
An OMG® Systems Modeling Publication

OMG Systems Modeling Language™
(SysML®)

Version 2.0 Beta 2
(Release 2024-02)

Part 1: Language Specification

OMG Document Number: None

Date: February 2024

Standard document URL: https://www.omg.org/spec/SysML/2.0/Language/

Machine Readable File(s): https://www.omg.org/spec/SysML/20240201/

Normative:
https://www.omg.org/spec/SysML/20240201/SysML.xmi
https://www.omg.org/spec/SysML/20240201/Systems-Library.kpar
https://www.omg.org/spec/SysML/20240201/Analysis-Domain-Libary.kpar
https://www.omg.org/spec/SysML/20240201/Cause-and-Effect-Domain-Library.kpar
https://www.omg.org/spec/SysML/20240201/Geometry-Domain-Library.kpar
https://www.omg.org/spec/SysML/20240201/Metadata-Domain-Library.kpar
https://www.omg.org/spec/SysML/20240201/Quantities-and-Units-Domain-Library.kpar
https://www.omg.org/spec/SysML/20240201/Requirement-Derivation-Domain-Library.kpar
https://www.omg.org/spec/SysML/20240201/SysML.json

Non-normative:
https://www.omg.org/spec/SysML/20240201/SimpleVehicleModel.sysml

https://www.omg.org/spec/SysML/2.0/Language/
https://www.omg.org/spec/SysML/20230201/
https://www.omg.org/spec/SysML/20230201/SysML.xmi
https://www.omg.org/spec/SysML/20230201/Systems-Library.kpar
https://www.omg.org/spec/SysML/20230201/Analysis-Domain-Libary.kpar
https://www.omg.org/spec/SysML/20230201/Cause-and-Effect-Domain-Library.kpar
https://www.omg.org/spec/SysML/20230201/Geometry-Domain-Library.kpar
https://www.omg.org/spec/SysML/20230201/Metadata-Domain-Library.kpar
https://www.omg.org/spec/SysML/20230201/Quantities-and-Units-Domain-Library.kpar
https://www.omg.org/spec/SysML/20230201/Requirement-Derivation-Domain-Library.kpar
https://www.omg.org/spec/SysML/20230201/SysML.json
https://www.omg.org/spec/SysML/20230201/SimpleVehicleModel.sysml

Copyright © 2019-2024, 88solutions Corporation
Copyright © 2019-2024, Airbus
Copyright © 2019-2024, Aras Corporation
Copyright © 2019-2024, Association of Universities for Research in Astronomy (AURA)
Copyright © 2019-2024, BigLever Software
Copyright © 2019-2024, Boeing
Copyright © 2022-2024, Budapest University of Technology and Economics
Copyright © 2021-2024, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Copyright © 2019-2024, Contact Software GmbH
Copyright © 2019-2024, Dassault Systèmes (No Magic)
Copyright © 2019-2024, DSC Corporation
Copyright © 2020-2024, DEKonsult
Copyright © 2020-2024, Delligatti Associates LLC
Copyright © 2019-2024, The Charles Stark Draper Laboratory, Inc.
Copyright © 2020-2024, ESTACA
Copyright © 2023-2024, Galois, Inc.
Copyright © 2019-2024, GfSE e.V.
Copyright © 2019-2024, George Mason University
Copyright © 2019-2024, IBM
Copyright © 2019-2024, Idaho National Laboratory
Copyright © 2019-2024, INCOSE
Copyright © 2019-2024, Intercax LLC
Copyright © 2019-2024, Jet Propulsion Laboratory (California Institute of Technology)
Copyright © 2019-2024, Kenntnis LLC
Copyright © 2020-2024, Kungliga Tekniska högskolon (KTH)
Copyright © 2019-2024, LightStreet Consulting LLC
Copyright © 2019-2024, Lockheed Martin Corporation
Copyright © 2019-2024, Maplesoft
Copyright © 2021-2024, MID GmbH
Copyright © 2020-2024, MITRE
Copyright © 2019-2024, Model Alchemy Consulting
Copyright © 2019-2024, Model Driven Solutions, Inc.
Copyright © 2019-2024, Model Foundry Pty. Ltd.
Copyright © 2023-2024, Object Management Group, Inc.
Copyright © 2019-2024, On-Line Application Research Corporation (OAC)
Copyright © 2019-2024, oose Innovative Informatik eG
Copyright © 2019-2024, Østfold University College
Copyright © 2019-2024, PTC
Copyright © 2020-2024, Qualtech Systems, Inc.
Copyright © 2019-2024, SAF Consulting
Copyright © 2019-2024, Simula Research Laboratory AS
Copyright © 2019-2024, System Strategy, Inc.
Copyright © 2019-2024, Thematix Partners, LLC
Copyright © 2019-2024, Tom Sawyer
Copyright © 2023-2024, Tucson Embedded Systems, Inc.
Copyright © 2019-2024, Universidad de Cantabria
Copyright © 2019-2024, University of Alabama in Huntsville
Copyright © 2019-2024, University of Detroit Mercy
Copyright © 2019-2024, University of Kaiserslauten
Copyright © 2020-2024, Willert Software Tools GmbH (SodiusWillert)

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the
terms, conditions and notices set forth below. This document does not represent a commitment to
implement any portion of this specification in any companys products. The information contained in this
document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document
and distribute copies of the modified version. Each of the copyright holders listed above has agreed that
no person shall be deemed to have infringed the copyright in the included material of any such copyright
holder by reason of having used the specification set forth herein or having conformed any computer
software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby
grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications
that are based upon this specification, and to use, copy, and distribute this specification as provided
under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will
not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these
terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in
your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be responsible for
identifying patents for which a license may be required by any OMG specification, or for conducting legal
inquiries into the legal validity or scope of those patents that are brought to its attention. OMG
specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and
communications regulations and statutes. This document contains information which is protected by
copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or
used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR

OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne
by you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this
specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in
subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights
clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement
and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its
successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 9C Medway Road, PMB 274, Milford, MA 01757,
U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, Financial Instrument Global
Identifier®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language™, UML®, UML Cube Logo®,
VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or
through its designees) is and shall at all times be the sole entity that may authorize developers, suppliers
and sellers of computer software to use certification marks, trademarks or other special designations to
indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable
compliance points may claim only that the software was based on this specification, but may not claim
compliance or conformance with this specification. In the event that testing suites are implemented or
approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing
suites.

https://www.omg.org/legal/tm_list.htm

OMG’S ISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page https://www.omg.org, under
Documents, Report a Bug/Issue.

http://www.omg.org/

Table of Contents
0 Preface...23
1 Scope...1
2 Conformance...3
3 Normative References ..5
4 Terms and Definitions ..7
5 Symbols ..9
6 Introduction...11

6.1 Document Overview ...11
6.2 Document Organization ..12
6.3 Acknowlegements...13

7 Language Description ...15
7.1 Language Overview ..15
7.2 Elements and Relationships ..16

7.2.1 Elements and Relationships Overview..16
7.2.2 Elements..17
7.2.3 Relationships ...18

7.3 Dependencies ..18
7.3.1 Dependencies Overview..18
7.3.2 Dependency Declaration ...19

7.4 Annotations ...19
7.4.1 Annotations Overview ..20
7.4.2 Comments and Documentation ...22
7.4.3 Textual Representation..22

7.5 Namespaces and Packages ..23
7.5.1 Namespaces Overview ..23
7.5.2 Owned Members and Aliases..27
7.5.3 Imports ..28
7.5.4 Import Filtering ...29
7.5.5 Root Namespaces ..31

7.6 Definition and Usage ..31
7.6.1 Definition and Usage Overview..31
7.6.2 Definitions...41
7.6.3 Usages ...42
7.6.4 Reference Usages ..44
7.6.5 Effective Names ..44
7.6.6 Feature Chains...45
7.6.7 Variations and Variants...45
7.6.8 Implicit Specialization ..46

7.7 Attributes...46
7.7.1 Attributes Overview..46
7.7.2 Attribute Definitions and Usages ..48

7.8 Enumerations ..49
7.8.1 Enumerations Overview..49
7.8.2 Enumeration Definitions and Usages..50

7.9 Occurrences...51
7.9.1 Occurrences Overview ..51
7.9.2 Occurrence Definitions and Usages ..56
7.9.3 Time Slices and Snapshots..56
7.9.4 Individual Definitions and Usages ..57
7.9.5 Event Occurrence Usages ...57

OMG Systems Modeling Language (SysML) v2.0 Beta 1 i

7.10 Items..57
7.10.1 Items Overview ...58
7.10.2 Item Definitions and Usages ...59

7.11 Parts...59
7.11.1 Parts Overview..59
7.11.2 Part Definitions and Usages ..62

7.12 Ports ..63
7.12.1 Ports Overview..63
7.12.2 Port Definitions and Usages..64
7.12.3 Conjugated Port Definitions and Usages ..65

7.13 Connections...65
7.13.1 Connections Overview..65
7.13.2 Connection Definitions and Usages ..72
7.13.3 Bindings as Usages ...74
7.13.4 Feature Values...74
7.13.5 Successions as Usages...75
7.13.6 Flow Connection Usages and Messages ...76

7.14 Interfaces...77
7.14.1 Interfaces Overview ..77
7.14.2 Interface Definitions and Usages ..80

7.15 Allocations ..81
7.15.1 Allocations Overview..81
7.15.2 Allocation Definitions and Usages..82

7.16 Actions ..83
7.16.1 Actions Overview..83
7.16.2 Action Definitions and Usages..95
7.16.3 Control Nodes ...97
7.16.4 Succession Shorthands ..98
7.16.5 Conditional Successions..99
7.16.6 Perform Action Usages ...100
7.16.7 Send Action Usages ..101
7.16.8 Accept Action Usages ...102
7.16.9 Assignment Action Usages ...105
7.16.10 If Action Usages..106
7.16.11 Loop Action Usages..106

7.17 States ...108
7.17.1 States Overview ..108
7.17.2 State Definitions and Usages ..112
7.17.3 Transition Usages..113
7.17.4 Exhibit State Usages ...116

7.18 Calculations...116
7.18.1 Calculations Overview ..116
7.18.2 Calculation Definitions and Usages ..118

7.19 Constraints ..119
7.19.1 Constraints Overview..119
7.19.2 Constraint Definitions and Usages..121
7.19.3 Assert Constraint Usages ..122

7.20 Requirements ..122
7.20.1 Requirements Overview..123
7.20.2 Requirement Definition and Usage...126
7.20.3 Concern Definitions and Usages...128
7.20.4 Satisfy Requirement Usages ...129

7.21 Cases ...130
7.21.1 Cases Overview...130

ii OMG Systems Modeling Language (SysML) v2.0 Beta 1

7.21.2 Case Definitions and Usages...131
7.22 Analysis Cases ..131

7.22.1 Analysis Cases Overview..131
7.22.2 Analysis Case Definitions and Usages..133
7.22.3 Trade-Off Analyses...134

7.23 Verification Cases ...135
7.23.1 Verification Cases Overview ..135
7.23.2 Verification Case Definitions and Usages ..137

7.24 Use Cases ..138
7.24.1 Use Cases Overview ...138
7.24.2 Use Case Definitions and Usages ...141
7.24.3 Include Use Case Usages ..142

7.25 Views and Viewpoints ..142
7.25.1 Views and Viewpoints Overview..142
7.25.2 View Definitions and Usages..145
7.25.3 Viewpoint Definitions and Usages..146
7.25.4 Rendering Definitions and Usages..147
7.25.5 Diagrams ...147

7.26 Metadata..149
7.26.1 Metadata Overview ...149
7.26.2 Metadata Definitions and Usages..151
7.26.3 Semantic Metadata ..152
7.26.4 User-Defined Keywords..153

8 Metamodel ..155
8.1 Metamodel Overview..155
8.2 Concrete Syntax ..155

8.2.1 Concrete Syntax Overview ...155
8.2.2 Textual Notation..155

8.2.2.1 Textual Notation Overview...155
8.2.2.1.1 EBNF Conventions ...156
8.2.2.1.2 Lexical Structure ...157

8.2.2.2 Elements and Relationships Textual Notation ..157
8.2.2.3 Dependencies Textual Notation ..158
8.2.2.4 Annotations Textual Notation ...158

8.2.2.4.1 Annotations ...158
8.2.2.4.2 Comments and Documentation ...158
8.2.2.4.3 Textual Representation..158

8.2.2.5 Namespaces and Packages Textual Notation ..158
8.2.2.5.1 Packages ..159
8.2.2.5.2 Package Elements..160

8.2.2.6 Definition and Usage Textual Notation ..160
8.2.2.6.1 Definitions ...160
8.2.2.6.2 Usages ...161
8.2.2.6.3 Reference Usages ..162
8.2.2.6.4 Body Elements ..162
8.2.2.6.5 Specialization ..163
8.2.2.6.6 Multiplicity..165

8.2.2.7 Attributes Textual Notation...165
8.2.2.8 Enumerations Textual Notation ..165
8.2.2.9 Occurrences Textual Notation...165

8.2.2.9.1 Occurrence Definitions..165
8.2.2.9.2 Occurrence Usages ..166
8.2.2.9.3 Occurrence Successions ..166

8.2.2.10 Items Textual Notation..166

OMG Systems Modeling Language (SysML) v2.0 Beta 1 iii

8.2.2.11 Parts Textual Notation...167
8.2.2.12 Ports Textual Notation ..167
8.2.2.13 Connections Textual Notation...167

8.2.2.13.1 Connection Definition and Usage ...167
8.2.2.13.2 Binding Connectors...168
8.2.2.13.3 Successions..168
8.2.2.13.4 Messages and Flow Connections ..168

8.2.2.14 Interfaces Textual Notation...170
8.2.2.14.1 Interface Definitions..170
8.2.2.14.2 Interface Usages ..171

8.2.2.15 Allocations Textual Notation ..171
8.2.2.16 Actions Textual Notation ..171

8.2.2.16.1 Action Definitions ...171
8.2.2.16.2 Action Usages..172
8.2.2.16.3 Control Nodes..173
8.2.2.16.4 Send and Accept Action Usages ...173
8.2.2.16.5 Assignment Action Usages ...175
8.2.2.16.6 Structured Control Action Usages...175
8.2.2.16.7 Action Successions..176

8.2.2.17 States Textual Notation ...176
8.2.2.17.1 State Definitions ..176
8.2.2.17.2 State Usages ..177
8.2.2.17.3 Transition Usages ..178

8.2.2.18 Calculations Textual Notation...179
8.2.2.19 Constraints Textual Notation ..179
8.2.2.20 Requirements Textual Notation ..180

8.2.2.20.1 Requirement Definitions ...180
8.2.2.20.2 Requirement Usages..181
8.2.2.20.3 Concerns..181

8.2.2.21 Cases Textual Notation ...181
8.2.2.22 Analysis Cases Textual Notation ..182
8.2.2.23 Verification Cases Textual Notation ...182
8.2.2.24 Use Cases Textual Notation ..182
8.2.2.25 Views and Viewpoints Textual Notation ..183

8.2.2.25.1 View Definitions ...183
8.2.2.25.2 View Usages..183
8.2.2.25.3 Viewpoints...183
8.2.2.25.4 Renderings...184

8.2.2.26 Metadata Textual Notation..184
8.2.3 Graphical Notation ..185

8.2.3.1 Graphical Notation Overview ...185
8.2.3.2 Elements and Relationships Graphical Notation...186
8.2.3.3 Dependencies Graphical Notation...186
8.2.3.4 Annotations Graphical Notation..187
8.2.3.5 Namespaces and Packages Graphical Notation ..188
8.2.3.6 Definition and Usage Graphical Notation...191
8.2.3.7 Attributes Graphical Notation ...193
8.2.3.8 Enumerations Graphical Notation...194
8.2.3.9 Occurrences Graphical Notation ...195
8.2.3.10 Items Graphical Notation ..199
8.2.3.11 Parts Graphical Notation ...200
8.2.3.12 Ports Graphical Notation...202
8.2.3.13 Connections Graphical Notation ...205
8.2.3.14 Interfaces Graphical Notation ...210

iv OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.2.3.15 Allocations Graphical Notation...211
8.2.3.16 Actions Graphical Notation...212
8.2.3.17 States Graphical Notation..220
8.2.3.18 Calculations Graphical Notation ...223
8.2.3.19 Constraints Graphical Notation...224
8.2.3.20 Requirements Graphical Notation...226
8.2.3.21 Cases Graphical Notation..231
8.2.3.22 Analysis Cases Graphical Notation...232
8.2.3.23 Verification Cases Graphical Notation ...233
8.2.3.24 Use Cases Graphical Notation...234
8.2.3.25 Views and Viewpoints Graphical Notation...236
8.2.3.26 Metadata Graphical Notation ..239

8.3 Abstract Syntax ...240
8.3.1 Abstract Syntax Overview ..240
8.3.2 Elements and Relationships Abstract Syntax..241
8.3.3 Dependencies Abstract Syntax..241
8.3.4 Annotations Abstract Syntax...242
8.3.5 Namespaces and Packages Abstract Syntax ...242
8.3.6 Definition and Usage Abstract Syntax..244

8.3.6.1 Overview ...245
8.3.6.2 Definition ..245
8.3.6.3 ReferenceUsage...252
8.3.6.4 Usage...253
8.3.6.5 VariantMembership...260

8.3.7 Attributes Abstract Syntax ..261
8.3.7.1 Overview ...261
8.3.7.2 AttributeDefinition ..261
8.3.7.3 AttributeUsage ..262

8.3.8 Enumerations Abstract Syntax..263
8.3.8.1 Overview ...263
8.3.8.2 EnumerationDefinition..263
8.3.8.3 EnumerationUsage ..264

8.3.9 Occurrences Abstract Syntax ..264
8.3.9.1 Overview ...265
8.3.9.2 EventOccurrenceUsage ...265
8.3.9.3 LifeClass..266
8.3.9.4 OccurrenceDefinition ..267
8.3.9.5 OccurrenceUsage ..268
8.3.9.6 PortionKind ...270

8.3.10 Items Abstract Syntax ...271
8.3.10.1 Overview ...271
8.3.10.2 ItemDefinition ...271
8.3.10.3 ItemUsage..272

8.3.11 Parts Abstract Syntax ..272
8.3.11.1 Overview ...273
8.3.11.2 PartDefinition ..273
8.3.11.3 PartUsage ..273

8.3.12 Ports Abstract Syntax..275
8.3.12.1 Overview ...275
8.3.12.2 ConjugatedPortDefinition ...276
8.3.12.3 ConjugatedPortTyping ..277
8.3.12.4 PortConjugation ..277
8.3.12.5 PortDefinition..278
8.3.12.6 PortUsage ..279

OMG Systems Modeling Language (SysML) v2.0 Beta 1 v

8.3.13 Connections Abstract Syntax ..280
8.3.13.1 Overview ...281
8.3.13.2 BindingConnectorAsUsage...282
8.3.13.3 ConnectionDefinition ..282
8.3.13.4 ConnectionUsage ..283
8.3.13.5 ConnectorAsUsage..284
8.3.13.6 FlowConnectionDefinition..284
8.3.13.7 FlowConnectionUsage ..285
8.3.13.8 SuccessionAsUsage...286
8.3.13.9 SuccessionFlowConnectionUsage ..286

8.3.14 Interfaces Abstract Syntax ..286
8.3.14.1 Overview ...287
8.3.14.2 InterfaceDefinition ..287
8.3.14.3 InterfaceUsage...288

8.3.15 Allocations Abstract Syntax..288
8.3.15.1 Overview ...289
8.3.15.2 AllocationDefinition..289
8.3.15.3 AllocationUsage ..290

8.3.16 Actions Abstract Syntax..290
8.3.16.1 Overview ...291
8.3.16.2 AcceptActionUsage...293
8.3.16.3 ActionDefinition..295
8.3.16.4 ActionUsage ..296
8.3.16.5 AssignmentActionUsage...298
8.3.16.6 ControlNode ..300
8.3.16.7 DecisionNode ..301
8.3.16.8 ForkNode...302
8.3.16.9 ForLoopActionUsage ..303
8.3.16.10 IfActionUsage ...304
8.3.16.11 JoinNode..306
8.3.16.12 LoopActionUsage..307
8.3.16.13 MergeNode..307
8.3.16.14 PerformActionUsage...308
8.3.16.15 SendActionUsage ..309
8.3.16.16 TriggerInvocationExpression ..310
8.3.16.17 TriggerKind...312
8.3.16.18 WhileLoopActionUsage..312

8.3.17 States Abstract Syntax...314
8.3.17.1 Overview ...314
8.3.17.2 ExhibitStateUsage ...316
8.3.17.3 StateSubactionKind...317
8.3.17.4 StateSubactionMembership...317
8.3.17.5 StateDefinition ..318
8.3.17.6 StateUsage...320
8.3.17.7 TransitionFeatureKind ..323
8.3.17.8 TransitionFeatureMembership ..323
8.3.17.9 TransitionUsage ..324

8.3.18 Calculations Abstract Syntax ..329
8.3.18.1 Overview ...329
8.3.18.2 CalculationDefinition ..329
8.3.18.3 CalculationUsage ..330

8.3.19 Constraints Abstract Syntax..330
8.3.19.1 Overview ...331
8.3.19.2 AssertConstraintUsage ..331

vi OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.19.3 ConstraintDefinition..332
8.3.19.4 ConstraintUsage ..333

8.3.20 Requirements Abstract Syntax..334
8.3.20.1 Overview ...335
8.3.20.2 ActorMembership..337
8.3.20.3 ConcernDefinition...337
8.3.20.4 ConcernUsage ...338
8.3.20.5 FramedConcernMembership...339
8.3.20.6 RequirementConstraintKind..339
8.3.20.7 RequirementConstraintMembership ...340
8.3.20.8 RequirementDefinition..341
8.3.20.9 RequirementUsage ..344
8.3.20.10 SatisfyRequirementUsage ...347
8.3.20.11 SubjectMembership...348
8.3.20.12 StakeholderMembership..349

8.3.21 Cases Abstract Syntax...349
8.3.21.1 Overview ...350
8.3.21.2 CaseDefinition...351
8.3.21.3 CaseUsage ...352
8.3.21.4 ObjectiveMembership ...354

8.3.22 Analysis Cases Abstract Syntax..355
8.3.22.1 Overview ...355
8.3.22.2 AnalysisCaseDefinition...355
8.3.22.3 AnalysisCaseUsage ...356

8.3.23 Verification Cases Abstract Syntax ..358
8.3.23.1 Overview ...358
8.3.23.2 RequirementVerificationMembership...359
8.3.23.3 VerificationCaseDefinition ...360
8.3.23.4 VerificationCaseUsage..361

8.3.24 Use Cases Abstract Syntax..362
8.3.24.1 Overview ...362
8.3.24.2 IncludeUseCaseUsage...362
8.3.24.3 UseCaseDefinition ..363
8.3.24.4 UseCaseUsage...364

8.3.25 Views and Viewpoints Abstract Syntax..365
8.3.25.1 Overview ...365
8.3.25.2 Expose ...367
8.3.25.3 MembershipExpose...368
8.3.25.4 NamespaceExpose...368
8.3.25.5 RenderingDefinition..369
8.3.25.6 RenderingUsage ..370
8.3.25.7 ViewDefinition..370
8.3.25.8 ViewpointDefinition..372
8.3.25.9 ViewpointUsage ..373
8.3.25.10 ViewRenderingMembership ...374
8.3.25.11 ViewUsage ..375

8.3.26 Metadata Abstract Syntax ...377
8.3.26.1 Overview ...377
8.3.26.2 MetadataDefinition..377
8.3.26.3 MetadataUsage ..378

8.4 Semantics ..378
8.4.1 Semantics Overview..379
8.4.2 Definition and Usage Semantics ...386

8.4.2.1 Definitions...386

OMG Systems Modeling Language (SysML) v2.0 Beta 1 vii

8.4.2.2 Usages ...386
8.4.2.3 Variation Definitions and Usages ...386

8.4.3 Attributes Semantics ...387
8.4.3.1 Attribute Definitions ...388
8.4.3.2 Attribute Usages..388

8.4.4 Enumerations Semantics ...388
8.4.5 Occurrences Semantics ...389

8.4.5.1 Occurrence Definitions ...389
8.4.5.2 Occurrence Usages..390
8.4.5.3 Event Occurrence Usages..391

8.4.6 Items Semantics ..392
8.4.6.1 Item Definitions...392
8.4.6.2 Item Usages ...392

8.4.7 Parts Semantics ...392
8.4.7.1 Part Definitions ...393
8.4.7.2 Part Usages..393

8.4.8 Ports Semantics ...393
8.4.8.1 Port Definitions ...394
8.4.8.2 Port Usages..395

8.4.9 Connections Semantics ...395
8.4.9.1 Connection Definitions ...395
8.4.9.2 Connection Usages..396
8.4.9.3 Binding Connectors As Usages...397
8.4.9.4 Successions As Usages..398
8.4.9.5 Flow Connection Definitions ..398
8.4.9.6 Flow Connection Usages...399
8.4.9.7 Succession Flow Connection Usage ...401

8.4.10 Interfaces Semantics..401
8.4.10.1 Interface Definitions..401
8.4.10.2 Interface Usages ..402

8.4.11 Allocations Semantics...403
8.4.11.1 Allocation Definitions ...403
8.4.11.2 Allocation Usages ...403

8.4.12 Actions Semantics...403
8.4.12.1 Action Definitions ...403
8.4.12.2 Action Usages ...404
8.4.12.3 Decision Transition Usages...406
8.4.12.4 Control Nodes ...407
8.4.12.5 Send Action Usages ..412
8.4.12.6 Accept Action Usages ...413
8.4.12.7 Assignment Action Usages ...416
8.4.12.8 If Action Usages..417
8.4.12.9 Loop Action Usages ..418
8.4.12.10 Perform Action Usages ...420

8.4.13 States Semantics..421
8.4.13.1 State Definitions..421
8.4.13.2 State Usages ..422
8.4.13.3 Transition Usages..423
8.4.13.4 Exhibit State Usages..426

8.4.14 Calculations Semantics ...426
8.4.14.1 Calculation Definitions ...427
8.4.14.2 Calculation Usages..427

8.4.15 Constraints Semantics ...428
8.4.15.1 Constraint Definitions ...428

viii OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.4.15.2 Constraint Usages..429
8.4.15.3 Assert Constraint Usages ..430

8.4.16 Requirements Semantics ...430
8.4.16.1 Requirement Definitions ...430
8.4.16.2 Requirement Usages..432
8.4.16.3 Satisfy Requirement Usages..433
8.4.16.4 Concern Definitions ..434
8.4.16.5 Concern Usages...434

8.4.17 Cases Semantics ..434
8.4.17.1 Case Definitions ..434
8.4.17.2 Case Usages...435

8.4.18 Analysis Cases Semantics ...436
8.4.18.1 Analysis Case Definitions ...436
8.4.18.2 Analysis Case Usages..437

8.4.19 Verification Cases Semantics..438
8.4.19.1 Verification Case Definitions..438
8.4.19.2 Verification Case Usages ..439

8.4.20 Use Cases Semantics...439
8.4.20.1 Use Case Definitions...439
8.4.20.2 Use Case Usages ...440
8.4.20.3 Include Use Case Usages ..440

8.4.21 Views and Viewpoints Semantics ...441
8.4.21.1 View Definitions ...441
8.4.21.2 View Usages..441
8.4.21.3 Viewpoint Definitions ...441
8.4.21.4 Viewpoint Usages ...442
8.4.21.5 Rendering Definitions ...442
8.4.21.6 Rendering Usages..442

8.4.22 Metadata Semantics ..443
8.4.22.1 Metadata Definitions ...443
8.4.22.2 Metadata Usages ...443

9 Model Libraries...445
9.1 Model Libraries Overview ..445
9.2 Systems Model Library...445

9.2.1 Systems Model Library Overview ..446
9.2.2 Attributes...446

9.2.2.1 Attributes Overview ..446
9.2.2.2 Elements ..446

9.2.2.2.1 AttributeValue ...446
9.2.2.2.2 attributeValues...446

9.2.3 Items..447
9.2.3.1 Items Overview ...447
9.2.3.2 Elements ..447

9.2.3.2.1 Item..447
9.2.3.2.2 items ..448
9.2.3.2.3 Touches ...448

9.2.4 Parts...449
9.2.4.1 Parts Overview ..449
9.2.4.2 Elements ..449

9.2.4.2.1 Part...449
9.2.4.2.2 parts ...450

9.2.5 Ports ..450
9.2.5.1 Ports Overview..450

OMG Systems Modeling Language (SysML) v2.0 Beta 1 ix

9.2.5.2 Elements ..450
9.2.5.2.1 Port ..450
9.2.5.2.2 ports ...451

9.2.6 Connections...451
9.2.6.1 Connections Overview ..451
9.2.6.2 Elements ..451

9.2.6.2.1 BinaryConnection..451
9.2.6.2.2 binaryConnections...452
9.2.6.2.3 Connection...452
9.2.6.2.4 connections..453
9.2.6.2.5 FlowConnection ..453
9.2.6.2.6 flowConnections..453
9.2.6.2.7 MessageConnection...454
9.2.6.2.8 messageConnections ...455
9.2.6.2.9 SuccessionFlowConnection...455
9.2.6.2.10 successionFlowConnections..456

9.2.7 Interfaces ...456
9.2.7.1 Interfaces Overview ..456
9.2.7.2 Elements ..456

9.2.7.2.1 BinaryInterface..456
9.2.7.2.2 binaryInterfaces ...457
9.2.7.2.3 Interface...457
9.2.7.2.4 interfaces ...458

9.2.8 Allocations ..458
9.2.8.1 Allocations Overview..458
9.2.8.2 Elements ..458

9.2.8.2.1 Allocation ..458
9.2.8.2.2 allocations..459

9.2.9 Actions ..459
9.2.9.1 Actions Overview..459
9.2.9.2 Elements ..459

9.2.9.2.1 AcceptAction...459
9.2.9.2.2 acceptActions ..460
9.2.9.2.3 AcceptMessageAction...460
9.2.9.2.4 Action ..461
9.2.9.2.5 actions..462
9.2.9.2.6 AssignmentAction ...463
9.2.9.2.7 assignmentActions...463
9.2.9.2.8 ControlAction..464
9.2.9.2.9 DecisionAction..464
9.2.9.2.10 DecisionTransitionAction ...465
9.2.9.2.11 ForkAction...465
9.2.9.2.12 ForLoopAction ..465
9.2.9.2.13 forLoopActions ...466
9.2.9.2.14 IfThenAction ...467
9.2.9.2.15 ifThenActions..467
9.2.9.2.16 IfThenElseAction ..468
9.2.9.2.17 ifThenElseActions ...468
9.2.9.2.18 JoinAction ...469
9.2.9.2.19 LoopAction..469
9.2.9.2.20 loopActions ...470
9.2.9.2.21 MergeAction..470
9.2.9.2.22 SendAction ..470
9.2.9.2.23 sendActions ...471

x OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.2.9.2.24 TransitionAction..471
9.2.9.2.25 transitionActions ...472
9.2.9.2.26 WhileLoopAction..472
9.2.9.2.27 whileLoopActions ...473

9.2.10 States ...474
9.2.10.1 States Overview...474
9.2.10.2 Elements ..474

9.2.10.2.1 StateAction ..474
9.2.10.2.2 stateActions ...474
9.2.10.2.3 StateTransitionAction..475

9.2.11 Calculations...475
9.2.11.1 Calculations Overview ..475
9.2.11.2 Elements ..476

9.2.11.2.1 Calculation...476
9.2.11.2.2 calculations..476

9.2.12 Constraints ..477
9.2.12.1 Constraints Overview..477
9.2.12.2 Elements ..477

9.2.12.2.1 assertedConstraintChecks..477
9.2.12.2.2 ConstraintCheck ..477
9.2.12.2.3 constraintChecks ...478
9.2.12.2.4 negatedConstraintChecks ..478

9.2.13 Requirements...478
9.2.13.1 Requirements Overview..478
9.2.13.2 Elements ..479

9.2.13.2.1 ConcernCheck ...479
9.2.13.2.2 concernChecks...479
9.2.13.2.3 DesignConstraintCheck...479
9.2.13.2.4 FunctionalRequirementCheck ...480
9.2.13.2.5 InterfaceRequirementCheck..480
9.2.13.2.6 PerformanceRequirementCheck..481
9.2.13.2.7 PhysicalRequirementCheck...481
9.2.13.2.8 RequirementCheck ..481
9.2.13.2.9 requirementChecks..482

9.2.14 Cases ...483
9.2.14.1 Cases Overview...483
9.2.14.2 Elements ..483

9.2.14.2.1 Case ...483
9.2.14.2.2 cases...484

9.2.15 Analysis Cases ..484
9.2.15.1 Analysis Cases Overview..484
9.2.15.2 Elements ..484

9.2.15.2.1 AnalysisAction ..484
9.2.15.2.2 AnalysisCase ...485
9.2.15.2.3 analysisCases...485

9.2.16 Verification Cases ...485
9.2.16.1 Verification Cases Overview ..486
9.2.16.2 Elements ..486

9.2.16.2.1 PassIf ...486
9.2.16.2.2 VerdictKind ...486
9.2.16.2.3 VerificationCase..487
9.2.16.2.4 verificationCases ...487
9.2.16.2.5 VerificationCheck ...488
9.2.16.2.6 VerificationMethod ...488

OMG Systems Modeling Language (SysML) v2.0 Beta 1 xi

9.2.16.2.7 VerificationMethodKind ...489
9.2.17 Use Cases ..489

9.2.17.1 Use Cases Overview..489
9.2.17.2 Elements ..489

9.2.17.2.1 UseCase ...489
9.2.17.2.2 useCases ..490

9.2.18 Views...490
9.2.18.1 Views Overview..490
9.2.18.2 Elements ..490

9.2.18.2.1 asElementTable ...490
9.2.18.2.2 asInterconnectionDiagram...491
9.2.18.2.3 asTextualNotation ...491
9.2.18.2.4 asTreeDiagram ..492
9.2.18.2.5 GraphicalRendering...492
9.2.18.2.6 Rendering ..493
9.2.18.2.7 renderings ..493
9.2.18.2.8 TabularRendering..493
9.2.18.2.9 TextualRendering ..494
9.2.18.2.10 View ..494
9.2.18.2.11 ViewpointCheck..495
9.2.18.2.12 viewpointChecks ...495
9.2.18.2.13 viewpointConformance ...496
9.2.18.2.14 views..496

9.2.19 Standard View Definitions..497
9.2.19.1 Standard View Definitions Overview ...497
9.2.19.2 Elements ..498

9.2.19.2.1 ActionFlowView ...498
9.2.19.2.2 BrowserView...498
9.2.19.2.3 GeneralView..499
9.2.19.2.4 GeometryView ..499
9.2.19.2.5 GridView...500
9.2.19.2.6 InterconnectionView ...501
9.2.19.2.7 SequenceView...501
9.2.19.2.8 StateTransitionView..502

9.2.20 Metadata..502
9.2.20.1 Metadata Overview ...502
9.2.20.2 Elements ..502

9.2.20.2.1 MetadataItem...502
9.2.20.2.2 metadataItems..503

9.2.21 SysML...503
9.3 Metadata Domain Library...504

9.3.1 Metadata Domain Library Overview ..504
9.3.2 Modeling Metadata ...504

9.3.2.1 Modeling Metadata Overview...504
9.3.2.2 Elements ..504

9.3.2.2.1 Issue...504
9.3.2.2.2 Rationale..505
9.3.2.2.3 Refinement ..505
9.3.2.2.4 StatusInfo...506
9.3.2.2.5 StatusKind ...507

9.3.3 Risk Metadata..507
9.3.3.1 Risk Metadata Overview...507
9.3.3.2 Elements ..507

9.3.3.2.1 Level..507

xii OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.3.3.2.2 LevelEnum ..508
9.3.3.2.3 Risk..509
9.3.3.2.4 RiskLevel...509
9.3.3.2.5 RiskLevelEnum...510

9.3.4 Parameters of Interest Metadata..510
9.3.4.1 Parameters of Interest Metadata Overview ...510
9.3.4.2 Elements ..510

9.3.4.2.1 MeasureOfEffectiveness ...510
9.3.4.2.2 MeasureOfPerformance...511
9.3.4.2.3 measuresOfEffectiveness ..511
9.3.4.2.4 measuresOfPerformance ...512

9.3.5 Image Metadata...512
9.3.5.1 Image Metadata Overview ..512
9.3.5.2 Elements ..512

9.3.5.2.1 Icon..512
9.3.5.2.2 Image ...513

9.4 Analysis Domain Library..514
9.4.1 Analysis Domain Library Overview ...514
9.4.2 Analysis Tooling ...514

9.4.2.1 Analysis Tooling Overview ..514
9.4.2.2 Elements ..514

9.4.2.2.1 ToolExecution ...514
9.4.2.2.2 ToolVariable..514

9.4.3 Sampled Functions ..515
9.4.3.1 Sampled Functions Overview ...515
9.4.3.2 Elements ..515

9.4.3.2.1 Domain ..515
9.4.3.2.2 Interpolate..516
9.4.3.2.3 interpolateLinear ...516
9.4.3.2.4 Range...517
9.4.3.2.5 Sample ...517
9.4.3.2.6 SampledFunction...518
9.4.3.2.7 SamplePair...519

9.4.4 State Space Representation ...519
9.4.4.1 State Space Representation Overview...519
9.4.4.2 Elements ..519

9.4.5 Trade Studies...520
9.4.5.1 Trade Studies Overview ..520
9.4.5.2 Elements ..521

9.4.5.2.1 EvaluationFunction ...521
9.4.5.2.2 MaximizeObjective ...521
9.4.5.2.3 MinimizeObjective..522
9.4.5.2.4 TradeStudy ..522
9.4.5.2.5 TradeStudyObjective...523

9.5 Cause and Effect Domain Library ..524
9.5.1 Cause and Effect Domain Library Overview..524
9.5.2 Causation Connections..524

9.5.2.1 Causation Connections Overview ...524
9.5.2.2 Elements ..524

9.5.2.2.1 Causation ...524
9.5.2.2.2 causations ..525
9.5.2.2.3 causes...525
9.5.2.2.4 effects ..525
9.5.2.2.5 Multicausation ...526

OMG Systems Modeling Language (SysML) v2.0 Beta 1 xiii

9.5.2.2.6 multicausations..527
9.5.3 Cause and Effect ...527

9.5.3.1 Cause and Effect Overview...527
9.5.3.2 Elements ..527

9.5.3.2.1 CausationMetadata ..527
9.5.3.2.2 CausationSemanticMetadata ...528
9.5.3.2.3 CauseMetadata ..528
9.5.3.2.4 EffectMetadata ..529
9.5.3.2.5 MulticausationSemanticMetadata ...529

9.6 Requirement Derivation Domain Library ...530
9.6.1 Requirement Derivation Domain LIbrary Overview ..530
9.6.2 Derivation Connections...530

9.6.2.1 Derivation Connections Overview ..530
9.6.2.2 Elements ..530

9.6.2.2.1 Derivation..530
9.6.2.2.2 derivations ...531
9.6.2.2.3 derivedRequirements...531
9.6.2.2.4 originalRequirements ..532

9.6.3 Requirement Derivation ..532
9.6.3.1 Requirement Derivation Overview ...532
9.6.3.2 Elements ..532

9.6.3.2.1 DerivationMetadata ...532
9.6.3.2.2 DerivedRequirementMetadata...533
9.6.3.2.3 OriginalRequirementMetadata ..533

9.7 Geometry Domain Library..534
9.7.1 Geometry Domain Library Overview ...534
9.7.2 Spatial Items..534

9.7.2.1 Spatial Items Overview ...534
9.7.2.2 Elements ..534

9.7.2.2.1 CurrentDisplacementOf...534
9.7.2.2.2 CurrentPositionOf ...535
9.7.2.2.3 DisplacementOf...535
9.7.2.2.4 PositionOf..536
9.7.2.2.5 SpatialItem...537

9.7.3 Shape Items ...538
9.7.3.1 Shape Items Overview ..538
9.7.3.2 Elements ..538

9.7.3.2.1 Circle ...538
9.7.3.2.2 CircularCone ...538
9.7.3.2.3 CircularCylinder..539
9.7.3.2.4 CircularDisc...539
9.7.3.2.5 Cone...540
9.7.3.2.6 ConeOrCylinder ..540
9.7.3.2.7 ConicSection ...541
9.7.3.2.8 ConicSurface ...542
9.7.3.2.9 Cuboid ...542
9.7.3.2.10 CuboidOrTriangularPrism...543
9.7.3.2.11 Cylinder ...544
9.7.3.2.12 Disc..545
9.7.3.2.13 EccentricCone ...545
9.7.3.2.14 EccentricCylinder..546
9.7.3.2.15 Ellipse..546
9.7.3.2.16 Ellipsoid ..546
9.7.3.2.17 Hyperbola ..547

xiv OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.7.3.2.18 Hyperboloid...547
9.7.3.2.19 Line..548
9.7.3.2.20 Parabola ...548
9.7.3.2.21 Paraboloid..549
9.7.3.2.22 Path..549
9.7.3.2.23 PlanarCurve ...550
9.7.3.2.24 PlanarSurface...550
9.7.3.2.25 Polygon..551
9.7.3.2.26 Polyhedron...551
9.7.3.2.27 Pyramid ...552
9.7.3.2.28 Quadrilateral ..552
9.7.3.2.29 Rectangle ...553
9.7.3.2.30 RectangularCuboid..553
9.7.3.2.31 RectangularPyramid ..554
9.7.3.2.32 RectangularToroid...555
9.7.3.2.33 RightCircularCone...555
9.7.3.2.34 RightCircularCylinder ...555
9.7.3.2.35 RightTriangle...556
9.7.3.2.36 RightTriangularPrism..556
9.7.3.2.37 Shell...557
9.7.3.2.38 Sphere..557
9.7.3.2.39 Tetrahedron ...558
9.7.3.2.40 Toriod ..558
9.7.3.2.41 Torus..559
9.7.3.2.42 Triangle ...559
9.7.3.2.43 TriangularPrism...560

9.8 Quantities and Units Domain Library...561
9.8.1 Quantities and Units Domain Library Overview ..561
9.8.2 Quantities ..561

9.8.2.1 Quantities Overview..562
9.8.2.2 Elements ..563

9.8.2.2.1 3dVectorQuantityValue...563
9.8.2.2.2 QuantityDimension ...563
9.8.2.2.3 QuantityPowerFactor...564
9.8.2.2.4 scalarQuantities ...564
9.8.2.2.5 ScalarQuantityValue ...565
9.8.2.2.6 SystemOfQuantities...565
9.8.2.2.7 tensorQuantities...566
9.8.2.2.8 TensorQuantityValue ..566
9.8.2.2.9 vectorQuantities...567
9.8.2.2.10 VectorQuantityValue...568

9.8.3 Measurement References ..569
9.8.3.1 Measurement References Overview..569
9.8.3.2 Elements ..569

9.8.3.2.1 3dCoordinateFrame ...569
9.8.3.2.2 AffineTransformationMatrix3d...569
9.8.3.2.3 ConversionByConvention ...570
9.8.3.2.4 ConversionByPrefix ..571
9.8.3.2.5 CoordinateFrame ...571
9.8.3.2.6 CoordinateFramePlacement ..572
9.8.3.2.7 CoordinateTransformation ..573
9.8.3.2.8 countQuantities..573
9.8.3.2.9 CountValue..574
9.8.3.2.10 CyclicRatioScale ...574

OMG Systems Modeling Language (SysML) v2.0 Beta 1 xv

9.8.3.2.11 DefinitionalQuantityValue ..575
9.8.3.2.12 DerivedUnit ...575
9.8.3.2.13 dimensionOneQuantities ...576
9.8.3.2.14 DimensionOneUnit..576
9.8.3.2.15 DimensionOneValue ...576
9.8.3.2.16 IntervalScale..577
9.8.3.2.17 LogarithmicScale...577
9.8.3.2.18 MeasurementScale...578
9.8.3.2.19 MeasurementUnit ..579
9.8.3.2.20 NullTransformation ...579
9.8.3.2.21 nullTransformation..580
9.8.3.2.22 one ...580
9.8.3.2.23 OrdinalScale ..581
9.8.3.2.24 QuantityValueMapping ...581
9.8.3.2.25 Rotation ...582
9.8.3.2.26 ScalarMeasurementReference ...583
9.8.3.2.27 SimpleUnit ..583
9.8.3.2.28 SystemOfUnits ..584
9.8.3.2.29 TensorMeasurementReference..585
9.8.3.2.30 Translation...585
9.8.3.2.31 TranslationOrRotation...586
9.8.3.2.32 TranslationRotationSequence..586
9.8.3.2.33 UnitConversion ...587
9.8.3.2.34 UnitPowerFactor ...587
9.8.3.2.35 UnitPrefix ..588
9.8.3.2.36 VectorMeasurementReference ..589

9.8.4 ISQ ..589
9.8.4.1 ISQ Overview..589
9.8.4.2 Elements ..590

9.8.4.2.1 amountOfSubstance...590
9.8.4.2.2 AmountOfSubstanceUnit ..590
9.8.4.2.3 AmountOfSubstanceValue..591
9.8.4.2.4 AngularMeasureValue...591
9.8.4.2.5 Cartesian3dSpatialCoordinateFrame...591
9.8.4.2.6 Displacement3dVector ..592
9.8.4.2.7 duration..592
9.8.4.2.8 DurationUnit..593
9.8.4.2.9 DurationValue ...593
9.8.4.2.10 electricCurrent ...593
9.8.4.2.11 ElectricCurrentUnit ...594
9.8.4.2.12 ElectricCurrentValue...594
9.8.4.2.13 length ...595
9.8.4.2.14 LengthUnit...595
9.8.4.2.15 LengthValue ..595
9.8.4.2.16 luminousIntensity ..596
9.8.4.2.17 LuminousIntensityUnit..596
9.8.4.2.18 LuminousIntensityValue ...596
9.8.4.2.19 mass ...597
9.8.4.2.20 MassUnit ...597
9.8.4.2.21 MassValue ...598
9.8.4.2.22 Position3dVector ...598
9.8.4.2.23 Spatial3dCoordinateFrame..598
9.8.4.2.24 thermodynamicTemperature ...599
9.8.4.2.25 ThermodynamicTemperatureUnit ...599

xvi OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.8.4.2.26 ThermodynamicTemperatureValue...599
9.8.4.2.27 universalCartesianSpatial3dCoordinateFrame ..600

9.8.5 SI Prefixes ...600
9.8.5.1 SI Prefixes Overview ..601
9.8.5.2 Elements ..602

9.8.6 SI ...602
9.8.6.1 SI Overview...602
9.8.6.2 Elements ..602

9.8.7 US Customary Units ...602
9.8.7.1 US Customary Units Overview...602
9.8.7.2 Elements ..602

9.8.8 Time ..602
9.8.8.1 Time Overview..602
9.8.8.2 Elements ..602

9.8.8.2.1 Clock ...602
9.8.8.2.2 Date ...603
9.8.8.2.3 DateTime ...603
9.8.8.2.4 DurationOf...604
9.8.8.2.5 Iso8601DateTime ..604
9.8.8.2.6 Iso8601DateTimeEncoding...605
9.8.8.2.7 Iso8601DateTimeStructure ...605
9.8.8.2.8 timeInstant ...606
9.8.8.2.9 TimeInstantValue ..606
9.8.8.2.10 TimeOf ..607
9.8.8.2.11 TimeOfDay..607
9.8.8.2.12 TimeScale..608
9.8.8.2.13 universalClock...608
9.8.8.2.14 UTC...609
9.8.8.2.15 utcTimeInstant...609
9.8.8.2.16 UtcTimeInstantValue ..610

9.8.9 Quantity Calculations..610
9.8.9.1 Quantity Calculations Overview ...610
9.8.9.2 Elements ..613

9.8.10 Vector Calculations...613
9.8.10.1 Vector Calculations Overview ..613
9.8.10.2 Elements ..616

9.8.11 Tensor Calculations...616
9.8.11.1 Tensor Calculations Overview ..616
9.8.11.2 Elements ..617

9.8.12 Measurement Ref Calculations ...617
9.8.12.1 Measurement Ref Calculations Overview...617
9.8.12.2 Elements ..618

A Annex: Example Model ...619
A.1 Introduction ..619
A.2 Model Organization ...619
A.3 Definitions..620
A.4 Parts..624
A.5 Parts Interconnection..627
A.6 Actions ...630
A.7 States ..632
A.8 Requirements..635
A.9 Analysis..637
A.10 Verification ..638
A.11 View and Viewpoint ..640

OMG Systems Modeling Language (SysML) v2.0 Beta 1 xvii

A.12 Variability ..641
A.13 Individuals..642

xviii OMG Systems Modeling Language (SysML) v2.0 Beta 1

List of Tables
1. Dependencies – Representative Notation ..19
2. Annotations – Representative Notation ...20
3. Packages – Representative Notation..24
4. Definition and Usage – Representative Notation...34
5. Attributes – Representative Notation...47
6. Enumerations – Representative Notation...50
7. Occurrences – Representative Notation...53
8. Items – Representative Notation..58
9. Parts – Representative Notation...60
10. Ports – Representative Notation...63
11. Connections – Representative Notation...67
12. Interfaces – Representative Notation ...78
13. Allocations – Representative Notation ..81
14. Actions – Representative Notation ..85
15. Control Node Definitions...97
16. States – Representative Notation ...109
17. Calculations – Representative Notation...117
18. Constraints – Representative Notation...120
19. Requirements – Representative Notation...125
20. Analysis Cases - Representative Notation ...132
21. Verification Cases – Representative Notation ...136
22. Use Cases – Representative Notation ..139
23. Views and Viewpoints – Representative Notation ..143
24. Diagrams – Representative Examples ...148
25. Metadata – Representative Notation..150
26. EBNF Notation Conventions ...156
27. Abstract Syntax Synthesis Notation...156
28. Grammar Production Definitions...157
29. Graphical BNF Conventions..185
30. Implied Definition Subclassification Relationships...380
31. Implied Usage Subsetting Relationships ...381
32. Other Implied Relationships ..385
33. Standard View Definitions...497

OMG Systems Modeling Language (SysML) v2.0 Beta 1 xix

List of Figures
1. SysML Language Architecture ..12
2. Elements...241
3. Dependencies ...242
4. Annotation..242
5. Namespaces..243
6. Imports ...244
7. Packages...244
8. Definition and Usage ...245
9. Variant Membership ..245
10. Attribute Definition and Usage..261
11. Enumeration Definition and Usage..263
12. Occurrence Definition and Usage..265
13. Event Occurrences ...265
14. Item Definition and Usage ...271
15. Part Definition and Usage..273
16. Port Definition and Usage..275
17. Port Conjugation ..276
18. Connectors as Usages ..281
19. Connection Definition and Usage..281
20. Flow Connections ..282
21. Interface Definition and Usage ..287
22. Allocation Definition and Usage ...289
23. Action Definition and Usage ...291
24. Control Nodes ..291
25. Performed Actions ...291
26. Send and Accept Actions ...292
27. Assignment Actions ...292
28. Structured Control Actions ..293
29. State Definition and Usage ..314
30. State Membership ..315
31. Exhibited States ...315
32. Transition Usage ..316
33. Calculation Definition and Usage..329
34. Constraint Definition and Usage..331
35. Asserted Constraints ..331
36. Requirement Definition and Usage..335
37. Satisfied Requirements ..335
38. Concern Definition and Usage...336
39. Requirement Constraint Membership ..336
40. Requirement Parameter Memberships ...337
41. Case Definition and Usage...350
42. Case Membership...350
43. Analysis Case Definition and Usage..355
44. Verification Case Definition and Usage ..358
45. Verification Membership ...359
46. Use Case Definition and Usage ...362
47. Included Use Case..362
48. View Definition and Usage..365
49. Viewpoint Definition and Usage ...366
50. Rendering Definition and Usage..366
51. Expose Relationship...367

xx OMG Systems Modeling Language (SysML) v2.0 Beta 1

52. View Rendering Membership ..367
53. Metadata Definition and Usage ...377
54. State Space Representation action and calculation definitions..520
55. Model Organization for SimpleVehicleModel ..619
56. Part Definition for Vehicle...621
57. Part Definition for FuelTank Referencing Fuel it Stores...622
58. Axle and its Subclass FrontAxle..623
59. Example Definition Elements ..623
60. Part Usage for vehicle_b..625
61. Parts Tree for vehicle_b ...626
62. Variant engine4Cyl ..627
63. Parts Interconnection for vehicle_b ...628
64. Action providePower ...630
65. Action flow for providePower ...630
66. Action flow for transportPassenger ...631
67. Vehicle States...633
68. Requirement Definition MassRequirement ...635
69. Requirements Group vehicleSpecification ..636
70. Analysis Case fuelEconomyAnalysis ..637
71. Vehicle Mass Verification Test ...639
72. Vehicle Safety View ..640
73. Rendering of view vehiclePartsTree_Safety..641
74. Variability Model for vehicleFamily ...641
75. Vehicle Individuals and Snapshots ..643

OMG Systems Modeling Language (SysML) v2.0 Beta 1 xxi

xxii OMG Systems Modeling Language (SysML) v2.0 Beta 1

0 Preface
OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML®

(Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. All OMG
Specifications are available from the OMG website at: https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Milford, MA 01757
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page https://www.omg.org, under Specifications, Report an Issue.

OMG Systems Modeling Language (SysML) v2.0 Beta 1 xxiii

https://www.omg.org/
https://www.omg.org/spec
mailto:pubs@omg.org
https://www.iso.org/
https://www.omg.org/

xxiv OMG Systems Modeling Language (SysML) v2.0 Beta 1

1 Scope
The purpose of this standard is to specify the Systems Modeling Language™ (SysML), to guide the implementation
of conformant modeling tools, and to provide the basis for the development of material and other resources to train
users in the application of SysML.

SysML is a general-purpose modeling language for modeling systems that is intended to facilitate a model-based
systems engineering (MBSE) approach to engineer systems. It provides the capability to create and visualize models
that represent many different aspects of a system. This includes representing the requirements, structure, and
behavior of the system, and the specification of analysis cases and verification cases used to analyze and verify the
system. The language is intended to support multiple systems engineering methods and practices. The specific
methods and practices may impose additional constraints on how the language is used.

SysML is defined as an extension of the Kernel Modeling Language (KerML), which provides a common, domain-
independent language for building semantically rich and interoperable modeling languages. SysML also provides
a capability to provide further language extensions. It is anticipated that SysML will be customized using this
language extension mechanism to model more specialized domain-specific applications, such as automotive,
aerospace, healthcare, and information systems, as well as discipline specific extensions such as safety and
reliability.

Note. Definitions of system and systems engineering can be found in ISO/IEC 15288 Systems and Software
Engineering – System Life Cycle Process.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 1

2 OMG Systems Modeling Language (SysML) v2.0 Beta 1

2 Conformance
This specification defines the Systems Modeling Language (SysML), a language used to construct models of
systems (whether they are real, planned or imagined). The specification comprises this document together with the
content of the machine-readable files listed on the cover page. If there are any conflicts between this document and
the machine-readable files, the machine-readable files take precedence.

A SysML model shall conform to this specification only if it can be represented according to the syntactic
requirements specified in Clause 8. The model may be represented in a form consistent with the requirements for the
SysML concrete syntax (which includes both textual and graphical notation), in which case it can be parsed (as
specified in 8.2) into an abstract syntax form, or it may be represented directly in an abstract syntax form.

A SysML modeling tool is a software application that creates, manages, analyzes, visualizes, executes or performs
other services on SysML models. A tool can conform to this specification in one or more of the following ways.

1. Abstract Syntax Conformance. A tool demonstrating Abstract Syntax Conformance provides a user
interface and/or API that enables instances of SysML abstract syntax metaclasses to be created, read,
updated, and deleted. The tool must also provide a way to validate the well-formedness of models that
corresponds to the constraints defined in the SysML metamodel. A well-formed model represented
according to the abstract syntax is syntactically conformant to SysML as defined above. (See 8.3.)

2. Concrete Syntax Conformance. A tool demonstrating Concrete Syntax Conformance provides a user
interface and/or API that enables instances of SysML concrete syntax notation to be created, read,
updated, and deleted. Note that a conforming tool may also provide the ability to create, read, update and
delete additional notational elements that are not defined in SysML. Concrete Syntax Conformance
implies Abstract Syntax Conformance, in that creating models in the concrete syntax acts as a user
interface for the abstract syntax. However, a tool demonstrating Concrete Syntax Conformance need not
represent a model internally in exactly the form modeled for the abstract syntax in this specification. (See
8.2.)

There are two variants of Concrete Syntax Conformance:

a. Textual Notation Conformance. A tool demonstrating Textual Notation Conformance provides
Concrete Syntax Conformance for the SysML textual notation. (See 8.2.2)

b. Graphical Notation Conformance. A tool demonstrating Graphical Notation Conformance
provides Concrete Syntax Conformance for the SysML graphical notation. As part of this, the
tool shall also support the textual notation at least to the extent necessary to properly render text
in the graphical notation, and may also fully support the textual notation in conjunction with the
graphical notation. (See 8.2.3.)

3. Semantic Conformance. A tool demonstrating Semantic Conformance provides a demonstrable way to
interpret a syntactically conformant model (as defined above) according to the SysML semantics, e.g., via
semantic model analysis or model execution. Semantic Conformance implies Abstract Syntax
Conformance, in that the semantics for SysML are only defined on well-formed models represented in the
abstract syntax. (See 8.4 and 9.2.)

4. Model Interchange Conformance. A tool demonstrating model interchange conformance can import and/
or export syntactically conformant SysML models (as defined above) as a project interchange file as
specified in [KerML, Clause 10], with the following further conditions:

◦ The project interchange file shall use the standard .kpar (KerML Project Archive) extension.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 3

◦ All model interchange files in the project interchange file shall be SysML models. Textual
notation files shall use the extension .sysml.

◦ The metadata for the project interchange file shall identify the metamodel using the normative
SysML metamodel URI as given for this specification (i.e., https://www.omg.org/spec/
SysML/yymmnn, where yymmnn is the current date-based version identifier).

5. Domain Library Support. In addition to the Systems Model Library, a conformant tool may provide one or
more of the domain model libraries specified in Clause 9.

Every conformant SysML modeling tool shall demonstrate at least Abstract Syntax Conformance and Model
Interchange Conformance. In addition, such a tool may demonstrate Concrete Syntax Conformance and/or Semantic
Conformance, both of which are dependent on Abstract Syntax Conformance. The tool may also provide Domain
Library Support.

4 OMG Systems Modeling Language (SysML) v2.0 Beta 1

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification.

[ISO15897] ISO/IEC 15897:2011 Information technology – User interfaces – Procedures for the registration of
cultural elements
https://www.iso.org/standard/50707.html

[KerML] Kernel Modeling Language (KerML), Version 1.0
https://www.omg.org/spec/KerML/1.0

[MOF] Meta Object Facility, Version 2.5.1
https://www.omg.org/spec/MOF/2.5.1

[OCL] Object Constraint Language, Version 2.4
https://www.omg.org/spec/OCL/2.4

[SMOF] MOF Support for Semantic Structures, Version 1.0
https://www.omg.org/spec/SMOF/1.0

[SysML v1] OMG Systems Modeling Language (SysML), Version 1.7
https://www.omg.org/spec/SysML/1.7

[SysML v1 to v2] OMG Systems Modeling Language (SysML), Version 2.0
Part 2: SysML v1 to SysML v2 Transformation
https://www.omg.org/spec/SYSML/2.0/Transformation

[UML] Unified Modeling Language (UML), Version 2.5.1
https://www.omg.org/spec/UML/2.5.1

The following references were used in the definition of the Quantities and Units model library (see 9.8):

[GUM] JCGM 100:2008 and ISO/IEC Guide 98-3, Evaluation of measurement data - Guide to the expression of
uncertainty in measurement
https://www.bipm.org/en/publications/guides/#gum

[ISO 80000-1] ISO 80000-1:2009, Quantities and units - Part 1: General
https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en

[ISO 80000-2] ISO 80000-2:2019, Quantities and units - Part 2: Mathematical signs and symbols to be used in the
natural sciences and technology
https://www.iso.org/obp/ui/#iso:std:iso:80000:-2:ed-2:v1:en

[ISO 80000-3] ISO 80000-3:2019, Quantities and units - Part 3: Space and Time
https://www.iso.org/obp/ui/#iso:std:iso:80000:-3:ed-2:v1:en

[ISO 80000-4] ISO 80000-4:2019, Quantities and units - Part 4: Mechanics
https://www.iso.org/obp/ui/#iso:std:iso:80000:-4:ed-2:v1:en

[ISO 80000-5] ISO 80000-5:2019, Quantities and units - Part 5: Thermodynamics
https://www.iso.org/obp/ui/#iso:std:iso:80000:-5:ed-2:v1:en

OMG Systems Modeling Language (SysML) v2.0, Beta 1 5

https://www.iso.org/standard/50707.html
https://www.omg.org/spec/KerML/1.0
https://www.omg.org/spec/MOF/2.5.1
https://www.omg.org/spec/OCL/2.4
https://www.omg.org/spec/SMOF/1.0
https://www.omg.org/spec/SysML/1.7
https://www.omg.org/spec/SYSML/2.0/Transformation
https://www.omg.org/spec/UML/2.5.1
https://www.bipm.org/en/publications/guides/#gum
https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-3:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-4:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-5:ed-2:v1:en

[IEC 80000-6] IEC 80000-6:2008, Quantities and units - Part 6: Electromagnetism
https://www.iso.org/obp/ui/#iso:std:iec:80000:-6:ed-1:v1:en,fr

[ISO 80000-7] ISO 80000-7:2019, Quantities and units - Part 7: Light
https://www.iso.org/obp/ui/#iso:std:iso:80000:-7:ed-2:v1:en

[ISO 80000-8] ISO 80000-8:2020, Quantities and units - Part 8: Acoustics
https://www.iso.org/obp/ui/#iso:std:iso:80000:-8:ed-2:v1:en

[ISO 80000-9] ISO 80000-9:2019, Quantities and units - Part 9: Physical chemistry and molecular physics
https://www.iso.org/obp/ui/#iso:std:iso:80000:-9:ed-2:v1:en

[ISO 80000-10] ISO 80000-10:2019, Quantities and units - Part 10: Atomic and nuclear physics
https://www.iso.org/obp/ui/#iso:std:iso:80000:-10:ed-2:v1:en

[ISO 80000-11] ISO 80000-11:2019, Quantities and units - Part 11: Characteristic numbers
https://www.iso.org/obp/ui/#iso:std:iso:80000:-11:ed-2:v1:en

[ISO 80000-12] ISO 80000-12:2019, Quantities and units - Part 12: Solid state physics
https://www.iso.org/obp/ui/#iso:std:iso:80000:-12:ed-2:v1:en

[IEC 80000-13] IEC 80000-13:2008, Quantities and units - Part 13: Information science and technology
https://www.iso.org/obp/ui/#iso:std:iec:80000:-13:ed-1:v1:en

[IEC 80000-14] IEC 80000-14:2008, Quantities and units - Part 14: Telebiometrics related to human physiology
https://www.iso.org/obp/ui/#iso:std:iec:80000:-14:ed-1:v1:en

[NIST SP-811] NIST Special Publication 811, The NIST Guide for the use of the International System of Units
(In particular its Appendix B "Conversion Factors")
https://www.nist.gov/pml/special-publication-811

[VIM] JCGM 200:2012 and ISO/IEC Guide 99, International vocabulary of metrology - Basic and general concepts
and associated terms (VIM)
https://www.bipm.org/en/publications/guides/#vim

[ISO 8601-1] ISO 8601-1:2019 (First edition) Date and time — Representations for information interchange —
Part 1: Basic rules
https://www.iso.org/standard/70907.html

6 OMG Systems Modeling Language (SysML) v2.0 Beta 1

https://www.iso.org/obp/ui/#iso:std:iec:80000:-6:ed-1:v1:en,fr
https://www.iso.org/obp/ui/#iso:std:iso:80000:-7:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-8:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-9:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-10:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-11:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:80000:-12:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iec:80000:-13:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iec:80000:-14:ed-1:v1:en
https://www.nist.gov/pml/special-publication-811
https://www.bipm.org/en/publications/guides/#vim
https://www.iso.org/standard/70907.html

4 Terms and Definitions
Various terms and definitions are specified throughout the body of this specification.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 7

8 OMG Systems Modeling Language (SysML) v2.0 Beta 1

5 Symbols
A concrete syntax for SysML is specified in subclause 8.2 of this specification.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 9

10 OMG Systems Modeling Language (SysML) v2.0 Beta 1

6 Introduction
6.1 Document Overview
The Systems Modeling Language (SysML) is a general-purpose modeling language for modeling systems that is
intended to facilitate a model-based systems engineering (MBSE) approach to engineer systems. This document
provides the standard specification for SysML Version 2 (SysML v2). SysML v2 is intended to enhance the
precision, expressiveness, interoperability, and the consistency and integration of the language relative to SysML
Versions 1.0 to 1.7 [SysML v1].

SysML v1 was specified as a profile of the Unified Modeling Language v2 [UML]. SysML v2, on the other hand, is
specified as a metamodel extending the Kernel metamodel from the Kernel Modeling Language [KerML]. In order
to facilitate the transition from SysML v1 to SysML v2, this standard also specifies a formal transformation from
models using the SysML v1.7 profile of UML to models using the SysML v2 metamodel [SysML v1 to v2].

This document specifies the textual and graphical concrete syntax, abstract syntax, and semantics for SysML v2.
The SysML v2 textual notation (see 8.2.2) and the SysML v2 graphical notation (see 8.2.3) provide the concrete
syntax representation of the SysML v2 abstract syntax (see 8.3). The SysML v2 abstract syntax extends the Kernel
abstract syntax, providing specialized constructs for modeling systems (as shown in Fig. 1). Further, the Systems
Library (see 9.2) is a model library that extends the Kernel Library to provide the semantic specification for SysML
v2 (see 8.4; see also [KerML] on the use of model libraries for semantic specification). Finally, SysML v2 provides
an additional set of Domain Libraries (see 9.4 and following) to provide a set of reference models in various
domains important to systems modeling (such as Analysis and Quantities and Units).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 11

Figure 1. SysML Language Architecture

6.2 Document Organization
The rest of this document is organized into three major clauses.

• Clause 7 describes SysML from a user point of view. Its subclauses describe the modeling constructs in
SysML, including for each a general overview, related abstract syntax diagrams and a description of the
textual and graphical notation. The overviews in this clause should be considered informative. The
abstract syntax and notation subclauses, however, are normative, including descriptions of the processing
of the textual notation and its relationship to the graphical notation and the abstract syntax.

• Clause 8 provides the normative specification of the metamodel that defines the SysML language. This
includes the concrete syntax (textual and graphical notations), the abstract syntax and the semantics for the
language. The SysML abstract syntax and semantics are formally extensions of the Kernel abstract syntax
and semantics provided by KerML (as discussed in 6.1). However, this clause does not cover details of the
Kernel metamodel, which are included by normative reference to the KerML specification [KerML].

• Clause 9 specifies a set of model libraries defined in SysML itself. The Systems Library extends the
Kernel Library from [KerML] in order to provide systems-modeling-specific semantics to SysML
language constructs. The Domain Libraries provide domain-specific models on which users can draw

12 OMG Systems Modeling Language (SysML) v2.0 Beta 1

when creating their own models. Each model library is described with a set of subclauses that covers each
of the top-level packages in the model library, referred to as its library models.

These clauses are followed by informative Annex A, which presents an example model using the SysML language
as defined in this specification to illustrate how the language features can be used to model a system.

In addition, Clause 10 of [KerML] on Model Interchange is included by reference as a normative part of this
specification in order to define allowable methods for interchanging SysML models.

6.3 Acknowlegements
The primary authors of this specification document and the syntactic and semantic models defined in it are:

• Sanford Friedenthal, SAF Consulting
• Ed Seidewitz, Model Driven Solutions
• Roger Burkhart, Thematix Partners
• Eran Gery, IBM
• Hisashi Miyashita, Mgnite
• Hans Peter de Koning, DEKonsult

Other contributors include:

• Oystein Haugen, Østfold University College
• Tomas Juknevicius, Dassault Systèmes
• Charles Krueger, BigLever Software

The specification was formally submitted for standardization by the following organizations:

• 88Solutions Corporation
• Dassault Systèmes
• GfSE e.V.
• IBM
• INCOSE
• Intercax LLC
• Lockheed Martin Corporation
• MITRE
• Model Driven Solutions, Inc.
• PTC
• Simula Research Laboratory AS
• Thematix Partners LLC

However, work on the specification was also supported by over 200 people in over 80 organizations that participated
in the SysML v2 Submission Team (SST), by contributing use cases, providing critical review and comment, and
validating the language design. The following individuals had leadership roles in the SST:

• Manas Bajaj, Intercax LLC (API and services development lead)
• Yves Bernard, Airbus (v1 to v2 transformation co-lead)
• Bjorn Cole, Lockheed Martin Corporation (metamodel development co-lead)
• Sanford Friedenthal, SAF Consulting (SST co-lead, requirements V&V lead)
• Charles Galey, Lockheed Martin Corporation (metamodel development co-lead)
• Karen Ryan, Siemens (metamodel development co-lead)
• Ed Seidewitz, Model Driven Solutions (SST co-lead, pilot implementation lead)
• Tim Weilkiens, oose (v1 to v2 transformation co-lead)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 13

The specification was prepared using CATIA No Magic modeling tools and the OpenMBEE system for model
publication (http://www.openmbee.org), with the invaluable support of the following individuals:

• Tyler Anderson, No Magic/Dassault Systèmes
• Christopher Delp, Jet Propulsion Laboratory
• Ivan Gomes, Twingineer
• Doris Lam, Jet Propulsion Laboratory
• Robert Karban, Jet Propulsion Laboratory
• Christopher Klotz, No Magic/Dassault Systèmes
• John Watson, Lightstreet Consulting

The following individuals made significant contributions to the SysML v2 pilot implementation developed by the
SST in conjunction with the development of this specification:

• Ivan Gomes, Twingineer
• Hisashi Miyashita, Mgnite
• Miyako Wilson, Georgia Institute of Technology
• Santiago Leon, Tom Sawyer
• William Piers, Obeo
• Tilo Schreiber, Siemens
• Zoltán Ujhelyi, IncQuery Labs

14 OMG Systems Modeling Language (SysML) v2.0 Beta 1

http://www.openmbee.org/

7 Language Description
(Informative)

7.1 Language Overview
The System Modeling Language (SysML) contains concepts that are used to model systems, their components, and
the external environment in a context. It extends the Kernel Modeling Language (KerML) as specified in the KerML
specification [KerML]. SysML directly uses some elements of KerML, but most SysML elements are
specializations of KerML elements.

This clause provides an informative description of all these language concepts in their context of use in SysML.
Clause 8 gives the full definition of the SysML metamodel, which is the normative specification for implementing
the language. In contrast, the description in this clause focuses on how the various constructs of the language are
used, along with the Systems Model Library (see 9.2), to construct models. While non-normative, it is intended to be
precise and consistent with the normative specification of the language.

SysML directly uses the following concepts from KerML:

• Elements and relationships that define the basic graph structure of a model (see 7.2).
• Dependencies between modeling elements (see 7.3).
• Annotations for attaching metadata to a model, including comments and textual representations (see 7.4).
• Namespaces that contain and name elements, and, particularly, packages used to organize the elements in

a model (see 7.5).
• Specialization of elements that specify types, including subclassification, subsetting, redefinition and

feature typing (see 7.6).
• Expressions can be used to specify calculations, case results, constraints and formal requirements. The full

KerML expression sub-language is available in SysML, as described in the KerML specification. The
description of this sub-language is not repeated in the SysML specification document.

The modeling constructs specific to SysML, as specified in subclauses 7.6 through 7.26, are built on the
KerML foundation, and cover the following areas:

• Fundamental aspects of constructing a model, including:
◦ The general pattern of definition and usage, which is applied to many of the SysML language

constructs (see 7.6). The pattern of definition and usage elements facilitates model reuse, such
that a concept can be defined once and then used in many different contexts. A usage element
can be further specialized for its specific context.

◦ The modeling of variability, which includes the definition of variation points within a
model where choices can be made to select a specific variant, and the selection of a particular
variant may constrain the allowable choices at other variation points. A system can be
configured by making appropriate choices at each of the variation points of a variability model,
consistent with specified constraints. Variation points can be defined in any of the specific
modeling areas listed below, so the ability to model variability is built into the base syntax of
definitions and usages (see 7.6).

• The modeling of attributive information about things, including:
◦ Attributes that specify characteristics of something that can be defined by simple or compound

data types, and dimensional quantities such as mass, length, etc. (see 7.7).
◦ Enumerations that are attributes restricted to a specified set of enumerated values (see 7.8).

• The modeling of occurrences with temporal and spatial extent. Temporal extent enables an occurrence to
be represented at specific points in time, over a duration in time, or over an entire lifetime. Spatial extent
enables an occurrence to be represented at a position and orientation with respect to a coordinate frame,
and to have a shape and size (see 7.9).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 15

• The modeling of individuals with specific identities (see 7.9).
• The modeling of structure to represent how parts are decomposed, interconnected and classified, and

includes:
◦ Items that may flow through a process or system or be stored by a system (see 7.10).
◦ Parts that are the foundational units of structure, which can be composed and interconnected, to

form composite parts and entire systems (see 7.11).
◦ Ports that define connection points on parts that enable interactions between parts (see 7.12).
◦ Connections (see 7.13) and interfaces (see 7.14) that define how parts and ports are

interconnected.
◦ Allocations that assign responsibility for realizing the features of one element by another

element (see 7.15).
• The modeling of behavior, which specifies how parts interact and includes:

◦ Actions performed by a part, including their temporal ordering, and the flows of items between
them (see 7.16).

◦ States exhibited by a part, the allowable transitions between those states, and the actions enabled
in a state or during a transition (see 7.17).

• The modeling of calculations that are parameterized expressions that can be evaluated to produce specific
results (see 7.18).

• The modeling of constraints, which specify conditions that can be evaluated as true or false, or asserted to
be true or false (see 7.19).

• The modeling of requirements, which is a special kind of constraint that a subject must satisfy to be a
valid solution (see 7.20).

• The modeling of cases, which define the steps required to produce a desired result relative to a subject,
possibly also involving external actors, to achieve a specific objective (see 7.21), including:

◦ Analysis cases, whose steps are the actions necessary to analyze a subject (see 7.22).
◦ Verification cases, whose objective is to verify how a requirement is satisfied by the subject (see

7.23).
◦ Use cases, that specify required behavior of the subject with the objective of providing a

measurable benefit to one or more external actors (see 7.24).
• The modeling of viewpoints that specify information of interest by a set of stakeholders, and views that

specify a query of the model, and a rendering of the query results, that is intended to satisfy a particular
viewpoint (see 7.25).

• The modeling of user-defined metadata that allows for both simple tagging of elements with additional
model-level information and more sophisticated semantic extension of the SysML language. In a similar
way that SysML extends KerML, modelers can use this metadata capability to build domain and user-
specific extensions of SysML, both syntactically and semantically. This allows SysML to be highly
adaptable for specific application domains and user needs, while maintaining a high level of underlying
standardization and tool interoperability. (See 7.26.)

It should be noted that SysML does not contain specific language constructs called system, subsystem, assembly,
component, and many other commonly used terms. An entity with structure and behavior in SysML is represented
simply as a part (see 7.11). The language provides straightforward extension mechanisms to specify terminology
that is appropriate for the domain of interest.

7.2 Elements and Relationships
7.2.1 Elements and Relationships Overview

Metamodel references:

• Textual notation, 8.2.2.2
• Graphical notation, 8.2.3.2
• Abstract syntax, 8.3.2
• Semantics, none

16 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Elements are the constituents of a model. Some elements represent relationships between other elements, known as
the related elements of the relationship. One of the related elements of a relationship may be the owning related
element of the relationship. If the owning related element of a relationship is deleted from a model, then the
relationship is also deleted. Some of the related elements of a relationship (distinct from the owning related element,
if any) may be owned related elements. If a relationship has owned related elements, then, if the relationship is
deleted from a model, all its owned related elements are also deleted.

The owned relationships of an element are all those relationships for which the element is the owning related
element. The owned elements of an element are all those elements that are owned related elements of the owned
relationships of the element (notice the extra level of indirection through the owned relationships). The owning
relationship of an element (if any) is the relationship for which the element is an owned related element (of which
the element can have at most one). The owner of an element (if any) is the owning related element of the owning
relationship of the element (again, notice the extra level of indirection through the owning relationship).

The deletion rules for relationships imply that, if an element is deleted from a model, then all its owned relationships
are also deleted and, therefore, all its owned elements. This may result in a further cascade of deletions until all
deletion rules are satisfied. An element that has no owner acts as the root element of an ownership tree structure,
such that all elements and relationships in the structure are deleted if the root element is deleted. Deleting any
element other than the root element results in the deletion of the entire subtree rooted in that element.

Graphically, non-relationship elements are generally represented using a box-like shape or other icon, while
relationships are shown using lines connecting the symbols for the related elements. However, in some cases,
additional shapes may be attached to relationship lines in order to present additional information. The specific
conventions for such graphical notations are covered in subsequent subclauses.

7.2.2 Elements

Various specific kinds of model elements in SysML are described in subsequent subclauses. However, there are
certain concepts that apply to all model elements.

Every element has a unique identifier known as its element ID. The properties of an element can change over its
lifetime, but its element ID does not change after the element is created. An element may also have additional
identifiers, its alias IDs, which may be assigned for tool-specific purposes. The SysML notation, however, does not
have any provision for specifying element or alias IDs, since these are expected to be managed by the underlying
modeling tooling. Instead, an element can be given a name and/or a short name, and it can also have any number of
alias names relative to one or more namespaces (see 7.5).

In most cases, an element is declared using a keyword indicating the kind of element it is (e.g., part def or
attribute). The declaration of an element may also specify a short name and/or name for it, in that order. The
short name is distinguished by being surrounded by the delimiting characters < and >.

part <'1.2.4'> myName;

While the language makes no formal distinction between names and short names, the intent is that the name of an
element should be fully descriptive, particularly in the context of the definition of the element, while the short name,
if given, should be an abbreviated name useful for referring to the element. Note also that it is not required to specify
either a name or a short name for an element. However, unless at least one of these is given, it is not possible to
reference the element using the textual notation (though it is still possible to show it in relationships on graphical
diagrams).

Names and short names can contain essentially any printable characters (and certain control characters). However,
when written in the textual notation, they must be represented with a specific lexical structure, which has two
variants.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 17

1. A basic name is one that can be lexically distinguished in itself from other parts of the textual notation.
The initial character of a basic name must be a lowercase letter, an uppercase letter or an underscore. The
remaining characters of a basic name can be any character allowed as an initial character or any digit.
However, a reserved word may not be used as a name, even though it has the form of a basic name (see
8.2.2.1.2 for the list of the reserved words in SysML).

Vehicle
power_line

2. An unrestricted name provides a way to represent a name that contains any character. It is represented as a
non-empty sequence of characters surrounded by single quotes. The name consists of the characters within
the single quotes – the single quotes are not included as part of the represented name. The characters
within the single quotes may not include non-printable characters (including backspace, tab and newline).
However, these characters may be included as part of the name itself through use of an escape sequence.
In addition, the single quote character or the backslash character may only be included within the name by
using an escape sequence.

'+'
'circuits in line'
'On/Off Switch'
'Ångström'

An escape sequence is a sequence of two text characters starting with a backslash as an escape character,
which actually denotes only a single character (except for the newline escape sequence, which represents
however many characters is necessary to represent an end of line in a specific implementation). See [KerML,
8.2.2.3] for a complete description of unrestricted names and escape sequences.

In addition to its declaration, the representation for an element may also list other elements owned by the containing
element. In the textual notation, such owned elements are shown represented as a body delimited by curly braces
{...}, particularly when the owning element is a namespace (see 7.5). In the graphical notation, owned elements may
be shown in compartments within the symbol representing the owning element, particularly when the owning
element is a package, definition or usage (see 7.5 and 7.6.1).

7.2.3 Relationships

A relationship is a kind of element that relates two or more other elements. Some relationships are constrained to
have exactly two related elements (i.e., binary relationships) while others may have more. The related elements of
relationships are ordered. A relationship may designate certain of its related elements as sources with the rest being
targets. In this case, the relationship is said to be directed from the sources to the targets. An undirected relationship
simply designates all its related elements to be targets, with no source elements.

A relationship may also be the source or target of other relationships. In particular, a relationship may be annotated
by being the target of an annotation relationship (see 7.4). In some cases, the annotating element may be owned by
the annotated relationship via the annotation relationship, particularly in the case of a documentation comment (see
8.2.2.4.2).

7.3 Dependencies
7.3.1 Dependencies Overview

Metamodel references:

• Textual notation, 8.2.2.3
• Graphical notation, 8.2.3.3
• Abstract syntax, 8.3.3

18 OMG Systems Modeling Language (SysML) v2.0 Beta 1

• Semantics, none

A dependency is a kind of relationship between any number of client (source) and supplier (target) elements. This
implies that a change to a supplier element may result in a change to a client element. Dependencies can be useful
for representing relationships between elements in an abstract way. For example, a dependency can be used to
represent that an upper layer of an architecture stack may depend on a lower layer of the stack. A dependency can
also be extended to reflect more specialized relationships, such as refinement (e.g., by using user-defined keywords,
see 7.26).

Table 1. Dependencies – Representative Notation

Element Graphical Notation Textual Notation

Dependency
dependency Package2

to Package1;

Dependency - nary
dependency Package1,
Package2
to Package3, Package4;

7.3.2 Dependency Declaration

A dependency is declared textually using the keyword dependency. The client elements of the dependency are then
given as a comma-separated list of qualified names following the keyword from, followed by a similar list of the
supplier elements after the keyword to. If no short name or name is given for the dependency, then the keyword
from may be omitted.

dependency Use
from 'Application Layer' to 'Service Layer';

// 'Service Layer' is the client of this dependency, not its name.
dependency 'Service Layer'

to 'Data Layer', 'External Interface Layer';

A dependency declaration may also optionally have a body containing any annotating elements owned by the
dependency via annotation relationships (see 7.4).

dependency 'Service Layer'
to 'Data Layer', 'External Interface Layer' {
/* 'Service Layer' is the client of this dependency,
* not its name. */

}

7.4 Annotations

OMG Systems Modeling Language (SysML) v2.0, Beta 1 19

7.4.1 Annotations Overview

Metamodel references:

• Textual notation, 8.2.2.4
• Graphical notation, 8.2.3.4
• Abstract syntax, 8.3.4
• Semantics, none

An annotating element is an element that is used to provide additional information about other elements. An
annotation is a relationship between an annotating element and an annotated element that is being described. An
annotating element can annotate multiple annotated elements, and each element can have multiple annotations.

A comment is one kind of annotating element that is used to provide textual descriptions about other elements.
Comments can be members of namespaces and, therefore, can be named. Such member comments may be about the
namspace that owns them, or they may be about different elements. Documentation is a distinguished kind of
comment used to document the annotated element. Documentation comments always annotate a single element,
which is their owning element.

A textual representation is an annotating element whose textual body provides a representation of the annotated
element in a specifically named language. This representation may be in the SysML textual notation or it may be in
another language. If the named language is machine-parsable, then the body text should be legal input text as
defined for that language. In particular, annotating a SysML model element with a textual annotation in a language
other than SysML can be used as a semantically "opaque" element specified in the other language.

It is also possible to annotate elements with user-defined metadata, allowing both syntactic and semantic extension
of SysML. This capability is described in 7.26.

Table 2. Annotations – Representative Notation

Element Graphical Notation Textual Notation

Comment /*This is a comment.*/

Comment comment Comment1
/*This is a comment.*/

Documentation doc /*This is
documentation.*/

Documentation
doc Document1
/*This is
documentation.*/

20 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Documentation with
locale (in French,
region Belgium)

doc locale "fr_BE"
/* Ceci n'est pas une
pipe. */

Textual
Representation

rep language
"language1" /* body1 */

or

language "language1" /*
body1 */

Annotation

comment about
part1::attribute1
/* The annotated element
* is attribute1. */

Annotation-
Documentation

part part1 : Part1 {
doc /*

documentation-text */
port p1 : P1;
port p2 : P2;

}

Annotation-Textual
Representation

calc def square {
in attribute x :

ScalarValues::Real;
return

:ScalarValues::Real;
rep square language

"Python"
/*
* def

square(x:float) ->
float:

* return x**2
*/

Documentation
Compartment

doc
/*This is a
documentation
compartment./

OMG Systems Modeling Language (SysML) v2.0, Beta 1 21

7.4.2 Comments and Documentation

The full declaration of a comment begins with the keyword comment, optionally followed by a short name and/or
name (see 7.2). One or more qualified names of annotated elements for the comment, separated by commas, are then
given after the keyword about, indicating that the comment has annotation relationships to each of the identified
elements. The body of the comment is written lexically as text between /* and */ delimiters.

item A;
part B;
comment Comment1 about A, B

/* This is the comment body text. */

If the comment is an owned member of a namespace (see 7.5), then the explicit identification of annotated elements
can be omitted, in which case the annotated element is implicitly the containing namespace. Further, in this case, if
no short name or name is given for the comment, then the comment keyword can also be omitted.

package P {
comment C /* This is a comment about P. */

/* This is also a comment about P. */
}

A locale can also be specified for a comment, using the keyword locale followed by the locale string, placed
immediately before the comment body (whether or not the comment keyword is used). The locale identifies the
language of the body text and, optionally, the region and/or encoding. The format is
language[_territory][.codeset][@modifier] (conformant to [ISO15897]).

comment C_US_English locale "en_US"
/* This is US English comment text */

A documentation comment is notated similarly to a regular comment, but using the keyword doc rather than
comment. The documenting element of documentation is always the owning element of the documentation.

part X {
doc X_Comment

/* This is a documentation comment about X. */
doc /* This is more documentation about X. */

}

When a comment is written in the textual notation, the actual body text of the comment is extracted from the lexical
comment body according to the rules given in the KerML specification [KerML, 8.2.3.3.2]. The body text of a
comment can include markup information (such as HTML), and a tool may graphically display such text as rendered
according to the markup. However, marked up "rich text" for a comment is stored in the comment body in plain text
including all mark up text, with all line terminators and white space included as entered, other than what is removed
according to the rules referenced above.

7.4.3 Textual Representation

A textual representation is notated similarly to a regular comment, but with the keyword rep used instead of
comment. As for documentation, a textual representation is always owned by its represented element. In particular,
if the textual representation is an owned member of a namespace (see 7.5), then the represented element is the
containing namespace. A textual representation declaration must also specify the language as a literal string
following the keyword language. If the textual representation has no short name or name, then the rep keyword
can also be omitted.

22 OMG Systems Modeling Language (SysML) v2.0 Beta 1

part def C {
attribute x: Real;
assert x_constraint {

rep inOCL language "ocl"
/* self.x > 0.0 */

}
}
action def setX(c : C, newX : Real) {

language "alf"
/* c.x = newX;
* WriteLine("Set new x");
*/

}

The lexical comment text given for a textual representation is processed as for regular comment text, and it is the
result after such processing that is the textual representation body expected to conform to the named language.

Note. Since the lexical form of a comment is used to specify the textual representation body, it is not possible to
include comments of a similar form in the body text.

The language name in a textual representation is case insensitive. The name can be of a natural language, but will
often be for a machine-parsable language. In particular, there are recognized standard language names.

If the language is "sysml", then the body of the textual representation must be a legal representation of the
represented element in the SysML textual notation. A tool can use such a textual representation to record the original
SysML notation text from which an element is parsed. Other standard language names that can be used in a textual
representation include "kerml", "ocl", and "alf", in which case the body of the textual representation must be
written in the Kernel Modeling Language [KerML], Object Constraint Language [OCL] or the Action Language for
fUML [Alf], respectively. (This is the same set of standard language names as in [KerML, 7.2.4.3, 8.3.2.3], with the
addition of "sysml".)

However, for any other language than "sysml", the SysML specification does not define how the body text is to be
semantically interpreted as part of the model being represented. An element with no other definition than a textual
representation in a language other than SysML is essentially a semantically "opaque" element specified in the other
language. Nevertheless, a conforming SysML tool may (but is not required to) interpret such an element consistently
with the specification of the named language.

7.5 Namespaces and Packages
7.5.1 Namespaces Overview

Metamodel references:

• Textual notation, 8.2.2.5
• Graphical notation, 8.2.3.5
• Abstract syntax, 8.3.5
• Semantics, none

A namespace is a kind of element that can contain other elements and provide names for them. The elements
contained in a namespace are referred to as its member elements. Membership is a kind of relationship that relates a
namespace to its members. A membership relationship can specify the name by which its member element is known
relative to the containing namespace and whether the element membership is visible outside the namespace or not
(see 7.5.2).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 23

An element may be owned via its membership in a namespace. When a namespace is deleted, all such owned
members will also be deleted. An element may also have a membership in a namespace without being owned by the
namespace. In this case, the membership may introduce an alias name for the element relative to the namespace.
Note that it is possible for an element to have both owning and non-owning memberships with the same namespace,
but it can have at most one owning membership across all namespaces.

An import relationship allows one namespace to import memberships from another namespace (see 7.5.3). The
member elements from imported memberships become (unowned) members of the importing namespace in addition
to being members of the imported namespace. In particular, this allows members of the imported namespace to be
referenced in textual notations within the scope of the importing namespace without having to qualify the member
names with the name of the imported namespace. An import can also be recursive, which means that, in addition to
importing members of the referenced namespace itself, all namespaces that are owned members of the imported
package are also recursively imported.

A package is a kind of namespace that is used solely as a container for other elements to organize the model. In
addition, a package has the capability to filter imported elements based on certain conditions (see 7.5.4), usually
defined in terms of the metadata provided by annotations of those elements (see 7.4 and 7.26). Only elements that
meet all filter conditions actually become imported members of the package. Together, recursive import and filtering
provide a general capability for specifying that a package automatically contain a set of elements identified from
across a model by their metadata.

In addition to packages, all kinds of SysML definitions and usages are also namespaces (see 7.6 and following
subclauses). All rules discussed generically for namespaces in this subclause 7.5 apply generically to packages,
definitions and usages (even though the examples in this subclause are given using packages).

In general, an element may have different names in different namespaces, and the same name may identify different
elements relative to different namespaces. Therefore, to unambiguously identify an element by name, the element
name must be qualified by the namespace relative to which the element name is to be resolved. Such a qualified
name is notated by specifying a name to identify the namespace, followed by the symbol ::, followed by the
element name. Since the namespace name may also be qualified, a qualified name is most generally a sequence of
segment names separated by :: punctuation, of which all but the last must identify namespaces. An unqualified
name can be considered the degenerate case of a qualified name with just one element name in its sequence, for
which the namespace to be used is implicit.

Note that qualified names do not appear in the abstract syntax. Instead, the abstract syntax representation contains
actual references to the identified elements. Name resolution is the process of determining the element that is
identified by a qualified name. An unqualified name used within the body of a namespace is resolved in the context
of that namespace and, potentially, other namespaces in which the first namespace is lexically nested, taking into
account imported (see 7.5.3) and inherited (see 7.6) memberships. A qualified name with more than one segment is
resolved by recursively resolving the name of the qualifying namespace and then resolving the element name in that
context. The full name resolution process is specified in [KerML, 8.2.3.5].

Table 3. Packages – Representative Notation

Element Graphical Notation Textual Notation

Package (name in
body)

package Package1;

24 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Package (name in
tab)

package Package1;

Package with owned
package

package Package1 {
package Package2;

}

Package with owned
members

package Package1 {
package Package 2;
part def Part2;
part part2 : Part2;

}

Package with alias
member (unowned)

package Package1 {
package Package2;
alias Package2Alias

for Package2;
}

Package with alias
member (unowned)

package Package1 {
package Package2;
alias Package2Alias

for Package2;
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 25

Element Graphical Notation Textual Notation

Package with
imported package
(nested notation)

package Package1 {
import Package2::*;
private import

Package3::*;
}

Membership (owned
member)

package Package0 {
package Package1;

}

Membership
(unowned member
with alias name)

package Package0 {
package Package1;
alias Package1Alias

for Package1;
}

Import (recursive)
Note:
- no star is element
import
- single star is
package import
(content of package)
- double star is
recursive including
outer package

package Package2 {
import

Package0::Package1::**;
}

Package with
compartment

package Package1 {
/* members */

}

26 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Package with
members
compartment

package Package1 {
part def PartDef1;
part def PartDef2;
part part1 :

PartDef1;
part part2 :

PartDef2;
}

7.5.2 Owned Members and Aliases

A package is declared using the keyword package, with the owned members of the package listed in its body.

package Configurations {
attribute def ConfigEntry {

attribute key: String;
attribute value: String;

}
item ConfigData {

attribute entries[*]: ConfigEntry;
}

}

In general, declaring an element within the body of a namespace denotes that the element is an owned
member of the namespace—that is, that there is an owning membership relationship between the namespace and the
member element. The visibility of the membership can be specified by placing one of the keywords public,
protected or private before the public element declaration. If the membership is public (the default), then it is
visible outside of the namespace. If it is private, then it is not visible. For namespaces other than definitions and
usages, protected visibility is equivalent to private. For definitions and usages, protected visibility has a
special meaning relating to member inheritance (see 7.6).

package P {
public part def A;
private attribute def B;
part a : A; // public by default

}

An alias for an element is a non-owning membership of the element in a namespace, which may or may not be the
same namespace that owns the element. An alias name or short name is determined only relative to its membership
in the namespace, and can therefore be different than the name or short name defined on the element itself. Note that
the same element may be related to a namespace by multiple alias memberships, allowing the element to have
multiple, different names relative to that namespace.

An alias is declared using the keyword alias followed by the alias short name and/or name, with a qualified
name identifying the element given after the keyword for. An alias declaration may also optionally have a body
containing annotating elements for the alias (see 8.2.2.4.1). The visibility of the alias membership can be specified
as for an owned member.

package P1 {
item A;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 27

item B;
alias <C> CCC for B {

doc /* Documentation of the alias. */
}
private alias D for B;

}

A comment (see 7.4), including documentation, declared within a namespace body also becomes an owned member
of the namespace. If no annotated elements are specified for the comment (with an about clause), then, by default,
the comment is considered to be about the containing namespace.

package P9 {
item A;
comment Comment1 about A

/* This is a comment about item A. */

comment Comment 2
/* This is a comment about package P9. */

/* This is also a comment about package P9. */

doc P9_Doc
/* This is documentation about package P9. */

}

7.5.3 Imports

An owned import of a Namespace is denoted using the keyword import followed by a qualified name, optionally
suffixed by "::*" and/or "::**".

If the qualified name in an import does not have any suffix, then this specifies a membership import whose
imported membership is identified by the qualified name. Such an import results in the identified membership
becoming an imported membership of the namespace owning the import. That is, the member element of this
membership becomes an imported member of the importing namespace. Note that the imported membership may be
an alias membership (see 7.5.2), in which case the element is imported with that alias name.

package P2 {
import P1::A;
import P1::C; // Imported with name "C".
package Q {

import C; // "C" is re-imported from P2 into Q.
}

}

If the qualified name in an import is further suffixed by "::*", then then this specifies a namespace import in
which the qualified name identifies the imported namespace. In this case, all visible memberships of the imported
namespace of the import become imported memberships of the importing namespace.

package P3 {
// Memberships A, B and C are all imported from P1.
import P1::*;

}

If the declaration of either a membership or namespace import is further suffixed by "::**", then the import
is recursive. Such an import is equivalent to importing memberships as described above for either an imported
membership or namespace, followed by further recursively importing from each imported member that is itself a
namespace.

28 OMG Systems Modeling Language (SysML) v2.0 Beta 1

package P4 {
item A;
item B;
package Q {

item C;
}

}
package P5 {

import P4::**;
// The above recursive import is equivalent to all
// of the following taken together:
// import P4;
// import P4::*;
// import P4::Q::*;

}
package P6 {

import P4::*::**;
// The above recursive import is equivalent to all
// of the following taken together:
// import P4::*;
// import P4::Q::*;
// (Note that P4 itself is not imported.)

}

The visibility of an import can be specified by placing the keyword public or private before the import
declaration. If the import is public (the default), then all the imported memberships become public for the
importing namespace. If import is private, then the imported memberships become private relative to the
importing namespace. An import declaration may also optionally have a body containing annotating element owned
by the import (see 8.2.2.4.1).

package P7 {
public import P1::A {

/* The imported membership is visible outside P7. */
}

private import P4::* {
doc /* None of the imported memberships are visible

* outside of P7. */

}

7.5.4 Import Filtering

A package may also contain filter conditions that filter the imports for the package. A filter condition is a Boolean-
valued, model-level evaluable expression (see [KerML. 7.4.9]) declared using the keyword filter followed by a
Boolean-valued, model-level evaluable expression (see [KerML. 7.4.9]). The filter conditions of a package are
evaluated on the member elements of all memberships that are potentially to be imported into the package (see
7.5.3). Only those memberships that for which all the filter conditions evaluate to true are actually imported.

Filter conditions can, for example, be used to select which elements to import into a package based on metadata
applied to those elements (see also 7.26 on metadata).

package ApprovalMetadata {
metadata def Approval {

attribute approved : Boolean;
attribute approver : String;
attribute level : Natural;

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 29

...
}

package DesignModel {
import ApprovalMetadata::*;
part System {

@Approval {
approved = true;
approver = "John Smith";
level = 2;

}
}
...

}

package UpperLevelApprovals {
// This package imports all direct or indirect members
// of the DesignModel package that have been approved
// at a level greater than 1.
import DesignModel::**;
filter @ApprovalMetadata::Approval and

ApprovalMetadata::Approval::approved and
ApprovalMetadata::Approval::level > 1;

}

Note that a filter condition in a package will filter all imports of that package. That is why full qualification is used
for ApprovalMetadata::Approval in the example above, since an imported element of the ApprovalMetadata
package would be filtered out by the very filter condition in which the elements are intended to be used. This may be
avoided by combining one or more filter conditions with a specific import in a filter import declaration.

A filter import includes one or more filter conditions in the import declaration, listed after the imported membership
or namespace specification, each surrounded by square brackets [...]. For such a filtered import, memberships are
imported, from that specific import, if and only if they satisfy all the given filter conditions.

package P8 {
import Annotations::*;

// Only import elements of NA that are annotated as Approved.
import NA::*[@Approved];

}

package UpperLevelApprovals {
// Recursively import all annotation data types and all
// features of those types.
import ApprovalMetadata::**;

// The filter condition for this import applies only to
// elements imported from the DesignModel package.
import DesignModel::**[@Approval and approved and level > 1];

}

The SysML package from the Systems Model Library (see 9.2.21) contains a complete model of the SysML abstract
syntax represented in SysML itself, and it publicly imports the KerML package from the Kernel Library containing
the Kernel abstract syntax model (see [KerML, 9.2.17]). When a filter condition is evaluated on an element, abstract
syntax metadata for the element can be tested as if the element had an implicit metadata usage (see 7.26) defined by
the definition from the SysML package corresponding to the abstract syntax metaclass of the element.

30 OMG Systems Modeling Language (SysML) v2.0 Beta 1

package PackageApprovals {
import ApprovalMetadata::*;
import SysML::*;

// This imports all part definitions from the DesignModel that have
// at least one owned part usage and have been marked as approved.
import DesignModel::**[@PartDefinition and

@PartDefinition::ownedPart != null and
@Approval and
Approval::approved];

}

Note. Namespaces other than packages cannot have filter conditions (except for their special use in view definitions
and usages – see 7.25). However, any kind of namespaces may have filtered imports.

7.5.5 Root Namespaces

A root namespace is a namespace that has no owner. The owned members of a root namespace are known as top-
level elements. Any element that is not a root namespace has an owner and, therefore, must be in the ownership tree
of a top-level element of some root namespace.

The declaration of a root namespace is implicit and no identification of it is provided in the SysML notation. Instead,
the content of a root namespace is given simply by the list of its top-level elements. For the purposes of model
interchange (see [KerML, Clause 10]), a single project may contain one or more root namespace, though there is no
syntax for defining a project in the SysML syntax.

doc /* This is a model notated in SysML textual notation. */
item def I;
attribute def A;
item i: I;
package P;

While a root namespace has no explicit owner, it is considered to be within the scope of a single global namespace.
This global namespace may contain several root namespaces (such as those being managed as a project), and always
contains at least all of the KerML and SysML model libraries (see [KerML, Clause 9] and Clause 9). Any root
namespace within the global namespace may refer to the name of a top-level element of any other root namespace
using an unqualified name (since root namespaces are themselves never named).

7.6 Definition and Usage
7.6.1 Definition and Usage Overview

Metamodel references:

• Textual notation, 8.2.2.6
• Graphical notation, 8.2.3.6
• Abstract syntax, 8.3.6
• Semantics, 8.4.2

Definitions and Usages

The modeling capabilities of SysML facilitate reuse in different contexts. Definition and usage elements provide a
consistent foundation for many SysML language constructs to provide this capability, including attributes,
occurrences, items, parts, ports, connections, interfaces, allocations, actions, states, calculations, constraints,
requirements, concerns, cases, analysis cases, verification cases, use cases, views, viewpoints and renderings.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 31

In general, a definition element classifies a certain kind of element (e.g., a classification of attributes, parts, actions,
etc.). A usage element is a usage of a definition element in a certain context. A usage must always be defined by at
least one definition element that corresponds to its usage kind. For example, a part usage is defined by a part
definition, and an action usage is defined by an action definition. If no definition is specified explicitly, then the
usage is defined implicitly by the most general definition of the appropriate kind from the Systems Library (see
9.2). For example, a part usage is implicitly defined by the most general part definition Part from the model library
package Parts.

Features

A definition may have owned usage elements nested in it, referred to as its features. A usage may also have nested
usage elements as features. In this case, the context for the nested usages is the containing usage. A simple example
is illustrated by a parts tree that is defined by a hierarchy of part usages. A vehicle usage defined by
Vehicle could contain part usages for engine, transmission, frontAxle, and rearAxle. Each part usage has
its own (implicit or explicit) part definition.

A feature relates instances of its featuring definition or usage to instances of its definition. For example, a mass
feature with definition MassValue, featured by the definition Vehicle, relates each specific instance of Vehicle
to the specific MassValue for that vehicle, known as the value of the mass feature of the vehicle.

A usage can also be contained directly in an owning package. In this case, the usage element is considered to be an
implicit feature of the most general kernel type Anything. That is, a package-level usage is essentially a generic
feature that can be applied in any context, or further specialized in specific contexts (as described under
Specialization below).

A usage may have a multiplicity that constrains its cardinality, that is, the allowed number of values it may have for
any instance of its featuring definition or usage. The multiplicity is specified as a range, giving the lower and upper
bound expressions that are evaluated to determine the lower and upper bounds of the specified range. The bounds
must be natural numbers. The lower bound must be finite, but the upper bound may also have the infinite value *.
An upper bound value of * indicates that the range is unbounded, that is, it includes all numbers greater than or
equal to the lower bound value. If a lower bound is not given, then the lower bound is taken to be the same as the
upper bound, unless the upper bound is *, in which case the lower bound is taken to be 0. For example, a Vehicle
definition could include a usage element called wheels with multiplicity 4, meaning each Vehicle has exactly four
wheels. A less restrictive constraint, such as a multiplicity of 4..8, means each Vehicle can have 4 to 8 wheels.

A usage may be referential or composite. A referential usage represents a simple reference between a featuring
instance and one or more values. A composite usage, on the other hand, indicates that the related instance is integral
to the structure of the containing instance. As such, if the containing instance is destroyed, then any instances related
to it by composite usages are also destroyed. For example, a Vehicle would have a composite usage of its
wheels, but only a referential usage of the road on which it is driving.

Note. The concept of composition only applies to occurrences that exist over time and can be created and destroyed
(see 7.9). Attribute usages are always referential and any nested features of attributes definitions and usages are also
always referential (see 7.7).

Specialization

Definition and usage elements can be specialized using several different kinds of specialization relationships.

A definition is specialized using the subclassification relationship. The specialized definition inherits the features of
the more general definition element and can add other features. For example, if Vehicle has a feature called fuel,
that is defined by Fuel, and Truck is a specialized kind of Vehicle, then Truck inherits the feature fuel. An
inherited feature can be subsetted or redefined as described below. The Truck definition can also add its own
features such as cargoSize.

32 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A definition can specialize more than one other definition, in which case the definition inherits the features from
each of the definitions it specializes. All inherited features must have names that are distinct from each other and
any owned features of the specializing definition. Name conflicts can be resolved by redefining one or more of the
otherwise conflicting inherited features (see below).

A usage inherits the features from its definition in the same way that a specialized definition inherits from a more
general definition element. For example, if a part usage vehicle is defined by a part definition Vehicle, and
Vehicle has a mass defined by MassValue, then vehicle inherits the feature mass. In some cases, a usage may
have more than one definition element, in which case the usage inherits the features from each of its definition
elements, with the same rules for conflicting names as described above for subclassification. A usage can also add
its own features, and subset or redefine its inherited features. This enables each usage to be modified for its context.

A usage can be specialized using the subsetting relationship. A subsetting usage has a subset of the values of the
subsetted usage. The subsetting usage may further constrain its definition and multiplicity. For the example
above, Truck inherits the feature wheels with multiplicity 4..8 from Vehicle. The part usage truck further
inherits wheels with multiplicity 4..8 from Truck. The part usage truck can subset wheels by defining
frontLeftWheel, frontRightWheel, rearLeftwheel1, and rearRightWheel1, each with multiplicity 1..1,
together giving the minimum total multiplicity of 4. The truck usage can then define additional subsets of wheels,
such as rearLeftwheel2, and rearRightwheel2, with multiplicity 0..1, indicating they are optional.

Redefinition is a kind of subsetting. While, in general, a subsetting usage is an additional feature to the subsetted
usage, a redefining usage replaces the redefined usage in the context of redefining usage. For the example above,
Vehicle contains a feature called fuel that is defined by Fuel. Truck inherits fuel from Vehicle. The part
usage truck would then normally inherit fuel as defined by Fuel from Truck. However, truck can instead
redefine fuel to restrict its definition to DieselFuel, a subclassification of Fuel. In this case, the new redefining
feature replaces the fuel feature that would otherwise be inherited, meaning that the fuel of the truck part must
be defined by DieselFuel.

A usage, particularly one with nested usages, can be reused by subsetting it. For example, subsetting the part usage
vehicle is analogous to specializing the part definition Vehicle. Suppose vehicle1 is a part usage that subsets
vehicle, with the parts-tree decomposition described above. This enables vehicle1 to inherit the features and
structure of vehicle. The part usage vehicle1 can be further specialized by adding other part usages to it, such as
a body and chassis, and it can redefine parts from vehicle as needed. For example, vehicle1 may redefine
engine to be a 4-cylinder engine. The original part vehicle remains unchanged, but vehicle1 is a unique
design configuration that specializes vehicle. Other part usages, such as vehicle2, could be created in a similar
way to represent other design configurations.

Note. If the part definition Vehicle is modified, the modification will propagate down through the specializations
described above. However, it is expected that if Vehicle is baselined in a configuration management tool, then a
change to Vehicle is a new revision, and it is up to the modelers to determine whether to retain the previous
version of Vehicle or move to the next revision.

Variability

Variation and variant are used to model variability typically associated with a family of design configurations. A
variation (sometimes referred to as a variation point) identifies an element in a model that can vary from one design
configuration to another. One example of a variation is an engine in a vehicle. For each variation, there are design
choices called variants. For this example, where the engine feature is designated as a point of variation, the design
choices are a 4-cylinder engine variant or a 6-cylinder engine variant.

Variation can apply to any kind of definition or usage in the model (except for enumeration, see 7.8). The variation
element then specifies all possible variants (i.e., choices) for that variation point. For example, the specified variants
for the engine variation are the 4-cylinder engine and the 6-cylinder engine.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 33

Variants are usage elements. If the containing variation is a definition, then each of its variants is implicitly defined
by the variation definition. If the containing variation is a usage, then each of its variants implicitly subsets the
variation usage. For example, the 4-cylinder engine and the 6-cylinder engine are subsets of all possible
engines.

Variations can be nested within other variations, to any level of nesting. For example, the 6-cylinder engine
variant may in turn contain cylinders with a variation for bore diameter that includes variants for small-bore
diameter and large-bore diameter. Alternatively, the bore diameter variation could be applied more
generally to the cylinder of engine, enabling both the 4-cylinder engine and the 6-cylinder engine to
have this variation point.

A model with variability can be quite complex since the variation can extend to many other aspects of the model
including its structure, behavior, requirements, analysis, and verification. Also, the selection of a particular
variant often impacts many other design choices that include other parts, connections, actions, states, and attributes.
Constraints can be used to constrain the available choices for a given variant. For example, the choice of a
6-cylinder engine may constrain the choice of transmission to be an automatic transmission, whereas
the choice of a 4-cylinder engine may allow for both an automatic transmission or a manual
transmission.

Variations and variants are used to construct a model that is sometimes referred to as a superset model,
which includes the variants to configure all possible design configurations. A particular configuration is selected by
selecting a variant for each variation. SysML provides validation rules that can evaluate whether a particular
configuration is a valid configuration based on the choices and constraints provided in the superset model.
Variability modeling in SysML can augment other external variability modeling applications, which provide robust
capabilities for managing variability across multiple kinds of models such as CAD, CAE, and analysis models, and
auto-generating the variant design configurations based on the selections.

Note. The approach to variability modeling in SysML is intended to align with industry standards such as ISO/IEC
26580:2021 Software and systems engineering — Methods and tools for the feature-based approach to software and
systems product line engineering.

Graphical Compartments

The graphical notation for a definition or usage may include one or more compartments, which show member
elements (if any) using textual or graphical notation. In the graphical symbols in all Representative Notation tables
in Clause 7, the term compartment stack is a placeholder for any valid compartment for the model element.

Table 4. Definition and Usage – Representative Notation

Element Graphical Notation Textual Notation

Name Compartment
- Definition (without
and with short name)

part def PartDef1;

part def <PD2> PartDef2;

34 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Name Compartment
- Definition

abstract part def
PartDef1 :> PartDef0;

package P {
alias PartDefAlias1
for PartDef1;

}
package Q {

alias PartDefAlias2
for PartDef1;

}

Name Compartment
- Definition
(qualified name)

package Package1 {
package Package2 {

part def PartDef3;
}

}

Name Compartment
- Definition
(abstract)

abstract part def
PartDef1;

Name Compartment
- Definition
(variation)

variation part def
PartDef1;

Name Compartment
- Usage (without and
with short name)

part part1 : PartDef1;

part <'p#2'> part2 :
PartDef2;

Name Compartment
- Usage

part part1 {
part part2 {

part part3 :
PartDef3;

}
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 35

Element Graphical Notation Textual Notation

Name Compartment
- Usage (abstract)

abstract part part1 :
PartDef1; package P {

alias partAlias1
for part1;

}
package Q {

alias partAlias2
for part1;

}

Name Compartment
- Usage (variation)

variation part part1 :
PartDef1;

Name Compartment
- Usage (variant)

variant part part1 :
PartDef1;

Name Compartment
- Inherited Usage No textual notation.

Name Compartment
- Subsetted Usage

part part1S : PartDef1S
[m]

subsets part1;

Name Compartment
- Redefined Usage
(with binding)

part part1R : PartDef1R
[m]

redefines part1 =
part2;

36 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Subclassification

part def Part2 {
attribute attribute1

: Attribute1;
perform action

action1 : Action1;
}

part def Part2S :>
Part2 {

attribute attribute2
: Attribute2;

item item1 : Item1
[0..*];
}

or

part def Part2S
specializes Part2 {
...

}

Part defined by Part
Definition

part def Part1 {
attribute attribute1

: Attribute1;
perform action

action1 : Action1;
}

part part1 : Part1 {
attribute attribute2

: Attribute2;
part part2 : Part2

[0..*];
}

or

part part1
defined by Part1 {
...

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 37

Element Graphical Notation Textual Notation

Subsetting

part part1 : Part1 {
attribute attribute2

: Attribute2;
part part2 : Part2

[0..*];
}

part part1S :> part1 {
attribute attribute3

: Attribute3;
part part3 : Part3

[0..*];
}

or

part part1S
subsets part1 {
...

}

Redefinition

part part1 : Part1
[0..*] {

part part2 : Part2
[0..*];
}

part part1S : Part1S
[1] :> part1 {

part part2R : Part2R
:>> part2;
}

or

part part1S : Part1S
[1] subsets part1 {

part part2R : Part2R
redefines part2;
}

38 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Feature Membership
(isComposite=true)

part def PartDef1 {
part part2 : Part2

[0..*];
}

Feature Membership
(isComposite=true)

part part1 : Part1
[0..1] {

part part2 : Part2
[0..*];
}

Feature Membership
(isComposite=false)

part part1 : Part1
[0..1] {

ref part part2 :
Part2 [0..*];
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 39

Element Graphical Notation Textual Notation

Variant Membership or

variation part part1 :
Part1 {

variant part part1a
: Part1a;

variant part part1b
: Part1b;
}

Variants
Compartment

or

or

variation item
itemChoice : ItemDef {

variant part1;
variant item1;

}

or

variation item
itemChoice : ItemDef {

variant part
references part1;

variant item
references item1;
}

or

variation item
itemChoice : ItemDef {

variant part part1 :
Part1;

variant item item1 :
Item1;
}

40 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Variant Parts
Compartment

variation part
partChoice : PartDef {

variant part part1 :
PartDef1;

variant part part2 :
PartDef2;
}

Relationships
Compartment

part def PartDef1;
part def PartDef2 :>
PartDef1;
part part1 : PartDef1;
part part2 : PartDef2
:> part1;
connect part2 to part3;
part part3;

7.6.2 Definitions

There is a basic common notation for all kinds of definitions, as described here in subclause 7.6, with additional
special notations for certain kinds of definitions described in the later subclauses specifically related to those kinds
of definitions. As a kind of Namespace (see 7.5), the representation of a definition includes a declaration and a
body.

A definition is declared using a keyword specific to the kind of definition (e.g., item, part, action, etc.) followed
by the keyword def. One or more owned subclassifications may also optionally be included in the declaration of a
definition by giving a comma-separated list of qualified names of the general definitions after the keyword
specializes (or the symbol :>). A definition is specified as abstract by placing the keyword abstract before its
kind keyword.

abstract part def Vehicle;
part def Automobile specializes Vehicle;
part def Truck :> Vehicle;

A definition that is not abstract is called a concrete definition. Declaring a definition to be abstract means that all
instances of the definition must also be instances of at least one concrete definition or usage that directly or
indirectly specializes the abstract definition.

The body of a definition is specified generically as for any namespace. In the textual notation, this is done by listing
the members and imports between curly braces {... } (see 7.5), or alternatively by a semicolon ; if the definition has
no members or imports. Usages declared within the body of a definition are owned usages that specify features of
the Definition.

item def Super {
private package N {

OMG Systems Modeling Language (SysML) v2.0, Beta 1 41

item def Sub specializes Super;
}

item f : N::Sub;
}

7.6.3 Usages

There is a basic common notation for all kinds of usages, as described here in subclause 7.6, with additional special
notations for certain kinds of usage described in the later subclauses specifically related to those kinds of usages. As
a kind of namespace (see 7.5), the representation of a usage includes a declaration and a body.

A usage is declared using a keyword specific to the kind of usage (e.g., item, part, action, etc.). One or more
owned specializations may also optionally be included in the declaration of a usage. There are three kinds of
specializations relevant to usages:

1. Feature typings specify the definitions of a usage (also known as its types). Textually, they are declared by
giving a comma-separated list of the qualified names of the definition elements after the keyword
defined by (or the symbol :). The definitions given must be consistent with the kind of usage being
defined.

2. Subsettings specify other usages subsetted by the owning usage. Textually, they are declared by giving a
comma-separated list of the qualified names of the subsetted usages after the keyword subsets (or the
symbol :>).

3. Redefinitions specify other usages redefined by the owning usage. Textually, they are declared by giving a
comma-separated list of the qualified names of the redefined usages after the keyword redefines (or the
symbol :>>). (Note that redefinition is a kind of subsetting, so the owned redefinitions of a usage will be a
subset of the owned subsettings in the abstract syntax.)

item x : A, B :> f :>> g;

// Equivalent declaration:
item x defined by A defined by B subsets f redefines g;

The multiplicity of a usage can be given in square brackets [...] after the name part of the declaration of a usage (if
it is named) or after one of the owned specialization clauses in the declaration (but, in all cases, only one multiplicity
may be specified). (This allows for a notation style consistent with previous modeling languages, in which the
multiplicity is always placed after the declared type.)

A multiplicity range is written in the form [lowerBound..upperBound], where each of lowerBound and
upperBound is either a literal or the identification of a usage. Literals can be used to specify a multiplicity range
with fixed lower and/or upper bounds. The values of the bounds of a multiplicity range must be natural numbers. If
only a single bound is given, then the value of that bound is used as both the lower and upper bound of the range,
unless the result is the infinite value *, in which case the lower bound is taken to be 0. If two bounds are given, and
the value of the first bound is *, then the meaning of the multiplicity range is not defined.

item def Person {
ref item parent[2] : Person;
ref item mother : Person[1..1] subsets parent;
attribute numberOfChildren : Natural;
ref item children[0..numberOfChildren] : Person;

}
item def ChildlessPerson specializes Person {

ref item redefines children[0];
}

42 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A multiplicity may be optionally followed by one or both of the following keywords (in either order), or they can be
used without giving an explicit muiltiplicity, at any place in the declaration a multiplicity would be allowed.

• nonunique – If a usage is non-unique, then the same value may appear more than once as a value of the
usage. The default is that the usage is unique, meaning that no two values of the usage may be the same.

• ordered – If a usage is ordered, then the values of the usage can be placed in order, indexed from 1 to the
number of values. The default is that the feature is unordered.

If a multiplicity is not declared for a usage, then the usage inherits the multiplicity constraints of any other usages it
subsets or redefines. If no tighter constraint is inherited, the effective default is the most general multiplicity
[0..*]. However, a tighter default of [1..1] is implicitly declared for the usage if all of the following conditions
hold:

1. The usage is an attribute usage, an item usage (including a part usage, except if it is a connection usage),
or a port usage.

2. The usage is owned by a definition or another usage (not a package).
3. The usage does not have any explicit owned subsettings or owned redefinitions.

There are a number of additional properties of a usage that can be flagged by adding specific keywords to its
declaration. If present these are always specified in the following order, before the kind keyword in the usage
declaration.

1. in, out, inout – Specifies a directed usage with the indicated direction, which determines what things
are allowed to change its values relative to its featuring instance.

◦ in – Things "outside" the featuring instance. These usages identify things input to an instance.
◦ out – The featuring instance itself or things "inside" it. These usages identify things output by

an instance.
◦ inout – Both things "outside" and "inside" the featuring instance. These usages identify things

that are both input to and output by an instance.
2. abstract – Specifies that the usage is abstract. A usage that is not abstract is called a concrete usage.

Similarly to an abstract definition (see 7.6.2), declaring a usage to be abstract means that any value of the
usage must also be a value of some concrete usage that directly or indirectly specializes (subsets or
redefines) the abstract usage.

3. readonly – Specifies that the usage is read only. Values of read only usage are the same during the entire
existence of that featuring instance.

4. derived – Specifies that the usage is derived. Such a feature is typically expected to have a bound value
expression that completely determines its value at all times (see also 7.13.3 on binding a usage to a value).

5. end – Specifies that the usage is an end feature of its owning definition or usage. See 9.2.6 for further
discussion on end features of connection definitions and usages.

6. ref – Specifies that the usage is referential. A usage that is not referential is composite. Values of a
composite usage, for each featuring instance, cannot exist after the featuring instance ceases to exist. This
only applies to values at the time the instance goes out of existence, not to other things that may have been
values of the usage before that, but are not any longer. (Note also that a directed usage is always
referential, whether or not the keyword ref is also given explicitly in its declaration.)

abstract part def Container {
abstract ref item content;

}
part def Tank :> Container {

in item fuelFlow : Fuel;
ref item fuel : Fuel :>> content;

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 43

The body of a usage is specified generically as for any namespace. In the textual notation, this is done by listing the
members and imports between curly braces {... } (see 7.5), or alternatively by a semicolon ; if it has no members or
imports. Usages declared within the body of another Usage are owned (nested) usages that specify features of the
owning usage.

part vehicle : Vehicle {
part wheelAssembly[2] {

part axle : Axle;
part wheel : Wheel;

}
}

7.6.4 Reference Usages

A reference usage is a usage that is declared without any kind keyword. Unlike other kinds of usages, the definitions
(types) of a reference usage are not restricted to be of a particular kind. The declaration of a reference usage may,
but is not required, to include the ref keyword. However, a reference usage is always, by definition, referential. A
reference usage is otherwise declared like any other usage, as given above.

abstract part def Container {
abstract ref content : Base::Anything;

}
part def OrderedContainer {

// By default, the following is a reference usage.
orderedContent ordered :>> content;

}

7.6.5 Effective Names

If a name and/or short name are declared for an element, these are used in the name resolution process to identify the
element (as discussed in 7.6.1). However, if neither a name or a short name are given in the declaration of a usage
with an owned redefinition, then its effective name and short name are implicitly determined by the name and short
name of the redefining usage of its first owned redefinition (which may itself be an implicit name, if the redefined
usage is itself a redefining usage). This is useful when redefining a usage in order to constrain it, while maintaining
the same naming as for the original usage.

part def Engine {
part cylinders : Cylinder[2..*];

}
part def FourCylinderEngine :> Engine {

// This redefines Engine::cylinders with a
// new usage, restricting the multiplicity
// to 4. It's declared name is empty,
// but its effective name is "cylinders".
part redefines cylinders[4];

}
part def SixCylinderEngine :> Engine {

part redefines cylinders[6];
}

Certain other kinds of usages (such as perform action usages) specify an alternate effective name rule, as described
in the subclauses relevant to those usages (e.g., 7.16.6 describes the rule for perform action usages).

44 OMG Systems Modeling Language (SysML) v2.0 Beta 1

7.6.6 Feature Chains

A feature chain is a textual notation specified as a sequence of two or more qualified names separated by dot (.)
symbols. Each qualified name in a feature chain must resolve to a Usage (or, more generally, a KerML Feature). The
first qualified name in a feature chain is resolved in the local namespace as usual (see 7.6.1). Subsequent qualified
names are then be resolved using the previously resolved usage (feature) as the context namespace, but considering
only public memberships.

A feature chain is similar to a qualified name but, unlike a qualified name, the path of usages (features) in the chain
is recorded in the abstract syntax, not just the reference to the final usages. This means that different paths to the
same usage can be distinguished in the abstract syntax representation of a model. Feature chains can be used to
specify the target for most kinds of relationships involving usages, including subsetting and redefinition. However,
their use is particularly important when specifying the related features of a connection usage that are more deeply
nested than the connection usage itself (see 7.13). (See also [KerML, 7.3.4.6].)

item uncles subsets parents.siblings;
item cousins redefines parents.siblings.children;
connect vehicle.wheelAssembly.wheels to vehicle.road;

In general, when a textual notation is described as including the identification of a usage, this can be done by using
either a qualified name or a feature chain.

7.6.7 Variations and Variants

A definition or usage is specified as a variation by placing the keyword variation before its kind keyword. A
variation is always abstract, so the abstract keyword is not used on a variation.

All usages declared within the body of a variation definition or usage are declared as variant usages by placing the
keyword variant at the beginning of their declarations. Variant usages may only be declared within a variation.
The kind of a variant usage must be consistent with the kind of its owning variation.

variation part def TransmissionChoices :> Transmission {
variant part manual : ManualTransmission;
variant part automatic : AutomaticTransmission;

}

A non-variant usage can also be declared to act as a variant of a variation by not including a kind keyword in the
variant declaration and, instead, following the variant keyword with the identification of a separately declared
usage. Such a variant declaration may also optionally further constrain the variant usage by including a multiplicity
and/or further specializations.

// These are non-variant usages.
part smallEngine : FourCylinderEngine;
part bigEngine : SixCylinderEngine;

part def Vehicle {
variation part engine : Engine {

// These are variant usages within the variation part "engine",
// based on the referenced non-variant usages.
variant smallEngine;
variant bigEngine;

}
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 45

7.6.8 Implicit Specialization

The meaning or semantics of a definition is given by what things it classifies relative to the system being modeled.
Specific kinds of definitions are already restricted to classifying specific kinds of things. E.g., an attribute definition
classifies attributive values, a part definition classifies systems and parts of systems, etc.

The Systems Model Library (see 9.2), which is based on the KerML Kernel Semantic Library (see [KerML, 9.2]) is
a set of ontological SysML models that define the basic kinds of things relevant for systems modeling. The
semantics of definition elements in SysML is given by requiring that each such element (directly or indirectly)
specialize the corresponding base definition from the Systems Model Library (or base classifier from the Kernel
Semantic Library) corresponding to its kind.

At the highest level, every definition element must directly or indirectly specialize the most general classifier
Anything from the Base model in the Kernel Semantic Library (see [KerML, 9.2.2]). Specific kinds of definition
then have more specific requirements for what more specific base definition they must specialize. For example, an
attribute definition must specialize the base attribute definition AttributeValue from the Attributes model in
the Systems Model Library, while a part definition must specialize the base part definition Part from the Parts
model.

The Systems Model Library also includes a parallel hierarchy of base usages (or base features in the Kernel
Semantic Library). So, every usage element must directly or indirectly specialize (subset) the most general feature
things from the from the Base model in the Kernel Semantic Library. And specific kinds of usage then also have
more specific requirements for what more specific base usage they must specialize. For example, an attribute usage
must subset the base attribute usage attributeValues from the Attributes model in the Systems Model
Library, while a part usage must subset the base part usage parts from the Parts model. In general, each base
usage is defined by the corresponding base definition. E.g., the base usage parts is defined by the base definition
Part, so that every part usage is ultimately a direct or indirect usage of Part.

These and other semantic constraints are fully described in 8.4. However, it is not generally necessary for a modeler
to explicitly satisfy these constraints when constructing a model. Rather, the violation of a semantic constraint
implies the need for a specific relationship, which may then be added to the model automatically by tooling (see also
[KerML, 8.4.2]). In particular, if a definition or usage, as explicitly declared, does not directly or indirectly
specialize the required base definition or usage, then the declaration is considered to include an implicit
subclassification or subsetting of the appropriate base definition or usage.

attribute def A; // Implicitly subclassifies Attributes::AttributeValue.
part def P { // Implicitly subclassifies Parts::Part.

ref x; // Implicitly subsets Base::things.
attribute a : A; // Implicitly subsets Attributes::attributeValues.
part p; // Implicitly subsets Parts::parts.
part q :> p; // No implicit specialization.

}
part def Q :> P; // No implicit specialization.

7.7 Attributes
7.7.1 Attributes Overview

Metamodel references:

• Textual notation, 8.2.2.7
• Graphical notation, 8.2.3.7
• Abstract syntax, 8.3.7
• Semantics, 8.4.3

46 OMG Systems Modeling Language (SysML) v2.0 Beta 1

An attribute definition defines a set of data values, such as numbers, quantitative values with units,
qualitative values such as text strings, or data structures of such values. An attribute usage is a usage of an attribute
definition. An attribute usage is always referential and any nested features of an attribute definition or usage must
also be referential (see also 7.6 on referential and composite usages).

The data values of an attribute usage are constrained to be in the range specified by its definition. The range of data
values for an attribute definition can be further restricted using constraints (see 7.19). An enumeration definition is a
specialized kind of attribute definition that further restricts the values of the data type to a discrete set of data values
(see 7.8).

Attribute usages can be defined by KerML data types as well as SysML attribute definitions. This allows them to be
typed by primitive data types from the Kernel Data Type Library (see [KerML, 9.3]), such as String, Boolean,
and numeric types including Integer, Rational, Real and Complex. The Kernel Data Type Library also includes
basic structured data types for collections.

Attribute usages representing quantities with units are defined using the SysML Quantities and Units Domain
Library or extensions of the elements in this library (see 9.8). The library provides base attribute definitions for
scalar, vector and tensor quantity values, along with other models that specify the full set of international standard
quantity kinds and units. Fundamental to this approach is the principle that only the kind of unit (e.g., MassUnit,
LengthUnit, TimeUnit, etc.) is associated with an attribute definition, while a specific unit (e.g., kg, m, s, etc.) is
only given with an actual quantity value. This means that an attribute usage for a quantity value is independent of
the specific units used, allowing for automatic conversion and interoperability between different units of the same
kind (e.g., kilograms and pounds mass, meters and feet, etc.).

The values of an attribute usage are data values, whether primitive values like integers or structured values with
nested attributes, that do not themselves change over time. However, the owner of an attribute usage may be an
occurrence definition or usage (or a specialized kind of occurrence, such as an item, part or action). In this case, the
value of the attribute usage may vary over the lifetime of its owning occurrence, in the sense that it can have
different values at different points in time, reflecting the changing condition of the occurrence over time. (See also
the discussion in 7.9.)

Table 5. Attributes – Representative Notation

Element Graphical Notation Textual Notation

Attribute Definition

attribute def
AttributeDef1;

attribute def
AttributeDef1 {

/* members */
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 47

Element Graphical Notation Textual Notation

Attribute

attribute attribute1 :
AttributeDef1;

attribute attribute1 :
AttributeDef1 {

/* members */
}

Attributes
Compartment

{
attribute attribute1

:
Attribute1Def

[1..*]
ordered nonunique;

/* ... */
}

7.7.2 Attribute Definitions and Usages

An attribute definition is declared as described in 7.6.2, using the kind keyword attribute. An attribute definition
may only specialize other attribute definitions (including enumeration definitions) or KerML data types (see
[KerML, 7.4.2]). An attribute usage may be declared as described in 7.6.3, using the kind keyword attribute. An
attribute usage may only be defined by attribute definitions or KerML data types. (See also 7.8 on enumeration
definitions and enumeration usages.

An attribute usage is always referential, whether or not the ref keyword (see 7.6.3) is used explicitly in its
declaration. The default multiplicity of an attribute usage is [1..1], under the conditions described in 7.6.3. In
general, any kind of usage may be declared in the body of an attribute definition or attribute usage, but all such
usages shall be referential. (There are further restrictions on what can be nested in an enumeration definition – see
7.8.)

attribute def SensorRecord {
ref part sensor : Sensor;
attribute reading : Real;

}

The base attribute definition is AttributeValue from the Attributes library model (see 9.2.2), which is simply
an alias for the data type DataValue from the KerML Base library model (see [KerML, 9.2.2]). The base attribute
usage is attributeValues from the Attributes library model, which is simply an alias for the feature
dataValues from the KerML Base library model.

48 OMG Systems Modeling Language (SysML) v2.0 Beta 1

7.8 Enumerations
7.8.1 Enumerations Overview

Metamodel references:

• Textual notation, 8.2.2.8
• Graphical notation, 8.2.3.8
• Abstract syntax, 8.3.8
• Semantics, 8.4.4

An enumeration definition is a kind of attribute definition (see 7.7) whose instances are limited to specific set of
enumerated values. An enumeration usage is an attribute usage that is required to have a single definition that is an
enumeration definition.

An enumeration usage is restricted to only the set of enumerated values specified in its definition. Since an
enumeration definition is a kind of attribute definition, it can also be used to define a regular attribute usage. Even if
the attribute usage is not syntactically an enumeration usage, it is still semantically restricted to take on only the
values allowed by its enumeration definition.

An enumeration definition can specialize an attribute definition that is not itself an enumeration definition. In this
case, the enumerated values of the enumeration definition will be a subset of the attribute values of the specialized
attribute definition. Which enumerated values correspond to which attribute values may be specified by binding the
enumerated values to expressions that evaluate to the desired values of the specialized attributed definition (see also
7.13 on binding usages to values). In this case, the results of all the expressions must be distinct (typically they will
just be literals).

For example, an enumeration definition DiameterChoices may specialize the attribute definition LengthValue.
DiameterChoices may include literals that are equal to 60 mm, 80 mm, and 100 mm. An attribute usage called
cylinderDiameter can be defined by DiameterChoices, and its value can equal one of the three enumerated
values.

An enumeration definition may not contain anything other than the declaration of its enumerated values. However, if
the enumeration definition specializes an attribute definition with nested usages, then those nested usages will be
inherited by the enumeration definition, and they may be bound to specific values within each enumerated value of
the enumeration definition.

An enumeration definition may not specialize another enumeration definition. This is because the semantics of
specialization require that the set of instances classified by a definition be a subset of the instances of classified by
any definition it specializes. The enumerated values defined in an enumeration definition, however, would add to the
set of enumerated values allowed by any enumeration definition it specialized, which is inconsistent with the
semantics of specialization.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 49

Table 6. Enumerations – Representative Notation

Element Graphical Notation Textual Notation

Enumeration
Definition

enum def
EnumerationDef1;

enum def
EnumerationDef1 {

/* members */
}

Enums Compartment

enum def
EnumerationDef1 {

enum enum1;
enum enum2;

}

or

enum def EnumerationDef1 {
enum1;
enum2;

}

Enums Compartment

enum def
EnumerationDef1 {

enum = value1
[unit1];

enum = value2
[unit2];
}

or

enum def EnumerationDef1 {
= value1 [unit1];
= value2 [unit2];

}

7.8.2 Enumeration Definitions and Usages

An enumeration definition is declared as described in 7.6.2, using the kind keyword enum, with the additional
restrictions described below. As a kind of attribute definition, an enumeration definition may generally subclassify
other attribute definitions or KerML data types. However, an enumeration definition must not subclassify another
enumeration definition. An enumeration usage is declared as described in 7.6.3, using the kind keyword enum.

Any owned members declared in the body of an enumeration definition must be enumeration usages, which are the
enumerated values of the enumeration definition. An enumeration definition is always considered to be a variation
and its enumerated values are its variants. The keywords abstract and variation may not be used with an
enumeration definition. The declaration of an enumeration usage as an enumerated value of an enumeration

50 OMG Systems Modeling Language (SysML) v2.0 Beta 1

definition may not include the keyword variant nor any of the other property keywords given in 7.6.3 (i.e, any
direction keywords, abstract, derived, etc.).

Since the body of an enumeration definition may only declare enumeration usages, the declaration of an enumerated
value may omit the enum keyword. An enumerated usage declared as an enumerated value is considered to be
implicitly defined by its owning enumeration definition and, therefore, may not have any explicitly declared
definition other than that enumeration definition (and need not have any explicitly declared definition at all).

enum def ConditionColor { red; green; yellow; }
attribute def ConditionLevel {

attribute color : ConditionColor;
}
enum def RiskLevel :> ConditionLevel {

enum low { color = ConditionColor::green; }
enum medium { color = ConditionColor::yellow; }
enum high { color = ConditionColor::red; }

}

There are no special restrictions on the declaration of an enumeration usage outside the body of an enumeration
definition, other than as for an attribute usage in general (see 9.2.2), except that such an enumeration usage must be
explicitly defined by a single enumeration definition. As a kind of attribute usage, an enumeration usage is always
referential, whether or not ref is included in its declaration, and all the nested usages of an enumeration usage must
also be referential.

enum assessedRisk : RiskLevel {
// The following feature is added for this usage.
// It is legal, since all attribute usages are
// referential.
attribute assessment : String;

}

7.9 Occurrences
7.9.1 Occurrences Overview

Metamodel references:

• Textual notation, 8.2.2.9
• Graphical notation, 8.2.3.9
• Abstract syntax, 8.3.9
• Semantics, 8.4.5

Occurrences

An occurrence definition is a definition of a class of occurrences that have an extent in time and may have spatial
extent. An occurrence usage is a usage of an occurrence definition.

The extent of an occurrence in time is known as its lifetime, which covers the period in time from the occurrence's
creation to its destruction. An occurrence maintains its identity over its lifetime, while the values of its features may
change over time. The lifetime of an occurrence begins when the identity of the occurrence is established, and the
the lifetime ends when the occurrence loses its identity. For example, the lifetime of a car could begin when it leaves
the production-line, or when a vehicle identification number is assigned to the car. Similarly, the lifetime of a car
could end when the car is disassembled or demolished.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 51

The performance of a behavior is also an occurrence that takes place over time. The lifetime of a behavior
performance begins at the start of the performance and ends when the performance is completed. Structural and
behavioral occurrences are often related. For example, a machine on an automobile assembly line, during its
lifetime, will repeatedly perform a behavioral task, each performance of which has its own respective lifetime,
which then affects the construction of some car being assembled on the line.

If an occurrence definition or usage has nested composite features, then those features must also be usages of
occurrence definitions (including the various specialized kinds of occurrences, such as parts, items and actions). If
an occurrence has values for any composite features at the end of its lifetime, then the lifetime of those composite
values must also end. However, if a composite suboccurrence is removed from its containing occurrence before the
end of the lifetime of the containing occurrence, then the former suboccurrence can continue to exist. For example,
if a wheel is attached to a car when the car is destroyed, then the wheel is also destroyed. However, if the wheel is
removed before the car is destroyed, then the wheel can continue to exist even after the car is destroyed. (See also
7.6 on referential and composite usages.)

Time Slices and Snapshots

The lifetime of an occurrence can be partitioned into time slices which correspond to some duration of time. These
time slices represent periods or phases of a lifetime, such as the deployment or operational phase. Time slices can be
further partitioned into other time slices. For example, the lifetime of a car might be divided into time slices
corresponding to its assembly, being in inventory before being sold, and then sequential periods of ownership with
different owners.

A time slice with zero duration is a snapshot. Start, end and intermediate snapshots can be defined for any time slice
to represent particular instants of time in an occurrence's lifetime. For example, the start snapshot of each ownership
time slice of a car corresponds to the sale of the car to a new owner, which happens at the same time as the end
snapshot of the previous ownership (or inventory) time slice.

Individuals

Any kind of occurrence definition can be restricted to define a class that represents an individual, that is, a single
real or perceived object with a unique identity. For example, consider the part definition Car modeling the class of
all cars (parts are kinds of items which are kinds of occurrences, see 7.11). An individual car called Car1 with a
unique vehicle identification number can then be modeled as an individual part definition that is a subclassification
of the general part definition Car. As such, Car1 inherits all the features of Car (such as its parts engine,
transmission, chassis, wheels, etc.), but has individual values for each of those features (individual engine,
individual transmission, individual chassis, four individual wheels, etc.), each of which is itself a uniquely
identifiable subclassification of a more general part definition (Engine, Transmission, Chassis, Wheel, etc.).

An occurrence usage can also be restricted to be the usage of a single individual. In this case, exactly one of the
definitions of the occurrence usage must be an occurrence definition for that individual. Such an individual usage
can be used to model a role that an individual plays for some period of time. For example, the individual part
definition Car1 can be used in different contexts, such as the usage of Car1 when it is in for service and the usage
of Car1 when it is used for normal operations. Let car1InService be the usage of Car1 when it is in for service
to have its tires rotated. For this usage, car1InService has four wheels that play different roles, including front-
left, front-right, rear-left, and rear-right. The four wheels of Car1 are individual Wheel usages defined by the
individual definitions Wheel1, Wheel2, Wheel3, and Wheel4. Each of these individual definitions is a
subclassification of Wheel. When car1InService enters the shop, the front-left wheel individual usage is
initially defined by the individual definition Wheel1, but after the tires are rotated, the front-left wheel is
defined by the individual definition Wheel2.

The lifetime of an individual and any of its time slices can be actual or projected. For example, the individual car
Car1 may be purchased as a used car. Car1 has had an actual lifetime up to that time. A mechanic may
perform diagnostics and obtain some measurements, and may estimate the remaining life of the car or its parts based

52 OMG Systems Modeling Language (SysML) v2.0 Beta 1

on the measurements. For example, the mechanic may estimate the remaining lifetime of the tires, based on the tread
measurements and the estimated tire wear rate.

At a given point in time, the condition of an individual (sometimes called its "state", which should not be confused
with a behavioral state usage, as described in 7.17) can be specified by the values of its attributes. As an example,
the condition of car1inOperation at different points in time can be specified in terms of its acceleration,
velocity, and position. In addition, its finite (i.e., discrete) state (in the sense that can be modeled with state
definitions and usages, see 7.17) can be specified at different points in time as off or on, and any nested state such
as forward or reverse. The condition of the car can continue to change over its lifetime, and can be specified as a
function of discrete and/or continuous time.

Events

An event is a reference from one occurrence to another occurrence that represents some relevant happening during
the lifetime of the first occurrence. Such an event model makes no commitment as to how the event actually
happens. Different specializations of the containing occurrence may realize the modeled event in different ways.

In particular, occurrences may collaborate by transferring information between each other via messages (see 7.13).
The sending of such a message is an event in the lifetime of the sending occurrence, while the receipt of such a
message is an event in the lifetime of the receiving occurrence. These events can possibly be realized as the
performance of a send action and corresponding accept action, respectively, with the message being the resulting
transfer between them (see 7.16). However, it could also be realized as the start and end of an explicitly modeled
flow connection (see 7.13 on flow connections and messages).

Table 7. Occurrences – Representative Notation

Element Graphical Notation Textual Notation

Occurrence
Definition

occurrence def
OccurrenceDef1;

occurrence def
OccurrenceDef1 {

/* members */
}

Occurrence

occurrence occurrence1
: OccurrenceDef1;

occurrence occurrence1
: OccurrenceDef1 {

/* members */
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 53

Element Graphical Notation Textual Notation

Individual
Occurrence
Definition

individual def
'OccurrenceDef1-1'

:> OcurrenceDef1;

Individual
Occurrence

individual occurrence1
: OccurrenceDef1;
individual def
'OccurrenceDef1-1' :>
OccurrenceDef1;
individual
'occurrence1-1' :
'OccurrenceDef1-1' :>
occurrence1;

Timeslice timeslice timeslice1 :
OccurrenceDef1;

Snapshot snapshot snapshot1 :
OccurrenceDef1;

Portion Membership

individual part
individual1 :
Individual1 {

timeslice timeslice1
{

snapshot
snapshot1;

snapshot
snapshot2;

}
timeslice timeslice2;

}

54 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Occurrences
Compartment

{
occurrence occur1 :

OccurDef [1..*]
ordered nonunique;

/* ... */

}

Individuals
Compartment (parts)

{
individual part

part1 :
PartDef1_1 [1..*]
ordered nonunique;

/* ... */

}

Timeslices
Compartment

part part1 {
timeslice phase1;
timeslice phase2;
/* ... */

}

Snapshots
Compartment

part part1 {
snapshot snapshot1;
snapshot snapshot2;
snapshot snapshot3;
/* ... */

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 55

7.9.2 Occurrence Definitions and Usages

An occurrence definition or usage (that is not of a more specialized kind) can be declared as described in 7.6.2 and
7.6.3, using the kind keyword occurrence. An occurrence usage may only be defined by occurrence definitions (of
any kind) or KerML classes (see [KerML, 7.4.3]).

occurrence def Flight {
ref part aircraft : Aircraft;

}

The base definition for occurence definitions is the class Occurrence from the Occurrences model in the Kernel
Semantic Library (see [KerML, 9.2.4]). The base usage for occurrence usages is the feature occurrences from the
Occurrences model.

7.9.3 Time Slices and Snapshots

An occurrence usage (of any kind) can be declared as a time slice or a snapshot using the keyword timeslice or
snapshot, respectively, placed immediately before the kind keyword of the declaration (after any of the other
usage property keywords described in 7.6.3). Alternatively, timeslice or snapshot may be used in place of the
kind keyword, in which case the declaration is equivalent to timeslice occurrence or snapshot occurrence
(that is, an occurrence usage not of a more specialized kind, but declared as a time slice or snapshot, respectively).

occurrence def Flight {
ref part aircraft : Aircraft;

}
// The following are time slices of Flight.
timeslice preflight : Flight;
timeslice inflight : Flight;
timeslice postflight : Flight;

part aircraft : Aircraft;
// The following are snapshots of the part aircraft.
snapshot part aircraftTakeOff :> aircraft;
snapshot part aircraftLanding :> aircraft;

A time slice or snapshot is normally considered to represent a portion of the lifetime of instances of its defining
occurrence definition(s). However, if such an occurrence usage has no explicitly declared definition, but is declared
in the body of an occurrence definition, then it is considered to implicitly represent a portion of instances of the
containing occurrence definition. If it is declared in the body of another occurrence usage, then it is considered to
implicitly represent a portion of the instances of the definition(s) of that containing occurrence usage.

occurrence def Flight {
ref part aircraft : Aircraft;
// The following are time slices of Flight.
timeslice preflight;
timeslice inflight;
timeslice postflight;

}

part aircraft : Aircraft {
// The following are snapshots of the part aircraft.
snapshot part aircraftTakeOff;
snapshot part aircraftLanding;

}

56 OMG Systems Modeling Language (SysML) v2.0 Beta 1

7.9.4 Individual Definitions and Usages

An occurrence definition (of any kind) can be declared as an individual definition using the keyword individual,
placed immediately before the kind keyword of the declaration. Alternatively, individual may be used in place of
the kind keyword, in which case the declaration is equivalent to individual occurrence (that is, an occurrence
usage not of a more specialized kind, but representing an individual).

individual def Flight_248 :> Flight;
individual part def TestPlane_1 :> Aircraft;

An occurrence usage (of any kind) is considered to be an individual usage if it has a definition that is an individual
definition. An occurrence usage must not have more than one definition that is an individual definition. An
occurrence usage may also be explicitly declared to be an individual usage using the keyword individual, placed
after any of the other usage property keywords described in 7.6.3, but before a timeslice or snapshot keyword
(if any). In this case, the occurrence usage must have exactly one definition that is an individual definition. If the
declaration of an occurrence usage includes the the keyword individual (and, possibly, timeslice or
snapshot), but no kind keyword, then this is equivalent to having included the occurrence keyword (that is, an
occurrence isage not of a more specialized kind, but representing an individual, and, possibly, a time slice or
snapshot).

individual flightRecord : Flight_248 {
individual part redefines aircraft : TestPlane_1;
individual timeslice redefines preflight;
individual timeslice redefines inflight;
individual timeslice redefines postflight;

}

7.9.5 Event Occurrence Usages

An event occurrence usage is declared like an occurrence usage, as described in 7.9.2, 7.9.3, and 7.9.4, but using the
kind keyword event occurrence instead of just occurrence. It is related to another occurrence usage,
representing the occurring event, by a reference subsetting relationship, which is a special kind of subsetting
relationship specified using the keyword references or the symbol ::>. Or, if the event occurrence usage has no
such reference subsetting, then the referenced event occurrence is the event occurrence usage itself.

part client {
event occurrence request[1] references subscriptionMessage.source;
event occurrence delivery[*] ::> publicationMessage.target;

}

An event occurrence usage may also be declared using just the keyword event instead of event occurrence. In
this case, the declaration does not include either a name or a short name. Instead, the referenced event occurrence of
the event occurrence usage is identified by giving a qualified name or feature chain immediately after the event
keyword.

part client {
event subscriptionMessage.source[1];
event publicationMessage.target[*];

}

The ref keyword may be used in the declaration of an event occurrence usage, but an event occurrence usage is
always referential, whether or not ref is included in its declaration.

7.10 Items

OMG Systems Modeling Language (SysML) v2.0, Beta 1 57

7.10.1 Items Overview

Metamodel references:

• Textual notation, 8.2.2.10
• Graphical notation, 8.2.3.10
• Abstract syntax, 8.3.10
• Semantics, 8.4.6

An item definition is a kind of occurrence definition (see 7.9) that defines a class of identifiable objects that may be
acted on over time, but which do not necessarily perform actions themselves. An item usage is a usage of one or
more item definitions.

Item usages can be used to represent inputs and outputs to actions such as water, fuel, electrical signals and data.
Item usages, such as fuel, may flow through a system and be stored by a system. An item may have attributes (see
7.7), states (see 7.17), and nested item usages.

An item that performs actions is normally modeled as a part (see 7.11). All parts are items, but not all items are
necessarily parts. An item may also be considered to be a part during some time slices of its lifetime but not others.
For instance, an engine being assembled can be modeled as an item moving along an assembly line. However, once
the engine assembly is completed, the engine can be considered to be a part that may be installed into a car, where it
is expected to perform the action providing power to propel the car. But later it may be removed from the car and
again be considered only an inactive item in a junkyard.

Items may also have an extent in space as well as time. The shape of an item is its boundary in three-dimensional
space. Items without shapes are closed enabling them to be boundaries of other items (for example, a two-
dimensional sphere has no boundary, but it is the shape of a three-dimensional ball). The Geometry Domain Library
(see 9.7) includes a model of basic kinds of geometric shapes that can be composed to construct compound spatial
items.

An item can also identify other items as enveloping shapes, which are closed items that are the boundary of a
hypothetical item occupying the same or larger space as the enveloped item. Some of these can be bounding shapes,
which overlap the bounded item on all sides. The spatial boundaries of items can break into separate closed items,
such as the inside and outside of an egg shell. These inner boundaries can be the boundary of a hypothetical item,
the interior of which is a void of the item. Items with no voids are solid.

Table 8. Items – Representative Notation

Element Graphical Notation Textual Notation

Item Definition

item def ItemDef1;

item def ItemDef1 {
/* members */

}

58 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Item

item item1 : ItemDef1;

item item1 : ItemDef1 {
/* members */

}

Items Compartment

{
item item1 :

ItemDef1 [1..*]
ordered nonunique;

/* ... */

}

7.10.2 Item Definitions and Usages

An item definition or usage (that is not of a more specialized kind) is declared as a kind of occurrence definition or
usage (see 7.9.2), using the kind keyword item. An item usage must only be defined by item definitions (of any
kind) or KerML structures (see [KerML, 7.4.4]). The default multiplicity of an item usage is [1..1], under the
conditions described in 7.6.3.

item def Fuel {
attribute pressure : PressureValue;
ref item impurities[0..*] : Material;

}

The base item definition and usage are Item and items from the Items library model (see 9.2.3). (For other
semantic constraints on item usages, see 8.4.6).

7.11 Parts
7.11.1 Parts Overview

Metamodel references:

• Textual notation, 8.2.2.11
• Graphical notation, 8.2.3.11
• Abstract syntax, 8.3.11
• Semantics, 8.4.7

OMG Systems Modeling Language (SysML) v2.0, Beta 1 59

A part definition represents a modular unit of structure such as a system, system component, or external entity that
may directly or indirectly interact with the system. A part definition is a kind of item definition (see 7.10) and, as
such, defines a class of part objects that are occurrences with temporal (and possibly spatial) extent. A part usage is
a kind of item usage that is a usage of one or more part definitions, but may also be a usage of item definitions that
are not part definitions. This allows a part to be treated like an item in some cases (e.g., when an engine under
assembly flows through an assembly line) and as a part in other cases (e.g., when an assembled engine is installed in
a vehicle).

A system is modeled as a composite part, and its part usages may themselves have further composite structure. The
parts of a system may have attributes (see 7.7) that represent different performance, physical and other quality
characteristics. The parts may have ports (see 7.12) that define the points at which those parts may be interconnected
(see 7.13 and 7.14). Parts may also perform actions (see 7.16) resulting in items flowing across the connections
between them, and exhibit states (see 7.17) that enable different actions.

A part can represent any level of abstraction, such as a purely logical component without implementation
constraints, or a physical component with a part number, or some intermediate abstraction. Parts can also be used to
represent different kinds of system components such as hardware components, software components, facilities,
organizations, or users of a system.

Table 9. Parts – Representative Notation

Element Graphical Notation Textual Notation

Part Definition

part def PartDef1;

part def PartDef1 {
/* members */

}

Part

part part1 : PartDef1;

part part1 : PartDef1 {
/* members */

}

60 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Part with Ports

part part1 {
port p0 : PortDef0 {

port p1 :
PortDef1;

port p2 :
PortDef2;

port p3 :
PortDef3;

}
port p4 : PortDef4;
port p5 : PortDef5;

}

Part with Graphical
Compartment
showing a standard
interconnection view
of part1.

part part1 : Part1{
port p1 : P1Def;
port p6 : P6Def;

part part2:Part2;
part part3:Part3;

bind p1 = part2.p2;
connect part2.p3 to

part3.p4;
bind part2.p5 = p6;

}

Part performs a
reference action
(action1) that can
subset or bind to
another action, and
an anonymous
reference action
(action2) that subsets
another action.

part part0 {
perform action

action1;
perform action2;

}
action action2;

Part performs a
reference action
(action1) that
reference-subsets
another action
(action3

action action3 :
Action3;

part part0 {
perform action

action1 references
action3;
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 61

Element Graphical Notation Textual Notation

Part with Graphical
Compartment with
perform actions and
flows between them.
This is informally
referred to as a swim
lane.

part part2 : PartDef2 {
perform action

action2;
then perform action

action3;
}

Parts Compartment

{
part part1 :

PartDef1 [1..*]
ordered nonunique;

/* ... */

}

7.11.2 Part Definitions and Usages

A part definition or usage (that is not of a more specialized kind) is declared as a kind of occurrence definition or
usage (see 7.9.2), using the kind keyword part. As a kind of item usage (see 7.10), a part usage must only be
defined by item definitions (including part definitions) or KerML structures (see [KerML, 7.4.4]). The default
multiplicity of a part usage is[1..1], under the conditions described in 7.6.3.

item def Person;
part def Vehicle {

ref part driver[0..1] : Person;
part engine : Engine;
part wheels[4] : Wheel;

}

The base part definition and usage are Part and parts from the Parts library model (see 9.2.4). (For other
semantic constraints on part usages, see 8.4.7).

62 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Note. Because the base usage of a part usage is the part usage parts defined by the base part definition Part, every
part usage is always directly or indirectly defined by at least one part definition, implicitly if not explicitly, in
addition to any other item definitions.

7.12 Ports
7.12.1 Ports Overview

Metamodel references:

• Textual notation, 8.2.2.12
• Graphical notation, 8.2.3.12
• Abstract syntax, 8.3.12
• Semantics, 8.4.8

A port definition is a kind of occurrence definition (see 7.9) that defines a connection point to enable interactions
between occurrences (most commonly parts). A port usage is a kind of occurrence usage definition that is a usage of
a port definition.

A port usage may be connected to one or more other port usages (see 7.14). Such connections enable interactions
between the occurrences that own the ports. The features of the port usages (whether inherited from its definition or
declared locally for the usage) specify what can be exchanged in such interactions. Since ports are themselves kinds
of occurrences, port definitions and usages can contain nested port usages.

A feature of a port may be directed, with one of the directions in, out, or inout (see also 7.6.3). Connected ports
must conform: each feature of a port at one end of a connection must have a matching feature on a port at the other
end of the connection. Two features match if they have conforming definitions and either both have no direction or
they have conjugate directions. The conjugate of direction in is out and vice versa, while direction inout is its
own conjugate. A transfer can occur from the out features of one port usage to the matching in features of
connected port usages. Transfers can occur in both directions between matching inout features.

Each port definition has a conjugated port definition whose directed features are conjugate to those of the original
port definition. A conjugated port usage is a usage of a conjugated port definition. A conjugated port usage
automatically conforms to a usage of the corresponding original port definition.

Table 10. Ports – Representative Notation

Element Graphical Notation Textual Notation

Port Definition

port def PortDef1;

port def PortDef1 {
/* members */

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 63

Element Graphical Notation Textual Notation

Port

port port1 : PortDef1;

port port1 : PortDef1 {
/* members */

}

Ports Compartment

{
port port1 :

PortDef1 [1..*]
ordered nonunique;

/* ... */

}

Directed Features
Compartment

{
in attribute1 :

AttributeDef1;
out attribute2 :

AttributeDef2;
inout attribute3 :

AttributeDef3;
in item1 : ItemDef1;
out item2 : ItemDef2;
inout item3 :

ItemDef3;
}

7.12.2 Port Definitions and Usages

A port definition or usage is declared as a kind of occurrence definition or usage (see 7.9.2), using the kind keyword
port. A port usage must only be defined by port definitions. The default multiplicity of a port usage is [1..1],
under the conditions described in 7.6.3. All the features of a port definition or port usage, other than any nested port
usages, must be referential (non-composite).

port def FuelingPort {
attribute flowRate : Real;
out fuelOut : Fuel;

64 OMG Systems Modeling Language (SysML) v2.0 Beta 1

in fuelReturn : Fuel;
}
part def FuelTank {

port fuelOutPort : FuelingPort;
}

The base port definition and usage are Port and ports from the Ports library model (see 9.2.5). (For other
semantic constraints on port usages, see 8.4.8.)

7.12.3 Conjugated Port Definitions and Usages

Every port definition also implicitly declares a single, nested conjugated port definition, which has the same features
as its original port definition, except that any directed features have conjugated directions (i.e., in and out are
reversed, with inout unchanged). The name of the conjugated port definition is always given by the name of the
original port definition with the character ~ prepended, in the namespace of the original port definition. For
example, if a port definition has the name P, then its conjugated port definition has the name P::'~P'.

A conugated port usage is a shorthand for declaring a port usage defined by a conjugated port definition. With this
shorthand, rather than using the actual name of the conjugated port definition, the name of the original port
definition can be used, preceded by the symbol ~. For example,

port p : ~P;

is equivalent to

port p : P::'~P';

Since the symbol ~ is not considered part of a name when used in a conjugated port usage, it does not have to be
placed within quotes, while quotes do have to be used to represent the actual name of the conjugated port definition
as a lexical unrestricted name (see 7.2.2). Note that, if the original port definition itself has a name that is itself
lexically represented as an unrestricted name, such as 'P-1', then its conjugated port definition has the (qualified)
name 'P-1'::'~P-1', but the corresponding conjugated port usage is

port p1 : ~'P-1'

where the ~ is not placed inside the quotes.

7.13 Connections
7.13.1 Connections Overview

Metamodel references:

• Textual notation, 8.2.2.13
• Graphical notation, 8.2.3.13
• Abstract syntax, 8.3.13
• Semantics, 8.4.9

Connection Definition and Usage

A connection definition is both a relationship and a kind of part definition (see 7.11) that classifies connections
between related things, such as items and parts. At least two of the owned features of a connection definition must
be connection ends, which specify the things that are related by the connection definition. Connection definitions
with exactly two connection ends are called binary connection definitions, and they classify binary connections.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 65

The features of a connection definition that are not connection ends characterize connections separately from the
connected things. Since a connection is a part, values of these non-end features can potentially change over the
lifetime of the connection. However, the values of connection ends (i.e., the things that are actually connected) do
not change over time (though they can potentially be occurrences that themselves have features whose values
change over time).

A connection usage is a part usage (see 7.11) that is a usage of a connection definition, connecting usage elements
such as item and part usages. A connection usage redefines the connection ends from its definition, associating those
ends with the specific usage elements that are to be connected. For example, a connection definition could have
connection ends that are part usages defined by part definitions Pump and Tank. A usage of this connection
definition would then associate corresponding connection ends with specific pump and tank part usages. Supposing
that the pump and tank part usages have multiplicity 1, then this means that the single value of the pump usage is to
be connected to the single value of the tank usage.

A connection usage that connects parts is often a logical connection that abstracts away details of how the parts are
connected. For example, plumbing that includes pipes and fittings may be used to connect a pump and a tank. It is
sometimes desired to model the connection of the pump to the tank at a more abstract level without including the
plumbing. This is viewed as a logical connection between the pump and the tank.

Alternatively, the plumbing can be modeled as a part (informally referred to as an interface medium) where the
pump connects to the plumbing, and the plumbing connects to the tank. As a part itself, a connection can contain the
plumbing either as a composite feature, or as a reference to the plumbing that is owned by a higher level pump-tank
system context. In this way, the logical connection without structure can be transformed into a physical connection.

Bindings and Successions

Bindings and successions are special kinds of connections. They are usages, but, unlike regular connection usages,
they are not part usages. The connections specified by bindings and successions are not occurrences and are not
created and destroyed. Rather, they assert specific relationships between the features that they connect, which must
be true at all times.

A binding is a binary connection that requires its two related usages to have the same values. A binding can also be
used to bind a referential feature in one context to a composite feature in another context to assert they are the same
thing. For example, the steering wheel in a car may be considered part of the interior of the car, while at the same
time it is considered part of the steering subsystem. The steering wheel can be a composite part usage of the interior,
and a reference part usage of the steering subsystem, and these two usages can be bound together to assert that they
are the same part.

A feature value is a shorthand for initializing or binding a usage to the result of an expression (see 7.18) as part of
the declaration of the usage. There are two types of feature value binding.

• A fixed feature value establishes the binding of the usage to the result of evaluating the given expression at
the point of declaration of the usage. Such a binding cannot be overridden in a redefinition of the usage
because, once asserted, a binding must be true for all instances of the usage.

• A default feature value also includes an expression, but it does not immediately establish the binding of
the usage. Instead, the evaluation of the expression and the binding of the usage is delayed until the
instantiation of a definition or usage that features the original usage. Unlike a fixed feature value, a default
feature value can be overridden in a redefinition of its original feature with a new feature value (fixed or
default). In this case, the new overriding feature value is used instead of the original feature value for
binding the redefining usage.

A succession is a binary connection that requires its two related usages to have values that are occurrences that
happen completely separated in time, with the first occurrence happening before the second. Successions can be

66 OMG Systems Modeling Language (SysML) v2.0 Beta 1

used to assert the ordering of any kind of occurrences in time, but are particularly useful for event occurrences (see
7.9) and performances of actions (see 7.16).

Flow Connection Usages

A flow connection usage is a connection usage that also represents the performance of a transfer of some payload
between the values of connected usages, which must be occurrences. The transferred payload can be anything
(attribute value, item, part, etc.). The transfer is directed from the first connection end (the source) to the second
connection end (the target). There are three kinds of flow connections.

1. A message is modeled as a flow connection usage that specifies that some transfer happens between the
source and target ends, and can define the payload that is to be transferred. However, a message does not
specify how the payload is to be obtained from the source or delivered to the target.

2. A streaming flow connection is modeled as a flow connection usage that not only specifies the source and
target of a transfer (and, optionally, the payload), but also identifies the source output feature of the source
usage from which the payload is obtained and the target input feature of the target usage to which the
payload is to be delivered.

3. A succession flow connection is modeled as a succession flow connection usage, which is both a
connection usage and a succession. A succession flow connection is specified in the same way as a
streaming flow connection, but it adds the further constraint that the transfer source must complete before
the transfer starts, and the transfer must complete before the target can start.

Messages are typically used to model abstract logical interaction between part usages in a certain context, which
may be realized in a more detailed model using streaming or succession flow connections (or transfers from send
actions to accept actions, see 7.16).

Table 11. Connections – Representative Notation

Element Graphical Notation Textual Notation

Connection
Definition

connection def
ConnectionDef1 {

end end1 : Part1;
end end2 : Part2;

}

connection def
ConnectionDef1 {

/* members */
}

Connection
Definition

connection def
ConnectionDef1 {

end end1 :
Part1[0..1];

end end2 :
Part2[1..*];
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 67

Element Graphical Notation Textual Notation

Connection
Definition (n-ary
with 3 ends)

connection def
ConnectionDef1 {

end end1 :
Part1[0..1];

end end2 : Part2;
end end3 : Part3;

}

Connection

connection connection1
: ConnectionDef1 {

end end1 ::> part1;
end end2 ::> part2;

}

connection connection1
: ConnectionDef1 {

/* members */
}

Connection

connection connection1
: ConnectionDef1

connect part1 to
part2;

Connection (n-ary
with 3 ends)

connection connection1
: ConnectionDef1

connect (part1,
part2, part3);

68 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Nested Connection

part def Part1 {
part part2 : Part2 {

part part4 :
Part4;

}
part part3 : Part3 {

part part5 :
Part5;

}
connection

connection1 :
ConnectionDef1

connect
part2.part4

to part3.part5;
}

Proxy Connection

part def Part1 {
part part2 : Part2 {

part part4 :
Part4;

}
part part3 : Part3 {

part part5 :
Part5;

}
connection

connection1 :
ConnectionDef1

connect
part2.part4

to part3.part5;
}

Connections
Compartment

Binding Connection

part part1 : Part1 {
part part2 : Part2 {

ref part part4R :
Part4;

}
part part3 : Part3 {

part part4 :
Part4;

}
bind part2.part4R =

part3.part4;
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 69

Element Graphical Notation Textual Notation

Binding Connection

part def Part1 {
part part2:part2 {

ref part
part4R:Part4;

}
part part3:part3 {

part part4:Part4;
}
bind part2.part4R =

part3.part4;
}

Flow

action action1:Action1 {
out item1:Item1;

}
action action2:Action2 {

in item1:Item1;
}
flow action1.item1

to action2.item1;

Message

part part1:Part1 {
port p4:P4;

}
part part2:Part2 {

port p2:P2;
}
message of item1:Item1

from part1.p4
to part2.p2;

70 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Flow as Node

item def Item1 {
item subItem1;
item subItem2;
item subItem3;

}
action action1 :
Action1 {

out item1 : Item1;
}
action action2 :
Action2 {

in item2 : Item1;
}
flow flow1_2 from
action1.item1 to
action2.item2 {

flow
source.item1.subItem1
to
target.item2.subItem1;

flow
source.item1.subItem2
to
target.item2.subItem2;

flow
source.item1.subItem3
to
target.item2.subItem3;
}

Flows Compartment

{
flow action1.output

to
action2.input;

succession flow
action1.output

to action2.input;
/* ... */

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 71

Element Graphical Notation Textual Notation

Message

occurrence {
part part1 : Part1 {

event occurrence
ev1;

}
part part2 : Part2 {

event occurrence
ev2;

}
message msg1 from

part1.ev1 to part2.ev2;
}

7.13.2 Connection Definitions and Usages

A connection definition or usage (that is not of a more specialized kind) is declared as a kind of occurrence
definition or usage (see 7.9.2), using the kind keyword connection. A connection usage must only be defined by
connection definitions (of any kind) or KerML association structures (see [KerML, 7.4.5]).

Unless it is abstract, a connection definition or usage must have at least two end features (which may be owned or
inherited). A binary connection definition or usage is one that has exactly two end features. The end features of a
connection definition or usage are always considered referential (non-composite), whether or not their declaration
explicitly includes the ref keyword. (See also 7.6.3 on the notation for end features.)

Connection definitions and usages are also relationships. For a connection definition, its related elements are given
by the definitions of its end features. For a connection usage, its related elements are the features associated to each
of its end features via reference subsetting relationships, whose textual notation is the keyword references or the
equivalent symbol ::>.(See also 7.2 on Relationships.)

// The related elements of this connection definition
// are the part definitions Hub and Device.
connection def DeviceConnection {

end part hub : Hub[1];
end part devices : Device[0..*];

// This is a non-end feature of the connection definition.
attribute bandwidth : Real;

}

// The related elements of this connection usage
// are the part usages mainSwitch and sensorFeed.
connection connection1 : DeviceConnection {

end part hub ::> mainSwitch[1];
end part device ::> sensorFeed[1];

}

There are two shorthand textual notations for connection usages.

Rather than using explicit end feature declarations in the body of a connection usage, the related features of the
connection usage may be identified in a comma-separated list, between parentheses (...), preceded by the keyword
connect, placed after the connection usage declaration and before its body. The identification of a related feature
may optionally be preceded by an end feature name followed by the keyword references or the symbol ::>, and/

72 OMG Systems Modeling Language (SysML) v2.0 Beta 1

or followed by a multiplicity. If the declaration part of the connection usage is empty when using this notation, then
the keyword connection may be omitted.

connection connection1 : DeviceConnection connect (
hub ::> mainSwitch[1], device ::> sensorFeed[1]

);

// This is a ternary connection.
// It is equivalent to "connection connect (item1, item2, item3);"
connect (axle, wheel1, wheel2);

If the connection usage is binary, then a further special notation may be used in which the source related feature is
identified directly after the keyword connect and the target related feature is identified after the keyword to. As
above, if the declaration part of the connection usage is empty, then the keyword connection may be omitted.

connection connection1 : DeviceConnection
connect hub ::> mainSwitch[1] to device ::> sensorFeed[1];

connect leftWheel to leftHalfAxle;

The base connection definition and usage are Connection and connections from the Connections library (see
9.2.6). For a binary connection definition or usage, the base definition and usage are further restricted to
BinaryConnection and binaryConnections, which enforce that the connection has exactly two ends.

If a connection definition has a single owned superclassification relationship with another connection definition, it
may inherit end features from this general connection definition. However, if it declares any owned end features,
then each of these must redefine an end feature of the general connection definition, in order, up to the number of
end features of the general connection definition. If no redefinition is given explicitly for an owned end feature, then
it is considered to implicitly redefine the end feature at the same position, in order, of the general connection
definition, if any.

// Implicitly specializes Connections::BinaryConnection by default.
connection def Ownership {

attribute valuationOnPurchase : MonetaryValue;
end item owner[1..*] : LegalEntity; // Implicitly redefines BinaryConnection::source.
end item ownedAsset[*] : Asset; // Implicitly redefines BinaryConnection::target.

}
connection def SoleOwnership specializes Ownership {

end item owner[1]; // Implicitly redefines Ownership::owner.
// ownedAsset is inherited.

}

Note that any specialization of a binary connection definition must also be binary. That is, it can inherit or redefine
the two end features from the general connection definition, but it cannot add more end features than two.

If a connection definition has more than one owned superclassification with other connection definitions, then it
must declare a number of owned end features at least equal to the maximum number of end features of any of the
general connection definitions. Each of these owned end features must then redefine the corresponding end feature
(if any) at the same position, in order, of each of the general connections, either explicitly or implicitly.

Similar rules hold for the end features of a connection usage that is defined by one or more connection definitions
and/or subsets or redefines one or more connection usages.

connection connection1 : DeviceConnection {
end part hub ::> mainSwitch[1]; // Implicitly redefines DeviceConnection::hub.
end part device ::> sensorFeed[1]; // Implicitly redefines DeviceConnection::device.

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 73

7.13.3 Bindings as Usages

A binding can be declared as a usage as described in 7.6.3, using the kind keyword binding. Note that a binding is
not a kind of occurrence usage (unlike a regular connection usage), so the notations for time slices, snapshots and
individuals (described in 7.9) do not apply to it. Further, the two related features of a binding are specified using a
special notation.

The two related features of a binding are identified after its declaration part and before its body, following the
keyword bind and separated by the symbol =. If the declaration part is empty, then the keyword binding may be
omitted. The end features of a binding always have multiplicity [1..1].

part def Vehicle {
part fuelTank {

out fuelFlowOut : Fuel;
}
part engine {

in fuelFlowIn : Fuel;
}
binding fuelFlowBinding

bind fuelTank.fuelFlowOut = engine.fuelFlowIn;

// The following is equivalent to the above, but
// without the name.
bind fuelTank.fuelFlowOut = engine.fuelFlowIn;

}

The base usage for a binding is the the KerML feature selfLinks from the Links model in the Kernel Semantic
Library (see [KerML, 9.2.3]).

7.13.4 Feature Values

A feature value is a relationship between an owning usage and a value expression, whose result provides values for
the feature. The feature value relationship is specified as either bound or initial, and as either fixed or default. A
usage can have at most one feature value relationship.

A fixed, bound feature value relationship is declared using the symbol = followed by a representation of the value
expression (using the expression notation from [KerML, 7.4.9]). This notation is appended to the declaration of the
usage being bound by the feature value. Usages that have a feature value relationship of this form implicitly have a
nested binding between the feature and the result of the value expression.

attribute monthsInYear : Natural = 12;
item def TestRecord {

attribute scores[1..*] : Integer;
derived attribute averageScore[1] : Rational = sum(scores)/size(scores);
attribute cutoff : Integer default = 0.75 * averageScore;

}

Note. The semantics of binding mean that such a feature value asserts that a feature is equivalent to the result of the
value expression. To highlight this, a feature with such a feature value can be flagged as derived (though this is not
required, nor is it required that the value of a derived feature be computed using a feature value – see also 7.6.3).

A fixed, initial feature value relationship is declared as above but using the symbol := instead of =. In this case, the
usage also has an implicit nested binding, but the binding only applies to the starting snapshot of the owning
definition or usage of the bound usage (which means that that the owner must be a kind of occurrence definition or
usage, see 7.9). That is, the result of the value expression gives the initial values of the declared feature but, unlike
in the case of a bound value, these initial values may subsequently change.

74 OMG Systems Modeling Language (SysML) v2.0 Beta 1

part def Counter {
attribute count[1] : Natural := 0;

}

A default feature value relationship is declared similarly to the above, but with the keyword default preceding the
symbol = or :=, depending on whether it is bound or initial. However, for a default, bound feature value, the symbol
= may be elided.

part def Vehicle {
attribute mass : Real default 1500.0;
feature engine[1] : Engine default := standardEngine;

}

item def TestWithCutoff :> TestRecord {
attribute cutoff : Rational default = 0.75 * averageScore;

}

For a default feature value relationship, no implicit binding is added to the usage declaration, but the default will
apply when an instance of the owning definition or usage is constructed, if no other explicit values are given for the
defaulted usage.

7.13.5 Successions as Usages

A succession can be declared as a usage as described in 7.6.3, using the kind keyword succession. Note that a
succession is not a kind of occurrence usage (unlike a regular connection usage), so the notations for time slices,
snapshots and individuals (described in 7.9) do not apply to it. Further, the two related features of a succession are
specified using a special notation.

The two related features of a succession are identified after its declaration part and before its body, following the
keyword succession and separated by the keyword then. If the declaration part is empty, then the keyword
succession may be omitted. The related features of a succession must be occurrence usages. As for regular
connection usages, constraining multiplicities can also be defined on the end features of a succession.

part def Camera {
action focus[*] : Focus;
action shoot[*] : Shoot;
// Each focus may be preceded by a previous focus.
succession multiFocusing

first focus[0..1] then focus[0..1];
// Each shoot must follow a focus.
first focus[1] then shoot[0..1];
// The Camera can be focused after shooting.
first shoot[0..1] then focus;

}

If a succession is placed lexically directly between the two occurrence usages that are its related elements, then the
declaration of the succession can be shortened to just the keyword then, prepended to the declaration of the second
occurrence usage. A multiplicity for the source end of the succession can optionally be placed directly after the
then keyword.

occurrence def Flight {
timeslice preflight[1];
then timeslice inflight[1];
then timeslice postflight[1];

}

// The above is equivalent to the following.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 75

occurrence def Flight {
timeslice preflight[1];
first preflight then inflight;
timeslice inflight[1];
first inflight then postflight;
timeslice postflight[1];

}

Note. There are additional shorthands for the use of successions within the bodies of action definitions and usages
(see 7.16.4).

The base usage for a succession is the KerML feature happensBeforeLinks from the Occurrences model in the
Kernel Semantic Library (see [KerML, 9.2.4]).

7.13.6 Flow Connection Usages and Messages

A flow connection usage may be declared as either a message, a streaming flow or a succession flow.

A flow connection usage is declared as a message similarly to a regular connection usage (see 7.13.2), but with the
kind keyword message. In addition, the declaration of a message may also optionally include an explicit
specification of the name, type (definition) and/or multiplicity of the payload of the message, after the keyword of.
The payload name is followed by the keyword defined by (or the symbol :), but this keyword (or the symbol) is
omitted if the name is omitted. In the absence of a payload specification, the message declaration does not constrain
what kinds of values may be transferred between the source and target of the message.

A message is always abstract (whether or not the abstract keyword is included explicitly in its declaration), so its
declaration may or may not include identification of source and target related features. If they are included, then
they follow the payload specification (if any), with the source related feature identified after the keyword from,
followed by the target related feature after the keyword to. Alternative, if the source and target identification is not
included, then the message declaration may include a feature value (see 7.13.4) to provide a value for the message.

part def Vehicle {
attribute def ControlSignal;

part controller;
part engine;

message of ControlSignal from controller to engine;
}

A streaming flow is declared similarly to a message, but with the kind keyword flow. However, instead of
identifying the source and target features of the flow, such a flow declaration must identify (after the keyword from)
the output feature of the source from which the flow receives its payload and (after the keyword to) the input
feature of the target to which the flow delivers the payload. This is done by giving a feature chain with at least two
features, the last of which identifies the output or input feature, with the preceding part of the chain identifying the
source or target of the flow. If no declaration part or payload specification is included in the flow declaration, then
the from keyword may also be omitted.

part def Vehicle {
part fuelTank {

out fuelOut : Fuel;
}
part engine {

in fuelIn : Fuel;
}
// This flow connection usage actually connects the fuelTank to the

76 OMG Systems Modeling Language (SysML) v2.0 Beta 1

// engine. The transfer moves Fuel from fuelOut to fuelIn.
flow fuelFlow of flowingFuel : Fuel

from fuelTank.fuelOut to engine.fuelIn;

// The following is equivalent to the above, except without
// the name and leaving the payload implicit.
flow fuelTank.fuelOut to engine.fuelIn;

}

A succession flow is declared like a flow declaration above, but using the keyword succession flow.

action def TakePicture {
action focus : Focus {

out image : Image;
}
action shoot : Shoot {

in image : Image;
}
// The use of a succession flow connection usage means that focus must
// complete before the image is transferred, after which shoot can begin.
succession flow focus.image to shoot.image;

}

The base flow connection usages are from the Connections library model (see 7.13):

• messageConnections for a message.
• flowConnections for a streaming flow.
• successionFlowConnections for a succession flow.

7.14 Interfaces
7.14.1 Interfaces Overview

Metamodel references:

• Textual notation, 8.2.2.14
• Graphical notation, 8.2.3.14
• Abstract syntax, 8.3.14
• Semantics, 8.4.10

An interface definition is a kind of connection definition (see7.13) whose ends are restricted to be port definitions
(see 7.12). An interface usage is a kind of connection that is usage of an interface definition. The ends of an
interface usage are restricted to be port usages.

An interface is simply a connection all of whose ends are ports. As such, an interface facilitates the specification and
reuse of compatible connections between parts. For example, consider a Power interface definition between an
Appliance and Wall Power. The power port on one end of the interface represents the Appliance connection
point, and the outlet port on the other end represents the Wall Power connection point. This interface can then be
used for connecting many different appliances to wall power.

When modeling physical interactions, an interface definition or usage can contain constraints (see 7.19) to constrain
the values of the features of the ports on its ends. For example, such features may be across and through variables,
which are constrained by conservation laws across the interface (e.g., Kirchhoff’s Laws). When specifying
an interface between electrical components, the across and through variables are port features defined as Voltage
and Current quantities, respectively. The feature values on either port are constrained such that the voltages must
be equal, and the sum of the currents must equal zero.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 77

Table 12. Interfaces – Representative Notation

Element Graphical Notation Textual Notation

Interface Definition

interface def
InterfaceDef1 {

end port1:Port1;
end port2:Port2;

}

interface def
InterfaceDef1 {

/* members */
}

Interface

interface interface1 :
InterfaceDef1 {

end port1 :> pa;
end port2 :> pb;

}

interface interface1 :
InterfaceDef1 {

/* members */
}

Interfaces
Compartment

{
interface interface1

: InterfaceDef1 [1..*];
interface interface2

: InterfaceDef2;
/* ... */

}

Interface

part part1:Part1 {
port p4:P4;

}
part part2:Part2 {

port p2:P2;
}
interface interface1 :
InterfaceDef1

connect part1.p4
to part2.p2;

78 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Interface as Node

port def Pa {
port p1 : P1;
port p2 : P2;
port p3 : P3;

}
part def Part1 {

port pa : Pa;
}
part def Part2 {

port pb : ~Pa;
}
interface def
InterfaceDef2 {

end :>> source : Pa;
end :>> target : ~Pa;

}
part part0 {

part part1 : Part1;
part part2 : Part2;

interface interface2
: InterfaceDef2

connect source
::> part1.pa to target
::> part2.pb {

interface
source.p1 to target.p1;

interface
source.p2 to target.p2;

interface
source.p3 to target.p3;

}
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 79

Element Graphical Notation Textual Notation

Interface as Node
(with flow)

port def Pa {
out item i1Out :

Item1;
in item i2In : Item2;

}
interface def
Interface2 {

end supplierP : Pa;
end consumerP : ~Pa;
flow supplierP.i1Out

to consumerP.i1Out;
flow consumerP.i2In

to supplierP.i2In;
}
part part0 {

part part1 : Part1 {
port pa : Pa;

}
part part2 : Part2 {

port pb : ~Pa;
}
interface if2 :

Interface2 connect
part1.pa to part2.pb;
}

7.14.2 Interface Definitions and Usages

An interface definition or usage is declared like a connection definition or usage (see 7.13.2), but using the kind
keyword interface. An interface usage must only be defined by interface definitions. All the end features of an
interface definition or usage must be port usages, so the use of the port keyword is optional on such end features.

The shorthand notations for connection usages described in (see 7.13.2) may also be used for interface usages.
However, if the declaration part of an interface usage is empty, then the interface keyword is still included, but
the connect keyword may be omitted.

port def FuelingPort {
out fuel : Fuel;

}
interface def FuelingInterface {

end fuelOutPort : FuelingPort;
end fuelInPort : ~FuelingPort;

}
interface fuelLine : FuelingInterface

connect fuelTank.fuelingPort to engine.fuelingPort;
// The following is equivalent to the above, except
// for not using a specialized interface definition.
interface fuelTank.fuelingPort to engine.fuelingPort;

The base interface definition and usage are Interface and interfacess from the Interfacess library (see
9.2.7). For a binary interface definition or usage, the base definition and usage are further restricted to
BinaryInterface and binaryInterfaces, which enforce that the interface has exactly two ends.

80 OMG Systems Modeling Language (SysML) v2.0 Beta 1

7.15 Allocations
7.15.1 Allocations Overview

Metamodel references:

• Textual notation, 8.2.2.15
• Graphical notation, 8.2.3.15
• Abstract syntax, 8.3.15
• Semantics, 8.4.11

An allocation definition is a connection definition (see 7.13) that specifies that a target element is responsible for
realizing some or all of the intent of the source element. An allocation usage is a usage of one or more allocation
definitions. An allocation definition or usage can be further refined using nested allocation usages that provide a
finer-grained decomposition of the containing allocation.

As used by systems engineers, an allocation denotes a "mapping" across the various structures and hierarchies of a
system model. This concept of "allocation" requires flexibility suitable for abstract system specification, rather than
a particular constrained method of system or software design. System modelers often associate various elements in a
user model in abstract, preliminary, and sometimes tentative ways. Allocations can be used early in the design as a
precursor to more detailed rigorous specifications and implementations.

Allocations can provide an effective means for navigating a model by establishing cross relationships and ensuring
that various parts of the model are properly integrated. Since these relationships are instantiable connections, they
can also be semantically related to other such relationships, including satisfying requirements (see 7.20), performing
actions (see 7.16) and exhibiting states (see 7.17). Modelers can also create specialized allocation definitions to
reflect conventions for allocation on specific projects or within certain system models.

Table 13. Allocations – Representative Notation

Element Graphical Notation Textual Notation

Allocation Definition

allocation def
AllocationDef1;

allocation def
AllocationDef1 {

/* members */
}

Allocation

allocation allocation1
: AllocationDef1;

allocation allocation1
: AllocationDef1 {

/* members */
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 81

Element Graphical Notation Textual Notation

Allocated
Compartment

part part3 {
allocate part1 to

part3;
allocate part3 to

part2;
}

Allocation

part part1 : Part1;
part part2 : Part2;
allocate part1 to part2;

Allocation (with sub
allocation)

part part1 : Part1 {
perform action1;

}
part part2 : Part2 {

perform action2;
}
allocate part1 to part2
{

allocate
part1.action1

to part2.action2;
}

7.15.2 Allocation Definitions and Usages

An allocation definition or usage is declared like a connection definition or usage (see 7.13.2), but using the kind
keyword allocation. An allocation usage must only be defined by allocation definitions. Allocation definitions
and usages are always binary, having exactly two end features, even if abstract.

Shorthand notations similar to those for connection usages, as described in see 7.13.2, may also be used for
allocation usages, but using the keyword allocate instead of connect. If the declaration part of the allocation
usage is empty when using this notation, then the keyword allocation may be omitted.

part def LogicalSystem {
part component : LogicalComponent;

}
part def PhysicalDevice {

part assembly : PhysicalAssembly;
}
allocation def LogicalToPhysicalAllocation {

end part logical : LogicalSystem;
end part physical : PhysicalDevice;

// This is a nested sub-allocation.
allocate logical.component to physical.assembly;

}
part system : LogicalSystem;
part device : PhysicalDevice;

82 OMG Systems Modeling Language (SysML) v2.0 Beta 1

allocation systemToDevice : LogicalToPhysicalAllocation
allocate logical ::> system to physical ::> device;

The base allocation definition and usage are Allocation and allocations from the Allocations library
model (see 9.2.8).

7.16 Actions
7.16.1 Actions Overview

Metamodel references:

• Textual notation, 8.2.2.16
• Graphical notation, 8.2.3.16
• Abstract syntax, 8.3.16
• Semantics, 8.4.12

Action Definition and Usage

An action definition is a kind of occurrence definition (see 7.9) that classifies action performances. An action usage
is a kind of occurrence usage that is a usage of one or more action definitions.

An action definition may have features with directions in, out or inout that act as the parameters of the action.
Features with direction in or inout are input parameters, and features with direction out or inout are output
parameters. An action usage inherits the parameters of its definitions, if any, and it can also define its own
parameters to augment or redefine those of its definitions.

Actions are occurrences over time that can coordinate the performance of other actions and generate effects on items
and parts involved in the performance (including those items' existence and relation to other things). The features of
an action definition or usage that are themselves action usages specify the performance of the action in terms of the
performances of each of the subactions. If an action has parameters, then it may also transform the values of its input
parameters into values of its output parameters.

Action definitions and usages follow the same patterns that apply to structural elements (see 7.6). Action definitions
and action usages can be decomposed into lower-level action usages to create an action tree, and action usages can
be referenced by other actions. In addition, an action definition can be subclassified, and an action usage can be
subsetted or redefined. This provides enhanced flexibility to modify a hierarchy of action usages to adapt to its
context.

Performed Actions

A perform action usage is an action usage that specifies that an action is performed by the owner of the performed
action usage. A perform action usage is referential, which allows the performed action behavior to be defined in a
different context than that of the performer (perhaps by an action usage in a functionally decomposed action tree).
However, if the owner of the perform action usage is an occurrence, then the referenced action performance must be
carried out entirely within the lifetime of the performing occurrence.

In particular, a perform action usage can be a feature of a part definition or usage, specifying that the referenced
action is performed by the containing part during its lifetime. A perform action usage can also be a feature of an
action definition or usage. In this case, the perform action usage represents a "call" from the containing action to the
performed action.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 83

Sequencing of Actions

Since action usages are kinds of occurrence usages, their ordering can be specified using successions (see 7.13).
However, a succession between action usages may, additionally, have a guard condition, represented as a Boolean
expression (see 7.18). If the succession has a guard, then the time ordering of the source and target of the succession
is only asserted when the guard condition evaluates to true.

The sequencing of action usages may be further controlled using control nodes, which are special kinds of action
usages that impose additional constraints on action sequencing. Control nodes are always connected to other actions
usages by incoming and outgoing successions (with or without guards). The kinds of control nodes include the
following.

• A fork node has one incoming succession and one or more outgoing successions. The actions connected to
the outgoing successions cannot start until the action connected to the incoming succession has completed.

• A join node has one or more incoming successions and one outgoing succession. The action connected to
the outgoing succession cannot start until all the actions connected to the incoming successions have
completed.

• A decision node has one incoming succession and one or more outgoing successions. Exactly one of the
actions connected to an outgoing succession can start after the action connected to the incoming
succession has completed. Which of the downstream actions is performed can be controlled by placing
guards on the outgoing successions.

• A merge node has one or more incoming successions and one outgoing succession. The action connected
to the outgoing succession cannot start until any one of the actions connected to an incoming succession
has completed.

Bindings and Flows Between Actions

An output parameter of one action usage may be bound to the input parameter of another action usage (see 7.13 on
binding). Such a binding indicates that the values of the target input parameter will always be the same as the values
of the source output parameter. If the two actions are performed concurrently, then this equivalence will be
maintained over time throughout their performances. An input parameter of an action definition or usage can also be
bound to the input parameter of a nested action usage, passing the values of the input parameter into the nested
action, and an output parameter of a nested action usage can be bound an output parameter of a containing action
definition or usage, passing the values of the output parameter out.

The binding of action parameters, however, does not model the case when there is an actual transfer of items
between the actions that may itself take time or have other modeled properties. Such a transfer can be more properly
modeled using a flow connection between the two action usages (see 7.13), in which the transfer source output is an
output parameter of the source action usage and the transfer target input is the input parameter of the target action
usage. A streaming flow connection represents a flow in which the transfer can be ongoing while both the source
and target action are being performed. A succession flow connection represents a flow that imposes the additional
succession constraint that the transfer cannot begin until the source action completes and the target action cannot
start until the transfer has completed.

Transfers can also be performed using send and accept action usages. In this case, the source and target of the
transfer do not have to be explicitly connected with a flow. Instead, the source of the transfer is specified using a
send action usage contained in some some source part or action, while the target is given by an accept action usage
in some destination part or action (which may be the same as or different than the source). A send action usage
includes an expression that is evaluated to provide the values to be transferred, and it specifies the destination to
which those values are to be sent (possibly delegated through a port and across one or more interfaces – see also
7.12 and 7.14 on interfaces between ports). An accept action usage specifies the type of values that can be received
by the action. When a send action performed in the source is matched with a compatible accept action performed in
the destination, then the transfer of values from the origin to the destination can be completed.

84 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Assignment Actions

An assignment action usage is used to change the value of a referent feature of a target occurrence. The target is
specified as the result of an expression and the referent is specified as a feature chain relative to that target. The new
value for the feature is determined as the result of a different expression. When the assignment action usage
completes, the referent feature has the new assigned value for the target occurrence.

Note that the target must be an occurrence, because the values of the features of attributes do not change over time
(see also 7.7 on attributes and 7.9 on occurrences). If the referent feature has a multiplicity upper bound other than 1,
then an assignment action can assign multiple values to it, consistent with the multiplicity of the feature. The values
are all assigned atomically, at the same time.

A initializing feature value can be used as a shorthand for assigning an initial value to a usage as part of the
declaration of the usage that is a feature of an occurrence definition or usage. Unlike when feature is a bound using a
feature value (as described in 7.13), the initial value of a feature can be later assigned a different value.

As for a binding feature value, there are two types of initializing feature value.

• A fixed feature value assigns the result of evaluating the given expression to a usage at the point of
declaration of the usage. Such an assignment cannot be overridden in a redefinition of the usage because,
once asserted, it would be indeterminate which initialization is to be used.

• A default feature value also includes an initial-value expression, but it does not immediately assign an
initial value to the usage. Instead, the evaluation of the expression and the assignment of its result to the
usage is delayed until the instantiation of a definition or usage that features the original usage. Unlike a
fixed feature value, a default feature value can be overridden in a redefinition of its original feature with a
new feature value (fixed or default). In this case, the new overriding feature value is used instead of the
original feature value for initializing the redefining usage.

Structured Control Actions

Structured control action usages are used to control the performance of nested action usages in a structured way.
There are three kinds of structured control action usages:

1. An if action usage evaluates a condition expression and then performs a then clause action usage if the
expression evaluates to true, or, optionally, an else clause action usage if the expression evaluates to false.

2. A while loop action usage performs a body clause action usage iteratively, as long as its while expression
continues to evaluate to true and its until expression continues to evaluate to false.

3. A for loop action usage performs a body clause action usage iteratively, assigning a loop variable
successively for each iteration to the values resulting from the evaluation of a sequence expression.

Table 14. Actions – Representative Notation

Element Graphical Notation Textual Notation

Action Definition

action def ActionDef1;

action def ActionDef1 {
/* members */

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 85

Element Graphical Notation Textual Notation

Action

action action1 :
ActionDef1;

action action1 :
ActionDef1 {

/* members */
}

Action with
Parameters

item def ItemDef1 {
in item 'item1.1';
out item 'item1.2';
in item 'item1.3';

}
action action1 {

inout param1
:ItemDef1;

out param2 :
ItemDef2;
}

Action with
Graphical
Compartment
showing standard
action flow view

action action1 :
Action1 {

in input1;
bind input1 =

action2.input2;
action action2 :

Action2 {
in input2;
out output2;

}
flow action2.output2

to
action3.input3;

action action3 :
Action3 {

in input3;
out output3;

}
bind action3.output3

= output1;
out output1;

}

86 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Actions
Compartment

{
action action1 :

ActionDef1 [1..*]
ordered nonunique;

/* ... */
perform action

action10;
action action11 {

action
'action11.1';

action
'action11.2';

}
}

Perform Actions
Compartment

{
perform action

action1 :
ActionDef1 [1..*]
ordered nonunique;

/* ... */
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 87

Element Graphical Notation Textual Notation

Perform Actions
Swimlanes

Note. In View2, part0 has been elided.

package SwimLanes {
part def Part0;
part def Part1;
part def Part2;
part part0 :

PartDef0 {
perform action0;
part part1 :

PartDef1 {
perform

action0.action1;
perform

action0.action4;
}
part part2 :

PartDef2 {
perform

action0.action2;
perform

action0.action3;
}

}
action action0 {

action action1;
action action2;
action action3;
action action4;

first start then
action1;

first action1
then action2;

first action2
then action3;

first action3
then action4;

first action4
then done;

}
}

88 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Parameters
Compartment

{
in param1 : ParamDef

[1..*] ordered
nonunique;

/* ... */
}

Actions with and
without Conditional
Succession

action action1 :
Action1;
action action2 :
Action2;
succession action1

if guard1 then
action2;

or

action action1 :
Action1;
if guard1 then action2;
action action2 :
Action2;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 89

Element Graphical Notation Textual Notation

Actions with Control
Nodes

first start;
then fork fork1;

then action1;
then action2;

action action1;
then join1;

action action2;
then join1;

join join1;
then decide decision1;

if guard2 then
action3;

if guard1 then
action4;

action action3;
then merge1;

action action4;
then merge1;

merge merge1;
then done;

Performed By
Compartment No textual notation

90 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Action with Loop
(body in textual
notation)

package Loop {
action

actionWithLoop {
attribute

x:Integer := 1;
attribute

increment:Integer = 1;
attribute

y:Integer;
loop action loop1

{
assign y :=

2*x;
then assign x

:= x+increment;
} until x >= 10;
then done;

}
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 91

Element Graphical Notation Textual Notation

Action with Loop
(body in graphical
notation)

package Loop {
action

actionWithLoop {
attribute

x:Integer := 1;
attribute

increment:Integer = 1;
attribute

y:Integer;
loop action loop1

{
assign y :=

2*x;
then assign x

:= x+increment;
} until x >= 10;
then done;

}
}

92 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Accept Action

port viewPort;
item def Scene;

action trigger1 :
Trigger accept scene :
Scene via viewPort;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 93

Element Graphical Notation Textual Notation

Send Action

item def Picture;
item picture : Picture;
port displayPort;

action def Send1;
action send1 : Send1
send Show(picture) via
displayPort;

94 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Accept and Send
Action Flow

part camera {
port viewPort;
port displayPort;

action takePicture :
TakePicture {

action trigger
accept scene : Scene
via viewPort;

then action focus
: Focus {

in item scene
= trigger.scene;

out item image;
}
flow from

focus.image to
shoot.image;

then action shoot
: Shoot {

in item image
flow from focus.image;

out item
picture;

}
then send

Show(shoot.picture) via
displayPort;

}
}

part screen {
port displayPort;

}

calc def Show {
in item picture;
item

processedPicture;
/* process picture

*/
return

processedPicture;
}

7.16.2 Action Definitions and Usages

An action definition or usage (that is not of a more specialized kind) can be declared as a kind of occurrence
definition or usage (see 7.9.2), using the kind keyword action. An action usage must only be defined by action
definitions (of any kind) or KerML behaviors (see [KerML, 7.4.7]).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 95

Any directed features declared in the body of an action definition or usage are considered to be owned parameters of
the action. Features with direction in are input parameters, those with direction out are output parameters, and
those with direction inout are both input and output parameters.

action def TakePicture {
// The following two features are considered parameters.
in scene : Scene;
out picture : Picture;

bind focus.scene = scene;
action focus : Focus { in scene; out image; }
first focus then shoot;
flow focus.image to shoot.image;
action shoot : Shoot { in image; out picture; }
bind picture = focus.picture;

}

If an action definition has superclassification relationships (implicit or explicit) with other action definitions (or
KerML behaviors), then each of the owned parameters of the specialized action definition must redefine, in order,
the parameter at the position of each of the general action definitions. The redefining parameters must have the same
direction as the redefined parameters.

action def A { in a1; out a2; }
action def B { in b1, out b2; }
action def C specializes A, B {

in c1 redefines a1 redefines b1;
out c2 redefines a2 redefines b2;

}

If an action definition has a single superclassification, then the specialized action definition may declare fewer
owned parameters than the general action definition, inheriting any additional parameters from the general definition
(which are considered to be ordered after any owned parameters). If there is more than one superclassification, then
every parameter from every general action definition must be redefined by an owned parameter of the specialized
action definition. If the required redefinitions are not explicitly declared for a parameter, then the parameter is
considered to implicitly have redefinitions sufficient to meet the stated requirements.

action def A1 :> A { in aa; } // aa redefines A::a1, A::a2 is inherited.
action def B1 :> B { in b1; out b2; inout b3); // Redefinitions are implicit.
action def C1 :> A1, B1 { in c1; out c2; inout c3; }

If an action usage has any type of specialization relationship (i.e., feature typing, subsetting or redefinition, implicit
or explicit) with an action definition or usage (or KerML behavior or step), the rules for the redefinition of the
parameters of the general definitions and usages are the same as given for the redefinition of parameters of an action
definition above.

action focus : Focus {
// Parameters redefine parameters of Focus.
in scene;
out image;

}

action refocus subsets focus; // Parameters are inherited.

Binding and flow connection usages (see 7.13.3 and 8.4.9.6) can be used to connect subactions in the body of an
action definition or usage. In addition, the feature value shorthand for binding (see 7.13.4) is often useful for action
parameters.

96 OMG Systems Modeling Language (SysML) v2.0 Beta 1

action providePower : ProvidePower {
in fuelCmd : FuelCmd;
action generatePower : GeneratePower {

in fuelCmd : FuelCmd = providePower::fuelCmd;
out generatedTorque : Torque;

}

flow generatePower.generatedTorque
to transmitPower.generatedTorque;

action transmitPower : TransmitPower {
in generatedTorque : Torque;
out transmittedTorque;

// ...
}

The base action definition and usage are Action and actions from the Actions library model (see 9.2.9). (For
other semantic constraints on action usages, see 8.4.12.)

7.16.3 Control Nodes

A control node is a special syntactic notation for an action usage whose definition is a concrete specialization of the
abstract action usage ControlAction from the Actions library model (see 9.2.9). A control node is declared like
a normal action usage (see 7.16.2), but using one of the keywords shown in Table 15 instead of the keyword
action. A control node can only be declared in the body of an action definition or usage and implicitly subsets the
action usage shown in the table corresponding to its keyword, thereby inheriting the corresponding definition. A
control node is always composite, so the ref keyword is never used in a control node declaration. A control node
declaration can have a body, but only containing annotating elements related to it via annotation relationships (see
8.2.2.4.1).

Table 15. Control Node Definitions

Keyword Subsetting Definition

merge Actions::Action::merges Actions::MergeAction

decide Actions::Action::decisions Actions::DecisionAction

join Actions::Action::joins Actions::JoinAction

fork Actions::Action::forks Actions::ForkAction

Control nodes are used to control the sequencing of other action usages connected to them via sucessions. The
following rules apply to these connections.

1. Incoming successions to a merge node must have source multiplicity 0..1 and subset the
incomingHBLink feature inherited by MergeAction from the Kernel Semantic Library Behavior
ControlPerformances::MergePerformance (see [KerML, 9.2.9]).

2. Outgoing successions from a decide node must have target multiplicity 0..1 and subset the
outgoingHBLink feature inherited from the Kernel Library Behavior
ControlPerformances::DecisionPerformance (see [KerML, 9.2.9]).

3. Incoming successions to a join node must have source multiplicity 1..1.
4. Outgoing successions from a fork node must have target multiplicity 1..1.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 97

These rules shall be enforced in the abstract syntax, even if not shown explicitly in the concrete syntax notation for a
model. (See also 8.4.12.4 on the semantic constraints related to control nodes.)

// Both action1 and action2 will proceed concurrently
// after fork1.
fork fork1;
first fork1 then action1;
first fork1 then action2;

action action1;
action action2;

// join1 will be performed after both action1
// and action2 have completed.
first action1 then join1;
first action2 then join1;
join join1;

first join1 then decision1;

// One of action3 or action4 will be chosen
// (non-deterministically) to be performed after decision1.
decide decision1;
first decision1 then action3;
first decision1 then action4;

action action3;
action action4;

// merge1 will be performed after either action3
// or action4 have completed.
first action3 then merge1;
first action4 then merge1;
merge merge1;

7.16.4 Succession Shorthands

The basic notation for successions (see 7.13.5) may be used to specify the sequencing of action usages within the
body of an action definition or usage. There are also additional textual notation shorthands that may be used only
within the body of an action definition or usage, as described below. Further, every action inherits the features
start and done from the base action definition Actions::Action, which represent the start and end snapshots of
the action.

The source of a succession may be specified separately from the target by using the keyword first followed by a
qualified name or feature chain for the source action usage. Similarly, the target of a succession may be specified
separately from the source by using the keyword then followed by a qualified name or feature chain for the target
action usage.

first action1;
then action2;

// The above two declarations are together
// equivalent to the following single succession.
first action1 then action2;

The then keyword may also be followed by a complete action usage declaration, rather than just the name.

98 OMG Systems Modeling Language (SysML) v2.0 Beta 1

first action1;
then action action2;

// The above two declarations are together
// equivalent to the following.
first action1 then action2;
action action2;

The then shorthand can be used lexically following any action usage, not just following a first declaration, with
the preceding action usage becoming the source of the succession. This is particularly useful when a sequence of
actions is to be performed successively or in a loop.

first start;
then merge loop;
then action initialize;
then action monitor;
then action finalize;
then loop;

The source of a succession must be an occurrence usage. Therefore, the source of a succession represented using the
then shorthand is actually determined as the nearest occurrence lexically previous to the then, skipping over any
intervening non-occurrence usages (and conditional successions, see 7.16.5. Since a succession is not an occurrence
usage, this allows several then successions to be placed in a sequence after a common source action usage. This is
particularly useful for specifying multiple successions outgoing from fork and decide nodes.

// The two successions following fork1 both have
// fork1 as their source.
fork fork1;

then action1;
then action2;

action action1;
then join1;

action action2;
then join1;

join join1;

// The two successions following decision1 both have
// decision1 as their source.
then decide decision1;

then action3;
then action4;

action action3;
then merge1;

action action4;
then merge1;

merge merge1;

7.16.5 Conditional Successions

A succession within the body of an action definition or usage may be given a guard condition. A guard is given as a
Boolean-valued expression preceded by the keyword if. It is placed in the declaration of the succession (see 7.13.5)
after the specification of the source of the succession and before the specification of the target.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 99

succession conditionalOnActive
first initialize if isActive then monitor;

Such a conditional succession actually declares a special transition usage (see also 7.17.3 on transition usages in
state models), which is a kind of action usage defined by the action definition DecisionTransitionAction from
the Actions model library (see 9.2.9). The transition usage performs the evaluation of the guard expression and, if
true, asserts the existence of the succession. (See 8.4.12.3 on the semantic constraints related to decision transition
usages used for conditional successions.)

As usual, if the declaration part is empty, the keyword succession may be omitted. The source for the succession
may then be further omitted, in which case the source is identified from a lexically previous action usage, as for the
then shorthand described in 7.16.4. Further, the keyword else may be used in place of a guard expression to
indicate a succession to be taken if the guards evaluate to false on all of an immediately preceding set of conditional
successions. However, the target of a conditional succession must be specified as a qualified name or feature chain
and cannot be a full action usage declaration, even when the shorthand notation is used.

The conditional succession shorthand notation is particularly useful for notating several conditional successions
outgoing from a decide node.

merge loop;
action checkLevel { out level; }

decide;
if level <= refillLevel then refill;
if level >= maxLevel then drain;
else continue;

action refill;
then loop;

action drain;
then loop;

action continue;

7.16.6 Perform Action Usages

A perform action usage is declared as an action usage (see 7.16.2) but using the kind keyword perform action
instead of just action. A perform action usage is a kind of event occurrence usage (see 7.9.5) for which the event
occurrence is an action usage, known as the performed action. As for an event occurrence usage, the performed
action is related to the perform action usage by a reference subsetting relationship, specified textually using the
keyword references or the symbol ::>. Or, if the perform action usage has no such reference subsetting, then the
performed action is the perform action usage itself.

part def Vehicle {
perform action powerVehicle references VehicleActions::providePower;
abstract perform action moveVehicle; // Performed action is itself.

}

A perform action usage may also be declared using just the keyword perform instead of perform action. In this
case, the declaration does not include either a name or short name. Instead, the performed action of the perform
action usage is identified by giving a qualified name or feature chain immediately after the perform keyword.

part vehicle : Vehicle {
// The performed action is VehicleActions::move.

100 OMG Systems Modeling Language (SysML) v2.0 Beta 1

perform VehicleActions::move :> Vehicle::moveVehicle;
}

If a perform action usage is used in the body of a part definition or usage, then the part is considered to be the
performer of the performed action (see also 8.4.12.10 on the semantics of perform action usages). A perform action
usage may also be used in the body of another action definition or usage, in which case it acts like a referential "call"
of the performed action by the containing action.

action initialization {
in item device;
perform Utility::startUpCheck {

in component = device;
out status;

}
...

}

The ref keyword may be used in the declaration of a performed action usage, but a perform action usage is always
referential, whether or not ref is included in its declaration.

7.16.7 Send Action Usages

A send action usage is declared as an action usage (see 7.16.2) implicitly defined by the action definition
SendAction from the Actions library model (see 9.2.9). A SendAction has three input parameters:

1. a set of payload values
2. a sender occurrence
3. a receiver occurrence

The behavior of a SendAction is to transfer the payload from the sender to the receiver.

In the textual notation for a send action usage, values for the three SendAction parameters are given after the
action declaration part, identified by the keywords send (payload), via (sender) and to (receiver). If the declaration
part is empty, then the action keyword may be omitted.

part monitor {
action sendReadingTo {

in part destination;

perform getReading { out reading : SensorReading; }

// Send a reading from the monitor to the destination.
action sendReading

send getReading.reading via monitor to destination;

// The following send action is equivalent to the
// one above, but without a name.
send getReading.reading via monitor to destination;

}
}

A send action usage can specify both a sender (via) and receiver (to), but it will generally give only one or the
other. When a send action usage is directly or indirectly a composite feature of a part definition or usage, then the
default for the sender (via) of the send action usage is the containing part, not the send action itself. This is known
as the default sending context.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 101

part monitor {
action sendReadingTo {

in part destination;

perform getReading { out reading : SensorReading; }

// The sender for the following send action is, by default,
// the sending context, which is the part "monitor".
send getReading.reading to destination;

}
}

If a send action usage is not in the composition hierarchy of a part definition or usage (or any item definition or
usage), then the sending context is the highest-level containing action usage. Note that a perform action usage is
always referential, so that the sending context for subactions of a perform action usage is the perform action usage
itself, not the containing performing part.

part monitor {
ref part destination;
perform action sending {

perform getReading { out reading : SensorReading; }

// The sender for the following send action is, by default,
// the sending context, which is the action "sending",
// not the part "monitor".
send getReading.reading to destination;

}
}

When sending through a port (see 7.12 on ports), the port usage will usually be the sender (via), with the actual
receiver determined by interface connections having the port usage as their source (see 7.14).

part def MonitorDevice {
port readingPort;
action monitoring {

perform getReading { out reading : SensorReading; }
send getReading.reading via readingPort;

}
}

A send action usage must be one of the following:

1. An owned feature of an action definition or usage.
2. The owned entry, do or exit action of a state definition or usage (see 7.17).
3. The owned effect action of a transition usage (see 7.17).

The base send action usage is sendActions from the Actions library model (see 9.2.9), which is defined by
SendAction. (See 8.4.12.5 for additional semantic constraints on send action usages.)

7.16.8 Accept Action Usages

An accept action usage is declared as an action usage (see 7.16.2) implicitly defined by the action definition
AcceptAction from the Actions library model (see 9.2.9). An AcceptAction has two parameters:

1. an output parameter for a set of payload values
2. an input parameter giving a receiver occurrence

102 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The behavior of an AcceptAction is to accept the transfer of a payload received by the given receiver, and then
output that payload.

The textual notation for an accept action usage includes special notation for declaring a usage-specific payload
parameter and giving a value for the receiver parameter. The payload parameter declaration is identified by the
keyword accept, and the expression giving the transfer receiver is identified by the keyword via. If the action
declaration part is empty, then the action keyword may be omitted.

The payload parameter declaration for an accept action usage identifies the type of values accepted by the accept
action. It is declared as a reference usage (see 7.6), but without the ref keyword or any body. If the payload
parameter declaration has the form of a single qualified name (and, optionally, a multiplicity), then the qualified
name is interpreted as the definition (type) of the payload parameter (not its name).

part controller {
action accepting {

// ...
action acceptReading

accept reading : SensorReading via controller;

// The following accept action is equivalent to the
// one above, but it does not name the accept action or
// the payload parameter.
accept SensorReading via controller;

// ...
}

}

A payload parameter declaration can also include a feature value (see 7.13.4). In this case, the accept action usage
will only accept exactly the value that is the result of the feature value expression. The following special notations
can also be used for the feature value of a payload parameter:

• Change trigger. A change trigger is notated using the keyword when followed by an expression whose
result must be a Boolean value. A change trigger evaluates to a ChangeSignal (as defined in the
Observation model from the Kernel Semantic Library Library [KerML, 9.2.13]) that is sent when the
result of the given expression changes from false to true (or sent immediately if the expression is true
when first evaluated).

• Absolute time trigger. An absolute time trigger is notated using the keyword at followed by an expression
whose result must be a TimeInstantValue (see 9.8.8). An absolute time trigger evaluates to a
TimeSignal (as defined in the Trigger model from the Kernel Semantic Library Library [KerML,
9.2.14]) that is sent when the current time (relative to the localClock, which defaults to the
defaultClock, see 9.8.8) reaches the TimeInstantValue that is the result of the given expression.

• Relative time trigger. A relative time trigger is notated using the keyword after followed by an
Expression whose result must be a DurationValue (see 9.8.8). A relative time trigger evaluates to a
TimeSignal (as defined in the Trigger model from the Kernel Semantic Library Library [KerML,
9.2.14]) that is sent when the current time (relative to the localClock, which defaults to the
defaultClock, see 9.8.8) reaches the TimeInstantValue that is computed as the result of the given
expression added to the time at which the time trigger is evaluated.

part controller {
in level : Real;
attribute threshold : Real;

action {
// Both of the following accept actions trigger (once) when the

OMG Systems Modeling Language (SysML) v2.0, Beta 1 103

// given expression becomes true.
accept : ChangeSignal = Triggers::triggerWhen({ level > threshold });
accept when level > threshold;

// The following accept action triggers at the given date and time.
accept at Iso8601DateTime("2024-02-01T00:00:00Z");

// The following accept action triggers 30 seconds after the evaluation
// of its time trigger.
accept after 30 [s];

}
}

When an accept action usage is directly or indirectly a composite feature of a part definition or usage, then the
default for the receiver (via) of the accept action usage is the containing part, not the accept action itself. This is
known as the default accepting context.

part controller {
action accepting {

// The receiver for the following accept action is, by default,
// the accepting context, which is the part "controller".
accept SensorReading;

// ...
}

}

If an accept action usage is not in the composition hierarchy of a part definition or usage (or any item definition or
usage), then the accepting context is the highest-level containing action usage. Note that a perform action usage is
always referential, so that the accepting context for subactions of a perform action usage is the perform action usage
itself, not the containing performing part.

part controller {
perform action accepting {

// The receiver for the following accept action is, by default,
// the accepting context, which is the "accepting" action,
// not the part "controller".
accept reading : SensorReading;

// ...
}

}

When accepting through a port (see 7.12 on ports), the port usage is the receiver (via).

part def ControllerDevice {
port sensorPort;
action control {

accept reading : SensorReading via sensorPort;
}

}

An accept action usage must be one of the following:

1. An owned feature of an action definition or usage.
2. The owned entry, do or exit action of a state definition or usage (see 7.17).
3. The owned effect action or accept action of a transition usage (see 7.17).

104 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The base accept action usage is acceptActions from the Actions library model (see 9.2.9), which is defined by
AcceptAction. (See 8.4.12.6 for additional semantic constraints on accept action usages.)

7.16.9 Assignment Action Usages

An assignment action usage is declared as an action usage (see 7.16.2) that is implicitly defined by the action
definition AssignmentAction from the Actions model (see 9.2.9). An AssignmentAction sets a referent
feature of a target occurrence to a new assigned value. In the textual notation for an assignment action usage, these
three things are specified in an assignment part between the usual action declaration part and the action body (if
any). An assignment part consists of the keyword assign followed by an expression that evaluates to the target and
a feature chain identifying the referent, separated by a dot (.), followed by the symbol := and an expression whose
result is the assigned value. If the declaration part is empty, then the action keyword may be omitted.

action def UpdateVehiclePosition {
in part sim : Simulation;
in attribute deltaT : TimeDurationValue;

// The target of the assignment below is "sim".
// The referent feature chain is "vehicle.position".
assign sim.vehicle.position :=

sim.vehicle.position + sim.vehicle.velocity * deltaT;

// After the above assignment "sim.vehicle.position" has the
// value of the result of the assigned value expression,
// evaluated at the time of the assignment.

}

action def RecordNames {
in item record : Record;
in item entries : Entry[1..*];

// "entries.name" evaluates to the names of all entries.
// These values are assigned to the "names" feature of "record".
assign record.names := entries.name;

}

If the target expression of an assignment action usage is omitted, then the target is implicitly the occurrence owning
the assignment action usage.

action counter {
// This attribute is initialized using a feature value.
attribute count : Natural := 0;

// The target of the following assign action usage is
// implicitly the action "counter".
assign count := count + 1;
// ...

}

Every assignment action usage must be one of the following:

1. An owned feature of an action definition or usage.
2. The owned entry, do or exit action of a state definition or usage (see 7.17).
3. The owned effect of a transition usage (see 7.17).

The base assignment action usage is assignmentActions from the Actions library model (see 9.2.9). (See
8.4.12.7 for other semantic constraints on assignment action usages.)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 105

7.16.10 If Action Usages

An if action usage is an action usage that is implicitly defined by one of the action definitions IfThenAction or
IfThenElseAction from the Actions model (see 9.2.9). In the textual notation, an if action usage can have a
typical action declaration (see 7.16.2), but without the usual action body. Instead, the action declaration part is
followed by the keyword if, which introduces a Boolean-valued condition expression, followed by a then clause
and, for an IfThenElseAction, the keyword else and an else clause. The behavior of an if action usage is to first
evaluate the condition expression. If the result is true, then the then-clause is performed, otherwise the else-clause is
performed, if there is one.

Each of the then-clause and the else-clause is itself notated as an action usage, but with the body required to be
given using curly braces { … }, with a semicolon not allowed for an empty body.

action test if speed < lowerLimit
action increase : IncreaseSpeed { }

else
action main : MaintainSpeed { }

If the if action usage does not include a declaration part, the leading action keyword can be omitted. If either or
both of the clauses have no declaration part, then the action keyword can be omitted for them, too, leaving only
their bodies surrounded by curly braces.

if selectedSensor != null {
assign reading := selectedSensor.reading;

} else {
assign reading := undefinedValue;

}

With one except, only the basic form of action declaration can be used for the clauses of an if action usage, not the
special notations for perform action usages, send action usages, etc. The except is that, if the else-clause is itself an
if action usage, then the special if action usage notation can be used. This allows for a typical "else if" structure for
expressing the performance of a sequence of multiple tests.

if threat.level == high then {
perform soundAlarm {in cause = threat;}

} else if threat.level == medium then {
action sendNotification {in msg = threat;}

} else {
action beginMonitoring {in target = threat;}

}

7.16.11 Loop Action Usages

A loop action usage is an action usage that is implicitly defined by one of the concrete specializations of the abstract
action definition LoopAction from the Actions model (see 9.2.9). There are two forms of loop action usages, the
while loop action usage and the for loop action usage. In the textual notation, both kinds of loop action can have a
typical action declaration (see 7.16.2), but without the usual action body. Instead, the body is replaced with special
notations specific to each kind of LoopAction.

While Loops

A while loop action usage is implicitly defined by the WhileLoopAction specialization of LoopAction. For a
while loop action usage, the action declaration part is followed by the keyword while, which introduces a Boolean-
valued while expression, followed by a body clause, and then, optionally, the keyword until, which introduces a

106 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Boolean-valued until expression terminated with a semicolon. The behavior of the while loop action usage is to
repeatedly perform the body clause as long as the while expression evaluates to true and the until expression (if there
is one) evaluates to false. The while expression is evaluated before the first iteration of the body clause, but the until
expression is not evaluated for the first time until after the first iteration of the body clause (if the while expression
evaluates to true).

Similarly to the then and else clauses of an if action usage (see 7.16.10), the body clause is itself notated as an action
usage, but with its body required to be given using curly braces { … }, with a semicolon not allowed for an empty
body.

action advance while t < endTime
action step {

perform advanceState {
:>> stateVector = systemState;
:>> deltaT = dt;

}
then assign t := t + dt;

} until stateVector.position >= endPosition;

The action keyword can be omitted for the while loop action usage itself and/or for the body clause, if they have
no action declaration part.

while not ready {
assign ready := poll(device);

}

The keyword loop may be used as a shorthand for while true. This is useful for a while loop that is designed to
be non-terminating or will be terminated with just an until expression.

loop {
assign charge := MonitorBattery();
then if charge < 100 {

action AddCharge;
}

} until charge >= 100;

For Loops

A for loop action usage is implicitly defined by the ForLoopAction specialization of LoopAction. For a for loop
action usage, the action declaration part is followed by the keyword for, which introduces a loop variable
declaration followed by the keyword in and a sequence expression, and, after that, a body clause. The behavior of
the for loop action usage is to first evaluate the sequence expression, which should result in a sequence of values.
The body clause is then performed iteratively, with the loop variable assigned to each value sequentially for each
iteration.

As for a while loop action usage, the body clause is itself notated as an action usage, but with its body required to be
given using curly braces { … }, with a semicolon not allowed for an empty body.

action dynamicScenario
for power : PowerValue in powerProfile

action dynamicsStep {
assign position := ComputeDynamics(position, power);

}

The action keyword can be omitted for the for loop action usage itself and/or for the body clause, if they have no
action declaration part.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 107

for power : PowerValue in powerProfile {
assign position := ComputeDynamics(position, power);

}

The .. operator can be used to construct a sequence of Integer values between two bounds (inclusive), which can be
useful as the sequence expression of a for loop (especially for indexing).

for i in 1..scenario->size() {
assign positionList :=

positionList->including(scenario.postion#(i));
assign velocityList :=

velocityList->including(scenario.velocity#(i));
}

7.17 States
7.17.1 States Overview

Metamodel references:

• Textual notation, 8.2.2.17
• Graphical notation, 8.2.3.17
• Abstract syntax, 8.3.17
• Semantics, 8.4.13

States

A state definition is a kind of action definition (see 7.16) that defines the conditions under which other actions can
execute. A state usage is a usage of a state definition. State definitions and usages are used to describe state-based
behavior, where the execution of any particular state is triggered by events.

A state definition or usage can contain specially identified action usages that are only performed while the state is
activated.

• An entry action starts when the state is activated.
• A do action starts after the entry action completes and continues while the state is active.
• An exit action starts when the state is exited, and the state becomes inactive once the exit action is

completed.

State definitions and usages follow the same patterns that apply to structural elements (see 7.6). States can be
decomposed into lower-level states to create a hierarchy of state usages, and states can be referenced by other states.
In addition, a state definition can be specialized, and a state usage can be subsetted and redefined. This provides
enhanced flexibility to modify a state hierarchy to adapt to its context.

Exhibited States

A state usage can be a feature of a part definition or a part usage, which can exhibit a state by referencing the state
usage or by containing an owned state usage. Whether owned or referenced, the state usage that the part exhibits
can represent a top state in a hierarchy of state usages.

An exhibit state usage is a state usage that specifies that a state is exhibited by the owner of the exhibit state usage.
An exhibit state usage is referential, which allows the exhibited state behavior to be defined in a different context
than that of the exhibitor (perhaps by a state usage in a state decomposition hierarchy). However, if the owner of the
exhibit state usage is an occurrence, then the referenced state performance must be carried out entirely within the
lifetime of the performing occurrence.

108 OMG Systems Modeling Language (SysML) v2.0 Beta 1

In particular, an exhibit state usage can be a feature of a part definition or usage, specifying that the referenced state
is exhibited by the containing part. Typically, the exhibited state and its substates will reflect conditions of the
exhibiting part, such as the operating states of a vehicle. The values of the exhibit state usage are then references to
occurrences of the state when the exhibiting part is "in" that state.

Transitions

State usages can be connected by transition usages, which can activate and deactivate the state usages. The
triggering of a transition usage from its source state usage to its target state usage deactivates the source state and
activates the target state. The trigger of a transition usage is an accept action usage (see 7.16), which accepts an
incoming transfer. The transition usage can contain a guard condition, which is a Boolean expression (see 7.18) that
must evaluate to true for the transition to occur. In addition, a transition usage may specify an effect action usage
that starts if the transition is triggered, after the source state is deactivated, and must complete before the target state
is activated. If the triggering transfer of a transition has a payload, then this payload is available for use in the guard
condition and effect action of the transition, and after the transition completes.

Parallel States

A parallel state is one whose substates are performed concurrently. As such, no transitions are allowed between the
substates of a parallel state. In contrast, if a non-parallel state has substates then, exactly one of the substates shall be
active at any point in time in the lifetime of the containing state after completion of the entry action (if any).

Table 16. States – Representative Notation

Element Graphical Notation Textual Notation

State Definition

state def StateDef1;

state def StateDef1 {
/* members */

}

State

state state1 :
StateDef1;

state state1 :
StateDef1 {

/* members */
}

State with entry, do
and exit actions.

state state1 {
entry actio1;
do action2;
exit action3;

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 109

Element Graphical Notation Textual Notation

State with Graphical
Compartment with
standard state
transition view
(sequential states)

state compositeState1 {
entry; then state1;
state state1;
transition

first state1
accept trigger1
if guard1
do action1
then state2;

state state2;
then done;

}

State with Graphical
Compartment with
standard state
transition view
(parallel states)

state compositeState2
parallel {

state state1 {
entry; then

'state1.1';
state 'state1.1';

}
state state2 {

entry; then
'state2.1';

state 'state2.1';
}

}

Transition

state state1 : State1;
state state2 : State2;
transition

first state1
accept trigger1
if guard1
do action1
then state2;

or

state state1 : State1;
accept trigger1
if guard1
do action1
then state2;

state state2 : State2;

110 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Exhibit
part part1 : Part1 {

exhibit state1;
}

Exhibit State

part part1 : Part1 {
exhibit state state1

: State1;
}

States Compartment

{
state state1 :

StateDef [1..*]
ordered nonunique;

/* ... */
exhibit state

state10;
state state11 {

state 'state11.1';
state 'state11.2';

}
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 111

Element Graphical Notation Textual Notation

Exhibit States
Compartment

{
exhibit state state1

:
StateDef [1..*]
ordered nonunique;

/* ... */

}

Exhibited By
Compartment No textual notation

7.17.2 State Definitions and Usages

A state definition or usage is declared as an action definition or usage (see 7.16.2), but using the keyword state
instead of action. In addition, entry, do and exit actions can be declared (at most one of each) in the body of a state
definition or usage, using the keywords entry action, do action, and exit action, followed by an action
declaration and body, in the usual form.

state def Exercising {
entry action warmup : WarmUp;
do action exercise : Exercise {

action strengthTraining;
then action cardioTraining;

}
exit action cooldown : Cooldown;

}

In addition to the generic action notation as above, the special notations for send action usages (see 7.16.7), accept
action usages (see 7.16.8), and assignment action usages (see 7.16.9) can be used for entry, do, and exit actions.

state def Operating {
entry assign stateCode := StateCodes::Operating;
do send ReadySignal() to Controller;

}

112 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The entry, do, and exit keywords can also be used without any action keyword. If the keyword is immediately
followed by a semicolon ;, then they are empty actions. If they are followed by a qualified name or feature chain for
an action usage, then this is a shorthand for relating the entry, do, or exit action to the identified action usage via
reference subsetting (see also 7.13.2).

action monitorTemperature;
state def TurnedOn {

// This is an empty entry action.
entry;
// The following is equivalent to
// do action references monitorTemperature;
do monitorTemperature;

}

A state definition or usage may hierarchically contain state usages in its body. By default, these substate usages are
considered to be exclusive, that is, their performances do not overlap in time. However, if the keyword parallel is
added to a state definition or usage, just before the body part, then the containing state definition or usage becomes a
parallel state, and its contained state usages can be performed in parallel. (However, no transitions are allowed
between concurrent states; see 7.17.3.)

state def VehicleStates parallel {
// These substates are performed concurrently.
state OperationalStates;
state HealhStates;

}

The base state definition and usage are State and states from the States library model (see 7.17). (For other
semantic constraints on state usages, see 8.4.13.)

7.17.3 Transition Usages

A transition usage is also a kind of action usage (see 7.16.2) that can be used within non-parallel states. (A parallel
state with concurrent substates is not allowed to have transitions to or from its substates.) A transition usage is
implicitly defined by the action definition StateTransitionAction from the States library model (see 7.17). A
transition usage also relates a source state usage to a target state usage, declaring that it is possible to transition from
a performance of the source state to a new performance of the target state.

In addition, a transition usage can have an entry or exit action as a source or target. Indeed, for a non-parallel state
definition or usage with nested state usages, the initial state usage is indicated by a transition from the entry action to
that state usage, representing that this is the state that is entered on completion of the entry action.

A transition usage is identified with the keyword transition. The source and target states are identified using the
same keywords as for a succession (see 7.13.5), first and then.

state def OnOff1 {
entry action init;
transition first init then off;

state off;
state on;

transition off_on first off then on;
transition on_off first on then off;

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 113

A transition usage can also have a Boolean-valued guard expression. The guard expression is evaluated during the
performance of the source, and the transition usage is only enabled to possibly cause a transition out of the source
state when the guard evaluates to true. In the textual notation, the guard expression is given after the keyword if,
between the source and target parts.

state def OnOff2 {
in attribute isInitOff;
in attribute isEnabled;

entry action init;
transition first init if isInitOff then off;
transition first init if not isInitOff then on;

state off;
state on;

transition off_on first off if isEnabled then on;
transition on_off first on if isEnabled then off;

}

A transition usage can also have an accepter, which is an accept action usage use to trigger the transition. The
accepter action for a transition usage is placed after the guard expression and notated using the accept keyword,
with its payload and receiver parameters specified exactly as discussed in 7.16.8. Transition usages from the entry
action are not allowed to have accepters.

item def TurnOn;
state def OnOff3 {

in attribute isInitOff;
in attribute isEnabled;

port commPort;

entry action init;
transition first init if isInitOff then off;
transition first init if not isInitOff then on;

state off;
state on;

transition off_on
first off
if isEnabled
accept TurnOn via commPort
then on;

transition on_off
first on
if isEnabled
accept after 5[min]
then off;

}

Finally, a transition usage can have an effect action, which is an action usage that is performed if the transition usage
is triggered. An effect action is notated using the keyword do in the same way as a do action on a state definition or
usage (see 7.17.2). In the textual notation for a transition usage, it is also placed between the source and target parts,
after the guard and accepter (if the transition usage has those).

action def PowerUp;
item def TimeoutSignal;

114 OMG Systems Modeling Language (SysML) v2.0 Beta 1

state def OnOff4 {
in attribute isInitOff;
in attribute isEnabled;

port commPort;

entry action init;
transition first init if isInitOff then off;
transition first init if not isInitOff then on;

state off;
state on;

transition off_on
first off
if isEnabled
accept TurnOn via commPort
do action powerUp : PowerUp;
then on;

transition on_off
first on
if isEnabled
accept after 5[min]
do send TimeoutSignal() via commPort
then off;

}

In the textual notation, there is also a shorthand for a transition usage without a declaration part, in which both the
transition keyword and the source part can be omitted. In this case, the source is taken to be the closest lexically
previous state usage, which means the transition usages out of a certain state usage need to be placed essentially
immediately after their source states. This notation can also be used when the transition source is the entry action,
which is particularly useful, because it means the entry action does not need to be named.

state def OnOff5 {
in attribute isInitOff;
in attribute isEnabled;

port commPort;

entry;
if isInitOff then off;
if not isInitOff then on;

state off;
if isEnabled
accept TurnOn via commPort
do action powerUp : PowerUp;
then on;

state on;
if isEnabled
accept after 5[min]
do send TimeoutSignal() via commPort
then off;

}

In summary, the guard and accepter of a transition action usage determine whether a transition usage is triggered:

1. A transition usage can only be triggered during a performance of its source.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 115

2. If a transition usage has a guard expression, it can only be triggered if the guard expression evaluates to
true.

3. If a transition has an accepter, and it meets the above conditions, then it is triggered if the accepter can
accept in incoming transfer via its receiver parameter, in which case the accepter is performed as described
in 7.16.8 (see also 8.4.12.6).

If a transition usage is triggered, then it establishes a succession relationship between the source performance and a
new performance of the target, and a transition is performed as follows:

1. If the source state has a do action that is still being performed, that is interrupted.
2. Then, if the source state has an exit action, that is performed.
3. Once that completes, if the transition usage has an effect action, that is performed.
4. Once that completes, if the target state has an entry action, that is performed.
5. Once that completes, if the target state has a do action, that is performed.

7.17.4 Exhibit State Usages

An exhibit state usage is declared as a state usage (see 7.17.2) but using the kind keyword exhibit state instead
of just state. An exhibit state usage is a kind of perform action usage (see 7.16.6) for which the action usage is a
state usage, known as the exhibited state. As for a perform action usage, the exhibited state is related to the exhibit
state usage by a reference subsetting relationship, specified textually using the keyword references or the symbol
::>. Or, if the exhibit state usage has no such reference subsetting, then the exhibited state is the exhibit state usage
itself.

part def Vehicle {
exhibit state operatingState references VehicleStates::operating;
abstract exhibit state monitoringState; // Exhibited state is itself.

}

An exhibit state usage may also be declared using just the keyword exhibit instead of exhibit state. In this
case, the declaration does not include either a name or short name. Instead, the exhibited state of the exhibit state
usage is identified by giving a qualified name or feature chain immediately after the exhibit keyword.

part vehicle : Vehicle {
// The exhibited state is VehicleActions::monitoring.
exhibit VehicleStates::monitoring :> Vehicle::monitoringState;

}

If an exhibit state usage is used in the body of a part definition or usage, then the part is considered to be the
performer of the exhibit state usage (see also 8.4.13.4 on the semantics of exhibit state usages). The ref keyword
may be used in the declaration of a exhibit state usage, but a exhibit state usage is always referential, whether or not
ref is included in its declaration.

7.18 Calculations
7.18.1 Calculations Overview

Metamodel references:

• Textual notation, 8.2.2.18
• Graphical notation, 8.2.3.18
• Abstract syntax, 8.3.18
• Semantics, 8.4.14

116 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A calculation definition is a kind of action definition (see 7.16) that has a distinguished parameter with direction
out called the result parameter (which is usually the only out parameter). A calculation definition specifies a
reusable computation that returns a result in the result parameter. A calculation usage is an action usage that is a
usage of a calculation definition.

In addition to its parameters, a calculation definition or usage may have features that are calculation or action usages
that carry out steps in the computation of the result of the calculation. The calculation may also have other features
that are used to record intermediate results in the computation. The final result is specified as an expression written
in terms of the input parameters of the calculation and any intermediate results.

KerML includes extensive syntax for constructing expressions, including traditional operator notations for functions
in the Kernel Function Library, which is adopted in its entirety into SysML. In addition, a calculation definition is
also a KerML function, and a calculation usage is itself a KerML expression. This allows a calculation definition or
usage to also be invoked using the notation of a KerML invocation expression. (See the KerML Specification
[KerML, 7.4.9] for a complete description of the KerML expression sublanguage.)

Calculation definitions are often used to define mathematical functions, in which case the defined computation
should be pure. A pure calculation has the following properties:

1. Two invocations of the calculation definition with the same values for the input parameters always
produce the same values for the result parameter.

2. The performance of the calculation does not produce any side effects (that is, it does not effect any
occurrence that is not a composite part of its performance or that of a subaction or subcalculation).

Any subcalculations or subactions of a pure calculation must also be pure, including the final expression computing
the result. Further, the inputs of a pure calculation should either be attributes or the calculation should not rely on
features of input occurrences that may change from one invocation of the calculation definition to another.

Table 17. Calculations – Representative Notation

Element Graphical Notation Textual Notation

Calc Definition

calc def CalcDef1 {
expression1

}

calc def CalcDef1 {
/* members */

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 117

Element Graphical Notation Textual Notation

Calc

calc calc1 : CalcDef1 {
expression1

}

calc calc1 : CalcDef1 {
/* members */

}

7.18.2 Calculation Definitions and Usages

A calculation definition or usage is declared as an action definition or usage (see 7.16.2), but using the keyword
calc instead of action. As for an action definition or usage, directed usages declared in the body of a calculation
definition or usage are consider to be parameters. In addition, the result parameter for a calculation definition or
usage can be declared as an out parameter using the keyword return instead of out. Note that a calculation
definition or usage always has a result parameter, inherited if not owned.

calc def Velocity {
in v_i : VelocityValue;
in a : AccelerationValue;
in dt : TimeValue;
return v_f : VelocityValue;

}

If a calculation definition has superclassification relationships (implicit or explicit) with action definitions (or
KerML behaviors), then the rules for the redefinition of the non-result parameters of the calculation definition are
the same as for an action definition (see 7.16.2). In addition, if a calculation definition specializes other calculation
definitions (or KerML functions), then its result parameter redefines the results parameters of the calculation
definitions it specializes, regardless of the positions of those parameters.

calc def Dynamics {
in initialState : DynamicState;
in time : TimeValue;
return : DynamicState;

}
calc def VehicleDynamics specializes Dynamics {

// Each parameter redefines the corresponding parameter of Dynamics
in initialState : VehicleState;
in time : TimeValue;
return : VehicleState;

}

If a calculation usage has any type of specialization relationship (i.e., feature typing, subsetting or redefinition,
implicit or explicit) with an action definition or usage (or KerML behavior or step), the rules for the redefinition of
the parameters of the general definitions and usages are the same as given for the redefinition of parameters of a
calculation definition above.

calc computation : Dynamics {
// Parameters redefine parameters of Dynamics.

118 OMG Systems Modeling Language (SysML) v2.0 Beta 1

in initialState;
in time;
return result;

}
calc vehicleComputation subsets computation {

// Input parameters are inherited, result is redefined.
return : VehicleState;

}

The body of a calculation definition or usage is like the body of an action definition or usage (see 7.16.2), with the
optional addition of the declaration of a result expression at the end, using the expression sublanguage from
[KerML, 7.4.9]. The result of the result expression is implicitly bound to the result parameter of the containing
calculation definition or usage..

calc def Average {
in scores[1..*] : Rational;
return : Rational;

sum(scores) / size(scores)
}

Note. A result expression is written without a final semicolon.

The result of a calculation definition or usage can also be explicitly bound, particularly using a feature value on the
result parameter declaration (see 7.13.4). In this case, the body of the calculation definition or usage should not
include a result expression.

calc def Average {
in scores[1..*] : Rational;
return : Rational = sum(scores) / size(scores);

}

The base calculation definition and usage are Calculation and calculations from the Calculations library
model (see 7.18).

7.19 Constraints
7.19.1 Constraints Overview

Metamodel references:

• Textual notation, 8.2.2.19
• Graphical notation, 8.2.3.19
• Abstract syntax, 8.3.19
• Semantics, 8.4.15

Constraint Definition and Usage

A constraint definition is a kind of occurrence definition (see 7.9) that defines a logical predicate. Similar to a
calculation definition (see 7.18), a constraint definition may have parameters with direction in. A constraint always
has an implicit Boolean-value result parameter with direction out. A constraint usage is an occurrence usage that is
the usage of a constraint definition.

Also similarly to a calculation, a constraint definition or usage may have features that are calculation or action
usages that carry out steps in the computation of the result of the calculation. The constraint may also have other
features that are used to record intermediate results in the computation. The final result is specified as an expression

OMG Systems Modeling Language (SysML) v2.0, Beta 1 119

written in terms of the input parameters of the calculation and any intermediate results. In addition, a constraint
definition is also a KerML predicate and a constraint usage is a KerML Boolean expression, which allows a
constraint definition or usage to also be invoked using the notation of a KerML invocation expression.

For a given set of input parameter values, a constraint usage is satisfied if its expression evaluates to true and is
violated otherwise. The parameters of a constraint usage may be bound to specific features whose values can be
constrained by the constraint expression. For the constraint expression {x < y}, the constraint usage may bind x to
the diameter of a bolt and bind y to the diameter of a hole that the bolt must fit into. This constraint can then be
evaluated to be true or false. E.g., if x is 3 and y is 5, then the expression x < y evaluates to true, and the
constraint is satisfied. In the general case, the expression used to define a constraint can be arbitrarily complicated,
as long as the overall expression returns a Boolean value.

A constraint usage that is a feature of another definition or usage may also directly reference features of its
containing context, in which case it may be used to effectively constrain the values of those features. In a context
with the features bolt diameter and hole diameter, a constraint usage may be defined directly without
parameters using the expression {'bolt diameter' < 'hole diameter'}.

Asserted Constraints

In general, a constraint may be satisfied sometimes and violated other times. However, an assert constraint usage
asserts that the result of a given constraint must be always true at all times. If, at some point in time, it can be
determined that an assert constraint usage evaluates to other than its asserted value, this would be a logical
inconsistency in the model. Constraints associated with the laws of physics, for example, should be asserted to be
true, because they cannot be violated in any valid model of the real world. However, a constraint can also be
asserted simply if its satisfaction is expected to be implied within a model. That way, if the constraint is violated,
this can be flagged by tooling as needing resolution.

An assert constraint usage can also be negated, which means that the given constraint is asserted to be false rather
than true. A negated assert constraint usage can be used to assert that some condition must never happen if the
model is logically consistent.

Table 18. Constraints – Representative Notation

Element Graphical Notation Textual Notation

Constraint Definition

constraint def
ConstraintDef1;

constraint def
ConstraintDef1 {

/* members */
}

Constraint

constraint constraint1
: ConstraintDef1;

constraint constraint1
: ConstraintDef1 {

/* members */
}

120 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Constraints
Compartment

{
constraint

constraint1 :
ConstraintDef1

[1..*]
ordered nonunique;

/* ... */
assert constraint

constraint10;
constraint

{boolean_expression1}
}

Assert Constraints
Compartment

{
assert constraint

constraint1 :
ConstraintDef1

[1..*]
ordered nonunique;

/* ... */
assert

constraint
{boolean_expression1}
}

7.19.2 Constraint Definitions and Usages

A constraint definition or usage can be declared as a kind of occurrence definition or usage (see 7.9.2), using the
kind keyword constraint. A constraint usage must be defined by a single constraint definition or a KerML
predicate (see [KerML, 7.4.8]).

Constraint definitions and usages are not calculation definitions and usages, but, like calculation definitions and
usages, they are kinds of KerML functions and expressions (a predicate is a kind of function). As such, any directed
usages declared in the body of a calculation definition or usage are considered to be owned parameters of the
calculation. Furthermore, every constraint definition and usage has a result parameter, but, since this must have a
Boolean type, it is generally not necessary to redeclare it for a constraint definition or usage.

The body of a constraint definition or usage is also like the body of a calculation definition or usage (see 7.18.2),
including the addition of the declaration of a result expression at the end, using the expression sublanguage from
[KerML, 7.4.9]. For a constraint definition or usage, the result expression must be Boolean valued.

constraint def IsFull {
in tank : FuelTank;
tank.fuelLevel == tank.maxFuelLevel // Result expression

OMG Systems Modeling Language (SysML) v2.0, Beta 1 121

}
part def Vehicle {

part fuelTank : FuelTank;
constraint isFull : IsFull {

in tank = fuelTank;
}

}

The base constraint definition and usage are Constraint and constraints from the Constraints model library
(see 7.19)

7.19.3 Assert Constraint Usages

An assert constraint usage is declared like a regular constraint usage (see 8.4.15.2), except using the kind keyword
assert constraint instead of just constraint. By default, an assert constraint usage asserts that it must
evaluate to true at all times. However, an assert constraint usage may be negated by inserting the keyword not
between assert and constraint, in which case the assertion is that the assert constraint usage evaluates to false
at all times.

part testObject {
attribute computedMass : MassValue;
assert constraint { computedMass >= 0[kg] }
// Alternatively, the following is equivalent.
assert not constraint { computedMass < 0[kg] }

}

An assert constraint usage may also be declared using just the keyword assert instead of assert constraint.
In this case, the declaration does not include either a name or short name for the assert constraint usage. Instead, the
constraint to be asserted is identified by giving a qualified name or feature chain immediately after the assert
keyword, and it is then related to the assert constraint usage by a reference subsetting relationship (see also 8.4.5.3).
A negated assert constraint usage of this form can be constructed using assert not.

constraint negativeMass {
attribute mass : MassValue;
mass < 0[kg]

}
part testObject {

attribute computedMass : MassValue;

// The following is equivalent to
// assert not constraint references negativeMass { ... }
assert not negativeMass {

:>> mass = computedMass;
}

}
part alienObject {

attribute antiMass : MassValue;

// The following is equivalent to
// assert constraint references negativeMass { ... }
assert negativeMass {

:>> mass = antiMass;
}

}

7.20 Requirements

122 OMG Systems Modeling Language (SysML) v2.0 Beta 1

7.20.1 Requirements Overview

Metamodel references:

• Textual notation, 8.2.2.20
• Graphical notation, 8.2.3.20
• Abstract syntax, 8.3.20
• Semantics, 8.4.16

Requirements

A requirement definition is a kind of constraint definition (see 7.19) that specifies stakeholder-imposed constraints
that a design solution must satisfy to be a valid solution. A requirement definition contains one or more features that
are constraint usages designated as the required constraints. These may be specified informally using text
statements (commonly known as "shall" statements) or more formally using constraint expressions. A requirement
definition may also optionally include assumed constraints. The required constraints of a requirement only apply if
all the assumed constraints are satisfied.

A requirement usage is a kind of constraint usage (see 7.19) that is a usage of a requirement definition in some
context. The context for multiple requirements can be provided by a package (see 7.5), a part (see 7.11) or another
requirement. A design solution must satisfy the requirement and all of its member requirements and constraints to be
a valid solution.

A requirement definition or usage may be decomposed into nested requirement usages, which may themselves be
further decomposed. Since a requirement usage is a kind of constraint usage, any nested composite requirement
usage is automatically considered to be a required constraint of the containing requirement definition or usage. A
requirement definition or usage may also reference another requirement usage as a required constraint. For the
overall requirement to then be satisfied, all such composite or referenced requirements must be satisfied.

Like any usage element, the features of a requirement usage can redefine the features of its requirement definition.
For example, a requirement definition MaximumMass may include the require constraint {massActual <=
massRequired}, written in terms of the attribute usages massActual and massRequired. A requirement usage
maximumVehicleMass defined by MaximumMass could restrict the subject of the requirement to be a Vehicle,
redefine the massActual attribute to be the mass of the subject Vehicle, and redefine the massRequired
attribute and bind it to 2000 kilograms. In this way, the requirement definition serves as a requirement template that
can be reused and tailored to each context of use.

Subjects

A requirement definition or usage always has a subject, which is a distinguished parameter that identifies the entity
on which the requirement is being specified. A requirement usage can only be satisfied by an entity that conforms to
the definition of its subject. For example, if the subject of a requirement is defined to be a Vehicle, then a standard
vehicle model or sports vehicle model can satisfy the requirement, as long as these usages are defined by Vehicle
or a specialization of it. The subject can also be restricted to be a certain kind of definition element, if it is desired to
constrain what kind of entity can satisfy the requirement. For example, the subject can be restricted to be an action,
if it is desired to constrain the requirement to be satisfied only by action usages.

Constraining the subject of a requirement definition or usage is also useful to allow features of the subject definition
to be used in formal expressions for the assumed and required constraints of the requirement. However, this may not
be necessary if the requirement is specified more informally, or in terms of parameters or other features to be bound
later. In this case, it is not necessary to explicitly specify the subject of a requirement, in which case it the subject is
implicitly assumed to be defined as Anything.

Note. Cases also have subjects (see 7.21).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 123

Actors, Stakeholders and Concerns

Actors and stakeholders are additional distinguished parameters that may be specified for a requirement definition or
usage. Actor and stakeholder parameters are part usages representing entities that play special roles relative to the
requirement definition or usage. A requirement may have multiple actors and stakeholders, some of which may have
the same definition, representing the same kind of entity playing different roles relative to the requirement.

An actor parameter represents a role played by an entity external to the subject of the requirement but necessary for
the satisfaction of the requirement. For example, a requirement whose subject is a Vehicle may also specify an
actor that is the Driving Environment. Features of this actor may be used in, for example, the assumed
constraints of the requirement, to constrain the environment in which the required constraints apply. The satisfaction
of the requirement by a specific subject entity is then relative to the specific environment entity filling the actor role.

Note. Actor parameters may also be specified for cases (see 7.21) and, in particular, use cases (see 7.24).

A stakeholder parameter represents a role played by an entity (usually a person, organization or other group) having
concerns related to the containing requirement. Stakeholder concerns may also be explicitly modeled as special
kinds of requirements. A concern definition is a kind of requirement definition that represents a stakeholder concern.
A concern usage is a kind of requirement usage that is a usage of a concern definition. The stakeholder parameters
of a concern definition or usage then delineate the stakeholders that have a certain concern.

Rather than explicitly referencing specific stakeholders, a requirement definition or usage can be specified as
framing the modeled concerns of relevant stakeholders. All the framed concerns of a requirement must then be
addressed for the requirement to be satisfied.

Note. Stakeholder and concern modeling is frequently used in the context of view and viewpoint modeling (see
7.25). A viewpoint is a kind of requirement that frames certain stakeholder concerns to be addressed by one more
more views satisfying the viewpoint.

Requirement Satisfaction

Since a requirement is a kind of constraint, a requirement can be evaluated to be true or false. A requirement is
satisfied when it evaluates to true.

A satisfy requirement usage is a kind of assert constraint usage (see 7.19) that asserts that a requirement is satisfied
when a given feature is bound to the subject parameter of the requirement. Other parameters or features of the
requirement may also be bound in the body of the satisfy requirement usage. For example, the
maximumVehicleMass requirement above could be asserted to be satisfied by a specific vehicle c1 usage,
which means that the required constraint {massActual <= massRequired} must be true when massActual is
bound to the mass of vehicle c1.

Similarly to an assert constraint usage, a satisfy requirement usage can also be negated. A negated satisfy
requirement usage asserts that some entity does not satisfy the given requirement.

124 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Table 19. Requirements – Representative Notation

Element Graphical Notation Textual Notation

Requirement
Definition

requirement def <R1>
RequirementDef1 {

subject s1 :
Subject1;
}

requirement def
RequirementDef1 {

/* members */
}

Requirement

requirement <r1>
requirement1 :

RequirementDef1 {
subject redefines s1

= mySubject;
}

requirement
requirement1 :

RequirementDef1 {
doc /* ... */
subject redefines s1

= mySubject;
require require2;
assume constraint1;

}

Requirements
Compartment

{
requirement

requirement1 :
RequirementDef1

[1..*]
ordered nonunique;

/* ... */

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 125

Element Graphical Notation Textual Notation

Satisfy Requirements
Compartment

part part1 {
satisfy requirement11

by part1 {
bind

'requirement11-1'.x1 =
a;

bind
'requirement11-2'.x2 =
b;

}
}

Satisfy

requirement
requirement1 :
Requirement1;

part part1 : Part1 {
satisfy requirement1;

}

7.20.2 Requirement Definition and Usage

A requirement definition or usage is declared as a kind of constraint definition or usage (see 7.19.2), using the kind
keyword requirement. A requirement usage must be defined by a single requirement definition.

The informal text of a requirement is given by any documentation comments written in the body of a requirement
definition or usage. If a requirement definition or usage is declared with a short name (see 7.2), then this is also
considered to be its requirement ID.

Formally, a requirement is a kind of constraint. However, rather than specifying its constraint expression directly, a
requirement constraint is built from two sets of other constraints: the assumed and required constraints of the
requirement. The effective constraint for the requirement is them a logical implication: if all the assumption
constraints are true, all the required constraints must be true. Required and assumed constraints are declared as
composite constraint usages in the body of a requirement definition or usage, by prefixing a regular constraint usage
declaration (see 7.19.2) with the keyword assume or require.

requirement def <'1.1'> MaximumMass {
doc
/*
* Assuming the required mass is greater than 0,
* the actual mass shall be less than or equal to
* the required mass.
*/

attribute massActual : MassValue;
attribute massRequired : MassValue;
assume constraint { massRequired > 0[kg] }
require constraint { massActual <= massRequired }

}

126 OMG Systems Modeling Language (SysML) v2.0 Beta 1

An assumed or required constraint may also be declared using just the keyword assume or require instead of
assume constraint or require constraint. In this case, the declaration does not include either a name or
short name for the constraint usage. Instead, the constraint to be assumed or required is identified by giving a
qualified name or feature chain immediately after the assume or require keyword, and it is then related to the
assumed or required constraint usage by a reference subsetting relationship (see also 8.4.5.3).

constraint massIsPositive {
attribute mass : MassValue;
mass > 0[kg];

}
constraint massLimit {

attribute mass : MassValue;
attribute massLimit : MassValue;
massActual <= massRequired

}
requirement def <'1.1'> MaximumMass {

attribute massActual : MassValue;
attribute massRequired : MassValue;
assume massIsPositive {

:>> mass = massRequired;
}
require massLimit {

:>> mass = massActual;
:>> massLimit = massRequired;

}
}

The subject of a requirement definition or usage is modeled as its first parameter. Following the general rule for
parameters (see 7.16.2), the subject parameter of a requirement definition or usage will redefine the subject
parameter of any requirement definitions or usages that it specializes. The base requirement definition in the
Requirements library model specifies the most general possible subject, with the default name subj and the most
general type Anything, and this can then be further specialized in specific requirement definitions and usages. A
subject parameter is always an in parameter, so it is not necessary to declare it with an explicit direction. Instead,
the keyword subject is used to identify the declaration of a subject parameter, which must come before the
declaration of any other parameters in a requirement definition or usage.

requirement <'v1.1'> vehicleMaximumMass : MaximumMass {
doc
/* The total mass of a Vehicle shall be no greater than
* its required mass.
*/

subject vehicle : Vehicle;
attribute :>> massActual = vehicle.totalMass;
attribute :>> massRequired = 2000[kg];
// Required and assumed constraints are inherited.

}

A requirement definition or usage may also have one or more actor or stakeholder parameters. Similarly to the
declaration of a subject parameter, these distinguished parameters are declared using the keywords actor and
stakeholder rather than explicitly declaring their direction. Actor and stakeholder parameters are part usages, so
they must be (explicitly or implicitly) defined by part definitions (see 7.11.2).

requirement def BrakingRequirement {
subject vehicle : Vehicle;
actor environment : 'Driving Environment';
stakeholder driver : Person;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 127

attribute speedLimit : SpeedValue;
attribute maxBrakingDistance : DistanceValue;

assume constraint {
doc /* The environment conditions are poor. */

}
assume constraint {

doc /* The driver is an occupant of the vehicle. */
}
assume constraint {

doc /* The vehicle speed is less than the speed limit. */
}

require constraint {
doc /* The vehicle shall brake from its initial speed to zero

* speed in a distance less than the maxBrakingDistance.
*/

}
}

A composite requirement usage nested in a requirement definition or usage is a subrequirement of the containing
requirement definition or usage. Subrequirements are considered to automatically be required constraints of the
containing requirement definition or usage. This is useful for modeling groups of requirements that are intended to
be satisfied together on the same subject. To simplify doing this, if a subject parameter is not explicitly declared for
a subrequirement, it is assumed to have the same subject as its containing requirement definition or usage, with its
subject bound to that of the container.

requirement def VehicleRequirementsGroup {
subject vehicle : Vehicle;

// The subject of the following subrequirements
// are implicitly bound to the subject "vehicle"
// of the containing requirement definition.
requirement driving : DrivingRequirement;
requirement braking : BrakingRequirement;

// The subject of the following subrequirement
// is declared explicitly.
requirement engineRqts : EngineRequirementsGroup {

subject engine = vehicle.engine;
}

}

The base requirement definition and usage are RequirementCheck and requirementChecks from the
Requirements model library (see 9.2.13).

7.20.3 Concern Definitions and Usages

A concern definition or usage is declared as a requirement definition or usage (see 7.20.2) using the kind keyword
concern instead of requirement. Otherwise, a concern definition or usage is specified exactly like a regular
requirement definition or usage. The intent, however, is that the concerns of one or more stakeholders can be
modeled as the required constraints of a concern definition or usage with appropriate stakeholder parameters.

concern def BrakingConcern {
subject vehicle : Vehicle;
stakeholder driver : Person;

128 OMG Systems Modeling Language (SysML) v2.0 Beta 1

attribute maxBrakingDistance : DistanceValue;

assume constraint {
doc /* The driver is an occupant of the vehicle. */

}
require constraint {

doc /* The vehicle shall brake from its initial speed to zero
* speed in a distance less than the maxBrakingDistance.
*/

}
}

One or more concerns can then be framed in other requirement definitions and usages. A framed concern usage is a
subrequirement usage (see 7.20.2) indicated by prefixing a concern usage declaration with the keyword frame. As
for an assumed or required constraint, the keyword frame can be used rather than frame concern to declare a
framed concern using reference subsetting. In any case, since the framed concern usage itself is a subrequirement, it
will automatically be considered a required constraint of its containing requirement definition or usage.

requirement def BrakingRequirement {
subject vehicle : Vehicle;
actor environment : 'Driving Environment';

attribute speedLimit : SpeedValue;
attribute maxBrakingDistance : DistanceValue;

assume constraint {
doc /* The environment conditions are poor. */

}

frame concern brakingConcern : BrakingConcern {
// Subject is automatically bound to "vehicle".
:>> maxBrakingDistance = BrakingRequirement::maxBrakingDistance;

}
}

The base concern definition and usage are ConcernCheck and concernChecks from the Requirements model
library (see 9.2.13).

7.20.4 Satisfy Requirement Usages

A satisfy requirement usage is declared as a requirement usage (see 7.20.2), using the kind keyword satisfy
requirement. However, a satisfy requirement usage differs from a regular requirement usage in two ways:

1. The subject parameter of a satisfy requirement usage must be bound to a satisfying feature.
2. A satisfy requirement usage is a kind of assert constraint usage (see 7.19.3).

Together, these mean that a satisfy requirement usage asserts that it is satisfied as a requirement (that is, it always
evaluates to true) when the role of its subject is bound to the satisfying feature. The satisfying feature for a satisfy
requirement usage can be specified in its declaration, immediately before its body, after keyword by.

part vehicle1 : Vehicle;
satisfy requirement braking : BrakingRequirement by vehicle1 {

:>> speedLimit = 100[km/h];
:>> maxBrakingDistance = 10[m];

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 129

A satisfy requirement usage may also be declared using just the keyword satisfy instead of satisfy
requirement. In this case, the declaration does not include either a name or short name for the satisfy requirement
usage. Instead, the requirement to be satisfied is identified by giving a qualified name or feature chain immediately
after the satisfy keyword, and it is then related to the satisfy requirement usage by a reference subsetting
relationship (see also 8.4.5.3).

satisfy vehicleMaximumMass by vehicle1;

A satisfy requirement usage can be negated by placing the keyword not before satisfy. A negated satisfy
requirement usage asserts that the modeled requirement is not satisfied by the value of the given satisfying feature.

part vehicle2 : ExperimentalVehicle;
not satisfy vehicleMaximumMass by vehicle2;

A satisfy requirement usage can be declared without an explicit satisfying feature if it is nested in definition or
usage. In this case, the satisfying feature is considered to be given by the containing definition or usage (in the case
of a definition this is essentially the self feature of the definition; see [KerML, 9.2.2]).

part vehicle3 : Vehicle {
part engine : Engine;
// ...

// "vehicle3" is implicitly the satisfying feature.
satisfy rqts : VehicleRequirementsGroup;

}

7.21 Cases
7.21.1 Cases Overview

Metamodel references:

• Textual notation, 8.2.2.21
• Graphical notation, 8.2.3.21
• Abstract syntax, 8.3.21
• Semantics, 8.4.17

A case definition is a kind of calculation definition (see 7.18) that produces a result intended to achieve a specific
objective regarding a given subject. A case usage is a kind of calculation usage that is a usage of a case definition. A
case is a general concept that may be used in its own right, but also provides the basis for more specific kinds of
cases, including analysis cases (see 7.22), verification cases (see 7.23), and use cases (see 7.24).

The subject of a case is modeled as a distinguished parameter, similarly to the subject of a requirement (see 7.20).
The objective of a case is modeled as a requirement usage to be satisfied by the performance of the case. Depending
on the kind of case, the subject of the objective may be the same as the subject of the case (such as for a verification
case or a use case) or it may be the result of the case (such as for an analysis case).

A case definition or usage may also have one or more actor parameters that represent roles played by an entity
external to the subject of the case but necessary to the specification of the case. An actor parameter is a part usage
representing an entity that plays a designated actor role for the case. A case may have multiple actors representing
the same kind of entity playing different roles relative to the case.

Note. Actor parameters may also be specified for any kind of case, but they are used, in particular, in the
specification of use cases (see 7.24). Requirements may also have actor parameters (see 7.20).

130 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The body of a case can be specified using subactions and subcalculations needed to achieve the case objective. This
generally includes some combination of collecting information about the subject, evaluating it, and then producing a
result.

7.21.2 Case Definitions and Usages

A case definition or usage is declared as a kind of calculation definition or usage (see 7.18.2), using the kind
keyword case. A case usage must be defined by a single case definition.

The subject of a case definition or usage is modeled as its first parameter. Following the general rule for parameters
(see 7.16.2), the subject parameter of a case definition or usage will redefine the subject parameter of any case
definitions or usages that it specializes. The base case definition in the Cases library model specifies the most
general possible subject, with the default name subj and the most general type Anything, and this can then be
further specialized in specific case definitions and usages. A subject parameter is always an in parameter, so it is
not necessary to declare it with an explicit direction. Instead, the keyword subject is used to identify the
declaration of a subject parameter, which must come before the declaration of any other parameters in a case
definition or usage.

A case definition or usage may also have one or more actor parameters. Similarly to the declaration of a subject
parameter, these distinguished parameters are declared using the keyword actor rather than explicitly declaring
their direction. Actor parameters are part usages, so they must be (explicitly or implicitly) defined by part definitions
(see 7.11.2).

The objective of a case definition or usage is declared as a requirement usage (see 7.20.2), but using the keyword
objective instead of requirement. The subject of an objective requirement is bound by default to the result of
the case definition or usage, meaning that the objective of the case concerns its result. However, this can be
overridden in specific case definitions or usages (but see 7.22.2 and 7.23.2 on the required bindings for analysis
cases and verification cases).

case def FaultRecovery {
subject system : AutomationSystem;
actor engineer : Person;
objective {

doc
/* The engineer determines the cause of the system
* fault and resolves it returning the system to
* nominal operation.
*/

}
}

The base case definition and usage for are Case and cases from the Cases model library (see 9.2.14).

7.22 Analysis Cases
7.22.1 Analysis Cases Overview

Metamodel references:

• Textual notation, 8.2.2.22
• Graphical notation, 8.2.3.22
• Abstract syntax, 8.3.22
• Semantics, 8.4.18

OMG Systems Modeling Language (SysML) v2.0, Beta 1 131

An analysis case definition is a kind of case definition (see 7.21) whose objective is to carry out an analysis on the
subject of the case. An analysis case usage is a kind of case usage that is a usage of an analysis case definition.

The subject of an analysis case identifies what is being analyzed. The subject can often be kept quite general in an
analysis case definition and then made more specific in usages of that definition. Performing an analysis case returns
a result about the subject. For example, a fuel economy analysis of a vehicle subject returns the estimated fuel
economy of the vehicle, given a set of analysis inputs and assumed conditions. The analysis result can be evaluated
to determine whether it satisfies the analysis objective.

The performance of an analysis case can be specified in a number of different ways.

• The analysis case can include a set of analysis actions, each of which can specify calculations that return
results. For example, the fuel economy analysis referred to above may require both a dynamics analysis
and a fuel consumption analysis. The dynamics analysis determines the vehicle trajectory and the required
engine power versus time. The fuel consumption analysis determines the fuel consumed to achieve the
required engine power. Both the dynamics analysis and the fuel consumption analysis may require
multiple calculations.

• An analysis can be specified in SysML and solved by external solvers. In this case, the analysis case
specifies the analysis to be performed, but does not define how the analysis is actually executed. For
example, the analysis case could specify that the analysis result is obtained by integrating a differential
equation, without detailing what integration algorithm is to be used to do this.

• An analysis case can also specify a set of simultaneous equations to be solved. This can be done defining
one or more constraint usages (see 7.19) that logically and each of the equations, and asserting that the
constraint must be true. A solver would be expected to solve the equations such that it returns values that
satisfy each equation.

Table 20. Analysis Cases - Representative Notation

Element Graphical Notation Textual Notation

Analysis Case
Definition

analysis def
AnalysisDef1 {

subject s1 :
Subject1;

objective {
doc /* '...' */;
assume

assumption1;
}

}

analysis def
AnalysisDef1 {

/* members */
}

132 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Analysis Case

analysis analysis1 :
AnalysisDef1 {
subject redefines s1

= mySubject;
objective {

doc /* '...' */
assume

assumption1;
}

}

analysis analysis1 :
AnalysisDef1 {
/* members */

}

Analyses
Compartment

analysis analysis1 :
AnalysisDef1 {
...
analysis analysis4 :

AnalysisDef4;
}

7.22.2 Analysis Case Definitions and Usages

An analysis case definition or usage is declared as a case definition or usage (see 7.21.2), using the kind keyword
analysis. An analysis case usage must be defined by a single analysis case definition.

For an analysis case, the subject of the objective is always bound to the result of the analysis case definition or
usage. That is, the objective is always about the result that is produced by the analysis.

analysis def FuelEconomyAnalysis {
subject vehicle : Vehicle;
return fuelEconomyResult : DistancePerVolumeValue;

objective fuelEconomyAnalysisObjective {
doc

/*
* The objective of this analysis is to determine whether the
* subject vehicle can satisfy the fuel economy requirement.
*/

requirement : FuelEconomyRequirement;
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 133

// ...
}

The base analysis case definition and usage are AnalysisCase and analysisCases in the AnalsysisCases
model library (see 9.2.15).

7.22.3 Trade-Off Analyses

A trade-off analysis is a special kind of analysis used to evaluate and compare alternatives. Such an analysis can be
modeled by a usage of the TradeStudy analysis case definition from the TradeStudies library model found in
the Analysis Domain Library (see 9.4.5).

The subject of a TradeStudy analysis case is the collection of alternatives to be analyzed. An evaluation function is
then provided that is used to evaluate each alternative, in order to find the alternative that meets the objective of the
analysis case. Common TradeStudy objectives are to maximize or minimize the value of the objective function.

An example of a trade-off analysis is an analysis that evaluates and compares alternatives for a vehicle engine in
terms of various criteria, such as power, mass, efficiency and cost. The evaluation function establishes a relative
weighting of each criterion based on its importance to the stakeholder. The evaluation result is computed for each
alternative based on a weighted sum of the normalized value for each of the criteria. The evaluation results for each
alternative are then compared with each other, based on the TradeStudy objective, to determine a preferred
solution.

analysis engineTradeStudy : TradeStudy {
// The subject is bound to the two alternatives to be studied.
subject : Engine = (engine4cyl, engine6cyl);

// The objective is to find the alternative that has the
// maximum value for the evaluationFunction.
objective : MaximizeObjective;

// For each one of the alternatives, the evaluationFunction
// produces a numerical evaluation result.
calc :>> evaluationFunction {

in part anEngine : Engine :>> alternative;

calc powerRollup: PowerRollup {
in engine = anEngine;
return power;

}
calc massRollup: MassRollup {

in engine = anEngine;
return mass;

}
calc efficiencyRollup: EfficiencyRollup {

in engine = anEngine;
return efficiency;

}
calc costRollup: CostRollup {

in engine = anEngine;
return cost;

}

return :>> result : Real = EngineEvaluation(
power = powerRollup.power,
mass = massRollup.mass,
efficiency = efficiencyRollup.efficiency,

134 OMG Systems Modeling Language (SysML) v2.0 Beta 1

cost = costRollup.cost
);

}

// The selected alternative will be the one that has the
// maximum value for the evaluationFunction.
return part :>> selectedAlternative : Engine;

}

7.23 Verification Cases
7.23.1 Verification Cases Overview

Metamodel references:

• Textual notation, 8.2.2.23
• Graphical notation, 8.2.3.23
• Abstract syntax, 8.3.23
• Semantics, 8.3.23

A verification case definition is a kind of case definition (see 7.21) whose result is a verdict on whether the subject
of the case satisfies certain requirements. A verification case usage is a case usage that is a usage of a verification
case definition.

The subject of a verification case is an input parameter that identifies the system or other entity that is being
evaluated as to whether it satisfies certain requirements (often referred to as the "unit under test" or "unit under
verification"). The subject may be kept general in a verification case definition and then made more specific in
usages of that definition. The objective of a verification case is to verify that the verification subject satisfies one or
more specific requirements, which are specified as a special kind of required constraint in the objective. The result
of the validation case is a verdict, which is one of the following:

• Pass indicates that the subject has been determined to satisfy the requirements to be verified.
• Fail indicates that the subject has been determined not to satisfy the requirements to be verified.
• Inconclusive indicates that a determination could not be made as to whether the subject satisfies the

requirements to be verified.
• Error indicates that an error occurred during the performance of the verification.

A typical verification case includes a set of verification actions that perform the following steps.

1. Collect data about the subject as needed to support the verification objective, which is typically done
using verification methods such as analysis, inspection, demonstration, and test.

2. Analyze collected data. For example, the data may include multiple measurements that span a range of
conditions for a particular individual, or measurements of different individuals. This analysis step may
need to determine the probability distribution, mean, and standard deviation associated with the
measurements.

3. Evaluate the results of the analysis based on the objective to produce a verdict.

Each of the verification actions in the verification case requires a set of resources to perform the actions. This may
include verification personnel, equipment, facilities, and other resources. These resources may be represented in the
model as parts that perform actions, or more specifically, using actor parameters on the verification case.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 135

Table 21. Verification Cases – Representative Notation

Element Graphical Notation Textual Notation

Verification Case
Definition

verification def
VerificationDef1 {

subject s1 :
Subject1;

objective {
doc /* '...' */
verify

requirement1;
}

}

verification def
VerificationDef1 {

/* members */
}

Verification Case

verification
verification1 :

VerificationDef1 {
subject redefines s1
= mySubject;
objective {

doc /* '...' */
verify

requirement1;
}

}

verification
verification1 :

VerificationDef1 {
/* members */

}

Verified
Requirements
Compartment

136 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Verifications
Compartment

{
verification

verification1 :
VerificationDef1

[1..*]
ordered nonunique;

/* ... */
perform verification

verification10;
verification

verification11 {
verification

'verification11.1';
verification

'verification11.2';
}

}

Verification Methods
Compartment

metadata
VerificationMethod {

kind = (inspection,
analysis,

demonstration,test);
}

Verifies
Compartment

objective {
verify requirement1;
verify requirement2;

}

Verify

requirement
requirement1:

Requirement1;
verification
verificationCase1 :

VerificationCase1 {
objective {

verify
requirement1;

}
}

7.23.2 Verification Case Definitions and Usages

A verification case definition or usage is declared as a case definition or usage (see 7.21.2), using the kind keyword
verification. A verification case usage must be defined by a single verification case definition.

For a verification case, the subject of the objective is always bound to the subject of the verification case definition
or usage. That is, the objective is always about the verification of requirements relative to the subject of the case.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 137

In addition to assumed and required constraint usages allowed in any requirement usage (see 7.20.2), the objective
of a verification case may also have requirement verification usages, which indicate the requirements to be verified
by the verification case. A requirement verification usage is a subrequirement of the objective that is indicated by
prefixing a requirement usage declaration with the keyword verify. As for an assumed or required constraint, the
keyword verify can be used rather than verify requirement to declare a verified requirement using reference
subsetting. In any case, since the requirement verification usage itself is a subrequirement, it is automatically
considered a required constraint of its containing objective. In addition, its subject is bound by default to the subject
of the objective, which is itself bound to the subject of the verification case.

The result of a verification case is a verdict that can have the values pass, fail, inconclusive, or error. In
simple cases, the PassIf calculation definition from the VerificationCases library model (see 9.2.16) can be
used to obtain a pass or fail verdict based on a Boolean value. In addition, the VerificationMethod metadata
definition can be used to annotate a verification case with the method used to carry out the verification, one of
inspect, analyze, demo, or test (see also 7.26).

verification def VehicleMassTest {
import VerificationCases::*;

subject testVehicle : Vehicle;
objective vehicleMassVerificationObjective {

// The subject of the verify is automatically bound to "testVehicle".
verify vehicleMassRequirement;

}

metadata VerificationMethod {
kind = VerificationKind::test;

}

action collectData {
in part testVehicle : Vehicle = VehicleMassTest::testVehicle;
out massMeasured :> ISQ::mass;

}
action processData {

in massMeasured :> ISQ::mass = collectData.massMeasured;
out massProcessed :> ISQ::mass;

}
action evaluateData {

in massProcessed :> ISQ::mass = processData.massProcessed;
out verdict : VerdictKind =

// Check that "testVehicle" statisfies "vehicleMassRequirement"
// if its mass equals 'massProcessed'.
PassIf(vehicleMassRequirement(

vehicle = testVehicle,
massActual = massProcessed)

);
}

return verdict : VerdictKind = evaluateData.verdict;
}

7.24 Use Cases
7.24.1 Use Cases Overview

Metamodel references:

• Textual notation, 8.2.2.24

138 OMG Systems Modeling Language (SysML) v2.0 Beta 1

• Graphical notation, 8.2.3.24
• Abstract syntax, 8.3.24
• Semantics, 8.4.20

A use case definition is a kind of case definition (see 7.21) that specifies the required behavior of its subject relative
to one or more external actors. The objective of the use case is to provide an observable result of value to one or
more of its actors. A use case usage is a case usage that is a usage of a use case.

A use case is typically specified as a sequence of interactions between the subject and the various actors, which are
all modeled as part usages. Each interaction can be modeled as a message (see 7.13) that delivers some payload or
signal from an actor to the system or vice versa. The sources and target ends of these messages can either be
modeled simply as abstract events within the lifetime of the subject and actor occurrences (see 7.9), or more
concretely as actions performed to carry out the interaction (see 7.16).

An include use case usage is a use case usage that is also a kind of perform action usage (see 7.16). A use case
definition or usage may contain an include use case usage to specify that the behavior of the containing use case
includes the behavior of the included use case. The subject of the included use case is the same as the subject of the
containing use case, so the subject parameter of the included use case must have a definition that is compatible with
the definition of the containing use case. Actor parameters of the included use case may be bound to corresponding
actor parameters of the containing use case as necessary (see also 7.16 on parameter binding and 7.13 on binding in
general).

As a behavior, a use case can be performed with specific values for its subject and actor parameters. If a given
subject also has a design model that decomposes its internal structure, then it should be possible to construct an
interaction of the internal parts of the subject, consistent with the design model, that can be shown to be a
specialization of the behavior specified by the performance of the use case for that subject. This is known as a
realization of the use case relative to the design model. A system is properly designed to provide the behavior
required by a set of use cases if there is a legal realization of each use case relative to the design of the system.

Table 22. Use Cases – Representative Notation

Element Graphical Notation Textual Notation

Use Case Definition

use case def
UseCaseDef1 {

subject s1:Subject1;
objective {

doc /* This is
the objective
description. */

require
requirement1;

}
}

use case def
UseCaseDef1 {

/* members */
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 139

Element Graphical Notation Textual Notation

Use Case

use case useCase1 :
UseCaseDef1 {

subject redefines s1
= mySubject;

objective {
doc /* '...' */
require

requirement1;
}

}

use case useCase1 :
UseCaseDef1 {

/* members */
}

Include Use Cases
Compartment

{
include use case

useCase1 :
UseCase1 [1..*]
ordered nonunique;

/* ... */

}

Includes
Compartment

140 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Use Case Graphical
Compartment

use case useCase1 {
subject system =

system1;
actor actor1 :

Actor1;
actor actor2 :

Actor2;
actor actor3 :

Actor3;
include useCase2;
include useCase3;

}
use case useCase2;
use case useCase3;

7.24.2 Use Case Definitions and Usages

A use case definition or usage is declared as a case definition or usage (see 7.21.2), using the kind keyword use
case. A use case usage must be defined by a single use case definition.

A use case definition will typically have an explicit declaration of its subject and one or more external actors (see
see 7.21.2 on the declaration of subject and actor parameters in case definitions). The objective of the use case is for
the subject to provide some result of value to one or more of the actors. The subject and the actors interact in order
to achieve this objective, and the use case definition may specify this interaction as, for example, messages passing
between them (see 7.13.6 on message declarations).

use case def 'Provide Transportation' {
subject vehicle : Vehicle;

actor driver : Person;
actor passengers : Person[0..4];
actor environment : Environment;

objective {
doc
/* Transport driver and passengers from starting location
* to ending location.
*/

}

message of Enter from driver to vehicle;
then message of Enter from passengers to vehicle;
then message of Drive from vehicle to environment;
then message of Exit from passengers to vehicle;
then message of Exit from driver to vehicle;

}

The base use case definition and usage are UseCase and useCases from the UseCases library model (see 9.2.17)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 141

7.24.3 Include Use Case Usages

An include use case usage is declared as a use case usage (see 7.24.2) using the kind keyword include use case
instead of just use case. An include use case usage is a kind of perform action usage (see 7.16.6) for which the
action usage is a use case usage, known as the included use case. As for a perform action usage, the included use
case is related to the include use usage by a reference subsetting relationship, specified textually using the keyword
references or the symbol ::>. Or, if the include use case usage has no such reference subsetting, then the
included use case is the include use case usage itself.

An include use case usage may also be declared using just the keyword include instead of include use case.
In this case, the declaration does not include either a name or short name. Instead, the included use case of the
include use case usage is identified by giving a qualified name or feature chain immediately after the include
keyword.

The subject of an included use case usage is bound by default to the subject of its containing use case definition or
usage. However, the actor parameters of the included use case usages should be explicitly bound to appropriate
actors of the containing use case, as necessary.

use case 'provide transportation' : 'Provide Transportation' {
first start;

then include 'enter vehicle' {
actor :>> driver = 'provide transportation'::driver;
actor :>> passengers = 'provide transportation'::passengers;

}

then include 'drive vehicle' {
actor :>> driver = 'provide transportation'::driver;
actor :>> environment = 'provide transportation'::environment;

}

then include 'exit vehicle' {
actor :>> driver = 'provide transportation'::driver;
actor :>> passengers = 'provide transportation'::passengers;

}

then done;
}

7.25 Views and Viewpoints
7.25.1 Views and Viewpoints Overview

Metamodel references:

• Textual notation, 8.2.2.25
• Graphical notation, 8.2.3.25
• Abstract syntax, 8.3.25
• Semantics, 8.4.21

A viewpoint definition is a kind of requirement definition (see 7.20) that frames the concerns of one or more
stakeholders regarding information about a modeled system or domain of interest. A viewpoint usage is a
requirement usage that is a usage of a viewpoint definition. The subject of a viewpoint is a view that is required to
address the stakeholder concerns.

142 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A view definition is a kind of part definition (see 7.11) that specifies how to create a view artifact to satisfy one or
more viewpoints. A view artifact is a rendering of information that addresses some aspect of a system or domain of
interest of concern to one or more stakeholders. A view definition can include view conditions to extract the relevant
model content, and a rendering that specifies how the model content should be rendered in a view artifact. A view
condition is specified using metadata, in the same way as for a filter condition on a package (see 7.5).

A view definition and its rendering can preserve a correspondence between elements of the model and of the
graphical and/or textual elements of the view artifact. The implementation of a rendering can follow this
correspondence to propagate changes to a view artifact back to the model from which the view artifact was extracted
and rendered.

A view usage is a kind of part usage (see 7.11) that is a usage of a view definition. A view usage exposes a portion
of a model, which is a kind of import (see 7.5) without regard to visibility that provides the scope of application of
the view conditions. The view rendering can then be applied to those exposed elements that meet all the view
conditions to produce the view artifact. A view usage can add further view conditions to those inherited from its
view definition, and it can specify a view rendering if one is not provided by its definition.

View usages can be nested and ordered within a composite view to generate composite view artifacts. The view
usage also can contain further rendering specifications on the symbolic representation, style, and layout for a
particular view. For example, a complex view definition with deeply nested structures can be rendered as a
document, where each nested view usage corresponds to a section of a document, and the ordering represents the
order of the sections within the document. Within each section of the document, the nested view usages can then
specify the information that is rendered as a combination of text, graphical, and tabular information.

A rendering definition is a kind of part definition (see 7.11) that specifies how a view artifact is to be rendered. A
rendering usage is a kind of part usage that is a usage of a rendering definition. A rendering usage is used in a view
definition or usage to specify the view rendering.

Table 23. Views and Viewpoints – Representative Notation

Element Graphical Notation Textual Notation

View Definition

view def ViewDef1 {
satisfy viewpoint1;
/* ... */
filter

filterExpression1;
/* ... */
render rendering1;

}

view def ViewDef1 {
/* members */

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 143

Element Graphical Notation Textual Notation

View

view view1 : ViewDef1 {
satisfy viewpoint1;
expose part1::**;
filter @PartUsage;
render asTable;

}

view view1 : ViewDef1 {
/* members */

}

Viewpoint Definition

viewpoint def
ViewPointDef1;

viewpoint def
ViewPointDef1 {

/* members */
}

Viewpoint

viewpoint viewpoint1 :
ViewPointDef1;

viewpoint viewpoint1 :
ViewPointDef1 {

/* members */
}

Expose

part part1 : Part1;
view view1 : View1 {

expose part1;
}

144 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Frame

concern concern1 :
Concern1;
viewpoint viewpoint1 :
Viewpoint1 {

frame concern1;
}

Frames
Compartment

{
frame concern

concern1 : Concern1
[1..*]

ordered nonunique;
/* ... */

}

7.25.2 View Definitions and Usages

A view definition or usage is declared as a kind of part definition or usage (see 7.11.2), using the kind keyword
view. A view usage must be defined by a single view.

A view definition includes filter conditions on what kinds of elements can be included in a view and identifies a
view rendering that determines how the included elements are to be rendered. The filter conditions are specified in
the same way as for packages (see 7.5.4), by using the keyword filter followed by a Boolean-valued, model-level
evaluable expression (see [KerML. 7.4.9]).

The view rendering is specified using the keyword render followed by a composite rendering usage declaration
(see 7.25.4). Alternatively, the keyword render may be followed by just a qualified name or feature chain
identifying a rendering usage, which establishes a reference subsetting relationship between the view rendering
usage and the identified rendering usage. The Views model in the Systems Model Library provides a limited
number of basic standard renderings (see 9.2.18).

view def 'Part Structure View' {
import Views::*;

filter @SysML::PartUsage;
render asTreeDiagram;

}

A view usage inherits any filter conditions from its view definition and can declare addition conditions of its own. If
a view usage does not declare a view rendering, then this will be inherited from the view definition, if it has one. If a
view usage does declare a view rendering, then this will redefine the view rendering from its view definition (if
any). Note that this means that the view rendering for a view usage must be consistent with the rendering specified
in the view definition, though it can be more specialized.

In addition, a view usage can specify which elements are actually to be exposed by the view. This is done using
expose relationships, which are a special kind of import relationships. Expose relationships are declared like import
relationships (see 7.5.3), but using the keyword expose instead of import. A view artifact is generated from a view
usage by first importing the exposed elements based on the expose relationships of the view usage, filtering those

OMG Systems Modeling Language (SysML) v2.0, Beta 1 145

based on the filter conditions that are owned and inherited by the view usage, and then generating a rendered view
artifact using the view rendering specified for the view usage.

view 'vehicle parts view' : 'Part Structure View' {
// Recursive import is useful for exposing elements
// from hierarchical models.
expose VehicleDesignModel::**;

// This is an additional filter condition.
filter not @SysML::ConnectionUsage;

// This implicitly redefines the view rendering from
// the view definition.
render asMyTreeDiagram;

}

Since an expose relationship is a kind of import relationship, the filtered import notation can also be used with it (see
7.5.4). This provides an alternate way to filter the elements exposed by a view usage.

view 'vehicle parts view' : 'Part Structure View' {
// This applies the filter directly on the imported
// elements from the expose relationships. (The filter
// conditions from the view definition also still apply.)
expose VehicleDesignModel::**[not @SysML::ConnectionUsage];

render asMyTreeDiagram;
}

The base view definition and usage are View and views from the Views model library (see 9.2.18).

7.25.3 Viewpoint Definitions and Usages

A viewpoint definition or usage is declared as a kind of requirement definition or usage (see 7.20.2). A viewpoint
usage must be defined by a single viewpoint definition.

The subject of a viewpoint definition or usage must be a view. Otherwise, a viewpoint is specified with assumed and
required constraints, just like any requirement definition or usage. However, it is typical for a viewpoint definition to
be structured as framing a set of stakeholder concerns (see 7.20.3) regarding information about a modeled system or
domain of interest. The viewpoint then models the requirement for view needed in order to address the framed
concerns.

concern 'system breakdown' {
stakeholder se : 'Systems Engineer';
stakeholder ivv : 'IV&V';

}
concern 'modularity' {

stakeholder se : 'Systems Engineer';
}

viewpoint def 'System Structure Perspective' {
frame 'system breakdown';
frame 'modularity';

require constraint {
doc
/* A system structure view shall show the hierarchical
* part decomposition of a system, starting with a
* specified root part.

146 OMG Systems Modeling Language (SysML) v2.0 Beta 1

*/
}

}

Since a viewpoint usage is a kind of requirement usage, a view usage can be declared to satisfy a viewpoint usage
using a satisfy requirement usage (see 7.20.4). However, as a short cut, any composite viewpoint usage nested in a
view definition or usage is asserted to be satisfied by that view.

view def 'Part Structure View' {
// This viewpoint is asserted to be satisfied by any
// instance of the view definition.
viewpoint vp : 'System Structure Perspective';

//...
}

Alternatively, a satisfy requirement usage can be used explicitly between a viewpoint and a view. In particular, a
satisfy requirement usage for a viewpoint that is nested in a view definition or usage will, by default, have the
containing view as its satisfying feature (as described in general for nested satisfy requirement usages in 7.20.4).

viewpoint 'vehicle structure perspective' :
'System Structure Perspective' {
subject : Vehicle;

}
view 'vehicle parts view' : 'Part Structure View' {

// This asserts that the give viewpoint is satisfied by the
// 'vehicle parts view'.
satisfy 'vehicle structure perspective';

// ...
}

The base viewpoint definition and usage are Viewpoint and viewpoints from the Views library model (see
9.2.18).

7.25.4 Rendering Definitions and Usages

A rendering definition or usage is declared as a kind of part definition or usage (see 7.11.2), using the kind keyword
rendering. A rendering usage must be defined by a single rendering definition.

While a rendering is intended to specify how a view is rendered as a view artifact, there are no specific constructs
provided in SysML for specifying that. A rendering definition or usage can be defined similarly to any other part
definition or usage, perhaps with nested subrenderings and references to related view usages. Nevetheless,
conforming tools can provide libraries of rendering usages that reflect the capabilities they provide for rendering
various kinds of views, which can then be identified in user models specifying those kinds of views. A small number
of basic standard rendering usages are provided in the Views library model (see 9.2.18).

The base rendering definition and usage are Rendering and renderings from the Views library model (see
9.2.18).

7.25.5 Diagrams

A diagram is a view usage (see 7.25.2) where the diagram name and type are the names of the view usage and view
definition, respectively. A view artifact is an individual view usage where the model content is rendered in a
compartment of the view usage. A view about a particular element can expose the element and be rendered as a
compartment of the rendering of that element. For example, the attributes view of a part can be rendered in an

OMG Systems Modeling Language (SysML) v2.0, Beta 1 147

attributes compartment of the graphical symbol for the part (see, for example, Table 9 in 7.11.2). The rendered
information can be in textual or graphical form.

The StandardViewDefinitions model in the Systems Model Library (see 9.2.19) provides a small set of
standard view definitions for typical kinds of diagrams. However, visualization of SysML models is not limited to
these standard views. User models of view definitions and usages can be used to provide a wide range of user-
defined visualizations.

Table 24. Diagrams – Representative Examples

Standard View Diagram

General View

Tree View

Nested View

148 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Standard View Diagram

Table View

Matrix View

Matrix View

7.26 Metadata
7.26.1 Metadata Overview

Metamodel references:

• Textual notation, 8.2.2.26
• Graphical notation, 8.2.3.26
• Abstract syntax, 8.3.26
• Semantics, 8.4.22

A metadata usage is a kind of annotating element (see 7.4) that allows for the definition of structured metadata with
modeler-specified attributes. This may be used, for example, to add tool-specific information to a model that can be
relevant to the function of various kinds of tooling that may use or process a model, or domain-specific information
relevant to a certain project or organization. A metadata usage is defined by a single metadata definition. If the
definition has no nested features itself, then the metadata usage simply acts as a user-defined syntactic tag on the
annotated element. If the definition does have features, then the metadata usage must provide value bindings for all
of them, specifying metadata for the annotated element.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 149

Table 25. Metadata – Representative Notation

Element Graphical Notation Textual Notation

Metadata

metadata MetadataDef1 {
attribute1=value1;
attribute2="value2";

attribute3="http://...."
}

or

@MetadataDef1 {
attribute1=value1;
attribute2="value2";

attribute3="http://...."
}

Annotation-Metadata

analysis
vehicleAnalysis :

VehicleAnalysis;
metadata ToolMetadata

about
vehicleAnalysis {

toolName="ToolX";

toolURL="http://.....";
behaviorName=

"ComputeVehicleState";
}

or

analysis
vehicleAnalysis :

VehicleAnalysis {
metadata

ToolMetadata {
toolName="ToolX";

toolURL="http://.....";
behaviorName=

"ComputeVehicleState";
}

}

150 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Element Graphical Notation Textual Notation

Metadata
Compartment

metadata MetadataDef1 {
attribute1=value1;
attribute2="value2";
attribute3=

"http://.....";
}

7.26.2 Metadata Definitions and Usages

A metadata definition is declared like an item definition (see 7.10), but using the keyword metadata def.

metadata def SecurityRelated;

metadata def ApprovalAnnotation {
attribute approved : Boolean;
attribute approver : String;

}

A metadata usage is declared like an item usage (see 7.10) using the keyword metadata (or the symbol @) followed
by the keyword defined by (or the symbol :) and the qualified name of exactly one metadata definition or KerML
Metaclass (see [KerML], 7.4.13). If there is no declared name or short name, then the keyword defined by (or the
symbol :) may also be omitted. In addition, one or more annotated elements can be identified for the metadata usage
after the keyword about, indicating that the metadata usage has annotation relationships to each of the identified
elements (see also 7.4 on annotation relationships).

metadata securityDesignAnnotation : SecurityRelated
about SecurityRequirements, SecurityDesign;

If the specified metadata definition (or KerML metaclass) has features, then a body must be given for the metadata
usage that declares reference usages (see 7.6) that redefine each of the features of the definition and binds them to
the result of model-level evaluable expressions (see [KerML, 7.4.9]). These nested reference usages of a metadata
usage must always have the same names as the names of the features of its metadata definition, so the shorthand
prefix redefines notation (see 7.6) is always used

metadata ApprovalAnnotation about Design {
ref :>> approved = true;
ref :>> approver = "John Smith";

}

The keyword ref and/or redefines (or the equivalent symbol :>>) may be omitted in the declaration of a feature
of a metadata usage.

metadata ApprovalAnnotation about Design {
approved = true;
approver = "John Smith";

}

If the metadata usage is an owned member of a namespace (see 7.5), then the explicit identification of annotated
elements can be omitted, in which case the annotated element shall be implicitly the containing namespace.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 151

part def Design {
// This metadata usage is implicitly about the part def Design.
@ApprovalAnnotation {

approved = true;
approver = "John Smith";

}
}

The base metadata definition and usage are MetadataItem and metadataItems from the Metadata library (see
9.2.20). The base metadata definition MetadataItem specializes the KerML metaclass Metaobject, and it inherits
the feature annotatedElement from Metaobject, which is typed by the reflected KerML metaclass
KerML::Element (see [KerML, 9.2.17]). When a metadata usage is declared, its inherited annotatedElement
feature is implicitly bound to reflective instances representing its annotated elements.

metadata securityDesignAnnotation : SecurityRelated
about SecurityRequirements, SecurityDesign {
// The feature "annotatedElement" is implicitly bound to the list
// of SecurityRequirements meta KerML::Element and
// SecurityDesign meta KerML::Element.

}

A metadata definition can restrict the kind of elements that it can be applied to by subsetting
Metaobject::annotatedElement and restricting its type. If a metadata usage then inherits one or more concrete
features that directly or indirectly subset annotatedElement, any annotated element of the metadata usage must
conform to the type of at least one of these features. The restricted type should be one of the reflective metaclasses
from the KerML (see [KerML, 9.2.17]) or SysML (see 9.2.21) abstract syntax models.

metadata def CommandMetadata {
// A metadata usage of this definition may annotate
// an ActionDefinition or an ActionUsage.
:> annotatedElement : SysML::ActionDefinition;
:> annotatedElement : SysML::ActionUsage;

}

action def Save specializes UserAction {
@CommandMetadata; // This is valid.
redefine action doAction {

@CommandMetadata; // This is valid.
}

}
item def Options {

@CommandMetadata; // This is INVALID.
}

7.26.3 Semantic Metadata

If the metadata definition of a metadata usage is a direct or indirect specialization of KerML metaclass
SemanticMetadata from the Metaobjects model in the Kernel Semantic Library (see [KerML, 9.2.16]), then the
annotated elements of the metadata usage must all be types (e.g., definitions or usages), and the inherited feature
SemanticMetadata::baseType must be bound to a value of type KerML::Type (which is a generalization of
SysML::Definition and SysML::Usage). Each annotated element is then considered to implicitly specialize a
definition or usage determined from the baseType value as follows:

• If the annotated type is a definition and the baseType is a definition (or KerML classifier), then the
annotated definition implicitly subclassifies the baseType.

152 OMG Systems Modeling Language (SysML) v2.0 Beta 1

• If the annotated type is a definition and the baseType is a usage (or KerML feature), then the annotated
definition implicitly subclassifies each definition (or type) of the baseType.

• If the annotated type is a usage and the baseType is a usage (or KerML feature), then the annotated usage
implicitly subsets the baseType.

• Otherwise no implicit specialization is added.

When evaluated in a model-level evaluable expression, the meta-cast operator meta (see [KerML, 7.4.9.2]) may be
used to cast a type element referenced as its first operand to the actual reflective metadata definition (or KerML
metaclass) value for the type, which may then be bound to the baseType feature of SemanticMetadata.

action def UserAction;
action userActions : UserAction[*] nonunique;
metadata def CommandMetadata :> SemanticMetadata {

// The meta-cast operation "userAction meta SysML::Usage" has
// type Usage, which conforms to the type KermL::Type of baseType.
// Since userActions is an ActionUsage, the expression evaluates
// at model level to a value of type SysML::ActionUsage.
:>> baseType = userActions meta SysML::Usage;

}

// Save implicitly subclassifies UserAction
// (which is the definition of userActions).
action def Save {

@CommandMetadata;
}

// previousAction implicitly subsets userActions.
action previousAction[1] {

@CommandMetadata;
}

7.26.4 User-Defined Keywords

A user-defined keyword is the (possibly qualified) name (or short name) of a metadata definition (or KerML
metaclass) preceded by the symbol #. Such a keyword can be used in package, dependency, definition and usage
declarations. The user-defined keyword is placed immediately before the language-defined (reserved) keyword for
the declaration and specifies a metadata annotation of the declared element. If the named metadata definition is a
kind of SemanticMetadata, then the implicit specialization rules given in 7.26.3 for semantic metadata also apply.

occurrence def Situation;
occurrence situations : Situation[0..*] nonunique;
// It is often convenient to use a lower-case initial name or
// short name for semantic metadata intended to be used as a keyword.
metadata def <situation> SituationMetadata :> SemanticMetadata {

:>> baseType = situations meta SysML::Usage;
}

// Failure is an OccurrenceDefinition that implicitly subclassifies Situation.
#situation occurrence def Failure;

// batteryLow is an OccurrenceUsage that implicitly subsets situations.
#situation occurrence batteryLow;

In addition, a user-defined keyword for semantic metadata may also be used to declare a definition or usage without
using any language-defined keyword.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 153

// Failure is a definition that implicitly subclassifies Situation.
#situation def Failure;

// batteryLow is a usage implicitly subsets situations.
#situation batteryLow;

It is also possible to include more than one user defined-keyword in a declaration.

#SecurityRelated #situation def Vulnerability;

154 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8 Metamodel
8.1 Metamodel Overview
The SysML metamodel extends the KerML metamodel as specified in the KerML specification [KerML].

• The SysML concrete syntax includes a textual notation (see 8.2.2), which is generally distinct from that of
KerML, though consistent on common elements (such as packages and expressions), and a complete
graphical notation (see 8.2.3).

• The SysML abstract syntax (see 8.3) imports the KerML abstract syntax, reusing some KerML
metaclasses directly, and further specializing most other KerML metaclasses.

• The SysML semantics (see 8.4) are defined by relating the SysML abstract syntax to the semantic models
in the Systems Model Library (see Clause 9), which is based on the Kernel Model Library from KerML,
and providing syntactic transformations from SysML models to syntactically equivalent KerML models
(including elements that are otherwise implicit in the SysML abstract syntax).

Throughout this clause, the names of elements from the SysML (and KerML) abstract syntax models appear in a
"code" font. Further:

1. Names of metaclasses appear exactly as in the abstract syntax, including capitalization, except possibly
with added pluralization. When used as English common nouns, e.g., "a Usage", "multiple
Subsettings", they refer to instances of the metaclass. E.g., "Usages can be nested in other Usages"
refers to instances of the metaclass Usage that reside in models. This can be modified with the term
"metaclass" as necessary to refer to the metaclass itself instead of its instances, e.g., "The Usage metaclass
is contained in the DefinitionAndUsage package."

2. Names of properties of metaclasses, when used as English common nouns, e.g., “an ownedUsage”,
“multiple nestedActions”, refer to values of the properties. This can be modified using the term
"metaproperty" as necessary to refer to the metaproperty itself instead of its values, e.g., "The
ownedUsage metaproperty is contained in the DefinitionAndUsage package."

Similar stylistic conventions apply to text about SysML (and KerML) models, except that an "italic code" front
is used.

1. Convention 1 above applies to SysML Definitions (e.g., Action), using "definition" (or a more
specialized term) instead of "metaclass" (e.g., "the action definition Action").

2. Convention 2 above applies to SysML Usages (e.g, actions), using "usage" (or a more specialized term)
instead of "metaproperty" (e.g., "the action usage actions").

8.2 Concrete Syntax
8.2.1 Concrete Syntax Overview

Concrete syntax specifies the how the language appears to modelers. They construct and review models shown
according to the concrete syntax. The SysML concrete syntax includes both a textual notation, described in 8.2.2,
and a graphical notation, described in 8.2.3. Various views of a SysML model may be rendered entirely using the
textual notation, entirely using the graphical notation, or using a combination of the two.

8.2.2 Textual Notation
8.2.2.1 Textual Notation Overview

OMG Systems Modeling Language (SysML) v2.0, Beta 1 155

8.2.2.1.1 EBNF Conventions

The grammar definition for the SysML textual concrete syntax defines how lexical tokens for an input text are
grouped in order to construct an abstract syntax representation of a model (see 8.3). The concrete syntax grammar
definition uses an Extended Backus Naur Form (EBNF) notation (see Table 26) that includes further notations to
describe how the concrete syntax maps to the abstract syntax (see Table 27).

Productions in the grammar formally result in the synthesis of classes in the abstract syntax and the population of
their properties (see Table 28). Productions may also be parameterized, with the parameters typed by abstract syntax
classes. Information passed in parameters during parsing allows a production to update the properties of the
provided abstract syntax elements as a side-effect of the parsing it specifies. Some productions only update the
properties of parameters, without synthesizing any new abstract syntax element.

Table 26. EBNF Notation Conventions

Lexical element LEXICAL
Terminal element 'terminal'
Non-terminal element NonterminalElement
Sequential elements Element1 Element2
Alternative elements Element1 | Element2
Optional elements (zero or one) Element ?
Repeated elements (zero or more) Element *
Repeated elements (one or more) Element +
Grouping (Elements ...)

Table 27. Abstract Syntax Synthesis Notation

Property assignment p = Element
Assign the result of parsing the
concrete syntax Element to abstract
syntax property p.

List property construction p += Element
Add the result of parsing the
concrete syntax Element to the
abstract syntax list property p.

Boolean property assignment p ?= Element
If the concrete syntax Element is
parsed, then set the abstract Boolean
property p to true.

Non-parsing assignment { p = value }
{ p += value }

Assign (or add) the given value to
the abstract syntax property p,
without parsing any input. The
value may be a literal or a reference
to another abstract syntax property.
The symbol "this" refers to the
element being synthesized.

Name resolution [QualifiedName]
Parse a QualifiedName, then
resolve that name to an Element
reference for use as a value in an
assignment as above.

156 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Table 28. Grammar Production Definitions

Production definition NonterminalElement :
AbstractSyntaxElement = ...

Define a production for the
NonterminalElement that
synthesizes the
AbstractSyntaxElement. If the
NonterminalElement has the
same name as the
AbstractSyntaxElement, then ":
AbstractSyntaxElement" may
be omitted.

Parameterized production
definition

NonterminalElement (p :
Type) :
AbstractSyntaxElement = ...

Define a production for the
NonterminalElement that
synthesizes the
AbstractSyntaxElement, with a
parameter named p, whose type is
an abstract syntax class.

8.2.2.1.2 Lexical Structure

The lexical structure of the SysML textual notation is identical to that of the KerML textual notation [KerML],
except for the following two points.

1. The reserved keywords of SysML are the following.

about abstract accept action actor after alias all allocate allocation
analysis and as assign assert assoc assume at attribute bind binding block
by calc case comment concern connect connection constraint decide def
default defined dependency derived do doc else end entry enum event exhibit
exit expose filter first flow for fork frame from hastype if implies import
in include individual inout interface istype item join language loop merge
message metadata nonunique not objective occurrence of or ordered out
package parallel part perform port private protected public readonly
redefines ref references render rendering rep require requirement return
satisfy send snapshot specializes stakeholder state subject subsets
succession then timeslice to transition until use variant variation
verification verify via view viewpoint when while xor

2. The set of special lexical terminals matching either certain keywords or their symbolic equivalents are the
following in SysML.

DEFINED_BY = ':' | 'defined' 'by'
SPECIALIZES = ':>' | 'specializes'
SUBSETS = ':>' | 'subsets'
REFERENCES = '::>' | 'references'
REDEFINES = ':>>' | 'redefines'

8.2.2.2 Elements and Relationships Textual Notation

Identification : Element =
('<' declaredShortName = NAME '>')?
(declaredName = NAME)?

OMG Systems Modeling Language (SysML) v2.0, Beta 1 157

RelationshipBody : Relationship =
';' | '{' (ownedRelationship += OwnedAnnotation)* '}'

8.2.2.3 Dependencies Textual Notation

Dependency =
(ownedRelationship += PrefixMetadataAnnotation)*
'dependency' DependencyDeclaration
RelationshipBody

DependencyDeclaration =
(Identification 'from')?
client += [QualifiedName] (',' client += [QualifiedName])* 'to'
supplier += [QualifiedName] (',' supplier += [QualifiedName])*

8.2.2.4 Annotations Textual Notation

8.2.2.4.1 Annotations

Annotation =
annotatedElement = [QualifiedName]

OwnedAnnotation : Annotation =
annotatingElement = AnnotatingElement
{ ownedRelatedElement += annotatingElement }

AnnotatingMember : OwningMembership =
ownedRelatedElement += AnnotatingElement

AnnotatingElement =
Comment

| Documentation
| TextualRepresentation
| MetadataFeature

8.2.2.4.2 Comments and Documentation

Comment =
('comment' Identification

('about' annotation += Annotation
{ ownedRelationship += annotation }
(',' annotation += Annotation

{ ownedRelationship += annotation })*
)?

)?
('locale' locale = STRING_VALUE)?
body = REGULAR_COMMENT

Documentation =
'doc' Identification
('locale' locale = STRING_VALUE)?
body = REGULAR_COMMENT

8.2.2.4.3 Textual Representation

TextualRepresentation =
('rep' Identification)?
'language' language = STRING_VALUE body = REGULAR_COMMENT

8.2.2.5 Namespaces and Packages Textual Notation

158 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.2.2.5.1 Packages

RootNamespace : Namespace =
PackageBodyElement*

Package =
(ownedRelationship += PrefixMetadataMember)*
PackageDeclaration PackageBody

LibraryPackage =
(isStandard ?= 'standard') 'library'
(ownedRelationship += PrefixMetadataMember)*
PackageDeclaration PackageBody

PackageDeclaration : Package =
'package' Identification

PackageBody : Package =
';' | '{' PackageBodyElement* '}'

PackageBodyElement : Package =
ownedRelationship += PackageMember

| ownedRelationship += ElementFilterMember
| ownedRelationship += AliasMember
| ownedRelationship += Import

MemberPrefix : Membership =
(visibility = VisibilityIndicator)?

PackageMember : OwningMembership
MemberPrefix
(ownedRelatedElement += DefinitionElement
| ownedRelatedElement = UsageElement)

ElementFilterMember : ElementFilterMembership =
MemberPrefix
'filter' ownedRelatedElement += OwnedExpression ';'

AliasMember : Membership =
MemberPrefix
'alias' ('<' memberShortName = NAME '>')?
(memberName = NAME)?
'for' memberElement = [QualifiedName]

RelationshipBody

Import =
(visibility = VisibilityIndicator)?
'import' (isImportAll ?= 'all')?
(ImportedNamespace
| ImportedFilterPackage)
RelationshipBody

ImportedNamespace : Import =
(importedNamespace = [QualifiedName])?
(importedMemberName = NAME | '*')
('::' isRecursive ?= '**')?

ImportedFilterPackage : Import :
importedNamspace = FilterPackage

OMG Systems Modeling Language (SysML) v2.0, Beta 1 159

{ ownedRelatedElement += FilterPackage }

FilterPackage : Package =
ownedRelationship += FilterPackageImport
(ownedRelationship += FilterPackageMember)+

FilterPackageImport : Import =
ImportedNamespace

FilterPackageMember : ElementFilterMembership =
'[' ownedRelatedElement += OwnedExpression ']'
{ visibility = 'private' }

VisibilityIndicator : VisibilityKind =
'public' | 'private' | 'protected'

8.2.2.5.2 Package Elements

DefinitionElement : Element =
Package

| LibraryPackage
| AnnotatingElement
| Dependency
| AttributeDefinition
| EnumerationDefinition
| OccurrenceDefinition
| IndividualDefinition
| ItemDefinition
| PartDefinition
| ConnectionDefinition
| FlowConnectionDefinition
| InterfaceDefinition
| PortDefinition
| ActionDefinition
| CalculationDefinition
| StateDefinition
| ConstraintDefinition
| RequirementDefinition
| ConcernDefinition
| CaseDefinition
| AnalysisCaseDefinition
| VerificationCaseDefinition
| UseCaseDefinition
| ViewDefinition
| ViewpointDefinition
| RenderingDefinition
| MetadataDefinition
| ExtendedDefinition

UsageElement : Usage =
NonOccurrenceUsageElement

| OccurrenceUsageElement

8.2.2.6 Definition and Usage Textual Notation

8.2.2.6.1 Definitions

BasicDefinitionPrefix =
isAbstract ?= 'abstract' | isVariation ?= 'variation'

160 OMG Systems Modeling Language (SysML) v2.0 Beta 1

DefinitionExtensionKeyword : Definition =
ownedRelationship += PrefixMetadataMember

DefinitionPrefix : Definition =
BasicDefinitionPrefix? DefinitionExtensionKeyword*

Definition =
DefinitionDeclaration DefinitionBody

DefinitionDeclaration : Definition
Identification SubclassificationPart?

DefinitionBody : Type =
';' | '{' DefinitionBodyItem* '}'

DefinitionBodyItem : Type =
ownedRelationship += DefinitionMember

| ownedRelationship += VariantUsageMember
| ownedRelationship += NonOccurrenceUsageMember
| (ownedRelationship += SourceSuccessionMember)?

ownedRelationship += OccurrenceUsageMember
| ownedRelationship += AliasMember
| ownedRelationship += Import

DefinitionMember : OwningMembership =
MemberPrefix
ownedRelatedElement += DefinitionElement

VariantUsageMember : VariantMembership =
MemberPrefix 'variant'
ownedVariantUsage = VariantUsageElement

NonOccurrenceUsageMember : FeatureMembership =
MemberPrefix
ownedRelatedElement += NonOccurrenceUsageElement

OccurrenceUsageMember : FeatureMembership =
MemberPrefix
ownedRelatedElement += OccurrenceUsageElement

StructureUsageMember : FeatureMembership =
MemberPrefix
ownedRelatedElement += StructureUsageElement

BehaviorUsageMember : FeatureMembership =
MemberPrefix
ownedRelatedElement += BehaviorUsageElement

8.2.2.6.2 Usages

FeatureDirection : FeatureDirectionKind =
'in' | 'out' | 'inout'

RefPrefix : Usage =
(direction = FeatureDirection)?
(isAbstract ?= 'abstract' | isVariation ?= 'variation')?
(isReadOnly ?= 'readonly')?
(isDerived ?= 'derived')?
(isEnd ?= 'end')?

OMG Systems Modeling Language (SysML) v2.0, Beta 1 161

BasicUsagePrefix : Usage =
RefPrefix
(isReference ?= 'ref')?

UsageExtensionKeyword : Usage =
ownedRelationship += PrefixMetadataMember

UsagePrefix : Usage =
BasicUsagePrefix UsageExtensionKeyword*

Usage =
UsageDeclaration UsageCompletion

UsageDeclaration : Usage =
Identification FeatureSpecializationPart?

UsageCompletion : Usage =
ValuePart? UsageBody

UsageBody : Usage =
DefinitionBody

ValuePart : Feature =
ownedRelationship += FeatureValue

FeatureValue =
('='
| isInitial ?= ':='
| isDefault ?= 'default' ('=' | isInitial ?= ':=')?
)
ownedRelatedElement += OwnedExpression

8.2.2.6.3 Reference Usages

DefaultReferenceUsage : ReferenceUsage =
RefPrefix Usage

ReferenceUsage =
RefPrefix 'ref' Usage

VariantReference : ReferenceUsage =
ownedRelationship += OwnedReferenceSubsetting
FeatureSpecialization* UsageBody

8.2.2.6.4 Body Elements

NonOccurrenceUsageElement : Usage =
DefaultReferenceUsage

| ReferenceUsage
| AttributeUsage
| EnumerationUsage
| BindingConnectorAsUsage
| SuccessionAsUsage
| ExtendedUsage

OccurrenceUsageElement : Usage =
StructureUsageElement | BehaviorUsageElement

StructureUsageElement : Usage =
OccurrenceUsage

162 OMG Systems Modeling Language (SysML) v2.0 Beta 1

| IndividualUsage
| PortionUsage
| EventOccurrenceUsage
| ItemUsage
| PartUsage
| ViewUsage
| RenderingUsage
| PortUsage
| ConnectionUsage
| InterfaceUsage
| AllocationUsage
| Message
| FlowConnectionUsage
| SuccessionFlowConnectionUsage

BehaviorUsageElement : Usage =
ActionUsage

| CalculationUsage
| StateUsage
| ConstraintUsage
| RequirementUsage
| ConcernUsage
| CaseUsage
| AnalysisCaseUsage
| VerificationCaseUsage
| UseCaseUsage
| ViewpointUsage
| PerformActionUsage
| ExhibitStateUsage
| IncludeUseCaseUsage
| AssertConstraintUsage
| SatisfyRequirementUsage

VariantUsageElement : Usage =
VariantReference

| ReferenceUsage
| AttributeUsage
| BindingConnectorAsUsage
| SuccessionAsUsage
| OccurrenceUsage
| IndividualUsage
| PortionUsage
| EventOccurrenceUsage
| ItemUsage
| PartUsage
| ViewUsage
| RenderingUsage
| PortUsage
| ConnectionUsage
| InterfaceUsage
| AllocationUsage
| Message
| FlowConnectionUsage
| SuccessionFlowConnectionUsage
| BehaviorUsageElement

8.2.2.6.5 Specialization

SubclassificationPart : Classifier =
SPECIALIZES ownedRelationship += OwnedSubclassification

OMG Systems Modeling Language (SysML) v2.0, Beta 1 163

(',' ownedRelationship += OwnedSubclassification)*

OwnedSubclassification : Subclassification =
superClassifier = [QualifiedName]

FeatureSpecializationPart : Feature =
FeatureSpecialization+ MultiplicityPart? FeatureSpecialization*

| MultiplicityPart FeatureSpecialization*

FeatureSpecialization : Feature =
Typings | Subsettings | References | Redefinitions

Typings : Feature =
TypedBy (',' ownedRelationship += FeatureTyping)*

TypedBy : Feature =
DEFINED_BY ownedRelationship += FeatureTyping

FeatureTyping =
OwnedFeatureTyping | ConjugatedPortTyping

OwnedFeatureTyping : FeatureTyping =
type = [QualifiedName]

| type = OwnedFeatureChain
{ ownedRelatedElement += type }

Subsettings : Feature =
Subsets (',' ownedRelationship += OwnedSubsetting)*

Subsets : Feature =
SUBSETS ownedRelationship += OwnedSubsetting

OwnedSubsetting : Subsetting =
subsettedFeature = [QualifiedName]

| subsettedFeature = OwnedFeatureChain
{ ownedRelatedElement += subsettedFeature }

References : Feature =
REFERENCES ownedRelationship += OwnedReferenceSubsetting

OwnedReferenceSubsetting : ReferenceSubsetting =
referencedFeature = [QualifiedName]

| referencedFeature = OwnedFeatureChain
{ ownedRelatedElement += referenceFeature }

Redefinitions : Feature =
Redefines (',' ownedRelationship += OwnedRedefinition)*

Redefines : Feature =
REDEFINES ownedRelationship += OwnedRedefinition

OwnedRedefinition : Redefinition =
redefinedFeature = [QualifiedName]

| redefinedFeature = OwnedFeatureChain
{ ownedRelatedElement += redefinedFeature }

OwnedFeatureChain : Feature =
ownedRelationship += OwnedFeatureChaining
('.' ownedRelationship += OwnedFeatureChaining)+

164 OMG Systems Modeling Language (SysML) v2.0 Beta 1

OwnedFeatureChaining : FeatureChaining =
chainingFeature = [QualifiedName]

8.2.2.6.6 Multiplicity

MultiplicityPart : Feature =
ownedRelationship += OwnedMultiplicity

| (ownedRelationship += OwnedMultiplicity)?
(isOrdered ?= 'ordered' ({ isUnique = false } 'nonunique')?
| { isUnique = false } 'nonunique' (isOrdered ?= 'ordered')?)

OwnedMultiplicity : OwningMembership =
ownedRelatedElement += MultiplicityRange

MultiplicityRange =
'[' (ownedRelationship += MultiplicityExpressionMember '..')?

ownedRelationship += MultiplicityExpressionMember ']'

MultiplicityExpressionMember : OwningMembership =
ownedRelatedElement += (LiteralExpression | FeatureReferenceExpression)

8.2.2.7 Attributes Textual Notation

AttributeDefinition : AttributeDefinition =
DefinitionPrefix 'attribute' 'def' Definition

AttributeUsage : AttributeUsage =
UsagePrefix 'attribute' Usage

8.2.2.8 Enumerations Textual Notation

EnumerationDefinition =
DefinitionExtensionKeyword*
'enum' 'def' DefinitionDeclaration EnumerationBody

EnumerationBody : EnumerationDefinition =
';'

| '{' (ownedRelationship += AnnotatingMember
| ownedRelationship += EnumerationUsageMember)*

'}'

EnumerationUsageMember : VariantMembership =
MemberPrefix ownedRelatedElement += EnumeratedValue

EnumeratedValue : EnumerationUsage =
'enum'? Usage

EnumerationUsage : EnumerationUsage =
UsagePrefix 'enum' Usage

8.2.2.9 Occurrences Textual Notation

8.2.2.9.1 Occurrence Definitions

OccurrenceDefinitionPrefix : OccurrenceDefinition =
BasicDefinitionPrefix?
(isIndividual ?= 'individual')?
DefinitionExtensionKeyword*

OccurrenceDefinition =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 165

OccurrenceDefinitionPrefix 'occurrence' 'def' Definition

IndividualDefinition : OccurrenceDefinition =
BasicDefinitionPrefix? isIndividual ?= 'individual'
DefinitionExtensionKeyword* 'def' Definition

8.2.2.9.2 Occurrence Usages

OccurrenceUsagePrefix : OccurrenceUsage =
BasicUsagePrefix
(isIndividual ?= 'individual')?
(portionKind = PortionKind)?
UsageExtensionKeyword*

OccurrenceUsage =
OccurrenceUsagePrefix 'occurrence' Usage

IndividualUsage : OccurrenceUsage =
BasicUsagePrefix isIndividual ?= 'individual'
UsageExtensionKeyword* Usage

PortionUsage : OccurrenceUsage =
BasicUsagePrefix (isIndividual ?= 'individual')?
portionKind = PortionKind
UsageExtensionKeyword* Usage

PortionKind =
'snapshot' | 'timeslice'

EventOccurrenceUsage =
OccurrenceUsagePrefix 'event'
(ownedRelationship += OwnedReferenceSubsetting

FeatureSpecializationPart?
| 'occurrence' UsageDeclaration?)
UsageCompletion

8.2.2.9.3 Occurrence Successions

SourceSuccessionMember : FeatureMembership =
'then' ownedRelatedElement += SourceSuccession

SourceSuccession : SuccessionAsUsage =
ownedRelationship += SourceEndMember

SourceEndMember : EndFeatureMembership =
ownedRelatedElement += SourceEnd

SourceEnd : ReferenceUsage =
(ownedRelationship += OwnedMultiplicity)?

8.2.2.10 Items Textual Notation

ItemDefinition =
OccurrenceDefinitionPrefix
'item' 'def' Definition

ItemUsage =
OccurrenceUsagePrefix 'item' Usage

166 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.2.2.11 Parts Textual Notation

PartDefinition =
OccurrenceDefinitionPrefix 'part' 'def' Definition

PartUsage =
OccurrenceUsagePrefix 'part' Usage

8.2.2.12 Ports Textual Notation

PortDefinition =
DefinitionPrefix 'port' 'def' Definition
ownedRelationship += ConjugatedPortDefinitionMember
{ conjugatedPortDefinition.ownedPortConjugator.

originalPortDefinition = this }
(See Note 1)

ConjugatedPortDefinitionMember : OwningMembership =
ownedRelatedElement += ConjugatedPortDefinition

ConjugatedPortDefinition =
ownedRelationship += PortConjugation

PortConjugation =
{}

PortUsage =
OccurrenceUsagePrefix 'port' Usage

ConjugatedPortTyping : ConjugatedPortTyping =
'~' originalPortDefinition = ~[QualifiedName]

(See Note 2)

Notes

1. Even though it is not explicitly represented in the text, a PortDefinition is always parsed as containing
a nested ConjugatedPortDefinition with a PortDefinition Relationship pointing back to the
containing PortDefinition. The abstract syntax for ConjugatedPortDefinition sets its
effectiveName to the name of its originalPortDefinition with the symbol ~ prepended to it (see
8.3.12.2). (See also 8.4.8.1.)

2. The notation ~[QualifiedName] indicates that a QualifiedName shall be parsed from the input text,
but that it shall be resolved as if it was the qualified name constructed as follows:

◦ Extract the last segment name of the given QualifiedName and prepend the symbol ~ to it.
◦ Append the name so constructed to the end of the entire original QualifiedName.

For example, if the ConjugatedPortTyping is ~A::B::C, then the given QualifiedName is A::B::C,
and ~[QualifiedName] is resolved as A::B::C::'~C'. Alternatively, a conforming tool may first
resolve the given QualifiedName as usual to a PortDefinition and then use the
conjugatedPortDefinition of this PortDefinition as the resolution of ~[QualifiedName].

8.2.2.13 Connections Textual Notation

8.2.2.13.1 Connection Definition and Usage

ConnectionDefinition =
OccurrenceDefinitionPrefix 'connection' 'def' Definition

ConnectionUsage =
OccurrenceUsagePrefix

OMG Systems Modeling Language (SysML) v2.0, Beta 1 167

('connection' UsageDeclaration ValuePart?
('connect' ConnectorPart)?

| 'connect' ConnectorPart)
UsageBody

ConnectorPart : ConnectionUsage =
BinaryConnectorPart | NaryConnectorPart

BinaryConnectorPart : ConnectionUsage =
ownedRelationship += ConnectorEndMember 'to'
ownedRelationship += ConnectorEndMember

NaryConnectorPart : ConnectionUsage =
'(' ownedRelationship += ConnectorEndMember ','

ownedRelationship += ConnectorEndMember
(',' ownedRelationship += ConnectorEndMember)* ')'

ConnectorEndMember : EndFeatureMembership :
ownedRelatedElement += ConnectorEnd

ConnectorEnd : ReferenceUsage =
(declaredName = NAME REFERENCES)?
ownedRelationship += OwnedReferenceSubsetting
(ownedRelationship += OwnedMultiplicity)?

8.2.2.13.2 Binding Connectors

BindingConnectorAsUsage =
UsagePrefix ('binding' UsageDeclaration)?
'bind' ownedRelationship += ConnectorEndMember
'=' ownedRelationship += ConnectorEndMember
UsageBody

8.2.2.13.3 Successions

SuccessionAsUsage =
UsagePrefix ('succession' UsageDeclaration)?
'first' s.ownedRelationship += ConnectorEndMember
'then' s.ownedRelationship += ConnectorEndMember
UsageBody

8.2.2.13.4 Messages and Flow Connections

FlowConnectionDefinition :
OccurrenceDefinitionPrefix 'flow' 'def' Definition

Message : FlowConnectionUsage =
OccurrenceUsagePrefix 'message'
MessageDeclaration DefinitionBody
{ isAbstract = true }

MessageDeclaration : FlowConnectionUsage =
UsageDeclaration ValuePart?
('of' ownedRelationship += FlowPayloadFeatureMember)?
('from' ownedRelationship += MessageEventMember

'to' ownedRelationship += MessageEventMember
)?

| ownedRelationship += MessageEventMember 'to'
ownedRelationship += MessageEventMember

168 OMG Systems Modeling Language (SysML) v2.0 Beta 1

MessageEventMember : ParameterMembership =
ownedRelatedElement += MessageEvent

MessageEvent : EventOccurrenceUsage =
ownedRelationship += OwnedReferenceSubsetting

FlowConnectionUsage =
OccurrenceUsagePrefix 'flow'
FlowConnectionDeclaration DefinitionBody

SuccessionFlowConnectionUsage =
OccurrenceUsagePrefix 'succession' 'flow'
FlowConnectionDeclaration DefinitionBody

FlowConnectionDeclaration : FlowConnectionUsage =
UsageDeclaration ValuePart?
('of' ownedRelationship += FlowPayloadFeatureMember)?
('from' ownedRelationship += FlowEndMember

'to' ownedRelationship += FlowEndMember)?
| ownedRelationship += FlowEndMember 'to'

ownedRelationship += FlowEndMember

FlowPayloadFeatureMember : FeatureMembership =
ownedRelatedElement += FlowPayloadFeature

FlowPayloadFeature : ItemFeature =
PayloadFeature

PayloadFeature : Feature =
Identification? PayloadFeatureSpecializationPart
ValuePart?

| ownedRelationship += OwnedFeatureTyping
(ownedRelationship += OwnedMultiplicity)?

| ownedRelationship += OwnedMultiplicity
ownedRelationship += OwnedFeatureTyping

PayloadFeatureSpecializationPart : Feature =
(-> FeatureSpecialization)+ MultiplicityPart?
FeatureSpecialization*

| MultiplicityPart FeatureSpecialization+

FlowEndMember : EndFeatureMembership =
ownedRelatedElement += FlowEnd

FlowEnd : ItemFlowEnd =
(ownedRelationship += FlowEndSubsetting)?
ownedRelationship += FlowFeatureMember

FlowEndSubsetting : ReferenceSubsetting =
referencedFeature = [QualifiedName]

| referencedFeature = FeatureChainPrefix
{ ownedRelatedElement += referencedFeature }

FeatureChainPrefix : Feature =
(ownedRelationship += OwnedFeatureChaining '.')+
ownedRelationship += OwnedFeatureChaining '.'

FlowFeatureMember : FeatureMembership =
ownedRelatedElement += FlowFeature

OMG Systems Modeling Language (SysML) v2.0, Beta 1 169

FlowFeature : ReferenceUsage =
ownedRelationship += FlowFeatureRedefinition

(See Note 1)

FlowFeatureRefefinition : Redefinition =
redefinedFeature = [QualifiedName]

Notes

1. To ensure that a FlowFeature passes the validateRedefinitionDirectionConformance
constraint (see [KerML, 8.3.3.3.8]), its direction must be set to the direction of its
redefinedFeature, relative to its owning FlowEnd, that is, the result of the following OCL expression:

owningType.directionOf(ownedRedefinition->at(1).redefinedFeature)

8.2.2.14 Interfaces Textual Notation

8.2.2.14.1 Interface Definitions

InterfaceDefinition =
OccurrenceDefinitionPrefix 'interface' 'def'
DefinitionDeclaration InterfaceBody

InterfaceBody : Type =
';' | '{' InterfaceBodyItem* '}'

InterfaceBodyItem : Type =
ownedRelationship += DefinitionMember

| ownedRelationship += VariantUsageMember
| ownedRelationship += InterfaceNonOccurrenceUsageMember
| (ownedRelationship += SourceSuccessionMember)?

ownedRelationship += InterfaceOccurrenceUsageMember
| ownedRelationship += AliasMember
| ownedRelationship += Import

InterfaceNonOccurrenceUsageMember : FeatureMembership =
MemberPrefix ownedRelatedElement += InterfaceNonOccurrenceUsageElement

InterfaceNonOccurrenceUsageElement : Usage =
ReferenceUsage

| AttributeUsage
| EnumerationUsage
| BindingConnectorAsUsage
| SuccessionAsUsage

InterfaceOccurrenceUsageMember : FeatureMembership =
MemberPrefix ownedRelatedElement += InterfaceOccurrenceUsageElement

InterfaceOccurrenceUsageElement : Usage =
DefaultInterfaceEnd | StructureUsageElement | BehaviorUsageElement

DefaultInterfaceEnd : PortUsage =
(direction = FeatureDirection)?
(isAbstract ?= 'abstract' | isVariation ?= 'variation')?
isEnd ?= 'end' Usage

170 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.2.2.14.2 Interface Usages

InterfaceUsage =
OccurrenceUsagePrefix 'interface'
InterfaceUsageDeclaration InterfaceBody

InterfaceUsageDeclaration : InterfaceUsage =
UsageDeclaration ValuePart?
('connect' InterfacePart)?

| InterfacePart

InterfacePart : InterfaceUsage =
BinaryInterfacePart | NaryInterfacePart

BinaryInterfacePart : InterfaceUsage =
ownedRelationship += InterfaceEndMember 'to'
ownedRelationship += InterfaceEndMember

NaryInterfacePart : InterfaceUsage =
'(' ownedRelationship += InterfaceEndMember ','

ownedRelationship += InterfaceEndMember
(',' ownedRelationship += InterfaceEndMember)* ')'

InterfaceEndMember : EndFeatureMembership =
ownedRelatedElement += InterfaceEnd

InterfaceEnd : PortUsage :
(declaredName = Name REFERENCES)?
ownedRelationship += OwnedReferenceSubsetting
(ownedRelationship += OwnedMultiplicity)?

8.2.2.15 Allocations Textual Notation

AllocationDefinition =
OccurrenceDefinitionPrefix 'allocation' 'def' Definition

AllocationUsage =
OccurrenceUsagePrefix
AllocationUsageDeclaration UsageBody

AllocationUsageDeclaration : AllocationUsage =
'allocation' UsageDeclaration
('allocate' ConnectorPart)?

| 'allocate' ConnectorPart

8.2.2.16 Actions Textual Notation

8.2.2.16.1 Action Definitions

ActionDefinition =
OccurrenceDefinitionPrefix 'action' 'def'
DefinitionDeclaration ActionBody

ActionBody : Type =
';' | '{' ActionBodyItem* '}'

ActionBodyItem : Type =
NonBehaviorBodyItem

| ownedRelationship += InitialNodeMember
(ownedRelationship += ActionTargetSuccessionMember)*

OMG Systems Modeling Language (SysML) v2.0, Beta 1 171

| (ownedRelationship += SourceSuccessionMember)?
ownedRelationsuip += ActionBehaviorMember
(ownedRelationship += ActionTargetSuccessionMember)*

| ownedRelationship += GuardedSuccessionMember

NonBehaviorBodyItem =
ownedRelationship += Import

| ownedRelationship += AliasMember
| ownedRelationship += DefinitionMember
| ownedRelationship += VariantUsageMember
| ownedRelationship += NonOccurrenceUsageMember
| (ownedRelationship += SourceSuccessionMember)?

ownedRelationship += StructureUsageMember

ActionBehaviorMember : FeatureMembership =
BehaviorUsageMember | ActionNodeMember

InitialNodeMember : FeatureMembership =
MemberPrefix 'first' memberFeature = [QualifiedName]
RelationshipBody

ActionNodeMember : FeatureMembership =
MemberPrefix ownedRelatedElement += ActionNode

ActionTargetSuccessionMember : FeatureMembership =
MemberPrefix ownedRelatedElement += ActionTargetSuccession

GuardedSuccessionMember : FeatureMembership =
MemberPrefix ownedRelatedElement += GuardedSuccession

8.2.2.16.2 Action Usages

ActionUsage =
OccurrenceUsagePrefix 'action'
ActionUsageDeclaration ActionBody

ActionUsageDeclaration : ActionUsage =
UsageDeclaration ValuePart?

PerformActionUsage =
OccurrenceUsagePrefix 'perform'
PerformActionUsageDeclaration ActionBody

PerformActionUsageDeclaration : PerformActionUsage =
(ownedRelationship += OwnedReferenceSubsetting

FeatureSpecializationPart?
| 'action' UsageDeclaration)
ValuePart?

ActionNode : ActionUsage =
ControlNode

| AssignmentNode
| SendNode | AcceptNode
| IfNode | WhileLoopNode | ForLoopNode

ActionNodeUsageDeclaration : ActionUsage =
'action' UsageDeclaration?

ActionNodePrefix : ActionUsage =
OccurrenceUsagePrefix ActionNodeUsageDeclaration?

172 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.2.2.16.3 Control Nodes

ControlNode =
MergeNode | DecisionNode | JoinNode| ForkNode

ControlNodePrefix : OccurrenceUsage =
RefPrefix
(isIndividual ?= 'individual)?
(portionKind = PortionKind)?
UsageExtensionKeyword*

MergeNode =
ControlNodePrefix
isComposite ?= 'merge' UsageDeclaration
ActionNodeBody

DecisionNode =
ControlNodePrefix
isComposite ?= 'decide' UsageDeclaration
ActionNodeBody

JoinNode =
ControlNodePrefix
isComposite ?= 'join' UsageDeclaration
ActionNodeBody

ForkNode =
ControlNodePrefix
isComposite ?= 'fork' UsageDeclaration
ActionNodeBody

ActionNodeBody : ControlNode =
';' | '{' (ownedRelationship += AnnotatingMember)* '}'

8.2.2.16.4 Send and Accept Action Usages

AcceptNode : AcceptActionUsage =
OccurrenceUsagePrefix
AcceptNodeDeclaration ActionBody

AcceptNodeDeclaration : AcceptActionUsage =
ActionNodeUsageDeclaration?
'accept' AcceptParameterPart

AcceptParameterPart : AcceptActionUsage =
ownedRelationship += PayloadParameterMember
('via' ownedRelationship += NodeParameterMember
| ownedRelationship += EmptyParameterMember)

PayloadParameterMember : ParameterMembership =
ownedRelatedElement += PayloadParameter

PayloadParameter : ReferenceUsage =
PayloadFeature

| Identification PayloadFeatureSpecializationPart?
TriggerValuePart

TriggerValuePart : Feature =
ownedRelationship += TriggerFeatureValue

OMG Systems Modeling Language (SysML) v2.0, Beta 1 173

TriggerFeatureValue : FeatureValue =
ownedRelatedElement += TriggerExpression

TriggerExpression : TriggerInvocationExpression =
kind = ('at | 'after')
ownedRelationship += ArgumentMember

| kind = 'when'
ownedRelationship += ArgumentExpressionMember

ArgumentMember : ParameterMembership =
ownedMemberParameter = Argument

Argument : Feature =
ownedRelationship += ArgumentValue

ArgumentValue : FeatureValue =
value = OwnedExpression

ArgumentExpressionMember : ParameterMembership =
ownedRelatedElement += ArgumentExpression

ArgumentExpression : Feature =
ownedRelationship += ArgumentExpressionValue

ArgumentExpressionValue : FeatureValue =
ownedRelatedElement += OwnedExpressionReference

SendNode : SendActionUsage =
OccurrenceUsagePrefix
SendNodeDeclaration ActionBody

SendNodeDeclaration : SendActionUsage =
ActionNodeUsageDeclaration?
'send' ownedRelationship += NodeParameterMember
('via' ownedRelationship += NodeParameterMember
| ownedRelationship += EmptyParameterMember)
('to' ownedRelationship += NodeParameterMember
| ownedRelationship += EmptyParameterMember)

NodeParameterMember : ParameterMembership =
ownedRelatedElement += NodeParameter

NodeParameter : ReferenceUsage =
ownedRelationship += FeatureBinding

FeatureBinding : FeatureValue =
ownedRelatedElement += OwnedExpression

EmptyParameterMember : ParameterMembership =
ownedRelatedElement += EmptyUsage

EmptyUsage : ReferenceUsage =
{}

Notes

1. The productions for ArgumentMember, Argument, ArgumentValue, ArgumentExpressionMember,
ArgumentExpression and ArgumentExpressionValue are the same as given in [KerML, 8.2.5.8.1].

174 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.2.2.16.5 Assignment Action Usages

AssignmentNode : AssignmentActionUsage =
OccurrenceUsagePrefix
AssignmentNodeDeclaration ActionBody

AssignmentNodeDeclaration: ActionUsage =
(ActionNodeUsageDeclaration)? 'assign'
ownedRelationship += AssignmentTargetMember
ownedRelationship += FeatureChainMember ':='
ownedRelationship += NodeParameterMember

AssignmentTargetMember : ParameterMembership =
ownedRelatedElement += AssignmentTargetParameter

AssignmentTargetParameter : ReferenceUsage =
(ownedRelationship += AssignmentTargetBinding '.')?

AssignmentTargetBinding : FeatureValue =
ownedRelatedElement += NonFeatureChainPrimaryExpression

FeatureChainMember : Membership =
memberElement = [QualifiedName]

| OwnedFeatureChainMember

OwnedFeatureChainMember : OwningMembership =
ownedRelatedElement += OwnedFeatureChain

8.2.2.16.6 Structured Control Action Usages

IfNode : IfActionUsage =
ActionNodePrefix
'if' ownedRelationship += ExpressionParameterMember
ownedRelationship += ActionBodyParameterMember
('else' ownedRelationship +=

(ActionBodyParameterMember | IfNodeParameterMember))?

ExpressionParameterMember : ParameterMembership =
ownedRelatedElement += OwnedExpression

ActionBodyParameterMember : ParameterMembership =
ownedRelatedElement += ActionBodyParameter

ActionBodyParameter : ActionUsage =
('action' UsageDeclaration?)?
'{' ActionBodyItem* '}'

IfNodeParameterMember : ParameterMembership =
ownedRelatedElement += IfNode

WhileLoopNode : WhileLoopActionUsage =
ActionNodePrefix
('while' ownedRelationship += ExpressionParameterMember
| 'loop' ownedRelationship += EmptyParameterMember
)
ownedRelationship += ActionBodyParameterMember
('until' ownedRelationship += ExpressionParameterMember ';')?

OMG Systems Modeling Language (SysML) v2.0, Beta 1 175

ForLoopNode : ForLoopActionUsage =
ActionNodePrefix
'for' ownedRelationship += ForVariableDeclarationMember
'in' ownedRelationship += NodeParameterMember
ownedRelationship += ActionBodyParameterMember

ForVariableDeclarationMember : FeatureMembership =
ownedRelatedElement += UsageDeclaration

ForVariableDeclaration : ReferenceUsage =
UsageDeclaration

8.2.2.16.7 Action Successions

ActionTargetSuccession : Usage =
(TargetSuccession | GuardedTargetSuccession | DefaultTargetSuccession)
UsageBody

TargetSuccession : SuccessionAsUsage =
ownedRelationship += SourceEndMember
'then' ownedRelationship += ConnectorEndMember

GuardedTargetSuccession : TransitionUsage =
ownedRelationship += GuardExpressionMember
'then' ownedRelationship += TransitionSuccessionMember

DefaultTargetSuccession : TransitionUsage =
'else' ownedRelationship += TransitionSuccessionMember

GuardedSuccession : TransitionUsage =
('succession' UsageDeclaration)?
'first' ownedRelationship += FeatureChainMember
ownedRelationship += GuardExpressionMember
'then' ownedRelationship += TransitionSuccessionMember
UsageBody

8.2.2.17 States Textual Notation

8.2.2.17.1 State Definitions

StateDefinition =
OccurrenceDefinitionPrefix 'state' 'def'
DefinitionDeclaration StateDefBody

StateDefBody : StateDefinition =
';'

| (isParallel ?= 'parallel')?
'{' StateBodyItem* '}'

StateBodyItem : Type =
NonBehaviorBodyItem

| (ownedRelationsup += SourceSuccessionMember)?
ownedRelationship += BehaviorUsageMember
(ownedRelationship += TargetTransitionUsageMember)*

| ownedRelationship += TransitionUsageMember
| ownedRelationship += EntryActionMember

(ownedRelationship += EntryTransitionMember)*
| ownedRelationship += DoActionMember
| ownedRelationship += ExitActionMember

176 OMG Systems Modeling Language (SysML) v2.0 Beta 1

EntryActionMember : StateSubactionMembership =
MemberPrefix kind = 'entry'
ownedRelatedElement += StateActionUsage

DoActionMember : StateSubactionMembership =
MemberPrefix kind = 'do'
ownedRelatedElement += StateActionUsage

ExitActionMember : StateSubactionMembership =
MemberPrefix kind = 'exit'
ownedRelatedElement += StateActionUsage

EntryTransitionMember : FeatureMembership :
MemberPrefix
(ownedRelatedElement += GuardedTargetSuccession
| 'then' ownedRelatedElement += TargetSuccession
) ';'

StateActionUsage : ActionUsage =
EmptyActionUsage ';'
| StatePerformActionUsage
| StateAcceptActionUsage
| StateSendActionUsage
| StateAssignmentActionUsage

EmptyActionUsage : ActionUsage =
{}

StatePerformActionUsage : PerformActionUsage =
PerformActionUsageDeclaration ActionBody

StateAcceptActionUsage : AcceptActionUsage =
AcceptNodeDeclaration ActionBody

StateSendActionUsage : SendActionUsage
SendNodeDeclaration ActionBody

StateAssignmentActionUsage : AssignmentActionUsage =
AssignmentNodeDeclaration ActionBody

TransitionUsageMember : FeatureMembership =
MemberPrefix ownedRelatedElement += TransitionUsage

TargetTransitionUsageMember : FeatureMembership =
MemberPrefix ownedRelatedElement += TargetTransitionUsage

8.2.2.17.2 State Usages

StateUsage =
OccurrenceUsagePrefix 'state'
ActionUsageDeclaration StateUsageBody

StateUsageBody : StateUsage =
';'

| (isParallel ?= 'parallel')?
'{' StateBodyItem* '}'

ExhibitStateUsage =
OccurrenceUsagePrefix 'exhibit'
(ownedRelationship += OwnedReferenceSubsetting

OMG Systems Modeling Language (SysML) v2.0, Beta 1 177

FeatureSpecializationPart?
| 'state' UsageDeclaration)
ValuePart? StateUsageBody

8.2.2.17.3 Transition Usages

TransitionUsage =
'transition' (UsageDeclaration 'first')?
ownedRelationship += FeatureChainMember
ownedRelationship += EmptyParameterMember
(ownedRelationship += EmptyParameterMember

ownedRelationship += TriggerActionMember)?
(ownedRelationship += GuardExpressionMember)?
(ownedRelationship += EffectBehaviorMember)?
'then' ownedRelationship += TransitionSuccessionMember
ActionBody

TargetTransitionUsage : TransitionUsage =
ownedRelationship += EmptyParameterMember
('transition'

(ownedRelationship += EmptyParameterMember
ownedRelationship += TriggerActionMember)?

(ownedRelationship += GuardExpressionMember)?
(ownedRelationship += EffectBehaviorMember)?

| ownedRelationship += EmptyParameterMember
ownedRelationship += TriggerActionMember
(ownedRelationship += GuardExpressionMember)?
(ownedRelationship += EffectBehaviorMember)?

| ownedRelationship += GuardExpressionMember
(ownedRelationship += EffectBehaviorMember)?

)?
'then' ownedRelationship += TransitionSuccessionMember
ActionBody

TriggerActionMember : TransitionFeatureMembership =
'accept' { kind = 'trigger' } ownedRelatedElement += TriggerAction

TriggerAction : AcceptActionUsage =
AcceptParameterPart

GuardExpressionMember : TransitionFeatureMembership =
'if' { kind = 'guard' } ownedRelatedElement += OwnedExpression

EffectBehaviorMember : TransitionFeatureMembership =
'do' { kind = 'effect' } ownedRelatedElement += EffectBehaviorUsage

EffectBehaviorUsage : ActionUsage =
EmptyActionUsage

| TransitionPerformActionUsage
| TransitionAcceptActionUsage
| TransitionSendActionUsage
| TransitionAssignmentActionUsage

TransitionPerformActionUsage : PerformActionUsage =
PerformActionUsageDeclaration ('{' ActionBodyItem* '}')?

TransitionAcceptActionUsage : AcceptActionUsage =
AcceptNodeDeclaration ('{' ActionBodyItem* '}')?

TransitionSendActionUsage : SendActionUsage =

178 OMG Systems Modeling Language (SysML) v2.0 Beta 1

SendNodeDeclaration ('{' ActionBodyItem* '}')?

TransitionAssignmentActionUsage : AssignmentActionUsage =
AssignmentNodeDeclaration ('{' ActionBodyItem* '}')?

TransitionSuccessionMember : OwningMembership =
ownedRelatedElement += TransitionSuccession

TransitionSuccession : Succession =
ownedRelationship += EmptyEndMember
ownedRelationship += ConnectorEndMember

EmptyEndMember : EndFeatureMembership =
ownedRelatedElement += EmptyFeature

EmptyFeature : ReferenceUsage =
{}

8.2.2.18 Calculations Textual Notation

CalculationDefinition =
OccurrenceDefinitionPrefix 'calc' 'def'
DefinitionDeclaration CalculationBody

CalculationUsage : CalculationUsage =
OccurrenceUsagePrefix 'calc'
ActionUsageDeclaration CalculationBody

CalculationBody : Type =
';' | '{' CalculationBodyPart '}'

CalculationBodyPart : Type =
CalculationBodyItem*
(ownedRelationship += ResultExpressionMember)?

CalculationBodyItem : Type =
ActionBodyItem

| ownedRelationship += ReturnParameterMember

ReturnParameterMember : ReturnParameterMembership =
MemberPrefix? 'return' ownedRelatedElement += UsageElement

ResultExpressionMember : ResultExpressionMembership =
MemberPrefix? ownedRelatedElement += OwnedExpression

8.2.2.19 Constraints Textual Notation

ConstraintDefinition =
OccurrenceDefinitionPrefix 'constraint' 'def'
DefinitionDeclaration CalculationBody

ConstraintUsage =
OccurrenceUsagePrefix 'constraint'
ConstraintUsageDeclaration CalculationBody

AssertConstraintUsage =
OccurrenceUsagePrefix 'assert' (isNegated ?= 'not')?
(ownedRelationship += OwnedReferenceSubsetting

FeatureSpecializationPart?
| 'constraint' ConstraintUsageDeclaration)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 179

CalculationBody

ConstraintUsageDeclaration : ConstraintUsage =
UsageDeclaration ValuePart?

8.2.2.20 Requirements Textual Notation

8.2.2.20.1 Requirement Definitions

RequirementDefinition =
OccurrenceDefinitionPrefix 'requirement' 'def'
DefinitionDeclaration RequirementBody

RequirementBody : Type =
';' | '{' RequirementBodyItem* '}'

RequirementBodyItem : Type =
DefinitionBodyItem

| ownedRelationship += SubjectMember
| ownedRelationship += RequirementConstraintMember
| ownedRelationship += FramedConcernMember
| ownedRelationship += RequirementVerificationMember
| ownedRelationship += ActorMember
| ownedRelationship += StakeholderMember

SubjectMember : SubjectMembership =
MemberPrefix ownedRelatedElement += SubjectUsage

SubjectUsage : ReferenceUsage =
'subject' UsageExtensionKeyword* Usage

RequirementConstraintMember : RequirementConstraintMembership =
MemberPrefix? RequirementKind
ownedRelatedElement += RequirementConstraintUsage

RequirementKind : RequirementConstraintMembership =
'assume' { kind = 'assumption' }

| 'require' { kind = 'requirement' }

RequirementConstraintUsage : ConstraintUsage =
ownedRelationship += OwnedReferenceSubsetting
FeatureSpecializationPart? RequirementBody

| (UsageExtensionKeyword* 'constraint'
| UsageExtensionKeyword+)
ConstraintUsageDeclaration CalculationBody

FramedConcernMember : FramedConcernMembership =
MemberPrefix? 'frame'
ownedRelatedElement += FramedConcernUsage

FramedConcernUsage : ConcernUsage =
ownedRelationship += OwnedReferenceSubsetting
FeatureSpecializationPart? CalculationBody

| (UsageExtensionKeyword* 'concern'
| UsageExtensionKeyword+)
CalculationUsageDeclaration CalculationBody

ActorMember : ActorMembership =
MemberPrefix ownedRelatedElement += ActorUsage

180 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ActorUsage : PartUsage =
'actor' UsageExtensionKeyword* Usage

StakeholderMember : StakeholderMembership =
MemberPrefix ownedRelatedElement += StakeholderUsage

StakeholderUsage : PartUsage =
'stakeholder' UsageExtensionKeyword* Usage

8.2.2.20.2 Requirement Usages

RequirementUsage =
OccurrenceUsagePrefix 'requirement'
ConstraintUsageDeclaration RequirementBody

SatisfyRequirementUsage =
OccurrenceUsagePrefix 'assert' (isNegated ?= 'not') 'satisfy'
(ownedRelationship += OwnedReferenceSubsetting

FeatureSpecializationPart?
| 'requirement' UsageDeclaration)
ValuePart?
('by' ownedRelationship += SatisfactionSubjectMember)?
RequirementBody

SatisfactionSubjectMember : SubjectMembership =
ownedRelatedElement += SatisfactionParameter

SatisfactionParameter : ReferenceUsage =
ownedRelationship += SatisfactionFeatureValue

SatisfactionFeatureValue : FeatureValue =
ownedRelatedElement += SatisfactionReferenceExpression

SatisfactionReferenceExpression : FeatureReferenceExpression =
ownedRelationship += FeatureChainMember

8.2.2.20.3 Concerns

ConcernDefinition =
OccurrenceDefinitionPrefix 'concern' 'def'
DefinitionDeclaration RequirementBody

ConcernUsage =
OccurrenceUsagePrefix 'concern'
ConstraintUsageDeclaration RequirementBody

8.2.2.21 Cases Textual Notation

CaseDefinition =
OccurrenceDefinitionPrefix 'case' 'def'
DefinitionDeclaration CaseBody

CaseUsage =
OccurrenceUsagePrefix 'case'
ConstraintUsageDeclaration CaseBody

CaseBody : Type =
';'

| '{' CaseBodyItem*
(ownedRelationship += ResultExpressionMember)?

OMG Systems Modeling Language (SysML) v2.0, Beta 1 181

'}'

CaseBodyItem : Type =
ActionBodyItem

| ownedRelationship += SubjectMember
| ownedRelationship += ActorMember
| ownedRelationship += ObjectiveMember

ObjectiveMember : ObjectiveMembership =
MemberPrefix 'objective'
ownedRelatedElement += ObjectiveRequirementUsage

ObjectiveRequirementUsage : RequirementUsage =
UsageExtensionKeyword* ConstraintUsageDeclaration
RequirementBody

8.2.2.22 Analysis Cases Textual Notation

AnalysisCaseDefinition =
OccurrenceDefinitionPrefix 'analysis' 'def'
DefinitionDeclaration CaseBody

AnalysisCaseUsage =
OccurrenceUsagePrefix 'analysis'
ConstraintUsageDeclaration CaseBody

8.2.2.23 Verification Cases Textual Notation

VerificationCaseDefinition =
OccurrenceDefinitionPrefix 'verification' 'def'
DefinitionDeclaration CaseBody

VerificationCaseUsage =
OccurrenceUsagePrefix 'verification'
ConstraintUsageDeclaration CaseBody

RequirementVerificationMember : RequirementVerificationMembership =
MemberPrefix 'verify' { kind = 'requirement' }
ownedRelatedElement += RequirementVerificationUsage

RequirementVerificationUsage : RequirementUsage =
ownedRelationship += OwnedReferenceSubsetting
FeatureSpecialization* RequirementBody

| (UsageExtensionKeyword* 'requirement'
| UsageExtensionKeyword+)
ConstraintUsageDeclaration RequirementBody

8.2.2.24 Use Cases Textual Notation

UseCaseDefinition =
OccurrenceDefinitionPrefix 'use' 'case' 'def'
DefinitionDeclaration CaseBody

UseCaseUsage =
OccurrenceUsagePrefix 'use' 'case'
ConstraintUsageDeclaration CaseBody

IncludeUseCaseUsage :
OccurrenceUsagePrefix 'include'
(ownedRelationship += OwnedReferenceSubsetting

182 OMG Systems Modeling Language (SysML) v2.0 Beta 1

FeatureSpecializationPart?
| 'use' 'case' UsageDeclaration)
ValuePart?
CaseBody

8.2.2.25 Views and Viewpoints Textual Notation

8.2.2.25.1 View Definitions

ViewDefinition =
OccurrenceDefinitionPrefix 'view' 'def'
DefinitionDeclaration ViewDefinitionBody

ViewDefinitionBody : ViewDefinition =
';' | '{' ViewDefinitionBodyItem* '}'

ViewDefinitionBodyItem : ViewDefinition =
DefinitionBodyItem

| ownedRelationship += ElementFilterMember
| ownedRelationship += ViewRenderingMember

ViewRenderingMember : ViewRenderingMembership =
MemberPrefix 'render'
ownedRelatedElement += ViewRenderingUsage

ViewRenderingUsage : RenderingUsage =
ownedRelationship += OwnedReferenceSubsetting
FeatureSpecializationPart?
UsageBody

| (UsageExtensionKeyword* 'rendering'
| UsageExtensionKeyword+)
Usage

8.2.2.25.2 View Usages

ViewUsage =
OccurrenceUsagePrefix 'view'
UsageDeclaration? ValuePart?
ViewBody

ViewBody : ViewUsage =
';' | '{' ViewBodyItem* '}'

ViewBodyItem : ViewUsage =
DefinitionBodyItem

| ownedRelationship += ElementFilterMember
| ownedRelationship += ViewRenderingMember
| ownedRelationship += Expose

Expose =
(visibility = VisibilityIndicator)?
'expose' (ImportedNamespace | ImportedFilterPackage) ';'

8.2.2.25.3 Viewpoints

ViewpointDefinition =
OccurrenceDefinitionPrefix 'viewpoint' 'def'
DefinitionDeclaration RequirementBody

ViewpointUsage =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 183

OccurrenceUsagePrefix 'viewpoint'
ConstraintUsageDeclaration RequirementBody

8.2.2.25.4 Renderings

RenderingDefinition =
OccurrenceDefinitionPrefix 'rendering' 'def'
Definition

RenderingUsage =
OccurrenceUsagePrefix 'rendering'
Usage

8.2.2.26 Metadata Textual Notation

MetadataDefinition =
(isAbstract ?= 'abstract')? DefinitionExtensionKeyWord*
'metadata' 'def' Definition

PrefixMetadataAnnotation : Annotation =
'#' annotatingElement = PrefixMetadataUsage
{ ownedRelatedElement += annotatingElement }

PrefixMetadataMember : OwningMembership =
'#' ownedRelatedEleemnt = PrefixMetadataUsage

PrefixMetadataUsage : MetadataUsage =
ownedRelationship += OwnedFeatureTyping

MetadataUsage =
UsageExtensionKeyword* ('@' | 'metadata')
MetadataUsageDeclaration
('about' annotation += Annotation

ownedRelationship += Annotation
(',' annotation += Annotation

{ ownedRelationship += Annotation })*
)?
MetadataBody

MetadataUsageDeclaration : MetadataUsage =
(Identification (':' | 'typed' 'by'))?
ownedRelationship += OwnedFeatureTyping

MetadataBody : Type =
';' |
'{' (ownedRelationship += DefinitionMember

| ownedRelationship += MetadataBodyUsageMember
| ownedRelationship += AliasMember
| ownedRelationship += Import
)*

'}'

MetadataBodyUsageMember : FeatureMembership =
ownedMemberFeature = MetadataBodyUsage

MetadataBodyUsage : ReferenceUsage :
'ref'? (':>>' | 'redefines')? ownedRelationship += OwnedRedefinition
FeatureSpecializationPart? ValuePart?
MetadataBody

184 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ExtendedDefinition : Definition =
BasicDefinitionPrefix? DefinitionExtensionKeyword+
'def' Definition

ExtendedUsage : Usage =
BasicUsagePrefix UsageExtensionKeyword+
Usage

8.2.3 Graphical Notation
8.2.3.1 Graphical Notation Overview

The SysML graphical notation is expressed using a simplified form of the EBNF notation used to define the SysML
textual notation (see 8.2.2.1.1). This graphical BNF has been extended to include productions with a mixture of
graphical and textual elements. Table 29 summarizes the conventions used.

Table 29. Graphical BNF Conventions

Non-terminal element non-terminal-element
Non-terminal element production (complete) non-terminal-element = elements
Non-terminal element production (partial) non-terminal-element =| elements
Grouping (elements)
Alternative elements elements | elements
Repeated elements (zero or more) element *
Repeated elements (one or more) element +
Optional elements (zero or one) element ?
Elements 2-D layout of graphical and textual elements

Graphical element graphical shape or graphical line

Graphical shape 2-D shape with optional nested elements

Graphical line 1-D shape with optional nested elements

Graphical line that connects other elements &element graphical-line &element
Sequential text elements element1 element2
Terminal text element as literal string 'terminal'
Terminal text element as lexical symbol LEXICAL

Graphical Notation to Textual Notation mapping graphical production <=> textual
production

These conventions make a distinction between a complete production, which must include all alternatives within the
production itself, and partial productions, which allow alternatives to be distributed across multiple productions
located anywhere within a specification. This distinction allows greater reuse of production symbols across sections
of a specification that build on partial productions given by earlier sections, while still making clear productions that
are already complete within a given section.

A graphical production contains a two-dimensional layout of graphical and textual elements including graphical
shapes and lines. Shapes may contain other elements nested within these shapes. Generally speaking, graphical
elements specify only containment and connectivity of graphical and textual elements out of which they are built.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 185

Shapes within the graphical notation may generally be relocated anywhere within a given graphical layout. They
may also have any of their graphical elements stretched as necessary to hold their contents.

Lines that connect other graphical elements may be composed of one or more straight or curved line segments. Any
of these line segments may contain a semicircular jump symbol where the segment overlaps a line segment of
another connecting line.

A textual production contains only other textual productions. All production symbols within the graphical BNF
follow a convention of all-lowercase names with optional internal hyphens. Elements of the textual notation defined
in subclause 8.2.2 of this specification may also be referenced by textual productions within the graphical BNF.
These imported textual notation elements can be distinguished from those of the graphical BNF by their use of one
or more uppercase letters within the name.

8.2.3.2 Elements and Relationships Graphical Notation

element =
dependencies-and-annotations-element

| general-element
| element-inside-textual-compartment

compartment =| general-compartment

general-compartment =

general-view

general-view =
(general-element)*
(dependencies-and-annotations-element)*
(ellipsis-at-lower-left-corner)?

ellipsis-at-lower-left-corner = '...'

general-element =
general-node

| general-relationship

element-inside-textual-compartment =

rel-name =
Identification

| QualifiedName

Note. An element inside a textual compartment is selected by graying out a substring containing the element. The
grayed-out section must cover a single element within the textual syntax inside the compartment.

8.2.3.3 Dependencies Graphical Notation

dependencies-and-annotations-element =| dependencies-element

dependencies-element =|
binary-dependency

| n-ary-dependency

186 OMG Systems Modeling Language (SysML) v2.0 Beta 1

binary-dependency =

n-ary-dependency =
&n-ary-association-dot (n-ary-dependency-client-or-supplier-link &element-node)+

n-ary-dependency-client-or-supplier-link =
n-ary-dependency-client-link

| n-ary-dependency-supplier-link

n-ary-association-dot =

n-ary-dependency-client-link =

n-ary-dependency-supplier-link =

Note. An n-ary dependency must have two or more client elements or two or more supplier elements.

8.2.3.4 Annotations Graphical Notation

dependencies-and-annotations-element =|
annotation-node

| annotation-link

annotation-node =
comment-node

| documentation-node
| textual-representation-node

text-block = (LINE_TEXT)*

comment-node =
comment-without-keyword

| comment-with-keyword

comment-without-keyword =

comment-with-keyword =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 187

documentation-node =

documentation-compartment =

Identification
text-block

textual-representation-node =

language-string = 'language' '=' STRING_VALUE

annotation-link =

annotated-element =
element

| element-inside-textual-compartment

Note. A comment node may be attached to zero, one, or more than one annotated elements. All other annotation
nodes must be attached to one and only one annotated element.

8.2.3.5 Namespaces and Packages Graphical Notation

general-node =| namespace-node

namespace-node =| package-node

package-node =

188 OMG Systems Modeling Language (SysML) v2.0 Beta 1

package-with-name-inside
| package-with-name-in-tab
| imported-package-with-name-inside
| imported-package-with-name-in-tab

package-with-name-inside =

package-with-name-in-tab =

imported-package-with-name-inside =

imported-package-with-name-in-tab =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 189

package-compartment =
general-compartment

| documentation-compartment
| packages-compartment
| members-compartment
| relationships-compartment

compartment =| package-compartment

packages-compartment =

packages-compartment-contents

packages-compartment-contents = packages-compartment-element* '…'?
packages-compartment-element = el-prefix? Identification

members-compartment =

members-compartment-contents

members-compartment-contents = members-compartment-element* '…'?
members-compartment-element = el-prefix? (DefinitionElement | UsageElement)

relationships-compartment =

relationships-compartment-contents

relationships-compartment-contents = (relationships-compartment-element)* '…'?
relationships-compartment-element = el-prefix? relationship-name QualifiedName
relationship-name = 'defines', 'defined by', 'specializes', 'specialized by', 'connect to', 'subsets', 'subsetted by', 'performs', 'performed by', 'allocated','allocated to','satisfy', 'satisfied by'

general-relationship =|
import

| top-level-import
| recursive-import
| owned-membership
| unowned-membership

190 OMG Systems Modeling Language (SysML) v2.0 Beta 1

import =

top-level-import =

recursive-import =

owned-membership =

unowned-membership =

8.2.3.6 Definition and Usage Graphical Notation

general-node =| type-node

type-node =
definition-node

| usage-node

namespace-node =| type-node

basic-name-prefix =
('«variation»')?
('«variant»')?
('«abstract»')?

definition-name-with-alias =
Identification
('«alias»' (QualifiedName (',' QualifiedName)*))?

usage-name-with-alias =
Identification (':' QualifiedName)?
('«alias»' (QualifiedName (',' QualifiedName)*))?

compartment-stack = (compartment)*

compartment =|
| variants-compartment
| variant-elementusages-compartment

variants-compartment =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 191

variants-compartment-contents

variants-compartment-contents = members-compartment-contents

variant-elementusages-compartment =

variant-compartment-contents

general-relationship =|
type-relationship

type-relationship =
subclassification

| subsetting
| definition
| redefinition
| composite-feature-membership
| noncomposite-feature-membership

subclassification =

definition =

subsetting =

reference-subsetting =

redefinition =

composite-feature-membership =

noncomposite-feature-membership =

192 OMG Systems Modeling Language (SysML) v2.0 Beta 1

el-prefix = '^' | '/'

usage-cp = usageDeclaration ValuePart?

keyword = '#' QualifiedName

extended-def =

extended-def-name-compartment =
basic-name-prefix

'«' keyword+ 'def' '»'
definition-name-with-alias

definition-node |= extended-def

extended-usage =

extended-usage-name-compartment =
basic-name-prefix

'«' keyword+ '»'
usage-name-with-alias

usage-node |= extended-usage

8.2.3.7 Attributes Graphical Notation

definition-node =| attribute-def

attribute-def =

attribute-def-name-compartment =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 193

basic-name-prefix
'«' keyword* 'attribute' 'def' '»'
definition-name-with-alias

usage-node =| attribute

attribute =

attribute-name-compartment =
basic-name-prefix
'«' keyword* 'attribute' '»'
usage-name-with-alias

compartment =| attributes-compartment

attributes-compartment =

attributes-compartment-contents

attributes-compartment-contents = (attributes-compartment-element)* '…'?
attributes-compartment-element = el-prefix? UsagePrefix usage-cp

8.2.3.8 Enumerations Graphical Notation

definition-node =| enumeration-def

enumeration-def =

enumeration-def-name-compartment =
basic-name-prefix

'«' keyword* 'enumeration' 'def' '»'
definition-name-with-alias

usage-node =| enumeration

enumeration =

194 OMG Systems Modeling Language (SysML) v2.0 Beta 1

enumeration-name-compartment =
basic-name-prefix
'«' keyword* 'enumeration' '»'
usage-name-with-alias

compartment =| enums-compartment

enums-compartment =

enums-compartment-contents

enums-compartment_contents = (enums-compartment-element)* '…'?
enums-compartment-element = el-prefix? UsagePrefix usage-cp

8.2.3.9 Occurrences Graphical Notation

definition-node =| occurrence-def

general-relationship =| portion-relationship

occurrence-name-prefix = basic-name-prefix («individual»)?

occurrence-def =

occurrence-def-name-compartment =
basic-name-prefix
'«' keyword* 'occurrence' 'def' '»'
usage-name-with-alias

usage-node =|
occurrence

| occurrence-ref
| timeslice-or-snapshot-node

occurrence =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 195

occurrence-ref =

occurrence-name-compartment =
basic-name-prefix
'«' 'ref'? keyword* 'occurrence' '»'
usage-name-with-alias

timeslice-or-snapshot-node =
timeslice

| snapshot

timeslice =

timeslice-name-compartment =
'«timeslice»'
usage-name-with-alias

snapshot =

snapshots-name-compartment
'«snapshot»'
usage-name-with-alias

196 OMG Systems Modeling Language (SysML) v2.0 Beta 1

portion-relationship =

compartment =|
occurrences-compartment

| individuals-compartment
| timeslices-compartment
| snapshots-compartment
| sequence-compartment

occurrences-compartment =

occurrences-compartment-contents

occurrences-compartment-contents = (occurrences-compartment-element)* '…'?
occurrences-compartment-element = el-prefix? OccurrenceUsagePrefix usage-cp

individuals-compartment =

individuals-compartment-contents

individuals-compartment-contents = (individuals-compartment-element)* '…'?
individuals-compartment-element = occurrences-compartment-element

timeslices-compartment =

timeslices-compartment-contents

timeslices-compartment-contents = (timeslices-compartment-element)* '…'?
timeslices-compartment-element = occurrences-compartment-element

snapshots-compartment =

snapshots-compartment-contents

snapshots-compartment-contents = (snapshots-compartment-element)* '…'?
snapshots-compartment-element = occurrences-compartment-element

sequence-compartment =

sequence-view

sequence-view = (sq-graphical-element)*

sq-graphical-element =
sq-graphical-node

| sq-graphical-relationship

OMG Systems Modeling Language (SysML) v2.0, Beta 1 197

| dependencies-and-annotations-element

sq-graphical-node = sq-head-node | sq-l-node

sq-head-node = sq-part | sq-port

sq-part =

sq-port =

sq-port-label = UsageDeclaration

sq-l-node =
lifeline

| proxy

lifeline =

proxy =

sq-proxy-label = QualifiedName

sq-ev-occurrence-label = UsageDeclaration

198 OMG Systems Modeling Language (SysML) v2.0 Beta 1

sq-graphical-relationship = message-connection| sq-succession

succession-label = UsageDeclaration?

sq-succession =

Note: the proxy nodes attached to a succession must refer to an event

8.2.3.10 Items Graphical Notation

definition-node =| item-def

interconnection-element = | item| item-ref

item-def =

item-def-name-compartment =
basic-name-prefix
'«' keyword* 'item' 'def' '»'
definition-name-with-alias

usage-node =| item

item =

item-name-compartment =
basic-name-prefix
'«' 'ref'? keyword* 'item' '»'

usage-name-with-alias

item-ref =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 199

compartment =| items-compartment

items-compartment =

items-compartment-contents

items-compartment-contents = (items-compartment-element)* '…'

items-compartment-element = el-prefix? OccurrenceUsagePrefix usage-cp

8.2.3.11 Parts Graphical Notation

definition-node =| part-def

interconnection-element = | part | part-ref

part-def =

part-def-name-compartment =
basic-name-prefix
'«' keyword* 'part' 'def' '»'

definition-name-with-alias

usage-node =| part

part =

200 OMG Systems Modeling Language (SysML) v2.0 Beta 1

part-name-compartment =
basic-name-prefix
'«' 'ref'? keyword* 'part' '»'
usage-name-with-alias

part-ref =

compartment =|
parts-compartment

| directed-features-compartment
| interconnection-compartment

parts-compartment =

parts-compartment-contents

parts-compartment-contents = (parts-compartment-element)* '…'?
parts-compartment-element = el-prefix? OccurrenceUsagePrefix usage-cp

directed-features-compartment =

directed-features-compartment-contents

directed-features-compartment-contents = (directed-features-compartment-element)* '…'?

directed-features-compartment-element =
el-prefix FeatureDirection Definition-Body-Item*

OMG Systems Modeling Language (SysML) v2.0, Beta 1 201

interconnection-compartment =

interconnection-view

interconnection-view =|
(interconnection-element)*
(dependencies-and-annotations-element)*
(ellipsis-at-lower-left-corner)?

general-view =| interconnection-view

8.2.3.12 Ports Graphical Notation

definition-node =| port-def

port-def =

port-def-name-comportment =
basic-name-prefix
'«' keyword* 'port' 'def' '»'
definition-name-with-alias

usage-node =| port-usage

port-usage =

port-name-comportment =
basic-name-prefix
'«' keyword* 'port' '»'
usage-name-with-alias

compartment =| ports-compartment

202 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ports-compartment =

ports-compartment-contents

ports-compartment-contents = (ports-compartment-element)* '…'?
ports-compartment-element = el-prefix? OccurrenceUsagePrefix usage-cp

interconnection-element =| port-def | port

pdh =

|

|

pdv =

|

|

port-l =

|

|

OMG Systems Modeling Language (SysML) v2.0, Beta 1 203

|
proxy

port-r =

|

|

|
proxy

port-t =

204 OMG Systems Modeling Language (SysML) v2.0 Beta 1

|

|

|
proxy

port-b =

|

|

|
proxy

port-label = QualifiedName (':' QualifiedName)?

Note. Dotted line port productions (references) are only possible for nested ports

Note. The proxy option of a port production is valid only on a part usage contained within an interconnection view.

8.2.3.13 Connections Graphical Notation

definition-node =| connection-def

connection-def =

connection-def-name-compartment =
basic-name-prefix

OMG Systems Modeling Language (SysML) v2.0, Beta 1 205

'«' keyword* 'connection' 'def' '»'
definition-name-with-alias

usage-node =| connection

connection =

connection-name-compartment =
basic-name-prefix
'«' keyword* 'connection' '»'

usage-name-with-alias

compartment =| connections-compartment

connections-compartment =

connections-compartment-contents

connections-compartment-contents = (connections-compartment-element)* '…'?
connections-compartment-element =

el-prefix? OccurrenceUsagePrefix UsageDeclaration

interconnection-element =|
connection-def

| connection
| connection-relationship
| attribute

connection-relationship =
binding-connection

| connection-graphical
| n-ary-connection
| flow-connection
| succession-flow-connection
| message-connection
| flow-on-connection
| connection-definition-elaboration
| connection-usage-elaboration
| connection-def-graphical

connection-graphical =

c-adornment =
(a-property | a-direction | a-subsetting |a-redefinition)*

206 OMG Systems Modeling Language (SysML) v2.0 Beta 1

a-property =
'«ordered»' | '«nonunique»' | '«abstract»' | '«derived»'| '«readonly»'

a-direction =
'«in»' | '«out»' | '«inout»'

a-subsetting =
'«subsets»' ownedRelationship (',' ownedRelationship)*

a-redefinition =
'«redefines»' ownedRelationship (',' ownedRelationship)*

connection-end = usage-node | usage-edge

usage-edge = |connection-graphical | flow-connection | interface-connection | binding-connection

connection-label = UsageDeclaration

connection-def-graphical =

cdef-label = Identification

n-ary-connection =
n-ary-connection-dot n-ary-segment+

n-ary-connection-dot =

cdot-label = UsageDeclaration

n-ary-segment =

binding-connection =

msg-end-node =
occurrence| sq-l-node| item | part | port | action | state

| use-case | verification-case | analysis-case | proxy

message-connection =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 207

Note: proxy nodes and end of message connections must refer to occurrences

message-label =
UsageDeclaration? ('«of»' ItemFeatureMember)? | ItemFeatureMember

flow-connection =

flow-label =
UsageDeclaration? ('«of»' FlowPayloadFeatureMember)? | FlowPayloadF

flow-end-node =
parameter | proxy

Note: proxy nodes at end of flow connections must refer to directed features

succession-flow-connection =

succession-flow-label = flow-label

flow-on-connection =

flow-node =
flow-node-r

| flow-node-l
| sflow-node-r
| sflow-node-l
| message-node-r
| message-node-l

flow-node-r =

flow-node-l =

sflow-node-r =

208 OMG Systems Modeling Language (SysML) v2.0 Beta 1

sflow-node-l =

message-node-r =

message-node-l =

flow-label =
Identification | FlowPayloadFeatureMember

rolename = Identification?
multiplicity = MultiplicityRange?

connection-definition-elaboration =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 209

connection-usage-elaboration =

Note. The usage-nodes at the ends of a binding-connection must be of compatible types.

8.2.3.14 Interfaces Graphical Notation

definition-node =| interface-def

interconnection-element =| interface

interface-def =

interface-def-name-compartment =
basic-name-prefix
'«' keyword* 'interface' 'def' '»'
definition-name-with-alias

usage-node =| interface

interface =

interface-name-compartment =
basic-name-prefix
'«' keyword* 'interface' '»'

usage-name-with-alias

compartment =|
interfaces-compartment

| ends-compartment

210 OMG Systems Modeling Language (SysML) v2.0 Beta 1

interfaces-compartment =

interfaces-compartment-contents

interfaces-compartment-contents = (interfaces-compartment-element)* '…'?
interfaces-compartment-element =

el-prefix? OccurenceUsagePrefix InterfaceUsageDeclaration

ends-compartment =

ends-compartment-contents

ends-compartment-contents = (ends-compartment-element)* '…'?

ends-compartment-element = QualifedName (':' QualifiedName)?

connection-relationship =
| interface-connection

interface-connection =

interface-label = UsageDeclaration?

8.2.3.15 Allocations Graphical Notation

definition-node =| allocation-def

allocation-def =

allocation-def-name-compartment =
basic-name-prefix
'«' keyword* 'allocation' 'def' '»'
definition-name-with-alias

usage-node =| allocation

allocation =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 211

allocation-name-compartment =
basic-name-prefix
'«' keyword* 'allocation' '»'
usage-name-with-alias

compartment =| allocations-compartment

allocations-compartment =

allocations-compartment-contents

allocations-compartment-contents = (allocations-compartment-element)* '…'?

allocations-compartment-element =
el-prefix? OccurrenceUsagePrefix AllocationUsageDeclaration UsageBody*

general-relationship =| allocate-relationship

allocate-relationship =

allocation-node =
general-node

| element-in-textual-compartment

usage-edge = |allocate-relationship

8.2.3.16 Actions Graphical Notation

definition-node =| action-def

action-def =

212 OMG Systems Modeling Language (SysML) v2.0 Beta 1

action-def-name-compartment =
basic-name-prefix

'«' keyword* 'action' 'def' '»'
definition-name-with-alias

usage-node =|
action

| perform-action-usage

action =

action-name-compartment =
basic-name-prefix
'«' 'ref'? keyword* 'action' '»'
usage-name-with-alias

perform-action-usage =

action-ref =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 213

perform-action-name-compartment =
'«perform-action»'
action-name-compartment

compartment =|
actions-compartment

| perform-actions-compartment
| parameters-compartment
| action-flow-compartment

actions-compartment =

actions-compartment-contents

actions-compartment-contents = (actions-compartment-element)* '…'?
actions-compartment-element =

el-prefix? OccurrenceUsagePrefix ActionUsageDeclaration

perform-actions-compartment =

perform-actions-compartment-contents

perform-actions-compartment-contents = (perform-actions-compartment-element)* '…'?
perform-actions-compartment-element =

el-prefix? OccurrenceUsagePrefix PerformActionUsageDeclaration

parameters-compartment =

parameters-compartment-contents

parameters-compartment-contents = (parameters-compartment-element)* '…'?
parameters-compartment-element =

el-prefix? FeatureDirection UsageDeclaration ValueOrFlowPart? DefinitionBodyItem*

performed-by-compartment =

performed-by-compartment-contents

214 OMG Systems Modeling Language (SysML) v2.0 Beta 1

performed-by-compartment-contents = QualifiedName* '…'?

action-flow-compartment =

action-flow-view

action-flow-view =
(dependencies-and-annotations-element)*
(action-flow-element)*
(perform-action-swimlanes)?

action-flow-element =|
action-ref

| action
| action-flow-node
| action-flow-relationship

action-flow-node =
start-node

| done-node
| fork-node
| join-node
| decision-node
| merge-node
| send-action-node
| accept-action-node
| loop-action-node
| assign-action-node

action-flow-relationship =
flow-connection

| aflow-succession
| binding-connection

param-l =

|

OMG Systems Modeling Language (SysML) v2.0, Beta 1 215

|
proxy

param-r =

|

|
proxy

param-t =

|

216 OMG Systems Modeling Language (SysML) v2.0 Beta 1

|
proxy

param-b =

|

|
proxy

param-label = QualifiedName (‘:’ QualifiedName)*

start-node =

done-node =

fork-node =

join-node =

decision-node =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 217

merge-node =

send-action-node =

send-action-name-compartment = ('«send»')? qualified-name (':' qualified-name)?
('«alias»' (qualified-name (',' qualified-name)*))?

send-action-expression = NodeParameterMember 'to' NodeParameterMember

accept-action-node =

accept-action-name-compartment = ('«accept»')? qualified-name (':' qualified-name)?
('«alias»' (qualified-name (',' qualified-name)*))?

accept-action-expression = AcceptParameterPart

loop-action-node =

218 OMG Systems Modeling Language (SysML) v2.0 Beta 1

loop-action-name-compartment = ('«loop»')? qualified-name (':' qualified-name)?
('«alias»' (qualified-name (',' qualified-name)*))?

assign-action-node =

assign-action-name-compartment = ('«assign»')? qualified-name (':' qualified-name)?
('«alias»' (qualified-name (',' qualified-name)*))?

perform-actions-swimlanes = (swimlane)*

swimlane =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 219

parameter =
param-l | param-r | param-t | param-b

aflow-succession =

usage-edge = |succession

guard-expression = '[' ExpressionParameterMember ActionBodyParameterMember ']'

Note. All swimlanes are attached to each other on vertical edges and aligned along the top and bottom horizontal
edges.

Note. The proxy option of a parameter production is valid only on an action usage contained within an action flow
view.

8.2.3.17 States Graphical Notation

definition-node =| state-def

state-def =

220 OMG Systems Modeling Language (SysML) v2.0 Beta 1

state-def-name-compartment =
basic-name-prefix

'«' keyword* 'state' 'def' '»'
definition-name-with-alias

usage-node =|
state

| exhibit-state-usage

state =

state-ref =

state-name-compartment =
basic-name-prefix
'«' 'ref'? keyword* 'state' '»'
usage-name-with-alias

exhibit-state-usage =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 221

exhibit-state-name-compartment =
'«exhibit-state»'
state-name-compartment

compartment =|
states-compartment

| states-actions-compartment
| exhibit-states-compartment
| successions-compartment
| state-transition-compartment

states-compartment =

states-compartment-contents

states-compartment-contents = (states-compartment-element)* '…'?
states-compartment-element =

el-prefix? OccurrencePrefix ActionUsageDeclaration

state-actions-compartment =

state-actions-compartment-contents

state-actions-compartment-contents = (state-actions-compartment-element)* '…'?
state-actions-compartment-element =

el-prefix? EntryActionMember | DoActionMember | ExitActionMember

exhibit-states-compartment =

exhibit-states-compartment-contents

exhibit-states-compartment-contents = exhibit-state-scompartment-element* '…'?
exhibit-states-compartment-element-compartment = UsageDeclaration

succession-compartment =

succession-compartment-contents

succession-compartment-contents = QualifiedName* '…'?

state-transition-compartment =

222 OMG Systems Modeling Language (SysML) v2.0 Beta 1

state-transition-view

state-transition-view =
(state-transition-element)*
(dependencies-and-annotations-element)*

state-transition-element =
state-def-node

| state-node
| state-ref-node
| transition
| start-node
| done-node
| fork-node
| join-node
| decision-node
| merge-node

transition =

transition-label = trigger-expression '/' ActionUsage

trigger-expression = AcceptParameterPart (guard-expression)?

usage-edge = |transition

8.2.3.18 Calculations Graphical Notation

definition-node =| calc-def

calc-def =

calc-def-name-compartment =
occurrence-name-prefix
'«' 'ref'? keyword* 'calc' 'def' '»'
definition-name-with-alias

usage-node =| calc

calc =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 223

calc-name-compartment =
occurrence-name-prefix
'«' 'ref'? keyword* 'calc' '»'
definition-name-with-alias

action-flow-element =|
calc-def

| calc

compartment =|
calcs-compartment

| result-compartment

calcs-compartment =

calcs-compartment-contents

calcs-compartment-contents = calcs-compartment-element* '…'?
calcs-compartment-element = el-prefix? OccurrenceUsagePrefix ActionUsageDeclaration

results-compartment =

result-compartment-contents

result-compartment-contents = OwnedExpression

8.2.3.19 Constraints Graphical Notation

definition-node =| constraint-def

constraint-def =

224 OMG Systems Modeling Language (SysML) v2.0 Beta 1

constraint-def-name-compartment =
basic-name-prefix
'«' keyword* 'constraint' 'def' '»'
definition-name-with-alias

usage-node =
constraint

| assert-constraint-usage

constraint =

constraint-ref =

constraint-name-compartment =
basic-name-prefix
'«' 'ref'? keyword* 'constraint' '»'

OMG Systems Modeling Language (SysML) v2.0, Beta 1 225

usage-name-with-alias

assert-constraint-usage =

assert-constraint-name-compartment =
'«assert constraint»'
constraint-name-compartment

compartment =|
constraints-compartment

| assert-constraints-compartment

constraints-compartment =

constraints-compartment-contents

constraints-compartment-contents = (constraints-usage-compartment-element)* '…'?
constraints-usage-compartment-element =

el-prefix? OccurrenceUsagePrefix ConstraintUsageDeclaration CalculationBody*

assert-constraints-compartment =

assert-constraints-compartment-contents

assert-constraints-compartment-contents = (assert-constraints-compartment-element)* '…'?
assert-constraints-compartment-element =

el-prefix? OccurrenceUsagePrefix ('not')?
(OwnedSubsetting FeatureSpecializationPart? | UsageDeclaration)
CalculationUsageParameterPart CalculationBody

interconnection-element =|
constraint-ref

| constraint

8.2.3.20 Requirements Graphical Notation

definition-node =|
requirement-def

| concern-def

requirement-def =

226 OMG Systems Modeling Language (SysML) v2.0 Beta 1

requirement-def-name-compartment =
basic-name-prefix
'«' keyword* 'requirement' 'def' '»'
definition-name-with-alias

usage-node =
requirement

| satisfy-requirement-usage
| concern

requirement =

requirement-ref =

requirement-name-compartment =
basic-name-prefix

OMG Systems Modeling Language (SysML) v2.0, Beta 1 227

'«' 'ref' keyword* 'requirement' '»'
usage-name-with-alias

satisfy-requirement-usage =

satisfy-requirement-name-compartment =
'«satisfy requirement»'
requirement-name-compartment

concern-def =

concern-def-name-compartment =
occurrence-name-prefix
'«concern-def»'
definition-name-with-alias

concern =

concern-name-compartment =
occurrence-prefix
'«concern»'
definition-name-with-alias

compartment =|
constraints-compartment

| assert-constraints-compartment

compartment =|
requirements-compartment

| require-constraints-compartment
| assume-constraints-compartment
| satisfy-requirements-compartment
| satisfies-compartment

228 OMG Systems Modeling Language (SysML) v2.0 Beta 1

| actors-compartment
| subject-compartment
| stakeholders-compartment
| frames-compartment

requirements-compartment =

requirements-compartment-contents

requirements-compartment-contents = (requirements-compartment-element)* '…'?
requirements-compartment-element =

OccurrenceUsagePrefix ConstraintUsageDeclaration

require-constraints-compartment =

require-constraints-compartment-contents

require-constraints-compartment-contents = require-constraint-element* '…'?
require-constraint-element =

el-prefix? requireMemberPrefix? RequirementConstraintUsage

assume-constraints-compartment =

assume-constraints-compartment-contents

assume-constraints-compartment-contents = require-constraint-element* '…'?

satisfy-requirements-compartment =

satisfy-requirements-compartment-contents

satisfy-requirements-compartment-contents = text-block

satisfies-compartment =

satisfies-compartment-contents

satisfies-compartment-contents = UsageDeclaration* '…'?

actors-compartment =

actors-compartment-contents

actors-compartment-contents = (actors-compartment-element)* '…'?
actors-compartment-element = el-prefix? MemberPrefix usage-cp

subject-compartment =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 229

subject-compartment-contents

subject-compartment-contents = (subject-compartment-element)* '…'?
subject-compartment-element = el-prefix? MemberPrefix usage-cp

stakeholders-compartment =

stakeholders-compartment-contents

stakeholders-compartment-contents = (stakeholders-compartment-element)* '…'?
stakeholders-compartment-element = el-prefix? MemberPrefix usage-cp

frames-compartment =

frames-compartment-contents

frames-compartment-contents = (frames-compartment-element)* '…'?
frames-compartment-element = el-prefix* MemberPrefix? FramedConcernUsage

concerns-compartment =

concerns-compartment-contents

interconnection-element =|
requirement-ref

| requirement
| concern
| distinguished-parameter
| distinguished-parameter-link
| concern-stakeholder-link

general-relationship =| frame-relationship

subject-actors-stakeholders-node =| requirement

distinguished-parameter =
subject

| actor
| stakeholder

subject =

actor =

230 OMG Systems Modeling Language (SysML) v2.0 Beta 1

|

stakeholder =

subject-name = UsageDeclaration
actor-name = UsageDeclaration
stakeholder-name = UsageDeclaration

distinguished-parameter-link =

frame-relationship =

concern-stakeholder-link =

8.2.3.21 Cases Graphical Notation

compartment =| objective-compartment

objective-compartment =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 231

objective-compartment-contents

objective-compartment-contents = (objective-compartment-element)* '…'?
objective-compartment-element =

comp-prefix? MemberPrefix ConstraintUsageDeclaration RequirementBody

8.2.3.22 Analysis Cases Graphical Notation

definition-node =| calc-def

analysis-def =

analysis-def-name-compartment =
occurrence-name-prefix
'«' keyword* 'analysis' 'def' '»'
definition-name-with-alias

usage-node =| analysis

analysis =

analysis-name-compartment =
occurrence-name-prefix
'«' keyword* 'analysis' '»'
definition-name-with-alias

compartment =| analyses-compartment

analyses-compartment =

232 OMG Systems Modeling Language (SysML) v2.0 Beta 1

analyses-compartment-contents

analyses-compartment-contents = analyses-compartment-element* '…'?
analyses-compartment-element =

el-prefix? OccurrenceUsagePrefix ConstraintUsageDeclaration CaseBody

action-flow-element =|
analysis-def

| analysis

subject-actors-stakeholders-node =| analysis | analysis-def

8.2.3.23 Verification Cases Graphical Notation

definition-node =| verification-def

verification-def =

verification-def-name-compartment =
occurrence-name-prefix
'«' keyword* 'verification' 'def' '»'
definition-name-with-alias

usage-node =| verification

verification =

verification-name-compartment =
occurrence-name-prefix
'«' keyword* 'verification' '»'
definition-name-with-alias

OMG Systems Modeling Language (SysML) v2.0, Beta 1 233

compartment =|
verifications-compartment

| verifies-compartment
| verification-methods-compartment

verifications-compartment =

verifications-compartment-contents

verifications-compartment-contents = (verifications-compartment-element)* '…'?
verifications-compartment-element =

el-prefix? OccurrenceUsagePrefix ConstraintUsageDeclaration CaseBody '…'

verifies-compartment =

verifies-compartment-contents

verifies-compartment-contents = (verifies-compartment-element)* '…'?
verifies-compartment-element = el-prefix? MemberPrefix RequirementVerificationUsage '…'

verification-methods-compartment =

verification-methods-compartment-contents

verification-methods-compartment-contents = (verification-methods-compartment-element)* '…'?
verification-methods-compartment-element = MetadataBody

action-flow-element =|
verification-def

| verification

general-relationship =| verify-relationship

verify-relationship =

subject-actors-stakeholders-node =| verification | verification-def

8.2.3.24 Use Cases Graphical Notation

definition-node =| use-case-def

use-case-def =

234 OMG Systems Modeling Language (SysML) v2.0 Beta 1

use-case-def-name-compartment =
basic-name-prefix
'«' keyword* 'use' 'case' 'def' '»'
definition-name-with-alias

usage-node =|
use-case

| include-use-case-usage

use-case =

use-case-name-compartment =
basic-name-prefix

'«' keyword* 'use' 'case' '»'
usage-name-with-alias

include-use-case-usage =

include-use-case-name-compartment =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 235

'«include use case»'
requirement-name-compartment

compartment =|
use-cases-compartment

| include-actions-compartment
| includes-compartment

use-cases-compartment =

use-cases-compartment-contents

use-cases-compartment-contents = use-cases-compartment-element* '…'?
use-cases-compartment-element = el-prefix? OccurrenceUsagePrefix ConstraintUsageDeclaration

include-use-cases-compartment =

include-use-cases-compartment-contents

include-use-cases-compartment-contents = (include-use-cases-compartment-element* '…'?
include-use-cases-compartment-element =

el-prefix? OccurrenceUsagePrefix
(OwnedSubsetting FeatureSpecializationPart? | UsageDeclaration)
(ValuePart | ActionUsageParameterList)? CaseBody

includes-compartment =

includes-compartment-contents

includes-compartment-contents = (includes-compartment-element)* '…'?
includes-compartment-element =

el-prefix? OccurrenceUsagePrefix
(OwnedSubsetting FeatureSpecializationPart? | UsageDeclaration)

action-flow-element =|
use-case-def

| use-case

general-relationship =| include-use-case-relationship

include-use-case-relationship =

subject-actors-stakeholders-node =| use-case | use-case-def

8.2.3.25 Views and Viewpoints Graphical Notation

definition-node =|
viewpoint-def

| view-def

236 OMG Systems Modeling Language (SysML) v2.0 Beta 1

viewpoint-def =

viewpoint-def-name-compartment =
basic-name-prefix
'«' keyword* 'viewpoint' 'def' '»'
definition-name-with-alias

view-def =

view-def-name-compartment =

basic-name-prefix
'«' keyword* 'view' 'def' '»'
definition-name-with-alias

usage-node =
viewpoint

| view
| view-frame

viewpoint =

viewpoint-name-compartment =
basic-name-prefix
('«' 'viewpoint' '»' | '«' keyword+ 'viewpoint' '»')
usage-name-with-alias

view =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 237

view-name-compartment=
basic-name-prefix
'«' keyword* 'view' '»'
usage-name-with-alias

compartment =|
| views-compartment
| viewpoints-compartment
| exposes-compartment
| filters-compartment
| rendering-compartment

views-compartment =

views-compartment-contents

views-compartment-contents = (views-compartment-element)* '…'
views-compartment-element =

el-prefix? OccurrenceUsagePrefix UsageDeclaration? ValueOrFlowPart? ViewBody

viewpoints-compartment =

viewpoints-compartment-contents

viewpoints-compartment-contents = (viewpoints-compartment-element)* '…'?
viewpoints-compartment-element =

el-prefix? OccurrenceUsagePrefix ConstraintUsageDeclaration RequirementBody

exposes-compartment =

exposes-compartment-contents

exposes-compartment-contents = exposes-compartment-element* '…'?
exposes-compartment-element = VisibilityIndicator? (ImportedNamespace | ImportedFilterPackage)

filters-compartment =

filters-compartment-contents

filters-compartment-contents = (filters-compartment-element)* '…'?
filters-compartment-element = el-prefix? MemberPrefix OwnedExpression

rendering-compartment =

rendering-compartment-contents

rendering-compartment-contents = usage-cp* '…'?

interconnection-element =|

238 OMG Systems Modeling Language (SysML) v2.0 Beta 1

viewpoint-def
| viewpoint
| view-def
| view

view-frame =

view-frame-name-compartment = '«view»' QualifiedName (':' QualifiedName)?

general-relationship =| expose-relationship

expose-relationship =

Note. A model library in Section 9.2.18 defines standard graphical view definitions for SysML. These may be
supplemented by further, customized View Definitions specific to a model.

8.2.3.26 Metadata Graphical Notation

annotation-node =| metadata-feature-annotation-node

metadata-feature-annotation-node =

metadata-feature-decl = Identifier
metadata-feature-name-value-list =

(metadata-feature-name '=' expression-text)*
metadata-feature-name = Identifier
expression-text = text-block

OMG Systems Modeling Language (SysML) v2.0, Beta 1 239

8.3 Abstract Syntax
8.3.1 Abstract Syntax Overview

The abstract syntax is the common underlying syntactic representation for SysML models. The SysML textual or
graphical notations (see 8.2) provide for concrete presentation of models in the abstract syntax presentation. This
concrete syntax notation may also be parsed to create or update the abstract syntax representation of models. The
semantics for SysML models are then formally defined on the abstract syntax representation (see 8.4).

The SysML abstract syntax is specified as a MOF model [MOF] that is an extension of the KerML abstract syntax
model [KerML]. Each of the subsequent abstract subclauses describes one package in the abstract syntax model,
including one ore more overview diagrams and descriptions of each of the elements in the package. In the diagrams,
metaclasses and relationships from the KerML abstract syntax are shown in gray. See [KerML] for the description
of these elements.

The MOF-compliant class model for the abstract syntax defines the basic structural representation for any SysML
model. In addition to this basic structure, the abstract syntax also includes constraints defined on various
metaclasses. A conformant tool shall be able to accept any KerML model that conforms to the structural abstract
syntax class model, and it may then additionally report on and/or enforce the constraints on a model so represented
(as further described below).

The SysML abstract syntax model follows the conventions from [KerML, 8.3.1] on three kinds of constraints:

1. Derivation constraints. These constraints specify how the values of the derived properties of a metaclass
are computed from the values of other properties in the abstract syntax model. A tool conformant to the
SysML abstract syntax shall always enforce derivation constraints. However, the computed values of
derived properties may depend on whether implied relationships are included in the model or not (see
below). A derivation constraint has a name starting with the word derive, followed by the name of the
metaclass it constrains, followed by the name of the derived property it is for. The OCL specification of
such a constraint always has the form of an equality, with the derived property on the left-hand side and
the derivation expression on the right-hand side. For example, the derivation constraint for the derived
property Usage::isReference is called deriveUsageIsReference and has the OCL specification
isReference = not isComposite.

Note. Derivation constraints are not included for derived properties in the following cases:

◦ The derived property subsets a property with multiplicity upper bound 1. In this case, if the
derived property has a value, it must be the same as that of the subsetted property.

◦ The derived property redefines another derived property. In this case, the derivation of the
redefined property also applies to the redefining property, though the redefining property will
generally place additional constraints on type and/or multiplicity.

2. Semantic constraints. These constraints specify relationships that are semantically required in a SysML
model (see 8.4.1), particularly relationships with elements in the Kernel Semantic Library (see [KerML,
9.2]) and Systems Model Library (see 9.2). These constraints may be violated by a model as entered by a
user or as interchanged. In this case, a tool may satisfy the constraints by introducing implied relationships
into the model, it may simply report their violation, or it may ignore the violations. Semantic constraints
have names that start with the word check, followed by the name of the constrained metaclass, followed
by a descriptive word or phrase. For example, checkPartDefinitionSpecialization.

3. Validation constraints. These constraints specify additional syntactic conditions that must be satisfied in
order to give a model a proper semantic interpretation. They are written presuming that all semantic
constraints are satisfied. A valid model is a model that satisfies all validation constraints. A tool
conformant to the SysML abstract syntax should report violations of validation constraints. A tool
conformant to the SysML semantics is only required to operate on valid models. Validation constraints

240 OMG Systems Modeling Language (SysML) v2.0 Beta 1

have names that start with the word validate, followed by the name of the metaclass, followed by a
descriptive word or phrase. For example, validateUsageOwningType.

8.3.2 Elements and Relationships Abstract Syntax

This is a Kernel abstract syntax model. For Elements and Relationships Abstract Syntax class descriptions, see
[KerML, 8.3.2.1].

+libraryNamespace() : Namespace [0..1]{redefines libraryNamespace}

+isImplied : Boolean = false

Relationship

+libraryNamespace() : Namespace [0..1]
+effectiveName() : String [0..1]
+effectiveShortName() : String [0..1]
+escapedName() : String [0..1]

+/isLibraryElement : Boolean
+isImpliedIncluded : Boolean = false
+/qualifiedName : String [0..1]
+/name : String [0..1]
+/shortName : String [0..1]
+declaredName : String [0..1]
+declaredShortName : String [0..1]
+aliasIds : String [0..*]{ordered}
+elementId : String{id}

Element

{subsets relationship}

+targetRelationship

0..*

{subsets relatedElement,
ordered}

+target

0..*

{subsets relationship}

+owningRelationship

0..1

{subsets relatedElement,
ordered}

+ownedRelatedElement

0..*

{subsets relationship}

+sourceRelationship

0..*

{subsets relatedElement,
ordered}

+source

0..*

{subsets relationship,
ordered}

+ownedRelationship

0..*

{subsets
relatedElement}

+owningRelatedElement

0..1

{union, nonunique}

+/relationship

0..*

{ordered, nonunique}

+/relatedElement

0..*

+/owner 0..1+/ownedElement
{ordered}
0..*

Figure 2. Elements

It is a general design principle of the KerML abstract syntax that non-Relationship Elements are related only by
reified instances of Relationships. All other meta-associations between Elements are derived from these reified
Relationships. For example, the owningRelatedElement/ownedRelationship meta-association between an
Element and a Relationship is fundamental to establishing the structure of a model. However, the
owner/ownedElement meta-association between two Elements is derived, based on the Relationship structure
between them.

8.3.3 Dependencies Abstract Syntax

This is a Kernel abstract syntax model. For Dependencies Abstract Syntax class descriptions, see [KerML, 8.3.2.2].

OMG Systems Modeling Language (SysML) v2.0, Beta 1 241

Element

Relationship

Dependency

{subsets sourceRelationship}

+clientDependency

0..*

{redefines source,
ordered}

+client

1..*

{subsets targetRelationship}

+supplierDependency

0..*

{redefines target,
ordered}

+supplier

1..*

Figure 3. Dependencies

8.3.4 Annotations Abstract Syntax

+body : String [1]
+language : String [1]

TextualRepresentation

Element

AnnotatingElement

+body : String [1]
+locale : String [0..1]

Comment

Annotation

Documentation

Relationship

{subsets owner, redefines annotatedElement}

+/representedElement

1

{subsets annotatingElement,
subsets ownedElement, ordered}

+/textualRepresentation

0..*

{subsets owner, redefines annotatedElement}

+/documentedElement

1

{subsets annotatingElement,
subsets ownedElement, ordered}

+/documentation

0..*

{subsets annotatedElement, subsets owningRelatedElement}

+/owningAnnotatedElement

0..1

{subsets annotation,
subsets ownedRelationship,
ordered}
+/ownedAnnotation0..*

{subsets targetRelationship,
ordered} +annotation 0..*

+annotatedElement

{redefines target}
1

{subsets annotatingElement,
subsets owningRelatedElement}

+/owningAnnotatingElement

0..1

+/ownedAnnotatingRelationship

{subsets annotation,
subsets ownedRelationship}

0..*

+annotatingElement

{redefines source}
1

{subsets sourceRelationship,
ordered}

+annotation

0..*
+/annotatingElement

{ordered}
0..*

+/annotatedElement

{ordered}
1..*

Figure 4. Annotation

This is a Kernel abstract syntax model. For Annotations Abstract Syntax class descriptions, see [KerML, 8.3.2.3].

8.3.5 Namespaces and Packages Abstract Syntax

This is a Kernel abstract syntax model. For Namespaces Abstract Syntax class descriptions, see [KerML, 8.3.2.4].
For Packages Abstract Syntax class descriptions, see [KerML, 8.3.4.13].

242 OMG Systems Modeling Language (SysML) v2.0 Beta 1

+unqualifiedNameOf(qualifiedName : String) : String
+qualificationOf(qualifiedName : String) : String [0..1]
+resolveVisible(name : String) : Membership [0..1]
+resolveLocal(name : String) : Membership [0..1]
+resolveGlobal(qualifiedName : String) : Membership [0..1]
+resolve(qualifiedName : String) : Membership [0..1]
+importedMemberships(excluded : Namespace [0..*]) : Membership [0..*]
+visibleMemberships(excluded : Namespace [0..*], isRecursive : Boolean, includeAll : Boolean) : Membership [0..*]
+visibilityOf(mem : Membership) : VisibilityKind
+namesOf(element : Element) : String [0..*]

Namespace

+/ownedMemberName : String [0..1]{redefines memberName}
+/ownedMemberShortName : String [0..1]{redefines memberShortName}
+/ownedMemberElementId : String{redefines memberElementId}

OwningMembership

+visibility : VisibilityKind = public
+memberName : String [0..1]
+memberShortName : String [0..1]
+/memberElementId : String

+isDistinguishableFrom(other : Membership) : Boolean

Membership

Element

public
protected
private

VisibilityKind
«enumeration»

Relationship

{subsets membership,
subsets owningRelationship}

+/owningMembership

0..1

{subsets ownedRelatedElement,
redefines memberElement}

+/ownedMemberElement

1

{subsets targetRelationship}

+membership

0..*

+memberElement

{redefines target}
1

{subsets
membershipNamespace}

+/importingNamespace 0..*

{subsets membership,
ordered}
+/importedMembership 0..*

{subsets membershipNamespace,
subsets owningRelatedElement,
redefines source}

+/membershipOwningNamespace
1

{subsets membership, subsets
ownedRelationship, subsets
sourceRelationship, ordered}

+/ownedMembership 0..*

+/membershipNamespace
{union}

1..*

{union, ordered}
+/membership 0..*

{subsets namespace}
+/owningNamespace 0..1

{subsets member, ordered}
+/ownedMember 0..*

+/namespace0..*

+/member
{ordered}

0..*

Figure 5. Namespaces

OMG Systems Modeling Language (SysML) v2.0, Beta 1 243

+importedMemberships(excluded : Namespace [0..*]) : Membership [0..*]{redefines importedMemberships}

MembershipImport

+importedMemberships(excluded : Namespace [0..*]) : Membership [0..*]{redefines importedMemberships}

NamespaceImport

+importedMemberships(excluded : Namespace [0..*]) : Membership [0..*]

+isImportAll : Boolean = false
+isRecursive : Boolean = false
+visibility : VisibilityKind = public

Import

Namespace

Relationship

Membership

Element

{subsets owningRelatedElement,
redefines source}

+/importOwningNamespace

1
{subsets ownedRelationship,
subsets sourceRelationship,
ordered}

+/ownedImport

0..*
+/membershipImport

0..*

+/importedElement

1

+memberElement
{redefines target}

1

{subsets targetRelationship}

+membership

0..*

{subsets targetRelationship}

+import

0..*

+importedNamespace
{redefines target}

1

+importedMembership
{redefines target}
1

{redefines targetRelationship}
+import 0..*

Figure 6. Imports

+includeAsMember(element : Element) : Boolean
+importedMemberships(excluded : Namespace [0..*]) : Membership [0..*]{redefines importedMemberships}

Package

+libraryNamespace() : Namespace [0..1]{redefines libraryNamespace}

+isStandard : Boolean = false

LibraryPackage

ElementFilterMembership

OwningMembershipNamespace

Expression

{subsets owningNamespace}
+/conditionedPackage 0..1

{subsets ownedMember,
ordered}

+/filterCondition

0..*

{redefines ownedMemberElement}
+/condition 1

{subsets owningMembership}
+/owningFilter 0..1

Figure 7. Packages

8.3.6 Definition and Usage Abstract Syntax

244 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.6.1 Overview

+isVariation : Boolean

Definition

+namingFeature() : Feature [0..1]{redefines namingFeature}

+isVariation : Boolean
+/isReference : Boolean

Usage

+namingFeature() : Feature [0..1]{redefines namingFeature}

+/isReference : Boolean = true{redefines isReference}

ReferenceUsage

Classifier Feature

+/referenceOwningDefinition
{subsets owningDefinition}
0..1

{subsets ownedUsage,
ordered}

+/ownedReference

0..*

{subsets typedFeature}

+/definedUsage

0..*

{redefines type,
ordered}

+/definition

0..*

{subsets ownedFeature,
subsets usage, ordered}

+/ownedUsage

0..*

{subsets featuringDefinition,
subsets owningType}

+/owningDefinition

0..1

{subsets directedFeature,
subsets usage, ordered}

+/directedUsage

0..*
{subsets featuringDefinition,
subsets typeWithDirectedFeature}

+/definitionWithDirectedUsage
0..*

{subsets feature,
ordered}

+/usage

0..*
{subsets typeWithFeature}

+/featuringDefinition

0..*

{subsets typeWithFeature}

/featuringUsage

0..*

{subsets feature,
ordered}

+/usage

0..*

{subsets directedFeature,
subsets usage, ordered}

+/directedUsage

0..*

/usageWithDirectedUsage

{subsets featuringUsage,
subsets
typeWithDirectedFeature}

0..*

{subsets ownedFeature,
subsets usage, ordered}

+/nestedUsage

0..*

{subsets owningType}

+/owningUsage

0..1

+/referenceOwningUsage
{subsets owningUsage}

0..1

{subsets nestedUsage,
ordered}

+/nestedReference 0..*

Figure 8. Definition and Usage

VariantMembership

DefinitionOwningMembership

Usage

{subsets ownedMembership}

+/variantMembership
0..*

{subsets
membershipOwningNamespace}

+/owningVariationUsage

0..1

{redefines ownedMemberElement}

+/ownedVariantUsage

1
{subsets owningMembership}

+/owningVariantMembership
0..1

{subsets
membershipOwningNamespace}

+/owningVariationDefinition

0..1

{subsets ownedMembership}
+/variantMembership0..*

{subsets owningNamespace}

+/owningVariationUsage

0..1

{subsets ownedMember}

+/variant

0..*

+/owningVariationDefinition

{subsets
owningNamespace}

0..1

{subsets ownedMember}
+/variant 0..*

Figure 9. Variant Membership

8.3.6.2 Definition

Description

A Definition is a Classifier of Usages. The actual kinds of Definition that may appear in a model are
given by the subclasses of Definition (possibly as extended with user-defined SemanticMetadata).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 245

Normally, a Definition has owned Usages that model features of the thing being defined. A Definition may
also have other Definitions nested in it, but this has no semantic significance, other than the nested scoping
resulting from the Definition being considered as a Namespace for any nested Definitions.

However, if a Definition has isVariation = true, then it represents a variation point Definition. In this
case, all of its members must be variant Usages, related to the Definition by VariantMembership
Relationships. Rather than being features of the Definition, variant Usages model different concrete
alternatives that can be chosen to fill in for an abstract Usage of the variation point Definition.

General Classes

Classifier

Attributes

/directedUsage : Usage [0..*] {subsets usage, directedFeature, ordered}

The usages of this Definition that are directedFeatures.

isVariation : Boolean

Whether this Definition is for a variation point or not. If true, then all the memberships of the Definition
must be VariantMemberships.

/ownedAction : ActionUsage [0..*] {subsets ownedOccurrence, ordered}

The ActionUsages that are ownedUsages of this Definition.

/ownedAllocation : AllocationUsage [0..*] {subsets ownedConnection, ordered}

The AllocationUsages that are ownedUsages of this Definition.

/ownedAnalysisCase : AnalysisCaseUsage [0..*] {subsets ownedCase, ordered}

The AnalysisCaseUsages that are ownedUsages of this Definition.

/ownedAttribute : AttributeUsage [0..*] {subsets ownedUsage, ordered}

The AttributeUsages that are ownedUsages of this Definition.

/ownedCalculation : CalculationUsage [0..*] {subsets ownedAction, ordered}

The CalculationUsages that are ownedUsages of this Definition.

/ownedCase : CaseUsage [0..*] {subsets ownedCalculation, ordered}

The code>CaseUsages that are ownedUsages of this Definition.

/ownedConcern : ConcernUsage [0..*] {subsets ownedRequirement}

The ConcernUsages that are ownedUsages of this Definition.

/ownedConnection : ConnectorAsUsage [0..*] {subsets ownedPart, ordered}

246 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The ConnectorAsUsages that are ownedUsages of this Definition. Note that this list includes
BindingConnectorAsUsages and SuccessionAsUsages, even though these are ConnectorAsUsages but not
ConnectionUsages.

/ownedConstraint : ConstraintUsage [0..*] {subsets ownedOccurrence, ordered}

The ConstraintUsages that are ownedUsages of this Definition.

/ownedEnumeration : EnumerationUsage [0..*] {subsets ownedAttribute, ordered}

The EnumerationUsages that are ownedUsages of this Definition.

/ownedFlow : FlowConnectionUsage [0..*] {subsets ownedConnection}

The FlowConnectionUsages that are ownedUsages of this Definition.

/ownedInterface : InterfaceUsage [0..*] {subsets ownedConnection, ordered}

The InterfaceUsages that are ownedUsages of this Definition.

/ownedItem : ItemUsage [0..*] {subsets ownedOccurrence, ordered}

The ItemUsages that are ownedUsages of this Definition.

/ownedMetadata : MetadataUsage [0..*] {subsets ownedItem, ordered}

The MetadataUsages that are ownedUsages of this Definition.

/ownedOccurrence : OccurrenceUsage [0..*] {subsets ownedUsage, ordered}

The OccurrenceUsages that are ownedUsages of this Definition.

/ownedPart : PartUsage [0..*] {subsets ownedItem, ordered}

The PartUsages that are ownedUsages of this Definition.

/ownedPort : PortUsage [0..*] {subsets ownedUsage, ordered}

The PortUsages that are ownedUsages of this Definition.

/ownedReference : ReferenceUsage [0..*] {subsets ownedUsage, ordered}

The ReferenceUsages that are ownedUsages of this Definition.

/ownedRendering : RenderingUsage [0..*] {subsets ownedPart, ordered}

The RenderingUsages that are ownedUsages of this Definition.

/ownedRequirement : RequirementUsage [0..*] {subsets ownedConstraint, ordered}

The RequirementUsages that are ownedUsages of this Definition.

/ownedState : StateUsage [0..*] {subsets ownedAction, ordered}

The StateUsages that are ownedUsages of this Definition.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 247

/ownedTransition : TransitionUsage [0..*] {subsets ownedUsage}

The TransitionUsages that are ownedUsages of this Definition.

/ownedUsage : Usage [0..*] {subsets ownedFeature, usage, ordered}

The Usages that are ownedFeatures of this Definition.

/ownedUseCase : UseCaseUsage [0..*] {subsets ownedCase, ordered}

The UseCaseUsages that are ownedUsages of this Definition.

/ownedVerificationCase : VerificationCaseUsage [0..*] {subsets ownedCase, ordered}

The VerificationCaseUsages that are ownedUsages of this Definition.

/ownedView : ViewUsage [0..*] {subsets ownedPart, ordered}

The ViewUsages that are ownedUsages of this Definition.

/ownedViewpoint : ViewpointUsage [0..*] {subsets ownedRequirement, ordered}

The ViewpointUsages that are ownedUsages of this Definition.

/usage : Usage [0..*] {subsets feature, ordered}

The Usages that are features of this Definition (not necessarily owned).

/variant : Usage [0..*] {subsets ownedMember}

The Usages which represent the variants of this Definition as a variation point Definition, if isVariation =
true. If isVariation = false, the there must be no variants.

/variantMembership : VariantMembership [0..*] {subsets ownedMembership}

The ownedMemberships of this Definition that are VariantMemberships. If isVariation = true, then this
must be all ownedMemberships of the Definition. If isVariation = false, then variantMembershipmust be
empty.

Operations

None.

Constraints

deriveDefinitionDirectedUsage

The directedUsages of a Definition are all its directedFeatures that are Usages.

directedUsage = directedFeature->selectByKind(Usage)

deriveDefinitionOwnedAction

The ownedActions of a Definition are all its ownedUsages that are ActionUsages.

248 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ownedAction = ownedUsage->selectByKind(ActionUsage)

deriveDefinitionOwnedAllocation

The ownedAllocations of a Definition are all its ownedUsages that are AllocationUsages.

ownedAllocation = ownedUsage->selectByKind(AllocationUsage)

deriveDefinitionOwnedAnalysisCase

The ownedAnalysisCases of a Definition are all its ownedUsages that are AnalysisCaseUsages.

ownedAnalysisCase = ownedUsage->selectByKind(AnalysisCaseUsage)

deriveDefinitionOwnedAttribute

The ownedAttributes of a Definition are all its ownedUsages that are AttributeUsages.

ownedAttribute = ownedUsage->selectByKind(AttributeUsage)

deriveDefinitionOwnedCalculation

The ownedCalculations of a Definition are all its ownedUsages that are CalculationUsages.

ownedCalculation = ownedUsage->selectByKind(CalculationUsage)

deriveDefinitionOwnedCase

The ownedCases of a Definition are all its ownedUsages that are CaseUsages.

ownedCase = ownedUsage->selectByKind(CaseUsage)

deriveDefinitionOwnedConcern

The ownedConcerns of a Definition are all its ownedUsages that are ConcernUsages.

ownedConcern = ownedUsage->selectByKind(ConcernUsage)

deriveDefinitionOwnedConnection

The ownedConnections of a Definition are all its ownedUsages that are ConnectorAsUsages.

ownedConnection = ownedUsage->selectByKind(ConnectorAsUsage)

deriveDefinitionOwnedConstraint

The ownedConstraints of a Definition are all its ownedUsages that are ConstraintUsages.

ownedConstraint = ownedUsage->selectByKind(ConstraintUsage)

deriveDefinitionOwnedEnumeration

The ownedEnumerations of a Definition are all its ownedUsages that are EnumerationUsages.

ownedEnumeration = ownedUsage->selectByKind(EnumerationUsage)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 249

deriveDefinitionOwnedFlow

The ownedFlows of a Definition are all its ownedUsages that are FlowConnectionUsages.

ownedFlow = ownedUsage->selectByKind(FlowConnectionUsage)

deriveDefinitionOwnedInterface

The ownedInterfaces of a Definition are all its ownedUsages that are InterfaceUsages.

ownedInterface = ownedUsage->selectByKind(ReferenceUsage)

deriveDefinitionOwnedItem

The ownedItems of a Definition are all its ownedUsages that are ItemUsages.

ownedItem = ownedUsage->selectByKind(ItemUsage)

deriveDefinitionOwnedMetadata

The ownedMetadata of a Definition are all its ownedUsages that are MetadataUsages.

ownedMetadata = ownedUsage->selectByKind(MetadataUsage)

deriveDefinitionOwnedOccurrence

The ownedOccurrences of a Definition are all its ownedUsages that are OccurrenceUsages.

ownedOccurrence = ownedUsage->selectByKind(OccurrenceUsage)

deriveDefinitionOwnedPart

The ownedParts of a Definition are all its ownedUsages that are PartUsages.

ownedPart = ownedUsage->selectByKind(PartUsage)

deriveDefinitionOwnedPort

The ownedPorts of a Definition are all its ownedUsages that are PortUsages.

ownedPort = ownedUsage->selectByKind(PortUsage)

deriveDefinitionOwnedReference

The ownedReferences of a Definition are all its ownedUsages that are ReferenceUsages.

ownedReference = ownedUsage->selectByKind(ReferenceUsage)

deriveDefinitionOwnedRendering

The ownedRenderings of a Definition are all its ownedUsages that are RenderingUsages.

ownedRendering = ownedUsage->selectByKind(RenderingUsage)

deriveDefinitionOwnedRequirement

250 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The ownedRequirements of a Definition are all its ownedUsages that are RequirementUsages.

ownedRequirement = ownedUsage->selectByKind(RequirementUsage)

deriveDefinitionOwnedState

The ownedStates of a Definition are all its ownedUsages that are StateUsages.

ownedState = ownedUsage->selectByKind(StateUsage)

deriveDefinitionOwnedTransition

The ownedTransitions of a Definition are all its ownedUsages that are TransitionUsages.

ownedTransition = ownedUsage->selectByKind(TransitionUsage)

deriveDefinitionOwnedUsage

The ownedUsages of a Definition are all its ownedFeatures that are Usages.

ownedUsage = ownedFeature->selectByKind(Usage)

deriveDefinitionOwnedUseCase

The ownedUseCases of a Definition are all its ownedUsages that are UseCaseUsages.

ownedUseCase = ownedUsage->selectByKind(UseCaseUsage)

deriveDefinitionOwnedVerificationCase

The ownedValidationCases of a Definition are all its ownedUsages that are ValidationCaseUsages.

ownedVerificationCase = ownedUsage->selectByKind(VerificationCaseUsage)

deriveDefinitionOwnedView

The ownedViews of a Definition are all its ownedUsages that are ViewUsages.

ownedView = ownedUsage->selectByKind(ViewUsage)

deriveDefinitionOwnedViewpoint

The ownedViewpoints of a Definition are all its ownedUsages that are ViewpointUsages.

ownedViewpoint = ownedUsage->selectByKind(ViewpointUsage)

deriveDefinitionUsage

The usages of a Definition are all its features that are Usages.

usage = feature->selectByKind(Usage)

deriveDefinitionVariant

The variants of a Definition are the ownedVariantUsages of its variantMemberships.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 251

variant = variantMembership.ownedVariantUsage

deriveDefinitionVariantMembership

The variantMemberships of a Definition are those ownedMemberships that are VariantMemberships.

variantMembership = ownedMembership->selectByKind(VariantMembership)

validateDefinitionVariationIsAbstract

If a Definition is a variation, then it must be abstract.

isVariation implies isAbstract

validateDefinitionVariationOwnedFeatureMembership

If a Definition is a variation, then all it must not have any ownedFeatureMemberships.

isVariation implies ownedFeatureMembership->isEmpty()

validateDefinitionVariationSpecialization

A variation Definition may not specialize any other variation Definition.

isVariation implies
not ownedSpecialization.specific->exists(

oclIsKindOf(Definition) and
oclAsType(Definition).isVariation)

8.3.6.3 ReferenceUsage

Description

A ReferenceUsage is a Usage that specifies a non-compositional (isComposite = false) reference to
something. The definition of a ReferenceUsage can be any kind of Classifier, with the default being the
top-level Classifier Base::Anything from the Kernel Semantic Library. This allows the specification of a
generic reference without distinguishing if the thing referenced is an attribute value, item, action, etc.

General Classes

Usage

Attributes

/isReference : Boolean {redefines isReference}

Always true for a ReferenceUsage.

Operations

namingFeature() : Feature [0..1] {redefines namingFeature}

If this ReferenceUsage is the payload parameter of a TransitionUsage, then its naming Feature is the
payloadParameter of the triggerAction of that TransitionUsage (if any).

252 OMG Systems Modeling Language (SysML) v2.0 Beta 1

body: if owningType <> null and owningType.oclIsKindOf(TransitionUsage) and
owningType.oclAsType(TransitionUsage).inputParameter(2) = self then
owningType.oclAsType(TransitionUsage).triggerPayloadParameter()

else self.oclAsType(Usage).namingFeature()
endif

Constraints

validateReferenceUsageIsReference

A ReferenceUsage is always referential.

isReference

8.3.6.4 Usage

Description

A Usage is a usage of a Definition. A Usage may only be an ownedFeature of a Definition or another
Usage.

A Usage may have nestedUsages that model features that apply in the context of the owningUsage. A Usage
may also have Definitions nested in it, but this has no semantic significance, other than the nested scoping
resulting from the Usage being considered as a Namespace for any nested Definitions.

However, if a Usage has isVariation = true, then it represents a variation point Usage. In this case, all of its
members must be variant Usages, related to the Usage by VariantMembership Relationships. Rather than
being features of the Usage, variant Usages model different concrete alternatives that can be chosen to fill in
for the variation point Usage.

General Classes

Feature

Attributes

/definition : Classifier [0..*] {redefines type, ordered}

The Classifiers that are the types of this Usage. Nominally, these are Definitions, but other kinds of Kernel
Classifiers are also allowed, to permit use of Classifiers from the Kernel Model Libraries.

/directedUsage : Usage [0..*] {subsets usage, directedFeature, ordered}

The usages of this Usage that are directedFeatures.

/isReference : Boolean

Whether this Usage is a referential Usage, that is, it has isComposite = false.

isVariation : Boolean

Whether this Usage is for a variation point or not. If true, then all the memberships of the Usage must be
VariantMemberships.

/nestedAction : ActionUsage [0..*] {subsets nestedOccurrence, ordered}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 253

The ActionUsages that are nestedUsages of this Usage.

/nestedAllocation : AllocationUsage [0..*] {subsets nestedConnection, ordered}

The AllocationUsages that are nestedUsages of this Usage.

/nestedAnalysisCase : AnalysisCaseUsage [0..*] {subsets nestedCase, ordered}

The AnalysisCaseUsages that are nestedUsages of this Usage.

/nestedAttribute : AttributeUsage [0..*] {subsets nestedUsage, ordered}

The code>AttributeUsages that are nestedUsages of this Usage.

/nestedCalculation : CalculationUsage [0..*] {subsets nestedAction, ordered}

The CalculationUsage that are nestedUsages of this Usage.

/nestedCase : CaseUsage [0..*] {subsets nestedCalculation, ordered}

The CaseUsages that are nestedUsages of this Usage.

/nestedConcern : ConcernUsage [0..*] {subsets nestedRequirement}

The ConcernUsages that are nestedUsages of this Usage.

/nestedConnection : ConnectorAsUsage [0..*] {subsets nestedPart, ordered}

The ConnectorAsUsages that are nestedUsages of this Usage. Note that this list includes
BindingConnectorAsUsages and SuccessionAsUsages, even though these are ConnectorAsUsages but not
ConnectionUsages.

/nestedConstraint : ConstraintUsage [0..*] {subsets nestedOccurrence, ordered}

The ConstraintUsages that are nestedUsages of this Usage.

/nestedEnumeration : EnumerationUsage [0..*] {subsets nestedAttribute, ordered}

The code>EnumerationUsages that are nestedUsages of this Usage.

/nestedFlow : FlowConnectionUsage [0..*] {subsets nestedConnection}

The code>FlowConnectionUsages that are nestedUsages of this Usage.

/nestedInterface : InterfaceUsage [0..*] {subsets nestedConnection, ordered}

The InterfaceUsages that are nestedUsages of this Usage.

/nestedItem : ItemUsage [0..*] {subsets nestedOccurrence, ordered}

The ItemUsages that are nestedUsages of this Usage.

/nestedMetadata : MetadataUsage [0..*] {subsets nestedItem, ordered}

The MetadataUsages that are nestedUsages of this of this Usage.

254 OMG Systems Modeling Language (SysML) v2.0 Beta 1

/nestedOccurrence : OccurrenceUsage [0..*] {subsets nestedUsage, ordered}

The OccurrenceUsages that are nestedUsages of this Usage.

/nestedPart : PartUsage [0..*] {subsets nestedItem, ordered}

The PartUsages that are nestedUsages of this Usage.

/nestedPort : PortUsage [0..*] {subsets nestedUsage, ordered}

The PortUsages that are nestedUsages of this Usage.

/nestedReference : ReferenceUsage [0..*] {subsets nestedUsage, ordered}

The ReferenceUsages that are nestedUsages of this Usage.

/nestedRendering : RenderingUsage [0..*] {subsets nestedPart, ordered}

The RenderingUsages that are nestedUsages of this Usage.

/nestedRequirement : RequirementUsage [0..*] {subsets nestedConstraint, ordered}

The RequirementUsages that are nestedUsages of this Usage.

/nestedState : StateUsage [0..*] {subsets nestedAction, ordered}

The StateUsages that are nestedUsages of this Usage.

/nestedTransition : TransitionUsage [0..*] {subsets nestedUsage}

The TransitionUsages that are nestedUsages of this Usage.

/nestedUsage : Usage [0..*] {subsets ownedFeature, usage, ordered}

The Usages that are ownedFeatures of this Usage.

/nestedUseCase : UseCaseUsage [0..*] {subsets nestedCase, ordered}

The UseCaseUsages that are nestedUsages of this Usage.

/nestedVerificationCase : VerificationCaseUsage [0..*] {subsets nestedCase, ordered}

The VerificationCaseUsages that are nestedUsages of this Usage.

/nestedView : ViewUsage [0..*] {subsets nestedPart, ordered}

The ViewUsages that are nestedUsages of this Usage.

/nestedViewpoint : ViewpointUsage [0..*] {subsets nestedRequirement, ordered}

The ViewpointUsages that are nestedUsages of this Usage.

/owningDefinition : Definition [0..1] {subsets owningType, featuringDefinition}

The Definition that owns this Usage (if any).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 255

/owningUsage : Usage [0..1] {subsets owningType}

The Usage in which this Usage is nested (if any).

/usage : Usage [0..*] {subsets feature, ordered}

The Usages that are features of this Usage (not necessarily owned).

/variant : Usage [0..*] {subsets ownedMember}

The Usages which represent the variants of this Usage as a variation point Usage, if isVariation = true. If
isVariation = false, then there must be no variants.

/variantMembership : VariantMembership [0..*] {subsets ownedMembership}

The ownedMemberships of this Usage that are VariantMemberships. If isVariation = true, then this must
be all memberships of the Usage. If isVariation = false, then variantMembershipmust be empty.

Operations

namingFeature() : Feature [0..1] {redefines namingFeature}

If this Usage is a variant, then its naming Feature is the referencedFeature of its
ownedReferenceSubsetting.

body: if not owningMembership.oclIsKindOf(VariantMembership) then
self.oclAsType(Feature).namingFeature()

else if ownedReferenceSubsetting = null then null
else ownedReferenceSubsetting.referencedFeature
endif endif

Constraints

checkUsageVariationDefinitionSpecialization

If a Usage has an owningVariationDefinition, then it must directly or indirectly specialize that Definition.

owningVariationDefinition <> null implies
specializes(owningVariationDefinition)

checkUsageVariationUsageSpecialization

If a Usage has an owningVariationUsage, then it must directly or indirectly specialize that Usage.

owningVariationUsage <> null implies
specializes(owningVariationUsage)

deriveUsageDirectedUsage

The directedUsages of a Usage are all its directedFeatures that are Usages.

directedUsage = directedFeature->selectByKind(Usage)

deriveUsageIsReference

A Usage is referential if it is not composite.

256 OMG Systems Modeling Language (SysML) v2.0 Beta 1

isReference = not isComposite

deriveUsageNestedAction

The ownedActions of a Usage are all its ownedUsages that are ActionUsages.

nestedAction = nestedUsage->selectByKind(ActionUsage)

deriveUsageNestedAllocation

The ownedAllocations of a Usage are all its ownedUsages that are AllocationUsages.

nestedAllocation = nestedUsage->selectByKind(AllocationUsage)

deriveUsageNestedAnalysisCase

The ownedAnalysisCases of a Usage are all its ownedUsages that are AnalysisCaseUsages.

nestedAnalysisCase = nestedUsage->selectByKind(AnalysisCaseUsage)

deriveUsageNestedAttribute

The ownedAttributes of a Usage are all its ownedUsages that are AttributeUsages.

nestedAttribute = nestedUsage->selectByKind(AttributeUsage)

deriveUsageNestedCalculation

The ownedCalculations of a Usage are all its ownedUsages that are CalculationUsages.

nestedCalculation = nestedUsage->selectByKind(CalculationUsage)

deriveUsageNestedCase

The ownedCases of a Usage are all its ownedUsages that are CaseUsages.

nestedCase = nestedUsage->selectByKind(CaseUsage)

deriveUsageNestedConcern

The ownedConcerns of a Usage are all its ownedUsages that are ConcernUsages.

nestedConcern = nestedUsage->selectByKind(ConcernUsage)

deriveUsageNestedConnection

The ownedConnections of a Usage are all its ownedUsages that are ConnectorAsUsages.

nestedConnection = nestedUsage->selectByKind(ConnectorAsUsage)

deriveUsageNestedConstraint

The ownedConstraints of a Usage are all its ownedUsages that are ConstraintUsages.

nestedConstraint = nestedUsage->selectByKind(ConstraintUsage)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 257

deriveUsageNestedEnumeration

The ownedEnumerations of a Usage are all its ownedUsages that are EnumerationUsages.

ownedNested = nestedUsage->selectByKind(EnumerationUsage)

deriveUsageNestedFlow

The ownedFlows of a Usage are all its ownedUsages that are FlowConnectionUsages.

nestedFlow = nestedUsage->selectByKind(FlowConnectionUsage)

deriveUsageNestedInterface

The ownedInterfaces of a Usage are all its ownedUsages that are InterfaceUsages.

nestedInterface = nestedUsage->selectByKind(ReferenceUsage)

deriveUsageNestedItem

The ownedItems of a Usage are all its ownedUsages that are ItemUsages.

nestedItem = nestedUsage->selectByKind(ItemUsage)

deriveUsageNestedMetadata

The ownedMetadata of a Usage are all its ownedUsages that are MetadataUsages.

nestedMetadata = nestedUsage->selectByKind(MetadataUsage)

deriveUsageNestedOccurrence

The ownedOccurrences of a Usage are all its ownedUsages that are OccurrenceUsages.

nestedOccurrence = nestedUsage->selectByKind(OccurrenceUsage)

deriveUsageNestedPart

The ownedParts of a Usage are all its ownedUsages that are PartUsages.

nestedPart = nestedUsage->selectByKind(PartUsage)

deriveUsageNestedPort

The ownedPorts of a Usage are all its ownedUsages that are PortUsages.

nestedPort = nestedUsage->selectByKind(PortUsage)

deriveUsageNestedReference

The ownedReferences of a Usage are all its ownedUsages that are ReferenceUsages.

nestedReference = nestedUsage->selectByKind(ReferenceUsage)

deriveUsageNestedRendering

258 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The ownedRenderings of a Usage are all its ownedUsages that are RenderingUsages.

nestedRendering = nestedUsage->selectByKind(RenderingUsage)

deriveUsageNestedRequirement

The ownedRequirements of a Usage are all its ownedUsages that are RequirementUsages.

nestedRequirement = nestedUsage->selectByKind(RequirementUsage)

deriveUsageNestedState

The ownedStates of a Usage are all its ownedUsages that are StateUsages.

nestedState = nestedUsage->selectByKind(StateUsage)

deriveUsageNestedTransition

The ownedTransitions of a Usage are all its ownedUsages that are TransitionUsages.

nestedTransition = nestedUsage->selectByKind(TransitionUsage)

deriveUsageNestedUsage

The ownedUsages of a Usage are all its ownedFeatures that are Usages.

nestedUsage = ownedFeature->selectByKind(Usage)

deriveUsageNestedUseCase

The ownedUseCases of a Usage are all its ownedUsages that are UseCaseUsages.

nestedUseCase = nestedUsage->selectByKind(UseCaseUsage)

deriveUsageNestedVerificationCase

The ownedValidationCases of a Usage are all its ownedUsages that are ValidationCaseUsages.

nestedVerificationCase = nestedUsage->selectByKind(VerificationCaseUsage)

deriveUsageNestedView

The ownedViews of a Usage are all its ownedUsages that are ViewUsages.

nestedView = nestedUsage->selectByKind(ViewUsage)

deriveUsageNestedViewpoint

The ownedViewpoints of a Usage are all its ownedUsages that are ViewpointUsages.

nestedViewpoint = nestedUsage->selectByKind(ViewpointUsage)

deriveUsageUsage

The usages of a Usage are all its features that are Usages.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 259

usage = feature->selectByKind(Usage)

deriveUsageVariant

The variants of a Usage are the ownedVariantUsages of its variantMemberships.

variant = variantMembership.ownedVariantUsage

deriveUsageVariantMembership

The variantMemberships of a Usage are those ownedMemberships that are VariantMemberships.

variantMembership = ownedMembership->selectByKind(VariantMembership)

validaeUsageVariationIsAbstract

If a Usage is a variation, then it must be abstract.

isVariation implies isAbstract

validateUsageIsReferential

A Usage that is directed, an end feature or has no featuringTypes must be referential.

direction <> null or isEnd or featuringType->isEmpty() implies
isReference

validateUsageVariationOwnedFeatureMembership

If a Usage is a variation, then it must not have any ownedFeatureMemberships.

isVariation implies ownedFeatureMembership->isEmpty()

validateUsageVariationSpecialization

A variation Usage may not specialize any variation Definition or Usage.

isVariation implies
not ownedSpecialization.specific->exists(

oclIsKindOf(Definition) and
oclAsType(Definition).isVariation or
oclIsKindOf(Usage) and
oclAsType(Usage).isVariation)

8.3.6.5 VariantMembership

Description

A VariantMembership is a Membership between a variation point Definition or Usage and a Usage that
represents a variant in the context of that variation. The membershipOwningNamespace for the
VariantMembership must be either a Definition or a Usage with isVariation = true.

General Classes

OwningMembership

260 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Attributes

/ownedVariantUsage : Usage {redefines ownedMemberElement}

The Usage that represents a variant in the context of the owningVariationDefinition or
owningVariationUsage.

Operations

None.

Constraints

validateVariantMembershipOwningNamespace

The membershipOwningNamespace of a VariantMembership must be a variation-point Definition or Usage.

membershipOwningNamespace.oclIsKindOf(Definition) and
membershipOwningNamespace.oclAsType(Definition).isVariation or

membershipOwningNamespace.oclIsKindOf(Usage) and
membershipOwningNamespace.oclAsType(Usage).isVariation

8.3.7 Attributes Abstract Syntax
8.3.7.1 Overview

+/isReference : Boolean = true{redefines isReference}

AttributeUsage

Usage

AttributeDefinition

Definition

DataType

{redefines definition,
ordered}

+/attributeDefinition

0..*

{subsets definedUsage}
+/definedAttribute 0..*

+/attributeOwningDefinition

{subsets owningDefinition}
0..1

{subsets ownedUsage,
ordered}

+/ownedAttribute

0..*

+/attributeOwningUsage
{subsets owningUsage}

0..1

{subsets nestedUsage,
ordered}

+/nestedAttribute 0..*

Figure 10. Attribute Definition and Usage

8.3.7.2 AttributeDefinition

Description

An AttributeDefinition is a Definition and a DataType of information about a quality or characteristic of a
system or part of a system that has no independent identity other than its value. All features of an
AttributeDefinition must be referential (non-composite).

As a DataType, an AttributeDefinition must specialize, directly or indirectly, the base DataType
Base::DataValue from the Kernel Semantic Library.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 261

General Classes

Definition
DataType

Attributes

None.

Operations

None.

Constraints

validateAttributeDefinitionFeatures

All features of an AttributeDefinition must be non-composite.

feature->forAll(not isComposite)

8.3.7.3 AttributeUsage

Description

An AttributeUsage is a Usage whose type is a DataType. Nominally, if the type is an AttributeDefinition,
an AttributeUsage is a usage of a AttributeDefinition to represent the value of some system quality or
characteristic. However, other kinds of kernel DataTypes are also allowed, to permit use of DataTypes from the
Kernel Model Libraries. An AttributeUsage itself as well as all its nested features must be referential (non-
composite).

An AttributeUsage must specialize, directly or indirectly, the base Feature Base::dataValues from the
Kernel Semantic Library.

General Classes

Usage

Attributes

/attributeDefinition : DataType [0..*] {redefines definition, ordered}

The DataTypes that are the types of this AttributeUsage. Nominally, these are AttributeDefinitions, but
other kinds of kernel DataTypes are also allowed, to permit use of DataTypes from the Kernel Model Libraries.

/isReference : Boolean {redefines isReference}

Always true for an AttributeUsage.

Operations

None.

Constraints

262 OMG Systems Modeling Language (SysML) v2.0 Beta 1

checkAttributeUsageSpecialization

An AttributeUsage must directly or indirectly specialize Base::dataValues from the Kernel Semantic
Library.

specializesFromLibrary('Base::dataValues')

validateAttributeUsageFeatures

All features of an AttributeUsage must be non-composite.

feature->forAll(not isComposite)

validateAttributeUsageIsReference

An AttributeUsage is always referential.

isReference

8.3.8 Enumerations Abstract Syntax
8.3.8.1 Overview

+isVariation : Boolean = true{redefines isVariation}

EnumerationDefinition EnumerationUsage

AttributeDefinition

Definition Usage

AttributeUsage

+/enumerationOwningDefinition

{subsets
attributeOwningDefinition}

0..1

{subsets ownedAttribute, ordered}

+/ownedEnumeration

0..*

{subsets owningVariationDefinition}

+/owningEnumerationDefinition

0..1
{redefines variant, ordered}

+/enumeratedValue

0..*

{redefines attributeDefinition}

+/enumerationDefinition

1
{subsets definedAttribute}

+/definedEnumeration

0..*

{subsets nestedAttribute,
ordered}

+/nestedEnumeration

0..*

+/enumerationOwningUsage

{subsets
attributeOwningUsage}

0..1

Figure 11. Enumeration Definition and Usage

8.3.8.2 EnumerationDefinition

Description

An EnumerationDefinition is an AttributeDefinition all of whose instances are given by an explicit list of
enumeratedValues. This is realized by requiring that the EnumerationDefinition have isVariation =
true, with the enumeratedValues being its variants.

General Classes

AttributeDefinition

Attributes

OMG Systems Modeling Language (SysML) v2.0, Beta 1 263

/enumeratedValue : EnumerationUsage [0..*] {redefines variant, ordered}

EnumerationUsages of this EnumerationDefinitionthat have distinct, fixed values. Each enumeratedValue
specifies one of the allowed instances of the EnumerationDefinition.

isVariation : Boolean {redefines isVariation}

An EnumerationDefinition is considered semantically to be a variation whose allowed variants are its
enumerationValues.

Operations

None.

Constraints

validateEnumerationDefinitionIsVariation

An EnumerationDefinition must be a variation.

isVariation

8.3.8.3 EnumerationUsage

Description

An EnumerationUsage is an AttributeUsage whose attributeDefinition is an
EnumerationDefinition.

General Classes

AttributeUsage

Attributes

/enumerationDefinition : EnumerationDefinition {redefines attributeDefinition}

The single EnumerationDefinition that is the type of this EnumerationUsage.

Operations

None.

Constraints

None.

8.3.9 Occurrences Abstract Syntax

264 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.9.1 Overview

+effectiveName() : String [0..1]{redefines effectiveName}

+isSufficient : Boolean = true{redefines isSufficient}

LifeClass

+portionKind : PortionKind [0..1]
+isIndividual : Boolean = false

OccurrenceUsage

Usage

+isIndividual : Boolean = false

OccurrenceDefinition
snapshot
timeslice

PortionKind
«enumeration»

Definition

Class

+/occurrenceOwningDefinition

{subsets owningDefinition}
0..1

{subsets ownedUsage, ordered}

+/ownedOccurrence

0..*

{subsets definedUsage}

+/definedOccurrence

0..*

+/occurrenceDefinition

{redefines
definition, ordered}

0..*

{subsets occurrenceDefinition}

+/individualDefinition

0..1

+/individualUsage

0..*

{subsets ownedMember}

+/lifeClass

0..1

{subsets
owningNamespace}

+/individualDefinition

0..1

{subsets nestedUsage, ordered}
+/nestedOccurrence 0..*

+/occurrenceOwningUsage
{subsets owningUsage}

0..1

Figure 12. Occurrence Definition and Usage

+/isReference : Boolean = true{redefines isReference}

EventOccurrenceUsage

OccurrenceUsage
+/eventOccurrence

1

+/referencingOccurrence

0..*

Figure 13. Event Occurrences

8.3.9.2 EventOccurrenceUsage

Description

An EventOccurrenceUsage is an OccurrenceUsage that represents another OccurrenceUsage occurring as a
suboccurrence of the containing occurrence of the EventOccurrenceUsage. Unless it is the
EventOccurrenceUsage itself, the referenced OccurrenceUsage is related to the EventOccurrenceUsage by
a ReferenceSubsetting Relationship.

If the EventOccurrenceUsage is owned by an OccurrenceDefinition or OccurrenceUsage, then it also
subsets the timeEnclosedOccurrences property of the Class Occurrence from the Kernel Semantic Library
model Occurrences.

General Classes

OccurrenceUsage

Attributes

/eventOccurrence : OccurrenceUsage

OMG Systems Modeling Language (SysML) v2.0, Beta 1 265

The OccurrenceUsage referenced as an event by this EventOccurrenceUsage. It is the referenceFeature of
the ownedReferenceSubsetting for the EventOccurrenceUsage, if there is one, and, otherwise, the
EventOccurrenceUsage itself.

/isReference : Boolean {redefines isReference}

Always true for an EventOccurrenceUsage.

Operations

None.

Constraints

checkEventOccurrenceUsageSpecialization

If an EventOccurrenceUsage has an owningType that is an OccurrenceDefinition or OccurrenceUsage,
then it must directly or indirectly specialize the Feature
Occurrences::Occurrence::timeEnclosedOccurrences.

owningType <> null and
(owningType.oclIsKindOf(OccurrenceDefinition) or
owningType.oclIsKindOf(OccurrenceUsage)) implies

specializesFromLibrary('Occurrences::Occurrence::timeEnclosedOccurrences')

deriveEventOccurrenceUsageEventOccurrence

If an EventOccurrenceUsage has no ownedReferenceSubsetting, then its eventOccurrence is the
EventOccurrenceUsage itself. Otherwise, the eventOccurrence is the referencedFeature of the
ownedReferenceSubsetting (which must be an OccurrenceUsage).

eventOccurrence =
if ownedReferenceSubsetting = null then self
else if ownedReferenceSubsetting.referencedFeature.oclIsKindOf(OccurrenceUsage) then

ownedReferenceSubsetting.referencedFeature.oclAsType(OccurrenceUsage)
else null
endif endif

validateEventOccurrenceUsageIsReference

An EventOccurrenceUsage must be referential.

isReference

validateEventOccurrenceUsageReference

If an EventOccurrenceUsage has an ownedReferenceSubsetting, then its referencedFeature must be an
OccurrenceUsage.

ownedReferenceSubsetting <> null implies
ownedReferenceSubsetting.referencedFeature.oclIsKindOf(OccurrenceUsage)

8.3.9.3 LifeClass

Description

266 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A LifeClass is a Class that specializes both the Class Occurrences::Life from the Kernel Semantic Library
and a single OccurrenceDefinition, and has a multiplicity of 0..1. This constrains the
OccurrenceDefinition being specialized to have at most one instance that is a complete Life.

General Classes

Class

Attributes

isSufficient : Boolean {redefines isSufficient}

Always true for a LifeClass.

Operations

effectiveName() : String [0..1] {redefines effectiveName}

The name of a LifeClass is Life.

body: "Life"

Constraints

checkLifeClassLifeSpecialization

A LifeClass must specialize the Class Occurrences::Life from the Kernel Semantic Model Library.

specializesFromLibrary('Occurrences::Life')

checkLifeClassMultiplicitySpecialization

The multiplicity of a LifeClass is zeroOrOne.

multiplicity <> null and
multiplicity.specializesFromLibrary('Base::zeroOrOne')

checkLifeClassOccurrenceSpecialization

A LifeClass must specialize its individualDefinition.

specializes(individualDefinition)

validateLifeClassIsSufficient

A LifeClass always has isSufficient = true.

isSufficient

8.3.9.4 OccurrenceDefinition

Description

An OccurrenceDefinition is a Definition of a Class of individuals that have an independent life over time
and potentially an extent over space. This includes both structural things and behaviors that act on such structures.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 267

If isIndividual is true, then the OccurrenceDefinition is constrained to represent an individual thing. The
instances of such an OccurrenceDefinition include all spatial and temporal portions of the individual being
represented, but only one of these can be the complete Life of the individual. All other instances must be portions
of the "maximal portion" that is single Life instance, capturing the conception that all of the instances represent one
individual with a single "identity".

An OccurrenceDefinition must specialize, directly or indirectly, the base Class Occurrence from the Kernel
Semantic Library.

General Classes

Class
Definition

Attributes

isIndividual : Boolean

Whether this OccurrenceDefinition is constrained to represent single individual.

/lifeClass : LifeClass [0..1] {subsets ownedMember}

If isIndividual is true, a LifeClass that specializes this OccurrenceDefinition, restricting it to represent an
individual.

Operations

None.

Constraints

deriveOccurrenceDefinitionLifeClass

The lifeClass of an OccurrenceDefinition is its single ownedMember that is a LifeClass (if any).

lifeClass =
let lifeClasses: OrderedSet(LifeClass) =

ownedMember->selectByKind(LifeClass) in
if lifeClasses->isEmpty() then null
else lifeClasses->first()
endif

validateOccurrenceDefinitionLifeClass

If an OccurrenceDefinition has isIndividual = true, then it has exactly one ownedMember that is a
LifeClass. Otherwise it has none.

let n : Integer = ownedMember->selectByKind(LifeClass) in
if isIndividual then n = 1 else n = 0 endif

8.3.9.5 OccurrenceUsage

Description

268 OMG Systems Modeling Language (SysML) v2.0 Beta 1

An OccurrenceUsage is a Usage whose types are all Classes. Nominally, if a type is an
OccurrenceDefinition, an OccurrenceUsage is a Usage of that OccurrenceDefinition within a system.
However, other types of Kernel Classes are also allowed, to permit use of Classes from the Kernel Model
Libraries.

General Classes

Usage

Attributes

/individualDefinition : OccurrenceDefinition [0..1] {subsets occurrenceDefinition}

The at most one occurrenceDefinition that has isIndividual = true.

isIndividual : Boolean

Whether this OccurrenceUsage represents the usage of the specific individual (or portion of it) represented by its
individualDefinition.

/occurrenceDefinition : Class [0..*] {redefines definition, ordered}

The Classes that are the types of this OccurrenceUsage. Nominally, these are OccurrenceDefinitions, but
other kinds of kernel Classes are also allowed, to permit use of Classes from the Kernel Model Libraries.

portionKind : PortionKind [0..1]

The kind of (temporal) portion of the life of the occurrenceDefinition represented by this OccurrenceUsage,
if it is so restricted.

Operations

None.

Constraints

checkOccurrenceUsageSpecialization

An OccurrenceUsage must directly or indirectly specialize Occurrences::occurrences from the Kernel
Semantic Library.

specializesFromLibrary('Occurrences::occurrences')

checkOccurrenceUsageSuboccurrenceSpecialization

A composite OccurrenceUsage, whose ownedType is a Class, another OccurrenceUsage, or any kind of
Feature typed by a Class, must directly or indirectly specialize
Occurrences::Occurrence::suboccurrences.

isComposite and
owningType <> null and
(owningType.oclIsKindOf(Class) or
owningType.oclIsKindOf(OccurrenceUsage) or
owningType.oclIsKindOf(Feature) and

owningType.oclAsType(Feature).type->

OMG Systems Modeling Language (SysML) v2.0, Beta 1 269

exists(oclIsKind(Class))) implies
specializesFromLibrary('Occurrences::Occurrence::suboccurrences')

checkOccurrenceUsageTypeFeaturing

If the portionKind of an OccurrenceUsage is not empty, then, for each occurrenceDefinition of the
OccurrenceUsage, there must be a featuringType of the OccurrenceUsage which either is the
occurrenceDefinition or directly or indirectly specializes it.

portionKind <> null implies
occurrenceDefinition->forAll(occ |

featuringType->exists(specializes(occ)))

deriveOccurrenceUsageIndividualDefinition

The individualDefinition of an OccurrenceUsage is the occurrenceDefinition that is an
OccurrenceDefinition with isIndividual = true, if any.

individualDefinition =
let individualDefinitions : OrderedSet(OccurrenceDefinition) =

occurrenceDefinition->
selectByKind(OccurrenceDefinition)->
select(isIndividual) in

if individualDefinitions->isEmpty() then null
else individualDefinitions->first() endif

validateOccurrenceUsageIndividualDefinition

An OccurrenceUsage must have at most one occurrenceDefinition with isIndividual = true.

occurrenceDefinition->
selectByKind(OccurrenceDefinition)->
select(isIndividual).size() <= 1

validateOccurrenceUsageIndividualUsage

If an OccurrenceUsage has isIndividual = true, then it must have an individualDefinition.

isIndividual implies individualDefinition <> null

8.3.9.6 PortionKind

Description

PortionKind is an enumeration of the specific kinds of Occurrence portions that can be represented by an
OccurrenceUsage.

General Classes

None.

Literal Values

snapshot

A snapshot of an Occurrence (a time slice with zero duration).

270 OMG Systems Modeling Language (SysML) v2.0 Beta 1

timeslice

A time slice of an Occurrence (a portion over time).

8.3.10 Items Abstract Syntax
8.3.10.1 Overview

OccurrenceDefinition OccurrenceUsage

Structure

ItemDefinition ItemUsage

Definition Usage

{subsets definedOccurrence}
+/definedItem 0..*

{subsets occurrenceDefinition,
ordered}

+/itemDefinition

0..*

{subsets
occurrenceOwningDefinition}

+/itemOwningDefinition

0..1

{subsets ownedOccurrence,
ordered}

+/ownedItem

0..*

{subsets
occurrenceOwningUsage}

+/itemOwningUsage

0..1

{subsets nestedOccurrence, ordered}

+/nestedItem

0..*

Figure 14. Item Definition and Usage

8.3.10.2 ItemDefinition

Description

An ItemDefinition is an OccurrenceDefinition of the Structure of things that may themselves be systems
or parts of systems, but may also be things that are acted on by a system or parts of a system, but which do not
necessarily perform actions themselves. This includes items that can be exchanged between parts of a system, such
as water or electrical signals.

General Classes

OccurrenceDefinition
Structure

Attributes

None.

Operations

None.

Constraints

checkItemDefinitionSpecialization

OMG Systems Modeling Language (SysML) v2.0, Beta 1 271

An ItemDefinition must directly or indirectly specialize the Systems Library Model ItemDefinition
Items::Item.

specializesFromLibrary('Items::Item')

8.3.10.3 ItemUsage

Description

An ItemUsage is a ItemUsage whose definition is a Structure. Nominally, if the definition is an
ItemDefinition, an ItemUsage is a ItemUsage of that ItemDefinition within a system. However, other
kinds of Kernel Structures are also allowed, to permit use of Structures from the Kernel Model Libraries.

General Classes

OccurrenceUsage

Attributes

/itemDefinition : Structure [0..*] {subsets occurrenceDefinition, ordered}

The Structures that are the definitions of this ItemUsage. Nominally, these are ItemDefinitions, but other kinds
of Kernel Structures are also allowed, to permit use of Structures from the Kernel Library.

Operations

None.

Constraints

checkItemUsageSpecialization

An ItemUsage must directly or indirectly specialize the Systems Model Library ItemUsage items.

specializesFromLibrary('Items::items')

checkItemUsageSubitemSpecialization

isComposite and owningType <> null and
(owningType.oclIsKindOf(ItemDefinition) or
owningType.oclIsKindOf(ItemUsage)) implies

specializesFromLibrary('Items::Item::subitem')

deriveItemUsageItemDefinition

The itemDefinitions of an ItemUsage are those occurrenceDefinitions that are ItemDefinitions.

itemDefinition = occurrenceDefinition->selectByKind(ItemDefinition)

8.3.11 Parts Abstract Syntax

272 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.11.1 Overview

OccurrenceDefinition OccurrenceUsage

PartUsage

Definition

PartDefinition

ItemUsage

Usage

ItemDefinition

{subsets itemOwningDefinition}

+/partOwningDefinition

0..1

{subsets ownedItem, ordered}

+/ownedPart

0..*

{subsets itemDefinition,
ordered}

+/partDefinition

0..*
{subsets definedItem}

+/definedPart

0..*
{subsets nestedItem,
ordered}

+/nestedPart

0..*

{subsets itemOwningUsage}

+/partOwningUsage

0..1

Figure 15. Part Definition and Usage

8.3.11.2 PartDefinition

Description

A PartDefinition is an ItemDefinition of a Class of systems or parts of systems. Note that all parts may be
considered items for certain purposes, but not all items are parts that can perform actions within a system.

General Classes

ItemDefinition

Attributes

None.

Operations

None.

Constraints

checkPartDefinitionSpecialization

A PartDefinition must directly or indirectly specialize the base PartDefinition Parts::Part from the
Systems Model Library.

specializesFromLibrary('Parts::Part')

8.3.11.3 PartUsage

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 273

A PartUsage is a usage of a PartDefinition to represent a system or a part of a system. At least one of the
itemDefinitions of the PartUsage must be a PartDefinition.

A PartUsage must subset, directly or indirectly, the base PartUsage parts from the Systems Model Library.

General Classes

ItemUsage

Attributes

/partDefinition : PartDefinition [0..*] {subsets itemDefinition, ordered}

The itemDefinitions of this PartUsage that are PartDefinitions.

Operations

None.

Constraints

checkPartUsageActorSpecialization

If a PartUsage is owned via an ActorMembership, then it must directly or indirectly specialize either
Requirements::RequirementCheck::actors (if its owningType is a RequirementDefinition or
RequirementUsage or Cases::Case::actors (otherwise).

owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf(ActorMembership) implies

if owningType.oclIsKindOf(RequirementDefinition) or
owningType.oclIsKindOf(RequirementUsage)

then specializesFromLibrary('Requirements::RequirementCheck::actors')
else specializesFromLibrary('Cases::Case::actors')

checkPartUsageSpecialization

A PartUsage must directly or indirectly specialize the PartUsage Parts::parts from the Systems Model
Library.

specializesFromLibrary('Parts::parts')

checkPartUsageStakeholderSpecialization

If a PartUsage is owned via a StakeholderMembership, then it must directly or indirectly specialize either
Requirements::RequirementCheck::stakeholders.

owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf(StakeholderMembership) implies

specializesFromLibrary('Requirements::RequirementCheck::stakeholders')

checkPartUsageSubpartSpecialization

A composite PartUsage whose owningType is a ItemDefinition or ItemUsage must directly or indirectly
specialize the PartUsage Items::Item::subparts from the Systems Model Library.

274 OMG Systems Modeling Language (SysML) v2.0 Beta 1

isComposite and owningType <> null and
(owningType.oclIsKindOf(ItemDefinition) or
owningType.oclIsKindOf(ItemUsage)) implies

specializesFromLibrary('Items::Item::subparts')

derivePartUsagePartDefinition

The partDefinitions of an PartUsage are those itemDefinitions that are PartDefinitions.

itemDefinition->selectByKind(PartDefinition)

validatePartUsagePartDefinition

At least one of the itemDefinitions of a PartUsage must be a PartDefinition.

partDefinition->notEmpty()

8.3.12 Ports Abstract Syntax
8.3.12.1 Overview

OccurrenceDefinition OccurrenceUsage

PortUsagePortDefinition

Structure

Definition Usage

{subsets owningDefinition}

+/portOwningDefinition

0..1

{subsets ownedUsage, ordered}

+/ownedPort

0..*

{redefines occurrenceDefinition,
ordered}

+/portDefinition

0..*
{subsets definedOccurrence}

+/definedPort

0..*

{redefines owningUsage}

+/portOwningUsage

0..1

{subsets nestedUsage,
ordered}

+/nestedPort

0..*

Figure 16. Port Definition and Usage

OMG Systems Modeling Language (SysML) v2.0, Beta 1 275

+effectiveName() : String [0..1]{redefines effectiveName}

ConjugatedPortDefinition

PortDefinition

ConjugatedPortTyping PortConjugation

FeatureTyping Conjugation

{subsets conjugation}
+portConjugation 0..1

{redefines originalType}
+originalPortDefinition

1

{subsets targetRelationship}
+/conjugatedPortTyping0..*

+/portDefinition

1

{redefines owningNamespace}
+/originalPortDefinition1

+/conjugatedPortDefinition
{subsets ownedMember}

0..1
{redefines ownedConjugator}

+/ownedPortConjugator 1

+/conjugatedPortDefinition

{redefines owningType}
1

+typingByConjugatedPort
{subsets typingByType}
0..*

+conjugatedPortDefinition

{redefines type}
1

Figure 17. Port Conjugation

8.3.12.2 ConjugatedPortDefinition

Description

A ConjugatedPortDefinition is a PortDefinition that is a PortDefinition of its original
PortDefinition. That is, a ConjugatedPortDefinition inherits all the features of the original
PortDefinition, but input flows of the original PortDefinition become outputs on the
ConjugatedPortDefinition and output flows of the original PortDefinition become inputs on the
ConjugatedPortDefinition. Every PortDefinition (that is not itself a ConjugatedPortDefinition) has
exactly one corresponding ConjugatedPortDefinition, whose effective name is the name of the
originalPortDefinition, with the character ~ prepended.

General Classes

PortDefinition

Attributes

/originalPortDefinition : PortDefinition {redefines owningNamespace}

The original PortDefinition for this ConjugatedPortDefinition, which is the owningNamespace of the
ConjugatedPortDefinition.

/ownedPortConjugator : PortConjugation {redefines ownedConjugator}

The PortConjugation that is the ownedConjugator of this ConjugatedPortDefinition, linking it to its
originalPortDefinition.

Operations

effectiveName() : String [0..1] {redefines effectiveName}

If the name of the originalPortDefinition is non-empty, then return that with the character ~ prepended.

body: let originalName : String = originalPortDefinition.name in
if originalName = null then null

276 OMG Systems Modeling Language (SysML) v2.0 Beta 1

else '~' + originalName
endif

Constraints

validateConjugatedPortDefinitionConjugatedPortDefinitionIsEmpty

A ConjugatedPortDefinition must not itself have a conjugatedPortDefinition.

conjugatedPortDefinition = null

validateConjugatedPortDefinitionOriginalPortDefinition

The originalPortDefinition of the ownedPortConjugator of a ConjugatedPortDefinition must be the
originalPortDefinition of the ConjugatedPortDefinition.

ownedPortConjugator.originalPortDefinition = originalPortDefinition

8.3.12.3 ConjugatedPortTyping

Description

A ConjugatedPortTyping is a FeatureTyping whose type is a ConjugatedPortDefinition. (This
relationship is intended to be an abstract-syntax marker for a special surface notation for conjugated typing of ports.)

General Classes

FeatureTyping

Attributes

conjugatedPortDefinition : ConjugatedPortDefinition {redefines type}

The type of this ConjugatedPortTyping considered as a FeatureTyping, which must be a
ConjugatedPortDefinition.

/portDefinition : PortDefinition

The originalPortDefinition of the conjugatedPortDefinition of this ConjugatedPortTyping.

Operations

None.

Constraints

deriveConjugatedPortTypingPortDefinition

The portDefinition of a ConjugatedPortTyping is the originalPortDefinition of the
conjugatedPortDefinition of the ConjugatedPortTyping.

portDefinition = conjugatedPortDefinition.originalPortDefinition

8.3.12.4 PortConjugation

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 277

A PortConjugation is a Conjugation Relationship between a PortDefinition and its corresponding
ConjugatedPortDefinition. As a result of this Relationship, the ConjugatedPortDefinition inherits all
the features of the original PortDefinition, but input flows of the original PortDefinition become
outputs on the ConjugatedPortDefinition and output flows of the original PortDefinition become inputs
on the ConjugatedPortDefinition.

General Classes

Conjugation

Attributes

/conjugatedPortDefinition : ConjugatedPortDefinition {redefines owningType}

The ConjugatedPortDefinition that is conjugate to the originalPortDefinition.

originalPortDefinition : PortDefinition {redefines originalType}

The PortDefinition being conjugated.

Operations

None.

Constraints

None.

8.3.12.5 PortDefinition

Description

A PortDefinition defines a point at which external entities can connect to and interact with a system or part of a
system. Any ownedUsages of a PortDefinition, other than PortUsages, must not be composite.

General Classes

OccurrenceDefinition
Structure

Attributes

/conjugatedPortDefinition : ConjugatedPortDefinition [0..1] {subsets ownedMember}

The that is conjugate to this PortDefinition.

Operations

None.

Constraints

checkPortDefinitionSpecialization

278 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A PortDefinition must directly or indirectly specialize the PortDefinition Ports::Port from the Systems
Model Library.

specializesFromLibrary('Ports::Port')

derivePortDefinitionConjugatedPortDefinition

The conjugatedPortDefinition of a PortDefinition is the ownedMember that is a
ConjugatedPortDefinition.

conjugatedPortDefinition =
let conjugatedPortDefinitions : OrderedSet(ConjugatedPortDefinition) =

ownedMember->selectByKind(ConjugatedPortDefinition) in
if conjugatedPortDefinitions->isEmpty() then null
else conjugatedPortDefinitions->first()
endif

validatePortDefinitionConjugatedPortDefinition

Unless it is a ConjugatedPortDefinition, a PortDefinition must have exactly one ownedMember that is a
ConjugatedPortDefinition.

not oclIsKindOf(ConjugatedPortDefinition) implies
ownedMember->

selectByKind(ConjugatedPortDefinition)->
size() = 1

validatePortDefinitionOwnedUsagesNotComposite

The ownedUsages of a PortDefinition that are not PortUsages must not be composite.

ownedUsage->
reject(oclIsKindOf(PortUsage))->
forAll(not isComposite)

8.3.12.6 PortUsage

Description

A PortUsage is a usage of a PortDefinition. A PortUsage itself as well as all its nestedUsages must be
referential (non-composite).

General Classes

OccurrenceUsage

Attributes

/portDefinition : PortDefinition [0..*] {redefines occurrenceDefinition, ordered}

The occurrenceDefinitions of this PortUsage, which must all be PortDefinitions.

Operations

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 279

Constraints

checkPortUsageSpecialization

A PortUsage must directly or indirectly specialize the PortUsage Ports::ports from the Systems Model
Library.

specializesFromLibrary('Ports::ports')

checkPortUsageSubportSpecialization

A composite PortUsage with an owningType that is a PortDefinition or PortUsage must directly or
indirectly specialize the PortUsage Ports::Port::subports from the Systems Model Library.

isComposite and owningType <> null and
(owningType.oclIsKindOf(PortDefinition) or
owningType.oclIsKindOf(PortUsage)) implies

specializesFromLibrary('Ports::Port::subports')

validatePortUsageIsReference

Unless a PortUsage has an owningType that is a PortDefinition or a PortUsage, it must be referential (non-
composite).

owningType = null or
not owningType.oclIsKindOf(PortDefinition) and
not owningType.oclIsKindOf(PortUsage) implies

isReference

validatePortUsageNestedUsagesNotComposite

The nestedUsages of a PortUsage that are not themselves PortUsages must not be composite.

nestedUsage->
reject(oclIsKindOf(PortUsage))->
forAll(not isComposite)

8.3.13 Connections Abstract Syntax

280 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.13.1 Overview

BindingConnectorAsUsage

BindingConnector

SuccessionAsUsage

Usage

ConnectorAsUsage

Succession

Connector

Figure 18. Connectors as Usages

OccurrenceDefinition

Definition

ItemDefinition

PartDefinition

ConnectionDefinition

ConnectorAsUsage

OccurrenceUsage

AssociationStructure

Usage

ItemUsage

PartUsage

ConnectionUsage

+/connectionOwningDefinition

{subsets
partOwningDefinition}

0..1

{subsets ownedPart,
ordered}

+/ownedConnection

0..*

{subsets partOwningUsage}

+/connectionOwningUsage

0..1

{subsets nestedPart,
ordered}

+/nestedConnection

0..*

{subsets typedConnector,
ordered}

+/definedConnection

0..*

{subsets itemDefinition,
redefines association,
ordered}

+/connectionDefinition

0..*

{redefines associationWithEnd}

+/connectionDefinitionWithEnd

0..*

{redefines associationEnd,
ordered}

+/connectionEnd

0..*

Figure 19. Connection Definition and Usage

OMG Systems Modeling Language (SysML) v2.0, Beta 1 281

SuccessionFlowConnectionUsage

FlowConnectionDefinition FlowConnectionUsage

ConnectionDefinition

OccurrenceDefinition

ItemDefinition

SuccessionItemFlow

ConnectionUsage

Usage

OccurrenceUsage

ActionDefinition ActionUsage

PartDefinition

Interaction

PartUsage

ItemUsage

ItemFlow

Definition

{redefines definedConnection}

+/definedFlowConnection

0..*
{redefines actionDefinition,
redefines connectionDefinition,
redefines interaction, ordered}

+/flowConnectionDefinition

0..*

{subsets ownedConnection}

+/ownedFlow

0..*

{subsets connectionOwningDefinition}

+/flowOwningDefinition

0..1

{subsets nestedConnection}

+/nestedFlow

0..*

{subsets
connectionOwningUsage}

+/flowOwningUsage

0..1

Figure 20. Flow Connections

8.3.13.2 BindingConnectorAsUsage

Description

A BindingConnectorAsUsage is both a BindingConnector and a ConnectorAsUsage.

General Classes

BindingConnector
ConnectorAsUsage

Attributes

None.

Operations

None.

Constraints

None.

8.3.13.3 ConnectionDefinition

Description

A ConnectionDefinition is a PartDefinition that is also an AssociationStructure. The end Features
of a ConnectionDefinition must be Usages.

General Classes

PartDefinition

282 OMG Systems Modeling Language (SysML) v2.0 Beta 1

AssociationStructure

Attributes

/connectionEnd : Usage [0..*] {redefines associationEnd, ordered}

The Usages that define the things related by the ConnectionDefinition.

Operations

None.

Constraints

checkConnectionDefinitionBinarySpecialization

A binary ConnectionDefinition must directly or indirectly specialize the ConnectionDefinition
Connections::BinaryConnection from the Systems Model Library.

ownedEndFeature->size() = 2 implies
specializesFromLibrary('Connections::BinaryConnections')

checkConnectionDefinitionSpecializations

A ConnectionDefinition must directly or indirectly specialize the ConnectionDefinition
Connections::Connection from the Systems Model Library.

specializesFromLibrary('Connections::Connection')

8.3.13.4 ConnectionUsage

Description

A ConnectionUsage is a ConnectorAsUsage that is also a PartUsage. Nominally, if its type is a
ConnectionDefinition, then a ConnectionUsage is a Usage of that ConnectionDefinition, representing a
connection between parts of a system. However, other kinds of kernel AssociationStructures are also allowed,
to permit use of AssociationStructures from the Kernel Model Libraries.

General Classes

ConnectorAsUsage
PartUsage

Attributes

/connectionDefinition : AssociationStructure [0..*] {subsets itemDefinition, redefines association, ordered}

The AssociationStructures that are the types of this ConnectionUsage. Nominally, these are , but other
kinds of Kernel AssociationStructures are also allowed, to permit use of AssociationStructures from the
Kernel Model Libraries

Operations

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 283

Constraints

checkConnectionUsageBinarySpecialization

A binary ConnectionUsage must directly or indirectly specialize the ConnectionUsage
Connections::binaryConnections from the Systems Model Library.

ownedEndFeature->size() = 2 implies
specializesFromLibrary('Connections::binaryConnections')

checkConnectionUsageSpecialization

A ConnectionUsage must directly or indirectly specialize the ConnectionUsage
Connections::connections from the Systems Model Library.

specializesFromLibrary('Connections::connections')

8.3.13.5 ConnectorAsUsage

Description

A ConnectorAsUsage is both a Connector and a Usage. ConnectorAsUsage cannot itself be instantiated in a
SysML model, but it is the base class for the concrete classes BindingConnectorAsUsage, SuccessionAsUsage
and ConnectionUsage.

General Classes

Usage
Connector

Attributes

None.

Operations

None.

Constraints

None.

8.3.13.6 FlowConnectionDefinition

Description

A FlowConnectionDefinition is a ConnectionDefinition and ActionDefinition that is also an
Interaction representing flows between Usages.

General Classes

ActionDefinition
ConnectionDefinition
Interaction

284 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Attributes

None.

Operations

None.

Constraints

checkFlowConnectionDefinitionSpecialization

A FlowConnectionDefinition must directly or indirectly specialize the base FlowConnectionDefinition
MessageConnectionDefinition from the Systems Model Library.

specializesFromLibrary('Connections::MessageConnection')

8.3.13.7 FlowConnectionUsage

Description

A FlowConnectionUsage is a ConnectionUsage that is also an ItemFlow.

General Classes

ConnectionUsage
ItemFlow
ActionUsage

Attributes

/flowConnectionDefinition : Interaction [0..*] {redefines actionDefinition, connectionDefinition, interaction,
ordered}

The Interactions that are the types of this FlowConnectionUsage. Nominally, these are
FlowConnectionDefinitions, but other kinds of Kernel Interactions are also allowed, to permit use of
Interactions from the Kernel Model Libraries.

Operations

None.

Constraints

checkFlowConnectionUsageSpecialization

If a FlowConnectionUsage has no ownedEndFeatures, then it must directly or indirectly specialize the base
FlowConnectionUsage Connections::messageConnections from the Systems Library model. Otherwise, it
must directly or indirectly specialize the FlowConnectionUsage Connections::flowConnections.

if ownedEndFeatures->isEmpty() then
specializesFromLibrary('Connections::messageConnections')

else
specializesFromLibrary('Connections::flowConnections')

endif

OMG Systems Modeling Language (SysML) v2.0, Beta 1 285

8.3.13.8 SuccessionAsUsage

Description

A SuccessionAsUsage is both a ConnectorAsUsage and a Succession.

General Classes

Succession
ConnectorAsUsage

Attributes

None.

Operations

None.

Constraints

None.

8.3.13.9 SuccessionFlowConnectionUsage

Description

A SuccessionFlowConnectionUsage is a FlowConnectionUsage that is also a SuccessionItemFlow.

General Classes

SuccessionItemFlow
FlowConnectionUsage

Attributes

None.

Operations

None.

Constraints

checkSuccessionFlowConnectionUsageSpecialization

A SuccessionFlowConnectionUsage must directly or indirectly specialize the base FlowConnectionUsage
Connections::successionFlowConnections from the Systems Library model.

specializesFromLibrary('Connections::successionFlowConnections')

8.3.14 Interfaces Abstract Syntax

286 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.14.1 Overview

InterfaceUsage

Usage

OccurrenceDefinition

Definition

ItemDefinition

PartDefinition

InterfaceDefinition

ConnectionDefinition

OccurrenceUsage

PartUsage

ItemUsage

ConnectionUsage

PortUsage

{redefines connectionEnd,
ordered}

+/interfaceEnd

0..*
{subsets connectionDefinitionWithEnd}

+/interfaceDefinitionWithEnd

0..*

{redefines connectionDefinition}

+/interfaceDefinition

0..*
{subsets definedConnection}

+/definedInterface

0..*

{subsets ownedConnection, ordered}

+/ownedInterface

0..*

{subsets
connectionOwningDefinition}

+/interfaceOwningDefinition

0..1

{subsets nestedConnection,
ordered}

+/nestedInterface 0..*

{subsets
connectionOwningUsage}

+/interfaceOwningUsage 0..1

Figure 21. Interface Definition and Usage

8.3.14.2 InterfaceDefinition

Description

An InterfaceDefinition is a ConnectionDefinition all of whose ends are PortUsages, defining an
interface between elements that interact through such ports.

General Classes

ConnectionDefinition

Attributes

/interfaceEnd : PortUsage [0..*] {redefines connectionEnd, ordered}

The PortUsages that are the connectionEnds of this InterfaceDefinition.

Operations

None.

Constraints

OMG Systems Modeling Language (SysML) v2.0, Beta 1 287

checkInterfaceDefinitionBinarySpecialization

A binary InterfaceDefinition must directly or indirectly specialize the InterfaceDefinition
Interfaces::BinaryInterface from the Systems Model Library.

ownedEndFeature->size() = 2 implies
specializesFromLibrary('Interfaces::BinaryInterface')

checkInterfaceDefinitionSpecialization

An InterfaceDefinition must directly or indirectly specialize the InterfaceDefinition
Interfaces::Interface from the Systems Model Library.

specializesFromLibrary('Interfaces::Interface')

8.3.14.3 InterfaceUsage

Description

An InterfaceUsage is a Usage of an InterfaceDefinition to represent an interface connecting parts of a
system through specific ports.

General Classes

ConnectionUsage

Attributes

/interfaceDefinition : InterfaceDefinition [0..*] {redefines connectionDefinition}

The InterfaceDefinitions that type this InterfaceUsage.

Operations

None.

Constraints

checkInterfaceUsageBinarySpecialization

A binary InterfaceUsage must directly or indirectly specialize the InterfaceUsage
Interfaces::binaryInterfaces from the Systems Model Library.

ownedEndFeature->size() = 2 implies
specializesFromLibrary('Interfaces::binaryInterfaces')

checkInterfaceUsageSpecialization

An InterfaceUsage must directly or indirectly specialize the InterfaceUsage Interfaces::interfaces
from the Systems Model Library.

specializesFromLibrary('Interfaces::interfaces')

8.3.15 Allocations Abstract Syntax

288 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.15.1 Overview

AllocationDefinition AllocationUsage

OccurrenceDefinition

PartDefinition

ItemDefinition

Definition

ConnectionDefinition

OccurrenceUsage

ConnectionUsage

Usage

PartUsage

ItemUsage

{subsets nestedConnection,
ordered}

+/nestedAllocation

0..*

{subsets
connectionOwningUsage}

+/allocationOwningUsage

0..1

{subsets definedConnection}

+/definedAllocation

0..*
{redefines connectionDefinition,
ordered}

+/allocationDefinition

0..*

{subsets usage, ordered}

+/allocation

0..*

+/featuringAllocationDefinition

{subsets featuringDefinition}
0..*

{subsets ownedConnection, ordered}

+/ownedAllocation

0..*

{subsets
connectionOwningDefinition}

+allocationOwningDefinition

0..1

Figure 22. Allocation Definition and Usage

8.3.15.2 AllocationDefinition

Description

An AllocationDefinition is a ConnectionDefinition that specifies that some or all of the responsibility to
realize the intent of the source is allocated to the target instances. Such allocations define mappings across the
various structures and hierarchies of a system model, perhaps as a precursor to more rigorous specifications and
implementations. An AllocationDefinition can itself be refined using nested allocations that give a finer-
grained decomposition of the containing allocation mapping.

General Classes

ConnectionDefinition

Attributes

/allocation : AllocationUsage [0..*] {subsets usage, ordered}

The AllocationUsages that refine the allocation mapping defined by this AllocationDefinition.

Operations

OMG Systems Modeling Language (SysML) v2.0, Beta 1 289

None.

Constraints

checkAllocationDefinitionSpecialization

An AllocationDefinition must directly or indirectly specialize the AllocationDefinition
Allocations::Allocation from the Systems Model Library.

specializesFromLibrary('Allocations::Allocation')

deriveAllocationDefinitionAllocation

The allocations of an AllocationDefinition are all its usages that are AllocationUsages.

allocation = usage->selectAsKind(AllocationUsage)

8.3.15.3 AllocationUsage

Description

An AllocationUsage is a usage of an AllocationDefinition asserting the allocation of the source feature to
the target feature.

General Classes

ConnectionUsage

Attributes

/allocationDefinition : AllocationDefinition [0..*] {redefines connectionDefinition, ordered}

The AllocationDefinitions that are the types of this AllocationUsage.

Operations

None.

Constraints

checkAllocationUsageSpecialization

An AllocationUsage must directly or indirectly specialize the AllocationUsage
Allocations::allocations from the Systems Model Library.

specializesFromLibrary('Allocations::allocations')

8.3.16 Actions Abstract Syntax

290 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.16.1 Overview

+isSubactionUsage() : Boolean
+argument(i : Integer) : Expression [0..1]
+inputParameter(i : Integer) : Feature [0..1]
+inputParameters() : Feature [0..*]

ActionUsage

OccurrenceDefinition OccurrenceUsage

ActionDefinition

Step

UsageDefinition

Behavior

{subsets definedOccurrence,
subsets typedStep}

+/definedAction

0..*

{redefines behavior, redefines
occurrenceDefinition, ordered}

+/actionDefinition

0..*

{subsets
occurrenceOwningDefinition}

+/actionOwningDefinition

0..1

{subsets ownedOccurrence,
ordered}

+/ownedAction

0..*

{subsets featuringBehavior,
subsets featuringDefinition}

+/featuringActionDefinition
0..*

{subsets step, subsets usage,
ordered}

+/action

0..*

{subsets
occurrenceOwningUsage}

+/actionOwningUsage

0..1

{subsets nestedOccurrence,
ordered}

+/nestedAction

0..*

Figure 23. Action Definition and Usage

ControlNode

ActionUsage

ForkNodeJoinNodeDecisionNodeMergeNode

Figure 24. Control Nodes

+namingFeature() : Feature [0..1]{redefines namingFeature}

PerformActionUsage

EventOccurrenceUsage ActionUsage

{redefines eventOccurrence}

+/performedAction

1

{subsets
referencingOccurrence}

+/performingAction

0..*

Figure 25. Performed Actions

OMG Systems Modeling Language (SysML) v2.0, Beta 1 291

+isTriggerAction() : Boolean

AcceptActionUsage

+kind : TriggerKind

TriggerInvocationExpression

InvocationExpression

Expression

SendActionUsage

ReferenceUsage

after
at
when

TriggerKind
«enumeration»

ActionUsage

+/acceptingActionUsage 0..1

+/payloadArgument

0..1

+/acceptActionUsage 0..1

+/receiverArgument

0..1

+/sendingActionUsage

0..1

+/payloadArgument

1

+/owningAcceptActionUsage

{subsets
referenceOwningUsage}

0..1

{subsets nestedReference,
subsets parameter}

+/payloadParameter 1

+/senderActionUsage 0..1

+/senderArgument 0..1 +/receiverArgument0..1

+/sendActionUsage0..1

Figure 26. Send and Accept Actions

AssignmentActionUsage

ActionUsage

Expression

Feature

{subsets namespace}

+/assignment

0..*
{subsets member}

+/referent

1
+/assignmentAction

0..1

+/targetArgument

0..1

A_valueExpression_assigningAction

+/assigningAction 0..1

+/valueExpression 0..1

Figure 27. Assignment Actions

292 OMG Systems Modeling Language (SysML) v2.0 Beta 1

WhileLoopActionUsage

Expression

ForLoopActionUsage

LoopActionUsage

ReferenceUsage

IfActionUsage

ActionUsage

+/forLoopAction

0..1

+/seqArgument

1

+/thenAction

1

+/ifThenAction

0..1

+/loopAction

0..1

+/bodyAction

1

+/untilArgument

0..1

+/untilLoopAction0..1

+/ifAction 0..1

+/ifArgument 1

+/elseAction

0..1

+/ifElseAction 0..1

+/whileArgument

1

+/whileLoopAction 0..1 +/forLoopAction 0..1

+/loopVariable 1

Figure 28. Structured Control Actions

8.3.16.2 AcceptActionUsage

Description

An AcceptActionUsage is an ActionUsage that specifies the acceptance of an incomingTransfer from the
Occurrence given by the result of its receiverArgument Expression. (If no receiverArgument is provided,
the default is the this context of the AcceptActionUsage.) The payload of the accepted Transfer is output on its
payloadParameter. Which Transfers may be accepted is determined by conformance to the typing and
(potentially) binding of the payloadParameter.

General Classes

ActionUsage

Attributes

/payloadArgument : Expression [0..1]

An Expression whose result is bound to the payload parameter of this AcceptActionUsage. If provided,
the AcceptActionUsage will only accept a Transfer with exactly this payload.

/payloadParameter : ReferenceUsage {subsets nestedReference, parameter}

The nestedReference of this AcceptActionUsage that redefines the payload output parameter of the base
AcceptActionUsage AcceptAction from the Systems Model Library.

/receiverArgument : Expression [0..1]

OMG Systems Modeling Language (SysML) v2.0, Beta 1 293

An Expression whose result is bound to the receiver input parameter of this AcceptActionUsage.

Operations

isTriggerAction() : Boolean

Check if this AcceptActionUsage is the triggerAction of a TransitionUsage.

body: owningType <> null and
owningType.oclIsKindOf(TransitionUsage) and
owningType.oclAsType(TransitionUsage).triggerAction->includes(self)

Constraints

checkAcceptActionUsageReceiverBindingConnector

If the payloadArgument of an AcceptActionUsage is a TriggerInvocationExpression, then the
AcceptActionusage must have an ownedFeature that is a BindingConnector between its receiver
parameter and the receiver parameter of the TriggerInvocationExpression.

payloadArgument <> null and
payloadArgument.oclIsKindOf(TriggerInvocationExpression) implies

let invocation : Expression =
payloadArgument.oclAsType(Expression) in

parameter->size() >= 2 and
invocation.parameter->size() >= 2 and
ownedFeature->selectByKind(BindingConnector)->exists(b |

b.relatedFeatures->includes(parameter->at(2)) and
b.relatedFeatures->includes(invocation.parameter->at(2)))

checkAcceptActionUsageSpecialization

An AcceptActionUsage that is not the triggerAction of a TransitionUsage must directly or indirectly
specialize the ActionUsage Actions::acceptActions from the Systems Model Library.

not isTriggerAction() implies
specializesFromLibrary('Actions::acceptActions')

checkAcceptActionUsageSubactionSpecialization

A composite AcceptActionUsage that is a subaction usage, but is not the triggerAction of a
TransitionUsage, must directly or indirectly specialize the ActionUsage
Actions::Action::acceptSubactions from the Systems Model Library.

isSubactionUsage() and not isTriggerAction() implies
specializesFromLibrary('Actions::Action::acceptSubactions')

checkAcceptActionUsageTriggerActionSpecialization

An AcceptActionUsage that is the triggerAction of TransitionUsage must directly or indirectly specialize
the ActionUsage Actions::TransitionAction::accepter from the Systems Model Library.

isTriggerAction() implies
specializesFromLibrary('Actions::TransitionAction::accepter')

deriveAcceptActionUsagePayloadArgument

294 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The payloadArgument of an AcceptUsageAction is its first argument Expression.

payloadArgument = argument(1)

deriveAcceptActionUsagePayloadParameter

The payloadParameter of an AcceptActionUsage is its first parameter.

payloadParameter =
if parameter->isEmpty() then null
else parameter->first() endif

deriveAcceptActionUsageReceiverArgument

The receiverArgument of an AcceptUsageAction is its second argument Expression.

receiverArgument = argument(2)

validateAcceptActionUsageParameters

An AcceptUsageAction must have at least two input parameters, corresponding to its payload and receiver,
respectively (even if they have no FeatureValue). (Note that the payloadParameter is an input as well as an
output.)

inputParameters()->size() >= 2

8.3.16.3 ActionDefinition

Description

An ActionDefinition is a Definition that is also a Behavior that defines an Action performed by a system
or part of a system.

General Classes

OccurrenceDefinition
Behavior

Attributes

/action : ActionUsage [0..*] {subsets step, usage, ordered}

The ActionUsages that are steps in this ActionDefinition, which define the actions that specify the behavior
of the ActionDefinition.

Operations

None.

Constraints

checkActionDefinitionSpecialization

An ActionDefinition must directly or indirectly specialize the ActionDefinition Actions::Action from
the Systems Model Library.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 295

specializesFromLibrary('Actions::Action')

deriveActionDefinitionAction

The actions of a ActionDefinition are those of its usages that are ActionUsages.

action = usage->selectByKind(ActionUsage)

8.3.16.4 ActionUsage

Description

An ActionUsage is a Usage that is also a Step, and, so, is typed by a Behavior. Nominally, if the type is an
ActionDefinition, an ActionUsage is a Usage of that ActionDefinition within a system. However, other
kinds of kernel Behaviors are also allowed, to permit use of Behaviors from the Kernel Model Libraries.

General Classes

OccurrenceUsage
Step

Attributes

/actionDefinition : Behavior [0..*] {redefines behavior, occurrenceDefinition, ordered}

The Behaviors that are the types of this ActionUsage. Nominally, these would be ActionDefinitions, but
other kinds of Kernel Behaviors are also allowed, to permit use of Behaviors from the Kernel Model Libraries.

Operations

argument(i : Integer) : Expression [0..1]

Return the i-th argument Expression of an ActionUsage, defined as the value Expression of the
FeatureValue of the i-th owned input parameter of the ActionUsage. Return null if the ActionUsage has
less than i owned input parameters or the i-th owned input parameter has no FeatureValue.

body: if inputParameter(i) = null then null
else

let featureValue : Sequence(FeatureValue) = inputParameter(i).
ownedMembership->select(oclIsKindOf(FeatureValue)) in

if featureValue->isEmpty() then null
else featureValue->at(1).value
endif

endif

inputParameter(i : Integer) : Feature [0..1]

Return the i-th owned input parameter of the ActionUsage. Return null if the ActionUsage has less than i
owned input parameters.

body: if inputParameters()->size() < i then null
else inputParameters()->at(i)
endif

inputParameters() : Feature [0..*]

296 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Return the owned input parameters of this ActionUsage.

body: input->select(f | f.owner = self)

isSubactionUsage() : Boolean

Check if this ActionUsage is composite and has an owningType that is an ActionDefinition or ActionUsage
but is not the entryAction or exitAction of a StateDefinition or StateUsage. If so, then it represents an
Action that is a subaction of another Action.

body: isComposite and owningType <> null and
(owningType.oclIsKindOf(ActionDefinition) or
owningType.oclIsKindOf(ActionUsage)) and

(owningFeatureMembership.oclIsKindOf(StateSubactionMembership) implies
owningFeatureMembership.oclAsType(StateSubactionMembership).kind =

StateSubactionKind::do)

Constraints

checkActionUsageAnalysisActionSpecialization

An ActionUsage that is an analysisAction of an AnalysisCaseDefinition or and AnalysisCaseUsage
must directly or indirectly specialize the ActionUsage AnalysisCases::AnalysisCase::analysisSteps
from the Systems Model Library.

owningType <> null and
(owningType.oclIsKindOf(AnalysisCaseDefinition) and

owningType.oclAsType(AnalysisCaseDefinition).analysisAction->
includes(self) or

owningType.oclIsKindOf(AnalysisCaseUsage) and
owningType.oclAsType(AnalysisCaseUsage).analysisAction->

includes(self)) implies
specializesFromLibrary('AnalysisCases::AnalysisCase::analysisSteps')

checkActionUsageOwnedActionSpecialization

A composite ActionUsage whose owningType is PartDefinition or PartUsage must directly or indirectly
specialize the ActionUsage Parts::Part::ownedActions from the Systems Model Library.

isComposite and owningType <> null and
(owningType.oclIsKindOf(PartDefinition) or
owningType.oclIsKindOf(PartUsage)) implies

specializesFromLibrary('Parts::Part::ownedActions')

checkActionUsageSpecialization

An ActionUsage must directly or indirectly specialize the ActionUsage Actions::actions from the Systems
Model Library.

specializesFromLibrary('Actions::actions')

checkActionUsageStateActionRedefinition

An ActionUsage that is the entry, do, or exit Action of a StateDefinition or StateUsage must redefine
the entryAction, doAction, or exitAction feature, respectively, of the StateDefinition
States::StateAction from the Systems Model Library.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 297

owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf(StateSubactionMembership) implies

let kind : StateSubactionKind =
owningFeatureMembership.oclAsType(StateSubactionMembership).kind in

if kind = StateSubactionKind::entry then
redefinesFromLibrary('States::StateAction::entryAction')

else if kind = StateSubactionKind::do then
redefinesFromLibrary('States::StateAction::doAction')

else
redefinesFromLibrary('States::StateAction::exitAction')

endif endif

checkActionUsageSubactionSpecialization

A composite ActionUsage that is a subaction usage must directly or indirectly specialize the ActionUsage
Actions::Action::subactions from the Systems Model Library.

isSubactionUsage() implies
specializesFromLibrary('Actions::Action::subactions')

8.3.16.5 AssignmentActionUsage

Description

An AssignmentActionUsage is an ActionUsage that is defined, directly or indirectly, by the
ActionDefinition AssignmentAction from the Systems Model Library. It specifies that the value of the
referent Feature, relative to the target given by the result of the targetArgument Expression, should be set
to the result of the valueExpression.

General Classes

ActionUsage

Attributes

/referent : Feature {subsets member}

The Feature whose value is to be set.

/targetArgument : Expression [0..1]

The Expression whose value is an occurrence in the domain of the referent Feature, for which the value of
the referent will be set to the result of the valueExpression by this AssignmentActionUsage.

/valueExpression : Expression [0..1]

The Expression whose result is to be assigned to the referent Feature.

Operations

None.

Constraints

checkAssignmentActionUsageAccessedFeatureRedefinition

298 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The first ownedFeature of the first ownedFeature of the first parameter of an AssignmentActionUsage
must redefine AssignmentAction::target::startingAt::accessedFeature.

let targetParameter : Feature = inputParameter(1) in
targetParameter <> null and
targetParameter.ownedFeature->notEmpty() and
targetParameter->first().ownedFeature->notEmpty() and
targetParameter->first().ownedFeature->first().

redefines('AssigmentAction::target::startingAt::accessedFeature')

checkAssignmentActionUsageReferentRedefinition

The first ownedFeature of the first ownedFeature of the first parameter of an AssignmentActionUsage
must redefine the referent of the AssignmentActionUsage.

let targetParameter : Feature = inputParameter(1) in
targetParameter <> null and
targetParameter.ownedFeature->notEmpty() and
targetParameter->first().ownedFeature->notEmpty() and
targetParameter->first().ownedFeature->first().redefines(referent)

checkAssignmentActionUsageSpecialization

An AssignmentActionUsage must directly or indirectly specialize the ActionUsage
Actions::assignmentActions from the Systems Model Library.

specializesFromLibrary('Actions::assignmentActions')

checkAssignmentActionUsageStartingAtRedefinition

The first ownedFeature of the first parameter of an AssignmentActionUsage must redefine
AssignmentAction::target::startingAt.

let targetParameter : Feature = inputParameter(1) in
targetParameter <> null and
targetParameter.ownedFeature->notEmpty() and
targetParameter.ownedFeature->first().

redefines('AssignmentAction::target::startingAt')

checkAssignmentActionUsageSubactionSpecialization

A composite AssignmentActionUsage that is a subaction usage must directly or indirectly specialize the
ActionUsage Actions::Action::assignments from the Systems Model Library.

isSubactionUsage() implies
specializesFromLibrary('Actions::Action::assignments')

deriveAssignmentActionUsageReferent

The referent of an AssignmentActionUsage is the first Feature that is the memberElement of a
ownedMembership that is not a FeatureMembership.

referent =
let unownedFeatures : Sequence(Feature) = ownedMembership->

reject(oclIsKindOf(FeatureMembership)).memberElement->
selectByKind(Feature) in

if unownedFeatures->isEmpty() then null

OMG Systems Modeling Language (SysML) v2.0, Beta 1 299

else unownedFeatures->first().oclAsType(Feature)
endif

deriveAssignmentActionUsageValueExpression

The valueExpression of a AssignmentActionUsage is its second argument Expression.

valueExpression = argument(2)

deriveAssignmentUsageTargetArgument

The targetArgument of a AssignmentActionUsage is its first argument Expression.

targetArgument = argument(1)

validateAssignmentActionUsageReferent

An AssignmentActionUsage must have an ownedMembership that is not an OwningMembership and whose
memberElement is a Feature.

ownedMembership->exists(
not oclIsKindOf(OwningMembership) and
memberElement.oclIsKindOf(Feature))

8.3.16.6 ControlNode

Description

A ControlNode is an ActionUsage that does not have any inherent behavior but provides constraints on incoming
and outgoing Successions that are used to control other Actions. A ControlNode must be a composite owned
usage of an ActionDefinition or ActionUsage.

General Classes

ActionUsage

Attributes

None.

Operations

multiplicityHasBounds(mult : Multiplicity, lower : Integer, upper : UnlimitedNatural) : Boolean

Check that the given Multiplicity has lowerBound and upperBound expressions that are model-level
evaluable to the given lower and upper values.

body: mult <> null and
if mult.oclIsKindOf(MultiplicityRange) then

mult.oclAsType(MultiplicityRange).hasBounds(lower, upper)
else

mult.allSuperTypes()->exists(
oclisKindOf(MultiplicityRange) and
oclAsType(MultiplicityRange).hasBounds(lower, upper)

endif

300 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Constraints

checkControlNodeSpecialization

A ControlNode must directly or indirectly specialize the ActionUsage Actions::Action::control from the
Systems Model Library.

specializesFromLibrary('Action::Action::controls')

validateControlNodeIncomingSuccessions

All incoming Successions to a ControlNode must have a target multiplicity of 1..1.

targetConnector->selectByKind(Succession)->
collect(connectorEnd->at(2).multiplicity)->
forAll(targetMult |

multiplicityHasBounds(targetMult, 1, 1))

validateControlNodeOutgoingSuccessions

All outgoing Successions from a ControlNode must have a source multiplicity of 1..1.

sourceConnector->selectByKind(Succession)->
collect(connectorEnd->at(1).multiplicity)->
forAll(sourceMult |

multiplicityHasBounds(sourceMult, 1, 1))

validateControlNodeOwningType

The owningType of a ControlNode must be an ActionDefinition or ActionUsage.

owningType <> null and
(owningType.oclIsKindOf(ActionDefinition) or
owningType.oclIsKindOf(ActionUsage))

8.3.16.7 DecisionNode

Description

A DecisionNode is a ControlNode that makes a selection from its outgoing Successions.

General Classes

ControlNode

Attributes

None.

Operations

None.

Constraints

checkDecisionNodeOutgoingSuccessionSpecialization

OMG Systems Modeling Language (SysML) v2.0, Beta 1 301

All outgoing Successions from a DecisionNode must subset the inherited outgoingHBLink feature of the
DecisionNode.

sourceConnector->selectByKind(Succession)->
forAll(subsetsChain(self,

resolveGlobal('ControlPerformances::MergePerformance::outgoingHBLink')))

checkDecisionNodeSpecialization

A DecisionNode must directly or indirectly specialize the ActionUsage Actions::Action::decisions from
the Systems Model Library.

specializesFromLibrary('Actions::Action::decisions')

validateDecisionNodeIncomingSuccessions

A DecisionNode may have at most one incoming Succession.

targetConnector->selectByKind(Succession)->size() <= 1

validateDecisionNodeOutgoingSuccessions

All outgoing Successions from a DecisionNode must have a target multiplicity of 0..1.

sourceConnector->selectAsKind(Succession)->
collect(connectorEnd->at(2))->
forAll(targetMult |

multiplicityHasBounds(targetMult, 0, 1))

8.3.16.8 ForkNode

Description

A ForkNode is a ControlNode that must be followed by successor Actions as given by all its outgoing
Successions.

General Classes

ControlNode

Attributes

None.

Operations

None.

Constraints

checkForkNodeSpecialization

A ForkNode must directly or indirectly specialize the ActionUsage Actions::Action::forks from the
Systems Model Library.

specializesFromLibrary('Actions::Action::forks')

302 OMG Systems Modeling Language (SysML) v2.0 Beta 1

validateForkNodeIncomingSuccessions

A ForkNode may have at most one incoming Succession.

targetConnector->selectByKind(Succession)->size() <= 1

8.3.16.9 ForLoopActionUsage

Description

A ForLoopActionUsage is a LoopActionUsage that specifies that its bodyAction ActionUsage should be
performed once for each value, in order, from the sequence of values obtained as the result of the seqArgument
Expression, with the loopVariable set to the value for each iteration.

General Classes

LoopActionUsage

Attributes

/loopVariable : ReferenceUsage

The ownedFeature of this ForLoopActionUsage that acts as the loop variable, which is assigned the successive
values of the input sequence on each iteration. It is the ownedFeature that redefines ForLoopAction::var.

/seqArgument : Expression

The Expression whose result provides the sequence of values to which the loopVariable is set for each iterative
performance of the bodyAction. It is the Expression whose result is bound to the seq input parameter of
this ForLoopActionUsage.

Operations

None.

Constraints

checkForLoopActionUsageSpecialization

A ForLoopActionUsage must directly or indirectly specialize the ActionUsage Actions::forLoopActions
from the Systems Model Library.

specializesFromLibrary('Actions::forLoopActions')

checkForLoopActionUsageSubactionSpecialization

A composite ForLoopActionUsage that is a subaction usage must directly or indirectly specialize the
ActionUsage Actions::Action::forLoops from the Systems Model Library.

isSubactionUsage() implies
specializesFromLibrary('Actions::Action::forLoops')

checkForLoopActionUsageVarRedefinition

OMG Systems Modeling Language (SysML) v2.0, Beta 1 303

The loopVariable of a ForLoopActionUsage must redefine the ActionUsage
Actions::ForLoopAction::var.

loopVariable <> null and
loopVariable.redefinesFromLibrary('Actions::ForLoopAction::var')

deriveForLoopActionUsageLoopVariable

The loopVariable of a ForLoopActionUsage is its first ownedFeature, which must be a ReferenceUsage.

loopVariable =
if ownedFeature->isEmpty() or

not ownedFeature->first().oclIsKindOf(ReferenceUsage) then
null

else
ownedFeature->first().oclAsType(ReferenceUsage)

endif

deriveForLoopActionUsageSeqArgument

The seqArgument of a ForLoopActionUsage is its first argument Expression.

seqArgument = argument(1)

validateForLoopActionUsageLoopVariable

The first ownedFeature of a ForLoopActionUsage must be a ReferenceUsage.

ownedFeature->notEmpty() and
ownedFeature->at(1).oclIsKindOf(ReferenceUsage)

validateForLoopActionUsageParameters

A ForLoopActionUsage must have two owned input parameters.

inputParameters()->size() = 2

8.3.16.10 IfActionUsage

Description

An IfActionUsage is an ActionUsage that specifies that the thenAction ActionUsage should be performed if
the result of the ifArgument Expression is true. It may also optionally specify an elseAction ActionUsage
that is performed if the result of the ifArgument is false.

General Classes

ActionUsage

Attributes

/elseAction : ActionUsage [0..1]

The ActionUsage that is to be performed if the result of the ifArgument is false. It is the (optional) third
parameter of the IfActionUsage.

304 OMG Systems Modeling Language (SysML) v2.0 Beta 1

/ifArgument : Expression

The Expression whose result determines whether the thenAction or (optionally) the elseAction is performed.
It is the first parameter of the IfActionUsage.

/thenAction : ActionUsage

The ActionUsage that is to be performed if the result of the ifArgument is true. It is the second parameter of
the IfActionUsage.

Operations

None.

Constraints

checkIfActionUsageSpecialization

A IfActionUsage must directly or indirectly specialize the ActionUsage Actions::ifThenActions from the
Systems Model Library. If it has an elseAction, then it must directly or indirectly specialize
Actions::ifThenElseActions.

if elseAction = null then
specializesFromLibrary('Actions::ifThenActions')

else
specializesFromLibrary('Actions::ifThenElseActions')

endif

checkIfActionUsageSubactionSpecialization

A composite IfActionUsage that is a subaction usage must directly or indirectly specialize the ActionUsage
Actions::Action::ifSubactions from the Systems Model Library.

isSubactionUsage() implies
specializesFromLibrary('Actions::Action::ifSubactions')

deriveIfActionUsageElseAction

The elseAction of an ifActionUsage is its third parameter, if there is one, which must then be an
ActionUsage.

elseAction =
let parameter : Feature = inputParameter(3) in
if parameter <> null and parameter.oclIsKindOf(ActionUsage) then

parameter.oclAsType(ActionUsage)
else

null
endif

deriveIfActionUsageIfArgument

The ifArgument of an ifActionUsage is its first parameter, which must be an Expression.

ifArgument =
let parameter : Feature = inputParameter(1) in
if parameter <> null and parameter.oclIsKindOf(Expression) then

OMG Systems Modeling Language (SysML) v2.0, Beta 1 305

parameter.oclAsType(Expression)
else

null
endif

deriveIfActionUsageThenAction

The thenAction of an ifActionUsage is its second parameter, which must be an ActionUsage.

thenAction =
let parameter : Feature = inputParameter(2) in
if parameter <> null and parameter.oclIsKindOf(ActionUsage) then

parameter.oclAsType(ActionUsage)
else

null
endif

validateIfActionUsageParameters

An IfActionUsage must have at least two owned input parameters.

inputParameters()->size() >= 2

8.3.16.11 JoinNode

Description

A JoinNode is a ControlNode that waits for the completion of all the predecessor Actions given by incoming
Successions.

General Classes

ControlNode

Attributes

None.

Operations

None.

Constraints

checkJoinNodeSpecialization

A JoinNode must directly or indirectly specialize the ActionUsage Actions::Action::joins from the
Systems Model Library.

specializesFromLibrary('Actions::Action::join')

validateJoinNodeOutgoingSuccessions

A JoinNode may have at most one outgoing Succession.

sourceConnector->selectByKind(Succession)->size() <= 1

306 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.16.12 LoopActionUsage

Description

A LoopActionUsage is an ActionUsage that specifies that its bodyAction should be performed repeatedly. Its
subclasses WhileLoopActionUsage and ForLoopActionUsage provide different ways to determine how many
times the bodyAction should be performed.

General Classes

ActionUsage

Attributes

/bodyAction : ActionUsage

The ActionUsage to be performed repeatedly by the LoopActionUsage. It is the second parameter of the
LoopActionUsage.

Operations

None.

Constraints

deriveLoopActionUsageBodyAction

The bodyAction of a LoopActionUsage is its second input parameter, which must be an Action.

bodyAction =
let parameter : Feature = inputParameter(2) in
if parameter <> null and parameter.oclIsKindOf(Action) then

parameter.oclAsType(Action)
else

null
endif

8.3.16.13 MergeNode

Description

A MergeNode is a ControlNode that asserts the merging of its incoming Successions. A MergeNode may have
at most one outgoing Successions.

General Classes

ControlNode

Attributes

None.

Operations

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 307

Constraints

checkMergeNodeIncomingSuccessionSpecialization

All incoming Successions to a MergeNode must subset the inherited incomingHBLink feature of the
MergeNode.

targetConnector->selectByKind(Succession)->
forAll(subsetsChain(self,

resolveGlobal('ControlPerformances::MergePerformance::incomingHBLink')))

checkMergeNodeSpecialization

A MergeNode must directly or indirectly specialize the ActionUsage Actions::Action::merges from the
Systems Model Library.

specializesFromLibrary('Actions::Action::merges')

validateMergeNodeIncomingSuccessions

All incoming Successions to a MergeNode must have a source multiplicity of 0..1.

targetConnector->selectByKind(Succession)->
collect(connectorEnd->at(1))->
forAll(sourceMult |

multiplicityHasBounds(sourceMult, 0, 1))

validateMergeNodeOutgoingSuccessions

A MergeNode may have at most one outgoing Succession.

sourceConnector->selectAsKind(Succession)->size() <= 1

8.3.16.14 PerformActionUsage

Description

A PerformActionUsage is an ActionUsage that represents the performance of an ActionUsage. Unless it is the
PerformActionUsage itself, the ActionUsage to be performed is related to the PerformActionUsage by a
ReferenceSubsetting relationship. A PerformActionUsage is also an EventOccurrenceUsage, with its
performedAction as the eventOccurrence.

General Classes

EventOccurrenceUsage
ActionUsage

Attributes

/performedAction : ActionUsage {redefines eventOccurrence}

The ActionUsage to be performed by this PerformedActionUsage. It is the eventOccurrence of the
PerformActionUsage considered as an EventOccurrenceUsage, which must be an ActionUsage.

Operations

308 OMG Systems Modeling Language (SysML) v2.0 Beta 1

namingFeature() : Feature [0..1] {redefines namingFeature}

The naming Feature of a PerformActionUsage is its performedAction, if this is different than the
PerformActionUsage. If the PerformActionUsage is its own performedAction, then the naming Feature is
the same as the usual default for a Usage.

body: if performedAction <> self then performedAction
else self.oclAsType(Usage).namingFeature()
endif

Constraints

checkPerformActionUsageSpecialization

If a PerformActionUsage has an owningType that is a PartDefinition or PartUsage, then it must directly or
indirectly specialize the ActionUsage Parts::Part::performedActions.

owningType <> null and
(owningType.oclIsKindOf(PartDefinition) or
owningType.oclIsKindOf(PartUsage)) implies

specializesFromLibrary('Parts::Part::performedActions')

validatePerformActionUsageReference

If a PerformActionUsage has an ownedReferenceSubsetting, then its referencedFeature must be a
ActionUsage.

ownedReferenceSubsetting <> null implies
ownedReferenceSubsetting.referencedFeature.oclIsKindOf(ActionUsage)

8.3.16.15 SendActionUsage

Description

A SendActionUsage is an ActionUsage that specifies the sending of a payload given by the result of its
payloadArgument Expression via a MessageTransfer whose source is given by the result of the
senderArgument Expression and whose target is given by the result of the receiverArgument
Expression. If no senderArgument is provided, the default is the this context for the action. If no
receiverArgument is given, then the receiver is to be determined by, e.g., outgoing Connections from the
sender.

General Classes

ActionUsage

Attributes

/payloadArgument : Expression

An Expression whose result is bound to the payload input parameter of this SendActionUsage.

/receiverArgument : Expression [0..1]

An Expression whose result is bound to the receiver input parameter of this SendActionUsage.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 309

/senderArgument : Expression [0..1]

An Expression whose result is bound to the sender input parameter of this SendActionUsage.

Operations

None.

Constraints

checkSendActionUsageSpecialization

A SendActionUsage must directly or indirectly specialize the ActionUsage Actions::sendActions from the
Systems Model Library.

specializesFromLibrary('Actions::sendActions')

checkSendActionUsageSubactionSpecialization

A composite SendActionUsage that is a subaction must directly or indirectly specialize the ActionUsage
Actions::Action::sendSubactions from the Systems Model Library.

isSubactionUsage() implies
specializesFromLibrary('Actions::Action::acceptSubactions')

deriveSendActionUsagePayloadArgument

The payloadArgument of a SendActionUsage is its first argument Expression.

payloadArgument = argument(1)

deriveSendActionUsageReceiverArgument

The receiverArgument of a SendActionUsage is its third argument Expression.

receiverArgument = argument(3)

deriveSendActionUsageSenderArgument

The senderArgument of a SendActionUsage is its second argument Expression.

senderArgument = argument(2)

validateSendActionParameters

A SendActionUsage must have at least three owned input parameters, corresponding to its payload, sender
and receiver, respectively (whether or not they have FeatureValues).

inputParameters()->size() >= 3

8.3.16.16 TriggerInvocationExpression

Description

A TriggerInvocationExpression is an InvocationExpression that invokes one of the trigger Functions
from the Kernel Semantic Library Triggers package, as indicated by its kind.

310 OMG Systems Modeling Language (SysML) v2.0 Beta 1

General Classes

InvocationExpression

Attributes

kind : TriggerKind

Indicates which of the Functions from the Triggers model in the Kernel Semantic Library is to be invoked by
this TriggerInvocationExpression.

Operations

None.

Constraints

checkTriggerInvocationExpressionSpecialization

A TriggerInvocationExpression must directly or indirectly specialize one of the Functions TriggerWhen,
TriggerAt or TriggerAfter, from the Kernel Semantic Library Triggers package, depending on whether its
kind is when, at or after, respectively.

specializesFromLibrary(
if kind = TriggerKind::when then

'Triggers::TriggerWhen'
else if kind = TriggerKind::at then

'Triggers::TriggerAt'
else

'Triggers::TriggerAfter'
endif endif

)

validateTriggerInvocationExpressionAfterArgument

If a TriggerInvocationExpression has kind = after, then it must have an argument Expression with a
result that conforms to the type Quantities::ScalarQuantityValue and a feature that directly or
indirectly redefines Quantities::TensorQuantityValue::mRef and directly or indirectly specializes
ISQBase::DurationUnit.

kind = TriggerKind::after implies
argument->notEmpty() and
argument->at(1).result.specializesFromLibrary('Quantities::ScalarQuantityValue') and
let mRef : Element =

resolveGlobal('Quantities::TensorQuantityValue::mRef').ownedMemberElement in
argument->at(1).result.feature->

select(ownedRedefinition.redefinedFeature->
closure(ownedRedefinition.redefinedFeature)->
includes(mRef))->

exists(specializesFromLibrary('ISQBase::DurationUnit'))

validateTriggerInvocationExpressionAtArgument

If a TriggerInvocationExpression has kind = at, then it must have an argument Expression with a
result that conforms to the type Time::TimeInstantValue.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 311

kind = TriggerKind::at implies
argument->notEmpty() and
argument->at(1).result.specializesFromLibrary('Time::TimeInstantValue')

validateTriggerInvocationExpressionWhenArgument

If a TriggerInvocationExpression has kind = when, then it must have an argument that is a
FeatureReferenceExpression whose referent is an Expression with a result that conforms to the type
ScalarValues::Boolean.

kind = TriggerKind::when implies
argument->notEmpty() and
argument->at(1).oclIsKindOf(FeatureReferenceExpression) and
let referent : Feature =

argument->at(1).oclAsType(FeatureReferenceExpression).referent in
referent.oclIsKindOf(Expression) and
referent.oclAsType(Expression).result.specializesFromLibrary('ScalarValues::Boolean')

8.3.16.17 TriggerKind

Description

TriggerKind enumerates the kinds of triggers that can be represented by a TriggerInvocationExpression.

General Classes

None.

Literal Values

after

Indicates a relative time trigger, corresponding to the TriggerAfter Function from the Triggers model in the
Kernel Semantic Library.

at

Indicates an absolute time trigger, corresponding to the TriggerAt Function from the Triggers model in the
Kernel Semantic Library.

when

Indicates a change trigger, corresponding to the TriggerWhen Function from the Triggers model in the Kernel
Semantic Library.

8.3.16.18 WhileLoopActionUsage

Description

A WhileLoopActionUsage is a LoopActionUsage that specifies that the bodyAction ActionUsage should be
performed repeatedly while the result of the whileArgument Expression is true or until the result of the
untilArgument Expression (if provided) is true. The whileArgument Expression is evaluated before each
(possible) performance of the bodyAction, and the untilArgument Expression is evaluated after each
performance of the bodyAction.

312 OMG Systems Modeling Language (SysML) v2.0 Beta 1

General Classes

LoopActionUsage

Attributes

/untilArgument : Expression [0..1]

The Expression whose result, if false, determines that the bodyAction should continue to be performed. It is the
(optional) third owned parameter of the WhileLoopActionUsage.

/whileArgument : Expression

The Expression whose result, if true, determines that the bodyAction should continue to be performed. It is the
first owned parameter of the WhileLoopActionUsage.

Operations

None.

Constraints

checkWhileLoopActionUsageSpecialization

A WhileLoopActionUsage must directly or indirectly specialize the ActionUsage
Actions::whileLoopActions from the Systems Model Library.

specializesFromLibrary('Actions::whileLoopActions')

checkWhileLoopActionUsageSubactionSpecialization

A composite WhileLoopActionUsage that is a subaction usage must directly or indirectly specialize the
ActionUsage Actions::Action::whileLoops from the Systems Model Library.

isSubactionUsage() implies
specializesFromLibrary('Actions::Action::whileLoops')

deriveWhileLoopActionUsageUntilArgument

The whileArgument of a WhileLoopActionUsage is its third input parameter, which, if it exists, must be an
Expression.

untilArgument =
let parameter : Feature = inputParameter(3) in
if parameter <> null and parameter.oclIsKindOf(Expression) then

parameter.oclAsType(Expression)
else

null
endif

deriveWhileLoopActionUsageWhileArgument

The whileArgument of a WhileLoopActionUsage is its first input parameter, which must be an Expression.

whileArgument =
let parameter : Feature = inputParameter(1) in

OMG Systems Modeling Language (SysML) v2.0, Beta 1 313

if parameter <> null and parameter.oclIsKindOf(Expression) then
parameter.oclAsType(Expression)

else
null

endif

validateWhileLoopActionUsage

A WhileLoopActionUsage must have at least two owned input parameters.

inputParameters()->size() >= 2

8.3.17 States Abstract Syntax
8.3.17.1 Overview

+isParallel : Boolean = false

StateUsage

+isParallel : Boolean = false

StateDefinition

OccurrenceDefinition

ActionDefinition

OccurrenceUsage

Definition

ActionUsage

Usage

Behavior

{subsets actionOwningDefinition}
+/stateOwningDefinition 0..1

{subsets ownedAction,
ordered}

+/ownedState

0..*

{redefines actionDefinition,
ordered}

+/stateDefinition 0..*

{subsets definedAction}

+/definedState

0..*

{redefines
actionOwningUsage}

+/stateOwningUsage

0..1

{subsets nestedAction,
ordered}

+/nestedState

0..*

+/exitAction

0..1

+/exitedStateDefinition

0..*

+/enteredStateDefinition

0..*

+/entryAction

0..1

+/activeStateDefintion

0..*

+/doAction

0..1

{subsets action, ordered}

+/state

0..*
{subsets featuringBehavior}

+/featuringStateDefinition

0..*

+/enteredState

0..*

+/entryAction

0..1
+/doAction

0..1

+/activeState

0..*

+/exitedState

0..*

+/exitAction

0..1

Figure 29. State Definition and Usage

314 OMG Systems Modeling Language (SysML) v2.0 Beta 1

+kind : TransitionFeatureKind

TransitionFeatureMembership

+kind : StateSubactionKind

StateSubactionMembership

effect
guard
trigger

TransitionFeatureKind
«enumeration»

FeatureMembership

exit
do
entry

StateSubactionKind
«enumeration»

ActionUsage Step

{redefines ownedMemberFeature}
+/action 1

{subsets owningFeatureMembership}
+/stateSubactionMembership 0..1

{redefines ownedMemberFeature}
+/transitionFeature 1

{subsets owningFeatureMembership}
+/transitionFeatureMembership 0..1

Figure 30. State Membership

PerformActionUsage

ExhibitStateUsage

StateUsage

{redefines performedAction}

+/exhibitedState

1

{subsets performingAction}

+/exhibitingState

0..*

Figure 31. Exhibited States

OMG Systems Modeling Language (SysML) v2.0, Beta 1 315

TransitionUsage

AcceptActionUsage

Definition

OccurrenceUsage

ActionUsage

Usage

Succession

Expression

+/transitionOwningUsage

{subsets owningUsage}
0..1

{subsets nestedUsage}

+/nestedTransition

0..*

{subsets owningType}

+/triggeredTransition

0..1
{subsets ownedFeature}

+/triggerAction

0..*

{subsets owningType}

+/guardedTransition

0..1

{subsets ownedFeature}

+/guardExpression

0..*

{subsets
owningNamespace}

+/linkedTransition

0..1
{subsets ownedMember}

+/succession

1

+/source

1

+/outgoingTransition
0..*

{subsets ownedUsage}

+/ownedTransition

0..*

+/transitionOwningDefinition
{subsets owningDefinition}
0..1

+/incomingTransition

0..*

+/target

1

{subsets owningType}

+/activeTransition

0..1

{subsets feature}

+/effectAction

0..*

Figure 32. Transition Usage

8.3.17.2 ExhibitStateUsage

Description

An ExhibitStateUsage is a StateUsage that represents the exhibiting of a StateUsage. Unless it is the
StateUsage itself, the StateUsage to be exhibited is related to the ExhibitStateUsage by a
ReferenceSubsetting Relationship. An ExhibitStateUsage is also a PerformActionUsage, with its
exhibitedState as the performedAction.

General Classes

StateUsage
PerformActionUsage

Attributes

/exhibitedState : StateUsage {redefines performedAction}

The StateUsage to be exhibited by the ExhibitStateUsage. It is the performedAction of the
ExhibitStateUsage considered as a PerformActionUsage, which must be a StateUsage.

316 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Operations

None.

Constraints

checkExhibitStateUsageSpecialization

If an ExhibitStateUsage has an owningType that is a PartDefinition or PartUsage, then it must directly or
indirectly specialize the StateUsage Parts::Part::exhibitedStates.

owningType <> null and
(owningType.oclIsKindOf(PartDefinition) or
owningType.oclIsKindOf(PartUsage)) implies

specializesFromLibrary('Parts::Part::exhibitedStates')

validateExhibitStateUsageReference

If an ExhibitStateUsage has an ownedReferenceSubsetting, then its referencedFeature must be a
StateUsage.

ownedReferenceSubsetting <> null implies
ownedReferenceSubsetting.referencedFeature.oclIsKindOf(StateUsage)

8.3.17.3 StateSubactionKind

Description

A StateSubactionKind indicates whether the action of a StateSubactionMembership is an entry, do or exit
action.

General Classes

None.

Literal Values

do

Indicates that the action of a StateSubactionMembership is a doAction.

entry

Indicates that the action of a StateSubactionMembership is an entryAction.

exit

Indicates that the action of a StateSubactionMembership is an exitAction.

8.3.17.4 StateSubactionMembership

Description

A StateSubactionMembership is a FeatureMembership for an entry, do or exit ActionUsage of a
StateDefinition or StateUsage.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 317

General Classes

FeatureMembership

Attributes

/action : ActionUsage {redefines ownedMemberFeature}

The ActionUsage that is the ownedMemberFeature of this StateSubactionMembership.

kind : StateSubactionKind

Whether this StateSubactionMembership is for an entry, do or exit ActionUsage.

Operations

None.

Constraints

validateStateSubactionMembershipOwningType

The owningType of a StateSubactionMembership must be a StateDefinition or a StateUsage.

owningType.oclIsKindOf(StateDefinition) or
owningType.oclIsKindOf(StateUsage)

8.3.17.5 StateDefinition

Description

A StateDefinition is the Definition of the Behavior of a system or part of a system in a certain state
condition.

A StateDefinition may be related to up to three of its ownedFeatures by StateBehaviorMembership
Relationships, all of different kinds, corresponding to the entry, do and exit actions of the StateDefinition.

General Classes

ActionDefinition

Attributes

/doAction : ActionUsage [0..1]

The ActionUsage of this StateDefinition to be performed while in the state defined by the
StateDefinition. It is the owned ActionUsage related to the StateDefinition by a
StateSubactionMembership with kind = do.

/entryAction : ActionUsage [0..1]

The ActionUsage of this StateDefinition to be performed on entry to the state defined by the
StateDefinition. It is the owned ActionUsage related to the StateDefinition by a
StateSubactionMembership with kind = entry.

318 OMG Systems Modeling Language (SysML) v2.0 Beta 1

/exitAction : ActionUsage [0..1]

The ActionUsage of this StateDefinition to be performed on exit to the state defined by the
StateDefinition. It is the owned ActionUsage related to the StateDefinition by a
StateSubactionMembership with kind = exit.

isParallel : Boolean

Whether the ownedStates of this StateDefinition are to all be performed in parallel. If true, none of the
ownedActions (which includes ownedStates) may have any incoming or outgoing Transitions. If false, only
one ownedState may be performed at a time.

/state : StateUsage [0..*] {subsets action, ordered}

The StateUsages, which are actions in the StateDefinition, that specify the discrete states in the behavior
defined by the StateDefinition.

Operations

None.

Constraints

checkStateDefinitionSpecialization

A StateDefinition must directly or indirectly specialize the StateDefinition States::StateAction from
the Systems Model Library.

specializesFromLibrary('States::StateAction')

deriveStateDefinitionDoAction

The doAction of a StateDefinition is the action of the owned StateSubactionMembership with kind =
do.

doAction =
let doMemberships : Sequence(StateSubactionMembership) =

ownedMembership->
selectByKind(StateSubactionMembership)->
select(kind = StateSubactionKind::do) in

if doMemberships->isEmpty() then null
else doMemberships->at(1)
endif

deriveStateDefinitionEntryAction

The entryAction of a StateDefinition is the action of the owned StateSubactionMembership with
kind = entry.

entryAction =
let entryMemberships : Sequence(StateSubactionMembership) =

ownedMembership->
selectByKind(StateSubactionMembership)->
select(kind = StateSubactionKind::entry) in

if entryMemberships->isEmpty() then null

OMG Systems Modeling Language (SysML) v2.0, Beta 1 319

else entryMemberships->at(1)
endif

deriveStateDefinitionExitAction

The exitAction of a StateDefinition is the action of the owned StateSubactionMembership with kind
= exit .

exitAction =
let exitMemberships : Sequence(StateSubactionMembership) =

ownedMembership->
selectByKind(StateSubactionMembership)->
select(kind = StateSubactionKind::exit) in

if exitMemberships->isEmpty() then null
else exitMemberships->at(1)
endif

deriveStateDefinitionState

The states of a StateDefinition are those of its actions that are StateUsages.

state = action->selectByKind(StateUsage)

validateStateDefinitionParallelSubactions

If a StateDefinition is parallel, then its ownedActions (which includes its ownedStates) must not have any
incomingTransitions or outgoingTransitions.

isParallel implies
ownedAction.incomingTransition->isEmpty() and
ownedAction.outgoingTransition->isEmpty()

validateStateDefinitionStateSubactionKind

A StateDefinition must not have more than one owned StateSubactionMembership of each kind.

ownedMembership->
selectByKind(StateSubactionMembership)->
isUnique(kind)

8.3.17.6 StateUsage

Description

A StateUsage is an ActionUsage that is nominally the Usage of a StateDefinition. However, other kinds of
kernel Behaviors are also allowed as types, to permit use of Behaviors

A StateUsage may be related to up to three of its ownedFeatures by StateSubactionMembership
Relationships, all of different kinds, corresponding to the entry, do and exit actions of the StateUsage.

General Classes

ActionUsage

Attributes

320 OMG Systems Modeling Language (SysML) v2.0 Beta 1

/doAction : ActionUsage [0..1]

The ActionUsage of this StateUsage to be performed while in the state defined by the StateDefinition. It is
the owned ActionUsage related to the StateUsage by a StateSubactionMembership with kind = do.

/entryAction : ActionUsage [0..1]

The ActionUsage of this StateUsage to be performed on entry to the state defined by the StateDefinition. It
is the owned ActionUsage related to the StateUsage by a StateSubactionMembership with kind = entry.

/exitAction : ActionUsage [0..1]

The ActionUsage of this StateUsage to be performed on exit to the state defined by the StateDefinition. It is
the owned ActionUsage related to the StateUsage by a StateSubactionMembership with kind = exit.

isParallel : Boolean

Whether the nestedStates of this StateUsage are to all be performed in parallel. If true, none of the
nestedActions (which include nestedStates) may have any incoming or outgoing Transitions. If false, only
one nestedState may be performed at a time.

/stateDefinition : Behavior [0..*] {redefines actionDefinition, ordered}

The Behaviors that are the types of this StateUsage. Nominally, these would be StateDefinitions, but
kernel Behaviors are also allowed, to permit use of Behaviors from the Kernel Model Libraries.

Operations

isSubstateUsage(isParallel : Boolean) : Boolean

Check if this StateUsage is composite and has an owningType that is an StateDefinition or StateUsage
with the given value of isParallel, but is not an entryAction or exitAction. If so, then it represents a
StateAction that is a substate or exclusiveState (for isParallel = false) of another StateAction.

body: owningType <> null and
(owningType.oclIsKindOf(StateDefinition) and

owningType.oclAsType(StateDefinition).isParallel = isParallel or
owningType.oclIsKindOf(StateUsage) and

owningType.oclAsType(StateUsage).isParallel = isParallel) and
not owningFeatureMembership.oclIsKindOf(StateSubactionMembership)

Constraints

checkStateUsageExclusiveStateSpecialization

A StateUsage that is a substate usage with a non-parallel owning StateDefinition or StateUsage must
directly or indirectly specialize the StateUsage States::State::exclusiveStates from the Systems Model
Library.

isSubstateUsage(true) implies
specializesFromLibrary('States::State::substates')

checkStateUsageSpecialization

OMG Systems Modeling Language (SysML) v2.0, Beta 1 321

A StateUsage must directly or indirectly specialize the StateUsage States::stateActions from the Systems
Model Library.

specializesFromLibrary('States::stateActions')

checkStateUsageSubstateSpecialization

A StateUsage that is a substate usage with a owning StateDefinition or StateUsage that is parallel must
directly or indirectly specialize the StateUsage States::State::substates from the Systems Model Library.

isSubstateUsage(false) implies
specializesFromLibrary('States::State::substates')

deriveStateUsageDoAction

The doAction of a StateUsage is the action of the owned StateSubactionMembership with kind = do.

doAction =
let doMemberships : Sequence(StateSubactionMembership) =

ownedMembership->
selectByKind(StateSubactionMembership)->
select(kind = StateSubactionKind::do) in

if doMemberships->isEmpty() then null
else doMemberships->at(1)
endif

deriveStateUsageEntryAction

The entryAction of a StateUsage is the action of the owned StateSubactionMembership with kind =
entry.

entryAction =
let entryMemberships : Sequence(StateSubactionMembership) =

ownedMembership->
selectByKind(StateSubactionMembership)->
select(kind = StateSubactionKind::entry) in

if entryMemberships->isEmpty() then null
else entryMemberships->at(1)
endif

deriveStateUsageExitAction

The exitAction of a StateUsage is the action of the owned StateSubactionMembership with kind =
exit .

exitAction =
let exitMemberships : Sequence(StateSubactionMembership) =

ownedMembership->
selectByKind(StateSubactionMembership)->
select(kind = StateSubactionKind::exit) in

if exitMemberships->isEmpty() then null
else exitMemberships->at(1)
endif

validateStateUsageParallelSubactions

322 OMG Systems Modeling Language (SysML) v2.0 Beta 1

If a StateUsage is parallel, then its nestedActions (which includes nestedStates) must not have any
incomingTransitions or outgoingTransitions.

isParallel implies
nestedAction.incomingTransition->isEmpty() and
nestedAction.outgoingTransition->isEmpty()

validateStateUsageStateSubactionKind

A StateUsage must not have more than one owned StateSubactionMembership of each kind.

ownedMembership->
selectByKind(StateSubactionMembership)->
isUnique(kind)

8.3.17.7 TransitionFeatureKind

Description

A TransitionActionKind indicates whether the transitionFeature of a TransitionFeatureMembership
is a trigger, guard or effect.

General Classes

None.

Literal Values

effect

Indicates that the transitionFeature of a TransitionFeatureMembership is an effectAction.

guard

Indicates that the transitionFeature of a TransitionFeatureMembership is a guardExpression.

trigger

Indicates that the transitionFeature of a TransitionFeatureMembership is a triggerAction.

8.3.17.8 TransitionFeatureMembership

Description

A TransitionFeatureMembership is a FeatureMembership for a trigger, guard or effect of a
TransitionUsage, whose transitionFeature is a AcceptActionUsage, Boolean-valued Expression or
ActionUsage, depending on its kind.

General Classes

FeatureMembership

Attributes

kind : TransitionFeatureKind

OMG Systems Modeling Language (SysML) v2.0, Beta 1 323

Whether this TransitionFeatureMembership is for a trigger, guard or effect.

/transitionFeature : Step {redefines ownedMemberFeature}

The Step that is the ownedMemberFeature of this TransitionFeatureMembership.

Operations

None.

Constraints

validateTransitionFeatureMembershipEffectAction

If the kind of a TransitionUsage is effect, then its transitionFeature must be a kind of ActionUsage.

kind = TransitionFeatureKind::effect implies
transitionFeature.oclIsKindOf(ActionUsage)

validateTransitionFeatureMembershipGuardExpression

If the kind of a TransitionUsage is guard, then its transitionFeature must be a kind of Expression
whose result is a Boolean value.

kind = TransitionFeatureKind::guard implies
transitionFeature.oclIsKindOf(Expression) and
let guard : Expression = transitionFeature.oclIsKindOf(Expression) in
guard.result.specializesFromLibrary('ScalarValues::Boolean') and
guard.result.multiplicity <> null and
guard.result.multiplicity.hasBounds(1,1)

validateTransitionFeatureMembershipOwningType

The owningType of a TransitionFeatureMembership must be a TransitionUsage.

owningType.oclIsKindOf(TransitionUsage)

validateTransitionFeatureMembershipTriggerAction

If the kind of a TransitionUsage is trigger, then its transitionFeature must be a kind of
AcceptActionUsage.

kind = TransitionFeatureKind::trigger implies
transitionFeature.oclIsKindOf(AcceptActionUsage)

8.3.17.9 TransitionUsage

Description

A TransitionUsage is an ActionUsage representing a triggered transition between ActionUsages or
StateUsages. When triggered by a triggerAction, when its guardExpression is true, the
TransitionUsage asserts that its source is exited, then its effectAction (if any) is performed, and then its
target is entered.

324 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A TransitionUsage can be related to some of its ownedFeatures using TransitionFeatureMembership
Relationships, corresponding to the triggerAction, guardExpression and effectAction of the
TransitionUsage.

General Classes

ActionUsage

Attributes

/effectAction : ActionUsage [0..*] {subsets feature}

The ActionUsages that define the effects of this TransitionUsage, which are the ownedFeatures of the
TransitionUsage related to it by TransitionFeatureMemberships with kind = effect, which must all be
ActionUsages.

/guardExpression : Expression [0..*] {subsets ownedFeature}

The Expressions that define the guards of this TransitionUsage, which are the ownedFeatures of the
TransitionUsage related to it by TransitionFeatureMemberships with kind = guard, which must all be
Expressions.

/source : ActionUsage

The source ActionUsage of this TransitionUsage, which becomes the source of the succession for the
TransitionUsage.

/succession : Succession {subsets ownedMember}

The Succession that is the ownedFeature of this TransitionUsage, which, if the TransitionUsage is
triggered, asserts the temporal ordering of the source and target.

/target : ActionUsage

The target ActionUsage of this TransitionUsage, which is the targetFeature of the succession
for the TransitionUsage.

/triggerAction : AcceptActionUsage [0..*] {subsets ownedFeature}

The AcceptActionUsages that define the triggers of this TransitionUsage, which are the ownedFeatures of
the TransitionUsage related to it by TransitionFeatureMemberships with kind = trigger, which must
all be AcceptActionUsages.

Operations

triggerPayloadParameter() : ReferenceUsage [0..1]

Return the payloadParameter of the triggerAction of this TransitionUsage, if it has one.

body: if triggerAction->isEmpty() then null
else triggerAction->first().payloadParameter
endif

Constraints

OMG Systems Modeling Language (SysML) v2.0, Beta 1 325

checkTransitionUsageActionSpecialization

A composite TransitionUsage whose owningType is a ActionDefinition or ActionUsage, but not a
StateDefinition or StateUsage, must directly or indirectly specialize the ActionUsage
Actions::Action::decisionTransitions from the Systems Model Library.

isComposite and owningType <> null and
(owningType.oclIsKindOf(ActionDefinition) or
owningType.oclIsKindOf(ActionUsage)) and

not (owningType.oclIsKindOf(StateDefinition) or
owningType.oclIsKindOf(StateUsage)) implies

specializesFromLibrary('Actions::Action::decisionTransitions')

checkTransitionUsagePayloadSpecialization

If a TransitionUsage has a triggerAction, then the payload parameter of the TransitionUsage subsets
the Feature chain of the triggerAction and its payloadParameter.

triggerAction->notEmpty() implies
let payloadParameter : Feature = inputParameter(2) in
payloadParameter <> null and
payloadParameter.subsetsChain(triggerAction->at(1), triggerPayloadParameter())

checkTransitionUsageSourceBindingConnector

A TransitionUsage must have an ownedMember that is a BindingConnector between its source and its first
input parameter (which redefines Actions::TransitionAction::transitionLinkSource).

ownedMember->selectByKind(BindingConnector)->exists(b |
b.relatedFeatures->includes(source) and
b.relatedFeatures->includes(inputParameter(1)))

checkTransitionUsageSpecialization

A TransitionUsage must directly or indirectly specialize the ActionUsage Actions::transitionActions
from the Systems Model Library.

specializesFromLibrary('Actions::transitionActions')

checkTransitionUsageStateSpecialization

A composite TransitionUsage whose owningType is a StateDefinition or StateUsage must directly or
indirectly specialize the ActionUsage States::State::stateTransitions from the Systems Model Library.

isComposite and owningType <> null and
(owningType.oclIsKindOf(StateDefinition) or
owningType.oclIsKindOf(StateUsage)) implies

specializesFromLibrary('States::State::stateTransitions')

checkTransitionUsageSuccessionBindingConnector

A TransitionUsage must have an ownedMember that is a BindingConnector between its succession and the
inherited Feature TransitionPerformances::TransitionPerformance::transitionLink.

ownedMember->selectByKind(BindingConnector)->exists(b |
b.relatedFeatures->includes(succession) and

326 OMG Systems Modeling Language (SysML) v2.0 Beta 1

b.relatedFeatures->includes(resolveGlobal(
'TransitionPerformances::TransitionPerformance::transitionLink')))

checkTransitionUsageSuccessionSourceSpecialization

The sourceFeature of the succession of a TransitionUsage must be the source of the TransitionUsage
(i.e., the first connectorEnd of the succession must have a ReferenceSubsetting Relationship with the
source).

succession.sourceFeature = source

checkTransitionUsageTransitionFeatureSpecialization

The triggerActions, guardExpressions, and effectActions of a TransitionUsage must specialize,
respectively, the accepter, guard, and effect features of the ActionUsage
Actions::TransitionActions from the Systems Model Library.

triggerAction->forAll(specializesFromLibrary('Actions::TransitionAction::accepter') and
guardExpression->forAll(specializesFromLibrary('Actions::TransitionAction::guard') and
effectAction->forAll(specializesFromLibrary('Actions::TransitionAction::effect'))

deriveTransitionUsageEffectAction

The effectActions of a TransitionUsage are the transitionFeatures of the
ownedFeatureMemberships of the TransitionUsage with kind = effect, which must all be
ActionUsages.

triggerAction = ownedFeatureMembership->
selectByKind(TransitionFeatureMembership)->
select(kind = TransitionFeatureKind::trigger).transitionFeatures->
selectByKind(AcceptActionUsage)

deriveTransitionUsageGuardExpression

The triggerActions of a TransitionUsage are the transitionFeatures of the
ownedFeatureMemberships of the TransitionUsage with kind = trigger, which must all be
Expressions.

guardExpression = ownedFeatureMembership->
selectByKind(TransitionFeatureMembership)->
select(kind = TransitionFeatureKind::trigger).transitionFeature->
selectByKind(Expression)

deriveTransitionUsageSource

The source of a TransitionUsage is given by the memberElement of its first ownedMembership, which must
be an ActionUsage.

source =
if ownedMembership->isEmpty() then null
else

let member : Element =
ownedMembership->at(1).memberElement in

if not member.oclIsKindOf(ActionUsage) then null
else member.oclAsKindOf(ActionUsage)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 327

endif
endif

deriveTransitionUsageSuccession

The succession of a TransitionUsage is its first ownedMember that is a Succession.

succession = ownedMember->selectByKind(Succession)->at(1)

deriveTransitionUsageTarget

The target of a TransitionUsage is given by the targetFeature of its succession, which must be an
ActionUsage.

target =
if succession.targetFeature->isEmpty() then null
else

let targetFeature : Feature =
succession.targetFeature->at(1) in

if not targetFeature.oclIsKindOf(ActionUsage) then null
else targetFeature.oclAsType(ActionUsage)
endif

endif

deriveTransitionUsageTriggerAction

The triggerActions of a TransitionUsage are the transitionFeatures of the
ownedFeatureMemberships of the TransitionUsage with kind = trigger, which must all be
AcceptActionUsages.

triggerAction = ownedFeatureMembership->
selectByKind(TransitionFeatureMembership)->
select(kind = TransitionFeatureKind::trigger).transitionFeature->
selectByKind(AcceptActionUsage)

validateTransitionUsageParameters

A TransitionUsage must have at least one owned input parameter and, if it has a triggerAction, it must
have at least two.

if triggerAction->isEmpty() then
inputParameters()->size() >= 1

else
inputParameters()->size() >= 2

endif

validateTransitionUsageSuccession

A TransitionUsage must have an ownedMember that is a Succession with a ActionUsage as its
targetFeature.

let successions : Sequence(Successions) =
ownedMember->selectByKind(Succession) in

successions->notEmpty() and
successions->at(1).targetFeature->

forAll(oclIsKindOf(ActionUsage))

328 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.18 Calculations Abstract Syntax
8.3.18.1 Overview

+modelLevelEvaluable(visited : Feature [0..*]) : Boolean{redefines modelLevelEvaluable}

CalculationUsage

OccurrenceDefinition

Definition

CalculationDefinition

Function

ActionDefinition

OccurrenceUsage

ActionUsage

Usage

Expression

{redefines actionDefinition,
redefines function, ordered}

+/calculationDefinition

0..1

{subsets definedAction,
subsets typedExpression}

+/definedCalculation

0..*

{subsets ownedAction, ordered}

+/ownedCalculation

0..*

{subsets actionOwningDefinition}

+/calculationOwningDefinition

0..1

{subsets computedFunction,
subsets featuringActionDefinition}

+/featuringCalculationDefinition

0..*
{subsets action, subsets expression,
ordered}

+/calculation

0..*

+/calculationOwningUsage

{subsets
actionOwningUsage}

0..1

{subsets nestedAction,
ordered}

+/nestedCalculation

0..*

Figure 33. Calculation Definition and Usage

8.3.18.2 CalculationDefinition

Description

A CalculationDefinition is an ActionDefinition that also defines a Function producing a result.

General Classes

ActionDefinition
Function

Attributes

/calculation : CalculationUsage [0..*] {subsets action, expression, ordered}

The actions of this CalculationDefinition that are CalculationUsages.

Operations

None.

Constraints

checkCalculationDefinitionSpecialization

A CalculationDefinition must directly or indirectly specialize the CalculationDefinition
Calculations::Calculation from the Systems Model Library.

specializesFromLibrary('Calculations::Calculation')

deriveCalculationUsageCalculation

OMG Systems Modeling Language (SysML) v2.0, Beta 1 329

The calculations of a CalculationDefinition are those of its actions that are CalculationUsages.

calculation = action->selectByKind(CalculationUsage)

8.3.18.3 CalculationUsage

Description

A CalculationUsage is an ActionUsage that is also an Expression, and, so, is typed by a Function.
Nominally, if the type is a CalculationDefinition, a CalculationUsage is a Usage of that
CalculationDefinition within a system. However, other kinds of kernel Functions are also allowed, to
permit use of Functions from the Kernel Model Libraries.

General Classes

Expression
ActionUsage

Attributes

/calculationDefinition : Function [0..1] {redefines function, actionDefinition, ordered}

The Function that is the type of this CalculationUsage. Nominally, this would be a CalculationDefinition,
but a kernel Function is also allowed, to permit use of Functions from the Kernel Model Libraries.

Operations

modelLevelEvaluable(visited : Feature [0..*]) : Boolean {redefines modelLevelEvaluable}

A CalculationUsage is not model-level evaluable.

body: false

Constraints

checkCalculationUsageSpecialization

A CalculationUsage must specialize directly or indirectly the CalculationUsage
Calculations::calculations from the Systems Model Library.

specializesFromLibrary('Calculations::calculations')

checkCalculationUsageSubcalculationSpecialization

owningType <> null and
(owningType.oclIsKindOf(CalculationDefinition) or
owningType.oclIsKindOf(CalculationUsage)) implies

specializesFromLibrary('Calculations::Calculation::subcalculations')

8.3.19 Constraints Abstract Syntax

330 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.19.1 Overview

+modelLevelEvaluable(visited : Feature [0..*]) : Boolean{redefines modelLevelEvaluable}
+namingFeature() : Feature [0..1]{redefines namingFeature}

ConstraintUsage

BooleanExpression

ConstraintDefinition

OccurrenceDefinition OccurrenceUsage

UsageDefinition

Predicate

{redefines predicate}

+/constraintDefinition

0..1
{subsets
typedBooleanExpression}

+/definedConstraint 0..*

{subsets
occurrenceOwningDefinition}

+/constraintOwningDefinition

0..1

{subsets ownedOccurrence,
ordered}

+/ownedConstraint

0..*

{subsets
occurrenceOwningUsage}

+/constraintOwningUsage

0..1

{subsets nestedOccurrence,
ordered}

+/nestedConstraint

0..*

Figure 34. Constraint Definition and Usage

AssertConstraintUsage

ConstraintUsage

Invariant

+/assertedConstraint

1

+/constraintAssertion
0..*

Figure 35. Asserted Constraints

8.3.19.2 AssertConstraintUsage

Description

An AssertConstraintUsage is a ConstraintUsage that is also an Invariant and, so, is asserted to be true
(by default). Unless it is the AssertConstraintUsage itself, the asserted ConstraintUsage is related to the
AssertConstraintUsage by a ReferenceSubsetting Relationship.

General Classes

Invariant
ConstraintUsage

Attributes

/assertedConstraint : ConstraintUsage

The ConstraintUsage to be performed by the AssertConstraintUsage. It is the referenceFeature of the
ownedReferenceSubsetting for the AssertConstraintUsage, if there is one, and, otherwise, the
AssertConstraintUsage itself.

Operations

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 331

Constraints

checkAssertConstraintUsageSpecialization

If a AssertConstraintUsage is negated, then it must directly or indirectly specialize the ConstraintUsage
Constraints::negatedConstraints. Otherwise, it must directly or indirectly specialize the
ConstraintUsage Constraints::assertedConstraints.

if isNegated then
specializesFromLibrary('Constraints::negatedConstraints')

else
specializesFromLibrary('Constraints::assertedConstraints')

endif

deriveAssertConstraintUsageAssertedConstraint

If an AssertConstraintUsage has no ownedReferenceSubsetting, then its assertedConstraint is the
AssertConstraintUsage itself. Otherwise, the assertedConstraint is the referencedFeature of the
ownedReferenceSubsetting, which must be a ConstraintUsage.

assertedConstraint =
if ownedReferenceSubsetting = null then self
else ownedReferenceSubsetting.referencedFeature.oclAsType(ConstraintUsage)
endif

validateAssertConstraintUsageReference

If an AssertConstraintUsage has an ownedReferenceSubsetting, then its referencedFeature must be a
ConstraintUsage.

ownedReferenceSubsetting <> null implies
ownedReferenceSubsetting.referencedFeature.oclIsKindOf(ConstraintUsage)

8.3.19.3 ConstraintDefinition

Description

A ConstraintDefinition is an OccurrenceDefinition that is also a Predicate that defines a constraint that
may be asserted to hold on a system or part of a system.

General Classes

OccurrenceDefinition
Predicate

Attributes

None.

Operations

None.

Constraints

checkConstraintDefinitionSpecialization

332 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A ConstraintDefinition must directly or indirectly specialize the base ConstraintDefinition
Constraints::ConstraintCheck from the Systems Model Library.

specializesFromLibrary('Constraints::ConstraintCheck')

8.3.19.4 ConstraintUsage

Description

A ConstraintUsage is an OccurrenceUsage that is also a BooleanExpression, and, so, is typed by a
Predicate. Nominally, if the type is a ConstraintDefinition, a ConstraintUsage is a Usage of that
ConstraintDefinition. However, other kinds of kernel Predicates are also allowed, to permit use of
Predicates from the Kernel Model Libraries.

General Classes

OccurrenceUsage
BooleanExpression

Attributes

/constraintDefinition : Predicate [0..1] {redefines predicate}

The (single) Predicate that is the type of this ConstraintUsage. Nominally, this will be a
ConstraintDefinition, but other kinds of Predicates are also allowed, to permit use of Predicates from
the Kernel Model Libraries.

Operations

modelLevelEvaluable(visited : Feature [0..*]) : Boolean {redefines modelLevelEvaluable}

A ConstraintUsage is not model-level evaluable.

body: false

namingFeature() : Feature [0..1] {redefines namingFeature}

The naming Feature of a ConstraintUsage that is owned by a RequirementConstraintMembership and has
an ownedReferenceSubsetting is the referencedFeature of that ownedReferenceSubsetting.

body: if owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf(RequirementConstraintMembership) and
ownedReferenceSubsetting <> null then

ownedReferenceSubsetting.referencedFeature
else

self.oclAsType(OccurrenceUsage).namingFeature()
endif

Constraints

checkConstraintUsageCheckedConstraintSpecialization

A ConstraintUsage whose owningType is an ItemDefinition or ItemUsage must directly or indirectly
specialize the ConstraintUsage Items::Item::checkedConstraints.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 333

owningType <> null and
(owningType.oclIsKindOf(ItemDefinition) or
owningType.oclIsKindOf(ItemUsage)) implies

specializesFromLibrary('Items::Item::checkedConstraints')

checkConstraintUsageRequirementConstraintSpecialization

A ConstraintUsage whose owningFeatureMembership is a RequirementConstraintMembership must
directly or indirectly specialize on the ConstraintUsages assumptions or constraints from the
ConstraintDefinition Requirements::RequirementCheck in the Systems Model Library, depending on
whether the kind of the RequirementConstraintMembership is assumption or requirement, respectively.

owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf(RequirementConstraintMembership) implies

if owningFeatureMembership.oclAsType(RequirementConstraintMembership).kind =
RequirementConstraintKind::assumption then
specializesFromLibrary('Requirements::RequirementCheck::assumptions')

else
specializesFromLibrary('Requirements::RequirementCheck::constraints')

endif

checkConstraintUsageSpecialization

A ConstraintUsage must directly or indirectly specialize the base ConstraintUsage
Constraints::constraintChecks from the Systems Model Library.

specializesFromLibrary('Constraints::constraintChecks')

8.3.20 Requirements Abstract Syntax

334 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.20.1 Overview

+/text : String [0..*]
+reqId : String [0..1]{redefines declaredShortName}

RequirementDefinition

+/text : String [0..*]
+reqId : String [0..1]{redefines declaredShortName}

RequirementUsage

OccurrenceDefinition

Definition

ConstraintDefinition

OccurrenceUsage

Usage

ConstraintUsage

PartUsage

ConcernUsage

Usage

+/requirementOwningDefinition

{subsets
constraintOwningDefinition}

0..1

{subsets ownedConstraint, ordered}

+/ownedRequirement

0..*

{subsets requiringRequirement}

+/framingRequirement

0..1

{subsets requiredConstraint, ordered}

+/framedConcern

0..*

+/stakholderOwningRequirement

{subsets parameteredStep,
subsets partOwningUsage}

0..1

{subsets parameter,
subsets usage, ordered}

+/stakeholderParameter

0..*

{subsets
assumingRequirementDefinition}

+/framingRequirementDefinition

0..1

{subsets requiredConstraint, ordered}

+/framedConcern

0..*

+/stakholderOwiningRequirementDefinition

{subsets parameteredStep,
subsets partOwningUsage}

0..1

{subsets parameter,
subsets usage, ordered}

+/stakeholderParameter

0..*

+/assumingRequirementDefinition

{subsets owningType}
0..1

{subsets ownedFeature,
ordered}

+/assumedConstraint

0..*

+/requiringRequirementDefinition

{subsets owningType}
0..1

{subsets ownedFeature,
ordered}

+/requiredConstraint

0..*

{subsets constraintOwningUsage}

+/requirementOwningUsage

0..1

{subsets nestedConstraint, ordered}
+/nestedRequirement
0..*

{subsets parameteredStep,
subsets partOwningUsage}

+actorOwningRequirement0..1

{subsets parameter,
subsets usage, ordered}

+/actorParameter

0..*

{subsets definedConstraint}

+/definedRequirement

0..*
{redefines
constraintDefinition}

+/requirementDefinition

0..1

+/actorOwningRequirementDefinition
{subsets parameteredBehavior,
subsets partOwningDefinition}

0..1

{subsets parameter,
subsets usage, ordered}

+/actorParameter

0..*

+/assumingRequirement
{subsets owningType}0..1

{subsets ownedFeature, ordered}
+/assumedConstraint

0..*

+/subjectOwningRequirement
{subsets owningUsage,
subsets parameteredStep}

0..1

{subsets parameter,
subsets usage}

+/subjectParameter

1

+/requiringRequirement
{subsets owningType}0..1

{subsets ownedFeature, ordered}
+/requiredConstraint

0..*

+/subjectOwningRequirementDefinition
{subsets owningDefinition,
subsets parameteredBehavior}

0..1

{subsets parameter,
subsets usage}

+/subjectParameter

1

Figure 36. Requirement Definition and Usage

SatisfyRequirementUsage

AssertConstraintUsageRequirementUsage

Feature

{redefines assertedConstraint}
+/satisfiedRequirement

1

{subsets constraintAssertion}
+/requirementSatisfaction

0..*

+/satisfyingFeature 1

+/satisfiedRequirement 0..*

Figure 37. Satisfied Requirements

OMG Systems Modeling Language (SysML) v2.0, Beta 1 335

OccurrenceDefinition

Definition

ConstraintDefinition

RequirementDefinition

ConcernDefinition

ConcernUsage

OccurrenceUsage

RequirementUsage

Usage

ConstraintUsage

{subsets definedRequirement}

+/definedConcern

0..1
{redefines requirementDefinition}

+/concernDefinition

0..1

{subsets requirementOwningDefinition}

+/concernOwningDefinition

0..1

{subsets ownedRequirement}

+/ownedConcern

0..*

{subsets requirementOwningUsage}

+/concernOwningUsage

0..1

{subsets nestedRequirement}

+/nestedConcern

0..*

Figure 38. Concern Definition and Usage

+kind : RequirementConstraintKind = requirement{redefines kind}

FramedConcernMembership

+kind : RequirementConstraintKind

RequirementConstraintMembership

requirement
assumption

RequirementConstraintKind
«enumeration»

FeatureMembership

RequirementUsage

ConcernUsage

ConstraintUsage

+/referencedConstraint

1

+/referencingConstraintMembership

0..*

{redefines
ownedMemberFeature}

+/ownedConstraint

1

+/requirementConstraintMembership

{subsets
owningFeatureMembership}

0..1

{subsets
requirementConstraintMembership}

+/framedConstraintMembership

0..1
{redefines
ownedConstraint}

+/ownedConcern

1

{subsets
referencingConstraintMembership}

+/referencingConcernMembership

0..*
{redefines
referencedConstraint}

+/referencedConcern

1

Figure 39. Requirement Constraint Membership

336 OMG Systems Modeling Language (SysML) v2.0 Beta 1

StakeholderMembershipActorMembershipSubjectMembership

ParameterMembership

PartUsageUsage

+/owningStakeholderMembership
{subsets
owningParameterMembership}

0..1

+/ownedStakeholderParameter

{redefines
ownedMemberParameter}

1

{redefines
ownedMemberParameter}

+/ownedActorParameter 1

{subsets
owningParameterMembership}

+/owningActorMembership 0..1
{subsets
owningParameterMembership}

+/owningSubjectMembership 0..1

{redefines
ownedMemberParameter}

+/ownedSubjectParameter 1

Figure 40. Requirement Parameter Memberships

8.3.20.2 ActorMembership

Description

An ActorMembership is a ParameterMembership that identifies a PartUsage as an actor parameter, which
specifies a role played by an external entity in interaction with the owningType of the ActorMembership.

General Classes

ParameterMembership

Attributes

/ownedActorParameter : PartUsage {redefines ownedMemberParameter}

The PartUsage specifying the actor.

Operations

None.

Constraints

validateActorMembershipOwningType

The owningType of an ActorMembership must be a RequirementDefinition, RequirementUsage,
CaseDefinition, or CaseUsage.

owningType.oclIsKindOf(RequirementUsage) or
owningType.oclIsKindOf(RequirementDefinition) or
owningType.oclIsKindOf(CaseDefinition) or
owningType.oclIsKindOf(CaseUsage)

8.3.20.3 ConcernDefinition

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 337

A ConcernDefinition is a RequirementDefinition that one or more stakeholders may be interested in having
addressed. These stakeholders are identified by the ownedStakeholdersof the ConcernDefinition.

General Classes

RequirementDefinition

Attributes

None.

Operations

None.

Constraints

checkConcernDefinitionSpecialization

A ConcernDefinition must directly or indirectly specialize the base ConcernDefinition
Requirements::ConcernCheck from the Systems Model Library.

specializesFromLibrary('Requirements::ConcernCheck')

8.3.20.4 ConcernUsage

Description

A ConcernUsage is a Usage of a ConcernDefinition.

The ownedStakeholder features of the ConcernUsage shall all subset the
ConcernCheck::concernedStakeholders feature. If the ConcernUsage is an ownedFeature of a
StakeholderDefinition or StakeholderUsage, then the ConcernUsage shall have an ownedStakeholder feature that
is bound to the self feature of its owner.

General Classes

RequirementUsage

Attributes

/concernDefinition : ConcernDefinition [0..1] {redefines requirementDefinition}

The ConcernDefinition that is the single type of this ConcernUsage.

Operations

None.

Constraints

checkConcernUsageFramedConcernSpecialization

If a ConcernUsage is owned via a FramedConcernMembership, then it must directly or indirectly specialize the
ConcernUsage Requirements::RequirementCheck::concerns from the Systems Model Library.

338 OMG Systems Modeling Language (SysML) v2.0 Beta 1

owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf(FramedConcernMembership) implies

specializesFromLibrary('Requirements::RequirementCheck::concerns')

checkConcernUsageSpecialization

A ConcernUsage must directly or indirectly specialize the base ConcernUsage
Requirements::concernChecks from the Systems Model Library.

specializesFromLibrary('Requirements::concernChecks')

8.3.20.5 FramedConcernMembership

Description

A FramedConcernMembership is a RequirementConstraintMembership for a framed ConcernUsage of a
RequirementDefinition or RequirementUsage.

General Classes

RequirementConstraintMembership

Attributes

kind : RequirementConstraintKind {redefines kind}

The kind of an FramedConcernMembership must be requirement.

/ownedConcern : ConcernUsage {redefines ownedConstraint}

The ConcernUsage that is the ownedConstraint of this FramedConcernMembership.

/referencedConcern : ConcernUsage {redefines referencedConstraint}

The ConcernUsage that is referenced through this FramedConcernMembership. It is the
referencedConstraint of the FramedConcernMembership considered as a
RequirementConstraintMembership, which must be a ConcernUsage.

Operations

None.

Constraints

validateFramedConcernMembershipConstraintKind

A FramedConcernMembership must have kind = requirement.

kind = RequirementConstraintKind::requirement

8.3.20.6 RequirementConstraintKind

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 339

A RequirementConstraintKind indicates whether a ConstraintUsage is an assumption or a requirement in a
RequirementDefinition or RequirementUsage.

General Classes

None.

Literal Values

assumption

Indicates that a member ConstraintUsage of a RequirementDefinition or RequirementUsage represents an
assumption.

requirement

Indicates that a member ConstraintUsage of a RequirementDefinition or RequirementUsagerepresents an
requirement.

8.3.20.7 RequirementConstraintMembership

Description

A RequirementConstraintMembership is a FeatureMembership for an assumed or required
ConstraintUsage of a RequirementDefinition or RequirementUsage.

General Classes

FeatureMembership

Attributes

kind : RequirementConstraintKind

Whether the RequirementConstraintMembership is for an assumed or required ConstraintUsage.

/ownedConstraint : ConstraintUsage {redefines ownedMemberFeature}

The ConstraintUsage that is the ownedMemberFeature of this RequirementConstraintMembership.

/referencedConstraint : ConstraintUsage

The ConstraintUsage that is referenced through this RequirementConstraintMembership. It is the
referencedFeature of the ownedReferenceSubsetting of the ownedConstraint, if there is one, and,
otherwise, the ownedConstraint itself.

Operations

None.

Constraints

deriveRequirementConstraintMembershipReferencedConstraint

340 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The referencedConstraint of a RequirementConstraintMembership is the referencedFeature of the
ownedReferenceSubsetting of the ownedConstraint, if there is one, and, otherwise, the ownedConstraint
itself.

referencedConstraint =
let reference : ReferenceSubsetting =

ownedConstraint.ownedReferenceSubsetting in
if reference = null then ownedConstraint
else if not reference.referencedFeature.oclIsKindOf(ConstraintUsage) then null
else reference.referencedFeature.oclAsType(ConstraintUsage)
endif endif

validateRequirementConstraintMembershipIsComposite

The ownedConstraint of a RequirementConstraintMembership must be composite.

ownedConstraint.isComposite

validateRequirementConstraintMembershipOwningType

The owningType of a RequirementConstraintMembership must be a RequirementDefinition or a
RequirementUsage.

owningType.oclIsKindOf(RequirementDefinition) or
owningType.oclIsKindOf(RequirementUsage)

8.3.20.8 RequirementDefinition

Description

A RequirementDefinition is a ConstraintDefinition that defines a requirement used in the context of a
specification as a constraint that a valid solution must satisfy. The specification is relative to a specified subject,
possibly in collaboration with one or more external actors.

General Classes

ConstraintDefinition

Attributes

/actorParameter : PartUsage [0..*] {subsets usage, parameter, ordered}

The parameters of this RequirementDefinition that represent actors involved in the requirement.

/assumedConstraint : ConstraintUsage [0..*] {subsets ownedFeature, ordered}

The owned ConstraintUsages that represent assumptions of this RequirementDefinition, which are the
ownedConstraints of the RequirementConstraintMemberships of the RequirementDefinition with
kind = assumption.

/framedConcern : ConcernUsage [0..*] {subsets requiredConstraint, ordered}

The ConcernUsages framed by this RequirementDefinition, which are the ownedConcerns of all
FramedConcernMemberships of the RequirementDefinition.

reqId : String [0..1] {redefines declaredShortName}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 341

An optional modeler-specified identifier for this RequirementDefinition (used, e.g., to link it to an original
requirement text in some source document), which is the declaredShortName for the
RequirementDefinition.

/requiredConstraint : ConstraintUsage [0..*] {subsets ownedFeature, ordered}

The owned ConstraintUsages that represent requirements of this RequirementDefinition, derived as the
ownedConstraints of the RequirementConstraintMemberships of the RequirementDefinition with
kind = requirement.

/stakeholderParameter : PartUsage [0..*] {subsets parameter, usage, ordered}

The parameters of this RequirementDefinition that represent stakeholders for th requirement.

/subjectParameter : Usage {subsets parameter, usage}

The parameter of this RequirementDefinition that represents its subject.

/text : String [0..*]

An optional textual statement of the requirement represented by this RequirementDefinition, derived from the
bodies of the documentation of the RequirementDefinition.

Operations

None.

Constraints

checkRequirementDefinitionSpecialization

A RequirementDefinition must directly or indirectly specialize the base RequirementDefinition
Requirements::RequirementCheck from the Systems Model Library.

specializesFromLibrary('Requirements::RequirementCheck')

deriveRequirementDefinitionActorParameter

The actorParameters of a RequirementDefinition are the ownedActorParameters of the
ActorMemberships of the RequirementDefinition.

actorParameter = featureMembership->
selectByKind(ActorMembership).
ownedActorParameter

deriveRequirementDefinitionAssumedConstraint

The assumedConstraints of a RequirementDefinition are the ownedConstraints of the
RequirementConstraintMemberships of the RequirementDefinition with kind = assumption.

assumedConstraint = ownedFeatureMembership->
selectByKind(RequirementConstraintMembership)->
select(kind = RequirementConstraintKind::assumption).
ownedConstraint

342 OMG Systems Modeling Language (SysML) v2.0 Beta 1

deriveRequirementDefinitionFramedConcern

The framedConcerns of a RequirementDefinition are the ownedConcerns of the
FramedConcernMemberships of the RequirementDefinition.

framedConcern = featureMembership->
selectByKind(FramedConcernMembership).
ownedConcern

deriveRequirementDefinitionRequiredConstraint

The requiredConstraints of a RequirementDefinition are the ownedConstraints of the
RequirementConstraintMemberships of the RequirementDefinition with kind = requirement.

requiredConstraint = ownedFeatureMembership->
selectByKind(RequirementConstraintMembership)->
select(kind = RequirementConstraintKind::requirement).
ownedConstraint

deriveRequirementDefinitionStakeholderParameter

The stakeHolderParameters of a RequirementDefinition are the ownedStakeholderParameters of the
StakeholderMemberships of the RequirementDefinition.

stakeholderParameter = featureMembership->
selectByKind(StakholderMembership).
ownedStakeholderParameter

deriveRequirementDefinitionSubjectParameter

The subjectParameter of a RequirementDefinition is the ownedSubjectParameter of its
SubjectMembership (if any).

subjectParameter =
let subjects : OrderedSet(SubjectMembership) =

featureMembership->selectByKind(SubjectMembership) in
if subjects->isEmpty() then null
else subjects->first().ownedSubjectParameter
endif

deriveRequirementDefinitionText

The texts of aRequirementDefinition are the bodies of the documentation of the
RequirementDefinition.

text = documentation.body

validateRequirementDefinitionOnlyOneSubject

A RequirementDefinition must have at most one featureMembership that is a SubjectMembership.

featureMembership->
selectByKind(SubjectMembership)->
size() <= 1

validateRequirementDefinitionSubjectParameterPosition

OMG Systems Modeling Language (SysML) v2.0, Beta 1 343

The subjectParameter of a RequirementDefinition must be its first input.

input->notEmpty() and input->first() = subjectParameter

8.3.20.9 RequirementUsage

Description

A RequirementUsage is a Usage of a RequirementDefinition.

General Classes

ConstraintUsage

Attributes

/actorParameter : PartUsage [0..*] {subsets usage, parameter, ordered}

The parameters of this RequirementUsage that represent actors involved in the requirement.

/assumedConstraint : ConstraintUsage [0..*] {subsets ownedFeature, ordered}

The owned ConstraintUsages that represent assumptions of this RequirementUsage, derived as the
ownedConstraints of the RequirementConstraintMemberships of the RequirementUsage with kind =
assumption.

/framedConcern : ConcernUsage [0..*] {subsets requiredConstraint, ordered}

The ConcernUsages framed by this RequirementUsage, which are the ownedConcerns of all
FramedConcernMemberships of the RequirementUsage.

reqId : String [0..1] {redefines declaredShortName}

An optional modeler-specified identifier for this RequirementUsage (used, e.g., to link it to an original
requirement text in some source document), which is the declaredShortName for the RequirementUsage.

/requiredConstraint : ConstraintUsage [0..*] {subsets ownedFeature, ordered}

The owned ConstraintUsages that represent requirements of this RequirementUsage, which are the
ownedConstraints of the RequirementConstraintMemberships of the RequirementUsage with kind =
requirement.

/requirementDefinition : RequirementDefinition [0..1] {redefines constraintDefinition}

The RequirementDefinition that is the single definition of this RequirementUsage.

/stakeholderParameter : PartUsage [0..*] {subsets parameter, usage, ordered}

The parameters of this RequirementUsage that represent stakeholders for the requirement.

/subjectParameter : Usage {subsets parameter, usage}

The parameter of this RequirementUsage that represents its subject.

/text : String [0..*]

344 OMG Systems Modeling Language (SysML) v2.0 Beta 1

An optional textual statement of the requirement represented by this RequirementUsage, derived from the bodies
of the documentation of the RequirementUsage.

Operations

None.

Constraints

checkRequirementUsageObjectiveRedefinition

A RequirementUsage whose owningFeatureMembership is a ObjectiveMembership must redefine the
objectiveRequirement of each CaseDefinition or CaseUsage that is specialized by the owningType of the
RequirementUsage.

owningfeatureMembership <> null and
owningfeatureMembership.oclIsKindOf(ObjectiveMembership) implies

owningType.ownedSpecialization.general->forAll(gen |
(gen.oclIsKindOf(CaseDefinition) implies

redefines(gen.oclAsType(CaseDefinition).objectiveRequirement)) and
(gen.oclIsKindOf(CaseUsage) implies

redefines(gen.oclAsType(CaseUsage).objectiveRequirement))

checkRequirementUsageRequirementVerificationSpecialization

A RequirementUsage whose owningFeatureMembership is a RequirementVerificationMembership
must directly or indirectly specialize the RequirementUsage
VerificationCases::VerificationCase::obj::requirementVerifications.

owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf(RequirementVerificationMembership) implies

specializesFromLibrary('VerificationCases::VerificationCase::obj::requirementVerifications')

checkRequirementUsageSpecialization

A RequirementUsage must directly or indirectly specialize the base RequirementUsage
Requirements::requirementChecks from the Systems Model Library.

specializesFromLibrary('Requirements::requirementChecks')

checkRequirementUsageSubrequirementSpecialization

A composite RequirementUsage whose owningType is a RequirementDefinition or
,code>RequirementUsage must directly or indirectly specialize the RequirementUsage
Requirements::RequirementCheck::subrequirements from the Systems Model Library.

isComposite and owningType <> null and
(owningType.oclIsKindOf(RequirementDefinition) or
owningType.oclIsKindOf(RequirementUsage)) implies

specializesFromLibrary('Requirements::RequirementCheck::subrequirements')

deriveRequirementUsageActorParameter

The actorParameters of a RequirementUsage are the ownedActorParameters of the ActorMemberships
of the RequirementUsage.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 345

actorParameter = featureMembership->
selectByKind(ActorMembership).
ownedActorParameter

deriveRequirementUsageAssumedConstraint

The assumedConstraints of a RequirementUsage are the ownedConstraints of the
RequirementConstraintMemberships of the RequirementDefinition with kind = assumption.

assumedConstraint = ownedFeatureMembership->
selectByKind(RequirementConstraintMembership)->
select(kind = RequirementConstraintKind::assumption).
ownedConstraint

deriveRequirementUsageFramedConcern

The framedConcerns of a RequirementUsage are the ownedConcerns of the FramedConcernMemberships
of the RequirementUsage.

framedConcern = featureMembership->
selectByKind(FramedConcernMembership).
ownedConcern

deriveRequirementUsageRequiredConstraint

The requiredConstraints of a RequirementUsage are the ownedConstraints of the
RequirementConstraintMemberships of the RequirementUsage with kind = requirement.

requiredConstraint = ownedFeatureMembership->
selectByKind(RequirementConstraintMembership)->
select(kind = RequirementConstraintKind::requirement).
ownedConstraint

deriveRequirementUsageStakeholderParameter

The stakeHolderParameters of a RequirementUsage are the ownedStakeholderParameters of the
StakeholderMemberships of the RequirementUsage.

stakeholderParameter = featureMembership->
selectByKind(AStakholderMembership).
ownedStakeholderParameter

deriveRequirementUsageSubjectParameter

The subjectParameter of a RequirementUsage is the ownedSubjectParameter of its
SubjectMembership (if any).

subjectParameter =
let subjects : OrderedSet(SubjectMembership) =

featureMembership->selectByKind(SubjectMembership) in
if subjects->isEmpty() then null
else subjects->first().ownedSubjectParameter
endif

deriveRequirementUsageText

The texts of aRequirementUsage are the bodies of the documentation of the RequirementUsage.

346 OMG Systems Modeling Language (SysML) v2.0 Beta 1

text = documentation.body

validateRequirementUsageOnlyOneSubject

A RequirementDefinition must have at most one featureMembership that is a SubjectMembership.

featureMembership->
selectByKind(SubjectMembership)->
size() <= 1

validateRequirementUsageSubjectParameterPosition

The subjectParameter of a RequirementUsage must be its first input.

input->notEmpty() and input->first() = subjectParameter

8.3.20.10 SatisfyRequirementUsage

Description

A SatisfyRequirementUsage is an AssertConstraintUsage that asserts, by default, that a satisfied
RequirementUsage is true for a specific satisfyingFeature, or, if isNegated = true, that the
RequirementUsage is false. The satisfied RequirementUsage is related to the SatisfyRequirementUsage by
a ReferenceSubsetting Relationship.

General Classes

AssertConstraintUsage
RequirementUsage

Attributes

/satisfiedRequirement : RequirementUsage {redefines assertedConstraint}

The RequirementUsage that is satisfied by the satisfyingSubject of this SatisfyRequirementUsage. It is
the assertedConstraint of the SatisfyRequirementUsage considered as an AssertConstraintUsage,
which must be a RequirementUsage.

/satisfyingFeature : Feature

The Feature that represents the actual subject that is asserted to satisfy the satisfiedRequirement. The
satisfyingFeature is bound to the subjectParameter of the SatisfyRequirementUsage.

Operations

None.

Constraints

checkSatisfyRequirementUsageBindingConnector

A SatisfyRequirementUsage must have exactly one ownedMember that is a BindingConnector between its
subjectParameter and some Feature other than the subjectParameter.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 347

ownedMember->selectByKind(BindingConnector)->
select(b |

b.relatedElement->includes(subjectParameter) and
b.relatedElement->exists(r | r <> subjectParameter))->

size() = 1

deriveSatisfyRequirementUsageSatisfyingFeature

The satisfyingFeature of a SatisfyRequirementUsage is the Feature to which the subjectParameter
is bound.

satisfyingFeature =
let bindings: BindingConnector = ownedMember->

selectByKind(BindingConnector)->
select(b | b.relatedElement->includes(subjectParameter)) in

if bindings->isEmpty() or
bindings->first().relatedElement->exits(r | r <> subjectParameter)

then null
else bindings->first().relatedElement->any(r | r <> subjectParameter)
endif

validateSatisfyRequirementUsageReference

If a SatisfyRequirementUsage has an ownedReferenceSubsetting, then its referencedFeature must be
a RequirementUsage.

ownedReferenceSubsetting <> null implies
ownedReferenceSubsetting.referencedFeature.oclIsKindOf(RequirementUsage)

8.3.20.11 SubjectMembership

Description

A SubjectMembership is a ParameterMembership that indicates that its ownedSubjectParameter is the
subject of its owningType. The owningType of a SubjectMembership must be a RequirementDefinition,
RequirementUsage, CaseDefinition, or CaseUsage.

General Classes

ParameterMembership

Attributes

/ownedSubjectParameter : Usage {redefines ownedMemberParameter}

The UsageownedMemberParameter of this SubjectMembership.

Operations

None.

Constraints

validateSubjectMembershipOwningType

348 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The owningType of a SubjectMembership must be a RequirementDefinition, RequirementUsage,
CaseDefinition, or CaseUsage.

owningType.oclIsType(RequirementDefinition) or
owningType.oclIsType(RequiremenCaseRequirementDefinition) or
owningType.oclIsType(CaseDefinition) or
owningType.oclIsType(CaseUsage)

8.3.20.12 StakeholderMembership

Description

A StakeholderMembership is a ParameterMembership that identifies a PartUsage as a
stakeholderParameter of a RequirementDefinition or RequirementUsage, which specifies a role played
by an entity with concerns framed by the owningType.

General Classes

ParameterMembership

Attributes

/ownedStakeholderParameter : PartUsage {redefines ownedMemberParameter}

The PartUsage specifying the stakeholder.

Operations

None.

Constraints

validateStakeholderMembershipOwningType

The owningType of a StakeholderMembership must be a RequirementDefinition or RequirementUsage.

owningType.oclIsKindOf(RequirementUsage) or
owningType.oclIsKindOf(RequirementDefinition)

8.3.21 Cases Abstract Syntax

OMG Systems Modeling Language (SysML) v2.0, Beta 1 349

8.3.21.1 Overview

CaseDefinition CaseUsage

OccurrenceUsageOccurrenceDefinition

CalculationUsage

ActionUsage

Definition

CalculationDefinition

RequirementUsage

ActionDefinition

Usage

PartUsage

Usage

+/objectiveOwningCaseDefinition

{subsets owningType}
0..1

+/objectiveRequirement

{subsets usage,
ordered}

0..1

{subsets
requirementOwningUsage}

+/objectiveOwningCase

0..1

+/objectiveRequirement

{subsets
usage,
ordered}

0..1

{subsets ownedCalculation, ordered}

+/ownedCase

0..*

{subsets
calculationOwningDefinition}

+/caseOwningDefinition

0..1

{redefines calculationDefinition}

+/caseDefinition

0..1
{subsets definedCalculation}

+/definedCase

0..*

{subsets nestedCalculation, ordered}

+/nestedCase

0..*

{subsets
calculationOwningUsage}

+/caseOwningUsage

0..1

{subsets parameteredBehavior,
subsets partOwningDefinition}

+actorOwningCaseDefinition 0..1

{subsets parameter,
subsets usage, ordered}

+/actorParameter

0..*

{subsets parameteredStep,
subsets partOwningUsage}

+/actorOwningCase0..1

{subsets parameter,
subsets usage, ordered}

+/actorParameter

0..*

{subsets owningUsage,
subsets parameteredStep}

+subjectOwningCase 0..1

{subsets parameter,
subsets usage}

+/subjectParameter

1

+/subjectOwningCaseDefinition
{subsets owningDefinition,
subsets parameteredBehavior}

0..1

{subsets parameter,
subsets usage}

+/subjectParameter

1

Figure 41. Case Definition and Usage

FeatureMembership

ObjectiveMembership

RequirementUsage

{subsets owningParameterMembership}
+/owningObjectiveMembership 0..1

{redefines ownedMemberFeature}
+/ownedObjectiveRequirement 1

Figure 42. Case Membership

350 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.3.21.2 CaseDefinition

Description

A CaseDefinition is a CalculationDefinition for a process, often involving collecting evidence or data,
relative to a subject, possibly involving the collaboration of one or more other actors, producing a result that meets
an objective.

General Classes

CalculationDefinition

Attributes

/actorParameter : PartUsage [0..*] {subsets parameter, usage, ordered}

The parameters of this CaseDefinition that represent actors involved in the case.

/objectiveRequirement : RequirementUsage [0..1] {subsets usage, ordered}

The RequirementUsage representing the objective of this CaseDefinition.

/subjectParameter : Usage {subsets parameter, usage}

The parameter of this CaseDefinition that represents its subject.

Operations

None.

Constraints

checkCaseDefinitionSpecialization

A CaseDefinition must directly or indirectly specialize the base CaseDefinition Cases::Case> from the
Systems Model Library.

specializesFromLibrary('Cases::Case')

deriveCaseDefinitionActorParameter

The actorParameters of a CaseDefinition are the ownedActorParameters of the ActorMemberships of
the CaseDefinition.

actorParameter = featureMembership->
selectByKind(ActorMembership).
ownedActorParameter

deriveCaseDefinitionObjectiveRequirement

The objectiveRequirement of a CaseDefinition is the ownedObjectiveRequirement of its
ObjectiveMembership, if any.

objectiveRequirement =
let objectives: OrderedSet(RequirementUsage) =

OMG Systems Modeling Language (SysML) v2.0, Beta 1 351

featureMembership->
selectByKind(ObjectiveMembership).
ownedRequirement in

if objectives->isEmpty() then null
else objectives->first().ownedObjectiveRequirement
endif

deriveCaseDefinitionSubjectParameter

The subjectParameter of a CaseDefinition is the ownedSubjectParameter of its SubjectMembership
(if any).

subjectParameter =
let subjectMems : OrderedSet(SubjectMembership) =

featureMembership->selectByKind(SubjectMembership) in
if subjectMems->isEmpty() then null
else subjectMems->first().ownedSubjectParameter
endif

validateCaseDefinitionOnlyOneObjective

A CaseDefinition must have at most one featureMembership that is a ObjectiveMembership.

featureMembership->
selectByKind(ObjectiveMembership)->
size() <= 1

validateCaseDefinitionOnlyOneSubject

A CaseDefinition must have at most one featureMembership that is a SubjectMembership.

featureMembership->selectByKind(SubjectMembership)->size() <= 1

validateCaseDefinitionSubjectParameterPosition

The subjectParameter of a CaaseDefinition must be its first input.

input->notEmpty() and input->first() = subjectParameter

8.3.21.3 CaseUsage

Description

A CaseUsage is a Usage of a CaseDefinition.

General Classes

CalculationUsage

Attributes

/actorParameter : PartUsage [0..*] {subsets parameter, usage, ordered}

The parameters of this CaseUsage that represent actors involved in the case.

/caseDefinition : CaseDefinition [0..1] {redefines calculationDefinition}

352 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The CaseDefinition that is the type of this CaseUsage.

/objectiveRequirement : RequirementUsage [0..1] {subsets usage, ordered}

The RequirementUsage representing the objective of this CaseUsage.

/subjectParameter : Usage {subsets parameter, usage}

The parameter of this CaseUsage that represents its subject.

Operations

None.

Constraints

checkCaseUsageSpecialization

A CaseUsage must directly or indirectly specialize the base CaseUsage Cases::cases from the Systems Model
Library.

specializesFromLibrary('Cases::cases')

checkCaseUsageSubcaseSpecialization

A composite CaseUsage whose owningType is a CaseDefinition or CaseUsage must directly or indirectly
specialize the CaseUsage Cases::Case::subcases.

isComposite and owningType <> null and
(owningType.oclIsKindOf(CaseDefinition) or
owningType.oclIsKindOf(CaseUsage)) implies

specializesFromLibrary('Cases::Case::subcases')

deriveCaseUsageActorParameter

The actorParameters of a CaseUsage are the ownedActorParameters of the ActorMemberships of the
CaseUsage.

actorParameter = featureMembership->
selectByKind(ActorMembership).
ownedActorParameter

deriveCaseUsageObjectiveRequirement

The objectiveRequirement of a CaseUsage is the RequirementUsage it owns via an ObjectiveMembership,
if any.

objectiveRequirement =
let objectives: OrderedSet(RequirementUsage) =

featureMembership->
selectByKind(ObjectiveMembership).
ownedRequirement in

if objectives->isEmpty() then null
else objectives->first().ownedObjectiveRequirement
endif

OMG Systems Modeling Language (SysML) v2.0, Beta 1 353

deriveCaseUsageSubjectParameter

The subjectParameter of a CaseUsage is the ownedSubjectParameter of its SubjectMembership (if any).

subjectParameter =
let subjects : OrderedSet(SubjectMembership) =

featureMembership->selectByKind(SubjectMembership) in
if subjects->isEmpty() then null
else subjects->first().ownedSubjectParameter
endif

validateCaseUsageOnlyOneObjective

A CaseUsage must have at most one featureMembership that is a ObjectiveMembership.

featureMembership->
selectByKind(ObjectiveMembership)->
size() <= 1

validateCaseUsageOnlyOneSubject

A CaseUsage must have at most one featureMembership that is a SubjectMembership.

featureMembership->
selectByKind(SubjectMembership)->
size() <= 1

validateCaseUsageSubjectParameterPosition

The subjectParameter of a CaseUsage must be its first input.

input->notEmpty() and input->first() = subjectParameter

8.3.21.4 ObjectiveMembership

Description

An ObjectiveMembership is a FeatureMembership that indicates that its ownedObjectiveRequirement is
the objective RequirementUsage for its owningType, which must be a CaseDefinition or CaseUsage.

General Classes

FeatureMembership

Attributes

/ownedObjectiveRequirement : RequirementUsage {redefines ownedMemberFeature}

The RequirementUsage that is the ownedMemberFeature of this RequirementUsage.

Operations

None.

Constraints

354 OMG Systems Modeling Language (SysML) v2.0 Beta 1

validateObjectiveMembershipIsComposite

The ownedObjectiveRequirement of an ObjectiveMembership must be composite.

ownedObjectiveRequirement.isComposite

validateObjectiveMembershipOwningType

The owningType of an ObjectiveMembership must be a CaseDefinition or CaseUsage.

owningType.oclIsType(CaseDefinition) or
owningType.oclIsType(CaseUsage)

8.3.22 Analysis Cases Abstract Syntax
8.3.22.1 Overview

AnalysisCaseDefinition

OccurrenceDefinition

Definition

ActionDefinition

CalculationDefinition

CaseDefinition

AnalysisCaseUsage

CaseUsage

OccurrenceUsage

ActionUsage

CalculationUsage

Usage

Expression

{subsets nestedCase,
ordered}

+/nestedAnalysisCase

0..*

+/analysisCaseOwningUsage

{subsets
analysisCaseOwningUsage}

0..1

{redefines caseDefinition}

+/analysisCaseDefinition

0..1
{redefines definedCase,
ordered}

+/definedAnalysisCase

0..*

{subsets ownedCase,
ordered}

+/ownedAnalysisCase

0..*

+/analysisCaseOwningDefinition

{subsets caseOwningDefinition}
0..1

+/featuringAnalysisCaseDefinition

{subsets
featuringActionDefinition}

0..*

{subsets action,
ordered}

+/analysisAction

0..*

{subsets owningType}
+/analysisCase 0..1

{subsets ownedFeature}

+/resultExpression

0..1

{subsets computedFunction,
subsets owningType}

+/analysisCaseDefintion 0..1

{subsets expression,
subsets ownedFeature}

+/resultExpression

0..1

{subsets typeWithFeature}

+/featuringAnalysisCase

0..*

+/analysisAction

{subsets
usage, ordered}

0..*

Figure 43. Analysis Case Definition and Usage

8.3.22.2 AnalysisCaseDefinition

Description

An AnalysisCaseDefinition is a CaseDefinition for the case of carrying out an analysis.

General Classes

OMG Systems Modeling Language (SysML) v2.0, Beta 1 355

CaseDefinition

Attributes

/analysisAction : ActionUsage [0..*] {subsets action, ordered}

The composite actions of the AnalysisCaseDefinition that are defined as AnalysisActions.

/resultExpression : Expression [0..1] {subsets expression, ownedFeature}

An Expression used to compute the result of the AnalysisCaseDefinition, owned via a
ResultExpressionMembership.

Operations

None.

Constraints

checkAnalysisCaseDefinitionSpecialization

An AnalysisCaseDefinition must directly or indirectly specialize the base AnalysisCaseDefinition
AnalysisCases::AnalysisCase from the Systems Model Library.

specializesFromLibrary('AnalysisCases::AnalysisCase')

deriveAnalysisCaseDefinitionAnalysisAction

The analysisActions of a AnalysisCaseDefinition are all its actions that directly or indirectly specialize
AnalysisCases::AnalysisAction.

analysisAction = action->select(
isComposite and
specializes('AnalysisCases::AnalysisAction'))

deriveAnalysisCaseDefinitionResultExpression

The resultExpression of a AnalysisCaseDefinition is the ownedResultExpression of its
ResultExpressionMembership, if any.

resultExpression =
let results : OrderedSet(ResultExpressionMembership) =

featureMembersip->
selectByKind(ResultExpressionMembership) in

if results->isEmpty() then null
else results->first().ownedResultExpression
endif

8.3.22.3 AnalysisCaseUsage

Description

An AnalysisCaseUsage is a Usage of an AnalysisCaseDefinition.

General Classes

356 OMG Systems Modeling Language (SysML) v2.0 Beta 1

CaseUsage

Attributes

/analysisAction : ActionUsage [0..*] {subsets usage, ordered}

The composite usages of the AnalysisCaseUsage that are defined as AnalysisActions.

/analysisCaseDefinition : AnalysisCaseDefinition [0..1] {redefines caseDefinition}

The AnalysisCaseDefinition that is the definition of this AnalysisCaseUsage.

/resultExpression : Expression [0..1] {subsets ownedFeature}

An Expression used to compute the result of the AnalysisCaseUsage, owned via a
ResultExpressionMembership.

Operations

None.

Constraints

checkAnalysisCaseUsageSpecialization

An AnalysisCaseUsage must directly or indirectly specialize the base AnalysisCaseUsage
AnalysisCases::analysisCases from the Systems Model Library.

specializesFromLibrary('AnalysisCases::analysisCases')

checkAnalysisCaseUsageSubAnalysisCaseSpecialization

A composite AnalysisCaseUsage whose owningType is an AnalysisCaseDefinition or
AnalysisCaseUsage must specialize the AnalysisCaseUsage
AnalysisCases::AnalysisCase::subAnalysisCases from the Systems Model Library.

isComposite and owningType <> null and
(owningType.oclIsKindOf(AnalysisCaseDefinition) or
owningType.oclIsKindOf(AnalysisCaseUsage)) implies

specializesFromLibrary('AnalysisCases::AnalysisCase::subAnalysisCases')

deriveAnalysisCaseUsageAnalysisAction

The analysisActions of a AnalysisCaseUsage are all its actions that directly or indirectly specialize
AnalysisCases::AnalysisAction.

analysisAction = usage->select(
isComposite and
specializes('AnalysisCases::AnalysisAction'))

deriveAnalysisCaseUsageResultExpression

The resultExpression of a AnalysisCaseUsage is the ownedResultExpression of its
ResultExpressionMembership, if any.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 357

resultExpression =
let results : OrderedSet(ResultExpressionMembership) =

featureMembersip->
selectByKind(ResultExpressionMembership) in

if results->isEmpty() then null
else results->first().ownedResultExpression
endif

8.3.23 Verification Cases Abstract Syntax
8.3.23.1 Overview

VerificationCaseDefinition

OccurrenceDefinition

CaseDefinition

ActionDefinition

CalculationDefinition

Definition

OccurrenceUsage

CalculationUsage

CaseUsage

VerificationCaseUsage

Usage

ActionUsage

RequirementUsage

{subsets nestedCase, ordered}

+/nestedVerificationCase

0..*

+/verificationCaseOwningUsage

{subsets caseOwningUsage}
0..1

{subsets ownedCase, ordered}

+/ownedVerificationCase

0..*

+/verificationCaseOwningDefinition

{subsets caseOwningDefinition}
0..1

+/verificationCaseDefinition

{subsets caseDefinition}
0..1

+/definedVerificationCase

{subsets definedCase}
0..*

+/verifyingCase0..*

+/verifiedRequirement

{ordered}
0..*

+verifyingCaseDefinition 0..*

+/verifiedRequirement

{ordered}
0..*

Figure 44. Verification Case Definition and Usage

358 OMG Systems Modeling Language (SysML) v2.0 Beta 1

+kind : RequirementConstraintKind = requirement{redefines kind}

RequirementVerificationMembership

RequirementConstraintMembership

RequirementUsage

{redefines referencedConstraint}

+/verifiedRequirement

1

{subsets
referencingConstraintMembership}

+/requirementVerification

0..*

{subsets requirementConstraintMembership}
+/requirementVerificationMembership 0..1

{redefines ownedConstraint}
+/ownedRequirement 1

Figure 45. Verification Membership

8.3.23.2 RequirementVerificationMembership

Description

A RequirementVerificationMembership is a RequirementConstraintMembership used in the objective
of a VerificationCase to identify a RequirementUsage that is verified by the VerificationCase.

General Classes

RequirementConstraintMembership

Attributes

kind : RequirementConstraintKind {redefines kind}

The kind of a RequirementVerificationMembership must be requirement.

/ownedRequirement : RequirementUsage {redefines ownedConstraint}

The owned RequirementUsage that acts as the ownedConstraint for this
RequirementVerificationMembership. This will either be the verifiedRequirement, or it will subset the
verifiedRequirement.

/verifiedRequirement : RequirementUsage {redefines referencedConstraint}

The RequirementUsage that is identified as being verified. It is the referencedConstraint of the
RequirementVerificationMembership considered as a RequirementConstraintMembership, which must
be a RequirementUsage.

Operations

None.

Constraints

OMG Systems Modeling Language (SysML) v2.0, Beta 1 359

validateRequirementVerificationMembershipKind

A RequirementVerificationMembership must have kind = requirement.

kind = RequirementConstraintKind::requirement

validateRequirementVerificationMembershipOwningType

The owningType of a RequirementVerificationMembership must a RequirementUsage that is owned by
an ObjectiveMembership.

owningType.oclIsKindOf(RequirementUsage) and
owningType.owningFeatureMembership <> null and
owningType.owningFeatureMembership.oclIsKindOf(ObjectiveMembership)

8.3.23.3 VerificationCaseDefinition

Description

A VerificationCaseDefinition is a CaseDefinition for the purpose of verification of the subject of the
case against its requirements.

General Classes

CaseDefinition

Attributes

/verifiedRequirement : RequirementUsage [0..*] {ordered}

The RequirementUsages verified by this VerificationCaseDefinition, which are the
verifiedRequirements of all RequirementVerificationMemberships of the objectiveRequirement.

Operations

None.

Constraints

checkVerificationCaseSpecialization

A VerificationCaseDefinition must directly or indirectly specialize the base
VerificationCaseDefinition VerificationCases::VerificationCase from the Systems Model
Library.

specializesFromLibrary('VerificationCases::VerificationCase')

deriveVerificationCaseDefinitionVerifiedRequirement

The verifiedRequirements of a VerificationCaseDefinition are the verifiedRequirements of its
RequirementVerificationMemberships.

verifiedRequirement =
if objectiveRequirement = null then OrderedSet{}
else

objectiveRequirement.featureMembership->

360 OMG Systems Modeling Language (SysML) v2.0 Beta 1

selectByKind(RequirementVerificationMembership).
verifiedRequirement->asOrderedSet()

endif

8.3.23.4 VerificationCaseUsage

Description

A VerificationCaseUsage is a Usage of a VerificationCaseDefinition.

General Classes

CaseUsage

Attributes

/verificationCaseDefinition : VerificationCaseDefinition [0..1] {subsets caseDefinition}

The VerificationCase that is the definition of this VerificationCaseUsage.

/verifiedRequirement : RequirementUsage [0..*] {ordered}

The RequirementUsages verified by this VerificationCaseUsage, which are the verifiedRequirements
of all RequirementVerificationMemberships of the objectiveRequirement.

Operations

None.

Constraints

checkVerificationCaseUsageSpecialization

A VerificationCaseUsage must subset, directly or indirectly, the base VerificationCaseUsage
VerificationCases::verificationCases from the Systems Model Library.

specializesFromLibrary('VerificationCases::verificationCases')

checkVerificationCaseUsageSubVerificationCaseSpecialization

If it is composite and owned by a VerificationCaseDefinition or VerificationCaseUsage, then it must
specialize VerificationCaseUsage
VerificationCases::VerificationCase::subVerificationCases.

isComposite and owningType <> null and
(owningType.oclIsKindOf(VerificationCaseDefinition) or
owningType.oclIsKindOf(VerificationCaseUsage)) implies

specializesFromLibrary('VerificationCases::VerificationCase::subVerificationCases')

deriveVerificationCaseUsageVerifiedRequirement

The verifiedRequirements of a VerificationCaseUsage are the verifiedRequirements of its
RequirementVerificationMemberships.

verifiedRequirement =
if objectiveRequirement = null then OrderedSet{}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 361

else
objectiveRequirement.featureMembership->

selectByKind(RequirementVerificationMembership).
verifiedRequirement->asOrderedSet()

endif

8.3.24 Use Cases Abstract Syntax
8.3.24.1 Overview

UseCaseUsageUseCaseDefinition

Definition

CalculationDefinition

CaseDefinition

OccurrenceDefinition

ActionDefinition

CaseUsage

Usage

ActionUsage

OccurrenceUsage

CalculationUsage

{subsets ownedCase, ordered}

+/ownedUseCase

0..*

+/useCaseOwningDefinition

{subsets
caseOwningDefinition}

0..1

{redefines caseDefinition}

+/useCaseDefinition

0..1
{subsets definedCase}

+/definedUseCase

0..*

+/includingUseCaseDefinition

0..*

+/includedUseCase

{ordered}
0..*

+/useCaseOwningUsage

{subsets
caseOwningUsage}

0..1

{subsets nestedCase, ordered}

+/nestedUseCase

0..*

+/includingUseCase
0..*

+/includedUseCase

{ordered}
0..*

Figure 46. Use Case Definition and Usage

IncludeUseCaseUsage

PerformActionUsage UseCaseUsage

{redefines performedAction}

+/useCaseIncluded

1

{subsets performingAction}

+/useCaseInclusion

0..*

Figure 47. Included Use Case

8.3.24.2 IncludeUseCaseUsage

Description

362 OMG Systems Modeling Language (SysML) v2.0 Beta 1

An IncludeUseCaseUsage is a UseCaseUsage that represents the inclusion of a UseCaseUsage by a
UseCaseDefinition or UseCaseUsage. Unless it is the IncludeUseCaseUsage itself, the UseCaseUsage to
be included is related to the includedUseCase by a ReferenceSubsetting Relationship. An
IncludeUseCaseUsage is also a PerformActionUsage, with its useCaseIncluded as the performedAction.

General Classes

PerformActionUsage
UseCaseUsage

Attributes

/useCaseIncluded : UseCaseUsage {redefines performedAction}

The UseCaseUsage to be included by this IncludeUseCaseUsage. It is the performedAction of the
IncludeUseCaseUsage considered as a PerformActionUsage, which must be a UseCaseUsage.

Operations

None.

Constraints

checkIncludeUseCaseSpecialization

A IncludeUseCaseUsage whose owningType is a UseCaseDefinition or UseCaseUsage must directly or
indirectly specialize the UseCaseUsage UseCases::UseCase::includedUseCases from the Systems Model
Library.

owningType <> null and
(owningType.oclIsKindOf(UseCaseDefinition) or
owningType.oclIsKindOf(UseCaseUsage) implies

specializesFromLibrary('UseCases::UseCase::includedUseCases')

validateIncludeUseCaseUsageReference

If an IncludeUseCaseUsage has an ownedReferenceSubsetting, then its referencedFeature must be a
UseCaseUsage.

ownedReferenceSubsetting <> null implies
ownedReferenceSubsetting.referencedFeature.oclIsKindOf(UseCaseUsage)

8.3.24.3 UseCaseDefinition

Description

A UseCaseDefinition is a CaseDefinition that specifies a set of actions performed by its subject, in
interaction with one or more actors external to the subject. The objective is to yield an observable result that is of
value to one or more of the actors.

General Classes

CaseDefinition

Attributes

OMG Systems Modeling Language (SysML) v2.0, Beta 1 363

/includedUseCase : UseCaseUsage [0..*] {ordered}

The UseCaseUsages that are included by this UseCaseDefinition, which are the useCaseIncludeds of the
IncludeUseCaseUsages owned by this UseCaseDefinition.

Operations

None.

Constraints

checkUseCaseDefinitionSpecialization

A UseCaseDefinition must directly or indirectly specializes the base UseCaseDefinition
UseCases::UseCase from the Systems Model Library.

specializesFromLibrary('UseCases::UseCase')

deriveUseCaseDefinitionIncludedUseCase

The includedUseCases of a UseCaseDefinition are the useCaseIncludeds of the
IncludeUseCaseUsages owned by the UseCaseDefinition.

includedUseCase = ownedUseCase->
selectByKind(IncludeUseCaseUsage).
useCaseIncluded

8.3.24.4 UseCaseUsage

Description

A UseCaseUsage is a Usage of a UseCaseDefinition.

General Classes

CaseUsage

Attributes

/includedUseCase : UseCaseUsage [0..*] {ordered}

The UseCaseUsages that are included by this UseCaseUse, which are the useCaseIncludeds of the
IncludeUseCaseUsages owned by this UseCaseUsage.

/useCaseDefinition : UseCaseDefinition [0..1] {redefines caseDefinition}

The UseCaseDefinition that is the definition of this UseCaseUsage.

Operations

None.

Constraints

checkUseCaseUsageSpecialization

364 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A UseCaseUsage must directly or indirectly specializes the base UseCaseUsage UseCases::useCases from the
Systems Model Library.

specializesFromLibrary('UseCases::useCases')

checkUseCaseUsageSubUseCaseSpecialization

A composite UseCaseUsage whose owningType is a UseCaseDefinition or UseCaseUsage must specialize
the UseCaseUsage UseCases::UseCase::subUseCases from the Systems Model Library.

isComposite and owningType <> null and
(owningType.oclIsKindOf(UseCaseDefinition) or
owningType.oclIsKindOf(UseCaseUsage)) implies

specializesFromLibrary('UseCases::UseCase::subUseCases')

deriveUseCaseUsageIncludedUseCase

The includedUseCases of a UseCaseUsage are the useCaseIncludeds of the
IncludeUseCaseUsages owned by the UseCaseUsage.

includedUseCase = ownedUseCase->
selectByKind(IncludeUseCaseUsage).
useCaseIncluded

8.3.25 Views and Viewpoints Abstract Syntax
8.3.25.1 Overview

+includeAsExposed(element : Element) : Boolean

ViewUsageViewDefinition

OccurrenceDefinition OccurrenceUsage

RenderingUsage

ViewpointUsage

Definition

ItemDefinition

PartDefinition

Expression

Element

ItemUsage

Usage

PartUsage

{subsets ownedPart, ordered}

+/ownedView

0..*

{subsets partOwningDefinition}

+/viewOwningDefinition

0..1

{redefines partDefinition}

+/viewDefinition

0..1
{subsets definedPart}

+/definedView

0..*

{subsets usage,
ordered}

+/view

0..*
{subsets featuringDefinition}

+/featuringView

0..*

+/viewRendering

0..1

+/renderingOwningViewDefinition
{subsets owningDefinition}

0..1 +/renderingOwningView
{subsets owningUsage}

0..1

+/viewRendering

0..1

{subsets partOwningUsage}

+/viewOwningUsage
0..1

{subsets nestedPart, ordered}
+/nestedView 0..*

+viewpointSatisfyingViewDefinition
{subsets owningDefinition}

0..1

{subsets ownedRequirement,
ordered}

+/satisfiedViewpoint

0..*

{subsets ownedMember,
ordered}

+/viewCondition

0..*

+/owningViewDefinition

{subsets
owningType}

0..1

{subsets namespace}

+/exposingView

0..*
{subsets member,
ordered}

+/exposedElement

0..*

{subsets nestedRequirement,
ordered}

+/satisfiedViewpoint

0..*

+/viewpointSatisfyingView
{subsets featuringUsage}

0..1

{subsets ownedMember,
ordered}

+/viewCondition

0..*

+/owningView

{subsets
owningType}

0..1

Figure 48. View Definition and Usage

OMG Systems Modeling Language (SysML) v2.0, Beta 1 365

RequirementDefinition

OccurrenceDefinition

Definition

ConstraintDefinition

ViewpointDefinition

ViewpointUsage

RequirementUsage

OccurrenceUsage

Usage

ConstraintUsage

PartUsage

{redefines requirementDefinition}

+/viewpointDefinition

0..1
{subsets definedRequirement}

+/definedViewpoint

0..*

{subsets ownedRequirement, ordered}

+/ownedViewpoint

0..*

{subsets requirementOwningDefinition}

+/viewpointOwningDefinition
0..1

{subsets nestedRequirement, ordered}

+/nestedViewpoint

0..*

{subsets requirementOwningUsage}

+/viewpointOwningUsage

0..1

+/viewpointForStakeholder 0..1

+/viewpointStakeholder

{ordered}
0..*

+/viewpointDefinitionForStakeholder 0..1

+/viewpointStakeholder

{ordered}
0..*

Figure 49. Viewpoint Definition and Usage

RenderingDefinition

OccurrenceDefinition

RenderingUsage

OccurrenceUsage

Definition

ItemDefinition

PartDefinition PartUsage

Usage

ItemUsage

{subsets ownedPart, ordered}

+/ownedRendering

0..*

{subsets partOwningDefinition}

+/redenderingOwningDefinition

0..1

{subsets nestedPart, ordered}

+/nestedRendering

0..*

{subsets partOwningUsage}

+/renderingOwningUsage

0..1

{redefines partDefinition}

+/renderingDefinition

0..1
{subsets definedPart}

+/definedRendering

0..*

{subsets usage, ordered}

+/rendering

0..*

+/featuringRenderingDefinition

{subsets featuringDefinition}
0..*

Figure 50. Rendering Definition and Usage

366 OMG Systems Modeling Language (SysML) v2.0 Beta 1

+isImportAll : Boolean = true{redefines isImportAll}

Expose

MembershipExpose

MembershipImport

NamespaceExpose

NamespaceImport

Import

Membership

Namespace
+/importOwningNamespace

1

+/ownedImport

0..*

+importedNamespace 1

+import

0..*
+import 0..*

+importedMembership 1

Figure 51. Expose Relationship

ViewRenderingMembership

FeatureMembership

RenderingUsage

+/referencingRenderingMembership
0..*

+/referencedRendering
1

{redefines ownedMemberFeature}
+/ownedRendering 1

+/viewRenderingMembership 0..1

Figure 52. View Rendering Membership

8.3.25.2 Expose

Description

An Expose is an Import of Memberships into a ViewUsage that provide the Elements to be included in a view.
Visibility is always ignored for an Expose (i.e., isImportAll = true).

General Classes

OMG Systems Modeling Language (SysML) v2.0, Beta 1 367

Import

Attributes

isImportAll : Boolean {redefines isImportAll}

An Expose always imports all Elements, regardless of visibility (isImportAll = true).

Operations

None.

Constraints

validateExposeIsImportAll

An Expose always imports all Elements, regardless of visibility.

isImportAll

validateExposeOwningNamespace

The importOwningNamespace of an Expose must be a ViewUsage.

importOwningNamespace.oclIsType(ViewUsage)

8.3.25.3 MembershipExpose

Description

A MembershipExpose is an Expose that exposes a specific importedMembership and, if isRecursive =
true, additional Memberships recursively.

General Classes

Expose
MembershipImport

Attributes

None.

Operations

None.

Constraints

None.

8.3.25.4 NamespaceExpose

Description

368 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A NamespaceExpose is an Expose Relationship that exposes the Memberships of a specific
importedNamespace and, if isRecursive = true, additional Memberships recursively.

General Classes

Expose
NamespaceImport

Attributes

None.

Operations

None.

Constraints

None.

8.3.25.5 RenderingDefinition

Description

A RenderingDefinition is a PartDefinition that defines a specific rendering of the content of a model view
(e.g., symbols, style, layout, etc.).

General Classes

PartDefinition

Attributes

/rendering : RenderingUsage [0..*] {subsets usage, ordered}

The usages of a RenderingDefinition that are RenderingUsages.

Operations

None.

Constraints

checkRenderingDefinitionSpecialization

A RenderingDefinition must directly or indirectly specialize the base RenderingDefinition
Views::Rendering from the Systems Model Library.

specializesFromLibrary('Views::Rendering')

deriveRenderingDefinitionRendering

The renderings of a RenderingDefinition are all its usages that are RenderingUsages.

rendering = usages->selectByKind(RenderingUsage)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 369

8.3.25.6 RenderingUsage

Description

A RenderingUsage is the usage of a RenderingDefinition to specify the rendering of a specific model view to
produce a physical view artifact.

General Classes

PartUsage

Attributes

/renderingDefinition : RenderingDefinition [0..1] {redefines partDefinition}

The RenderingDefinition that is the definition of this RenderingUsage.

Operations

None.

Constraints

checkRenderingUsageRedefinition

A RenderingUsage whose owningFeatureMembership is a ViewRenderingMembership must redefine the
RenderingUsage Views::View::viewRendering.

owningFeatureMembership <> null and
owningFeatureMembership.oclIsKindOf(ViewRenderingMembership) implies

redefinesFromLibrary('Views::View::viewRendering')

checkRenderingUsageSpecialization

A RenderingUsage must directly or indirectly specialize the base RenderingUsage Views::renderings from
the Systems Model Library.

specializesFromLibrary('Views::renderings')

checkRenderingUsageSubrenderingSpecialization

A RenderingUsage whose owningType is a RenderingDefinition or RenderingUsage must directly or
indirectly specialize the RenderingUsage Views::Rendering::subrenderings from the Systems Model
Library.

owningType <> null and
(owningType.oclIsKindOf(RenderingDefinition) or
owningType.oclIsKindOf(RenderingUsage)) implies

specializesFromLibrary('Views::Rendering::subrenderings')

8.3.25.7 ViewDefinition

Description

370 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A ViewDefinition is a PartDefinition that specifies how a view artifact is constructed to satisfy a
viewpoint. It specifies a viewConditions to define the model content to be presented and a viewRendering to
define how the model content is presented.

General Classes

PartDefinition

Attributes

/satisfiedViewpoint : ViewpointUsage [0..*] {subsets ownedRequirement, ordered}

The composite ownedRequirements of this ViewDefinition that are ViewpointUsages for viewpoints
satisfied by the ViewDefinition.

/view : ViewUsage [0..*] {subsets usage, ordered}

The usages of this ViewDefinition that are ViewUsages.

/viewCondition : Expression [0..*] {subsets ownedMember, ordered}

The Expressions related to this ViewDefinition by ElementFilterMemberships, which specify conditions
on Elements to be rendered in a view.

/viewRendering : RenderingUsage [0..1]

The RenderingUsage to be used to render views defined by this ViewDefinition, which is the
referencedRendering of the ViewRenderingMembership of the ViewDefinition.

Operations

None.

Constraints

checkViewDefinitionSpecialization

A ViewDefinition must directly or indirectly specialize the base ViewDefinition Views::View from the
Systems Model Library.

specializesFromLibrary('Views::View')

deriveViewDefinitionSatisfiedViewpoint

The satisfiedViewpoints of a ViewDefinition are its ownedRequirements that are composite
ViewpointUsages.

satisfiedViewpoint = ownedRequirement->
selectByKind(ViewpointUsage)->
select(isComposite)

deriveViewDefinitionView

The views of a ViewDefinition are all its usages that are ViewUsages.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 371

view = usage->selectByKind(ViewUsage)

deriveViewDefinitionViewCondition

The viewConditions of a ViewDefinition are the conditions of its owned ElementFilterMemberships.

viewCondition = ownedMembership->
selectByKind(ElementFilterMembership).
condition

deriveViewDefinitionViewRendering

The viewRendering of a ViewDefinition is the referencedRendering of its owned
ViewRenderingMembership, if any.

viewRendering =
let renderings: OrderedSet(ViewRenderingMembership) =

featureMembership->selectByKind(ViewRenderingMembership) in
if renderings->isEmpty() then null
else renderings->first().referencedRendering
endif

validateViewDefinitionOnlyOneViewRendering

A ViewDefinition must have at most one ViewRenderingMembership.

featureMembership->
selectByKind(ViewRenderingMembership)->
size() <= 1

8.3.25.8 ViewpointDefinition

Description

A ViewpointDefinition is a RequirementDefinition that specifies one or more stakeholder concerns that
are to be satisfied by creating a view of a model.

General Classes

RequirementDefinition

Attributes

/viewpointStakeholder : PartUsage [0..*] {ordered}

The PartUsages that identify the stakeholders with concerns framed by this ViewpointDefinition, which are
the owned and inherited stakeholderParameters of the framedConcerns of this ViewpointDefinition.

Operations

None.

Constraints

checkViewpointDefinitionSpecialization

372 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A ViewpointDefinition must directly or indirectly specialize the base ViewpointDefinition
Views::Viewpoint from the Systems Model Library.

specializesFromLibrary('Views::Viewpoint')

deriveViewpointDefinitionViewpointStakeholder

The viewpointStakeholders of a ViewpointDefinition are the ownedStakeholderParameters of all
featureMemberships that are StakeholderMemberships.

viewpointStakeholder = framedConcern.featureMemberhsip->
selectByKind(StakeholderMembership).
ownedStakeholderParameter

8.3.25.9 ViewpointUsage

Description

A ViewpointUsage is a Usage of a ViewpointDefinition.

General Classes

RequirementUsage

Attributes

/viewpointDefinition : ViewpointDefinition [0..1] {redefines requirementDefinition}

The ViewpointDefinition that is the definition of this ViewpointUsage.

/viewpointStakeholder : PartUsage [0..*] {ordered}

The PartUsages that identify the stakeholders with concerns framed by this ViewpointUsage, which are the
owned and inherited stakeholderParameters of the framedConcerns of this ViewpointUsage.

Operations

None.

Constraints

checkViewpointUsageSpecialization

A ViewpointUsage must directly or indirectly specialize the base ViewpointUsage Views::viewpoints from
the Systems Model Library.

specializesFromLibrary('Views::viewpoints')

checkViewpointUsageViewpointSatisfactionSpecialization

A composite ViewpointUsage whose owningType is a ViewDefinition or ViewUsage must directly or
indirectly specialize the ViewpointUsage Views::View::viewpointSatisfactions from the Systems Model
Library.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 373

isComposite and owningType <> null and
(owningType.oclIsKindOf(ViewDefinition) or
owningType.oclIsKindOf(ViewUsage)) implies

specializesFromLibrary('Views::View::viewpointSatisfactions')

deriveViewpointUsageViewpointStakeholder

The viewpointStakeholders of a ViewpointUsage are the ownedStakeholderParameters of all
featureMemberships that are StakeholderMemberships.

viewpointStakeholder = framedConcern.featureMemberhsip->
selectByKind(StakeholderMembership).
ownedStakeholderParameter

8.3.25.10 ViewRenderingMembership

Description

A ViewRenderingMembership is a FeatureMembership that identifies the viewRendering of a
ViewDefinition or ViewUsage.

General Classes

FeatureMembership

Attributes

/ownedRendering : RenderingUsage {redefines ownedMemberFeature}

The owned RenderingUsage that is either itself the referencedRendering or subsets the
referencedRendering.

/referencedRendering : RenderingUsage

The RenderingUsage that is referenced through this ViewRenderingMembership. It is the
referencedFeature of the ownedReferenceSubsetting for the ownedRendering, if there is one, and,
otherwise, the ownedRendering itself.

Operations

None.

Constraints

deriveVewRenderingMembershipReferencedRendering

The referencedRendering of a ViewRenderingMembership is the referencedFeature of the
ownedReferenceSubsetting (which must be a RenderingUsage) of the ownedRendering, if there is one, and,
otherwise, the ownedRendering itself.

referencedRendering =
let reference: ReferenceSubsetting =

ownedRendering.ownedReferenceSubsetting in
if reference = null then ownedRendering
else if not reference.referencedFeature.oclIsKindOf(RenderingUsage) then null

374 OMG Systems Modeling Language (SysML) v2.0 Beta 1

else reference.referencedFeature.oclAsType(RenderingUsage)
endif

validateViewRenderingMembershipOwningType

The owningType of a ViewRenderingMembership must be a ViewDefinition or a ViewUsage.

owningType.oclIsKindOf(ViewDefinition) or
owningType.oclIsKindOf(ViewUsage)

8.3.25.11 ViewUsage

Description

A ViewUsage is a usage of a ViewDefinition to specify the generation of a view of the members of a collection
of exposedNamespaces. The ViewUsage can satisfy more viewpoints than its definition, and it can specialize
the viewRendering specified by its definition.

General Classes

PartUsage

Attributes

/exposedElement : Element [0..*] {subsets member, ordered}

The Elements that are exposed by this ViewUsage, which are those memberElements of the imported
Memberships from all the Expose Relationships that meet all the owned and inherited viewConditions.

/satisfiedViewpoint : ViewpointUsage [0..*] {subsets nestedRequirement, ordered}

The nestedRequirements of this ViewUsage that are ViewpointUsages for (additional) viewpoints satisfied by
the ViewUsage.

/viewCondition : Expression [0..*] {subsets ownedMember, ordered}

The Expressions related to this ViewUsage by ElementFilterMemberships, which specify conditions on
Elements to be rendered in a view.

/viewDefinition : ViewDefinition [0..1] {redefines partDefinition}

The ViewDefinition that is the definition of this ViewUsage.

/viewRendering : RenderingUsage [0..1]

The RenderingUsage to be used to render views defined by this ViewUsage, which is the
referencedRendering of the ViewRenderingMembership of the ViewUsage.

Operations

includeAsExposed(element : Element) : Boolean

Determine whether the given element meets all the owned and inherited viewConditions.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 375

body: let metadataFeatures: Sequence(AnnotatingElement) =
element.ownedAnnotation.annotatingElement->

select(oclIsKindOf(MetadataFeature)) in
self.membership->selectByKind(ElementFilterMembership).

condition->forAll(cond |
metadataFeatures->exists(elem |

cond.checkCondition(elem)))

Constraints

checkViewUsageSpecialization

A ViewUsage must directly or indirectly specialize the base ViewUsage Views::views from the Systems Model
Library.

specializesFromLibrary('Views::views')

checkViewUsageSubviewSpecialization

A ViewUsage whose owningType is a ViewDefinition or ViewUsage must specialize the ViewUsage
Views::View::subviews from the Systems Library Model.

owningType <> null and
(owningType.oclIsKindOf(ViewDefinition) or
owningType.oclIsKindOf(ViewUsage)) implies

specializesFromLibrary('Views::View::subviews')

deriveViewUsageExposedElement

The exposedElements of a ViewUsage are those memberElements of the imported Memberships from all the
Expose Relationships for which the includeAsExposed operation returns true.

exposedElement = ownedImport->selectByKind(Expose).
importedMemberships(Set{}).memberElement->
select(elm | includeAsExposed(elm))->
asOrderedSet()

deriveViewUsageSatisfiedViewpoint

The satisfiedViewpoints of a ViewUsage are its ownedRequirements that are composite
ViewpointUsages.

satisfiedViewpoint = ownedRequirement->
selectByKind(ViewpointUsage)->
select(isComposite)

deriveViewUsageViewCondition

The viewConditions of a ViewUsage are the conditions of its owned ElementFilterMemberships.

viewCondition = ownedMembership->
selectByKind(ElementFilterMembership).
condition

deriveViewUsageViewRendering

376 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The viewRendering of a ViewUsage is the referencedRendering of its owned
ViewRenderingMembership, if any.

viewRendering =
let renderings: OrderedSet(ViewRenderingMembership) =

featureMembership->selectByKind(ViewRenderingMembership) in
if renderings->isEmpty() then null
else renderings->first().referencedRendering
endif

validateViewUsageOnlyOneViewRendering

A ViewUsage must have at most one ViewRenderingMembership.

featureMembership->
selectByKind(ViewRenderingMembership)->
size() <= 1

8.3.26 Metadata Abstract Syntax
8.3.26.1 Overview

OccurrenceDefinition

MetadataDefinition

Metaclass

MetadataUsage

OccurrenceUsage

MetadataFeature

UsageDefinition

ItemDefinition ItemUsage

+/metadataOwningDefinition

{subsets
itemOwningDefinition}

0..1

{subsets ownedItem,
ordered}

+/ownedMetadata

0..*

{subsets definedItem,
subsets typedMetadata}

+/definedMetadata

0..*
{redefines itemDefinition,
redefines metaclass}

+/metadataDefinition
0..1

{subsets nestedItem,
ordered}

+/nestedMetadata

0..*

+/metadataOwningUsage

{subsets
itemOwningUsage}

0..1

Figure 53. Metadata Definition and Usage

8.3.26.2 MetadataDefinition

Description

A MetadataDefinition is an ItemDefinition that is also a Metaclass.

General Classes

Metaclass

OMG Systems Modeling Language (SysML) v2.0, Beta 1 377

ItemDefinition

Attributes

None.

Operations

None.

Constraints

checkMetadataDefinitionSpecialization

A MetadataDefinition must directly or indirectly specialize the base MetadataDefinition
Metadata::MetadataItem from the Systems Model Library.

specializesFromLibrary('Metadata::MetadataItem')

8.3.26.3 MetadataUsage

Description

A MetadataUsage is a Usage and a MetadataFeature, used to annotate other Elements in a system model with
metadata. As a MetadataFeature, its type must be a Metaclass, which will nominally be a
MetadataDefinition. However, any kernel Metaclass is also allowed, to permit use of Metaclasses from the
Kernel Model Libraries.

General Classes

ItemUsage
MetadataFeature

Attributes

/metadataDefinition : Metaclass [0..1] {redefines itemDefinition, metaclass}

The MetadataDefinition that is the definition of this MetadataUsage.

Operations

None.

Constraints

checkMetadataUsageSpecialization

A MetadataUsage must directly or indirectly specialize the base MetadataUsage Metadata::metadataItems
from the Systems Model Library.

specializesFromLibrary('Metadata::metadataItems')

8.4 Semantics

378 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.4.1 Semantics Overview

The semantics of constructs in SysML are specified in terms of the constructs defined in KerML supported by reuse
of model elements from the Kernel Semantic Model Library (see [KerML, 9.2]) and the Systems Model Library (see
9.2). This is similar to how the KerML Kernel Layer semantics are build on the KerML Core Layer (see [KerML,
8.4.4.1]). The semantic requirements are formalized by semantic constraints included in the SysML abstract syntax
(see also 8.3.1 on the various kinds of constraints in the abstract syntax). Additionally, other semantic constraints
require relationships between elements within a user model necessary for the model to be semantically well formed.

Specifically, there are four categories of semantic constraints used to specify SysML semantics, each dealing with a
different kind of relationship.

1. Specialization constraints. These constraints require that Definition or Usage elements of a certain
kind directly or indirectly specialize some specific base Definition or Usage from the Kernel Semantic
Library or the Systems Model Library. They are the fundamental means for providing semantics to
abstract syntax elements in SysML. Specialization constraints always have the word Specialization in
their name. For example, checkPartDefinitionSpecialization requires that a PartDefinition
directly or indirectly specialize the PartDefinition Parts::Part from the Systems Model Library.

2. Redefinition constraints. These constraints require that certain Usages in a model have Redefinition
relationships with certain other Usages (or KerML Features) in the model. While Redefinitions are
kinds of Specializations, redefinition constraints differ from the specialization constraints described
above because of the specific semantics of redefinition. Redefinition constraints always have the word
Redefinition in their name. For example, checkRenderingUsageRedefinition requires a
Redefinition on a RenderingUsage used to specify a viewRendering.

3. Type-featuring constraints. These constraints require that certain Usages in a model have
TypeFeaturing relationships with certain other Definitions or Usages in the model. The SysML
specification includes only one constraint in this category, checkOccurrenceUsageFeatureTyping,
which applies to OccurrenceUsages modeling time slices or snaphots. However, various type-featuring
constraints from KerML also apply to corresponding SysML constructs. For instance, the KerML
checkConnectorTypeFeaturing also applies to SysML ConnectionUsages.

4. Binding-connector constraints. These constraints require that BindingConnectors exist between certain
Features in a model. For example, checkSatisfyRequirementUsageBindingConnector requires
that the satisfyingFeature of a SatisfyRequirementUsage be bound to the subject of the
SatisfyRequirementUsage. (In a SysML model, it is allowable for binding-connector constraints to be
satisfied by SysML BindingConnectorAsUsages, rather than plain KerML BindingConnectors.)

A SysML model parsed from the textual or graphical concrete syntax (see 8.2) or obtained through model
interchange (see [KerML, Clause 10]) will not necessarily meet the semantic constraints specified for the abstract
syntax. In this case, a tool may insert certain implied Relationships into the model in order to meet the semantic
constraints. In all cases, the semantics of a model are only defined if it meets all semantic and validation constraints
(see 8.3.1).

For specialization constraints applying to Definitions, the implied Relationship is a Subclassification,
as given in Table 30. For specialization constraints applying to Usages, the implied Relationship is a
Subsetting, as given in Table 31. For redefinition, type-featuring and binding-connector constraints, the implied
Relationship is a Redefinition, TypeFeaturing, or BindingConnector, as given in Table 32. Note that an
implied Relationship should only be added if the constraint would actually be violated otherwise. For the detailed
conditions on when a constraint applies, see its specification in the abstract syntax model (8.3).

When including implied Relationships for specialization constraints, it is possible that multiple such constraints
may apply to a single Element. For example, a PartDefinition is a kind of ItemDefinition, which is a kind
of OccurrenceDefinition, and there are specialization constraints for all three of these metaclasses, with
corresponding implied Subclassification Relationships. However, simply including all three implied

OMG Systems Modeling Language (SysML) v2.0, Beta 1 379

Subclassification would be redundant, because the Subclassification implied by the
checkPartDefinitionSpecialization constraint will also automatically satisfy the
checkItemDefinitionSpecialization and checkOccurrenceDefinitionSpecialization constraints.

Therefore, in order to avoid redundant Relationships, a tool should observe the following rules when selecting
which Specializations to actually include for a certain constrained Element, out of the set of those implied by
all specialization constraints applicable to the Element:

1. If there is any ownedSpecialization or other implied Specialization whose general Type is a
direct or indirect subtype of (but not the same as) the general Type of an implied Specialization, or
if there is an ownedSpecialization with the same general Type, then that implied
Specialization should not be included.

2. If there are two implied Specializations with the same general Type, then only one should be
included.

Note that the above rules do not apply to Redefinitions implied by redefinition constraints, because
Redefinition relationships have semantics beyond just basic Specialization.

The following subclauses specify the semantics for each syntactic area of SysML in terms of the semantic
constraints that must be satisfied for various Elements, the pattern of Relationships these imply, and the model
library Elements that are reused to support this. For compactness, the textual notation is used in these subclauses to
present model snippets to illustrate the semantic patterns being discussed. However, it should be understood that,
like the semantic constraints themselves, these semantic patterns are actually defined on the abstract syntax
representation of a model, independent of its textual or graphical concrete syntax representation.

Table 30. Implied Definition Subclassification Relationships

Semantic Constraint Subclassification Target
(see Note 1)

checkLifeClassLifeSpecialization Occurrences::Life

checkLifeClassOccurrenceSpecialization individualDefinition of the LifeClass
checkItemDefinitionSpecialization Items::Item

checkPartDefinitionSpecialization Parts::Part

checkPortDefinitionSpecialization Ports::Port

checkConnectionDefinitionSpecialization Connections::Connection

checkConnectionDefinitionBinarySpecialization Connections::BinaryConnection

checkFlowConnectionDefinitionSpecialization Connections::MessageConnection

checkInterfaceDefinitionSpecialization Interfaces::Interface

checkInterfaceDefinitionBinarySpecialization Interface::BinaryInterface

checkAllocationDefinitionSpecialization Allocations::Allocation

checkActionDefinitionSpecialization Actions::Action

checkStateDefinitionSpecialization States::StateAction

checkCalculationDefinitionSpecialization Calculations::Calculation

checkConstraintDefinitionSpecialization Constraints::ConstraintCheck

380 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Semantic Constraint Subclassification Target
(see Note 1)

checkRequirementDefinitionSpecialization Requirements::RequirementCheck

checkConcernDefinitionSpecialization Concerns::ConcernCheck

checkCaseDefinitionSpecialization Cases::Case

checkAnalysisCaseDefinitionSpecialization AnalysisCases::AnalysisCase

checkVerificationCaseDefinitionSpecialization VerificationCases::VerificationCase

checkUseCaseDefinitionSpecialization UseCases::UseCase

checkViewDefinitionSpecialization Views::View

checkViewpointDefinitionSpecialization Views::ViewpointCheck

checkRenderingDefinitionSpecialization Views::Rendering

checkMetadataDefinitionSpecialization Views::MetadataItem

Notes

1. In all cases, the source of the Subclassification is the Definition to which the constraint applies.

Table 31. Implied Usage Subsetting Relationships

Semantic Constraint Subsetting Target
(see Note 1)

checkUsageVariationUsageSpecialization owningVariationUsage of the Usage
checkAttributeUsageSpecialization Attributes::attributes

checkEventOccurrenceSpecialization Occurrences::Occurrence::
timeEnclosedOccurrences

checkLifeClassMultiplicitySpecialization Base::exactlyOne (source is the multiplicity of
the LifeClass)

checkOccurrenceUsageSpecialization Occurrences::occurrences

checkOccurrenceUsageSuboccurrence
Specialization

Occurrences::Occurrence::
suboccurrences

checkItemUsageSpecialization Items::items

checkItemUsageSubitemSpecialization Items::Item::subitems

checkPartUsageSpecialization Parts::parts

checkPartUsageSubpartSpecialization Items::Item::subparts

checkPartUsageActorSpecialization
Requirements::Requirement::actors or
Cases::Case::actors (depending on the
owningType of the PartUsage)

checkPartUsageStakeholderSpecialization Requirements::Requirement::
stakeholders

checkPortUsageSpecialization Ports::ports

OMG Systems Modeling Language (SysML) v2.0, Beta 1 381

Semantic Constraint Subsetting Target
(see Note 1)

checkPortSubportSpecialization Ports::Port::subports

checkConnectionUsageSpecialization Connections::connections

checkConnectionUsageBinarySpecialization Connections::binaryConnections

checkFlowConnectionUsageSpecialization
Connections::messageConnections or
Connections::flowConnections (depending on
whether the FlowConnectionUsage has
itemFlowEnds)

checkSuccessionFlowConnectionUsage
Specialization Connections::successionFlowConnections

checkInterfaceUsageSpecialization Interfaces::interfaces

checkInterfaceUsageBinarySpecialization Interfaces::binaryInterfaces

checkAllocationUsageSpecialization Allocations::allocations

checkActionUsageSpecialization Actions::actions

checkActionUsageSubactionSpecialization Actions::Action::subactions

checkActionUsageOwnedActionSpecialization Parts::Part::ownedActions

checkActionUsageAnalysisAction
Specialization

AnalysisCases::AnalysisCase::
analysisActions

checkControlNodeSpecialization Actions::Action::controls

checkJoinNodeSpecialization Actions::Action::joins

checkForkNodeSpecialization Actions::Action::forks

checkMergeNodeSpecialization Actions::Action::merges

checkMergeNodeIncomingSuccession
Specialization

incomingHBLink of the MergeNode (source is the
incoming Succession)

checkDecisionNodeSpecialization Actions::Action::decisions

checkDecisionNodeOutgoingSuccession
Specialization

outgoingHBLink of the DecisionNode (source is the
outgoing Succession)

checkSendActionUsageSpecialization Actions::sendActions

checkSendActionUsageSubaction
Specialization Actions::Action::sendSubactions

checkAcceptActionUsageSpecialization Actions::acceptActions

checkAcceptActionUsageSubaction
Specialization Actions::Action::acceptSubctions

checkAcceptActionUsageTriggerAction
Specialization Actions::TransitionAction::accepter

checkAssignmentActionUsageSpecialization Actions::assignmentActions

382 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Semantic Constraint Subsetting Target
(see Note 1)

checkAssignmentActionUsageSubaction
Specialization Actions::Action::assignments

checkIfActionUsageSpecialization
Actions::ifThenActions or
Actions::ifThenElseActions (depending on
whether the IfActionUsage has an elseClause)

checkIfActionUsageSubactionSpecialization Actions::Action::ifSubactions

checkWhileLoopActionUsageSpecialization Actions::whileLoopActions

checkWhileLoopActionUsageSubaction
Specialization Actions::Action::whileLoops

checkForLoopActionUsageSpecialization Actions::forLoopActions

checkForLoopActionUsageSubaction
Specialization Actions::Action::forLoops

checkPerformActionUsageSpecialization Parts::Part::performedActions

checkStateUsageSpecialization States::stateActions

checkStateUsageSubstateSpecialization States::State::substates

checkStateUsageExclusiveState
Specialization States::State::exclusiveStates

checkTransitionUsageSpecialization Actions::transitions

checkTransitionUsageActionSpecialization Actions::Action::decisionTransitions

checkTransitionUsageStateSpecialization States::StateAction::stateTransitions

checkTransitionUsagePayloadSpecialization
TransitionAction::triggerAction.
payloadParameter (source is
TransitionAction::payload)

checkTransitionUsageSuccessionSource
Specialization

source of the TransitionUsage (source is the
sourceFeature of the succession of the
TransitionUsage; Relationship is a
ReferenceSubsetting)

checkTransitionUsageTransitionFeature
Specialization

accepter, guard, or effect of
Actions::TranstionActions (for the
triggerActions, guardExpressions, and
effectActions of the TransitionUsage,
respectively)

checkExhibitStateUsageSpecialization Parts::Part::exhibitedStates

checkCalculationUsageSpecialization Calculations::calculations

checkCalculationUsageSubcalculation
Specialization Calculations::Calculation::subcalculations

checkConstraintUsageSpecialization Constraints::constraintChecks

OMG Systems Modeling Language (SysML) v2.0, Beta 1 383

Semantic Constraint Subsetting Target
(see Note 1)

checkConstraintUsageCheckedConstraint
Specialization Items::Item::checkConstraints

checkConstraintUsageRequirementConstraint
Specialization

Requirements::RequirementCheck::assumptions
or
Requirements::RequirementCheck::constraints
(depending on whether the kind of the owning
RequirementConstraintMembership is
assumption or requirement)

checkAssertConstraintUsageSpecialization
Either Constraints::assertedConstraints (if
isNegated = false) or
Constraints::negatedConstraints (if isNegated
= true)

checkRequirementUsageSpecialization Requirements::requirementChecks

checkRequirementUsageSubrequirement
Specialization

Requirements::RequirementCheck::
subrequirement

checkRequirementUsageRequirement
VerificationSpecialization

VerificationCases::VerificationCase::obj::
requirementVerifications

checkConcernUsageSpecialization Requirements::concernChecks

checkConcernUsageFramedConcern
Specialization Requirements::RequirementCheck::concerns

checkCaseUsageSpecialization Cases::Cases

checkCaseUsageSubcaseSpecialization Cases::Case::subcases

checkAnalysisCaseUsageSpecialization AnalysisCases::analysisCases

checkAnalysisCaseUsageSubAnalysisCase
Specialization

AnalysisCases::AnalysisCase::
subAnalysisCases

checkVerificationCaseUsageSpecialization VerificationCases::verificationCases

checkVerificationCaseUsageSubVerification
CaseSpecialization

VerificationCases::VerificationCase::
subVerificationCases

checkUseCaseUsageSpecialization UseCases::useCases

checkUseCaseUsageSubUseCaseSpecialization UseCases::UseCase::subUseCases

checkIncludeUseCaseUsageSpecialization UseCases::UseCase::includedUseCases

checkViewUsageSpecialization Views::views

checkViewUsageSubviewSpecialization Views::View::subviews

checkViewpointUsageSpecialization Views::viewpoints

checkViewpointUsageViewpointSatisfaction
Specialization Views::View::viewpointSatisfactions

checkRenderingUsageSpecialization Views::renderings

384 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Semantic Constraint Subsetting Target
(see Note 1)

checkRenderingUsageSubrendering
Specialization Views::Rendering::subrenderings

checkMetadataUsageSpecialization Metadata::metadataItems

Notes

1. Unless otherwise indicated, the source of the Subsetting is the Usage to which the constraint applies.

Table 32. Other Implied Relationships

Semantic Constraint Source Target

Redefinition

checkActionUsageStateAction
Redefinition The ActionUsage

entryAction, doAction, or
exitAction of
States::StateAction (depending
on whether the kind of the owning
StateSubactionMembership is
entry, do, or exit, respectively)

checkAssignmentActionUsage
AccessedFeatureRedefinition

The first ownedFeature of the first
ownedFeature of the first
parameter of the
AssignmentActionUsage

AssignmentAction::target::
startingAt::accessedFeature

checkAssignmentActionUsage
ReferentRedefinition

The first ownedFeature of the first
ownedFeature of the first
parameter of the
AssignmentActionUsage

referent of the
AssignmentActionUsage

checkAssignmentActionUsage
StartingAtRedefinition

The first ownedFeature of the first
parameter of the
AssignmentActionUsage

AssignmentAction::target::
startingAt

checkRequirementUsage
ObjectiveSpecialization The RequirementUsage

The objectiveRequirement of
each CaseDefinition or
CaseUsage specialized by the
owningType of the
RequirementUsage.

checkRenderingUsage
Redefinition The RenderingUsage Views::View::viewRendering

TypeFeaturing

checkOccurrenceUsage
TypeFeaturing The OccurrenceUsage occurenceDefinition of the

OccurrenceUsage

OMG Systems Modeling Language (SysML) v2.0, Beta 1 385

Semantic Constraint Source Target

BindingConnector
(see Note 1)

checkAcceptActionUsage
ReceiverBindingConnector

The receiver parameter (second
parameter) of the
AcceptActionUsage

The receiver parameter (second
parameter) of the
TriggerInvocationExpression

checkTransitionUsageSource
BindingConnector

The source of the
TransitionUsage

The transitionLinkSource
parameter (first input parameter)
of the TransitionUsage

checkTransitionUsage
SuccessionBindingConnector

The succession of the
TransitionUsage

TransitionPerformances::
TransitionPerformance::
transitionLink

checkSatisfyRequirement
UsageBindingConnector

subjectParameter of the
SatisfyRequirementUsage Base::things::that

Notes

1. It is acceptable to use either KerML BindingConnectors or SysML BindingConnectorAsUsages as
the implied Relationships for binding-connector constraints. However, a conforming tool should
consistently use one or the other.

8.4.2 Definition and Usage Semantics

Abstract syntax reference: 8.3.6

8.4.2.1 Definitions

A SysML Definition has the semantics of a KerML Classifier (see [KerML, 8.4.3.3]). However, a
Definition element is always either instantiated as one of its more specific subclasses (e.g.,
AttributeDefinition, ItemDefinition, etc.), or with at least one semantic metadata annotation. In the former
case, the Definition has the semantics of the more specialize kind. In the latter case it has semantics as given by
the base Type(s) from the annotation(s) (see 8.4.22).

8.4.2.2 Usages

A SysML Usage has the semantics of a KerML Feature (see [KerML, 8.4.3.4]). However, a Usage element is
always either instantiated as on of its mode specific subclasses (e.g., AttributeUsage, ItemUsage, etc.), or with
at least one semantic metadata annotation. In the former case, the Usage has the semantics of the more specialized
kind, except that a ReferenceUsage has no additional semantics. In the latter case it has semantics as given by the
base Type(s) from the annotation(s) (see 8.4.22).

8.4.2.3 Variation Definitions and Usages

A Definition or Usage with isVariation = true has additional semantic restrictions. In this case, the
validateDefinitionVariationMembership and validateUsageVariationMembership constraints
require that all the ownedMembers of the Definition or Usage be variant Usages. The
checkUsageVariationDefinitionSpecialization and checkUsageVariationUsageSpecialization

386 OMG Systems Modeling Language (SysML) v2.0 Beta 1

constraints then require that each variant Usage directly or indirectly specialize its owning variation Definition
or Usage.

Thus, a variation Definition of the form

variation part def P {
variant part p1;
variant part p2;
...

}

has, with implied Relationships included, the equivalent kernel semantics of

// KerML
class P specializes Parts::Part {

member feature p1 : P subsets Parts::parts;
member feature p2 : P subsets Parts::parts;
...

}

Note that VariantMemberships are OwningMemberships but not FeatureMemberships, so variant Usages
are ownedMembers but not ownedFeatures of the variation Definition. Similarly, a Usage of the form

variation part p {
variant part p1;
variant part p2;
...

}

has, with implied Relationships included, the equivalent kernel semantics of

// KerML
feature p subsets Parts::parts {

member feature p1 subsets p;
member feature p2 subsets p;
...

}

(PartDefinition and PartUsage are used in the examples above for concreteness, but the variation semantics
are similar for any kind of Definition or Usage other than EnumerationDefinition or EnumerationUsage.)

In addition, the allowable instances of a variation Definition or Usage shall be restricted to values of its
corresponding owned variant Usages. This is the fundamental intent of enumerating the variants in the
variation declaration. Since a variation enumerates in this way a fixed set of allowed variants, it is not valid for a
variation to specialize another variation, since this would imply an inconsistent subsetting of the allowed instances
in the specialized Definition or Usage.

Note. The semantic restriction on the instances of a variation is not currently formally captured in the Systems
semantic model. However, it is required to be enforced by any semantically conformant tool for variability
modeling.

8.4.3 Attributes Semantics

Abstract syntax reference: 8.3.7

OMG Systems Modeling Language (SysML) v2.0, Beta 1 387

8.4.3.1 Attribute Definitions

An AttributeDefinition is a kind of Definition and a kind of KerML DataType. The base
AttributeDefinition Attributes::AttributeValue (see 9.2.2.2.1) is just an alias for the KerML
DataType Base::DataValue (see [KerML, 9.2.2]). Therefore, SysML AttributeDefinitions have the same
semantics as KerML DataTypes (see [KerML, 8.4.4.2]), and the KerML checkDataTypeSpecialization
constraint requires that an AttributeDefinition specialize Base::DataValue. An AttributeDefinition is
also syntactically restricted by the validateAttributeDefinitionFeatures constraint to have no composite
features.

attribute def D1 specializes Base::DataValue {
ref a subsets Base::things;

}

As specified in the Kernel Semantic Library, DataValue is disjoint from Occurrence, which is the base Type of
SysML OccurrenceDefinitions (see 8.4.5). This means that an AttributeDefinition cannot specialize an
OccurrenceDefinition (or any of its more specialized kinds, such as ItemDefinition, ActionDefinition
and ConstraintDefinition).

8.4.3.2 Attribute Usages

An AttributeUsage is a kind of Usage that is syntactically required to be defined only by DataTypes (including
AttributeDefinitions). The base AttributeUsage Attributes::attributeValues (see 9.2.2.2.2) is an
alias for the KerML Feature Base::dataValues (see [KerML, 9.2.2]). The
checkAttributeUsageDataTypeSpecialization constraint requires that an AttributeUsage specialize
Base::dataValues, which is typed by Base::DataValue. AttributeUsages are also syntactically restricted
by the validateAttributeUsageIsReference to be referential (non-composite) and, by the
validateAttributeUsageFeatures constraint to have no composite features.

attribute def D2 specializes Base::DataValue {
ref attribute a : ScalarValue::String subsets Base::dataValues;

}
ref attribute d : D2 subsets Base::dataValues {

ref attribute b subsets a;
}

8.4.4 Enumerations Semantics

Abstract syntax reference: 8.3.8

An EnumerationDefinition is a kind of AttributeDefinition, so the semantic constraints for KerML
DataTypes apply to it, as for an AttributeDefinition (see 8.4.3). However, an EnumerationDefinition is
also required to have isVariation = true, and its enumeratedValues are then just its variants (see 8.4.2.3
on the semantics of variation Definitions). Therefore, an EnumerationDefinition of the form

enum def E {
enum e1;
enum e2;
...

}

is essentially equivalent to

variation attribute def E specializes Base::DataValue {
variant attribute e1 : E subsets Base::dataValues;

388 OMG Systems Modeling Language (SysML) v2.0 Beta 1

variant attribute e2 : E subsets Base::dataValues;
...

}

Note, in particular, that this means that the enumeratedValues are not features of the containing
EnumeratedDefinition but, rather, members owned via VariantMemberships. However, other than when
nested in an EnumerationDefinition, an EnumerationUsage is semantically just an AttributeUsage that is
required to be typed by exactly one EnumerationDefinition (syntactically enforced by the 1..1 multiplicity of
EnumerationUsage::enumerationDefinition, see 8.3.8).

Since an EnumerationDefinition is already a variation, there is no further concept of a "variation enumeration".
Also, since, in general, a variation cannot specialize another variation (as discussed in 8.4.2.3), an
EnumerationDefinition cannot specialize another EnumerationDefinition.

8.4.5 Occurrences Semantics

Abstract syntax reference: 8.3.9

8.4.5.1 Occurrence Definitions

An OccurrenceDefinition is a kind of Definition and a kind of KerML Class. The kernel
checkClassSpecialization constraint requires that it specialize the base Class Occurrences::Occurrence
from the Kernel Semantic Library (see [KerML, 9.2.4]). Therefore, SysML OccurrenceDefinitions have the
same basic semantics as KerML Classes (see [KerML, 8.4.4.3]). However, there are additional semantic
constraints on an OccurrenceDefinition if it has isIndividual = true (see below). The Class
Occurrences::Occurrence is disjoint with Base::DataValues, the base Type for AttributeDefinitions
(see 8.4.3), so an OccurrenceDefinition cannot specialize an AttributeDefinition.

If an OccurrenceDefinition has isIndividual = true, then the
validateOccurrenceDefinitionLifeClass constraint requires that it have a single ownedMember that is a
LifeClass. The following constraints apply to LifeClass:

• checkLifeClassLifeSpecialization requires that it specialize the Class Life from the Kernel
Semantic Library Occurrences (see [KerML, 9.2.4]).

• checkLifeClassOccurrenceSpecialization requires that it specialize its owning
OccurrenceDefinition.

• checkLifeClassMultiplicitySpecialization requires that it have multiplicity zeroOrOne.
• validateLifeClassIsSufficient requires that it have isSufficient = true.

Thus, an OccurrenceDefinition declaration of the form

individual occurrence def Ind;

has the equivalent kernel semantics of

// KerML
class Ind specializes Occurrences::Occurrence {

class all Life specializes Occurrences::Life, Ind {
multiplicity subsets Base::zeroOrOne;

}
}

The Kernel Semantic Library Class Life classifies all Occurrences that are maximal portions, that is, those
Occurrences that are not a portion of any other Occurrence. Every Occurrence is a portion of some Life

OMG Systems Modeling Language (SysML) v2.0, Beta 1 389

(possibly itself), as given by the value of its portionOfLife feature (see [KerML, 9.2.4]). An individual
Occurrence is modeled as the subclass that includes a single Life and all possible portions (in time and space) of
that Life. Colloquially, a Life represents the "identity" of an individual and the totality of its existence in space
and time.

The required Specializations and sufficiency of a LifeClass mean that it is the subclass of all Lives that are
also instances of the owning OccurrenceDefinition. The zeroOrOne multiplicity of the LifeClass then
asserts that the LifeClass has at most a single instance, meaning that there is at most one instance of the owning
OccurrenceDefinition that is a Life. If this instance exists, then all other instances of the
OccurrenceDefinition will be portions of it, and the OccurrenceDefinition will then model exactly a single
individual, as described above. If the instance does not exist, then the extent of OccurrenceDefinition will be
empty, meaning no such individual exits. (The optional multiplicity on a LifeClass thus provides for the
ability to model counterfactual situations in which a certain individual is asserted not to exist.)

8.4.5.2 Occurrence Usages

An OccurrenceUsage is a kind of Usage that is syntactically required to be defined only by Classes (including
OccurrenceDefinitions). The following specialization constraints apply to an OccurrenceUsage:

• checkOccurrenceUsageSpecialization requires that it specialize the Feature
Occurrences::occurrences from the Kernel Model Library (see [KerML, 9.2.4]), which is typed by
Occurrences::Occurrence.

• checkOccurrenceUsageSuboccurrenceSpecialization requires that, if the OccurrenceUsage is
composite (non-referential) and owned by an OccurrenceDefinition or OccurrenceUsage, it
specialize the Feature Occurrences::Occurrence::suboccurrences (see [KerML, 9.2.4]), which
subsets Occurrences::occurrences.

occurrence def Occ specializes Occurrences::Occurrence {
ref occurrence a subsets Occurrences::occurrences;
occurrence b subsets Occurrences::Occurrence::suboccurrences;

}

An OccurrenceUsage that has an occurrenceDefinition with isIndividual = true represents a usage of
the individual modeled by that OccurrenceDefinition (or possibly a time slice or snapshot of it, see below).
This is constrained as follows:

• validateOccurranceUsageIndividualDefinition requires that an OccurrenceUsage have at
most one such occurrenceDefinition that has isIndividual = true.

• validateOccurrenceUsageIsIndividual requires that, if the OccurrenceUsage has
isIndividual = true, it have exactly one such occurrenceDefinition (which will then be the
value of its individualDefinition property).

If an OccurrenceUsage has a non-null portionKind, then it is also required to have a portioningFeature
with the same portionKind. The following semantic constraints apply to a PortioningFeature:

• checkPortioningFeatureSpecialization requires that it specialize each of the
occurrenceDefinitions of its owning OccurrenceUsage.

• checkPortioningFeatureRedefinition requires that, if that, if portionKind = timeslice,
the PortioningFeature redefine the Feature Occurrences::Occurrence::timeSliceOf and, if
portionKind = snapshot, it redefine the Feature Occurrences::Occurrence::snapshotOf,
both from the Kernel Semantic Library model for Occurrences (see [KerML, 9.2.4]).

• checkPortioningFeatureMultiplicitySpecialization requires that it have multiplicity
exactlyOne.

390 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Thus, the time slice and snapshot declarations

timeslice occurrence t : Occ;
snapshot occurrence s : Occ;

have, with implied Relationships included, the equivalent kernel semantics of

// KerML
feature t : Occ subsets Occurrences::occurrences {

// Portioning feature
feature redefines Occurrences::Occurrence::timeSliceOf : Occ {

multiplicity subsets Base::exactlyOne;
}

}
feature s : Occ subsets Occurrences::occurrences {

// Portioning feature
feature redefines Occurrences::Occurrence::snapshotOf : Occ {

multiplicity subsets Base::exactlyOne;
}

}

In the semantic model for Occurrence, the Features timeSliceOf and snapshotOf are the inverses of the
Features timeSlices and snapshots, respectively. The portioningFeatures for t and s, above, therefore,
require that each value of t or s be one of the timeSlices or snapshots of an instance of the defining
OccurrenceDefinition Occ.

8.4.5.3 Event Occurrence Usages

An EventOccurrenceUsage is a kind of OccurrenceUsage that is required to always be referential by the
validateEventOccurrenceUsageIsReference. All general semantic constraints on an OccurrenceUsage
(see 8.4.5.2) also apply to an EventOccurrenceUsage. In addition, if an EventOccurrenceUsage is an
ownedFeature of an OccurrenceDefinition or OccurrenceUsage, then the
checkEventOccurrenceUsageSpecialization constraint requires that it specialize the kernel Feature
Occurrences::Occurrence::timeEnclosedOccurrences (see [KerML, 9.2.4]). In this case, any
Occurrence referenced by the EventOccurrenceUsage must happen within the lifetime of the featuring
Occurrence of the EventOccurrenceUsage.

For example, the following model:

occurrence occ1;
occurrence occ2 {

event occurrence evt references occ1;
// Other than having a name, the above is equivalent to
// event occ1;

}

is, with implied Relationships included, semantically equivalent to

occurrence occ1 subsets Occurrences::occurrences;
occurrence occ2 subsets Occurrences::occurrences {

ref occurrence evt references occ1
subsets Occurrences::Occurrence::timeEnclosedOccurrences;

}

Thus, the values of occ2.evt will be some subset of the Occurrences represented by occ1 that happen within the
lifetime of occ2.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 391

An EventOccurrenceUsage that is not an ownedFeature of an OccurrenceDefinition or
OccurrenceUsage has the same semantics as a referential OccurrenceUsage (see 8.4.5.2).

8.4.6 Items Semantics

Abstract syntax reference: 8.3.10

8.4.6.1 Item Definitions

An ItemDefinition is a kind of OccurrenceDefinition and a kind of KerML Structure. As such, all the
general semantic constraints for an OccurrenceDefinition (see 8.4.5) and a Structure (see [KerML, 8.4.4.4])
also apply to an ItemDefinition. In addition, the checkItemDefinitionSpecialization constraint requires
that an ItemDefinition specialize the base ItemDefinition Items::Item (see 9.2.3.2.1), which subclassifies
the kernel Class Objects::Object (see [KerML, 9.2.5]).

The Item semantic model also includes additional features whose semantics is covered in other subclauses:

• subparts – A subset of subitems and Parts::parts that collects the values of all composite
PartUsages featured by an Item. Covered under Parts Semantics (see 8.4.7).

• checkedConstraints – A subset of Constraints::constraintChecks and
Object::ownedPerformances that collects all checks of composite ConstraintUsages featured by
an Item. Covered under Constraints Semantics (see 8.4.15).

8.4.6.2 Item Usages

An ItemUsage is a kind of OccurrenceUsage. As such, all the general semantic constraints for an
OccurrenceUsage (see 8.4.5) also apply to an ItemUsage. The following additional specialization constraints
also apply to an ItemUsage:

• checkItemUsageSpecialization requires that an ItemUsage specialize the base ItemUsage
Items::items (see 9.2.3.2.2), which subsets the Kernel Feature Objects::objects (see [KerML,
9.2.5]).

• checkItemUsageSubitemSpecialization requires that an ItemUsage that is composite and has an
owningType that is an ItemDefinition or ItemUsage specialize the ItemUsage
Items::Item::subitems (see 9.2.3.2.1), which subsets Objects::Objects::subobjects (see
[KerML, 9.2.5]) and Items::items.

item def I specializes Items::Item {
ref item a subsets Items::items;
item b subsets Items::Item::subitems;

}

As a kind of Object, an Item may have a physical extent in three-dimensional space as well as existing over time.
The semantic model for an Item contains a number of specializations of the kernel spatial model (see [KerML, 9.2.4
and 9.2.5]), including the features shape, envelopingShapes, boundingShapes, voids, and isSolid (see
9.2.3.2.1 for details). This provides the basis for the geometric shape model defined in the Geometry Domain
Library (see 9.7).

8.4.7 Parts Semantics

Abstract syntax reference: 8.3.11

392 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.4.7.1 Part Definitions

A PartDefinition is a kind of ItemDefinition. As such, all the general semantic constraints for an
ItemDefinition (see 8.4.6) also apply to a PartDefinition. In addition, the
checkPartDefinitionSpecialization constraint requires that a PartDefinition specialize the base
PartDefinition Parts::Part (see 9.2.4.2.1), which subclassifies Items::Item (see 9.2.3.2.1).

The Part semantic model also includes additional features whose semantics is covered in other subclauses:

• ownedPorts – A subset of Ports::ports and Occurrences::timeEnclosedOccurrences that
collects the values of the PortUsages featured by a Part. Covered under Ports Semantics (see 8.4.8).

• performedActions – A subset of Actions::actions and Objects::enactedPerformances that
collects the values of the PerformedActionUsages featured by a Part. Covered under Actions
Semantics (see 8.4.12).

• ownedActions – A subset of Actions::actions and Objects::ownedPerformances that collects
the values of the composite ActionUsages featured by a Part. Covered under Actions Semantics (see
8.4.12).

• exhibitedStates – A subset of States::stateActions and performedActions that collects the
values of the ExhibitStateUsages featured by a Part. Covered under States Semantics (see 8.4.13).

• ownedStates – A subset of States::stateActions and ownedActions that collects the values of
the composite StateUsages featured by a Part. Covered under States Semantics (see 8.4.13).

8.4.7.2 Part Usages

A PartUsage is a kind of ItemUsage. As such, all the general semantic constraints for an ItemUsage (see 8.4.6)
also apply to a PartUsage, as well as the following additional specialization constraints:

• checkPartUsageSpecialization requires that a PartUsage specialize the base PartUsage
Parts::parts (see 9.2.4.2.2).

• checkPartUsageSubpartSpecialization requires that a PartUsage that is composite and has an
owningType that is an ItemDefinition or ItemUsage specialize the PartUsage
Items::Item::subparts (see 9.2.3.2.1), which subsets Items::Item::subitems (see 9.2.3.2.1) and
Parts::parts.

part def P specializes Parts::Part {
ref part a subsets Parts::parts;
part b subsets Items::Item::subparts;
item c subsets Items::Item::subitems {

part p : P subsets Items::Item::subparts;
}

}

• checkPartUsageActorSpecialization requires that a PartUsage that is owned by a
ActorMembership specialize either the PartUsage Requirements::RequirementCheck::actors
(see 9.2.13.2.8) or Cases::Case::actors (see 9.2.14.2.1). See also Requirements Semantics (8.4.16)
and Case Semantics (see 8.4.17).

• checkPartUsageStakeholderSpecialization requires that a PartUsage that is owned by a
StakeholderMembership specialize the PartUsage
Requirements::RequirementCheck::stakeholders (see 9.2.13.2.8). See also Requirements
Semantics (8.4.16).

8.4.8 Ports Semantics

Abstract syntax reference: 8.3.12

OMG Systems Modeling Language (SysML) v2.0, Beta 1 393

8.4.8.1 Port Definitions

A PortDefinition is a kind of OccurrenceDefinition and a kind of KerML Structure. As such, all the
general semantic constraints for an OccurrenceDefinition (see 8.4.5) and a Structure (see [KerML, 8.4.4.4])
also apply to a PortDefinition. The following additional constraints apply to a PortDefinition:

• checkPortDefinitionSpecialization requires that a PortDefinition specialize the base
PortDefinition Ports::Port (see 9.2.5.2.1), which subclassifies the kernel Class
Objects::Object (see [KerML, 9.2.5]).

• validatePortDefinitionNestedUsagesNotComposite requires that all nestedUsages of the
PortDefinition that are not PortUsages are referential (non-composite).

A PortDefinition is parsed as containing a ConjugatedPortDefinition with a
ConjugatedPortDefinition Relationship pointing back to the containing PortDefinition. A
PortConjugation is a kind of KerML Conjugation and, except for being syntactically restricted to be between a
ConjugatedPortDefinition and a (non-conjugated) PortDefinition, it has the same effect as Conjugation.
That is, the ConjugatedPortDefinition is considered to inherit the features of its PortDefinition, but in
and out directions are reversed (see [KerML, 8.3.3.1]).

Thus, a PortDefinition declaration of the form

port def Pd {
// Directed features are always referential
// (ref keyword is optional).
in ref a;
out ref b;
inout ref c;
ref item d;

}

has, with implied Specializations included, the equivalent kernel semantics of

// KerML
struct Pd specializes Ports::Port {

in feature a subsets Base::things;
out feature b subsets Base::things;
inout feature c subsets Base::things;
feature d subsets Items::Item;

struct '~Pd' conjugates Pd {
//* Effective conjugated features:
out feature a subsets Base::things;

in feature b subsets Base::things;
inout feature c subsets Base::things;
feature d subsets Items::Item;
*// }

}

Note that the KerML validateSpecificationSpecificNotConjugated constraint disallows a Type that is
conjugated from having an ownedSpecialization (see [KerML, 8.3.3.1]) . Nevertheless, ~Pd still satisfies the
checkPortDefinitionSpecialization constraint because its original PortDefinition does.

394 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.4.8.2 Port Usages

A PortUsage is a kind of OccurrenceUsage that is syntactically restricted to be defined only by
PortDefinitions. As such, all the general semantic constraints for an OccurrenceUsage (see 8.4.5) also apply
to a PortUsage, as well as the following additional constraints:

• checkPortUsageSpecialization requires that a PortUsage specialize the base PortUsage
Ports::ports (see 9.2.5.2.2), which subsets the kernel Feature Objects::objects (see [KerML,
9.2.5]).

• checkPortUsageSubportSpecialization constraint requires that a PortUsage that is composite
and has an owningType that is an PortDefinition or PortUsage specialize the PortUsage
Ports::Port::subports (see 9.2.5.2.1), which subsets
Occurrences::Occurrence::timeEnclosedOccurrences (see [KerML, 9.2.4]) and
Ports::ports.

• validatePortUsageNestedUsagesNotComposite requires that all nestedUsages of the
PortUsage that are not PortUsages are referential (non-composite).

port p : Pd specializes Ports::ports {
port p1 subsets Ports::Port::subports;
ref port p2 subsets Ports::ports;

}

The following constraints apply to a PortUsage that is not nested in a PortDefinition or PortUsage:

• validatePortUsageIsReference requires that it is referential (non-composite).
• checkPortUsageOwnedPortSpecialization requires that a PortUsage has an owningType that is

a PartDefinition or PartUsage specialize the PortUsage Parts::Part::ownedPorts (see
9.2.4.2.1).

part def P specializes Parts::Part {
// PortUsages not nested in PortDefinitions or PortUsages
// are always referential (ref keyword is optional).
ref port p : Pd subsets Parts::Part::ownedPorts;

}

A PortUsage may have an ownedFeatureTyping that is a ConjugatedPortTyping, in which case the type is
the ConjugatedPortDefinition for the named PortDefinition (see 8.2.2.12). Thus, the declaration

port p : ~Pd;

is equivalent to

port p : Pd::'~Pd';

8.4.9 Connections Semantics

Abstract Syntax Reference: 8.3.13

8.4.9.1 Connection Definitions

A ConnectionDefinition is a kind of PartDefinition and a kind of KerML AssociationStructure. As
such, all the general semantic constraints for a PartDefinition (see 8.4.7) and an AssociationStructure (see
[KerML, 8.4.4.5.2]) also apply to a ConnectionDefinition. In addition, the
checkConnectionDefinitionSpecialization constraint requires that a ConnectionDefinition specialize
the base ConnectionDefinition Connections::Connection (see 9.2.6.2.3), which subclassifies the

OMG Systems Modeling Language (SysML) v2.0, Beta 1 395

PartDefinition Parts::Part (see 9.2.4.2.1) and the kernel AssociationStructure
Objects::LinkObject (see [KerML, 9.2.5]).

A ConnectionDefinition must have at last two connectionEnd Features (unless it is abstract), and it may
also have ownedFeatures that are not ends. The checkFeatureEndSpecialization and
checkFeatureEndRedefinitionSpecialization constraints apply to the connectionEnds of a
ConnectionDefinition. As a result, all connectionEnds must directly or indirectly specialize the kernel
Feature Link::participant and they must redefine the end Features of any Associations specialized by
their owning ConnectionDefinition (see [KerML, 8.4.4.5]).

connection def C specializes Connections::Connection {
end ref e1 subsets Links::Link::participant;
end ref e2 subsets Links::Link::participant;
end ref e3 subsets Links::Link::participant;

}
connection def D specializes C {

end ref f1 redefines C::e1;
end ref f2 redefines C::e2;
end ref f3 redefines C::e3;

}

In addition, there are special rules for the semantics of the multiplicity of end Features (see [KerML, 8.4.4.5]).

The checkConnectionDefinitionBinarySpecialization constraint requires that a binary
ConnectionDefinition specialize the ConnectionDefinition Connections::BinaryConnection, which
subclassifies Connection and Objects::BinaryLinkObject (see [KerML, 9.2.5]), which is a subclassification
of Objects::LinkObject and Links::BinaryLink (see [KerML, 9.2.3] that restricts a BinaryConnection
two have exactly two participants corresponding to two ends called source and target. As required by the
checkFeatureEndRedefinition constraint, the first connectionEnd of a binary Association will redefine
Connections::BinaryConnection::source and its second connectionEnd will redefine
Connections::BinaryConnection::target.

connection def B specializes Connections::BinaryConnections {
end ref e1 redefines Connections::BinaryConnection::source;
end ref e2 redefines Connections::BinaryConnection::target;

}

8.4.9.2 Connection Usages

A ConnectionUsage is a PartUsage and a ConnectorAsUsage, which is a kind of KerML Connector. As
such, all the general semantic constraints for a PartUsage (see 8.4.7) and a Connector (see [KerML, 8.4.4.6.1])
also apply to a ConnectionUsage. In addition, the checkConnectionUsageSpecialization constraint
requires that a ConnectionUsage specialize the base ConnectionUsage Connections::connections (see
9.2.6.2.4), which is defined by Connections::Connection and subsets the PartUsage Parts::parts (see
9.2.4.2.2) and the kernel Feature Objects::linkObjects (see [KerML, 9.2.5]). A ConnectionUsage is
syntactically restricted to be defined only by AssociationStructures (including ConnectionDefinitions).
Further, the checkFeatureEndRedefinition constraint requires that the end Features of a ConnectionUsage
redefine of corresponding end Features of its connectionDefinitions (see [KerML, 8.4.4.5]).

connection c : C subsets Connections::connections {
end ref e1 references f1 redefines C::e1;
end ref e2 references f2 redefines C::e2;
end ref e3 references f3 redefines C::e1;

}

396 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Note that the relatedFeatures of a ConnectionUsage are determined by the referencedFeatures of its
ends. Therefore, unless the ConnectionUsage is abstract, every end must have an ownedReferenceSubsetting.

The checkConnectionUsageBinarySpecialization constraint requires that a binary ConnectionUsage
specialize the ConnectionUsage Connections::binaryConnections (see 9.2.6.2.2), which is defined by
Connections::BinaryConnection and subsets he Connections::connections and the kernel Feature
Objects::binaryLinkObjects (see [KerML, 9.2.5])

connection b : B subsets Connections::binaryConnections {
end ref source references f1 redefines B::source;
end ref target references f2 redefines B::target;

}

Since a ConnectionUsage is a kind of PartUsage, the checkPartUsageSupartSpecialization constraint
requires that a composite ConnectionUsage nested in an ItemDefinition or ItemUsage of any kind specialize
the PartUsage Items::Item::subparts (see 9.2.3.2.1) as well as Connections::connections or
Connections::binaryConnections (see also 8.4.7.2).

part def P specializes Parts::Part {
part f1 subsets Items::Item::subparts;
part f2 subsets Items::Item::subparts;
connector b : B

subsets Connections::binaryConnections, Items::Items::subparts
connects f1 to f2;

}

8.4.9.3 Binding Connectors As Usages

A BindingConnectorAsUsage is a kind of ConnectorAsUsage and a kind of KerML BindingConnector. As
such, all the general semantic constraints for a Usage (see 8.4.2) and a BindingConnector (see [KerML,
8.4.4.6.2]) also apply to a BindingConnectorAsUsage. In particular, the
checkBindingConnectorSpecialization constraint requires that BindingConnectorAsUsages specialize
the kernel Feature Links:selfLink, which is typed by the Association SelfLink (see [KerML, 9.2.3]). A
BindingConnectorAsUsage therefore has the same basic semantics as a KerML BindingConnector, asserting
that the (single) values of its two ends must be the same things (see [KerML, 8.4.4.6.2]).

Thus, a BindingConnectorAsUsage declaration of the form

bind f1 = f2;

has, with implied Specializations included, the equivalent kernel semantics of

// KerML
connector subsets Links::selfLinks {

end feature thisThing redefines Links::SelfLink::thisThing references f1;
end feature thatThing redefines Links::SelfLink::thatThing references f2;

}

Note that a BindingConnectorAsUsage does not have the semantics of a SysML ConnectionUsage, because a
ConnectionUsage must be defined by AssociationStructures (see 8.4.9.2), and Links::selfLink is an
Association but not an AssociationStructure.

The KerML checkFeatureValueBindingConnector constraint requires that a FeatureValue with
isDefault = false have a BindingConnector to enforce its semantics (see [KerML, 8.4.4.11]). For a SysML

OMG Systems Modeling Language (SysML) v2.0, Beta 1 397

model, it is allowable to use a BindingConnectorAsUsage, rather than a plain KerML BindingConnector, as
the implied Relationship to satisfy this constraint.

8.4.9.4 Successions As Usages

A SuccessionAsUsage is a kind of ConnectorAsUsage and a kind of KerML Succession. As such, all the
general semantic constraints for an Usage (see 8.4.2) and a Succession (see [KerML, 8.4.4.6.3]) also apply to a
SuccessionAsUsage. In particular, the checkSuccessionSpecialization constraint requires that a
SuccessionAsUsage specialize the KerML Feature Occurrences::happensBeforeLinks (see [KerML,
9.2.4]), which is typed by the Association HappensBefore. A SuccessionAsUsage therefore has the same
basic semantics as a KerML Succession, asserting that the Occurrence identified by its first end happens
temporally before the one identified by its second end.

Thus, a SuccessionAsUsage declaration of the form

succession first f1 then f2;

has, with implied Specifications included, the equivalent kernel semantics of

// KerML
connector subsets Occurrences::happensBeforeLinks {

end feature earlierOccurrence references f1
redefines Occurrences::HappensBefore::earlierOccurrence;

end feature laterOccurrence references f2
redefines Occurrences::HappensBefore::laterOccurrence;

}

Note that a SuccessionAsUsage does not have the semantics of a SysML ConnectionUsage, because a
ConnectionUsage must be defined by AssociationStructures (see 8.4.9.2), and
Occurrences::HappensBefore is an Association but not an AssociationStructure.

8.4.9.5 Flow Connection Definitions

A FlowConnectionDefinition is a kind of ConnectionDefinition, a kind of ActionDefinition, and a
kind of KerML Interaction. As such, all the general semantic constraints for ConnectionDefinitions (see
8.4.9.1), ActionDefinitions (see 8.4.12.1), and Interactions (see [KerML, 8.4.4.10.1]) also apply to
FlowConnectionDefinitions. In addition, the checkFlowConnectionDefinitionSpecialization
constraint requires that a FlowConnectionDefinition specialize the base FlowConnectionDefinition
Connections::MessageConnection (see 9.2.6.2.7), which subclassifies the ConnectionDefinition
BinaryConnection (see 9.2.6.2.1) and the ActionDefinition Actions::Action (see 9.2.9.2.4, as well as the
kernel Interaction Transfers::Transfer (see [KerML, 9.2.7]).

A FlowConnectionDefinition is always binary, with source and target ends corresponding to the
corresponding ends of Transfer. It also inherits MessageConnection::payload, which is a redefinition of
Transfer::item, representing the payload being transferred. These features can be redefined to restrict the
allowed type of the ends connected by a flow and the type of the payload transferred across the flow, as desired.
Note that the source and target ends must be kinds of Occurrences, but that the payload can be anything,

flow def M specializes Connections::MessageConnection {
item i : I redefines MessageConnection::payload;
end p : P redefines MessageConnection::source;
end q : Q redefines MessageConnection::target;

}

398 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The ends of a MessageConnection identify the Occurrences between which payload values are flowing, but
they do not identify how these values are obtained from the source (the sourceOutput Feature) or to where they
are delivered at the target (the targetInput Feature). In order to restrict the sourceOutput and targetInput
in a FlowConnectionDefinition, the FlowConnectionDefinition can specialize
Connections::FlowConnection (see 9.2.6.2.5), which is a MessageConnection that also subclassifies the
kernel Interaction FlowTransfer (see [KerML, 9.2.7]).

part def P specializes Parts::Part {
port p1 : Pd subsets Parts::Part::ownedPorts;

}
part def Q specializes Parts::Part {

port p2 : ~Pd subsets Parts::Part::ownedPorts;
}
flow def F specializes Connections::FlowConnection {

item i : I redefines MessageConnection::payload;
end p : P redefines MessageConnection::source {

port p1 redefines P::p1, MessageConnection::source::sourceInput;
}
end q : Q redefines MessageConnection::target {

port p2 redefines Q::p2, MessageConnection::source::targetOuput;
}

}

A FlowConnectionDefinition may also specialize Connections::SuccessionFlowConnection
(see 9.2.6.2.9), which is a FlowConnection that also subclassifies the kernel Interaction
FlowTransferBefore (see [KerML, 9.2.7]). A SuccessionFlowConnection not only represents a flow from
the source to the target, but it also asserts that the flow happens after the completion of the lifetime of the
source and before the start of the lifetime of the target (e.g., if the source and target are Actions, then the
source Action must complete before the flow can start, and the flow must complete before the target Action
can start).

8.4.9.6 Flow Connection Usages

A FlowConnectionUsage is a kind of ConnectionUsage, a kind of ActionUsage, and a kind of KerML
ItemFlow that is syntactically restricted to be defined by only KerML Interactions (including
FlowConnectionDefinitions). As such, all the general semantic constraints that apply to a ConnectionUsage
(see 8.4.9.2), an ActionUsage (see 8.4.12.2), and an ItemFlow (see [KerML, 8.4.4.10.2]) also apply to a
FlowConnectionUsage. In addition, the checkFlowConnectionUsageSpecification constraint requires that
a FlowConnectionUsage specialize the base FlowConnectionUsage Connections::messageConnections
(see 9.2.6.2.8), which is typed by the ConnectionDefinition Connections::MessageConnection (see
9.2.6.2.7) and subsets the ConnectionUsage Connections::binaryConnections (see 9.2.6.2.2), the
ActionUsage Actions::actions (see 9.2.9.2.5), and the kernel Step Transfers::transfers (see [KerML,
9.2.7]). Further, if the FlowConnectionUsage has itemFlowEnds, then it must specialize the
FlowConnectionUsage Connections::flowConnections (see 9.2.6.2.6), which is defined by the
FlowConnectionDefinition Connections::FlowConnection (see 9.2.6.2.5) and subsets
Connections::messageConnections and the kernel Step Transfers::flowTransfers (see [KerML,
9.2.7]).

A message declaration of the form

message m : M of i : I from evt1 to evt2;

is parsed as an abstract FlowConnectionUsage, but without any connectionEnds (see 8.2.2.13.4), so it is
required by checkFlowConnectionUsageSpecification to just specialize
Connections::messageConnections. Rather than being parsed as connectionEnds, evt1 and evt2 are

OMG Systems Modeling Language (SysML) v2.0, Beta 1 399

parsed as in parameters, which are then, by the KerML checkFeatureParameterRedefinition constraint
(see [KerML, 8.4.4.7]), required to redefine the parameters sourceEvent and targetEvent from
MessageConnection. The payload declaration i : I is parsed as a KerML ItemFeature (see [KerML,
8.4.4.10]) that is required by the checkItemFeatureRedefinition constraint to redefine the Feature
Transfers::Transfer::item (see [KerML, 9.2.7]; this is equivalent to redefining
Connections::MessageConnection::payload).

abstract flow m : M subsets Connections::messageConnections {
// ItemFeature
ref i : I redefines Transfers::Transfer::'item';

// parameters
in redefines Connections::MessageConnection::sourceEvent

references evt1;
in redefines Connections::MessageConnection::targetEvent

references evt2;
}

Such a FlowConnectionUsage asserts that there is some sourceEvent that occurs to initiate a flow and provide
the payload and some targetEvent that occurs to accept the flow payload, but it does not constrain what the
actually connected source and target Features are. This allows for, e.g., the case in which the sourceEvent is a
SendAction and the targetEvent is an AcceptAction, but the connected source and target Features are
Ports (see also 8.4.12 on the semantics of SendActionUsage and AcceptActionUsage).

A flow declaration of the form

flow f : F of i : I from src.src_out to tgt.tgt_in;

is parsed with two ItemFlowEnds (see [KerML, 8.3.4.9]) referencing src and tgt, with nested redefinitions of
src_out and tgt_in (as for a KerML ItemFlow [KerML, 8.4.4.10]), respectively. Since it has ItemFlowEnds,
the checkFlowConnectionUsageSpecification constraint requires it to specialize
Connections::flowConnections. The KerML checkFeatureEndRedefinition and
checkFeatureItemFlowFeatureRedefinition constraints then require both the redefinition of the end
Features (as for a regular ConnectionUsage, see 8.4.9.2) and the redefinition of the sourceOutput and
targetInput Features.

flow f : F subsets Connections::flowConnections {
// ItemFeature
ref i : I redefines Transfers::Transfer::'item';

// First ItemFlowEnd
end redefines Connections::flowConnections::source references src {

redefines Transfers::Transfer::source::sourceOutput, src_out;
}

// Second ItemFlowEnd
end redefines Connections::flowConnections::target references tgt {

redefines Transfers::Transfer::target::targetInput, tgt_in;
}

}

In this case, the sourceEvent and targetEvent parameters default to the starting and ending snapshots of the
FlowConnection, which are required to occur during the lifetime of the source and target Occurrences,
respectively.

400 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Since a FlowConnectionUsage is a kind of ActionUsage, the
checkActionUsageSubactionSpecialization constraint requires that a FlowConnectionUsage nested in an
ActionDefinition or ActionUsage specialize Actions::Action::subactions (see 9.2.9.2.4) as well as
Connections::flowConnections (see also 8.4.12.2).

action def A specializes Actions::Action {
action a1 : A1 subsets Actions::Action::subactions;
action a2 : A2 subsets Actions::Action::subactions;
flow subsets Connections::flowConnections, Actions::Action::subactions

from a1.a1_out to a2.a2_in;
}

8.4.9.7 Succession Flow Connection Usage

A SuccessionFlowConnectionUsage is a kind of FlowConnectionUsage and a kind of KerML
SuccessionItemFlow. As such, all the general semantic constraints of a FlowConnectionUsage (see 8.4.9.6)
and a SuccessionItemFlow (see [KerML, 8.4.4.10]) also apply to a SuccessionFlowConnectionUsage. A
SuccessionFlowConnectionUsage is semantically the same as a FlowConnectionUsage, except that the
checkSuccessionFlowConnectionUsageSpecialization constraint requires that it specialize the
FlowConnectionUsage Connections::successionFlowConnections (see 9.2.6.2.10), which is defined by
the FlowConnectionDefinition SuccessionFlowConnection (see 9.2.6.2.9; see also 8.4.9.5) and subsets the
FlowConnectionUsage Connections::flowConnections (see 9.2.6.2.6) and the kernel Step
flowTransfersBefore (see [KerML, 9.2.7]). As a result, a SuccessionFlowConnectionUsage has the
semantics of both a temporal succession from its source to itself to its target and a flow from the source to the
target.

Thus, a succession flow declaration of the form

succession flow of i : I from src.src_out to tgt.tgt_in;

is semantically equivalent, with implied Specializations included, to:

succession flow subsets Connections::successionFlowConnections {
// ItemFeature
ref i : I redefines Transfers::Transfer::'item';

// First ItemFlowEnd
end redefines Connections::flowConnections::source references src {

redefines Transfers::Transfer::source::sourceOutput, src_out;
}

// Second ItemFlowEnd
end redefines Connections::flowConnections::target references tgt {

redefines Transfers::Transfer::target::targetInput, tgt_in;
}

}

8.4.10 Interfaces Semantics

Abstract syntax reference: 8.3.14

8.4.10.1 Interface Definitions

An InterfaceDefinition is a kind of ConnectionDefinition whose connectionEnds are syntactically
restricted to to be PortUsages. As such, all the general semantic constraints that apply to a

OMG Systems Modeling Language (SysML) v2.0, Beta 1 401

ConnectionDefinition (see 8.4.9.1) also apply to an InterfaceDefinition, as well as the following
additional specialization constraints:

• checkInterfaceDefinitionSpecialization requires that an InterfaceDefinition specialize
the base InterfaceDefinition Interfaces::Interface (see 9.2.7.2.3), which subclassifies the
ConnectionDefinition Connection::Connection (see 9.2.6.2.3).

• checkInterfaceDefinitionBinarySpecialization requires that an InterfaceDefinition that
is binary specialize the InterfaceDefinition Interfaces::BinaryInterface (see 9.2.7.2.1),
which subclassifies Interfaces::Interface and the ConnectionDefinition
Connections::BinaryConnection (see 9.2.6.2.1), redefining the source and target ends so that
they are PortUsages.

interface def I1 specializes Interfaces::Interface {
end port p1 subsets Links::Link::participant;
end port p2 subsets Links::Link::participant;
end port p3 subsets Links::Link::participant;

}
interface def I2 specializes Interfaces::BinaryInterface {

end port p1 redefines Interfaces::BinaryInterface::source;
end port p2 redefines Interfaces::BinaryInterface::target;

}

8.4.10.2 Interface Usages

An InterfaceUsage is a kind of ConnectionUsage whose connectionDefinitions are syntactically
restricted to to be only InterfaceDefinitions. Since InterfaceDefinitions have ends that are
PortUsages, the ends of an InterfaceUsage must also be ports. The general semantic constraints of a
ConnectionUsage (see 8.4.9.2) also apply to an InterfaceUsage, as well as the following additional
specialization constraints:

• checkInterfaceUsageSpecialization requires that an InterfaceUsage specialize the base
InterfaceUsage Interfaces::interfaces (see 9.2.7.2.4), which is defined by the
InterfaceDefinition Interfaces::Interface (see 9.2.7.2.3) and subsets the ConnectionUsage
Connection::connections (see 9.2.6.2.4).

• checkInterfaceUsageBinarySpecialization requires that a binary InterfaceUsage specialize
the InterfaceUsage Interfaces::binaryInterfaces (see 9.2.7.2.2), which is defined by the
InterfaceDefinition Interfaces::BinaryInterface (see 9.2.7.2.1) and subsets the
ConnectionUsage Connections::binaryConnections (see 9.2.6.2.2).

interface i1 : I1 subsets Interfaces::interfaces {
end port p1 references q1 redefines I1::e1;
end port p2 references q2 redefines I1::e2;
end port p3 references q3 redefines I1::e3;

}
interface i2 : I2 subsets Interfaces::binaryInterfaces {

end port p1 references q1 redefines I2::p1;
end port p2 references q2 redefines I2::p2;

}

part def P specializes Parts::Part {
part f1 : F1 subsets Items::Item::subparts;
part f2 : F2 subsets Items::Item::subparts;

// A nested InterfaceUsage also subsets subparts.
interface b : B

subsets Interface::binaryInterfaces, Items::Items::subparts

402 OMG Systems Modeling Language (SysML) v2.0 Beta 1

connects f1.p1 to f2.p2;
}

8.4.11 Allocations Semantics

Abstract syntax reference: 8.3.15

8.4.11.1 Allocation Definitions

An AllocationDefinition is a kind of binary ConnectionDefinition. The
checkAllocationDefinitionSpecialization constraint requires that an AllocationDefinition
specialize the base AllocationDefinition Allocations::Allocation (see 9.2.8.2.1), which subclassifies
the ConnectionDefinition Connection::BinaryConnection (see 9.2.6.2.1). Otherwise, the semantics of an
AllocationDefinition are the same as for a binary ConnectionDefinition (see 8.4.9.1).

allocation def A specializes Allocations::Allocation {
end e1 redefines Allocations::Allocation::source;
end e2 redefines Allocations::Allocation::target;

}

8.4.11.2 Allocation Usages

An AllocationUsage is a kind of binary ConnectionUsage whose connectionDefinitions are syntactically
restricted to to be only AllocationDefinitions. The checkAllocationUsageSpecialization constraint
requires that an AllocationUsage specialize the base AllocationUsage Allocations::allocations (see
9.2.8.2.2), which is defined by the AllocationDefinition Allocations::Allocation (see 9.2.8.2.1) and
subsets the ConnectionUsage Connection::binaryConnections (see 9.2.6.2.4) (see 9.2.6.2.2). Otherwise,
the semantics of an AllocationUsage are the same as for a ConnectionUsage (see 8.4.9.2)

allocation a : A subsets Allocations::allocations {
end ref e1 references f1 redefines A::e1;
end ref e2 references f2 redefines A::e2;

// A nested AllocationUsage is a subpart.
allocation subsets Allocations::allocations, Items::Item::subparts

allocate e1.x to e2.y;
}

8.4.12 Actions Semantics

Abstract syntax reference: 8.3.16

8.4.12.1 Action Definitions

An ActionDefinition is a kind of OccurrenceDefinition and a kind of KerML Behavior. As such, all the
general semantic constraints for an OccurrenceDefinition (see 8.4.5) and a Behavior (see [KerML, 8.4.4.7.1])
also apply to an ActionDefinition. In addition, the checkActionDefinitionSpecialization constraint
requires that an ActionDefinition specialize the base ActionDefinition Actions::Action (see 9.2.9.2.4),
which subclassifies the kernel Behavior Performances::Performance (see [KerML, 9.2.6]). Further, the
KerML checkFeatureParameterRedefinition constraint (see [KerML, 8.4.4.7.1]) requires that any owned
parameters (i.e., directed ownedFeatures) of an ActionDefinition redefine corresponding parameters of
any Behaviors it specializes (including other ActionDefinitions).

action def A specializes Actions::Action {
in ref x[0..*] subsets Base::things;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 403

out ref y[0..1] subsets Base::things;
inout ref z subsets Base::things;

}
action def A1 specializes A {

in ref x1[1] redefines x;
out ref y1[1] redefines y;
// z is inherited without redefinition

}

The Action semantic model also includes additional features that collect various composite subactions of an
Action:

• subactions – All subperformances of an Action that are Actions (see 8.4.12.2).
• transitions – The subactions that are TransitionActions (see 8.4.12.3 and 8.4.13.3).

◦ decisionTransitions – The transitions that are DecisionTransitionActions.
• controls – The subactions that are ControlActions (see 8.4.12.4).

◦ merges – The controls that are MergeActions.
◦ decisions – The controls that are DecisionActions.
◦ joins – The controls that are JoinActions.
◦ forks – The controls that are ForkActions.

• sendSubactions – The subactions that are SendActions (see 8.4.12.5).
• acceptSubactions – The subactions that are AcceptActions (see 8.4.12.6).•
• assignments – The subactions that are AssignmentActions (see 8.4.12.7).
• ifSubactions – The subactions that are IfThenActions (see 8.4.12.8).
• loops – The subactions that are LoopActions (see 8.4.12.9).

◦ whileLoops – The loops that are WhileLoopActions.
◦ forLoops – The loops that are ForLoopActions.

8.4.12.2 Action Usages

An ActionUsage is a kind of OccurrenceUsage and a kind of KerML Step. As such, all the general semantic
constraints for an OccurrenceUsage (see 8.4.5) and a Step (see [KerML, 8.4.4.7.2]) also apply to an
ActionUsage, as well as the following additional specialization constraints:

• checkActionUsageSpecialization requires that an ActionUsage specialize the base ActionUsage
Actions::actions (see 9.2.9.2.5), which is defined by the ActionDefinition Actions::Action
(see 9.2.9.2.4) and subsets the kernel Step Performances::performances (see [KerML, 9.2.6]).
Further, the KerML checkFeatureParameterRedefinition constraint requires that any owned
parameters (i.e., directed ownedFeatures) of a ActionUsage redefine corresponding parameters of
any Behaviors or Steps it specializes (including ActionDefinitions and ActionUsages).

action a : A subsets Actions::actions {
in ref x redefines A::x = x1;
out ref y redefines A::y;
inout ref z redefines A::z := z1 ;

}

action a1 : A1 subsets a {
in ref x redefines A1::x, a::x;
out ref y redefines A2::y, a::y;

}

• checkActionUsageSubactionSpecialization requires that an ActionUsage that is composite, has
an owningType that is an ActionDefinition or ActionUsage, and is not the entryAction or
exitAction of a StateDefinition or StateUsage (see 8.4.13) specialize the ActionUsage

404 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Actions::Action::subactions (see 9.2.9.2.4), which subsets the kernel Step
Performances::Performance::subperformances (see [KerML, 9.2.6]). Note also that, in other
cases, the general KerML checkStepEnclosedPerformanceSpecialization and
checkStepSubperformanceSpecialization constraints will still apply (see [KerML, 8.4.4.7]).

action def Act subsets Actions::Action {
action act1 subsets Actions::Action::subactions;
ref action act2 subsets Actions::actions,

Performances::Performance::enclosedPerformances;
}

• checkActionUsageOwnedActionSpecialization requires that a composite ActionUsage whose
owningType is a PartDefinition or a PartUsage specialize the ActionUsage
Parts::Part::ownedActions (see 9.2.4.2.1), which subsets the ActionUsage Action::actions
and the kernel Feature Objects::Object::ownedPerformances (see [KerML, 9.2.5]). Note also
that, in other cases, the general KerML checkStepOwnedPerformanceSpecialization constraint
will still apply (see [KerML, 8.4.4.7]).

part def PA specializes Parts::Part {
action a : A subsets Parts::Part::ownedActions;

}
item def IA specializes Items::Item {

action a : A subsets Objects::Object::ownedPerformances;
}

• checkActionUsageStateActionRedefinition requires that an ActionUsage that is an
entryAction, exitAction or doAction of a StateDefinition or StateUsage specialize,
respectively, the entryAction, exitAction, or doAction feature of the StateDefinition
States::StateAction (see 9.2.10.2.1), which redefine the entry, exit, and do features of the
kernel Behavior StatePerformances::StatePerformance (see [KerML, 9.2.6]), restricting them to
be Actions (see 9.2.9.2.4). (See also 8.4.13 on State Semantics.)

• checkActionUsageAnalysisActionSpecialization requires that an ActionUsage that is an
analysisAction of an AnalysisCaseDefinition or AnalysisCaseUsage specialize the
ActionUsage Actions::Action::analysisSteps (see 9.2.9.2.4). (See also 8.4.18 on Analysis Case
Semantics.)

Semantics of this

Action inherits the kernel Feature Occurrences::Occurrence::this (see [KerML, 9.2.4]). The value for
this Feature is determined in by the semantic model for Object::Object (see [KerML, 9.2.5]) and
Performances::Performance (see [KerML, 9.2.6]), as further specialized for Parts::Part::ownedActions
(see 9.2.4.2.1) and Actions::Action::subactions (see 9.2.9.2.4). For an Action in a hierarchy of
subactions, the value of this is the top-level Action in the hierarchy (that is, one that is not one of the
subactions of any other Action), unless that top-level Action is itself one of the ownedActions of a Part (or
on of the ownedPerformances of an Item), in which case the value is that Part (or Item).

For example, consider the model

package Pkg {
action def A specializes Actions::Action {

action b subsets Actions::Action::subactions;
}
action a1 : A[1] subsets Action::actions {

// a1.this == a1
// b.x == a1

OMG Systems Modeling Language (SysML) v2.0, Beta 1 405

}
part p subsets Parts::parts {

action a2: A[1] subsets Parts::Part::ownedActions {
// a2.this == p
// b.this == p

}
}

}

As indicated, the value of this for both the Action a1 and its subaction a1.b will be (the value of) a1, since the
ActionUsage a1 is at "package level", while the value of this for both p.a2 and p.a2.b will be (the value of) p,
since a2 is an ownedAction of p.

The semantics of this are particularly important in the specification of default semantics for SendActionUsages
(see 8.4.12.5) and AcceptActionUsages (see 8.4.12.6).

8.4.12.3 Decision Transition Usages

A Succession in the body of an ActionDefinition or ActionUsage may be syntactically declared with a
guard Expression. In this case, it is actually parsed as a TransitionUsage, with the guard Expression and the
declared Succession nested in the TransitionUsage (see 8.2.2.16.7). The
checkTransitionUsageActionSpecialization constraint requires that a composite TransitionUsage
whose ownedType is an ActionDefinition or ActionUsage, but not a StateDefinition or StateUsage,
specialize the ActionUsage Actions::Action::decisionTransitions (see 9.2.9.2.4), which is typed by the
ActionDefinition Actions::DecisionTransitionAction (see 9.2.9.2.10). DecisionTransitionAction
subclassifies the ActionDefinition Actions::TransitionAction (see 9.2.9.2.24) and the kernel Behavior
TransitionPerformances::NonStateTransitionPerformance (see [KerML, 9.2.10]). It represents a
TransitionAction that has a guard, but no accepter or effects.

For example, consider the following model of a conditional Succession between to ActionUsages:

action def AC {
action a1 { out ref test : ScalarValues::Boolean; }
succession sc first a1 if a1.test then a2;
action a2;

}

With implied Relationships included (see 8.2.2.17.3 on the semantic constraints related to a
TransitionUsage), this has the equivalent kernel semantics of:

// KerML
behavior AC specializes Actions::Action {

step a1 subsets Actions::Action::subactions {
out feature test : ScalarValues::Boolean;

}

step sc subsets Actions::Action::decisionTransitions {
in feature redefines

Actions::TransitionAction::transitionLinkSource;

bool redefines Actions::TransitionAction::guard {
a1.test

}

member succession sc_link
subsets Occurrences::happensBeforeLinks

406 OMG Systems Modeling Language (SysML) v2.0 Beta 1

featured by AC
first a1 then a2;

member binding featured by AC of sc_link =
TransitionPerformances::TransitionPerformance::transitionLink;

member binding featured by AC of s1 = transitionLinkSource;
}

step a2 subsets Actions::Action::subactions;
}

As specified for a NonStateTransitionPerformance, the guard of a DecisionTransitionAction is
evaluated after the completion of the Performance of the transitionLinkSource, which is the source of the
nested transitionLink Succession. If the guard evaluates to true, then the transitionLink may have a
value, meaning that there must be a Performance of the targetFeature of the Succession temporally
following the Performance of the sourceFeature. If the guard evaluates to false, the transitionLink does
not have a value, so no such temporal ordering is asserted.

8.4.12.4 Control Nodes

A ControlNode is a kind of ActionUsage that has no inherent behavior but is used to control other Actions
within a containing Action. All the general semantic constraints of an ActionUsage (see 8.4.12.2) also apply to a
ControlNode, as well as the following additional constraints:

• checkControlNodeSpecialization requires that a ControlNode specialize the ActionUsage
Actions::Action::controls (see 9.2.9.2.4), which is defined by the ActionDefinition
Actions::ControlAction (see 9.2.9.2.8) and subsets the composite ActionUsage
Actions::Action::subactions (further implying that a ControlNode must be composite).
ControlAction includes a constraint that it's performance is instantaneous.

• validateControlNodeOwningType requires that the owningType of a ControlNode be an
ActionDefinition or ActionUsage.

• validateControlNodeIncomingSuccessions requires that all incoming Successions to a
ControlNode have target multiplicity 1..1.

• validateControlNodeOutgoingSuccessions requires that all outgoing Successions from a
ControlNode have source multiplicity 1..1.

Note. Multiplicities are given in a model as MultiplicityRanges which have Expressions for lowerBound
and upperBound. When checking validation constraints such as the above on MultiplicityRanges, the
lowerBound and upperBound Expressions shall be model-level evaluable to the required values for the bounds
(see [KerML, 8.4.4.9]). If the lowerBound is empty, then an upperBound value of 1 is equivalent to multiplicity
1..1. The constraints can also be equivalently satisfied by multiplicities that subset the
MultiplicityRanges ExactlyOne or ZeroOrOne from the Kernel Semantic Library model Base (see [KerML,
9.2.2]).

The ControlNode metaclass is itself abstract, but it has four concrete subclasses representing various specific
ControlNode elements. Each of these places additional constraints on incoming and outgoing Successions, as
appropriate to achieve the specific control constraints required for each kind of element.

Join Nodes

A JoinNode is a kind of ControlNode that represents the joining of control. The following additional constraints
apply to a JoinNode:

OMG Systems Modeling Language (SysML) v2.0, Beta 1 407

• checkJoinNodeSpecialization requires that a JoinNode specialize the ActionUsage
Actions::Action::joins (see 9.2.9.2.4), which is defined by the ActionDefinition
Actions::JoinAction (see 9.2.9.2.21) and subsets Actions::Action::controls. JoinAction
subclassifies ControlAction.

• validateJoinNodeOutgoingSuccessions requires that a JoinNode have at most one outgoing
Succession.

• validateJoinNodeIncomingSuccessions constraint requires that all incoming Successions to a
JoinNode have source multiplicity 1..1.

The semantics of a JoinNode are entirely a result of the above constraints. Because of the required
multiplicities, for each performance of a JoinNode, every incoming Succession must have a value,
temporally ordering the JoinNode as happening after all the source Occurrences (typically Actions) of the
incoming Successions.

For example, consider the following model of a JoinNode with two incoming Successions and one outgoing
Succession, explicitly showing the required Succession multiplicities:

action def A1 {
action a1;
action a2;

succession s1 first a1[1..1] then j[1..1];
succession s2 first a2[1..1] then j[1..1];
join j;
succession s3 first j[1..1] then a3;

action a3;
}

With implied Specializations included, this is semantically equivalent to:

action def A1 specializes Actions::Action {
action a1 subsets Actions::Action::subactions;
action a2 subsets Actions::Action::subactions;

succession s1 subsets Occurrences::happensBeforeLinks
first a1[1..1] then m[1..1];

succession s2 subsets Occurrences::happensBeforeLinks
first a2[1..1] then m[1..1];

join j subsets Actions::Action::joins;
succession s3 subsets Occurrences::happensBeforeLinks

first j[1..1] then a3;

action a3 subsets Actions::Action::subactions;
}

Fork Nodes

A ForkNode is a kind of ControlNode that represents a forking of control.The following additional constraints
apply to a ForkNode:

• checkForkNodeSpecialization requires that a ForkNode specialize the ActionUsage
Actions::Action::forks (see 9.2.9.2.4), which is defined by the ActionDefinition
Actions::ForkAction (see 9.2.9.2.21) and subsets Actions::Action::controls. ForkAction
subclassifies ControlAction.

408 OMG Systems Modeling Language (SysML) v2.0 Beta 1

• validateForkNodeIncomingSuccessions requires that a ForkNode have at most one incoming
Succession.

• validateForkNodeOutgoingSuccessions requires that all outgoing Successions from a
ForkNode have target multiplicity 1..1.

The semantics of a ForkNode are entirely a result of the above constraints. Because of the required multiplicities,
for each performance of a ForkNode, every outgoing Succession must have a value, temporally ordering the
ForkNode as happening before all the target Occurrences (typically Actions) of the outcoming Successions.

For example, consider the following model of a ForkNode with two incoming Successions and one outgoing
Succession, explicitly showing the required Succession multiplicities:

action def A2 {
action a1;

succession s1 first a1 then f[1..1];
fork f;
succession s2 first f[1..1] then a2[1..1];
succession s3 first f[1..1] then a3[1..1];

action a2;
action a3;

}

With implied Specializations included, this is semantically equivalent to:

action def A2 specializes Actions::Action {
action a1 subsets Actions::Action::subactions;

succession s1 subsets Occurrences::happensBeforeLinks
first a1 then f[1..1];

fork f subsets Actions::Action::forks;
succession s2 subsets Occurrences::happensBeforeLinks

first f[1..1] then a2[1..1];
succession s3 subsets Occurrences::happensBeforeLinks

first f[1..1] then a3[0..1];

action a2 subsets Actions::Action::subactions;
action a3 subsets Actions::Action::subactions;

}

Merge Nodes

A MergeNode is a kind of ControlNode that represents the merging of control. The following additional
constraints apply to a MergeNode.

• checkMergeNodeSpecialization constraint requires that a MergeNode specialize the ActionUsage
Actions::Action::merges (see 9.2.9.2.4), which is defined by the ActionDefinition
Actions::MergeAction (see 9.2.9.2.21) and subsets Actions::Action::controls. MergeAction
subclassifies ControlAction and the kernel Behavior
ControlPerformances::MergePerformance (see [KerML, 9.2.9]).

• checkMergeNodeIncomingSuccessionSpecialization requires that any incoming Succession to
a MergeNode specialize the Feature MergePerformance::incomingHBLink (which is inherited by
MergeAction).

• validateMergeNodeOutgoingSuccessions requires that a MergeNode have at most one outgoing
Succession.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 409

• validateMergeNodeIncomingSuccessions requires that all incoming Successions to a
MergeNode have source multiplicity 0..1.

Since MergePerformance::incomingHBLink has a multiplicity of 1, the result of the above constraints is that,
for any performance of a MergeAction, there must be exactly one incoming Succession that has a value,
representing the incoming "control" that triggers this specific performance of the MergeAction.

For example, consider the following model of a MergeNode with two incoming Successions and one outgoing
Succession, explicitly showing the required Succession multiplicities:

action def A3 {
action a1;
action a2;

succession s1 first a1[0..1] then m[1..1];
succession s2 first a2[0..1] then m[1..1];
merge m;
succession s3 first m[1..1] then a3;

action a3;
}

With implied Specializations included, this is semantically equivalent to:

action def A3 specializes Actions::Action {
action a1 subsets Actions::Action::subactions;
action a2 subsets Actions::Action::subactions;

succession s1 subsets Occurrences::happensBeforeLinks
subsets m.incomingHBLink
first a1[0..1] then m[1..1];

succession s2 subsets Occurrences::happensBeforeLinks
subsets m.incomingHBLink
first a2[0..1] then m[1..1];

merge m subsets Actions::Action::merges{
// m inherits the following feature from MergePerformance:
// incomingHBLink : HappensBefore[1];

}
succession s3 subsets Occurrences::happensBeforeLinks

first m[1..1] then a3;

action a3 subsets Actions::Action::subactions;
}

Decision Nodes

A DecisionNode is a kind of ControlNode that represents a control decision. The following additional
constraints apply to a DecisionNode:

• checkDecisionNodeSpecialization requires that a DecisionNode specialize the ActionUsage
Actions::Action::decisions (see 9.2.9.2.4), which is defined by the ActionDefinition
Actions::DecisionAction (see 9.2.9.2.21) and subsets Actions::Action::controls.
DecisionAction subclassifies ControlAction and the kernel Behavior
ControlPerformances::DecisionPerformance (see [KerML, 9.2.9]).

• checkDecisionNodeOutgoingSuccessionSpecialization requires that any incoming
Succession to a MergeNode specialize the Feature DecisionPerformance::outgoingHBLink
(which is inherited by DecisionAction).

410 OMG Systems Modeling Language (SysML) v2.0 Beta 1

• validateDecisionNodeIncomingSuccessions requires that a DecisionNode have at most one
incoming Succession.

• validateDecisionNodeOutcomingSuccessions constraint requires that all outgoing Successions
from a DecisionNode have target multiplicity 0..1.

Since DecisionPerformance::outgoingHBLink has a multiplicity of 1, the result of these constraints is that,
for any performance of a DecisionAction, there must be exactly one outgoing Succession that has a value,
representing the outgoing "control" decided on by this specific performance of the DecisionAction.

For example, consider the following model of a DecisionNode with one incoming Successions and two
outgoing Successions, explicitly showing the required Succession multiplicities:

action def A4 {
action a1;

succession s1 first a1 then d[1..1];
decide d;
succession s2 first d[1..1] then a2[0..1];
succession s3 first d[1..1] then a3[0..1];

action a2;
action a3;

}

With implied Specializations included, this is semantically equivalent to:

action def A4 specializes Actions::Action {
action a1 subsets Actions::Action::subactions;

succession s1 subsets Occurrences::happensBeforeLinks
first a1[0..1] then d[1..1];

decide d subsets Actions::Action::decisions {
// d inherits the following feature from DecisionPerformance:
// outgoingHBLink : HappensBefore[1];

}
succession s2 subsets Occurrences::happensBeforeLinks

subsets d.outgoingHBLink
first d[1..1] then a2[0..1];

succession s3 subsets Occurrences::happensBeforeLinks
subsets d.outgoingHBLink
first d[1..1] then a3[0..1];

action a2 subsets Actions::Action::subactions;
action a3 subsets Actions::Action::subactions;

}

The semantics of a DecisionNode do not determine which of the outgoing Successions will have a value for any
specific performance of the DecisionNode. However, the outgoing Successions of a DecisionNode will
typically have guard conditions, in which case only the Succession(s) for which the guard is true may have
values.

action def A5 {
action a1 { out ref x : ScalarValues::Integer; }

succession s1 first a1 then d[1..1];
decide d;
succession s2 first d[1..1] if x < 0 then a2[0..1];

OMG Systems Modeling Language (SysML) v2.0, Beta 1 411

succession s3 first d[1..1] if x >= 0 then a3[0..1];

action a2;
action a3;

}

Such conditional Successions are actually parsed as TransitionUsages defined by the ActionDefinition
DecisionTransitionAction (see 8.2.2.16.7), with a nested Succession. It is this nested Succession that
actually has the DecisionNode as its source, and, therefore, to which the
validateDecisionNodeOutcomingSuccessions constraint applies. See 8.4.12.3 on the semantics of decision
TransitionUsages.

8.4.12.5 Send Action Usages

A SendActionUsage is a kind of ActionUsage, so all general semantic constraints for an ActionUsage (see
8.4.12.2) also apply to a SendActionUsage, as well as the following additional specialization constraints:

• checkSendActionUsageSpecialization requires that a SendActionUsage specialize the
ActionUsage Actions::sendActions (see 9.2.9.2.23), which is defined by the ActionDefinition
Actions::SendAction (see 9.2.9.2.22) and subsets the ActionUsage Actions::actions (see
9.2.9.2.5) and the kernel Feature Transfers::sendPerformances (see [KerML, 9.2.7]).

• checkSendActionUsageSubactionSpecialization constraint requires that a SendActionUsage
that is composite, has an owningType that is an ActionDefinition or ActionUsage, and is not the
entryAction or exitAction of a StateDefinition or StateUsage (see 8.4.13) specialize the
ActionUsage Actions::Action::sendSubactions (see 9.2.9.2.4), which subsets
Actions::sendActions and Actions::Action::subactions.

A SendActionUsage provides arguments for the parameters of a SendAction. A SendActionUsage
declaration of the form

action snd send p via src to tgt;

(where all of p, src and tgt are Expressions) is parsed (including implied Specializations) as (see
8.2.2.16.4):

action s subsets Actions::sendActions {
in ref redefines Actions::SendAction::payload = p;
in ref redefines Actions::SendAction::sender = src;
in ref redefines Actions::SendAction::receiver = tgt;

}

SendAction subclassifies the ActionDefinition Actions::Action (see 9.2.9.2.4) and the kernel Behavior
Transfers::SendPerformance (see [KerML, 9.2.7]). The semantics of SendPerformance is to initiate a
sentMessage, which is a MessageTransfer (for a SendAction, this will also be a MessageConnection, see
9.2.6.2.7) from a given sender. The SendAction::payload parameter (which redefines
SendPerformance::sentItems) provides the values that are transferred.

If given, the receiver parameter specifies the target of the sentMessage. This parameter is optional. If no
receiver is given, then the target of the sentMessage is unspecified by the SendAction, and must be
determined from other constraints in the model. (For example, if the SendAction has a PortUsage as its sender,
then the target of the sentMessage may be determined by a InterfaceUsage outgoing from that PortUsage.)

412 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The sender parameter is mandatory. However, if no explicit value is given for this parameter, it defaults to the
value of this for the SendAction (see 8.4.12.2 on the semantics of this for Actions in general). This is
particularly important when the SendAction is nested in other containing Actions or Parts.

For example, consider a SendActionUsage with no declared sender nested in an ActionDefinition:

action def AS {
action snd send p to tgt;

}

This is equivalent to

action def AS specializes Actions::Action {
action snd subsets Actions::Action::sendSubactions {

in ref redefines payload = p;
in ref redefines sender = this;
in ref redefines receiver = tgt;

}
}

Therefore, in the model

package Sending {
action as1 : AS[1] subsets Action::actions {

// snd.sender == as1
}
part p subsets Parts::parts {

action as2: AS[1] subsets Parts::Part::ownedActions {
// snd.sender == p

}
}

}

the default sender for as1.snd is as1, but the default sender for p.as2.snd is p.

8.4.12.6 Accept Action Usages

An AcceptActionUsage is a kind of ActionUsage, so all general semantic constraints for an ActionUsage (see
8.4.12.2) also apply to an AcceptActionUsage, as well as the following additional specialization constraints:

• checkAcceptActionUsageSpecialization requires that (unless it is the triggerAction of a
TransitionUsage, see 8.4.13.3) an AcceptActionUsage specialize the ActionUsage
Actions::acceptActions (see 9.2.9.2.2), which is defined by the ActionDefinition
Actions::AcceptAction (see 9.2.9.2.1) and subsets Actions::Action::actions (see 9.2.9.2.5)
and the kernel Feature Transfers::acceptPerformances (see [KerML, 9.2.7]).

• checkAcceptActionUsageSubactionSpecialization requires that an AcceptActionUsage that
is composite, has an owningType that is an ActionDefinition or ActionUsage, and is not the
triggerAction of a TransitionUsage or the entryAction or exitAction of a StateDefinition
or StateUsage (see 8.4.13) specialize the ActionUsage Actions::Action::acceptSubactions
(see 9.2.9.2.4), which subsets Actions::acceptActions and Actions::Action::subactions.

An AcceptActionUsage provides an argument for the input parameter receiver of an AcceptAction and
declares what can be accepted in the output parameter payload. An AcceptActionUsage declaration of the
form

action acpt accept x : T via tgt;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 413

(where src and tgt are Expressions) is parsed (including implied Specializations) as (see 8.2.2.16.4):

action acpt subsets Actions::acceptActions {
inout ref x : T redefines Actions::AcceptAction::payload;
in ref redefines Actions::AcceptAction::receiver = tgt;

}

AcceptAction subclassifies the ActionDefinition Actions::AcceptMessageAction (see 9.2.9.2.3), which
itself subclassifies Actions::Action (see 9.2.9.2.4) and the kernel Behavior
Transfers::AcceptPerformance (see [KerML, 9.2.7]). The semantics of AcceptPerformance is to select an
incomingTransfer of the given receiver Occurrence that is a MessageTransfer and whose transferred
values conform to its acceptedItem parameter, as redefined in the AcceptActionUsage
(AcceptAction::payload itself redefines AcceptPerformance::acceptedItem). AcceptAction has a
nested StateActionUsage, such that, when the AcceptAction is performed, it waits for the acceptance of a
conforming MessageTransfer, and then completes if and when such a MessageTransfer is eventually accepted.
If so, then the transferred values of the acceptedMessage are placed on the payload output parameter.

The receiver parameter is mandatory. However, if no explicit value is given for this parameter, it defaults to
the value of this for the AcceptAction (see 8.4.12.2 on the semantics of this for Actions in general). This is
particularly important when the AcceptAction is nested in other containing Actions or Parts.

For example, consider an AcceptActionUsage with no declared receiver nested in an ActionDefinition:

action def AA {
action acpt accept x : T;

}

This is equivalent to

action def AA specializes Actions::Action {
action acpt subsets Actions::Action::acceptSubactions {

inout ref x : T redefines Actions::AcceptAction::payload;
in ref redefines Actions::AcceptAction::receiver = this;

}
}

Therefore, in the model

package Accepting {
action aa1 : AA[1] subsets Action::actions {

// acpt.receiver == aa1
}
part p subsets Parts::parts {

action aa2: AA[1] subsets Parts::Part::ownedActions {
// acpt.receiver == p

}
}

}

the default receiver for aa1.acpt is aa1, but the default receiver for p.aa2.accept is p.

Note also that the AcceptAction::payload parameter actually has direction inout, which means that an
input value may be optionally provided for it. If a the payload parameter has a FeatureValue Relationship
to a value Expression, then any acceptedMessage must have values that match the result of the value
Expression bound to the payload parameter. This is used, in particular, to provide the semantics for
TriggerInvocationExpressions as used in AcceptActionUsages.

414 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A TriggerInvocationExpression (see 8.3.16.16) is a kind of KerML InvocationExpression (see [KerML,
8.3.4.8]), with the corresponding semantics (see [KerML, 8.4.4.9]). The
checkTriggerInvocationExpressionSpecialization constraint requires that a
TriggerInvocationExpression specialize (invoke) one of the Functions TriggerWhen, TriggerAt or
TriggerAfter, from the Kernel Semantic Library Triggers package (see [KerML, 9.2.14]), depending on
whether its kind is when, at or after (see TriggerKind, 8.3.16.17), respectively. An AcceptActionUsage
with a change (when), absolute time (at) or relative time (after) trigger is parsed as having its payload
parameter bound to a TriggerInvocationExpression of the corresponding kind.

So, the following:

action def AT {
action acpt_when accept when boolean_expr;
action acpt_at accept at time_expr;
action acpt_after accept after duration_expr;

}

is equivalent to:

action def AT specializes Actions::Action {
action acpt_when subsets Actions::Action:acceptSubactions {

in ref redefines Actions::AcceptAction::payload =
Triggers::TriggerWhen({ boolean_expr }, receiver);

in ref redefines Actions::AcceptAction::receiver = this;
}
action acpt_at subsets Actions::Action:acceptSubactions {

in ref redefines Actions::AcceptAction::payload =
Triggers::TriggerAt(time_expr, receiver);

in ref redefines Actions::AcceptAction::receiver = this;
}
action acpt_after subsets Actions::Action:acceptSubactions {

in ref redefines Actions::AcceptAction::payload =
Triggers::TriggerAfter(duration_expr, receiver);

in ref redefines Actions::AcceptAction::receiver = this;
}

}

Note that the checkAcceptActionUsageReceiverBindingConnector constraint requires that the second
parameter of a TriggerInvocationExpression be bound to the receiver parameter of the containing
AcceptActionUsage, indicating that it is the AcceptActionUsage receiver that is to be signaled by the
trigger. Each of the Triggers Functions also has two additional parameters, which all get their default values.

1. clock, typed by Clocks::Clock (see [KerML, 9.2.12]), defaults to
Occurrences::Occurrence::localClock (see [KerML, 9.2.4]).

2. monitor, typed by Observation::ChangeMonitor (see [KerML, 9.2.13]), defaults to
Observation::defaultMonitor.

In particular, the Occurrences::Occurrence::localClock itself defaults to the singleton universalClock
(see 9.8.8.2.13 and [KerML, 9.2.12]). However, for a suboccurrence, this default is overridden to instead be the
localClock of the containing Occurrence. This means that binding the localClock feature to a new Clock
instance in an OccurrenceDefinition or OccurrenceUsage (particularly a PartDefinition or PartUsage)
means that this Clock instance will be used as the default for all contained suboccurrences (particularly
ownedActions and subactions) at any level of nesting in the composition hierarchy (unless it is further
overridden at some lower level).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 415

part def TimeContext specializes Parts::Part {
ref redefines localClock = Time::Clock();
action behavior subsets Parts::Part::ownedActions {

// Uses the value bound to TimeContext::localClock,
// not the default universalClock.
action subsets Actions::Action::acceptSubactions

accept after 30 [SI::s];
}

}

8.4.12.7 Assignment Action Usages

An AssignmentActionUsage is a kind of ActionUsage, so all general semantic constraints for an ActionUsage
(see 8.4.12.2) also apply to an AssignmentActionUsage, as well as the following additional specialization
constraints:

• checkAssignmentActionUsageSpecialization requires that an AssignmentActionUsage
specialize the ActionUsage Actions::assignmentActions (see 9.2.9.2.7), which is defined by the
ActionDefinition Actions::AssignmentAction (see 9.2.9.2.6) and subsets
Actions::Action::actions (see 9.2.9.2.5).

• checkAssignmentActionUsageSubactionSpecialization constraint requires that an
AssignmentActionUsage that is composite, has an owningType that is an ActionDefinition or
ActionUsage, and is not the entryAction or exitAction of a StateDefinition or StateUsage
(see 8.4.13) specialize the ActionUsage Actions::Action::assignments (see 9.2.9.2.4), which
subsets Actions::assignmentActions and Actions::Action::subactions.

An AssignmentActionUsage has two input parameters for the target Occurrence and the
replacementValues to be assigned. The target has a time slice called startingAt with a nested feature called
accessedFeature. The referent Feature to be assigned by the AssignmentActionUsage is actually parsed
as an alias member of the AssignmentActionUsage (see 8.2.2.16.4). The following constraints then apply:

• checkAssignmentActionUsageStartingAtRedefinition requires that the first ownedFeature of
the first parameter of an AssignmentActionUsage (the target parameter) redefines
Actions::AssignmentAction::target::startingAt.

• checkAssignmentActionUsageAccessedFeatureRedefinition requires that the first
ownedFeature of the above redefinition of startingAt redefines
Actions::AssignmentAction::target::startingAt::accessedFeature.

• checkAssignmentActionReferentRedefinition requires that
target.startingAt.accessedFeature of the AssignmentActionUsage redefine the referent
Feature.

An AssignmentActionUsage declaration of the form

action asgn assign tgt.rfnt := val;

(where tgt and val are Expressions and rfnt is a qualified name or feature chain) is parsed (including implied
Specializations) as

action asgn subsets Actions::assignmentActions {
in ref redefines Actions::AssignmentAction::target = tgt {

redefines Actions::AssignmentAction::target::startingAt {
redefines Actions::AssignmentAction::target::startingAt::accessedFeature,

rfnt;
}

}

416 OMG Systems Modeling Language (SysML) v2.0 Beta 1

inout ref redefines Actions::AssignmentAction::replacementValues = val;
}

AssignmentAction subclassifies the Actions::Action (see 9.2.9.2.4) and the kernel Behavior
ControlPerformances::FeatureWritePerformance (see [KerML, 9.2.9]). The semantics of
FeatureWritePerformance is that, at the time it ends, the accessedFeature of the target Occurrence will
have the given replacementValues.

8.4.12.8 If Action Usages

An IfActionUsage is a kind of ActionUsage, so all general semantic constraints for an ActionUsage (see
8.4.12.2) also apply to an IfActionUsage, as well as the following additional specialization constraints:

• checkIfActionUsageSpecialization requires that
◦ If an IfActionUsage does not have an elseAction, it specialize the ActionUsage

Actions::ifThenActions (see 9.2.9.2.15), which is defined by the ActionDefinition
Actions::IfThenAction (see 9.2.9.2.14) and subsets Actions::Action::actions (see
9.2.9.2.5).

◦ If the IfActionUsage has an elseAction, it specialize the ActionUsage
Actions::ifThenElseActions (see 9.2.9.2.17), which is defined by the
ActionDefinition Actions::IfThenElseAction (see 9.2.9.2.14) and subsets
Actions::Action::actions (see 9.2.9.2.5).

• checkIfActionUsageSubactionSpecialization constraint requires that an IfActionUsage that is
composite, has an owningType that is an ActionDefinition or ActionUsage, and is not the
entryAction or exitAction of a StateDefinition or StateUsage (see 8.4.13) specialize the
ActionUsage Actions::Action::ifSubactions (see 9.2.9.2.4), which subsets
Actions::ifThenActions and Actions::Action::subactions.

The ActionDefinition IfThenAction has two input parameters: ifTest, which is a BooleanEvaluation,
and thenClause, which is an Action. IfThenElseAction specializes IfThenAction, adding a third input
parameter: elseClause, which is also an Action. The ifArgument, thenAction and (optionally)
elseAction of an IfActionUsage are then parsed as parameters of the IfActionUsage that redefine the
corresponding parameters of the IfThenAction or IfThenElseAction.

Thus, IfActionUsages such as the following:

action def AC {
action if1 if test1

then action then1 {
// ...

}

action if2 if test2
then action then2 {

// ...
}
else action else2 {

// ...
}

}

(where test1 and test2 can be arbitrary Boolean-valued Expressions) are parsed, with implied
Specializations included, as (see 8.2.2.16.6):

OMG Systems Modeling Language (SysML) v2.0, Beta 1 417

action def AC specializes Actions::Action {
action if1 subsets Actions::Action::ifSubactions {

in calc redefines Actions::IfThenAction::ifTest {
test1

}
in action then1 redefines Actions::IfThenAction::thenClause {

// ...
}

}

action if2 subsets Actions::Action::ifSubactions,
Actions::ifThenElseActions {
in calc redefines Actions::IfThenAction::ifTest {

test1
}
in action then1 redefines Actions::IfThenAction::thenClause {

// ...
}
in action else2 redefines Actions::IfThenElseAction::elseClause {

// ...
}

}

IfThenAction specializes the KerML Behavior IfThenPerformance, whose behavior is to first evaluate the
ifTest and then, if the result of that evaluation is true, perform the thenClause. IfThenElseAction specializes
the KerML Behavior IfThenElsePerformance, which specializes IfThenPerformance, adding the additional
behavior such that, if the result of the evaluation of the ifTest is false, it performs the elseClause.

8.4.12.9 Loop Action Usages

A LoopActionUsage is a kind of ActionUsage, so all general semantic constraints for an ActionUsage (see
8.4.12.2) also apply to a LoopActionUsage. LoopActionUsage is abstract. There are two concrete subclasses of
LoopActionUsage, WhileLoopActionUsage and ForLoopActionUsage, and further semantic constraints are
specific to those subclasses.

While Loops

A WhileLoopActionUsage is a kind of LoopActionUsage. The following additional specialization constraints
apply to a WhileLoopActionUsage:

• checkWhileLoopActionUsageSpecialization requires that a WhileLoopActionUsage specialize
the ActionUsage Actions::whileLoopActions (see 9.2.9.2.27), which is defined by the
ActionDefinition Actions::WhileLoopAction (see 9.2.9.2.26) and (indirectly) subsets
Actions::Action::actions (see 9.2.9.2.5).

• checkWhileLoopActionUsageSubactionSpecialization requires that a
WhileLoopActionUsage that is composite, has an owningType that is an ActionDefinition or
ActionUsage, and is not the entryAction or exitAction of a StateDefinition or StateUsage
(see 8.4.13) specialize the ActionUsage Actions::Action::whileLoops (see 9.2.9.2.4), which
subsets Actions::whileLoopActions and (indirectly) Actions::Action::subactions.

A WhileLoopAction has three input parameters:

1. whileTest, which is a BooleanExpression that defaults to true
2. body, which is an Action
3. untilTest, which is a BooleanExpression that defaults to false

418 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The whileArgument, bodyAction, and untilArgument of the WhileLoopActionUsage are then parsed as
owned parameters (see 8.2.2.16.6), which must redefine the corresponding parameters of WhileLoopAction, as
required by the KerML checkFeatureParameterRedefinition constraint (see [KerML, 8.4.4.7.1]).

Thus, a WhileLoopActionUsage such as the following

action def AW {
action loop1

while test1
action body1 {

// ...
}
until test2;

}

(where test1 and test2 can be arbitrary Boolean-valued Expressions) is parsed, with implied
Specializations included, as:

action def AW specializes Actions::Action {
action loop1 subsets Actions::Action::whileLoops {

in calc redefines Actions::WhileLoopAction::whileTest {
test1

}
in action body1 redefines Actions::WhileLoopAction::body {

// ...
}
in calc redefines Actions::WhileLoopAction::untilTest {

test2
}

}
}

WhileLoopAction specializes the KerML Behavior LoopPerformance, whose behavior is to perform the body
while the whileTest evaluates to true and the untilTest evaluates to false. The whileTest is evaluated before
each (possible) performance of the body, and the untilTest is evaluated after each performance of the body.

For Loops

A ForLoopActionUsage is a kind of LoopActionUsage. The following additional specialization constraints
apply to a ForLoopActionUsage:

• checkForLoopActionUsageSpecialization requires that a ForLoopActionUsage specialize the
ActionUsage Actions::forLoopActions (see 9.2.9.2.13), which is defined by the
ActionDefinition Actions::ForLoopAction (see 9.2.9.2.12) and (indirectly) subsets
Actions::Action::actions (see 9.2.9.2.5).

• checkForLoopActionUsageSubactionSpecialization constraint requires that a
ForLoopActionUsage that is composite, has an owningType that is an ActionDefinition or
ActionUsage, and is not the entryAction or exitAction of a StateDefinition or StateUsage
(see 8.4.13) specialize the ActionUsage Actions::Action::forLoops (see 9.2.9.2.4), which subsets
Actions::forLoopActions and (indirectly) Actions::Action::subactions.

ForLoopAction has two input parameters:

1. seq, which is a sequence of Anything
2. body, which is an Action

OMG Systems Modeling Language (SysML) v2.0, Beta 1 419

It also has a protected ownedFeature var that is a subset of seq with multiplicity 0..1. The loopVariable,
seqArgument, and bodyAction of a ForLoopActionUsage are parsed as follows (see 8.2.2.16.6):

1. loopVariable is an ownedFeature
2. seqArgument is related by a FeatureValue to an owned parameter
3. bodyAction is an owned parameter

The checkForLoopActionUsageVarRedefinition constraint then requires that the loopVariable redefine
ForLoopAction::var. The KerML checkFeatureParameterRedefinition constraint (see [KerML,
8.4.4.7.1]) requires that the two parameters redefine the corresponding parameters seq and body of
ForLoopAction.

Thus, a ForLoopActionUsage such as the following

action def AF {
action loop2 for v : T in vals

action body2 {
// ...

}
}

(where vals is an Expression) is parsed, with implied Specializations included, as:

action def AF specializes Actions::Action {
action loop2 subsets Actions::Action::forLoops {

protected v : T redefines Actions::ForLoopAction::var;
in ref redefines Actions::ForLoopAction::seq = vals;
in action body2 redefines Actions::ForLoopAction::body {

// ...
}

}
}

ForLoopAction uses a nested WhileLoopActionUsage to iteratively perform its body Action, with its var
assigned to each successive value from seq in turn.

8.4.12.10 Perform Action Usages

A PerformActionUsage is a kind of ActionUsage and a kind of EventOccurrenceUsage. As such, all general
semantic constraints on an ActionUsage (see 8.4.12.2) and an EventOccurrenceUsage (see 8.4.5.3) also apply
to a PerformActionUsage. In particular, validateEventOccurrenceUsageIsReference requires a
PerformActionUsage to be referential. In addition, if a PerformActionUsage is an ownedFeature of a
PartDefinition or PartUsage, then the checkPerformActionUsageSpecialization constraint requires
that it specialize the ActionUsage Parts::Part::performedActions (see 9.2.4.2.1), which subsets
Actions::actions (see 9.2.9.2.5) and the kernel Feature
Occurrences::Occurrence::enactedPerformances (see [KerML, 9.2.4]). In this case, any Action
referenced by the PerformActionUsage is considered to have been performed by the containing Part within its
lifetime.

For example, the following model:

action act;
part p {

perform action perf references act;
// Other than having a name, the above is equivalent to

420 OMG Systems Modeling Language (SysML) v2.0 Beta 1

// perform act;
}

is, with implied Specializations included, semantically equivalent to

action act1 subsets Actions::actions;
part p subsets Parts::parts {

ref action perf references act
subsets Parts::Part::performedActions;

}

Thus, the values of p.perf will be some subset of the Actions represented by act that are performed by p.

As a referential ActionUsage, a PerformActionUsage that is an ownedFeature of an ActionDefinition or
ActionUsage is required by the KerML checkStepEnclosedPerformanceSpecialization constraint (see
[KerML, 8.4.4.7.2]) to specialize Performances::Performance::enclosedPerformance (see [KerML,
9.2.6]). If the PerformActionUsage has a ReferenceSubsetting, then this will suffice to satisfy the
checkActionUsageSpecialization constraint, if the referenced ActionUsage does. However, if it does not
have a ReferenceSubsetting (or other relevant explicit ownedSpecialization), it requires an implied
Subsetting of Actions::actions.

action def APA specializes Actions::Action {
perform action pa1 references act

subsets Performances::Performance::enclosedPerformances;
perform action pa2 subsets Actions::actions

subsets Performances::Performance::enclosedPerformances;
}

A PerformActionUsage that is an ownedFeature of an OccurrenceDefinition or OccurrenceUsage but
not a PartDefinition, PartUsage, ActionDefinition or ActionUsage has the same semantics as an
EventOccurrenceUsage in that context, with an ActionUsage as its referenced OccurrenceUsage (see
8.4.5.3). Otherwise, a PerformActionUsage has the same semantics as a referential ActionUsage (see 8.4.12.2).

8.4.13 States Semantics

Abstract syntax reference: 8.3.17

8.4.13.1 State Definitions

A StateDefinition is a kind of ActionDefinition. As such, all the general semantic constraints for an
ActionDefinition (see 8.4.12.1) also apply to a StateDefinition. In addition, the
checkStateDefinitionSpecialization constraint requires that a StateDefinition specialize the base
StateDefinition States::StateAction (see 9.2.10.2.1), which specializes the ActionDefinition
Actions::Action (see 9.2.9.2.4) and the kernel Behavior StatePerformances::StatePerformance (see
[KerML, 9.2.6]).

state def S specializes States::StateAction;
state def S1 specializes S;

Further, the checkActionUsageStateActionRedefinition constraint (see 8.4.12.2) requires that an
ActionUsage that is an entryAction, exitAction or doAction of a StateDefinition (i.e., is owned via a
StateSubactionMembership) redefine, respectively, the entryAction, exitAction, or doAction feature
of StateAction (see 9.2.10.2.1), which redefine the entry, exit, and do features of
StatePerformances::StatePerformance (see [KerML, 9.2.6]), restricting them to be Actions (see 9.2.9.2.4).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 421

state def SA specializes States::StateAction {
entry action entAct redefines States::StateAction::entryAction;
do action doAct redefines States::StateAction::doAction;
exit action extAct redefines States::StateAction::exitAction;

}

A StateAction is a kind of StatePerformance, which specifies the basic semantics of entry into a state, the
performance of behaviors while in a state, and the acceptance of an incomingTransfer, causing an exit from the
state (see [KerML, 9.2.6]). See also the descriptions of the semantics of StateUsages (see 8.4.13.2) and
TransitionUsages (see 8.4.13.3). The StateAction semantic model also includes various additional features
related to various kinds of subactions of StateActions:

• subactions – Redefines Action::subactions to subset StatePeformances::middle, thus
excluding entryActions and exitActions from the collection of subactions for a StateAction
(see 8.4.13.2).

• substates – The subactions that are StateActions (see 8.4.13.2).
• exclusiveStates – The substates that are mutually exclusive, that is whose performances do not

overlap in time. If a StateDefinition or StateUsage is not parallel (i.e., isParallel = false),
than all the substates of its StateActions will be exclusiveStates (see 8.4.13.2).

• stateTransitions – The subset of transitions (inherited from Action; see 8.4.12.1) that are
StateTransitionActions (see 8.4.13.3).

8.4.13.2 State Usages

A StateUsage is a kind of ActionUsage. As such, all the general semantic constraints for an ActionUsage (see
8.4.12.2) also apply to a StateUsage, as well as the following additional specialization constraints:

• checkStateUsageSpecialization requires that a StateUsage specialize the base StateUsage
States::stateActions (see 9.2.10.2.2), which is defined by the StateDefinition
States::StateAction (see 9.2.10.2.1) and subsets the ActionUsage Actions::actions (see
9.2.9.2.5).

state s : S subsets States::StateActions;
state s1 : S1 subsets s;

• checkStateUsageSubstateSpecialization requires that a composite StateUsage whose whose
owningType is a StateDefinition or StateUsage, but is not the entryAction or exitAction,
specialize the StateUsage States::StateAction::substates (see 9.2.10.2.1), which subsets
State::StateAction::subactions.

• checkStateUsageExclusiveStateSpecialization requires that a composite StateUsage whose
whose owningType is a StateDefinition or StateUsage for which isParallel = false, but is
not the entryAction or exitAction, specialize the StateUsage
States::StateAction::exclusiveStates (see 9.2.10.2.1), which subsets
State::StateAction::substates. This constraint enforces the semantic requirement that a non-
parallel StateAction perform only one substate at a time.

state def SE specializes States::StateAction {
state se1 subsets States::StateAction::exclusiveStates;
state se2 subsets States::StateAction::exclusiveStates;

}
state def SP specializes States::StateAction parallel {

state sp1 subsets States::StateAction::substates;
state sp2 subsets States::StateAction::substates;

}

422 OMG Systems Modeling Language (SysML) v2.0 Beta 1

• checkStateUsageOwnedStateSpecialization requires that a composite StateUsage whose
owningType is a PartDefinition or a PartUsage specialize the StateUsage
Parts::Part::ownedStates (see 9.2.4.2.1), which subsets the ActionUsage
Parts::Part::ownedActions. Note also that, in other cases, the general
KerML checkStepEnclosedPerformanceSpecialization,
checkStepSubperformanceSpecialization and
checkStepOwnedPerformanceSpecialization constraints will still apply (see [KerML, 8.4.4.7]), as
well as checkActionUsageSubactionSpecialization (see 8.4.12.2).

action def AS subsets Action::Action {
ref state st1 subsets Performances::Performance::enclosedPerformance;
state st2 subsets Actions::Action::ownedActions;

}
part def PS specializes Parts::Part {

state s : S subsets Parts::Part::ownedStates;
}
item def IS specializes Items::Item {

state s : S subsets Objects::Object::ownedPerformances;
}

In addition, the checkActionUsageStateActionRedefinition constraint (see 8.4.12.2) requires that an
ActionUsage that is an entryAction, exitAction or doAction of a StateUsage (i.e., is owned via a
StateSubactionMembership) redefine, respectively, the entryAction, exitAction, or doAction feature
of the StateDefinition StateAction (see 9.2.10.2.1), which redefine the entry, exit, and do features of
the kernel Behavior StatePerformances::StatePerformance (see [KerML, 9.2.6]), restricting them to be
Actions (see 9.2.9.2.4).

state sa subsets States::stateActions {
entry action entAct redefines States::StateAction::entryAction;
do action doAct redefines States::StateAction::doAction;
exit action extAct redefines States::StateAction::exitAction;

}

8.4.13.3 Transition Usages

A TransitionUsage is a kind of ActionUsage. As such, all the general semantic constraints for an
ActionUsage (see 8.4.12.2) also apply to a TransitionUsage, as well as the following additional specialization
constraints:

• checkTransitionUsageSpecialization requires that a TransitionUsage specialize the
ActionUsage Actions::transitionActions (see 9.2.9.2.25), which is defined by the
ActionDefinition Actions::TransitionAction (see 9.2.9.2.24) and subsets the ActionUsage
Actions::actions (see 9.2.9.2.5).

• checkTransitionUsageActionSpecialization requires that a composite TransitionUsage
whose ownedType is an ActionDefinition or ActionUsage, but not a StateDefinition or
StateUsage, specialize the ActionUsage Actions::Action::decisionTransitions (see
9.2.9.2.4), which is typed by the ActionDefinition Actions::DecisionTransitionAction (see
9.2.9.2.10) and subsets the ActionUsage Actions::Action::transitions (see 9.2.9.2.4). (For the
semantics of TransitionUsages of DecisionTransitionActions, see 8.4.12.3.)

• checkTransitionUsageStateSpecialization requires that a composite TransitionUsage whose
ownedType is a StateDefinition or StateUsage specialize the ActionUsage
States::StateAction::stateTransitions (see 9.2.10.2.1), which is typed by the
ActionDefinition States::StateTransitionAction (see 9.2.10.2.3) and subsets the
ActionUsage Actions::Action::transitions (see 9.2.9.2.4).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 423

StateTransitionAction subclassifies Actions::TransitionAction (see 9.2.9.2.24) and the kernel
Behavior StatePerformances::StateTransitionPerformance (see [KerML, 9.2.11]). The
transitionLinkSource of a StateTransitionAction must be a StateAction. The
StateTransitionAction then represents a possible transition from the source StateAction to a target Action.

A TransitionUsage is parsed as having the following ownedMemberships (see 8.2.2.17.3):

• An alias (non-owning) Membership to its source StateUsage (or a Feature chain identifying the
source).

• A ParameterMembership for the transitionLinkSource parameter.
• A ParameterMembership for the payload parameter (if the TransitionUsage has a

triggerAction).
• Zero to three TransitionFeatureMemberships for up to one each of a triggerAction,

guardExpression, and effectAction. Note also that a triggerAction is parsed as an
AcceptActionUsage, with payload and, optionally, receiver parameters (see 8.4.12.6).

• An OwningMembership for the succession of the TransitionUsage, which is a Succession whose
targetFeature is the target of the TransitionUsage (or a Feature chain identifying the target).

The following semantic constraints then apply:

• checkFeatureParameterRedefinition (see [KerML, 8.4.4.7]) requires that the
transitionLinkSource and payload parameters of a TransitionUsage redefinition the
corresponding parameters of StateTransitionAction (see 9.2.10.2.3), as inherited from Transition

• checkTransitionUsagePayloadSpecialization requires that the payload parameter of a
TransitionUsage also subset the payloadParameter of the triggerAction. Note also that the
effective name of a ReferenceUsage used as the payload parameter of a TransitionUsage is
defined to be the name of the payloadParameter it subsets, rather than the name of the
StateTransitionAction::payload feature it redefines.

• checkTransitionUsageTransitionFeatureSpecialization requires that the triggerAction,
guardExpression, and effectAction of a TransitionUsage (if they exist) specialize, respectively,
the accepter, guard, and effect features of TransitionAction (9.2.9.2.24; see also [KerML,
9.2.10, 9.2.11] for inherited features).

• checkTransitionUsageSuccessionSourceSpecialization requires that the sourceFeature of
the succession of a TransitionUsage be the aliased source for the TransitionUsage.

• checkTransitionUsageSuccessionBindingConnector requires that a TransitionUsage have an
ownedMember that is a BindingConnector between its succession and the inherited
TransitionPerformances::TransitionPerformance::transitionLink feature.

• checkTransitionUsageSourceBindingConnector requires that a TransitionUsage have an
ownedMember that is a BindingConnector between its source and its transitionLinkSource
parameter.

• checkConnectorTypeFeaturing (see [KerML, 8.4.4.6.1]) then determines the featuringType of the
Succession and two BindingConnectors owned by a TransitionUsage (typically the owningType
of the TransitionUsage).

As a result of all the above semantic constraints, a TransitionUsage such as in the following model

state def ST {
state s1;
transition trns

first s1
accept x : T via tgt
if test
effect action efct {

424 OMG Systems Modeling Language (SysML) v2.0 Beta 1

// ...
}
then s2;

state s2;
}

(where test is a Boolean-valued Expression) has, with implied Relationships included, the equivalent kernel
semantics of:

// KerML
behavior ST specializes States::StateAction {

step s1 subsets States::StateAction::exclusiveStates;

step trns subsets States::State::stateTransitions {
alias s1 of SC::s1;

in feature redefines
States::StateTransitionAction::transitionLinkSource;

in feature x
redefines States::StateTransitionAction::payload
subsets accepter.x;

step redefines Actions::TransitionAction::accepter {
inout ref x : T redefines Actions::AcceptAction::payload;
in ref redefines Actions::AcceptAction::receiver = tgt;

}

bool redefines Actions::TransitionAction::guard {
test

}

step efct redefines Actions::TransitionAction::effect {
// ...

}

member succession trns_link
subsets Occurrences::happensBeforeLinks
featured by ST
first s1 then s2;

member binding featured by ST of trns_link =
TransitionPerformances::TransitionPerformance::transitionLink;

member binding featured by ST of s1 = transitionLinkSource;
}

step s2 subsets States::StateAction::exclusiveStates;
}

A StateTransitionAction is a kind of StateTransitionPerformance, which specifies the fundamental
semantics of transition out of a state. The guard of a StateTransitionAction is evaluated during the
performance of its source StateAction, and, if the guard evaluates to true and the transition accepts a Transfer,
then its accepter is also performed during the source StateAction, after which the exitAction of the
StateAction is performed (if it has one), and then the effect of the StateTransitionAction is performed (if
it has one). Finally, the transitionLink of the StateTransitionAction is asserted to have a value, meaning
that there must be a target Action temporally following the source StateAction. (For a complete description of the
semantics of StateTransitionPerformance, see [KerML, 9.2.10].)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 425

8.4.13.4 Exhibit State Usages

An ExhibitStateUsage is a kind of StateUsage and a kind of PerformActionUsage. As such, all general
semantic constraints on a StateUsage (see 8.4.13.2) and a PerformActionUsage (see 8.4.12.10) also apply to a
ExhibitStateUsage. In particular, validateEventOccurrenceUsageIsReference requires an
ExhibitStateUsage to be referential. In addition, if an ExhibitStateUsage is an ownedFeature of a
PartDefinition or PartUsage, then the checkExhibitStateUsageSpecialization constraint requires that
it specialize the StateUsage Parts::Part::exhibitStates (see 9.2.4.2.1), which subsets State::states
(see 7.17) and Parts::Part::performedActions. In this case, any State referenced by the
ExhibitStateUsage is considered to have been exhibited by the containing Part within its lifetime.

For example, the following model:

state st;
part p {

exhibit state exhb references st;
}

is, with implied Specializations included, semantically equivalent to

state st subsets State::states;
part p subsets Parts::parts {

ref state exhb references st
subsets Parts::Part::exhibitedStates;

}

Thus, the values of p.exhb will be the subset of the States represented by st that are performed by p.

As a referential StateUsage, an ExhibitStateUsage that is an ownedFeature of an ActionDefinition or
ActionUsage (including a StateDefinition or StateUsage) is required by the KerML
checkStepEnclosedPerformanceSpecialization constraint (see [KerML, 8.4.4.7.2]) to specialize
Performances::Performance::enclosedPerformance (see [KerML, 9.2.6]). If the ExhibitStateUsage
has a ReferenceSubsetting, then this will suffice to satisfy the checkStateUsageSpecialization
constraint, if the referenced StateUsage does. However, if it does not have a ReferenceSubsetting (or other
relevant explicit ownedSpecialization), it requires an implied Subsetting of State::states.

state def SES specializes States::State {
exhibit state es1 references st

subsets Performances::Performance::enclosedPerformances;
exhibit state es2 subsets State::states

subsets Performances::Performance::enclosedPerformances;
}

An ExhibitStateUsage that is an ownedFeature of an OccurrenceDefinition or OccurrenceUsage but
not a PartDefinition, PartUsage, ActionDefinition or ActionUsage has the same semantics as an
EventOccurrenceUsage in that context, with a StateUsage as its referenced OccurrenceUsage (see 8.4.5.3).
Otherwise, an ExhibitStateUsage has the same semantics as a referential StateUsage (see 8.4.13.2).

8.4.14 Calculations Semantics

Abstract syntax reference: 8.3.18

426 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.4.14.1 Calculation Definitions

A CalculationDefinition is a kind of ActionDefinition and a kind of KerML Function. As such, all the
general semantic constraints for an ActionDefinition (see 8.4.12.1) and a Function (see [KerML, 8.4.4.8.1])
apply to a CalculationDefinition. In addition, the checkCalculationDefinitionSpecialization
constraint requires that a CalculationDefinition specialize the base CalculationDefinition
Calculations::Calculation (see 9.2.11.2.1), which subclassifies the ActionDefinition
Actions::Action (see 9.2.9.2.4) and the kernel Behavior Performances::Evaluation (see [KerML, 9.2.6]).
Further, in addition to the KerML checkFeatureParameterRedefinition constraint, that applies to all kinds of
ActionDefinitions (see 8.4.12.1), the KerML checkFeatureResultRedefinition constraint (see [KerML,
8.4.4.8.1]) constraint also requires that the result parameter of a CalculationDefinition redefine the
result parameters of any Functions it specializes (including other CalculationDefinitions), which
means that it ultimately directly or indirectly specializes Performances::Evaluation::result.

calc def C specializes Calculations::Calculation {
in ref a redefines Base::things;
in ref b redefines Base::things;
return ref result redefines Calculations::Calculation::result;

}
calc def C1 specializes C {

in ref a redefines C::a;
// The result parameter can be in any position.
return ref result redefines C::result;
in ref b redefines C::b;

}

Further, if a CalculationDefinition owns an Expression via a ResultExpressionMembership, then the
KerML checkFunctionResultBindingConnector constraint (see [KerML, 8.4.4.8.1]) requires that the
CalculationDefinition have, as an ownedFeature, a BindingConnector between the result parameter
of the Expression and the result parameter of the CalculationDefinition.

calc def C2 specializes Calculations::Calculation {
return redefines Calculations::Calculation::result;
binding result = resultExpr.result; // Implied
resultExpr

}

where resultExpr is an arbitrary Expression and resultExpr.result represents a Feature chain to the
Expression result.

8.4.14.2 Calculation Usages

A CalculationUsage is a kind of ActionUsage and a kind of KerML Expression. As such, all the general
semantic constraints for an ActionUsage (see 8.4.12.2) and an Expression (see [KerML, 8.4.4.8.2]) apply to a
CalculationUsage, as well as the following additional specialization constraints:

• checkCalculationUsageSpecialization requires that a CalculationUsage specialize the base
CalculationUsage Calculations::calculations (see 9.2.11.2.2), which is defined by the
CalculationDefinition Calculations::Calculation (see 9.2.11.2.1) and subsets the
ActionUsage Actions::actions (see 9.2.9.2.4) and the kernel Step
Performances::evaluations (see [KerML, 9.2.6]). Further, in addition to the KerML
checkFeatureParameterRedefinition constraint, that applies to all kinds of ActionUsages (see
8.4.12.2), the KerML checkFeatureResultRedefinition constraint (see [KerML, 8.4.4.8.1]) also
requires that the result parameter of a CalculationUsage redefine the result parameters of

OMG Systems Modeling Language (SysML) v2.0, Beta 1 427

any Functions or Expressions it specializes (including CalculationDefinitions and
CalculationUsages).

calc c : C subsets Calculations::calculations {
in ref a redefines C::a;
in ref b redefines C::b;
return result redefines C::result, Calculation::calculations::result;

}
calc c1 : C1 subsets c {

return ref result redefines C1::result, c::result;
}

• checkCalculationUsageSubcalculationSpecialization requires that a CalculationUsage
that is composite and has an owningType that is a CalculationDefinition or CalculationUsage
specialize the CalculationUsage Calculations::Calculation::subcalculations (see
9.2.11.2.1), which subsets Calculations::calculations and the ActionUsage
Actions::Action::subactions (see 9.2.9.2.4). Note also that, in other cases, the general
checkActionUsageSubactionSpecialization constraint (see 8.4.12.2) and the
KerML checkStepEnclosedPerformanceSpecialization and
checkStepSubperformanceSpecialization constraints (see [KerML, 8.4.4.7]) will still apply.

calc def Clc subsets Calculations::Calculation {
calc clc1 subsets Calculations::Calculation::subcalculations;
ref calc clc2 subsets Calculations::calculations,

Performances::Performance::enclosedPerformances;
}
action def AClc subsets Actions::Action {

calc clc3 subsets Calculations::calculations,
Actions::Action::subactions;

}

Further, if a CalculationUsage owns an Expression via a ResultExpressionMembership, then the KerML
checkExpressionResultBindingConnector constraint (see [KerML, 8.4.4.8.1]) requires that the
CalculationUsage have, as an ownedFeature, a BindingConnector between the result parameter of the
Expression and the result parameter of the CalculationUsage.

calc c2 subsets Calculations::calculations {
binding result = resultExpr.result; // Implied
resultExpr

}

where resultExpr is an arbitrary Expression and resultExpr.result represents a Feature chain to the
Expression result.

8.4.15 Constraints Semantics

Abstract syntax reference: 8.3.19

8.4.15.1 Constraint Definitions

A ConstraintDefinition is a kind of OccurrenceDefinition and a kind of KerML Predicate. As such, all
the general semantic constraints for an OccurrenceDefinition (see 8.4.5) and a Predicate (see [KerML,
8.4.4.8.1]) also apply to a ConstraintDefinition. In addition, the
checkConstraintDefinitionSpecialization constraint requires that a ConstraintDefinition specialize

428 OMG Systems Modeling Language (SysML) v2.0 Beta 1

the base ConstraintDefinition Constraints::ConstraintCheck (see 9.2.9.2.4), which subclassifies the
kernel Predicate Performances::BooleanEvaluation (see [KerML, 9.2.6]).

A ConstraintDefinition is not a CalculationDefinition, but, since a Predicate is a kind of KerML
Function, the KerML checkFeatureParameterRedefinition constraint (see [KerML, 8.4.4.7.1]) and
checkFeatureResultRedefinition (see [KerML, 8.4.4.8.1]) constraints also apply to the parameters of a
ConstraintDefinition, as for a CalculationDefinition (see 8.4.14.1). However, the result parameter
of BooleanEvaluation has type ScalarValues::Boolean, so the result of a ConstraintDefinition
must also have type Boolean (or a specialization of it), and, therefore, it is often just inherited into the
ConstraintDefinition.

Also as for a CalculationDefinition, if a ConstraintDefinition owns an Expression via a
ResultExpressionMembership, then the KerML checkFunctionResultBindingConnector constraint (see
[KerML, 8.4.4.8.1]) requires that the ConstraintDefinition have, as an ownedFeature, a
BindingConnector between the result parameter of the Expression and the result parameter of the
ConstraintDefinition. The result Expression must therefore be Boolean-valued.

constraint def Cst specializes Constraints::ConstraintCheck {
in attribute x : ScalarValues::Real subsets Base::dataValues;
// Implied binding between the inherited result parameter
// and the result of the Expression x > 0.
x > 0

}

8.4.15.2 Constraint Usages

A ConstraintUsage is a kind of OccurrenceUsage and a kind of KerML Expression. As such, all the general
semantic constraints for an OccurrenceUsage (see 8.4.5) and an Expression (see [KerML, 8.4.4.8.2]) also apply
to a ConstraintUsage, as well as the following additional specialization constraints:

• checkConstraintUsageSpecialization requires that a ConstraintUsage specialize the base
ConstraintUsage Constraints::constraintChecks (see 9.2.12.2.3), which is defined by the
ConstraintDefinition Constraints::ConstraintCheck (see 9.2.12.2.2) and subsets the kernel
Step Performances::booleanEvaluations (see [KerML, 9.2.6]). Further, the KerML
checkFeatureParameterRedefinition constraint (see [KerML, 8.4.4.7.1]) and
checkFeatureResultRedefinition (see [KerML, 8.4.4.8.1]) constraints also apply to the
parameters of a ConstraintUsage, as for a ConstraintDefinition (see 8.4.15.1).

constraint cst : Cst subsets Constraints::constraintChecks {
in ref x redefines Cst::x = 2;
// Inherits result parameter and result Expression from Cst.

}

• checkConstraintUsageCheckedConstraintSpecialization requires that a composite
ConstraintUsage whose owningType is an ItemDefinition or an ItemUsage (including a
PartDefinition or PartUsage) specialize the ConstraintUsage
Items::Item::checkedConstraints (see 9.2.4.2.1), which subsets the ConstraintUsage
Constraints::constraintChecks and the kernel Feature
Objects::Object::ownedPerformances (see [KerML, 9.2.5]). Note also that, in other cases, the
general KerML checkStepOwnedPerformanceSpecialization constraint will still apply (see
[KerML, 8.4.4.7]).

item def ICst specializes Items::Item {
constraint c : Cst subsets Items::Item::checkedConstraints;

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 429

action def ACst specializes Actions::Action {
constraint c : Cst subsets Objects::Object::ownedPerformances;

}

• checkConstraintUsageRequirementConstraintSpecialization requires that a
ConstraintUsage whose owningFeatureMembership is a RequirementConstraintMembership
specialize either the assumptions (if it is an assumedConstraint) or constraints (if it is a
requiredConstraint) feature of the RequirementDefinition
Requirements::RequirementCheck (see 9.2.13.2.8). (See also 8.4.16 on requirements semantics.)

8.4.15.3 Assert Constraint Usages

An AssertConstraintUsage is a kind of ConstraintUsage and a kind of KerML Invariant. As such, all the
general semantic constraints for a ConstraintUsage (see 8.4.15.2) and an Invariant (see [KerML, 8.4.4.8.2]).
In addition, the checkAssertConstraintUsageSpecialization constraint requires that an
AssertConstraintUsage specialize one of the following:

• If the AssertConstraintUsage is not negated, ConstraintUsage
Constraints::assertedConstraintChecks (see 9.2.12.2.1), which subsets the ConstraintUsage
Constraints::constraintChecks (see 9.2.12.2.3) and the kernel Expression
Performances::trueEvaluations (see [KerML, 9.2.6]).

• If the AssertConstraintUsage is negated, the ConstraintUsage
Constraints::negatedConstraintChecks (see 9.2.12.2.4), which subsets the ConstraintUsage
Constraints::constraintChecks (see 9.2.12.2.3) and the kernel Expression
Performances::falseEvaluations (see [KerML, 9.2.6]).

assert constraint ast references cst subsets Constraints::assertedConstraints;
assert constraint ast1 : Cst subsets Constraints::assertedConstraints {

redefines x = 3;
}
assert not constraint ast2 : Cst subsets Constraints::negatedConstraints {

redefines x = -3;
}

In general, a ConstraintCheck of a ConstraintUsage at a certain point in time produces a Boolean result
indicating whether the modeled constraint holds or not at that point in time. This may be true at some times and false
at other times. However, assertedConstraintChecks subsets trueEvaluations, which only includes
BooleanEvaluations that have true results. Therefore, a ConstraintCheck of a non-negated
AssertConstraintUsage must have a true result—that is, the constraint modeled by the
AssertConstraintUsage is asserted to always hold. Similarlty, negatedConstraintChecks subsets
falseEvaluations, which only includes BooleanEvaluations that have false results. Therefore, a
ConstraintCheck of a negated AssertConstraintUsage must have a false result—that is, the constraint
modeled by the AssertConstraintUsage is asserted to never hold.

8.4.16 Requirements Semantics

Abstract syntax reference: 8.3.20

8.4.16.1 Requirement Definitions

A RequirementDefinition is a kind of ConstraintDefinition. As such, all the general semantic constraints
for a ConstraintDefinition (see 8.4.15.1) also apply to a RequirementDefinition. In addition, the
checkRequirementDefinitionSpecialization constraint requires that a RequirementDefinition

430 OMG Systems Modeling Language (SysML) v2.0 Beta 1

specialize the base RequirementDefinition Requirements::RequirementCheck (see 9.2.13.2.8), which
specializes the ConstraintDefinition Constraints::ConstraintCheck (see 9.2.12.2.2).

requirement def R specializes Requirements::RequirementCheck;
requirement def R1 specializes R;

A RequirementDefinitions differs from a plain ConstraintDefinition in that it represents a condition on a
subject in terms of assumed and required constraints.

• validateRequirementDefinitionSubjectParameterPosition requires that the
subjectParameter of a RequirementDefinition be its first parameter. Thus, as a result of the
KerML checkFeatureParameterRedefinition constraint (see [KerML, 8.4.4.7.1]), the
subjectParameter of a RequirementDefinition will always redefine the subjectParameter of
any RequirementDefinitions it specializes, and so will directly or indirectly redefine the base subject
parameter Requirements::RequirementCheck::subj (see 9.2.13.2.8).

• checkConstraintUsageRequirementConstraintSpecialization (see 8.4.15.2) requires that a
ConstraintUsage that is an assumedConstraint or requiredConstraint of a
RequirementDefinition specialize, respectively, the assumptions or constraints feature of
RequirementCheck, both of which subset Constraints::constraintChecks (see 9.2.12.2.3).

requirement def R2 specializes Requirements::RequirementCheck {
subject subj redefines Requirements::RequirementCheck::subj;
assume constraint ca subsets Requirements::RequirementCheck::assumptions;
require constraint cr subsets Requirements::RequirementCheck::constraints;

}

The result of a RequirementCheck is defined to be the following logical test: if all the assumptions have a
true result, then all the constraints must have a true result. In addition to the assumedConstraints and
requiredConstraints declared as above, RequirementCheck includes two other features that contribute to the
requiredConstraints that are checked:

• subrequirements – Collects the values of the composite RequirementUsages featured by a
RequirementCheck, subsetting constraints. (See 8.4.16.2 on the semantics of
RequirementUsages.)

• concernChecks – Collects the values of the composite ConcernUsages featured by a
RequirementCheck, subsetting subrequirements (since ConcernUsages are kinds of
RequirementUsages). (See 8.4.16.5 on the semantics of ConcernUsages.)

Finally, RequirementCheck includes two features that collect the values of PartUsages representing entities
playing actor and stakeholder roles relative to a RequirementDefinition (or RequirementUsage):

• actors – Collects the values of PartUsages that are owned via ActorMemberships. (See also 8.4.7.2
on the semantics of PartUsages.)

• stakeholders – Collects the values of PartUsages that are owned via StakeholderMemberships.
(See also 8.4.7.2 on the semantics of PartUsages.)

requirement def R3 specializes Requirements::RequirementCheck {
actor a subsets Requirements::RequirementCheck::actors;
stakeholder s subsets Requirements::RequirementCheck::stakeholders;

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 431

8.4.16.2 Requirement Usages

A RequirementUsage is a kind of ConstraintUsage. As such, all the general semantic constraints for a
ConstraintUsage (see 8.4.15.2) also apply to a RequirementUsage, as well as the following additional
specialization constraints:

• checkRequirementUsageSpecialization requires that a RequirementUsage specialize the base
RequirementUsage Requirements::requirementChecks (see 9.2.13.2.9), which subsets
Constraints::constraintChecks (see 9.2.12.2.3).

requirement r : R subsets Requirements::requirementChecks;

• checkRequirementUsageSubrequirementSpecialization requires that a composite
RequirementUsage whose owningType is a RequirementDefinition or RequirementUsage
specialize the RequirementUsage Requirements::RequirementCheck::subrequirements (see
9.2.13.2.8), which subsets Requirements::RequirementCheck::constraints (see also 8.4.16.1).

requirement def Rqt specializes Requirements::RequirementCheck {
requirement rqt1 subsets Requirements::RequirementCheck::subrequirements;
ref requirement rqt2 subsets Requirements::requirements,

Performances::enclosedPerformances;
}

• checkRequirementUsageObjectiveRedefinition requires that a RequirementUsage owned by a
CaseDefinition or CaseUsage via an ObjectiveMembership redefine the
objectiveRequirement of each CaseDefinition or CaseUsage specialized by its owningType. (See
also 8.4.17 on Case Semantics.)

• checkRequirementUsageRequirementVerificationSpecialization requires that a
RequirementUsage that is owned by the objective of a CaseDefinition or CaseUsage via a
RequirementVerificationMembership specializes the RequirementUsage
VerificationCases::VerificationCase::obj::requirementVerifications (see
VerificationCase).

Similarly to RequirementDefinitions, a RequirementUsage also has a subject and assumed and required
constraints (see also 8.4.16.1).

• validateRequirementUsageSubjectParameterPosition requires that the subjectParameter of
a RequirementUsage be its first parameter. Thus, as a result of the KerML
checkFeatureParameterRedefinition constraint (see [KerML, 8.4.4.7.1]), the subjectParameter
of a RequirementUsage will always redefine the subjectParameter of any
RequirementDefinitions and RequirementUsages it specializes, and so will directly or indirectly
redefine the base subject parameter Requirements::RequirementCheck::subj (see 9.2.13.2.8).

• checkConstraintUsageRequirementConstraintSpecialization (see 8.4.15.2) requires that a
ConstraintUsage that is an assumedConstraint or requiredConstraint of a
RequirementUsage specialize, respectively, the assumptions or constraints feature of
RequirementCheck, both of which subset Constraints::constraintChecks (see 9.2.12.2.3).

requirement r1 : R1 subsets Requirements::requirementChecks {
subject subj redefines R1::subj;
assume constraint ca subsets Requirements::RequirementCheck::assumptions;
require constraint cr subsets Requirements::RequirementCheck::constraints;

}

432 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.4.16.3 Satisfy Requirement Usages

A SatisfyRequirementUsage is a kind of RequirementUsage and a kind of AssertConstraintUsage. As
such, all the general semantic constraints for a RequirementUsage (see 8.4.16.2) and an
AssertConstraintUsage (see 8.4.15.3) also apply to a SatisfyRequirementUsage. In addition, the
checkSatisfyRequirementUsageBindingConnector constraint requires that a SatisfyRequirementUsage
have a BindingConnector between its subjectParameter and some other Feature, which is then considered
to be the satisfyingFeature of the SatisfyRequirementUsage. Further, the
checkAssertConstraintUsageSpecialization applies to a SatisfyRequirementUsage, so it must either
specialize Constraints::assertedConstraintChecks (see 9.2.12.2.1), or
Constraints::negatedConstraintChecks (see 9.2.12.2.4), if negated. Together, these constraints mean that a
SatisfyRequirementUsage asserts the satisfaction (or not, if negated) of a requirement when the
satisfyingFeature is bound as the subject of the requirement

A SatisfyRequirementUsage of the form

satisfy requirement sr : R by f;

is parsed with f bound to the subjectParameter of the SatisfyRequirementUsage using a FeatureValue
Relationship (see 8.2.2.20.2). The KerML checkFeatureValueBindingConnector constraint (see [KerML,
8.4.4.11]) then requires that the SatisfyRequirementUsage have a BindingConnector that effectively also
meets the checkSatisfyRequirementUsageBindingConnector constraint.

satisfy requirement sr : R subsets Requirements::requirementChecks,
Constraints::assertedConstraintChecks {
subject subj redefines R::subj = f;
// Implicit BindingConnector for the FeatureValue also meets
// the checkSatisfyRequirementUsageBindingConnector constraint.
bind subj = subj::f_expr.result;

}

where f_expr is the FeatureReferenceExpression that references f as the value Expression of the
FeatureValue.

If a SatisfyRequirementUsage is declared without an explicit satisfyingFeature: then the implicit
BindingConnector for the checkSatisfyRequirementUsageBindingConnector constraint targets the
Feature Base::things::that (see [KerML, 9.2.2]). This means that a SatisfyRequirementUsage nested in
a Definition or Usage, such as

part p {
satisfy requirement sr1 : R1;

}

is asserted to satisfy the featuring instance of that containing Definition or Usage.

part p subsets Parts::parts {
satisfy requirement sr1 : R1 subsets Requirements::requirementCheck,

Constraints::assertedConstraintChecks {
subject subj redefines R1::subj;
// The implied BindingConnector means that sr1 is effectively
// satisfied by the containing Part p.
bind subj = Base::things::that;

}
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 433

8.4.16.4 Concern Definitions

A ConcernDefinition is a kind of RequirementDefinition. As such, all the general semantic constraints for
a RequirementDefinition (see 8.4.16.1) also apply to a ConcernDefinition. In addition, the
checkConcernDefinitionSpecialization constraint requires that a ConcernDefinition specialize the base
ConcernDefinition Requirements::ConcernCheck (see 9.2.13.2.1), which specializes the
RequirementDefinition Requirements::RequirementCheck (see 9.2.13.2.8).

concern def Crn specializes Requirements::ConcernCheck;
concern def Crn1 specializes Crn;

8.4.16.5 Concern Usages

A ConcernUsage is a kind of RequirementUsage. As such, all the general semantic constraints for a
RequirementUsage (see 8.4.16.2) also apply to a ConcernUsage, as well as the following additional
specialization constraints:

• checkConcernUsageSpecialization requires that a ConcernUsage specialize the base
ConcernUsage Requirements::concernChecks (see 9.2.13.2.2), which subsets
Requirements::requirementChecks (see 9.2.13.2.9).

concern crn : Crn subsets Requirements::concernChecks;

• checkConcernUsageFramedConcernSpecialization requires that a ConcernUsage that is owned
by a RequirementDefinition or RequirementUsage via a FramedConcernMembership specialize
the ConcernUsage Requirements::RequirementCheck::concerns (see 9.2.13.2.8), which subsets
Requirements::concernChecks and Requirements::RequirementCheck::subrequirements.

requirement def Rcrn subsets Requirements::RequirementCheck {
concern crn1 : Crn1 subsets Requirements::RequirementCheck::concerns;

}

8.4.17 Cases Semantics

Abstract syntax reference: 8.3.21

8.4.17.1 Case Definitions

A CaseDefinition is a kind of CalculationDefinition. As such, all the general semantic constraints for a
CalculationDefinition (see 8.4.14.1) apply to a CaseDefinition. In addition, the
checkCaseDefinitionSpecialization constraint requires that a CaseDefinition specialize the base
CaseDefinition Cases::Case (see 9.2.14.2.1), which subclassifies the CalculationDefinition
Calculations::Calculation (see 9.2.11.2.1). Further, the KerML checkFeatureParameterRedefinition
and checkFeatureResultRedefinition constraints (see [KerML, 8.4.4.8.1]) also apply to a CaseDefinition,
as for any CalculationDefinition (see 8.4.14.1).

case def Cs specializes Cases::Case {
return ref result redefines Cases::Case::result;

}
case def cs1 : Cs1 specializes cs {

return ref result redefines Cs1:result, cs::result;
}

A CaseDefinition differs from a plain CalculationDefinition in that it has a subject and an objective, and it
may also have one or more actor features.

434 OMG Systems Modeling Language (SysML) v2.0 Beta 1

• validateCaseDefinitionSubjectParameterPosition requires that the subjectParameter of a
CaseDefinition be its first parameter. Thus, as a result of the KerML
checkFeatureParameterRedefinition constraint (see [KerML, 8.4.4.7.1]), the subjectParameter
of a CaseDefinition will always redefine the subjectParameter of any CaseDefinitions it
specializes, and so will directly or indirectly redefine the base subject parameter Case::Case::subj (see
9.2.14.2.1).

• checkRequirementUsageObjectiveRedefinition (see 8.2.2.20.2) effectively requires that the
objectiveRequirement of a CaseDefinition redefine the objectiveRequirements of any
CaseDefinitions specialized by the first CaseDefinition, which means that it will directly or
indirectly redefined the RequirementUsage Cases::Case::obj. The obj feature has a default binding
to the result of the Case, so, unless the default is overridden, the subjectParameter of the
objectiveRequirement of a CaseDefinition should conform to the result of the
CaseDefinition.

• checkPartUsageActorSpecialization requires that a PartUsage that is owned by a
CaseDefinition via an ActorMembership specialize the PartUsage Cases::Case::actors (see
8.4.7.2).

case def Cs2 specializes Cases::Case {
subject subj redefines Cases::Case::subj;
objective obj redefines Cases::Case::obj;
actor a subsets Cases::Case::actors;
return result : T redefines Cases::Case::result;

}

Additional semantics are defined for each of the more specialized kinds of CaseDefinition (see 8.4.18.1 on
AnalysisCaseDefinitions, 8.4.19.1 on VerificationCaseDefinitions, and 8.4.20.1 on
UseCaseDefinitions).

8.4.17.2 Case Usages

A CaseUsage is a kind of CalculationUsage. As such, all the general semantic constraints for an
CalculationUsage (see 8.4.14.2) apply to a CaseUsage, as well as the following additional specialization
constraints:

• checkCaseUsageSpecialization requires that a CaseUsage specialize the base CaseUsage
Cases::cases (see 9.2.11.2.2), which is defined by the CaseDefinition Cases::Case (see
9.2.11.2.1) and subsets the CalculationUsage Calculations::calculations (see 9.2.9.2.4).
Further, the KerML checkFeatureParameterRedefinition and
checkFeatureResultRedefinition constraints (see [KerML, 8.4.4.8.1]) also apply to a CaseUsage,
as for any CalculationUsage (see 8.4.14.2).

case cs : Cs subsets Cases::cases {
return result redefines Cs::result;

}
case cs1 : Cs1 subsets cs {

return ref result redefines Cs1::result, cs::result;
}

• checkCaseUsageSubcaseSpecialization requires that a CaseUsage that is composite and has an
owningType that is a CaseDefinition or CaseUsage specialize the CaseUsage
Cases::Case::subcases (see 9.2.11.2.1), which subsets Cases::cases and the CalculationUsage
Calculations::Calculation::subcalculations (see 9.2.9.2.4).

case def Csc subsets Cases::Case {
case csc1 subsets Cases::Case::subcases;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 435

ref case csc2 subsets Cases::cases,
Performances::Performance::enclosedPerformances;

}

Similarly to a CaseDefinition, a CaseUsage also has a subject and an objective, and may have one or more actor
features (see also 8.4.17.1).

• validateCaseUsageSubjectParameterPosition requires that the subjectParameter of a
CaseUsage be its first parameter. Thus, as a result of the KerML
checkFeatureParameterRedefinition constraint (see [KerML, 8.4.4.7.1]), the subjectParameter
of a CaseUsage will always redefine the subjectParameter of any CaseDefinition or CaseUsage
it specializes, and so will directly or indirectly redefine the base subject parameter Case::Case::subj
(see 9.2.14.2.1).

• checkRequirementUsageObjectiveRedefinition (see 8.2.2.20.2) effectively requires that the
objectiveRequirement of a CaseUsage redefine the objectiveRequirements of any
CaseDefinitions or CaseUsages specialized by the first CaseUsage, which means that it will directly
or indirectly redefined the RequirementUsage Cases::Case::obj. The obj feature has a default
binding to the result of the Case, so, unless the default is overridden, the subjectParameter of the
objectiveRequirement of a CaseUsage should conform to the result of the CaseUsage.

• checkPartUsageActorSpecialization requires that a PartUsage that is owned by a CaseUsage
via an ActorMembership specialize the PartUsage Cases::Case::actors (see 8.4.7.2).

case cs2 specializes Cases::cases {
subject subj redefines Cases::Case::subj;
objective obj redefines Cases::Case::obj;
actor a subsets Cases::Case::actors;
return result redefines Cases::Case::result;

}

Additional semantics are defined for each of the more specialized kinds of CaseUsage (see 8.4.18.2 on
AnalysisCaseUsages, 8.4.19.2 on VerificationCaseUsages, and 8.4.20.2 on UseCaseUsages).

8.4.18 Analysis Cases Semantics

Abstract syntax reference: 8.3.22

8.4.18.1 Analysis Case Definitions

An AnalysisCaseDefinition is a kind of CaseDefinition. As such, all the general semantic constraints for a
CaseDefinition (see 8.3.21.2) apply to an AnalysisCaseDefinition. In addition, the
checkAnalysisCaseDefinitionSpecialization constraint requires that an AnalysisCaseDefinition
specialize the base AnalysisCaseDefinition AnalysisCases::AnalysisCase (see 9.2.15.2.2), which
subclassifies the CaseDefinition Cases::Case (see 9.2.14.2.1).

As discussed in 8.4.17.1, the checkRequirementUsageObjectiveRedefinition constraint implies that the
objectiveRequirement of any CaseDefinition directly or indirectly redefines the RequirementUsage
Cases::Case::obj. The obj feature is then redefined in AnalysisCases, with its subjectParameter bound
to the result of the AnalysisCase, so that the objective is about the result. This means that the
objectiveRequirement for an AnalysisCaseDefinition must have a subjectParameter that is consistent
with the result of the AnalysisCaseDefinition.

The analysisAction property of an AnalysisCaseDefinition (see 8.3.22.2) collects all the composite
actions of the AnalysisCaseDefinition that are directly or indirectly defined by the ActionDefinition
ActivityCases::AnalysisAction (see 9.2.15.2.1). The AnalysisCaseDefinition

436 OMG Systems Modeling Language (SysML) v2.0 Beta 1

AnalysisCases::AnalysisCase then has an analysisSteps feature that subsets
Actions::Action::subaction (see 9.2.9.2.4) and collects the values of the analysisActions. The
checkActionUsageAnalysisActionSpecialization constraint requires that any ActionUsage that is an
analysisAction of an AnalysisCaseDefinition specialize
AnalysisCases::AnalysisCase::analysisSteps (see 8.4.12.2).

analysis case def AC specializes AnalysisCases::AnalysisCase {
subject subj redefines AnalysisCases::AnalysisCase::subj;
objective obj redefines AnalysisCases::AnalysisCase::obj {

// AnalysisCases::AnalysisCase::obj::subj is bound to
// AnalysisCases::AnalysisCase::result.
subject subj : T redefines AnalysisCases::AnalysisCase::obj::subj;

}
action aa : Actions::AnalysisAction

subsets AnalysisCases::AnalysisCase::analysisSteps;
return result : T redefines AnalysisCases::AnalysisCase::result;

}

8.4.18.2 Analysis Case Usages

An AnalysisCaseUsage is a kind of CaseUsage. As such, all the general semantic constraints for a CaseUsage
(see 8.4.17.2) apply to an AnalysisCaseUsage, as well as the following additional specialization constraints:

• checkAnalysisCaseUsageSpecialization constraint requires that an AnalysisCaseUsage
specialize the base AnalysisCaseUsage AnalysisCases::analysisCases (see 9.2.15.2.3), which is
defined by the AnalysisCaseDefinition AnalysisCases::AnalysisCase (see 9.2.15.2.2) and
subsets the CaseUsage Cases::cases (see 9.2.14.2.2).

• checkAnalysisCaseUsageSubAnalysisCaseSpecialization requires that an
AnalysisCaseUsage that is composite and has an owningType that is an AnalysisCaseDefinition
or AnalysisCaseUsage specialize the AnalysisCaseUsage
AnalysisCases::AnalysisCase::subAnalysisCases (see 9.2.15.2.2), which subsets
AnalysisCases::analysisCases and the CaseUsage Cases::Case::subcases (see 9.2.14.2.1).

As for an AnalysisCaseDefinition (see 8.4.18.1), the checkRequirementUsageObjectiveRedefinition
constraint and the binding of AnalysisCases::AnalysisCase::obj::subj imply that the
objectiveRequirement for an AnalysisCaseUsage must have a subjectParameter that is consistent with
the result of the AnalysisCaseUsage. Also similarly to an AnalysisCaseDefinition, the analysisAction
property of an AnalysisCaseUsage (see 8.3.22.3) collects all the composite actions of the
AnalysisCaseUsage that are directly or indirectly defined by the ActionDefinition
ActivityCases::AnalysisAction (see 9.2.15.2.1), and the
checkActionUsageAnalysisActionSpecialization constraint also requires that any ActionUsage that is an
analysisAction of an AnalysisCaseUsage specialize AnalysisCases::AnalysisCase::analysisSteps
(see 8.4.12.2).

analysis case ac specializes AnalysisCases::analysisCases {
subject subj redefines AnalysisCases::AnalysisCase::subj;
objective obj redefines AnalysisCases::AnalysisCase::obj {

// AnalysisCases::AnalysisCase::obj::subj is bound to
// AnalysisCases::AnalysisCase::result.
subject subj : T redefines AnalysisCases::AnalysisCase::obj::subj;

}
action aa : Actions::AnalysisAction

subsets AnalysisCases::AnalysisCase::analysisSteps;
analysis case anl1 subsets AnalysisCases::subAnalysisCases;
return result : T redefines AnalysisCases::AnalysisCase::result;

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 437

8.4.19 Verification Cases Semantics

Abstract syntax reference: 8.3.23

8.4.19.1 Verification Case Definitions

A VerificationCaseDefinition is a kind of CaseDefinition. As such, all the general semantic constraints
for a CaseDefinition (see 8.3.21.2) apply to a VerificationCaseDefinition. In addition, the
checkVerificationCaseDefinitionSpecialization constraint requires that a
VerificationCaseDefinition specialize the base VerificationCaseDefinition
VerificationCases::VerificationCase (see 9.2.16.2.3), which subclassifies the CaseDefinition
Cases::Case (see 9.2.14.2.1).

As discussed in 8.4.17.1, the checkRequirementUsageObjectiveRedefinition constraint implies that the
objectiveRequirement of any CaseDefinition directly or indirectly redefines the RequirementUsage
Cases::Case::obj. The obj feature is then redefined in VerificationCase, with its subj parameter bound
to the subj parameter of the VerificationCase, so that the objective is about the subject of the
VerificationCase. This means that the objectiveRequirement for a VerificationCaseDefinition must
have a subjectParameter that is consistent with the subjectParameter of the
VerificationCaseDefinition.

The intent is that the objective of a VerificationCaseDefinition is to verify the satisfaction of requirements
on the subject of the VerificationCaseDefinition. In addition to regular
RequirementConstraintMemberships (see 8.4.16.2), the objectiveRequirement of a
VerificationCaseDefinition can have RequirementVerificationMemberships whose
ownedRequirements reference the verifiedRequirements of the VerificationCaseDefinition. The
checkRequirementUsageRequirementVerificationSpecialization constraint (see 8.4.16.2) then requires
that a RequirementUsage owned by the objective of a VerificationCaseDefinition via
a RequirementVerificationMembership specialize the RequirementUsage
VerificationCases::VerificationCase::obj::requirementVerifications, which subsets
Requirements::RequirementCheck::subrequirements. The requirementVerifications feature thus
collects checks, in the context of the objective of the VerificationCase, of the requirements to be verified, which
are then required constraints on the objective of the VerificationCase (since subrequirement subsets
constraints).

verification case V specializes VerificationCases::VerificationCase {
subject subj : S redefines VerificationCases::VerificationCase::subj;
objective obj redefines VerificationCases::VerificationCase::obj {

// VerificationCases::VerificationCase::obj::subj is bound to
// VerificationCases::VerificationCase::subj.
subject subj : S redefines

VerificationCases::VerificationCase::obj::subj;
verify requirement vr

subsets
VerificationCases::VerificationCase::obj::requirementVerifications;

}
return verdict redefines VerificationCases::VerificationCase::verdict;

}

The result of a VerificationCaseDefinition is a verdict that indicates whether a performance of a
VerificationCase was pass, fail, inconclusive, or error. Commonly, the verdict will only be pass if
the objective of the VerificationCase was satisfied, meaning all the necessary requirements were verified.
However, this may not always be the desired condition for passing, so the criteria for passing must be modeled
explicitly.

438 OMG Systems Modeling Language (SysML) v2.0 Beta 1

8.4.19.2 Verification Case Usages

A VerificationCaseUsage is a kind of CaseUsage. As such, all the general semantic constraints for a
CaseUsage (see 8.4.17.2) apply to a VerificationCaseUsage, as well as the following additional specialization
constraints:

• checkVerificationCaseUsageSpecialization constraint requires that a
VerificationCaseUsage specialize the base VerificationCaseUsage
VerificationCases::verificationCases (see 9.2.16.2.4), which is defined by the
VerificationCaseDefinition VerificationCases::VerificationCase (see 9.2.16.2.3) and
subsets the CaseUsage Cases::cases (see 9.2.14.2.2).

• checkVerificationCaseUsageSubAnalysisCaseSpecialization requires that a
VerificationCaseUsage that is composite and has an owningType that is a
VerificationCaseDefinition or VerificationCaseUsage specialize the
VerificationCaseUsage VerificationCases::VerificationCase::subVerificationCases
(see 9.2.16.2.3), which subsets VerificationCases::verificationCases and the CaseUsage
Cases::Case::subcases (see 9.2.14.2.1).

As for a VerificationCaseDefinition (see 8.4.19.1), the
checkRequirementUsageObjectiveRedefinition constraint and the binding of
VerificationCases::VerificationCase::obj::subj imply that the objectiveRequirement for a
VerificationCaseUsage must have a subjectParameter that is consistent with the subjectParameter of
the VerificationCaseUsage. Also similarly to a VerificationCaseDefinition, the
objectiveRequirement of a VerificationCaseUsage may own RequirementUsages via
RequirementVerificationMemberships, to which the
checkRequirementUsageRequirementVerificationSpecialization constraint applies (see 8.4.16.2).

verification v specializes VerificationCases::VerificationCase {
subject subj : S redefines VerificationCases::VerificationCase::subj;
objective obj redefines VerificationCases::VerificationCase::obj {

// VerificationCases::VerificationCase::obj::subj is bound to
// VerificationCases::VerificationCase::subj.
subject subj : S redefines

VerificationCases::VerificationCase::obj::subj;
verify requirement vr

subsets
VerificationCases::VerificationCase::obj::requirementVerifications;

}
verification v1 subsets

VerificationCases::VerificationCase::subVerificationCases;
return verdict redefines VerificationCases::VerificationCase::verdict;

}

As discussed for a VerificationCaseDefinition (see 8.4.19.1), the result of a VerificationCaseUsage is a
verdict on whether a VerificationCase passes.

8.4.20 Use Cases Semantics

Abstract syntax reference: 8.3.24

8.4.20.1 Use Case Definitions

A UseCaseDefinition is a kind of CaseDefinition. As such, all the general semantic constraints for a
CaseDefinition (see 8.3.21.2) apply to a UseCaseDefinition. In addition, the
checkUseCaseDefinitionSpecialization constraint requires that a UseCaseDefinition specialize the base

OMG Systems Modeling Language (SysML) v2.0, Beta 1 439

UseCaseDefinition UseCases::UseCase (see 9.2.17.2.1), which subclassifies the CaseDefinition
Cases::Case (see 9.2.14.2.1).

use case def UC specializes UseCases::UseCase {
subject subj redefines Cases::Case::subj;
objective obj redefines Cases::Case::obj;
actor a subsets Cases::Case::actors;
return result redefines Cases::Case::result;

}

8.4.20.2 Use Case Usages

A UseCaseUsage is a kind of CaseUsage. As such, all the general semantic constraints for a CaseUsage (see
8.4.17.2) apply to a UseCaseUsage, as well as the following additional specialization constraints:

• checkUseCaseUsageSpecialization constraint requires that a UseCaseUsage specialize the base
UseCaseUsage UseCases::useCases (see 9.2.17.2.2), which is defined by the UseCaseDefinition
UseCases::UseCase (see 9.2.17.2.1) and subsets the CaseUsage Cases::cases (see 9.2.14.2.2).

• checkUseCaseUsageSubAnalysisCaseSpecialization requires that a UseCaseUsage that is
composite and has an owningType that is a UseCaseDefinition or UseCaseUsage specialize the
UseCaseUsage UseCases::UseCase::subUseCases (see 9.2.17.2.1), which subsets
UseCases::useCases and the CaseUsage Cases::Case::subcases (see 9.2.14.2.1).

use case uc specializes UseCases::useCases {
subject subj redefines UseCases::Case::subj;
objective obj redefines UseCases::Case::obj;
actor a subsets Cases::Case::actors;
use case uc1 subsets UseCases::UseCase::subUseCases;
return result redefines UseCases::UseCase::result;

}

8.4.20.3 Include Use Case Usages

An IncludeUseCaseUsage is a kind of UseCaseUsage and a kind of PerformActionUsage. As such, all
general semantic constraints on a UseCaseUsage (see 8.4.20.2) and a PerformActionUsage (see 8.4.12.10) also
apply to a IncludeUseCaseUsage. In particular, validateEventOccurrenceUsageIsReference requires an
IncludeUseCaseUsage to be referential. In addition, if an IncludeUseCaseUsage has an owningType that is a
UseCaseDefinition or UseCaseUsage, then the checkUseCaseUsageSpecialization constraint requires
that it specialize the UseCaseUsage UseCases::UseCase::includedUseCases (see 9.2.17.2.1), which subsets
UseCases::useCases (see 9.2.17.2.2) and the kernel Feature
Performances::Performance::enclosedPerformances (see [KerML, 9.2.6]).

For example, the following model:

use case uc1;
use case uc2 {

include use case incl references uc1;
}

is, with implied Specializations included, semantically equivalent to

use case uc1 subsets UseCases::useCases;
use case uc2 subsets UseCases::useCases {

ref use case incl references uc1
subsets UseCases::UseCase::includedUseCases;

}

440 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Thus, the values of uc2.incl will be the subset of the UseCases represented by uc1 that are performed within
uc2.

If the IncludeUseCaseUsage has a ReferenceSubsetting, then this will suffice to satisfy the
checkUseCaseUsageSpecialization constraint, if the referenced UseCaseUsage does. However, if it does not
have a ReferenceSubsetting (or other relevant explicit ownedSpecialization), it requires an implied
Subsetting of UseCases::useCases.

use case def UIU specializes UseCases::UseCases {
include use case iu1 references uc1

subsets UseCases::UseCase::includedUseCases;
include use case iu2 subsets UseCases::useCases

subsets UseCases::UseCase::includedUseCases;
}

An ExhibitStateUsage that is an ownedFeature of an ActionDefinition or ActionUsage other than a
UseCaseDefinition or UseCaseUsage has the same semantics as a PerformActionUsage in that context (see
7.16.6, with a UseCaseUsage as its performedAction. If it is an ownedFeature of an
OccurrenceDefinition or OccurrenceUsage that is not an ActionDefinition or ActionUsage, it has the
same semantics as an EventOccurrenceUsage in that context (see 8.4.5.3). Otherwise, it has the same semantics
as a referential UseCaseUsage (see 8.4.13.2).

8.4.21 Views and Viewpoints Semantics

Abstract syntax reference: 8.3.25

8.4.21.1 View Definitions

A ViewDefinition is a kind of PartDefinition. As such, all the general semantic constraints for an
PartDefinition (see 8.4.7.1) also apply to a ViewDefinition. In addition, the
checkViewDefinitionSpecialization constraint requires that a ViewDefinition specialize the base
ViewDefinition Views::View (see 9.2.18.2.10), which subclassifies Parts::Part (see 9.2.4.2.1).

8.4.21.2 View Usages

A ViewUsage is a kind of PartUsage. As such, all the general semantic constraints for an PartUsage
(see 8.4.7.2) also apply to a ViewUsage, as well as the following additional specialization constraints:

• checkViewUsageSpecialization requires that a ViewUsage specialize the base ViewUsage
Views::views (see 9.2.18.2.14).

• checkViewUsageSubviewSpecialization requires that a ViewUsage that is composite and has an
owningType that is a ViewDefinition or ViewUsage specialize the ViewUsage
Views::View::subviews (see 9.2.18.2.10), which subsets Views::views.

view def V specializes Views::View {
ref view v1 subsets Views::views;
view v2 subsets Views::View::subviews;

}

8.4.21.3 Viewpoint Definitions

A ViewpointDefinition is a kind of RequirementDefinition. As such, all the general semantic constraints
for a RequirementDefinition (see 8.4.16.1) also apply to a ViewpointDefinition. In addition, the
checkViewpointDefinitionSpecialization constraint requires that a ViewpointDefinition specialize

OMG Systems Modeling Language (SysML) v2.0, Beta 1 441

the base ViewpointDefinition Views::ViewpointCheck (see 9.2.18.2.11), which specializes the
RequirementDefinition Requirements::RequirementCheck (see 9.2.13.2.8).

viewpoint def Vp specializes Viewpoints::ViewpointCheck;
viewpoint def Vp1 specializes Vp;

8.4.21.4 Viewpoint Usages

A ViewpointUsage is a kind of RequirementUsage. As such, all the general semantic constraints for a
RequirementUsage (see 8.4.16.2) also apply to a ViewpointUsage, as well as the following additional
specialization constraints:

• checkViewpointUsageSpecialization requires that a ViewpointUsage specialize the base
ViewpointUsage Views::viewpointChecks (see 9.2.18.2.12), which subsets
Requirements::requirementChecks (see 9.2.13.2.9).

viewpoint vp : Vp subsets Views::viewpointChecks;

• checkViewpointUsageViewpointSatisfactionSpecialization requires that a composite
ViewpointUsage whose owningType is a ViewDefinition or ViewUsage specialize the
ViewpointUsage Views::View::viewpointSatisfactions (see 9.2.18.2.10), which subsets
Views::viewpointChecks. Since the Views::View model asserts the satisfaction of the
viewpointSatisfactions, this means that any composite ViewpointUsage that is an
ownedFeature of a ViewDefinition or ViewpointUsage is implicitly asserted to be satisfied by the
specified View.

view def Vw subsets Views::View {
// The following ViewpointUsage is implicitly asserted to be
// satisfied by the Views defined by Vw.
viewpoint vp1 : Vp1 subsets Views::View::viewpointSatisfactions;

}

8.4.21.5 Rendering Definitions

A RenderingDefinition is a kind of PartDefinition. As such, all the general semantic constraints for a
PartDefinition (see 8.4.7.1) also apply to a ViewDefinition. In addition, the
checkRenderingDefinitionSpecialization constraint requires that a RenderingDefinition specialize
the base RenderingDefinition Views::Rendering (see 9.2.18.2.6), which subclassifies Parts::Part (see
9.2.4.2.1).

8.4.21.6 Rendering Usages

A RenderingUsage is a kind of PartUsage. As such, all the general semantic constraints for an PartUsage
(see 8.4.7.2) also apply to a RenderingUsage, as well as the following additional specialization constraints:

• checkRenderingUsageSpecialization requires that a RenderingUsage specialize the base
RenderingUsage Views::rendering (see 9.2.18.2.7).

• checkRenderingUsageSubrenderingSpecialization requires that a RenderingUsage that is
composite and has an owningType that is a RenderingDefinition or RenderingUsage specialize the
RenderingUsage Views::Rendering::subrenderings (see 9.2.18.2.6), which subsets
Renderings::renderings.

rendering def Rnd specializes Renderings::Rendering {
ref rendering rnd1 subsets Renderings::renderings;

442 OMG Systems Modeling Language (SysML) v2.0 Beta 1

view rnd2 subsets Renderings::Rendering::subrenderings;
}

• checkRenderingUsageRedefinition requires that a RenderingUsage that is owned by a
ViewDefinition or ViewUsage via a ViewRenderingMembership redefines the viewRendering of
each ViewDefinition or ViewUsage that is specialized by the owning ViewDefinition or
ViewUsage. This means that the viewRendering of a ViewDefinition or ViewUsage will always
directly or indirectly redefined the RenderingUsage Views::View::viewRendering (see
9.2.18.2.10).

rendering r1;
rendering r2;
view def VR specializes Views::View {

render r1 redefines Views::View::viewRendering;
}
view def vr : VR {

render r2 redefines VR::r1;
}

8.4.22 Metadata Semantics

Abstract syntax reference: 8.3.26

8.4.22.1 Metadata Definitions

A MetadataDefinition is a kind of ItemDefinition and a kind of KerML Metaclass. As such, the general
semantic constraints for an ItemDefinition (see 8.4.6.1) and a Metaclass (see [KerML, 8.4.4.13]) also apply to
a MetadataDefinition. In addition, the checkMetadataDefinitionSpecialization constraint requires that
a MetadataDefinition specialize the base MetadataDefinition Metadata::MetadataItem (see
9.2.20.2.1), which subclassifies Items::Item (see 9.2.3.2.1) and the kernel Metaclass
Metaobjects::Metaobject (see [KerML, 9.2.16]).

The instances of a MetadataDefinition are MetadataItems that are part of the structure of a model itself,
rather than being an instance in the system represented by the model. The SysML library model is a reflective model
of the MOF abstract syntax for SysML, containing one SysML MetadataDefinition corresponding to each MOF
metaclass in the abstract syntax model (see 9.2.21 for more details on the relationship between the SysML model and
the abstract syntax).

8.4.22.2 Metadata Usages

A MetadataUsage is a kind of ItemUsage and a kind of KerML MetadataFeature. As such, the general
semantic constraints for an ItemUsage (see 8.4.6.2) and a MetadataFeature (see [KerML, 8.4.4.13]) also apply
to a MetadataUsage. In addition, the checkMetadataUsageSpecialization constraint requires that a
MetadataUsage specialize the base MetadataUsage Metadata::metadataItems (see 9.2.20.2.2), which is
defined by Metadata::MetadataItem (see 9.2.20.2.1) and subsets Items::items (see 9.2.3.2.2) and the kernel
Feature Metaobjects::metaobjects (see [KerML, 9.2.16]).

See [KerML, 8.4.4.13.2] for further description of the model-level semantics of MetadataUsages as
MetadataFeatures that can be used to annotate Elements of a model. See also [KerML, 8.4.4.13.3] for a
discussion of semantic metadata that is also usable in SysML.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 443

444 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9 Model Libraries
9.1 Model Libraries Overview
The SysML model libraries are an integral part of the language. The Systems Model Library (see 9.2) is used any
time a Definition or Usage element is instantiated in a user model, providing a bridge to the semantic models in the
Kernel Model Library [KerML, Clause 8]. For example, any ItemDefinition or ItemUsage must directly or indirectly
specialize the base ItemDefinition Item from the Items library model, where Item specializes the Kernel Class
Object, giving Items the semantics of structural Objects.

SysML also includes a set of domain libraries, which provide models of fundamental concepts from domains of
particular importance in systems engineering. These models are normative and available for use in all SysML user
models. The following domain libraries are included.

• The Metadata Domain Library contains models of attribute definitions for a useful set of standard
metadata annotations (see 9.3; see also 7.4 on Annotations).

• The Analysis Domain Library contains models of concepts useful in carrying out analyses of systems. In
particular, it includes frameworks for state space representation of systems and for performing trade-off
studies (see 9.4).

• The Cause and Effect Domain Library contains a language extension for modeling cause and effect
relationships (see 9.5).

• The Requirement Derivation Domain Library contains a language extension for modeling requirement
derivation relationships (see 9.6).

• The Geometry Domain Library contains a model for physical items with spacial extent, including an
extensive set of basic geometric shapes that can be used to construct such items (see 9.7).

• The Quantities and Units Domain Library contains a comprehensive set of models for scalar, vector and
tensor quantities, including quantity value and unit definitions covering the ISO/IEC 80000 and ISO
8601-1 standards (see 9.8).

The normative machine-readable representation for each of these model libraries is a project interchange file,
formatted consistent with the standard for model interchange given in [KerML, 10.3], as specified for SysML in
Clause 2 under Model Interchange Conformance. The documentation on these models provided in here in Clause 9
is either derived from the model files themselves or gives additional overview information on the use of the models,
and is therefore also considered normative.

Each library model is packaged as a model interchange file in the project interchange file for its corresponding
model library (see [KerML, 10.2]). Regardless of whether such a library model is interchanged in textual notation,
XMI or JSON format, the elementId for any Element in the library model that has a non-null qualifiedName
shall be a name-based (version 5) UUID (see [UUID, 14.2]), constructed as specified in [KerML, 9.1], expect using
the prefix https://www.omg.org/SysML/ when constructing the URL for a standard library package. The
elementIds constructed in this way shall be normative across all forms of interchange of the library models and
shall remain stable for future versions of the library models, though future revisions of this specification may
deprecate certain existing Elements and their names, or introduce new Elements with new names and hence
UUIDs that are distinct (with a high probability). However, the elementIds for library Elements for which the
qualifiedName is null are not determined by this specification, and representations of the models with different
elementIds for these Elements (such as may happen when parsing the textual representation of a library model)
are still considered conformant to the specification.

9.2 Systems Model Library

OMG Systems Modeling Language (SysML) v2.0, Beta 1 445

9.2.1 Systems Model Library Overview

The Systems Model Library includes models for the base types of all kinds of Definition and Usage elements in
SysML. Each of the following subclauses describes a library model package corresponding to the elements in the
similarly named abstract syntax package (see 8.3). For example, the Attributes library model package (see 9.2.2)
includes the Attribute and attributes types that are the base types for all AttributeDefinitions and
AttributeUsages (respectively) as specified in the Attributes abstract syntax package (see 8.3.7).

It also includes a package of StandardViewDefinitions (see 9.2.19) and a reflective SysML model of the
SysML abstract syntax (see 9.2.21).

9.2.2 Attributes
9.2.2.1 Attributes Overview

This package defines the base types for attributes and related structural elements in the SysML language.

9.2.2.2 Elements

9.2.2.2.1 AttributeValue

Element

AttributeDefinition

Description

AttributeValue is the most general type of data values that represent qualities or characteristics of a system or
part of a system. AttributeValue is the base type of all AttributeDefinitions.

General Types

DataValue

Features

None.

Constraints

None.

9.2.2.2.2 attributeValues

Element

AttributeUsage

Description

attributeValues is the base feature for all AttributeUsages.

General Types

dataValues

446 OMG Systems Modeling Language (SysML) v2.0 Beta 1

AttributeValue

Features

None.

Constraints

None.

9.2.3 Items
9.2.3.1 Items Overview

This package defines the base types for items and related structural elements in the SysML language.

9.2.3.2 Elements

9.2.3.2.1 Item

Element

ItemDefinition

Description

Item is the most general class of objects that are part of, exist in or flow through a system. Item is the base type of
all ItemDefinitions.

General Types

Object

Features

boundingShapes : Item [0..*] {subsets envelopingShapes}

envelopingShapes that are StructuredSpaceObjects with every face or every edge intersecting this Item.

checkedConstraints : ConstraintCheck [0..*] {subsets ownedPerformances}

Constraints that have been checked by this Item.

envelopingShapes : Item [0..*]

Shapes that are the shape of an Item that includes this Item in space and time.

isSolid : Boolean

An Item is solid if it has no voids.

shape : Item {redefines spaceBoundary}

Spatial boundary of this Item.

subitems : Item [0..*] {subsets suboccurrences}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 447

The Items that are composite subitems of this Item.

subparts : Part [0..*] {subsets subitems}

The subitems of this item that are parts.

voids : Item [0..*] {redefines innerSpaceOccurrences}

voids are the innerSpaceOccurrences of Item Item.

Constraints

None.

9.2.3.2.2 items

Element

ItemUsage

Description

items is the base feature of all ItemUsages.

General Types

Item

objects

Features

None.

Constraints

None.

9.2.3.2.3 Touches

Element

ConnectionDefinition

Description

Touching Occurrences are JustOutsideOf each other and happen at the same time (HappensWhile).

General Types

JustOutsideOf

HappensWhile

Features

448 OMG Systems Modeling Language (SysML) v2.0 Beta 1

touchedItem : Item {redefines separateSpace, thatOccurrence}

touchedItemToo : Item {redefines thisOccurrence, separateSpaceToo}

touches : Item [0..*] {subsets justOutsideOfOccurrences, timeCoincidentOccurrences}

touchesToo : Item [0..*] {subsets timeCoincidentOccurrences, justOutsideOfOccurrences}

Constraints

None.

9.2.4 Parts
9.2.4.1 Parts Overview

This package defines the base types for parts and related structural elements in the SysML language.

9.2.4.2 Elements

9.2.4.2.1 Part

Element

PartDefinition

Description

Part is the most general class of objects that represent all or a part of a system. Part is the base type of all
PartDefinitions.

General Types

Item

Features

exhibitedStates : StateAction [0..*] {subsets performedActions}

StateActions that are exhibited by this Part.

ownedActions : Action [0..*] {subsets ownedPerformances}

Actions that are owned by this Part. The this reference of a ownedAction is always its owning Part.

ownedPorts : Port [0..*] {subsets timeEnclosedOccurrences}

Ports that are owned by this Part.

ownedStates : StateAction [0..*] {subsets ownedActions}

StateActions that are owned by this Part.

performedActions : Action [0..*] {subsets enactedPerformances}

Actions that are performed by this Part.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 449

Constraints

None.

9.2.4.2.2 parts

Element

PartUsage

Description

parts is the base feature of all PartUsages.

General Types

Part

items

Features

None.

Constraints

None.

9.2.5 Ports
9.2.5.1 Ports Overview

This package defines the base types for ports and related structural elements in the SysML language.

9.2.5.2 Elements

9.2.5.2.1 Port

Element

PortDefinition

Description

Port is the most general class of objects that represent connection points for interacting with a Part. Port is the
base type of all PortDefinitions.

General Types

Object

Features

subports : Port [0..*] {subsets timeEnclosedOccurrences}

Constraints

450 OMG Systems Modeling Language (SysML) v2.0 Beta 1

None.

9.2.5.2.2 ports

Element

PortUsage

Description

ports is the base feature of all PortUsages.

General Types

Port

objects

Features

None.

Constraints

None.

9.2.6 Connections
9.2.6.1 Connections Overview

This package defines the base types for connections and related structural elements in the SysML language.

9.2.6.2 Elements

9.2.6.2.1 BinaryConnection

Element

ConnectionDefinition

Description

BinaryConnection is the most general class of binary links between two things within some containing structure.
BinaryConnection is the base type of all ConnectionDefinitions with exactly two ends.

General Types

Connection

BinaryLinkObject

Features

source : Anything [0..*] {redefines toSources, source}

target : Anything [0..*] {redefines toTargets, target}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 451

Constraints

None.

9.2.6.2.2 binaryConnections

Element

ConnectionUsage

Description

binaryConnections is the base feature of all binary ConnectionUsages.

General Types

BinaryConnection

binaryLinkObjects

connections

Features

None.

Constraints

None.

9.2.6.2.3 Connection

Element

ConnectionDefinition

Description

Connection is the most general class of links between things within some containing structure. Connection is the
base type of all ConnectionDefinitions.

General Types

Part

LinkObject

Features

None.

Constraints

None.

452 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.2.6.2.4 connections

Element

ConcernUsage

Description

connections is the base feature of all ConnectionUsages.

General Types

linkObjects

parts

Features

None.

Constraints

None.

9.2.6.2.5 FlowConnection

Element

FlowConnectionDefinition

Description

FlowConnection is a subclass of message connections that are also flow transfers. It is the base type for
FlowConnectionUsages that identify their source output and target input.

General Types

FlowTransfer

MessageConnection

Features

source : Occurrence [0..*] {redefines source}

target : Occurrence [0..*] {redefines target}

Constraints

None.

9.2.6.2.6 flowConnections

Element

OMG Systems Modeling Language (SysML) v2.0, Beta 1 453

FlowConnectionUsage

Description

flowConnections is the base feature of all FlowConnectionUsages.

General Types

FlowConnection

flowTransfers

messageConnections

Features

source : Occurrence [0..*] {redefines source}

target : Occurrence [0..*] {redefines target}

Constraints

None.

9.2.6.2.7 MessageConnection

Element

ConnectionDefinition

Description

MessageConnection is the class of binary connections that represent a transfer of objects or values between two
occurrences. It is the base type of all FlowConnectionDefinitions.

General Types

Action

Transfer

BinaryConnection

Features

source : Occurrence [0..*] {redefines toTransferSources, source}

target : Occurrence [0..*] {redefines target, toTransferTargets}

Constraints

None.

454 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.2.6.2.8 messageConnections

Element

FlowConnectionUsage

Description

messageConnections is the base feature of all FlowConnectionUsages.

General Types

MessageConnection

binaryConnections

transfers

actions

Features

None.

Constraints

None.

9.2.6.2.9 SuccessionFlowConnection

Element

FlowConnectionDefinition

Description

SuccessionFlowConnection is a subclass of flow connections that happen after their source and before their
target. It is the base type for all SuccessionFlowConnectionUsages.

General Types

FlowConnection

FlowTransferBefore

Features

source : Occurrence [0..*] {redefines source}

target : Occurrence [0..*] {redefines target}

Constraints

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 455

9.2.6.2.10 successionFlowConnections

Element

FlowConnectionUsage

Description

successionFlowConnections is the base feature of all SuccessionFlowConnectionUsages.

General Types

SuccessionFlowConnection

flowConnections

transfersBefore

Features

source : Occurrence [0..*] {redefines source}

target : Occurrence [0..*] {redefines target}

Constraints

None.

9.2.7 Interfaces
9.2.7.1 Interfaces Overview

This package defines the base types for interfaces and related structural elements in the SysML language.

9.2.7.2 Elements

9.2.7.2.1 BinaryInterface

Element

InterfaceDefinition

Description

BinaryInterface is the most general class of links between two PortUsages within some containing structure.
BinaryInterface is the base Type of all InterfaceDefinitions with exactly two ends.

General Types

BinaryConnection

Interface

Features

source : Port [0..*] {redefines source}

456 OMG Systems Modeling Language (SysML) v2.0 Beta 1

target : Port [0..*] {redefines target}

Constraints

None.

9.2.7.2.2 binaryInterfaces

Element

InterfaceUsage

Description

binaryInterfaces is the base feature of all binary InterfaceUsages.

General Types

interfaces

BinaryInterface

binaryConnections

Features

None.

Constraints

None.

9.2.7.2.3 Interface

Element

InterfaceDefinition

Description

Interface is the most general class of links between PortUsages within some containing structure. Interface
is the base type of all InterfaceDefinitions.

General Types

Connection

Features

None.

Constraints

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 457

9.2.7.2.4 interfaces

Element

InterfaceUsage

Description

interfaces is the base feature of all InterfaceUsages.

General Types

connections

Interface

Features

None.

Constraints

None.

9.2.8 Allocations
9.2.8.1 Allocations Overview

This package defines the base types for allocations and related structural elements in the SysML language.

9.2.8.2 Elements

9.2.8.2.1 Allocation

Element

AllocationDefinition

Description

Allocation is the most general class of allocations, represented as a connection between the source of the
allocation and the target. Allocation is the base type of all AllocationDefinitions.

General Types

BinaryConnection

Features

source : Anything [0..*] {redefines source}

suballocations : Allocation [0..*]

target : Anything [0..*] {redefines target}

Constraints

458 OMG Systems Modeling Language (SysML) v2.0 Beta 1

None.

9.2.8.2.2 allocations

Element

AllocationUsage

Description

allocations is the base feature of all ConnectionUsages.

General Types

Allocation

binaryConnections

Features

None.

Constraints

None.

9.2.9 Actions
9.2.9.1 Actions Overview

This package defines the base types for actions and related behavioral elements in the SysML language.

9.2.9.2 Elements

9.2.9.2.1 AcceptAction

Element

ActionDefinition

Description

An AcceptAction is a AcceptMessageAction that waits for a payload or acceptedMessage of the specified
kind to be accepted by a state transition nested in it.

General Types

AcceptMessageAction

Features

None.

Constraints

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 459

9.2.9.2.2 acceptActions

Element

ActionUsage

Description

acceptActions is the base feature for all SendActionUsages.

General Types

AcceptAction

actions

Features

None.

Constraints

None.

9.2.9.2.3 AcceptMessageAction

Element

ActionDefinition

Description

An AcceptMessageAction is an Action and AcceptPerformance that identifies an
incomingTransferToSelf of a designated receiver Occurrence, providing its payload as output.

General Types

Action

AcceptPerformance

Features

acceptedMessage : MessageConnection {redefines acceptedTransfer}

payload : Anything {redefines acceptedItem}

The payload received from the incoming Transfer. If an input value is provided for this parameter, then the
Transfer payload must match that value.

Constraints

None.

460 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.2.9.2.4 Action

Element

ActionDefinition

Description

Action is the most general class of performances of ActionDefinitions in a system or part of a system. Action
is the base class of all ActionDefinitions.

General Types

Performance

Features

acceptSubactions : AcceptAction [0..*] {subsets subactions, acceptActions}

The subactions of this Action that are AcceptActions.

assignments : AssignmentAction [0..*] {subsets subactions}

The subactions of this Action that are AssignmentActions.

controls : ControlAction [0..*] {subsets subactions}

The subactions of this Action that are ControlActions.

decisions : DecisionAction [0..*] {subsets controls}

The controls of this Action that are DecisionActions.

decisionTransitions : DecisionTransitionAction [0..*] {subsets transitions}

The subactions of this Action that are DecisionTransitionActions.

done : Action {redefines endShot}

The ending snapshot of this Action.

forks : ForkAction [0..*] {subsets controls}

The controls of this Action that are ForkActions.

forLoops : ForLoopAction [0..*] {subsets loops}

The loops of this Action that are ForLoopActions.

ifSubactions : IfThenAction [0..*] {subsets subactions}

The subactions of this Action that are IfThenActions (including IfThenElseActions).

joins : JoinAction [0..*] {subsets controls}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 461

The controls of this Action that are JoinActions.

loops : LoopAction [0..*] {subsets subactions}

The subactions of this Action that are LoopActions.

merges : MergeAction [0..*] {subsets controls}

The controls of this Action that are MergeActions.

sendSubactions : SendAction [0..*] {subsets subactions, sendActions}

The subactions of this Action that are SendActions.

start : Action {redefines startShot}

The starting snapshot of this Action.

subactions : Action [0..*] {subsets enclosedPerformances}

The subperformances of this Action that are Actions. The this reference of a subaction is always the same
as that of its owning Action.

transitions : TransitionAction [0..*] {subsets subactions}

The subactions of this Action that are TransitionActions.

whileLoops : WhileLoopAction [0..*] {subsets loops}

The loops of this Action that are WhileLoopActions.

Constraints

None.

9.2.9.2.5 actions

Element

ActionUsage

Description

actions is the base feature for all ActionUsages.

General Types

Action

performances

Features

None.

462 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Constraints

None.

9.2.9.2.6 AssignmentAction

Element

ActionDefinition

Description

An AssignmentAction is an Action used to type an AssignmentActionUsage. It is also a
FeatureWritePerformance that updates the accessedFeature of its target Occurrence with the given
replacementValues.

General Types

FeatureWritePerformance

Action

Features

replacementValues : Anything [0..*] {redefines replacementValues}

The values to be assigned to the accessedFeature of the target.

target : Occurrence {redefines onOccurrence}

The target Occurrence whose accessedFeature is being assigned.

Constraints

None.

9.2.9.2.7 assignmentActions

Element

ActionUsage

Description

assignmentActions is the base feature for all AssignmentActionUsages.

General Types

AssignmentAction

actions

Features

target : Occurrence {redefines target}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 463

The default target for assignmentActions is the featuring instance (if that is an Occurrence).

Constraints

None.

9.2.9.2.8 ControlAction

Element

ActionDefinition

Description

A ControlAction is the Action of a ControlNode, which has no inherent behavior.

General Types

Action

Features

None.

Constraints

None.

9.2.9.2.9 DecisionAction

Element

ActionDefinition

Description

A DecisionAction is the ControlAction for a DecisionNode. It is a DecisionPerformance that selects one
outgoing HappensBeforeLink.

General Types

DecisionPerformance

ControlAction

Features

None.

Constraints

None.

464 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.2.9.2.10 DecisionTransitionAction

Element

ActionDefinition

Description

A DecisionTransitionAction is a TransitionAction and NonStateTransitionPerformance that has a
single guard, but no trigger or effects. It is the base type of TransitionUsages used as conditional
successions in action models.

General Types

NonStateTransitionPerformance

TransitionAction

Features

accepter : AcceptMessageAction [0] {redefines accepter}

effect : Action [0] {redefines effect}

Constraints

None.

9.2.9.2.11 ForkAction

Element

ActionDefinition

Description

A ForkAction is the ControlAction for a ForkNode.

Note: Fork behavior results from requiring that the target multiplicity of all outgoing succession connectors be 1..1.

General Types

ControlAction

Features

None.

Constraints

None.

9.2.9.2.12 ForLoopAction

Element

OMG Systems Modeling Language (SysML) v2.0, Beta 1 465

ActionDefinition

Description

A ForLoopAction is a LoopAction that iterates over an ordered sequence of values. It is the base type for all
ForLoopActionUsages.

General Types

LoopAction

Features

body : Action [0..*] {redefines body}

The Action that is performed on each iteration of the loop.

index : Positive

The index of the element of seq assigned to var on the current iteration of the loop.

initialization : AssignmentAction

Initializes index to 1.

seq : Anything [0..*] {ordered, nonunique}

The sequence of values over which the loop iterates.

var : Anything

The loop variable that is assigned successive elements of seq on each iteration of the loop.

whileLoop : WhileLoopAction

While index is less than or equal to the size of seq, assigns var to the index element of seq, then performs body
and increments index.

Constraints

None.

9.2.9.2.13 forLoopActions

Element

ActionUsage

Description

forLoopActions is the base feature for all ForLoopActionUsages.

General Types

loopActions

466 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ForLoopAction

Features

None.

Constraints

None.

9.2.9.2.14 IfThenAction

Element

ActionDefinition

Description

An IfThenAction is a Kernel IfThenPerformance that is also an Action. It is the base type for all
IfActionUsages.

General Types

Action

IfThenPerformance

Features

ifTest : BooleanEvaluation {redefines ifTest}

An evaluation of a Boolean-valued Expression whose result determines whether or not the thenClause is
performed.

thenClause : Performance [0..1] {redefines thenClause}

An optional Performance that occurs if and only if the result of the ifTest is true.

Constraints

None.

9.2.9.2.15 ifThenActions

Element

ActionUsage

Description

ifThenActions is the base feature for all IfActionUsages.

General Types

IfThenAction

OMG Systems Modeling Language (SysML) v2.0, Beta 1 467

actions

Features

None.

Constraints

None.

9.2.9.2.16 IfThenElseAction

Element

ActionDefinition

Description

An IfThenElseAction is a Kernel IfThenElsePeformance that is also an IfThenAction. It is the base type
for all IfActionUsages that have an elseAction.

General Types

IfThenAction

IfThenElsePerformance

Features

elseClause : Performance [0..1] {redefines elseClause}

An optional Performance that occurs if and only if the result of the ifTest is false.

Constraints

None.

9.2.9.2.17 ifThenElseActions

Element

ActionUsage

Description

ifThenElseActions is the base feature for all IfActionUsages that have an elseAction.

General Types

IfThenElseAction

ifThenActions

Features

468 OMG Systems Modeling Language (SysML) v2.0 Beta 1

None.

Constraints

None.

9.2.9.2.18 JoinAction

Element

ActionDefinition

Description

A JoinAction is the ControlAction for a JoinNode.

Note: Join behavior results from requiring that the source multiplicity of all incoming succession connectors be 1..1.

General Types

ControlAction

Features

None.

Constraints

None.

9.2.9.2.19 LoopAction

Element

ActionDefinition

Description

A LoopAction is the base type for all LoopActionUsages.

General Types

Action

Features

body : Action [0..*]

The Action that is performed repeatedly in the loop.

Constraints

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 469

9.2.9.2.20 loopActions

Element

ActionUsage

Description

loopActions is the base feature for all LoopActionUsages.

General Types

LoopAction

actions

Features

None.

Constraints

None.

9.2.9.2.21 MergeAction

Element

ActionDefinition

Description

A MergeAction is the ControlAction for a MergeNode. It is a MergePerformance that selects exactly one
incoming HappensBefore link.

General Types

MergePerformance

ControlAction

Features

None.

Constraints

None.

9.2.9.2.22 SendAction

Element

ActionDefinition

470 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Description

A SendAction is an Action and SendPerformance used to type a SendActionUsages. It initiates an
outgoingTransferFromSelf from a designated sender Occurrence with a given payload, optionally to a
designated receiver Occurrence.

General Types

Action

SendPerformance

Features

payload : Anything {redefines sentItem}

The payload to be sent in the outgoing Transfer.

sentMessage : MessageConnection {redefines sentTransfer}

Constraints

None.

9.2.9.2.23 sendActions

Element

ActionUsage

Description

sendActions is the base feature for all SendActionUsages.

General Types

SendAction

actions

Features

None.

Constraints

None.

9.2.9.2.24 TransitionAction

Element

ActionDefinition

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 471

A TransitionAction is a TransitionPerformance with an Action as transitionLinkSource. It is the base
type of all TransitionUsages.

General Types

Action

TransitionPerformance

Features

acceptedMessage : MessageConnection {redefines trigger}

accepter : AcceptMessageAction [0..1] {subsets subactions, redefines accept}

effect : Action [0..*] {subsets subactions, redefines effect}

receiver : Occurrence {redefines triggerTarget}

transitionLinkSource : Action {redefines transitionLinkSource}

Constraints

None.

9.2.9.2.25 transitionActions

Element

TransitionUsage

Description

transitionActions is the base feature for all TransitionUsages.

General Types

Action

TransitionAction

actions

Features

None.

Constraints

None.

9.2.9.2.26 WhileLoopAction

Element

472 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ActionDefinition

Description

A WhileLoopAction is a Kernel LoopPerformance that is also a LoopAction. It is the base type for all
WhileLoopActionUsages.

General Types

LoopAction

LoopPerformance

Features

body : Action [0..*] {redefines body, body}

The Action that is performed while the whileTest is true and the untilTest is false.

untilTest : BooleanEvaluation [0..*] {redefines untilTest}

Successive evaluations of a Boolean-valued Expression that must be false for the loop to continue. The
Expression is evaluated after the body is performed.

whileTest : BooleanEvaluation [1..*] {redefines whileTest}

Successive evaluations of a Boolean-valued Expression that must be true for the loop to continue. the
Expression is evaluated before the body is performed and is always evaluated at least once.

Constraints

None.

9.2.9.2.27 whileLoopActions

Element

ActionUsage

Description

whileLoopActions is the base feature for all WhileLoopActionUsages.

General Types

WhileLoopAction

loopActions

Features

None.

Constraints

OMG Systems Modeling Language (SysML) v2.0, Beta 1 473

None.

9.2.10 States
9.2.10.1 States Overview

This package defines the base types for states and related behavioral elements in the SysML language.

9.2.10.2 Elements

9.2.10.2.1 StateAction

Element

StateDefinition

Description

A StateAction is a kind of Action that is also a StatePerformance. It is the base type for all
StateDefinitions.

General Types

Action

StatePerformance

Features

doAction : Action {redefines do}

entryAction : Action {redefines entry}

exitAction : Action {redefines exit}

stateTransitions : StateTransitionAction [0..*] {subsets transitions}

subactions : Action [0..*] {subsets middle, redefines subactions}

The subperformances of this StateAction that are Actions, other than the entry and exit Actions. These
subactions all take place in the "middle" of the StatePerformance, that is, after the entry Action and before
the exit Action.

substates : StateAction [0..*] {subsets subactions}

The subactions of this StateAction that are StateActions. These substates all take place in the "middle"
of the StatePerformance, that is, after the entry Action and before the exit Action.

Constraints

None.

9.2.10.2.2 stateActions

Element

474 OMG Systems Modeling Language (SysML) v2.0 Beta 1

StateUsage

Description

stateActions is the base feature for all StateUsages.

General Types

StateAction

actions

Features

None.

Constraints

None.

9.2.10.2.3 StateTransitionAction

Element

ActionDefinition

Description

A StateTransitionAction is a TransitionAction and a StateTransitionPerformance whose
transitionLinkSource is a StateAction. It is the base type of TransitionUsages used as transitions in state
models.

General Types

TransitionAction

StateTransitionPerformance

Features

payload : Anything [0..*]

receiver : Occurrence {redefines receiver}

transitionLinkSource : StateAction {redefines transitionLinkSource, transitionLinkSource}

Constraints

None.

9.2.11 Calculations
9.2.11.1 Calculations Overview

This package defines the base types for calculations and related behavioral elements in the SysML language.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 475

9.2.11.2 Elements

9.2.11.2.1 Calculation

Element

CalculationDefinition

Description

Calculation is the most general class of evaluations of CalculationDefinitions in a system or part of a
system. Calculation is the base class of all CalculationDefinitions.

General Types

Evaluation

Action

Features

subcalculations : Calculation [0..*] {subsets subactions}

The subcalculations of this Calculations that are Calculations

Constraints

None.

9.2.11.2.2 calculations

Element

CalculationUsage

Description

calculations is the base Feature for all CalculationUsages.

.

General Types

evaluations

Calculation

actions

Features

None.

Constraints

476 OMG Systems Modeling Language (SysML) v2.0 Beta 1

None.

9.2.12 Constraints
9.2.12.1 Constraints Overview

This package defines the base types for constraints and related behavioral elements in the SysML language.

9.2.12.2 Elements

9.2.12.2.1 assertedConstraintChecks

Element

ConstraintUsage

Description

assertedConstraintChecks is the subset of constraintChecks for ConstraintChecks asserted to be true.

General Types

constraintChecks

trueEvaluations

Features

None.

Constraints

None.

9.2.12.2.2 ConstraintCheck

Element

ConstraintDefinition

Description

ConstraintCheck is the most general class for constraint checking. ConstraintCheck is the base type of all
ConstraintDefinitions.

General Types

BooleanEvaluation

Features

None.

Constraints

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 477

9.2.12.2.3 constraintChecks

Element

ConstraintUsage

Description

constraintChecks is the base feature of all ConstraintUsages.

General Types

booleanEvaluations

ConstraintCheck

Features

None.

Constraints

None.

9.2.12.2.4 negatedConstraintChecks

Element

ConstraintUsage

Description

negatedConstraintChecks is the subset of constraintChecks for ConstraintChecks asserted to be false.

General Types

falseEvaluations

constraintChecks

Features

None.

Constraints

None.

9.2.13 Requirements
9.2.13.1 Requirements Overview

This package defines the base types for requirements and related behavioral elements in the SysML language.

478 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.2.13.2 Elements

9.2.13.2.1 ConcernCheck

Element

ConcernDefinition

Description

ConcernCheck is the most general class for concern checking. ConcernCheck is the base type of all
ConcernDefinitions.

General Types

RequirementCheck

Features

None.

Constraints

None.

9.2.13.2.2 concernChecks

Element

ConcernUsage

Description

concernChecks is the base feature of all ConcernUsages.

General Types

ConcernCheck

requirementChecks

Features

None.

Constraints

None.

9.2.13.2.3 DesignConstraintCheck

Element

ConstraintDefinition

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 479

A DesignConstraintCheck specifies a constraint on the implementation of the system or system part, such as the
system must use a commercial-off-the-shelf component.

General Types

RequirementCheck

Features

part : Part {redefines subj}

Constraints

None.

9.2.13.2.4 FunctionalRequirementCheck

Element

ConstraintDefinition

Description

A FunctionalRequirementCheck specifies an action that a system, or part of a system, must perform.

General Types

RequirementCheck

Features

subject : Action {redefines subj}

Constraints

None.

9.2.13.2.5 InterfaceRequirementCheck

Element

ConstraintDefinition

Description

An InterfaceRequirementCheck specifies an Interface for connecting systems and system parts, which
optionally may include item flows across the Interface and/or Interface constraints.

General Types

RequirementCheck

Features

subject : BinaryInterface {redefines subj}

480 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Constraints

None.

9.2.13.2.6 PerformanceRequirementCheck

Element

ConstraintDefinition

Description

A PerformanceRequirementCheck quantitatively measures the extent to which a system, or a system part,
satisfies a required capability or condition.

General Types

RequirementCheck

Features

subject : AttributeValue {redefines subj}

Constraints

None.

9.2.13.2.7 PhysicalRequirementCheck

Element

ConstraintDefinition

Description

A PhysicalRequirementCheck specifies physical characteristics and/or physical constraints of the system, or a
system part.

General Types

RequirementCheck

Features

subject : Part {redefines subj}

Constraints

None.

9.2.13.2.8 RequirementCheck

Element

RequirementDefinition

OMG Systems Modeling Language (SysML) v2.0, Beta 1 481

Description

RequirementCheck is the most general class for requirements checking. RequirementCheck is the base type of
all RequirementDefinitions.

General Types

ConstraintCheck

Features

actors : Part [0..*]

The Parts that fill the role of actors for this RequirementCheck.

assumptions : ConstraintCheck [0..*] {ordered}

The checks of assumptions that must hold for the required constraints to apply.

concerns : ConcernCheck [0..*] {subsets constraints}

The checks of any concerns being addressed (as required constraints).

constraints : ConstraintCheck [0..*] {ordered}

The checks of required constraints.

stakeholders : Part [0..*]

The Parts that represent stakeholders interested in the requirement being checked.

subj : Anything

The entity that is being check for satisfaction of the required constraints.

Constraints

[no name]

allTrue(assumptions) implies allTrue(constraints)

9.2.13.2.9 requirementChecks

Element

RequirementUsage

Description

requirementChecks is the base feature of all RequirementUsages.

General Types

constraintChecks

482 OMG Systems Modeling Language (SysML) v2.0 Beta 1

RequirementCheck

Features

None.

Constraints

None.

9.2.14 Cases
9.2.14.1 Cases Overview

This package defines the base types for cases and related behavioral elements in the SysML language.

9.2.14.2 Elements

9.2.14.2.1 Case

Element

CaseDefinition

Description

Case is the most general class of performances of CaseDefinitions. Case is the base class of all
CaseDefinitions.

General Types

Calculation

Features

actors : Part [0..*]

The Parts that fill the role of actors for this Case.

obj : RequirementCheck

A check of whether the objective RequirementUsage was satisfied for this Case. By default, the subj for the
objective is the result of the Case.

subcases : Case [0..*] {subsets subcalculations}

Other Cases carried out as part of the performance of this Case.

subj : Anything

The subject that was investigated by this Case.

Constraints

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 483

9.2.14.2.2 cases

Element

CaseUsage

Description

cases is the base feature of all CaseUsages.

General Types

calculations

Case

Features

None.

Constraints

None.

9.2.15 Analysis Cases
9.2.15.1 Analysis Cases Overview

This package defines the base types for analysis cases and related behavioral elements in the SysML language.

9.2.15.2 Elements

9.2.15.2.1 AnalysisAction

Element

ActionDefinition

Description

An AnalysisAction is a specialized kind of Action used intended to be used as a step in an AnalysisCase.

General Types

Action

Features

None.

Constraints

None.

484 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.2.15.2.2 AnalysisCase

Element

AnalysisCaseDefinition

Description

AnalysisCase is the most general class of performances of AnalysisCaseDefinitions. AnalysisCase is the
base class of all AnalysisCaseDefinitions.

General Types

Case

Features

analysisSteps : AnalysisAction [0..*] {subsets subactions}

The subactions of this AnalysisCase that are AnalysisActions.

subAnalysisCases : AnalysisCase [0..*] {subsets subcases}

The subcases of this AnalysisCase that are AnalysisCaseUsages.

Constraints

None.

9.2.15.2.3 analysisCases

Element

AnalysisCaseUsage

Description

analysisCases is the base feature of all AnalysisCaseUsages.

General Types

AnalysisCase

cases

Features

None.

Constraints

None.

9.2.16 Verification Cases

OMG Systems Modeling Language (SysML) v2.0, Beta 1 485

9.2.16.1 Verification Cases Overview

This package defines the base types for verification cases and related behavioral elements in the SysML language.

9.2.16.2 Elements

9.2.16.2.1 PassIf

Element

CalculationDefinition

Description

PassIf returns a pass or fail VerdictKind depending on whether its argument is true or false.

General Types

None.

Features

isPassing : Boolean

in Whether or not a verification has passed.

verdict : VerdictKind

return pass if isPassing is true and fail otherwise.

Constraints

None.

9.2.16.2.2 VerdictKind

Element

EnumerationDefinition

Description

VerdictKind is an enumeration of the possible results of a VerificationCase.

General Types

AttributeValue

Features

error

fail

inconclusive

486 OMG Systems Modeling Language (SysML) v2.0 Beta 1

pass

Constraints

None.

9.2.16.2.3 VerificationCase

Element

VerificationCaseDefinition

Description

VerificationCase is the most general class of performances of VerificationCaseDefinitions.
VerificationCase is the base class of all VerificationCaseDefinitions.

General Types

Case

Features

obj : VerificationCheck {redefines obj}

The objective of this VerificationCase, whose subject is bound to the subject of the VerificationCase
and whose requirementVerifications are bound to the requirementVerifications of the
VerificationCase.

requirementVerifications : RequirementCheck [0..*]

Checks on whether the verifiedRequirements of the VerificationCaseDefinition have been satisfied.

subj : Anything {redefines subj}

The subject of this VerificationCase, representing the system under test, which is bound to the subject of the
objective of the VerificationCase.

subVerificationCases : VerificationCase [0..*] {subsets subcases}

The subcases of this VerificationCase that are VerificationCases.

verdict : VerdictKind {redefines result}

The result of a VerificationCase must be a VerdictKind.

Constraints

None.

9.2.16.2.4 verificationCases

Element

VerificationCaseUsage

OMG Systems Modeling Language (SysML) v2.0, Beta 1 487

Description

verificationCases is the base feature of all VerificationCaseUsages.

General Types

VerificationCase

cases

Features

None.

Constraints

None.

9.2.16.2.5 VerificationCheck

Element

RequirementDefinition

Description

VerificationCheck is a specialization of RequirementCheck used for the objective of a
VerificationCase in order to record the evaluations of the RequirementChecks of requirements being verified.

General Types

RequirementCheck

Features

requirementVerifications : RequirementCheck [0..*] {subsets constraints}

A record of the evaluations of the RequirementChecks of requirements being verified.

Constraints

None.

9.2.16.2.6 VerificationMethod

Element

AttributeDefinition

Description

VerificationMethod can be used as metadata annotating a verification case or action.

General Types

488 OMG Systems Modeling Language (SysML) v2.0 Beta 1

None.

Features

kind : VerificationMethodKind [1..*]

The methods by which the annotated verification was carried out.

Constraints

None.

9.2.16.2.7 VerificationMethodKind

Element

EnumerationDefinition

Description

VerificationMethodKind is an enumeration of the standard methods by which verification can be carried out.

General Types

AttributeValue

Features

analyze

demo

inspect

test

Constraints

None.

9.2.17 Use Cases
9.2.17.1 Use Cases Overview

This package defines the base types for use cases and related behavioral elements in the SysML language.

9.2.17.2 Elements

9.2.17.2.1 UseCase

Element

UseCaseDefinition

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 489

UseCase is the most general class of performances of UseCaseDefinitions. UseCase is the base class of all
UseCaseDefinitions.

General Types

Case

Features

includedUseCases : UseCase [0..*] {subsets subUseCases}

Other UseCase included by this UseCase (i.e., as modeled by an IncludeUseCaseUsage).

subUseCases : UseCase [0..*] {subsets subcases}

Other UseCase carried out as part of the performance of this UseCase.

Constraints

None.

9.2.17.2.2 useCases

Element

UseCaseUsage

Description

useCases is the base feature of all UseCaseUsages.

General Types

cases

UseCase

Features

None.

Constraints

None.

9.2.18 Views
9.2.18.1 Views Overview

This package defines the base types for views, viewpoints, renderings and related elements in the SysML language.

9.2.18.2 Elements

9.2.18.2.1 asElementTable

Element

490 OMG Systems Modeling Language (SysML) v2.0 Beta 1

RenderingUsage

Description

asElementTable renders a View as a table, with one row for each exposed Element and columns rendered by
applying the columnViews in order to the Element in each row.

General Types

TabularRendering

Features

columnView : View [0..*] {ordered}

The Views to be rendered in the column cells, in order, of each rows of the table.

Constraints

None.

9.2.18.2.2 asInterconnectionDiagram

Element

RenderingUsage

Description

asInterconnectionDiagram renders a View as an interconnection diagram, using the graphical notation defined
in the SysML specification.

General Types

GraphicalRendering

Features

None.

Constraints

None.

9.2.18.2.3 asTextualNotation

Element

RenderingUsage

Description

asTextualNotation renders a View into textual notation as defined in the KerML and SysML specifications.

General Types

OMG Systems Modeling Language (SysML) v2.0, Beta 1 491

TextualRendering

Features

None.

Constraints

None.

9.2.18.2.4 asTreeDiagram

Element

RenderingUsage

Description

asTreeDiagram renders a View as a tree diagram, using the graphical notation defined in the SysML specification.

General Types

GraphicalRendering

Features

None.

Constraints

None.

9.2.18.2.5 GraphicalRendering

Element

RenderingDefinition

Description

A GraphicalRendering is a Rendering of a View into a graphical format.

General Types

Rendering

Features

None.

Constraints

None.

492 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.2.18.2.6 Rendering

Element

RenderingDefinition

Description

Rendering is the base type of all RenderingDefinitions.

General Types

Part

Features

subrenderings : Rendering [0..*]

Other Rendering used to carry out this Rendering.

Constraints

None.

9.2.18.2.7 renderings

Element

RenderingUsage

Description

renderings is the base feature of all RenderingUsages.

General Types

Rendering

parts

Features

None.

Constraints

None.

9.2.18.2.8 TabularRendering

Element

RenderingDefinition

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 493

A TabularRendering is a Rendering of a View into a tabular format.

General Types

Rendering

Features

None.

Constraints

None.

9.2.18.2.9 TextualRendering

Element

RenderingDefinition

Description

A TextualRendering is a Rendering of a View into a textual format.

General Types

Rendering

Features

None.

Constraints

None.

9.2.18.2.10 View

Element

ViewDefinition

Description

View is the base type of all ViewDefinitions.

General Types

Part

Features

self : View {redefines self}

subviews : View [0..*]

494 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Other Views that are used in the rendering of this View.

viewpointConformance : viewpointConformance

An assertion that all viewpointSatisfactions are true.

viewpointSatisfactions : ViewpointCheck [0..*]

Checks that the View satisfies all required ViewpointUsages.

viewRendering : Rendering [0..1]

The Rendering of this View.

Constraints

None.

9.2.18.2.11 ViewpointCheck

Element

ViewpointDefinition

Description

ViewpointCheck is a RequirementCheck for checking if a View meets the concerns of
concernedStakeholders. It is the base type of all ViewpointDefinitions.

General Types

RequirementCheck

Features

subject : View {redefines subj}

The subject of this ViewpointCheck, which must be a View.

Constraints

None.

9.2.18.2.12 viewpointChecks

Element

ViewpointUsage

Description

viewpointChecks is the base feature of all ViewpointUsages.

General Types

OMG Systems Modeling Language (SysML) v2.0, Beta 1 495

ViewpointCheck

requirementChecks

Features

None.

Constraints

None.

9.2.18.2.13 viewpointConformance

Element

SatisfyRequirementUsage

Description

A RequirementCheck that all viewpointSatisfactions are true.

General Types

RequirementCheck

Features

viewpointSatisfactions : ViewpointCheck [0..*] {subsets constraints}

The required ViewpointChecks.

Constraints

None.

9.2.18.2.14 views

Element

ViewUsage

Description

views is the base feature of all ViewUsages.

General Types

parts

View

Features

None.

496 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Constraints

None.

9.2.19 Standard View Definitions
9.2.19.1 Standard View Definitions Overview

This package defines the standard graphical view definitions for the SysML language. Each view definition specifies
the kind of model elements that can be presented in a view usage and the method for rendering the elements. The
standard views are generally rendered as a graph with nodes connected by edges. The nodes can have any number of
compartments that contain selected members of the node. For example, a part definition or part usage may contain
an attributes compartment that contains the attributes of the part. Definition and usage nodes may also contain
connection points corresponding to their ports and parameters. The nodes and edges may be rendered with
specialized syntax in different views.

The StandardViewDefinitions package contains the following normative standard view definitions as specified
in Table 33.

Table 33. Standard View Definitions

Standard View Definition Default Compartment

General View (gv) Default compartment for a package, see 8.2.3.5.

Interconnection View (iv) Default compartment for a part, see 8.2.3.11.

Action Flow View (afv) Default compartment for an action, see 8.2.3.16.

State Transition View (stv) Default compartment for a state, see 8.2.3.17.

Sequence View (sv) Default compartment for an occurrence, see 8.2.3.9.

Geometry View (gev)

Grid View (grv)

Browser View (bv)

These standard views establish a basic set of views that shall be supported by any conforming tool. Other kinds of
views may also be defined beyond the standard views, using the view modeling capabilities of SysML (see 7.25).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 497

9.2.19.2 Elements

9.2.19.2.1 ActionFlowView

Element

ViewDefinition

Description

ViewDefinition to present connections between actions. Valid nodes and edges in an ActionFlowView are:

• Actions with nested actions
• Parameters with direction
• Flow connection usages (e.g., kinds of transfers from output to input)
• Binding connections between parameters (e.g., delegate a parameter from one level of nesting to another)
• Proxy connection points
• Swim lanes
• Conditional succession
• Control nodes (fork, join, decision, merge)
• Control structures, e.g., if-then-else, until-while-loop, for-loop
• Send and accept actions
• Change and time triggers
• Compartments on actions and parameters

Short name: afv

General Types

InterconnectionView

Features

None.

Constraints

None.

9.2.19.2.2 BrowserView

Element

ViewDefinition

Description

ViewDefinition to present the hierarchical membership structure of model elements starting from an exposed root
element. The typical rendering in graphical notation is as an indented list of rows, consisting of dynamically
collapsible-expandable nodes that represent branches and leaves of the tree.

Short name: bv

General Types

498 OMG Systems Modeling Language (SysML) v2.0 Beta 1

None.

Features

None.

Constraints

None.

9.2.19.2.3 GeneralView

Element

ViewDefinition

Description

ViewDefinition to present any members of exposed model element(s). This is the most general view, enabling
presentation of any model element. The typical rendering in graphical notation is as a graph of nodes and edges.

Specializations of GeneralView can be specified through appropriate selection of filters, e.g.:

• package view, filtering on Package, Package containment, package Import
• definition and usage view, filtering on Definition, Usage, Specialization, FeatureTyping

(covering defined by)
• requirement view, filtering on RequirementDefinition, RequirementUsage, Specialization,

FeatureTyping, SatisfyRequirementUsage, AllocationDefinition, AllocationUsage, ...
• view and viewpoint view, filtering on ViewDefinition, ViewUsage, ViewpointDefinition,

ViewpointUsage, RenderingDefinition, RenderingUsage, ConcernDefinition,
ConcernUsage, StakeholderMembership, ...

• language extension view, filtering on Metaclass, MetadataFeature, MetadataAccessExpression,
...

Note: filters are specified by referencing concepts from the KerML and SysML standard library packages.

Short name: gv

General Types

None.

Features

None.

Constraints

None.

9.2.19.2.4 GeometryView

Element

ViewDefinition

OMG Systems Modeling Language (SysML) v2.0, Beta 1 499

Description

ViewDefinition to present a visualization of exposed spatial items in two or three dimensions Valid nodes and
edges in a GeometryView are:

• Spatial item, including shape
• Coordinate frame
• Feature related to spatial item, such as a quantity (e.g. temperature) of which values are to be rendered on

a color scale

The typical rendering in graphical notation would include a number of visualization parameters, such as:

• 2D or 3D view
• viewing direction
• zoom level
• light sources
• object projection mode, e.g., isometric, perspective, orthographic
• object rendering mode, e.g., shaded, wireframe, hidden line
• object pan (placement) and rotate (orientation) settings
• color maps

Short name: gev

General Types

None.

Features

None.

Constraints

None.

9.2.19.2.5 GridView

Element

ViewDefinition

Description

ViewDefinition to present exposed model elements and their relationships, arranged in a rectangular grid.
GeometryView is the generalization of the following more specialized views:

• Tabular view
• Data value tabular view
• Relationship matrix view

Short name: grv

General Types

None.

500 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Features

None.

Constraints

None.

9.2.19.2.6 InterconnectionView

Element

ViewDefinition

Description

ViewDefinition to present exposed features as nodes, nested features as nested nodes, and connections between
features as edges between (nested) nodes. Nested nodes may present boundary features (e.g., ports, parameters).

Short name: iv

General Types

None.

Features

None.

Constraints

None.

9.2.19.2.7 SequenceView

Element

ViewDefinition

Description

ViewDefinition to present time ordering of event occurrences on lifelines of exposed features. Valid nodes and
edges in a SequenceView are:

• Features such as parts with their lifelines
• Event occurrences on the lifelines
• Messages sent from one part to another with and without a type of flow
• Succession between event occurrences
• Nested sequence view (e.g., a reference to a view)
• Compartments

The typical rendering in graphical notation depicts the exposed features horizontally along the top, with vertical
lifelines. The time axis is vertical, with time increasing from top to bottom.

Short name: sv

OMG Systems Modeling Language (SysML) v2.0, Beta 1 501

General Types

None.

Features

None.

Constraints

None.

9.2.19.2.8 StateTransitionView

Element

ViewDefinition

Description

ViewDefinition to present states and their transitions. Valid nodes and edges in a StateTransitionView are:

• States with nested states
• Entry, do, and exit actions
• Transition usages with triggers, guards, and actions
• Compartments on states

Short name: stv

General Types

InterconnectionView

Features

None.

Constraints

None.

9.2.20 Metadata
9.2.20.1 Metadata Overview

This package defines the base types for metadata definitions and related metadata annotations in the SysML
language.

9.2.20.2 Elements

9.2.20.2.1 MetadataItem

Element

MetadataDefinition

502 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Description

MetadataItem is the most general class of Items that represent Metaobjects. MetadataItem is the base type of
all MetadataDefinitions.

General Types

Item

Metaobject

Features

None.

Constraints

None.

9.2.20.2.2 metadataItems

Element

ItemUsage

Description

metadataItems is the base feature of all MetadataUsages.

Note: It is not itself a MetadataUsage, because it is not being used as an AnnotatingElement here.

General Types

items

metaobjects

MetadataItem

Features

None.

Constraints

None.

9.2.21 SysML

This package contains a reflective SysML model of the SysML abstract syntax. It is generated from the normative
MOF abstract syntax model (see 8.3) as follows.

1. The SysML model imports all elements from the reflective KerML package (see [KerML, 9.2.17]) and
directly contains all metaclasses mapped from the SysML abstract syntax, without any subpackaging.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 503

2. A metaclass from the MOF model is mapped into a MetadataDefinition in the KerML package.
◦ The MOF metaclass name is mapped unchanged.
◦ Generalizations of the MOF metaclass are mapped to ownedSpecializations.
◦ All properties from the MOF metaclass are mapped to usages of the corresponding

MetadataDefinition (see below). All non-association-end properties are grouped before
association-end properties.

3. A property from the MOF model is mapped into an AttributeUsage or ItemUsage, depending on
whether the MOF property type is a data type or a class.

◦ The following feature properties are set as appropriate:
▪ isAbstract = true if the MOF property is a derived union
▪ isReadonly = true if the MOF property is read-only.
▪ isDerived = true if the MOF property is derived.
▪ isReferential = true if the MOF property is not composite.

◦ The MOF property name is mapped unchanged.
◦ The MOF property type is mapped to an ownedTyping relationship.

▪ If the MOF property type is a primitive type, the relationship is to the corresponding
type from the ScalarValues package (see [KerML, 9.3.2]).

▪ If the MOF property type is a metaclass, the relationship is to the corresponding
reflective MetadataDefinition.

◦ The MOF property multiplicity is mapped to an owned MultiplicityRange with bounds
given by LiteralExpressions.

◦ Subsetted properties from the MOF property are mapped to ownedSubsettings of the
corresponding reflective Features or Usages.

◦ Redefined properties from the MOF property are mapped to ownedRedefinitions of the
corresponding reflective Features or Usages.

◦ If the MOF property is annotatedElement, then Metaobject::annotatedElement is
added to the list of redefined properties for the mapping.

4. An enumeration from the MOF model is mapped into an EnumerationDefinition.
◦ The MOF enumeration name is mapped unchanged.
◦ Each enumeration literal from the MOF enumeration is mapped into an enumeratedValue of

the EnumerationDefinition, with the same name as the MOF enumeration literal.

Note that associations are not mapped from the MOF model and, hence, non-navigable association-owned end
properties are not included in the reflective model.

9.3 Metadata Domain Library
9.3.1 Metadata Domain Library Overview

The Metadata Domain Library contains library models of generally useful metadata that can be used to annotate
model elements (see 7.4).

9.3.2 Modeling Metadata
9.3.2.1 Modeling Metadata Overview

This package contains definitions of metadata generally useful for annotating models.

9.3.2.2 Elements

9.3.2.2.1 Issue

Element

504 OMG Systems Modeling Language (SysML) v2.0 Beta 1

MetadataDefinition

Description

Issue is used to record some issue concerning the annotated element.

General Types

MetadataItem

Features

text : String

A textual description of the issue.

Constraints

None.

9.3.2.2.2 Rationale

Element

MetadataDefinition

Description

Rationale is used to explain a choice or other decision made related to the annotated element.

General Types

MetadataItem

Features

explanation : Anything [0..1]

A reference to a Feature that provides a formal explanation of the rationale. (For example, a trade study whose
result explains the choice of a certain alternative).

text : String

A textual description of the rationale (required).

Constraints

None.

9.3.2.2.3 Refinement

Element

MetadataDefinition

OMG Systems Modeling Language (SysML) v2.0, Beta 1 505

Description

Refinement is used to identify a Dependency as modeling a refinement relationship. In such a relationship, the
source elements of the relationship provide a more precise and/or accurate representation than the target elements.

General Types

MetadataItem

Features

annotatedElement : Dependency {redefines annotatedElement}

Constraints

None.

9.3.2.2.4 StatusInfo

Element

MetadataDefinition

Description

StatusInfo is used to annotate a model element with status information.

General Types

MetadataItem

Features

originator : String [0..1]

The originator of the annotatedElement.

owner : String [0..1]

The current owner of the annotatedElement.

risk : Risk [0..1]

An assessment of risk for the annotatedElement.

status : StatusKind

The current status of work on the annotatedElement (required).

Constraints

None.

506 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.3.2.2.5 StatusKind

Element

EnumerationDefinition

Description

StatusKind enumerates the possible statuses of work on a model element.

General Types

AttributeValue

Features

closed

Status is closed.

done

Status is done.

open

Status is open.

tbc

Status is to be confirmed.

tbd

Status is to be determined.

tbr

Status is to be resolved.

Constraints

None.

9.3.3 Risk Metadata
9.3.3.1 Risk Metadata Overview

This package defines metadata for annotating model elements with assessments of risk.

9.3.3.2 Elements

9.3.3.2.1 Level

Element

OMG Systems Modeling Language (SysML) v2.0, Beta 1 507

AttributeDefinition

Description

A Level is a Real number in the interval 0.0 to 1.0, inclusive.

General Types

AttributeValue

Real

Features

level : Level {redefines self}

Constraints

levelRange

level >= 0.0 and level <= 1.0

9.3.3.2.2 LevelEnum

Element

EnumerationDefinition

Description

LevelEnum provides standard probability Levels for low, medium and high risks.

General Types

Level

Features

high

High level, taken to be 75%.

low

Low level, taken to be 25%.

medium

Medium level taken to be 50%.

Constraints

None.

508 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.3.3.2.3 Risk

Element

MetadataDefinition

Description

Risk is used to annotate a model element with an assessment of the risk related to it in some typical risk areas.

General Types

MetadataItem

Features

costRisk : RiskLevel [0..1]

The risk that work on the annotatedElement will exceed its planned cost.

scheduleRisk : RiskLevel [0..1]

The risk that work on the annotatedElement will not be completed on schedule.

technicalRisk : RiskLevel [0..1]

The risk of unresolved technical issues regarding the annotatedElement.

totalRisk : RiskLevel [0..1]

The total risk associated with the annotatedElement.

Constraints

None.

9.3.3.2.4 RiskLevel

Element

AttributeDefinition

Description

RiskLevel gives the probability of a risk occurring and, optionally, the impact if the risk occurs.

General Types

AttributeValue

Features

impact : Level [0..1]

The impact of the risk if it occurs (with 0.0 being no impact and 1.0 being the most severe impact).

OMG Systems Modeling Language (SysML) v2.0, Beta 1 509

probability : Level

The probability that a risk will occur.

Constraints

None.

9.3.3.2.5 RiskLevelEnum

Element

EnumerationDefinition

Description

RiskLevelEnum enumerates standard RiskLevels for low, medium and high risks (without including impact).

General Types

RiskLevel

Features

high

Risk level with high probability.

low

Risk level with low probability.

medium

Risk level with medium probability.

Constraints

None.

9.3.4 Parameters of Interest Metadata
9.3.4.1 Parameters of Interest Metadata Overview

This package contains definitions of metadata to identify key parameters of interest, including measures of
effectiveness (MOE) and other key measures of performance (MOP).

9.3.4.2 Elements

9.3.4.2.1 MeasureOfEffectiveness

Element

MetadataDefinition

Description

510 OMG Systems Modeling Language (SysML) v2.0 Beta 1

MeasureOfEffectiveness (short name moe) is semantic metadata for identifying an attribute as a measure of
effectiveness.

General Types

SemanticMetadata

MetadataItem

Features

annotatedElement : Usage {redefines annotatedElement}

baseType : Type {redefines baseType}

Base type is measuresOfEffectiveness.

Constraints

None.

9.3.4.2.2 MeasureOfPerformance

Element

MetadataDefinition

Description

MeasureOfPerformance (short name mop) is semantic metadata for identifying an attribute as a measure of
performance.

General Types

SemanticMetadata

MetadataItem

Features

annotatedElement : Usage {redefines annotatedElement}

baseType : Type {redefines baseType}

Base type is measuresOfPeformance.

Constraints

None.

9.3.4.2.3 measuresOfEffectiveness

Element

AttributeUsage

OMG Systems Modeling Language (SysML) v2.0, Beta 1 511

Description

Base feature for attributes that are measures of effectiveness.

General Types

attributeValues

Features

None.

Constraints

None.

9.3.4.2.4 measuresOfPerformance

Element

AttributeUsage

Description

Base feature for attributes that are measures of performance.

General Types

attributeValues

Features

None.

Constraints

None.

9.3.5 Image Metadata
9.3.5.1 Image Metadata Overview

This package provides attributive data and metadata to allow a model element to be annotated with an image to be
used in its graphical rendering or as a marker to adorn graphical or textual renderings.

9.3.5.2 Elements

9.3.5.2.1 Icon

Element

MetadataDefinition

Description

512 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Icon metadata can be used to annotate a model element with an image to be used to show render the element on a
diagram and/or a small image to be used as an adornment on a graphical or textual rendering. Alternatively, another
metadata definition can be annotated with an Icon to indicate that any model element annotated by the containing
metadata can be rendered according to the Icon.

General Types

MetadataItem

Features

fullImage : Image [0..1]

A full-sized image that can be used to render the annotated element on a graphical view, potentially as an alternative
to its standard rendering.

smallImage : Image [0..1]

A smaller image that can be used as an adornment on the graphical rendering of the annotated element or as a
marker in a textual rendering.

Constraints

None.

9.3.5.2.2 Image

Element

AttributeDefinition

Description

Image provides the data necessary for the physical definition of a graphical image.

General Types

AttributeValue

Features

content : String [0..1]

Binary data for the image according to the given MIME type, encoded as given by the encoding.

encoding : String [0..1]

Describes how characters in the content are to be decoded into binary data. At least "base64", "hex", "identify", and
"JSONescape" shall be supported.

location : String [0..1]

A URI for the location of a resource containing the image content, as an alternative for embedding it in the content
attribute.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 513

type : String [0..1]

The MIME type according to which the content should be interpreted.

Constraints

None.

9.4 Analysis Domain Library
9.4.1 Analysis Domain Library Overview

The Analysis Domain Library provides library models supporting the modeling of analysis cases (see 7.22) and
related analysis tasks.

9.4.2 Analysis Tooling
9.4.2.1 Analysis Tooling Overview

This package contains definitions for metadata annotations related to analysis tool integration.

9.4.2.2 Elements

9.4.2.2.1 ToolExecution

Element

MetadataDefinition

Description

ToolExecution metadata identifies an external analysis tool to be used to implement the annotated action.

General Types

MetadataItem

Features

toolName : String

uri : String

Constraints

None.

9.4.2.2.2 ToolVariable

Element

MetadataDefinition

Description

514 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ToolVariable metadata is used in the context of an action that has been annotated with ToolExecution
metadata. It is used to annotate a parameter or other feature of the action with the name of the variable in the tool
that is to correspond to the annotated feature.

General Types

MetadataItem

Features

name : String

Constraints

None.

9.4.3 Sampled Functions
9.4.3.1 Sampled Functions Overview

This package provides a library model of discretely sampled mathematical functions.

A SampledFunction can be used for many engineering purposes. For example, it can represent a time series
observation, where the domain consists of time instants expressed on a given timescale and the range consists of
observed quantity values. It can also capture a physical property of a substance that depends on temperature or
pressure or both.

A SampledFunction with numerical domain and range types can be used as input to an interpolation algorithm in
order to obtain range values for domain values that fall in-between the discretely sampled domain values.

9.4.3.2 Elements

9.4.3.2.1 Domain

Element

CalculationDefinition

Description

Domain returns the sequence of the domainValues of all samples in a SampledFunction.

General Types

Calculation

Features

fn : SampledFunction

input

result : Anything [0..*]

output

OMG Systems Modeling Language (SysML) v2.0, Beta 1 515

Constraints

None.

9.4.3.2.2 Interpolate

Element

CalculationDefinition

Description

An Interpolate calculation returns an interpolated range value from a given SampledFunction for a given
domain value. If the input domain value is outside the bounds of the domainValues of the SampleFunction,
null is returned.

General Types

Calculation

Features

fn : SampledFunction

input

result : Anything [0..1]

output

value : Anything

input

Constraints

None.

9.4.3.2.3 interpolateLinear

Element

CalculationUsage

Description

interpolateLinear is an Interpolate calculation assuming a linear functional form between SamplePairs.

General Types

Interpolate

calculations

Features

516 OMG Systems Modeling Language (SysML) v2.0 Beta 1

fn : SampledFunction

input

result : Anything [0..1] {redefines result}

output

value : Anything {redefines value}

input

Constraints

None.

9.4.3.2.4 Range

Element

CalculationDefinition

Description

Range returns the sequence of the rangeValues of all samples in a SampledFunction.

General Types

Calculation

Features

fn : SampledFunction

input

result : Anything [0..*]

output

Constraints

None.

9.4.3.2.5 Sample

Element

CalculationDefinition

Description

Sample returns a SampledFunction that samples a given calculation over a sequence of domainValues.

General Types

OMG Systems Modeling Language (SysML) v2.0, Beta 1 517

Calculation

Features

calculation : Calculation [0..*]

input

domainValues : Anything [0..*]

input

sampling : SampledFunction

output

Constraints

None.

9.4.3.2.6 SampledFunction

Element

AttributeDefinition

Description

SampledFunction is a variable-size, ordered collection of SamplePair elements that represents a generic,
discretely sampled, uni-variate or multi-variate mathematical function. The function must be montonic, either
strictly increasing or strictly decreasing.

It maps discrete domain values to discrete range values. The domain of the function is represented by the sequence
of domainValues of each SamplePair in samples, and the range of the function is represented by the sequence
of rangeValues of each SamplePair in samples.

General Types

OrderedMap

Features

samples : SamplePair [0..*] {redefines elements, ordered}

Constraints

[no name]

Note: Assumes the functions '<' and '>' are defined for the domain type.

(1..size(samples)-1)->forAll { in i;
(samples.domainValue[i] < samples.domainValue[i+1]) } or // Strictly increasing

(1..size(samples)-1)->forAll { in i;
(samples.domainValue[i] > samples.domainValue[i+1]) } // Strictly decreasing

518 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.4.3.2.7 SamplePair

Element

AttributeDefinition

Description

SamplePair is a key-value pair of a domainValue and a rangeValue, used as a sample element in
SampledFunction.

General Types

KeyValuePair

Features

domainValue : Anything {redefines key}

rangeValue : Anything {redefines val}

Constraints

None.

9.4.4 State Space Representation
9.4.4.1 State Space Representation Overview

State Space Representation (SSR) is a foundational dynamical systems representation, commonly used in control
systems. In this representation, a system is described by a set of state variables whose evolution by a state equation
(note that this is a different conception of "state" than used in the behavioral state modeling constructs described in
7.17). The system outputs are then given by an output equation. This representation provides a description of the
quantitative stateful behavior of the target system in an explicit manner so that external solvers can compute the
behavior by properly integrating input and state variables.

Mathematically, let x be a vector of state variables and x' be its time derivative, u be a vector of inputs, and y be a
vector of outputs. Then the state equation has the form

x' = f(x, u) ,

for some system-specific function f, and the output equation has the form

y = g(x, u) ,

for some system-specific function g.

The StateSpaceRepresentation library model is a model of this representation in terms of SysML actions and
calculations. These can be used in combination with end-user action models to describe system functional behaviors.

9.4.4.2 Elements

Fig. 54 shows the action definitions in the State Space Representation library. This library defines
StateSpaceDynamics as the base abstract action definition, which provides the basic structure of input, output,

OMG Systems Modeling Language (SysML) v2.0, Beta 1 519

and state space. This definition has getNextState and getOuput calculations as well to calculate the next state
and the current output, which corresponds to the math functions of f() and g(), respectively.

ContinuousStateSpaceDynamics gives the continuous extension of StateSpaceDynamics by redefininig
getNextState and adding getDerivative that calculates the derivative of the state space, corresponding to x'.
Likewise, DiscreteStateSpaceDinamics gives the discrete extension by adding getDifference that
calculates ∆x, that is the difference between the current state and the next state, and getNextState adds it to
stateSpace.

Figure 54. State Space Representation action and calculation definitions

zeroCrossingEvents defined in ContinuousStateSpaceDynamics give event occurrences when the
derivative cross the zero. Some solvers, especially variable-step ones, need to identify such points for precise
integration and thus implementations of ContinuousStateSpaceDynamics may notify zero-crossings with these
event occurrences.

9.4.5 Trade Studies
9.4.5.1 Trade Studies Overview

This package provides a simple framework for defining trade-off study analysis cases.

520 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.4.5.2 Elements

9.4.5.2.1 EvaluationFunction

Element

CalculationDefinition

Description

An EvaluationFunction is a calculation that evaluates a TradeStudy alternative, producing a ScalarValue
that can be compared with the evaluation of other alternatives.

General Types

Calculation

Features

alternative : Anything

The alternative to be evaluated

result : ScalarValue {redefines result}

A ScalarValue representing the evaluation of the given alternative.

Constraints

None.

9.4.5.2.2 MaximizeObjective

Element

RequirementDefinition

Description

A MaximizeObjective is a TradeStudyObjective that requires that the selectedAlternative have the
maximum EvaluationFunction value of all the given alternatives.

General Types

TradeStudyObjective

Features

alternatives : Anything [1..*] {redefines alternatives}

best : ScalarValue {redefines best}

For a MaximizeObjective, the best value is the maximum one.

fn : EvaluationFunction {redefines fn}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 521

selectedAlternative : Anything {redefines selectedAlternative}

Constraints

None.

9.4.5.2.3 MinimizeObjective

Element

RequirementDefinition

Description

A MinimizeObjective is a TradeStudyObjective that requires that the selectedAlternative have the
minimum EvaluationFunction value of all the given alternatives.

General Types

TradeStudyObjective

Features

alternatives : Anything [1..*] {redefines alternatives}

best : ScalarValue {redefines best}

For a MinimizeObjective, the best value is the minimum one.

fn : EvaluationFunction {redefines fn}

selectedAlternative : Anything {redefines selectedAlternative}

Constraints

None.

9.4.5.2.4 TradeStudy

Element

AnalysisCaseDefinition

Description

A TradeStudy is an analysis case whose subject is a set of alternatives (at least one) and whose result is a selection
of one of those alternatives. The alternatives are evaluated based on a given ObjectiveFunction and the selection
is made such that it satisfies the objective of the TradeStudy (which must be a TradeStudyObjective).

General Types

AnalysisCase

Features

522 OMG Systems Modeling Language (SysML) v2.0 Beta 1

evaluationFunction : EvaluationFunction [0..*]

The EvaluationFunction to be used to evaluate the alternatives.

In a TradeStudy usage, redefine this feature to provide the desired calculation (or bind it to a calculation usage that
does so).

selectedAlternative : Anything

The alternative selected by this TradeStudy, which is the one that meets the requirement of the
tradeStudyObjective.

studyAlternatives : Anything [1..*] {redefines subj}

The set of alternatives being considered in this TradeStudy.

In a TradeStudy usage, bind this feature to the actual collection of alternatives to be considered.

tradeStudyObjective : TradeStudyObjective

The objective of this TradeStudy.

Redefine this feature to give it a definition that is a concrete specialization of TradeStudyObjective. That can
either be one of the specializations provided in this package, or a more specific user-defined one.

Constraints

None.

9.4.5.2.5 TradeStudyObjective

Element

RequirementDefinition

Description

A TradeStudyObjective is the base definition for the objective of a TradeStudy. The requirement is to choose
from a given set of alternatives the selectedAlternative for that has the best evaluation according to a given
EvaluationFunction. What value is considered "best" is not defined in the abstract base definition but must be
computed in any concrete specialization.

General Types

RequirementCheck

Features

alternatives : Anything [1..*]

The alternatives being considered in the TradeStudy for which this TradeStudyObjective is the objective.

best : ScalarValue

OMG Systems Modeling Language (SysML) v2.0, Beta 1 523

Out of the evaluation results of all the given alternatives, the one that is considered "best", in the sense that it is the
value the selectedAlternative should have. This value must be computed in any concrete specialization of
TradeStudyObjective/em>.

fn : EvaluationFunction

The EvaluationFunction to be used in evaluating the given alternatives.

selectedAlternative : Anything {redefines subj}

The alternative that should be selected, as evaluated using the given EvaluationFunction.

Constraints

[no name]

fn(selectedAlternative) == best

9.5 Cause and Effect Domain Library
9.5.1 Cause and Effect Domain Library Overview

9.5.2 Causation Connections
9.5.2.1 Causation Connections Overview

This package provides a library model modeling causes, effects, and causation connections between them.

9.5.2.2 Elements

9.5.2.2.1 Causation

Element

ConnectionDefinition

Description

A Causation is a binary Multicausation in which a single cause occurrence causes a single effect occurrence.
(However, a single cause can separately have multiple effects, and a single effect can have separate Causation
connections with multiple causes.)

General Types

Multicausation

BinaryConnection

Features

theCause : Occurrence [0..*] {redefines causes, source}

The single causing occurrence.

theEffect : Occurrence [0..*] {redefines effects, target}

524 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The single effect occurrence resulting from the cause.

Constraints

None.

9.5.2.2.2 causations

Element

ConnectionUsage

Description

causations is the base feature for Causation ConnectionUsages.

General Types

multicausations

Causation

Features

None.

Constraints

None.

9.5.2.2.3 causes

Element

OccurrenceUsage

Description

Occurrences that are causes.

General Types

occurrences

Features

None.

Constraints

None.

9.5.2.2.4 effects

Element

OMG Systems Modeling Language (SysML) v2.0, Beta 1 525

OccurrenceUsage

Description

Occurrences that are effects.

General Types

occurrences

Features

None.

Constraints

None.

9.5.2.2.5 Multicausation

Element

ConnectionDefinition

Description

A Multicausation connection models the situation in which one set of occurrences causes another. All causes
must at least exist before all effects.

To create a Multicausation connection, specialize this connection definition adding specific end features of the
relavent types. Ends representing causes should subset causes, while ends representing effects should subset
effects. There must be at least one cause and at least one effect.

General Types

Connection

Features

causes : Occurrence [1..*] {subsets participant}

The causing Occurrences.

Redefines CausationConnections::causes in the context of Multicausation.

effects : Occurrence [1..*] {subsets participant}

The effect Occurrences caused by the causing Occurrences.

Redefines CausationConnections::effects in the context of Multicausation.

Constraints

disjointCauseEffect

526 OMG Systems Modeling Language (SysML) v2.0 Beta 1

causes must be disjoint from effects.

isEmpty(intersection(causes, effects))

9.5.2.2.6 multicausations

Element

ConnectionUsage

Description

multicausations is the base feature for Multicausation ConnectionUsages.

General Types

Multicausation

connections

Features

None.

Constraints

None.

9.5.3 Cause and Effect
9.5.3.1 Cause and Effect Overview

This package provides language-extension metadata for cause-effect modeling.

9.5.3.2 Elements

9.5.3.2.1 CausationMetadata

Element

MetadataDefinition

Description

CausationMetadata allows for the specification of additional metadata about a cause-effect
ConnectionDefinition or ConnectionUsage..

General Types

MetadataItem

Features

annotatedElement1 : ConnectionDefinition {subsets annotatedElement}

annotatedElement2 : ConnectionUsage {subsets annotatedElement}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 527

isNecessary : Boolean

Whether all the causes are necessary for all the effects to occur. If this is false (the default), then some or all of the
effects may still have occurred even if some of the causes did not.

isSufficient : Boolean

Whether the causes were sufficient for all the effects to occur. If this is false (the default), then it may be the case
that some other occurrences were also necessary for some or all of the effects to have occurred.

probability : Real [0..1]

The probability that the causes will actually result in effects occurring.

Constraints

None.

9.5.3.2.2 CausationSemanticMetadata

Element

MetadataDefinition

Description

CausationMetadata (short name causation) is SemanticMetadata for a Causation connection.

General Types

SemanticMetadata

CausationMetadata

Features

baseType : Type {redefines baseType}

Base type is CausationConnections::causations.

Constraints

None.

9.5.3.2.3 CauseMetadata

Element

MetadataDefinition

Description

CauseMetadata (short name cause) identifies a Usage as being a cause occurrence. It is intended to be used to tag
the cause ends of a Multicausation.

528 OMG Systems Modeling Language (SysML) v2.0 Beta 1

General Types

SemanticMetadata

MetadataItem

Features

annotatedElement : Usage {redefines annotatedElement}

baseType : Type {redefines baseType}

Base type is CausationConnections::causes.

Constraints

None.

9.5.3.2.4 EffectMetadata

Element

MetadataDefinition

Description

EffectMetadata (short name effect) identifies a Usage as being a effect occurrence. It is intended to be used to
tag the effect ends of a Multicausation.

General Types

SemanticMetadata

MetadataItem

Features

annotatedElement : Usage {redefines annotatedElement}

baseType : Type {redefines baseType}

Base type is CausationConnections::effects.

Constraints

None.

9.5.3.2.5 MulticausationSemanticMetadata

Element

MetadataDefinition

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 529

MulticausationMetadata (short name multicausation) is SemanticMetadata for a Multicausation
connection.

General Types

SemanticMetadata

CausationMetadata

Features

baseType : Type {redefines baseType}

Base type is CausationConnections::multicausations.

Constraints

None.

9.6 Requirement Derivation Domain Library
9.6.1 Requirement Derivation Domain LIbrary Overview

9.6.2 Derivation Connections
9.6.2.1 Derivation Connections Overview

This package provides a library model for derivation connections between requirements.

9.6.2.2 Elements

9.6.2.2.1 Derivation

Element

ConnectionDefinition

Description

A Derivation connection asserts that one or more derivedRequirements are derived from a single
originalRequirement. This means that any subject that satisfies the originalRequirement should, in itself or
though other things related to it, satisfy each of the derivedRequirements.

A ConnectionUsage typed by Derivation must have RequirementUsages for all its ends. The single end for
the original requirement should subset originalRequirement, while the rest of the ends should subset
derivedRequirements.

General Types

Connection

Features

derivedRequirements : RequirementCheck [1..*] {subsets participant}

530 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The one or more requirements that are derived from the original requirement.

Redefines DerivationConnections::derivedRequirements in the context of Derivation.

originalRequirement : RequirementCheck {subsets participant}

The single original requirement.

Redefines DerivationConnections::originalRequirement in the context of Derivation.

participant : RequirementCheck [2..*] {redefines participant}

All the participants in a Derivation must be requirements.

Constraints

originalImpliesDerived

Whenever the originalRequirement is satisfied, all of the derivedRequirements must also be satisfied.

originalRequirement.result implies allTrue(derivedRequirements.result)

originalNotDerived

The original requirement must not be a derived requirement.

derivedRequirements->excludes(originalRequirement)

9.6.2.2.2 derivations

Element

ConnectionUsage

Description

derivations is the base feature for Derivation ConnectionUsages.

General Types

Derivation

connections

Features

None.

Constraints

None.

9.6.2.2.3 derivedRequirements

Element

OMG Systems Modeling Language (SysML) v2.0, Beta 1 531

RequirementUsage

Description

derivedRequirements are the derived requirements in Derivation connections.

General Types

occurrences

Features

None.

Constraints

None.

9.6.2.2.4 originalRequirements

Element

RequirementUsage

Description

originalRequirements are the original requirements in Derivation connections.

General Types

occurrences

Features

None.

Constraints

None.

9.6.3 Requirement Derivation
9.6.3.1 Requirement Derivation Overview

This package provides language-extension metadata for modeling requirement derivation.

9.6.3.2 Elements

9.6.3.2.1 DerivationMetadata

Element

MetadataDefinition

Description

532 OMG Systems Modeling Language (SysML) v2.0 Beta 1

DerivationMetadata (short name derivation) is SemanticMetadata for a Derivation connection.

General Types

SemanticMetadata

MetadataItem

Features

annotatedElement1 : ConnectionDefinition {subsets annotatedElement}

annotatedElement2 : ConnectionUsage {subsets annotatedElement}

baseType : Type

Base type is DerivationConnections::derivations.

Constraints

None.

9.6.3.2.2 DerivedRequirementMetadata

Element

MetadataDefinition

Description

DerivedlRequirementMetadata (short name derive) identifies a Usage as a derived requirement. It is
intended to be used to tag the derived requirement ends of a Derivation.

General Types

SemanticMetadata

MetadataItem

Features

annotatedElement : Usage

baseType : Type

Base type is DerivationConnections::derivedRequirements.

Constraints

None.

9.6.3.2.3 OriginalRequirementMetadata

Element

OMG Systems Modeling Language (SysML) v2.0, Beta 1 533

MetadataDefinition

Description

OriginalRequirementMetadata (short name original) identifies a Usage as an original requirement. It is
intended to be used to tag the original requirement end of a Derivation.

General Types

SemanticMetadata

MetadataItem

Features

annotatedElement : Usage

baseType : Type

Base type is DerivationConnections::originalRequirements.

Constraints

None.

9.7 Geometry Domain Library
9.7.1 Geometry Domain Library Overview

9.7.2 Spatial Items
9.7.2.1 Spatial Items Overview

This package models physical items that have a spatial extent and act as a spatial frame of reference for obtaining
position and displacement vectors of points within them.

9.7.2.2 Elements

9.7.2.2.1 CurrentDisplacementOf

Element

CalculationDefinition

Description

The CurrentDisplacementOf two Points relative to a SpatialItem and a Clock is the DisplacementOf the
Points relative to the SpacialItem, at the currentTime of the Clock.

General Types

CurrentDisplacementOf

Features

clock : Clock {redefines clock}

534 OMG Systems Modeling Language (SysML) v2.0 Beta 1

displacementVector : Displacement3dVector {redefines displacementVector}

frame : SpatialItem {redefines frame}

point1 : Point {redefines point1}

point2 : Point {redefines point2}

Constraints

None.

9.7.2.2.2 CurrentPositionOf

Element

CalculationDefinition

Description

The CurrentPositionOf a Point relative to a SpatialItem and a Clock is the PositionOf the Point
relative to the SpatialItem at the currentTime of the Clock.

General Types

CurrentPositionOf

Features

clock : Clock {redefines clock}

point : Point {redefines point}

positionVector : Position3dVector {redefines positionVector}

spatialItem : SpatialItem {redefines frame}

Constraints

None.

9.7.2.2.3 DisplacementOf

Element

CalculationDefinition

Description

The DisplacementOf two Points relative to a SpatialItem, at a specific TimeInstantValue relative to a
given Clock, is the displacementVector computed as the difference between the PositionOf the first Point
and PositionOf the second Point, relative to that SpatialItem, at that timeInstant.

General Types

OMG Systems Modeling Language (SysML) v2.0, Beta 1 535

DisplacementOf

Features

clock : Clock {redefines clock}

displacementVector : Displacement3dVector {redefines displacementVector}

frame : SpatialItem {redefines frame}

point1 : Point {redefines point1}

point2 : Point {redefines point2}

time : TimeInstantValue {redefines time}

Constraints

zeroDisplacementConstraint

If either point1 or point2 occurs within the other, then the displacementVector is the zero vector.

(point1.spaceTimeEnclosedOccurrences->includes(point2) or
point2.spaceTimeEnclosedOccurrences->includes(point1)) implies

isZeroVector(displacementVector)

9.7.2.2.4 PositionOf

Element

CalculationDefinition

Description

The PositionOf a Point relative to a SpatialItem, at a specific TimeInstantValue relative to a given
Clock, is a positionVector that is a VectorQuantityValue in the coordinateFrame of the SpatialItem.
The default Clock is the localClock of the SpatialItem.

General Types

PositionOf

Features

clock : Clock {redefines clock}

point : Point {redefines point}

positionVector : Position3dVector {redefines positionVector}

spatialItem : SpatialItem {redefines frame}

time : TimeInstantValue {redefines time}

Constraints

536 OMG Systems Modeling Language (SysML) v2.0 Beta 1

positionTimePrecondition

The given point must exist at the given time.

TimeOf(point.startShot) <= time and
time <= TimeOf(point.endShot)

spacePositionConstraint

The result positionVector is equal to the PositionOf the Point spaceShot of the frame that encloses the
given point, at the given time.

(frame.spaceShots as Point)->forAll{in p : Point;
p.spaceTimeEnclosedOccurrences->includes(point) implies
positionVector == PositionOf(p, time, frame)

}

9.7.2.2.5 SpatialItem

Element

ItemDefinition

Description

A SpatialItem is an Item with a three-dimensional spatial extent that also acts as a SpatialFrame of reference.

General Types

Item

SpatialFrame

Features

componentItems : SpatialItem [0..*] {subsets subitems}

A SpatialItem with componentItems is entirely made up of those items (the SpatialItem occurs only as a
collection of its componentItems). By default they have the same localClock and equivalent
coordinateFrame as the SpatialItem they make up. A SpatialItem without componentItems occurs on its
own, separately from its subitems.

coordinateFrame : VectorMeasurementReference

The three-dimensional VectorMeasurementReference to be used as the measurement reference for position and
displacement vector values relative to this SpatialItem.

localClock : Clock {redefines localClock}

A local Clock to be used as the corresponding time reference within this SpatialItem. By default this is the
singleton Time::universalClock.

originPoint : Point

The Point at the origin of the coordinateFrame of this SpatialItem.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 537

Constraints

originPointConstraint

The CurrentPositionOf the originPoint must always be a zero vector.

isZeroVector(CurrentPositionOf(originPoint, SpatialItem::self))

9.7.3 Shape Items
9.7.3.1 Shape Items Overview

This package defines basic geometric Items, most of which can be used as shapes of other Items (see 7.10).
Their innerSpaceDimensions are either 1 (Curves) or 2 (Surfaces), which is the number of variables needed
to identify any space point occupied by an Item, without regard to higher dimensional spaces in which it might be
embedded (see Occurrences and Objects in [KerML]). All are StructuredSpaceObjects (Paths and
Shells for Curves and Surfaces, respectively), except for Lines. This enables them to divide their
spaceSlices into faces, edges, and vertices, identifying Surfaces, Curve, and Points, respectively.
Paths have no faces, but Shells do. All the Paths and Shells are closed (isClosed=true, they have no
shape), except for Discs, enabling them to be shapes of other Items.

9.7.3.2 Elements

9.7.3.2.1 Circle

Element

ItemDefinition

Description

A Circle is an Ellipse with semiaxes equal to its radius.

General Types

Ellipse

Features

radius : LengthValue

semiMajorAxis : LengthValue {redefines semiMajorAxis}

semiMinorAxis : LengthValue {redefines semiMinorAxis}

Constraints

None.

9.7.3.2.2 CircularCone

Element

ItemDefinition

538 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Description

A CircularCone is a Cone with a circular base.

General Types

Cone

Features

base : CircularDisc {redefines base}

radius : LengthValue

semiMajorAxis {redefines semiMajorAxis}

Constraints

None.

9.7.3.2.3 CircularCylinder

Element

ItemDefinition

Description

A CircularCylinder is a Cylinder with two circular sides.

General Types

Cylinder

Features

af : CircularDisc {redefines af}

base : CircularDisc {redefines base}

radius : LengthValue

semiMajorAxis {redefines semiMajorAxis}

Constraints

None.

9.7.3.2.4 CircularDisc

Element

Description

A CircularDisc is a Disc bound by a Circle.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 539

General Types

Disc

Features

edges : Circle {redefines edges}

radius : LengthValue

shape : Circle {redefines shape}

Constraints

None.

9.7.3.2.5 Cone

Element

ItemDefinition

Description

A Cone has one elliptical sides joined to a point by a curved side.

General Types

ConeOrCylinder

Features

af [0] {redefines af}

apex {subsets vertices}

edges [2] {redefines edges}

faces [2] {redefines faces}

Constraints

None.

9.7.3.2.6 ConeOrCylinder

Element

ItemDefinition

Description

A ConeOrCylinder is a Cone or a Cylinder with a given elliptical base, height, width (perpendicular distance
from the base to the center of the top side or vertex), and offsets of this perpendicular at the base from the center of
the base.

540 OMG Systems Modeling Language (SysML) v2.0 Beta 1

General Types

Shell

Features

ae [0..2] {subsets edges}

af : Disc [0..1] {subsets faces}

base : Disc {subsets faces}

be [2] {subsets edges}

cf {subsets faces}

edges [2..4] {redefines edges}

faces : Surface [2..3] {redefines faces}

height : LengthValue

semiMajorAxis : LengthValue

semiMinorAxis : LengthValue

vertices [0..1] {redefines vertices}

xoffset : LengthValue

yoffset : LengthValue

Constraints

None.

9.7.3.2.7 ConicSection

Element

ItemDefinition

Description

A ConicSection is a closed PlanarCurve, possibly disconnected, see Hyperbola.

General Types

Path

PlanarCurve

Features

edges [1..2] {redefines edges}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 541

isClosed {redefines isClosed}

vertices [0] {redefines vertices}

Constraints

None.

9.7.3.2.8 ConicSurface

Element

ItemDefinition

Description

A ConicSurface is a Surface that has ConicSection cross-sections.

General Types

Shell

Features

edges [0] {redefines edges}

faces [1..2] {redefines faces}

genus {redefines genus}

vertices [0] {redefines vertices}

Constraints

None.

9.7.3.2.9 Cuboid

Element

ItemDefinition

Description

A Cuboid is a Polyhedron with six sides, all quadrilateral.

General Types

CuboidOrTriangularPrism

Features

edges [24] {redefines edges}

faces [6] {redefines faces}

542 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ff : Quadrilateral {redefines ff}

rf : Quadrilateral {redefines rf}

Constraints

None.

9.7.3.2.10 CuboidOrTriangularPrism

Element

ItemDefinition

Description

A CuboidOrTriangularPrism is a Polyhedron that is either a Cuboid or TriangularPrism.

General Types

Polyhedron

Features

bf : Quadrilateral {subsets faces}

bfe [2] {subsets edges}

bflv [3] {subsets vertices}

bfrv [3] {subsets vertices}

bre [2] {subsets edges}

brlv [3] {subsets vertices}

brrv [3] {subsets vertices}

bsle [2] {subsets edges}

bsre [2] {subsets edges}

edges [0..*] {redefines edges}

faces [5..6] {redefines faces}

ff : Polygon {subsets faces}

rf : Polygon {subsets faces}

slf : Quadrilateral {subsets faces}

srf : Quadrilateral [0..1] {subsets faces}

tf : Quadrilateral {subsets faces}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 543

tfe [2] {subsets edges}

tflv [3] {subsets vertices}

tfrv [0..3] {subsets vertices}

tre [2] {subsets edges}

trlv [3] {subsets vertices}

trrv [0..3] {subsets vertices}

tsle [2] {subsets edges}

tsre [0..2] {subsets edges}

ufle [2] {subsets edges}

ufre [0..2] {subsets edges}

urle [2] {subsets edges}

urre [0..2] {subsets edges}

vertices [24] {redefines vertices}

Constraints

None.

9.7.3.2.11 Cylinder

Element

ItemDefinition

Description

A Cylinder has two elliptical sides joined by a curved side.

General Types

ConeOrCylinder

Features

ae [2] {redefines ae}

af {redefines af}

edges [4] {redefines edges}

faces [3] {redefines faces}

vertices [0] {redefines vertices}

544 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Constraints

None.

9.7.3.2.12 Disc

Element

ItemDefinition

Description

A Disc is a Shell bound by an Ellipse.

General Types

Shell

PlanarSurface

Features

edges : Ellipse {redefines edges}

faces : PlanarSurface {redefines faces}

semiMajorAxis : LengthValue

semiMinorAxis : LengthValue

shape : Ellipse {redefines shape}

vertices [0] {redefines vertices}

Constraints

None.

9.7.3.2.13 EccentricCone

Element

ItemDefinition

Description

An EccentricCone is a Cone with least one positive offset.

General Types

Cone

Features

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 545

Constraints

None.

9.7.3.2.14 EccentricCylinder

Element

ItemDefinition

Description

An EccentricCylinder is a Cylinder with least one positive offset.</p

General Types

Cylinder

Features

None.

Constraints

None.

9.7.3.2.15 Ellipse

Element

ItemDefinition

Description

An Ellipse is a ConicSection in the shape of an ellipse of given semiaxes.

General Types

ConicSection

Features

edges {redefines edges}

semiMajorAxis : LengthValue

semiMinorAxis : LengthValue

Constraints

None.

9.7.3.2.16 Ellipsoid

Element

546 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ItemDefinition

Description

An Ellipsoid is a ConicSurface with only elliptical cross-sections.

General Types

ConicSurface

Features

faces {redefines faces}

semiAxis1 : LengthValue

semiAxis2 : LengthValue

semiAxis3 : LengthValue

Constraints

None.

9.7.3.2.17 Hyperbola

Element

ItemDefinition

Description

A Hyperbola is a planar Path in the shape of a hyperbola with given axes.

General Types

ConicSection

Features

conjugateAxis : LengthValue

tranverseAxis : LengthValue

Constraints

None.

9.7.3.2.18 Hyperboloid

Element

ItemDefinition

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 547

A Hyperboloid is a ConicSurface with only hyperbolic cross-sections.

General Types

ConicSurface

Features

conjugateAxis : LengthValue

transverseAxis : LengthValue

Constraints

None.

9.7.3.2.19 Line

Element

ItemDefinition

Description

A Line is a PlanarCurve that is straight.

General Types

PlanarCurve

Features

outerSpaceDimension {redefines outerSpaceDimension}

Constraints

None.

9.7.3.2.20 Parabola

Element

ItemDefinition

Description

A Parabola is a planar Path in the shape of a parabola of a given focal length.

General Types

ConicSection

Features

edges {redefines edges}

548 OMG Systems Modeling Language (SysML) v2.0 Beta 1

focalDistance : LengthValue

Constraints

None.

9.7.3.2.21 Paraboloid

Element

ItemDefinition

Description

A Paraboloid is a ConicSurface with only parabolic cross-sections.

General Types

ConicSurface

Features

faces {redefines faces}

focalDistance : LengthValue

Constraints

None.

9.7.3.2.22 Path

Element

ItemDefinition

Description

Path is the most general structured Curve.

General Types

Item

Curve

StructuredSpaceObject

Features

edges [1..*] {redefines edges}

faces [0] {redefines faces}

vertices {redefines vertices}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 549

Constraints

None.

9.7.3.2.23 PlanarCurve

Element

ItemDefinition

Description

A PlanarCurve is a Curve with a given length embeddable in a plane.

General Types

Item

Curve

Features

length : LengthValue

outerSpaceDimension {redefines outerSpaceDimension}

Constraints

None.

9.7.3.2.24 PlanarSurface

Element

ItemDefinition

Description

A PlanarSurface is a Surface with given area that is flat.

General Types

Item

Surface

Features

area : LengthValue

outerSpaceDimension {redefines outerSpaceDimension}

Constraints

None.

550 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.7.3.2.25 Polygon

Element

ItemDefinition

Description

A Polygon is a closed planar Path with straight edges.

General Types

Path

PlanarCurve

Features

edges : Line {redefines edges}

isClosed {redefines isClosed}

Constraints

None.

9.7.3.2.26 Polyhedron

Element

ItemDefinition

Description

A Polyhedron is a closed Shell with polygonal sides.

General Types

Shell

Features

edges {redefines edges}

faces : Polygon [2..*] {redefines faces}

genus {redefines genus}

isClosed

outerSpaceDimension {redefines outerSpaceDimension}

vertices [0..*] {redefines vertices}

Constraints

OMG Systems Modeling Language (SysML) v2.0, Beta 1 551

None.

9.7.3.2.27 Pyramid

Element

ItemDefinition

Description

p>A Pyramid is a Polyhedron with the sides of a polygon (base) forming the bases of triangles that join at an
apex point. Its height is the perpindicular distance from the base to the apex, and its offsets are between this
perpindicular at the base and the center of the base.

General Types

Polyhedron

Features

apex [0..*] {redefines vertices}

base {subsets faces}

edges [0..*] {redefines edges}

faces [0..*]

height : LengthValue

wall : Triangle [0..*] {subsets faces}

wallNumber : Positive

xoffset : LengthValue

yoffset : LengthValue

Constraints

None.

9.7.3.2.28 Quadrilateral

Element

ItemDefinition

Description

A Quadrilateral is a four-sided Polygon.

General Types

Polygon

552 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Features

e1

e2

e3

edges [4] {redefines edges}

v12 [2] {subsets vertices, ordered}

v23 [2] {subsets vertices, ordered}

v34 [2] {subsets vertices, ordered}

v41 [2] {subsets vertices, ordered}

vertices [8] {redefines vertices}

Constraints

None.

9.7.3.2.29 Rectangle

Element

ItemDefinition

Description

A Rectangle is a Quadrilateral with four right angles and given length and width.

General Types

Quadrilateral

Features

length : LengthValue

width : LengthValue

Constraints

None.

9.7.3.2.30 RectangularCuboid

Element

ItemDefinition

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 553

A RectangularCuboid is a Cuboid with all Rectangular sides.

General Types

Cuboid

Features

bf : Rectangle {redefines bf}

ff : Rectangle {redefines ff}

height : LengthValue

length : LengthValue

rf : Rectangle {redefines rf}

slf : Rectangle {redefines slf}

srf : Rectangle {redefines srf}

tf : Rectangle {redefines tf}

width : LengthValue

Constraints

None.

9.7.3.2.31 RectangularPyramid

Element

ItemDefinition

Description

A RectangularPyramid is a Pyramid with a rectangular base.

General Types

Pyramid

Features

base : Rectangle {redefines base}

baseLength : LengthValue

baseWidth : LengthValue

Constraints

None.

554 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.7.3.2.32 RectangularToroid

Element

ItemDefinition

Description

A RectangularToroid is a revolution of a Rectangle.

General Types

Toriod

Features

rectangleLength : LengthValue

rectangleWidth : LengthValue

revolvedCurve : Rectangle {redefines revolvedCurve}

Constraints

None.

9.7.3.2.33 RightCircularCone

Element

ItemDefinition

Description

A RightCircularCone is a CircularCone with zero offsets.

General Types

CircularCone

Features

xoffset {redefines xoffset}

yoffset {redefines yoffset}

Constraints

None.

9.7.3.2.34 RightCircularCylinder

Element

ItemDefinition

OMG Systems Modeling Language (SysML) v2.0, Beta 1 555

Description

A RightCircularCylinder is a CircularCylinder with zero offsets.

General Types

CircularCylinder

Features

xoffset {redefines xoffset}

yoffset {redefines yoffset}

Constraints

None.

9.7.3.2.35 RightTriangle

Element

ItemDefinition

Description

A RightTriangle is a Triangle with edges opposite the hypotenuse at right angles.

General Types

Triangle

Features

hypotenuse {redefines e3}

xoffset {redefines xoffset}

Constraints

None.

9.7.3.2.36 RightTriangularPrism

Element

ItemDefinition

Description

A RightTriangularPrism is a TriangularPrism with two right triangular sides, with given length, width,
and height.

General Types

556 OMG Systems Modeling Language (SysML) v2.0 Beta 1

TriangularPrism

Features

bf : Rectangle {redefines bf}

ff : RightTriangle {redefines ff}

height : LengthValue

length : LengthValue

rf : RightTriangle {redefines rf}

slf : Rectangle {redefines slf}

tf : Rectangle {redefines tf}

width : LengthValue

Constraints

None.

9.7.3.2.37 Shell

Element

ItemDefinition

Description

Shell is the most general structured Surface.

General Types

Item

StructuredSpaceObject

Surface

Features

None.

Constraints

None.

9.7.3.2.38 Sphere

Element

ItemDefinition

OMG Systems Modeling Language (SysML) v2.0, Beta 1 557

Description

A Sphere is an Ellipsoid with all the same semiaxes.

General Types

Ellipsoid

Features

radius : LengthValue

semiAxis1 {redefines semiAxis1}

semiAxis2

Constraints

None.

9.7.3.2.39 Tetrahedron

Element

ItemDefinition

Description

A Tetrahedron is Pyramid with a triangular base.

General Types

Pyramid

Features

base : Triangle {redefines base}

baseLength : LengthValue

baseWidth : LengthValue

Constraints

None.

9.7.3.2.40 Toriod

Element

ItemDefinition

Description

558 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A Toroid is a surface generated from revolving a planar closed curve about an line coplanar with the curve. It is
single sided with one hole.

General Types

Shell

Features

edges [0] {redefines edges}

faces {redefines faces}

genus {redefines genus}

revolutionRadius : LengthValue

revolvedCurve : PlanarCurve

vertices [0] {redefines vertices}

Constraints

None.

9.7.3.2.41 Torus

Element

ItemDefinition

Description

A Torus is a revolution of a Circle.

General Types

Toriod

Features

majorRadius {redefines revolutionRadius}

minorRadius : LengthValue

revolvedCurve : Circle {redefines revolvedCurve}

Constraints

None.

9.7.3.2.42 Triangle

Element

OMG Systems Modeling Language (SysML) v2.0, Beta 1 559

ItemDefinition

Description

A Triangle is three-sided Polygon with given length (base), width (perpindicular distance from base to apex),
and offset of this perpindicular at the base from the center of the base.

General Types

Polygon

Features

apex [2] {subsets vertices, ordered}

base {subsets edges}

e2 {subsets edges}

e3 {subsets edges}

edges [3] {redefines edges}

length : LengthValue

v12 [2] {subsets vertices, ordered}

v31 [2] {subsets vertices, ordered}

vertices [6] {redefines vertices}

width : LengthValue

xoffset : LengthValue

Constraints

None.

9.7.3.2.43 TriangularPrism

Element

ItemDefinition

Description

A TriangularPrism is a Polyhedron with five sides, two triangular and the others quadrilateral.

General Types

CuboidOrTriangularPrism

Features

560 OMG Systems Modeling Language (SysML) v2.0 Beta 1

edges [18] {redefines edges}

faces [5] {redefines faces}

ff : Triangle {redefines ff}

rf : Triangle {redefines rf}

Constraints

None.

9.8 Quantities and Units Domain Library
9.8.1 Quantities and Units Domain Library Overview

For any system model, a solid foundation for the representation of physical quantities, their units, scales, and
quantity dimensions, as well as coordinate frames is essential. Quantity attributes are needed to specify many
characteristics of a system of interest and its elements. The foundation should be a shareable resource that can be
reused in models within and across projects as well as organizations in order to facilitate collaboration and model
interoperability.

The Quantities and Units Domain Library defines reusable and extensible model elements for physical quantities,
including vector and tensor quantities, quantity dimensions, measurement units, measurement scales, coordinate
frames, coordinate transformations and vector spaces. The library also enables the specification of coherent systems
of quantities and systems of units, as well as the operators and functions needed to support quantity arithmetic in
expressions.

The most widely accepted, scrutinized, and globally used specification of quantities and units is captured and
maintained in:

• the International System of Quantities (ISQ)
• the International System of Units (SI)

The ISQ and SI are formally standardized through the ISO/IEC 80000 series of standards. The top level concepts
and semantics defined in this domain library are derived from and mapped to the concepts and semantics specified
in [ISO 80000-1] and [VIM], as directly as possible, but staying at a generic level. This enables the representation of
the ISQ and the SI, but also of any other system of quantities or system of units.

The data model specifies a precise representation of the relationships between quantities, units, scales, quantity
dimensions, coordinate frames, coordinate transformations and vectors spaces. As a result, both robust automated
conversion between quantity values expressed in compatible measurement units or scales is enabled, as well as static
type and quantity dimension analysis of expressions and constraints.

This library further contains lower level packages that specify the actual quantities, units and scales as standardized
in parts 3 to 13 of the ISO/IEC 80000 series as SysML AttributeDefinitions and AttributeUsages, that
represent the complete ISQ and SI. These packages provide a broad common basis, that can be extended and tailored
for use by particular communities of practice and industry sectors.

Apart from SI, the system of US Customary Units is still in wide industrial use, in particular in North America. The
library therefore also contains a package of US Customary Units, as specified in [NIST SP-811], and including their
relationships with ISQ quantities as well as the conversion factors to corresponding SI units.

9.8.2 Quantities

OMG Systems Modeling Language (SysML) v2.0, Beta 1 561

9.8.2.1 Quantities Overview

Taxonomy

The Quantities package defines the root elements to represent quantities and their values.

TensorQuantityValue (an AttributeDefinition) and tensorQuantities (an AttributeUsage) are
defined to represent quantities at the most general level, and can represent any nth order tensor quantity. Then,
VectorQuantityValue and vectorQuantities are defined as order 1 specializations of the tensor quantity
concepts, and finally, ScalarQuantityValue and scalarQuantities as order 0 specializations of the vector
quantity concepts.

Quantity Values

A quantity value is defined as a tuple of:

• a sequence of one or more mathematical numbers (as AttributeUsage num),
• a measurement reference (as AttributeUsage mRef).

For a ScalarQuantityValue, the sequence of numbers collapses to one single number, and the measurement
reference is typically a measurement unit or scale. For a VectorQuantityValue, there must be as many numbers
as needed to define the magnitude and direction of the vector quantity, and a measurement reference that typically
specifies a coordinate frame, e.g., a sequence of 3 numbers for the vector components in a standard orthonormal
Cartesian 3D vector space with the same measurement unit on each of the axes. For a TensorQuantityValue, the
measurement reference must establish a reference frame compliant with the full dimensionality of the tensor
quantity involved.

Note. The specification of a quantity value as a tuple of its numerical value and a measurement reference has the big
advantage that the type of a quantity value becomes independent from the choice of measurement reference. For
example: a power expressed as 1.5 watt has the same type (AttributeDefinition PowerValue) as a power
expressed as 1500 milliwatt. This is an improvement over SysML v1, where the choice of measurement unit or scale
was embedded in the value property type.

Free versus Bound Quantities and Vector Spaces

A TensorQuantityValue can be defined with respect to a free vector space product or a bound vector space
product. Similarly, a VectorQuantityValue can be defined with respect to a free or a bound vector space, and a
ScalarQuantityValue with respect to a free or bound number line, which can be regarded as a one-dimensional
vector space. In a free vector space, vectors can be added and vectors can be multiplied by a scalar number, where
both operations yield a new free vector. Free vectors have only magnitude and direction. A bound vector space
includes a particular choice of origin, and vectors in such a space can not be added nor multiplied by scalars.
AttributeUsage isBound is used to capture this: false specifies a free vector space (product), and true
specifies a bound vector space (product).

Examples that (informally) illustrate the distinction between free and bound vector quantities are given by pairs of
quantities of the same quantity dimension:

1. Displacement vector (free) and position vector (bound), both of quantity dimension length.
Two displacement vectors can be added and yield a resulting displacement vector. A displacement vector
can also be multiplied with a scalar factor, which changes only its magnitude. Two position vectors can
not be added, nor can a position vector be multiplied by a scalar number. A position vector is always
bound to the origin of its bound vector space. One can however subtract one position vector from another,
and the result is a displacement vector. It is the displacement to get from the position defined by the first
vector to that defined by the second vector.

562 OMG Systems Modeling Language (SysML) v2.0 Beta 1

2. Duration (free scalar) and time instant (bound scalar), both of quantity dimension time.
Durations can be added and multiplied, time instants cannot. Time instant values can only be specified
with respect to a measurement reference that is a time scale with some particular choice of zero. Such a
time scale is the same as a (time) coordinate axis in a one-dimensional bound vector space.

9.8.2.2 Elements

9.8.2.2.1 3dVectorQuantityValue

Element

AttributeDefinition

Description

Most general representation of real 3-vector quantities.

Alias: ThreeDVectorQuantityValue

General Types

VectorQuantityValue

Features

num : Real [3] {redefines num}

Constraints

None.

9.8.2.2.2 QuantityDimension

Element

AttributeDefinition

Description

A QuantityDimension is the product of powers of the set of base quantities defined for a particular system of
quantities, units and scales.

General Types

None.

Features

quantityPowerFactors : QuantityPowerFactor [0..*] {ordered}

Constraints

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 563

9.8.2.2.3 QuantityPowerFactor

Element

AttributeDefinition

Description

A QuantityPowerFactor is a representation of a quantity power factor, being the combination of a quantity and
an exponent.

A sequence of QuantityPowerFactors for the baseQuantities of aSystemOfQuantities define the
QuantityDimension of a scalar quantity.

General Types

None.

Features

exponent : Real

quantity : ScalarQuantityValue

Constraints

None.

9.8.2.2.4 scalarQuantities

Element

AttributeUsage

Description

AttributeUsage scalarQuantities : ScalarQuantityValue[*] nonunique is the subset of
vectorQuantities that defines a top-level general self-standing attribute that can be used to consistently specify
scalar quantities of Occurrences.

Any particular scalar quantity attribute is specified by subsetting scalarQuantities. In other words, the co-
domain of a scalar quantity attribute is a suitable specialization of ScalarQuantityValue.

General Types

ScalarQuantityValue

vectorQuantities

Features

None.

Constraints

564 OMG Systems Modeling Language (SysML) v2.0 Beta 1

None.

9.8.2.2.5 ScalarQuantityValue

Element

AttributeDefinition

Description

A ScalarQuantityValue is an abstract AttributeDefinition that specializes VectorQuantityValue. It
represents a scalar quantity value as a tuple of a Number num and a ScalarMeasurementReference mRef. By
definition it has order zero. The ScalarMeasurementReference is typically a MeasurementUnit or a
MeasurementScaleMeasurementUnitMeasurementScale.

General Types

NumericalValue

VectorQuantityValue

Features

mRef : ScalarMeasurementReference {redefines mRef}

Specification of the ScalarMeasurementReference for the value of the scalar quantity.

Constraints

oneElement

dimensions[1] == 1

9.8.2.2.6 SystemOfQuantities

Element

AttributeDefinition

Description

A SystemOfQuantities represents the essentials of [VIM] concept "system of quantities" (https://jcgm.bipm.org/
vim/en/1.3.html), defined as a "set of quantities together with a set of noncontradictory equations relating those
quantities". In order to establish such a set of noncontradictory equations a set of baseQuantities is selected.
Subsequently the system of quantities is completed by adding derived quantities which are products of powers of the
base quantities.

General Types

None.

Features

baseQuantities : ScalarQuantityValue [0..*] {ordered}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 565

Constraints

None.

9.8.2.2.7 tensorQuantities

Element

AttributeUsage

Description

AttributeUsage tensorQuantities : TensorQuantityValue[*] nonunique defines a top-level general
self-standing attribute that can be used to consistently specify quantities of Occurrences.

Any particular tensor quantity attribute is specified by subsetting tensorQuantities. In other words, the co-
domain of a tensor quantity attribute is a suitable specialization of TensorQuantityValue.

General Types

dataValues

TensorQuantityValue

Features

None.

Constraints

None.

9.8.2.2.8 TensorQuantityValue

Element

AttributeDefinition

Description

A TensorQuantityValue is an abstract AttributeDefinition and a specialization of Collections::Array
that represents a tensor quantity value as a sequence of Numbers and a TensorMeasurementReference.

The dimensionality of the tensor quantity is specified in dimensions, from which the order of the tensor is
derived. In engineering the name 'tensor' is typically used if its order is 2 or greater, but mathematically a tensor can
have order 0 or 1.

A TensorQuantityValue must have the same dimensions and order as the TensorMeasurementReference
that it references via AttributeUsage mRef.

It is possible to specify the contravariant and covariant order of a tensor quantity through the AttributeUsages
contravariantOrder and covariantOrder, the sum of which must be equal to order. In applications where it
is not important to distinguish between contravariant and covariant tensors (or vectors), the convention is to use
contravariant by default and therefore set contravariantOrder equal to order, and covariantOrder equal to
zero.

566 OMG Systems Modeling Language (SysML) v2.0 Beta 1

General Types

Array

Features

contravariantOrder : Positive

The number of contravariant indices of the tensor quantity.

covariantOrder : Positive

The number of covariant indices of the tensor quantity.

dimensions : Positive [0..*] {redefines dimensions, ordered, nonunique}

A sequence of positive integer numbers that define the dimensionality of the tensor quantity.

Examples: for a second order 3D tensor dimensions = (3, 3); for fourth order 2D tensor dimensions = (2,
2, 2, 2);

The dimensions must be the same as the dimensions of the associated mRef.

isBound : Boolean

Assertion whether this tensor quantity is defined in a free (isBound == false) or bound (isBound == true)
vector space product.

mRef : TensorMeasurementReference

Specification of the TensorMeasurementReference for the value of the tensor quantity.

num : Number [1..*] {redefines elements, ordered, nonunique}

Sequence of numbers that specify the numerical value of the tensor quantity.

order : Natural {redefines rank}

Order of the tensor quantity. The order is equal to the order of the associated TensorMeasurementReference
mRef.

Constraints

boundMatch

(isBound == mRef.isBound) or (not isBound and mRef.isBound)

orderSum

contravariantOrder + covariantOrder == order

9.8.2.2.9 vectorQuantities

Element

OMG Systems Modeling Language (SysML) v2.0, Beta 1 567

AttributeUsage

Description

AttributeUsage vectorQuantities : VectorQuantityValue[*] nonunique is the subset of
tensorQuantities that defines a top-level general self-standing attribute that can be used to consistently specify
vector quantities of Occurrences.

Any particular vector quantity attribute is specified by subsetting vectorQuantities. In other words, the co-
domain of a vector quantity attribute is a suitable specialization of VectorQuantityValue.

General Types

tensorQuantities

VectorQuantityValue

Features

None.

Constraints

None.

9.8.2.2.10 VectorQuantityValue

Element

AttributeDefinition

Description

A VectorQuantityValue is an AttributeDefinition that represents the value of a vector quantity by a tuple
of Numbers and a VectorMeasurementReference. It is a specialization of TensorQuantityValue and has
order one.

A VectorQuantityValue can be free (isBound == false) or bound (isBound == true). A value of a free
vector quantity is expressed using a free VectorMeasurementReference, in which there is no particular choice of
zero or origin. A value of a bound vector quantity is expressed using a bound VectorMeasurementReference
that includes a specified choice of origin. In both cases the VectorMeasurementReference typically defines a
coordinate system.

General Types

NumericalVectorValue

TensorQuantityValue

Features

mRef : VectorMeasurementReference {redefines mRef}

Specification of the VectorMeasurementReference for the value of the vector quantity.

568 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Constraints

[no name]

order == 1

9.8.3 Measurement References
9.8.3.1 Measurement References Overview

This package defines the general AttributeDefinitions and AttributeUsages to construct measurement
references. This includes:

• measurement units,
• ordinal, logarithmic and cyclic measurement scales,
• unit conversions,
• coordinate frames and coordinate transformations,
• measurement unit prefixes to denote multiples (such as mega) and sub-multiples (such as nano).

It also defines concepts to represent quantity dimensions, which form the basis for dimensional analysis of quantity
expressions.

9.8.3.2 Elements

9.8.3.2.1 3dCoordinateFrame

Element

AttributeDefinition

Description

General Types

CoordinateFrame

Features

dimensions : Positive {redefines dimensions}

Constraints

None.

9.8.3.2.2 AffineTransformationMatrix3d

Element

AttributeDefinition

Description

AffineTransformationMatrix3d is a three dimensional CoordinateTransformation specified via an affine
4x4 transformation matrix

The interpretation of the matrix is as follows:

OMG Systems Modeling Language (SysML) v2.0, Beta 1 569

• The upper left 3x3 matrix represents the rotation matrix.
• The upper right 3x1 column vector represents the translation vector.
• The bottom row must be the row vector (0, 0, 0, 1).

I.e. the matrix has the following form:

(R, R, R, T,
R, R, R, T,
R, R, R, T,
0, 0, 0, 1)

where the cells marked R form the rotation matrix and the cells marked T form the translation vector.

Note: See https://en.wikipedia.org/wiki/Transformation_matrix, under affine transformations for a general
explanation.

General Types

Array

CoordinateTransformation

Features

dimensions : Positive [0..*] {redefines dimensions, ordered, nonunique}

The dimensions of an AffineTransformationMatric3d are (4,4).

elements : Real [16] {redefines elements, ordered, nonunique}

Constraints

validSourceDimensions

source.dimensions == 3

9.8.3.2.3 ConversionByConvention

Element

AttributeDefinition

Description

ConversionByConvention is a UnitConversion that is defined according to some convention.

An example is the conversion relationship between "foot" (the owning MeasurementUnit) and "metre" (the
referenceUnit MeasurementUnit), with conversionFactor 3048/10000, since 1 foot = 0.3048 metre, as
defined in [NIST SP-811].

General Types

UnitConversion

Features

570 OMG Systems Modeling Language (SysML) v2.0 Beta 1

None.

Constraints

None.

9.8.3.2.4 ConversionByPrefix

Element

AttributeDefinition

Description

ConversionByPrefix is a UnitConversion that is defined through reference to a named [ISO/IEC 80000-1]
UnitPrefix, which represents a conversion factor that is a decimal or binary multiple or sub-multiple.

Example 1: "kilometre" (symbol "km") with the 'kilo' UnitPrefix denoting conversion factor 1000 and
referenceUnit "metre".

Example 2: "nanofarad" (symbol "nF") with the 'nano' UnitPrefix denoting conversion factor 1E-9 and
referenceUnit "farad".

Example 3: "mebibyte" (symbol "MiB" or alias "MiByte") with the 'mebi' UnitPrefix denoting conversion factor
1024^2 (a binary multiple) and referenceUnit "byte".

See also SIPrefixes.

General Types

UnitConversion

Features

conversionFactor : Real {redefines conversionFactor}

The Number value of the ratio between the quantity expressed in the owning MeasurementUnit over the quantity
expressed in the referenceUnit.

prefix : UnitPrefix

A UnitPrefix that represents one of the named unit prefixes defined in [ISO/IEC 80000-1] as a decimal or binary
multiple or sub-multiple.

Constraints

None.

9.8.3.2.5 CoordinateFrame

Element

AttributeDefinition

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 571

A CoordinateFrame is a VectorMeasurementReference with the specific purpose to quantify (i.e.,
coordinatize) a vector space, and optionally locate and orient it with respect to another CoordinateFrame.

The optional attribute transformation enables specification of the location and orientation of this
CoordinateFrame as with respect to another (reference) CoordinateFrame. If the target of the
transformation is this CoordinateFrame, the transformation specifies a CoordinateFrame that is nested
inside the CoordinateFrame that is the source of the transformation. The primary use of this is to specify a
chain of nested coordinate frames follows the composite structure of a physical architecture. Typically the source
CoordinateFrame of the transformation is the frame is the frame of the next higher containing Item or Part
in a composite structure.

General Types

VectorMeasurementReference

Features

transformation : CoordinateTransformation [0..1]

Constraints

None.

9.8.3.2.6 CoordinateFramePlacement

Element

AttributeDefinition

Description

CoordinateFramePlacement is a CoordinateTransformation by placement of the target frame in the source
frame. Attribute origin specifies the location of the origin of the target frame through a vector in the source frame.
Attribute basisDirections specifies the orientation of the target frame by specifying the directions of the
respective basis vectors of the target frame via direction vectors in the source frame. An empty sequence of
basisDirections signifies no change of orientation of the target frame with respect to the source frame.

General Types

CoordinateTransformation

Features

basisDirections : VectorQuantityValue [0..*] {ordered, nonunique}

origin : VectorQuantityValue

Constraints

validBasisDirectionsDimensions

basisDirections->forAll { in basisDirection : VectorQuantityValue;
basisDirection.dimensions->equals(source.dimensions)

validBasisDirectionsSize

572 OMG Systems Modeling Language (SysML) v2.0 Beta 1

size(basisDirections) == 0 or size(basisDirections) == source.dimensions#(1)

validOriginDimensions

origin.dimensions == source.dimensions

9.8.3.2.7 CoordinateTransformation

Element

AttributeDefinition

Description

A CoordinateTransformation is an AttributeDefinition that defines the transformation relationship
between two coordinate systems, that are represented by VectorMeasurementReferences, typically
CoordinateFrames.

General Types

None.

Features

source : VectorMeasurementReference

target : VectorMeasurementReference

Constraints

[no name]

forall(bd: basisDirections | bd.mRef == source)

[no name]

size(basisDirections) == source.dimensions[1]

[no name]

origin.mRef == source

validSourceTargetDimensions

source.dimensions == target.dimensions

9.8.3.2.8 countQuantities

Element

AttributeUsage

Description

General Types

OMG Systems Modeling Language (SysML) v2.0, Beta 1 573

dimensionOneQuantities

CountValue

Features

None.

Constraints

None.

9.8.3.2.9 CountValue

Element

AttributeDefinition

Description

CountValue is an explicit definition of a generic "count" quantity as a DimensionOneValue.

General Types

DimensionOneValue

Features

None.

Constraints

None.

9.8.3.2.10 CyclicRatioScale

Element

AttributeDefinition

Description

CyclicRationScale is a MeasurementScale that represents a ratio scale with a periodic cycle.

Example 1: "cyclic degree" (to express planar angular measures) with modulus 360 and unit 'degree'.

Example 2: "hour of day" with modulus 24 and unit 'hour'.

General Types

MeasurementScale

Features

modulus : Number

574 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Attribute modulus is a Number that defines the modulus, i.e. periodic cycle, of this CyclicRatioScale.

Constraints

None.

9.8.3.2.11 DefinitionalQuantityValue

Element

AttributeDefinition

Description

A DefinitionalQuantityValue is a representation of a particular quantity value that is used in the definition of
a MeasurementReference. Typically such a particular value is defined by convention. It can be used to define a
selected reference value, such as the meaning of zero on a measurement scale or the origin of a top-level coordinate
system.

General Types

None.

Features

definition : String

num : Number [1..*]

Constraints

None.

9.8.3.2.12 DerivedUnit

Element

AttributeDefinition

Description

DerivedUnit is a MeasurementUnit that represents a measurement unit that depends on one or more powers of
other measurement units.

General Types

MeasurementUnit

Features

None.

Constraints

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 575

9.8.3.2.13 dimensionOneQuantities

Element

AttributeUsage

Description

General Types

DimensionOneValue

scalarQuantities

Features

None.

Constraints

None.

9.8.3.2.14 DimensionOneUnit

Element

AttributeDefinition

Description

DimensionOneUnit is an explicit definition of "unit of dimension one", also known as "dimensionless unit".

General Types

DerivedUnit

Features

unitPowerFactors : UnitPowerFactor [0]

Constraints

None.

9.8.3.2.15 DimensionOneValue

Element

AttributeDefinition

Description

A DimensionOneValue is a ScalarQuantityValue with a DimensionOneUnit.

General Types

576 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ScalarQuantityValue

Features

mRef : DimensionOneUnit {redefines mRef}

Constraints

None.

9.8.3.2.16 IntervalScale

Element

AttributeDefinition

Description

IntervalScale is a MeasurementScale that represents a linear interval measurement scale, i.e. a scale on which
only intervals between two values are meaningful and not their ratios.

Implementation note: In order to enable quantity value conversion between an IntervalScale and another
MeasurementScale, the offset (sometimes also called zero shift) between the source and target scales must be
known. This offset can be indirectly defined through a QuantityValueMapping, see quanityValueMapping of
MeasurementScale. This will be aligned with, and possibly replaced by, a 1D coordinate transformation, so that
scalar and vector transformations are handled in the same way.

General Types

MeasurementScale

Features

isBound : Boolean {redefines isBound}

For an IntervalScale isBound is always true, since the scale must include a definition of what zero means.

Constraints

None.

9.8.3.2.17 LogarithmicScale

Element

AttributeDefinition

Description

LogarithmicScale is a MeasurementScale that represents a logarithmic measurement scale that is defined as
follows. The numeric value v of a ratio quantity expressed on a logarithmic scale equivalent with a value x of the
same quantity expressed on a ratio scale (i.e. only using a MeasurementUnit) is computed as follows:

\(v = f \cdot \log_b (x/x_{ref})^a \)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 577

where: \(f\) is a multiplication factor, \(\log_b\) is the log function for the given logarithm base \(b\), \(x\) is the
actual quantity, \(x_{ref}\) is a reference quantity, \(a\) is an exponent.

General Types

MeasurementScale

Features

exponent : Number

The exponent \(a\) in the logarithmic value expression.

factor : Number

The multiplication factor \(f\) in the logarithmic value expression.

logarithmBase : Number

A Number that specifies the logarithmic base.

The logarithmicBase is typically 10, 2 or e (for the natural logarithm).

referenceQuantity : ScalarQuantityValue [0..1]

The reference quantity value (denominator) \(x_{ref}\) in the logarithmic value expression.

Constraints

None.

9.8.3.2.18 MeasurementScale

Element

AttributeDefinition

Description

MeasurementScale is a MeasurementReference that represents a measurement scale.

Note: the majority of scalar quantities can be expressed by just using a MeasurementUnit directly as its
MeasurementReference. This implies expression of a ScalarQuantityValue on a ratio scale. However, for
full coverage of all quantity value expressions, additional explicit measurement scales with additional semantics are
needed, such as ordinal scale, interval scale, ratio scale with additional limit values, cyclic ratio scale and
logarithmic scale.

General Types

ScalarMeasurementReference

Features

quantityValueMapping : QuantityValueMapping [0..1]

578 OMG Systems Modeling Language (SysML) v2.0 Beta 1

An optional QuantityValueMapping that specifies the relationship between this MeasurementScale and
another MeasurementReference in terms of equivalent QuantityValues.

unit : MeasurementUnit

The MeasurementUnit that defines an interval of one on this MeasurementScale.

Constraints

None.

9.8.3.2.19 MeasurementUnit

Element

AttributeDefinition

Description

A MeasurementUnit is a ScalarMeasurementReference that represents a measurement unit. As defined in
[VIM] a measurement unit is a "real scalar quantity, defined and adopted by convention, with which any other
quantity of the same kind can be compared to express the ratio of the two quantities as a number".

Direct use of a MeasurementUnit as the mRef attribute of a ScalarQuantitiyValue, establishes expressing the
ScalarQuantitiyValue on a ratio scale.

General Types

ScalarMeasurementReference

Features

isBound : Boolean {redefines isBound}

isBound is always false for a MeasurementUnit.

unitConversion : UnitConversion [0..1]

Optional UnitConversion that specifies a linear conversion relationship with respect to another
MeasurementUnit. This can be used to support automated quantity value conversion.

unitPowerFactors : UnitPowerFactor [1..*] {ordered}

A product of powers of base units, that define the quantity dimension of this measurement unit.

Constraints

None.

9.8.3.2.20 NullTransformation

Element

AttributeDefinition

OMG Systems Modeling Language (SysML) v2.0, Beta 1 579

Description

NullTransformation is an AffineTransformationMatrix3d that places the target CoordinateFrame at the
same position and orientation as the source CoordinateFrame.

The interpretation of the matrix is as follows:

• The rotation matrix is diagonal, with 1 as values.
• The translation vector is all zeros.

I.e. the matrix has the following form:

(1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1)

General Types

AffineTransformationMatrix3d

Features

None.

Constraints

None.

9.8.3.2.21 nullTransformation

Element

AttributeUsage

Description

General Types

NullTransformation

Features

None.

Constraints

None.

9.8.3.2.22 one

Element

AttributeUsage

Description

580 OMG Systems Modeling Language (SysML) v2.0 Beta 1

General Types

DimensionOneUnit

Features

None.

Constraints

None.

9.8.3.2.23 OrdinalScale

Element

AttributeDefinition

Description

An OrdinalScale is a MeasurementScale that represents an ordinal measurement scale, i.e. a scale on which
only the ordering of quantity values is meaningful, not the intervals between any pair of values and neither their
ratio.

Note: In order to keep the library simple the associated unit of an OrdinalScale shall be set to the unit of
dimension one, although a unit is meaningless for an OrdinalScale.

Implementation note: The unit attribute of MeasurementScale should be made optional, and its multiplicity be
redefined in the specialization of MeasurementScale.

General Types

MeasurementScale

Features

None.

Constraints

None.

9.8.3.2.24 QuantityValueMapping

Element

AttributeDefinition

Description

QuantityValueMapping is an AttributeDefinition that represents the mapping of equivalent quantity values
expressed on two different measurement scales.

Example: The mapping between the temperature value of 0.01 degree Celsius on the celsius temperature scale to the
equivalent temperature value of 273.16 K on the kelvin temperature scale, would specify a mappedQuantityValue

OMG Systems Modeling Language (SysML) v2.0, Beta 1 581

referencing the DefinitionalQuantityValue (0.01, "absolute thermodynamic temperature of the triple point of
water") of the celsius interval scale, and a referenceQuantityValue referencing the
DefinitionalQuantityValue (273.16, "absolute thermodynamic temperature of the triple point of water") of the
kelvin ratio scale.

General Types

None.

Features

mappedQuantityValue : DefinitionalQuantityValue

referenceQuantityValue : DefinitionalQuantityValue

Constraints

None.

9.8.3.2.25 Rotation

Element

AttributeDefinition

Description

Representation of a rotation about an axis over an angle.

Attribute axisDirection specifies the direction of the rotation axis. Attribute angle specifies the angle of
rotation, where a positive value implies right-handed rotation. Attribute isIntrinsic asserts whether the
intermediate coordinate frame moves with the rotation or not, i.e. whether an instrinsic or extrinsic rotation is
specified.

See https://en.wikipedia.org/wiki/Davenport_chained_rotations for details.

General Types

TranslationOrRotation

Features

angle : AngularMeasureValue

axisDirection : VectorQuantityValue

isIntrinsic : Boolean

Default is true.

Constraints

None.

582 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.8.3.2.26 ScalarMeasurementReference

Element

AttributeDefinition

Description

A ScalarMeasurementReference is a specialization of VectorMeasurementReference. It represents a single
measurement reference for a ScalarQuantityValue or for a component of a tensor or vector quantity. Its order
is zero. ScalarMeasurementReference is also a generalization of MeasurementUnit and
MeasurementScale, which in turn can be regarded as the basis vector for respectively a free or bound scalar
quantity. It establishes how to interpret the num numerical value of a ScalarQuantityValue or a component of a
tensor or vector quantity value, and establishes its actual quantity dimension.

General Types

VectorMeasurementReference

Features

dimensions : Positive [0..1] {redefines dimensions, ordered, nonunique}

isOrthogonal : Boolean {redefines isOrthogonal}

A ScalarMeasurementReference always has isOrthogonal = true.

mRefs : ScalarMeasurementReference [1..*] {redefines mRefs, ordered}

negativeValueConnotation : String [0..1]

Optionally specifies the connotation of negative quantity values for this ScalarMeasurementReference.

An example is "east" for positive values on the MeasurementReference (CyclicRatioScale) for "longitude"
and "west" for negative values.

positiveValueConnotation : String [0..1]

Optionally specifies the connotation of positive quantity values for this ScalarMeasurementReference.

An example is "east" for positive values on the MeasurementReference (CyclicRatioScale) for "longitude"
and "west" for negative values.

quantityDimension : QuantityDimension

Constraints

None.

9.8.3.2.27 SimpleUnit

Element

AttributeDefinition

OMG Systems Modeling Language (SysML) v2.0, Beta 1 583

Description

SimpleUnit is a MeasurementUnit that does not depend on any other measurement unit.

Note: As a consequence the unitPowerFactor of a SimpleUnit references itself with an exponent of one.

General Types

MeasurementUnit

Features

unitPowerFactors : UnitPowerFactor {redefines unitPowerFactors}

Constraints

exponentIsOne

this.unitPowerFactor1.exponent == 1

ExponentIsOne

self.unitPowerFactor.exponent = 1

9.8.3.2.28 SystemOfUnits

Element

AttributeDefinition

Description

A SystemOfUnits represents the essentials of [VIM] concept "system of units" (https://jcgm.bipm.org/vim/en/
1.13.html), defined as a "set of base units and derived units, together with their multiples and submultiples, defined
in accordance with given rules, for a given system of quantities". The baseUnits are a particular selection of
measurement units for each of the base quantities of a SystemOfQuantities, that form the basis on top of which
all other (derived) units are defined.

General Types

None.

Features

baseUnits : SimpleUnit [1..*] {ordered}

longName : String

systemOfQuantities : SystemOfQuantities

Constraints

None.

584 OMG Systems Modeling Language (SysML) v2.0 Beta 1

https://jcgm.bipm.org/vim/en/1.13.html
https://jcgm.bipm.org/vim/en/1.13.html

9.8.3.2.29 TensorMeasurementReference

Element

AttributeDefinition

Description

A TensorMeasurementReference is an abstract AttributeDefinition and a specialization of
Collections::Array, that represents the [VIM] concept measurement reference, but generalized for tensor,
vector and scalar quantities.

[VIM] defines measurement reference as a measurement unit, a measurement procedure, a reference material, or a
combination of such. In this generalized definition, the measurement references for all components in all dimensions
of the QuantityValue are specified through the mRefs attribute, which are all
ScalarMeasurementReferences.

As an example a Cartesian 3-dimensional 3x3 moment of inertia tensor would have the following attributes:

attribute def Cartesian3dMomentOfInertiaMeasurementReference :> TensorMeasurementReference {
attribute :>> dimensions = (3, 3);
attribute :>> isBound = false;
attribute :>> mRefs: MomentOfInertiaUnit[9];

}

The shortName of a TensorMeasurementReference is the unique symbol by which the measurement reference
is known. The name of a TensorMeasurementReference is spelled-out human readable name of the
measurement reference.

General Types

Array

Features

definitionalQuantityValues : DefinitionalQuantityValue [0..*]

isBound : Boolean

Default is false.

mRefs : ScalarMeasurementReference [1..*] {redefines elements, ordered, nonunique}

order : Natural {redefines rank}

Constraints

None.

9.8.3.2.30 Translation

Element

AttributeDefinition

OMG Systems Modeling Language (SysML) v2.0, Beta 1 585

Description

Representation of a translation with respect to a coordinate frame.

Attribute translationVector specifies the displacement vector that constitutes the translation.

General Types

TranslationOrRotation

Features

translationVector : VectorQuantityValue

Constraints

None.

9.8.3.2.31 TranslationOrRotation

Element

AttributeDefinition

Description

TranslationOrRotation is an abstract union of Translation and Rotation.

General Types

None.

Features

None.

Constraints

None.

9.8.3.2.32 TranslationRotationSequence

Element

AttributeDefinition

Description

A TranslationRotationSequence is a coordinate frame transformation specified by a sequence of translations
and/or rotations.

Note: This is a CoordinateTransformation that is convenient for interpretation by humans. In particular a
sequence of rotations about the principal axes of a coordinate frame is much more easy understandable than a
rotation about an arbitrary axis. Any sequence can be reduced to a single combination of a translation and a rotation

586 OMG Systems Modeling Language (SysML) v2.0 Beta 1

about a particular axis, but in general the original sequence cannot be retrieved as there are infinitely many
sequences representing the reduced transformation.

General Types

List

CoordinateTransformation

Features

elements : TranslationOrRotation [1..*] {redefines elements, ordered, nonunique}

Constraints

None.

9.8.3.2.33 UnitConversion

Element

AttributeDefinition

Description

UnitConversion is an AttributeDefinition that represents a linear conversion relationship between one
measurement unit and another measurement unit, that acts as a reference.

General Types

None.

Features

conversionFactor : Real

The Real value of the ratio between the quantity expressed in the owning MeasurementUnit over the quantity
expressed in the referenceUnit.

isExact : Boolean

Default is true.

referenceUnit : MeasurementUnit

Establishes the reference MeasurementUnit with respect to which this UnitConversion is defined.

Constraints

None.

9.8.3.2.34 UnitPowerFactor

Element

OMG Systems Modeling Language (SysML) v2.0, Beta 1 587

AttributeDefinition

Description

UnitPowerFactor is an AttributeDefinition that represents a power factor of a MeasurementUnit and an
exponent.

Note: A collection of UnitPowerFactors defines a unit power product.

General Types

None.

Features

exponent : Real

A Real that specifies the exponent of this UnitPowerFactor.

unit : MeasurementUnit

The MeasurementUnit of this UnitPowerFactor.

Constraints

None.

9.8.3.2.35 UnitPrefix

Element

AttributeDefinition

Description

UnitPrefix is an AttributeDefinition that represents a named multiple or sub-multiple measurement unit
prefix as defined in ISO/IEC 80000-1.

General Types

None.

Features

conversionFactor : Real

A Real that specifies the value of multiple or sub-multiple of this UnitPrefix.

longName : String

symbol : String

The short symbolic name of this UnitPrefix.

Examples are: "k" for "kilo", "m" for "milli", "MeBi" for "mega binary".

588 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Constraints

None.

9.8.3.2.36 VectorMeasurementReference

Element

AttributeDefinition

Description

A VectorMeasurementReference is a specialization of TensorMeasurementReference for vector quantities
that are typed by a VectorQuantityValue. Its order is typically one, but can be zero in case of a specialization
to ScalarMeasurementReference. It implicitly defines a vector space of dimension N equal to
dimensions[1]. The N basis unit vectors that span the vector space are defined by the mRefs which each are a
ScalarMeasurementReference, typically a MeasurementUnit or an IntervalScale.

It is possible to specify purely symbolic vector spaces, without committing to particular measurement units or scales
by setting the measurement references for all dimensions to unit one and quantity of dimension one, thereby
basically reverting to the representation of a purely mathematical vector space.

A VectorMeasurementReference can be used to represent a coordinate frame for a vector space. See the
CoordinateFrame specialization.

The attribute isOrthogonal indicates whether the inner products of the basis vectors of the vector space specified
by are orthogonal or not.

General Types

TensorMeasurementReference

Features

dimensions : Positive [0..1] {redefines dimensions}

isOrthogonal : Boolean

Constraints

placementCheck

size(placement) == 0 | placement.target == self

9.8.4 ISQ
9.8.4.1 ISQ Overview

The ISQ package specifies a complete set of predefined quantity types for the International System of Quantities
(ISQ). The ISQ itself is specified as a SystemOfQuantities. The quantity types are specified as specializations of
TensorQuantityValue, VectorQuantityValue, ScalarQuantityValue, that capture all quantities defined in
ISO/IEC 80000 parts 3 to 13. It also defines all TensorMeasurementReference,
VectorMeasurementReference and ScalarMeasurementReference specializations needed to define concrete
MeasurementReference AttributeDefinitions needed to specify the actual measurement units and scales,
coordinate frames and vector space products in other library packages.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 589

The ISQ package comprises the following sub-packages via import:

• ISQBase for ISO/IEC 80000 base quantities and general concepts
• ISQSpaceTime for [ISO 80000-3] "Space and Time"
• ISQMechanics for [ISO 80000-4] "Mechanics"
• ISQThermodynamics for [ISO 80000-5] "Thermodynamics"
• ISQElectromagnetism for [IEC 80000-6] "Electromagnetism"
• ISQLight for [ISO 80000-7] "Light"
• ISQAcoustics for [ISO 80000-8] "Acoustics"
• ISQChemistryMolecular for [ISO 80000-9] "Physical chemistry and molecular physics"
• ISQAtomicNuclear for [ISO 80000-10] "Atomic and nuclear physics"
• ISQCharacteristicNumbers for [ISO 80000-11] "Characteristic numbers"
• ISQCondensedMatter for [ISO 80000-12] "Condensed matter physics"
• ISQInformation for [IEC 80000-13] "Information science and technology"

Since package ISQ imports all other sub-packages, the statement import ISQ::*; suffices to make the whole ISQ
available in a user model.

9.8.4.2 Elements

9.8.4.2.1 amountOfSubstance

Element

AttributeUsage

Description

General Types

AmountOfSubstanceValue

scalarQuantities

Features

None.

Constraints

None.

9.8.4.2.2 AmountOfSubstanceUnit

Element

AttributeDefinition

Description

General Types

SimpleUnit

Features

590 OMG Systems Modeling Language (SysML) v2.0 Beta 1

None.

Constraints

None.

9.8.4.2.3 AmountOfSubstanceValue

Element

AttributeDefinition

Description

General Types

ScalarQuantityValue

Features

mRef : AmountOfSubstanceUnit {redefines mRef}

num : Real {redefines num}

Constraints

None.

9.8.4.2.4 AngularMeasureValue

Element

Description

General Types

None.

Features

None.

Constraints

None.

9.8.4.2.5 Cartesian3dSpatialCoordinateFrame

Element

AttributeDefinition

Description

General Types

OMG Systems Modeling Language (SysML) v2.0, Beta 1 591

Spatial3dCoordinateFrame

Features

isOrthogonal : Boolean {redefines isOrthogonal}

mRefs : LengthValue [3] {redefines mRefs}

xUnit : LengthUnit

yUnit : LengthUnit

zUnit : LengthUnit

Constraints

None.

9.8.4.2.6 Displacement3dVector

Element

AttributeDefinition

Description

General Types

3dVectorQuantityValue

Features

isBound : Boolean {redefines isBound}

mRef : Spatial3dCoordinateFrame {redefines mRef}

Constraints

None.

9.8.4.2.7 duration

Element

AttributeUsage

Description

General Types

DurationValue

scalarQuantities

Features

592 OMG Systems Modeling Language (SysML) v2.0 Beta 1

None.

Constraints

None.

9.8.4.2.8 DurationUnit

Element

AttributeDefinition

Description

General Types

SimpleUnit

Features

None.

Constraints

None.

9.8.4.2.9 DurationValue

Element

AttributeDefinition

Description

General Types

ScalarQuantityValue

Features

mRef : DurationUnit {redefines mRef}

num : Real {redefines num}

Constraints

None.

9.8.4.2.10 electricCurrent

Element

AttributeUsage

Description

OMG Systems Modeling Language (SysML) v2.0, Beta 1 593

General Types

ElectricCurrentValue

scalarQuantities

Features

None.

Constraints

None.

9.8.4.2.11 ElectricCurrentUnit

Element

AttributeDefinition

Description

General Types

SimpleUnit

Features

None.

Constraints

None.

9.8.4.2.12 ElectricCurrentValue

Element

AttributeDefinition

Description

General Types

ScalarQuantityValue

Features

mRef : ElectricCurrentUnit {redefines mRef}

num : Real {redefines num}

Constraints

None.

594 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.8.4.2.13 length

Element

AttributeUsage

Description

General Types

LengthValue

scalarQuantities

Features

None.

Constraints

None.

9.8.4.2.14 LengthUnit

Element

AttributeDefinition

Description

General Types

SimpleUnit

Features

None.

Constraints

None.

9.8.4.2.15 LengthValue

Element

AttributeDefinition

Description

General Types

ScalarQuantityValue

Features

OMG Systems Modeling Language (SysML) v2.0, Beta 1 595

mRef : LengthUnit {redefines mRef}

num : Real {redefines num}

Constraints

None.

9.8.4.2.16 luminousIntensity

Element

AttributeUsage

Description

General Types

LuminousIntensityValue

scalarQuantities

Features

None.

Constraints

None.

9.8.4.2.17 LuminousIntensityUnit

Element

AttributeDefinition

Description

General Types

SimpleUnit

Features

None.

Constraints

None.

9.8.4.2.18 LuminousIntensityValue

Element

AttributeDefinition

596 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Description

General Types

ScalarQuantityValue

Features

mRef : LuminousIntensityUnit {redefines mRef}

num : Real {redefines num}

Constraints

None.

9.8.4.2.19 mass

Element

AttributeUsage

Description

General Types

MassValue

scalarQuantities

Features

None.

Constraints

None.

9.8.4.2.20 MassUnit

Element

AttributeDefinition

Description

General Types

SimpleUnit

Features

None.

Constraints

OMG Systems Modeling Language (SysML) v2.0, Beta 1 597

None.

9.8.4.2.21 MassValue

Element

AttributeDefinition

Description

General Types

ScalarQuantityValue

Features

mRef : MassUnit {redefines mRef}

num : Real {redefines num}

Constraints

None.

9.8.4.2.22 Position3dVector

Element

AttributeDefinition

Description

General Types

3dVectorQuantityValue

Features

isBound : Boolean {redefines isBound}

mRef : Spatial3dCoordinateFrame {redefines mRef}

Constraints

None.

9.8.4.2.23 Spatial3dCoordinateFrame

Element

AttributeDefinition

Description

General Types

598 OMG Systems Modeling Language (SysML) v2.0 Beta 1

3dCoordinateFrame

Features

isBound : Boolean {redefines isBound}

Constraints

None.

9.8.4.2.24 thermodynamicTemperature

Element

AttributeUsage

Description

General Types

ThermodynamicTemperatureValue

scalarQuantities

Features

None.

Constraints

None.

9.8.4.2.25 ThermodynamicTemperatureUnit

Element

AttributeDefinition

Description

General Types

SimpleUnit

Features

None.

Constraints

None.

9.8.4.2.26 ThermodynamicTemperatureValue

Element

OMG Systems Modeling Language (SysML) v2.0, Beta 1 599

AttributeDefinition

Description

General Types

ScalarQuantityValue

Features

mRef : ThermodynamicTemperatureUnit {redefines mRef}

num : Real {redefines num}

Constraints

None.

9.8.4.2.27 universalCartesianSpatial3dCoordinateFrame

Element

AttributeUsage

Description

A singleton CartesianSpatial3dCoordinateFrame that can be used as a default universal Cartesian 3D
coordinate frame.

General Types

attributeValues

Cartesian3dSpatialCoordinateFrame

Features

mRefs : LengthValue [3] {redefines mRefs}

By default, the universalCartesianSpatial3dCoordinateFrame uses meters as the units on all three axes.

transformation : CoordinateTransformation [0] {redefines transformation}

The universalCartesianSpatial3dCoordinateFrame is the "top-level" coordinate frame, not nested in any
other frame.</p?

Constraints

None.

9.8.5 SI Prefixes

600 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.8.5.1 SI Prefixes Overview

This package specifies the SI unit prefixes as defined in [ISO 80000-1], so that they can be used in automated
quantity value conversion.

ISO/IEC 80000-1 unit prefixes for decimal multiples and sub-multiples. See also https://en.wikipedia.org/wiki/
Unit_prefix.

Name Symbol Value

yocto y 10-24

zepto z 10-21

atto a 10-18

femto f 10-15

pico p 10-12

nano n 10-9

micro μ 10-6

milli m 10-3

centi c 10-2

deci d 10-1

deca da 101

hecto h 102

kilo k 103

mega M 106

giga G 109

tera T 1012

peta P 1015

exa E 1018

zetta Z 1021

yotta Y 1024

ISO/IEC 80000-1 prefixes for binary multiples, i.e. multiples of 1024 (= 210). See also https://en.wikipedia.org/wiki/
Binary_prefix.

Name Symbol Value

kibi Ki 1024

OMG Systems Modeling Language (SysML) v2.0, Beta 1 601

https://en.wikipedia.org/wiki/Unit_prefix
https://en.wikipedia.org/wiki/Unit_prefix
https://en.wikipedia.org/wiki/Binary_prefix
https://en.wikipedia.org/wiki/Binary_prefix

Name Symbol Value

mebi Mi 10242

gibi Gi 10243

tebi Ti 10244

pebi Pi 10245

exbi Ei 10246

zebi Zi 10247

yobi Yi 10248

9.8.5.2 Elements

9.8.6 SI
9.8.6.1 SI Overview

This package specifies the measurement units as defined in ISO/IEC 80000 parts 3 to 13, the International System of
(Measurement) Units -- Système International d'Unités (SI).

The statement import SI::*; suffices to make all SI units available in a user model.

9.8.6.2 Elements

9.8.7 US Customary Units
9.8.7.1 US Customary Units Overview

This package specifies all US Customary measurement units, with conversion factors to compatible SI units, as
defined in Appendix B "Conversion Factors" of [NIST SP-811].

The statement import USCustomaryUnits::*; suffices to make all US Customary measurement units available
in a user model.

9.8.7.2 Elements

9.8.8 Time
9.8.8.1 Time Overview

This package specifies concepts to support time-related quantities and metrology, beyond the quantities duration and
time as defined in [ISO 80000-3].

Representations of the Gregorian calendar date and time of day as specified by the [ISO 8601-1] standard are
included. Also the Coordinated Universal Time (UTC) time scale is captured.

9.8.8.2 Elements

9.8.8.2.1 Clock

Element

602 OMG Systems Modeling Language (SysML) v2.0 Beta 1

PartDefinition

Description

A Clock provides a currentTime as a TimeInstantValue that advances montonically over its lifetime.

General Types

Clock

Features

currentTime : TimeInstantValue {redefines currentTime}

Constraints

None.

9.8.8.2.2 Date

Element

AttributeDefinition

Description

Generic representation of a time instant as a calendar date.

General Types

TimeInstantValue

Features

None.

Constraints

None.

9.8.8.2.3 DateTime

Element

AttributeDefinition

Description

Generic representation of a time instant as a calendar date and time of day.

General Types

TimeInstantValue

Features

OMG Systems Modeling Language (SysML) v2.0, Beta 1 603

None.

Constraints

None.

9.8.8.2.4 DurationOf

Element

CalculationDefinition

Description

DurationOf returns the duration of a given Occurrence relative to a given Clock, which is equal to the TimeOf
the end snapshot of the Occurrence minus the TimeOf its start snapshot.

General Types

DurationOf

Features

clock : Clock {redefines clock}

Default is inherited Occurrence::localClock.

duration : DurationValue {redefines duration}

o : Occurrence {redefines o}

Constraints

None.

9.8.8.2.5 Iso8601DateTime

Element

AttributeDefinition

Description

Representation of an ISO 8601-1 date and time in extended string format.

General Types

UtcTimeInstantValue

Features

num : Real {redefines num}

val : Iso8601DateTimeEncoding

604 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Constraints

None.

9.8.8.2.6 Iso8601DateTimeEncoding

Element

AttributeDefinition

Description

Extended string encoding of an ISO 8601-1 date and time.

General Types

String

Features

None.

Constraints

None.

9.8.8.2.7 Iso8601DateTimeStructure

Element

AttributeDefinition

Description

Representation of an ISO 8601 date and time with explicit date and time component attributes.

General Types

UtcTimeInstantValue

Features

day : Natural

hour : Natural

hourOffset : Integer

microsecond : Natural

minute : Natural

minuteOffset : Integer

month : Natural

OMG Systems Modeling Language (SysML) v2.0, Beta 1 605

num : Real {redefines num}

second : Natural

year : Integer

Constraints

None.

9.8.8.2.8 timeInstant

Element

AttributeUsage

Description

General Types

TimeInstantValue

scalarQuantities

Features

None.

Constraints

None.

9.8.8.2.9 TimeInstantValue

Element

AttributeDefinition

Description

Representation of a time instant quantity. Also known as instant (of time) or point in time.

General Types

ScalarQuantityValue

Features

mRef : TimeScale {redefines mRef}

num : Real {redefines num}

Constraints

None.

606 OMG Systems Modeling Language (SysML) v2.0 Beta 1

9.8.8.2.10 TimeOf

Element

CalculationDefinition

Description

TimeOf returns a TimeInstantValue for a given Occurrence relative to a given Clock. This
TimeInstantValue is the time of the start of the Occurrence, which is considered to be synchronized with the
snapshot of the Clock with a currentTime equal to the returned timeInstant.

General Types

Evaluation

TimeOf

Features

clock : Clock {redefines clock}

Default is inherited Occurrence::localClock.

o : Occurrence {redefines o}

timeInstant : TimeInstantValue {redefines timeInstant}

Constraints

startTimeConstraint

The TimeOf an Occurrence is equal to the time of its start snapshot.

timeContinuityConstraint

If one Occurrence happens immediately before another, then the TimeOf the end snapshot of the first Occurrence
equals the TimeOf the second Occurrence.

timeOrderingConstraint

If one Occurrence happens before another, then the TimeOf the end snapshot of the first Occurrence is no
greater than the TimeOf the second Occurrence.

9.8.8.2.11 TimeOfDay

Element

AttributeDefinition

Description

Generic representation of a time instant as a time of day.

General Types

OMG Systems Modeling Language (SysML) v2.0, Beta 1 607

TimeInstantValue

Features

None.

Constraints

None.

9.8.8.2.12 TimeScale

Element

AttributeDefinition

Description

Generic time scale to express a time instant, including a textual definition of the meaning of zero time instant value.
Attribute definitionalEpoch captures the specification of the time instant with value zero, also known as the
(reference) epoch.

General Types

IntervalScale

Features

definitionalEpoch : DefinitionalQuantityValue

definitionalQuantityValues : DefinitionalQuantityValue {redefines definitionalQuantityValues}

unit : DurationUnit

Constraints

None.

9.8.8.2.13 universalClock

Element

PartUsage

Description

universalClock is a single Clock that can be used as a default universal time reference.

General Types

universalClock

parts

Clock

608 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Features

None.

Constraints

None.

9.8.8.2.14 UTC

Element

AttributeDefinition

Description

Representation of the Coordinated Universal Time (UTC) time scale.

UTC is the primary time standard by which the world regulates clocks and time. It is within about 1 second of mean
solar time at 0° longitude and is not adjusted for daylight saving time. UTC is obtained from International Atomic
Time (TAI) by the insertion of leap seconds according to the advice of the International Earth Rotation and
Reference Systems Service (IERS) to ensure approximate agreement with the time derived from the rotation of the
Earth.

General Types

TimeScale

Features

definitionalEpoch : DefinitionalQuantityValue {redefines definitionalEpoch}

unit : DurationUnit {redefines unit}

Constraints

None.

9.8.8.2.15 utcTimeInstant

Element

AttributeUsage

Description

General Types

UtcTimeInstantValue

timeInstant

Features

None.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 609

Constraints

None.

9.8.8.2.16 UtcTimeInstantValue

Element

AttributeDefinition

Description

Representation of a time instant expressed on the Coordinated Universal Time (UTC) time scale.

General Types

DateTime

Features

mRef : UTC {redefines mRef}

Constraints

None.

9.8.9 Quantity Calculations
9.8.9.1 Quantity Calculations Overview

QuantityCalculations is a package of calculation definitions for construction of and computation on
ScalarQuantityValues.

Basics

In order to enable the use of quantities in expressions this library package specifies the mathematical operators and
functions to support quantity arithmetic, and some convenience functions.

Any scalar quantity has a quantity dimension (see 9.8.2.2.2) that specifies the product of powers of base quantities
of the applicable system of quantities. Rules for valid quantity dimensions of the variables in quantity expressions
are given below, after definition of the possible quantity expression operations. Such rules specify a necessary but
not a sufficient condition for valid quantity expressions. For example, EnergyValue and TorqueValue have the
same quantity dimension (L2·M·T-2 in ISQ), but it is not valid to add an energy quantity to a torque quantity.
Also each ScalarMeasurementReference has a quantity dimension, that can be used to check the validity of
using constructed quantity values in quantity expressions.

To enable enforcement of model-evaluable type checking on quantity expressions, all direct specializations of
(abstract) ScalarQuantityValue, VectorQuantityValue and TensorQuantityValue must be disjoint.
AttributeDefinitions for quantity types at this first level of specialization are referred to as top level quantity
types. Furthermore all lower level specializations of quantity AttributeDefinitions and AttributeUsages
must be disjoint at each sibling level. For example, a kineticEnergy quantity cannot also be a
potentialEnergy quantity. Both however, are subsettings of generic energy (defined by EnergyValue), that is
a top level quantity type, so they may be added, subtracted, equated or compared.

610 OMG Systems Modeling Language (SysML) v2.0 Beta 1

ScalarQuantityValue Construction

Construction of a literal or variable ScalarQuantityValue is done through the [operator, matched by a closing
]. The signature of the corresponding CalculationDefinition is:

calc def '[' specializes BaseFunctions::'[' {
in num: Number[1];
in mRef: ScalarMeasurementReference[1];
return quantity : ScalarQuantityValue[1];

}

Examples are:

attribute mass : MassValue[1] = 24.5 [kg];
attribute x : Real[1] := 58.0;
attribute speed : SpeedValue[1] := 3*x [m/s];
attribute :>> ISQ::width default 250.0 [mm];

The provided ScalarMeasurementReference must have a quantity dimension that is the same as the quantity
dimension of the scalar quantity attribute being bound, assigned, defaulted or compared.

ScalarQuantityValue Operations

The following table enumerates the scalar quantity operations. In order to enable concise formulations the following
symbols for quantity AttributeUsages are defined:

• x is defined by ScalarValues::Real, i.e. x is a real number
• b is defined by ScalarValues::Boolean, i.e. b is a boolean
• mr is defined by ScalarMeasurementReference, i.e. mr is a scalar measurement reference, typically a

measurement unit
• s1, s2, s3 are defined by ScalarQuantityValue, i.e. they are free or bound scalar quantities
• fs1, fs2, fs3 are defined by ScalarQuantityValue {:>> isBound = false}, i.e. they are free

scalar quantities
• bs1, bs2, bs3 are defined by ScalarQuantityValue {:>> isBound = true}, i.e. they are bound

scalar quantities

Note. For completeness also invalid operations are listed, for which the result is empty, and an implementation
should raise a warning or error.

Note. A mathematical number or a quantity defined by DimensionOneValue has by definition quantity dimension
1, i.e. all exponents in the product of powers of the base quantities are zero.

Operator or
function expression Result Description

fs1+fs2 fs3 Addition of two free scalar quantities returns a free scalar quantity.

fs1+bs2 bs3 Addition of a free and a bound scalar quantity returns a bound scalar quantity.

fs1+fs2 bs3 Addition of a bound and a free scalar quantity returns a bound scalar quantity.

bs1+bs2 ERROR. Two bound scalar quantities cannot be added.

fs1-fs2 fs3 Subtraction of a free scalar quantity from a free scalar quantity returns a free
scalar quantity.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 611

Operator or
function expression Result Description

fs1-bs2 bs3 Subtraction of a bound scalar quantity from a free scalar quantity returns a
bound scalar quantity.

bs1-fs2 bs3 Subtraction of a free scalar quantity from a bound scalar quantity returns a
bound scalar quantity.

bs1-bs2 fs3 Subtraction of a bound scalar quantity from a bound scalar quantity returns a
free scalar quantity.

fs1*x or x*fs1 fs3 Multiplication of a free scalar quantity with a real returns a free scalar quantity.

bs1*x or x*bs1 ERROR. A bound scalar quantity cannot be an operand in a multiplication.

fs1*fs2 fs3 Multiplication of two free scalar quantities returns a free scalar quantity.

fs1*bs2 or
bs1*fs2 or
bs1*fs2

ERROR. A bound scalar quantity cannot be an operand in a multiplication.

fs1/fs2 fs3 Division of two free scalar quantities returns a free scalar quantity.

fs1/bs2 or bs1/
fs2 or bs1/fs2 ERROR. A bound scalar quantity cannot be an operand in a division.

fs1^x fs3 Exponentiation of a free scalar quantity returns a free scalar quantity.

bs1^x ERROR. A bound scalar quantity cannot be an operand in an exponentiation.

isZero(s1) b Function that asserts whether given scalar quantity is zero or not by returning a
boolean.

isUnit(s1) b Function that asserts whether given scalar quantity is 1 or not by returning a
boolean.

abs(s1) s3 Return scalar quantity of same type with absolute numerical value.

max(s1, s2) s3 Return maximum value scalar quantity of same type and mRef of maximum
value operand. See note 1.

min(s1, s2) s3 Return minimum value scalar quantity of same type and mRef of minimum
value operand. See note 1.

sqrt(s1) s3 Return square root value of given scalar quantity. Its quantity dimension
exponents are halved.

floor(s1) s3 Return floor value scalar quantity of same type and mRef as operand.

round(s1) s3 Return scalar quantity of same type and mRef as operand, with numerical value
rounded to nearest integer.

sum(s1[0..*]) s3 Return scalar quantity of same type and mRef as operand, with numerical value
equal to cumulative sum of the elements in the operand.

product(s1[0..*]) s3 Return scalar quantity of same type and mRef as operand, with numerical value
equal to cumulative product of the elements in the operand.

ConvertQuantity(s1,
mr) s3 Return scalar quantity of same type but with numerical value converted to

given target scalar measurement reference.

612 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Operator or
function expression Result Description

s1 == s2 b Return true if scalar quantity operands have equal (effective) value, else false.
See Note 1.

s1 != s2 b Return true if scalar quantity operands do not have equal (effective) value, else
false. See Note 1.

s1 < s2 b Return true if (effective) value of first scalar quantity operand is less than value
of second operand, else false. See Note 1.

s1 <= s2 b Return true if (effective) value of first scalar quantity operand is less than or
equal to value of second operand, else false. See Note 1.

s1 > s2 b Return true if (effective) value of first scalar quantity operand is greater than
value of second operand, else false. See Note 1.

s1 >= s2 b Return true if (effective) value of first scalar quantity operand is greater than of
equal to value of second operand, else false. See Note 1.

Note 1. Operands of min, max functions, and relational operators must have the same top level quantity type and be
both either free or bound, but may have different mRefs.

The rules for valid quantity dimensions for the above operations are:

1. The operands and result of addition (+) and subtraction (-) operations must all have the same quantity
dimension, and be of the same top level quantity type.

2. The operands of multiplication (*) operations may differ. The result must have a quantity dimension, in
which the exponent for each base quantity is the sum of the exponents of the corresponding base quantity
of each of the operands.

3. The operands of division (/) operations may differ. The result must have a quantity dimension, in which
the exponent for each base quantity is the difference of the exponent of the corresponding base quantity of
the first operand minus the exponent of the second operand.

4. The first operand of the exponentiation operator (^) may have any quantity dimension. The result must
have a quantity dimension, in which the exponent for each base quantity is the sum of the exponent of the
corresponding base quantity of the first operand plus the value of the second operand (the exponent of the
exponentiation operation).

9.8.9.2 Elements

9.8.10 Vector Calculations
9.8.10.1 Vector Calculations Overview

VectorCalculations is a package of calculation definitions for construction of and computation on
VectorQuantityValues.

Basics

In order to enable the use of quantities in expressions this library package specifies the mathematical operators and
functions to support vector quantity arithmetic, and some convenience functions. See 9.8.9.1 for a general
introduction.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 613

VectorQuantityValue Construction

Construction of a literal or variable VectorQuantityValue is done through the [operator, matched by a closing
]. The signature of the corresponding CalculationDefinition is:

calc def '[' specializes BaseFunctions::'[' {
in num : Number[1..n]; // a sequence of numbers that are the numerical values of the vector components
in mRef : VectorMeasurementReference[1];
return quantity : VectorQuantityValue[1];
private attribute n = mRef.flattenedSize;

}

Typically the measurement reference for a vector quantity is a CoordinateFrame, which is a specialization of
VectorMeasurementReference.

Examples are:

attribute datum : ISQ::CartesianSpatial3dCoordinateFrame {
doc /* The datum is the top level coordinate frame of the system-of-interest */
:>> mRefs = (mm, mm, mm); // the units on all 3 Cartesian axes are milllimetre

}
attribute posVec :>> cartesianPosition3dVector = (200.0, 350.0, 80.0) [datum];

The quantity dimensions of the components of a VectorQuantityValue are specified through the mRefs (defined
by ScalarMeasurementReference[1..*]) of the mRef : VectorMeasurementReference[1]
AttributeUsage of the vector quantity. This allows to enforce the rules of scalar quantity arithmetic to the
components of vector quantities, when they are bound, assigned, defaulted, compared or the result of a vector
quantity expression evaluation.

VectorQuantityValue Operations

The following table enumerates the vector quantity operations. In order to enable concise formulations the following
symbols for quantity AttributeUsages are defined:

• x is defined by ScalarValues::Real, i.e. x is a real number
• b is defined by ScalarValues::Boolean, i.e. b is a boolean
• fs is defined by ScalarQuantityValue {:>> isBound = false}, i.e. it is a free scalar quantity
• bs is defined by ScalarQuantityValue {:>> isBound = true}, i.e. it is a bound scalar quantity
• v1, v2, v3 are defined by VectorQuantityValue, i.e. they are free or bound vector quantities
• fv1, fv2, fv3 are defined by VectorQuantityValue {:>> isBound = false}, i.e. they are free

vector quantities
• bv1, bv2, bv3 are defined by VectorQuantityValue {:>> isBound = true}, i.e. they are bound

vector quantities
• ct is defined by CoordinateTransformation, i.e. it is a coordinate transformation

Note. For completeness also invalid operations are listed, for which the result is empty, and an implementation
should raise a warning or error.

Operator or
function expression Result Description

fv1+fv2 fv3 Addition of two free vector quantities returns a free vector quantity.

fv1+bv2 bv3 Addition of a free and a bound vector quantity returns a bound vector quantity.

614 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Operator or
function expression Result Description

fv1+fv2 bv3 Addition of a bound and a free vector quantity returns a bound vector quantity.

bv1+bv2 ERROR. Two bound vector quantities cannot be added.

fv1-fv2 fv3 Subtraction of a free vector quantity from a free vector quantity returns a free
vector quantity.

fv1-bv2 bv3 Subtraction of a bound vector quantity from a free vector quantity returns a
bound vector quantity.

bv1-fv2 bv3 Subtraction of a free vector quantity from a bound vector quantity returns a
bound vector quantity.

bv1-bv2 fv3 Subtraction of a bound vector quantity from a bound vector quantity returns a
free vector quantity.

fv1*x or x*fv1 fv3 Multiplication of a free vector quantity and a real returns a free vector quantity.

bv1*x or x*bv1 ERROR. A bound vector quantity cannot be an operand in a multiplication.

fv1/x fv3 Division of a free vector quantity by a real returns a free vector quantity.

bv1/x ERROR. A bound vector quantity cannot be an operand in a division.

fs*fv1 or fv1*fs fv3 Multiplication of a free scalar quantity and a free vector quantity returns a free
vector quantity.

fs*bv1 or bv1*fs ERROR. A bound vector quantity cannot be an operand in a multiplication.

fv1/fs fv3 Division of a free vector quantity by a free scalar quantity returns a free vector
quantity.

bv1/bs ERROR. A bound vector quantity or a bound scalar quantity cannot be an
operand in a division.

inner(v1, v2) x Inner product (aka dot product) of two vector quantities returns a real number.

outer(v1, v2) v3 Outer product (aka cross product) of two vector quantities returns a free vector
quantity if both operands are free vectors, else a bound vector quantity.

norm(v1) fs Norm of a vector quantity returns a free scalar quantity representing the
magnitude of the vector.

angle(v1, v2) fs Angle of two vector quantities returns a scalar quantity representing the angle
(in radian) between the two vectors.

isZeroVectorQuantity(v1)b Function that asserts whether given vector quantity is a zero vector or not by
returning a boolean.

isUnitVectorQuantity(v1)b Function that asserts whether given vector quantity is a unit vector or not by
returning a boolean.

transform(ct,
v1) v3

Transform a vector quantity according to a coordinate transformation, which
returns a vector quantity transformed into the target coordinate frame of the
given coordinate transformation.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 615

The rules for valid quantity dimensions for the above operations are:

1. The vector quantities for all operands and results must have compatible mRef :
VectorMeasurementReference[1]. Here compatible means that the mRef of each vector quantity
must have the same dimensions, and their mRef.mRefs must have the same quantity dimension for each
vector component.

2. The operands and result of addition (+) and subtraction (-) operations must all have the same mRef :
VectorMeasurementReference[1], and be of the same top level quantity type.

3. The operands of a multiplication (*) operation can be any free vector quantity and free scalar quantity.
The result of a must have an mRef, in which for each vector component the exponent for each base
quantity is the sum of the exponent of the corresponding base quantity of the component of the vector
operand plus the exponent of the scalar operand.

4. The operands of a division (/) operation can be any free vector quantity and free scalar quantity. The
result of a must have an mRef, in which for each vector component the exponent for each base quantity is
the difference of the exponent of the corresponding base quantity of the component of the vector operand
minus the exponent of the scalar operand.

5. The operands of the inner product must all have the same mRef, i.e. coordinate frame, and therefore
component-wise the same quantity dimensions.

6. The operands and the result of the outer product must all have the same mRef, i.e. coordinate frame, and
therefore component-wise the same quantity dimensions.

7. The operand of the norm, isZeroVectorQuantity, isUnitVectorQuantity can be any vector
quantity. The result of the norm function is a free scalar quantity that has an mRef compatible with the
magnitude of the vector quantity operand.

8. For the transform function, the mRef of the vector quantity operand must be the source coordinate
frame of the coordinate transformation operand. The result vector quantity must have an mRef that is equal
to the target coordinate frame of the coordinate transformation operand. This specifies all involved
quantity dimensions.

9.8.10.2 Elements

9.8.11 Tensor Calculations
9.8.11.1 Tensor Calculations Overview

TensorCalculations is a package of calculation definitions for construction of and computation on
TensorQuantityValues.

Basics

In order to enable the use of quantities in expressions this library package specifies the mathematical operators and
functions to support tensor quantity arithmetic, and some convenience functions. See 9.8.9.1 for a general
introduction.

TensorQuantityValue Construction

Construction of a literal or variable TensorQuantityValue is done through the [operator, matched by a closing
]. The signature of the corresponding CalculationDefinition is:

calc def '[' specializes BaseFunctions::'[' {
in num : Number[1..n] ordered; // a sequence of numbers that are the numerical values of the tensor components
in mRef : TensorMeasurementReference[1];
return quantity : TensorQuantityValue[1];
private attribute n = mRef.flattenedSize;

}

616 OMG Systems Modeling Language (SysML) v2.0 Beta 1

The quantity dimensions of the components of a TensorQuantityValue are specified through the mRefs (defined
by ScalarMeasurementReference[1..*]) of the mRef : TensorMeasurementReference[1]
AttributeUsage of the tensor quantity. This allows to enforce the rules of scalar quantity arithmetic to the
components of tensor quantities, when they are bound, assigned, defaulted, compared or the result of a tensor
quantity expression evaluation.

TensorQuantityValue Operations

The following table enumerates the tensor quantity operations. In order to enable concise formulations the following
symbols for AttributeUsages are defined:

• x is defined by ScalarValues::Real, i.e. x is a real number
• b is defined by ScalarValues::Boolean, i.e. b is a boolean
• v1, v2, v3 are defined by VectorQuantityValue, i.e. they are vector quantities
• T1, T2, T3 are defined by TensorQuantityValue, i.e. they are tensor quantities
• ct is defined by CoordinateTransformation, i.e. it is a coordinate transformation

Operator or
function expression Result Description

T1+T2 T3 Addition of two tensor quantities returns a tensor quantity, with all
corresponding component values added.

T1-T2 T3
Subtraction of a tensor quantity from another tensor quantity returns a tensor
quantity, with all corresponding component values of the second operand
subtracted from those of the first operand.

T1*x or x*T1 T3 Multiplication of a tensor quantity and a real number returns a tensor quantity,
with all component values multiplied by x.

T1/x T3 Division of a tensor quantity with a real number returns a tensor quantity, with
all component values divided by x.

T1*v1 or v1*T1 v3
Multiplication of a tensor quantity and a vector quantity returns a vector
quantity. The tensor and vector must have compatible (covariant and
contravariant) dimensions.

isZeroTensorQuantity(T1)b Function that asserts whether given tensor quantity is a zero tensor or not by
returning a boolean.

isUnitTensorQuantity(T1)b Function that asserts whether given tensor quantity is a unit tensor or not by
returning a boolean.

transform(ct,
T1) T3

Transform a tensor quantity according to a coordinate transformation, which
returns a tensor quantity transformed into the target coordinate frame of the
given coordinate transformation.

9.8.11.2 Elements

9.8.12 Measurement Ref Calculations
9.8.12.1 Measurement Ref Calculations Overview

Similar to computations with ScalarQuantityValues and VectorQuantityValues in quantity expressions, it
is also possible to create measurement reference expressions to compute with MeasurementUnits and
CoordinateFrames.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 617

MeasurementUnit and CoordinateFrame Operations

The following table enumerates the measurement unit and coordinate frame operations. In order to enable concise
formulations the following symbols for AttributeUsages are defined:

• x is defined by ScalarValues::Real, i.e. x is a real number
• u1, u2, u3 are defined by MeasurementUnit, i.e. they are measurement units
• fcf1, fcf2 are defined by CoordinateFrame{:>> isBound = false;}, i.e. they are free coordinate

frames
• bcf1, bcf2 are defined by CoordinateFrame{:>> isBound = true;}, i.e. they are bound

coordinate frames

Operator or
function expression Result Description

u1*u2 u3
Multiplication of two measurement units returns a (derived) measurement unit,
with quantity dimension exponents changed such that the exponent of the first
operand is added to that of the second, for each base quantity. Equal terms in
nominator and denominator cancel out.

u1/u2 u3
Division of two measurement units returns a (derived) measurement unit, with
quantity dimension exponents changed such that the exponent of the second
operand is subtracted from that of the second, for each base quantity. Equal
terms in nominator and denominator cancel out.

u1^x u3 Exponentiation of a measurement unit returns a (derived) measurement unit.

cf1*u1 cf2
Return a coordinate frame (with isBound default false), that has its quantity
dimension exponents for all component mRefs changed by adding the
corresponding base quantity exponent of the measurement unit.

bf1*u1 cf2
Return a coordinate frame (with isBound default true), that has its
quantity dimension exponents for all component mRefs changed by adding the
corresponding base quantity exponent of the measurement unit.

cf1/u1 cf2
Return a coordinate frame (with isBound default false), that has its
quantity dimension exponents for all component mRefs changed by subtracting
the corresponding base quantity exponent of the measurement unit.

bf1/u1 cf2
Return a coordinate frame (with isBound default true), that has its
quantity dimension exponents for all component mRefs changed by subtracting
the corresponding base quantity exponent of the measurement unit.

Examples of measurement unit expressions are:

attribute <'m/s'> 'metre per second' : SpeedUnit = m/s;
attribute <'N⋅m'> 'newton metre' : EnergyUnit = N*m;

Examples of coordinate frame and measurement unit expressions are:

attribute spatialCF: CartesianSpatial3dCoordinateFrame[1] { :>> mRefs = (m, m, m); }
attribute velocityCF: CartesianVelocity3dCoordinateFrame[1] = spatialCF/s { :>> isBound = false; } ;
attribute accelarationCF: CartesianAcceleration3dCoordinateFrame[1] = velocityCF/s;

9.8.12.2 Elements

618 OMG Systems Modeling Language (SysML) v2.0 Beta 1

A Annex: Example Model
(Informative)

A.1 Introduction
The example presented in this Annex is intended to illustrate how SysML can be used to model a system. The
example is a simple vehicle model that highlights selected language features. Both the graphical and corresponding
textual notation are presented.

A.2 Model Organization
The SimpleVehicleModel is organized into a hierarchy of packages, where some packages contain nested
packages. The Definitions package contains nested packages for part definitions, attribute definitions, port
definitions, item definitions, action definitions, requirements definitions, and other kinds of definition elements. The
VehicleConfigurations package contains two design configurations that are modeled as usages of the definition
elements from the Definitions package. Each vehicle configuration contains packages that contain its parts,
actions, and requirements. This model includes separate packages for
VehicleAnalysis, VehicleVerification, Individuals, and View_Viewpoints. The
VehicleAnalysis package contains analysis cases to analyze the system, and the VehicleVerification
package contains verification cases and the verification system to verify the system. The Views_Viewpoints
package specifies user-defined views. Additional packages that are not shown include a MissionContext package
that contains use cases for how the vehicle is used in a particular context, and a VehicleFamily package that
contains a model with variation points from which specific vehicle configurations can be derived. The package for
the International System of Quantities (ISQ) is imported into this model from the SysML model library so its
content can be used to specify standard quantities and units. Imported packages can be shown with a dashed outline
package symbol as shown in the figure or with an import relationship between the importing package and the
imported package.

VehicleVerification

VehicleAnalyiss

ActionTree

Requirements

PartsTree

VehicleConfiguration_b

VehicleConfiguration_a

VehicleConfigurations

Individuals

View_Viewpoints

ItemDefinitions

ActionDefinitions

PartDefinitions

RequirementDefinitions

PortDefinitions InterfaceDefinitions

AttributeDefinitions

Definitions

ISQ

SimpleVehicleModel_

Figure 55. Model Organization for SimpleVehicleModel

package SimpleVehicleModel{
import ISQ::*;
package Definitions { ... }

OMG Systems Modeling Language (SysML) v2.0, Beta 1 619

package VehicleConfigurations{
package VehicleConfiguration_a{ ... }
package VehicleConfiguration_b{

package PartsTree{ ... }
package ActionTree{ ... }
package Requirements{ ... }

}
}
package VehicleAnalysis{ ... }
package VehicleVerification{ ... }
package Individuals{ ... }
package Views_Viewpoints{ ... }
...

}

The packages of a system model are often organized and managed to enable team members to work collaboratively
on different aspects of the model, where each package contains cohesive content that can be worked on
independently. The VehicleConfigurations package would typically import packages for each major system
element (e.g., subsystem) to aid in collaborative development, although this was not done for this simple example.

A.3 Definitions
The Definitions package contains a nested PartDefinitions package that contains definitions for the parts
that are used to represent the vehicle configurations. This includes the part definition for a Vehicle, whose features
include attributes, ports, actions, and states.

620 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Figure 56. Part Definition for Vehicle

part def Vehicle {
attribute mass:>ISQ::mass;
attribute dryMass:>ISQ::mass;
attribute cargoMass:>ISQ::mass;
attribute position:>ISQ::length;
attribute velocity:>ISQ::speed;
attribute acceleration:>ISQ::acceleration;
attribute electricalPower:>ISQ::power;
attribute Tmax:>ISQ::temperature;
attribute maintenanceTime: Time::DateTime;
attribute brakePedalDepressed: Boolean;
port ignitionCmdPort: IgnitionCmdPort;
port pwrCmdPort: PwrCmdPort;
port vehicleToRoadPort: VehicleToRoadPort;
perform action providePower;
perform action provideBraking;
perform action controlDirection;
perform action performSelfTest;
perform action applyParkingBrake;
perform action senseTemperature;
exhibit state vehicleStates;

}

The attributes called mass, dryMass, and cargoMass are each a kind of the base mass attribute imported from the
standard SysML ISQ library model (see 9.8.4). Values of the attribute quantities contained in this library can then be

OMG Systems Modeling Language (SysML) v2.0, Beta 1 621

assigned standard units from the SI (see 9.8.6) or USCustomaryUnits (see 9.8.7) library models. For example, the
value of the mass of the Vehicle can be assigned the unit of kilogram (SI::kg). The Vehicle also contains other
quantity attributes such as its position and velocity.

The Vehicle contains three ports called ignitionCmdPort, pwrCmdPort and vehicleToRoadPort, which are
interaction points that provide ignition and fuel commands to the vehicle, and transfer vehicle torque to the road.
The Vehicle performs the action providePower to accelerate the vehicle, and other actions that include
performSelfTest and applyParkingBrake. In addition, the Vehicle exhibits its vehicleStates.

The Vehicle represents a class of individual vehicles which is defined by its attributes, ports, actions, and states.
Other part definitions can be specified in a similar way to build a reusable library of part definitions.

The part definition for FuelTank contains an attribute called mass and an attribute called fuelKind. The attribute
fuelKind is defined by the enumeration FuelKind that contains literal values for different kinds of fuel such as gas
and diesel. The FuelTank also contains an item called fuel. An item is often used to represent something that flows
through a system or is stored by a system. The fuel is not considered to be part of the FuelTank, so fuel is
modeled as a referential feature (shown graphically using the white diamond symbol instead of the black diamond).

«part def»
FuelTank

fuelKind: FuelKind
fuelMassMax:> ISQBase::mass
mass:> ISQBase::mass

attributes

fuelInPort: ~FuelPort
ports

fuelOutPort: FuelPort

«item»
fuel: Fuel

fuelMass
:>>Fuel::fuelMass

attributes

«assert constraint»
fuelConstraint

{ fuel.fuelMass<=fuelMassMax }
operator expressions

1 *

Figure 57. Part Definition for FuelTank Referencing Fuel it Stores

part def FuelTank{
attribute mass :> ISQ::mass;
attribute fuelKind:FuelKind;
ref item fuel:Fuel{

attribute redefines fuelMass;
}
attribute fuelMassMax:>ISQ::mass;
assert constraint fuelConstraint {fuel.fuelMass<=fuelMassMax}
port fuelOutPort:FuelPort;
port fuelInPort:~FuelPort;

}

622 OMG Systems Modeling Language (SysML) v2.0 Beta 1

psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:0522f24e-2a2b-40e9-b63b-d64f8d912bfe
psysml:2139d2b9-fd41-4111-ab67-7176ac47d139
psysml:2139d2b9-fd41-4111-ab67-7176ac47d139
psysml:2139d2b9-fd41-4111-ab67-7176ac47d139
psysml:2139d2b9-fd41-4111-ab67-7176ac47d139
psysml:2139d2b9-fd41-4111-ab67-7176ac47d139
psysml:2139d2b9-fd41-4111-ab67-7176ac47d139
psysml:2139d2b9-fd41-4111-ab67-7176ac47d139
psysml:a97f83a4-e0b8-4b41-b351-eb6b99680006
psysml:a97f83a4-e0b8-4b41-b351-eb6b99680006
psysml:a97f83a4-e0b8-4b41-b351-eb6b99680006
psysml:a97f83a4-e0b8-4b41-b351-eb6b99680006
psysml:a97f83a4-e0b8-4b41-b351-eb6b99680006
psysml:a97f83a4-e0b8-4b41-b351-eb6b99680006
psysml:e8ee6c98-8425-4359-ba02-7fbac8e8febc
psysml:e8ee6c98-8425-4359-ba02-7fbac8e8febc
psysml:e8ee6c98-8425-4359-ba02-7fbac8e8febc
psysml:917c70b0-5166-4d52-981e-4912697dda16
psysml:917c70b0-5166-4d52-981e-4912697dda16
psysml:917c70b0-5166-4d52-981e-4912697dda16

The fuel contains an attribute called fuelMass. The FuelTank contains an attribute called fuelMassMax, which
represents the maximum amount of fuel that a FuelTank can store. A constraint is imposed that the fuelMass must
be less than or equal to the fuelMassMax. The constraint is asserted to be true because, if the fuelMass exceeds
the fuelMassMax, the model would be inconsistent and the model validation should generate an error. If assert is
not used with the constraint, the model could evaluate the constraint to be false, and the model validation should not
generate an error.

The FuelTank also contains a fuelInPort and a fuelOutPort. The fuelOutPort is defined by FuelPort
that contains a directed feature to represent the fuel flowing out of this port. The fuelInPort is defined by a port
definition that is the conjugate of the FuelPort. The conjugate is notated with a tilda (~) in front of the port
definition name. The conjugate reverses the direction of each directed feature of the port that it conjugates, which in
this case reverses the direction of the fuel to flow in to the port instead of out from the port. Note that the directed
features are not shown in the figure but are specified as part of the definition of FuelPort.

The part definition for Axle contains the attribute mass. FrontAxle is a specialization of Axle that inherits its
mass attribute and contains an additional attribute called steeringAngle.

«part def»
Axle

mass:> ISQBase::mass
attributes

«part def»
FrontAxle

steeringAngle:>
ISQSpaceTime::angularMeasure

attributes

Figure 58. Axle and its Subclass FrontAxle

part def Axle{
attribute mass:>ISQ::mass;

}
part def FrontAxle:>Axle{

attribute steeringAngle:>ISQ::angularMeasure;
}

The Definitions package also contains several other kinds of definition elements. The port definition FuelPort
contains an item called fuel that can flow out of the port. The fuel is defined by the item definition Fuel
that contains a mass attribute. The interface definition FuelInterface is used to connect a fuelOutPort to a
fuelInPort. The definition also specifies that Fuel flows across this interface. The item definition FuelCmd
contains an attribute called throttleLevel that is defined by a Real. The action definition ProvidePower
contains an input item fuelCmd that is defined by FuelCmd. It also contains an output attribute called
wheelToRoadTorque that has multiplicity of 2, and is defined by the attribute definition TorqueValue.

«action def»
ProvidePower

in fuelCmd: FuelCmd
out wheelToRoadTorque: TorqueValue

parameters

«item def»
FuelCmd

throttleLevel: Real
attributes

«port def»
FuelPort

out fuel: Fuel
parameters

«item def»
Fuel

fuelMass:> ISQBase::mass
attributes

«interface def»
FuelInterface

of : Fuel from fuelOutPort.fuel to
fuelInPort.fuel

flows

fuelInPort: ~FuelPort
fuelOutPort: FuelPort

ports

«enum def»
FuelKind

gas
diesel

enums

Figure 59. Example Definition Elements

action def ProvidePower {
in item fuelCmd:FuelCmd;
out wheelToRoadTorque:TorqueValue[2];

}

item def FuelCmd{
attribute throttleLevel:Real;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 623

}

port def FuelPort{
out item fuel:Fuel;

}

item def Fuel{
attribute fuelMass:>ISQ::mass;

}

interface def FuelInterface{
end fuelOutPort:FuelPort;
end fuelInPort:~FuelPort;
flow of Fuel from fuelOutPort.fuel to fuelInPort.fuel;

}

enum def FuelKind {gas; diesel;}

A.4 Parts
The VehicleConfigurations package contains two usages of the Vehicle part definition called vehicle_a
and vehicle_b. The vehicle_b configuration is shown below. The part vehicle_b inherits features from its part
definition Vehicle. It can then redefine or subset its inherited features and add new features. As an example,
vehicle_b redefines the mass attribute it inherited from Vehicle and further constrains it's mass to be the sum of
its dryMass, cargoMass, and fuelMass. It redefines other features including other attributes, ports, actions, and
states in a similar manner. Its actions are redefined to perform actions that are contained in the ActionTree. For
example, the inherited action from Vehicle to providePower is redefined by ActionTree::providePower. As
described in A.6, the providePower contained in ActionTree is decomposed into other actions.

624 OMG Systems Modeling Language (SysML) v2.0 Beta 1

«part»
vehicle_b: Vehicle

cargoMass default 0 [kg]
:>>Vehicle::cargoMass
avgFuelEconomy:>
AttributeDefinitions::distancePerVolume
dryMass=sum(partMasses)
:>>Vehicle::dryMass
mass=dryMass+cargoMass+fuelTank.fuel.fuelMass
:>>Vehicle::mass
partMasses

attributes

vehicleStates
:>>Vehicle::vehicleStates

exhibit states

fuelTank: FuelTank
parts

providePower:> ActionTree::providePower
:>>Vehicle::providePower
performSelfTest:>
ActionTree::performSelfTest
:>>Vehicle::performSelfTest
applyParkingBrake:>
ActionTree::applyParkingBrake
:>>Vehicle::applyParkingBrake
senseTemperature:>
ActionTree::senseTemperature
:>>Vehicle::senseTemperature

perform actions

fuelCmdPort: FuelCmdPort
:>>Vehicle::pwrCmdPort
setSpeedPort: ~SetSpeedPort
vehicleToRoadPort
:>>Vehicle::vehicleToRoadPort

ports

Figure 60. Part Usage for vehicle_b

part vehicle_b:Vehicle{
attribute mass redefines mass=

dryMass+cargoMass+fuelTank.fuel.fuelMass;
attribute dryMass redefines dryMass=sum(partMasses);
attribute redefines cargoMass default 0 [kg];
attribute partMasses=(...); // collection of part.mass
attribute fuelEconomy :> distancePerVolume;
port fuelCmdPort:FuelCmdPort redefines pwrCmdPort{

in item fuelCmd redefines pwrCmd;
port setSpeedPort:~SetSpeedPort;
port vehicleToRoadPort redefines vehicleToRoadPort{

port wheelToRoadPort1;WheelToRoadPort;
port wheelToRoadPort2:WheelOtRoadPort;

}
perform ActionTree::providePower redefines providePower;
perform ActionTree::performSelfTest redefines performSelfTest;
perform ActionTree::applyParkingBrake redefines applyParkingBrake;
perform ActionTree::senseTemperature redefines senseTemperature;
exhibit States::vehicleStates redefines vehicleStates;
}
part fuelTank:FuelTank{
...
}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 625

psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067
psysml:fbe2a0ef-5fa2-4c7f-9c90-655aa1c64067

...
}

A parts tree is a representation of the decomposition of a part into its constituent parts. Different part usages with
the same definition, such as vehicle_a and vehicle_b, can have different decompositions. As shown below,
vehicle_b is composed of several parts, including an engine, starterMotor, transmission, driveshaft,
frontAxleAssembly, rearAxleAssembly, fuelTank, and vehicleSoftware. The frontAxleAssembly
contains a frontAxle and two frontWheels as designated by the multiplicity [2]. The rearAxleAssembly
contains a rearAxle, differential, rearWheel1, and rearWheel2. Note that some of the definition elements
are elided from the figure but are visible in the textual notation. As always, views of the model only show selected
aspects of the model.

Figure 61. Parts Tree for vehicle_b

part vehicle_b:Vehicle {
...
part starterMotor:StarterMotor;
part fuelTank:FuelTank;
part engine:Engine;
part transmission:Transmission;
part driveshaft:Driveshaft;
part rearAxleAssembly{

part differential:Differential;
part rearAxle:Axle;
part rearWheel1:Wheel;
part rearWheel2:Wheel;

}
part frontAxleAssembly{

part frontAxle:FrontAxle;
part frontWheels:Wheel[2];

}
part vehicleSoftware:VehicleSoftware;

}

The VehicleConfigurations package also contains the engine4Cyl variant that subsets engine. In general, an
engine can contain 4 to 8 cylinders. The engine4Cyl variant redefines the set of 4..8 cylinders to be exactly
4 cylinders, and then subsets the set of 4 cylinders to create cylinder1, cylinder2, cylinder3, and
cylinder4. (See also the example of variability modeling in A.12.)

626 OMG Systems Modeling Language (SysML) v2.0 Beta 1

«part»
engine4Cyl :> Engine4Cyl_Variant::engine

«part»
cylinders

«part»
cylinder1 :> engine4Cyl::cylinders

«part»
cylinder2 :> engine4Cyl::cylinders

«part»
cylinder3 :> engine4Cyl::cylinders

«part»
cylinder4 :> engine4Cyl::cylinders

«part»
engine: Engine

«part»
cylinders: Cylinder

4

1 1 1 1

4..8

Figure 62. Variant engine4Cyl

part engine:Engine{
part cylinders:Cylinder [4..8] ordered;

}

part engine4Cyl:>engine{
part redefines cylinders[4];
part cylinder1[1] subsets cylinders;
part cylinder2[1] subsets cylinders;
part cylinder3[1] subsets cylinders;
part cylinder4[1] subsets cylinders;

}

A.5 Parts Interconnection
The various constituent parts of vehicle_b are interconnected via their ports. The fuelCmdPort on vehicle_b is
delegated to the fuelCmdPort on the engine using a binding connection. The controlPort on the
vehicleController is connected to the engineControlPort on the engine. The controlPort is defined by
ControlPort and the engineControlPort is defined by a port definition that is the conjugate of the
ControlPort (that is, the directions of all its directed features are reversed relative to those of the original port
definition).

The drivePwrPort on the engine is connected to the clutchPort on the transmission by an interface. The
interface is defined by an interface definition whose port at one end of the interface is defined as DrivePwrPort
and whose port at the other end of the interface is defined as the conjugate of the DrivePwrPort. The
DrivePwrPort contains the directed feature out engineTorque:Torque. The conjugate of the
DrivePwrPort contains the directed feature in engineTorque:Torque.

The fuelOutPort on the fuelTank is connected to the fuelInPort on the Engine by an interface.
This interface is defined by the interface definition FuelInterface which contains a flow of Fuel. This flow can
be shown as a solid arrowhead on the connection between the ports but is not shown in this particular view.

Connections can be made directly between nested parts without having to establish a connection between the
corresponding composite parts. For example, the port on the driveShaft can connect directly to a port on the
differential without having to connect first to the rearAxleAssembly that composes the differential.
Ports can also be nested within a composite port as shown by the vehicleToRoadPort, which contains a nested
port for each rear wheel.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 627

psysml:68a6dcf1-4083-4249-ba63-2d38e44a46ab
psysml:68a6dcf1-4083-4249-ba63-2d38e44a46ab
psysml:68a6dcf1-4083-4249-ba63-2d38e44a46ab
psysml:68a6dcf1-4083-4249-ba63-2d38e44a46ab
psysml:7acccd02-a0dd-4929-9bc9-68511002d56d
psysml:7acccd02-a0dd-4929-9bc9-68511002d56d
psysml:7acccd02-a0dd-4929-9bc9-68511002d56d
psysml:7acccd02-a0dd-4929-9bc9-68511002d56d
psysml:26185537-f073-4c86-aabc-acfa066e066a
psysml:26185537-f073-4c86-aabc-acfa066e066a
psysml:26185537-f073-4c86-aabc-acfa066e066a
psysml:26185537-f073-4c86-aabc-acfa066e066a
psysml:16285ac8-c014-4e05-8fc2-bb7bdb46a960
psysml:16285ac8-c014-4e05-8fc2-bb7bdb46a960
psysml:16285ac8-c014-4e05-8fc2-bb7bdb46a960
psysml:16285ac8-c014-4e05-8fc2-bb7bdb46a960
psysml:912486a9-c8ca-4351-96d9-6bb9e863c7e0
psysml:912486a9-c8ca-4351-96d9-6bb9e863c7e0
psysml:912486a9-c8ca-4351-96d9-6bb9e863c7e0
psysml:912486a9-c8ca-4351-96d9-6bb9e863c7e0
psysml:9b797345-d18b-4cb6-803d-8c2204015613
psysml:9b797345-d18b-4cb6-803d-8c2204015613
psysml:9b797345-d18b-4cb6-803d-8c2204015613
psysml:9b797345-d18b-4cb6-803d-8c2204015613
psysml:33461863-60be-44a5-89ab-2a7c164bc6cd
psysml:33461863-60be-44a5-89ab-2a7c164bc6cd
psysml:33461863-60be-44a5-89ab-2a7c164bc6cd
psysml:33461863-60be-44a5-89ab-2a7c164bc6cd
psysml:5ccc2af0-62d3-4b53-906b-0912e5061282
psysml:5ccc2af0-62d3-4b53-906b-0912e5061282
psysml:5ccc2af0-62d3-4b53-906b-0912e5061282
psysml:5ccc2af0-62d3-4b53-906b-0912e5061282
psysml:f87c4ae3-d539-4172-bb10-742def79c1f6
psysml:f87c4ae3-d539-4172-bb10-742def79c1f6
psysml:f87c4ae3-d539-4172-bb10-742def79c1f6
psysml:2e46d657-e5b3-45bf-afab-65dcc24bc3ab
psysml:2e46d657-e5b3-45bf-afab-65dcc24bc3ab
psysml:2e46d657-e5b3-45bf-afab-65dcc24bc3ab
psysml:4c81b65c-5d15-4849-8944-b3e92d8dc1e0
psysml:4c81b65c-5d15-4849-8944-b3e92d8dc1e0
psysml:efb81053-a99b-466e-a766-234e2df8bb53
psysml:efb81053-a99b-466e-a766-234e2df8bb53
psysml:efb81053-a99b-466e-a766-234e2df8bb53
psysml:d4a8f2b6-6504-427b-bcb6-9ba0d45a59a2
psysml:d4a8f2b6-6504-427b-bcb6-9ba0d45a59a2
psysml:0836b44f-87af-45bd-a32d-ed4e10a6d768
psysml:0836b44f-87af-45bd-a32d-ed4e10a6d768
psysml:0836b44f-87af-45bd-a32d-ed4e10a6d768
psysml:10ad176d-91bd-4081-98f4-bed2b13c5942
psysml:10ad176d-91bd-4081-98f4-bed2b13c5942
psysml:4f09f5ea-f3f0-4bda-a6bf-b4a96245960e
psysml:4f09f5ea-f3f0-4bda-a6bf-b4a96245960e
psysml:4f09f5ea-f3f0-4bda-a6bf-b4a96245960e
psysml:3a725365-d4d3-45fb-b137-3f37dd9f115e
psysml:3a725365-d4d3-45fb-b137-3f37dd9f115e
psysml:5b0f9e0d-f859-4108-b260-4d5afc990769
psysml:5b0f9e0d-f859-4108-b260-4d5afc990769
psysml:ef3a20b0-a644-41b9-8a36-37449ec222eb
psysml:ef3a20b0-a644-41b9-8a36-37449ec222eb
psysml:ef3a20b0-a644-41b9-8a36-37449ec222eb
psysml:74681ba7-1b26-419c-b8ed-7edaafb8b169
psysml:74681ba7-1b26-419c-b8ed-7edaafb8b169
psysml:74681ba7-1b26-419c-b8ed-7edaafb8b169

Figure 63. Parts Interconnection for vehicle_b

part vehicle_b : Vehicle{
port fuelCmdPort redefines pwrCmdPort;
port vehicleToRoadPort redefines vehicleToRoadPort{

port wheelToRoadPort1;
port wheelToRoadPort2;

}
part fuelTank:FuelTank{

port fuelOutPort;
}
part rearAxleAssembly{

port shaftPort_d;
part rearWheel1:Wheel{

port :>>wheelToRoadPort;
port :>>wheelToAxlePort;

}
part rearWheel2:Wheel{

port :>>wheelToRoadPort;
port :>>wheelToAxlePort;

}
part differential:Differential{

port shaftPort_d;
port leftDiffPort;
port rightDiffPort;

}
part rearAxle{

part leftHalfAxle:HalfAxle{
port leftAxleToDiffPort;
port leftAxleToWheelPort;

}
part rightHalfAxle:HalfAxle{

port rightAxleToDiffPort;

628 OMG Systems Modeling Language (SysML) v2.0 Beta 1

port rightAxleToWheelPort;
}

}

bind shaftPort_d = differential.shaftPort_d;
connect differential.leftDiffPort

to rearAxle.leftHalfAxle.leftAxleToDiffPort;
connect differential.rightDiffPort

to rearAxle.rightHalfAxle.rightAxleToDiffPort;
connect rearAxle.leftHalfAxle.leftAxleToWheelPort

to rearWheel1.wheelToAxlePort;
connect rearAxle.rightHalfAxle.rightAxleToWheelPort

to rearWheel2.wheelToAxlePort;
}

part starterMotor:StarterMotor{
port ignitionCmdPort;
port gearPort;

}
part engine:Engine{

port fuelCmdPort;
port drivePwrPort:DrivePwrPort;
port fuelInPort;
port flyWheelPort;
port controlPort;

}
part transmission:Transmission{

port clutchPort:~DrivePwrPort;
port shaftPort_a;

}
part driveshaft:Driveshaft{

port shaftPort_b;
port shaftPort_c;

}
part vehicleSoftware:VehicleSoftware{

part vehicleController {
port controlPort;

}
}

//connections
bind engine.fuelCmdPort = fuelCmdPort;
bind starterMotor.ignitionCmdPort = ignitionCmdPort;

interface engineToTransmissionInterface:EngineToTransmissionInterface
connect engine.drivePwrPort to transmission.clutchPort;

interface fuelInterface:FuelInterface
connect fuelTank.fuelOutPort to engine.fuelInPort;

connect vehicleSoftware.vehicleController.controlPort
to engine.controlPort;

connect starterMotor.gearPort
to engine.flyWheelPort;

connect transmission.shaftPort_a
to driveshaft.shaftPort_b;

connect driveshaft.shaftPort_c
to rearAxleAssembly.shaftPort_d;

bind rearAxleAssembly.rearWheel1.wheelToRoadPort
= vehicleToRoadPort.wheelToRoadPort1;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 629

bind rearAxleAssembly.rearWheel2.wheelToRoadPort
= vehicleToRoadPort.wheelToRoadPort2;

}

A.6 Actions
The definition and usage pattern applies not only to parts and part definitions, but to most constructs in SysML. As
shown below, the action providePower is defined by the action definition ProvidePower. The action
providePower contains actions to generateTorque, amplifyTorque, transferTorque, and
distributeTorque, each of which have their own definitions. The actions inherit their input and output
parameters from their definition and redefine them as necessary (Note: the inherited parameters are not shown.)

«action»
providePower: ProvidePower

«action»
generateTorque: GenerateTorque

«action»
amplifyTorque: AmplifyTorque

«action»
transferTorque: TransferTorque

«action»
distributeTorque: DistributeTorque

Figure 64. Action providePower

action providePower:ProvidePower{
action generateTorque:GenerateTorque;
action amplifyTorque:AmplifyTorque;
action transferTorque:TransferTorque;
action distributeTorque:DistributeTorque;
...

}

As shown in Fig. 60, the part vehicle_b performs the action providePower. The subparts of vehicle_b then
perform the appropriate subactions of providePower. For example, the part engine performs the action
providePower.generateTorque, which redefines the generateTorque action inherited from its definition.

The output of each subaction of providePower is connected by a flow connection to the input of another subaction,
except for distributeTorque, whose outputs are bound to the outputs of providePower. The input and output
parameters are streaming unless designated as succession flows, meaning that the inputs continue to be consumed
and the outputs continue to be produced as the action executes.

Figure 65. Action flow for providePower

action providePower:ProvidePower{
...
bind fuelCmd = generateTorque.fuelCmd;
flow generateTorque.engineTorque to amplifyTorque.engineTorque;

630 OMG Systems Modeling Language (SysML) v2.0 Beta 1

psysml:a8a90819-aa1b-476c-93cd-f98b7c614511
psysml:a8a90819-aa1b-476c-93cd-f98b7c614511
psysml:a8a90819-aa1b-476c-93cd-f98b7c614511
psysml:a8a90819-aa1b-476c-93cd-f98b7c614511
psysml:3ca3ee4d-0370-4f43-8e8d-61f9bdbab33c
psysml:3ca3ee4d-0370-4f43-8e8d-61f9bdbab33c
psysml:3ca3ee4d-0370-4f43-8e8d-61f9bdbab33c
psysml:3ca3ee4d-0370-4f43-8e8d-61f9bdbab33c
psysml:894466d5-e20f-4f15-a2fc-53ba1c6a86d2
psysml:894466d5-e20f-4f15-a2fc-53ba1c6a86d2
psysml:894466d5-e20f-4f15-a2fc-53ba1c6a86d2
psysml:894466d5-e20f-4f15-a2fc-53ba1c6a86d2
psysml:05e759bd-f645-4d6e-bf66-dd35b4769424
psysml:05e759bd-f645-4d6e-bf66-dd35b4769424
psysml:05e759bd-f645-4d6e-bf66-dd35b4769424
psysml:05e759bd-f645-4d6e-bf66-dd35b4769424
psysml:868b4bb6-1ef7-44c5-a55b-f0e5a40b7f8f
psysml:868b4bb6-1ef7-44c5-a55b-f0e5a40b7f8f
psysml:868b4bb6-1ef7-44c5-a55b-f0e5a40b7f8f
psysml:868b4bb6-1ef7-44c5-a55b-f0e5a40b7f8f
psysml:593eeb63-97ff-4c62-ae9d-aaef6ab1ac02
psysml:593eeb63-97ff-4c62-ae9d-aaef6ab1ac02
psysml:cafc7fc6-ef67-4b5a-9c08-f70b2a4ebb3c
psysml:cafc7fc6-ef67-4b5a-9c08-f70b2a4ebb3c
psysml:8e933a64-a07c-41b7-8f59-b3a8f6326d2c
psysml:8e933a64-a07c-41b7-8f59-b3a8f6326d2c
psysml:6c48dbc8-caba-4152-a6e9-5944d0a726e5
psysml:6c48dbc8-caba-4152-a6e9-5944d0a726e5

flow amplifyTorque.transmissionTorque to transferTorque.transmissionTorque;
flow transferTorque.driveshaftTorque to distributeTorque.driveshaftTorque;
bind distributeTorque.wheelToRoadTorque = wheelToRoadTorque;

}

The transportPassenger_1 use case contains a sequence of actions for a Vehicle to transport passengers. The
use case is defined by a use case definition called TransportPassenger. The actions
passenger1GetInVehicle and driverGetInvehicle are performed concurrently after the start of the use case.
After both these actions complete, an accept action is triggered upon receipt of an IgnitionCmd. After this, the
actions driveVehicleToDestination and providePower can proceed concurrently. Once these are both
completed, then the actions passenger1GetOutOfVehicle and driverGetOutOfvehicle are preformed
concurrently, after which the transportPassenger use case is done. The fork and join control nodes and the
successions (i.e., first and then) are used to control the action sequence.

«use case»
transportPassenger_1

«accept action»
ignitionCmd:IgnitionCmd

result

vehicle

«action»
driverGetInVehicle

«action»
passenger1GetInVehicle

«action»
driverGetOutOfVehicle

«action»
passenger1GetOutOfVehicle

«action»
driveVehicleToDestination

«action»
providePower

«use case»
start

«use case»
^done

@

Figure 66. Action flow for transportPassenger

use case transportPassenger_1:TransportPassenger{
//action declarations

OMG Systems Modeling Language (SysML) v2.0, Beta 1 631

...
first start;
then fork fork1;

then driverGetInVehicle;
then passenger1GetInVehicle;

first driverGetInVehicle then join1;
first passenger1GetInVehicle then join1;
first join1 then trigger;
first trigger then fork2;
fork fork2;

then driveVehicleToDestination;
then providePower;

first driveVehicleToDestination then join2;
first providePower then join2;
first join2 then fork3;
fork fork3;

then driverGetOutOfVehicle;
then passenger1GetOutOfVehicle;

first driverGetOutOfVehicle then join3;
first passenger1GetOutOfVehicle then join3;
first join3 then done;

}

A.7 States
The states of a Vehicle enable selected actions to be performed. The Vehicle exhibits its state vehicleStates.
This state is a parallel state, so its substates operatingStates and healthStates are concurrent. The states
operatingStates and healthStates are not parallel, so only one of each of their substates can be active at any
given time.

632 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Figure 67. Vehicle States

exhibit state vehicleStates parallel {
ref controller;

state operatingStates {
...

}

state healthStates {
...

}
}

Note that the state vehicleStates has a referential feature controller:VehicleController. This allows the
substates of vehicleStates to send a signal to the controlller or one of its ports, or to access any other feature of
controller.

OMG Systems Modeling Language (SysML) v2.0, Beta 1 633

The operatingStates are further decomposed into off, starting, and on states, with an entry transition to the
off substate. Upon receipt of an ignitionCmd, the off-starting transition fires if the ignitionCmd is in the
on position and the brakePedalDepressed is true. A StartSignal is sent to the controller as part of this
transition, after which operatingStates enters its starting substate. The state operatingStates also
includes transitions from the substates starting to on and on to off.

The ignitionCmd is defined by the item definition IgnitionCmd, which contains an attribute defined by an
enumeration with values on and off. This pattern is used to represent a variety of signals that may be sent by send
actions and accepted by accept actions.

The on state has an entry action to performSelfTest, which is performed upon entry to the state. When the entry
action completes, the do action to providePower starts, and it continues to be performed until the state is exited.
Prior to exiting the state, the exit action to applyParkingBrake is performed. The state also has a constraint that
the electricalPower must not exceed 500 watts.

state operatingStates {
entry action initial;

state off;
state starting;
state on {

entry performSelfTest;
do providePower;
exit applyParkingBrake;
constraint {electricalPower<=500[W]}

}

transition initial then off;

transition 'off-starting'
first off
accept ignitionCmd:IgnitionCmd via ignitionCmdPort

if ignitionCmd.ignitionOnOff==IgnitionOnOff::on and brakePedalDepressed
do send StartSignal() to controller
then starting;

transition 'starting-on'
first starting
accept VehicleOnSignal
then on;

transition 'on-off'
first on
accept VehicleOffSignal
do send OffSignal() to controller
then off;

}

The healthStates are decomposed into normal, maintenance and degraded states. Starting in the normal
state, healthStates continually monitors the vehicle temperature and, when the temperature exceeds the allowed
maximum, it transitions to the degraded state and notifies the controller. It also transitions from normal to
maintenance when it is time for vehicle maintenance. In either case, it transitions back to the normal state on
receipt of a ReturnToNormal signal.

state healthStates {
entry action initial;
do senseTemperature{

634 OMG Systems Modeling Language (SysML) v2.0 Beta 1

out temp;
}

state normal;
state maintenance;
state degraded;

transition initial then normal;

transition 'normal-maintenance'
first normal
accept at maintenanceTime
then maintenance;

transition 'normal-degraded'
first normal
accept when senseTemperature.temp > Tmax
do send OverTemp() to controller
then degraded;

transition 'maintenance-normal'
first maintenance
accept ReturnToNormal
then normal;

transition 'degraded-normal'
first degraded
accept ReturnToNormal
then normal;

}

A.8 Requirements
The requirement definition MassRequirement has a shall statement that "The actual mass shall be less than the
required mass". This statement is formalized using attributes for massRequired and massActual and the
constraint expression {massActual<=massRequired}.

«requirement def»
MassRequirement

The actual mass shall be less than the
required mass

doc

massActual:> ISQBase::mass
massRequired:> ISQBase::mass

attributes

require {massActual<=massRequired}
constraints

Figure 68. Requirement Definition MassRequirement

requirement def MassRequirement{
doc /*The actual mass shall be less than the required mass*/
attribute massRequired:>ISQ::mass;
attribute massActual:>ISQ::mass;
require constraint {massActual<=massRequired}

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 635

psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d
psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d
psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d
psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d
psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d
psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d
psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d
psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d
psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d
psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d
psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d
psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d
psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d
psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d
psysml:be1fee6d-1d64-4990-bae1-9f7c95cfd41d

The vehicleSpecification is a requirement that contains other requirements. It has a dependency to
marketSurvey (not shown) that indicates its requirements are dependent on the market survey. The subject of the
vehicleSpecification is vehicle:Vehicle, which enables the requirements contained in the specification to
reference the features of vehicle. One of the requirements contained in the specification is the
vehicleMassRequirement, which is defined by MassRequirement. The massRequired attribute is redefined
to have a specific value of 2000 kg in the context of this vehicleSpecification. The attribute massActual is
redefined to be the sum of the dryMass and fuelMassActual of the vehicle, where the fuelMassActual is
assumed to be a full tank of gas that weighs 60 kg. The vehicleSpecficiation also contains
vehicleFuelEconomyRequirements for both city and highway.

Although not shown, the mass requirement is allocated to the mass of the vehicle using the allocate relationship, and
the engine mass requirement is derived from the vehicle mass requirement using the derivation relationship.

«requirement»
vehicleSpecification

«subject»
vehicle

dryMass:> ISQBase::mass
attributes

«requirement»
<1> vehicleMassRequirement: MassRequirement

The total mass of the vehicle shall be less
than or equal to the required mass.
Assume total mass includes a full tank of
gas of 60 kg

doc

massRequired =2000 [kg]
:>>MassRequirement::massRequired
massActual = vehicle.dryMass +
fuelMassActual
:>>MassRequirement::massActual
fuelMassActual:> ISQBase::mass
fuelMassMax:> ISQBase::mass = 60 [kg]

attributes

assume {fuelMassActual==fuelMassMax}
constraints

«requirement»
<2> vehicleFuelEconomyRequirements

fuel economy requirements group
doc

assumedCargoMass:> ISQBase::mass
attributes

subject

«requirement»
<2_1> cityFuelEconomyRequirement: FuelEconomyRequirement

requiredFuelEconomy = 10 [km / L]
:>>FuelEconomyRequirement::requiredFuelEconomy

references

assume {assumedCargoMass<=500 [kg]}
constraints

«requirement»
<2_2> highwayFuelEconomyRequirement: FuelEconomyRequirement

requiredFuelEconomy = 12.75 [km / L]
:>>FuelEconomyRequirement::requiredFuelEconomy

references

assume {assumedCargoMass<=500 [kg]}
constraints

*

*

*

* *

Figure 69. Requirements Group vehicleSpecification

item marketSurvey;
dependency from vehicleSpecification to marketSurvey;

requirement vehicleSpecification{
subject vehicle:Vehicle;
requirement <'1'> vehicleMassRequirement : MassRequirement {

doc /* The total mass of a vehicle shall be less than or equal to the required mass.
Assume total mass includes a full tank of gas of 60 kg*/
attribute redefines massRequired=2000 [kg];
attribute redefines massActual = vehicle.dryMass + fuelMassActual;
attribute fuelMassActual:>ISQ::mass;
attribute fuelMassMax:>ISQ::mass = 60 [kg];
assume constraint {fuelMassActual==fuelMassMax}

}
allocate vehicleMassRequirement to PartsTree::vehicle_b.mass;

requirement <'2'> vehicleFuelEconomyRequirements {
doc /* fuel economy requirements group */
attribute assumedCargoMass:>ISQ::mass;
requirement <'2_1'> cityFuelEconomyRequirement : FuelEconomyRequirement {

redefines requiredFuelEconomy= 10 [km / L];
assume constraint {assumedCargoMass>=500 [kg]}

636 OMG Systems Modeling Language (SysML) v2.0 Beta 1

psysml:561f4075-21e1-4459-b2a5-b1f0a8b24dca
psysml:561f4075-21e1-4459-b2a5-b1f0a8b24dca
psysml:561f4075-21e1-4459-b2a5-b1f0a8b24dca
psysml:561f4075-21e1-4459-b2a5-b1f0a8b24dca
psysml:94b238ad-45db-45cc-bd07-5321f34a8cd2
psysml:94b238ad-45db-45cc-bd07-5321f34a8cd2
psysml:94b238ad-45db-45cc-bd07-5321f34a8cd2
psysml:94b238ad-45db-45cc-bd07-5321f34a8cd2
psysml:94b238ad-45db-45cc-bd07-5321f34a8cd2
psysml:94b238ad-45db-45cc-bd07-5321f34a8cd2
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:85718f4b-05c4-40ec-9702-a60d57756a9a
psysml:bc807797-353a-4719-8f1f-46bff220579c
psysml:bc807797-353a-4719-8f1f-46bff220579c
psysml:bc807797-353a-4719-8f1f-46bff220579c
psysml:bc807797-353a-4719-8f1f-46bff220579c
psysml:bc807797-353a-4719-8f1f-46bff220579c
psysml:bc807797-353a-4719-8f1f-46bff220579c
psysml:bc807797-353a-4719-8f1f-46bff220579c
psysml:bc807797-353a-4719-8f1f-46bff220579c
psysml:bc807797-353a-4719-8f1f-46bff220579c
psysml:bc807797-353a-4719-8f1f-46bff220579c
psysml:bc807797-353a-4719-8f1f-46bff220579c
psysml:bc807797-353a-4719-8f1f-46bff220579c
psysml:de33cbbf-5d36-4e34-86ce-5495319792c3
psysml:de33cbbf-5d36-4e34-86ce-5495319792c3
psysml:de33cbbf-5d36-4e34-86ce-5495319792c3
psysml:de33cbbf-5d36-4e34-86ce-5495319792c3
psysml:de33cbbf-5d36-4e34-86ce-5495319792c3
psysml:de33cbbf-5d36-4e34-86ce-5495319792c3
psysml:de33cbbf-5d36-4e34-86ce-5495319792c3
psysml:de33cbbf-5d36-4e34-86ce-5495319792c3
psysml:de33cbbf-5d36-4e34-86ce-5495319792c3
psysml:de33cbbf-5d36-4e34-86ce-5495319792c3
psysml:de33cbbf-5d36-4e34-86ce-5495319792c3
psysml:cdb335cf-2bb6-4c65-8b23-adfc09f5d13c
psysml:cdb335cf-2bb6-4c65-8b23-adfc09f5d13c
psysml:cdb335cf-2bb6-4c65-8b23-adfc09f5d13c
psysml:cdb335cf-2bb6-4c65-8b23-adfc09f5d13c
psysml:cdb335cf-2bb6-4c65-8b23-adfc09f5d13c
psysml:cdb335cf-2bb6-4c65-8b23-adfc09f5d13c
psysml:cdb335cf-2bb6-4c65-8b23-adfc09f5d13c
psysml:cdb335cf-2bb6-4c65-8b23-adfc09f5d13c
psysml:cdb335cf-2bb6-4c65-8b23-adfc09f5d13c
psysml:cdb335cf-2bb6-4c65-8b23-adfc09f5d13c
psysml:cdb335cf-2bb6-4c65-8b23-adfc09f5d13c
psysml:7beacb0d-1e30-48d5-88ac-1cad5df20bd5
psysml:7beacb0d-1e30-48d5-88ac-1cad5df20bd5
psysml:7beacb0d-1e30-48d5-88ac-1cad5df20bd5
psysml:a42abc9a-a565-4009-81e8-80dddb4c9103
psysml:a42abc9a-a565-4009-81e8-80dddb4c9103
psysml:a42abc9a-a565-4009-81e8-80dddb4c9103
psysml:afad26bb-c7d4-4d18-a359-5a0efd737f9d
psysml:afad26bb-c7d4-4d18-a359-5a0efd737f9d
psysml:afad26bb-c7d4-4d18-a359-5a0efd737f9d
psysml:b0e45e43-d193-4d6d-9d4d-cf301df259d8
psysml:b0e45e43-d193-4d6d-9d4d-cf301df259d8
psysml:b0e45e43-d193-4d6d-9d4d-cf301df259d8
psysml:480724af-c2de-45dc-8e51-bcba0fda86ea
psysml:480724af-c2de-45dc-8e51-bcba0fda86ea
psysml:480724af-c2de-45dc-8e51-bcba0fda86ea

}
requirement <'2_2'> highwayFuelEconomyRequirement : FuelEconomyRequirement {

redefines requiredFuelEconomy= 12.75 [km / L];
assume constraint {assumedCargoMass>=500 [kg]}

}
}

}
requirement engineSpecification{

subject engine1:Engine;
requirement <'1'> enegineMassRequirement : MassRequirement {
...
}
#derivation connection{

end #original ::> vehicleSpecification.vehicleMassRequirement;
end #derive ::> engineSpecification.engineMassRequirement;

}
}

In order to evaluate whether vehicle_b satisfies the vehicleMassRequirement, the massActual must be
bound to the mass of vehicle_b. This is accomplished by asserting that vehicle_b satisfies the
vehicleSpecification and binding the actualMass of the requirement to the mass of vehicle_b. Asserting
vehicle_b satisfies the requirement is equivalent to imposing the mass constraint contained in the requirement on
vehicle_b.

satisfy vehicleSpecification by vehicle_b {
requirement vehicleMassRequirement :>> vehicleMassRequirement {

attribute redefines massActual = vehicle_b.mass;
attribute redefines fuelMassActual = vehicle_b.fuelTank.fuel.fuelMass;

}
}

A.9 Analysis
The FuelEconomyAnalyisModel package contains an analysis case called fuelEconomyAnalysis. The
objective for this analysis case is to estimate the fuel economy of the vehicle. Its subject is the part vehicle_b. The
analysis case accepts a nominal driving scenario as an input, and returns a calculatedFuelEconomy in
KilometersPerLitre as an output.

The analysis includes the following calculations to determine the result:
• TraveledDistance (scenario)
• AverageTravelTimePerDistance (scenario)
• ComputeBSFC (vehicle_b.engine)
• BestFuelConsumptionPerDistance (vehicle_b.mass, bsfc, tpd_avg, distance)
• IdlingFuelConsumptionPerTime (vehicle_b.engine)
• FuelConsumption (f_a, f_b, tpd_avg)

OMG Systems Modeling Language (SysML) v2.0, Beta 1 637

Figure 70. Analysis Case fuelEconomyAnalysis

analysis fuelEconomyAnalysis {
in attribute scenario: Scenario;

subject = vehicle_b;

objective fuelEconomyAnalysisObjective {
doc /* estimate the vehicle fuel economy */

}

attribute distance = TraveledDistance(scenario);
attribute tpd_avg = AverageTravelTimePerDistance(scenario);
attribute bsfc = ComputeBSFC(vehicle_b.engine);
attribute f_a =

BestFuelConsumptionPerDistance(vehicle_b.mass, bsfc, tpd_avg, distance);
attribute f_b = IdlingFuelConsumptionPerTime(vehicle_b.engine);
return attribute calculatedFuelEconomy:>distancePerVolume =

FuelConsumption(f_a, f_b, tpd_avg);
}

A.10 Verification
The simple verification case massTests is a usage of the verification case definition MassTest. The verification
objective is to verify the vehicleMassRequirement. The subject of the verification case is vehicle_b. The
verification case includes actions to weighVehicle and evaluatePassFail.

The massVerificationSystem performs the massTests. It is composed of an operator and a scale. The
scale performs the action to weighVehicle, and the operator performs the action to evaluatePassFail. The
verification case returns a verdict of pass or fail based on whether the measured mass satisfies the mass
requirement.

638 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Figure 71. Vehicle Mass Verification Test

package VerificationCaseDefinitions{
verification def MassTest;
verification def AccelerationTest;
verification def ReliabilityTest;

}
package VerificationCases1{

verification massTests:MassTest {
subject = vehicle_b;
objective {

verify vehicleSpecification.vehicleMassRequirement{
redefines massActual=weighVehicle.massMeasured;

}
}
metadata VerificationMethod{

kind = VerificationMethodKind::test;
}
action weighVehicle {

out massMeasured:>ISQ::mass;
}
then action evaluatePassFail {

in massMeasured:>ISQ::mass;
out verdict = PassIf(

vehicleSpecification.vehicleMassRequirement(vehicle_b)
);

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 639

flow from weighVehicle.massMeasured to evaluatePassFail.massMeasured;
return :>> verdict = evaluatePassFail.verdict;

}
}
package VerificationSystem{

part massVerificationSystem{
perform massTests;
part scale{

perform massTests.weighVehicle;
}
part operator{

perform massTests.evaluatePassFail;
}

}
}

A.11 View and Viewpoint
The SafetyEngineer is a stakeholder with a concern for VehicleSafety. The safetyViewpoint frames this
concern. The view vehiclePartsTree_Safety is a PartsTreeView that satisfies the SafetyViewpoint, and,
therefore, addresses the VehicleSafety concern.

The view definition TreeView defines views that are rendered as tree diagrams. The view definition
PartsTreeView specializes TreeView with a filter condition that only PartUsages should be included in the
view. The view usage vehiclePartsTree_Safety adds the further condition to only include parts that have the
metadata annotation for Safety. This view then exposes all the nested parts of vehicle_b, such that those parts
meeting all the filter criteria are rendered in a tree diagram.

ViewpointDefinitions

ViewDefinitions

VehicleSafetyView

PartsTree
«viewpoint def»

SafetyViewpoint

require vs: VehicleSafety
concerns

«part def»
SafetyEngineer

«concern def»
VehicleSafety

identify system safety features
doc

se: SafetyEngineer
stakeholders

«view def»
TreeView

asTreeDiagram:> Views::asTreeDiagram
renderings

«view def»
PartsTreeView

«view»
vehiclePartsTree_Safety: PartsTreeView

«import»*

«import»*

«import»**

«expose»**
«import»**

«im
port»**

«satisfy»

Figure 72. Vehicle Safety View

package Viewpoints{
part def SafetyEngineer;
concern def VehicleSafety {

doc /* Vehicle must have necessary safety features. */
stakeholder se:SafetyEngineer;

}
viewpoint safetyViewpoint{

frame concern vs:VehicleSafety;

640 OMG Systems Modeling Language (SysML) v2.0 Beta 1

}
}
package ViewDefinitions{

view def TreeView {
render asTreeDiagram;

}
view def PartsTreeView:>TreeView {

filter @SysML::PartUsage;
}

}
package VehicleViews{

view vehiclePartsTree_Safety:PartsTreeView{
satisfy safetyViewpoint;
filter @Safety;
expose vehicle_b::**;

}
}

Figure 73. Rendering of view vehiclePartsTree_Safety

A.12 Variability
The part vehicleFamily models a family of Vehicles that allows variations in the subparts engine,
transmission and sunroof. In particular, the part engine has two variants, engine4Cyl and engine6Cyl,
which constrain engine.cylinders to have multiplicity 4 and 6, respectively. The part cylinders of
engine6Cyl has an attribute diameter that is also a variation point, with two variants for smallDiameter and
largeDiameter. There are also two choices for the transmission and a sunroof is optional. The choice of a
selected variant at one variation point can constrain the available choices at another variation point. For this
example, the choices are constrained to be a 4 cylinder engine with a manual transmission or a 6 cylinder engine
with an automatic transmission.

«part»
vehicleFamily

«variation»
«part»

engine : Engine

«variant»
«part»

engine4Cyl: Engine4Cyl

«variant»
«part»

engine6Cyl: Engine6Cyl

«part»
cylinder: Cylinder

diameter : LengthValue
attributes

«variation»
«part»

transmissionChoices : TransmissionChoices

«variation»
«part»

sunroof : Sunroof

«assert constraint»
selectionConstraint

{ (engine==engine::engine4Cyl and
transmissionChoices==TransmissionChoices::transmissionManual)
xor
(engine==engine::engine6Cyl and
transmissionChoices==TransmissionChoices::transmissionAutomatic)
}

operator expressions
«part»

driveshaft
«part»

frontAxleAssembly
«part»

rearAxleAssembly

«part def»
TransmissionChoices

«variant»
«part»

transmissionAutomatic: TransmissionAutomatic

«variant»
«part»

transmissionManual: TransmissionManual

1

1 1

6

1 1

*

1 1 1

* *

Figure 74. Variability Model for vehicleFamily

variation part def TransmissionChoices:>Transmission {
variant part transmissionAutomatic:TransmissionAutomatic;
variant part transmissionManual:TransmissionManual;

}

OMG Systems Modeling Language (SysML) v2.0, Beta 1 641

psysml:b434b7bc-0c66-4829-b36a-2ca8a345e73d
psysml:b434b7bc-0c66-4829-b36a-2ca8a345e73d
psysml:b434b7bc-0c66-4829-b36a-2ca8a345e73d
psysml:b434b7bc-0c66-4829-b36a-2ca8a345e73d
psysml:b434b7bc-0c66-4829-b36a-2ca8a345e73d
psysml:de9670c3-84dc-4fac-bba1-709ec6d79ad1
psysml:de9670c3-84dc-4fac-bba1-709ec6d79ad1
psysml:de9670c3-84dc-4fac-bba1-709ec6d79ad1
psysml:de9670c3-84dc-4fac-bba1-709ec6d79ad1
psysml:de9670c3-84dc-4fac-bba1-709ec6d79ad1
psysml:de9670c3-84dc-4fac-bba1-709ec6d79ad1
psysml:a29133c6-4f9d-475b-b19a-12f77a1a4304
psysml:a29133c6-4f9d-475b-b19a-12f77a1a4304
psysml:a29133c6-4f9d-475b-b19a-12f77a1a4304
psysml:a29133c6-4f9d-475b-b19a-12f77a1a4304
psysml:a29133c6-4f9d-475b-b19a-12f77a1a4304
psysml:b2549595-f774-432a-a937-1190afcb13cd
psysml:b2549595-f774-432a-a937-1190afcb13cd
psysml:b2549595-f774-432a-a937-1190afcb13cd
psysml:b2549595-f774-432a-a937-1190afcb13cd
psysml:b2549595-f774-432a-a937-1190afcb13cd
psysml:3960e555-cc32-496c-8ca3-81c14c891247
psysml:3960e555-cc32-496c-8ca3-81c14c891247
psysml:3960e555-cc32-496c-8ca3-81c14c891247
psysml:3960e555-cc32-496c-8ca3-81c14c891247
psysml:3960e555-cc32-496c-8ca3-81c14c891247
psysml:3960e555-cc32-496c-8ca3-81c14c891247
psysml:3960e555-cc32-496c-8ca3-81c14c891247
psysml:2c3fcd09-1c58-4af8-b8e4-a4c2e5ac1d7e
psysml:2c3fcd09-1c58-4af8-b8e4-a4c2e5ac1d7e
psysml:2c3fcd09-1c58-4af8-b8e4-a4c2e5ac1d7e
psysml:2c3fcd09-1c58-4af8-b8e4-a4c2e5ac1d7e
psysml:2c3fcd09-1c58-4af8-b8e4-a4c2e5ac1d7e
psysml:2c3fcd09-1c58-4af8-b8e4-a4c2e5ac1d7e
psysml:dd34f9a9-1638-4471-9aef-d304e83a1455
psysml:dd34f9a9-1638-4471-9aef-d304e83a1455
psysml:dd34f9a9-1638-4471-9aef-d304e83a1455
psysml:dd34f9a9-1638-4471-9aef-d304e83a1455
psysml:dd34f9a9-1638-4471-9aef-d304e83a1455
psysml:dd34f9a9-1638-4471-9aef-d304e83a1455
psysml:0a6d0113-b140-4b32-a6eb-f7af49d68021
psysml:0a6d0113-b140-4b32-a6eb-f7af49d68021
psysml:0a6d0113-b140-4b32-a6eb-f7af49d68021
psysml:0a6d0113-b140-4b32-a6eb-f7af49d68021
psysml:0a6d0113-b140-4b32-a6eb-f7af49d68021
psysml:0a6d0113-b140-4b32-a6eb-f7af49d68021
psysml:0a6d0113-b140-4b32-a6eb-f7af49d68021
psysml:0a6d0113-b140-4b32-a6eb-f7af49d68021
psysml:0a6d0113-b140-4b32-a6eb-f7af49d68021
psysml:0a6d0113-b140-4b32-a6eb-f7af49d68021
psysml:0a6d0113-b140-4b32-a6eb-f7af49d68021
psysml:f9c9a3dd-eb45-4dff-b4d1-ab1845064bb5
psysml:f9c9a3dd-eb45-4dff-b4d1-ab1845064bb5
psysml:f9c9a3dd-eb45-4dff-b4d1-ab1845064bb5
psysml:f9c9a3dd-eb45-4dff-b4d1-ab1845064bb5
psysml:77fb0336-2de3-4929-97e6-999171a9ada7
psysml:77fb0336-2de3-4929-97e6-999171a9ada7
psysml:77fb0336-2de3-4929-97e6-999171a9ada7
psysml:77fb0336-2de3-4929-97e6-999171a9ada7
psysml:b63fb2d1-d9a3-4334-b467-1c99c252a47f
psysml:b63fb2d1-d9a3-4334-b467-1c99c252a47f
psysml:b63fb2d1-d9a3-4334-b467-1c99c252a47f
psysml:b63fb2d1-d9a3-4334-b467-1c99c252a47f
psysml:b53e5d21-0dce-41a3-bfc4-38b27a642c07
psysml:b53e5d21-0dce-41a3-bfc4-38b27a642c07
psysml:b53e5d21-0dce-41a3-bfc4-38b27a642c07
psysml:b53e5d21-0dce-41a3-bfc4-38b27a642c07
psysml:8b477fd1-2b7e-4831-82f4-715d6f008106
psysml:8b477fd1-2b7e-4831-82f4-715d6f008106
psysml:8b477fd1-2b7e-4831-82f4-715d6f008106
psysml:8b477fd1-2b7e-4831-82f4-715d6f008106
psysml:8b477fd1-2b7e-4831-82f4-715d6f008106
psysml:9b90371d-0cc3-4562-ac34-dc5b4b1c0235
psysml:9b90371d-0cc3-4562-ac34-dc5b4b1c0235
psysml:9b90371d-0cc3-4562-ac34-dc5b4b1c0235
psysml:9b90371d-0cc3-4562-ac34-dc5b4b1c0235
psysml:9b90371d-0cc3-4562-ac34-dc5b4b1c0235
psysml:29435db2-f166-4b8e-8a2c-5c27dc7686d4
psysml:29435db2-f166-4b8e-8a2c-5c27dc7686d4
psysml:29435db2-f166-4b8e-8a2c-5c27dc7686d4
psysml:aafe0a54-289c-4bd3-becd-fd22ef9828e2
psysml:aafe0a54-289c-4bd3-becd-fd22ef9828e2
psysml:aafe0a54-289c-4bd3-becd-fd22ef9828e2
psysml:aafe0a54-289c-4bd3-becd-fd22ef9828e2
psysml:aafe0a54-289c-4bd3-becd-fd22ef9828e2
psysml:e8a45544-82bb-476a-b7fb-7feeccd1459c
psysml:e8a45544-82bb-476a-b7fb-7feeccd1459c
psysml:e8a45544-82bb-476a-b7fb-7feeccd1459c
psysml:e8a45544-82bb-476a-b7fb-7feeccd1459c
psysml:e8a45544-82bb-476a-b7fb-7feeccd1459c
psysml:484654d7-1305-4535-854c-53f2659c9e52
psysml:484654d7-1305-4535-854c-53f2659c9e52
psysml:484654d7-1305-4535-854c-53f2659c9e52
psysml:134c45bf-a45b-45c0-b135-96e8c2de3102
psysml:134c45bf-a45b-45c0-b135-96e8c2de3102
psysml:134c45bf-a45b-45c0-b135-96e8c2de3102
psysml:21fb1b39-4bc3-4ae5-b3d9-6a31f19eca80
psysml:21fb1b39-4bc3-4ae5-b3d9-6a31f19eca80
psysml:21fb1b39-4bc3-4ae5-b3d9-6a31f19eca80
psysml:2c4fb183-49f4-4b2c-9e67-de8a27531012
psysml:2c4fb183-49f4-4b2c-9e67-de8a27531012
psysml:2c4fb183-49f4-4b2c-9e67-de8a27531012
psysml:3bb81414-c081-4b93-a778-577891b6537e
psysml:3bb81414-c081-4b93-a778-577891b6537e
psysml:3bb81414-c081-4b93-a778-577891b6537e
psysml:575f1da4-0341-459d-ba70-8af29237a943
psysml:575f1da4-0341-459d-ba70-8af29237a943
psysml:575f1da4-0341-459d-ba70-8af29237a943
psysml:950ed9a8-346a-4c6a-8073-f9edd96d3078
psysml:950ed9a8-346a-4c6a-8073-f9edd96d3078
psysml:950ed9a8-346a-4c6a-8073-f9edd96d3078
psysml:6ea6edda-1bc7-4cf4-a866-942fd1bfa48e
psysml:6ea6edda-1bc7-4cf4-a866-942fd1bfa48e
psysml:6ea6edda-1bc7-4cf4-a866-942fd1bfa48e
psysml:6ea6edda-1bc7-4cf4-a866-942fd1bfa48e
psysml:6864a54a-f442-457c-a1d4-b7def8e02b41
psysml:6864a54a-f442-457c-a1d4-b7def8e02b41
psysml:6864a54a-f442-457c-a1d4-b7def8e02b41
psysml:6864a54a-f442-457c-a1d4-b7def8e02b41
psysml:6864a54a-f442-457c-a1d4-b7def8e02b41
psysml:c88fc4fe-743e-47db-9d09-3afdc580034f
psysml:c88fc4fe-743e-47db-9d09-3afdc580034f
psysml:c88fc4fe-743e-47db-9d09-3afdc580034f
psysml:c88fc4fe-743e-47db-9d09-3afdc580034f
psysml:c88fc4fe-743e-47db-9d09-3afdc580034f

abstract part vehicleFamily:>vehicle_a{
variation part engine:Engine{

variant part engine4Cyl:Engine4Cyl;
variant part engine6Cyl:Engine6Cyl{

part cylinder:Cylinder [6]{
variation attribute diameter:LengthValue{

variant attribute smallDiameter:LengthValue;
variant attribute largeDiagmeter:LengthValue;

}
}

}
}
variation part transmission:TransmissionChoices;
variation part sunroof:Sunroof;
assert constraint selectionConstraint {

(engine==engine::engine4Cyl and
transmission==TransmissionChoices::transmissionManual) xor

(engine==engine::engine6Cyl and
transmission==TransmissionChoices::transmissionAutomatic)

}
}

A.13 Individuals
The part definition Vehicle represents a class of individual vehicles with common characteristics. The parts
vehicle_a and vehicle_b are usages of Vehicle with different part decompositions. There can be many
individual vehicles that conform to vehicle_a or vehicle_b.

The individual part definition Vehicle_1 is a specialization of Vehicle that restricts the part definition to a single
individual. A usage vehicle_1 of this definition represents that individual within a specific context. This usage can
also subset vehicle_b and inherit the parts hierarchy and other features of vehicle_b.

Additional individual definitions FrontAxleAssembly_1, FrontAxle_1, Wheel_1, Wheel_2, etc., are similarly
specializations of their respective part definitions. The vehicle_1.frontAxleAssembly is a usage of
FrontAxleAssembly_1, whose frontAxle is a usage of FrontAxle_1, whose wheels are Wheel_1 and
Wheel_2. In this way, vehicle_1 can decompose into a hierarchy of individual parts.

An individual definition and usage can be created for any definition and usage element. An individual action for
example, represents a particular performance of an action with individual inputs and outputs.

The part definition VehicleRoadContext defines a context containing vehicle:Vehicle and road:Road
subparts. The individual definition VehicleRoadContext_1 is a specialization of VehicleRoadContext whose
subparts are constrained to be usages of the individual definitions Vehicle_1 and Road_1.

As shown below, there is a time slice of VehicleRoadContext_1 from t0 to t2 called t0_t2_a with three
snapshots t0_a, t1_a and t2_a, at the times t0, t1 and t2, respectively. Each context snapshot contains snapshots
of Vehicle_1 and Road_1 at the respective times. Each of the vehicle and road snapshots are characterized by
specific values for their attributes. In addition, the vehicle snapshot contains snapshots of its individual parts
consistent with the decomposition of vehicle_1.

An analysis may be used to compute the values of the attributes for each snapshot. The analysis results reflect the
time history of the individuals, which may be visualized using typical time-based plots and data representations.

642 OMG Systems Modeling Language (SysML) v2.0 Beta 1

Figure 75. Vehicle Individuals and Snapshots

individual a:VehicleRoadContext_1{
timeslice t0_t2_a{

snapshot t0_a {
attribute t0 redefines time=0 [s];
snapshot t0_r:Road_1{

:>>incline=0;
:>>friction=.1;

}
snapshot t0_v:Vehicle_1{

:>>position=0 [m];
:>>velocity=0 [m];
:>>acceleration=1.96 [m/s**2];
snapshot t0_fa:FrontAxleAssembly_1{

snapshot t0_leftFront:Wheel_1;
snapshot t0_rightFront:Wheel_2;

}
}

}
snapshot t1_a{

attribute t1 redefines time=1 [s];
snapshot t1_r:Road_1{

:>>incline=0;
:>>friction=.1;

}
snapshot t1_v:Vehicle_1{

:>>position=.98 [m];
:>>velocity=1.96 [m/s];
:>>acceleration=1.96 [m/s**2];
snapshot t1_fa:FrontAxleAssembly_1{

snapshot t1_leftFront:Wheel_1;
snapshot t1_rightFront:Wheel_2;

OMG Systems Modeling Language (SysML) v2.0, Beta 1 643

}
}

}
snapshot t2_a{

attribute t2 redefines time=2 [s];
snapshot t2_r:Road_1{

:>>incline =0;
:>>friction=.1;

}
snapshot t2_v:Vehicle_1{

:>>position=3.92 [m];
:>>velocity=3.92 [m/s];
:>>acceleration=1.96 [m/s**2];
snapshot t2_fa:FrontAxleAssembly_1{

snapshot t2_leftFront:Wheel_1;
snapshot t2_rightFront:Wheel_2;

}
}

}
}

}

644 OMG Systems Modeling Language (SysML) v2.0 Beta 1

OMG Systems Modeling Language (SysML) v2.0, Beta 1 645

	Table of Contents
	List of Tables
	List of Figures
	0 Preface
	OMG Specifications

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Introduction
	6.1 Document Overview
	6.2 Document Organization
	6.3 Acknowlegements

	7 Language Description
	7.1 Language Overview
	7.2 Elements and Relationships
	7.2.1 Elements and Relationships Overview
	7.2.2 Elements
	7.2.3 Relationships

	7.3 Dependencies
	7.3.1 Dependencies Overview
	7.3.2 Dependency Declaration

	7.4 Annotations
	7.4.1 Annotations Overview
	7.4.2 Comments and Documentation
	7.4.3 Textual Representation

	7.5 Namespaces and Packages
	7.5.1 Namespaces Overview
	7.5.2 Owned Members and Aliases
	7.5.3 Imports
	7.5.4 Import Filtering
	7.5.5 Root Namespaces

	7.6 Definition and Usage
	7.6.1 Definition and Usage Overview
	Definitions and Usages
	Features
	Specialization
	Variability
	Graphical Compartments

	7.6.2 Definitions
	7.6.3 Usages
	7.6.4 Reference Usages
	7.6.5 Effective Names
	7.6.6 Feature Chains
	7.6.7 Variations and Variants
	7.6.8 Implicit Specialization

	7.7 Attributes
	7.7.1 Attributes Overview
	7.7.2 Attribute Definitions and Usages

	7.8 Enumerations
	7.8.1 Enumerations Overview
	7.8.2 Enumeration Definitions and Usages

	7.9 Occurrences
	7.9.1 Occurrences Overview
	Occurrences
	Time Slices and Snapshots
	Individuals
	Events

	7.9.2 Occurrence Definitions and Usages
	7.9.3 Time Slices and Snapshots
	7.9.4 Individual Definitions and Usages
	7.9.5 Event Occurrence Usages

	7.10 Items
	7.10.1 Items Overview
	7.10.2 Item Definitions and Usages

	7.11 Parts
	7.11.1 Parts Overview
	7.11.2 Part Definitions and Usages

	7.12 Ports
	7.12.1 Ports Overview
	7.12.2 Port Definitions and Usages
	7.12.3 Conjugated Port Definitions and Usages

	7.13 Connections
	7.13.1 Connections Overview
	Connection Definition and Usage
	Bindings and Successions
	Flow Connection Usages

	7.13.2 Connection Definitions and Usages
	7.13.3 Bindings as Usages
	7.13.4 Feature Values
	7.13.5 Successions as Usages
	7.13.6 Flow Connection Usages and Messages

	7.14 Interfaces
	7.14.1 Interfaces Overview
	7.14.2 Interface Definitions and Usages

	7.15 Allocations
	7.15.1 Allocations Overview
	7.15.2 Allocation Definitions and Usages

	7.16 Actions
	7.16.1 Actions Overview
	Action Definition and Usage
	Performed Actions
	Sequencing of Actions
	Bindings and Flows Between Actions
	Assignment Actions
	Structured Control Actions

	7.16.2 Action Definitions and Usages
	7.16.3 Control Nodes
	7.16.4 Succession Shorthands
	7.16.5 Conditional Successions
	7.16.6 Perform Action Usages
	7.16.7 Send Action Usages
	7.16.8 Accept Action Usages
	7.16.9 Assignment Action Usages
	7.16.10 If Action Usages
	7.16.11 Loop Action Usages
	While Loops
	For Loops

	7.17 States
	7.17.1 States Overview
	States
	Exhibited States
	Transitions
	Parallel States

	7.17.2 State Definitions and Usages
	7.17.3 Transition Usages
	7.17.4 Exhibit State Usages

	7.18 Calculations
	7.18.1 Calculations Overview
	7.18.2 Calculation Definitions and Usages

	7.19 Constraints
	7.19.1 Constraints Overview
	Constraint Definition and Usage
	Asserted Constraints

	7.19.2 Constraint Definitions and Usages
	7.19.3 Assert Constraint Usages

	7.20 Requirements
	7.20.1 Requirements Overview
	Requirements
	Subjects
	Actors, Stakeholders and Concerns
	Requirement Satisfaction

	7.20.2 Requirement Definition and Usage
	7.20.3 Concern Definitions and Usages
	7.20.4 Satisfy Requirement Usages

	7.21 Cases
	7.21.1 Cases Overview
	7.21.2 Case Definitions and Usages

	7.22 Analysis Cases
	7.22.1 Analysis Cases Overview
	7.22.2 Analysis Case Definitions and Usages
	7.22.3 Trade-Off Analyses

	7.23 Verification Cases
	7.23.1 Verification Cases Overview
	7.23.2 Verification Case Definitions and Usages

	7.24 Use Cases
	7.24.1 Use Cases Overview
	7.24.2 Use Case Definitions and Usages
	7.24.3 Include Use Case Usages

	7.25 Views and Viewpoints
	7.25.1 Views and Viewpoints Overview
	7.25.2 View Definitions and Usages
	7.25.3 Viewpoint Definitions and Usages
	7.25.4 Rendering Definitions and Usages
	7.25.5 Diagrams

	7.26 Metadata
	7.26.1 Metadata Overview
	7.26.2 Metadata Definitions and Usages
	7.26.3 Semantic Metadata
	7.26.4 User-Defined Keywords

	8 Metamodel
	8.1 Metamodel Overview
	8.2 Concrete Syntax
	8.2.1 Concrete Syntax Overview
	8.2.2 Textual Notation
	8.2.2.1 Textual Notation Overview
	8.2.2.1.1 EBNF Conventions
	8.2.2.1.2 Lexical Structure

	8.2.2.2 Elements and Relationships Textual Notation
	8.2.2.3 Dependencies Textual Notation
	8.2.2.4 Annotations Textual Notation
	8.2.2.4.1 Annotations
	8.2.2.4.2 Comments and Documentation
	8.2.2.4.3 Textual Representation

	8.2.2.5 Namespaces and Packages Textual Notation
	8.2.2.5.1 Packages
	8.2.2.5.2 Package Elements

	8.2.2.6 Definition and Usage Textual Notation
	8.2.2.6.1 Definitions
	8.2.2.6.2 Usages
	8.2.2.6.3 Reference Usages
	8.2.2.6.4 Body Elements
	8.2.2.6.5 Specialization
	8.2.2.6.6 Multiplicity

	8.2.2.7 Attributes Textual Notation
	8.2.2.8 Enumerations Textual Notation
	8.2.2.9 Occurrences Textual Notation
	8.2.2.9.1 Occurrence Definitions
	8.2.2.9.2 Occurrence Usages
	8.2.2.9.3 Occurrence Successions

	8.2.2.10 Items Textual Notation
	8.2.2.11 Parts Textual Notation
	8.2.2.12 Ports Textual Notation
	8.2.2.13 Connections Textual Notation
	8.2.2.13.1 Connection Definition and Usage
	8.2.2.13.2 Binding Connectors
	8.2.2.13.3 Successions
	8.2.2.13.4 Messages and Flow Connections

	8.2.2.14 Interfaces Textual Notation
	8.2.2.14.1 Interface Definitions
	8.2.2.14.2 Interface Usages

	8.2.2.15 Allocations Textual Notation
	8.2.2.16 Actions Textual Notation
	8.2.2.16.1 Action Definitions
	8.2.2.16.2 Action Usages
	8.2.2.16.3 Control Nodes
	8.2.2.16.4 Send and Accept Action Usages
	8.2.2.16.5 Assignment Action Usages
	8.2.2.16.6 Structured Control Action Usages
	8.2.2.16.7 Action Successions

	8.2.2.17 States Textual Notation
	8.2.2.17.1 State Definitions
	8.2.2.17.2 State Usages
	8.2.2.17.3 Transition Usages

	8.2.2.18 Calculations Textual Notation
	8.2.2.19 Constraints Textual Notation
	8.2.2.20 Requirements Textual Notation
	8.2.2.20.1 Requirement Definitions
	8.2.2.20.2 Requirement Usages
	8.2.2.20.3 Concerns

	8.2.2.21 Cases Textual Notation
	8.2.2.22 Analysis Cases Textual Notation
	8.2.2.23 Verification Cases Textual Notation
	8.2.2.24 Use Cases Textual Notation
	8.2.2.25 Views and Viewpoints Textual Notation
	8.2.2.25.1 View Definitions
	8.2.2.25.2 View Usages
	8.2.2.25.3 Viewpoints
	8.2.2.25.4 Renderings

	8.2.2.26 Metadata Textual Notation

	8.2.3 Graphical Notation
	8.2.3.1 Graphical Notation Overview
	8.2.3.2 Elements and Relationships Graphical Notation
	8.2.3.3 Dependencies Graphical Notation
	8.2.3.4 Annotations Graphical Notation
	8.2.3.5 Namespaces and Packages Graphical Notation
	8.2.3.6 Definition and Usage Graphical Notation
	8.2.3.7 Attributes Graphical Notation
	8.2.3.8 Enumerations Graphical Notation
	8.2.3.9 Occurrences Graphical Notation
	8.2.3.10 Items Graphical Notation
	8.2.3.11 Parts Graphical Notation
	8.2.3.12 Ports Graphical Notation
	8.2.3.13 Connections Graphical Notation
	8.2.3.14 Interfaces Graphical Notation
	8.2.3.15 Allocations Graphical Notation
	8.2.3.16 Actions Graphical Notation
	8.2.3.17 States Graphical Notation
	8.2.3.18 Calculations Graphical Notation
	8.2.3.19 Constraints Graphical Notation
	8.2.3.20 Requirements Graphical Notation
	8.2.3.21 Cases Graphical Notation
	8.2.3.22 Analysis Cases Graphical Notation
	8.2.3.23 Verification Cases Graphical Notation
	8.2.3.24 Use Cases Graphical Notation
	8.2.3.25 Views and Viewpoints Graphical Notation
	8.2.3.26 Metadata Graphical Notation

	8.3 Abstract Syntax
	8.3.1 Abstract Syntax Overview
	8.3.2 Elements and Relationships Abstract Syntax
	8.3.3 Dependencies Abstract Syntax
	8.3.4 Annotations Abstract Syntax
	8.3.5 Namespaces and Packages Abstract Syntax
	8.3.6 Definition and Usage Abstract Syntax
	8.3.6.1 Overview
	8.3.6.2 Definition
	8.3.6.3 ReferenceUsage
	8.3.6.4 Usage
	8.3.6.5 VariantMembership

	8.3.7 Attributes Abstract Syntax
	8.3.7.1 Overview
	8.3.7.2 AttributeDefinition
	8.3.7.3 AttributeUsage

	8.3.8 Enumerations Abstract Syntax
	8.3.8.1 Overview
	8.3.8.2 EnumerationDefinition
	8.3.8.3 EnumerationUsage

	8.3.9 Occurrences Abstract Syntax
	8.3.9.1 Overview
	8.3.9.2 EventOccurrenceUsage
	8.3.9.3 LifeClass
	8.3.9.4 OccurrenceDefinition
	8.3.9.5 OccurrenceUsage
	8.3.9.6 PortionKind

	8.3.10 Items Abstract Syntax
	8.3.10.1 Overview
	8.3.10.2 ItemDefinition
	8.3.10.3 ItemUsage

	8.3.11 Parts Abstract Syntax
	8.3.11.1 Overview
	8.3.11.2 PartDefinition
	8.3.11.3 PartUsage

	8.3.12 Ports Abstract Syntax
	8.3.12.1 Overview
	8.3.12.2 ConjugatedPortDefinition
	8.3.12.3 ConjugatedPortTyping
	8.3.12.4 PortConjugation
	8.3.12.5 PortDefinition
	8.3.12.6 PortUsage

	8.3.13 Connections Abstract Syntax
	8.3.13.1 Overview
	8.3.13.2 BindingConnectorAsUsage
	8.3.13.3 ConnectionDefinition
	8.3.13.4 ConnectionUsage
	8.3.13.5 ConnectorAsUsage
	8.3.13.6 FlowConnectionDefinition
	8.3.13.7 FlowConnectionUsage
	8.3.13.8 SuccessionAsUsage
	8.3.13.9 SuccessionFlowConnectionUsage

	8.3.14 Interfaces Abstract Syntax
	8.3.14.1 Overview
	8.3.14.2 InterfaceDefinition
	8.3.14.3 InterfaceUsage

	8.3.15 Allocations Abstract Syntax
	8.3.15.1 Overview
	8.3.15.2 AllocationDefinition
	8.3.15.3 AllocationUsage

	8.3.16 Actions Abstract Syntax
	8.3.16.1 Overview
	8.3.16.2 AcceptActionUsage
	8.3.16.3 ActionDefinition
	8.3.16.4 ActionUsage
	8.3.16.5 AssignmentActionUsage
	8.3.16.6 ControlNode
	8.3.16.7 DecisionNode
	8.3.16.8 ForkNode
	8.3.16.9 ForLoopActionUsage
	8.3.16.10 IfActionUsage
	8.3.16.11 JoinNode
	8.3.16.12 LoopActionUsage
	8.3.16.13 MergeNode
	8.3.16.14 PerformActionUsage
	8.3.16.15 SendActionUsage
	8.3.16.16 TriggerInvocationExpression
	8.3.16.17 TriggerKind
	8.3.16.18 WhileLoopActionUsage

	8.3.17 States Abstract Syntax
	8.3.17.1 Overview
	8.3.17.2 ExhibitStateUsage
	8.3.17.3 StateSubactionKind
	8.3.17.4 StateSubactionMembership
	8.3.17.5 StateDefinition
	8.3.17.6 StateUsage
	8.3.17.7 TransitionFeatureKind
	8.3.17.8 TransitionFeatureMembership
	8.3.17.9 TransitionUsage

	8.3.18 Calculations Abstract Syntax
	8.3.18.1 Overview
	8.3.18.2 CalculationDefinition
	8.3.18.3 CalculationUsage

	8.3.19 Constraints Abstract Syntax
	8.3.19.1 Overview
	8.3.19.2 AssertConstraintUsage
	8.3.19.3 ConstraintDefinition
	8.3.19.4 ConstraintUsage

	8.3.20 Requirements Abstract Syntax
	8.3.20.1 Overview
	8.3.20.2 ActorMembership
	8.3.20.3 ConcernDefinition
	8.3.20.4 ConcernUsage
	8.3.20.5 FramedConcernMembership
	8.3.20.6 RequirementConstraintKind
	8.3.20.7 RequirementConstraintMembership
	8.3.20.8 RequirementDefinition
	8.3.20.9 RequirementUsage
	8.3.20.10 SatisfyRequirementUsage
	8.3.20.11 SubjectMembership
	8.3.20.12 StakeholderMembership

	8.3.21 Cases Abstract Syntax
	8.3.21.1 Overview
	8.3.21.2 CaseDefinition
	8.3.21.3 CaseUsage
	8.3.21.4 ObjectiveMembership

	8.3.22 Analysis Cases Abstract Syntax
	8.3.22.1 Overview
	8.3.22.2 AnalysisCaseDefinition
	8.3.22.3 AnalysisCaseUsage

	8.3.23 Verification Cases Abstract Syntax
	8.3.23.1 Overview
	8.3.23.2 RequirementVerificationMembership
	8.3.23.3 VerificationCaseDefinition
	8.3.23.4 VerificationCaseUsage

	8.3.24 Use Cases Abstract Syntax
	8.3.24.1 Overview
	8.3.24.2 IncludeUseCaseUsage
	8.3.24.3 UseCaseDefinition
	8.3.24.4 UseCaseUsage

	8.3.25 Views and Viewpoints Abstract Syntax
	8.3.25.1 Overview
	8.3.25.2 Expose
	8.3.25.3 MembershipExpose
	8.3.25.4 NamespaceExpose
	8.3.25.5 RenderingDefinition
	8.3.25.6 RenderingUsage
	8.3.25.7 ViewDefinition
	8.3.25.8 ViewpointDefinition
	8.3.25.9 ViewpointUsage
	8.3.25.10 ViewRenderingMembership
	8.3.25.11 ViewUsage

	8.3.26 Metadata Abstract Syntax
	8.3.26.1 Overview
	8.3.26.2 MetadataDefinition
	8.3.26.3 MetadataUsage

	8.4 Semantics
	8.4.1 Semantics Overview
	8.4.2 Definition and Usage Semantics
	8.4.2.1 Definitions
	8.4.2.2 Usages
	8.4.2.3 Variation Definitions and Usages

	8.4.3 Attributes Semantics
	8.4.3.1 Attribute Definitions
	8.4.3.2 Attribute Usages

	8.4.4 Enumerations Semantics
	8.4.5 Occurrences Semantics
	8.4.5.1 Occurrence Definitions
	8.4.5.2 Occurrence Usages
	8.4.5.3 Event Occurrence Usages

	8.4.6 Items Semantics
	8.4.6.1 Item Definitions
	8.4.6.2 Item Usages

	8.4.7 Parts Semantics
	8.4.7.1 Part Definitions
	8.4.7.2 Part Usages

	8.4.8 Ports Semantics
	8.4.8.1 Port Definitions
	8.4.8.2 Port Usages

	8.4.9 Connections Semantics
	8.4.9.1 Connection Definitions
	8.4.9.2 Connection Usages
	8.4.9.3 Binding Connectors As Usages
	8.4.9.4 Successions As Usages
	8.4.9.5 Flow Connection Definitions
	8.4.9.6 Flow Connection Usages
	8.4.9.7 Succession Flow Connection Usage

	8.4.10 Interfaces Semantics
	8.4.10.1 Interface Definitions
	8.4.10.2 Interface Usages

	8.4.11 Allocations Semantics
	8.4.11.1 Allocation Definitions
	8.4.11.2 Allocation Usages

	8.4.12 Actions Semantics
	8.4.12.1 Action Definitions
	8.4.12.2 Action Usages
	Semantics of this

	8.4.12.3 Decision Transition Usages
	8.4.12.4 Control Nodes
	Join Nodes
	Fork Nodes
	Merge Nodes
	Decision Nodes

	8.4.12.5 Send Action Usages
	8.4.12.6 Accept Action Usages
	8.4.12.7 Assignment Action Usages
	8.4.12.8 If Action Usages
	8.4.12.9 Loop Action Usages
	While Loops
	For Loops

	8.4.12.10 Perform Action Usages

	8.4.13 States Semantics
	8.4.13.1 State Definitions
	8.4.13.2 State Usages
	8.4.13.3 Transition Usages
	8.4.13.4 Exhibit State Usages

	8.4.14 Calculations Semantics
	8.4.14.1 Calculation Definitions
	8.4.14.2 Calculation Usages

	8.4.15 Constraints Semantics
	8.4.15.1 Constraint Definitions
	8.4.15.2 Constraint Usages
	8.4.15.3 Assert Constraint Usages

	8.4.16 Requirements Semantics
	8.4.16.1 Requirement Definitions
	8.4.16.2 Requirement Usages
	8.4.16.3 Satisfy Requirement Usages
	8.4.16.4 Concern Definitions
	8.4.16.5 Concern Usages

	8.4.17 Cases Semantics
	8.4.17.1 Case Definitions
	8.4.17.2 Case Usages

	8.4.18 Analysis Cases Semantics
	8.4.18.1 Analysis Case Definitions
	8.4.18.2 Analysis Case Usages

	8.4.19 Verification Cases Semantics
	8.4.19.1 Verification Case Definitions
	8.4.19.2 Verification Case Usages

	8.4.20 Use Cases Semantics
	8.4.20.1 Use Case Definitions
	8.4.20.2 Use Case Usages
	8.4.20.3 Include Use Case Usages

	8.4.21 Views and Viewpoints Semantics
	8.4.21.1 View Definitions
	8.4.21.2 View Usages
	8.4.21.3 Viewpoint Definitions
	8.4.21.4 Viewpoint Usages
	8.4.21.5 Rendering Definitions
	8.4.21.6 Rendering Usages

	8.4.22 Metadata Semantics
	8.4.22.1 Metadata Definitions
	8.4.22.2 Metadata Usages

	9 Model Libraries
	9.1 Model Libraries Overview
	9.2 Systems Model Library
	9.2.1 Systems Model Library Overview
	9.2.2 Attributes
	9.2.2.1 Attributes Overview
	9.2.2.2 Elements
	9.2.2.2.1 AttributeValue
	9.2.2.2.2 attributeValues

	9.2.3 Items
	9.2.3.1 Items Overview
	9.2.3.2 Elements
	9.2.3.2.1 Item
	9.2.3.2.2 items
	9.2.3.2.3 Touches

	9.2.4 Parts
	9.2.4.1 Parts Overview
	9.2.4.2 Elements
	9.2.4.2.1 Part
	9.2.4.2.2 parts

	9.2.5 Ports
	9.2.5.1 Ports Overview
	9.2.5.2 Elements
	9.2.5.2.1 Port
	9.2.5.2.2 ports

	9.2.6 Connections
	9.2.6.1 Connections Overview
	9.2.6.2 Elements
	9.2.6.2.1 BinaryConnection
	9.2.6.2.2 binaryConnections
	9.2.6.2.3 Connection
	9.2.6.2.4 connections
	9.2.6.2.5 FlowConnection
	9.2.6.2.6 flowConnections
	9.2.6.2.7 MessageConnection
	9.2.6.2.8 messageConnections
	9.2.6.2.9 SuccessionFlowConnection
	9.2.6.2.10 successionFlowConnections

	9.2.7 Interfaces
	9.2.7.1 Interfaces Overview
	9.2.7.2 Elements
	9.2.7.2.1 BinaryInterface
	9.2.7.2.2 binaryInterfaces
	9.2.7.2.3 Interface
	9.2.7.2.4 interfaces

	9.2.8 Allocations
	9.2.8.1 Allocations Overview
	9.2.8.2 Elements
	9.2.8.2.1 Allocation
	9.2.8.2.2 allocations

	9.2.9 Actions
	9.2.9.1 Actions Overview
	9.2.9.2 Elements
	9.2.9.2.1 AcceptAction
	9.2.9.2.2 acceptActions
	9.2.9.2.3 AcceptMessageAction
	9.2.9.2.4 Action
	9.2.9.2.5 actions
	9.2.9.2.6 AssignmentAction
	9.2.9.2.7 assignmentActions
	9.2.9.2.8 ControlAction
	9.2.9.2.9 DecisionAction
	9.2.9.2.10 DecisionTransitionAction
	9.2.9.2.11 ForkAction
	9.2.9.2.12 ForLoopAction
	9.2.9.2.13 forLoopActions
	9.2.9.2.14 IfThenAction
	9.2.9.2.15 ifThenActions
	9.2.9.2.16 IfThenElseAction
	9.2.9.2.17 ifThenElseActions
	9.2.9.2.18 JoinAction
	9.2.9.2.19 LoopAction
	9.2.9.2.20 loopActions
	9.2.9.2.21 MergeAction
	9.2.9.2.22 SendAction
	9.2.9.2.23 sendActions
	9.2.9.2.24 TransitionAction
	9.2.9.2.25 transitionActions
	9.2.9.2.26 WhileLoopAction
	9.2.9.2.27 whileLoopActions

	9.2.10 States
	9.2.10.1 States Overview
	9.2.10.2 Elements
	9.2.10.2.1 StateAction
	9.2.10.2.2 stateActions
	9.2.10.2.3 StateTransitionAction

	9.2.11 Calculations
	9.2.11.1 Calculations Overview
	9.2.11.2 Elements
	9.2.11.2.1 Calculation
	9.2.11.2.2 calculations

	9.2.12 Constraints
	9.2.12.1 Constraints Overview
	9.2.12.2 Elements
	9.2.12.2.1 assertedConstraintChecks
	9.2.12.2.2 ConstraintCheck
	9.2.12.2.3 constraintChecks
	9.2.12.2.4 negatedConstraintChecks

	9.2.13 Requirements
	9.2.13.1 Requirements Overview
	9.2.13.2 Elements
	9.2.13.2.1 ConcernCheck
	9.2.13.2.2 concernChecks
	9.2.13.2.3 DesignConstraintCheck
	9.2.13.2.4 FunctionalRequirementCheck
	9.2.13.2.5 InterfaceRequirementCheck
	9.2.13.2.6 PerformanceRequirementCheck
	9.2.13.2.7 PhysicalRequirementCheck
	9.2.13.2.8 RequirementCheck
	9.2.13.2.9 requirementChecks

	9.2.14 Cases
	9.2.14.1 Cases Overview
	9.2.14.2 Elements
	9.2.14.2.1 Case
	9.2.14.2.2 cases

	9.2.15 Analysis Cases
	9.2.15.1 Analysis Cases Overview
	9.2.15.2 Elements
	9.2.15.2.1 AnalysisAction
	9.2.15.2.2 AnalysisCase
	9.2.15.2.3 analysisCases

	9.2.16 Verification Cases
	9.2.16.1 Verification Cases Overview
	9.2.16.2 Elements
	9.2.16.2.1 PassIf
	9.2.16.2.2 VerdictKind
	9.2.16.2.3 VerificationCase
	9.2.16.2.4 verificationCases
	9.2.16.2.5 VerificationCheck
	9.2.16.2.6 VerificationMethod
	9.2.16.2.7 VerificationMethodKind

	9.2.17 Use Cases
	9.2.17.1 Use Cases Overview
	9.2.17.2 Elements
	9.2.17.2.1 UseCase
	9.2.17.2.2 useCases

	9.2.18 Views
	9.2.18.1 Views Overview
	9.2.18.2 Elements
	9.2.18.2.1 asElementTable
	9.2.18.2.2 asInterconnectionDiagram
	9.2.18.2.3 asTextualNotation
	9.2.18.2.4 asTreeDiagram
	9.2.18.2.5 GraphicalRendering
	9.2.18.2.6 Rendering
	9.2.18.2.7 renderings
	9.2.18.2.8 TabularRendering
	9.2.18.2.9 TextualRendering
	9.2.18.2.10 View
	9.2.18.2.11 ViewpointCheck
	9.2.18.2.12 viewpointChecks
	9.2.18.2.13 viewpointConformance
	9.2.18.2.14 views

	9.2.19 Standard View Definitions
	9.2.19.1 Standard View Definitions Overview
	9.2.19.2 Elements
	9.2.19.2.1 ActionFlowView
	9.2.19.2.2 BrowserView
	9.2.19.2.3 GeneralView
	9.2.19.2.4 GeometryView
	9.2.19.2.5 GridView
	9.2.19.2.6 InterconnectionView
	9.2.19.2.7 SequenceView
	9.2.19.2.8 StateTransitionView

	9.2.20 Metadata
	9.2.20.1 Metadata Overview
	9.2.20.2 Elements
	9.2.20.2.1 MetadataItem
	9.2.20.2.2 metadataItems

	9.2.21 SysML

	9.3 Metadata Domain Library
	9.3.1 Metadata Domain Library Overview
	9.3.2 Modeling Metadata
	9.3.2.1 Modeling Metadata Overview
	9.3.2.2 Elements
	9.3.2.2.1 Issue
	9.3.2.2.2 Rationale
	9.3.2.2.3 Refinement
	9.3.2.2.4 StatusInfo
	9.3.2.2.5 StatusKind

	9.3.3 Risk Metadata
	9.3.3.1 Risk Metadata Overview
	9.3.3.2 Elements
	9.3.3.2.1 Level
	9.3.3.2.2 LevelEnum
	9.3.3.2.3 Risk
	9.3.3.2.4 RiskLevel
	9.3.3.2.5 RiskLevelEnum

	9.3.4 Parameters of Interest Metadata
	9.3.4.1 Parameters of Interest Metadata Overview
	9.3.4.2 Elements
	9.3.4.2.1 MeasureOfEffectiveness
	9.3.4.2.2 MeasureOfPerformance
	9.3.4.2.3 measuresOfEffectiveness
	9.3.4.2.4 measuresOfPerformance

	9.3.5 Image Metadata
	9.3.5.1 Image Metadata Overview
	9.3.5.2 Elements
	9.3.5.2.1 Icon
	9.3.5.2.2 Image

	9.4 Analysis Domain Library
	9.4.1 Analysis Domain Library Overview
	9.4.2 Analysis Tooling
	9.4.2.1 Analysis Tooling Overview
	9.4.2.2 Elements
	9.4.2.2.1 ToolExecution
	9.4.2.2.2 ToolVariable

	9.4.3 Sampled Functions
	9.4.3.1 Sampled Functions Overview
	9.4.3.2 Elements
	9.4.3.2.1 Domain
	9.4.3.2.2 Interpolate
	9.4.3.2.3 interpolateLinear
	9.4.3.2.4 Range
	9.4.3.2.5 Sample
	9.4.3.2.6 SampledFunction
	9.4.3.2.7 SamplePair

	9.4.4 State Space Representation
	9.4.4.1 State Space Representation Overview
	9.4.4.2 Elements

	9.4.5 Trade Studies
	9.4.5.1 Trade Studies Overview
	9.4.5.2 Elements
	9.4.5.2.1 EvaluationFunction
	9.4.5.2.2 MaximizeObjective
	9.4.5.2.3 MinimizeObjective
	9.4.5.2.4 TradeStudy
	9.4.5.2.5 TradeStudyObjective

	9.5 Cause and Effect Domain Library
	9.5.1 Cause and Effect Domain Library Overview
	9.5.2 Causation Connections
	9.5.2.1 Causation Connections Overview
	9.5.2.2 Elements
	9.5.2.2.1 Causation
	9.5.2.2.2 causations
	9.5.2.2.3 causes
	9.5.2.2.4 effects
	9.5.2.2.5 Multicausation
	9.5.2.2.6 multicausations

	9.5.3 Cause and Effect
	9.5.3.1 Cause and Effect Overview
	9.5.3.2 Elements
	9.5.3.2.1 CausationMetadata
	9.5.3.2.2 CausationSemanticMetadata
	9.5.3.2.3 CauseMetadata
	9.5.3.2.4 EffectMetadata
	9.5.3.2.5 MulticausationSemanticMetadata

	9.6 Requirement Derivation Domain Library
	9.6.1 Requirement Derivation Domain LIbrary Overview
	9.6.2 Derivation Connections
	9.6.2.1 Derivation Connections Overview
	9.6.2.2 Elements
	9.6.2.2.1 Derivation
	9.6.2.2.2 derivations
	9.6.2.2.3 derivedRequirements
	9.6.2.2.4 originalRequirements

	9.6.3 Requirement Derivation
	9.6.3.1 Requirement Derivation Overview
	9.6.3.2 Elements
	9.6.3.2.1 DerivationMetadata
	9.6.3.2.2 DerivedRequirementMetadata
	9.6.3.2.3 OriginalRequirementMetadata

	9.7 Geometry Domain Library
	9.7.1 Geometry Domain Library Overview
	9.7.2 Spatial Items
	9.7.2.1 Spatial Items Overview
	9.7.2.2 Elements
	9.7.2.2.1 CurrentDisplacementOf
	9.7.2.2.2 CurrentPositionOf
	9.7.2.2.3 DisplacementOf
	9.7.2.2.4 PositionOf
	9.7.2.2.5 SpatialItem

	9.7.3 Shape Items
	9.7.3.1 Shape Items Overview
	9.7.3.2 Elements
	9.7.3.2.1 Circle
	9.7.3.2.2 CircularCone
	9.7.3.2.3 CircularCylinder
	9.7.3.2.4 CircularDisc
	9.7.3.2.5 Cone
	9.7.3.2.6 ConeOrCylinder
	9.7.3.2.7 ConicSection
	9.7.3.2.8 ConicSurface
	9.7.3.2.9 Cuboid
	9.7.3.2.10 CuboidOrTriangularPrism
	9.7.3.2.11 Cylinder
	9.7.3.2.12 Disc
	9.7.3.2.13 EccentricCone
	9.7.3.2.14 EccentricCylinder
	9.7.3.2.15 Ellipse
	9.7.3.2.16 Ellipsoid
	9.7.3.2.17 Hyperbola
	9.7.3.2.18 Hyperboloid
	9.7.3.2.19 Line
	9.7.3.2.20 Parabola
	9.7.3.2.21 Paraboloid
	9.7.3.2.22 Path
	9.7.3.2.23 PlanarCurve
	9.7.3.2.24 PlanarSurface
	9.7.3.2.25 Polygon
	9.7.3.2.26 Polyhedron
	9.7.3.2.27 Pyramid
	9.7.3.2.28 Quadrilateral
	9.7.3.2.29 Rectangle
	9.7.3.2.30 RectangularCuboid
	9.7.3.2.31 RectangularPyramid
	9.7.3.2.32 RectangularToroid
	9.7.3.2.33 RightCircularCone
	9.7.3.2.34 RightCircularCylinder
	9.7.3.2.35 RightTriangle
	9.7.3.2.36 RightTriangularPrism
	9.7.3.2.37 Shell
	9.7.3.2.38 Sphere
	9.7.3.2.39 Tetrahedron
	9.7.3.2.40 Toriod
	9.7.3.2.41 Torus
	9.7.3.2.42 Triangle
	9.7.3.2.43 TriangularPrism

	9.8 Quantities and Units Domain Library
	9.8.1 Quantities and Units Domain Library Overview
	9.8.2 Quantities
	9.8.2.1 Quantities Overview
	Taxonomy
	Quantity Values
	Free versus Bound Quantities and Vector Spaces

	9.8.2.2 Elements
	9.8.2.2.1 3dVectorQuantityValue
	9.8.2.2.2 QuantityDimension
	9.8.2.2.3 QuantityPowerFactor
	9.8.2.2.4 scalarQuantities
	9.8.2.2.5 ScalarQuantityValue
	9.8.2.2.6 SystemOfQuantities
	9.8.2.2.7 tensorQuantities
	9.8.2.2.8 TensorQuantityValue
	9.8.2.2.9 vectorQuantities
	9.8.2.2.10 VectorQuantityValue

	9.8.3 Measurement References
	9.8.3.1 Measurement References Overview
	9.8.3.2 Elements
	9.8.3.2.1 3dCoordinateFrame
	9.8.3.2.2 AffineTransformationMatrix3d
	9.8.3.2.3 ConversionByConvention
	9.8.3.2.4 ConversionByPrefix
	9.8.3.2.5 CoordinateFrame
	9.8.3.2.6 CoordinateFramePlacement
	9.8.3.2.7 CoordinateTransformation
	9.8.3.2.8 countQuantities
	9.8.3.2.9 CountValue
	9.8.3.2.10 CyclicRatioScale
	9.8.3.2.11 DefinitionalQuantityValue
	9.8.3.2.12 DerivedUnit
	9.8.3.2.13 dimensionOneQuantities
	9.8.3.2.14 DimensionOneUnit
	9.8.3.2.15 DimensionOneValue
	9.8.3.2.16 IntervalScale
	9.8.3.2.17 LogarithmicScale
	9.8.3.2.18 MeasurementScale
	9.8.3.2.19 MeasurementUnit
	9.8.3.2.20 NullTransformation
	9.8.3.2.21 nullTransformation
	9.8.3.2.22 one
	9.8.3.2.23 OrdinalScale
	9.8.3.2.24 QuantityValueMapping
	9.8.3.2.25 Rotation
	9.8.3.2.26 ScalarMeasurementReference
	9.8.3.2.27 SimpleUnit
	9.8.3.2.28 SystemOfUnits
	9.8.3.2.29 TensorMeasurementReference
	9.8.3.2.30 Translation
	9.8.3.2.31 TranslationOrRotation
	9.8.3.2.32 TranslationRotationSequence
	9.8.3.2.33 UnitConversion
	9.8.3.2.34 UnitPowerFactor
	9.8.3.2.35 UnitPrefix
	9.8.3.2.36 VectorMeasurementReference

	9.8.4 ISQ
	9.8.4.1 ISQ Overview
	9.8.4.2 Elements
	9.8.4.2.1 amountOfSubstance
	9.8.4.2.2 AmountOfSubstanceUnit
	9.8.4.2.3 AmountOfSubstanceValue
	9.8.4.2.4 AngularMeasureValue
	9.8.4.2.5 Cartesian3dSpatialCoordinateFrame
	9.8.4.2.6 Displacement3dVector
	9.8.4.2.7 duration
	9.8.4.2.8 DurationUnit
	9.8.4.2.9 DurationValue
	9.8.4.2.10 electricCurrent
	9.8.4.2.11 ElectricCurrentUnit
	9.8.4.2.12 ElectricCurrentValue
	9.8.4.2.13 length
	9.8.4.2.14 LengthUnit
	9.8.4.2.15 LengthValue
	9.8.4.2.16 luminousIntensity
	9.8.4.2.17 LuminousIntensityUnit
	9.8.4.2.18 LuminousIntensityValue
	9.8.4.2.19 mass
	9.8.4.2.20 MassUnit
	9.8.4.2.21 MassValue
	9.8.4.2.22 Position3dVector
	9.8.4.2.23 Spatial3dCoordinateFrame
	9.8.4.2.24 thermodynamicTemperature
	9.8.4.2.25 ThermodynamicTemperatureUnit
	9.8.4.2.26 ThermodynamicTemperatureValue
	9.8.4.2.27 universalCartesianSpatial3dCoordinateFrame

	9.8.5 SI Prefixes
	9.8.5.1 SI Prefixes Overview
	9.8.5.2 Elements

	9.8.6 SI
	9.8.6.1 SI Overview
	9.8.6.2 Elements

	9.8.7 US Customary Units
	9.8.7.1 US Customary Units Overview
	9.8.7.2 Elements

	9.8.8 Time
	9.8.8.1 Time Overview
	9.8.8.2 Elements
	9.8.8.2.1 Clock
	9.8.8.2.2 Date
	9.8.8.2.3 DateTime
	9.8.8.2.4 DurationOf
	9.8.8.2.5 Iso8601DateTime
	9.8.8.2.6 Iso8601DateTimeEncoding
	9.8.8.2.7 Iso8601DateTimeStructure
	9.8.8.2.8 timeInstant
	9.8.8.2.9 TimeInstantValue
	9.8.8.2.10 TimeOf
	9.8.8.2.11 TimeOfDay
	9.8.8.2.12 TimeScale
	9.8.8.2.13 universalClock
	9.8.8.2.14 UTC
	9.8.8.2.15 utcTimeInstant
	9.8.8.2.16 UtcTimeInstantValue

	9.8.9 Quantity Calculations
	9.8.9.1 Quantity Calculations Overview
	Basics
	ScalarQuantityValue Construction
	ScalarQuantityValue Operations

	9.8.9.2 Elements

	9.8.10 Vector Calculations
	9.8.10.1 Vector Calculations Overview
	Basics
	VectorQuantityValue Construction
	VectorQuantityValue Operations

	9.8.10.2 Elements

	9.8.11 Tensor Calculations
	9.8.11.1 Tensor Calculations Overview
	Basics
	TensorQuantityValue Construction
	TensorQuantityValue Operations

	9.8.11.2 Elements

	9.8.12 Measurement Ref Calculations
	9.8.12.1 Measurement Ref Calculations Overview
	MeasurementUnit and CoordinateFrame Operations

	9.8.12.2 Elements

	A Annex: Example Model
	A.1 Introduction
	A.2 Model Organization
	A.3 Definitions
	A.4 Parts
	A.5 Parts Interconnection
	A.6 Actions
	A.7 States
	A.8 Requirements
	A.9 Analysis
	A.10 Verification
	A.11 View and Viewpoint
	A.12 Variability
	A.13 Individuals

	

