If the portionKind of an OccurrenceUsage is not empty, then, for each occurrencebDefinition of the
OccurrenceUsage, there must be a featuringType of the OccurrenceUsage which either is the
occurrenceDefinition or directly or indirectly specializes it.

portionKind <> null implies
occurrenceDefinition->forAll (occ |
featuringType->exists (specializes (occ)))

deriveOccurrenceUsagelndividualDefinition

The individualDefinition of an OccurrenceUsage is the occurrenceDefinition thatis an
OccurrenceDefinition with isIndividual = true, if any.

individualDefinition =
let individualDefinitions : OrderedSet (OccurrenceDefinition) =
occurrenceDefinition->
selectByKind (OccurrenceDefinition) ->
select (isIndividual) in
if individualDefinitions->isEmpty () then null
else individualDefinitions->first () endif
validateOccurrenceUsagelndividualDefinition
An OccurrenceUsage must have at most one occurrenceDefinition with isIndividual = true.
occurrenceDefinition->
selectByKind (OccurrenceDefinition)->
select (isIndividual) .size () <=1
validateOccurrenceUsagelndividualUsage
If an OccurrenceUsage has isIndividual = true, then it must have an individualDefinition
isIndividual implies individualDefinition <> null
8.3.9.6 PortionKind

Description

PortionKind is an enumeration of the specific kinds of Occurrence portions that can be represented by an
OccurrenceUsage.

General Classes
None.

Literal Values
snapshot

A snapshot of an Occurrence (a time slice with zero duration).

270 OMG Systems Modeling Language (SysML) v2.0 Beta 1

timeslice

A time slice of an Occurrence (a portion over time).

8.3.10 Items Abstract Syntax
8.3.10.1 Overview

— +/itemOwningDefinition
Definition
0..1

{subsets
occurrenceOwningDefinition}

| OccurrenceDefinition |
AN

+/itemOwningUsage
Usage

0.1

{subsets
occurrenceOwningUsage}

OccurrenceUsage

ItemDefinition

ordered}

{subsets ownedOccurrence,

+/ownedltem mw +/nestedltem
L~ Tor

{subsets definedOccurrence}

+/itemDefinition
Structure
0..*

{subsets occurrenceDefinition,
ordered}

Figure 14. Item Definition and Usage
8.3.10.2 ItemDefinition

Description

0.*
+/definedltem|0..* {subsets nestedOccurrence, ordered}

An ItemDefinition is an OccurrenceDefinition of the Structure of things that may themselves be systems

or parts of systems, but may also be things that are acted on by a system or parts of a system, but which do not

necessarily perform actions themselves. This includes items that can be exchanged between parts of a system, such

as water or electrical signals.
General Classes

OccurrenceDefinition
Structure

Attributes
None.
Operations
None.
Constraints

checkltemDefinitionSpecialization

OMG Systems Modeling Language (SysML) v2.0, Beta 1

271

An ItemDefinition must directly or indirectly specialize the Systems Library Model ItemDefinition
Items::Item.

specializesFromLibrary ('Items::Item')
8.3.10.3 IltemUsage
Description

An ItemUsage is a ItemUsage whose definition isa Structure. Nominally, if the definition is an
ItemDefinition, an ItemUsage is a ItemUsage of that ITtemDefinition within a system. However, other
kinds of Kernel Structures are also allowed, to permit use of Structures from the Kernel Model Libraries.

General Classes

OccurrenceUsage

Attributes

/itemDefinition : Structure [0..*] {subsets occurrenceDefinition, ordered}

The Structures that are the definitions of this ltemUsage. Nominally, these are ItemDefinitions, but other kinds
of Kernel Structures are also allowed, to permit use of Structures from the Kernel Library.

Operations

None.

Constraints

checkltemUsageSpecialization

An ItemUsage must directly or indirectly specialize the Systems Model Library ITtemUsage items.
specializesFromLibrary('Items::items"')

checkltemUsageSubitemSpecialization

isComposite and owningType <> null and
(owningType.oclIsKindOf (ItemDefinition) or
owningType.oclIsKindOf (ItemUsage)) implies
specializesFromLibrary ('Items::Item: :subitem')
deriveltemUsageltemDefinition

The itembefinitions of an ItemUsage are those occurrenceDefinitions that are ITtemDefinitions.

itemDefinition = occurrenceDefinition->selectByKind (ItemDefinition)

8.3.11 Parts Abstract Syntax

272 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.11.1 Overview

: - +/partOwningUsage
@ +/partOwningDefinition Usage P gvsag
0.1 0.1

{subsets itemOwningDefinition} {subsets itemOwningUsage}

| OccurrenceDefinition | OccurrenceUsage
AN
ItemDefinition ItemUsage

+/ownedPart
0.* PartUsage
{subsets ownedltem, ordered} +/nestedPart
0..*
- +/partDefinition +/definedPart
PartDefinition g " {subsets nesteditem,
0.. 0.. ordered}
{subsets itemDefinition, {subsets definedltem}
ordered}

Figure 15. Part Definition and Usage
8.3.11.2 PartDefinition

Description

A PartDefinitionisan ItemDefinition of a Class of systems or parts of systems. Note that all parts may be
considered items for certain purposes, but not all items are parts that can perform actions within a system.

General Classes

ItemDefinition

Attributes

None.

Operations

None.

Constraints
checkPartDefinitionSpecialization

A PartDefinition must directly or indirectly specialize the base PartDefinition Parts: :Part from the
Systems Model Library.

specializesFromLibrary ('Parts::Part')
8.3.11.3 PartUsage

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 273

A PartUsage is a usage of a PartDefinition to represent a system or a part of a system. At least one of the
itemDefinitions of the PartUsage must be a PartDefinition

A PartUsage must subset, directly or indirectly, the base PartUsage parts from the Systems Model Library.
General Classes

ItemUsage

Attributes

/partDefinition : PartDefinition [0..*] {subsets itemDefinition, ordered}

The itemDefinitions of this PartUsage that are PartDefinitions.

Operations

None.

Constraints

checkPartUsageA ctorSpecialization

If a PartUsage is owned via an ActorMembership, then it must directly or indirectly specialize either
Requirements::RequirementCheck: :actors (if its owningType is @ RequirementDefinition or
RequirementUsage Or Cases: :Case: :actors (otherwise).
owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf (ActorMembership) implies
if owningType.oclIsKindOf (RequirementDefinition) or
owningType.oclIsKindOf (RequirementUsage)

then specializesFromLibrary ('Requirements::RequirementCheck::actors')
else specializesFromLibrary('Cases::Case::actors')

checkPartUsageSpecialization

A PartUsage must directly or indirectly specialize the PartUsage Parts: :parts from the Systems Model
Library.

specializesFromLibrary ('Parts::parts')
checkPartUsageStakeholderSpecialization

If a PartUsage is owned via a StakeholderMembership, then it must directly or indirectly specialize either
Requirements::RequirementCheck: :stakeholders.

owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf (StakeholderMembership) implies
specializesFromLibrary ('Requirements: :RequirementCheck: :stakeholders"')

checkPartUsageSubpartSpecialization

A composite PartUsage whose owningType isa ItemDefinition or ItemUsage must directly or indirectly
specialize the PartUsage Items: :Item: :subparts from the Systems Model Library.

274 OMG Systems Modeling Language (SysML) v2.0 Beta 1

isComposite and owningType <> null an
(owningType.oclIsKindOf (ItemDefinitio
owningType.oclIsKindOf (ItemUsage)) i

d
n) or
mplies

specializesFromLibrary('Items::Item: :subparts')

derivePartUsagePartDefinition

The partDefinitions of an PartUsage are those itemDefinitions that are PartDefinitions.

itemDefinition->selectByKind (PartDefinition)

validatePartUsagePartDefinition

At least one of the itemDefinitions of a PartUsage must be a PartDefinition.

partDefinition->notEmpty ()

8.3.12 Ports Abstract Syntax
8.3.12.1 Overview
+/portOwningDefinition

0..1
{subsets owningDefinition}

Definition

| OccurrenceDefinition |

Usage

+/portOwningUsage

0..1
{redefines owningUsage}

OccurrenceUsage

AN
PortDefinition +ownedPort
0.*
{subsets ownedUsage, ordered}
+/portDefinition +/definedPort
0..* 0.*
{redefines occurrenceDefinition, {subsets definedOccurrence}
ordered}

V

Figure 16. Port Definition and Usage

OMG Systems Modeling Language (SysML) v2.0, Beta 1

PortUsage

+/nestedPort

0.*

{subsets nestedUsage,
ordered}

275

FeatureTyping Conjugation

{redefines originalType}
+/porlDefinilion_| PortDefinit 1 +originalPortDefinition
(o] efinition

1 [

AN

1 | +/originalPortDefinition
{redefines owningNamespace}

{subsets targetRelationship} {subsets conjugation}
0..*| +/conjugatedPortTyping +portConjugation| 0..1

ConjugatedPortTyping PortConjugation

+typingByConjugatedPort| 0..*

. +/ownedPortConjugator| 1
{subsets typingByType} {subsets ownedMember} {redefines ownedConjugator}
0..1| +/conjugatedPortDefinition

+conjugatedPortDefinition ConjugatedPortDefinition +/conjugatedPortDefinition
1 +effectiveName() : String [0..1]{redefines effectiveName}| 1
{redefines type} {redefines owningType}

Figure 17. Port Conjugation
8.3.12.2 ConjugatedPortDefinition

Description

A ConjugatedPortDefinitionisa PortDefinition thatisa PortDefinition of its original
PortDefinition. Thatis, a ConjugatedPortDefinition inherits all the features of the original
PortDefinition, but input flows of the original PortDefinition become outputs on the
ConjugatedPortDefinition and output £lows of the original PortDefinition become inputs on the
ConjugatedPortDefinition. Every PortDefinition (thatis notitself a ConjugatedPortDefinition) has
exactly one corresponding ConjugatedPortDefinition, whose effective name is the name of the
originalPortDefinition, with the character ~ prepended.

General Classes

PortDefinition

Attributes

/originalPortDefinition : PortDefinition {redefines owningNamespace}

The original PortDefinition for this ConjugatedPortDefinition, which is the owningNamespace of the
ConjugatedPortDefinition.

/ownedPortConjugator : PortConjugation {redefines ownedConjugator}

The PortConjugation that is the ownedConjugator of this ConjugatedPortDefinition, linking it to its
originalPortDefinition.

Operations
effectiveName() : String [0..1] {redefines effectiveName}
If the name of the originalPortDefinition is non-empty, then return that with the character ~ prepended.

body: let originalName : String = originalPortDefinition.name in
if originalName = null then null

276 OMG Systems Modeling Language (SysML) v2.0 Beta 1

else '~' + originalName
endif

Constraints

validateConjugatedPortDefinitionConjugatedPortDefinition[sEmpty

A ConjugatedPortDefinition must notitself have a conjugatedPortDefinition.
conjugatedPortDefinition = null
validateConjugatedPortDefinitionOriginalPortDefinition

The originalPortDefinition of the ownedPortConjugator of a ConjugatedPortDefinition must be the
originalPortDefinition of the ConjugatedPortDefinition.

ownedPortConjugator.originalPortDefinition = originalPortDefinition
8.3.12.3 ConjugatedPortTyping
Description

A ConjugatedPortTyping iS a FeatureTyping whose type is a ConjugatedPortDefinition. (This
relationship is intended to be an abstract-syntax marker for a special surface notation for conjugated typing of ports.)

General Classes

FeatureTyping

Attributes

conjugatedPortDefinition : ConjugatedPortDefinition {redefines type}

The type of this ConjugatedPortTyping considered as a FeatureTyping, which must be a
ConjugatedPortDefinition.

/portDefinition : PortDefinition

The originalPortDefinition of the conjugatedPortDefinition of this ConjugatedPortTyping.
Operations

None.

Constraints

deriveConjugatedPortTypingPortDefinition

The portDefinition of a ConjugatedPortTyping is the originalPortDefinition of the
conjugatedPortDefinition of the ConjugatedPortTyping.

portDefinition = conjugatedPortDefinition.originalPortDefinition
8.3.12.4 PortConjugation

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 277

A PortConjugationisaConjugation Relationship between a PortDefinition and its corresponding
ConjugatedPortDefinition. As aresult of this Relationship, the ConjugatedPortDefinition inherits all
the features of the original PortDefinition, but input £1lows of the original PortDefinition become
outputs on the ConjugatedPortDefinition and output £lows of the original PortDefinition become inputs
on the ConjugatedPortDefinition.

General Classes

Conjugation

Attributes

/conjugatedPortDefinition : ConjugatedPortDefinition {redefines owningType}

The ConjugatedPortDefinition that is conjugate to the originalPortDefinition.

originalPortDefinition : PortDefinition {redefines originalType}

The PortDefinition being conjugated.

Operations

None.

Constraints

None.

8.3.12.5 PortDefinition

Description

A PortDefinition defines a point at which external entities can connect to and interact with a system or part of a
system. Any ownedUsages of a PortDefinition, other than PortUsages, must not be composite.

General Classes

OccurrenceDefinition
Structure

Attributes

/conjugatedPortDefinition : ConjugatedPortDefinition [0..1] {subsets ownedMember}
The that is conjugate to this PortDefinition.

Operations

None.

Constraints

checkPortDefinitionSpecialization

278 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A PortDefinition must directly or indirectly specialize the PortDefinition Ports: : Port from the Systems
Model Library.

specializesFromLibrary ('Ports::Port')
derivePortDefinitionConjugatedPortDefinition

The conjugatedPortDefinition of a PortDefinition is the ownedMember thatis a
ConjugatedPortDefinition.

conjugatedPortDefinition =

let conjugatedPortDefinitions : OrderedSet (ConjugatedPortDefinition) =
ownedMember->selectByKind (ConjugatedPortDefinition) in

if conjugatedPortDefinitions->isEmpty () then null

else conjugatedPortDefinitions->first ()

endif

validatePortDefinitionConjugatedPortDefinition

Unless it is a ConjugatedPortDefinition, a PortDefinition must have exactly one ownedMember that is a
ConjugatedPortDefinition.

not oclIsKindOf (ConjugatedPortDefinition) implies
ownedMember->
selectByKind (ConjugatedPortDefinition) ->
size() =1
validatePortDefinitionOwnedUsagesNotComposite

The ownedUsages of a PortDefinition that are not PortUsages must not be composite.

ownedUsage—>
reject (oclIsKindOf (PortUsage)) ->
forAll (not isComposite)

8.3.12.6 PortUsage
Description

A PortUsage is ausage of a PortDefinition. A PortUsage itself as well as all its nestedUsages must be
referential (non-composite).

General Classes

OccurrenceUsage

Attributes

/portDefinition : PortDefinition [0..*] {redefines occurrenceDefinition, ordered}

The occurrenceDefinitions of this PortUsage, which must all be PortDefinitions.
Operations

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 279

Constraints
checkPortUsageSpecialization

A PortUsage must directly or indirectly specialize the PortUsage Ports: :ports from the Systems Model
Library.

specializesFromLibrary ('Ports::ports')
checkPortUsageSubportSpecialization

AlmnquﬁePortUsage\NﬁhanowningTypethMisaPortDefinitionOrPortUsagennwtthCﬂyor
indirectly specialize the PortUsage Ports: :Port: : subports from the Systems Model Library.

isComposite and owningType <> null and
(owningType.oclIsKindOf (PortDefinition) or

owningType.oclIsKindOf (PortUsage)) implies
specializesFromLibrary ('Ports: :Port: :subports')

validatePortUsagelsReference

Unless a PortUsage has an owningType that is a PortDefinition or a PortUsage, it must be referential (non-
composite).

owningType = null or

not owningType.oclIsKindOf (PortDefinition) and

not owningType.oclIsKindOf (PortUsage) implies
isReference

validatePortUsageNestedUsagesNotComposite
The nestedUsages of a PortUsage that are not themselves PortUsages must not be composite.
nestedUsage->

reject (oclIsKindOf (PortUsage)) ->

forAll (not isComposite)

8.3.13 Connections Abstract Syntax

280 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.13.1 Overview

Usage Connector
ConnectorAsUsage
BindingConnectorAsUsage SuccessionAsUsage
AV
BindingConnector Succession
Figure 18. Connectors as Usages
+/connectionOwningDefinitiol — +/connectionEn(L,—| +/connectionOwningUsage
0..1 ~ 0.* 0.1
{subsets {redefines associationEnd, {subsets partOwningUsage}
partOwningDefinition} ordered}
OccurrenceDefinition
JAN
ItemDefinition
JAN
PartDefinition PartUsage
JAN
ConnectionDefinition ConnectionUsage
+/connectionDefinitionWithEnd
0.*) .
- . +/definedConnection|
{redefines associationWithEnd}
0.*
{subsets typedConnector,
ordered}
+/connectionDefinition
AssociationStructure
0.
{subsets itemDefinition,
redefines association,
ordered} +/ownedConnection +/nestedConnection

C AsUsage

{subsets ownedPart,
ordered}

Figure 19. Connection Definition and Usage

OMG Systems Modeling Language (SysML) v2.0, Beta 1

o L " o

{subsets nestedPart,
ordered}

281

+/flowOwningDefinition
0.1
{subsets connectionOwningDefinition}

+/flowOwningUsage
0.1

{subsets
connectionOwningUsage}

OccurrenceUsage

ItemUsage

PartDefinition

PartUsage
JAN

ActionDefinition | |ConnectionDefinition | ActionUsage ConnectionUsage

i

FlowConnectionDefinition

+/nestedFlow
0.
{subsets nestedConnection}

ItemFlow
A

+/ownedFlow | FlowConnectionUsage
0.*
{subsets ownedConnection}

+/flowConnectionDefinition +/definedFlowConnection|
0.* 0.*

{redefines actionDefinition, {redefines definedConnection}
redefines connectionDefinition,
redefines interaction, ordered}

Interaction

Usage |

St ionltemFlow

Figure 20. Flow Connections

8.3.13.2 BindingConnectorAsUsage

Description

A BindingConnectorAsUsage is both a BindingConnector and a ConnectorAsUsage.
General Classes

BindingConnector
ConnectorAsUsage

Attributes

None.

Operations

None.

Constraints

None.

8.3.13.3 ConnectionDefinition
Description

A ConnectionDefinitionis a PartDefinition thatis also an AssociationStructure. The end Features
of a ConnectionDefinition must be Usages.

General Classes

PartDefinition

282 OMG Systems Modeling Language (SysML) v2.0 Beta 1

AssociationStructure

Attributes

/connectionEnd : Usage [0..*] {redefines associationEnd, ordered}

The Usages that define the things related by the ConnectionDefinition.
Operations

None.

Constraints

checkConnectionDefinitionBinarySpecialization

A binary ConnectionDefinition must directly or indirectly specialize the ConnectionDefinition
Connections: :BinaryConnection from the Systems Model Library.

ownedEndFeature->size () = 2 implies
specializesFromLibrary ('Connections: :BinaryConnections"')

checkConnectionDefinitionSpecializations

A ConnectionDefinition must directly or indirectly specialize the ConnectionDefinition
Connections: :Connection from the Systems Model Library.

specializesFromLibrary ('Connections::Connection')
8.3.13.4 ConnectionUsage
Description

A ConnectionUsage is a ConnectorAsUsage that is also a PartUsage. Nominally, if its type is a
ConnectionDefinition, then a ConnectionUsage is a Usage of that ConnectionDefinition, representing a
connection between parts of a system. However, other kinds of kernel AssociationStructures are also allowed,
to permit use of AssociationStructures from the Kernel Model Libraries.

General Classes

ConnectorAsUsage
PartUsage

Attributes

/connectionDefinition : AssociationStructure [0..*] {subsets itemDefinition, redefines association, ordered}

The AssociationStructures that are the types of this ConnectionUsage. Nominally, these are , but other
kinds of Kernel AssociationStructures are also allowed, to permit use of AssociationStructures from the
Kernel Model Libraries

Operations

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 283

Constraints
checkConnectionUsageBinarySpecialization

A binary ConnectionUsage must directly or indirectly specialize the ConnectionUsage
Connections: :binaryConnections from the Systems Model Library.

ownedEndFeature->size () = 2 implies
specializesFromLibrary ('Connections: :binaryConnections"')

checkConnectionUsageSpecialization

A ConnectionUsage must directly or indirectly specialize the ConnectionUsage
Connections: :connections from the Systems Model Library.

specializesFromLibrary ('Connections: :connections’')
8.3.13.5 ConnectorAsUsage
Description

A ConnectorAsUsage is both a Connector and a Usage. ConnectorAsUsage cannot itself be instantiated in a
SysML model, but it is the base class for the concrete classes BindingConnectorAsUsage, SuccessionAsUsage
and ConnectionUsage.

General Classes

Usage
Connector

Attributes

None.

Operations

None.

Constraints

None.

8.3.13.6 FlowConnectionDefinition
Description

A FlowConnectionDefinition is a ConnectionDefinition and ActionDefinition that is also an
Interaction representing flows between Usages.

General Classes
ActionDefinition

ConnectionDefinition
Interaction

284 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Attributes

None.

Operations

None.

Constraints
checkFlowConnectionDefinitionSpecialization

A FlowConnectionDefinition must directly or indirectly specialize the base FlowConnectionDefinition
MessageConnectionDefinition from the Systems Model Library.

specializesFromLibrary ('Connections: :MessageConnection')
8.3.13.7 FlowConnectionUsage

Description

A FlowConnectionUsage is a ConnectionUsage thatis also an ItemFlow.
General Classes

ConnectionUsage
ItemFlow
ActionUsage

Attributes

/flowConnectionDefinition : Interaction [0..*] {redefines actionDefinition, connectionDefinition, interaction,
ordered}

The Interactions that are the types of this FlowConnectionUsage. Nominally, these are
FlowConnectionDefinitions, but other kinds of Kernel Interactions are also allowed, to permit use of
Interactions from the Kernel Model Libraries.

Operations

None.

Constraints
checkFlowConnectionUsageSpecialization

If a FlowConnectionUsage has no ownedEndFeatures, then it must directly or indirectly specialize the base
FlowConnectionUsage Connections: :messageConnections from the Systems Library model. Otherwise, it
must directly or indirectly specialize the FlowConnectionUsage Connections: :flowConnections.

if ownedEndFeatures->isEmpty () then
specializesFromLibrary ('Connections: :messageConnections"')
else
specializesFromLibrary ('Connections::flowConnections"')
endif

OMG Systems Modeling Language (SysML) v2.0, Beta 1 285

8.3.13.8 SuccessionAsUsage

Description

A SuccessionAsUsage is both a ConnectorAsUsage and a Succession.
General Classes

Succession
ConnectorAsUsage

Attributes

None.

Operations

None.

Constraints

None.

8.3.13.9 SuccessionFlowConnectionUsage

Description

A SuccessionFlowConnectionUsage is @ FlowConnectionUsage thatis also a SuccessionItemFlow.
General Classes

SuccessionltemFlow
FlowConnectionUsage

Attributes

None.

Operations

None.

Constraints
checkSuccessionFlowConnectionUsageSpecialization

A SuccessionFlowConnectionUsage must directly or indirectly specialize the base FlowConnectionUsage
Connections: :successionFlowConnections from the Systems Library model.

specializesFromLibrary ('Connections: :successionFlowConnections')

8.3.14 Interfaces Abstract Syntax

286 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.14.1 Overview

| Definition

| +/interfaceOwningDefinition

[0.1

AN

{subsets
connectionOwningDefinition}

| OccurrenceDefinition

AN

| ItemDefinition

T

| PartDefinition

I

ConnectionDefinition

InterfaceDefinition

+/interfaceDefinition

| Usage |
+/interfaceOwningUsage|0..1 a
{subsets
connectionOwningUsage}
OccurrenceUsage
ItemUsage

PartUsage

ConnectionUsage
JA

+/nestedInterface|0..*

{subsets nestedConnection,
ordered}

+/ownedInterface

0..*
{subsets ownedConnection, ordered}

InterfaceUsage

+/definedInterface

0.*

+/interfaceDefinitionWithEnd

{redefines connectionDefinition}

0.*
{subsets definedConnection}

0..*

{subsets connectionDefinitionWithEnd}

Figure 21. Interface Definition and Usage

8.3.14.2 InterfaceDefinition

Description

+/interfaceEnd T
,.l PortUsage
0..*

{redefines connectionEnd,
ordered}

An InterfaceDefinition is a ConnectionDefinition all of whose ends are PortUsages, defining an
interface between elements that interact through such ports.

General Classes

ConnectionDefinition

Attributes

/interfaceEnd : PortUsage [0..*] {redefines connectionEnd, ordered}

The PortUsages that are the connectionEnds of this InterfaceDefinition.

Operations
None.

Constraints

OMG Systems Modeling Language (SysML) v2.0, Beta 1

287

checklInterfaceDefinitionBinarySpecialization

A binary InterfaceDefinition must directly or indirectly specialize the InterfaceDefinition
Interfaces: :BinaryInterface from the Systems Model Library.

ownedEndFeature->size () = 2 implies
specializesFromLibrary ('Interfaces::BinaryInterface')

checklInterfaceDefinitionSpecialization

An InterfaceDefinition must directly or indirectly specialize the InterfaceDefinition
Interfaces: :Interface from the Systems Model Library.

specializesFromLibrary ('Interfaces::Interface')
8.3.14.3 InterfaceUsage
Description

An InterfaceUsage is a Usage of an InterfaceDefinition to represent an interface connecting parts of a
system through specific ports.

General Classes

ConnectionUsage

Attributes

/interfaceDefinition : InterfaceDefinition [0..*] {redefines connectionDefinition}
The InterfaceDefinitions that type this InterfaceUsage.

Operations

None.

Constraints

checkInterfaceUsageBinarySpecialization

A binary InterfaceUsage must directly or indirectly specialize the InterfaceUsage
Interfaces: :binaryInterrfaces from the Systems Model Library.

ownedEndFeature->size () = 2 implies
specializesFromLibrary ('Interfaces::binaryInterfaces')

checkInterfaceUsageSpecialization

An InterfaceUsage must directly or indirectly specialize the InterfaceUsage Interfaces::interfaces
from the Systems Model Library.

specializesFromLibrary ('Interfaces::interfaces')

8.3.15 Allocations Abstract Syntax

288 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.15.1 Overview

1 +/allocationOwningUsage

| Definition | +allocationOwningDefinition | Usage
i 0.1
N 0..1 7~
{subsets
{subsets connectionOwningUsage}
connectionOwningDefinition} g-sag
| OccurrenceDefinition | | OccurrenceUsage |
A AN
| ItemDefinition | | ItemUsage |
A AN
| PartDefinition | | PartUsage |
A AN
|ConnectionDefinition | | ConnectionUsage |
AN AN
AllocationDefinition +lownedAllocation -
0. AllocationUsage
{subsets ownedConnection, ordered}
+/featuringAllocationDefinition +/allocation +/nestedAllocation
0.* 0..* 0.*
{subsets featuringDefinition} {subsets usage, ordered} {subsets nestedConnection,
+/allocationDefinition +/definedAllocation ordered}
0..* 0.*
{redefines connectionDefinition, {subsets definedConnection}
ordered}

Figure 22. Allocation Definition and Usage
8.3.15.2 AllocationDefinition

Description

AnAllocationDefinitionisa ConnectionDefinition that specifies that some or all of the responsibility to
realize the intent of the source is allocated to the target instances. Such allocations define mappings across the
various structures and hierarchies of a system model, perhaps as a precursor to more rigorous specifications and
implementations. An AllocationDefinition can itself be refined using nested allocations that give a finer-
grained decomposition of the containing allocation mapping.

General Classes

ConnectionDefinition

Attributes

/allocation : AllocationUsage [0..*] {subsets usage, ordered}

The AllocationUsages that refine the allocation mapping defined by this AllocationDefinition.

Operations

OMG Systems Modeling Language (SysML) v2.0, Beta 1 289

None.
Constraints
checkAllocationDefinitionSpecialization

AnAllocationDefinition must directly or indirectly specialize the AllocationDefinition
Allocations::Allocation from the Systems Model Library.

specializesFromLibrary ('Allocations::Allocation')
deriveAllocationDefinitionAllocation

The allocations of an AllocationDefinition are all its usages that are AllocationUsages.
allocation = usage->selectAsKind (AllocationUsage)

8.3.15.3 AllocationUsage

Description

An AllocationUsage is ausage of an AllocationDefinition asserting the allocation of the source feature to
the target feature.

General Classes

ConnectionUsage

Attributes

/allocationDefinition : AllocationDefinition [0..*] {redefines connectionDefinition, ordered}
The AllocationDefinitions that are the types of this AllocationUsage.

Operations

None.

Constraints

checkAllocationUsageSpecialization

An AllocationUsage must directly or indirectly specialize the AllocationUsage
Allocations::allocations from the Systems Model Library.

specializesFromLibrary('Allocations::allocations')

8.3.16 Actions Abstract Syntax

290 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.16.1 Overview

Definition

+/actionOwningDefinition

{subsets
occurrenceOwningDefinition}

OccurrenceDefinition

+/ownedAction

+/actionOwningUsage
0..1

{subsets
occurrenceOwningUsage}

OccurrenceUsage

Usage

0.

ActionUsage

{subsets ownedOccurrence,
ordered}

ActionDefinition [*/featuringActionDefinition

+inputParameters() : Feature [0..*]
+inputParameter(i : Integer) : Feature [0..1]

+argument(i : Integer) : Expression [0..1] +/nestedAction
+isSubactionUsage() : Boolean 0.”
{subsets nestedOccurrence,
ordered}

+/action
0.* 0.*
{subsets featuringBehavior, {subsets step, subsets usage,
subsets featuringDefinition} ordered} . X
+/definedAction
0.

subsets typedStep}

Behavior +/actionDefinition
FO..‘

{redefines behavior, redefines
occurrenceDefinition, ordered}

Figure 23. Action Definition and Usage

ActionUsage

ControlNode

{subsets definedOccurrence,

MergeNode

DecisionNode

JoinNode

ForkNode

Figure 24. Control Nodes

EventOccurrenceUsage

+/performedAction

ActionUsage

{redefines eventOccurrence}

PerformActionUsage

+/performingAction

+namingFeature() : Feature [0..1[{redefines namingFeature}(0..*

Figure 25. Performed Actions

OMG Systems Modeling Language (SysML) v2.0, Beta 1

{subsets
referencingOccurrence}

291

ActionUsage
L\

+/owningAcceptActionUsage

+/sendingActionUsage - -
SendActionUsage AcceptActionUsage
0.1
+isTriggerAction() : Boolean 0.1

+/senderActionUsage |0..1 0..1 | +/sendActionUsage {subsets
+/acceptActionUsage|0..1 +/acceptingActionUsage|0..1 referenceOwningUsage}

{subsets nestedReference,
subsets parameter}

+/payloadParameter| 1

+/senderArgument|0..1 0..1}, +/receiverArgument
- +/receiverArgument
Expression ReferenceUsage
+/payloadArgument 0..1
1 +/payloadArgument
0.1

InvocationExpression

«enumerationy|
TriggerKind
TriggerinvocationExpression \;vthen
+kind : TriggerKind after
Figure 26. Send and Accept Actions
ActionUsage
AN
i i +/assignment +/referent
+assignmentAction AssignmentActionUsage 9 .| Feature
0.1 L— . 0.x 1
+assigningAction| 0..1 {subsets namespace} {subsets member}

A_valueExpression_assigningAction

+/valueExpression | 0.1

+/targetArgument o
>{ Expression
0..1

Figure 27. Assignment Actions

292 OMG Systems Modeling Language (SysML) v2.0 Beta 1

+/thenAction
1

+/elseAction
0..1

ActionUsage
+/bodyAction

1

+/ifElseAction|0..1

+/ifThenAction - - +/loopAction
IfActionUsage LoopActionUsage
0.1 0.1

+/ifAction|0..1

. N - +/forLoopAction
|Wh|IeLoopActlonUsage ForLoopActionUsage |7
0..1

+/whileLoopAction|0..1 0..1| +/untilLoopAction +/forLoopAction|0..1

+/ifArgument] 1

+/whileArgument +/loopVariable]

1
ReferenceUsage

+/untilArgument
0.1

-

Expression

+/seqArgument

1

Figure 28. Structured Control Actions

8.3.16.2 AcceptActionUsage
Description

An AcceptActionUsage is an ActionUsage that specifies the acceptance of an incomingTransfer from the
Occurrence given by the result of its receiverArgument Expression. (If no receiverArgument is provided,
the default is the this context of the AcceptActionUsage.) The payload of the accepted Transfer is output on its
payloadParameter. Which Transfers may be accepted is determined by conformance to the typing and
(potentially) binding of the payloadParameter.

General Classes

ActionUsage

Attributes

/payloadArgument : Expression [0..1]

An Expression whose result is bound to the payload parameter of this AcceptActionUsage. If provided,
the AcceptActionUsage will only accept a Trans fer with exactly this payload.

/payloadParameter : ReferenceUsage {subsets nestedReference, parameter}

The nestedReference of this AcceptActionUsage that redefines the payload output parameter of the base
AcceptActionUsage AcceptAction from the Systems Model Library.

/receiverArgument : Expression [0..1]

OMG Systems Modeling Language (SysML) v2.0, Beta 1 293

An Expression whose result is bound to the receiver input parameter of this AcceptActionUsage.
Operations

isTriggerAction() : Boolean

Check if this AcceptActionUsage is the triggerAction of a TransitionUsage.

body: owningType <> null and

owningType.oclIsKindOf (TransitionUsage) and

owningType.oclAsType (TransitionUsage) .triggerAction->includes (self)

Constraints

checkAcceptActionUsageReceiverBindingConnector

If the payloadArgument of an AcceptActionUsage isa TriggerInvocationExpression, then the
AcceptActionusage must have an ownedFeature that is a BindingConnector between its receiver
parameter and the receiver parameter of the TriggerInvocationExpression.

payloadArgument <> null and
payloadArgument.oclIsKindOf (TriggerInvocationExpression) implies
let invocation : Expression =
payloadArgument.oclAsType (Expression) in

parameter->size () >= 2 and

invocation.parameter->size () >= 2 and

ownedFeature->selectByKind (BindingConnector)->exists (b |
b.relatedFeatures->includes (parameter->at (2)) and

b.relatedFeatures->includes (invocation.parameter->at (2)))
checkAcceptActionUsageSpecialization

An AcceptActionUsage that is not the triggerAction of a TransitionUsage must directly or indirectly
specialize the ActionUsage Actions: :acceptActions from the Systems Model Library.

not isTriggerAction() implies
specializesFromLibrary ('Actions::acceptActions')

checkAcceptActionUsageSubactionSpecialization

A composite AcceptActionUsage that is a subaction usage, but is not the triggerAction of a
TransitionUsage, must directly or indirectly specialize the ActionUsage
Actions::Action::acceptSubactions from the Systems Model Library.

isSubactionUsage () and not isTriggerAction() implies
specializesFromLibrary ('Actions::Action::acceptSubactions')

checkAcceptActionUsageTriggerActionSpecialization

An AcceptActionUsage thatis the triggerAction of TransitionUsage must directly or indirectly specialize
the ActionUsage Actions::TransitionAction: :accepter from the Systems Model Library.

isTriggerAction () implies
specializesFromLibrary ('Actions::TransitionAction: :accepter')

deriveAcceptActionUsagePayload Argument

294 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The payloadArgument of an AcceptUsageAction is its first argument Expression.
payloadArgument = argument (1)
deriveAcceptActionUsagePayloadParameter

The payloadParameter of an AcceptActionUsage is its first parameter.

payloadParameter =
if parameter->isEmpty() then null
else parameter->first() endif

deriveAcceptActionUsageReceiverArgument

The receiverArgument of an AcceptUsageAction is its second argument Expression.
receiverArgument = argument (2)

validateAcceptActionUsageParameters

An AcceptUsageAction must have at least two input parameters, corresponding to its payload and receiver,
respectively (even if they have no FeatureValue). (Note that the payloadParameter is an input as well as an
output.)

inputParameters () ->size () >= 2
8.3.16.3 ActionDefinition
Description

An ActionDefinition isa Definition thatis also a Behavior that defines an Action performed by a system
or part of a system.

General Classes

OccurrenceDefinition
Behavior

Attributes
/action : ActionUsage [0..*] {subsets step, usage, ordered}

The ActionUsages that are steps in this ActionDefinition, which define the actions that specify the behavior
of the ActionDefinition.

Operations

None.

Constraints
checkActionDefinitionSpecialization

An ActionDefinition must directly or indirectly specialize the ActionDefinition Actions: :Action from
the Systems Model Library.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 295

specializesFromLibrary ('Actions::Action')

deriveActionDefinitionAction

The actions of a ActionDefinition are those of its usages that are ActionUsages.

action = usage->selectByKind (ActionUsage)

8.3.16.4 ActionUsage

Description

An ActionUsage is a Usage that is also a Step, and, so, is typed by a Behavior. Nominally, if the type is an
ActionDefinition, an ActionUsage is a Usage of that ActionDefinition within a system. However, other
kinds of kernel Behaviors are also allowed, to permit use of Behaviors from the Kernel Model Libraries.

General Classes

OccurrenceUsage
Step

Attributes
/actionDefinition : Behavior [0..*] {redefines behavior, occurrenceDefinition, ordered}

The Behaviors that are the types of this ActionUsage. Nominally, these would be ActionDefinitions, but
other kinds of Kernel Behaviors are also allowed, to permit use of Behaviors from the Kernel Model Libraries.

Operations
argument(i : Integer) : Expression [0..1]
Return the i-th argument Expression of an ActionUsage, defined as the value Expression of the

FeatureValue of the i-th owned input parameter of the ActionUsage. Return null if the ActionUsage has
less than i owned input parameters or the i-th owned input parameter has no Featurevalue.

body: if inputParameter (i) = null then null
else
let featureValue : Sequence (FeatureValue) = inputParameter(i).
ownedMembership->select (oclIsKindOf (FeatureValue)) in

if featureValue->isEmpty () then null
else featureValue->at(l) .value
endif

endif

inputParameter(i : Integer) : Feature [0..1]

Return the i-th owned input parameter of the ActionUsage. Return null if the ActionUsage has less than i
owned input parameters.

body: if inputParameters()->size() < i then null
else inputParameters()->at (i)
endif

inputParameters() : Feature [0..*]

296 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Return the owned input parameters of this ActionUsage.
body: input->select(f | f.owner = self)
isSubactionUsage() : Boolean

Check if this ActionUsage is composite and has an owningType that is an ActionDefinition or ActionUsage
but is not the entryAction or exitAction ofa StateDefinition or StateUsage. If so, then it represents an
Actionthatis a subaction of another Action.

body: isComposite and owningType <> null and
(owningType.oclIsKindOf (ActionDefinition) or
owningType.oclIsKindOf (ActionUsage)) and
(owningFeatureMembership.oclIsKindOf (StateSubactionMembership) implies
owningFeatureMembership.oclAsType (StateSubactionMembership) .kind =
StateSubactionKind: :do)

Constraints
checkActionUsageAnalysisActionSpecialization

An ActionUsage thatis an analysisAction of an AnalysisCaseDefinition or and AnalysisCaseUsage
must directly or indirectly specialize the ActionUsage AnalysisCases::AnalysisCase::analysisSteps
from the Systems Model Library.

owningType <> null and
(owningType.oclIsKindOf (AnalysisCaseDefinition) and
owningType.oclAsType (AnalysisCaseDefinition) .analysisAction->
includes (self) or
owningType.oclIsKindOf (AnalysisCaseUsage) and
owningType.oclAsType (AnalysisCaseUsage) .analysisAction->
includes (self)) implies
specializesFromLibrary ('AnalysisCases::AnalysisCase::analysisSteps')

checkActionUsageOwnedActionSpecialization

A composite ActionUsage whose owningType is PartDefinition or PartUsage must directly or indirectly
specialize the ActionUsage Parts: :Part::ownedActions from the Systems Model Library.

isComposite and owningType <> null and
(owningType.oclIsKindOf (PartDefinition) or
owningType.oclIsKindOf (PartUsage)) implies
specializesFromLibrary ('Parts::Part::ownedActions')

checkActionUsageSpecialization

An ActionUsage must directly or indirectly specialize the ActionUsage Actions: :actions from the Systems
Model Library.

specializesFromLibrary ('Actions::actions')
checkActionUsageStateActionRedefinition
An ActionUsage that is the entry, do, or exit Actionofa StateDefinition or StateUsage must redefine

the entryAction, doAction, or exitAction feature, respectively, of the StateDefinition
States::StateAction from the Systems Model Library.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 297

owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf (StateSubactionMembership) implies
let kind : StateSubactionKind =
owningFeatureMembership.oclAsType (StateSubactionMembership) .kind in
if kind = StateSubactionKind::entry then
redefinesFromLibrary ('States::StateAction::entryAction')
else if kind = StateSubactionKind::do then
redefinesFromLibrary ('States::StateAction::doAction')
else
redefinesFromLibrary ('States::StateAction::exitAction')
endif endif

checkActionUsageSubactionSpecialization

A composite ActionUsage that is a subaction usage must directly or indirectly specialize the ActionUsage
Actions::Action: :subactions from the Systems Model Library.

isSubactionUsage () implies
specializesFromLibrary ('Actions::Action::subactions')

8.3.16.5 AssignmentActionUsage
Description

An AssignmentActionUsage is an ActionUsage that is defined, directly or indirectly, by the
ActionDefinition AssignmentAction from the Systems Model Library. It specifies that the value of the
referent Feature, relative to the target given by the result of the targetArgument Expression, should be set
to the result of the valueExpression.

General Classes

ActionUsage

Attributes

/referent : Feature {subsets member}
The Feature whose value is to be set.
/targetArgument : Expression [0..1]

The Expression whose value is an occurrence in the domain of the referent Feature, for which the value of
the referent will be set to the result of the valueExpression by this AssignmentActionUsage.

/valueExpression : Expression [0..1]

The Expression whose result is to be assigned to the referent Feature.
Operations

None.

Constraints

checkAssignmentActionUsageAccessedFeatureRedefinition

298 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The first ownedFeature of the first ownedFeature of the first parameter of an AssignmentActionUsage
must redefine AssignmentAction: :target::startingAt::accessedFeature

let targetParameter : Feature = inputParameter(l) in
targetParameter <> null and
targetParameter.ownedFeature->notEmpty () and
targetParameter->first () .ownedFeature->notEmpty () and
targetParameter->first () .ownedFeature->first ().

redefines ('AssigmentAction: :target::startingAt::accessedFeature')

checkAssignmentActionUsageReferentRedefinition

The first ownedFeature of the first ownedFeature of the first parameter of an AssignmentActionUsage
must redefine the referent of the AssignmentActionUsage

let targetParameter : Feature = inputParameter(l) in
targetParameter <> null and
targetParameter.ownedFeature->notEmpty () and
targetParameter->first () .ownedFeature->notEmpty () and
targetParameter->first () .ownedFeature->first () .redefines (referent)

checkAssignmentActionUsageSpecialization

An AssignmentActionUsage must directly or indirectly specialize the ActionUsage
Actions::assignmentActions from the Systems Model Library.

specializesFromLibrary ('Actions::assignmentActions')
checkAssignmentActionUsageStartingAtRedefinition

The first ownedFeature of the first parameter of an AssignmentActionUsage must redefine
AssignmentAction: :target::startingAt.

let targetParameter : Feature = inputParameter(l) in
targetParameter <> null and
targetParameter.ownedFeature->notEmpty () and
targetParameter.ownedFeature->first () .

redefines ('AssignmentAction::target::startingAt"')

checkAssignmentActionUsageSubactionSpecialization

A composite AssignmentActionUsage that is a subaction usage must directly or indirectly specialize the
ActionUsage Actions::Action::assignments from the Systems Model Library

isSubactionUsage () implies
specializesFromLibrary ('Actions::Action::assignments')

deriveAssignmentActionUsageReferent

The referent of an AssignmentActionUsage is the first Feature that is the memberElement of a
ownedMembership that is not a FeatureMembership.

referent =
let unownedFeatures : Sequence (Feature) = ownedMembership->
reject (oclIsKindOf (FeatureMembership)) .memberElement->
selectByKind (Feature) in
if unownedFeatures->isEmpty () then null

OMG Systems Modeling Language (SysML) v2.0, Beta 1 299

else unownedFeatures->first () .oclAsType (Feature)
endif

deriveAssignmentActionUsageValueExpression

The valueExpression of a AssignmentActionUsage is its second argument Expression
valueExpression = argument (2)

deriveAssignmentUsageTargetArgument

The targetArgument of a AssignmentActionUsage is its first argument Expression
targetArgument = argument (1)

validateAssignmentActionUsageReferent

An AssignmentActionUsage must have an ownedMembership that is not an OwningMembership and whose
memberElement is a Feature.

ownedMembership->exists (
not oclIsKindOf (OwningMembership) and
memberElement.oclIsKindOf (Feature))
8.3.16.6 ControlNode

Description

A ControlNode is an ActionUsage that does not have any inherent behavior but provides constraints on incoming
and outgoing Successions that are used to control other Actions. A ControlNode must be a composite owned
usage of an ActionDefinition or ActionUsage.

General Classes

ActionUsage

Attributes

None.

Operations

multiplicityHasBounds(mult : Multiplicity, lower : Integer, upper : UnlimitedNatural) : Boolean

Check that the given Multiplicity has lowerBound and upperBound expressions that are model-level
evaluable to the given lower and upper values.

body: mult <> null and
1f mult.oclIsKindOf (MultiplicityRange) then
mult.oclAsType (MultiplicityRange) .hasBounds (lower, upper)
else
mult.allSuperTypes () —>exists(
oclisKindOf (MultiplicityRange) and
oclAsType (MultiplicityRange) .hasBounds (lower, upper)
endif

300 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Constraints

checkControlNodeSpecialization

A ControlNode must directly or indirectly specialize the ActionUsage Actions: :Action: :control from the

Systems Model Library.
specializesFromLibrary ('Action: :Action::controls')
validateControlNodeIncomingSuccessions
All incoming Successions to a ControlNode must have a target multiplicity of 1..1.
targetConnector->selectByKind (Succession) ->

collect (connectorEnd->at (2) .multiplicity)->

forAll (targetMult |

multiplicityHasBounds (targetMult, 1, 1))

validateControlNodeOutgoingSuccessions

All outgoing Successions from a ControlNode must have a source multiplicity of 1..1.

sourceConnector->selectByKind (Succession) ->
collect (connectorEnd->at (1) .multiplicity)->
forAll (sourceMult |
multiplicityHasBounds (sourceMult, 1, 1))

validateControlNodeOwningType

The owningType of a ControlNode must be an ActionDefinition or ActionUsage.

owningType <> null and
(owningType.oclIsKindOf (ActionDefinition) or
owningType.oclIsKindOf (ActionUsage))

8.3.16.7 DecisionNode

Description

A DecisionNode is a ControlNode that makes a selection from its outgoing Successions.
General Classes

ControlNode

Attributes

None.

Operations

None.

Constraints

checkDecisionNodeOutgoingSuccessionSpecialization

OMG Systems Modeling Language (SysML) v2.0, Beta 1

301

All outgoing Successions from a DecisionNode must subset the inherited outgoingHBLink feature of the
DecisionNode.

sourceConnector->selectByKind (Succession) ->
forAll (subsetsChain(self,
resolveGlobal ('ControlPerformances: :MergePerformance: :outgoingHBLink")))

checkDecisionNodeSpecialization

A DecisionNode must directly or indirectly specialize the ActionUsage Actions: :Action: :decisions from
the Systems Model Library.

specializesFromLibrary ('Actions::Action::decisions’)
validateDecisionNodeIncomingSuccessions

A DecisionNode may have at most one incoming Succession.
targetConnector->selectByKind (Succession)->size() <= 1
validateDecisionNodeOutgoingSuccessions

All outgoing Successions from a DecisionNode must have a target multiplicity of 0..1.

sourceConnector->selectAsKind (Succession) —>
collect (connectorEnd->at (2)) ->
forAll (targetMult |
multiplicityHasBounds (targetMult, 0, 1))

8.3.16.8 ForkNode
Description

A ForkNode is a ControlNode that must be followed by successor Actions as given by all its outgoing
Successions.

General Classes
ControlNode

Attributes

None.

Operations

None.

Constraints
checkForkNodeSpecialization

A ForkNode must directly or indirectly specialize the ActionUsage Actions: :Action: : forks from the
Systems Model Library.

specializesFromLibrary ('Actions::Action::forks")

302 OMG Systems Modeling Language (SysML) v2.0 Beta 1

validateForkNodelncomingSuccessions

A ForkNode may have at most one incoming Succession.
targetConnector->selectByKind (Succession)->size() <= 1
8.3.16.9 ForLoopActionUsage

Description

A ForLoopActionUsage is a LoopActionUsage that specifies that its bodyAction ActionUsage should be
performed once for each value, in order, from the sequence of values obtained as the result of the segArgument
Expression, with the 1oopvariable set to the value for each iteration.

General Classes
LoopActionUsage

Attributes

/loopVariable : ReferenceUsage

The ownedFeature of this ForLoopActionUsage that acts as the loop variable, which is assigned the successive
values of the input sequence on each iteration. It is the ownedFeature that redefines ForLoopAction: :var.

/seqArgument : Expression

The Expression whose result provides the sequence of values to which the loopvariable is set for each iterative
performance of the bodyAction. It is the Expression whose result is bound to the seq input parameter of
this ForLoopActionUsage.

Operations

None.

Constraints
checkForLoopActionUsageSpecialization

A ForLoopActionUsage must directly or indirectly specialize the ActionUsage Actions: :forLoopActions
from the Systems Model Library.

specializesFromLibrary ('Actions::forLoopActions')
checkForLoopActionUsageSubactionSpecialization

A composite ForLoopActionUsage that is a subaction usage must directly or indirectly specialize the
ActionUsage Actions::Action::forLoops from the Systems Model Library.

isSubactionUsage () implies
specializesFromLibrary ('Actions::Action::forLoops')

checkForLoopActionUsageVarRedefinition

OMG Systems Modeling Language (SysML) v2.0, Beta 1 303

The loopvariable of a ForLoopActionUsage must redefine the ActionUsage
Actions::ForLoopAction: :var.

loopVariable <> null and
loopVariable.redefinesFromLibrary ('Actions: :ForLoopAction::var')

deriveForLoopActionUsageLoopVariable
The loopVariable of a ForLoopActionUsage is its first ownedFeature, which must be a ReferenceUsage.
loopVariable =
if ownedFeature->isEmpty () or
not ownedFeature->first().oclIsKindOf (ReferenceUsage) then
null
else
ownedFeature->first () .oclAsType (ReferenceUsage)
endif
deriveForLoopActionUsageSeqArgument
The segArgument of a ForLoopActionUsage is its first argument Expression.
segArgument = argument (1)
validateForLoopActionUsageLoopVariable

The first ownedFeature of a ForLoopActionUsage must be a ReferenceUsage.

ownedFeature->notEmpty () and
ownedFeature->at (1) .oclIsKindOf (ReferenceUsage)

validateForLoopActionUsageParameters

A ForLoopActionUsage must have two owned input parameters.

inputParameters ()->size() = 2

8.3.16.10 IfActionUsage

Description

An IfActionUsage is an ActionUsage that specifies that the thenAction ActionUsage should be performed if
the result of the i fArgument Expression is true. It may also optionally specify an elseAction ActionUsage
that is performed if the result of the i fArgument is false.

General Classes

ActionUsage

Attributes

/elseAction : ActionUsage [0..1]

The ActionUsage that is to be performed if the result of the i fArgument is false. It is the (optional) third
parameter of the IfActionUsage.

304 OMG Systems Modeling Language (SysML) v2.0 Beta 1

/ifArgument : Expression

The Expression whose result determines whether the thenAction or (optionally) the elseAction is performed.

It is the first parameter of the IfActionUsage.

/thenAction : ActionUsage

The ActionUsage that is to be performed if the result of the i fArgument is true. It is the second parameter of

the IfActionUsage.
Operations

None.

Constraints

checkIfActionUsageSpecialization

A IfActionUsage must directly or indirectly specialize the ActionUsage Actions: :ifThenActions from the

Systems Model Library. If it has an e1seAction, then it must directly or indirectly specialize
Actions::ifThenElseActions.

if elseAction = null then

specializesFromLibrary ('Actions::ifThenActions"')
else

specializesFromLibrary ('Actions::ifThenElseActions')
endif

checkIfActionUsageSubactionSpecialization

A composite TfActionUsage that is a subaction usage must directly or indirectly specialize the ActionUsage
Actions::Action::ifSubactions from the Systems Model Library.

isSubactionUsage () implies
specializesFromLibrary ('Actions::Action::ifSubactions"')

derivelfActionUsageElseAction

The elseAction of an i fActionUsage is its third parameter, if there is one, which must then be an
ActionUsage

elseAction =
let parameter : Feature = inputParameter (3) in
if parameter <> null and parameter.oclIsKindOf (ActionUsage) then
parameter.oclAsType (ActionUsage)
else
null
endif

derivelfActionUsagelfArgument

The ifArgument of an i fActionUsage is its first parameter, which must be an Expression
ifArgument =

let parameter : Feature = inputParameter(l) in
if parameter <> null and parameter.oclIsKindOf (Expression) then

OMG Systems Modeling Language (SysML) v2.0, Beta 1

305

parameter.oclAsType (Expression)
else

null
endif

derivelfActionUsageThenAction

The thenAction of an i fActionUsage is its second parameter, which must be an ActionUsage.

thenAction =
let parameter : Feature = inputParameter (2) in
if parameter <> null and parameter.oclIsKindOf (ActionUsage) then
parameter.oclAsType (ActionUsage)
else
null
endif

validateIfActionUsageParameters

An IfActionUsage must have at least two owned input parameters.
inputParameters () ->size () >= 2

8.3.16.11 JoinNode

Description

A JoinNode is a ControlNode that waits for the completion of all the predecessor Actions given by incoming

Successions.

General Classes
ControlNode

Attributes

None.

Operations

None.

Constraints
checkJoinNodeSpecialization

A JoinNode must directly or indirectly specialize the ActionUsage Actions: :Action::joins from the
Systems Model Library.

specializesFromLibrary ('Actions::Action::join"')
validateJoinNodeOutgoingSuccessions
A JoinNode may have at most one outgoing Succession.

sourceConnector->selectByKind (Succession)->size() <= 1

306 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.16.12 LoopActionUsage
Description

A LoopActionUsage is an ActionUsage that specifies that its bodyAction should be performed repeatedly. Its
subclasses WhileLoopActionUsage and ForLoopActionUsage provide different ways to determine how many
times the bodyAction should be performed.

General Classes
ActionUsage

Attributes

/bodyAction : ActionUsage

The ActionUsage to be performed repeatedly by the LoopActionUsage. It is the second parameter of the
LoopActionUsage

Operations
None.
Constraints
deriveLoopActionUsageBodyAction
The bodyAction of a LoopActionUsage is its second input parameter, which must be an Action.
bodyAction =
let parameter : Feature = inputParameter (2) in
if parameter <> null and parameter.oclIsKindOf (Action) then
parameter.oclAsType (Action)
else

null
endif

8.3.16.13 MergeNode
Description

A MergeNode is a ControlNode that asserts the merging of its incoming Successions. A MergeNode may have
at most one outgoing Successions.

General Classes
ControlNode
Attributes
None.
Operations

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 307

Constraints
checkMergeNodelncomingSuccessionSpecialization

All incoming Successions to a MergeNode must subset the inherited incomingHBLink feature of the
MergeNode.

targetConnector->selectByKind (Succession) ->
forAll (subsetsChain (self,
resolveGlobal ('ControlPerformances: :MergePerformance: :incomingHBLink")))

checkMergeNodeSpecialization

A MergeNode must directly or indirectly specialize the ActionUsage Actions: :Action: :merges from the
Systems Model Library.

specializesFromLibrary ('Actions: :Action: :merges')
validateMergeNodelncomingSuccessions
All incoming Successions to a MergeNode must have a source multiplicity of 0..1.

targetConnector->selectByKind (Succession) ->

collect (connectorEnd->at (1)) ->

forAll (sourceMult |

multiplicityHasBounds (sourceMult, 0, 1))

validateMergeNodeOutgoingSuccessions
A MergeNode may have at most one outgoing Succession.
sourceConnector->selectAsKind (Succession)->size () <= 1
8.3.16.14 PerformActionUsage

Description

A PerformActionUsage is an ActionUsage that represents the performance of an ActionUsage. Unless it is the
PerformActionUsage itself, the ActionUsage to be performed is related to the PerformActionUsage by a
ReferenceSubsetting relationship. A PerformActionUsage is also an EventOccurrenceUsage, with its
performedAction as the eventOccurrence.

General Classes

EventOccurrenceUsage
ActionUsage

Attributes
/performedAction : ActionUsage {redefines eventOccurrence}

The ActionUsage to be performed by this PerformedActionUsage. Itis the eventOccurrence of the
PerformActionUsage considered as an EventOccurrenceUsage, which must be an ActionUsage.

Operations

308 OMG Systems Modeling Language (SysML) v2.0 Beta 1

namingFeature() : Feature [0..1] {redefines namingFeature}

The naming Feature of a PerformActionUsage is its performedAction, if this is different than the

PerformActionUsage. If the PerformActionUsage is its own performedAction, then the naming Feature is

the same as the usual default for a Usage.

body: if performedAction <> self then performedAction
else self.oclAsType (Usage) .namingFeature ()
endif

Constraints

checkPerformActionUsageSpecialization

If a PerformActionUsage has an owningType thatis a PartDefinition or PartUsage, then it must directly or

indirectly specialize the ActionUsage Parts::Part::performedActions

owningType <> null and

(owningType.oclIsKindOf (PartDefinition) or

owningType.oclIsKindOf (PartUsage)) implies
specializesFromLibrary ('Parts::Part::performedActions"')

validatePerformActionUsageReference

Ifa PerformActionUsage has an ownedReferenceSubsetting, then its referencedFeature must be a
ActionUsage.

ownedReferenceSubsetting <> null implies
ownedReferenceSubsetting.referencedFeature.oclIsKindOf (ActionUsage)

8.3.16.15 SendActionUsage
Description

A SendActionUsage is an ActionUsage that specifies the sending of a payload given by the result of its
payloadArgument Expression via a MessageTransfer whose source is given by the result of the
senderArgument Expression and whose target is given by the result of the receiverArgument
Expression. If no senderArgument is provided, the default is the this context for the action. If no
receiverArgument is given, then the receiver is to be determined by, e.g., outgoing Connections from the
sender.

General Classes

ActionUsage

Attributes

/payloadArgument : Expression

An Expression whose result is bound to the payload input parameter of this SendActionUsage.
/receiverArgument : Expression [0..1]

An Expression whose result is bound to the receiver input parameter of this SendActionUsage.

OMG Systems Modeling Language (SysML) v2.0, Beta 1

309

/senderArgument : Expression [0..1]

An Expression whose result is bound to the sender input parameter of this SendActionUsage.
Operations

None.

Constraints

checkSendActionUsageSpecialization

A SendActionUsage must directly or indirectly specialize the ActionUsage Actions: :sendActions from the
Systems Model Library.

specializesFromLibrary ('Actions: :sendActions')
checkSendActionUsageSubactionSpecialization

A composite SendActionUsage that is a subaction must directly or indirectly specialize the ActionUsage
Actions::Action: :sendSubactions from the Systems Model Library.

isSubactionUsage () implies
specializesFromLibrary ('Actions::Action::acceptSubactions')

deriveSendActionUsagePayload Argument

The payloadArgument of a SendActionUsage is its first argument Expression.
payloadArgument = argument (1)

deriveSendActionUsageReceiverArgument

The receiverArgument of a SendActionUsage is its third argument Expression.
receiverArgument = argument (3)

deriveSendActionUsageSenderArgument

The senderArgument of a SendActionUsage is its second argument Expression.
senderArgument = argument (2)

validateSend ActionParameters

A sendActionUsage must have at least three owned input parameters, corresponding to its payload, sender
and receiver, respectively (whether or not they have Featurevalues).

inputParameters () ->size () >= 3
8.3.16.16 TriggerinvocationExpression
Description

A TriggerInvocationExpression is an InvocationExpression that invokes one of the trigger Functions
from the Kernel Semantic Library Triggers package, as indicated by its kind.

310 OMG Systems Modeling Language (SysML) v2.0 Beta 1

General Classes
InvocationExpression
Attributes

kind : TriggerKind

Indicates which of the Functions from the Triggers model in the Kernel Semantic Library is to be invoked by
this TriggerInvocationExpression

Operations

None.

Constraints
checkTriggerInvocationExpressionSpecialization

A TriggerInvocationExpression must directly or indirectly specialize one of the Functions Triggerihen,
TriggerAt or TriggerAfter, from the Kernel Semantic Library Triggers package, depending on whether its
kind is when, at or after, respectively.

specializesFromLibrary (

if kind = TriggerKind::when then
'Triggers::TriggerWhen'

else if kind = TriggerKind::at then
'Triggers::TriggerAt'

else
'Triggers::TriggerAfter'

endif endif

validateTriggerInvocationExpressionA fterArgument

IfaTriggerInvocationExpression has kind = after, then it must have an argument Expression with a
result that conforms to the type Quantities::ScalarQuantityValue and a feature that directly or
indirectly redefines Quantities: :TensorQuantityValue: :mRef and directly or indirectly specializes
ISQBase: :DurationUnit.

kind = TriggerKind::after implies
argument->notEmpty () and
argument->at (1) .result.specializesFromLibrary ('Quantities::ScalarQuantityValue') and
let mRef : Element =
resolveGlobal ('Quantities::TensorQuantityValue: :mRef') .ownedMemberElement in
argument->at (1) .result.feature->
select (ownedRedefinition.redefinedFeature->
closure (ownedRedefinition.redefinedFeature)->
includes (mRef)) ->
exists (specializesFromLibrary ('ISQBase: :DurationUnit'))

validateTriggerInvocationExpressionAtArgument

IfaTriggerInvocationExpression has kind = at, then it must have an argument Expression with a
result that conforms to the type Time: : TimeInstantValue.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 31

kind = TriggerKind::at implies
argument->notEmpty () and
argument->at (1) .result.specializesFromLibrary ('Time::TimeInstantValue')

validateTriggerInvocationExpressionWhenArgument

Ifa TriggerInvocationExpression has kind = when, then it must have an argument thatis a
FeatureReferenceExpression whose referent is an Expression with a result that conforms to the type
ScalarValues: :Boolean.
kind = TriggerKind::when implies

argument->notEmpty () and

argument->at (1) .oclIsKindOf (FeatureReferenceExpression) and

let referent : Feature =

argument->at (1) .oclAsType (FeatureReferenceExpression) .referent in

referent.oclIsKindOf (Expression) and
referent.oclAsType (Expression) .result.specializesFromLibrary('ScalarValues::Boolean')

8.3.16.17 TriggerKind

Description

TriggerKind enumerates the kinds of triggers that can be represented by a TriggerInvocationExpression.
General Classes

None.

Literal Values

after

Indicates a relative time trigger, corresponding to the TriggerAfter Function from the Triggers model in the
Kernel Semantic Library.

at

Indicates an absolute time trigger, corresponding to the TriggerAt Function from the Triggers model in the
Kernel Semantic Library.

when

Indicates a change trigger, corresponding to the TriggerWhen Function from the Triggers model in the Kernel
Semantic Library.

8.3.16.18 WhileLoopActionUsage
Description

A WhileLoopActionUsage is a LoopActionUsage that specifies that the bodyAction ActionUsage should be
performed repeatedly while the result of the whileArgument Expression is true or until the result of the
untilArgument Expression (if provided) is true. The whileArgument Expression is evaluated before each
(possible) performance of the bodyAction, and the untilArgument Expression is evaluated after each
performance of the bodyAction.

312 OMG Systems Modeling Language (SysML) v2.0 Beta 1

General Classes
LoopActionUsage

Attributes

/untilArgument : Expression [0..1]

The Expression whose result, if false, determines that the bodyAction should continue to be performed. It is the
(optional) third owned parameter of the WhileLoopActionUsage.

/whileArgument : Expression

The Expression whose result, if true, determines that the bodyAction should continue to be performed. It is the
first owned parameter of the WhileLoopActionUsage

Operations

None.

Constraints
checkWhileLoopActionUsageSpecialization

A WhileLoopActionUsage must directly or indirectly specialize the ActionUsage
Actions::whileLoopActions from the Systems Model Library.

specializesFromLibrary ('Actions::whileLoopActions')
checkWhileLoopActionUsageSubactionSpecialization

A composite WhileLoopActionUsage that is a subaction usage must directly or indirectly specialize the
ActionUsage Actions::Action: :whileLoops from the Systems Model Library.

isSubactionUsage () implies
specializesFromLibrary ('Actions: :Action::whileLoops')

deriveWhileLoopActionUsageUntilArgument

The whileArgument of a WhileLoopActionUsage is its third input parameter, which, if it exists, must be an
Expression.

untilArgument =
let parameter : Feature = inputParameter (3) in
if parameter <> null and parameter.oclIsKindOf (Expression) then
parameter.oclAsType (Expression)
else
null
endif

deriveWhileLoopActionUsageWhileArgument
The whileArgument of a WhileLoopActionUsage is its first input parameter, which must be an Expression.

whileArgument =
let parameter : Feature = inputParameter (l) in

OMG Systems Modeling Language (SysML) v2.0, Beta 1 313

if parameter <> null and parameter.oclIsKindOf (Expression)

parameter.oclAsType (Expression)

else

null

endif

validateWhileLoopActionUsage

then

A WhileLoopActionUsage must have at least two owned input parameters.

inputParameters () ->size () >= 2

8.3.17 States Abstract Syntax

8.3.17.1 Overview

+/stateOwningDefinition| 0..1

Behavior

+/stateDefinition|

0.*

{redefines actionDefinition,

ordered}

Definition
OccurrenceDefinition

ActionD

StateDefinition

{subsets actionOwningDefinition}

+/stateOwningUsage
0.1

{redefines
actionOwningUsage}

OccurrenceUsage

Usage

+/enteredStateDeﬁni}ion

+isParallel : Boolean = falsg 0..*

+/activeStateDefintion

0.*

+/exitedStateDefinition

0.+
+/featuringStateDefinition

0.*

Figure 29. State Definition and Usage

314

+/entryAction +/entryAction
01 ActionUsage 0.1
+/doAction +/doAction
0.1 0..1
+/exitAction +/exitAction
0..1 0.1
StateUsage +/exitedStat
+isParallel : Boolean = fals¢ 0..*
+/activeState]
0.*
+/enteredState
0.*
+/state +/nestedState
0.* L
. . . - {subsets nestedAction,
{subsets featuringBehavior} {subsets action, ordered} ordered)
+/definedState] +/ownedState
0.* 0.*

{subsets definedAction} {subsets ownedAction,

ordered}

OMG Systems Modeling Language (SysML) v2.0 Beta 1

«enumeration»
StateSubactionKind

entry
do
exit

FeatureMembership
AN

«enumeration»
TransitionFeatureKind

StateSubactionMembership

TransitionFeatureMembership

+kind : StateSubactionKind

+kind : TransitionFeatureKind

+/stateSubactionMembership|0..1

+/action| 1

ActionUsage

Figure 30. State Membership

PerformActionUsage

{subsets owningFeatureMembership}

{redefines ownedMemberFeature}

+/transitionFeatureMembership|0..1

+/transitionFeature| 1

Step

/exhibitedState

+
StateUsage |.<
1

ExhibitStateUsage

{redefines performedAction}

+/exhibitingState

Figure 31. Exhibited States

0..*
{subsets performingAction}

OMG Systems Modeling Language (SysML) v2.0, Beta 1

trigger
guard
effect

{subsets owningFeatureMembership}

{redefines ownedMemberFeature}

315

+/transitionOwningUsage
0.1
{subsets owningUsage}

OccurrenceUsage
+/source

ActionUsage 1

Definition Usage

+/transitionOwningDefinition | 0..1
{subsets owningDefinition}

+/target
1

+/effectAction

0.*
{subsets feature}

+/ownedTransition TransitionUsage +/activeTransition
0.* 0.1
{subsets ownedUsage} {subsets owningType}
i i i iti +/incomingTransition
| AcceptActionUsage |.<+/tr|ggerAct|on +/triggeredTransition 9
0.* 0..1 0.
{subsets ownedFeature} {subsets owningType}
guardExpression +/guardedTransition +/outgoingTransition
0..*
0.* 0.1
{subsets ownedFeature} {subsets owningType} N
+/succession +/linked Transition +/nestedTransition
uccession
1 0.1 0.*

{subsets ownedMember} {subsets {subsets nestedUsage}
owningNamespace}

Figure 32. Transition Usage

8.3.17.2 ExhibitStateUsage
Description

An ExhibitStateUsage is a StateUsage that represents the exhibiting of a StateUsage. Unless it is the
StateUsage itself, the StateUsage to be exhibited is related to the ExhibitStateUsage by a
ReferenceSubsetting Relationship. An ExhibitStateUsage is also a PerformActionUsage, with its
exhibitedState as the performedAction.

General Classes

StateUsage
PerformActionUsage

Attributes
/exhibitedState : StateUsage {redefines performedAction}

The stateUsage to be exhibited by the ExhibitStateUsage. It is the performedAction of the
ExhibitStateUsage considered as a PerformActionUsage, which must be a StateUsage.

316 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Operations

None.

Constraints
checkExhibitStateUsageSpecialization

Ifan ExhibitStateUsage has an owningType thatis a PartDefinition or PartUsage, then it must directly or
indirectly specialize the StateUsage Parts::Part::exhibitedStates.

owningType <> null and
(owningType.oclIsKindOf (PartDefinition) or
owningType.oclIsKindOf (PartUsage)) implies
specializesFromLibrary ('Parts::Part::exhibitedStates')

validateExhibitStateUsageReference

Ifan ExhibitStateUsage has an ownedReferenceSubsetting, then its referencedFeature must be a
StateUsage.

ownedReferenceSubsetting <> null implies
ownedReferenceSubsetting.referencedFeature.oclIsKindOf (StateUsage)

8.3.17.3 StateSubactionKind
Description

A StateSubactionKind indicates whether the action of a StateSubactionMembership is an entry, do or exit
action.

General Classes

None.

Literal Values

do

Indicates that the action of a StateSubactionMembership is a doAction.
entry

Indicates that the action of a StateSubactionMembership is an entryAction.
exit

Indicates that the action of a StateSubactionMembership is an exitAction.
8.3.17.4 StateSubactionMembership

Description

A StateSubactionMembership is a FeatureMembership for an entry, do or exit ActionUsage of a
StateDefinition or StateUsage.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 317

General Classes

FeatureMembership

Attributes

/action : ActionUsage {redefines ownedMemberFeature}

The ActionUsage that is the ownedMemberFeature of this StateSubactionMembership.
kind : StateSubactionKind

Whether this StateSubactionMembership is for an entry, do or exit ActionUsage.
Operations

None.

Constraints

validateStateSubactionMembershipOwningType

The owningType of a StateSubactionMembership must be a StateDefinition ora StateUsage.

owningType.oclIsKindOf (StateDefinition) or
owningType.oclIsKindOf (StateUsage)

8.3.17.5 StateDefinition
Description

A stateDefinition is the Definition of the Behavior of a system or part of a system in a certain state
condition.

A StateDefinition may be related to up to three of its ownedFeatures by StateBehaviorMembership
Relationships, all of different kinds, corresponding to the entry, do and exit actions of the StateDefinition.

General Classes
ActionDefinition

Attributes

/doAction : ActionUsage [0..1]

The ActionUsage of this StateDefinition to be performed while in the state defined by the
StateDefinition. Itis the owned ActionUsage related to the StateDefinition by a
StateSubactionMembership with kind = do.

/entryAction : ActionUsage [0..1]
The ActionUsage of this StateDefinition to be performed on entry to the state defined by the

StateDefinition. Itis the owned ActionUsage related to the StateDefinitionbya
StateSubactionMembership with kind = entry.

318 OMG Systems Modeling Language (SysML) v2.0 Beta 1

/exitAction : ActionUsage [0..1]

The ActionUsage of this StateDefinition to be performed on exit to the state defined by the
StateDefinition. It is the owned ActionUsage related to the StateDefinition by a
StateSubactionMembership with kind = exit.

isParallel : Boolean

Whether the ownedStates of this StateDefinition are to all be performed in parallel. If true, none of the
ownedActions (which includes ownedStates) may have any incoming or outgoing Transitions. If false, only
one ownedState may be performed at a time.

/state : StateUsage [0..*] {subsets action, ordered}

The StateUsages, which are actions in the StateDefinition, that specify the discrete states in the behavior
defined by the StateDefinition

Operations

None.

Constraints
checkStateDefinitionSpecialization

A StateDefinition must directly or indirectly specialize the StateDefinition States: :StateAction from
the Systems Model Library.

specializesFromLibrary ('States::StateAction')
deriveStateDefinitionDoAction

The doAction of a StateDefinition is the action of the owned StateSubactionMembership with kind =
do.

doAction =
let doMemberships : Sequence (StateSubactionMembership) =
ownedMembership->
selectByKind (StateSubactionMembership) ->
select (kind = StateSubactionKind::do) in
if doMemberships->isEmpty () then null
else doMemberships->at (1)
endif

deriveStateDefinitionEntry Action

The entryAction of a StateDefinition is the action of the owned StateSubactionMembership with
kind = entry

entryAction =
let entryMemberships : Sequence (StateSubactionMembership) =
ownedMembership->
selectByKind (StateSubactionMembership) ->
select (kind = StateSubactionKind::entry) in
if entryMemberships->isEmpty() then null

OMG Systems Modeling Language (SysML) v2.0, Beta 1 319

else entryMemberships->at (1)
endif

deriveStateDefinitionExitAction

The exitAction of a StateDefinition is the action of the owned StateSubactionMembership with kind
= exit
exitAction =
let exitMemberships : Sequence (StateSubactionMembership) =
ownedMembership->
selectByKind (StateSubactionMembership) ->
select (kind = StateSubactionKind::exit) in
if exitMemberships->isEmpty () then null

else exitMemberships->at (1)
endif

deriveStateDefinitionState

The states of a StateDefinition are those of its actions that are StateUsages.
state = action->selectByKind (StateUsage)
validateStateDefinitionParallelSubactions

Ifa stateDefinition is parallel, then its ownedActions (which includes its ownedStates) must not have any
incomingTransitions Or outgoingTransitions.

isParallel implies
ownedAction.incomingTransition->isEmpty () and
ownedAction.outgoingTransition->isEmpty ()
validateStateDefinitionStateSubactionKind
A StateDefinition must not have more than one owned StateSubactionMembership of each kind.
ownedMembership->
selectByKind (StateSubactionMembership) ->
isUnique (kind)
8.3.17.6 StateUsage

Description

A stateUsage is an ActionUsage that is nominally the Usage of a StateDefinition. However, other kinds of
kernel Behaviors are also allowed as types, to permit use of Behaviors

A stateUsage may be related to up to three of its ownedFeatures by StateSubactionMembership
Relationships, all of different kinds, corresponding to the entry, do and exit actions of the StateUsage.

General Classes
ActionUsage

Attributes

320 OMG Systems Modeling Language (SysML) v2.0 Beta 1

/doAction : ActionUsage [0..1]

The ActionUsage of this StateUsage to be performed while in the state defined by the StateDefinition. Itis
the owned ActionUsage related to the StateUsage by a StateSubactionMembership with kind = do.

/entryAction : ActionUsage [0..1]

The ActionUsage of this StateUsage to be performed on entry to the state defined by the StateDefinition. It
is the owned ActionUsage related to the StateUsage by a StateSubactionMembership with kind = entry.

/exitAction : ActionUsage [0..1]

The ActionUsage of this StateUsage to be performed on exit to the state defined by the StateDefinition. Itis
the owned ActionUsage related to the StateUsage by a StateSubactionMembership with kind = exit.

isParallel : Boolean

Whether the nestedStates of this StateUsage are to all be performed in parallel. If true, none of the
nestedActions (Which include nestedStates) may have any incoming or outgoing Transitions. If false, only
one nestedState may be performed at a time.

/stateDefinition : Behavior [0..*] {redefines actionDefinition, ordered}

The Behaviors that are the types of this StateUsage. Nominally, these would be StateDefinitions, but
kernel Behaviors are also allowed, to permit use of Behaviors from the Kernel Model Libraries.

Operations
isSubstateUsage(isParallel : Boolean) : Boolean

Check if this StateUsage is composite and has an owningType that is an StateDefinition or StateUsage
with the given value of isParallel, butis nofan entryAction or exitAction. If so, then it represents a
StateActionthatisa substate or exclusiveState (for isParallel = false) of another StateAction.

body: owningType <> null and
(owningType.oclIsKindOf (StateDefinition) and
owningType.oclAsType (StateDefinition) .isParallel = isParallel or
owningType.oclIsKindOf (StateUsage) and
owningType.oclAsType (StateUsage) .isParallel = isParallel) and
not owningFeatureMembership.oclIsKindOf (StateSubactionMembership)

Constraints
checkStateUsageExclusiveStateSpecialization

A stateUsage that is a substate usage with a non-parallel owning StateDefinition or StateUsage must
directly or indirectly specialize the StateUsage States: :State: :exclusiveStates from the Systems Model
Library.

isSubstateUsage (true) implies
specializesFromLibrary ('States::State::substates')

checkStateUsageSpecialization

OMG Systems Modeling Language (SysML) v2.0, Beta 1 321

A stateUsage must directly or indirectly specialize the StateUsage States: :stateActions from the Systems
Model Library.

specializesFromLibrary('States::stateActions')
checkStateUsageSubstateSpecialization

A stateUsage that is a substate usage with a owning StateDefinition or StateUsage that is parallel must
directly or indirectly specialize the StateUsage States: :State: :substates from the Systems Model Library.

isSubstateUsage (false) implies
specializesFromLibrary ('States::State::substates')

deriveStateUsageDoAction

The doAction of a StateUsage is the action of the owned StateSubactionMembership with kind = do.

doAction =
let doMemberships : Sequence (StateSubactionMembership) =
ownedMembership->
selectByKind (StateSubactionMembership) ->
select (kind = StateSubactionKind::do) in
if doMemberships->isEmpty () then null
else doMemberships->at (1)
endif

deriveStateUsageEntryAction

The entryAction of a StateUsage is the action of the owned StateSubactionMembership with kind =
entry.

entryAction =
let entryMemberships : Sequence (StateSubactionMembership) =
ownedMembership->
selectByKind (StateSubactionMembership) ->
select (kind = StateSubactionKind::entry) in
if entryMemberships->isEmpty () then null
else entryMemberships->at (1)
endif

deriveStateUsageExitAction
The exitAction of a StateUsage is the action of the owned StateSubactionMembership with kind =
exit

exitAction =
let exitMemberships : Sequence (StateSubactionMembership) =
ownedMembership->
selectByKind (StateSubactionMembership) ->
select (kind = StateSubactionKind::exit) in
if exitMemberships->isEmpty () then null
else exitMemberships->at (1)
endif

validateStateUsageParallelSubactions

322 OMG Systems Modeling Language (SysML) v2.0 Beta 1

If a StateUsage is parallel, then its nestedActions (which includes nestedStates) must not have any
incomingTransitions Or outgoingTransitions.

isParallel implies
nestedAction.incomingTransition->isEmpty () and
nestedAction.outgoingTransition->isEmpty ()

validateStateUsageStateSubactionKind

A StateUsage must not have more than one owned StateSubactionMembership of each kind.

ownedMembership->
selectByKind (StateSubactionMembership) ->
isUnique (kind)

8.3.17.7 TransitionFeatureKind
Description

A TransitionActionKind indicates whether the transitionFeature of a TransitionFeatureMembership
is a trigger, guard or effect.

General Classes

None.

Literal Values

effect

Indicates that the transitionFeature of a TransitionFeatureMembership is an effectAction.
guard

Indicates that the transitionFeature of a TransitionFeatureMembership iS a guardExpression.
trigger

Indicates that the transitionFeature of a TransitionFeatureMembershipisa triggerAction.
8.3.17.8 TransitionFeatureMembership

Description

A TransitionFeatureMembership is a FeatureMembership for a trigger, guard or effect of a
TransitionUsage, whose transitionFeature is a AcceptActionUsage, Boolean-valued Expression or
ActionUsage, depending on its kind.

General Classes

FeatureMembership

Attributes

kind : TransitionFeatureKind

OMG Systems Modeling Language (SysML) v2.0, Beta 1 323

Whether this TransitionFeatureMembership is fora trigger, guardor effect.
/transitionFeature : Step {redefines ownedMemberFeature}

The Step that is the ownedMemberFeature of this TransitionFeatureMembership.
Operations

None.

Constraints

validateTransitionFeatureMembershipEffectAction

If the kind of a TransitionUsage is effect, thenits transitionFeature must be a kind of ActionUsage.

kind = TransitionFeatureKind::effect implies
transitionFeature.oclIsKindOf (ActionUsage)

validateTransitionFeatureMembershipGuardExpression

If the kind of a TransitionUsage is guard, then its transitionFeature must be a kind of Expression
whose result is a Boolean value.
kind = TransitionFeatureKind::guard implies
transitionFeature.oclIsKindOf (Expression) and
let guard : Expression = transitionFeature.oclIsKindOf (Expression) in
guard.result.specializesFromLibrary ('ScalarValues::Boolean') and

guard.result.multiplicity <> null and
guard.result.multiplicity.hasBounds(1,1)

validateTransitionFeatureMembershipOwningType
The owningType of a TransitionFeatureMembership mustbe a TransitionUsage.
owningType.oclIsKindOf (TransitionUsage)
validateTransitionFeatureMembershipTriggerAction

If the kind of a TransitionUsage is trigger, then its transitionFeature must be a kind of
AcceptActionUsage

kind = TransitionFeatureKind::trigger implies
transitionFeature.oclIsKindOf (AcceptActionUsage)

8.3.17.9 TransitionUsage
Description

A TransitionUsage is an ActionUsage representing a triggered transition between ActionUsages or
StateUsages. When triggered by a triggerAction, when its guardExpression is true, the
TransitionUsage asserts that its source is exited, then its effectAction (if any) is performed, and then its
target is entered.

324 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A TransitionUsage can be related to some of its ownedFeatures using TransitionFeatureMembership
Relationships, corresponding to the triggerAction, guardExpression and effectAction of the
TransitionUsage.

General Classes

ActionUsage

Attributes

/effectAction : ActionUsage [0..*] {subsets feature}

The ActionUsages that define the effects of this TransitionUsage, which are the ownedFeatures of the
TransitionUsage related to it by TransitionFeatureMemberships with kind = effect, which must all be
ActionUsages.

/guardExpression : Expression [0..*] {subsets ownedFeature}

The Expressions that define the guards of this TransitionUsage, which are the ownedFeatures of the
TransitionUsage related to it by TransitionFeatureMemberships with kind = guard, which must all be
Expressions.

/source : ActionUsage

The source ActionUsage of this TransitionUsage, which becomes the source of the succession for the
TransitionUsage.

/succession : Succession {subsets ownedMember}

The Succession that is the ownedFeature of this TransitionUsage, which, if the TransitionUsage is
triggered, asserts the temporal ordering of the source and target.

/target : ActionUsage

The target ActionUsage of this TransitionUsage, which is the targetFeature of the succession
for the TransitionUsage.

/triggerAction : AcceptActionUsage [0..*] {subsets ownedFeature}

The AcceptActionUsages that define the triggers of this TransitionUsage, which are the ownedFeatures of
the TransitionUsage related to it by TransitionFeatureMemberships with kind = trigger, which must
all be AcceptActionUsages.

Operations

triggerPayloadParameter() : ReferenceUsage [0..1]

Return the payloadParameter of the triggerAction of this TransitionUsage, if it has one.

body: if triggerAction->isEmpty() then null
else triggerAction->first () .payloadParameter
endif

Constraints

OMG Systems Modeling Language (SysML) v2.0, Beta 1 325

checkTransitionUsageActionSpecialization

A composite TransitionUsage whose owningType isa ActionDefinition or ActionUsage, but not a
StateDefinition or StateUsage, must directly or indirectly specialize the ActionUsage
Actions::Action::decisionTransitions from the Systems Model Library

isComposite and owningType <> null and

(owningType.oclIsKindOf (ActionDefinition) or

owningType.oclIsKindOf (ActionUsage)) and

not (owningType.oclIsKindOf (StateDefinition) or
owningType.oclIsKindOf (StateUsage)) implies
specializesFromLibrary ('Actions::Action::decisionTransitions’')

checkTransitionUsagePayloadSpecialization

Ifa TransitionUsage has a triggerAction, then the payload parameter of the TransitionUsage subsets
the Feature chain of the triggerAction and its payloadParameter.

triggerAction->notEmpty () implies
let payloadParameter : Feature = inputParameter (2) in

payloadParameter <> null and
payloadParameter.subsetsChain (triggerAction->at(l), triggerPayloadParameter ())

checkTransitionUsageSourceBindingConnector

A TransitionUsage must have an ownedMember that is a BindingConnector between its source and its first
input parameter (wWhich redefines Actions: :TransitionAction::transitionLinkSource).

ownedMember->selectByKind (BindingConnector)->exists (b |

b.relatedFeatures->includes (source) and
b.relatedFeatures—->includes (inputParameter(1l)))

checkTransitionUsageSpecialization

A TransitionUsage must directly or indirectly specialize the ActionUsage Actions: :transitionActions
from the Systems Model Library.

specializesFromLibrary ('Actions::transitionActions')
checkTransitionUsageStateSpecialization

A composite TransitionUsage whose owningType isa StateDefinition or StateUsage must directly or
indirectly specialize the ActionUsage States::State::stateTransitions from the Systems Model Library.

isComposite and owningType <> null and
(owningType.oclIsKindOf (StateDefinition) or

owningType.oclIsKindOf (StateUsage)) implies
specializesFromLibrary('States::State::stateTransitions"')

checkTransitionUsageSuccessionBindingConnector

A TransitionUsage must have an ownedMember that is a BindingConnector between its succession and the
inherited Feature TransitionPerformances::TransitionPerformance: :transitionLink.

ownedMember->selectByKind (BindingConnector)->exists (b |
b.relatedFeatures->includes (succession) and

326 OMG Systems Modeling Language (SysML) v2.0 Beta 1

b.relatedFeatures->includes (resolveGlobal (
'TransitionPerformances: :TransitionPerformance: :transitionLink')))

checkTransitionUsageSuccessionSourceSpecialization

The sourceFeature of the succession of a TransitionUsage must be the source of the TransitionUsage
(i.e., the first connectorEnd of the succession must have a ReferenceSubsetting Relationship with the
source).

succession.sourceFeature = source
checkTransitionUsageTransitionFeatureSpecialization

The triggerActions, guardExpressions, and effectActions of a TransitionUsage must specialize,
respectively, the accepter, guard, and effect features of the ActionUsage
Actions::TransitionActions from the Systems Model Library.

triggerAction->forAll (specializesFromLibrary ('Actions::TransitionAction: :accepter') and
guardExpression->forAll (specializesFromLibrary ('Actions::TransitionAction: :guard') and
effectAction->forAll (specializesFromLibrary ('Actions::TransitionAction::effect'))

deriveTransitionUsageEffectAction

The effectActions of a TransitionUsage are the transitionFeatures of the
ownedFeatureMemberships of the TransitionUsage with kind = effect, which must all be
ActionUsages.

triggerAction = ownedFeatureMembership->
selectByKind (TransitionFeatureMembership) ->
select (kind = TransitionFeatureKind::trigger) .transitionFeatures->
selectByKind (AcceptActionUsage)

deriveTransitionUsageGuardExpression

The triggerActions of a TransitionUsage are the transitionFeatures of the
ownedFeatureMemberships of the TransitionUsage with kind = trigger, which must all be
Expressions.

guardExpression = ownedFeatureMembership->
selectByKind (TransitionFeatureMembership) ->
select (kind = TransitionFeatureKind::trigger) .transitionFeature->
selectByKind (Expression)

deriveTransitionUsageSource

The source of a TransitionUsage is given by the memberElement of its first ownedMembership, which must
be an ActionUsage.

source =
if ownedMembership->isEmpty () then null
else
let member : Element =
ownedMembership->at (1) .memberElement in
if not member.oclIsKindOf (ActionUsage) then null
else member.oclAsKindOf (ActionUsage)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 327

endif
endif

deriveTransitionUsageSuccession

The succession of a TransitionUsage is its first ownedMember that is a Succession.
succession = ownedMember->selectByKind (Succession)->at (1)
deriveTransitionUsageTarget

The target of a TransitionUsage is given by the targetFeature of its succession, which must be an
ActionUsage

target =

if succession.targetFeature->isEmpty () then null

else
let targetFeature : Feature =

succession.targetFeature->at (1) in

if not targetFeature.oclIsKindOf (ActionUsage) then null
else targetFeature.oclAsType (ActionUsage)
endif

endif

deriveTransitionUsageTriggerAction

The triggerActions of a TransitionUsage are the transitionFeatures of the
ownedFeatureMemberships of the TransitionUsage with kind = trigger, which must all be
AcceptActionUsages.

triggerAction = ownedFeatureMembership->
selectByKind (TransitionFeatureMembership) ->
select (kind = TransitionFeatureKind::trigger) .transitionFeature->
selectByKind (AcceptActionUsage)

validateTransitionUsageParameters

A TransitionUsage must have at least one owned input parameter and, if it has a triggerAction, it must
have at least two.

if triggerAction->isEmpty () then

inputParameters () ->size() >= 1
else

inputParameters () ->size () >= 2
endif

validateTransitionUsageSuccession

A TransitionUsage must have an ownedMember that is a Succession with a ActionUsage as its
targetFeature

let successions : Sequence (Successions) =
ownedMember->selectByKind (Succession) in
successions->notEmpty () and
successions->at (1) .targetFeature->
forAll (oclIsKindOf (ActionUsage))

328 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.18 Calculations Abstract Syntax
8.3.18.1 Overview

5]+ ionOwningDefinition +/calculationOwningUsage
0.1 0.1
{subsets actionOwningDefinition} {subsets

actionOwningUsage}

OccurrenceDefinition OccurrenceUsage
A A

ActionDefinition ActionUsage
FAN

+/lownedCalculation

0. CalculationUsage
{subsets ownedAction, ordered} |*ModelLevelEvaluable(visited : Feature [0.."]) : Boolean{redefines modelLevelEvaluable]
C i it +/featuringCalculationDefinition +/calculation +/nestedCalculation
—Jo.x 0. 0.
{subsets computedFunction, {subsets action, subsets expression, {subsets nestedAction,
subsets featuringActionDefinition} ordered} ordered}
+/definedCalculation
0.*

{subsets definedAction,
subsets typedExpression}

|j " . \Y
Function +/calculationDefinition
0.1

{redefines actionDefinition,
redefines function, ordered}

Figure 33. Calculation Definition and Usage

8.3.18.2 CalculationDefinition

Description

A CcalculationDefinition is an ActionDefinition that also defines a Function producing a result.
General Classes

ActionDefinition
Function

Attributes

/calculation : CalculationUsage [0..*] {subsets action, expression, ordered}

The actions of this CalculationDefinition that are CalculationUsages.
Operations

None.

Constraints

checkCalculationDefinitionSpecialization

A CalculationDefinition must directly or indirectly specialize the CalculationDefinition
Calculations::Calculation from the Systems Model Library.

specializesFromLibrary('Calculations::Calculation')

deriveCalculationUsageCalculation

OMG Systems Modeling Language (SysML) v2.0, Beta 1 329

The calculations ofaCalculationDefinition are those of its actions that are CalculationUsages.
calculation = action->selectByKind(CalculationUsage)

8.3.18.3 CalculationUsage

Description

A CalculationUsage is an ActionUsage that is also an Expression, and, so, is typed by a Function.
Nominally, if the type isa CalculationDefinition, a CalculationUsage is a Usage of that
CalculationDefinition within a system. However, other kinds of kernel Functions are also allowed, to
permit use of Functions from the Kernel Model Libraries.

General Classes

Expression
ActionUsage

Attributes
/calculationDefinition : Function [0..1] {redefines function, actionDefinition, ordered}

The Function that is the type of this CalculationUsage. Nominally, this would be a CalculationDefinition,
but a kernel Function is also allowed, to permit use of Functions from the Kernel Model Libraries.

Operations

modelLevelEvaluable(visited : Feature [0..*]) : Boolean {redefines modelLevelEvaluable}
A CalculationUsage is not model-level evaluable.

body: false

Constraints

checkCalculationUsageSpecialization

A CcalculationUsage must specialize directly or indirectly the CalculationUsage
Calculations::calculations from the Systems Model Library.

specializesFromLibrary('Calculations::calculations')
checkCalculationUsageSubcalculationSpecialization

owningType <> null and

(owningType.oclIsKindOf (CalculationDefinition) or

owningType.oclIsKindOf (CalculationUsage)) implies
specializesFromLibrary('Calculations::Calculation: :subcalculations')

8.3.19 Constraints Abstract Syntax

330 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.19.1 Overview

Definiti +/constraintOwningDefinition @HconstraimOwningUsage
0.1 0.1

{subsets {subsets .
occurrenceOwningDefinition} occurrenceOwningUsage}

OccurrenceDefinition OccurrenceUsage

ConstraintDefinition

i ConstraintUsage
+/ownedConstraint 9 +/nestedConstraint

0..* |+namingFeature() : Feature [0..1){redefines namingFeature}

{subsets ownedOccurrence +modelLevelEvaluable(visited : Feature [0..*]) : Boolean{redefines modelLevelEvaluable} 0.7
ordered} ’ {subsets nestedOccurrence,
ordered}

+/definedConstraint | 0..*
{subsets
typedBooleanExpression}

+/constraintDefinition
0.1
{redefines predicate}

Predicate

v
BooleanExpression

Figure 34. Constraint Definition and Usage

+/assertedConstraint

H ConstraintUsage
1

JAN
- 0* AssertConstraintUsage
+/constraintAssertion
A\V4
Invariant

Figure 35. Asserted Constraints

8.3.19.2 AssertConstraintUsage
Description

An AssertConstraintUsage isa ConstraintUsage thatis also an Invariant and, so, is asserted to be true
(by default). Unless it is the AssertConstraintUsage itself, the asserted ConstraintUsage is related to the
AssertConstraintUsage by a ReferenceSubsetting Relationship.

General Classes

Invariant
ConstraintUsage

Attributes
/assertedConstraint : ConstraintUsage

The ConstraintUsage to be performed by the AssertConstraintUsage. It is the referenceFeature of the
ownedReferenceSubsetting for the AssertConstraintUsage, if there is one, and, otherwise, the
AssertConstraintUsage itself.

Operations

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 331

Constraints
checkAssertConstraintUsageSpecialization

If a AssertConstraintUsage is negated, then it must directly or indirectly specialize the ConstraintUsage
Constraints::negatedConstraints. Otherwise, it must directly or indirectly specialize the
ConstraintUsage Constraints::assertedConstraints

if isNegated then
specializesFromLibrary ('Constraints: :negatedConstraints"')
else
specializesFromLibrary ('Constraints::assertedConstraints')
endif

deriveAssertConstraintUsageAssertedConstraint

If an AssertConstraintUsage has no ownedReferenceSubsetting, then its assertedConstraint is the
AssertConstraintUsage itself. Otherwise, the assertedConstraint is the referencedFeature of the
ownedReferenceSubsetting, which must be a ConstraintUsage.

assertedConstraint =
if ownedReferenceSubsetting = null then self
else ownedReferenceSubsetting.referencedFeature.oclAsType (ConstraintUsage)
endif

validateAssertConstraintUsageReference

Ifan AssertConstraintUsage has an ownedReferenceSubsetting, then its referencedFeature must be a
ConstraintUsage.

ownedReferenceSubsetting <> null implies
ownedReferenceSubsetting.referencedFeature.oclIsKindOf (ConstraintUsage)

8.3.19.3 ConstraintDefinition
Description

A ConstraintDefinition is an OccurrenceDefinition thatis also a Predicate that defines a constraint that
may be asserted to hold on a system or part of a system.

General Classes

OccurrenceDefinition
Predicate

Attributes
None.
Operations
None.
Constraints

checkConstraintDefinitionSpecialization

332 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A ConstraintDefinition must directly or indirectly specialize the base ConstraintDefinition
Constraints: :ConstraintCheck from the Systems Model Library.

specializesFromLibrary ('Constraints::ConstraintCheck')
8.3.19.4 ConstraintUsage
Description

A ConstraintUsage is an OccurrenceUsage that is also a BooleanExpression, and, so, is typed by a
Predicate. Nominally, if the type is a ConstraintDefinition, a ConstraintUsage is a Usage of that
ConstraintDefinition. However, other kinds of kernel Predicates are also allowed, to permit use of
Predicates from the Kernel Model Libraries.

General Classes

OccurrenceUsage
BooleanExpression

Attributes
/constraintDefinition : Predicate [0..1] {redefines predicate}

The (single) Predicate that is the type of this ConstraintUsage. Nominally, this will be a
ConstraintDefinition, but other kinds of Predicates are also allowed, to permit use of Predicates from
the Kernel Model Libraries.

Operations

modelLevelEvaluable(visited : Feature [0..*]) : Boolean {redefines modelLevelEvaluable}
A ConstraintUsage is not model-level evaluable.

body: false

namingFeature() : Feature [0..1] {redefines namingFeature}

The naming Feature of a ConstraintUsage that is owned by a RequirementConstraintMembership and has
an ownedReferenceSubsetting is the referencedFeature of that ownedReferenceSubsetting.

body: if owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf (RequirementConstraintMembership) and
ownedReferenceSubsetting <> null then
ownedReferenceSubsetting.referencedFeature
else
self.oclAsType (OccurrenceUsage) .namingFeature ()
endif

Constraints
checkConstraintUsageCheckedConstraintSpecialization

A ConstraintUsage whose owningType is an TtemDefinition or ItemUsage must directly or indirectly
specialize the ConstraintUsage Items: :Item: :checkedConstraints

OMG Systems Modeling Language (SysML) v2.0, Beta 1 333

owningType <> null and

(owningType.oclIsKindOf (ItemDefinition) or

owningType.oclIsKindOf (ItemUsage)) implies
specializesFromLibrary('Items::Item: :checkedConstraints"')

checkConstraintUsageRequirementConstraintSpecialization

A ConstraintUsage whose owningFeatureMembership iS a RequirementConstraintMembership must
directly or indirectly specialize on the ConstraintUsages assumptions or constraints from the
ConstraintDefinition Requirements: :RequirementCheck in the Systems Model Library, depending on
whether the kind of the RequirementConstraintMembership is assumption Or requirement, respectively.

owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf (RequirementConstraintMembership) implies
if owningFeatureMembership.oclAsType (RequirementConstraintMembership) .kind =
RequirementConstraintKind: :assumption then
specializesFromLibrary ('Requirements: :RequirementCheck: :assumptions"')
else

specializesFromLibrary ('Requirements: :RequirementCheck: :constraints"')
endif

checkConstraintUsageSpecialization

A ConstraintUsage must directly or indirectly specialize the base ConstraintUsage
Constraints::constraintChecks from the Systems Model Library.

specializesFromLibrary ('Constraints::constraintChecks"')

8.3.20 Requirements Abstract Syntax

334 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.20.1 Overview

{subsets
constraintOwningDefinition}
+IrequirementOwningDefinition |0..1

Definition

OccurrenceDefinition
Ay

+IrequirementOwningUsage

0.1
{subsets constraintOwningUsage}

OccurrenceUsage
~

subsets , ordered,
ConstraintDefinition HrequiredConstraint ™G nstraintu: ¢ onstraint)
x 0.* .
{subsets ownedFeature, 0.
ordered) {subsets ownedFeature, ordered}
+/assumedConstraint +/requiredConstraint
o 0.*
{subsets ownedFeature,
quiring Definition ordered)
Definition 01 RequirementUsage 0..1 {subsets owningType}
+reqld : String [0..1 {redefines declaredShortName}| s ipsets owningType} +reqld : String [0..1)redefines declaredShortName}|))
+Htext : String [0..*] +Htext : String [0.."] o1 b =
+lassumingRequirementDefnition -1 {subsets owningType}
0.1 +/nestedRequirement
{subsets owningType} 0.+ {subsets nestedConstraint, ordered)
Definition +/ownedRequirement
+/framingRequirementDefinitior} 0.1 0.* 0. {subsets ownedConstraint, ordered}
0.1 {redefines {subsets definedConstraint}
{subsets constraintDefinition} +/framingRequirement
assumingRequirementDefinition} 0.1 {subsets requiringRequirement)
g Definitio +/stakholderOwningRequirement
0.1 X]

{subsets parameteredStep,
subsets partOwningUsage}

{subsets parameteredStep,
subsets partOwningUsage}

o

+lactorOwningRequirementDefinition 0.
{subsets parameteredBehavior,
subsets partOwningDefinition}

+/subjectOwningRequirementDefinition
{subsets owningDefinition,
subsets parameteredBehavior}

+/subjectOwningRequirement
{subsets owningUsage,
subsets parameteredStep}

” > Usage o
1 1
{subsets parameter,
subsets usage}

{subsets parameter,
subsets usage}

+/actorParameter +/actorParameter

PartUsage [P

{subsets parameter,
subsets usage, ordered}

0.
{subsets parameter,
subsets usage, ordered)

+/stakeholderParameter +/stakeholderParameter

+actorOwningRequirement
{subsets parameteredStep,
subsets partOwningUsage}

0.* 0.

{subsets parameter,
subsets usage, ordered}

{subsets parameter,
subsets usage, ordered}

+/framedConcern ——————+/framedConcern

{subsets requiredConstraint, ordered}

0.* 0.

{subsets requiredConstraint, ordered)

Figure 36. Requirement Definition and Usage

{redefines assertedConstraint}

+/satisfiedRequirement
1

RequirementUsage

AssertConstraintUsage

A

0.*

+/requirementSatisfaction

SatisfyRequirementUsage

{subsets constraintAssertion}

+/satisfiedRequirement

+/satisfyingFeature

Figure 37. Satisfied Requirements

K—\

Feature

OMG Systems Modeling Language (SysML) v2.0, Beta 1

335

+/concernOwningDefinition

0.1

{subsets requirementOwningDefinition}
OccurrenceDefinition
ConstraintDefinition
RequirementDefinition

Definition

+/concernOwningUsage

0..1
{subsets requirementOwningUsage}

Usage

ceUsage

Occurren

ntUsage

Constrail

RequirementUsage

I

rpr— +/concernDefinition
ConcernDefinition
0..1

{redefines requirementDefinition}

Figure 38. Concern Definition and Usage

FeatureMembership
VAN

«enumeration» qui

RequirementConstraintKind

+kind : RequirementConstraintKind

assumption

+/ownedConcern
0 ConcernUsage
{subsets ownedRequirement} +/nestedConcern
+/definedConcern 0.*
0.1 {subsets nestedRequirement}
{subsets definedRequirement}
+/requirementConstraintMembership +/ownedConstraint
ship |~ .1 1 ConstraintUsage
{subsets {redefines
owningFeatureMembership} ownedMemberFeature}
+/referencingConstraintMembership +/referencedConstraint

requirement

0.* 1

RequirementUsage
JAN

FramedConcernMembership

+kind : RequirementConstraintKind = requirement{redefines kind}

Figure 39. Requirement Constraint Membership

336

+/framedConstraintMembership +/ownedConcern
0.1 1 ConcernUsage
{subsets {redefines
requirementConstraintMembership} ownedConstraint}
+/referencingConcernMembership +/referencedConcern
0.* 1
{subsets {redefines

referencingConstraintMembership} referencedConstraint}

OMG Systems Modeling Language (SysML) v2.0 Beta 1

+/owningSubjectMembership|0..1

ParameterMembership

SubjectMembership

{subsets
owningParameterMembership}

{redefines
ownedMemberParameter}

+/owningActorMembership|0..1

ActorMembership

{subsets
owningParameterMembership}

{redefines
ownedMemberParameter}

StakeholderMembership

+/owningStakeholderMembership| 0..1

{subsets
owningParameterMembership}

+/ownedSubjectParameter|

1

+/ownedActorParameter

1

] +/ownedStakeholderParameter
PartUsage

Usage

{redefines
ownedMemberParameter}

Figure 40. Requirement Parameter Memberships

8.3.20.2 ActorMembership
Description

An ActorMembership iS a ParameterMembership that identifies a PartUsage as an actor parameter, which
specifies a role played by an external entity in interaction with the owningType of the ActorMembership.

General Classes

ParameterMembership

Attributes

/ownedActorParameter : PartUsage {redefines ownedMemberParameter}
The PartUsage specifying the actor.

Operations

None.

Constraints

validate ActorMembershipOwningType

The owningType of an ActorMembership must be a RequirementDefinition, RequirementUsage,
CaseDefinition, or CaseUsage.

owningType.oclIsKindOf
owningType.oclIsKindOf
owningType.oclIsKindOf
owningType.oclIsKindOf

RequirementUsage) or
RequirementDefinition) or
CaseDefinition) or
CaseUsage)

8.3.20.3 ConcernDefinition

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 337

A ConcernDefinition isa RequirementDefinition that one or more stakeholders may be interested in having
addressed. These stakeholders are identified by the ownedStakeholdersof the ConcernDefinition.

General Classes
RequirementDefinition

Attributes

None.

Operations

None.

Constraints
checkConcernDefinitionSpecialization

A ConcernDefinition must directly or indirectly specialize the base ConcernDefinition
Requirements: :ConcernCheck from the Systems Model Library.

specializesFromLibrary ('Requirements: :ConcernCheck’)
8.3.20.4 ConcernUsage

Description

A ConcernUsage is a Usage of a ConcernDefinition.

The ownedStakeholder features of the ConcernUsage shall all subset the

ConcernCheck: :concernedStakeholders feature. If the ConcernUsage is an ownedFeature of a
StakeholderDefinition or StakeholderUsage, then the ConcernUsage shall have an ownedStakeholder feature that
is bound to the selr feature of its owner.

General Classes

RequirementUsage

Attributes

/concernDefinition : ConcernDefinition [0..1] {redefines requirementDefinition}
The ConcernDefinition that is the single type of this ConcernUsage.

Operations

None.

Constraints

checkConcernUsageFramedConcernSpecialization

If a ConcernUsage is owned via a FramedConcernMembership, then it must directly or indirectly specialize the
ConcernUsage Requirements: :RequirementCheck: :concerns from the Systems Model Library.

338 OMG Systems Modeling Language (SysML) v2.0 Beta 1

owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf (FramedConcernMembership) implies
specializesFromLibrary ('Requirements: :RequirementCheck: :concerns')

checkConcernUsageSpecialization

A ConcernUsage must directly or indirectly specialize the base ConcernUsage
Requirements: :concernChecks from the Systems Model Library.

specializesFromLibrary ('Requirements: :concernChecks"')
8.3.20.5 FramedConcernMembership
Description

A FramedConcernMembership is @ RequirementConstraintMembership for a framed ConcernUsage of a
RequirementDefinition or RequirementUsage.

General Classes

RequirementConstraintMembership

Attributes

kind : RequirementConstraintKind {redefines kind}

The kind of an FramedConcernMembership must be requirement.

/ownedConcern : ConcernUsage {redefines ownedConstraint}

The ConcernUsage that is the ownedConstraint of this FramedConcernMembership.
/referencedConcern : ConcernUsage {redefines referencedConstraint}

The ConcernUsage that is referenced through this FramedConcernMembership. It is the
referencedConstraint of the FramedConcernMembership considered as a
RequirementConstraintMembership, which must be a ConcernUsage.

Operations

None.

Constraints

validateFramedConcernMembershipConstraintKind

A FramedConcernMembership must have kind = requirement.
kind = RequirementConstraintKind::requirement
8.3.20.6 RequirementConstraintKind

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 339

A RequirementConstraintKind indicates whether a ConstraintUsage is an assumption or a requirement in a
RequirementDefinition or RequirementUsage.

General Classes
None.

Literal Values
assumption

Indicates that a member ConstraintUsage of a RequirementDefinition or RequirementUsage represents an
assumption.

requirement

Indicates that a member ConstraintUsage of a RequirementDefinition or RequirementUsagerepresents an
requirement.

8.3.20.7 RequirementConstraintMembership
Description

A RequirementConstraintMembership is a FeatureMembership for an assumed or required
ConstraintUsage of a RequirementDefinition or RequirementUsage.

General Classes

FeatureMembership

Attributes

kind : RequirementConstraintKind

Whether the RequirementConstraintMembership is for an assumed or required ConstraintUsage.
/ownedConstraint : ConstraintUsage {redefines ownedMemberFeature}

The ConstraintUsage that is the ownedMemberFeature of this RequirementConstraintMembership.
/referencedConstraint : ConstraintUsage

The ConstraintUsage that is referenced through this RequirementConstraintMembership. It is the
referencedFeature of the ownedReferenceSubsetting of the ownedConstraint, if there is one, and,
otherwise, the ownedConstraint itself.

Operations

None.

Constraints

deriveRequirementConstraintMembershipReferencedConstraint

340 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The referencedConstraint of a RequirementConstraintMembership is the referencedFeature of the
ownedReferenceSubsetting of the ownedConstraint, if there is one, and, otherwise, the ownedConstraint
itself.

referencedConstraint =
let reference : ReferenceSubsetting =
ownedConstraint.ownedReferenceSubsetting in
if reference = null then ownedConstraint
else i1f not reference.referencedFeature.oclIsKindOf (ConstraintUsage) then null
else reference.referencedFeature.oclAsType (ConstraintUsage)
endif endif
validateRequirementConstraintMembershipIsComposite
The ownedConstraint of a RequirementConstraintMembership must be composite.
ownedConstraint.isComposite

validateRequirementConstraintMembershipOwningType

The owningType of a RequirementConstraintMembership must be a RequirementDefinition ora
RequirementUsage

owningType.oclIsKindOf (RequirementDefinition) or
owningType.oclIsKindOf (RequirementUsage)

8.3.20.8 RequirementDefinition

Description

A RequirementDefinitionisa ConstraintDefinition that defines a requirement used in the context of a
specification as a constraint that a valid solution must satisfy. The specification is relative to a specified subject,
possibly in collaboration with one or more external actors.

General Classes

ConstraintDefinition

Attributes

/actorParameter : PartUsage [0..*] {subsets usage, parameter, ordered}

The parameters of this RequirementDefinition that represent actors involved in the requirement.

/assumedConstraint : ConstraintUsage [0..*] {subsets ownedFeature, ordered}

The owned ConstraintUsages that represent assumptions of this RequirementDefinition, which are the
ownedConstraints of the RequirementConstraintMemberships of the RequirementDefinition with
kind = assumption.

/framedConcern : ConcernUsage [0..*] {subsets requiredConstraint, ordered}

The ConcernUsages framed by this RequirementDefinition, which are the ownedConcerns of all
FramedConcernMemberships of the RequirementDefinition.

reqld : String [0..1] {redefines declaredShortName}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 341

An optional modeler-specified identifier for this RequirementDefinition (used, e.g., to link it to an original
requirement text in some source document), which is the declaredShortName for the

RequirementDefinition.
/requiredConstraint : ConstraintUsage [0..*] {subsets ownedFeature, ordered}

The owned ConstraintUsages that represent requirements of this RequirementDefinition, derived as the
ownedConstraints of the RequirementConstraintMemberships of the RequirementDefinition with

kind = requirement.

/stakeholderParameter : PartUsage [0..*] {subsets parameter, usage, ordered}

The parameters of this RequirementDefinition that represent stakeholders for th requirement.
/subjectParameter : Usage {subsets parameter, usage}

The parameter of this RequirementDefinition that represents its subject.

/text : String [0..*]

An optional textual statement of the requirement represented by this RequirementDefinition, derived from the
bodies of the documentation of the RequirementDefinition.

Operations

None.

Constraints
checkRequirementDefinitionSpecialization

A RequirementDefinition must directly or indirectly specialize the base RequirementDefinition
Requirements: :RequirementCheck from the Systems Model Library.

specializesFromLibrary ('Requirements: :RequirementCheck')
deriveRequirementDefinitionActorParameter

The actorParameters of a RequirementDefinition are the ownedActorParameters of the
ActorMemberships of the RequirementDefinition.

actorParameter = featureMembership->
selectByKind (ActorMembership) .
ownedActorParameter

deriveRequirementDefinitionAssumedConstraint

The assumedConstraints of a RequirementDefinition are the ownedConstraints of the
RequirementConstraintMemberships of the RequirementDefinition with kind = assumption.

assumedConstraint = ownedFeatureMembership->
selectByKind (RequirementConstraintMembership) ->
select (kind = RequirementConstraintKind::assumption) .
ownedConstraint

342 OMG Systems Modeling Language (SysML) v2.0 Beta 1

deriveRequirementDefinitionFramedConcern

The framedConcerns of a RequirementDefinition are the ownedConcerns of the
FramedConcernMemberships of the RequirementDefinition

framedConcern = featureMembership->

selectByKind (FramedConcernMembership) .
ownedConcern

deriveRequirementDefinitionRequiredConstraint

The requiredConstraints of a RequirementDefinition are the ownedConstraints of the
RequirementConstraintMemberships of the RequirementDefinition with kind = requirement.

requiredConstraint = ownedFeatureMembership->
selectByKind (RequirementConstraintMembership) ->

select (kind = RequirementConstraintKind::requirement) .
ownedConstraint

deriveRequirementDefinitionStakeholderParameter

The stakeHolderParameters of a RequirementDefinition are the ownedStakeholderParameters of the
StakeholderMemberships of the RequirementDefinition

stakeholderParameter = featureMembership->

selectByKind (StakholderMembership) .
ownedStakeholderParameter

deriveRequirementDefinitionSubjectParameter

The subjectParameter of a RequirementDefinition is the ownedSubjectParameter ofits
SubjectMembership (if any).
subjectParameter =
let subjects : OrderedSet (SubjectMembership) =
featureMembership->selectByKind (SubjectMembership) in
if subjects->isEmpty () then null

else subjects->first () .ownedSubjectParameter
endif

deriveRequirementDefinitionText

The texts of aRequirementDefinition are the bodies of the documentation of the
RequirementDefinition

text = documentation.body
validateRequirementDefinitionOnlyOneSubject

A RequirementDefinition must have at most one featureMembership thatis a SubjectMembership.
featureMembership->
selectByKind (SubjectMembership) ->

size() <=1

validateRequirementDefinitionSubjectParameterPosition

OMG Systems Modeling Language (SysML) v2.0, Beta 1 343

The subjectParameter of a RequirementDefinition must be its first input.
input->notEmpty () and input->first() = subjectParameter
8.3.20.9 RequirementUsage

Description

A RequirementUsage is a Usage of a RequirementDefinition.

General Classes

ConstraintUsage

Attributes

/actorParameter : PartUsage [0..*] {subsets usage, parameter, ordered}

The parameters of this RequirementUsage that represent actors involved in the requirement.
/assumedConstraint : ConstraintUsage [0..*] {subsets ownedFeature, ordered}

The owned ConstraintUsages that represent assumptions of this RequirementUsage, derived as the
ownedConstraints of the RequirementConstraintMemberships of the RequirementUsage with kind =
assumption.

/framedConcern : ConcernUsage [0..*] {subsets requiredConstraint, ordered }

The ConcernUsages framed by this RequirementUsage, which are the ownedConcerns of all
FramedConcernMemberships of the RequirementUsage.

reqld : String [0..1] {redefines declaredShortName}

An optional modeler-specified identifier for this RequirementUsage (used, e.g., to link it to an original
requirement text in some source document), which is the declaredShortName for the RequirementUsage.

/requiredConstraint : ConstraintUsage [0..*] {subsets ownedFeature, ordered}

The owned ConstraintUsages that represent requirements of this RequirementUsage, which are the
ownedConstraints of the RequirementConstraintMemberships of the RequirementUsage with kind =
requirement.

/requirementDefinition : RequirementDefinition [0..1] {redefines constraintDefinition}

The RequirementDefinition thatis the single definition of this RequirementUsage.
/stakeholderParameter : PartUsage [0..*] {subsets parameter, usage, ordered}

The parameters of this RequirementUsage that represent stakeholders for the requirement.
/subjectParameter : Usage {subsets parameter, usage}

The parameter of this RequirementUsage that represents its subject.

/text : String [0..*]

344 OMG Systems Modeling Language (SysML) v2.0 Beta 1

An optional textual statement of the requirement represented by this RequirementUsage, derived from the bodies
of the documentation of the RequirementUsage.

Operations

None.

Constraints
checkRequirementUsageObjectiveRedefinition

A RequirementUsage whose owningFeatureMembership is a ObjectiveMembership must redefine the
objectiveRequirement of each CaseDefinition or CaseUsage that is specialized by the owningType of the
RequirementUsage.

owningfeatureMembership <> null and
owningfeatureMembership.oclIsKindOf (ObjectiveMembership) implies
owningType.ownedSpecialization.general->forAll (gen |
(gen.oclIsKindOf (CaseDefinition) implies
redefines (gen.oclAsType (CaseDefinition) .objectiveRequirement)) and
(gen.oclIsKindOf (CaseUsage) implies
redefines (gen.oclAsType (CaseUsage) .objectiveRequirement))

checkRequirementUsageRequirementVerificationSpecialization

A RequirementUsage whose owningFeatureMembership iS a RequirementVerificationMembership
must directly or indirectly specialize the RequirementUsage
VerificationCases::VerificationCase::obj::requirementVerifications.

owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf (RequirementVerificationMembership) implies
specializesFromLibrary('VerificationCases::VerificationCase::0bj::requirementVerifications"')

checkRequirementUsageSpecialization

A RequirementUsage must directly or indirectly specialize the base RequirementUsage
Requirements: :requirementChecks from the Systems Model Library

specializesFromLibrary ('Requirements: :requirementChecks"')
checkRequirementUsageSubrequirementSpecialization

A composite RequirementUsage whose owningType is a RequirementDefinition or
,code>RequirementUsage must directly or indirectly specialize the RequirementUsage
Requirements: :RequirementCheck: :subrequirements from the Systems Model Library.

isComposite and owningType <> null and
(owningType.oclIsKindOf (RequirementDefinition) or
owningType.oclIsKindOf (RequirementUsage)) implies
specializesFromLibrary ('Requirements: :RequirementCheck: :subrequirements')

deriveRequirementUsageA ctorParameter

The actorParameters of a RequirementUsage are the ownedActorParameters of the ActorMemberships
of the RequirementUsage.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 345

actorParameter = featureMembership->
selectByKind (ActorMembership) .
ownedActorParameter

deriveRequirementUsage AssumedConstraint

The assumedConstraints of a RequirementUsage are the ownedConstraints of the
RequirementConstraintMemberships of the RequirementDefinition with kind = assumption

assumedConstraint = ownedFeatureMembership->
selectByKind (RequirementConstraintMembership) ->
select (kind = RequirementConstraintKind::assumption) .
ownedConstraint

deriveRequirementUsageFramedConcern

The framedConcerns of a RequirementUsage are the ownedConcerns of the FramedConcernMemberships
of the RequirementUsage.

framedConcern = featureMembership->
selectByKind (FramedConcernMembership) .
ownedConcern

deriveRequirementUsageRequiredConstraint

The requiredConstraints of a RequirementUsage are the ownedConstraints of the
RequirementConstraintMemberships of the RequirementUsage with kind = requirement

requiredConstraint = ownedFeatureMembership->
selectByKind (RequirementConstraintMembership) ->
select (kind = RequirementConstraintKind::requirement) .
ownedConstraint

deriveRequirementUsageStakeholderParameter

The stakeHolderParameters of a RequirementUsage are the ownedStakeholderParameters of the
StakeholderMemberships of the RequirementUsage

stakeholderParameter = featureMembership->
selectByKind (AStakholderMembership) .
ownedStakeholderParameter

deriveRequirementUsageSubjectParameter

The subjectParameter of a RequirementUsage is the ownedSubjectParameter of its
SubjectMembership (if any).

subjectParameter =
let subjects : OrderedSet (SubjectMembership) =
featureMembership->selectByKind (SubjectMembership) in
if subjects->isEmpty() then null
else subjects->first () .ownedSubjectParameter
endif

deriveRequirementUsageText

The texts of aRequirementUsage are the bodies of the documentation of the RequirementUsage

346 OMG Systems Modeling Language (SysML) v2.0 Beta 1

text = documentation.body
validateRequirementUsageOnlyOneSubject
A RequirementDefinition must have at most one featureMembership thatis a SubjectMembership.
featureMembership->
selectByKind (SubjectMembership) ->
size() <= 1
validateRequirementUsageSubjectParameterPosition
The subjectParameter of a RequirementUsage must be its first input.
input->notEmpty () and input->first() = subjectParameter
8.3.20.10 SatisfyRequirementUsage

Description

A satisfyRequirementUsage is an AssertConstraintUsage that asserts, by default, that a satisfied
RequirementUsage is true for a specific satisfyingFeature, or, if isNegated = true, that the
RequirementUsage is false. The satisfied RequirementUsage is related to the SatisfyRequirementUsage by
a ReferenceSubsetting Relationship.

General Classes

AssertConstraintUsage
RequirementUsage

Attributes
/satisfiedRequirement : RequirementUsage {redefines assertedConstraint}

The RequirementUsage that is satisfied by the satisfyingSubject of this SatisfyRequirementUsage. It is
the assertedConstraint of the SatisfyRequirementUsage considered as an AssertConstraintUsage,
which must be a RequirementUsage.

/satisfyingFeature : Feature

The Feature that represents the actual subject that is asserted to satisfy the satisfiedRequirement. The
satisfyingFeature is bound to the subjectParameter of the SatisfyRequirementUsage.

Operations

None.

Constraints
checkSatisfyRequirementUsageBindingConnector

A satisfyRequirementUsage must have exactly one ownedMember that is a BindingConnector between its
subjectParameter and some Feature other than the subjectParameter.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 347

ownedMember->selectByKind (BindingConnector) ->

select (b |
b.relatedElement->includes (subjectParameter) and
b.relatedElement->exists(r | r <> subjectParameter))->
size() =1

deriveSatisfyRequirementUsageSatisfyingFeature

The satisfyingFeature of a SatisfyRequirementUsage is the Feature to which the subjectParameter
is bound.

satisfyingFeature =
let bindings: BindingConnector = ownedMember->
selectByKind (BindingConnector) —->

select (b | b.relatedElement->includes (subjectParameter)) in
if bindings->isEmpty() or
bindings->first () .relatedElement->exits(r | r <> subjectParameter)
then null
else bindings->first () .relatedElement->any(r | r <> subjectParameter)
endif

validateSatisfyRequirementUsageReference

Ifa satisfyRequirementUsage has an ownedReferenceSubsetting, then its referencedFeature must be
a RequirementUsage.

ownedReferenceSubsetting <> null implies
ownedReferenceSubsetting.referencedFeature.oclIsKindOf (RequirementUsage)

8.3.20.11 SubjectMembership
Description

A SubjectMembership is a ParameterMembership that indicates that its ownedSubjectParameter is the
subject of its owningType. The owningType of a SubjectMembership must be a RequirementDefinition,
RequirementUsage, CaseDefinition, or CaseUsage.

General Classes

ParameterMembership

Attributes

/ownedSubjectParameter : Usage {redefines ownedMemberParameter}
The UsageownedMemberParameter of this SubjectMembership.
Operations

None.

Constraints

validateSubjectMembershipOwning Type

348 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The owningType of a SubjectMembership must be a RequirementDefinition, RequirementUsage,
CaseDefinition, or CaseUsage.

owningType.oclIsType
owningType.oclIsType
owningType.oclIsType
owningType.oclIsType

RequirementDefinition) or
RequiremenCaseRequirementDefinition) or
CaseDefinition) or

CaseUsage)

8.3.20.12 StakeholderMembership
Description

A StakeholderMembership iS a ParameterMembership that identifies a PartUsage as a
stakeholderParameter of a RequirementDefinition or RequirementUsage, which specifies a role played
by an entity with concerns framed by the owningType.

General Classes

ParameterMembership

Attributes

/ownedStakeholderParameter : PartUsage {redefines ownedMemberParameter}

The PartUsage specifying the stakeholder.

Operations

None.

Constraints

validateStakeholderMembershipOwningType

The owningType of a StakeholderMembership must be a RequirementDefinition or RequirementUsage.

owningType.oclIsKindOf (RequirementUsage) or
owningType.oclIsKindOf (RequirementDefinition)

8.3.21 Cases Abstract Syntax

OMG Systems Modeling Language (SysML) v2.0, Beta 1 349

8.3.21.1 Overview
+/caseOwningUsage

— +/caseOwningDefinition
Definition
0.1 0.1
{subsets
calculationOwningUsage}

{subsets

calculationOwningDefinition}
OccurrenceUsage
ActionUsage
CalculationUsage

OccurrenceDefinition
ActionDefinition

CalculationDefinition

+/ownedCase +InestedCase
CaseDefinition 0 CaseUsage o
+/objectiveOwningCaseDefinition| - -
01 {subsets ownedCalculation, ordered} {subsets nestedCalculation, ordered}
{subsets owningType} +/caseDefinition +/definedCase +/objectiveOwningCase
0.1 0.* 0.1
{redefines calculationDefinition} {subsets definedCalculation} {subsets
requirementOwningUsage}
+subjectOwningCase | 0..1 0..1 | +/actorOwningCase
{subsets parameteredStep,

+actorOwningCaseDefinition +/subjectOwningCaseDefinition
{subsets parameteredBehavior, {subsets owningDefinition,
subsets partOwningDefinition} subsets parameteredBehavior}

{subsets owningUsage,
subsets parameteredStep} subsets partOwningUsage}

+/subjectParameter oL +/subjectParameter
Usage
T

1

{subsets parameter, {subsets parameter,
subsets usage} subsets usage}

+/actorParameter o +/actorParameter
PartUsage
o L~ Tor

{subsets parameter, {subsets parameter,
subsets usage, ordered} subsets usage, ordered}

+/objectiveRequirement RequirementUsage *+/objectiveRequirement
" T

0.1
{subsets usage, {subsets
ordered} usage,
ordered}

Figure 41. Case Definition and Usage

FeatureMembership

ObjectiveMembership

+/owningObjectiveMembership| 0..1
{subsets owningParameterMembership}

{redefines ownedMemberFeature}

+/ownedObjectiveRequirement| 1

RequirementUsage

Figure 42. Case Membership

OMG Systems Modeling Language (SysML) v2.0 Beta 1

350

8.3.21.2 CaseDefinition

Description

A CaseDefinitionisaCalculationDefinition for a process, often involving collecting evidence or data,
relative to a subject, possibly involving the collaboration of one or more other actors, producing a result that meets
an objective.

General Classes

CalculationDefinition

Attributes

/actorParameter : PartUsage [0..*] {subsets parameter, usage, ordered}

The parameters of this CaseDefinition that represent actors involved in the case.

/objectiveRequirement : RequirementUsage [0..1] {subsets usage, ordered}

The RequirementUsage representing the objective of this CaseDefinition.

/subjectParameter : Usage {subsets parameter, usage}

The parameter of this CaseDefinition that represents its subject.

Operations

None.

Constraints

checkCaseDefinitionSpecialization

A CaseDefinition must directly or indirectly specialize the base CaseDefinition Cases: :Case> from the
Systems Model Library.

specializesFromLibrary('Cases::Case')
deriveCaseDefinitionActorParameter

The actorParameters of a CaseDefinition are the ownedActorParameters of the ActorMemberships of
the CaseDefinition.

actorParameter = featureMembership->

selectByKind (ActorMembership) .
ownedActorParameter

deriveCaseDefinitionObjectiveRequirement

The objectiveRequirement of a CaseDefinition is the ownedObjectiveRequirement ofits
ObjectiveMembership, if any.

objectiveRequirement =
let objectives: OrderedSet (RequirementUsage) =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 351

featureMembership->
selectByKind (ObjectiveMembership) .
ownedRequirement in
if objectives->isEmpty () then null
else objectives->first () .ownedObjectiveRequirement
endif
deriveCaseDefinitionSubjectParameter

The subjectParameter of a CaseDefinition is the ownedSubjectParameter of its SubjectMembership
(if any).

subjectParameter =
let subjectMems : OrderedSet (SubjectMembership) =
featureMembership->selectByKind (SubjectMembership) in
if subjectMems->isEmpty () then null
else subjectMems->first () .ownedSubjectParameter
endif
validateCaseDefinitionOnlyOneObjective

A CaseDefinition must have at most one featureMembership thatis a ObjectiveMembership.

featureMembership->
selectByKind (ObjectiveMembership) —>
size() <=1

validateCaseDefinitionOnlyOneSubject

A CaseDefinition must have at most one featureMembership thatis a SubjectMembership.
featureMembership->selectByKind (SubjectMembership) ->size () <= 1
validateCaseDefinitionSubjectParameterPosition

The subjectParameter of a CaaseDefinition must be its first input.
input->notEmpty () and input->first() = subjectParameter

8.3.21.3 CaseUsage

Description

A CaseUsage is a Usage of a CaseDefinition.

General Classes

CalculationUsage

Attributes

/actorParameter : PartUsage [0..*] {subsets parameter, usage, ordered}

The parameters of this CaseUsage that represent actors involved in the case.

/caseDefinition : CaseDefinition [0..1] {redefines calculationDefinition}

352 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The CaseDefinition that is the type of this CaseUsage.
/objectiveRequirement : RequirementUsage [0..1] {subsets usage, ordered}
The RequirementUsage representing the objective of this CaseUsage.
/subjectParameter : Usage {subsets parameter, usage}

The parameter of this CaseUsage that represents its subject.
Operations

None.

Constraints

checkCaseUsageSpecialization

A CaseUsage must directly or indirectly specialize the base CaseUsage Cases: : cases from the Systems Model
Library.

specializesFromLibrary ('Cases::cases')
checkCaseUsageSubcaseSpecialization

A composite CaseUsage whose owningType is a CaseDefinition or CaseUsage must directly or indirectly
specialize the CaseUsage Cases: :Case: :subcases

isComposite and owningType <> null and
(owningType.oclIsKindOf (CaseDefinition) or
owningType.oclIsKindOf (CaseUsage)) implies
specializesFromLibrary('Cases: :Case: :subcases')

deriveCaseUsageA ctorParameter

The actorParameters of a CaseUsage are the ownedActorParameters of the ActorMemberships of the
CaseUsage.

actorParameter = featureMembership->
selectByKind (ActorMembership) .
ownedActorParameter

deriveCaseUsageObjectiveRequirement

The objectiveRequirement of a CaseUsage is the RequirementUsage it owns via an ObjectiveMembership,
if any.

objectiveRequirement =
let objectives: OrderedSet (RequirementUsage) =
featureMembership->

selectByKind (ObjectiveMembership) .
ownedRequirement in

if objectives->isEmpty () then null

else objectives->first () .ownedObjectiveRequirement

endif

OMG Systems Modeling Language (SysML) v2.0, Beta 1 353

deriveCaseUsageSubjectParameter

The subjectParameter of a CaseUsage is the ownedSubjectParameter of its SubjectMembership (if any).

subjectParameter =
let subjects : OrderedSet (SubjectMembership) =
featureMembership->selectByKind (SubjectMembership) in
if subjects->isEmpty() then null
else subjects->first () .ownedSubjectParameter
endif
validateCaseUsageOnlyOneObjective
A CaseUsage must have at most one featureMembership thatis a ObjectiveMembership.
featureMembership->
selectByKind (ObjectiveMembership) ->
size() <=1
validateCaseUsageOnlyOneSubject

A CaseUsage must have at most one featureMembership that is a SubjectMembership.

featureMembership->
selectByKind (SubjectMembership) ->
size() <=1

validateCaseUsageSubjectParameterPosition

The subjectParameter of a CaseUsage must be its first input.
input->notEmpty () and input->first() = subjectParameter
8.3.21.4 ObjectiveMembership

Description

An ObjectiveMembership iS a FeatureMembership that indicates that its ownedObjectiveRequirement is
the objective RequirementUsage for its owningType, which must be a CaseDefinition or CaseUsage.

General Classes

FeatureMembership

Attributes

/ownedObjectiveRequirement : RequirementUsage {redefines ownedMemberFeature}
The RequirementUsage that is the ownedMemberFeature of this RequirementUsage.
Operations

None.

Constraints

354 OMG Systems Modeling Language (SysML) v2.0 Beta 1

validateObjectiveMembershiplsComposite

The ownedObjectiveRequirement of an ObjectiveMembership must be composite.

ownedObjectiveRequirement.isComposite

validateObjectiveMembershipOwningType

The owningType of an ObjectiveMembership must be a CaseDefinition or CaseUsage.

owningType.oclIsType (CaseDefinition)

owningType.oclIsType (CaseUsage)

8.3.22 Analysis Cases Abstract Syntax

8.3.22.1 Overview

| Definition

) +/analysisCaseOwningDefinition

or

[0.1

AN

{subsets caseOwningDefinition}

| OccurrenceDefinition

AN

| ActionDefinition

AN

| CalculationDefinition

AN

| CaseDefinition

A

AnalysisCaseDefinition

+/featuringAnalysisCaseDefinition

Usage

OccurrenceUsage

+/analysisCaseOwningUsage

0.1

{subsets
analysisCaseOwningUsage}

!

+/analysisAction) vrerTa— +/analysisAction
ActionUsage

0.*

{subsets action,
ordered}

+/ownedAnalysisCase

CalculationUsage

CaseUsage

0.*

{subsets
usage, ordered}

+/featuringAnalysisCase

AnalysisCaseUsage

0.*

{subsets
featuringActionDefinition}

+/analysisCaseDefinition

0.*

{subsets ownedCase,
ordered}

+/definedAnalysisCase

0.1
{redefines caseDefinition}

+/analysisCaseDefintion| 0..1

{subsets computedFunction,
subsets owningType}

0.*
{redefines definedCase,
ordered}

+/resuItExpressionJﬁ +/resultExpression
Expression

Figure 43. Analysis Case

0.1
{subsets expression,
subsets ownedFeature}

Definition and Usage

8.3.22.2 AnalysisCaseDefinition

Description

+/analysisCase

0.*
{subsets typeWithFeature}

+/nestedAnalysisCase

0.*

{subsets nestedCase,
ordered}

0.1

0..1
{subsets ownedFeature}

{subsets owningType}

An AnalysisCaseDefinition isaCaseDefinition for the case of carrying out an analysis.

General Classes

OMG Systems Modeling Language (SysML) v2.0, Beta 1

355

CaseDefinition

Attributes

/analysisAction : ActionUsage [0..*] {subsets action, ordered}

The composite actions of the AnalysisCaseDefinition that are defined as AnalysisActions.
/resultExpression : Expression [0..1] {subsets expression, ownedFeature}

An Expression used to compute the result of the AnalysisCaseDefinition, owned via a
ResultExpressionMembership.

Operations

None.

Constraints
checkAnalysisCaseDefinitionSpecialization

An AnalysisCaseDefinition must directly or indirectly specialize the base AnalysisCaseDefinition
AnalysisCases: :AnalysisCase from the Systems Model Library.

specializesFromLibrary ('AnalysisCases::AnalysisCase')
deriveAnalysisCaseDefinitionAnalysisAction

The analysisActions of a AnalysisCaseDefinition are all its actions that directly or indirectly specialize
AnalysisCases: :AnalysisAction

analysisAction = action->select (
isComposite and
specializes ('AnalysisCases::AnalysisAction'))

deriveAnalysisCaseDefinitionResultExpression

The resultExpression of a AnalysisCaseDefinition is the ownedResultExpression ofits
ResultExpressionMembership, if any.

resultExpression =
let results : OrderedSet (ResultExpressionMembership) =
featureMembersip->
selectByKind (ResultExpressionMembership) in
if results->isEmpty() then null
else results->first () .ownedResultExpression
endif
8.3.22.3 AnalysisCaseUsage
Description

An RnalysisCaseUsage is a Usage of an AnalysisCaseDefinition.

General Classes

356 OMG Systems Modeling Language (SysML) v2.0 Beta 1

CaseUsage

Attributes

/analysisAction : ActionUsage [0..*] {subsets usage, ordered}

The composite usages of the AnalysisCaseUsage that are defined as AnalysisActions.
/analysisCaseDefinition : AnalysisCaseDefinition [0..1] {redefines caseDefinition}

The AnalysisCaseDefinition thatis the definition of this AnalysisCaseUsage.
/resultExpression : Expression [0..1] {subsets ownedFeature}

An Expression used to compute the result of the AnalysisCaseUsage, owned via a
ResultExpressionMembership.

Operations

None.

Constraints
checkAnalysisCaseUsageSpecialization

An AnalysisCaseUsage must directly or indirectly specialize the base AnalysisCaseUsage
AnalysisCases: :analysisCases from the Systems Model Library.

specializesFromLibrary ('AnalysisCases::analysisCases')
checkAnalysisCaseUsageSubAnalysisCaseSpecialization

A composite AnalysisCaseUsage whose owningType is an AnalysisCaseDefinition or
AnalysisCaseUsage must specialize the AnalysisCaseUsage
AnalysisCases::AnalysisCase: :subAnalysisCases from the Systems Model Library.

isComposite and owningType <> null and
(owningType.oclIsKindOf (AnalysisCaseDefinition) or
owningType.oclIsKindOf (AnalysisCaseUsage)) implies
specializesFromLibrary('AnalysisCases::AnalysisCase: :subAnalysisCases"')

deriveAnalysisCaseUsageAnalysisAction

The analysisActions of a AnalysisCaseUsage are all its actions that directly or indirectly specialize
AnalysisCases: :AnalysisAction.

analysisAction = usage->select (
isComposite and
specializes ('AnalysisCases::AnalysisAction'))

deriveAnalysisCaseUsageResultExpression

The resultExpression of a AnalysisCaseUsage is the ownedResultExpression ofits
ResultExpressionMembership, if any.

OMG Systems Modeling Language (SysML) v2.0, Beta 1

357

resultExpression =
let results : OrderedSet (ResultExpressionMembership) =
featureMembersip->
selectByKind (ResultExpressionMembership) in
if results->isEmpty () then null
else results->first () .ownedResultExpression
endif

8.3.23 Verification Cases Abstract Syntax
8.3.23.1 Overview

1 +/verificationCaseOwningUsage

— I+/verificationCaseOwningDefinition Usage

| Definition 0.1
Jo.1 yay " ouni

T {subsets caseOwningDefinition} {subsets caseOwningUsage}
| OccurrenceDefinition | | OccurrenceUsage |

Ay Ay
| ActionDefinition | | ActionUsage |

PAY PAY
| CalculationDefinition | | CalculationUsage |

Ay Ay
| CaseDefinition | | CaseUsage |

PAY PAY

VerificationCaseUsage
+/ownedVerificationCase
0.+
+/nestedVerificationCase

{subsets ownedCase, ordered}

0.
VerificationCaseDefinition L +/verificationCaseDefinition +/definedVerificationCase] {subsets nestedCase, ordered}
0.1 0.*
+verifyingCaseDefinition O.. {subsets caseDefinition} {subsets definedCase} .
0..* | +/verifyingCase

+/verified Requirement_,.—L +/verifiedRequirement
RequirementUsage
[I

{ordered} {ordered}

Figure 44. Verification Case Definition and Usage

358 OMG Systems Modeling Language (SysML) v2.0 Beta 1

RequirementConstraintMembership

RequirementVerificationMembership +/requirementVerification
+kind : RequirementConstraintKind = requirement{redefines kind} 0.*
{subsets
+/requirementVerificationMembershig| 0..1 referencingConstraintMembership}

{subsets requirementConstraintMembership}

{redefines ownedConstraint}
+/ownedRequirement| 1

/verifiedRequirement

+
RequirementUsage |.<
1

{redefines referencedConstraint}

Figure 45. Verification Membership

8.3.23.2 RequirementVerificationMembership
Description

A RequirementVerificationMembership is a RequirementConstraintMembership used in the objective
ofavVerificationCase to identify a RequirementUsage that is verified by the VverificationCase.

General Classes

RequirementConstraintMembership

Attributes

kind : RequirementConstraintKind {redefines kind}

The kind of a RequirementVerificationMembership must be requirement.
/ownedRequirement : RequirementUsage {redefines ownedConstraint}

The owned RequirementUsage that acts as the ownedConstraint for this
RequirementVerificationMembership. This will either be the verifiedRequirement, or it will subset the
verifiedRequirement.

/verifiedRequirement : RequirementUsage {redefines referencedConstraint}

The RequirementUsage that is identified as being verified. It is the referencedConstraint of the
RequirementVerificationMembership considered as a RequirementConstraintMembership, which must
be a RequirementUsage.

Operations
None.

Constraints

OMG Systems Modeling Language (SysML) v2.0, Beta 1 359

validateRequirementVerificationMembershipKind

A RequirementVerificationMembership must have kind = requirement.
kind = RequirementConstraintKind::requirement
validateRequirementVerificationMembershipOwningType

The owningType of a RequirementVerificationMembership musta RequirementUsage that is owned by
an ObjectiveMembership.

owningType.oclIsKindOf (RequirementUsage) and
owningType.owningFeatureMembership <> null and
owningType.owningFeatureMembership.oclIsKindOf (ObjectiveMembership)

8.3.23.3 VerificationCaseDefinition
Description

A VerificationCaseDefinition isa CaseDefinition for the purpose of verification of the subject of the
case against its requirements.

General Classes

CaseDefinition

Attributes

/verifiedRequirement : RequirementUsage [0..*] {ordered}

The RequirementUsages verified by this VerificationCaseDefinition, which are the
verifiedRequirements of all RequirementVerificationMemberships of the objectiveRequirement.

Operations

None.

Constraints
checkVerificationCaseSpecialization

A VerificationCaseDefinition mustdirectly or indirectly specialize the base
VerificationCaseDefinition VerificationCases: :VerificationCase from the Systems Model
Library.

specializesFromLibrary ('VerificationCases::VerificationCase')
deriveVerificationCaseDefinitionVerifiedRequirement

The verifiedRequirements of a VerificationCaseDefinition are the verifiedRequirements ofits
RequirementVerificationMemberships.

verifiedRequirement =
if objectiveRequirement = null then OrderedSet{}
else
objectiveRequirement. featureMembership->

360 OMG Systems Modeling Language (SysML) v2.0 Beta 1

selectByKind (RequirementVerificationMembership) .
verifiedRequirement->asOrderedSet ()
endif

8.3.23.4 VerificationCaseUsage

Description

A VerificationCaseUsage is a Usage ofa VerificationCaseDefinition.
General Classes

CaseUsage

Attributes

/verificationCaseDefinition : VerificationCaseDefinition [0..1] {subsets caseDefinition}
The VerificationCase thatis the definition of this VerificationCaseUsage.
/verifiedRequirement : RequirementUsage [0..*] {ordered}

The RequirementUsages verified by this VerificationCaseUsage, which are the verifiedRequirements
of all RequirementVerificationMemberships of the objectiveRequirement.

Operations

None.

Constraints
checkVerificationCaseUsageSpecialization

A verificationCaseUsage must subset, directly or indirectly, the base VerificationCaseUsage
VerificationCases: :verificationCases from the Systems Model Library.

specializesFromLibrary('VerificationCases::verificationCases"')
checkVerificationCaseUsageSubVerificationCaseSpecialization

If it is composite and owned by a VerificationCaseDefinition or VerificationCaseUsage, then it must
specialize VerificationCaseUsage
VerificationCases::VerificationCase::subVerificationCases.

isComposite and owningType <> null and
(owningType.oclIsKindOf (VerificationCaseDefinition) or

owningType.oclIsKindOf (VerificationCaseUsage)) implies
specializesFromLibrary('VerificationCases::VerificationCase::subVerificationCases"')

deriveVerificationCaseUsageVerifiedRequirement

The verifiedRequirements of a VerificationCaseUsage are the verifiedRequirements of its
RequirementVerificationMemberships.

verifiedRequirement =
if objectiveRequirement = null then OrderedSet({}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 361

else
objectiveRequirement. featureMembership->
selectByKind (RequirementVerificationMembership) .
verifiedRequirement->asOrderedSet ()
endif

8.3.24 Use Cases Abstract Syntax
8.3.24.1 Overview

1 +/useCaseOwningUsage

— I+/useCaseOwningDefinition
| Definition | Usage
[0..1 [0..1
AN AN
{subsets {subsets
caseOwningDefinition} caseOwningUsage}
| OccurrenceDefinition | | OccurrenceUsage |
AN AN
| ActionDefinition | | ActionUsage |
AN AN
| CalculationDefinition | | CalculationUsage |
AN AN
| CaseDefinition | | CaseUsage |
AN AN
+/ownedUseCase +/nestedUseCase
UseCaseDefinition 0.~ UseCaseUsage 0.~
{subsets ownedCase, ordered} {subsets nestedCase, ordered}
+/includingUseCaseDefinition +/includedUseCase +/includedUseCase
0.. 0.. 0.~
{ordered} {ordered)
+/useCaseDefinition +/definedUseCase . X
+/includingUseCase
0..1 0.* 0
{redefines caseDefinition} {subsets definedCase} h

Figure 46. Use Case Definition and Usage

+/useCaselncluded

Y
{redefines performedAction}

PerformActionUsage UseCaseUsage

+/useCaselnclusion

IncludeUseCaseUsage

*

{subsets performingAction}

Figure 47. Included Use Case
8.3.24.2 IncludeUseCaseUsage

Description

362 OMG Systems Modeling Language (SysML) v2.0 Beta 1

An IncludeUseCaseUsage is a UseCaseUsage that represents the inclusion of a UseCaseUsage by a
UseCaseDefinition or UseCaseUsage. Unless it is the IncludeUseCaseUsage itself, the UseCaseUsage to
be included is related to the includedUseCase by a ReferenceSubsetting Relationship. An
IncludeUseCaseUsage is also a PerformActionUsage, with its useCaseIncluded as the performedAction.

General Classes

PerformActionUsage
UseCaseUsage

Attributes
/useCaselncluded : UseCaseUsage {redefines performedAction}

The UseCaseUsage to be included by this IncludeUseCaseUsage. It is the performedAction of the
IncludeUseCaseUsage considered as a PerformActionUsage, which must be a UseCaseUsage.

Operations
None.
Constraints
checkIncludeUseCaseSpecialization
A IncludeUseCaseUsage whose owningType is a UseCaseDefinition or UseCaseUsage must directly or
indirectly specialize the UseCaseUsage UseCases: :UseCase: : includedUseCases from the Systems Model
Library.
owningType <> null and

(owningType.oclIsKindOf (UseCaseDefinition) or

owningType.oclIsKindOf (UseCaseUsage) implies

specializesFromLibrary ('UseCases: :UseCase::includedUseCases')

validateIncludeUseCaseUsageReference

If an IncludeUseCaseUsage has an ownedReferenceSubsetting, then its referencedFeature must be a
UseCaseUsage.

ownedReferenceSubsetting <> null implies
ownedReferenceSubsetting.referencedFeature.oclIsKindOf (UseCaseUsage)

8.3.24.3 UseCaseDefinition

Description

A UseCaseDefinition is a CaseDefinition that specifies a set of actions performed by its subject, in
interaction with one or more actors external to the subject. The objective is to yield an observable result that is of
value to one or more of the actors.

General Classes

CaseDefinition

Attributes

OMG Systems Modeling Language (SysML) v2.0, Beta 1 363

/includedUseCase : UseCaseUsage [0..*] {ordered}

The UseCaseUsages that are included by this UseCaseDefinition, which are the useCaseIncludeds of the
IncludeUseCaseUsages owned by this UseCaseDefinition.

Operations

None.

Constraints
checkUseCaseDefinitionSpecialization

A UseCaseDefinition must directly or indirectly specializes the base UseCaseDefinition
UseCases: : UseCase from the Systems Model Library.

specializesFromLibrary ('UseCases: :UseCase')
deriveUseCaseDefinitionIncludedUseCase

The includedUseCases of a UseCaseDefinition are the useCaseIncludeds of the
IncludeUseCaseUsages owned by the UseCaseDefinition.

includedUseCase = ownedUseCase->
selectByKind (IncludeUseCaseUsage) .
useCaselIncluded

8.3.24.4 UseCaseUsage

Description

A UseCaseUsage is a Usage of a UseCaseDefinition.
General Classes

CaseUsage

Attributes

/includedUseCase : UseCaseUsage [0..*] {ordered}

The UseCaseUsages that are included by this UseCaseUse, which are the useCaseIncludeds of the
IncludeUseCaseUsages owned by this UseCaseUsage.

/useCaseDefinition : UseCaseDefinition [0..1] {redefines caseDefinition}
The UseCaseDefinition thatis the definition of this UseCaseUsage.
Operations

None.

Constraints

checkUseCaseUsageSpecialization

364 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A UseCaseUsage must directly or indirectly specializes the base UseCaseUsage UseCases: : useCases from the

Systems Model Library.

specializesFromLibrary ('UseCases: :useCases')

checkUseCaseUsageSubUseCaseSpecialization

A composite UseCaseUsage whose owningType is a UseCaseDefinition or UseCaseUsage must specialize

the UseCaseUsage UseCases: :UseCase: : subUseCases from the Systems Model Library.

isComposite and owningType <> null and
(owningType.oclIsKindOf (UseCaseDefinition) or
owningType.oclIsKindOf (UseCaseUsage)) implies
specializesFromLibrary ('UseCases: :UseCase: :subUseCases"')

deriveUseCaseUsagelncludedUseCase

The includedUseCases of a UseCaseUsage are the useCaselIncludeds of the
IncludeUseCaseUsages owned by the UseCaseUsage.

includedUseCase = ownedUseCase->
selectByKind (IncludeUseCaseUsage) .
useCaseIncluded

8.3.25 Views and Viewpoints Abstract Syntax
8.3.25.1 Overview

+/viewOwningUsage
0.1
{subsets partOwningUsage}

+NiewOwningDefinition
0.1
{subsets partOwningDefinition}

OccurrenceDefinition
iy
ItemDefinition
oy
PartDefinition
oy

Definition

OccurrenceUsage
7

ItemUsage

ay

PartUsage

ay

+/nestedView|0..*

{subsets nestedPart, ordered}

+IrenderingOwningViewDefinition| 0.

{subsets owningDefinition)

=3

.1

+viewpointSatisfyingViewDefinition
{subsets owningDefinition}

o Element
0.*

0.1 0.1
{subsets featuringUsage}

P

e Vi i o

DX A a———
{subsets ownedRequirement,
ordered}

{subsets nestedRequirement,
ordered)

g

J n o i
o L~ " [0

Figure 48. View Definition and Usage

OMG Systems Modeling Language (SysML) v2.0, Beta 1

wningVie:
{subsets owningUsage}

{subsets namespace}

ViewDefinition o ViewUsage
(subsets ownedPart, ordered} | *includeASExposed(element : Element) : Booleai
+IviewDefinition +/definedView|
0.1 0.
{redefines partDefinition} {subsets definedPart}
+HfeaturingView +iew
0. 0. 0.
{subsets featuringDefinition} {subsets usage,
ordered)
+lowningViewDefinition +viewCondition +viewCondition +owningView|
0.1 0. 0. 0.1
{subsets {subsets ownedMember, {subsets ownedMember, {subsets
owningType} ordered} ordered) owningType}

{subsets member,

ord

jered)

365

i i i initi +/viewpointOwningUsage
Definition +/viewpointOwningDefinition Usage P gUsag
0.1 0.1
{subsets requirementOwningDefinition} {subsets requirementOwningUsage}
OccurrenceDefinition OccurrenceUsage
ConstraintDefinition ConstraintUsage

RequirementDefinition RequirementUsage

+/ownedViewpoint — -
ViewpointUsage
0.*

subsets ownedRequirement, ordered . .

fsu W aul) +/nestedViewpoint
i) Idefi - ’

Viewpol Deofimtion L. IviewpointDefinition /definedViewpoin S
0.1 0..* .
. . . {subsets nestedRequirement, ordered}
+viewpointDefinitionForStakeholder 0..1 {redefines requirementDefinition} {subsets definedRequirement}

+/viewpointForStakeholder|0..1

+/viewpointStakehoIderJ—L +/viewpointStakeholder
PartUsage
oL~ T

{ordered} {ordered}

Figure 49. Viewpoint Definition and Usage

— +/redenderingOwningDefinition +/renderingOwningUsage
Definition Usage
I:“ : 0.1

{subsets partOwningDefinition} {subsets partOwningUsage}

| OccurrenceDefinition | OccurrenceUsage
AN

ItemDefinition ItemUsage

PartDefinition PartUsage

+/ownedRendering

0.* RenderingUsage
{subsets ownedPart, ordered}
RenderingDefinition +/renderingDefinition +/definedRendering| +/nestedRendering
0..1 0..* 0.*
{redefines partDefinition} {subsets definedPart} {subsets nestedPart, ordered}
+/featuringRenderingDefinition +/rendering
0..* 0..*

{subsets featuringDefinition} {subsets usage, ordered}

Figure 50. Rendering Definition and Usage

366 OMG Systems Modeling Language (SysML) v2.0 Beta 1

+/ownedImport +/importOwningNamespace
Import ¢ Namespace
0.* 1

+importedNamespace

-

Expose

+isImportAll : Boolean = true{redefines isimportAll}

I

MembershipExpose NamespaceExpose
v Av4 +import
Membershiplmport Namespacelmport
0..”
+import|0..*

RN

+importedMembership
(]
Membership

Figure 51. Expose Relationship

FeatureMembership

+/referencingRenderingMembership

*

ViewRenderingMembership

+/viewRenderingMembership|0..1

{redefines ownedMemberFeature}
+/ownedRendering| 1

/referencedRendering

RenderingUsage |.<+
1

Figure 52. View Rendering Membership
8.3.25.2 Expose

Description

An Expose is an Import of Memberships into a ViewUsage that provide the Elements to be included in a view.
Visibility is always ignored for an Expose (i.e., isImportAll = true).

General Classes

OMG Systems Modeling Language (SysML) v2.0, Beta 1 367

Import

Attributes

isImportAll : Boolean {redefines isimportAll}

An Expose always imports all Elements, regardless of visibility (isImportAll = true).
Operations

None.

Constraints

validateExposelsImportAll

An Expose always imports all Elements, regardless of visibility.
isImportAll

validateExposeOwningNamespace

The importOwningNamespace of an Expose must be a ViewUsage.
importOwningNamespace.oclIsType (ViewUsage)

8.3.25.3 MembershipExpose

Description

A MembershipExpose is an Expose that exposes a specific importedMembership and, if isRecursive =
true, additional Memberships recursively.

General Classes

Expose
MembershipImport

Attributes

None.

Operations

None.

Constraints

None.

8.3.25.4 NamespaceExpose

Description

368 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A NamespaceExpose 1S an Expose Relationship that exposes the Memberships of a specific
importedNamespace and, if isRecursive = true, additional Memberships recursively.

General Classes

Expose
Namespacelmport

Attributes

None.

Operations

None.

Constraints

None.

8.3.25.5 RenderingDefinition

Description

A RenderingDefinition isa PartDefinition that defines a specific rendering of the content of a model view

(e.g., symbols, style, layout, etc.).

General Classes

PartDefinition

Attributes

/rendering : RenderingUsage [0..*] {subsets usage, ordered}

The usages of a RenderingDefinition that are RenderingUsages.
Operations

None.

Constraints

checkRenderingDefinitionSpecialization

A RenderingDefinition must directly or indirectly specialize the base RenderingDefinition
Views: :Rendering from the Systems Model Library.

specializesFromLibrary('Views: :Rendering')
deriveRenderingDefinitionRendering

The renderings of a RenderingDefinition are all its usages that are RenderingUsages.

rendering = usages->selectByKind (RenderingUsage)

OMG Systems Modeling Language (SysML) v2.0, Beta 1

369

8.3.25.6 RenderingUsage
Description

A RenderingUsage is the usage of a RenderingDefinition to specify the rendering of a specific model view to
produce a physical view artifact.

General Classes

PartUsage

Attributes

/renderingDefinition : RenderingDefinition [0..1] {redefines partDefinition}

The RenderingDefinition thatis the definition of this RenderingUsage.
Operations

None.

Constraints

checkRenderingUsageRedefinition

A RenderingUsage whose owningFeatureMembership is a ViewRenderingMembership must redefine the
RenderingUsage Views: :View: :viewRendering.

owningFeatureMembership <> null and

owningFeatureMembership.oclIsKindOf (ViewRenderingMembership) implies
redefinesFromLibrary ('Views::View: :viewRendering')

checkRenderingUsageSpecialization

A RenderingUsage must directly or indirectly specialize the base RenderingUsage Views: : renderings from
the Systems Model Library.

specializesFromLibrary ('Views::renderings"')
checkRenderingUsageSubrenderingSpecialization

A RenderingUsage whose owningType is @ RenderingDefinition or RenderingUsage must directly or
indirectly specialize the RenderingUsage Views: :Rendering: : subrenderings from the Systems Model
Library.

owningType <> null and
(owningType.oclIsKindOf (RenderingDefinition) or
owningType.oclIsKindOf (RenderingUsage)) implies
specializesFromLibrary ('Views: :Rendering: :subrenderings"')

8.3.25.7 ViewDefinition

Description

370 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A vViewDefinition isa PartDefinition that specifies how a view artifact is constructed to satisfy a
viewpoint. It specifies a viewConditions to define the model content to be presented and a viewRendering to
define how the model content is presented.

General Classes

PartDefinition

Attributes

/satisfiedViewpoint : ViewpointUsage [0..*] {subsets ownedRequirement, ordered}

The composite ownedRequirements of this ViewDefinition that are ViewpointUsages for viewpoints
satisfied by the ViewDefinition.

/view : ViewUsage [0..*] {subsets usage, ordered}
The usages of this ViewDefinition that are ViewUsages.
/viewCondition : Expression [0..*] {subsets ownedMember, ordered}

The Expressions related to this ViewDefinition by ElementFilterMemberships, which specify conditions
on Elements to be rendered in a view.

/viewRendering : RenderingUsage [0..1]

The RenderingUsage to be used to render views defined by this ViewDefinition, which is the
referencedRendering of the ViewRenderingMembership of the ViewDefinition.

Operations

None.

Constraints
checkViewDefinitionSpecialization

A ViewDefinition must directly or indirectly specialize the base ViewDefinition Views: : View from the
Systems Model Library.

specializesFromLibrary ('Views::View')
deriveViewDefinitionSatisfied Viewpoint

The satisfiedViewpoints ofa ViewDefinition are its ownedRequirements that are composite
ViewpointUsages.

satisfiedViewpoint = ownedRequirement->
selectByKind (ViewpointUsage) ->
select (isComposite)

deriveViewDefinitionView

The views of a ViewDefinition are all its usages that are ViewUsages.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 371

view = usage->selectByKind (ViewUsage)
deriveViewDefinitionViewCondition

The viewConditions of a ViewDefinition are the conditions of its owned ElementFilterMemberships.

viewCondition = ownedMembership->
selectByKind (ElementFilterMembership) .
condition

deriveViewDefinitionViewRendering

The viewRendering of a ViewDefinition is the referencedRendering of its owned
ViewRenderingMembership, if any.

viewRendering =
let renderings: OrderedSet (ViewRenderingMembership) =
featureMembership->selectByKind (ViewRenderingMembership) in
if renderings->isEmpty () then null
else renderings->first().referencedRendering
endif
validateViewDefinitionOnlyOneViewRendering

A ViewDefinition must have at most one ViewRenderingMembership.

featureMembership->
selectByKind (ViewRenderingMembership) ->
size() <= 1

8.3.25.8 ViewpointDefinition
Description

A ViewpointDefinition is a RequirementDefinition that specifies one or more stakeholder concerns that
are to be satisfied by creating a view of a model.

General Classes

RequirementDefinition

Attributes

/viewpointStakeholder : PartUsage [0..*] {ordered}

The PartUsages that identify the stakeholders with concerns framed by this ViewpointDefinition, which are
the owned and inherited stakeholderParameters of the framedConcerns of this ViewpointDefinition

Operations
None.
Constraints

checkViewpointDefinitionSpecialization

372 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A ViewpointDefinition must directly or indirectly specialize the base ViewpointDefinition
Views: :Viewpoint from the Systems Model Library.

specializesFromLibrary ('Views: :Viewpoint"')
deriveViewpointDefinitionViewpointStakeholder

The viewpointStakeholders of a ViewpointDefinition are the ownedStakeholderParameters of all
featureMemberships that are StakeholderMemberships.

viewpointStakeholder = framedConcern.featureMemberhsip->
selectByKind (StakeholderMembership) .
ownedStakeholderParameter

8.3.25.9 ViewpointUsage

Description

A ViewpointUsage is a Usage of a ViewpointDefinition.

General Classes

RequirementUsage

Attributes

/viewpointDefinition : ViewpointDefinition [0..1] {redefines requirementDefinition}
The ViewpointDefinition thatis the definition of this ViewpointUsage.
/viewpointStakeholder : PartUsage [0..*] {ordered}

The PartUsages that identify the stakeholders with concerns framed by this ViewpointUsage, which are the
owned and inherited stakeholderParameters of the framedConcerns of this ViewpointUsage.

Operations

None.

Constraints
checkViewpointUsageSpecialization

A ViewpointUsage must directly or indirectly specialize the base ViewpointUsage Views: :viewpoints from
the Systems Model Library.

specializesFromLibrary('Views: :viewpoints"')
checkViewpointUsageViewpointSatisfactionSpecialization

A composite ViewpointUsage whose owningType is a ViewDefinition or ViewUsage must directly or
indirectly specialize the ViewpointUsage Views: :View: :viewpointSatisfactions from the Systems Model
Library.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 373

isComposite and owningType <> null and

(owningType.oclIsKindOf (ViewDefinition) or

owningType.oclIsKindOf (ViewUsage)) implies
specializesFromLibrary ('Views::View: :viewpointSatisfactions')

deriveViewpointUsageViewpointStakeholder

The viewpointStakeholders of a ViewpointUsage are the ownedStakeholderParameters of all
featureMemberships that are StakeholderMemberships.

viewpointStakeholder = framedConcern.featureMemberhsip->
selectByKind (StakeholderMembership) .
ownedStakeholderParameter

8.3.25.10 ViewRenderingMembership
Description

A ViewRenderingMembership is a FeatureMembership that identifies the viewRendering of a
ViewDefinition or ViewUsage.

General Classes

FeatureMembership

Attributes

/ownedRendering : RenderingUsage {redefines ownedMemberFeature}

The owned RenderingUsage that is either itself the referencedRendering or subsets the
referencedRendering.

/referencedRendering : RenderingUsage

The RenderingUsage that is referenced through this ViewRenderingMembership. It is the
referencedFeature of the ownedReferenceSubsetting for the ownedRendering, if there is one, and,
otherwise, the ownedRendering itself.

Operations

None.

Constraints
deriveVewRenderingMembershipReferencedRendering

The referencedRendering of a ViewRenderingMembership is the referencedFeature of the
ownedReferenceSubsetting (which must be a RenderingUsage) of the ownedRendering, if there is one, and,
otherwise, the ownedRendering itself.

referencedRendering =
let reference: ReferenceSubsetting =
ownedRendering.ownedReferenceSubsetting in
if reference = null then ownedRendering
else 1f not reference.referencedFeature.oclIsKindOf (RenderingUsage) then null

374 OMG Systems Modeling Language (SysML) v2.0 Beta 1

else reference.referencedFeature.oclAsType (RenderingUsage)
endif

validateViewRenderingMembershipOwningType
The owningType of a ViewRenderingMembership must be a ViewDefinition ora ViewUsage.

owningType.oclIsKindOf (ViewDefinition) or
owningType.oclIsKindOf (ViewUsage)

8.3.25.11 ViewUsage

Description

A ViewUsage is a usage of a ViewDefinition to specify the generation of a view of the members of a collection
of exposedNamespaces. The ViewUsage can satisfy more viewpoints than its definition, and it can specialize
the viewRendering specified by its definition.

General Classes

PartUsage

Attributes

/exposedElement : Element [0..*] {subsets member, ordered}

The Elements that are exposed by this ViewUsage, which are those memberElements of the imported
Memberships from all the Expose Relationships that meet all the owned and inherited viewConditions.

/satisfiedViewpoint : ViewpointUsage [0..*] {subsets nestedRequirement, ordered}

The nestedRequirements of this ViewUsage that are ViewpointUsages for (additional) viewpoints satisfied by
the ViewUsage.

/viewCondition : Expression [0..*] {subsets ownedMember, ordered}

The Expressions related to this ViewUsage by ElementFilterMemberships, which specify conditions on
Elements to be rendered in a view.

/viewDefinition : ViewDefinition [0..1] {redefines partDefinition}
The ViewDefinition thatis the definition of this ViewUsage.
/viewRendering : RenderingUsage [0..1]

The RenderingUsage to be used to render views defined by this ViewUsage, which is the
referencedRendering of the ViewRenderingMembership of the ViewUsage.

Operations
includeAsExposed(element : Element) : Boolean

Determine whether the given element meets all the owned and inherited viewConditions.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 375

body: let metadataFeatures: Sequence (AnnotatingElement) =
element.ownedAnnotation.annotatingElement->
select (oclIsKindOf (MetadataFeature)) in
self.membership->selectByKind (ElementFilterMembership) .
condition->forAll (cond |
metadataFeatures->exists (elem |
cond.checkCondition (elem)))

Constraints
checkViewUsageSpecialization

A ViewUsage must directly or indirectly specialize the base ViewUsage Views: : views from the Systems Model
Library.

specializesFromLibrary ('Views::views')
checkViewUsageSubviewSpecialization

A ViewUsage whose owningType is a ViewDefinition or ViewUsage must specialize the ViewUsage
Views::View: :subviews from the Systems Library Model.

owningType <> null and

(owningType.oclIsKindOf (ViewDefinition) or

owningType.oclIsKindOf (ViewUsage)) implies
specializesFromLibrary ('Views::View: :subviews"')

deriveViewUsageExposedElement

The exposedElements of a ViewUsage are those memberElements of the imported Memberships from all the
Expose Relationships for which the includeAsExposed operation returns true.

exposedElement = ownedImport->selectByKind (Expose) .
importedMemberships (Set{}) .memberElement->

select (elm | includeAsExposed(elm))->
asOrderedSet ()

deriveViewUsageSatisfiedViewpoint

The satisfiedViewpoints of a ViewUsage are its ownedRequirements that are composite
ViewpointUsages.

satisfiedViewpoint = ownedRequirement->
selectByKind (ViewpointUsage) ->
select (isComposite)

deriveViewUsageViewCondition

The viewConditions of a ViewUsage are the conditions of its owned ElementFilterMemberships.

viewCondition = ownedMembership->
selectByKind (ElementFilterMembership) .
condition

deriveViewUsageViewRendering

376 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The viewRendering of a ViewUsage is the referencedRendering of its owned
ViewRenderingMembership, if any.

viewRendering =
let renderings: OrderedSet (ViewRenderingMembership) =
featureMembership->selectByKind (ViewRenderingMembership) in
if renderings->isEmpty () then null
else renderings->first () .referencedRendering
endif

validateViewUsageOnlyOneViewRendering
A ViewUsage must have at most one ViewRenderingMembership.
featureMembership->

selectByKind (ViewRenderingMembership) ->

size() <=1

8.3.26 Metadata Abstract Syntax
8.3.26.1 Overview

— +/metadataOwningDefinition +/metadataOwningUsage
Definition Usage
0..1 0..1
{subsets {subsets
itemOwningDefinition} itemOwningUsage}
|OccurrenceDefinition| | OccurrenceUsage |
AN AN
ItemDefinition ItemUsage
+/ownedMetadata
| MetadataDefinition | 0.* MetadataUsage
{subsets ownedItem,
ordered} +/nestedMetadata
0.*
| MetaZlass | +/metadataDefinition +/definedMetadata] {subsets nestedlitem,
*o 0x L ordered}
{redefines itemDefinition, {subsets definedltem,
redefines metaclass} subsets typedMetadata}
MetadataFeature

Figure 53. Metadata Definition and Usage
8.3.26.2 MetadataDefinition

Description
A MetadataDefinitionis an ItemDefinition thatis also a Metaclass.
General Classes

Metaclass

OMG Systems Modeling Language (SysML) v2.0, Beta 1 377

ItemDefinition

Attributes

None.

Operations

None.

Constraints
checkMetadataDefinitionSpecialization

A MetadataDefinition must directly or indirectly specialize the base MetadataDefinition
Metadata: :MetadatalItem from the Systems Model Library.

specializesFromLibrary ('Metadata: :MetadatalItem')
8.3.26.3 MetadataUsage
Description

A MetadataUsage is a Usage and a MetadataFeature, used to annotate other Elements in a system model with
metadata. As a MetadataFeature, its type must be a Metaclass, which will nominally be a
MetadataDefinition. However, any kernel Metaclass is also allowed, to permit use of Metaclasses from the
Kernel Model Libraries.

General Classes

ItemUsage
MetadataFeature

Attributes

/metadataDefinition : Metaclass [0..1] {redefines itemDefinition, metaclass}
The MetadataDefinition thatis the definition of this MetadataUsage.
Operations

None.

Constraints

checkMetadataUsageSpecialization

A MetadataUsage must directly or indirectly specialize the base MetadataUsage Metadata: :metadataltems
from the Systems Model Library.

specializesFromLibrary ('Metadata: :metadataltems')

8.4 Semantics

378 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.4.1 Semantics Overview

The semantics of constructs in SysML are specified in terms of the constructs defined in KerML supported by reuse
of model elements from the Kernel Semantic Model Library (see [KerML, 9.2]) and the Systems Model Library (see
9.2). This is similar to how the KerML Kernel Layer semantics are build on the KerML Core Layer (see [KerML,
8.4.4.1]). The semantic requirements are formalized by semantic constraints included in the SysML abstract syntax
(see also 8.3.1 on the various kinds of constraints in the abstract syntax). Additionally, other semantic constraints
require relationships between elements within a user model necessary for the model to be semantically well formed.

Specifically, there are four categories of semantic constraints used to specify SysML semantics, each dealing with a
different kind of relationship.

1. Specialization constraints. These constraints require that Definition or Usage elements of a certain
kind directly or indirectly specialize some specific base Definition or Usage from the Kernel Semantic
Library or the Systems Model Library. They are the fundamental means for providing semantics to
abstract syntax elements in SysML. Specialization constraints always have the word Specialization in
their name. For example, checkPartDefinitionSpecialization requires thata PartDefinition
directly or indirectly specialize the PartDefinition Parts: :Part from the Systems Model Library.

2. Redefinition constraints. These constraints require that certain Usages in a model have Redefinition
relationships with certain other Usages (or KerML Features) in the model. While Redefinitions are
kinds of Specializations, redefinition constraints differ from the specialization constraints described
above because of the specific semantics of redefinition. Redefinition constraints always have the word
Redefinition in their name. For example, checkRenderingUsageRedefinition requires a
Redefinition on a RenderingUsage used to specify a viewRendering.

3. Type-featuring constraints. These constraints require that certain Usages in a model have
TypeFeaturing relationships with certain other Definitions or Usages in the model. The SysML
specification includes only one constraint in this category, checkOccurrenceUsageFeatureTyping,
which applies to OccurrenceUsages modeling time slices or snaphots. However, various type-featuring
constraints from KerML also apply to corresponding SysML constructs. For instance, the KerML
checkConnectorTypeFeaturing also applies to S