

 ISO/IEC 19514:2017(E)
Date: May 2017

Information technology - Object Management Group
Systems Modeling Language (OMG SysML)

formal/2017-05-08

This version has been formally published by ISO as the 2017 edition standard: ISO IEC 19514.

ISO/IEC 19514:2017(E)
Table of Contents

FOREWORD ...xix

INTRODUCTION... xx

1 Scope .. 1

1.1 General ..1

2 Normative References... 1

3 Additional Information.. 2

3.1 Relationships to Other Standards ...2

3.2 How to Read this International Standard...2
3.2.1 Organization.. 3

3.3 Acknowledgments ...4

4 Language Architecture .. 7

4.1 General ..7

4.2 Design Principles... 10

4.3 Architecture ... 10

4.4 Extension Mechanisms ... 13

4.5 SysML Diagrams ... 13

5 Conformance ... 15

5.1 Overview ... 15

5.2 Conformance Types .. 15

6 Language Formalism... 17

6.1 Levels of Formalism .. 17

6.2 Clause Structure.. 17
6.2.1 Overview ... 17

6.2.2 Diagram Elements .. 17

6.2.3 UML Extensions.. 17

6.2.4 Usage Examples... 18

6.3 Conventions and Typography ... 18

STRUCTURAL CONSTRUCTS .. 19
 ISO/IEC 2017 - All rights reserved iii

ISO/IEC 19514:2017(E)
7 Model Elements... 21

7.1 Overview..21
7.1.1 View and Viewpoint... 21

7.2 Diagram Elements ...22

7.3 UML Extensions ..25
7.3.1 Diagram Extensions .. 25

 7.3.1.1 UML Diagram Elements not Included in SysML ...25

7.3.2 Stereotypes ... 26

 7.3.2.1 Conform ..26

 7.3.2.2 ElementGroup ..27

 7.3.2.3 Expose ...28

 7.3.2.4 Problem ..28

 7.3.2.5 Rationale ..29

 7.3.2.6 Stakeholder ..29

 7.3.2.7 View ..29

 7.3.2.8 Viewpoint ..30

7.4 Usage Examples ...30

8 Blocks .. 33

8.1 Overview..33

8.2 Diagram Elements ...34
8.2.1 Block Definition Diagram... 34

8.2.2 Internal Block Diagram.. 40

8.3 UML Extensions ..42
8.3.1 Diagram Extensions .. 42

 8.3.1.1 Block Definition Diagram ..42

 8.3.1.2 Internal Block Diagram ...44

 8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams46

 8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams46

8.3.2 Stereotypes ... 47

 8.3.2.1 AdjunctProperty ..49

 8.3.2.2 Binding Connector ..50

 8.3.2.3 Block ...51

 8.3.2.4 Bound Reference ...53

 8.3.2.5 ClassifierBehaviorProperty ...54

 8.3.2.6 ConnectorProperty ...54

 8.3.2.7 DirectedRelationshipPropertyPath ...55

 8.3.2.8 DistributedProperty ...56

 8.3.2.9 ElementPropertyPath ...56

 8.3.2.10 EndPathMultiplicity ...56

 8.3.2.11 NestedConnectorEnd ...57

 8.3.2.12 ParticipantProperty ...57

 8.3.2.13 PropertySpecificType ...58

 8.3.2.14 ValueType ..58

8.3.3 Model Libraries.. 59
iv  ISO/IEC 2017 - All rights reserved

ISO/IEC 19514:2017(E)
 8.3.3.1 Package PrimitiveValueTypes ..59

 8.3.3.2 Package UnitAndQuantityKind ...60

8.4 Usage Examples ... 62
8.4.1 Wheel Hub Assembly.. 62

8.4.2 Example Value Type Definitions ... 64

8.4.3 Design Configuration for SUV EPA Fuel Economy Test... 65

8.4.4 Water Delivery .. 65

8.4.5 Constraining Decomposition ... 65

8.4.6 Units and Quantity Kinds .. 67

9 Ports and Flows... 71

9.1 Overview ... 71
9.1.1 Ports.. 71

9.1.2 Flow Properties, Provided and Required Features, and Nested Ports 71

9.1.3 Proxy Ports and Full Ports .. 71

9.1.4 Item Flows... 72

9.1.5 Deprecation of Flow Ports and Flow Specifications.. 72

9.2 Diagram Elements... 73
9.2.1 Block Definition Diagram... 73

9.2.2 Internal Block Diagram.. 76

9.3 UML Extensions .. 78
9.3.1 Diagram Extensions.. 78

 9.3.1.1 DirectedFeature ..78

 9.3.1.2 FlowProperty ..78

 9.3.1.3 FullPort ...78

 9.3.1.4 InvocationOnNestedPortAction ..78

 9.3.1.5 ItemFlow ...78

 9.3.1.6 Port... 78

 9.3.1.7 ProxyPort ..79

 9.3.1.8 TriggerOnNestedPort ...79

9.3.2 Stereotypes... 79

 9.3.2.1 AcceptChangeStructuralFeatureEventAction ...81

 9.3.2.2 Block .. 82

 9.3.2.3 ChangeStructuralFeatureEvent ..82

 9.3.2.4 DirectedFeature ..82

 9.3.2.5 FeatureDirection ...83

 9.3.2.6 FlowDirection.. 84

 9.3.2.7 FlowProperty ..84

 9.3.2.8 FullPort ...85

 9.3.2.9 InterfaceBlock ...86

 9.3.2.10 InvocationOnNestedPortAction ..86

 9.3.2.11 ItemFlow ...86

 9.3.2.12 ProxyPort ..87

 9.3.2.13 TriggerOnNestedPort ...88
 ISO/IEC 2017 - All rights reserved v

ISO/IEC 19514:2017(E)
9.4 Usage Examples ...89
9.4.1 Ports with Required and Provided Features ... 89

9.4.2 Flow Ports and Item Flows.. 89

9.4.3 Ports with Flow Properties .. 90

9.4.4 Proxy and Full Ports.. 90

9.4.5 Association and Port Decomposition .. 91

9.4.6 Item Flow Decomposition.. 95

10 Constraint Blocks... 97

10.1 Overview..97

10.2 Diagram Elements ...98
10.2.1 Block Definition Diagram... 98

10.2.2 Parametric Diagram .. 98

10.3 UML Extensions ..99
10.3.1 Diagram Extensions .. 99

 10.3.1.1 Block Definition Diagram ...99

 10.3.1.2 Parametric Diagram ..101

10.3.2 Stereotypes ... 100

 10.3.2.1 ConstraintBlock ..101

10.4 Usage Examples ...101
10.4.1 Definition of Constraint Blocks on a Block Definition Diagram.. 101

10.4.2 Usage of Constraint Blocks on a Parametric Diagram.. 101

BEHAVIORAL CONSTRUCTS.. 103

11 Activities .. 105

11.1 Overview..105
11.1.1 Control as Data ... 105

11.1.2 Continuous Systems ... 105

11.1.3 Probability ... 105

11.1.4 Activities as Blocks.. 106

11.1.5 Timelines... 106

11.2 Diagram Elements ...107
11.2.1 Activity Diagram .. 105

11.3 UML Extensions ..114
11.3.1 Diagram Extensions .. 114

 11.3.1.1 Activity ..114

 11.3.1.2 CallBehaviorAction ...115

 11.3.1.3 ControlFlow ..116

 11.3.1.4 ObjectNode, Variables, and Parameters ..116

11.3.2 Stereotypes ... 117

 11.3.2.1 Continuous ...118
vi  ISO/IEC 2017 - All rights reserved

ISO/IEC 19514:2017(E)
 11.3.2.2 ControlOperator ..119

 11.3.2.3 Discrete ..119

 11.3.2.4 NoBuffer ...119

 11.3.2.5 Overwrite ..120

 11.3.2.6 Optional ..120

 11.3.2.7 Probability ...120

 11.3.2.8 Rate ..121

11.3.3 Model Libraries ... 121

 11.3.3.1 Package ControlValues ..121

11.4 Usage Examples ... 122

12 Interactions .. 127

12.1 Overview ...127

12.2 Diagram Elements...128
12.2.1 Sequence Diagram ... 128

12.3 UML Extensions .. 133
12.3.1 Diagram Extensions.. 133

 12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and
 Timing Diagram ...133

 12.3.1.2 Interactions and Parameters ...133

12.4 Usage Examples ... 134
12.4.1 Sequence Diagrams ... 134

13 State Machines.. 135

13.1 Overview ...135

13.2 Diagram Elements...135
13.2.1 State Machine Diagram .. 135

13.3 UML Extensions .. 140
13.3.1 Diagram Extensions.. 140

 13.3.1.1 State Machines and Parameters ...140

13.4 Usage Examples ... 140
13.4.1 State Machine Diagram .. 140

14 Use Cases ... 141

14.1 Overview ...141

14.2 Diagram Elements...142
14.2.1 Use Case Diagram.. 142

14.3 UML Extensions .. 143

14.4 Usage Examples ... 143

CROSSCUTTING CONSTRUCTS.. 145
 ISO/IEC 2017 - All rights reserved vii

ISO/IEC 19514:2017(E)
15 Allocations ... 147

15.1 Overview..147

15.2 Diagram Elements ...147
15.2.1 Representing Allocation on Diagrams... 148

15.3 UML Extensions ...149
15.3.1 Diagram Extensions .. 149

 15.3.1.1 Tables ...149

 15.3.1.2 Allocate Relationship Rendering .. 149

 15.3.1.3 Allocation Compartment Format ...149

 15.3.1.4 Allocation Callout Format ...149

 15.3.1.5 AllocatedActivityPartition Label ..149

15.3.2 Stereotypes ... 150

 15.3.2.1 Allocate(from Allocations) ...150

 15.3.2.2 AllocateActivityPartition(from Allocations) ..151

15.4 Usage Examples ...152
15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks 152

15.4.2 Allocate Flow... 153

 15.4.2.1 Allocating Structure ...154

 15.4.2.2 Automotive Example ..154

15.4.3 Tabular Representation... 155

16 Requirements .. 157

16.1 Overview..157

16.2 Diagram Elements ...159
16.2.1 Requirement Diagram... 159

16.3 UML Extensions ..162
16.3.1 Diagram Extensions .. 162

 16.3.1.1 Requirement Diagram ..162

 16.3.1.2 Requirement Notation ..162

 16.3.1.3 Requirement Property Callout Format ..162

 16.3.1.4 Requirements on Other Diagrams ..162

 16.3.1.5 Requirements Table ...163

16.3.2 Stereotypes ... 164

 16.3.2.1 Copy ...164

 16.3.2.2 DeriveReqt ...165

 16.3.2.3 Refine ...165

 16.3.2.4 Requirement ...165

 16.3.2.5 TestCase ..167

 16.3.2.6 Satisfy ...167

 16.3.2.7 Trace ..167

 16.3.2.8 Verify ..168

16.4 Usage Examples ...168
16.4.1 Requirement Decomposition and Traceability .. 168

16.4.2 Requirements and Design Elements... 169
viii  ISO/IEC 2017 - All rights reserved

ISO/IEC 19514:2017(E)
16.4.3 Requirements Reuse .. 171

16.4.4 Verification Procedure (Test Case)... 172

17 Profiles & Model Libraries.. 175

17.1 Overview ...175

17.2 Diagram Elements...176
17.2.1 Profile Definition in Package Diagram .. 176

 17.2.1.1 Extension ...178

17.2.2 Stereotypes Used On Diagrams ... 178

 17.2.2.1 StereotypeInNode ..179

 17.2.2.2 StereotypeInComment ...180

 17.2.2.3 StereotypeInCompartment ...180

17.3 UML Extensions .. 180

17.4 Usage Examples ... 180
17.4.1 Defining a Profile... 180

17.4.2 Adding Stereotypes to a Profile .. 181

17.4.3 Defining a Model Library that Uses a Profile... 182

17.4.4 Guidance on Whether to Use a Stereotype or Class .. 183

17.4.5 Using a Profile... 183

17.4.6 Using a Stereotype ... 184

17.4.7 Using a Model Library Element ... 184

ANNEXES ... 187

Annex A: Diagrams... 189

Annex B: SysML Diagram Interchange .. 195

Annex C: Deprecated Elements ... 205

Annex D: Sample Problem ... 213

Annex E: Non-normative Extensions.. 251

Annex F: Requirements Traceability .. 319

Annex G: Model Interchange.. 321

Annex H: Legal Information .. 325
 ISO/IEC 2017 - All rights reserved ix

ISO/IEC 19514:2017(E)
x  ISO/IEC 2017 - All rights reserved

ISO/IEC 19514:2017(E)
List of Figures

Figure 4.1 - Overview of SysML/UML Interrelationship...7
Figure 4.2 - SysML Extension of UML..11
Figure 4.3 - SysML Package Structure ...12
Figure 4.4 - Non-normative Package Structure...13
Figure 7.1 - Stereotypes defined in package ModelElements...26
Figure 7.2 - Rationale and Problem examples ..31
Figure 8.1 - Nested property reference ...45
Figure 8.2 - Abstract syntax extensions for SysML blocks ..47
Figure 8.3 - Abstract syntax extensions for SysML properties...47
Figure 8.4 - Abstract syntax extensions for SysML value types...47
Figure 8.5 - Abstract syntax extensions for SysML property paths..48
Figure 8.6 - Abstract syntax extensions for SysML connector ends...48
Figure 8.7 - Abstract syntax extensions for SysML property-specific types..48
Figure 8.8 - Abstract syntax extensions for SysML bound references ...49
Figure 8.9 - Abstract syntax extensions for SysML adjunct properties and classifier behavior properties..............49
Figure 8.10 - Model library for primitive value types ..59
Figure 8.11 - Model library for Unit and QuantityKind ...60
Figure 8.12 - Block diagram for the Wheel Package ..63
Figure 8.13 - Internal Block Diagram for WheelHubAssembly ...64
Figure 8.14 - Defining Value Types with units of measure from the International System of Units (SI)64
Figure 8.15 - Vehicle decomposition ..65
Figure 8.16 - Vehicle internal structure...66
Figure 8.17 - Vehicle specialization ..66
Figure 8.18 - Example of Unit, QuantityKind and ValueType definitions ...67
Figure 8.19 - Instance-level view of the Unit, QuantityKind and ValueType definitions ..68
Figure 8.20 - Example of equivalent Unit representations ...68
Figure 8.21 - Instance-level representation of equivalent Unit definitions...69
Figure 9.1 - Port Stereotypes..79
Figure 9.2 - Stereotypes for Actions on Nested Ports ...80
Figure 9.3 - Stereotypes for Property Value Change Events...80
Figure 9.4 - Provided and Required Features..80
Figure 9.5 - ItemFlow Stereotype ...81
Figure 9.6 - Usage example of ports with provided and required features ...89
Figure 9.7 Usage example of proxy and full ports...91
Figure 9.8 - Water Delivery association block..92
Figure 9.9 - Internal structure of Water Delivery association block ...92
Figure 9.10 - Two views of Water Delivery connector within House block...93
Figure 9.11 - Specializations of Water Client in house example ..93
Figure 9.12 - Plumbing association block...94
Figure 9.13 - Internal structure of Plumbing association block ..94
Figure 9.14 - Water Delivery association block with internal Plumbing connector ...94
 ISO/IEC 2017 - All rights reserved xi

ISO/IEC 19514:2017(E)
Figure 9.15 - Usage example of item flows in internal block diagrams ...95
Figure 9.16 - Usage example of item flow decomposition ...96
Figure 9.17 - Usage example of item flow decomposition ...96
Figure 10.1 - Stereotypes defined in SysML ConstraintBlocks package..100
Figure 11.1 - Block definition diagram with activities as blocks..115
Figure 11.2 - CallBehaviorAction notation.with behavior stereotype ..115
Figure 11.3 - CallBehaviorAction notation.with action name ..115
Figure 11.4 - Control flow notation...116
Figure 11.5 - Block definition diagram with activities as blocks associated with types of object nodes,

variables, and parameters..116
Figure 11.6 - ObjectNode notation in activity diagrams ...117
Figure 11.7 - ObjectNode notation in activity diagrams ...117
Figure 11.8 - Abstract Syntax for SysML Activity Extensions ..118
Figure 11.9 - Control values..121
Figure 11.10 - Continuous system example 1 ...123
Figure 11.11 - Continuous system example 2 ...124
Figure 11.12 - Continuous system example 3 ...124
Figure 11.13 - Example block definition diagram for activity decomposition ...125
Figure 11.14 - Example block definition diagram for object node types..125
Figure 12.1 - Block definition diagram with interactions as blocks associated with used interactions

and types of parameters...133
Figure 13.1 - Block definition diagram with state machines as blocks associated with submachines

and types of parameters...140
Figure 15.1 - Abstract syntax extensions for SysML Allocation..150
Figure 15.2 - Abstract syntax expression for AllocatedActivityPartition...150
Figure 15.3 - Generic Allocation, including /from and /to association ends ..152
Figure 15.4 - Behavior allocation..152
Figure 15.5 - Example of flow allocation from ObjectFlow to Connector ...153
Figure 15.6 - Example of flow allocation from ObjectFlow to ItemFlow ..153
Figure 15.7 - Example of flow allocation from ObjectNode to FlowProperty ...154
Figure 15.8 - Example of Structural Allocation ..154
Figure 15.9 - Allocation Matrix showing Allocation for Hybrid SUV Accelerate Example..................................155
Figure 16.1 - Non-normative Examples of Tabular Representations of Requirements ..163
Figure 16.2 - Abstract Syntax for Requirements Stereotypes ...164
Figure 16.3 - Requirements Derivation...169
Figure 16.4 - Links between requirements and design..170
Figure 16.5 - Requirement satisfaction in an internal block diagram ...171
Figure 16.6 - Use of the copy dependency to facilitate reuse ...171
Figure 16.7 - Linkage of a Test Case to a requirement:

 This figure shows the Requirement Diagram ..172
Figure 16.8 - Linkage of a Test Case to a requirement:

 This figure shows the Test Case as a State Diagram...173
Figure 17.1 - Defining a stereotype...178
Figure 17.2 - Using a stereotype ...179
xii  ISO/IEC 2017 - All rights reserved

ISO/IEC 19514:2017(E)
Figure 17.3 - Using stereotypes and showing values..180
Figure 17.4 - Other notational forms for showing values ...180
Figure 17.5 - Definition of a profile..181
Figure 17.6 - Profile Contents...181
Figure 17.7 - Two model libraries...182
Figure 17.8 - A model with applied profile and imported model library..183
Figure 17.9 - Using two stereotypes on a model element ...184
Figure 17.10 - Using model library elements..184
Figure A.1 - SysML Diagram Taxonomy ...190
Figure A.2 - Diagram Frame...191
Figure A.3 - Diagram Usages..193
Figure A.4 - Optional Form of Line Crossing...194
Figure C.1 - Deprecated Stereotypes ...208
Figure D.1 - Establishing the User Model by Importing and Applying SysML Profile & Model Library

(Package Diagram)..214
Figure D.2 - Defining valueTypes and units to be Used in the Sample Problem ...215
Figure D.3 - Establishing Structure of the User Model using Packages and Views (Package Diagram)216
Figure D.4 - Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram.

 (Internal Block Diagram) Completeness of Diagram Noted in Diagram Description.................217
Figure D.5 - Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram)218
Figure D.6 - Establishing Operational Use Cases for “Drive the Vehicle” (Use Case Diagram)219
Figure D.7 - Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram)..........220
Figure D.8 - Finite State Machine Associated with “Drive the Vehicle” (State Machine Diagram)221
Figure D.9 - Black Box Interaction for “StartVehicle,” referencing White Box Interaction (Sequence Diagram) 221
Figure D.10 - White Box Interaction for “StartVehicle” (Sequence Diagram)...222
Figure D.11 - Establishing HSUV Requirements Hierarchy (containment) - (Requirements Diagram)................223
Figure D.12 - Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchy

 (Requirements Diagram)...224
Figure D.13 - Acceleration Requirement Relationships (Requirements Diagram) ..225
Figure D.14 - Requirements Relationships Expressed in Tabular Format (Table) ...226
Figure D.15 - Defining the Automotive Domain (compare with Figure D.4) - (Block Definition Diagram)227
Figure D.16 - Defining Structure of the Hybrid SUV System (Block Definition Diagram)227
Figure D.17 - Internal Structure of Hybrid SUV (Internal Block Diagram)...228
Figure D.18 - Defining Structure of Power Subsystem (Block Definition Diagram)...229
Figure D.19 - Internal Structure of the Power Subsystem (Internal Block Diagram)...230
Figure D.20 - Blocks Typing Ports in the Power Subsystem (Block Definition Diagram)230
Figure D.21 - Initially Defining Port Types with Flow Properties for the CAN Bus (Block Definition Diagram)231
Figure D.22 - Consolidating Connectors into the CAN Bus. (Internal Block Diagram) ..232
Figure D.23 - Elaborating Definition of Fuel Flow. (Block Definition Diagram)..232
Figure D.24 - Defining Fuel Flow Constraints (Parametric Diagram) ...233
Figure D.25 - Detailed Internal Structure of Fuel Delivery Subsystem (Internal Block Diagram)234
Figure D.26 - Defining Analyses for Hybrid SUV Engineering Development (Block Definition Diagram)235
Figure D.27 - Establishing a Performance View of the User Model (Package Diagram)236
Figure D.28 - Defining Requirements and VnV viewpoints (Package Diagram)...237
 ISO/IEC 2017 - All rights reserved xiii

ISO/IEC 19514:2017(E)
Figure D.29 - Requirements and VnV views exposing elements from the model (Package Diagram)..................238
Figure D.30 - The Requirements and VnV views with supporting views (Package Diagram)239
Figure D.31 - Defining Measures of Effectiveness and Key Relationships (Parametric Diagram)........................240
Figure D.32 - Establishing Mathematical Relationships for Fuel Economy Calculations (Parametric Diagram)..241
Figure D.33 - Straight Line Vehicle Dynamics Mathematical Model (Parametric Diagram).................................242
Figure D.34 - Defining Straight-Line Vehicle Dynamics Mathematical Constraints (Block

Definition Diagram)..243
Figure D.35 - Results of Maximum Acceleration Analysis (Timing Diagram)..244
Figure D.36 - Behavior Model for “Accelerate” Function (Activity Diagram)..245
Figure D.37 - Decomposition of “Accelerate” Function (Block Definition diagram)..246
Figure D.38 - Detailed Behavior Model for “Provide Power” (Activity Diagram)

 Note hierarchical consistency with Figure D.36..247
Figure D.39 - Flow Allocation to Power Subsystem (Internal Block Diagram)...248
Figure D.40 - Tabular Representation of Allocation from “Accelerate” Behavior Model to Power

Subsystem (Table)...248
Figure D.41 - Special Case of Internal Block Diagram Showing Reference to Specific Properties

(serial numbers)...249
Figure E.1 - Example activity with «effbd» stereotype applied..253
Figure E.2 - Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities253
Figure E.3 - Example extensions to Requirement..256
Figure E.4 - Example Parametric Diagram using Stereotypes for Measures of Effectiveness257
Figure E.5 - QUDV Concepts diagram ..259
Figure E.6 - QUDV Units diagram ..260
Figure E.7 - QUDV Quantity Kinds diagram ..260
Figure E.8 - Base Unit and Quantity Kinds of the SI and ISQ respectively ..278
Figure E.9 - Example of a derived unit and derived quantity kind ..278
Figure E.10 - Spring Length Example ...279
Figure E.11 - Model libraries of SysML Quantity Kinds and Units for the covered content of ISO 80000 parts

3,4,5,6,7,9,10 and 13...280
Figure E.12 - Organization of the definitions of units and quantities from the normative parts of ISO 80000

covered in SysML 1.4, which includes all the normative content of parts 3,4,5,6; the subset of
parts 7,9,10 corresponding to the content from SysML 1.3 and the subset of part 13 pertaining to
commonly used units of information. Parts 8,11 and 12 are not covered because none of their
units and quantities were referenced in previous versions of SysML nor in the summary tables in
ISO 80000-1..281

Figure E.13 - Content relationships for the systems of units and quantities in from the different parts of ISO
80000 in relation to ISO 80000 as a whole and to the International System of Units (SI) and
quantities (ISQ) ...282

Figure E.14 - Table 1 (from ISO 80000-1) SI base units for the ISQ base quantities ...283
Figure E.15 - Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (1) .284
Figure E.16 - Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (2) .285
Figure E.17 - Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (3) .286
Figure E.18 - Table 3 (from the SI brochure) SI derived units with special names and symbols..........................287
Figure E.19 - Constant numbers used throughout the SysML ISO 80000 library. ..289
xiv  ISO/IEC 2017 - All rights reserved

ISO/IEC 19514:2017(E)
Figure E.20 - Example of value type definitions for a quantity and applicable units and prefixed units290
Figure E.21 - Basic distribution stereotypes ..316
Figure E.22 - Distribution Example ..317
Figure G.1 - SysML/AP233 Data Overlaps...322
 ISO/IEC 2017 - All rights reserved xv

ISO/IEC 19514:2017(E)
xvi  ISO/IEC 2017 - All rights reserved

ISO/IEC 19514:2017(E)
List of Tables

Table 4.1 - UML 2 metaclasses excluded from the UML4SysML subset ..8
Table 4.2 - UML 2 metaclasses and datatypes included in the UML4SysML subset ..9
Table 4.3 - SysML stereotypes, blocks, valuetypes, and datatypes ..10
Table 7.1 - Graphical nodes defined by ModelElements package ...22
Table 7.2 - Graphical paths defined by ModelElements package ..24
Table 8.1 - Graphical nodes defined in Block Definition diagrams...34
Table 8.2 - Graphical paths defined by in Block Definition diagrams...37
Table 8.3 - Graphical nodes defined in Internal Block diagrams...40
Table 8.4 - Graphical paths defined in Internal Block diagrams..41
Table 9.1 - Graphical nodes defined in Block Definition diagrams...73
Table 9.2 - Graphical nodes defined in Internal Block diagrams...76
Table 10.1 - Graphical nodes defined in Block Definition diagrams..98
Table 10.2 - Graphical nodes defined in Parametric diagrams ...99
Table 11.1 - Graphical nodes included in activity diagrams ..107
Table 11.2 - Graphical paths included in activity diagrams ...112
Table 11.3 - Other graphical elements included in activity diagrams ..113
Table 12.1 - Graphical nodes included in sequence diagrams ...128
Table 12.2 - Graphical paths included in sequence diagram..132
Table 12.3 - Other graphical elements included in sequence diagram...132
Table 13.1 - Graphical nodes included in state machine diagrams ..135
Table 13.2 - Graphical paths included in state machine diagrams...139
Table 13.3 - Other graphical elements included in state machine diagram ...139
Table 14.1 - Graphical nodes included in Use Case diagrams...142
Table 14.2 - Graphical paths included in Use Case diagrams..143
Table 15.1 - Extension to graphical nodes included in diagrams...148
Table 16.1 - Graphical nodes included in Requirement diagrams ...159
Table 16.2 - Graphical paths included in Requirement diagrams ..160
Table 17.1 - Graphical nodes used in profile definition...176
Table 17.2 - Graphical paths used in profile definition..177
Table 17.3 - Notations for Stereotype Use ...178
Table 17.4 - Notations for Stereotype Use (continued)..179
Table B.1 - SysML Diagram Elements ...201
Table C.1 - Graphical nodes defined in block definition diagrams...206
Table C.2 - Graphical nodes defined in internal block diagrams..207
Table E.1 - Addition stereotypes for EFFBDs ..251
Table E.2 - Streaming options for activities..252
Table E.3 - Additional Requirement Stereotypes..254
Table E.4 - Requirement property enumeration types ..255
Table E.5 - Stereotypes for Measures of Effectiveness...257
 ISO/IEC 2017 - All rights reserved xvii

ISO/IEC 19514:2017(E)
Table E.6 - The decimal and binary prefixes in scope of the International System of Units (SI) which uses the ISO
80000 system of units and its included systems of units such as ISO 80000-13..........................287

Table E.7 - Normative units in ISO 80000-3 (1 of 2) ...291
Table E.8 - Normative units in ISO 80000-3 (2 of 2) ...292
Table E.9 - Normative quantity kinds in ISO 80000-3 (1 of 2) ..292
Table E.10 - Normative quantity kinds in ISO 80000-3 (2 of 2) ..293
Table E.11 - Normative units in ISO 80000-4 (1 of 2)..294
Table E.12 - Normative units in ISO 80000-4 (2 of 2) ...295
Table E.13 - Normative quantity kinds in ISO 80000-4 (1 of 4) ...296
Table E.14 - Normative quantity kinds in ISO 80000-4 (2 of 4) ..297
Table E.15 - Normative quantity kinds in ISO 80000-4 (3 of 4) ..298
Table E.16 - Normative quantity kinds in ISO 80000-4 (4 of 4) ..299
Table E.17 - Normative units in ISO 80000-5 (1 of 2) ...300
Table E.18 - Normative units in ISO 80000-5 (2 of 2) ...301
Table E.19 - Normative quantity kinds in ISO 80000-5 (1 of 5) ..302
Table E.20 - Normative quantity kinds in ISO 80000-5 (2 of 5) ..303
Table E.21 - Normative quantity kinds in ISO 80000-5 (3 of 5) ..303
Table E.22 - Normative quantity kinds in ISO 80000-5 (4 of 5) ..304
Table E.23 - Normative quantity kinds in ISO 80000-5 (5 of 5) ..305
Table E.24 - Normative units in ISO 80000-6 (1 of 5) ...306
Table E.25 - Normative units in ISO 80000-6 (2 of 5) ...307
Table E.26 - Normative units in ISO 80000-6 (3 of 5) ...307
Table E.27 - Normative units in ISO 80000-6 (4 of 5) ...308
Table E.28 - Normative units in ISO 80000-6 (5 of 5) ...309
Table E.29 - Normative quantity kinds in ISO 80000-6 (1 of 4) ..310
Table E.30 - Normative quantity kinds in ISO 80000-6 (2 of 4) ..311
Table E.31 - Normative quantity kinds in ISO 80000-6 (3 of 4) ..312
Table E.32 - Normative quantity kinds in ISO 80000-6 (4 of 4) ..313
Table E.33 - Units in ISO 80000-7..314
Table E.34 - Quantity Kinds in ISO 80000-7..314
Table E.35 - Units in ISO 80000-9..314
Table E.36 - Quantity Kinds in ISO 80000-9..315
Table E.37 - Units in ISO 80000-10..315
Table E.38 - Quantity Kinds in ISO 80000-10..315
Table E.39 - Units in ISO 80000-13..315
Table E.40 - Quantity Kinds in ISO 80000-13..316
Table E.41 - Distribution Stereotypes ...317
xviii  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
FOREWORD

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form
the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees established by the respective organization to deal
with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/
IEC Directives, Part 1. In particular the different approval criteria needed for the different types of document should be
noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2
(see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO
and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified
during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received
(see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an
endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to
conformity assessment, as well as information about ISO’s adherence to the World Trade Organization (WTO) principles
in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by the Object Management Group (OMG) and was adopted, under the PAS procedure, by
Joint Technical Committee ISO/IEC JTC 1, Information technology, in parallel with its approval by national bodies of
ISO and IEC.

This document is related to:

• ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1995, Information Technology - Open Distributed
Processing - Reference Model: Foundations

• ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1995, Information Technology - Open Distributed
Processing - Reference Model: Architecture

• ITU-T Recommendation X.920 (1997) | ISO/IEC 14750:1997, Information Technology - Open Distributed
Processing - Interface Definition Language

Apart from this Foreword, the text of this document is identical with that for the OMG specification for Systems
Modeling Language, v1.4.1.
 ISO/IEC 2017 - All rights reserved xix

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/foreword.html

ISO/IEC 19514:2017(E)
INTRODUCTION

The rapid growth of distributed processing has led to a need for a coordinating framework for this standardization and
ITU-T Recommendations X.901-904 | ISO/IEC 10746, the Reference Model of Open Distributed Processing (RM-ODP)
provides such a framework. It defines an architecture within which support of distribution, interoperability and portability
can be integrated.

RM-ODP Part 2 (ISO/IEC 10746-2) defines the foundational concepts and modeling framework for describing distributed
systems. The scopes and objectives of the RM-ODP Part 2 and the UML, while related, are not the same and, in a number
of cases, the RM-ODP Part 2 and the UML specification use the same term for concepts which are related but not
identical (e.g., interface). Nevertheless, a specification using the Part 2 modeling concepts can be expressed using UML
with appropriate extensions (using stereotypes, tags, and constraints).

RM-ODP Part 3 (ISO/IEC 10746-3) specifies a generic architecture of open distributed systems, expressed using the
foundational concepts and framework defined in Part 2. Given the relation between UML as a modeling language and Part
3 of the RM-ODP standard, it is easy to show that UML is suitable as a notation for the individual viewpoint
specifications defined by the RM-ODP.

This International Standard for OMG Systems Modeling Language is a standard for the technology specification of an
ODP system. It defines a technology to provide the infrastructure required to support functional distribution of an ODP
system, specifying functions required to manage physical distribution, communications, processing and storage, and the
roles of different technology objects in supporting those functions.

This International Standard defines a general-purpose language for systems engineering applications, called the OMG
Systems Modeling Language (OMG SysMLTM). Throughout the rest of this International Standard the language will be
referred to as SysML.

SysML supports the specification, analysis, design, verification, and validation of a broad range of complex systems.
These systems may include hardware, software, information, processes, personnel, and facilities.

It is common practice for engineers to use a wide range of modeling languages, tools, and techniques on large systems
projects. SysML is intended to unify diverse modeling languages used by systems engineers and can be used with a wide
variety of discipline- and domain-specific modeling languages.

SysML reuses a subset of UML 2.5 and provides additional extensions needed to address the requirements in UML for
SE. SysML uses the UML 2.5 extension mechanisms as further elaborated in Clause 17 as the primary mechanism to
specify the extensions to UML 2.5. This revision of SysML relies on several new features incorporated into UML 2.5.
Any use of the term “UML 2” or “UML” in this International Standard, unless otherwise noted, will refer to UML 2.5 in
general and the UML 2.5 specification in particular.

Since SysML uses UML 2.5 as its foundation, systems engineers modeling with SysML and software engineers modeling
with UML 2.5 will be able to collaborate on models of software-intensive systems. This will improve communication
among the various stakeholders who participate in the systems development process and promote interoperability among
modeling tools. It is anticipated that SysML will be customized to model domain-specific applications, such as
automotive, aerospace, communication, and information systems.
xx  ISO/IEC 2017 - All rights reserved

 INTERNATIONAL STANDARD ISO/IEC 19514:2017(E)
Information technology - Object Management Group
Systems Modeling Language (OMG SysML)

1 Scope

1.1 General

The purpose of this International Standard is to specify the Systems Modeling Language (SysML), a general-purpose
modeling language for systems engineering. Its intent is to specify the language so that systems engineering modelers
may learn to apply and use SysML; modeling tool vendors may implement and support SysML; and both can provide
feedback to improve future versions. Note that a definition of “system” and “systems engineering” can be found in ISO/
IEC/IEEE 15288.

SysML reuses a subset of UML 2 and provides additional extensions to satisfy the requirements of the language. This
International Standard documents the language architecture in terms of the parts of UML 2 that are reused and the
extensions to UML 2. The International Standard includes the concrete syntax (notation) for the complete language and
specifies the extensions to UML 2. The reusable portion of the UML 2 standard is not included directly in the
International Standard but is included by reference. The International Standard also provides examples of how the
language can be used to solve common systems engineering problems.

SysML is designed to provide simple but powerful constructs for modeling a wide range of systems engineering
problems. It is particularly effective in specifying requirements, structure, behavior, allocations, and constraints on system
properties to support engineering analysis. The language is intended to support multiple processes and methods such as
structured, object-oriented, and others, but each methodology may impose additional constraints on how a construct or
diagram kind may be used. This version of the language supports most, but not all, of the requirements of the UML for
Systems Engineering RFP, as shown in the Requirements Traceability referenced by Annex F. These gaps are intended to
be addressed in future versions of SysML as indicated in the matrix.

The following sub clauses provide background information about this International Standard. Instructions for both
systems engineers and tool vendors who read this International Standard are provided in “How to Read this International
Standard.” The main body of this International Standard describes the normative technical content. The annexes include
additional information to aid in understanding and implementation of this International Standard.

2 Normative References

The following normative documents contain provisions, which through reference in this text, constitute provisions of this
International Standard. Subsequent amendments to, or revisions of, any of these publications do not apply.

• ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 7th Edition 2016

• ISO/IEC 10303-233:2012, STEP AP233, Product data representation and exchange: application protocol: Systems
engineering

• ISO/IEC IEEE 15288:2015, Systems and software engineering - System life cycle process
 ISO/IEC 2017 - All rights reserved 1

ISO/IEC 19514:2017 (E)
• OMG Specification formal/2015-03-01, Unified Modeling Language, (UML) V2.5
(http://www.omg.org/spec/UML/2.5/)

• OMG Specification formal/2012-01-01, Object Constraint Language (OCL), V2.3.1
(http://www.omg.org/spec/OCL/2.3.1/)

• OMG Specification formal/2015-06-05, Meta Object Facility (MOF), V2.5
(http://www.omg.org/spec/MOF/2.5/)

• OMG Specification formal/2015-06-01, Diagram Definition, V1.1
(http://www.omg.org/spec/DD/1.1/)

• OMG Document ad/03-03-41, UML for Systems Engineering RFP
(http://www.omg.org/cgi-bin/doc?ad/2003-03-41)

• OMG Document ormsc/2014-06-01, Model Driven Architecture (MDA) Guide rev. 2.0
(http://www.omg.org/cgi-bin/doc?ormsc/2014-06-01)

• VIM Edition 3 (VIM3), “International vocabulary of metrology - Basic and general concepts and associated terms
(VIM)”, JCGM 200:2012 (JCGM 200:2008 with minor corrections)

• [Dybkaer-2010] Rene Dybkaer, “ISO terminological analysis of the VIM3 concepts of ‘quantity’ and ‘kind-of-
quantity’”, Metrologia 47, (2010) 127-143

3 Additional Information

3.1 Relationships to Other Standards

SysML is defined as an extension of the OMG UML 2 standard. See Clause 2 for the current version of the UML 2
standard.

SysML is intended to be supported by two evolving interoperatility standards including the OMG XMI 2 model
interchange standard for UML 2 modeling tools and the ISO 10303 STEP AP233 data interchange standard for systems
engineering tools. Overviews of the approach to model interchange and relevant references are included in Annex G.

SysML supports the OMG’s Model Driven Architecture (MDA) initiative by its reuse of UML and related standards. See
OMG MDA Guide rev 2.0.

3.2 How to Read this International Standard

This International Standard is intended to be read by systems engineers so they may learn and apply SysML, and by
modeling tool vendors so they may implement and support SysML.

Systems engineers should read the Overview, Diagram Elements, and Usage Examples sub clauses in each clause, and
explore the UML Extensions as they see fit. Modeling tool vendors should read all clauses. In addition, systems engineers
and vendors should read Annex D, “Sample Problem,” to understand how the language is applied to an example, and the
document referenced byAnnex F, “Requirements Traceability,” to understand how the requirements in the UML for SE
RFP are satisfied by this International Standard.

Although the clauses are organized into logical groupings that can be read sequentially, this International Standard can be
used for reference and may be read in a non-sequential manner.
2  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
3.2.1 Organization

This International Standard is organized as follows:

FOREWORD

INTRODUCTION

1 Scope

2 Normative References

3 Additional Information - includes Relationships to Other Standards, How to Read this International Standard, and
Acknowledgments

4 Language Architecture - General Information, Design Principles, Architecture, and SsyML Diagrams

5 Conformance - General Information and Conformance Types

6 Language Formalism -

• Levels of Formalism

• Clause Structure

• Conventions and Typography

STRUCTURAL CONSTRUCTS

7 Model Elements - Refactors the kernel package from UML 2 and includes some extensions to provide some foundation
capabilities for model management.

8 Blocks - Reuses and extends structured classes from UML 2 composite structures to provide the fundamental capability
for describing system decomposition and interconnection, and to define different types of system properties including
value properties with optional units of measure.

9 Ports and Flows - Provides the semantics for defining how blocks and parts interact through ports and how items flow
across connectors.

10 Constraint Blocks - Defines how blocks are extended to be used on parametric diagrams. Parametric diagrams model
a network of constraints on system properties to support engineering analysis, such as performance, reliability, and mass
properties analysis.

BEHAVIORAL CONSTRUCTS

11 Activities - Defines the extensions to UML 2 activities, which represent the basic unit of behavior that is used in activity,
sequence, and state machine diagrams. The activity diagram is used to describe the slow of control and flow of inputs and
outputs among actions.

12 Interactions - Defines the constructs for describing message based behavior used in sequence diagrams.

13 State Machines - Describes the constructs used to specify state based behavior in terms of system states and their
transitions.

14 Use Cases - Describes behavior in terms of the high level functionality and uses of a system, that are further specified in
the other behavioral disgrams referred to above.
 ISO/IEC 2017 - All rights reserved 3

ISO/IEC 19514:2017 (E)
CROSSCUTTING CONSTRUCTS

15 Allocations

16 Requirements

17 Profiles & Model Libraries

ANNEXES

Annex A - Diagrams

Annex B - SysML Diagram Interchange

Annex C - Deprecated Elements

Annex D - Sample Problem

Annex E - Non-normative Extensions

Annex F - Requirements Traceability

Annex G - Model Interchange

Annex H - Legal Information

3.3 Acknowledgments

The following companies and organizations submitted or supported parts of the original version of this International
Standard:

Industry

• American Systems Corporation

• BAE SYSTEMS

• Boeing

• Deere & Company

• EADS Astrium

• Eurostep

• Israel Aircraft Industries

• Lockheed Martin Corporation

• Motorola

• Northrop Grumman

• oose Innovative Informatik GmbH

• PivotPoint Technology

• Raytheon

• THALES
4  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
US Government

• NASA/Jet Propulsion Laboratory

• National Institute of Standards and Technology (NIST)

• DoD/Office of the Secretary of Defense (OSD)

Vendors

• ARTiSAN Software Tools

• Ceira Technologies

• EmbeddedPlus Engineering

• Gentleware

• IBM

• I-Logix

• Mentor Graphics

• Telelogic

• Structured Software Systems Limited

• Sparx Systems

• Vitech

Academia

• Georgia Institute of Technology

Liaisons

• Consultative Committee for Space Data Systems (CCSDS)

• Embedded Architecture and Software Technologies (EAST)

• International Council on Systems Engineering (INCOSE)

• ISO STEP AP233

• Systems Level Design Language (SLDL) and Rosetta

The following persons were members of the team that designed and wrote this International Standard: Vincent Arnould,
Laurent Balmelli, Ian Bailey, James Baker, Cory Bialowas, Conrad Bock, Carolyn Boettcher, Roger Burkhart, Murray
Cantor, Bruce Douglass, Harald Eisenmann, Anders Ek, Brenda Ellis, Marilyn Escue, Sanford Friedenthal, Eran Gery, Hal
Hamilton, Dwayne Hardy, James Hummel, Cris Kobryn, Michael Latta, John Low, Robert Long, Kumar Marimuthu, Alan
Moore, Véronique Normand, Salah Obeid, Eldad Palachi, David Price, Bran Selic, Chris Sibbald, Joseph Skipper, Rick
Steiner, Robert Thompson, Jim U’Ren, Tim Weilkiens, Thomas Weigert, and Brian Willard.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this International Standard: Perry Alexander, Michael Chonoles, Mike Dickerson, Orazio Gurrieri, Julian
Johnson, Jim Long, Henrik Lönn, Stephen Mellor, Dave Oliver, Jim Schier, Matthias Weber, Peter Shames, and the
Georgia Institute of Technology research team including Manas Bajaj, Injoong Kim, Chris Paredis, Russell Peak, and
Diego Tamburini. The SysML team also wants to acknowledge Pavel Hruby and his contribution by providing the Visio
stencil for UML 2 that was adapted for most of the figures throughout this International Standard.
 ISO/IEC 2017 - All rights reserved 5

ISO/IEC 19514:2017 (E)
Additional organizations and individuals have contributed to further revisions of this International Standard, as completed
by Finalization and Revision Task Forces listed under the OMG SysML Roadmap in the Preface above. Besides those
already acknowledged above for their contributions to the original International Standard, the following additional
persons have contributed to the Finalization or Revision Task Forces: Yves Bernard, Graham Bleakley, Fraser Chadburn,
Chris Delp, Hans Peter de Koning, Sébastien Demathieu, Peter Denno, Huascar Espinoza, Allison Barnard Feeney,
Sébastien Gérard, Matthew Hause, Kenn Hussey, Nerijus Jankevicius, Steve Jenkins, Robert Karban, Darren Kelly,
Andreas Korff, Frédéric Mallet, Sam Mancarella, Julio Medina, Jishnu Mukerji, Chris Paredis, Axel Reichwein, Pete
Rivett, Nicolas Rouquette, George Sawyer, Andrius Strazdauskas, Kritsana Uttamang, John Watson, Bernd Wenzel.
Additional organizations who supported the work of contributors to the Finalization and Revision Task Forces, not
already listed for the original submission above, include 88solutions, Adaptive, Atego, EADS, CEA LIST, European
Southern Observatory, European Space Agency, Fachhochschule Vorarlberg, INRIA, Mathworks, Tecnalia Research and
Innovation, No Magic, and Universidad de Cantabria.
6  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
4 Language Architecture

4.1 General

SysML reuses a subset of UML 2 and provides additional extensions needed to address requirements in the UML for
Systems Engineering RFP. This International Standard documents the language architecture in terms of the parts of UML
2 that are reused and the extensions to UML 2. This clause explains design principles and how they are applied to define
the SysML language architecture.

To visualize the relationship between the UML and SysML languages, consider the Venn diagram shown in Figure 4.1,
where the sets of language constructs that comprise the UML and SysML languages are shown as the circles marked
“UML” and “SysML,” respectively. The intersection of the two circles, shown by the region marked “UML reused by
SysML,” indicates the UML modeling constructs that SysML reuses, called the UML4SysML subset. The region marked
“SysML extensions to UML” in Figure 4.1 indicates the new modeling constructs defined for SysML that have no
counterparts in UML, or which replace UML constructs. Note that there is also a part of UML 2 that is not required to
implement SysML, which is shown by the region marked “UML not required by SysML.”

Figure 4.1- Overview of SysML/UML Interrelationship

SysML

UML
not required

by SysM L
(UM L – UM L4SysM L)

UML
reused by

SysM L
(UM L4SysM L)

SysM L
extensions

to UM L
(SysM L Profile)

UML 2
 ISO/IEC 2017 - All rights reserved 7

ISO/IEC 19514:2017(E)
Table 4.1 lists the metaclasses excluded from the UML4SysML subset. Table 4.2 lists the metaclasses and datatypes
included in the UML4SysML subset. Table 4.3 lists the stereotypes, blocks, valuetypes, and datatypes included in SysML.

Table 4.1 - UML 2 metaclasses excluded from the UML4SysML subset

UML 2 metaclasses excluded from the UML4SysML subset

Artifact, ClassifierTemplateParameter, Collaboration, CollaborationUse, CommunicationPath, Component,
ComponentRealization, ConnectableElementTemplateParameter, Deployment, DeploymentSpecification, Device,
ExceptionHandler, ExecutionEnvironment, ExpansionNode, ExpansionRegion, Manifestation, Node,
OperationTemplateParameter, ProtocolConformance, ProtocolStateMachine, ProtocolTransition, QualifierValue,
ReadLinkObjectEndQualifierAction, RedefinableTemplateSignature, StringExpression, TemplateBinding,
TemplateParameter, TemplateParameterSubstitution, TemplateSignature, UMLActivityDiagram,
UMLAssociationEndLabel, UMLAssociationOrConnectorOrLinkShape,
UMLAssociationOrConnectorOrLinkShapeKind, UMLBehaviorDiagram, UMLClassDiagram, UMLClassifierShape,
UMLCompartment, UMLCompartmentableShape, UMLComponentDiagram, UMLCompositeStructureDiagram,
UMLDeploymentDiagram, UMLDiagram, UMLDiagramElement, UMLDiagramWithAssociations, UMLEdge,
UMLInteractionDiagram, UMLInteractionDiagramKind, UMLInteractionTableLabel, UMLKeywordLabel, UMLLabel,
UMLMultiplicityLabel, UMLNameLabel, UMLNavigabilityNotationKind, UMLObjectDiagram, UMLPackageDiagram,
UMLProfileDiagram, UMLRedefinesLabel, UMLShape, UMLStateMachineDiagram, UMLStateShape,
UMLStereotypePropertyValueLabel, UMLStructureDiagram, UMLStyle, UMLTypedElementLabel,
UMLUseCaseDiagram
8  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table 4.2 - UML 2 metaclasses and datatypes included in the UML4SysML subset

UML 2 metaclasses and datatypes included in the UML4SysML subset

Abstraction, AcceptCallAction, AcceptEventAction, Action, ActionExecutionSpecification, ActionInputPin, Activity,
ActivityEdge, ActivityFinalNode, ActivityGroup, ActivityNode, ActivityParameterNode, ActivityPartition, Actor,
AddStructuralFeatureValueAction, AddVariableValueAction, AggregationKind, AnyReceiveEvent, Association,
AssociationClass, Behavior, BehaviorExecutionSpecification, BehavioralFeature, BehavioredClassifier,
BroadcastSignalAction, CallAction, CallBehaviorAction, CallConcurrencyKind, CallEvent, CallOperationAction,
CentralBufferNode, ChangeEvent, Class, Classifier, Clause, ClearAssociationAction, ClearStructuralFeatureAction,
ClearVariableAction, CombinedFragment, Comment, ConditionalNode, ConnectableElement, ConnectionPointReference,
Connector, ConnectorEnd, ConnectorKind, ConsiderIgnoreFragment, Constraint, Continuation, ControlFlow,
ControlNode, CreateLinkAction, CreateLinkObjectAction, CreateObjectAction, DataStoreNode, DataType,
DecisionNode, Dependency, DeployedArtifact, DeploymentTarget, DestroyLinkAction, DestroyObjectAction,
DestructionOccurrenceSpecification, DirectedRelationship, Duration, DurationConstraint, DurationInterval,
DurationObservation, Element, ElementImport, EncapsulatedClassifier, Enumeration, EnumerationLiteral, Event,
ExecutableNode, ExecutionOccurrenceSpecification, ExecutionSpecification, Expression, Extend, Extension,
ExtensionEnd, ExtensionPoint, Feature, FinalNode, FinalState, FlowFinalNode, ForkNode, FunctionBehavior, Gate,
GeneralOrdering, Generalization, GeneralizationSet, Image, Include, InformationFlow, InformationItem, InitialNode,
InputPin, InstanceSpecification, InstanceValue, Interaction, InteractionConstraint, InteractionFragment,
InteractionOperand, InteractionOperatorKind, InteractionUse, Interface, InterfaceRealization, InterruptibleActivityRegion,
Interval, IntervalConstraint, InvocationAction, JoinNode, Lifeline, LinkAction, LinkEndCreationData, LinkEndData,
LinkEndDestructionData, LiteralBoolean, LiteralInteger, LiteralNull, LiteralReal, LiteralSpecification, LiteralString,
LiteralUnlimitedNatural, LoopNode, MergeNode, Message, MessageEnd, MessageEvent, MessageKind,
MessageOccurrenceSpecification, MessageSort, Model, MultiplicityElement, NamedElement, Namespace, ObjectFlow,
ObjectNode, ObjectNodeOrderingKind, Observation, OccurrenceSpecification, OpaqueAction, OpaqueBehavior,
OpaqueExpression, Operation, OutputPin, Package, PackageImport, PackageMerge, PackageableElement, Parameter,
ParameterDirectionKind, ParameterEffectKind, ParameterSet, ParameterableElement, PartDecomposition, Pin, Port,
PrimitiveType, PrimitiveTypes::Boolean, PrimitiveTypes::Integer, PrimitiveTypes::Real, PrimitiveTypes::String,
PrimitiveTypes::UnlimitedNatural, PrimitiveValueTypes::Boolean, Profile, ProfileApplication, Property, Pseudostate,
PseudostateKind, RaiseExceptionAction, ReadExtentAction, ReadIsClassifiedObjectAction, ReadLinkAction,
ReadLinkObjectEndAction, ReadSelfAction, ReadStructuralFeatureAction, ReadVariableAction, Realization, Reception,
ReclassifyObjectAction, RedefinableElement, ReduceAction, Region, Relationship,
RemoveStructuralFeatureValueAction, RemoveVariableValueAction, ReplyAction, SendObjectAction,
SendSignalAction, SequenceNode, Signal, SignalEvent, Slot, StartClassifierBehaviorAction, StartObjectBehaviorAction,
State, StateInvariant, StateMachine, Stereotype, StructuralFeature, StructuralFeatureAction, StructuredActivityNode,
StructuredClassifier, Substitution, TestIdentityAction, TimeConstraint, TimeEvent, TimeExpression, TimeInterval,
TimeObservation, Transition, TransitionKind, Type, TypedElement, UnmarshallAction, Usage, UseCase, ValuePin,
ValueSpecification, ValueSpecificationAction, Variable,VariableAction, Vertex, VisibilityKind, WriteLinkAction,
WriteStructuralFeatureAction, WriteVariableAction
 ISO/IEC 2017 - All rights reserved 9

ISO/IEC 19514:2017(E)
4.2 Design Principles

The fundamental design principles for SysML are:

• Requirements-driven - SysML is intended to satisfy the requirements of the UML for SE RFP.

• UML reuse - SysML reuses UML wherever practical to satisfy the requirements of the RFP, and when modifications
are required, they are done in a manner that strives to minimize changes to the underlying language. Consequently,
SysML is intended to be relatively easy to implement for vendors who support UML 2.

• UML extensions - SysML extends UML as needed to satisfy the requirements of the RFP. The primary extension
mechanism is the UML 2 profile mechanism as further refined in Clause 17, “Profiles & Model Libraries.”

• Partitioning - The package is the basic unit of partitioning in this International Standard. The packages partition the
model elements into logical groupings that minimize circular dependencies among them.

• Layering - SysML packages are specified as an extension layer to the UML metamodel.

• Interoperability - SysML inherits the XMI interchange capability from UML. SysML is also intended to be supported
by the ISO 10303-233 data interchange standard to support interoperability among other engineering tools.

SysML provides three model libraries:

• PrimitiveValueTypes, see 8.3.3.1.

• UnitAndQuantityKind, see 8.3.3.2.

• ControlValues, see 11.3.3.

4.3 Architecture

The relationship between SysML and UML 2 is shown in Figure 4.2. SysML extends UML 2’s StandardProfile (see
Clause 22 in the UML 2.5 specification) whose Trace and Refine stereotypes provide the basis for Requirement
traceability in SysML (see Clause 16, “Requirements” in this International Standard).

Table 4.3 - SysML stereotypes, blocks, valuetypes, and datatypes

SysML stereotypes, blocks, valuetypes, and datatypes

AcceptChangeStructuralFeatureEventAction, AdjunctProperty, Allocate, AllocateActivityPartition, BindingConnector,
Block, BoundReference, ChangeStructuralFeatureEvent, ClassifierBehaviorProperty, Conform, ConnectorProperty,
ConstraintBlock, Continuous, ControlOperator, ControlValue, Copy, DeriveReqt, DirectedFeature,
DirectedRelationshipPropertyPath, Discrete, DistributedProperty, ElementGroup, ElementPropertyPath,
EndPathMultiplicity, Expose, FeatureDirection, FlowProperty, FullPort, InterfaceBlock, InvocationOnNestedPortAction,
ItemFlow, NestedConnectorEnd, NoBuffer, Optional, Overwrite, ParticipantProperty, PrimitiveValueTypes::Boolean,
PrimitiveValueTypes::Complex, PrimitiveValueTypes::Integer, PrimitiveValueTypes::Number,
PrimitiveValueTypes::Real, PrimitiveValueTypes::String, Probability, Problem, PropertySpecificType, ProxyPort, Rate,
Rationale, Refine, Requirement, Satisfy, Stakeholder, TestCase, Trace, TriggerOnNestedPort, ValueType, VerdictKind,
Verify, View, Viewpoint
10  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Although SysML indirectly imports the UML 2 PrimitiveTypes library (see Clause 21 in the UML 2.5 specification) due
to the transitivity of package import, SysML provides a PrimitiveValueTypes model library that systems engineers can
extend via SysML’s ValueType stereotype. In the remainder of this document, the unqualified references to Boolean,
Integer, Real, and String should be interpreted as follows:

• In the context of the definition of a SysML Stereotype, the name refers to the definition of a UML::PrimitiveType in
the UML 2 PrimitiveTypes library.

• Elsewhere, the name refers to the definition of a SysML::ValueType stereotype of UML::DataType in the SysML
PrimitiveValueTypes library.

Figure 4.2 - SysML Extension of UML
 ISO/IEC 2017 - All rights reserved 11

ISO/IEC 19514:2017(E)
Figure 4.3 - SysML Package Structure

As previously stated, the design approach for SysML is to reuse a subset of UML and create extensions to support the
specific concepts needed to satisfy the requirements in the UML for SE RFP. The SysML package structure shown in
Figure 4.3 contains a set of packages that correspond to concept areas in SysML that have been extended.

The SysML packages extend UML as follows:

• SysML::Model Elements refactors and extends UML classes.

• SysML::Blocks reuses structured classes from composite structures.

• SysML::ConstraintBlocks extends Blocks to support parametric modeling.

• SysML::Ports and Flows extends UML ports, UML information flows, and SysML Blocks.

• SysML::Activities extends UML activities.

• SysML::Allocations extends UML dependencies.

• SysML::Requirements extends UML classes and dependencies.

• SysML::DeprecatedElements extends UML ports, UML interfaces, and SysML Item Flows.

Figure 4.4 shows non-normative packages in this International Standard that depend on SysML and UML. Note that the
QUDV and ISO-80000 libraries are described in non-normative annexes to this specification.
12  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure 4.4 - Non-normative Package Structure

4.4 Extension Mechanisms

This International Standard uses the following mechanisms to define the SysML extensions:

• UML stereotypes

• UML diagram extensions

• Model libraries

SysML stereotypes define new modeling constructs by extending existing UML 2 constructs with new properties and
constraints. SysML diagram extensions define new diagram notations that supplement diagram notations reused from
UML 2. SysML model libraries describe specialized model elements that are available for reuse. Additional non-
normative extensions are included in Annex E “Non-normative Extensions.”

The SysML user model is created by instantiating its metamodel and applying the stereotypes specified in the SysML
profile, and optionally referencing or subclassing the model elements in the SysML model library. Clause 17, “Profiles &
Model Libraries” describes how profiles and model libraries are applied and how they can be used to further extend
SysML.

4.5 SysML Diagrams

The SysML diagram taxonomy is shown in Figure A.1 in Annex A. The concrete syntax (notation) for the diagrams along
with the corresponding specification of the UML extensions is described in Parts II - IV. The Diagrams Annex (Annex A)
describes generalized features of diagrams, such as their frames and headings. A model of SysML diagrams to support
interchange is in SysML Diagram Interchange Annex (Annex B).
 ISO/IEC 2017 - All rights reserved 13

ISO/IEC 19514:2017(E)
14  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
5 Conformance

5.1 Overview

Conformance with SysML requires that the subset of UML required for SysML is implemented, and that the SysML
extensions to this subset are implemented. SysML has three types of conformance, listed in 5.2, which shall all be
supported to fully conform to SysML. Conformance does not include DeprecatedElements.

5.2 Conformance Types

An implementation of SysML shall comply with both the subset of UML4SysML and the SysML extensions. The types
of SysML conformance extend corresponding types in UML as follows:

• Abstract syntax conformance. A tool demonstrating abstract syntax conformance provides a user interface and/or API
that enables instances of concrete SysML stereotypes (which are applications of stereotypes to instances of UML
metaclasses) and model library elements to be created, read, updated, and deleted. The tool shall also provide a way to
validate the well-formedness of models that corresponds to the constraints defined in SysML.

• Concrete syntax conformance. A tool demonstrating concrete syntax conformance provides a user interface and/or API
that enables instances of SysML notation to be created, read, updated, and deleted. This includes conformance to the
notation defined in the “Diagram Elements” tables and diagrams extension sub clauses in each clause of this
International Standard. Note that a conforming tool may provide the ability to create, read, update, and delete
additional diagrams and notational elements that are not defined in SysML.

• Model interchange conformance. A tool demonstrating model interchange conformance can import and export
conformant XMI for all valid SysML models, including models with profiles defined and/or applied. Model
interchange conformance implies abstract syntax conformance. See more information in Annex G.
 ISO/IEC 2017 - All rights reserved 15

ISO/IEC 19514:2017(E)
16  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
6 Language Formalism

6.1 Levels of Formalism

SysML is specified using a combination of UML modeling techniques and precise natural language to balance rigor and
understandability. Use of more formal constraints and semantics may be applied in future versions to further increase the
precision of the language.

6.2 Clause Structure

The clauses are organized according to the SysML packages as described in the language architecture and selected
reusable portions of UML 2 packages. This sub clause provides information about how each clause is organized.

6.2.1 Overview

This sub clause provides an overview of the SysML modeling constructs defined in the subject package, which are
usually associated with one or more SysML diagram types.

6.2.2 Diagram Elements

This sub clause provides tables that summarize the concrete syntax (notation) and abstract syntax references for the
graphic nodes and paths associated with the relevant diagram types. The diagram elements tables are intended to include
all of the diagrammatic constructs used in SysML. However, they do not represent all the different combinations in which
they can be used. The reader should refer to the usage examples in the clauses and the sample problem (Annex D) for
typical usages of the concrete syntax. General diagram information on the use of diagram frames and headings can be
found in Annex A.

The diagram elements tables and the additional usage examples fill an important role in defining the scope of SysML. As
described in Clause 4, “Language Architecture,” SysML imports many entire packages from the UML metamodel, which
it then reuses and extends. Only a subset of the entire UML metamodel, however, is required to support the notations
included in SysML.

Unless a type of diagram element is shown in some form in one of the SysML diagram elements tables, or in a usage
example in one of the normative SysML clauses, it is not considered to be part of the subset of UML included within
SysML, even if the UML metamodel packages support additional constructs. For example, SysML imports the entire
Dependencies package from UML, but it includes diagram elements for only a subset of the dependency types defined in
this package.

6.2.3 UML Extensions

This sub clause specifies the SysML extensions to UML in terms of diagram extensions and semantic extensions.
Diagram extensions are included when the concrete syntax uses notation other than the standard stereotype notation as
defined in the Profiles & Model Libraries clause. Semantic extensions consist of stereotype and model library extensions.
Stereotype extensions always include the abstract syntax that identifies which metaclasses a stereotype extends. Each
stereotype includes a general description with a definition and semantics, along with stereotype properties (attributes), and
constraints. Each constraint consists of a textual description and may be followed by a formal constraint expressed in
Object Constraint Language (OCL). If there is any ambiguity between the two, the OCL statement of the constraint takes
precedence. The model libraries are defined as subclasses of existing metaclasses.
 ISO/IEC 2017 - All rights reserved 17

ISO/IEC 19514:2017(E)
6.2.4 Usage Examples

This sub clause shows how the SysML modeling constructs can be applied to solve systems engineering problems and is
intended to reuse and/or elaborate the sample problem in Annex D.

6.3 Conventions and Typography

In the description of SysML, the following conventions have been used:

• When referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they
appear in the model are used.

• No visibilities are presented in the diagrams, since all elements are public.

• If a sub clause is not applicable, it is not included, except for the top-level sub clauses outlined in “Clause Structure”
on page 17.

• Stereotype, metaclass, and metaassociation names: initial embedded capitals are used (e.g., “ModelElement,”
“ElementReference”).

• Boolean metaattribute names: always start with “is” (e.g., “isComposite”).

• Enumeration types: always end with “Kind” (e.g., “DependencyKind”).
18  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
STRUCTURAL CONSTRUCTS
 ISO/IEC 2017 - All rights reserved 19

ISO/IEC 19514:2017(E)
20  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
7 Model Elements

7.1 Overview

The ModelElements package of SysML defines general-purpose constructs that may be shown on multiple SysML
diagram types. These include package, model, various types of dependencies (e.g., import, access, refine, realization),
constraints, and comments. The package diagram defined in this clause is used to organize the model by partitioning
model elements into packageable elements and establishing dependencies between the packages and/or model elements
within the package. The package defines a namespace for the packageable elements. Model elements from one package
can be imported and/or accessed by another package. This organizational principle is intended to help establish unique
naming of the model elements and avoid overloading a particular model element name. Packages can also be shown on
other diagrams such as the block definition diagram, requirement diagram, and behavior diagrams.

Constraints are used to capture simple constraints associated with one or more model elements and can be represented on
several SysML diagrams. The constraint can represent a logical constraint such as an XOR, a condition on a decision
branch, or a mathematical expression. The constraint has been significantly enhanced in SysML as specified in Clause 10,
“Constraint Blocks” to enable it to be reused and parameterized to support engineering analysis.

Comments can be associated with any model element and are quite useful as an informal means of documenting the
model. SysML has introduced an extension to a comment called rationale to facilitate the system modeler in capturing
decisions. The rationale may be attached to any entity, such as a system element (block), or to any relationship, such as
the satisfy relationship between a design element and a requirement. In the latter case, it may be used to capture the basis
for the design decision and may reference an analysis report or trade study for further elaboration of the decision. In
addition, SysML includes an extension of a comment to reflect a problem or issue that can be attached to any other model
element.

7.1.1 View and Viewpoint

The concepts of viewpoint and view are articulated in ISO-42010 (formerly IEEE-1471). SysML viewpoint and view
constructs are consistent with the ISO-42010 standard. Typical examples may include an operational, manufacturing, or
security viewpoint and view.

Systems engineers use SysML to make models of systems-the result is the system model, which is what we mean most of
the time when we speak of “the model.” Along with that model, systems engineers may also use SysML to make a model
of the information to be presented to the stakeholders to address their concerns. The result is the viewpoint and view
model, which helps systems engineers assure that stakeholders get the understanding they need from the system model.

The viewpoint and view model can also be thought of as a description model, which augments a system model. A
viewpoint and view model exposes elements of one or more system models. In particular, a viewpoint is a specification of
rules for constructing a view to address a set of stakeholder concerns. The view is intended to represent the system from
this viewpoint. This enables stakeholders to specify aspects of the system model that are important to them from their
viewpoint, and then represent those aspects of the system in a specific view.

The viewpoint describes the point of view of a set of stakeholders by framing the concerns of the stakeholders along with
the method for producing a view that addresses those concerns. The method describes the expectation of what
stakeholder(s) wish to see exposed from the model, how the stakeholder wishes the information to be structured and
presented, and in what kind of artifact the stakeholder wants to consume the information. In other words, the method is
the set of rules that describe how the view should express the information from the model to address the stakeholder
concerns. The method can be specified as a process and/or a set of constraints for producing a view, which may include
rules or instructions for analyzing or verifying the view content.
 ISO/IEC 2017 - All rights reserved 21

ISO/IEC 19514:2017(E)
The view is the modeling element that represents the artifact that is presented to the stakeholder. A view conforms to only
one viewpoint to ensure that only one method is applied to the view. The view shall be related to the model that contains
the information and the method that produces the view. The view is used by a rendering application to generate the
artifact, such as a document.

In summary, the viewpoint description specifies the following:

1. What kind of information the view should contain.

2. How the information should be expressed, i.e., what modeling language is required for the model that will appear in
the view. (Note: This is not to be confused with the language used for specifying the viewpoint method).

3. The presentation format that specifies how the information should be presented in an artifact, e.g. specifying that data
values should be plotted on a graph or a particular tabular style, or that both English and Spanish text should be pro-
vided, or that photographs be shown in color with minimum dimensions of 100 millimeters square.

4. The file format of the artifacts that are generated from the view (e.g., set of slides in ppt, a PDF, a Word document, a
web viewable format, …).

It is important to understand that while the view is a SysML construct that exists within a SysML model, artifacts
generated from views potentially live outside of the modeling environment as the means to satisfy stakeholder concerns.
An artifact such as a movie or a PDF document is not directly incorporated in a SysML model, while the view which
represents the artifact does reside in the model as a specification of that artifact. The relationship between the viewpoint
and view model and the corresponding artifact is similar to the relationship between the system model and the system that
is the subject of the model.

7.2 Diagram Elements

Many of the diagram elements defined in this clause, specifically comments, constraints, problem, rationale, and
dependencies, including the dependency subtypes Conform, Realization, and Refine, may be shown on all SysML
diagram types, in addition to the diagram elements that are specific to each diagram type.

Table 7.1 - Graphical nodes defined by ModelElements package

Element Name Concrete Syntax Example Abstract Syntax Reference

Comment UML4SysML::Comment

ConstraintNote UML4SysML::Constraint

Comment text.

{C1: {L1} E1.x > E2.y}
22  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
ConstraintTextualNote UML4SysML::Constraint

ElementGroup SysML::ModelElements::Element-
Group

Model UML4SysML::Model

PackageDiagram UML4SysML::Package

PackageWith
NameInTab

UML4SysML::Package

PackageWith
NameInside

UML4SysML::Package

Table 7.1 - Graphical nodes defined by ModelElements package

Element Name Concrete Syntax Example Abstract Syntax Reference

{constraint text}

{constraint text}

(any graphical path)

Element1
(any graphical node)

«elementGroup»
{name=MyGroup, size=3}

Group criterion description

Element1

Element2
Element3

Model

Subpackage1

Subpackage2

«import»

pkg Name

Subpackage1

Subpackage2

Package1

«import»

 Package1
{uri=http://www.abc.com/models/Package1}

Package1
 ISO/IEC 2017 - All rights reserved 23

ISO/IEC 19514:2017(E)
Problem SysML::ModelElements::Problem

Rationale SysML::ModelElements::Rationale

Stakeholder SysML::ModelElements::Stakeholder

View SysML::ModelElements::View

Viewpoint SysML::ModelElements::Viewpoint

Table 7.2 - Graphical paths defined by ModelElements package

Element Name Concrete Syntax Example Abstract Syntax Reference

Conform SysML::ModelElements::Conform

Table 7.1 - Graphical nodes defined by ModelElements package

Element Name Concrete Syntax Example Abstract Syntax Reference

«problem»
The problem is that ...

«rationale»
Description of rationale

«stakeholder»
concernList=,,,
/concern="...",”…”,”…”

«stakeholder»
Name

property1:View1

«view»
/viewpoint=Name
/stakeholder=Name1,Name2

«view»
Name

«create»View()

«viewpoint»
stakeholder=Name
purpose="..."
concernList=,,,
/concern="...",”…”,”…”
language="..."
/method=Name
presentation=”...”,”…”

«viewpoint»
Name

«conform»
24  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
7.3 UML Extensions

7.3.1 Diagram Extensions

7.3.1.1 UML Diagram Elements not Included in SysML

The notation for a “merge” dependency between packages, using a «merge» keyword on a dashed-line arrow, is not
included in SysML. UML uses package merge in the definition of its own metamodel, which SysML builds on, but
SysML does not support this capability for user-level models.

Expose SysML::ModelElements::Expose

Dependency UML4SysML::Dependency

PublicPackageImport UML4SysML::PackageImport with
visibility = public

PrivatePackageImport UML4SysML::PackageImport with
visibility = private

PackageContainment UML4SysML::Package::
ownedElement

Realization UML4SysML::Realization

Refine UML4SysML::Refine

Table 7.2 - Graphical paths defined by ModelElements package

Element Name Concrete Syntax Example Abstract Syntax Reference

«expose»

«stereotype1»
dependency1

«import»

«access»

«refine»
 ISO/IEC 2017 - All rights reserved 25

ISO/IEC 19514:2017(E)
NOTE: Combining packages that have the same named elements, resulting in merged definitions of the same names, could
cause confusion in user models and adds no inherent modeling capability, and so has been left out of SysML.

7.3.2 Stereotypes

Package ModelElements

Figure 7.1 - Stereotypes defined in package ModelElements

7.3.2.1 Conform

Description

A Conform relationship is a generalization between a view and a viewpoint. The view conforms to the specified rules and
conventions detailed in the viewpoint. When this is done, the view is said to conform to the viewpoint. Conform extends
UML generalization.

Constraints

[1] The general classifier shall be an element stereotyped by Viewpoint.

«metaclass»
UML4SysML::

Comment

«stereotype»
Rationale

«stereotype»
Problem

«metaclass»
UML4SysML::

Class

stakeholder: Stakeholder [*]
purpose: String
concernList:Comment[*]
/concern: String [*]
language: String [*]
/method: Behavior [*]
presentation: String [*]

«stereotype»
Viewpoint

«metaclass»
UML4SysML::
Generalization

«stereotype»
Conform

«metaclass»
UML4SysML::

Class

/viewpoint: Viewpoint
/stakeholder: Stakeholder [*]

«stereotype»
View

«metaclass»
UML4SysML::

Classifier

concernList:Comment[*]
/concern: String [*]

«stereotype»
Stakeholder

«metaclass»
UML4SysML::
Dependency

«stereotype»
Expose

name: String
/criterion: String
/size: Integer
/member: Element [*]
orderedMember: Element [*]

«stereotype»
ElementGroup
26  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
[2] The specific classifier shall be an element that is stereotyped by View.

7.3.2.2 ElementGroup

Description

The ElementGroup stereotype provides a lightweight mechanism for grouping various and possibly heterogeneous model
elements by extending the capability of comments to refer to multiple annotated elements. For example, it can group
elements that are associated with a particular release of the model, have a certain risk level, or are associated with a
legacy design. The semantics of ElementGroup is modeler-defined. In particular, the body text is not restricted. It can
describe the grouped elements as well as elements or values related to the grouped elements.

Element groups are named using the name property. The criterion for membership in an element group is specified by the
body of the comment the stereotype is applied to. By grouping elements, the modeler asserts that the criterion of the
group applies to the member. Optionally, members of an element group can be ordered using its orderedMember property.

ElementGroups appear in diagrams as comments, and properties of the stereotype appear in the notation for stereotype
properties. Grouped elements are the annotated elements of the comment to which the stereotype is applied. This has
several implications:

• Element groups do not own their elements and thus an element can participate in an unlimited number of groups.

• The elements in a group are identified by the modeler, as opposed to being the result of a query, as in views.

• Element groups can be members of other element groups, but this does not imply that members of the first are
members of the second.

Elements related to the grouped elements are not included in the group, even though the body text can address them. In
particular, element groups annotating deeply nested properties or properties with bindings are grouping only the
properties, rather than their nesting or their bound properties.

Grouped elements are also limited to elements of models, rather than instances of values of those model elements. In
particular, element groups annotating blocks or properties are not grouping the instances of the blocks or the values of the
properties. However, since the semantics of ElementGroup is left to the modeler, the body text can refer to related
elements outside the group, such as instances and values of the grouped elements, or to bound properties. The modeler is
then responsible for writing body text that explains the implications for the related elements. For instance:

• A group with the criterion: “Authored by John” could annotate any model element added in the model by John. This
body text does not address any related elements. For example, if the annotated element is a property bound to another
property, the group would not imply authorship of the second property.

• A group with the criterion: “Instances are manufactured in a foreign country” could annotate Blocks to indicate that
any instances of those Blocks are produced in a foreign country. This body text does not address the Block itself, which
is not necessarily “manufactured” in a foreign country.

• A group with criterion: “Values are manufactured in a foreign country” could annotate properties, including part
properties, to indicate the values of the property are produced in a foreign country. This body text does not address the
property itself, which is not necessarily “manufactured” in a foreign country. Since the text is about values of the
property, it is also about values of other properties that might be bound to the annotated property, because the values of
bound properties are the same.

Attributes

• name: String
Name of the element group
 ISO/IEC 2017 - All rights reserved 27

ISO/IEC 19514:2017(E)
• /criterion[0..1]: String
Specifies the rationale for being member of the group. Adding an element to the group asserts that the criterion
applies to this element.
Derived from Comment::body.

• /size: Integer
Number of members in the group. Derived.

• /member: Element[0..*]
Set specifying the members of the group.
Derived from Comment::annotatedElement.

• orderedMember: Element[0..*] {ordered, subsets member}
Organize member according to an arbitrary order. Optional.

Operations

[1] The query criterion() returns the text describing the criterion defining the group.
criterion(): String[0..1] {query}
body: self.base_Comment.body

[2] The query size() returns the number of elements which are members of the group.
size(): Integer[1..1] {query}
body: self.base_Comment.annotatedElement->size()

[3] The query member() returns the set of all the members of the group.
member(): Set(Element)[0..*] {query}
body: self.base_Comment.annotatedElement

[4] The query AllGroups() returns the set of all the groups an element is member of.
allGroups(e:Element): Set(ElementGroup)[0..*] {query, static}
body: ElementGroup.allInstances()->select(member->includes(e))

7.3.2.3 Expose

Description

The expose relationship relates a view to one or more model elements. Each model element is an access point to initiate
the query. The view and the model elements related to the view are passed to the constructor when it is invoked. The
method describes how the exposed elements are navigated to extract the desired information.

Constraints

[1] The client shall be an element stereotyped by View.

7.3.2.4 Problem

Description

A Problem documents a deficiency, limitation, or failure of one or more model elements to satisfy a requirement or need,
or other undesired outcome. It may be used to capture problems identified during analysis, design, verification, or
manufacture and associate the problem with the relevant model elements. Problem is a stereotype of comment and may be
attached to any other model element in the same manner as a comment.
28  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
7.3.2.5 Rationale

Description

A Rationale documents the justification for decisions and the requirements, design, and other decisions. A Rationale can
be attached to any model element including relationships. It allows the user, for example, to specify a rationale that may
reference more detailed documentation such as a trade study or analysis report. Rationale is a stereotype of comment and
may be attached to any other model element in the same manner as a comment.

7.3.2.6 Stakeholder

Description

A stakeholder represents a role, group, or individual who has concerns that will be addressed by the View of the model.

Attributes

• concernList: Comment [*]
The interests of this stakeholder.

• /concern: String [*]
The interests of this stakeholder displayed as the body of the comments from concernList.

7.3.2.7 View

Description

A View is a model element that represents a real world artifact that can be presented to stakeholders. The view is the
result of querying one or more models that are defined by a viewpoint method. The view shall conform to the viewpoint
in terms of the viewpoint stakeholders, concerns, method, language, and presentation requirements.

It is sometimes desirable to construct views from other views, and to establish an order for presenting the views. Views
may include one or more views as properties, each of which conforms to their viewpoint. The order of the referenced
views is reflected in the property order.

The information may be presented to the stakeholder in any format specified by the viewpoint, which may include figures,
tables, plots, entire documents, presentation slides, or video.

Attributes

• /viewpoint: Viewpoint
The viewpoint for this View is derived from the conform relationship.

• /stakeholder: Stakeholder [*]
The list of stakeholders is derived from the viewpoint the view conforms to.

Constraints

[1] A view shall only conform to a single viewpoint.

[2] The derived value of the viewpoint shall be the classifier stereotyped by Viewpoint that is the general classifier of the
generalization relationship stereotyped by Conform for which the View is the specific classifier.

[3] The derived values of the stakeholder attribute shall be the names of the classifiers stereotyped by Stakeholder that are the
values of the stakeholder attribute of the general classifier of the generalization relationship stereotyped by Conform for
which the View is the specific classifier.
 ISO/IEC 2017 - All rights reserved 29

ISO/IEC 19514:2017(E)
7.3.2.8 Viewpoint

Description

A Viewpoint is a specification of the conventions and rules for constructing and using a view for the purpose of
addressing a set of stakeholder concerns. The languages and methods for specifying a view may reference languages and
methods in another viewpoint. They specify the elements expected to be represented in the view, and may be formally or
informally defined. For example, the security viewpoint may require the security requirements, security functional and
physical architecture, and security test cases.

Attributes

• stakeholder: Stakeholder [*]
Set of stakeholders whose concerns are to be addressed by the viewpoint.

• purpose: String
The purpose addresses the stakeholder concerns.

• concernList: Comment [*]
The interests of the stakeholders addressed by this viewpoint.

• /concern: String [*]
The interest of the stakeholders displayed as the body of the comments from concernList.

• language: String [*]
The languages used to express the models that represent content which is represented by the view. The language
specification such as its metamodel, profile, or other language specification is referred to by its URI.

• /method: Behavior [*]
The behavior is derived from the method of the operation with the Create stereotype.

• presentation: String [*]
The specifications prescribed for formatting and styling the view.

Constraints

[1] The derived values of the method attribute shall be the names of the methods of the operations stereotyped by the UML
Create stereotype on the classifier stereotyped by Viewpoint.

[2] The property ownedOperation shall include at least one operation named “View” with the UML Create stereotype applied.

7.4 Usage Examples

See Figure D.27 in Annex D for a View/Viewpoint example.
30  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure 7.2 shows examples of Rationale and Problem elements.

Figure 7.2 - Rationale and Problem examples

bdd Master Cylinder requirements

«requirement»
Loss of Fluid

«requirement»
Reservoir

«block»
Brake System

m : MasterCylinder

«satisfy»

«satisfy»

«problem»
The master cylinder in the
previous version leaked.

«rationale»
The best-practice solution
consists in assigning one
reservoir per brakeline.
See "automotive_d32_hdb.doc"
 ISO/IEC 2017 - All rights reserved 31

ISO/IEC 19514:2017(E)
32  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
8 Blocks

8.1 Overview

Blocks are modular units of system description. Each block defines a collection of features to describe a system or other
element of interest. These may include both structural and behavioral features, such as properties and operations, to
represent the state of the system and behavior that the system may exhibit.

Blocks provide a general-purpose capability to model systems as trees of modular components. The specific kinds of
components, the kinds of connections between them, and the way these elements combine to define the total system can
all be selected according to the goals of a particular system model. SysML blocks can be used throughout all phases of
system specification and design, and can be applied to many different kinds of systems. These include modeling either the
logical or physical decomposition of a system, and the specification of software, hardware, or human elements. Parts in
these systems may interact by many different means, such as software operations, discrete state transitions, flows of
inputs and outputs, or continuous interactions.

The Block Definition Diagram in SysML defines features of blocks and relationships between blocks such as associations,
generalizations, and dependencies. It captures the definition of blocks in terms of properties and operations, and
relationships such as a system hierarchy or a system classification tree. The Internal Block Diagram in SysML captures
the internal structure of a block in terms of properties and connectors between properties. A block can include properties
to specify its values, parts, and references to other blocks. Ports are a special class of property used to specify allowable
types of interactions between blocks, and are described in Clause 9, “Ports and Flows.” Constraint Properties are a special
class of property used to constrain other properties of blocks, and are described in Clause 10 “Constraint Blocks.” Various
notations for properties are available to distinguish these specialized kinds of properties on an internal block diagram.

A property can represent a role or usage in the context of its enclosing block. A property has a type that supplies its
definition. A part belonging to a block, for example, may be typed by another block. The part defines a local usage of its
defining block within the specific context to which the part belongs. For example, a block that represents the definition of
a wheel can be used in different ways. The front wheel and rear wheel can represent different usages of the same wheel
definition. SysML also allows each usage to define context-specific values and constraints associated with the individual
usage, such as 25 psi for the front tires and 30 psi for the rear tires.

Blocks may also specify operations or other features that describe the behavior of a system. Except for operations, this
clause deals strictly with the definition of properties to describe the state of a system at any given point in time, including
relations between elements that define its structure. Clause 9, “Ports and Flows” specifies specific forms of interactions
between blocks, and the Behavioral Constructs including activities, interactions, and state machines can be applied to
blocks to specify their behavior. Clause 15, “Allocations” describes ways to allocate behavior to parts and blocks.

SysML blocks are based on UML classes as extended by UML composite structures. Some capabilities available for UML
classes, such as more specialized forms of associations, have been excluded from SysML blocks to simplify the language.
SysML blocks always include an ability to define internal connectors, regardless of whether this capability is needed for
a particular block. SysML Blocks also extend the capabilities of UML classes and connectors with reusable forms of
constraints, multi-level nesting of connector ends, participant properties for composite association classes, and connector
properties. SysML blocks include several notational extensions as specified in this clause.
 ISO/IEC 2017 - All rights reserved 33

ISO/IEC 19514:2017(E)
8.2 Diagram Elements

8.2.1 Block Definition Diagram

BlockDefinition
Diagram bdd Namespace1

Block1 Block2
part1

1 0..*

SysML::Blocks::Block
UML4SysML::Package

Block
«block»

{encapsulated}
Block1

operations

operation1(p1: Type1): Type2
operation2(q1: Type 1): Types {redefines operation2}
op3(q1: Type 1): Type2 {redefines Block0::op3}
^op4()

property1: Block1
property2: Block2 {subsets Block0::property1}
prop3: Block3 {redefines property0}

parts

{ x > y}

property4: Block1 [0..*] {ordered}
property5: Block2 [1..5] {unique, subsets property4}
/prop6: Block3 {union}

references

property7: Integer = 99 {readOnly}
property8: Real = 10.0
prop9: Boolean {redefines property00}

values

constraints

property5: Block3
^ property6:Block4

properties

SysML::Blocks::Block

Actor UML4SysML::Actor

Table 8.1 - Graphical nodes defined in Block Definition diagrams

Element Name Concrete Syntax Example Abstract syntax Reference

«actor»
ActorNam e

ActorNam e
34  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Element Name Concrete Syntax Example Abstract syntax Reference

ValueType

«valueType»
unit = UnitName

«valueType»
ValueType1

operations

operation1(p1: Type1): Type2
operation2(q1: Type 1): Types {redefines operation2}
op3(q1: Type 1): Type2 {redefines Block0::op3}

property1: Type3
property2: Type4 {subsets property 0}
prop3: Type5 {redefines Block0::property00}
/prop6: Type 6 {union}
^prop7: Type 7

properties

SysML::Blocks::ValueType

Enumeration

literalName1
literalName2

«enumeration»
Enum eration1

UML4SysML::Enumeration

AbstractDefinition

Name

{abstract}
Name

Name
{abstract}

UML4SysML::Classifier with
isAbstract equal true

StereotypeProperty
Compartment

«stereotype1»
property1 = value

«stereotype1»
Block1

UML4SysML::Stereotype

Behavior
Compartment

owned behaviors
MySM2 (p1 : P2)
«activity» myActivity_1 (in x : Integer)

classifier behavior
«stateMachine» MySM1 ()

Block1

SysML::Blocks::Block
 ISO/IEC 2017 - All rights reserved 35

ISO/IEC 19514:2017(E)
Namespace
Compartment Block1

namespace

Block2 Block3
part1

1 0..*

SysML::Blocks::Block

Structure
Compartment Block1

structure

p1: Type1
1

e1
c1: p2:

Type2

SysML::Blocks::Block

BoundReference

bound references

{ /bindingPath = p1, p2 } property9 : Block1 [*]
{ /bindingPath = p1, p22, p3 ; lower = 6 ; upper = 12 }
 property11 [24..32]

«block»
Block1

properties

 «endPathMultiplicity» { lower = 6 ; upper = 8 }
 property11 [*] { redefines property11 }

«block»
Block2

SysML::Blocks::Block,
SysML::Blocks::BoundReference,
SysML::Blocks::EndPathMultiplicity

Unit

symbol=”..”
description=”…”
definitionURI=”….”
quantityKind=qk1,qk2

unit1: Unit

symbol=”..”
description=”…”
definitionURI=”….”

unit2: Unit

UML4SysML::InstanceSpecification

QuantityKind

symbol=”..”
description=”…”
definitionURI=”….”

qk1: QuantityKind

UML4SysML::InstanceSpecification

InstanceSpecification

i1: Type1 i2: Type2
p3

A1

UML4SysML::InstanceSpecification

Element Name Concrete Syntax Example Abstract syntax Reference
36  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
InstanceSpecification

instance1: Type1

value1

UML4SysML::InstanceSpecification

InstanceSpecification

property1 = 10
property2 = "value"

instance1: Type1

UML4SysML::InstanceSpecification

InstanceSpecification

: Type 1

instance1 / property1: Type2

property1 = 10
property2 = "value"

instance2 / property2:
Type3

UML4SysML:InstanceSpecification

Table 8.2 - Graphical paths defined by in Block Definition diagrams

Element Name Concrete Syntax Example Abstract syntax Reference

Dependency
«stereotype1»
dependency1

UML4SysML::Dependency

ReferenceAssociation

0..1

association1 property1

1..*{ordered}

1

association1 property1

0..*{ordered}

property2

1

association1 property1

0..*{ordered,
subsets property0}

/property2

{redefines Block0::property0}

{union}

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = none

Element Name Concrete Syntax Example Abstract syntax Reference
 ISO/IEC 2017 - All rights reserved 37

ISO/IEC 19514:2017(E)
PartAssociation

0..1

association1 property1

1..*{ordered}

1

association1 property1

0..*

property2

1

association1 property1

0..*

property2

{ordered,
subsets Block0::property0}

{ordered}{redefines property0}

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = composite

SharedAssociation

0..1

association1 property1

1..*{ordered}

1

association1 property1

0..*

/property2

1

association1 property1

0..*{ordered}

property2

{ordered,
subsets property0}

{redefines property0}

{union}

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = shared

MultibranchPart
Association

1

association1 property1

0..*

property3

property2

0..*

UML4SysML::Association and
UML::Kernel::Property with
aggregationKind = composite

MultibranchShared
Association

1

association1 property1

0..*

property3

property2

0..*

UML4SysML::Association and
UML::Kernel::Property with
aggregationKind = shared

Generalization UML4SysML::Generalization

Multibranch
Generalization

UML4SysML:Generalization

GeneralizationSet

{disjoint}
{overlapping}

UML4SysML::
GeneralizationSet

Table 8.2 - Graphical paths defined by in Block Definition diagrams

Element Name Concrete Syntax Example Abstract syntax Reference
38  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
BlockNamespace
Containment

UML4SysML::Class::
nestedClassifier

ParticipantProperty

Association1

Association1

structure

«participant»
{end=property 1}

p1: Block1

«participant»
{end=property 2}

p2: Block2

«participant» {end=property 1} p1: Block1
«participant» {end=property 2} p2: Block2

Association1

1

Association1 property 1

0..*{ordered}

property 2
Block1Block2

1

property 1

0..*{ordered}

property 2
Block1Block2

1

Association1 property 1

0..*{ordered}

property 2
Block1Block2

UML4SysML:: Property,
UML4SysML:: AssociationClass

ConnectorProperty

«connector» c1: Association1
«connector» c2: Association2

Block1

structure

c2: Association2

1

e1

c1: Association1

1

e1

p1:
Type1

p3:
Type3

p2:
Type2

p4:
Type4

UML4SysML:: Property,
UML4SysML:: Connector

Table 8.2 - Graphical paths defined by in Block Definition diagrams

Element Name Concrete Syntax Example Abstract syntax Reference
 ISO/IEC 2017 - All rights reserved 39

ISO/IEC 19514:2017(E)
8.2.2 Internal Block Diagram

Table 8.3 - Graphical nodes defined in Internal Block diagrams

Element Name Concrete Syntax Example Abstract Syntax Reference

InternalBlockDiagram

ibd Block1

p1:
Type1

p2:
Type2

1

p3

c1: a1

SysML::Blocks::Block

Property

x: Integer = 4
^y:Real=4.2

p1: Type1
0..*

r1: Type2

^p4: Type4

p1: Type1

x1=5.0
x2="today"

p3: Type3

initialValues

0..*

:owned behaviors
MySM2 (p1 : P2)
«activity» myActivity_1 (in x : Integer)

:classifier behavior
«stateMachine» MySM1 ()

Part 4: Type 3

UML4SysML::Property

ActorPart SysML::Blocks::PartProperty typed by
UML4SysML::Actor

«actor»
ActorNam e

ActorNam e
40  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
PropertySpecificType

y: Integer = 5

p2

:values

«normal» {mean=2,stdDeviation=0.1} x: Real

p1: [Type1]

:values

SysML::Blocks::PropertySpecifcType

BoundReference

structure

p1 : Type1

p2 : Type2 4..8«equal»«boundReference»
p2BR : Subtype2

6..8

SysML::Blocks::BoundReference

Dependency
«stereotype1»
dependency1

UML4SysML::Dependency

BindingConnector

1 0..*

«equal»

1 1

UML4SysML::Connector

BidirectionalConnector

c1: association1

0..1 0..*

p2p1

UML4SysML::Connector

UnidirectionalConnector

c1: association1

0..1 0..*

p1

UML4SysML::Connector

Table 8.4 - Graphical paths defined in Internal Block diagrams

Element Name Concrete Syntax Example Abstract Syntax Reference

Table 8.3 - Graphical nodes defined in Internal Block diagrams

Element Name Concrete Syntax Example Abstract Syntax Reference
 ISO/IEC 2017 - All rights reserved 41

ISO/IEC 19514:2017(E)
8.3 UML Extensions

8.3.1 Diagram Extensions

8.3.1.1 Block Definition Diagram

A block definition diagram is based on the UML class diagram, with restrictions and extensions as defined by SysML.

8.3.1.1.1 Block and ValueType Definitions

A SysML Block defines a collection of features to describe a system or other element of interest. A SysML ValueType
defines values that may be used within a model. SysML blocks are based on UML classes, as extended by UML
composite structures. SysML value types are based on UML data types. Diagram extensions for SysML blocks and value
types are described by other subheadings of this sub clause.

8.3.1.1.2 Default «block» stereotype on unlabeled box

If no stereotype keyword appears within a definition box on a block definition diagram (including any stereotype property
compartments), then the definition is assumed to be a SysML block, exactly as if the «block» keyword had appeared
before the name in the top compartment of the definition.

8.3.1.1.3 Labeled compartments

SysML allows blocks to have multiple compartments, each optionally identified with its own compartment name. The
compartments may partition the features shown according to various criteria. Some standard compartments are defined by
SysML itself, and others can be defined by the user using tool-specific facilities. Compartments may appear in any order.
SysML defines two additional compartments, namespace and structure compartments, which may contain graphical nodes
rather than textual constraint or feature definitions. See separate sub clauses for a description of these compartments.

8.3.1.1.4 Behavior compartment

A compartment with the label “classifier behavior” or “owned behaviors” may appear as part of a block definition to list
the classifier behavior or owned behaviors, respectively. This compartment may contain text representations of any kind
of behavior.

Behaviors represented in this compartment are shown as a text string of the form:

<name> ‘(’ [<parameter-list>] ‘)’ [‘:’ [<return-type-list>]] [<behavior-constraint>]
where:

• <name> is the name of the Behavior.

• <parameter-list> is a list of Parameters of the Behavior in the format defined in UML.

• <return-type-list> is list of types, multiplicities, and other properties of parameters with return direction
<return-type-list> ::= <return-type-mult-prop> [‘,‘ <return-type-mult-prop>] *
<return-type-mult-prop> :=

<return-type> [‘[‘ <multiplicity-range> ‘]’] [‘{‘ <param-prop-list> ‘}’]]
(see UML for definition of <multiplicity-range>)

 <param -prop-list> ::= <param -prop> [‘,’ <param -prop>]*
<param -prop> ::= ‘ordered’ | ‘unordered’ | ‘unique’ | ‘nonunique’ | ‘seq’ | ‘sequence’

• <behavior-constraint> is a constraint that applies to the behavior.
42  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Other syntax defined by UML can be included, such as for applied stereotypes or the behavior’s metaclass as a keyword
before the name (for example «stateMachine»).

8.3.1.1.5 Constraints compartment

SysML defines a special form of compartment, with the label “constraints,” which may contain one or more constraints
owned by the block. A constraint owned by the block may be shown in this compartment using the standard text-based
notation for a constraint, consisting of a string enclosed in brace characters. The use of a compartment to show constraints
is optional. The note-based notation, with a constraint shown in a note box outside the block and linked to it by a dashed
line, may also be used to show a constraint owned by a block.

A constraints compartment may also contain declarations of constraint properties owned by the block. A constraint
property is a property of the block that is typed by a ConstraintBlock, as defined in Clause 10. Only the declaration of the
constraint property may be shown within the compartment, not the details of its parameters or binding connectors that link
them to other properties.

8.3.1.1.6 Namespace compartment

A compartment with the label “namespace” may appear as part of a block definition to show blocks that are defined in the
namespace of a containing block. This compartment may contain any of the graphical elements of a block definition
diagram. All blocks or other named elements defined in this compartment belong to the namespace of the containing
block.

Because this compartment contains graphical elements, a wider compartment than typically used for feature definitions
may be useful. Since the same block can appear more than once in the same diagram, it may be useful to show this
compartment as part of a separate definition box than a box that shows only feature compartments. Both namespace and
structure compartments, which may both need a wide compartment to hold graphical elements, could also be shown
within a common definition box.

8.3.1.1.7 Structure compartment

A compartment with the label “structure” may appear as part of a block definition to show connectors and other internal
structure elements for the block being defined. This compartment may contain any of the graphical elements of an internal
block diagram.

Because this compartment contains graphical elements, a wider compartment than typically used for feature definitions
may be useful. Since the same block can appear more than once in the same diagram, it may be useful to show this
compartment as part of a separate definition box than a box that shows only feature compartments. Both namespace and
structure compartments, which may both need a wide compartment to hold graphical elements, could also be shown
within a common definition box.

8.3.1.1.8 BoundReference compartment

A compartment with the label “bound references” may appear as part of a block definition to show properties with the
BoundReference stereotype applied. The properties omit the “«boundReference»” prefix.

8.3.1.1.9 Default multiplicities

SysML defines defaults for multiplicities on the ends of specific types of associations. A part or shared association has a
default multiplicity of [0..1] on the black or white diamond end. A unidirectional association has a default multiplicity of
1 on its target end. These multiplicities may be assumed if not shown on a diagram. To avoid confusion, any multiplicity
other than the default should always be shown on a diagram.
 ISO/IEC 2017 - All rights reserved 43

ISO/IEC 19514:2017(E)
8.3.1.1.10 Property-specific type

Enclosing the type name of a property in square brackets specifies that the type is a local specialization of the referenced
type, which may be overridden to specify additional values or other customizations that are unique to the property.
Redefined or added features of the newly defined type may be shown in compartments for the property on an internal
block diagram. If no type name appears between the square brackets, the property-specific type is defined provided by its
own declarations, without specializing any existing type.

8.3.1.2 Internal Block Diagram

An internal block diagram is based on the UML composite structure diagram, with restrictions and extensions as defined
by SysML.

8.3.1.2.1 Property types

Four general categories of properties of blocks are recognized in SysML: parts, references, value properties, and
constraint properties. (See Block on page 51, for definitions of these property types.) A part or value property is always
shown on an internal block diagram with a solid-outline box. A reference property is shown by a dashed-outline box,
consistent with UML. Ports are special cases of properties, and have a variety of notations as defined in Clause 9, “Ports
and Flows.” Constraint properties and their parameters also have their own notations as defined in Clause 10, “Constraint
Blocks.”

8.3.1.2.2 Block reference in diagram frame

The diagram heading name for an internal block diagram (the string contained in the tab in the upper-left-hand corner of
the diagram frame) shall identify the name of a SysML block as its modelElementName. (See Annex A for the definition
of a diagram heading name including the modelElementName component.) All the properties and connectors that appear
inside the internal block diagram belong to the block that is named in the diagram heading name.

8.3.1.2.3 Compartments on internal properties

SysML permits any property shown on an internal block diagram to also show compartments within the property box.
These compartments may be given standard or user-customized labels just as on block definitions. All features shown
within these compartments shall match those of the block or value type that types the property. For a property-specific
type, these compartments may be used to specify redefined or additional features of the locally defined type. An
unlabeled compartment on an internal property box is by default a structure compartment. A behavior compartment label
and content shall match the corresponding behavior compartment of the block that types the part. A compartment with the
label “classifier behavior” or “owned behaviors” may contain the classifier behavior or owned behaviors of the block that
types the part which will then appear as specified in 8.3.1.1.4, Behavior compartment.

The label of any compartment shown on the property box that displays contents belonging to the type of the property is
shown with a colon character (“:”) preceding the compartment label. The compartment name is otherwise the same as it
would appear on the type on a block definition diagram.

8.3.1.2.4 Compartments on a diagram frame

SysML permits compartments to be shown across the entire width of the diagram frame on an internal block diagram.
These compartments shall always follow an initial compartment that always shows the internal structure of a referenced
block. These compartments may have all the same contents as could be shown on a block definition diagram for the block
defined at the top level of the diagram frame.
44  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
8.3.1.2.5 Property path name

A property name shown inside or outside the property box may take the form of a multi-level name. This form of name
references a nested property accessible through a sequence of intermediate properties from a referencing context. The
name of the referenced property is built by a string of names separated by “.”, resulting in a form of path name that
identifies the property in its local context. A colon and the type name for the property may optionally be shown following
the dotted name string. If any of the properties named in the path name string identifies a reference property, the property
box is shown with a dashed-outline box, just as for any reference property on an internal block diagram.

This notation is purely a notational shorthand for a property that could otherwise be shown within a structure of nested
property boxes, with the names in the dotted string taken from the name that would appear at each level of nesting. In
other words, the internal property shown with a path name in the left-hand side of Figure 8.1 is equivalent to the
innermost nested box shown at the right.

Figure 8.1 - Nested property reference

8.3.1.2.6 Nested connector end

Connectors may be drawn that cross the boundaries of nested properties to connect to properties within them. The
connector is owned by the most immediate block that owns both ends of the connector. A NestedConnectorEnd stereotype
of a UML ConnectorEnd is automatically applied to any connector end that is nested more than one level deep within a
containing context.

Use of nested connector ends does not follow strict principles of encapsulation of the parts or other properties that a
connector line may cross. The need for nested connector ends can be avoided if additional properties can be added to the
block at each containing level. Nested connector ends are available for cases where the introduction of these intermediate
properties is not feasible or appropriate.

The ability to connect to nested properties within a containing block requires that multiple levels of decomposition be
shown on the same diagram.

8.3.1.2.7 Property-specific type

Enclosing the type name of an internal property in square brackets specifies that the type is a local specialization of the
referenced type, which may be overridden to specify additional values or other customizations that are unique to the
property. Redefined or added features of the newly defined type may be shown in compartments for the property. If the
property name appears on its own, with no colon or type name, or if no type name appears between the square brackets,
the property-specific type is entirely provided by its own declarations, without specializing any existing type.

P1: Block1

Name1:

Name 2:

Name3:

P1: Block1

Name1.Name2.Name3:
 ISO/IEC 2017 - All rights reserved 45

ISO/IEC 19514:2017(E)
8.3.1.2.8 Initial values compartment

A compartment with a label of “initialValues” may be used to show values of properties belonging to a containing block.
These values override any default values that may have been previously specified on these properties on their originally
defining block. Initial value compartments may be specified within nested properties, which then apply only in the
particular usage context defined by the outermost containing block.

Values are specified in an initialValues compartment by lines in the form <property-name> = <value-specification> or
<property-name> : <type> = <value-specification>, each line of which specifies the initial value for one property owned
either by the block that types the property or by any of its supertypes. This portion of concrete syntax is the same as may
be shown for values within the UML instance specification notation, but this is the only element of UML
InstanceSpecification notation that may be shown in an initial values compartment. See Block on page 51 for details of
how values within initialValues compartments are represented in the SysML metamodel.

8.3.1.2.9 Default multiplicities

SysML defines default multiplicities of 1 on each end of a connector. These multiplicities may be assumed if not shown
on a diagram. To avoid confusion, any multiplicity other than the default should always be shown on a diagram.

8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams

The supported variety of notations for associations and association annotations has been reduced to simplify the burden of
teaching, learning, and interpreting SysML diagrams for the systems engineering user. Notational and metamodel support
for n-ary associations and qualified associations has been excluded from SysML. N-ary associations, shown in UML by a
large open diamond with multiple branches, can be modeled by an intermediate block with no loss in expressive power.
Qualified associations, shown in SysML by an open box at the end of an association path with a property name inside, are
a specialized feature of UML that specifies how a property value can represent an identifier of an associated target. This
capability, while useful for data modeling, does not seem essential to accomplish any of the SysML requirements for
support of systems engineering. The use of navigation arrowheads on an association has been simplified by excluding the
case of arrowheads on both ends, and requiring that such an association always be shown without arrowheads on either
end. An “X” on a single end of an association to indicate that an end is not navigable has similarly been dropped, as has
the use of a small filled dot at the end of an association to indicate that the end is owned by the associated classifier.

The use of a «primitive» keyword on a value type definition (which in UML specifies the PrimitiveType specialization of
UML DataType) is not supported. Whether or not a value type definition has internal structure can be determined from the
value type itself.

8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

The UML Composite Structure diagram has many notations not included in the subset defined in this clause. Other
SysML clauses add some of these notations into the supported contents of an internal block diagram.
46  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
8.3.2 Stereotypes

Package Blocks

Figure 8.2 - Abstract syntax extensions for SysML blocks

Figure 8.3 - Abstract syntax extensions for SysML properties

Figure 8.4 - Abstract syntax extensions for SysML value types

«metaclass»
UML4SysML::

Class

isEncapsulated: Boolean

«stereotype»
Block

«metaclass»
UML4SysML::

Property

«stereotype»
DistributedProperty

end : Property [1]

«stereotype»
ParticipantProperty

connector : Connector [1]

«stereotype»
ConnectorProperty

«metaclass»
UML4SysML::

Property

«stereotype»
DistributedProperty

end : Property [1]

«stereotype»
ParticipantProperty

connector : Connector [1]

«stereotype»
ConnectorProperty

«metaclass»
UML4SysML::

Property

«stereotype»
DistributedProperty

end : Property [1]

«stereotype»
ParticipantProperty

connector : Connector [1]

«stereotype»
ConnectorProperty

«metaclass»
UML4SysML::

Property

«stereotype»
DistributedProperty

end : Property [1]

«stereotype»
ParticipantProperty

connector : Connector [1]

«stereotype»
ConnectorProperty

«metaclass»
UML4SysML::

Property

«stereotype»
DistributedProperty

end: Property [1]

«stereotype»
ParticipantProperty

connector: Connector [1]

«stereotype»
ConnectorProperty
 ISO/IEC 2017 - All rights reserved 47

ISO/IEC 19514:2017(E)
«metaclass»
UML4SysML::Element

«stereotype»
ElementPropertyPath

«metaclass»
UML4SysML::Property

1..**

propertyPath
{ordered, nonunique}

«metaclass»
UML4SysML::

DirectedRelationship

«stereotype»
DirectedRelationshipPropertyPath

0..*

*

sourcePropertyPath
{ordered, nonunique}

0..*

*

targetPropertyPath
{ordered, nonunique}

«metaclass»
UML4SysML::Classifier

0..1*

sourceContext

0..1*

targetContext

«metaclass»
UML4SysML::
ConnectorEnd

«stereotype»
NestedConnectorEnd

«metaclass»
UML4SysML::

Connector

«stereotype»
BindingConnector

«stereotype»
ElementPropertyPath

«metaclass»
UML4SysML::

Classifier

«stereotype»
PropertySpecificType

Figure 8.5 - Abstract syntax extensions for SysML property paths

Figure 8.6 - Abstract syntax extensions for SysML connector ends

Figure 8.7 - Abstract syntax extensions for SysML property-specific types
48  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
«metaclass»
UML4SysML::Property

lower : Integer [0..1] = 0
upper : UnlimitedNatural [0..1] = unlimited

«stereotype»
EndPathMultiplicity

boundEnd : ConnectorEnd
/bindingPath : Property [1..*] {ordered, nonunique}

«stereotype»
BoundReference

«metaclass»
UML4SysML::Property

«stereotype»
AdjunctProperty

«metaclass»
UML4SysML::Element1

*

principal

«stereotype»
ClassifierBehaviorProperty

Figure 8.8 - Abstract syntax extensions for SysML bound references

Figure 8.9 - Abstract syntax extensions for SysML adjunct properties and classifier behavior properties

8.3.2.1 AdjunctProperty

Description

The AdjunctProperty stereotype can be applied to properties to constrain their values to the values of connectors typed
by association blocks, call actions, object nodes, variables, parameters, interaction uses, and submachine states. The
values of connectors typed by association blocks are the instances of the association block typing a connector in the block
having the stereotyped property. The values of call actions are the executions of behaviors invoked by the behavior having
the call action and the stereotyped property (see 11.3.1.1.1, Notation for more about this use of the stereotype). The values
of object nodes are the values of tokens in the object nodes of the behavior having the stereotyped property (see
11.3.1.4.1, Notation for more about this use of the stereotype). The values of variables are those assigned by executions
of activities that have the stereotyped property. The values of parameters are those assigned by executions of behaviors
that have the stereotyped property. The keyword «adjunct» before a property name indicates the property is stereotyped
by AdjunctProperty.
 ISO/IEC 2017 - All rights reserved 49

ISO/IEC 19514:2017(E)
Attributes

• principal : Element [1]
Gives the element that determines the values of the property. Shall be a connector, call action, object node, variable,
or parameter.

Constraints

[1] The principal of an applied AdjunctProperty shall be a Connector, CallAction, ObjectNode, Variable, Parameter,
submachine State, or InteractionUse.

[2] Properties to which AdjunctProperty applied shall have the same name as the principal.

[3] Properties with AdjunctProperty applied that have a Connector or CallAction as principal shall be composite.

[4] Properties with AdjunctProperty applied shall be owned by an element that owns the principal, at least indirectly, or one of
that element's specializations.

[5] Properties with AdjunctProperty applied that have as principal a Connector, ObjectNode, Variable, or Parameter shall
have the same type as the principal or one of that type’s generalizations.

[6] Connectors that are principals of an applied AdjunctProperty shall have association blocks as types.

[7] AdjunctProperty and ConnectorProperty applied to the same property shall have the same values for principal and
connector, respectively.

[8] Properties with AdjunctProperty applied that have a CallAction as principal shall be composite and be typed by the
behavior invoked by the call action or one of that behavior’s generalizations (for CallOperationActions, this shall
generalize all behaviors that might be dispatched), and an upper multiplicity of one if the CallAction invokes a
nonreentrant behavior.

[9] Properties with AdjunctProperty applied that have an ObjectNode as principal shall have a lower multiplicity of zero and
an upper multiplicity the same as or higher than the upperBound of the ObjectNode.

[10]Properties with AdjunctProperty applied that have a Variable or Parameter applied shall have a lower multiplicity the
same as or lower than the lower multiplicity of the Variable or Parameter, and an upper multiplicity the same as or higher
than the upper multiplicity of the Variable or Parameter.

[11] Properties with AdjunctProperty applied that have an InteractionUse or submachine State as principal shall be composite
and be typed by the interaction or state machine invoked by the interaction use or submachine State or one of their
generalizations.

8.3.2.2 Binding Connector

Description

A Binding Connector is a connector which specifies that the properties at both ends of the connector have equal values.
If the properties at the ends of a binding connector are typed by a ValueType, the connector specifies that the instances of
the properties shall hold equal values, recursively through any nested properties within the connected properties. If the
properties at the ends of a binding connector are typed by a Block, the connector specifies that the instances of the
properties shall refer to the same block instance. As with any connector owned by a SysML Block, the ends of a binding
connector may be nested within a multi-level path of properties accessible from the owning block. The
NestedConnectorEnd stereotype is used to represent such nested ends just as for nested ends of other SysML connectors.

Constraints

[1] The two ends of a binding connector shall have either the same type or types that are compatible so that equality of their
values can be defined.
50  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
8.3.2.3 Block

Description

A Block is a modular unit that describes the structure of a system or element. It may include both structural and
behavioral features, such as properties and operations, that represent the state of the system and behavior that the system
may exhibit. Some of these properties may hold parts of a system, which can also be described by blocks that type the
properties. Properties without types do not restrict the instances that can be values of the properties, as if they had the
most general type possible. A block may include a structure of connectors between its properties to indicate how its parts
or other properties relate to one another.

SysML blocks provide a general-purpose capability to describe the architecture of a system. They provide the ability to
represent a system hierarchy, in which a system at one level is composed of systems at a more basic level. They can
describe not only the connectivity relationships between the systems at any level, but also quantitative values or other
information about a system.

SysML does not restrict the kind of system or system element that may be described by a block. Any reusable form of
description that may be applied to a system or a set of system characteristics may be described by a block. Such reusable
descriptions, for example, may be applied to purely conceptual aspects of a system design, such as relationships that hold
between parts or properties of a system.

Connectors owned by SysML blocks may be used to define relationships between parts or other properties of the same
containing block. Connectors can be typed by associations, which can specify more detail about the links between parts
or other properties of a system, along with the types of the connected properties. Associations can also be blocks, and
when used to type connectors give relationships their own interconnected parts and other properties. Connectors without
types do not restrict the way the connected properties are linked together, as if they had the most general type possible.
Connectors have both structural and behavioral functions, which can be used together or separately. Connectors as
structure specify links between parts or other properties of a system. Connectors as behavior specify communication and
item flow between parts or other properties. Connected properties can be linked without specifying communication and
item flow, or can specify communication and item flow without specifying a particular kind of link, or both.

SysML excludes variations of associations in UML in which navigable ends can be owned directly by the association. In
SysML, navigation is equivalent to a named property owned directly by a block. The only form of an association end that
SysML allows an association to own directly is an unnamed end used to carry an inverse multiplicity of a reference
property. This unnamed end provides a metamodel element to record an inverse multiplicity, to cover the specific case of
a unidirectional reference that defines no named property for navigation in the inverse direction. SysML enforces its
equivalence of navigation and ownership by means of constraints that the block stereotype enforces on the existing UML
metamodel.

SysML establishes four basic classifications of properties belonging to a SysML Block or ValueType. A property typed by
a SysML Block that has composite aggregation is classified as a part property, except for the special case of a constraint
property. Constraint properties are further defined in Clause 10, “Constraint Blocks.” A port is another category of
property, as further defined in Clause 9, “Ports and Flows.” A property typed by a Block that does not have composite
aggregation is classified as a reference property. A property typed by a SysML ValueType is classified as a value property,
and always has composite aggregation. Part, reference, value, and constraint properties may be shown in block definition
compartments with the labels “parts,” “references,” “values,” and “constraints” respectively. Properties of any type may
be shown in a “properties” compartment or in additional compartments with user-defined labels.

On a block definition diagram, a part property is shown by a black diamond symbol on an association. As in UML, an
instance of a block may be included in at most one instance of a block at a time, though possibly as a value of more than
one part property of the containing block. A part property holds instances that belong to a larger whole. Typically, a part-
whole relationship means that certain operations that apply to the whole also apply to each of the parts. For example, if a
 ISO/IEC 2017 - All rights reserved 51

ISO/IEC 19514:2017(E)
whole represents a physical object, a change in position of the whole could also change the position of each of the parts.
A property of the whole such as its mass could also be implied by its parts. Operations and relationships that apply to
parts typically apply transitively across all parts of these parts, through any number of levels. A particular application
domain may establish its own interpretation of part-whole relationships across the blocks defined in a particular model,
including the definition of operations that apply to the parts along with the whole. For software objects, a typical
interpretation is that delete, copy, and move operations apply across all parts of a composite object.

SysML also supports properties with shared aggregation, as shown by a white diamond symbol on an association. Like
UML, SysML defines no specific semantics or constraints for properties with shared aggregation, but particular models or
tools may interpret them in specific ways.

In addition to the form of default value specifications that SysML supports on properties of a block (with an optional “=”
<value-specification> string following the rest of a property definition), SysML supports an additional form of value
specification for properties using initialValue compartments on an internal block diagram (see Internal Block Diagram on
page 44). An entire tree of context-specific values can be specified on a containing block to carry values of nested
properties as shown on an internal block diagram.

Context-specific values are represented in the SysML metamodel by means of the InstanceValue subtype of UML
ValueSpecification. Selected slots of UML instance specifications referenced by these instance values carry the individual
values shown in initialValue compartments.

If a property belonging to a block has a specification of initial values for any of the properties belonging to its type, then
the default value of that property shall be a UML InstanceValue element. This element shall reference a UML
InstanceSpecification element created to hold the initial values of the individual properties within its usage context. The
instance specification shall be unnamed and owned by the same package that owns the outermost containing block for
which the initial values are being specified.

Selected slots of the referenced instance specification shall contain value specifications for the individual property values
specified in a corresponding initialValues compartment. If a value of a property is shown by a nested property box with
its own initialValues compartment, then the slot of the instance specification for the containing property shall hold a new
InstanceValue element. Selected slots of the instance specification referenced by this value shall contain value
specifications for any nested initial values, recursively through any number of levels of nesting. A tree of instance values
referencing instance specifications, each of which may in turn hold slots carrying instance values, shall exist until self-
contained value specifications are reached at the leaf level.

Attributes

• isEncapsulated: Boolean [0..1]
If true, then the block is treated as a black box; a part typed by this black box can only be connected via its
ports or directly to its outer boundary. If false, or if a value is not present, then connections can be established to
elements of its internal structure via deep-nested connector ends.

Constraints

[1] For an association in which both ends are typed by blocks, the number of ends shall be exactly two.

[2] The number of ends of a connector owned by a block shall be exactly two. (In SysML, a binding connector is not typed by
an association, so this constraint is not implied entirely by the preceding constraint.)

[3] In the UML metamodel on which SysML is built, any instance of the Property metaclass that is typed by a block (a Class
with the «block» stereotype applied) and which is owned by an Association shall not have a name and may not be defined
as a navigable owned end of the association. (While the Property has a “name” property as defined by its NamedElement
superclass, the value of the “name” property, which is optional, must be missing.)
52  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
[4] In the UML metamodel on which SysML is built, a Property that is typed by a block must be defined as an end of an
association. (An inverse end of this association, whether owned by another block or the association itself, must always be
present so there is always a metamodel element to record the inverse multiplicity of the reference.)

[5] The following constraint under 9.3.6, “Connector” in the UML 2 standard is removed by SysML: “[3] The
ConnectableElements attached as roles to each ConnectorEnd owned by a Connector must be roles of the Classifier that
owned the Connector, or they must be ports of such roles.”

[6] If a property owned by a SysML Block or SysML ValueType is typed by a SysML ValueType, then the aggregation
attribute of the property shall be “composite.”

[7] Within an instance of a SysML Block, the values of any property with composite aggregation (aggregation = composite)
shall not contain the block in any of its own properties that also have composite aggregation, or within any unbroken chain
of properties that all have composite aggregation. (Within an instance of a SysML Block, the instances of properties with
composite aggregation shall form an acyclic graph.)

[8] Any classifier that specializes a Block shall also have the Block stereotype or one of its specializations applied.

[9] The following constraint under 9.3.7, “ConnectorEnd” in the UML 2 standard is removed by SysML: “[3] The property
held in self.partWithPort must not be a Port.”

8.3.2.4 Bound Reference

Description

The BoundReference stereotype can be applied to properties that have binding connectors, to highlight their usage as
constraining other properties. The bound end of the stereotype is a connector end of one of the binding connectors,
opposite the stereotyped property. The binding path includes the property at the bound end, and before that, the property
path of the bound end, if it is a nested connector end.

The type of stereotyped property constrains the type of the values of the bound properties. The multiplicity of the
stereotyped property constrains the number of values of the bound properties, which is the total number of values reached
by navigation through property paths of nested connector ends, if any. The multiplicities at the end of path can be
constrained, because bound references are end path multiplicities (see 8.3.2.10, EndPathMultiplicity).

Properties with BoundReference applied and upper multiplicity greater than one are ordered, with values ordered
according to when they are reached in navigating the binding path (and how they are ordered within their blocks), and
non-unique, to support paths that lead to or pass through the same object.

Attributes

• /bindingPath : Property [1..*] {ordered, nonunique}
Gives the propertyPath of the NestedConnectorEnd applied, if any, to the boundEnd, appended to the role of the
boundEnd.

• boundEnd : ConnectorEnd [1]
Gives a connector end of a binding connector opposite to the end linked to the stereotyped property, or linked to a
property that generalizes the stereotyped one through redefinition.

Constraints

[1] Properties to which BoundReference is applied shall be the role of a connector end of at least one binding connector, or
generalized by such a property through redefinition.

[2] The value of boundEnd shall be a connector end of a binding connector, as identified in constraint 1, opposite the property,
as identified in constraint 1.
 ISO/IEC 2017 - All rights reserved 53

ISO/IEC 19514:2017(E)
[3] The role of boundEnd shall be a property accessible by navigation from instances of the block owning the property to
which BoundReference is applied, but shall not be the property to which BoundReference is applied, or one that it is
related to by redefinition.

[4] The last value of bindingPath shall be the role of boundEnd, and the other values shall be the propertyPath of the
NestedConnectorEnd applied to boundEnd, if any.

[5] Properties to which BoundReference is applied shall either be reference properties or value properties.

[6] Properties with BoundReference applied that have an upper multiplicity greater than one shall be ordered and non-unique.

[7] BoundReferences shall not be applied to properties that are related by redefinition to other properties with
BoundReference applied.

[8] The binding connector identified in constraint 1 shall not have the same property on both ends, or properties related by
redefinition.

8.3.2.5 ClassifierBehaviorProperty

The ClassifierBehaviorProperty stereotype can be applied to properties to constrain their values to be the executions of
classifier behaviors. The value of properties with ClassifierBehaviorProperty applied are the executions of classifier
behaviors invoked by instantiation of the block that owns the stereotyped property or one of its specializations.

Constraints

[1] ClassifierBehaviorProperty shall only be applied to properties owned (not inherited) by blocks that have classifier
behaviors.

[2] Properties to which ClassifierBehaviorProperty applied shall be composite.

[3] Properties to which ClassifierBehaviorProperty applied shall be typed by the classifier behavior of their owning block or a
generalization of the classifier behavior.

8.3.2.6 ConnectorProperty

Description

Connectors can be typed by association classes that are stereotyped by Block (association blocks, see ParticipantProperty
on page 57). These connectors specify instances of the association block created within the instances of the block that
owns the connector. The values of a connector property are instances of the association block created due to the connector
referred to by the connector property.

A connector property can optionally be shown in an internal block diagram with a dotted line from the connector line to
a rectangle notating the connector property. The keyword «connector» before a property name indicates the property is
stereotyped by ConnectorProperty.

Attributes

• connector : Connector
A connector of the block owning the property on which the stereotype is applied.

Constraints

[1] ConnectorProperty shall only be applied to properties of classes stereotyped by Block.

[2] The connector attribute of the applied stereotype shall refer to a connector owned or inherited by a block owning the
property on which the stereotype is applied.

[3] The aggregation of a property stereotyped by ConnectorProperty shall be composite.
54  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
[4] The type of the connector referred to by a connector attribute shall be an association class stereotyped by Block.

[5] A property stereotyped by ConnectorProperty shall have the same name and type as the connector referred to by the
connector attribute.

8.3.2.7 DirectedRelationshipPropertyPath

Description

The DirectedRelationshipPropertyPath stereotype based on UML DirectedRelationship enables directed relationships to
identify their sources and targets by a multi-level path of properties accessible from context blocks for the sources and
targets. Context blocks are typically the owner of the first property in the path of properties, but can be specializations of
the owner to limit the scope of the relationship.

Attributes

• sourcePropertyPath: Property [0..*] {ordered, nonunique}
A series of properties that identifies the source of the directed relationship in the context of the block specified by the
sourceContext property. The ordering of properties is from a property of the sourceContext block, through a property
of each intermediate block that types the preceding property, ending in a property with a type that owns or inherits
the source of the directed relationship. The source is not included in the propertyPath list. The same property might
appear more than once because a block can own a property with the same or specialized block as a type.

• targetPropertyPath: Property [0..*] {ordered, nonunique}
A series of properties that identifies the target of the directed relationship in the context of the block specified by the
targetContext property. The ordering of properties is from a property of the targetContext block, through a property of
each intermediate block that types the preceding property, ending in a property with a type that owns or inherits the
target of the directed relationship. The target is not included in the propertyPath list. The same property might appear
more than once because a block can own a property with the same or specialized block as a type.

• sourceContext: Classifier [0.1]
Gives the context for sourcePropertyPath to begin from.

• targetContext: Classifier [0.1]
Gives the context for targetPropertyPath to begin from.

Constraints

[1] sourceContext shall have a value when sourcePropertyPath has a value.

[2] targetContext shall have a value when targetPropertyPath has a value.

[3] The property in the first position of the sourcePropertyPath list, if any, shall be owned by the sourceContext or one of its
generalizations.

[4] The property in the first position of the targetPropertyPath list, if any, shall be owned by the targetContext or one of its
generalizations.

[5] The property at each successive position of the sourcePropertyPath and targetPropertyPath, following the first position,
shall be owned by the Block or ValueType that types the property at the immediately preceding position, or a
generalization of the Block or ValueType.

[6] The type of the property at the last position of the sourcePropertyPath list shall own or inherit the source of the
stereotyped directed relationship.

[7] The type of the property at the last position of the targetPropertyPath list shall own or inherit the target of the stereotyped
directed relationship.
 ISO/IEC 2017 - All rights reserved 55

ISO/IEC 19514:2017(E)
8.3.2.8 DistributedProperty

DistributedProperty is a stereotype of Property used to apply a probability distribution to the values of the property.
Specific distributions should be defined as subclasses of the DistributedProperty stereotype with the operands of the
distributions represented by properties of those stereotype subclasses. A sample set of probability distributions that could
be applied to value properties is given in E.7.

Constraints

[1] The DistributedProperty stereotype shall only be applied to properties of classifiers stereotyped by Block or ValueType.

8.3.2.9 ElementPropertyPath

Description

The ElementPropertyPath stereotype based on UML Element enables elements to identify other elements by a multi-level
path of properties accessible from a context block. The context block is described in specializations of
ElementPropertyPath.

Attributes

• propertyPath: Property [1..*] {ordered, nonunique}
A series of properties that identifies elements in the context of a block described in specializations of
ElementPropertyPath. The ordering of properties is from a property of the context block, through a property of each
intermediate block that types the preceding property, ending in a property with a type that owns or inherits the fully
nested property. The fully nested property is not included in the propertyPath list, but is given by the element to which
the ElementPropertyPath is applied in a way described in specializations of ElementPropertyPath. The same property
might appear more than once because a block can own a property with the same or specialized block as a type.

Constraints

[1] The property at each successive position of the propertyPath attribute, following the first position, shall be owned by the
Block or ValueType that types the property at the immediately preceding position, or a generalization of the Block or
ValueType.

8.3.2.10 EndPathMultiplicity

Description

The EndPathMultiplicity stereotype can be applied to properties that are related by redefinition to properties that have
BoundReference applied. The lower and upper properties of the stereotype give the minimum and maximum number of
values, respectively, of the property at the bound end of the related bound reference, for each object reached by navigation
along its binding path.

Attributes

• lower : Integer [0..1] = 0
Gives the minimum number of values of the property at the end of the related bindingPath, for each object reached by
navigation along the bindingPath from an instance of the block owning the property to which EndPathMultiplicity is
applied.

• upper : UnlimitedNatural [0..1] = unlimited
Gives the maximum number of values of the property at the end of the related bindingPath, for each object reached by
navigation along the bindingPath from an instance of the block owning the property to which EndPathMultiplicity is
applied.
56  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Constraints

[1] Properties to which EndPathMultiplicity is applied shall be related by redefinition to a property to which BoundReference
is applied.

[2] endPathLower shall be non-negative.

8.3.2.11 NestedConnectorEnd

Description

The NestedConnectorEnd stereotype of UML ConnectorEnd extends a UML ConnectorEnd so that the connected property
may be identified by a multi-level path of accessible properties from the block that owns the connector. The propertyPath
inherited from ElementPropertyPath gives a series of properties that identifies the connected property in the context of the
block that owns the connector. The ordering of properties is from a property of the block that owns the connector, through
a property of each intermediate block that types the preceding property, ending in a property with a type that owns or
inherits the property that is the role of the connector end (the property that the connector graphically attaches to at that
end). The property that is the role of the connector end is not included in the propertyPath list.

Constraints

[1] The first property in propertyPath shall be owned by the block that owns the connector, or one of the block’s
generalizations.

[2] The type of the property at the last position of the propertyPath list shall own or inherit the role property of the stereotyped
connector end.

[3] NestedConnectorEnd shall only be applied to connector ends.

8.3.2.12 ParticipantProperty

Description

The Block stereotype extends Class, so it can be applied to any specialization of Class, including Association Classes.
These are informally called “association blocks.” An association block can own properties and connectors, like any other
block. Each instance of an association block can link together instances of the end classifiers of the association.

To refer to linked objects and values of an instance of an association block, it is necessary for the modeler to specify
which (participant) properties of the association block identify the instances being linked at which end of the association.
The value of a participant property on an instance (link) of the association block is the value or object at the end of the
link corresponding to this end of the association.

Participant properties can be the ends of connectors owned by an association block. The association block can be the type
of multiple other connectors to reuse the same internal structure for all the connectors. The keyword «participant» before
a property name indicates the property is stereotyped by ParticipantProperty. The types of participant properties can be
elided if desired. They are always the same as the corresponding association end type.

Attributes

• end : Property
A member end of the association block owning the property on which the stereotype is applied.

Constraints

[1] ParticipantProperty shall only be applied to properties of association classes stereotyped by Block.

[2] ParticipantProperty shall not be applied to properties that are member ends of an association.
 ISO/IEC 2017 - All rights reserved 57

ISO/IEC 19514:2017(E)
[3] The aggregation of a property stereotyped by ParticipantProperty shall be none.

[4] The end attribute of the applied stereotype shall refer to a member end of the association block owning the property on
which the stereotype is applied.

[5] A property stereotyped by ParticipantProperty shall have the same type as the property referred to by the end attribute.

[6] The property referred to by end shall have a multiplicity of 1.

8.3.2.13 PropertySpecificType

The PropertySpecificType stereotype is automatically applied to the classifier that types a property with a property-
specific type. This classifier can contain definitions of new or redefined features that extend the original classifier
referenced by the property-specific type.

Classifiers with the PropertySpecificType stereotype are owned by the block that owns the property that has the property-
specific type. A classifier with this stereotype shall specialize at most a single classifier that was referenced as the starting
classifier of the property-specific type. If there is no starting classifier (which occurs if no existing name is specified as
the starting type of a property-specific type), then a classifier with the stereotype applied has no specialization
relationship from any other classifier.

Constraints

[1] A classifier to which the PropertySpecificType stereotype is applied shall be referenced as the type of one and only one
property.

[2] The name of a classifier to which a PropertySpecificType is applied shall be missing. (The “name” attribute of the
NamedElement metaclass shall be empty.)

8.3.2.14 ValueType

Description

A ValueType defines types of values that may be used to express information about a system, but cannot be identified as
the target of any reference. Since a value cannot be identified except by means of the value itself, each such value within
a model is independent of any other, unless other forms of constraints are imposed.

Value types may be used to type properties, operation parameters, or potentially other elements within SysML. SysML
defines ValueType as a stereotype of UML DataType to establish a more neutral term for system values that may never be
given a concrete data representation. For example, the SysML “Real” ValueType expresses the mathematical concept of a
real number, but does not impose any restrictions on the precision or scale of a fixed or floating-point representation that
expresses this concept. More specific value types can define the concrete data representations that a digital computer can
process, such as conventional Float, Integer, or String types.

SysML ValueType adds an ability to carry a unit of measure and quantity kind associated with the value. A quantity kind
is a kind of quantity that may be stated in terms of defined units, but does not restrict the selection of a unit to state the
value. A unit is a particular value in terms of which a quantity of the same quantity kind may be expressed. A SysML
ValueType and its quantityKind establishes, via UML typing, the associative relationship between a particular “quantity”
[VIM3-1.1] (modeled as a SysML value property typed by a ValueType) and a “kind of quantity” [VIM3-1.2] (the
ValueType::quantityKind of the SysML value property’s type). This UML/SysML associative relationship reflects the
terminological distinction made in VIM3 between the concepts of “quantity” [VIM3-1.1] and “kind-of-quantity” [VIM3-
1.2] that “cannot be in a generic or partitive hierarchical relation to each other” [Dybkaer-2010].

A SysML ValueType may define its own properties and/or operations, just as for a UML DataType. See 8.3.2.3, Block for
property classifications that SysML defines for either a Block or ValueType.
58  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Attributes

• quantityKind: InstanceSpecification [0..1]
A kind of quantity, represented by an InstanceSpecification classified by a kind of SysML QuantityKind, that may be
stated by means of units. A value type may optionally specify a quantity kind without any unit. Such a value type may
be used to type a value specification to represent it in an abstract form independent of any specific units.

• unit: InstanceSpecification [0..1]
A quantity, represented by an InstanceSpecification classified by a kind of SysML Unit, in terms of which the
magnitudes of other quantities that have the same quantity kind can be stated.

Constraints

[1] Any classifier that specializes a ValueType shall also have the ValueType stereotype applied.

[2] The unit of a ValueType, if any, shall be an InstanceSpecification classified by SysML’s Unit block in the
UnitAndQuantityKind model library or a specialization of it.
inv: unit->notEmpty() and unit.classifier->notEmpty()implies unit.classifier->
 forAll(c | c.oclIsKindOf(Unit))

[3] The quantityKind of a ValueType, if any, shall be an InstanceSpecification classified by SysML’s QuantityKind block in
the UnitAndQuantityKind model library or a specialization of it.
inv: quantityKind->notEmpty() and quantityKind.classifier->notEmpty() implies
 quantityKind.classifier->forAll(c | c.oclIsKindOf(QuantityKind))

8.3.3 Model Libraries

8.3.3.1 Package PrimitiveValueTypes

Figure 8.10 - Model library for primitive value types

8.3.3.1.1 Boolean

A Boolean value type consists of the predefined values true and false.

bdd [modelLibrary] PrimitiveValueTypes [PrimitiveValueTypes library]

«valueType»
Number

«valueType»
String

«valueType»
Boolean

«valueType»
Integer

«valueType»
Real

realPart: Real
imaginaryPart: Real

«valueType»
Complex
 ISO/IEC 2017 - All rights reserved 59

ISO/IEC 19514:2017(E)
8.3.3.1.2 Complex

Description

A Complex value type represents the mathematical concept of a complex number. A complex number consists of a real
part defined by a real number, and an imaginary part defined by a real number multiplied by the square root of -1.
Complex numbers are used to express solutions to various forms of mathematical equations.

Attributes

• realPart: Real
A real number used to express the real part of a complex number.

• imaginaryPart: Real
A real number used to express the imaginary part of a complex number.

8.3.3.1.3 Integer

An Integer value type represents the mathematical concept of an integer number. An Integer value type may be used to
type values that hold negative or positive integer quantities, without committing to a specific representation such as a
binary or decimal digits with fixed precision or scale.

8.3.3.1.4 Number

Number is an abstract value type from which other value types that express concepts of mathematical numbers are
specialized.

8.3.3.1.5 Real

A Real value type represents the mathematical concept of a real number. A Real value type may be used to type values
that hold continuous quantities, without committing to a specific representation such as a floating point data type with
restrictions on precision and scale.

8.3.3.1.6 String

A String value type consists of a sequence of characters in some suitable character set. Character sets may include non-
Roman alphabets and characters.

8.3.3.2 Package UnitAndQuantityKind

Figure 8.11 - Model library for Unit and QuantityKind
60  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
8.3.3.2.1 QuantityKind

A QuantityKind is a kind of quantity that may be stated by means of defined units. For example, the quantity kind of
length may be measured by units of meters, kilometers, or feet. QuantityKind is defined as a non-abstract SysML Block
defined in the SysML UnitAndQuantityKind model library. QuantityKind, or a specialization of it, classifies an
InstanceSpecification to define a particular “kind-of-quantity” in the sense of an “aspect common to mutually comparable
quantities” [VIM3-1.2], where a SysML value property is understood to correspond to the VIM concept of “quantity”
defined as a “property of a phenomenon, body or substance, where the property has a magnitude that can be expressed as
a number and a reference” [VIM3-1.1]. Modelers specialize QuantityKind as done in SysML’s QUDV model library or in
a similar manner in other model libraries.

The definitionURI of an InstanceSpecification classified by a kind of QuantityKind identifies the particular “kind-of-
quantity” [VIM3-1.2] that the InstanceSpecification represents. Two such InstanceSpecifications represent the same
“kind-of-quantity” if and only if their definitionURIs have values and their values are equal. The only valid use of a
QuantityKind instance is to be referenced by the quantityKind property of a ValueType or Unit.

See the non-normative model library in E.5 for an optional way to specify more comprehensive definitions of units and
quantity kinds as part of systems of units and systems of quantities. The name of a QuantityKind, its definitionURI, or
other means may be used to link individual quantity kinds to additional sources of documentation such as this optional
model library.

Attributes

• symbol: String [0..1]
Short symbolic name of the quantity kind.

• description: String [0..1]
Textual description of the quantity kind.

• definitionURI: String [0..1]
URI that references an external definition of the quantity kind.

8.3.3.2.2 Unit

A Unit is a quantity in terms of which the magnitudes of other quantities that have the same quantity kind can be stated.
A unit often relies on precise and reproducible ways to measure the unit. For example, a unit of length such as meter may
be specified as a multiple of a particular wavelength of light. A unit may also specify less stable or precise ways to
express some value, such as a cost expressed in some currency, or a severity rating measured by a numerical scale.

Unit is defined as a non-abstract SysML Block defined in the SysML UnitAndQuantityKind model library. Unit, or a
specialization of it, classifies an InstanceSpecification to define a particular “measurement unit” in the sense of a “real
scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to
express the ratio of the two quantities as a number” [VIM3-1.9], where a SysML value property is understood to
correspond to the VIM concept of “quantity” defined as a “property of a phenomenon, body or substance, where the
property has a magnitude that can be expressed as a number and a reference” [VIM3-1.1]. Modelers specialize Unit as
done in SysML’s QUDV model library or in a similar manner in other model libraries.

The definitionURI of an InstanceSpecification classified by a kind of Unit identifies the particular “measurement unit”
[VIM3-1.9] that the InstanceSpecification represents. Two such InstanceSpecifications represent the same “measurement
unit” if and only if their definitionURIs have values and their values are equal.

The only valid use of a Unit instance is to be referenced by the unit property of a ValueType stereotype.
 ISO/IEC 2017 - All rights reserved 61

ISO/IEC 19514:2017(E)
See the non-normative model library in E.5 for an optional way to specify more comprehensive definitions of units and
quantity kinds as part of systems of units and systems of quantities. The name of a Unit, its definitionURI, or other means
may be used to link individual units to additional sources of documentation such as this optional model library.

Attributes

• symbol: String [0..1]
Short symbolic name of the unit.

• description: String [0..1]
Textual description of the unit.

• definitionURI: String [0..1]
URI that references an external definition of the unit.

• quantityKind: QuantityKind [0..*]
A Unit may be associated to several QuantityKinds. This one-to-many association capability between “measurement
 units” [VIM3-1.9] (represented as Units) and “kind-of-quantities” [VIM3-1.2] (represented as QuantityKinds)
 reflects a subtle but important note in [VIM3-1.9, NOTE2] which states that “measurement units of quantities of the
 same quantity dimension may be designated by the same name and symbol even when the quantities are not of the
 same kind. For example, joule per kelvin and J/K are respectively the name and symbol of both a measurement unit
 of heat capacity and a measurement unit of entropy, which are generally not considered to be quantities of the same
 kind.”

8.4 Usage Examples

8.4.1 Wheel Hub Assembly

In Figure 8.12 a block definition diagram shows the blocks that comprise elements of a Wheel. The block property
LugBoltJoint.torque has a specialization of DistributedProperty applied to describe the uniform distribution of its values.
Examples of such distributions can be found in E.5. Connectors from the lugBoltJoints part go to nested parts, and use
NestedConnectorEnd to specify the path of properties to reach those parts. For the threadedHole end of the connector
going to part h, the property path is (hub). For the mountingHole end of the connector going to mountingHoles, the
property path is (wheel, w). Similarly, the connector between the rim and bead parts has property paths (w) and (t) on its
ends.
62  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure 8.12 - Block diagram for the Wheel Package

WheelAssembly

diameter: mm
width: mm

Wheel

t

1

InflationValve

BalanceWeight

lugBoltSize: mm

LugBolt
MountingHole

weight

0..6

mountingHole

5

v

1

TireMountingRim

TireBead

1

1

PressureSeat

bead0..1

2

WheelHubAssembly

rim
0..1

2

lugBoltSize: mm
threadSize: mm

LugBolt
ThreadedHole

Hub

«uniform» {m in=75, max=85} torque: ft-lb
boltTens ion: lb

LugBoltJoint

0..1

1

wheel

hub

1

h0..1

5 1 0..1

threadedHole

1

0..1

mountingHole

lugBoltJoint5

w

0..1

1

values

inflationPressure: ps i

Tire

values

tireSpecification: String

operations

mountTire()

transmitPressure()

WirelessTire
PressureMonitor

1

1

BandMount

operations

values

values

values values

bdd WbeelPackage
 ISO/IEC 2017 - All rights reserved 63

ISO/IEC 19514:2017(E)
Figure 8.13 - Internal Block Diagram for WheelHubAssembly

In Figure 8.13 an internal block diagram (ibd) shows how the blocks defined in the Wheel package are used. This ibd is
a partial view that focuses on particular parts of interest and omits others from the diagram, such as the “v” InflationValve
and “weight” BalanceWeight, which are also parts of a Wheel.

8.4.2 Example Value Type Definitions

In Figure 8.14, several value types that use standard units of measure from the International System of Units (SI) are
defined to be available in the Example Value Type Definitions package. The value types in this package could be
imported into other contexts for typing properties of SysML Blocks. Because a SysML Unit can already identify a type of
quantity, or QuantityKind, that the unit measures, a value type only needs to identify the unit to identify a quantity kind
as well. The value types in this example refer to units that are assumed to be defined in an imported package, such as the
Model Library defined in E.6.

Figure 8.14 - Defining Value Types with units of measure from the International System of Units (SI)

w heel: WheelAssem bly

w : Wheel

m ountingHoles:
LugBoltMountingHole

5

lugBoltJoints:
LugBoltJoint

t: Tire

bead:
TireBead

1

0..1

mountingHole

hub: Hub

rim :
TireMountingRim

: PressureSeat

0..5

22

h:
LugBoltThreadedHole

1

0..1

threadedHole

5

ibd WheelHubAssembly

« v a lu e T y p e »
u n it= s e c o n d

s

« va lu e T y p e »
u n it= n e w to n

N

« v a lu e T y p e »
u n it= m e tre

m

« v a lu e T yp e »
u n it= k ilo g ra m

k g

b d d [p a c k a g e] E x a m p le V a lu e T y p e D e fin it io n s

« v a lu e T y p e »
R e a l
64  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
8.4.3 Design Configuration for SUV EPA Fuel Economy Test

SysML internal block diagrams may be used to specify blocks with unique identification and property values. Figure D.41
shows an example used to specify a unique vehicle with a vehicle identification number (VIN) and unique properties such
as its weight, color, and horsepower. This concept is distinct from the UML concept of instance specifications in that it
does not imply or assume any run-time semantic, and can also be applied to specify design configurations.

In SysML, one approach is to capture system configurations by creating a context for a configuration in the form of a
context block. The context block may capture a unique identity for the configuration, and utilizes parts and initial value
compartments to express property design values within the specification of a particular system configuration. Such a
context block may contain a set of parts that represent the block instances in this system configuration, each containing
specific values for each property. This technique also provides for configurations that reflect hierarchical system
structures, where nested parts or other properties are assigned design values using initial value compartments. The
following example illustrates the approach.

8.4.4 Water Delivery

Association blocks can be decomposed into connectors between properties of the associated blocks. These properties can
be ports, as in the water delivery example in 9.4.5, Association and Port Decomposition.

8.4.5 Constraining Decomposition

Figure 8.15 shows an example decomposition for vehicles in a block definition diagram. Figure 8.16 shows the same
decomposition in an internal block diagram that includes bound references. The binding connectors have nested connector
ends, because they link inside the parts of the vehicle.

Figure 8.15 - Vehicle decomposition

Vehicle

Engine Cylinder

RollBar

Light
Rollbar

1

eng

4..8

cyl

Heavy
RollBar

Chassis
Assembly1

chs

Wheel LugBolt

4

w

 6..10

lb

0..1

rb

bdd [package] Vehicle Decomposition
 ISO/IEC 2017 - All rights reserved 65

ISO/IEC 19514:2017(E)
Figure 8.16 - Vehicle internal structure

Figure 8.17 shows specializations for vehicles that restrict aspects of nested parts by redefining bound references. Paths
for bound references are based on the property paths of the corresponding binding connectors. The general block on the
top does not restrict the bound properties, except the total number of lug bolts is required to be between 24 and 32, rather
than 24 and 40 as the associations in Figure 8.15 allow. The specialization on the lower left restricts the number of
cylinders to four, requires a light roll bar, and a total of 24 lug bolts over all the wheels. The specialization on the lower
right restricts the number of cylinders to between six and eight, rules out any roll bar, and limits lug bolts per wheel to
between 6 and 7, by giving the end path upper and lower values.

Figure 8.17 - Vehicle specialization

structure

eng: Engine 1

cyl : Cylinder 4..8

structure

chs : ChassisAssembly 1

rb : RollBar 0..1

 structure

w : Wheel 4

lb : LugBolt 6..10

«equal»

«equal»

«equal»

«boundReference»
cylinderBR: Cylinder

«boundReference»
lugBoltBR

*

6..8

«boundReference»
rollBarBR

*

ibd [block] Vehicle

bound references

{ /bindingPath = eng, cyl } cylinderBR : Cylinder [*]
{ /bindingPath = chs, rb } rollBarBR [*]
{ /bindingPath = chs, w, lb } lugBoltBR [24..32]

Vehicle

cylinderBR : Cylinder [4] { redefines cylinderBR }
rollBarBR : LightRollBar [1] { redefines rollBarBR }
lugBoltBR [24] { redefines lugBoltBR }

Vehicle Model 1

cylinderBR : Cylinder [6..8] { redefines cylinderBR }
rollBarBR [0] { redefines rollBarBR }
«endPathMultiplicity» { lower = 6 ; upper = 7 }
 lugBoltBR [*] { redefines lugBoltBR }

Vehicle Model 2

bdd [package] Vehical Specialization
66  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
8.4.6 Units and Quantity Kinds

The following shows a minimal example of definitions a Unit, QuantityKind and ValueType based on them.

Figure 8.18 - Example of Unit, QuantityKind and ValueType definitions

In terms of the UML4SysML metamodel and of the SysML profile, the following figure shows a partial account of the
instance-level representation of the above example. This instance-level representation is important for model interchange,
particularly across different implementations of SysML.
 ISO/IEC 2017 - All rights reserved 67

ISO/IEC 19514:2017(E)
Figure 8.19 - Instance-level view of the Unit, QuantityKind and ValueType definitions

The following example shows a minimal example of the semantics of Unit equivalence (A similar example for
QuantityKind is omitted).

Figure 8.20 - Example of equivalent Unit representations

In terms of the UML4SysML metamodel and of the SysML profile, the following figure shows a partial account of the
instance-level representation of the above example. This instance-level representation is important for model interchange,
particularly across different implementations of SysML.
68  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure 8.21 - Instance-level representation of equivalent Unit definitions
 ISO/IEC 2017 - All rights reserved 69

ISO/IEC 19514:2017(E)
70  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
9 Ports and Flows

9.1 Overview

The main motivation for specifying ports and flows is to enable design of modular, reusable blocks with clearly defined
ways of connecting and interacting with their context of use. This clause extends UML ports to support nested ports, and
extends blocks to support flow properties, and required and provided features, including blocks that type ports. Ports can
be typed by blocks that support operations, receptions, and properties as in UML. SysML defines a specialized form of
Block (InterfaceBlock) that can be used to support nested ports. SysML identifies two kinds of ports, one that exposes
features of the owning block or its internal parts (proxy ports), and another that supports its own features (full ports).
Default compatibility rules are defined for connecting block usages, such as parts and ports. These can be overridden with
association blocks specifying connections. These additional capabilities in SysML enable modelers to specify a wide
variety of interconnectable components, which can be implemented through many engineering and social techniques, such
as software, electrical or mechanical components, and human organizations. This clause also extends UML information
flows for specifying item flows across connectors and associations.

9.1.1 Ports

Ports are points at which external entities can connect to and interact with a block in different or more limited ways than
connecting directly to the block itself. They are properties with a type that specifies features available to the external
entities via connectors to the ports. The features might be properties, including flow properties and association ends, as
well as operations and receptions. The remaining overview sub clauses introduce other aspects of ports and flows.

9.1.2 Flow Properties, Provided and Required Features, and Nested Ports

SysML extends blocks to support flow properties and provided and required features. Blocks with ports can type other
ports (nested ports). Flow properties specify the kinds of items that might flow between a block and its environment,
whether it is data, material, or energy. The kind of items that flow is specified by typing flow properties. For example, a
block specifying a car’s automatic transmission could have a flow property for Torque as an input, and another flow
property for Torque as an output. Required and provided features are operations, receptions, and non-flow properties that
a block supports for other blocks to use, or requires other blocks to support for its own use, or both. For example, a block
might provide particular services to other blocks as operations, or have a particular geometry accessible to other block, or
it might require services and geometries of other blocks. Ports nest other ports in the same way that blocks nest other
blocks. The type of the port is a block (or one of its specializations) that also has ports. For example, the ports supporting
torque flows in the transmission example might have nested ports for physical links to the engine or the driveshaft.

9.1.3 Proxy Ports and Full Ports

SysML identifies two usage patterns for ports, one where ports act as proxies for their owning blocks or its internal parts
(proxy ports), and another where ports specify separate elements of the system (full ports). Both are ways of defining the
boundary of the owning block as features available through external connectors to ports. Proxy ports define the boundary
by specifying which features of the owning block or internal parts are visible through external connectors, while full ports
define the boundary with their own features. Proxy ports are always typed by interface blocks, a specialized kind of block
that has no behaviors or internal parts. Full ports cannot be behavioral in the UML sense of standing in for the owning
object, because they handle features themselves, rather than exposing features of their owners, or internal parts of their
owners. Ports that are not specified as proxy or full are simply called “ports.”
 ISO/IEC 2017 - All rights reserved 71

ISO/IEC 19514:2017(E)
In either case, users of a block are only concerned with the features of its ports, regardless of whether the features are
surfaced by proxy ports, or handled by full ports directly. Proxy and full ports support the capabilities of ports in general,
but these capabilities are also available on ports that are not declared as proxy or full. Modelers can choose between
proxy or full ports at any time in the development lifecycle, or not at all, depending on their methodology.

9.1.4 Item Flows

Item flows specify the things that flow between blocks and/or parts and across associations or connectors. Whereas flow
properties specify what “can” flow in or out of a block, item flows specify what “does” flow between blocks and/or parts
in a particular usage context. This important distinction enables blocks to be interconnected in different ways depending
on its usage context. For example, tanks might include a flow property that can accept fluid as an input. In a particular use
of tanks, “gasoline” flows across a connector into a tank, and in another use of tanks, “water” flows across a connector
into a tank. The item flow in each case specifies what “does” flow on the connector in the particular usage (e.g., gas,
water) and the flow property specifies what can flow (e.g., fluid). This enables type matching between the item flows and
between flow properties to assist in interface compatibility analysis.

Item flows may be allocated from object nodes in activity diagrams or signals sent from state machines across a
connector. Flow allocation is described in Clause 15, “Allocations,” and can be used to help ensure consistency across the
different parts of the model.

9.1.5 Deprecation of Flow Ports and Flow Specifications

Flow ports and flow specifications are included in SysML, but are deprecated. Annex C defines them, along with
transition guidelines to non-deprecated elements. In particular, the functionality of non-atomic flow ports is supported
with proxy ports typed by interface blocks owning flow properties. Flow properties are not deprecated.
72  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
9.2 Diagram Elements

9.2.1 Block Definition Diagram

Table 9.1 - Graphical nodes defined in Block Definition diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Port

Transmission

Transmission
p1

p2

Transmission
p1 : ~T1

Conjugated Ports

Ports with Flow Properties

p3
p1

p2

p2 : ~T2

UML4SysML::Port

Port
(Compartment
Notation)

p1: ITransCmd

Transmission

por ts

UML4SysML::Port

Port (with Compart-
ment)

Transmission

structure

flow properties

in live : Electricity

values

x:Integer

p1 : Type1

y : Real

UML4SysML::Port

Port
(Nested)

Transmission

p1p1.1

p1.3
p1.2

UML4SysML::Port
 ISO/IEC 2017 - All rights reserved 73

ISO/IEC 19514:2017(E)
ProxyPort

Transmission
«proxy»

p1

SysML::Ports&Flows::ProxyPort

ProxyPort (Compart-
ment Notation)

p1: ITransCmd

Transmission

proxy ports

SysML::Ports&Flows::ProxyPort

FullPort

Transmission

«full»
p1

SysML::Ports&Flows::FullPort

FullPort (Compartment
Notation)

p1: ITransCmd

Transmission

full ports

SysML::Ports&Flows::FullPort

FlowProperty

in gearSelect: Gear
in engineTorque: Torque
out wheelsTorque: Torque

Transmission

flow properties

SysML::Ports&Flows::
FlowProperty

Required and Provided
Features

properties

prov temperature : Integer
reqd geometry : Spline

prov Boolean selectGear(g : Gear)
reqd Torque getTorque()

Transmission

operations

SysML::Ports&Flows::
DirectedFeature

InterfaceBlock

«interfaceBlock»
ISpeedObserver

operations

notifySpeedChange()

SysML::Ports&Flows::
InterfaceBlock

Table 9.1 - Graphical nodes defined in Block Definition diagrams

Node Name Concrete Syntax Abstract Syntax Reference
74  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Item Flow

Torque

«block»
Engine

«block»
Transmission

traneng

structure

«participant»{end=eng} engInLink : Engine [1]
«participant»{end=tran} tranInLink : Transmission [1]

«block»

Association-1

tranInLink :
Transmission

 engInLink : Engine

 Vibration

 Heat

Current

Torque

«block»
Engine

«block»
Transmission

 traneng

SysML::Ports&Flows::ItemFlow

Interface

notifySpeedChange(): void

«interface»
ISpeedObserver

UML4SysML::Interfaces::
Interface

Required and Provided
Interfaces

ITransCmd

ITransData

Transmissionp1

ITransCmd

ITransData

Transmission
p1

UML4SysML::Interface

Table 9.1 - Graphical nodes defined in Block Definition diagrams

Node Name Concrete Syntax Abstract Syntax Reference
 ISO/IEC 2017 - All rights reserved 75

ISO/IEC 19514:2017(E)
9.2.2 Internal Block Diagram

Port

t : Transmission

t : Transmission
p1

p2

t : Transmission
p1 : ~T1

Conjugated Ports

Ports with Flow Properties

p3
p1

p2

p2 : ~T2

UML4SysML::Port

Port
(Nested)

t : Transmission

p1p1.1

p1.3
p1.2

UML4SysML::Port

Port (with Compart-
ment)

t:Transmission

structure

flow properties

in live : Electricity

values

x:Integer

p1 : Type1

y : Real

UML4SysML::Port

ProxyPort

t : Transmission
«proxy»

p1

SysML::Ports&Flows::ProxyPort

ProxyPort (isBehavior
=true)

t:Transmission
«proxy»

p1

SysML::Ports&Flows::ProxyPort

Table 9.2 - Graphical nodes defined in Internal Block diagrams

Node Name Concrete Syntax Abstract Syntax Reference
76  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
FullPort SysML::Ports&Flows::FullPort

ItemFlow SysML::Ports&Flows::ItemFlow

Required and Provided
Interfaces

UML4SysML::Interface

t : Transmission

«full»
p1

Item Flow with an Item Property

eng: Engine

trns: Transmission

p

p

Torque

eng: Engine

trns: Transmission

p

p

torque: Torque

Item Flow

structure

«participant»{end=ep} epInLink : EP [1]
«participant»{end=tp} etInLink : TP [1]

c1 : Association-1

tpInLink : TP epInLink : EP

 Vibration

 Heat

Current

tp.1

tp.3

ep.1

ep.3

tp.2ep.2

Torque

eng: Engine trns: Transmission
ep:EP tp:TP

ITransCmd

ITransData

t : Transmissionp1

ITransCmd

ITransData

t : Transmission
p1
 ISO/IEC 2017 - All rights reserved 77

ISO/IEC 19514:2017(E)
9.3 UML Extensions

9.3.1 Diagram Extensions

9.3.1.1 DirectedFeature

A DirectedFeature has the same notation as other non-flow properties and behavioral features with a feature direction
prefix (prov | reqd | provreqd), which corresponds to one the FeatureDirection literals “provided,” “required,” and
“providedrequired,” respectively. Directed features can appear in compartments for the various kinds of properties and
behavioral features.

9.3.1.2 FlowProperty

A FlowProperty signifies a single flow element to/from a block. A flow property has the same notation as a Property only
with a direction prefix (in | out | inout). Flow properties are listed in a compartment labeled flow properties.

9.3.1.3 FullPort

Full ports can appear in block compartments labeled full ports. The keyword «full» before a property name can also
indicate the property is stereotyped by FullPort.

9.3.1.4 InvocationOnNestedPortAction

The nested port path is notated with a string “‘via’ <port-name> [‘,’ <port-name>]+” in the name string of the icon for the
invocation action. It shows the values of the onNestedPort property in order, and the value of the onPort property at the
end.

9.3.1.5 ItemFlow

An ItemFlow describes the flow of items across a connector or an association. The notation of an item flow is a black
arrowhead on the connector or association. The arrowhead is towards the target element. For an item flow with an item
property, the label shows the name and type of the item property (in name: type format). Otherwise the item flow is
labeled with the name of the classifier of the conveyed items. When several item flows having the same direction are
represented, only one triangle is shown, and the list of item flows, separated by a comma is presented.

9.3.1.6 Port

Ports are notated by rectangles overlapping the boundary of their owning blocks or properties (parts or ports) typed by the
owning block. Port labels appear in the same format as properties on the end of an association. Port labels can appear
inside port rectangles. Nested ports that are not on proxy ports can appear anywhere on the boundary of the owning port
rectangle that does not overlap the boundary of the rectangle the owning port overlaps.

Port rectangles can have port rectangles overlapping their boundaries, to notate a port type that has ports (nested ports).

Ports with types that have flow properties all in the same direction, either all in or all out, can have an arrow inside them
indicating the direction of the properties with respect to the owning block. (See FlowProperty on page 84 for definition of
owning block of proxy ports in this case.) This includes the direction of flow properties on nested ports, and if the port is
full and its type is unencapsulated, ports on parts of the port, recursively. The arrows are perpendicular to the boundary
lines they overlap. Arrows in conjugated ports are reversed from the flow property direction. Ports with types that have
flow properties in different directions or flow properties that are all in both directions, including have two open arrow
78  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
heads inside them facing away from each other (<>). This includes the directions of nested and contained flow properties
as described above for one-way arrows. Ports appearing in block compartments can have their direction appear textually
before the port name as “in,” “out,” or “inout” determined in the same way as the arrow direction.

Ports that are not proxy or full can appear in block compartments labeled ports.

Ports are specialized kinds of properties, and can be shown in same way as other properties. They can appear in block
compartments in the same format as other properties of their owning blocks, or as the ends of associations, with the port
appearing in the same format as other association ends, on the end opposite the owning block.

All ports and nested ports (i.e., proxy, full, and ports with no stereotype applied), and their type definitions (e.g., interface
blocks, blocks) can include compartments with textual and graphical representations to display their features in the same
way as other properties and types, including rectangles used to display properties in structure compartments.

9.3.1.7 ProxyPort

Proxy ports can appear in block compartments labeled proxy ports. The keyword «proxy» before a property name can also
indicate the property is stereotyped by ProxyPort. Nested ports on proxy ports can appear on the portion of the boundary
of the owning port rectangle that is outside the rectangle the owning port overlaps.

9.3.1.8 TriggerOnNestedPort

The nested port path is notated following a trigger signature with a string “‘«from» (’ <port-name> [‘,’ <port-name>]+
‘)’” in the name string of the icon for the trigger. It shows the values of the onNestedPort property in order, and the value
of the port property at the end.

9.3.2 Stereotypes

Package Ports&Flows

Figure 9.1 - Port Stereotypes

«stereotype»
ProxyPort

«metaclass»
UML4SysML::Port

«stereotype»
InterfaceBlock

«stereotype»
SysML::Blocks::Block

«metaclass»
UML4SysML::

Property

direction : FlowDirection

«stereotype»
FlowProperty

in
out
inout

«enumeration»
FlowDirection

«stereotype»
FullPort
 ISO/IEC 2017 - All rights reserved 79

ISO/IEC 19514:2017(E)
Figure 9.2 - Stereotypes for Actions on Nested Ports

Figure 9.3 - Stereotypes for Property Value Change Events

Figure 9.4 - Provided and Required Features

1..**

onNestedPort
{ordered, nonunique,

redefine propertyPath}

1..*
*

onNestedPort
{ordered, nonunique,
redefine propertyPath}

«metaclass»
UML4SysML::Port

«stereotype»
InvocationOnNested

PortAction

«metaclass»
UML4SysML::

InvocationAction

«stereotype»
TriggerOnNestedPort

«metaclass»
UML4SysML::

Trigger

«stereotype»
ElementPropertyPath

structuralFeature

«metaclass»
UML4SysML::Structural

Feature

«stereotype»
ChangeStructural

FeatureEvent

«metaclass»
UML4SysML::
ChangeEvent

«stereotype»
AcceptChange

StructuralFeature
EventAction

«metaclass»
UML4SysML::

AcceptEventAction

1

featureDirection: FeatureDirection

«stereotype»
DirectedFeature

provided
required
providedrequired

«enumeration»
FeatureDirection

«metaclass»
UML4SysML::

Feature
80  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure 9.5 - ItemFlow Stereotype

9.3.2.1 AcceptChangeStructuralFeatureEventAction

Description

Accept change structural feature event actions handle change structural feature events (see DirectedFeature on page 82).
The actions have exactly two output pins. The first output pin holds the values of the structural feature just after the
values changed, while the second pin holds the values just before the values changed. The action only accepts events for
structural features on the blocks owning the behavior containing the action, or on the behavior itself, if the behavior is
not owned by a block.

Constraints

[1] The action has exactly one trigger, the event of which shall be a change structural feature event.

[2] The action has two result pins with type and ordering the same as the type and ordering of the structural feature of the
trigger event, and multiplicity compatible with the multiplicity of the structural feature.

[3] The structural feature of the trigger event shall be owned by or inherited by the context of the behavior containing the
action. (The context of a behavior is either its owning block or itself if it is not owned by a block. See definition in the
UML 2 standard.)

[4] Visibility of the structural feature of the trigger event shall allow access to the object performing the action.

[5] The constraint under 11.3.2, “AcceptEventAction” in the UML 2 standard, “[2] There are no output pins if the trigger
events are only ChangeEvents,” shall be removed for accept event actions that have
AcceptChangeStructuralFeatureEventAction applied.

The UML metaclasses are show n for completeness.

«metaclass»
UML4SysML::Classifier

«metaclass»
UML4SysML::Inform ationItem

*

representation *

represented «metaclass»
UML4SysML::Inform ationFlow

itemProperty: Property [0..1]

«stereotype»
Item Flow

«metaclass»
UM L4SysM L::NamedElement

1..** target

1..*
*

source1..*
*

conveyed
 ISO/IEC 2017 - All rights reserved 81

ISO/IEC 19514:2017(E)
9.3.2.2 Block

Description

Blocks (including specializations of Block) can own ports, including but not limited to proxy ports and full ports. These
blocks can be the type of ports (specifying nested ports), with some restrictions described in other stereotypes in this sub
clause. All links and interactions with a behavioral port (in the UML sense of standing in for the owning object) are links
and interactions with the owner, so the semantics of behavioral ports is the same as if the value of the port as a property
were always the owning block instance (the owning block instance for behavioral ports on proxy ports is the value of the
block usage the proxy port is standing in for, which might be an internal part). In conjugated ports with conjugated nested
ports, the nested ports behave as if they were not conjugated. Blocks loosen UML constraints on connectors to support
nested ports. See Clause 8, “Blocks” for further details of blocks.

9.3.2.3 ChangeStructuralFeatureEvent

Description

A ChangeStructuralFeatureEvent models changes in values of structural features.

Attributes

• structuralFeature : StructuralFeature
The event models occurrences of changes to values of this structural feature.

Constraints

[1] The structural feature shall not be static.

[2] The structural feature shall have exactly one featuringClassifier.

9.3.2.4 DirectedFeature

Description

A DirectedFeature indicates whether the feature is supported by the owning block (provided), or is to be supported by
other blocks for the owning block to use (required), or both (the owning block for features on types of proxy ports is the
type of the block usage the proxy port is standing in for, which might be an internal part). Using non-flow properties
means to read or write them, and using behavioral features means to invoke them. Provided non-flow properties are read
and written on the owning block, while required non-flow properties are read or written on an external block. Provided
behavioral features are invoked with the owning block as target, while required behavioral features are invoked with an
external block as target (required).

Blocks owning or inheriting required behavioral features can have behaviors invoking the behavioral features on instances
of the block. This sends invocations out along connectors from usages of the block in internal structures of other blocks,
provided the behavioral features match on the other end of the connectors.

Invocations of provided behavioral features due to required behavioral features can only occur when the features match.
A single provided behavioral feature shall match each required one according to the following conditions:

• The kind of behavioral feature is the same (operation or reception).

• Names are the same, including parameter names, in the same order.

• Parameter directions are the same, in the same order.

• Provided parameter types for parameters with:
82  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
• in direction are the same or more general than the required ones, in order.

• out or return direction are the same or more specialized than the required ones, in order.

• inout direction are the same as the required ones, in order.

 Parameters without types are treated as if their type is more general than all other types.

• Provided parameter multiplicity has the same condition as type, where wider multiplicities are “more general” than
narrower ones.

• Provided parameter order (of each parameter separately) has the same condition as type, where unordered parameters
are “more general” than ordered ones.

• Provided parameter uniqueness (of each parameter separately) has the same condition as type, where non-unique
parameters are “more general” than unique ones.

• Provided operation preconditions are the same as or more general than required ones.

• Provided operation body conditions and postconditions are the same or more specialized than required ones.

If corresponding parameters in provided and required behavioral features both have defaults, the default value
specification of the required feature is used for in parameters, and the default value specification of the provided feature
is used for out and return parameters.

Reading or writing provided non-flow properties due to required non-flow properties can only occur when the features
match. Matching non-flow properties shall have the same name. For reading non-flow properties, the types, multiplicities,
uniqueness, and ordering shall match in the same way as out parameters for behavioral features above. For writing non-
flow properties, the types, multiplicities, uniqueness, and ordering shall match in the same way as in parameters for
behavioral features above. For both reading and writing non-flow properties, the types, multiplicities, uniqueness, and
ordering shall be the same. If provided and required non-flow properties both have defaults, the default value
specification of the required feature is used for writing and the default specification of the provided feature is used for
reading.

Attributes

• featureDirection : FeatureDirection
Specifies whether the feature is supported by the owning block (featureDirection=“provided”), or is to be
supported by other blocks for the owning block to use (featureDirection=“required”), or both
(featureDirection=“providedrequired”). The meaning of the direction is reversed for conjugated ports.

Constraints

[1] DirectedFeature shall only be applied to behavioral features, or to properties that do not have FlowProperty applied,
including on subsetted or redefined features.

[2] A non-provided operation shall not be associated with a behavior as its method.

9.3.2.5 FeatureDirection

Description

FeatureDirection is an enumeration type that defines literals used by directed features for specifying whether they are
supported by the owning block, or is to be supported by other blocks for the owning block to use.

Literal values are:
 ISO/IEC 2017 - All rights reserved 83

ISO/IEC 19514:2017(E)
• provided:
Indicates that the feature shall be supported by the owning block.

• required:
Indicates that the feature shall be supported by other blocks.

• providedrequired:
Indicates that the feature shall be both provided and required.

The meanings of the “required” and “provided” literals are switched for conjugated ports. In these cases the actual use is
in the opposite direction than the one specified by the enumeration literal.

9.3.2.6 FlowDirection

Description

FlowDirection is an enumeration type that defines literals used for specifying the direction that items can flow to or from
a block. FlowDirection is used by flow properties to indicate the direction that its items can flow to or from its owner.
(See 9.3.2.7, FlowProperty for definition of owning block of proxy ports in this case.)

Literal Values are:

• in:
Indicates that items of the flow property can flow into the owning block.

• out:
Indicates that items of the flow property can flow out of the owning block.

• inout:
Indicates that items of the flow property can flow into or out of the owning block.

The meanings of the “in” and “out” literals are switched for conjugated ports. In these cases the actual flow is in the
opposite direction than the one specified by the enumeration literal.

9.3.2.7 FlowProperty

Description

A FlowProperty signifies a single kind of flow element that can flow to/from a block. A flow property’s values are either
received from or transmitted to another block. An “in” flow property value cannot be modified by its owning or realizing
block, or blocks contained by its owning or realizing block. An “out” flow property can only be modified by its owning
or realizing block, or blocks contained by its owning or realizing block. An “inout” flow property can be used as an “in”
flow property or an “out” flow property. (The owning block of a proxy port in this case depends on how the port is nested
in the internal structures of blocks, because the block directly owning the port might be used to type ports or parts at
different levels of nesting in multiple blocks, or the same block. The owning block of a proxy port in the internal structure
of a block is the block typing the innermost full port or part under which the port is nested.) The meaning of the direction
is reversed for conjugated ports (UML isConjugated = true). In the description below, flow property direction refers to the
direction after conjugation is taken into account.

Flow due to flow properties can only occur when flow properties match. Matching flow properties shall have matching
direction and types. Matching direction is defined below. Flow property types match when the target flow property type
has the same, or a generalization of, the source flow property type. (See 9.3.2.11, ItemFlow for looser constraints on flow
property types across connectors with item flows.) If multiple flow properties on either end of a connector match by
84  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
direction and type, then the names of the flow properties shall also be the same for flow to occur. If multiple flow
properties on either end match by direction, type, and name, which can happen for unnamed flow properties, then no flow
will occur.

Flow properties enable item flows across connectors between usages typed by blocks having the properties. For Block and
ValueType flow properties, setting an “out” or “inout” FlowProperty value of a block usage on one end of a connector
will result in assigning the same value of an “in” or “inout” FlowProperty of a block usage at the other end of the
connector, provided the flow properties are matched. It is not specified whether send/receive signal events are generated
when values are written to out/in flow properties typed by Signal (implementations might choose to do this, but it is not
required). This paragraph does not apply to internal connectors of proxy ports, see next paragraph.

Items going to or from behavioral ports (UML isBehavior = true) are actually going to or from the owning block. (See
9.3.2.2, Block for definition of owning block of proxy ports in this case.) Items going to or from non-behavioral ports
(UML isBehavior = false) are actually going to the port itself (for full ports) or to internal parts connected to the port (for
proxy ports). Because of this, flow properties of a proxy port are the same as flow properties on the owning block or
internal parts, so the flow property directions shall be the same on the proxy port and owning block or internal parts for
items to flow. See 9.3.2.12, ProxyPort for the definition of internal connectors and the semantics of proxy ports.

The flow property semantics above applies to each connector of a block usage, including when the block usage has
multiple connectors.

The binding of flow properties on ports to behavior parameters can be achieved in ways not dictated by SysML. One
approach is to perform name and type matching. Another approach is to explicitly use binding relationships between the
ports properties and behavior parameters or block properties.

Attributes

• direction : FlowDirection
Specifies if the property value is received from an external block (direction=“in”), transmitted to an external Block
(direction=“out”) or both (direction=“inout”). The meaning of the direction is reversed for conjugated ports.

Constraints

[1] A FlowProperty shall be typed by a ValueType, Block, or Signal.

9.3.2.8 FullPort

Description

Full ports specify a separate element of the system from the owning block or its internal parts. They might have their own
internal parts, and behaviors to support interaction with the owning block, its internal parts, or external blocks. They
cannot be behavioral ports, or linked to internal parts by binding connectors, because these constructs imply identity with
the owning block or internal parts. However, full ports can be linked to non-full ports by binding connectors, because this
does not necessarily imply identity with other parts of the system. Full ports also cannot be conjugated, because their
types can have behaviors and can be reused on non-conjugated ports. This would require the same behaviors to use the
directed features and flow properties in opposite directions at the same time.

Constraints

[1] Full ports shall not also be proxy ports. This applies even if some of the stereotypes are on subsetted or redefined ports.

[2] Binding connectors shall not link full ports (either directly or indirectly through other binding connectors) to other
composite properties of the block owning the full port (or that block’s generalizations or specializations), unless the
composite properties are non-full ports.
 ISO/IEC 2017 - All rights reserved 85

ISO/IEC 19514:2017(E)
[3] Full ports shall not be behavioral (isBehavior=false).

[4] Full ports shall not be conjugated (isConjugated=false).

9.3.2.9 InterfaceBlock

Description

Interface blocks cannot have behaviors, including classifier behaviors or methods, or internal parts.

Constraints

[1] Interface blocks shall not own or inherit behaviors, have classifier behaviors, or methods for their behavioral features.

[2] Interface blocks shall not have composite properties that are not ports.

[3] Ports owned by interface blocks shall only be typed by interface blocks.

9.3.2.10 InvocationOnNestedPortAction

Description

This extends the capabilities of UML’s onPort property of InvocationAction to support nested ports. It identifies a nested
port by a multi-level path of ports from the block that executes the action. Like UML’s onPort property, this extends
invocation actions to send invocations out of ports of objects executing the actions, or to ports of those objects or other
objects. Invocations intended to go out of the object executing the action shall be sent to the executing object on a proxy
port. Invocations intended to go directly to a target object are sent to that object on a port of that object.

Attributes

• onNestedPort : Port [1..*] {ordered, nonunique, redefines propertyPath}
Gives a series of ports that identifies the port receiving the invocation in the context of the target object of the
invocation. The ordering of ports is from a port of the target object, through a port of each intermediate block that
types the preceding port, ending in a port with a type that owns or inherits the port given by the onPort property of the
invocation action. The onPort port is not included in the onNestedPort list. The same port might appear more than
once because a block can own a port with the same block as a type, or another block that has the same property.

Constraints

[1] The onPort property of an invocation action shall have a value when this stereotype is applied.

[2] The port at the first position in the onNestedPort list shall be owned (directly or via inheritance) by a block that types the
target pin of the invocation action, or one of the block’s generalizations.

[3] The first constraint of ElementPropertyPath shall apply to onNestedPort.

[4] The type of the port at the last position of the onNestedPort list shall own or inherit the onPort port of the stereotyped
invocation action.

[5] InvocationOnNestedPortAction shall only be applied to invocation actions.

9.3.2.11 ItemFlow

Description

An ItemFlow describes the flow of items across a connector or an association. It may constrain the item exchange
between blocks, block usages, or ports as specified by their flow properties. For example, a pump connected to a tank: the
pump has an “out” flow property of type Liquid and the tank has an “in” FlowProperty of type Liquid. To signify that
only water flows between the pump and the tank, we can specify an ItemFlow of type Water on the connector.
86  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
One can label an ItemFlow with the classifiers of the items that may be conveyed. For example: a label Water would
imply that instances of Water might be transmitted over this ItemFlow. In addition, if the item flow identifies an item
property, then one can label the item flow with the item property. For example, a label of “liquid: Water” means Water
items might flow and these items are the values of the property “liquid,” i.e., the values of the “liquid” item property are
the instances of Water flowing at any given time. Item properties are owned by the common (possibly indirect) owner of
the source and target of the item flow, rather than by the source and target types, as flow properties are.

Item flows on connectors shall be compatible with flow properties of the blocks usages at each end of the connector, if
any. The direction of the item flow shall be compatible wit the direction of flow specified by the flow properties. (See
9.3.2.6, FlowDirection and 9.3.2.7, FlowProperty about flow property direction.) Each classifier of conveyed items on an
item flow shall be the same as, a specialization of, or a generalization of at least one flow property type on each end of
the connected block usages (or their accessible nested block usages recursively, see 8.3.2.3, Block about encapsulated
blocks). The target flow property type shall be the same as, or a generalization of, a classifier of the item flow or the
source flow property type, whichever is more specialized. (See 9.3.2.7, FlowProperty for tighter constraints on flow
property types across connectors without item flows.)

Attributes

• itemProperty: Property [0..1]
An optional property that relates the flowing item to the instances of the connector’s enclosing block. This property
is applicable only for item flows realized by connectors. The itemProperty attribute has no values if the item flow is
realized by an Association.

Constraints

[1] A Connector or an Association, or an inherited Association shall exist between the source and the target of the
InformationFlow.

[2] An ItemFlow itemProperty shall be typed by a ValueType, Block, or Signal.

[3] itemProperty shall be a property of the common (possibly indirect) owner of the source and the target.

[4] itemProperty shall not have a value if the item flow is realized by an Association.

[5] If an ItemFlow has an itemProperty, one of the classifiers of conveyed items shall be the same as the type of the item
property.

[6] If an ItemFlow has an itemProperty, its name shall be the same as the name of the item flow.

9.3.2.12 ProxyPort

Description

Proxy ports identify features of the owning block or its internal parts that are available to external blocks through external
connectors to the ports. They do not specify a separate element of the system from the owning block or internal parts.
Actions on features of a proxy port have the same effect as if they were acting on features of the owning block or internal
parts the port stands in for, and changes to features of the owning block or internal parts that the proxy port makes
available to external blocks are visible to those blocks via connectors to the port. (This applies to provided features; for
required features, see 9.3.2.4, DirectedFeature.) Proxy ports do not specify their own behaviors or internal parts, and shall
be typed by interface blocks. Their nested ports shall also be proxy ports. Completely specified proxy ports shall be
connected to internal parts or be behavioral, to enable the owning block or connected internal parts to handle or initiate
any interactions through the port. However, blocks can be defined with non-behavioral proxy ports that do not have
internal connectors, with the expectation that these will be added in specialized blocks. Internal connectors to ports are
the ones inside the port’s owner (specifically, they are the ones that do not have a UML partwithPort on the connector end
 ISO/IEC 2017 - All rights reserved 87

ISO/IEC 19514:2017(E)
linked to the port, assuming NestedConnectorEnd is not applied to that end, or if NestedConnectorEnd is applied to that
end, they are the connectors that have only ports in the property path of that end). The rest of the connectors linked to a
port are external.

Proxy ports can be connected to internal parts or ports on internal parts, identifying features on those parts or ports that
are available to external blocks. When a proxy port is connected to a single internal part, the connector shall be a binding
connector, or have the same semantics as a binding connector (the value of the proxy port and the connected internal part
are the same; links of associations typing the connector are between all objects and themselves, and no others). When a
proxy port is connected to multiple internal parts, the connectors have the same semantics as a single binding connector
to an aggregate of those parts, supporting all their features, and treating flows and invocations from outside the aggregate
as if they were to those parts, and flows and invocations it receives from those parts as if they were to the outside. This
aggregate is not a separate element of the system, and only groups the internal parts for purposes of binding to the proxy
port. Internal connectors to proxy ports can be typed by association blocks, including when the connector is binding.

Constraints

[1] Proxy ports shall not also be full ports. This applies even if some of the stereotypes are on subsetted or redefined ports.

[2] Proxy ports shall only be typed by interface blocks.

[3] Ports owned by the type of a proxy port shall be proxy ports.

9.3.2.13 TriggerOnNestedPort

Description

This extends trigger to support nested ports. It identifies a nested port by a multi-level path of ports from the object
receiving the triggering events. It is not applicable to full ports.

Attributes

• onNestedPort : Port [1..*] {ordered, nonunique, redefines propertyPath}
Gives a series of ports that identifies a port on which the event is occurring, in the context of a block in which the
trigger is used. The ordering of ports is from a port of the receiving object, through a port of each intermediate block
that types the preceding port, ending in a property with a type that owns or inherits the port given by the port property
of the trigger. The port property is not included in the onNestedPort list. The same port might appear more than once
because a block can own a port with the same block as a type, or another block that has the same property.

Constraints

[1] The port property of the stereotyped trigger shall have exactly one value, and the value cannot be a full port.

[2] The values of the onNestedPort property shall not be full ports.

[3] The port at the first position in the onNestedPort list shall be owned by a block in which the trigger is used, or one of the
block’s generalizations.

[4] The first constraint of ElementPropertyPath shall apply to onNestedPort.

[5] The type of the port at the last position of the onNestedPort list shall own or inherit the port port of must own or inherit the
port port of.

[6] the stereotyped invocation action the stereotyped invocation action.
88  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
9.4 Usage Examples

9.4.1 Ports with Required and Provided Features

Figure 9.6 is a fragment of the ibd:PwrSys diagram used in the HybridSUV Sample Problem in Annex D. (The complete
diagram is in Figure D.19.) The ecu:PowerControlUnit part has three ports with required and provided features, each
connected to a port of another part. Each of the ports in this example is typed by a block specifying provided and required
features available via connectors to the ports. For example, the ICE block specifies the provided operations setMixture
and setThrottle, the provided properties RPM, temperature, and isKnocking, and required property isControlOn, as shown
in Figure D.20. This block types the ctrl port of InternalCombustionEngine and the ice port of PowerControlUnit, but is
conjugated on the ice port. This means the provided features of ICE are provided by the ctrl port of
InternalCombustionEngine, and required by the ice port of PowerControlUnit, while the required features of ICE are
required by the ctrl port of InternalCombustionEngine, and provided by the ice port of PowerControlUnit. Since the
ecu:PowerControlUnit part and ice:InternalCombustionEngine part are connected via these ports, the
ecu:PowerControlUnit part may invoke setThrottle and setMixture on the ice:InternalCombustionEngine part via its ice
port, across the connector to the ctrl port of ice:InternalCombustionEngine. By invoking these operations, the
PowerControlUnit can set the throttle and mixture of the InternalCombustionEngine. The PowerControlUnit can also read
properties of the InternalCombustionEngine across the connector to find out the its rpm, temperature, and whether it is
knocking. Inversely, the InternalCombustionEngine can read the isControlOn property of the PowerControlUnit across the
connector to determine if the unit is still operating, and possibly shut down if it is not.

Figure 9.6 - Usage example of ports with provided and required features

9.4.2 Flow Ports and Item Flows

Figure D.25 shows the usage of ItemFlow. Here each of the item flows has an item property (fuelSupply:Fuel and
fuelReturn:Fuel) that signify the actual flow of fuel across the fuel lines. We see how Fuel may flow between the
FuelTankAssy and the InternalCombustionEngine. The FuelPump ejects Fuel via p1 port of FuelTankAssy, the Fuel flows
across the fuelSupplyLine connector to the fuelFittingPort of InternalCombustionEngine and from there it is distributed via
other ports to internal parts of the engine. Some of the fuel is returned to the FuelTankAssy from the fuelFitting port across the

ecu : PowerControlUnit

epc : ElectricalPower
Controller

ibd [block] PowerSubsystem [Provided and Required Features]

epc : ~EPC

ctrl : EPC

 c3 :

tsrm : Transmission
 ctrl : TSRM

 tsrm : ~TSRM

 c2 :

 ice : InternalCombustionEngine
 ctrl : ICE

ice : ~ICE

c1 :
 ISO/IEC 2017 - All rights reserved 89

ISO/IEC 19514:2017(E)
fuelReturnLine connector. Note that it is possible to connect a single port to multiple connectors: in this example the direction
of the flow via the fuelFitting port on the external connectors is implied by the direction of the ports on the other side of the
fuel lines as well as by the directions of the item flows on the fuel lines. The direction of the flow on the internal connectors is
implied by the direction of the ports of the engine’s internal parts.

9.4.3 Ports with Flow Properties

Figure D.22 shows a way to connect the PowerControlUnit to other parts over a CAN bus. Since connections over buses
are characterized by broadcast asynchronous communications, ports with flow properties are used to connect the parts to
the CAN bus. To specify the flow between the ports, we need to specify flow properties as done in Figure D.21. Here
FS_ICE has three flow properties: an “out” flow property of type signal (ICEData) and two “in” flow properties of type
Real. This allows the InternalCombustionEngine to transmit an ICEData signal via its fp port that will be transmitted over
the CAN bus to the ice port of PowerControlUnit (a conjugated port typed by FS_ICE). This single signal carries the
temperature, rpm, and knockSensor information of the engine. In addition, the PowerControlUnit can set the mixture and
throttle of the InternalCombustionEngine via the mixture and throttlePosition flow properties of FS_ICE.

9.4.4 Proxy and Full Ports

Modelers have the option of applying stereotypes for proxy and full ports to indicate whether ports are specifying features
of their owners and internal parts (proxy), or for themselves separately (full). This is a concern when defining ports,
rather than using existing blocks with ports already defined on them. Using existing blocks with ports only requires
knowing the port types, because they define the features available for linking or communication with those ports via
connectors. The stereotypes of proxy and full ports might be elided in these cases to simplify diagrams.

The ProxyPort and FullPort stereotypes can be applied at any level in a block taxonomy, whether on ports of the most
general blocks, the most specialized, or at intermediate levels of generalization. Ports can be specialized through
redefinition and subsetting if desired, as long they are not proxy and full at the same time, including the stereotypes they
inherit. Figure 9.7 shows an example of a general block for an electrical plug specialized into two other blocks. The
general block can be contained in its own package, for export to users of electrical plugs. The specialized blocks are for
plug designers. This example has two designs, one using proxy ports and the other full. The proxy design adds internal
parts exposed by the ports. The full design redefines the ports with specialized types. The same type is used for the
internal parts of the proxy design and the redefined ports of the full design. The net result for the systems as-built are the
same.

Modelers can apply stereotypes for proxy and full ports at any stage of model development, or not all if the stereotype
constraints are not needed. Figure 9.7 happens to use unstereotyped ports on a general block distributed to users, and
stereotyped ports on its specializations for implementation, but the modelers might have not used stereotypes at all, if they
did not care whether the model met those constraints (such as no behaviors on proxy ports, or no internal binding
connectors to full ports).

Unstereotyped ports do not commit to whether they are proxy or full, and do not prevent or dictate future application of
the stereotypes, except for ports that violate constraints of the stereotypes. For example, if the port types on the general
block in Figure 9.7 had behaviors defined, then the proxy specialization would be invalid. If the general ports had binding
connectors to internal parts, then the full specialization would be invalid. If the general ports had both behaviors and
internal binding connectors, then both specializations would be invalid. Unstereotyped ports have the basic functionality
of stereotyped ones, including flow properties and nested ports, so they can be used as long as the modeler is not
concerned with the distinction between proxy and full, and the constraints they impose.
90  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure 9.7 Usage example of proxy and full ports

9.4.5 Association and Port Decomposition

Figure 9.8 shows an association block Water Delivery between a bank of spigots and a faucet. The «port» keyword
indicates which association ends are ports (associations use properties as ends, which can be ports). Figure 9.9 shows the
internal structure of Water Delivery defining connectors between the spigots in the bank and inlets on the faucet. The
participant properties identify the spigot bank and faucet being connected. The end property on the stereotype refers to the
corresponding association end in Figure 9.8. The type of participant properties is shown for clarity, but is always the same
as the association end type and can be elided. They are shown with dashed rectangles because they are reference
properties. The internal structure connects hot and cold ports of the participants.

values
isOutdoor : Boolean

«block»
Plug

bdd Plug Taxonomy

p1 : P1

p2 : P2

p3 : P3

«block»
Plug Design 1 «proxy»

p1 : P1
{redefines p1}
«proxy»
p2 : P2
{redefines p2}
«proxy»
p3 : P3
{redefines p3}

: P3S

: P1S

: P2S

«equal»

«equal»

«equal»

«block»
Plug Design 2

«full»
p1 : P1S
{redefines p1}

«full»
p2 : P2S
{redefines p2}

«full»
p3 : P3S
{redefines p3}

parts
material : Steel

references
sp : SurfaceP1±0.5%
 {redefines sp}

«block»
P1S

references
sp : SurfaceP1±1%
 {redefines sp}

flow properties
in live : Electricity

«interfaceBlock»
P1

references
sp : SurfaceP2±1%
 {redefines sp}

flow properties
in neutral : Electricity

«interfaceBlock»
P2

references
sp : SurfaceP3±1%
 {redefines sp}

flow properties
in ground : Electricity

«interfaceBlock»
P3

references
sp : Surface

flow properties
in p : Electricity

«block»
P

parts
material : Steel

references
sp : SurfaceP2±0.5%
 {redefines sp}

«block»
P2S

parts
material : Steel

references
sp : SurfaceP3±0.5%
 {redefines sp}

«block»
P3S
 ISO/IEC 2017 - All rights reserved 91

ISO/IEC 19514:2017(E)
Figure 9.8 - Water Delivery association block

Figure 9.9 - Internal structure of Water Delivery association block

Figure 9.10 shows two views of a block House with a connector of type Water Delivery. The connector in the top view
“decomposes” into the subconnectors in the lower view according to the internal structure of Water Delivery. The
subconnectors relate the nested ports of :WaterSupply to the nested ports of :WaterClient.

bdd Water Supply and Client

suppliedBy deliveredTo

1..*1

Spigot

«port»

hot
«port»

hot

Faucet

Water
Client

Water
Supply

Spigot
Bank

1 1 1 1

from to

1 1

1 1
«port»

sbank
«port»

faucet

Water
Delivery

«port»

cold
«port»

cold

Faucet
Inlet

ibd Water Delivery

«participant»
{end=deliveredTo}

deliveredToInLink:
Faucet

hot

cold

«participant»
{end=suppliedBy}

suppliedByInLInk:
SpigotBank

hot

cold

from

from

to

to
92  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure 9.10 - Two views of Water Delivery connector within House block

The top portion of Figure 9.11 shows specializations of the block WaterClient into Bath, Sink, and Shower. These are
used as part types in the internal structure of the block House 2 shown in the lower portion of the figure. The composite
connector for Water Delivery is reused three times to establish connections between spigots on the water supply and the
inlets of faucets on the bath, sink, and shower.

Figure 9.11 - Specializations of Water Client in house example

: WaterSupply : WaterClient

faucetsbank

: WaterSupply

ibd House

 : WaterClientfaucet
waterDelivery

sbank

coldcold

hothot

ibd House

suppliedBy deliveredTo

from to

from to

ibd House 2

: WaterSupply : Bathfaucet
waterDelivery

sbank

 : Sink

 : Shower

waterDelivery

waterDelivery

bdd Water Client

Bath Sink Shower

Water
Client

faucet

faucet
 ISO/IEC 2017 - All rights reserved 93

ISO/IEC 19514:2017(E)
Figure 9.12 adds a Plumbing association block for the association between Spigot and Faucet Inlet in Figure 9.11. Figure
9.13 shows the internal structure for the Plumbing association block, which includes a pipe and two fittings (the
additional part and connector definitions are omitted for brevity).

Figure 9.12 - Plumbing association block

Figure 9.13 - Internal structure of Plumbing association block

Figure 9.14 modifies Figure 9.9 to use Plumbing as a connector type within the Water Delivery association block. The
lower connector shows its connector property explicitly, enabling the pipe it contains to be connected to a mounting
bracket (the additional part and connector definitions are omitted for brevity).

.

Figure 9.14 - Water Delivery association block with internal Plumbing connector

bdd Water Supply and Client

Spigot
from to

1 1

Plumbing

Faucet
Inlet

ibd Plumbing

«participant»
{end=to}
toInLink:

FaucetInlet

«participant»
{end=from}

fromInLink:
Spigot

pp: Pipe ff: Fittingsf: Fitting

ibd Water Delivery

«participant»
{end=deliveredTo}

deliveredToInLink:
Faucet

«participant»
{end=suppliedBy}

suppliedByInLInk:
SpigotBank

«connector»

p2: Plumbing

p1: Plumbing

pp : Pipe
m: Mounting

Bracket

hot

cold

hot

cold
from

from

to

to
94  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
9.4.6 Item Flow Decomposition

Item flows in internal block diagrams specify flows local to a block. For example, in Figure 9.15 the connector to the
output of the water heater has an item flow indicating distilled water is flowing, even though the out flow property of the
water heater indicates it produces water. The water heater is fed from a water distiller in this particular usage, so the
modeler knows the output will always be distilled water, rather than other kinds of water. The radiator on the left requires
distilled water, and its connection to the water heater is compatible because the item flow narrows the items to distilled
water. Item flows can also be more general than the actual flow, as shown by the connector on the right. The water
distiller produces distilled water, but the item flow is for any kind of fluid. The connection to the water heater is
compatible because it accepts any kind of water, including distilled. The item flow does not require the heater to accept
any kind of fluid, because the source of flow is still producing water, regardless of the generality of the item flow.

Connectors with item flows can be decomposed by association blocks that have additional item flows. The relationship
between an item flow and those in the association block is determined by the modeler. Figures 9.16 and 9.17 are examples
of item flow decomposition that modelers might choose, but they are not the only possible decompositions and are not
required. In Figure 9.16, the item flow classifier (EnginePart) is a supertype of the classifiers of the item flows in the
decomposition. The flow properties are all in the types of the nested ports, while the composing item flow summarizes
the kinds of items flowing by generalization. In Figure 9.17, the item flow classifier (Engine) composes the classifiers of
the items flows in the decomposition from Figure 9.16. The port types have an additional flow property that is not in the
nested ports. These are for the flow of the engine, as opposed to its parts. Constraints can be added between the flow
properties for the engine and those for the parts, to indicate the flowing parts are inside the flowing engine, or are
separate, for example as spare parts.

Figure 9.15 - Usage example of item flows in internal block diagrams

flow properties

in p1f : DistilledWater

«block»

P1

flow properties

out p2fo : Water

«block»

P2o

bdd Port Types

 : Water
Heater

: Radiator
Distilled
Water

ibd Context

: P2o : P1

Water

DistilledWater

Fluid

 : Water
Distiller

 : P3: P2i

flow properties

in p2fi: Water

«block»

P2i

flow properties

out p3f : DistilledWater

«block»

P3

Fluid
 ISO/IEC 2017 - All rights reserved 95

ISO/IEC 19514:2017(E)
Figure 9.16 - Usage example of item flow decomposition

Figure 9.17 - Usage example of item flow decomposition

ports
p1.1 : P1.1
p1.2 : P1.2
p1.3 : P1.3

«block»

P1
ports

p2.1 : P2.1
p2.2 : P2.2
p2.3 : P2.3

«block»

P2

ae2ae1

A1

bdd Connection Specification 1

b2 :b1 : EnginePart

ibd Context

p2 : P2 p1 : P1

c1 : A1

structure

«participant»{end=e1} e1InLink : P1 [1]
«participant»{end=e2} e2InLink : P2 [1]

«block»

A1

e2InLink : P2 e1InLink : P1

 Piston

 CrankShaft
p2.1

p2.3

p1.1

p1.3

p2.2p1.2

Piston

Crankshaft

 Cam

EnginePart

Cam

 ports
p1.1 : P1.1
p1.2 : P1.2
p1.3 : P1.3

flow properties

p1f : Engine

«block»

P1

ports
p2.1 : P2.1
p2.2 : P2.2
p2.3 : P2.3

flow properties

p2f : Engine

«block»

P2

bdd Connection Specification

 ae2ae1

A1

b2 :b1 : Engine

ibd Context

p2 : P2 p1 : P1

c1 : A1

EnginePart

ep

ew

Engine
96  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
10 Constraint Blocks

10.1 Overview

Constraint blocks provide a mechanism for integrating engineering analysis such as performance and reliability models
with other SysML models. Constraint blocks can be used to specify a network of constraints that represent mathematical
expressions such as {F=m*a} and {a=dv/dt}, which constrain the physical properties of a system. Such constraints can
also be used to identify critical performance parameters and their relationships to other parameters, which can be tracked
throughout the system life cycle.

A constraint block includes the constraint, such as {F=m*a}, and the parameters of the constraint such as F, m, and a.
Constraint blocks define generic forms of constraints that can be used in multiple contexts. For example, a definition for
Newton’s Laws may be used to specify these constraints in many different contexts. Reusable constraint definitions may
be specified on block definition diagrams and packaged into general-purpose or domain-specific model libraries. Such
constraints can be arbitrarily complex mathematical or logical expressions. The constraints can be nested to enable a
constraint to be defined in terms of more basic constraints such as primitive mathematical operators.

Parametric diagrams include usages of constraint blocks to constrain the properties of another block. The usage of a
constraint binds the parameters of the constraint, such as F, m, and a, to specific properties of a block, such as a mass, that
provide values for the parameters. The constrained properties, such as mass or response time, typically have simple value
types that may also carry units, quantity kinds, or probability distributions. A pathname dot notation can be used to refer
to nested properties within a block hierarchy. This allows a value property (such as an engine displacement) that may be
deeply nested within a containing hierarchy (such as vehicle, power system, engine) to be referenced at the outer
containing level (such as vehicle-level equations). The context for the usages of constraint blocks shall also be specified
in a parametric diagram to maintain the proper namespace for the nested properties.

Time can be modeled as a property that other properties may be dependent on. A time reference can be established by a
local or global clock that produces a continuous or discrete time value property. Other values of time can be derived from
this clock, by introducing delays and/or skew into the value of time. Discrete values of time as well as calendar time can
be derived from this global time property. SysML includes the time model from UML, but other UML specifications offer
more specialized descriptions of time that may also apply to specific needs.

A state of the system can be specified in terms of the values of some of its properties. For example, when water
temperature is below 0 degrees Celsius, it may change from liquid to solid state. In this example, the change in state
results in a different set of constraint equations. This can be accommodated by specifying constraints that are conditioned
on the value of the state property.

Parametric diagrams can be used to support trade-off analysis. A constraint block can define an objective function to
compare alternative solutions. The objective function can constrain measures of effectiveness or merit and may include a
weighting of utility functions associated with various criteria used to evaluate the alternatives. These criteria, for example,
could be associated with system performance, cost, or desired physical characteristics. Properties bound to parameters of
the objective function may have probability distributions associated with them that are used to compute expected or
probabilistic measures of the system. The use of an objective function and measures of effectiveness in parametric
diagrams are included in Annex E: “Non-normative Extensions.”

SysML identifies and names constraint blocks, but does not specify a computer interpretable language for them. The
interpretation of a given constraint block (e.g., a mathematical relation between its parameter values) shall be provided.
An expression may rely on other mathematical description languages both to capture the detailed specification of
 ISO/IEC 2017 - All rights reserved 97

ISO/IEC 19514:2017(E)
mathematical or logical relations, and to provide a computational engine for these relations. In addition, the block
constraints are non-causal and do not specify the dependent or independent variables. The specific dependent and
independent variables are often defined by the initial conditions, and left to the computational engine.

A constraint block is defined by a keyword of «constraint» applied to a block definition. Properties of this block define
parameters of the constraint, with the exception of properties that hold internally nested usages of constraint blocks. The
usage of a constraint block is distinguished from other parts by a box having rounded corners rather than the square
corners of an ordinary part. A parametric diagram is a restricted form of internal block diagram that shows only the use
of constraint blocks along with the properties they constrain within a context.

10.2 Diagram Elements

10.2.1 Block Definition Diagram

The diagram elements described in this sub clause are additions to the Block Definition Diagram described in Clause 8,
“Blocks.”

10.2.2 Parametric Diagram

The diagram elements described in this sub clause are additions to the Internal Block Diagram described in Clause 8. The
Parametric Diagram includes all of the notations of an Internal Block Diagram, subject only to the restrictions described
in 10.3.1.2, Parametric Diagram.

Table 10.1 - Graphical nodes defined in Block Definition diagrams

Element Name Concrete Syntax Example Metamodel Reference

ConstraintBlock SysML::ConstraintBlocks::
ConstraintBlock

x: Real
y: Real

{{L1} x > y}
nested: ConstraintBlock2

«constraint»
ConstraintBlock1

constraints

parameters
98  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
10.3 UML Extensions

10.3.1 Diagram Extensions

10.3.1.1 Block Definition Diagram

10.3.1.1.1 Constraint block definition

The «constraint» keyword on a block definition states that the block is a constraint block. An expression that specifies the
constraint may appear in the constraints compartment of the block definition, using either formal statements in some
language, or informal statements using text. This expression can include a formal reference to a language in braces as
indicated in Table 10.1. Parameters of the constraint may be shown in a compartment with the predefined compartment
label “parameters.”

10.3.1.1.2 Parameters compartment

Constraint blocks support a special form of compartment, with the label “parameters,” which may contain declarations for
some or all of its constraint parameters. Properties of a constraint block should be shown either in the constraints
compartment, for nested constraint properties, or within the parameters compartment.

Table 10.2 - Graphical nodes defined in Parametric diagrams

Element Name Concrete Syntax Example Metamodel Reference

ParametricDiagram SysML::ConstraintBlocks::ConstraintBlock
SysML::Blocks::Block

ConstraintProperty UML4SysML::Property typed by
SysML::ConstraintBlocks::ConstraintBlock

 C1: Constraint1

x:

y:

length: Real

width: Real

par Block1

 C1: Constraint1

x: Real

y: Real

x: Real

y: Real

«constraint»
C1: Constraint1
 ISO/IEC 2017 - All rights reserved 99

ISO/IEC 19514:2017(E)
10.3.1.2 Parametric Diagram

A parametric diagram is defined as a restricted form of internal block diagram. A parametric diagram may contain
constraint properties and their parameters, along with other properties from within the internal block context. All
properties that appear, other than the constraints themselves, shall either be bound directly to a constraint parameter, or
contain a property that is bound to one (through any number of levels of containment).

10.3.1.2.1 Round-cornered rectangle notation for constraint property

A constraint property may be shown on a parametric diagram using a rectangle with rounded corners. This graphical
shape distinguishes a constraint property from all other properties and avoids the need to show an explicit «constraint»
keyword. Otherwise, this notation is equivalent to the standard form of an internal property with a «constraint» keyword
shown. Compartments and internal properties may be shown within the shape just as for other types of internal properties.

10.3.1.2.2 «constraint» keyword notation for constraint property

A constraint property may be shown on a parametric diagram using a standard form of internal property rectangle with the
«constraint» keyword preceding its name. Parameters are shown within a constraint property using the standard notations
for internal properties.

10.3.1.2.3 Small square box notation for an internal property

A value property may optionally be shown by a small square box, with the name and other specifications appearing in a
text string close to the square box. The text string for such a value property may include all the elements that could
ordinarily be used to declare the property in a compartment of a block, including an optional default value. The box may
optionally be shown with one edge flush with the boundary of a containing property. Placement of property boxes is
purely for notational convenience, for example to enable simpler connection from the outside, and has no semantic
significance. If a connector is drawn to a region where an internal property box is shown flush with the boundary of a
containing property, the connector is always assumed to connect to the innermost property.

10.3.2 Stereotypes

Package ConstraintBlocks

Figure 10.1 - Stereotypes defined in SysML ConstraintBlocks package

«stereotype»
SysML::Blocks::Block

«stereotype»
ConstraintBlock
100  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
10.3.2.1 ConstraintBlock

Description

A constraint block is a block that packages the statement of a constraint so it may be applied in a reusable way to
constrain properties of other blocks. A constraint block typically defines one or more constraint parameters, which are
bound to properties of other blocks in a surrounding context where the constraint is used. Binding connectors, as defined
in Clause 8, “Blocks,” are used to bind each parameter of the constraint block to a property in the surrounding context.
All properties of a constraint block are constraint parameters, with the exception of constraint properties that hold
internally nested usages of constraint blocks.

A constraint property is a property of any block that is typed by a constraint block. It holds a localized usage of the
constraint block. Binding connectors may be used to bind the parameters of this constraint block to other properties of the
block that contains the usage.

Constraints

[1] A constraint block shall not own any structural or behavioral elements beyond the properties that define its constraint
parameters, constraint properties that hold internal usages of constraint blocks, binding connectors between its internally
nested constraint parameters, constraint expressions that define an interpretation for the constraint block, and general-pur-
pose model management and crosscutting elements.

[2] Any classifier that specializes a ConstraintBlock shall also have the ConstraintBlock stereotype applied.

[3] Any property of a block that is typed by a ConstraintBlock shall have composite aggregation.

INV Block;
self.ownedAttribute->forAll(p | p.type.oclIsKindOf(ConstraintBlock) implies p.aggregation = #composite)

10.4 Usage Examples

10.4.1 Definition of Constraint Blocks on a Block Definition Diagram

Constraint blocks can only be defined on a block definition diagram or a package diagram, where they shall have the
«constraint» keyword shown. The strings in braces in the compartment labeled “constraints” are ordinary UML
constraints, using a special compartment to hold the constraint. This is shown in Figure D.34. These particular constraints
are specified only in an informal language, but a more formal language such as OCL or MathML could also be used. The
compartment labeled “parameters” shows the parameters of this constraint, which are bound on the parametric diagram.

10.4.2 Usage of Constraint Blocks on a Parametric Diagram

Figure D.32 shows the use of constraint properties on a parametric diagram. This diagram shows the use of nested
property references to the properties of the parts; parametric diagrams can make use of the nested property name notation
to refer to multiple levels of nested property containment, as shown in this example. A parametric diagram is similar to
an internal block diagram with the exception that the only connectors that may be shown are binding connectors. The
Sample Problem in Annex D provides definitions of the containing EconomyContext block for which this parametric
diagram is shown.
 ISO/IEC 2017 - All rights reserved 101

ISO/IEC 19514:2017(E)
102  ISO/IEC 2017 - All rights reserved

ISO/IEC 19514:2017(E)
BEHAVIORAL CONSTRUCTS
 ISO/IEC 2017 - All rights reserved 103

ISO/IEC 19514:2017(E)
104  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
11 Activities

11.1 Overview

Activity modeling emphasizes the inputs, outputs, sequences, and conditions for coordinating other behaviors. It provides
a flexible link to blocks owning those behaviors. The following is a summary of the SysML extensions to UML Activity
diagrams. For additional information, see extensions for Enhanced Functional Flow Block Diagrams in Annex E, sub
clause E.2, Activity Diagram Extensions.

11.1.1 Control as Data

SysML extends control in activity diagrams as follows:

• In UML Activities, control can only enable actions to start. SysML extends control to support disabling of actions that
are already executing. This is accomplished by providing a model library with a type for control values that are treated
like data (see ControlValue in Figure 11.9).

• A control value is an input or output of a control operator, which is how control acts as data. A control operator can
represent a complex logical operation that transforms its inputs to produce an output that controls other actions (see
ControlOperator in Figure 11.8).

11.1.2 Continuous Systems

SysML provides extensions that might be very loosely grouped under the term “continuous,” but are generally applicable
to any sort of distributed flow of information and physical items through a system. These are:

• Restrictions on the rate at which entities flow along edges in an activity, or in and out of parameters of a behavior (see
Rate in Figure 11.8). This includes both discrete and continuous flows, either of material, energy, or information.
Discrete and continuous flows are unified under rate of flow, as is traditionally done in mathematical models of
continuous change, where the discrete increment of time approaches zero.

• Extension of object nodes, including pins, with the option for newly arriving values to replace values that are already
in the object nodes (see Overwrite in Figure 11.8). SysML also extends object nodes with the option to discard values
if they do not immediately flow downstream (see NoBuffer in Figure 11.8). These two extensions are useful for
ensuring that the most recent information is available to actions by indicating when old values should not be kept in
object nodes, and for preventing fast or continuously flowing values from collecting in an object node, as well as
modeling transient values, such as electrical signals.

11.1.3 Probability

SysML introduces probability into activities as follows (see Probability in Figure 11.8):

• Extension of edges with probabilities for the likelihood that a value leaving the decision node or object node will
traverse an edge.

• Extension of output parameter sets with probabilities for the likelihood that values will be output on a parameter set.
 ISO/IEC 2017 - All rights reserved 105

ISO/IEC 19514:2017(E)
11.1.4 Activities as Blocks

In UML, all behaviors including activities are classes, and their instances are executions. Behaviors can appear on block
definition diagrams, and participate in generalization and associations. SysML clarifies the semantics of composition
association between activities, and between activities and the type of object nodes in the activities, and defines
consistency rules between these diagrams and activity diagrams. See 11.3.1.1, Activity.

11.1.5 Timelines

The simple time model in UML can be used to represent timing and duration constraints on actions in an activity model.
These constraints can be notated as constraint notes in an activity diagram. Although the UML 2 timing diagram was not
included in this version of SysML, it can complement SysML behavior diagrams to notate this information. More
sophisticated SysML modeling techniques can incorporate constraint blocks from Clause 10, “Constraint Blocks” to
specify resource and related constraints on the properties of the inputs, outputs, and other system properties. (Note: refer
to 11.3.1.4, ObjectNode, Variables, and Parameters for constraining properties of object nodes).
106  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
11.2 Diagram Elements

11.2.1 Activity Diagram

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Action, CallBehaviorAction,
AcceptEventAction, Send-
SignalAction

Action action name :
behavior name

Event

Signal

TimeEvent

UML4SysML::Action,
UML4SysML::CallBehaviorAction
UML4SysML::AcceptEventAction
UML4SysML::SendSignalAction

Activity

act

UML4SysML::Activity

ActivityFinal UML4SysML::ActivityFinalNode

ActivityNode See ControlNode and ObjectNode. UML4SysML::ActivityNode

ActivityParameterNode

act

UML4SysML::ActivityParameter-
Node

ControlNode See DecisionNode, FinalNode, ForkNode, Initial-
Node, JoinNode, and MergeNode.

UML4SysML::ControlNode
 ISO/IEC 2017 - All rights reserved 107

ISO/IEC 19514:2017(E)
ControlOperator

act [controlOperator]

«controlOperator»
CallBehaviorAction

SysML::Activities::Control
Operator

DecisionNode

[guard]

[else]

UML4SysML::DecisionNode

FinalNode See ActivityFinal and FlowFinal. UML4SysML::FinalNode

FlowFinal UML4SysML::FlowFinalNode

ForkNode

...

UML4SysML::ForkNode

InitialNode UML4SysML::InitialNode

JoinNode

...

{joinspec=...}

UML4SysML::JoinNode

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference
108  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
isControl

{ control }
Action

{ control }

UML4SysML::Pin.isControl

isStream

{ stream }{ stream }
Action

{ stream }

act

Action

UML4SysML::Parameter.isStream

Local pre- and
postconditions ¬´localPrecondition

constraint

Action

¬´localPostcondition
constraint

UML4SysML::Action.local
Precondition,
UML4SysML::Action.local
Postcondition

MergeNode UML4SysML::MergeNode

NoBuffer

«noBuffer»
Action

«noBuffer»

SysML::Activities::NoBuffer

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference
 ISO/IEC 2017 - All rights reserved 109

ISO/IEC 19514:2017(E)
ObjectNode

object node name :
type name

 [state, state ...]

Actionpin name : type name
 [state, state ...]

UML4SysML::OjectNode and its
children, SysML::
Activities::ObjectNode

Optional

«optional» «optional»
Action

«optional»

act

SysML::Activities::Optional

OverWrite

«overwrite»
Action

«overwrite»

SysML::Activities::Overwrite

ParameterSet

Action

act

UML4SysML::ParameterSet

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference
110  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Probability

Action

{ probability =
valueSpecification }

{ probability =
valueSpecification }

act
{ probability =

valueSpecification }

{ probability =
valueSpecification }

SysML::Activities::Probability

Rate

{ rate = constant }
{ rate = distribution }
«continuous»
«discrete»

«discrete»
Object Node

«continuous»
Object Node

{ rate = constant }
{ rate = distribution }

«continuous»
«discrete»

Object Node

Object Node

«rate»
rate = constant

rate = distribution

{ rate = constant }
{ rate = distribution }

«continuous»
«discrete»

Action
{ rate = constant }
{ rate = distribution }
«continuous»
«discrete»

act

SysML::Activities::Rate,
SysML::Activities::Continuous,
SysML::Activities::Discrete

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference
 ISO/IEC 2017 - All rights reserved 111

ISO/IEC 19514:2017(E)
ActivityEdge See ControlFlow and ObjectFlow UML4SysML::ActivityEdge

ControlFlow UML4SysML::ControlFlow
SysML::Activities::ControlFlow

ObjectFlow UML4SysML::ObjectFlow

Probability

{ probability = valueSpecification }

{ probability = valueSpecification }

Action

{ probability = valueSpecification }

{ probability = valueSpecification }

Object Node

{ probability = valueSpecification }

{ probability = valueSpecification }

SysML::Activities::Probability

Rate

{ rate = constant }
{ rate = distribution }

«continuous»
«discrete»

SysML::Activities::Rate,
SysML::Activities::Continuous,
SysML::Activities::Discrete

Table 11.2 - Graphical paths included in activity diagrams

Path Name Concrete Syntax Abstract Syntax Reference
112  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table 11.3 - Other graphical elements included in activity diagrams

Element Name Concrete Syntax Abstract Syntax Reference

In Block Definition
Diagrams, Activity,
Association,
AdjunctProperty «activity»

activity name

«adjunct»
call action
name

«activity»
activity name

«activity»
activity name

«adjunct»
object node
name

«block»
block name

bdd

«activity»
activity name

«adjunct»
variable
name

«block»
block name

«activity»
activity name

«adjunct»
parameter
name

«block»
block name

UML4SysML::Activity,
UML4SysML::Association,
SysML::Blocks::AdjunctProperty

ActivityPartition

P
ar

ti
ti

on
 N

am
e

Action
(Partition Name)

UML4SysML::ActivityPartition

InterruptibleActivity
Region region name

UML4SysML::InterruptibleActivi-
tyRegion
 ISO/IEC 2017 - All rights reserved 113

ISO/IEC 19514:2017(E)
11.3 UML Extensions

11.3.1 Diagram Extensions

The following specify diagram extensions to the notations defined in Clause 17, “Profiles & Model Libraries.”

11.3.1.1 Activity

11.3.1.1.1 Notation

In UML, all behaviors are classes, including activities, and their instances are executions of the activity. This follows the
general practice that classes define the constraints under which the instances must operate. Creating an instance of an
activity causes the activity to start executing, and vice versa. Destroying an instance of an activity terminates the
corresponding execution, and vice versa. Terminating an execution also terminates the execution of any other activities
that it invoked synchronously, that is, expecting a reply.

Activities as blocks can have associations between each other, including composition associations. Composition means
that destroying an instance at the whole end destroys instances at the part end. When composition is used with activity
blocks, the termination of execution of an activity on the whole end will terminate executions of activities on the part end
of the links.

Combining the two aspects above, when an activity invokes other activities, they can be associated by a composition
association, with the invoking activity on the whole end, and the invoked activity on the part end. If an execution of an
activity on the whole end is terminated, then the executions of the activities on the part end are also terminated. The upper
multiplicity on the part end restricts the number of concurrent synchronous executions of the behavior that can be invoked
by the containing activity. See Constraints below.

Activities in block definition diagrams appear as regular blocks, except the «activity» keyword may be used to indicate
the Block stereotype is applied to an activity, as shown in Figure 11.1. See example in 11.4, Usage Examples. This
provides a means for representing activity decomposition in a way that is similar to classical functional decomposition
hierarchies. Properties with AdjunctProperty applied, where the principal of the AdjunctProperties are call actions,
including call behavior actions, can be used as the part end of the associations. See 8.3.2.1 for constraints when
AdjunctProperty is used with call actions. Activities in block definition diagrams can also appear with the same notation
as CallBehaviorAction, except the rake notation can be omitted, if desired. Also see use of activities in block definition
diagrams that include ObjectNodes.

StructuredActivityNode
 «structured» node name

UML4SysML::StructuredActivity
Node

Table 11.3 - Other graphical elements included in activity diagrams

Element Name Concrete Syntax Abstract Syntax Reference
114  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Activities as blocks can have properties of any kind, including value properties. Activity block properties have all the
capabilities of other properties, including that value properties can be bound to parameters in constraint blocks by binding
connectors.

11.3.1.2 CallBehaviorAction

Stereotypes applied to behaviors may appear on the notation for CallBehaviorAction when invoking those behaviors, as
shown in Figure 11.2.

CallBehaviorActions in activity diagrams may optionally show the action name with the name of the invoked behavior
using the colon notation shown in Figure 11.3.

Figure 11.1 - Block definition diagram with activities as blocks

Figure 11.2 - CallBehaviorAction notation.with behavior stereotype

Figure 11.3 - CallBehaviorAction notation.with action name

«adjunct»
call action name

«adjunct»
call action

name

«adjunct»
call action
name

«activity»
activity name

«activity»
activity name

«activity»
activity name

«activity»
activity name

«adjunct»
call action name

«activity»
activity name

bdd

«stereotype name»

behavior name

action name : behavior name
 ISO/IEC 2017 - All rights reserved 115

ISO/IEC 19514:2017(E)
11.3.1.3 ControlFlow

11.3.1.3.1 Presentation Option

Control flow may be notated with a dashed line and stick arrowhead, as shown in Figure 11.4.

11.3.1.4 ObjectNode, Variables, and Parameters

11.3.1.4.1 Notation

See 11.3.1.1, Activity with regard to activities appearing in block definition diagrams. Associations can be used between
activities and classifiers (blocks or value types) that are the type of object nodes, variables, or parameters in the activity,
as shown in Figure 11.5. This supports linking the execution of the activity with items that are flowing through the
activity or assigned to variables or parameters, and happen to be contained by an object node or assigned to a variable or
parameter at the time the link exists. Properties with AdjunctProperty applied, where the principal of the AdjunctProperty
is an object node, variable, or parameter, can be used as the end of the associations toward the object node, variable, or
parameter type. Like any association end or property these can be the subject of parametric constraints, design values,
units, and quantity kinds. The associations may be composition if the intention is to delete instances of the classifier
flowing the activity when the activity is terminated. See example in 11.4, Usage Examples.

Figure 11.4 - Control flow notation

Figure 11.5 - Block definition diagram with activities as blocks associated with types of object nodes,
variables, and parameters

Action Action

«adjunct»
object node

name

«adjunct»
object node

name

«adjunct»
variable
name

«activity»
activity name

«activity»
activity name

«adjunct»
parameter
name

«block»
block name

«block»
block name

«block»
block name

bdd
116  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Object nodes in activity diagrams can optionally show the node name with the name of the type of the object node as
shown in Figure 11.6.

Stereotypes applying to parameters can appear on object nodes in activity diagrams, as shown in Figure 11.7, when the
object node notation is used as a shorthand for pins. The stereotype applies to all parameters corresponding to the pins
notated by the object node. Stereotype applying to object nodes can also appear in object nodes, and applies to all the pins
notated by the object node.

11.3.2 Stereotypes

The following abstract syntax defines the stereotypes in this clause and which metaclasses they extend. The descriptions,
attributes, and constraints for each stereotype are specified below.

Figure 11.6 - ObjectNode notation in activity diagrams

Figure 11.7 - ObjectNode notation in activity diagrams

object node name : type name

«stereotype name»

object node name
 ISO/IEC 2017 - All rights reserved 117

ISO/IEC 19514:2017(E)
Package Activities

Figure 11.8 - Abstract Syntax for SysML Activity Extensions

11.3.2.1 Continuous

Continuous rate is a special case of rate of flow (see Rate) where the increment of time between items approaches zero.
It is intended to represent continuous flows that may correspond to water flowing through a pipe, a time continuous
signal, or continuous energy flow. It is independent from UML streaming, see 11.3.2.8, Rate. A streaming parameter may
or may not apply to continuous flow, and a continuous flow may or may not apply to streaming parameters.

UML places no restriction on the rate at which tokens flow. In particular, the time between tokens can approach as close
to zero as needed, for example to simulate continuous flow. There is also no restriction in UML on the kind of values that
flow through an activity. In particular, the value may represent as small a number as needed, for example to simulate
continuous material or energy flow. Finally, the exact timing of token flow is not completely prescribed in UML. In
particular, token flow on different edges may be coordinated to occur in a clocked fashion, as in time march algorithms
for numerical solvers of ordinary differential equations, such as Runge-Kutta.

ControlOperator Overwrite

ActivityEdge

«metaclass»«metaclass»

Optional
«stereotype»

NoBuffer

ParameterSet

«metaclass»

Probability

probability : ValueSpecification

Rate

rate : InstanceSpecification

DiscreteContinuous

UML4SysML:: UML4SysML::

UML4SysML:: UML4SysML::UML4SysML::

«stereotype» «stereotype»

«stereotype» «stereotype»

«stereotype» «stereotype» «stereotype»

Parameter
UML4SysML::

«metaclass» «metaclass» «metaclass»

Behavior ObjectNodeOperation
118  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
11.3.2.2 ControlOperator

Description

A control operator is a behavior that is intended to represent an arbitrarily complex logical operator that can be used to
enable and disable other actions. When the «controlOperator» stereotype is applied to behaviors, the behavior takes
control values as inputs or provides them as outputs, that is, it treats control as data (see 11.3.3.1.1, ControlValue). When
the «controlOperator» stereotype is not applied, the behavior may not have a parameter typed by ControlValue. The
«controlOperator» stereotype also applies to operations with the same semantics.

The control value inputs do not enable or disable the control operator execution based on their value, they only enable
based on their presence as data. Pins for control parameters are regular pins, not UML control pins. This is so the control
value can be passed into or out of the action and the invoked behavior, rather than control the starting of the action, or
indicating the ending of it.

Constraints

[1] When the «controlOperator» stereotype is applied, the behavior or operation shall have at least one parameter
typed by ControlValue. If the stereotype is not applied, the behavior or operation may not have any parameter typed
by ControlValue.

[2] A behavior shall have the «controlOperator» stereotype applied if it is a method of an operation that has the
«controlOperator» stereotype applied.

11.3.2.3 Discrete

Description

Discrete rate is a special case of rate of flow (see 11.3.2.8, Rate) where the increment of time between items is a non-zero.
Examples include the production of assemblies in a factory and signals set at periodic time intervals.

Constraints

[1] The «discrete» and «continuous» stereotypes shall not be applied to the same element at the same time.

11.3.2.4 NoBuffer

Description

When the «nobuffer» stereotype is applied to object nodes, tokens arriving at the node are discarded if they are refused by
outgoing edges, or refused by actions for object nodes that are input pins. This is typically used with fast or continuously
flowing data values, to prevent buffer overrun, or to model transient values, such as electrical signals. For object nodes that are
the target of continuous flows, «nobuffer» and «overwrite» have the same effect. The stereotype does not override UML token
offering semantics; it just indicates what happens to the token when it is accepted. When the stereotype is not applied, the
semantics are as in UML, specifically, tokens arriving at an object node that are refused by outgoing edges, or action for input
pins, are held until they can leave the object node.

Constraints

[1] The «nobuffer» and «overwrite» stereotypes cannot be applied to the same element at the same time.
 ISO/IEC 2017 - All rights reserved 119

ISO/IEC 19514:2017(E)
11.3.2.5 Overwrite

Description

When the «overwrite» stereotype is applied to object nodes, a token arriving at a full object node removes one that is
already there before being added (a full object node has as many tokens as allowed by its upper bound). This is typically
used on an input pin with an upper bound of 1 to ensure that stale data is overridden at an input pin. For upper bounds
greater than one, the token removed is the one that has been in the object node the longest. For FIFO ordering, this is the
token that is next to be selected, for LIFO it is the token that would be last to be selected. Tokens arriving at a full object
node with the Overwrite stereotype applied take up their positions in the ordering as normal, if any. The arriving tokens
do not take the positions of the removed tokens. A null token removes all the tokens already there. The number of tokens
replaced is equal to the weight of the incoming edge, which defaults to 1. For object nodes that are the target of
continuous flows, «overwrite» and «nobuffer» have the same effect. The stereotype does not override UML token offering
semantics, just indicates what happens to the token when it is accepted. When the stereotype is not applied, the semantics
is as in UML, specifically, tokens arriving at object nodes do not replace ones that are already there.

Constraints

[1] The «overwrite» and «nobuffer» stereotypes cannot be applied to the same element at the same time.

11.3.2.6 Optional

Description

When the «optional» stereotype is applied to parameters, the lower multiplicity shall be equal to zero. This means the
parameter is not required to have a value for the activity or any behavior to begin or end execution. Otherwise, the lower
multiplicity shall be greater than zero, which is called “required.” The absence of this stereotype indicates a constraint,
see below.

Constraints

[1] A parameter with the «optional» stereotypes applied shall have multiplicity.lower equal to zero, otherwise
multiplicity.lower shall be greater than zero.

11.3.2.7 Probability

Description

When the «probability» stereotype is applied to edges coming out of decision nodes and object nodes, it provides an
expression for the probability that the edge will be traversed. These shall be between zero and one inclusive, and add up
to one for edges with same source at the time the probabilities are used.

When the «probability» stereotype is applied to output parameter sets, it gives the probability the parameter set will be
given values at runtime. These shall be between zero and one inclusive, and add up to one for output parameter sets of the
same behavior at the time the probabilities are used.

Constraints

[1] The «probability» stereotype shall only be applied to activity edges that have decision nodes or object nodes as sources, or
to output parameter sets.

[2] When the «probability» stereotype is applied to an activity edge, then it shall be applied to all edges coming out of the
same source.

[3] When the «probability» stereotype is applied to an output parameter set, it shall be applied to all the parameter sets of the
behavior or operation owning the original parameter set. .
120  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
[4] When the «probability» stereotype is applied to an output parameter set, all the output parameters shall be in some
parameter set.

11.3.2.8 Rate

Description

When the «rate» stereotype is applied to an activity edge, it specifies the expected value of the number of objects and
values that traverse the edge per time interval, that is, the expected value rate at which they leave the source node and
arrive at the target node. It does not refer to the rate at which a value changes over time. When the stereotype is applied
to a parameter, the parameter shall be streaming, and the stereotype gives the number of objects or values that flow in or
out of the parameter per time interval while the behavior or operation is executing. Streaming is a characteristic of UML
behavior parameters that supports the input and output of items while a behavior is executing, rather than only when the
behavior starts and stops. The flow may be continuous or discrete, see the specialized rates in 11.3.2.1, Continuous and
11.3.2.3, Discrete. The «rate» stereotype has a rate property of type InstanceSpecification. The values of this property
shall be instances of classifiers stereotyped by «valueType» or «distributionDefinition», see Clause 8, “Blocks.” In
particular, the denominator for units used in the rate property shall be time units.

Constraints

[1] When the «rate» stereotype is applied to a parameter, the parameter shall be streaming.

[2] The rate of a parameter shall be less than or equal to rates on edges that come into or go out from pins and parameters
nodes corresponding to the parameter.

11.3.3 Model Libraries

11.3.3.1 Package ControlValues

The SysML model library for activities is shown in Figure 11.9.

11.3.3.1.1 ControlValue

Description

The ControlValue enumeration is a type for treating control values as data (see 11.3.2.2, ControlOperator) and for UML
control pins. It can be used as the type of behavior and operation parameters, object nodes, and attributes, and so on. The
possible runtime values are given as enumeration literals. Modelers can extend the enumeration with additional literals,
such as suspend, resume, with their own semantics.

Figure 11.9 - Control values
 ISO/IEC 2017 - All rights reserved 121

ISO/IEC 19514:2017(E)
The disable literal means a termination of an executing behavior that can only be started again from the beginning
(compare to suspend). The enable literal means to start a new execution of a behavior (compare to resume).

Constraints

[1] UML4SysML::ObjectNode::isControlType is true for object nodes with type ControlValue.

11.4 Usage Examples

The following examples illustrate modeling continuous systems (see 11.1.2, Continuous Systems). Figure 11.10 shows a
simplified model of driving and braking in a car that has an automatic braking system. Turning the key on has a duration
constraint specifying that this action lasts no more than 0.1 seconds. Turning the key on starts two behaviors, Driving and
Braking. These behaviors execute until the key is turned off, using streaming parameters to communicate with other
behaviors. The Driving behavior outputs a brake pressure continuously to the Braking behavior while both are executing,
as indicated by the «continuous» rate and streaming properties (streaming is a characteristic of UML behavior parameters
that supports the input and output of items while a behavior is executing, rather than only when the behavior starts and
stops). Brake pressure information also flows to a control operator that outputs a control value to enable or disable the
Monitor Traction behavior. No pins are used on Monitor Traction, so once it is enabled, the continuously arriving enable
control values from the control operator have no effect, per UML semantics. When the brake pressure goes to zero,
disable control values are emitted from the control operator. The first one disables the monitor, and the rest have no effect.
While the monitor is enabled, it outputs a modulation frequency for applying the brakes as determined by the ABS
system. The rake notations on the control operator and Monitor Traction indicate they are further defined by activities, as
shown in Figures 11.11 and 11.12. An alternative notation for this activity decomposition is shown in Figure 11.13.

The duration constraint notation associated with the Turn Key To On action is supported by the UML Simple Time model.
The Operate Car activity owns a duration constraint specifying that the “Turn Key To On” action lasts no more than 0.1
seconds. The concrete UML element used in this example is a DurationConstraint owned by Operate Car that constrains
the Turn Key To On action. The DurationConstraint owns a DurationInterval, which specifies that the action is
constrained to last between 0 seconds and 0.1 seconds (both being Duration expressions).
122  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure 11.10 - Continuous system example 1

The activity diagram for Monitor Traction is shown in Figure 11.11. When Monitor Traction is enabled, it begins listening
for signals coming in from the wheel and accelerometer, as indicated by the signal receipt symbols on the left, which
begin listening automatically when the activity is enabled. A traction index is calculated every 10 ms, which is the slower
of the two signal rates. The accelerometer signals come in continuously, which means the input to Calculate Traction does
not buffer values. The result of Calculate Traction is filtered by a decision node for a threshold value and Calculate
Modulation Frequency determines the output of the activity.

«interruptibleRegion»

Driving

Braking

Monitor Traction

{stream }

{stream }

Turn
Key To On

Key
off

Brake
Pressure

«continuous»
Modulation
Frequency

«controlOperator»
Enable on Brake

Pressure > 0

«continuous»

act Operate Car

{ control }

 { 0 .. 0.1 sec }

ControlValue
 ISO/IEC 2017 - All rights reserved 123

ISO/IEC 19514:2017(E)
The activity diagram for the control operator Enable on Brake Pressure > 0 is shown in Figure 11.12. The decision node
and guards determine if the brake pressure is greater than zero, and flow is directed to value specification actions that
output an enabling or disabling control value from the activity. The edges coming out of the decision node indicate the
probability of each branch being taken.

Figure 11.12 - Continuous system example 3

Figure 11.13 shows a block definition diagram with composition associations between the activities and AdjunctProperty
applied to the part ends in Figures 11.10, 11.11, and 11.12, as an alternative way to show the activity decomposition of
Figures 11.10, 11.11, and 11.12. Each instance of Operating Car is an execution of that behavior. It owns the executions
of the behaviors it invokes synchronously, such as Driving. Like all composition, if an instance of Operating Car is
destroyed, terminating the execution, the executions it owns are also terminated.

Figure 11.11 - Continuous system example 2

[loss of
 of traction]

Acceleration

Input from
optical
sensor
on wheel

Angular Velocity

Calculate Traction

[else]

Calculate
Modulation
Frequency

{rate = per 10ms}

«continuous»

Modulation
Frequency

{stream}

Traction
Index

Input from
accelerometer

act Monitor Traction

act [controlOperator] Enable on Brake Pressure > 0

Brake
Pressure

ControlValue

[Brake Pressure > 0]

«ValueSpecificationAction»
enable

«ValueSpecificationAction»
disable

[else]
{probability = 90%}

{probability = 10%}
124  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure 11.13 - Example block definition diagram for activity decomposition

Figure 11.14 shows a block definition diagram with composition associations between the activity in Figure 11.10 and the
types the object nodes in that activity, with AdjunctProperty applied to the object node type end. In an instance of
Operating Car, which is one execution of it, instances of Brake Pressure and Modulation Frequency are linked to the
execution instance when they are in the object nodes of the activity.

Figure 11.14 - Example block definition diagram for object node types

mt
1..1

«activity»

Driving

«activity»

Braking

«activity»

Monitor
Traction

«activity»

Turn Key
 to On

«controlOperator»

Enable on Brake
Pressure > 0

«activity»

Calculate Traction

«activity»
Calculate

Modulation
Frequency

«activity»

Operating Car

«adjunct»
enableOnBrakePressure>0
0..1

«adjunct»
calculateTraction

0..1

«adjunct»
calculateModulationFrequency
0..1

oc
0..1

oc
1..1

oc
0..1

oc
1..1

oc
1..1

«adjunct»
monitorTraction
 0..1

«adjunct»
driving

0..1

«adjunct»
turnKeyOn

0..1

mt
1..1

«adjunct»
braking

0..1

bdd

«activity»

Operating Car

oc
1..1

oc
1..1

«adjunct»
mf

 0..1

 «adjunct»
bp
0..1

«valueType»

BrakePressure

«valueType»

ModulationFrequency

bdd Name
 ISO/IEC 2017 - All rights reserved 125

ISO/IEC 19514:2017(E)
126  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
12 Interactions

12.1 Overview

Interactions are used to describe interactions between entities. UML Interactions are supported by four diagram types
including the Sequence diagram, Communications diagram, Interaction Overview diagram, and Timing diagram. The
Sequence diagram is the most common of the Interaction diagrams. SysML includes the Sequence diagram only and
excludes the Interaction Overview diagram and Communication diagram, which were considered to offer significantly
overlapping functionality without adding significant capability for system modeling applications. The Timing diagram is
also excluded due to concerns about its maturity and suitability for systems engineering needs.

The Sequence diagram describes the flow of control between actors and systems (blocks) or between parts of a system.
This diagram represents the sending and receiving of messages between the interacting entities called lifelines, where
time is represented along the vertical axis. The sequence diagrams can represent highly complex interactions with special
constructs to represent various types of control logic, reference interactions on other sequence diagrams, and
decomposition of lifelines into their constituent parts.
 ISO/IEC 2017 - All rights reserved 127

ISO/IEC 19514:2017(E)
12.2 Diagram Elements

12.2.1 Sequence Diagram

Table 12.1 - Graphical nodes included in sequence diagramsa

Node Name Concrete Syntax Abstract Syntax Reference

SequenceDiagram

sd In teraction1

UML4SysML::Interaction

Lifeline

b1:Block1

UML4SysML::Lifeline

Execution
Specification

b1:Block1

execSpec

b1:Block1

UML4SysML::ExecutionSpecification
128  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
InteractionUse

ref
:xx.xc=a_op_b(31, w:12):9

ref
Interaction3

UML4SysML::InteractionUse

An InteractionUse with just the <interaction-
name>.

An InteractionUse with <attribute – name>,the
value of arguments, the <return-value>, etc.

CombinedFragment

sd Interaction1

msg2

msg1
[if x < 10]

[else]

alt

b1:Block1 b2:Block2 b3:Block3

msg3

UML4SysML::CombinedFragment

A combined fragment is defined by an
interaction operator and corresponding
interaction operands.

Interaction Operators include:
 seq - Weak Sequencing
 alt - Alternatives
 opt - Option
 break - Break
 par - Parallel
 strict - Strict Sequencing
 loop - Loop
 critical - Critical Region
 neg - Negative
 assert - Assertion
 ignore - Ignore
 consider - Consider

StateInvariant /
Continuations

:Y

p==15

UML4SysML::Continuation

UML4SysML::StateInvariant

Table 12.1 - Graphical nodes included in sequence diagramsa

Node Name Concrete Syntax Abstract Syntax Reference
 ISO/IEC 2017 - All rights reserved 129

ISO/IEC 19514:2017(E)
Coregion

s[u]:B

m3

m2

UML4SysML::CombinedFragment (under
parallel)

CreationEvent
DestructionEvent

b1:Block1

b2:Block2
create

UML4SysML::CreationEvent
UML4SysML::DestructionEvent

DurationConstraint
Duration
Observation :User

Code d=duration

CardOut {0..13}

OK

{d..3*d}

UML4SysML::Interactions

Table 12.1 - Graphical nodes included in sequence diagramsa

Node Name Concrete Syntax Abstract Syntax Reference
130  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
TimeConstraint
TimeObservation

CardOut {0..13}

OK
t=now

{t..t+3}

UML4SysML::Interactions

SequenceDiagram

sd a_op_b(int x , inout int w):Verdict

x w a_op_b

msg1(x)
m sg2

(advanced)
UML4SysML::Interaction

Shows usage of arguments and
assignment to return value.

InteractionUse
(advanced) sd some_op(int x, inout int w)

:xx wx

ref
:xx .xc=a_op_b(31, w:12):9

UML4SysML::InteractionUse

Shows usage of arguments and assignment to
attribute value upon return.

a. Table is compliant with UML 2.1 document.

Table 12.1 - Graphical nodes included in sequence diagramsa

Node Name Concrete Syntax Abstract Syntax Reference
 ISO/IEC 2017 - All rights reserved 131

ISO/IEC 19514:2017(E)
Table 12.2 - Graphical paths included in sequence diagram

Table 12.3 - Other graphical elements included in sequence diagram

Path Name Concrete Syntax Abstract Syntax Reference

Message UML4SysML::Message

Lost Message
Found Message

UML4SysML::Message

GeneralOrdering UML4SysML::GeneralOrdering

Element Name Concrete Syntax Abstract Syntax Reference

In Block Definition
Diagrams, Interac-
tion, Association,
AdjunctProperty

UML4SysML::Interactions,
UML4SysML::Association,
SysML::Blocks::AdjunctProperty

asyncSignal

syncCall(param)

b1:Block1 b2:Block2

lost

found

«interaction»
interaction

name

«adjunct»
interaction
use name

«interaction»
interaction

name

bdd

«interaction»
interaction

name

«adjunct»
parameter
name

«block»
block name
132  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
12.3 UML Extensions

12.3.1 Diagram Extensions

The following specify diagram extensions to the notations defined in Clause 17, “Profiles & Model Libraries.”

12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and
 Timing Diagram

Communication diagrams and Interaction Overview diagrams are excluded from SysML. The other behavioral diagram
representations were considered to provide sufficient coverage without introducing these diagram kinds. Timing diagrams
are also excluded due to concerns about their maturity and suitability for systems engineering needs.

12.3.1.2 Interactions and Parameters

12.3.1.2.1 Notation

In UML, all behaviors are classes, including interactions, and their instances are executions of the interaction.
Interactions as blocks and associations between interactions corresponding to interaction uses have an analogous
semantics to activities as blocks and associations between activities corresponding to call actions, see 11.3.1.1.1,
Notation. Similarly, associations between interactions and classifiers (blocks or value types) have an analogous semantics
to associations between activities and blocks or value types, see 11.3.1.4.1, Notation.

Interactions in block definition diagrams appear as regular blocks, except the «interaction» keyword may be used to
indicate the Block stereotype is applied to an interaction, as shown in Figure 12.1 Properties with AdjunctProperty
applied, where the principal of the AdjunctProperty is an interaction use, can be used as the end of the associations
towards the interaction being used. Properties with AdjunctProperty applied, where the principal of the AdjunctProperty
is a parameter of the interaction, can be used as the end of the associations towards the parameter type. See 8.3.2.1,
AdjunctProperty for constraints when AdjunctProperty is used with interaction uses and parameters. Interactions in block
definition diagrams can also appear with the same notation as InteractionUses.

Figure 12.1 - Block definition diagram with interactions as blocks associated with used interactions
and types of parameters

«adjunct»
interaction
use name

«adjunct»
interaction
use name

«adjunct»
interaction
use name

«interaction»
interaction

name

«interaction»
interaction

name

«interaction»
interaction

name

«interaction»
interaction

name

«adjunct»
parameter
name

«block»
block name

bdd
 ISO/IEC 2017 - All rights reserved 133

ISO/IEC 19514:2017(E)
12.4 Usage Examples

12.4.1 Sequence Diagrams

Figure D.7 illustrates the overall system behavior for operating the vehicle in Sequence diagram format. To manage the
complexity, a hierarchical sequence diagram is used which refers to other interactions that further elaborate the system
behavior (“ref StartVehicleBlackBox”). CombinedFragments are used to illustrate that steering can take place at the same
time as controlling the speed and that controlling speed can be either idling, accelerating/cruising, or braking.

Figure D.9 shows an interaction that includes events and messages communicated between the driver and vehicle during
the starting of the vehicle. The “hybridSUV” lifeline represents another interaction which further elaborates what happens
inside the “hybridSUV” when the vehicle is started.

Figure D.10 shows the sequence of communication that occurs inside the HybridSUV when the vehicle is started successfully.
134  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
13 State Machines

13.1 Overview

The StateMachine package defines a set of concepts that can be used for modeling discrete behavior through finite state
transition systems. The state machine represents behavior as the state history of an object in terms of its transitions and
states. The activities that are invoked during the transition, entry, and exit of the states are specified along with the
associated event and guard conditions. Activities that are invoked while in the state are specified as “do Activities,” and
can be either continuous or discrete. A composite state has nested states that can be sequential or concurrent.

The UML concept of protocol state machines is excluded from SysML to reduce the complexity of the language. The
standard UML state machine concept (called behavior state machines in UML) are thought to be sufficient for expressing
protocols.

13.2 Diagram Elements

13.2.1 State Machine Diagram

Table 13.1 - Graphical nodes included in state machine diagrams

Node Name Concrete Syntax Abstract Syntax Reference

StateMachineDiagram

 stm [block] ThisBlock [OwnedStateMachine]

UML4SysML::StateMachines

Choice pseudo state

[Id>10]

[Id<=10]

UML4SysML::PseudoState
 ISO/IEC 2017 - All rights reserved 135

ISO/IEC 19514:2017(E)
Composite state

 CompositeState1

State1

State2

UML4SysML::State

Entry point

againagain

UML4SysML::PseudoState

Exit point

abortedabortedabortedaborted

UML4SysML::PseudoState

Final state UML4SysML::FinalState

History, Deep
Pseudo state

H*

UML4SysML::PseudoState

History, Shallow pseudo
state

H

UML4SysML::PseudoState

Initial pseudo state UML4SysML::PseudoState

Junction pseudo state UML4SysML::PseudoState

Table 13.1 - Graphical nodes included in state machine diagrams

Node Name Concrete Syntax Abstract Syntax Reference
136  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Receive signal action UML4SysML::Transition

Send signal action UML4SysML::Transition

Action

MinorReq := Id;

UML4SysML::Transition

Region

S

UML4SysML::Region

Simple state

State1

State2

entry / entryActivity
do / doActivity
exit / exitActivity

UML4SysML::State

State list

State1, State2

UML4SysML::State

Table 13.1 - Graphical nodes included in state machine diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Req(Id)

TurnOn
 ISO/IEC 2017 - All rights reserved 137

ISO/IEC 19514:2017(E)
State Machine

ReadAmountSM

aborted

UML4SysML::StateMachine

Terminate node UML4SysML::PseudoState

Submachine state

ReadAmount :
ReadAmountSM abortedaborted

ReadAmount :
ReadAmountSM abortedaborted

UML4SysML::State

Composite State with a hid-
den decomposition indica-
tor icon

 HiddenComposite

entry / start dial tone
exit / stop dial tone

UML4SysML::State

Table 13.1 - Graphical nodes included in state machine diagrams

Node Name Concrete Syntax Abstract Syntax Reference
138  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table 13.3 - Other graphical elements included in state machine diagram

Table 13.2 - Graphical paths included in state machine diagrams

Path Name Concrete Syntax Abstract Syntax Reference

Transition UML4SysML::Transition

Alternative entry
point Connection-
PointReference
notation

UML4SysML:: ConnectionPointReference

Alternative exit point
ConnectionPoint
Reference notation

UML4SysML:: ConnectionPointReference

Element Name Concrete Syntax Abstract Syntax Reference

In Block Definition
Diagrams,
Interaction,
Association,
AdjunctProperty

UML4SysML::StateMachines,
UML4SysML::Association,
SysML::Blocks::AdjunctProperty

trigger[guard]/activitytrigger[guard]/activity

ReadAmount:
ReadAmountSM

via again

ReadAmount:

ReadAmountSM

via aborted

«statemachine»
state machine

name

«adjunct»
submachine
state name

«statemachine»
state machine

name

bdd

«statemachine»
state machine

name

«adjunct»
parameter
name

«block»
block name
 ISO/IEC 2017 - All rights reserved 139

ISO/IEC 19514:2017(E)
13.3 UML Extensions

13.3.1 Diagram Extensions

13.3.1.1 State Machines and Parameters

13.3.1.1.1 Notation

In UML, all behaviors are classes, including state machines, and their instances are executions of the state machine. State
machines as blocks and associations between state machines corresponding to submachine states have an analogous
semantics to activities as blocks and associations between activities corresponding to call actions, see 11.3.1.1.1,
Notation. Similarly, associations between state machines and classifiers (blocks or value types) have an analogous
semantics to associations between activities and blocks or value types, see 11.3.1.4.1, Notation.

State machines in block definition diagrams appear as regular blocks, except the «stateMachine» keyword may be used to
indicate the Block stereotype is applied to an state machine, as shown in Figure 13.1. Properties with AdjunctProperty
applied, where the principal of the AdjunctProperty is a submachine state, can be used as the end of the associations
towards the sub state machine. Properties with AdjunctProperty applied, where the principal of the AdjunctProperty is a
parameter of the state machine, can be used as the end of the associations towards the parameter type. See 8.3.2.1,
AdjunctProperty for constraints when AdjunctProperty is used with submachine states and parameters. State machines in
block definition diagrams can also appear with the same notation as submachine states.

13.4 Usage Examples

13.4.1 State Machine Diagram

The high level states or modes of the HybridSUV including the events that trigger changes of state are illustrated in the
state machine diagram in Figure D.8.

Figure 13.1 - Block definition diagram with state machines as blocks associated with submachines
and types of parameters

«adjunct»
submachine
state name

«adjunct»
submachine
state name

«adjunct»
submachine
state name

«statemachine»
state machine

name

«statemachine»
state machine

name

«statemachine»
state machine

name

«statemachine»
state machine

name

«adjunct»
parameter
name

«block»
block name

bdd
140  ISO/IEC 2017 - All rights reserved

ISO/IEC 19514:2017(E)
14 Use Cases

14.1 Overview

The use case diagram describes the usage of a system (subject) by its actors (environment) to achieve a goal, that is
realized by the subject providing a set of services to selected actors. The use case can also be viewed as functionality and/
or capabilities that are accomplished through the interaction between the subject and its actors. Use case diagrams include
the use case and actors and the associated communications between them. Actors represent classifier roles that are
external to the system that may correspond to users, systems, and or other environmental entities. They may interact
either directly or indirectly with the system. The actors are often specialized to represent a taxonomy of user types or
external systems.

The use case diagram is a method for describing the usages of the system. The association between the actors and the use
case represent the communications that occur between the actors and the subject to accomplish the functionality
associated with the use case. The subject of the use case can be represented via a system boundary. The use cases that are
enclosed in the system boundary represent functionality that is realized by behaviors such as activity diagrams, sequence
diagrams, and state machine diagrams.

The use case relationships are “communication,” “include,” “extend,” and “generalization.” Actors are connected to use
cases via communication paths, that are represented by an association relationship. The “include” relationship provides a
mechanism for factoring out common functionality that is shared among multiple use cases, and is required for the goals
of the actor of the base use case to be met. The “extend” relationship provides optional functionality (optional in the sense
of not being required to meet the goals), which extends the base use case at defined extension points under specified
conditions. The “generalization” relationship provides a mechanism to specify variants of the base use case.

The use cases are often organized into packages with the corresponding dependencies between the use cases in the
packages.
 ISO/IEC 2017 - All rights reserved 141

ISO/IEC 19514:2017(E)
14.2 Diagram Elements

14.2.1 Use Case Diagram

Use Case

UseCaseName

UML4SysML::UseCase

Use Case with Extension
Points

extension points
p1, p2

UseCaseName

UML4SysML::UseCase

Actor

«actor»
ActorName

ActorName

UML4SysML::Actor

Subject

SubjectName

Association end name on
UML4SysML::Classifier

Table 14.1 - Graphical nodes included in Use Case diagrams

Node Name Concrete Syntax Abstract Syntax Reference
142  ISO/IEC 2017 - All rights reserved

ISO/IEC 19514:2017(E)
Table 14.2- Graphical paths included in Use Case diagrams

14.3 UML Extensions

None.

14.4 Usage Examples

Figure D.5 is a top-level set of use cases for the Hybrid SUV System. Figure D.6 shows the decomposition of the Operate
the Vehicle use case. In this diagram, the frame represents the package that contains the lower level use cases. The
convention of naming the package with the same name as the top level use case has been employed. This practice offers
an implicit tracing mechanism that complements the explicit trace relationships in SysML.

In Figure D.6 the Extend relationship specifies that the behavior of a use case may be extended by the behavior of another
(usually supplementary) use case. The extension takes place at one or more specific extension points defined in the
extended use case. Note, however, that the extended use case is defined independently of the extending use case and is
meaningful independently of the extending use case. On the other hand, the extending use case typically defines behavior
that may not necessarily be meaningful by itself. Instead, the extending use case defines a set of modular behavior

Path Name Concrete Syntax Abstract Syntax Reference

Communication path UML4SysML::Association

Include UML4SysML::include

Extend UML4SysML::Extend

Extend with
Condition

UML4SysML::Extend

Generalization UML4SysML::Kernel
 ISO/IEC 2017 - All rights reserved 143

ISO/IEC 19514:2017(E)
increments that augment an execution of the extended use case under specific conditions. The “Start the Vehicle” use case
is modeled as an extension of “Drive the Vehicle.” This means that there are conditions that may exist that require the
execution of an instance of “Start the Vehicle” before an instance of “Drive the Vehicle” is executed.

The use cases “Accelerate,” “Steer,” and “Brake” are modeled using the include relationship. Include is a
DirectedRelationship between two use cases, implying that the behavior of the included use case is inserted into the
behavior of the including use case. It is also a kind of NamedElement so that it can have a name in the context of its
owning use case. The including use case may only depend on the result (value) of the included use case. This value is
obtained as a result of the execution of the included use case. This means that “Accelerate,” “Steer,” and “Brake” are all
part of the normal process of executing an instance of “Drive the Car.”

In many situations, the use of the Include and Extend relationships is subjective and may be reversed, based on the
approach of an individual modeler.
144  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
CROSSCUTTING CONSTRUCTS
 ISO/IEC 2017 - All rights reserved 145

ISO/IEC 19514:2017(E)
146  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
15 Allocations

15.1 Overview

Allocation is the term used by systems engineers to denote the organized cross-association (mapping) of elements within
the various structures or hierarchies of a user model. The concept of “allocation” requires flexibility suitable for abstract
system specification, rather than a particular constrained method of system or software design. System modelers often
associate various elements in a user model in abstract, preliminary, and sometimes tentative ways. Allocations can be used
early in the design as a precursor to more detailed rigorous specifications and implementations. The allocation
relationship can provide an effective means for navigating the model by establishing cross relationships, and ensuring the
various parts of the model are properly integrated.

This clause does not try to limit the use of the term “allocation,” but provides a basic capability to support allocation in
the broadest sense. It does include some specific subclasses of allocation for allocating behavior, structure, and flows. A
typical example is the allocation of activities to blocks (e.g., functions to components). This clause specifies an extension
for an allocation relationship and selected subclasses of allocation, along with the notation to represent allocations in a
SysML model.

15.2 Diagram Elements

The diagram elements defined in this clause may be shown on some or all SysML diagram types, in addition to the
diagram elements that are specific for each diagram type.

In the following table, «elementType» is a placeholder for a keyword used to specify the kind of element it prefixes. For
uniformity, the «elementType» displayed for the allocated-to or allocated-from elements should be from the following list,
as applicable: «activity», «action», «objectFlow», «controlFlow», «objectNode», «operation», «block», «property»,
«itemFlow», «connector», «port», «value».

Other «elementType» designations may be used, if none of the above apply. Note that it is important to use fully
qualified names to avoid ambiguity when required. An example of a fully qualified name is the form:
(PackageName::ElementName.PropertyName).
 ISO/IEC 2017 - All rights reserved 147

ISO/IEC 19514:2017(E)
15.2.1 Representing Allocation on Diagrams

Table 15.1 - Extension to graphical nodes included in diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Allocation derived properties dis-
played in compartment of a Block.

«elementType»ElementName

«elementType» ElementName

BlockNam e

allocatedFrom

allocatedTo

SysML::Allocation:Allocate

Allocation derived properties dis-
played in Comment.

allocatedFrom
«elementType»ElementName
allocatedTo
«elementType»ElementName

ElementName

SysML::Allocation:Allocate

Allocation derived properties dis-
played in compartment of Part on
Internal Block Diagram.

«block»
BlockNam e

«elementType» ElementName

PartNam e

allocatedFrom

SysML::Allocation:Allocate

Allocation derived properties dis-
played in compartment of Action
on Activity Diagram.

«elementType» ElementName

ActivityNam e

allocatedTo

SysML::Allocation:Allocate

Allocation Activity Partition

 «allocate»
:ElementName

ActionName

SysML::Allocation:Allocate
ActivityPartition
148  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
15.3 UML Extensions

15.3.1 Diagram Extensions

15.3.1.1 Tables

Allocation relationships may be depicted in tables. A separate row is provided for each «allocate» dependency. “from” is
the client of the «allocate» dependency, and “to” is the supplier. Both ElementType and ElementName for client and
supplier appear in this table.

15.3.1.2 Allocate Relationship Rendering

The “allocate” relationship is a dashed line with an open arrow head. The arrow points in the direction of the allocation.
In other words, the directed line points “from: the element being allocated “to” the element that is the target of the
allocation.

15.3.1.3 Allocation Compartment Format

When the allocations of a model element are displayed in a compartment, a shorthand notation is used as shown in Table
15.1. This shorthand groups and lists the elements allocated to that element together (in the “allocated from”
compartment), then the elements allocated from that element (in the “allocated to” compartment), per the result of
Allocate::getAllocatedFrom() and getAllocatedTo() respectively, called with that element as parameter.

15.3.1.4 Allocation Callout Format

When the allocation compartment is not used, a callout notation may be used. An allocation callout notation uses the same
shorthand notation as the allocation compartment. This notation is also shown in Table 15.1. For brevity, the
«elementType» portion of allocated-from or allocated-to elements may be elided from the diagram.

15.3.1.5 AllocatedActivityPartition Label

For brevity, the keyword used on an AllocatedActivityPartition is «allocate», rather than the stereotype name
(«allocateActivityPartition»). For brevity, the «elementType» portion of the allocatedFrom or allocatedTo property may be
elided from the diagram.

Allocation (general)

«allocate»
Client Supplier

SysML::Allocation:Allocate

Table 15.1 - Extension to graphical nodes included in diagrams

Node Name Concrete Syntax Abstract Syntax Reference
 ISO/IEC 2017 - All rights reserved 149

ISO/IEC 19514:2017(E)
15.3.2 Stereotypes

Package Allocations

Figure 15.1 - Abstract syntax extensions for SysML Allocation

Figure 15.2 - Abstract syntax expression for AllocatedActivityPartition

15.3.2.1 Allocate(from Allocations)

Description

Allocate is a dependency based on UML::Abstraction. It is a mechanism for associating elements of different types, or in
different hierarchies, at an abstract level. Allocate is used for assessing user model consistency and directing future design
activity. It is expected that an «allocate» relationship between model elements is a precursor to a more concrete
relationship between the elements, their properties, operations, attributes, or sub-classes.

Allocate is a stereotype of a UML4SysML::Abstraction that is permissible between any two NamedElements. It is
depicted as a dependency with the “allocate” keyword attached to it. Allocate is directional in that one NamedElement is
the “from” end (no arrow), and one NamedElement is the “to” end (the end with the arrow). The Allocate stereotype
specializes DirectedRelationshipPropertyPath to enable allocations to identify their sources and targets by a multi-level
path of accessible properties from context blocks for the sources and targets.

The following paragraphs describe types of allocation that are typical in systems engineering.

Behavior allocation relates to the systems engineering concept segregating form from function. This concept requires
independent models of “function” (behavior) and “form” (structure), and a separate, deliberate mapping between elements
in each of these models. It is acknowledged that this concept does not support a standard object-oriented paradigm, not is
this always even desirable. Experience on large scale, complex systems engineering problems have proven, however, that
segregation of form and function is a valuable approach. In addition, behavior allocation may also include the allocation
of Behaviors to BehavioralFeatures of Blocks (e.g., Operations).

Flow allocation specifically maps flows in functional system representations to flows in structural system representations.

«stereotype»
Allocate

UML4SysML::Abstraction
«stereotype»

DirectedRelationship
PropertyPath

UML4SysML::ActivityPartition

«stereotype»
AllocateActivityPartition
150  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Flow between activities can either be control or object flow. The figures in the Usage Examples show concrete syntax for
how object flow is mapped to connectors on Activity Diagrams. Allocation of control flow is not specifically addressed
in SysML, but may be represented by relating an ItemFlow to the Control Flow using the UML relationship
InformationalFlow.realizingActivityEdge.

Note that allocation of ObjectFlow to Connector is an Allocation of Usage, and does NOT imply any relation between any
defining Blocks of ObjectFlows and any defining associations of connectors.

The figures in the Usage Examples illustrate an available mechanism for relating the objectNode from an activity diagram
to the ItemFlow on an internal block diagram. ItemFlow is discussed in Clause 9, “Ports and Flows.”

Pin to Port allocation is not addressed in this release of SysML.

Structure allocation is associated with the concept of separate “logical” and “physical” representations of a system. It is
often necessary to construct separate depictions of a system and define mappings between them. For example, a complete
system hierarchy may be built and maintained at an abstract level. In turn, it shall then be mapped to another complete
assembly hierarchy at a more concrete level. The set of models supporting complex systems development may include
many of these levels of abstraction. This International Standard will not define “logical” or “physical” in this context,
except to acknowledge the stated need to capture allocation relationships between separate system representations.

Constraints

[1] The Allocate stereotype shall only be applied to abstractions.

[2] A single «allocate» dependency shall have only one client (from) and one supplier (to).

[3] If subtypes of the «allocate» dependency are introduced to represent more specialized forms of allocation, then they shall
have constraints applied to supplier and client as appropriate.

Operations

[1] The query getAllocatedFrom() gives all the elements that are clients (“from” end of the concrete syntax) of an «allocate»
relationships whose supplier is the element in parameter. This is a static query.
Allocate::getAllocatedFrom(ref : NamedElement) : Set(NamedElement) {query, static}
getAllocatedFrom = Allocate.allInstances()->select(to = ref).from

[2] The query getAllocatedTo() gives all the elements that are suppliers (“to” end of the concrete syntax) of an «allocate»
relationships whose client is the element in parameter. This is a static query.
Allocate::getAllocatedTo(ref : NamedElement) : Set(NamedElement) {query, static}
getAllocatedTo = Allocate.allInstances()->select(from = self).to

15.3.2.2 AllocateActivityPartition(from Allocations)

Description

AllocateActivityPartition is used to depict an «allocate» relationship on an Activity diagram. The
AllocateActivityPartition is a standard UML::ActivityPartition, with modified constraints as stated below.

Constraints

[1] An Action appearing in an “AllocateActivityPartition” shall be the /client (from) end of an “allocate” dependency. The
element that represents the “AllocateActivityPartition” shall be the /supplier (to) end of the same “allocate” dependency.
In the «AllocateActivityPartition» name field, Properties are designated by the use of a fully qualified name (including
colon, e.g., “part_name:Block_Name”), and Classifiers are designated by a simple name (no colons, e.g., “Block_Name”).

[2] The «AllocateActivityPartition» shall maintain the constraints, but not the semantics, of the UML::ActivityPartition.
Classifiers or Properties represented by an «AllocateActivityPartition» do not have any direct responsibility for invoking
 ISO/IEC 2017 - All rights reserved 151

ISO/IEC 19514:2017(E)
behavior depicted within the partition boundaries. To depict this kind of direct responsibility, the modeler is directed to the
UML 2 standard, sub clause 12.3.10, “ActivityPartition,” Semantics topic.

15.4 Usage Examples

The following examples depict allocation relationships as property callout boxes (basic), property compartment of a
Block (basic), and property compartments of Activities and Parts (advanced). Figure 15.3 shows generic allocation for
Blocks.

Figure 15.3 - Generic Allocation, including /from and /to association ends

15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks

Specific behavior allocation of Actions to Parts are depicted in Figure 15.4. Note that the AllocateActivityPartition, if
used in this manner, is unambiguously associated with behavior allocation. The allocation to Activity6 comes from a
nested part, and uses the attributes of DirectedRelationshipPropertyPath to specify the path of properties to reach that
part. The sourceContext of the allocation is Block4 and the sourcePropertyPath is (Part5).

Figure 15.4 - Behavior allocation

«elementType»Element3

«elementType» Element2

Block1

allocatedFrom

allocatedTo

Block1

allocatedFrom
«elementType»Element2
allocatedTo
«elementType»Element3

«block»
Block4

Part5

allocatedFrom

«elementType»Element2

allocatedTo

«elementType»Element3

Block1
«block»
Block4

Part5

allocatedTo
«part»Block4.Part5.Part7

Block1

allocatedFrom
«elementType»Element2
allocatedTo
«elementType»Element3

«allocate»
Part2:Block1

Action1

allocatedFrom
«activity»Activity6

«activity»
Activity6

allocatedTo

«part»Block4.Part5.Part7

«activity»
Activity6

Action1

allocatedTo
«part»Part2:Block1

allocatedTo

«part»Part2:Block1

Action1

 Part7

allocatedFrom

«activity»Activity6

Part7
152  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
15.4.2 Allocate Flow

Figure 15.5 shows flow allocation of ObjectFlow to a Connector, or alternatively to an ItemFlow. Allocation of
ControlFlow is not shown as an example, but it is not prohibited in SysML.

Figure 15.5 - Example of flow allocation from ObjectFlow to Connector

Figure 15.6 - Example of flow allocation from ObjectFlow to ItemFlow

ibd [block] Block0 [Example1]

act Activity0 [Example1]
«block»
Block5

Part6

Part7

allocatedFrom
«objectFlow»ObjectFlow3

ObjectFlow3
Action1 Action2

allocatedTo
«connector»Connector8

Connector8

ibd [block] Block0 [Example2]

act Activity0 [Example2]

ObjectFlow3
Action1 Action2

«block»
Block5

Part6

Part7

allocatedTo
«itemFlow»ItemFlow9

allocatedFrom
«objectFlow»ObjectFlow3

ItemFlow9
 ISO/IEC 2017 - All rights reserved 153

ISO/IEC 19514:2017(E)
Figure 15.7 - Example of flow allocation from ObjectNode to FlowProperty

15.4.2.1 Allocating Structure

Systems engineers have frequent need to allocate structural model elements (e.g., blocks, parts, or connectors) to other
structural elements. For example, if a particular user model includes an abstract logical structure, it may be important to
show how these model elements are allocated to a more concrete physical structure. The need also arise, when adding
detail to a structural model, to allocate a connector (at a more abstract level) to a part (at a more concrete level).

Figure 15.8 - Example of Structural Allocation

15.4.2.2 Automotive Example

Example: consider the functions required to portion and deliver power for a hybrid SUV. The activities for providing
power are allocated to blocks within the Hybrid SUV, as shown in Figure D.38.

Figure D.39 shows an internal block diagram showing allocation for the HybridSUV Accelerate example.

bdd [block] Block0 [Example3]act A c tiv ity0 [Example3]

«block» Block6

Action1

«block» Block10

Obje ctNode 4
«block»
Block 5

«objec tNode» Objec tNode4

«block»
Block 10

«ac tiv ity» A c tiv ity1

out:Block10

«block»
Block 6

«ac tiv ity» A c tiv ity2

in:Block10

«block»
Block 7

«block» Block7

Action2

allocatedFrom

allocatedFromallocatedFrom

allocatedTo allocatedTo

allocatedTo

ibd [package] Block1 [Abstract to Concrete Structural
Allocation]

«block»
AbstractExample

Part2

Part3

«block»
ConcreteExample

Part6

Part7

Part5

cktrA
cktrB

cktrC

«allocate»

«allocate»

«allocate»
«allocate»

«allocate»
154  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
15.4.3 Tabular Representation

The table shown in Figure D.40 is provided as a specific example of how the «allocate» dependency may be depicted in
tabular form, consistent with the automotive example above.

The allocation table can also be shown using a sparse matrix style as in the following example shown in Figure 15.9.

Figure 15.9 - Allocation Matrix showing Allocation for Hybrid SUV Accelerate Example

matrix [activity] ProvidePower [Allocation Tree for Provide Power Activities]

Source Target
 PowerControlUnit Internal

Combustion
Engine

ElectricalPower
Controller

Electrical
Motor
Generator

I1:Electric
Current

A1:ProportionPower allocate
A2:ProvideGasPower allocate
A3:ControlElectricPower allocate
A4:ProvideElectricPower allocate
driveCurrent allocate

 ISO/IEC 2017 - All rights reserved 155

ISO/IEC 19514:2017(E)
156  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
16 Requirements

16.1 Overview

A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify a function
that a system must perform or a performance condition a system must achieve. SysML provides modeling constructs to
represent text-based requirements and relate them to other modeling elements. The requirements diagram described in this
clause can depict the requirements in graphical, tabular, or tree structure format. A requirement can also appear on other
diagrams to show its relationship to other modeling elements. The requirements modeling constructs are intended to
provide a bridge between traditional requirements management tools and the other SysML models.

A requirement is defined as a stereotype of UML Class subject to a set of constraints. A standard requirement includes
properties to specify its unique identifier and text requirement. Additional properties such as verification status, can be
specified by the user.

Several requirements relationships are specified that enable the modeler to relate requirements to other requirements as
well as to other model elements. These include relationships for defining a requirements hierarchy, deriving requirements,
satisfying requirements, verifying requirements, and refining requirements.

A composite requirement can contain subrequirements in terms of a requirements hierarchy, specified using the UML
namespace containment mechanism. This relationship enables a complex requirement to be decomposed into its
containing child requirements. A composite requirement may state that the system shall do A and B and C, which can be
decomposed into the child requirements that the system shall do A, the system shall do B, and the system shall do C. An
entire specification can be decomposed into children requirements, which can be further decomposed into their children
to define the requirements hierarchy.

There is a real need for requirement reuse across product families and projects. Typical scenarios are regulatory, statutory,
or contractual requirements that are applicable across products and/or projects and requirements that are reused across
product families (versions/variants). In these cases, one would like to be able to reference a requirement, or requirement
set in multiple contexts with updates to the original requirements propagated to the reused requirement(s).

The use of namespace containment to specify requirements hierarchies precludes reusing requirements in different
contexts since a given model element can only exist in one namespace. Since the concept of requirements reuse is very
important in many applications, SysML introduces the concept of a slave requirement. A slave requirement is a
requirement whose text property is a read-only copy of the text property of a master requirement. The text property of the
slave requirement is constrained to be the same as the text property of the related master requirement. The master/slave
relationship is indicated by the use of the copy relationship.

The “derive requirement” relationship relates a derived requirement to its source requirement. This typically involves
analysis to determine the multiple derived requirements that support a source requirement. The derived requirements
generally correspond to requirements at the next level of the system hierarchy. A simple example may be a vehicle
acceleration requirement that is analyzed to derive requirements for engine power, vehicle weight, and body drag.

The satisfy relationship describes how a design or implementation model satisfies one or more requirements. A system
modeler specifies the system design elements that are intended to satisfy the requirement. In the example above, the
engine design satisfies the engine power requirement.
 ISO/IEC 2017 - All rights reserved 157

ISO/IEC 19514:2017(E)
The verify relationship defines how a test case or other model element verifies a requirement. In SysML, a test case or
other named element can be used as a general mechanism to represent any of the standard verification methods for
inspection, analysis, demonstration, or test. Additional subclasses can be defined by the user if required to represent the
different verification methods. A verdict property of a test case can be used to represent the verification result. The
SysML test case is defined consistent with the UML testing profile to facilitate integration between the two profiles.

The refine requirement relationship can be used to describe how a model element or set of elements can be used to further
refine a requirement. For example, a use case or activity diagram may be used to refine a text-based functional
requirement. Alternatively, it may be used to show how a text-based requirement refines a model element. In this case,
some elaborated text could be used to refine a less fine-grained model element.

A generic trace requirement relationship provides a general-purpose relationship between a requirement and any other
model element. The semantics of trace include no real constraints and therefore are quite weak. As a result, it is
recommended that the trace relationship not be used in conjunction with the other requirements relationships described
above.

The rationale construct that is defined in Clause 7, “Model Elements” is quite useful in support of requirements. It enables
the modeler to attach a rationale to any requirements relationship or to the requirement itself. For example, a rationale can
be attached to a satisfy relationship that refers to an analysis report or trade study that provides the supporting rationale
for why the particular design satisfies the requirement. Similarly, this can be used with the other relationships such as the
derive relationship. It also provides an alternative mechanism to capture the verify relationship by attaching a rationale to
a satisfy relationship that references a test case.

Modelers can customize requirements taxonomies by defining additional subclasses of the Requirement stereotype. For
example, a modeler may want to define requirements categories to represent operational, functional, interface,
performance, physical, storage, activation/deactivation, design constraints, and other specialized requirements such as
reliability and maintainability, or to represent a high level stakeholder need. The stereotype enables the modeler to add
constraints that restrict the types of model elements that may be assigned to satisfy the requirement. For example, a
functional requirement may be constrained so that it can only be satisfied by a SysML behavior such as an activity, state
machine, or interaction. Some potential Requirement subclasses are defined in Annex E, “Non-normative Extensions.”
158  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
16.2 Diagram Elements

16.2.1 Requirement Diagram

Requirement
Diagram

SysML::Requirements::
Requirement, SysML::
ModelElements::Package

Requirement SysML::Requirements::
Requirement

TestCase SysML::Requirements::
TestCase

Table 16.1 - Graphical nodes included in Requirement diagrams

Node Name Concrete Syntax Abstract Syntax Reference

req ReqDiagram

«requirement»
Requirement name

text=”The system shall do”
Id=”62j32.”

«testCase»
TestCaseName
 ISO/IEC 2017 - All rights reserved 159

ISO/IEC 19514:2017(E)
Table 16.2 - Graphical paths included in Requirement diagrams

Path Type Concrete Syntax Abstract Syntax
Reference

Requirement
containment
relationship

UML4SysML::
NestedClassifier

Copy
Dependency

SysML::Requirements::
Copy

MasterCallout

Master
«requirement» Master «requirement» Slave

SysML::Requirements::
Copy

Derive
Dependency

SysML::Requirements::
DeriveReqt

DeriveCallout

Derived
«requirement» ReqB

«requirement»
ReqA

DerivedFrom
«requirement» ReqA

«requirement»
ReqB

SysML::Requirements::
DeriveReqt

Satisfy
Dependency

SysML::Requirements::
Satisfy

«requirement»
Parent

«requirement»
Child1

«requirement»
Child2

«requirement»
Slave

«requirement»
Master

«copy»

«requirement»
Client

«requirement»
Supplier

«deriveReqt»

«satisfy»
«requirement»

Supplier
NamedElement
160  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
SatisfyCallout

Satisfies
«requirement» ReqA

NamedElement

SatisfiedBy
NamedElement

«requirement»
ReqA

SysML::Requirements::
Satisfy

Verify
Dependency

SysML::Requirements::
Verify

VerifyCallout

Verifies
«requirement» ReqA

NamedElement

VerifiedBy
NamedElement

«requirement»
ReqA

SysML::Requirements::
Verify

Refine
Dependency

UML4SysML::Refine

RefineCallout

Refines
 «requirement» ReqA

NamedElement

RefinedBy
NamedElement

«requirement»
ReqA

UML4SysML::Refine

Table 16.2 - Graphical paths included in Requirement diagrams

Path Type Concrete Syntax Abstract Syntax
Reference

«verify»NamedElement «requirement»
Supplier

«refine» «requirement»
Client

NamedElement
 ISO/IEC 2017 - All rights reserved 161

ISO/IEC 19514:2017(E)
16.3 UML Extensions

16.3.1 Diagram Extensions

16.3.1.1 Requirement Diagram

The Requirement Diagram can only display requirements, packages, other classifiers, test cases, and rationale. The
relationships for containment, deriveReqt, satisfy, verify, refine, copy, and trace can be shown on a requirement diagram.
The callout notation can also be used to reflect the relationship of other model elements to a requirement.

16.3.1.2 Requirement Notation

The requirement is represented as shown in Table 16.1. The «requirement» compartment label for the stereotype
properties compartment (e.g., id and text) can be elided.

16.3.1.3 Requirement Property Callout Format

A callout notation can be used to represent derive, satisfy, verify, refine, copy, and trace relationships as indicated in
Table 16.2. For brevity, the «elementType» may be elided.

16.3.1.4 Requirements on Other Diagrams

Requirements can also be represented on other diagrams to show their relationship to other model elements. The
compartment and callout notation described in 16.3.1.2, Requirement Notation and 16.3.1.3, Requirement Property
Callout Format can be used. The callouts represent the requirement that is attached to another model element such as a
design element.

Trace
Dependency

UML4SysML::Trace

TraceCallout

TracedFrom
«requirement» ReqANamedElement

TracedTo
NamedElement

«requirement»
ReqA

UML4SysML::Trace

Table 16.2 - Graphical paths included in Requirement diagrams

Path Type Concrete Syntax Abstract Syntax
Reference

«trace»«requirement»
Client

«requirement»
Supplier
162  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
16.3.1.5 Requirements Table

The tabular format is used to represent the requirements, their properties and relationships, and may include:

• Requirements with their properties in columns.

• A column that includes the supplier for any of the dependency relationships (Derive, Verify, Refine, Trace).

• A column that includes the model elements that satisfy the requirement.

• A column that represents the rationale for any of the above relationships, including reference to analysis reports for
trace rationale, trade studies for design rationale, or test procedures for verification rationale.

The relationships between requirements and other objects can also be shown using a sparse matrix style that is similar to
the table used for allocations (15.4.3, Tabular Representation). The table should include the source and target elements
names (and optionally kinds) and the requirement dependency kind.

Figure 16.1 - Non-normative Examples of Tabular Representations of Requirements

table [requirement] Performance [Tree of Performance Requirements]

table [requirement] Performance [Decomposition of Performance Requirement]

id name text

2 Performance

The Hybrid SUV shall have the braking, acceleration, and off-
road capability of a typical SUV, but have dramatically better
fuel economy.

2.1 Braking
The Hybrid SUV shall have the braking capability of a typical
SUV.

2.2 FuelEconomy
The Hybrid SUV shall have dramatically better fuel economy
than a typical SUV.

2.3 OffRoadCapability
The Hybrid SUV shall have the off-road capability of a
typical SUV.

2.4 Acceleration
The Hybrid SUV shall have the acceleration of a typical
SUV.

id name relation id name relation id name
2.1 Braking deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.2 Range
4.2 FuelCapacity deriveReqt d.2 Range
2.3 OffRoadCapability deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
2.4 Acceleration deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
4.1 CargoCapacity deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
 ISO/IEC 2017 - All rights reserved 163

ISO/IEC 19514:2017(E)
16.3.2 Stereotypes

Package Requirements

Figure 16.2 - Abstract Syntax for Requirements Stereotypes

16.3.2.1 Copy

Description

A Copy relationship is a dependency between a supplier requirement and a client requirement that specifies that the text
of the client requirement is a read-only copy of the text of the supplier requirement.

A Copy dependency created between two requirements maintains a master/slave relationship between the two elements
for the purpose of requirements re-use in different contexts. When a Copy dependency exists between two requirements,
the requirement text of the client requirement is a read-only copy of the requirement text of the requirement at the
supplier end of the dependency.

«metaclass»
UML4SysML::Class

text: String
id: String
/derived: Requirement [*]
/derivedFrom: Requirement [*]
/satisfiedBy: NamedElement [*]
/refinedBy: NamedElement [*]
/tracedTo: NamedElement [*]
/verifiedBy: NamedElement [*]
/master: Requirement [0..1]

«stereotype»
Requirement

pass
fail
inconclusive
error

«enumeration»
VerdictKind

«stereotype»
Trace

«stereotype»
DeriveReqt

«stereotype»
Verify

«stereotype»
Satisfy

«stereotype»
Copy

«stereotype»
UML4SysML::Trace

«stereotype»
DirectedRelationship

PropertyPath

«stereotype»
TestCase

«metaclass»
UML4SysML::Operation

«metaclass»
UML4SysML::Behavior

«stereotype»
UML4SysML::Refine

«stereotype»
Refine

«stereotype»
DirectedRelationshipPropertyPath
164  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Constraints

[1] A Copy dependency may only be created between two classes that have the “requirement” stereotype, or a subtype of the
“requirement” stereotype applied.

[2] The text property of the client requirement is constrained to be a read-only copy of the text property of the supplier
requirement.

[3] Constraint [2] is applied recursively to all subrequirements.

16.3.2.2 DeriveReqt

Description

A DeriveReqt relationship is a dependency between two requirements in which a client requirement can be derived from
the supplier requirement. For example, a system requirement may be derived from a business need, or lower-level
requirements may be derived from a system requirement. As with other dependencies, the arrow direction points from the
derived (client) requirement to the (supplier) requirement from which it is derived.

Constraints

[1] The supplier shall be an element stereotyped by «requirement» or one of «requirement» subtypes.

[2] The client shall be an element stereotyped by «requirement» or one of «requirement» subtypes.

16.3.2.3 Refine

Description

The Refine stereotype specializes UML4SysML Refine and DirectedRelationshipPropertyPath to enable refinements to
identify their sources and targets by a multi-level path of accessible properties from context blocks for the sources and
targets.

Constraints

[1] The Refine stereotype shall only be applied to dependencies.

[2] Dependencies with a Refine stereotype or one of its specializations applied shall have exactly one client and one supplier.

Operations

[1] The query getRefines() gives all the requirements that are suppliers (“to” end of the concrete syntax) of a «Refine»
relationships whose client is the element in parameter. This is a static query.
Refine::getRefines(ref:NamedElement) : Set(Requirement) {query, static}
getRefines=ref.clientDependency->select(d | not d.extension_Refine.
 oclIsUndefined()).supplier

16.3.2.4 Requirement

Description

A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify a function
that a system must perform or a performance condition that a system must satisfy. Requirements are used to establish a
contract between the customer (or other stakeholder) and those responsible for designing and implementing the system.

A requirement is a stereotype of Class. Compound requirements can be created by using the nesting capability of the class
definition mechanism. The default interpretation of a compound requirement, unless stated differently by the compound
requirement itself, is that all its subrequirements shall be satisfied for the compound requirement to be satisfied.
 ISO/IEC 2017 - All rights reserved 165

ISO/IEC 19514:2017(E)
Subrequirements shall be accessed through the “nestedClassifier” property of a class. When a requirement has nested
requirements, all the nested requirements apply as part of the container requirement. Deleting the container requirement
deleted the nested requirements, a functionality inherited from UML.

Attributes

• text: String
The textual representation or a reference to the textual representation of the requirement.

• id: String
The unique id of the requirement.

• /satisfiedBy: NamedElement [*]
Derived from all elements that are the client of a «satisfy» relationship for which this requirement is a supplier.

• /verifiedBy: NamedElement [*]
Derived from all elements that are the client of a «verify» relationship for which this requirement is a supplier.

• /tracedTo: NamedElement [*]
Derived from all elements that are the supplier of a «trace» relationship for which this requirement is a client.

• /derived: Requirement [*]
Derived from all requirements that are the client of a «deriveReqt» relationship for which this requirement is a
supplier.

• /derivedFrom: Requirement [*]
Derived from all requirements that are the supplier of a «deriveReqt» relationship for which this requirement is a
client.

• /refinedBy: NamedElement [*]
Derived from all elements that are the client of a «refine» relationship for which this requirement is a supplier.

• /master: Requirement [0..1
This is a derived property that lists the master requirement for this slave requirement. The master attribute is
derived from the supplier of the Copy dependency that has this requirement as the slave.

Constraints

[1] The property “ownedOperation” shall be empty.

[2] The property “ownedAttribute” shall be empty.

[3] Classes stereotyped by «requirement» shall not participate in associations.

[4] Classes stereotyped by «requirement» shall not participate in generalizations.

[5] A nested classifier of a class stereotyped by «requirement» shall also be stereotyped by «requirement».

[6] Classes stereotyped by «requirement» shall not be used to type any other model element.

Operations

[1] Requirement::getSatisfiedBy : Set(NamedElement)
getSatisfiedBy = Satisfy.allInstances()->select(base_class.supplier=self).
 base_Abstraction.client

[2] Requirement::getVerifiedBy : Set(NamedElement)
getVerifiedBy = Verify.allInstances()->select(base_Abstraction.supplier=self).
 base_class.client
166  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
[3] Requirement::getTracedTo() : Set(NamedElement)
getTracedTo =Trace.allInstances()->select(base_Abstraction.client=self).
 base_class.supplier

[4] Requirement::getDerived() : Set(Requirement)
getDerived = DeriveReqt.allInstances()->select(base_Abstraction.supplier=self).
 base_class.client

[5] Requirement::getDerivedFrom() : Set(Requirement)
getDerivedFrom = DeriveReqt.allInstances()->select(base_Abstraction.client=self).
 base_class.supplier

[6] Requirement::getRefinedBy: Set(NamedElement)
getRefinedBy = Refine.allInstances()->select(base_Abstraction.supplier=self).
 base_class.client

[7] Requirement::getMaster() : Requirement
getMaster = Copy.allInstances()->select(base_Abstraction.client=self).base_class.supplier

16.3.2.5 TestCase

Description

A test case is a method for verifying a requirement is satisfied.

Constraints

[1] The type of return parameter of the stereotyped model element shall be VerdictKind. (note this is consistent with the UML
Testing Profile).

16.3.2.6 Satisfy

Description

A Satisfy relationship is a dependency between a requirement and a model element that fulfills the requirement. As with
other dependencies, the arrow direction points from the satisfying (client) model element to the (supplier) requirement
that is satisfied.

Constraints

[1] The supplier shall be an element stereotyped by «requirement» or one of «requirement» subtypes.

Operations

[1] The query getSatisfies() gives all the requirements that are suppliers (“to” end of the concrete syntax) of a «Satisfy»
relationships whose client is the element in parameter. This is a static query.
Satisfy::getSatisfies(ref : NamedElement): Set(Requirement) {query, static}
getSatisfies=ref.clientDependency->select(d | not d.extension_Satisfy.
 oclIsUndefined()).supplier

16.3.2.7 Trace

Description

The Trace stereotype specializes UML4SysML Trace and DirectedRelationshipPropertyPath to enable traces to identify
their sources and targets by a multi-level path of accessible properties from context blocks for the sources and targets.
 ISO/IEC 2017 - All rights reserved 167

ISO/IEC 19514:2017(E)
Constraints

[1] The Trace stereotype shall only be applied to dependencies.

[2] Dependencies with a Trace stereotype or one of its specializations applied shall have exactly one client and one supplier.

Operations

[1] The query getTracedFrom() gives all the requirements that are clients (“from” end of the concrete syntax) of a «Trace»
relationship whose supplier is the element in parameter. This is a static query.
Trace::getTracedFrom(ref : NamedElement) : Set(Requirement) {query, static}
getTracedFrom=Requirement.AllInstances()->select(traceTo->includes(ref))

16.3.2.8 Verify

Description

A Verify relationship is a dependency between a requirement and a test case or other model element that can determine
whether a system fulfills the requirement. As with other dependencies, the arrow direction points from the (client)
element to the (supplier) requirement.

Constraints

[1] The supplier shall be an element stereotyped by «requirement» or one of «requirement» subtypes.

Operations

[1] The query getVerifies() gives all the requirements that are suppliers (“to” end of the concrete syntax) of a «Verify»
relationships whose client is the element in parameter. This is a static query.
Verify::getVerifies(ref:NamedElement) : Set(Requirement) {query, static}
getVerifies=ref.clientDependency->select(d | not d.extension_Verify.
 oclIsUndefined()).supplier

16.4 Usage Examples

All the examples in this clause are based on a set of publicly available (on-line) requirement specifications from the
National Highway Traffic Safety Administration (NHTSA.) Excerpts of the original requirement text used to create the
models are shown in Figure 16.3. The name and ID of these requirements are referred to in the SysML usage examples
that follow. See NHTSA specification 49CFR571.135 for the complete text from which these examples are taken.

16.4.1 Requirement Decomposition and Traceability

The diagram in Figure 16.3 shows an example of a compound requirement decomposed into multiple subrequirements.
168  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)

Figure 16.3 - Requirements Derivation

16.4.2 Requirements and Design Elements

The diagram in Figure 16.4 shows derived requirements and refers to the design elements that satisfy them. The rationale
is also shown as a basis for the design solution.
 ISO/IEC 2017 - All rights reserved 169

ISO/IEC 19514:2017(E)
.

Figure 16.4 - Links between requirements and design

«requirement»
Master Cylinder Efficacy

«requirement»
LossOfFluid

«requirement»
Reservoir

«block»
BrakeSystem

«satisfy»

Decelerate Car

«refine»

«rationale»
body = “This design of the brake
assembly satisfies the federal safety
requirements.”

id = “S5.4.1a”
text =”Prevent complete loss of fluid”

id = “S5.4.1b”
text = "Separate reservoir compartment”

id = “S5.4.1”
text =”A master cylinder shall have a reservoir
compartment for each service brake
subsystem serviced by the master cylinder.
Loss of fluid from one compartment
shall not result in a complete loss of
brake fluid from another compartment.”

«rationale»
body = “The best-practice
solution consists in using a set of
springs and pistons to confine the
loss to a single compartment”

«rationale»
body = “The best-practice
solution consists in assigning
one reservoir per brakeline.”

«deriveReqt» «deriveReqt»

f: FrontBrake
r: Rear Brake
l1: BrakeLine
l2: BrakeLine
m: MasterCylinder

activateBrake()
releaseBrake()

SatisfiedBy
BrakeSystem::l1
BrakeSystem::l2

SatisfiedBy
BrakeSystem::m

req MasterCylinderSafety
170  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
ibd BrakeSystem

m: MasterCylinder

l1: BrakeLine l2: BrakeLine

r: RearBrakef: FrontBrake

Safisfies
«requirement»
MasterCylinderSafety::LossOf Fluid

Satisfies
«requirement» MasterCylinderSafety::Reservoir

Figure 16.5 - Requirement satisfaction in an internal block diagram

16.4.3 Requirements Reuse

Figure 16.6 illustrates the use of the Copy dependency to allow a single requirement to be reused in several requirements
hierarchies. The master tag provides a textual reference to the reused requirement.

Figure 16.6 - Use of the copy dependency to facilitate reuse

«requirement»
NHTSASafetyRequirements

«requirement»
Hybrid Engine A type

«requirement»
Hybrid Engine B type

master=NHTSASafety
Requirements

«requirement»
Shared Safety
Requirements

master=NHTSASafety
Requirements

«requirement»
Shared Safety
Requirements

«requirement»
Safety Requirements

for type A

«requirement»
Safety Requirements

for type B

«copy» «copy»

id = “157.135”
text = “…"

req Safety Reuse
 ISO/IEC 2017 - All rights reserved 171

ISO/IEC 19514:2017(E)
16.4.4 Verification Procedure (Test Case)

The example in Figure 16.7 is taken from the automotive safety domain, and shows a Burnish requirement contained in
the NHTSASafetyRequirements requirement. Note that the text of the Burnish requirement indicates a specific sequence
of steps and transition criteria. The Burnish requirement is shown as having a Verify relationship to the BurnishTest test
case using callout notation on the diagram, indicating that the Burnish requirement is verified by the BurnishTest test
case.

Figure 16.8 is a state machine diagram of the BurnishTest test case, which expresses the textual sequence and criteria of
the Burnish requirement in state machine form. The Verify relationship is shown on Figure 16.8 using callout notation
anchored to the diagram frame, which indicates that the BurnishTest test case verifies the Burnish requirement.

Figure 16.7 - Linkage of a Test Case to a requirement:
 This figure shows the Requirement Diagram
172  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)

Figure 16.8 - Linkage of a Test Case to a requirement:
 This figure shows the Test Case as a State Diagram

[Speed=80]

Initial
condition

[count < 200]

[count=200]

Adjust brake

Accelerate

Maintain

Brake

[IBT=100 or
d >= 2 km]

stm «testCase» BurnishTest

Verifies
«requirement» Burnish
 ISO/IEC 2017 - All rights reserved 173

ISO/IEC 19514:2017(E)
174  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
17 Profiles & Model Libraries

17.1 Overview

The Profiles package contains mechanisms that allow metaclasses from existing metamodels to be extended to adapt them
for different purposes. This includes the ability to tailor the UML metamodel for different domains. The profiles
mechanism is consistent with the OMG Meta Object Facility (MOF). SysML has added some notational extensions to
represent stereotype properties in compartments as well as notes.

The stereotype is the primary mechanism used to create profiles to extend the metamodel. Stereotypes are defined by
extending a metaclass, and then have them applied to the applicable model elements in the user model. A stereotype of a
requirement could be extended to create a «functionalRequirement» as described in Annex E, “Non-normative
Extensions.” This would allow specific properties and constraints to be created for a functional requirement. For example,
a functional requirement may be constrained such that it must be satisfied by an operation or behavior. When the
stereotype is applied to a requirement, then the requirement would include the notation «functionalRequirement» in
addition to the name of the particular functional requirement. Extending the metaclass requirement is different from
creating a subclass of requirement called functionalRequirement.

The Usage Examples sub clause provides guidance both on how to use existing profiles and how to create new profiles.
In addition, the examples provide guidance on the use of model libraries. A model library is a library of model elements
including class and other type definitions that are considered reusable for a given domain. These guidelines can be applied
to further customize SysML for domain specific applications such as automotive, military, or space systems.
 ISO/IEC 2017 - All rights reserved 175

ISO/IEC 19514:2017(E)
17.2 Diagram Elements

17.2.1 Profile Definition in Package Diagram

Stereotype UML4SysML::Stereotype

Metaclass

«metaclass»
MetaClassName

UML4SysML::Class

Profile UML4SysML::Profile

Model Library UML::StandardProfile

Table 17.1 - Graphical nodes used in profile definition

Node Name Concrete Syntax Abstract Syntax Reference

«stereotype»
StereotypeName

«profile»
ProfileName

«modelLibrary»
LibraryName
176  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
NOTE: In the above table, boolean properties can be displayed alternatively as BooleanPropertyName=[True|False].

Table 17.2 - Graphical paths used in profile definition

Path Name Concrete Syntax Abstract Syntax Reference

Extension UML4SysML::Extension

Generalization UML4SysML::Generalization

ProfileApplication UML4SysML::ProfileApplication

MetamodelReference UML4SysML::PackageImport;
UML4SysML::ElementImport

Unidirectional
Association

UML4SysML::Association

«metaclass»
MetaClassName

«stereotype»
StereotypeName

{required}

«stereotype»
StereotypeName

«stereotype»
StereotypeName

«apply»{strict}

«reference»

propertyName
 ISO/IEC 2017 - All rights reserved 177

ISO/IEC 19514:2017(E)
17.2.1.1 Extension

In Figure 17.1, a simple stereotype Clock is defined to be applicable at will (dynamically) to instances of the metaclass
Class and describes a clock software component for an embedded software system. It has description of the operating
system version supported, an indication of whether it is compliant to the POSIX operating system standard and a
reference to the operation that starts the clock.

Figure 17.1 - Defining a stereotype

17.2.2 Stereotypes Used On Diagrams

StereotypeNote UML4SysML::Element

StereotypeNote UML4SysML::Element

Table 17.3 - Notations for Stereotype Use

«stereotype»
Clock

OSVersion:String
startOperation:Operation
POSIXCompliant:Boolean

«metaclass»
Class

Element
Name

«stereotypeName»
PropertyName=ValueString
MultiPropertyName=ValueString, ValueString
BooleanPropertyName

Element
NamePathName

Element
Name

«stereotypeName»
PropertyName=ValueString
MultiPropertyName=ValueString, ValueString
BooleanPropertyName
178  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
17.2.2.1 StereotypeInNode

Figure 17.2 shows how the stereotype Clock, as defined in Figure 17.1, is applied to a class called AlarmClock.

Table 17.4 - Notations for Stereotype Use (continued)

Node Name Concrete Syntax Abstract Syntax Reference

StereotypeInNode UML4SysML::Element

StereotypeInCompartment
Element

UML4SysML::Element

StereotypeOnEdge UML4SysML::Element

Stereotype
Compartment

UML4SysML::Element

Figure 17.2 - Using a stereotype

«stereotypeName»
{PropertyName=ValueString;

BooleanPropertyName}
NodeName

«stereotypeName»{PropertyName=ValueString}ElementName
«stereotypeName»{PropertyName=ValueString;
BooleanPropertyName}
ElementName

NodeName

Element
Name

Element
Name

«stereotypeName»
{PropertyName=ValueString;
BooleanPropertyName}PathName

«stereotypeName»
 PropertyName=ValueString
 MultiPropertyName=ValueString,

ValueString
 BooleanPropertyName

«stereotypeName»
NodeName

 Start()

«clock»
{POSIXCompliant}

AlarmClock
 ISO/IEC 2017 - All rights reserved 179

ISO/IEC 19514:2017(E)
17.2.2.2 StereotypeInComment

When two stereotypes, Clock and Creator, are applied to the same model element, as is shown in Figure 17.3, the attribute
values of each of the applied stereotypes can be shown in a comment symbol attached to the model element.

Figure 17.3 - Using stereotypes and showing values

17.2.2.3 StereotypeInCompartment

Finally, the compartment form is shown.

Figure 17.4 - Other notational forms for showing values

In this case, AlarmClock is valid for OS version 3.4, is POSIX-compliant and has a starting operation called Start. Note
that multiple stereotypes can be shown using multiple compartments.

17.3 UML Extensions

None.

17.4 Usage Examples

17.4.1 Defining a Profile

«clock,creator»
StopWatch

Click()

«clock»
OSVersion=2.5
startOperation=Click
«creator»
name="Jones"
date="04-04-04"

 Start()

AlarmClock

«clock»
OSVersion="3.4"
startOperation=Start
POSIXCompliant=True
180  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure 17.5 - Definition of a profile

In this example, the modeler has created a new profile called SE Toolkit, which imports the SysML profile, so that it can
build upon the stereotypes it contains. The set of metaclasses available to users of the SysML profile is identified by a
reference to a metamodel, in this case a subset of UML specific to SysML. The SE Toolkit can extend those metaclasses
from UML that the SysML profile references.

17.4.2 Adding Stereotypes to a Profile

Figure 17.6 - Profile Contents

«m etaclass»
Named Elemen t

isEncapsula ted : Boolean

«stereotype»
Block

«stereotype»
System

«stereotype»
Co ntext

«stereotype»
Req uiremen t

«stereotype»
Fu nctional

Req uiremen t

«metaclass»
Behav ior

function

«stereotype»
Co nf igu ratio nItem

author : String
vers ion : String
lastChanged : Date

«metaclass»
DirectedRelat ionship

p kg SEToolkit
 ISO/IEC 2017 - All rights reserved 181

ISO/IEC 19514:2017(E)
In SE Toolkit, both the mechanisms for adding new stereotypes are used. The first, exemplified by configurationItem, is
called an extension, shown by a line with a filled triangle; this relates a stereotype to a reference (called base) class or
classes, in this case NamedElement and DirectedRelationship from UML and adds new properties that every
NamedElement or DirectedRelationship stereotyped by configurationItem must have. NamedElement and
DirectedRelationship are abstract classes in UML so it is their subclasses that can have the stereotype applied. The second
mechanism is demonstrated by the system and context stereotypes which are sub-stereotypes of an existing SysML
stereotype, Block; sub-stereotypes inherit any properties of their super-stereotype and also extend the same base class or
classes. Note that TypedElements whose type is extended by «system» do not display the «system» stereotype; this also
applies to InstanceSpecifications. Any notational conventions of this have to be explicitly specified in a diagram
extension.

There is also an example of how stereotypes (in this case FunctionalRequirement) can have unidirectional associations to
metaclasses in the reference metamodel (in this case Behavior).

17.4.3 Defining a Model Library that Uses a Profile

pkg [profile] SEToolkit

«modelLibrary»
SI Value Types

«valueType»
unit = KilogramPerCubicMeter

SIDensity

«valueType»
unit= CubicMeter

SIVolume

«valueType»
Real

«modelLibrary»
Physical

«valueType»
unit = Meter

SILength

«import»
density: SIDensity
volume: SIVolume
supplier: String
modelNumber: String
serialNumber: String
lotNumber: String

«block»
PhysicalObject

«modelLibrary»
SI Definitions

«import»

Figure 17.7 - Two model libraries

The model library SI Value Types imports a model library called SI Definitions, so it can use model elements from them
in its own definition. It defines value types having specific units which can be used when property values are measured in
SI units. SI Definitions is a separately published model library, containing definitions of standard SI units and quantity
kinds such as shown in Annex D, sub clause D.4. A further model library, Physical, imports SI Value Types so it can
define properties that have those types. One model element, PhysicalObject, is shown, a block that can be used as a
supertype for a physical object.
182  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
17.4.4 Guidance on Whether to Use a Stereotype or Class

This sub clause provides guidance on when to use stereotypes. Stereotypes can be applied to any model element.
Stereotyping a model element allows the model element to be identified with the «guillemet» notation. In addition, the
stereotyped model element can have stereotype properties, and the stereotype can specify constraints on the model
element.

The modeler must decide when to create a stereotype of a class versus when to specialize (subclass) the class. One reason
is to be able to identify the class with the «guillemet» notation. In addition, the stereotype properties are different from
properties of classes. Stereotype properties represent properties of the class that are not instantiated and therefore do not
have a unique value for each instance of the class, although a class thus stereotyped can have a separate value for the
property.

SE Toolkit::functionalRequirement, which extends Class through its superstereotype, Requirement, is an example where a
stereotype is appropriate because every modeling element stereotyped by SE Toolkit::functionalRequirement has a
reference to another modeling element. In another example, SE Toolkit::configurationItem defined above, which applies
to classes among other concepts, is a stereotype because its properties characterize the author, version, and last changed
date of the modeling element themselves. One test of this is whether the new properties are inheritable; in this case
author, version, and last-changed date are not, because it is only those classes under configuration control that need the
properties. To summarize, in the following circumstances a stereotype is appropriate:

• Where the model concept to be extended is not a class or class-based.

• Where the extensions include properties that reference other model elements.

• Where the extensions include properties that describe modeling data, not system data.

An example where a class is more appropriate is PhysicalObject from Figure 17.7. In this case, the properties density and
volume, and the component numbers, have distinct values for each system element described by the class, and are
inherited by every subclass of PhysicalObject.

17.4.5 Using a Profile

Figure 17.8 - A model with applied profile and imported model library

pkg ModelingDomain [Establishing HSUV Model]

«modelLibrary»
SI Definitions

«import»

«profile»
SysML

HSUVModel

«apply»
{strict}

«apply» {strict}
 ISO/IEC 2017 - All rights reserved 183

ISO/IEC 19514:2017(E)
The HSUVModel is a systems engineering model that needs to use stereotypes from SysML. It therefore needs to have
the SysML profile applied to it. In order to use the predefined SI units, it also needs to import the SI Definitions model
library. Having done this, elements in HSUVModel can be extended by SysML stereotypes and types like SIVolume can
be used to type properties. Both the SI Definitions model library and HSUVModel have applied the profile strictly, which
means that only those metaclasses directly referenced by SysML can be used in those models.

17.4.6 Using a Stereotype

Figure 17.9 - Using two stereotypes on a model element

StoppingDistance has two stereotypes applied:

• functionalRequirement, which identifies it as a requirement that is satisfied by a function, and

• configurationItem, which allows it to have configuration management properties.

The modeler has provided values for all the newly available properties; those for criticalRequirement are shown in a
compartment in the node symbol for StoppingDistance; those for configurationItem are shown in a separate note.

17.4.7 Using a Model Library Element

bdd P hys ics

circum ference: S ILength

«b lock»
Sho t

density : S ID ensity
vo lume: S IVo lume
supp lie r: S tring
mode lN umber: S tring
seria lN umber: S tring
lo tN umber: S tring

«b lock»
Physica lO b ject

Figure 17.10 - Using model library elements

req HSUVRequirements

«functionalRequirement»
«configurationItem»

StoppingDistance
«functionalRequirement»

100 feet from 20 mph"
id="102.1"
function=StopCar

«configurationItem»
author="Jones"
version="1.2"
date="04-04-04"

text=”The car shall stop within
184  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Model library elements can be used just like any other model element of the same type. In this case, Shot is a
specialization of PhysicalObject from the Physical model library. It adds a new property, circumference, of type SILength
to measure the circumference of the (spherical) shot.
 ISO/IEC 2017 - All rights reserved 185

ISO/IEC 19514:2017(E)
186  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
ANNEXES
 ISO/IEC 2017 - All rights reserved 187

ISO/IEC 19514:2017(E)
188  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Annex A: Diagrams
(informative)

A.1 Overview

SysML diagrams contain diagram elements (mostly nodes connected by paths) that represent model elements in the
SysML model, such as activities, blocks, and associations. The diagram elements are referred to as the concrete syntax.

The SysML diagram taxonomy is shown in Figure A.1. This taxonomy is one example of how to organize the SysML
diagrams. Other categories could also be defined, such as a grouping of the use case diagram and the requirement diagram
into a category called Specification Diagrams.

SysML reuses many of the major diagram types of UML. In some cases, the UML diagrams are strictly reused, such as
use case, sequence, state machine, and package diagrams, whereas in other cases they are modified so that they are
consistent with SysML extensions. For example, the block definition diagram and internal block diagram are similar to
the UML class diagram and composite structure diagram respectively, but include extensions as described in Clause 8,
“Blocks.” Activity diagrams have also been modified via the activity extensions. Tabular representations, such as the
allocation table, are used in SysML but are not considered part of the diagram taxonomy.

SysML does not use all of the UML diagram types such as the object diagram, communication diagram, interaction
overview diagram, timing diagram, deployment diagram, and profile diagram. This is consistent with the approach that
SysML represents a subset of UML. In the case of deployment diagrams, the deployment of software to hardware can be
represented in the SysML internal block diagram. In the case of interaction overview and communication diagrams, it was
felt that the SysML internal block diagram. In the case of interaction overview and communication diagrams, it was felt
that the SysML behavior diagrams provided adequate coverage for representing behavior without the need to include
these diagram types. In the case of the profile diagram, profile definitions can be captured on a package diagram and the
parametric diagram.
 ISO/IEC 2017 - All rights reserved 189

ISO/IEC 19514:2017(E)
Figure A.1 - SysML Diagram Taxonomy

The requirement diagram is a new SysML diagram type. A requirement diagram provides a modeling construct for text-
based requirements, and the relationship between requirements and other model elements that satisfy or verify them.

The parametric diagram is a new SysML diagram type that describes the constraints among the properties associated with
blocks. This diagram is used to integrate behavior and structure models with engineering analysis models such as
performance, reliability, and mass property models.

Although the taxonomy provides a logical organization for the various major kinds of diagrams, it does not preclude the
careful mixing of different kinds of diagram types, as one might do when one combines structural and behavioral
elements (e.g., showing a state machine nested inside a compartment of a block). However, it is critical that the types of
diagram elements that can appear on a particular diagram kind be constrained and well-specified. The diagram elements
tables in each clause describe what symbols can appear in the diagram, but do not specify the different combinations of
symbols that can be used.

The package diagram and the callout notation are two mechanisms that SysML provides for adding flexibility to represent
a broad range of diagram elements on diagrams. The package diagram can be used quite flexibly to organize the model in
packages and views. As such, a package diagram can include a wide array of packageable elements. The callout notation
provides a mechanism for representing relationships between model elements that appear on different diagram kinds. In
particular, they are used to represent allocations and requirements, such as the allocation of an activity to a block on a
block definition diagram, or showing a part that satisfies a particular requirement on an internal block diagram. There are
other mechanisms for representing this including the compartment notation that is generally described in Clause 17,
“Profiles & Model Libraries,” Clause 16, “Requirements,” and Clause 15, “Allocations” provide specific guidance on
how these notations are used.

The model elements and corresponding concrete syntax that are represented in each of the nine SysML diagram kinds are
described in the SysML clauses as indicated below.

• activity diagram - Activities (Clause 11)

• block definition diagram - Blocks (Clause 8), Ports and Flows (Clause 9)

SysML Diagram

Structure
Diagram

Behavior
Diagram

Use Case
Diagram

Activity
Diagram

Internal Block
Diagram

Block Definition
Diagram

Sequence
Diagram

State Machine
Diagram

Parametric
Diagram

Requirement
Diagram

Modified from UML 2

New diagram type

Package Diagram

Same as UML 2
190  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
• internal block diagram - Blocks (Clause 8), Ports and Flows (Clause 9)

• package diagram - Model Elements (Clause 7)

• parametric diagram - Constraint Blocks (Clause 10)

• requirement diagram - Requirements (Clause 16)

• state machine diagram - State Machines (Clause 13)

• sequence diagram - Interactions (Clause 12)

• use case diagram - Use Cases (Clause 14)

Each SysML diagram has a frame, with a contents area, a heading, and a Diagram Description (see Figure A.2).

Figure A.2 - Diagram Frame

The frame is a rectangle that is required for SysML diagrams (Note: the frame is optional in UML). The frame shall
designate a model element that is the default namespace for the model elements enclosed in the frame. A qualified name
for the model element within the frame shall be provided if it is not contained within default namespace associated with
the frame. The following are some of the designated model elements associated with the different diagram kinds.

• activity diagram - activity

• block definition diagram - block, package, or constraint block

• internal block diagram - block or constraint block

• package diagram - package or model

• parametric diagram - block or constraint block

• requirement diagram - package or requirement

• sequence diagram - interaction

• state machine diagram - state machine

• use case diagram - package

The frame may include border elements associated with the designated model element, like

• ports for blocks,

Contents

«diagramUsage»
diagramKind [modelElementType] modelElementName [diagramName]

Diagram Description

Version:
Description:
Completion status:
Reference:
(User defined fields)

Header
 ISO/IEC 2017 - All rights reserved 191

ISO/IEC 19514:2017(E)
• entry/exit points on statemachines,

• gates on interactions,

• parameters for activities, and

• constraint parameters for constraint blocks.

The frame may sometimes be defined by the border of the diagram area provided by a tool.

The diagram contents area contains the graphical symbols. The diagram type and usage defines the type of primary
graphical symbols that are supported, e.g., a block definition diagram is a diagram where the primary symbols in the
contents area are blocks and association symbols along with their adornments.

The heading name is a string contained in a name tag (rectangle with cutoff corner) in the upper leftmost corner of the
rectangle, with the following syntax:

<diagramKind> [modelElementType] <modelElementName> [diagramName]

A space separates each of these entries. The diagramKind is bolded. The modelElementType and diagramName are in
brackets. The heading name should always contain the diagram kind and model element name, and include the model
element type and additional information to remove ambiguity. Ambiguity can occur if there is more than one model
element type for a given diagram kind, or where there is more than one diagram for the same model element. If a model
element type has a stereotype applied to the base model element, such as “modelLibrary” applied to a package or
“controlOperator” applied to an activity, then either the stereotype name or the base model element may be used as the
name for the model element type. In either case, the initial character of the name is shown in lower case. For a stereotype
name, guillemet characters (« and ») are not shown. If more than one stereotype has been applied to the base model
element, either the name of one of the applied stereotypes or a comma-separated list of any or all of the applied stereotype
names may be shown. If a base model element name is used, this element is either a UML metaclass which SysML uses
directly, such as package or activity, or a stereotype which SysML defines on a UML metaclass, such as block or view.

SysML diagram kinds should have the following names or (abbreviations) as part of the heading:

• activity diagram (act)

• block definition diagram (bdd)

• internal block diagram (ibd)

• package diagram (pkg)

• parametric diagram (par)

• requirement diagram (req)

• sequence diagram (sd)

• state machine diagram (stm)

• use case diagram (uc)

The diagram description can be defined by a comment attached to a diagram frame as indicated in Figure A.2 that
includes version, description, references to related information, a completeness field that describes the extent to which the
modeler asserts the diagram is complete, and other user defined fields. In addition, the diagram description may identify
the view associated with the diagram, and the corresponding viewpoint that identifies the stakeholders and their concerns
(refer to Model Elements clause). The diagram description can be made more explicit by the tool implementation.
192  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
SysML also introduces the concept of a diagram usage. This represents a unique usage of a particular diagram type, such
as a context diagram as a usage of a block definition diagram, internal block diagram, or use case diagram. The diagram
usage can be identified in the header above the diagramKind as «diagramUsage». An example of a diagram usage
extension is shown in Figure A.3. For this example, the header in Figure A.2 would replace diagram kind with “uc” and
«diagramUsage» with «ContextDiagram». Applying a stereotype approach to specify a diagram usage can allow a tool
implementation to check that the diagram constraints defined by the stereotype are satisfied.

Diagram usage can be represented by creating stereotypes that extend SysMLDiagram (see Annex B).

Figure A.3 - Diagram Usages

Some typical diagram usages may include:

• Activity diagram usage with swim lanes - SwimLane Diagram.

• Block definition diagram usage for a block hierarchy - Block Hierarchy where block can be replaced by system, item,
activity, etc.

• Use case diagram or internal block diagram to represent a Context Diagram.

A.2 Guidelines

The following provides some general guidelines that apply to all diagram types.

• Decomposition of a model element can be represented by the rake symbol. This does not always mean decomposition
in a formal sense, but rather a reference to a more elaborated diagram of the model element that includes the rake
symbol. This notation adds to the existing decomposition notations defined in UML (Composite state symbol for
States that refer to StateMachines and rake symbol for CallBehaviorActions that refer to Activities). In SysML, the
rake on a model element may also include the following:

• activity diagram - call behavior actions that can refer to another activity diagram.

• internal block diagram - parts that can refer to another internal block diagram.

• package diagram - package that can refer to another package diagrams.

• parametric diagram - constraint property that can refer to another parametric diagram

• requirement diagram - requirement that can refer to another requirement diagram.

• sequence diagram - interaction fragments that can refer to another sequence diagram.

• state machine diagram - state that can refer to another state machine diagram.

• use case diagram - use case can that may be realized by other behavior diagrams (activity, state, interactions).

«stereotype»
SysMLUseCaseDiagram

«stereotype»
Context Diagram
 ISO/IEC 2017 - All rights reserved 193

ISO/IEC 19514:2017(E)
• The primary mechanism for linking a text label outside of a symbol to the symbol is through proximity of the label to
its symbol. This applies to ports, item flows, pins, etc.

• Page connectors (on-page connectors and off-page connectors) can be used to reduce the clutter on diagrams, but
should be used sparingly since they are equivalent to go-to(s) in programming languages, and can lead to “spaghetti
diagrams.” Whenever practical, elaborate the model element designated by the frame instead of using a page
connector. A page connector is depicted as a circle with a label inside (often a letter). The circle is shown at both ends
of a line break and means that the two line end connect at the circle.

• When two lines cross, the crossing optionally may be shown with a small semicircular jog to indicate that the lines do
not intersect (as in electrical circuit diagrams), as shown in Figure A.4.

• Diagram overlays are diagram elements that may be used on any diagram kind. An example of an overlay may be a
geographic map to provide a spatial context for the symbols.

• SysML provides the capability to represent a document using the UML 2 standard stereotype «document» applied to
the artifact model element. Properties of the artifact can capture information about the document. Use a «trace»
abstraction to relate the document to model elements. The document can represent text that is contained in the related
model elements.

• SysML diagrams including the enhancements described in this sub clause are intended to conform to diagram
definition and interchange standards to facilitate exchange of diagram and layout information.

• Tabular and matrix representation is an optional alternative notation that can be used in conjunction with the
graphical symbols as long as the information is consistent with the underlying metamodel. Tabular and matrix
representations are often used in systems engineering to represent detailed information and other views of the model
such as interface definitions, requirements traceability, and allocation relationships between various types of model
elements. They also can be convenient mechanisms to represent property values for selected properties, and basic
relationships such as function and inputs/outputs in N2 charts. UML contains a tabular representation of a sequence
diagram in an interaction matrix (refer to UML Annex with interaction matrix). The implementations of tabular and
matrix representations are defined by the tool implementations and are not standardized in SysML at this time.
However, tabular or matrix representations may be included in a frame with the heading designator «table» or
«matrix» in bold.

• Graph and tree representations are also optional, alternative notations that can be used in conjunction with graphical
symbols as long as the information is consistent with the underlying metamodel. These representations can be used
for describing complex series of relationships that represent other views of the model. One example is the browser
window in many tools that depicts a hierarchical view of the model. The implementations of graphs and trees are
defined by the tool implementations and are not standardized in SysML at this time. However, graph and tree
representations may be included in a frame with the heading designator «graph» or «tree» in bold.

Figure A.4 - Optional Form of Line Crossing
194  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Annex B: SysML Diagram Interchange

(informative)

B.1 Overview

This annex provides information regarding the exchange of SysML diagrams. It is an extension of the UML Diagram
Interchange (DI) to support the graphical notation specific to SysML. A first part presents stereotypes that extend the
UML DI. A second part presents modifications in the use of UML DI in SysML diagrams.

Figure B.1 - SysML DI architecture

MOFM3

Abstract syntax Diagram syntax

DI

SysML DI

UML DIUML

SysML

M2

Model Diagram

Instantiates

Specializes

References

Extends

DD Spec

UML Spec

SysML Spec

DD: Diagram Definition

DI: Diagram Interchange

M1
 ISO/IEC 2017 - All rights reserved 195

ISO/IEC 19514:2017(E)
B.2 Stereotypes

Figure B.2 - Abstract Syntax Extension for SysMLDiagramElement

Figure B.3 - Abstract syntax extensions for SysML diagrams (1)

 «metaclass»
UMLDiagramElement

«stereotype»
SysMLDiagramElement

isDecompositionSymbolShown: Boolean = false

«stereotype»
SysMLInternalBlockDiagram

«metaclass»
UMLCompositeStructureDiagram

«stereotype»
SysMLParametricDiagram

«stereotype»
SysMLRequirementDiagram

«metaclass»
UMLClassDiagram

«stereotype»
SysMLPackageDiagram

«metaclass»
UMLPackageDiagram

«stereotype»
SysMLDiagram

«stereotype»
SysMLBlockDefinitionDiagram

defaultNamespace : Namespace
isLineJogShown : Boolean = false

isConstraintPropertyRounded: Boolean = false

«stereotype»
SysMLDiagramElement

isDecompositionSymbolShown: Boolean = false

«stereotype»
SysMLDiagramWithAssociations

«metaclass»
UMLDiagramWithAssociations

«stereotype»
SysMLStructureDiagram

«metaclass»
UMLStructureDiagram

«metaclass»
UMLDiagram
196  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure B.4 - Abstract syntax extensions for SysML diagrams (2)

B.2.1 SysMLActivityDiagram

Description

A SysMLActivityDiagram represents an activity diagram. It extends UMLActivityDiagram.

Attributes

• isControlFlowDashed : Boolean [1] = false
Specifies whether the control flows in the activity diagram are dashed (isControlFlowDashed=true) or not
(isControlFlowDashed=false).

Constraints

[1] A SysMLActivityDiagram shall have as a defaultNamespace an Activity.

[2] SysMLActivityDiagram shall only be applied to a UMLActivityDiagram.The principal of an applied AdjunctProperty
shall be a Connector, CallAction, ObjectNode, Variable, Parameter, submachine State, or InteractionUse.

B.2.2 SysMLBehaviorDiagram

Description

SysMLBehaviorDiagram is an abstract stereotype for all SysML behavior diagrams. It extends UMLBehaviorDiagram.

Constraints

[1] SysMLBehaviorDiagram shall only be applied to a UMLBehaviorDiagram.

[2] SysMLActivityDiagram shall only be applied to a UMLActivityDiagram.The principal of an applied AdjunctProperty
shall be a Connector, CallAction, ObjectNode, Variable, Parameter, submachine State, or InteractionUse.

«stereotype»
SysMLBehaviorDiagram

«stereotype»
SysMLInteractionDiagram

«stereotype»
SysMLStateMachineDiagram

«stereotype»
SysMLActivityDiagram

«metaclass»

UMLActivityDiagram

«stereotype»
SysMLUseCaseDiagram

«metaclass»
UMLInteractionDiagram

«metaclass»
UMLStateMachineDiagram

«metaclass»
UMLUseCaseDiagram

isControlFlowDashed: Boolean = false

«stereotype»
SysMLDiagramWithAssociations

«stereotype»
SysMLDiagram

«metaclass»
UMLBehaviorDiagram
 ISO/IEC 2017 - All rights reserved 197

ISO/IEC 19514:2017(E)
B.2.3 SysMLBlockDefinitionDiagram

Description

A SysMLBlockDefinitionDiagram represents a block definition diagram. It extends UMLPackageDiagram.

Constraints

[1] A SysMLBlockDefinitionDiagram shall have as a defaultNamespace a Class with a Block stereotype or one of its
specializations applied or a Package.

[2] SysMLBlockDefinitionDiagram shall only be applied to a UMLClassDiagram.

B.2.4 SysMLDiagram

Description

SysMLDiagram is an abstract stereotype for all SysML diagrams. It extends UMLDiagram.

Attributes

• defaultNamespace : Namespace [1]
Specifies the default namespace of the SysML diagram.

• isLineJogShown : Boolean [1] = false
Show semi-circular jogs in the stereotyped diagram when two lines are crossing (see Annex A).

Constraints

[1] A UMLDiagram stereotyped by a specialization of SysMLDiagram shall have isFrame=true.

[2] A UMLDiagram stereotyped by a specialization of SysMLDiagram shall have a heading.

[3] A SysMLDiagram that stereotypes a UMLDiagram with a modelElement shall have this modelElement as
defaultNamespace.

[4] SysMLDiagram shall only be applied to a UMLDiagram.

B.2.5 SysMLDiagramElement

Description

SysMLDiagramElement is an abstract generalization of all the other SysML DI stereotypes.

Attributes

• isDecompositionSymbolShown : Boolean [1]
Display a decomposition symbol in a diagram element to indicate the corresponding model element is decomposed in
another diagram. Diagram elements that may have a decomposition symbol are listed in Annex A.

B.2.6 SysMLDiagramWithAssociations

Description

SysMLDiagramWithAssociations is an abstract stereotype for all SysML diagrams with associations. It extends
UMLDiagramWithAssociations.
198  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Constraints

[1] A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations shall have
isAssociationDotShown=false.

[2] A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations shall have
navigabilityNotation=oneWay.

[3] A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations shall have
nonNavigabilityNotation=never.

[4] SysMLDiagramWithAssociations shall only be applied to a UMLDiagramWithAssociations.

B.2.7 SysMLInteractionDiagram

Description

A SysMLInteractionDiagram represents an interaction diagram. It extends UMLInteractionDiagram.

Constraints

[1] A SysMLInteractionDiagram shall have as a defaultNamespace an Interaction.

[2] A UMLInteractionDiagram stereotyped by SysMLInteractionDiagram shall have kind=sequence.

[3] SysMLInteractionDiagram shall only be applied to a UMLInteractionDiagram.

B.2.8 SysMLInternalBlockDiagram

Description

A SysMLInternalBlockDiagram represents an internal block diagram. It extends UMLCompositeStructureDiagram.

Constraints

[1] A SysMLInternalBlockDiagram shall have as a defaultNamespace a Class with a Block stereotype or one of its
specializations applied.

[2] SysMLInternalBlockDiagram shall only be applied to a UMLCompositeStructureDiagram.

B.2.9 SysMLPackageDiagram

Description

A SysMLPackageDiagram represents a package diagram. It extends UMLPackageDiagram.

Constraints

[1] A SysMLPackageDiagram shall have as a defaultNamespace a Package.

[2] SysMLPackageDiagram shall only be applied to a UMLPackageDiagram.

B.2.10 SysMLParametricDiagram

Description

A SysMLParametricDiagram represents a parametric diagram. It is a specialization of
SysMLInternalBlockDiagram.
 ISO/IEC 2017 - All rights reserved 199

ISO/IEC 19514:2017(E)
Attributes

• isConstraintPropertyRounded: Boolean = false
Specifies whether the constraint properties in the parametric diagram have rounded corners
(isConstraintPropertyRounded=true) or not (isConstraintPropertyRounded=false).

Constraints

[1] A SysMLParametricDiagram shall have as a defaultNamespace a Class with a Block stereotype or one of its
specializations applied.

[2] SysMLParametricDiagram shall only be applied to a UMLCompositeStructureDiagram.

B.2.11 SysMLRequirementDiagram

Description

A SysMLRequirementDiagram represents a requirement diagram. It is based on the UML class diagram.

Constraints

[1] A SysMLRequirementDiagram shall have as a defaultNamespace a Package or a Class with a Requirement stereotype or
one of its specializations applied.

[2] SysMLRequirementDiagram shall only be applied to a UMLClassDiagram.

B.2.12 SysMLStateMachineDiagram

Description

A SysMLStateMachineDiagram represents a state machine diagram. It extends UMLStateMachineDiagram.

Constraints

[1] A SysMLStateMachineDiagram shall have as a defaultNamespace a StateMachine.

[2] SysMLStateMachineDiagram shall only be applied to a UMLStateMachineDiagram.

B.2.13 SysMLUseCaseDiagram

Description

A SysMLUseCaseDiagram represents a use case diagram. It extends UMLUseCaseDiagram.

Constraints

[1] A SysMLUseCaseDiagram shall have as a defaultNamespace a Package.

[2] SysMLUseCaseDiagram shall only be applied to a UMLUseCaseDiagram.

B.3 SysML DI usage notes

This clause provides additional notes on how the SysML notation is modeled.

A UMLEdge with a Connector as modelElement may be the source or the target of a UMLEdge with no modelElement.
The target or the source of the latter UMLEdge is a UMLShape with a Property stereotyped by ConnectorProperty or one
of its specializations as modelElement. This UMLEdge is rendered as a dotted line.
200  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Property names with property-specific types (in square brackets) are modeled with UMLTypedElementLabels.

UMLCompartmentableShapes that have a modelElement stereotyped by Allocated or one of its specializations may have
a compartment titled “allocatedFrom” and a compartment titled “allocatedTo.” These compartments contain UMLLabels
with modelElements that are the values of the allocatedFrom and allocatedTo properties, respectively, of the Allocated
stereotype.

A UMLShape with a modelElement stereotyped by Allocated or one of its specializations may be the source or the target
of a UMLEdge with no modelElements. The target or the source of this UMLEdge is a UMLShape with no
modelElement. This UMLShape may contain UMLLabels with text “allocatedFrom” and “allocatedTo,” each being
followed by UMLLabels with modelElements that are the values of the allocatedFrom properties of the Allocated
stereotype or the values of the allocatedTo properties, respectively, of the Allocated stereotype.

SysML callout notation (MasterCallout, DeriveCallout, SatisfyCallout, VerifyCallout, RefineCallout, TraceCallout) can be
modeled by a UMLShape with no modelElement. This UMLShape contains a UMLLabel with text specified by the
callout notation, followed by a UMLLabel with modelElement that is the element with text shown by the callout notation.

B.4 SysML Notation and DI Representation

This sub clause summarizes Annex B by showing how SysML-specific notations shall be modeled using UML and
SysML UML DI. It does not cover all of Annex B or all notations in previous Clauses. The left column shows an example
of SysML notation. The middle column shows UML DI and SysML DI elements corresponding to the notation. These
elements are presented in a containment hierarchy. Elements with the same container are ordered according to the notation
shown in the left column, read from left to right, top to bottom. For each element, the type of diagram element is given,
followed by the type of modelElement and sometimes other constraints that apply to the diagram element, put between
parentheses. The type of modelElement is followed by a '+' when multiple modelElements of this type can be assigned to
one diagram element. A '+' sign between a metaclass and a stereotype corresponds to an element that instantiates the
metaclass and that has the stereotype applied. The right column references “Notation” clauses and figures where the
notation is defined.

Table B.1 - SysML Diagram Elements

Notation Diagram Elements Ref.

UMLEdge (ControlFlow, isControlFlowDashed=false)
UMLEdge+SysMLControlFlowEdge (ControlFlow,
isControlFlowDashed=true)

11.3.1.3.1

UMLClassifierShape (Property+ConstraintProperty,
isConstraintPropertyRounded =false)
- UMLLabel (Stereotype)
- UMLTypedElementLabel (Property)
 UMLClassifierShape (Property+ConstraintProperty,
 isConstraintPropertyRounded=true)
- UMLLabel (Stereotype)
- UMLTypedElementLabel (Property)

10.3.1.2.1

«constraint»
Constraint1

«constraint»
Constraint1
 ISO/IEC 2017 - All rights reserved 201

ISO/IEC 19514:2017(E)
UMLClassifierShape (Class+Block)
- UMLNameLabel (Class)
- UMLShape+SysMLPort (Port, in flows, isIcon=true)
- UMLShape+SysMLPort (Port, out flows, isIcon=true)
- UMLShape+SysMLPort (Port, inout flows, isIcon=true)

9.3.1.6

UMLClassifierShape (Class+Block)
- UMLNameLabel (Class)
- UMLShape (Port)
 - UMLNameLabel (Port)
 - UMLShape (Port)
 - UMLNameLabel (Port)
 - UMLShape (Port)
 - UMLNameLabel (Port)
 - UMLShape (Port)
 - UMLNameLabel (Port)

9.3.1.6

UMLClassifierShape (Class)
- UMLNameLabel (Class)
- UMLCompartment
--- UMLShape (Property)
----- UMLTypedElementLabel (Property)
--- UMLEdge (Connector)
----- UMLTypedElementLabel (Property)
--- UMLShape (Property)
----- UMLTypedElementLabel (Property)
--- UMLEdge
--- UMLShape (Property)
----- UMLTypedElementLabel

8.3.2.3

Table B.1 - SysML Diagram Elements

Notation Diagram Elements Ref.
202  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
UMLClassifierShape (Class)
- UMLNameLabel (Class)
- UMLCompartment
--- UMLLabel
--- UMLLabel (Element)
- UMLCompartment
--- UMLLabel
--- UMLLabel (Element)

15.3.1.3

UMLClassifierShape (Class)
- UMLNameLabel (Class)
UMLEdge
UMLShape
- UMLLabel
- UMLLabel (Element)
- UMLLabel
- UMLLabel (Element)

15.3.1.4

UMLShape (Element)
- UMLNameLabel (Element)
UMLEdge
UMLShape
- UMLLabel
- UMLLabel (Element)

16.3.1.3

Table B.1 - SysML Diagram Elements

Notation Diagram Elements Ref.
 ISO/IEC 2017 - All rights reserved 203

ISO/IEC 19514:2017(E)
204  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Annex C: Deprecated Elements

(normative)

C.1 Overview

Flow Port and Flow Specification are deprecated in this version of SysML and are defined for backward compatibility.
This annex contains the definition of these concepts as they are defined by SysML 1.2. In addition it provides some
guidelines on how to convert FlowPort to ports in this version of SysML. This annex includes guidelines on how to
convert Views, Viewpoints, Units, and QuantityKinds in this version of SysML, but these elements in earlier versions of
SysML are not deprecated, they are changed in this version.

C.1.1 Flow Ports

A flow port specifies the input and output items that may flow between a block and its environment. Flow ports are
interaction points through which data, material, or energy can enter or leave the owning block. The specification of what
can flow is achieved by typing the flow port with a specification of things that flow. This can include typing an atomic
flow port with a single type representing the items that flow in or out, or typing a nonatomic flow port with a flow
specification which lists multiple items that flow. A block representing an automatic transmission in a car could have an
atomic flow port that specifies “Torque” as an input and another atomic flow port that specifies “Torque” as an output. A
more complex flow port could specify a set of signals and/or properties that flow in and out of the flow port. In general,
flow ports are intended to be used for asynchronous, broadcast, or send-and-forget interactions. Flow ports extend
UML 2 ports.
 ISO/IEC 2017 - All rights reserved 205

ISO/IEC 19514:2017(E)
C.2 Diagram Elements

C.2.1 Block Definition Diagram

FlowPort

Flow Por t

T r an s m is s io n
p: ITrans mis s ion

A tomic Flow Ports

Tr an s for m e r
ac : A CV oltage dc : DCV oltage

netw orkType: Elec tr icNetw orkType

C onjugated F low Por t

T r ansm issio n
p: ~IT r ansm ission

SysML::Ports&Flows::FlowPort

FlowPort
(Compartment
Notation)

p: ITransmission

Transm ission

flow ports

Flow Port

in ac: ACVoltage
out dc: DCVoltage
inout netw orkType: ElectricNetw orkType

Transm ission

flow ports

Atomic Flow Ports

p: ~ITransmission

Transmission

flow ports

Conjugated Flow Port

SysML::Ports&Flows::FlowPort

FlowSpecification

in gearSelect: Gear
in engineTorque: Torque
out w heelsTorque: Torque

«f low Specif ication»
Nam e

flowProperties

SysML::Ports&Flows::
FlowSpecification

Table C.1 - Graphical nodes defined in block definition diagrams

Node Name Concrete Syntax Abstract Syntax Reference
206  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
C.2.2 Internal Block Diagram

FlowPort

Flow Port

t: Transm ission
p: ITransmission

Atomic Flow Ports

tr: Transform er
ac: ACVoltage dc: DCVoltage

netw orkType: ElectricNetw orkType

Conjugated Flow Port

Transmission
p: ~ITransmission

SysML::Ports&Flows::FlowPort

ItemFlow

Item Flow with an Item Property

eng: Engine

trns: Transmission

p: Torque

p: Torque

Torque

eng: Engine

trns: Transmission

p: Torque

p: Torque

torque: Torque

Item Flow

SysML::Ports&Flows::ItemFlow

Table C.2 - Graphical nodes defined in internal block diagrams

Node Name Concrete Syntax Abstract Syntax Reference
 ISO/IEC 2017 - All rights reserved 207

ISO/IEC 19514:2017(E)
C.3 UML Extensions

C.3.1 Diagram Extensions

C.3.1.1 FlowPort

A FlowPorts is an interaction point through which input and/or output of items such as data, material, or energy may flow.
The notation of flow port is a square on the boundary of the owning block or its usage. The label of the flow port is in the
format portName: portType. Atomic flow ports have an arrow inside them indicating the direction of the port with respect
to the owning Block. A nonatomic flow port has two open arrow heads facing away from each other (i.e., < >). The fill
color of the square is white and the line and text colors are black.

In addition, flow ports can be listed in a special compartment labeled “flow ports.” The format of each line is:

in | out | inout portName:portType [{conjugated}]

C.3.1.2 FlowSpecification

A FlowSpecification specifies inputs and outputs as a set of flow properties. It has a “flowProperties” compartment that
lists the flow properties.

C.3.2 Stereotypes

C.3.2.1 Package Ports&Flows

Figure C.1 - Deprecated Stereotypes

C.3.2.2 FlowPort

Description

A FlowPort is an interaction point through which input and/or output of items such as data, material, or energy may flow.
This enables the owning block to declare which items it may exchange with its environment and the interaction points
through which the exchange is made.

We distinguish between atomic flow port and a nonatomic flow port. Atomic flow ports relay items that are classified by
a single Block, ValueType, or Signal classifier. A nonatomic flow port relays items of several types as specified by a
FlowSpecification.

The distinction between atomic and nonatomic flow ports is made according to the flow port’s type: If a flow port is typed
by a flow specification, then it is nonatomic; if a flow port is typed by a Block, ValueType, or Signal classifier, then it is
atomic.

«metaclass»
UML4SysML::Interface

«stereotype»
FlowSpecification

«metaclass»
UML4SysML::Port

/isAtomic: Boolean
direction: FlowDirection

«stereotype»
FlowPort
208  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Flow ports and associated flow specifications define “what can flow” between the block and its environment, whereas
item flows specify “what does flow” in a specific usage context.

Flow ports relay items to their owning block or to a connector that connects them with their owner’s internal parts
(internal connector).

The isBehavior attribute inherited from UML port is interpreted in the following way: if isBehavior is set to true, then the
items are relayed to/from the owning block. More specifically, every flow property within the flow port is bound to a
property owned by the port’s owning block or to a parameter of its behavior. If isBehavior is set to false, then the flow
port shall be connected to an internal connector, which in turn related the items via the port. The need for isBehavior is
mainly to allow specification of internal parts relaying items to their containing part via flow ports.

The isConjugated attribute inherited from the UML Port metaclass is interpreted as follows: It indicates if the flows of
items of a nonatomic flow port maintain the directions specified in the flow specification or if the direction of every flow
property specified in the flow specification is reversed (IN becomes OUT and vice versa). If set to True, then all the
directions of the flow properties specified by the flow specification that types a nonatomic flow port are relayed in the
opposite direction (i.e., an “in” flow property is treated as an “out” flow property by the flow port and vice-versa). By
default, the value is False. This attribute applies only to nonatomic flow ports since atomic flow ports have a direction
attribute signifying the direction of the flow.

In case of flow properties or atomic flow ports of type Signal, inbound properties or atomic flow port are mapped to a
Reception of the signal type (or a subtype) of the flow property’s type. Outbound flow properties only declare the ability
of the flow port to relay the signal over external connectors attached to it and are not mapped to a property of the flow
port’s owning block.

The item flows specified as flowing on a connector between flow ports shall match the flow properties of the ports at each
end of the connector: the source of the item flow should be the port that has an outbound/bidirectional flow property that
matches the item flow’s type and the target of the item flow should be the port that has an inbound/bidirectional flow
property that matches the type of the item flow.

If a flow port is connected to multiple external and/or internal connectors, then the items are propagated (broadcast) over
all connectors that have matching properties at the other end.

C.3.2.3 Semantic Variation Points

The binding of the flow properties on the ports to behavior parameters and/or block properties is a semantic variation
point. One approach is to perform name and type matching. Another approach is to explicitly use binding relationships
between the ports properties and behavior parameters or block properties.

Attributes

• /isAtomic : Boolean (derived)
This is a derived attribute (derived from the flow port’s type). For a flow port typed by a flow specification the
value of this attribute is False, otherwise the value is True.

• direction : FlowDirection
Indicates the direction in which an atomic flow port relays its items. If the direction is set to “in,” then the items
are relayed from an external connector via the flow port into the flow port’s owner (or one of its parts). If the
direction is set to “out,” then the items are relayed from the flow port’s owner, via the flow port, through an
external connector attached to the flow port. If the direction is set to “inout,” then items can flow both ways. By
default, the value is inout.
 ISO/IEC 2017 - All rights reserved 209

ISO/IEC 19514:2017(E)
Constraints

[1] A FlowPort shall be typed by a FlowSpecification, Block, Signal, or ValueType.

[2] If the FlowPort is atomic (by its type), then isAtomic=True, the direction shall be specified (has a value), and
isConjugated is not specified (has no value).

[3] If the FlowPort is nonatomic, and the FlowSpecification typing the port has flow properties with direction “in,” the
FlowPort direction shall be “in” (or “out” if isConjugated=true). If the flow properties are all out, the FlowPort direction
shall be out (or in if isConjugated=true). If flow properties are both in and out, the direction shall be inout.

[4] A FlowPort can be connected (via connectors) to one or more flow ports that have matching flow properties. The matching
of flow properties shall be done in the following steps:

1. Type Matching: The type being sent shall be the same type or a subtype of the type being received.

2. Direction Matching: If the connector connects two parts that are external to one another, then the direction of the flow
properties shall be opposite, or at least one of the ends should be inout. If the connector is internal to the owner of one
of the flow ports, then the direction shall be the same or at least one of the ends shall be inout.

3. Name Matching: In case there is type and direction match to several flow properties at the other end, the property that
has the same name at the other end shall be selected. If there is no such property, then the connection is ambiguous
(ill-formed).

[5] If a flow port is not connected to an internal part, then isBehavior shall be set to true.

C.3.2.4 FlowSpecification

Description

A FlowSpecification specifies inputs and outputs as a set of flow properties. A flow specification is used by flow ports to
specify what items can flow via the port.

Constraints

[1] Flow specifications shall not own operations or receptions (they can only own FlowProperties).

[2] Every “ownedAttribute” of a FlowSpecification shall be a FlowProperty.

C.3.2.5 ItemFlow (deprecated compatibility rule)

ItemFlows are not deprecated, but when used with atomic flows ports, have a deprecated modification of item flow
compatibility rules that treats types of source and target atomic ports as if they were types of flow properties on types of those
ports.

C.4 Transitioning SysML 1.2 Flow Ports to SysML 1.3 Ports
(informative)

To convert a SysML 1.2 flow port to ports in this version of SysML it is recommended to use the following guidelines:

1. Decide if the port should be converted to a proxy port, a full port, or an unstereotyped port.

2. Based on the decision in step 1, create a block (for proxy ports, it shall be an interface block specifically).

3. If the original flow port is non-atomic:
a. Copy all the flow properties owned by the flow port’s type, a flow specification, to the block created in step 2
 (meaning the flow properties will be owned by the newly created block).
210  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
b. Replace the type of the port with the block created in step 2.
c. Remove the flow port stereotype from the port.
d. Based on the decision in step 1, apply the ProxyPort or FullPort stereotype, or do nothing if the decision is not to
 use either one.
e. If the proxy stereotype is applied in step 3d, and there is a single connector from the port to a part, the
 BindingConnector may be applied to the connector.
f. If the flow specification is not referenced by other model elements, delete it.

4. If the original flow port is atomic:
a. On the block created in step 2, specify a flow property typed by the same type as the flow port and with the
 same direction as the original flow port.
b. Do steps b to d from step 3 about non-atomic flow ports.

C.5 Transitioning SysML 1.3 Viewpoint and View to SysML 1.4
(informative)

Refactoring a view model build from the SysML 1.3 defined viewpoint, view, conforms, and the UML package import
mechanism could be performed as follows:

• Conform

• Replace v1.3 Conform with v1.4 Conform. The conform target in 1.3 becomes the general classifier in 1.4.

• View

• Replace 1.3 View package with 1.4 View class

• Viewpoint

• For each Stakeholder string, create a stakeholder with the string as the name

• Update the stakeholder property on the new viewpoint with the created stakeholder

• For each method string of the 1.3 viewpoint, create the operation «create»View() and append the string to the body
of a comment that annotates the operation.

• Element and package import

• Replace each package and element import with an expose relationship.

C.6 Transitioning SysML 1.3 Units and QuantityKinds to SysML 1.4
(informative)

Changing units and quantity kinds from SysML 1.3 to SysML 1.4 can be accomplished as follows, depending on the kind
of element being changed:

• An InstanceSpecification stereotyped by SysML 1.3 Unit:

• Unapply the SysML 1.3 Unit stereotype.

• Classify the instance specification by SysML::Libraries::UnitAndQuantityKind::Unit.

• Set the values of SysML 1.4 Unit properties (symbol, description, definitionURI) to the values of the Unit
stereotype properties of the same name (symbol, description, definitionURI).

• An InstanceSpecification stereotyped by SysML 1.3 QuantityKind:
 ISO/IEC 2017 - All rights reserved 211

ISO/IEC 19514:2017(E)
• Unapply the SysML 1.3 QuantityKind stereotype.

• Classifying the instance specification by SysML::Libraries::UnitAndQuantityKind::QuantityKind.

• Set the values of SysML 1.4 QuantityKind properties (symbol, description, definitionURI) to the values of the
QuantityKind stereotype properties of the same name (symbol, description, definitionURI).

• An InstanceSpecification classified by SysML 1.3 QUDV::Unit or one of its specializations:

• If the instance specification has no value for the SysML 1.3 QUDV::Unit::name property, no further changes are
needed.

• If the instance specification has a value for the SysML 1.3 QUDV::Unit::name property and the instance
specification has no name, then set its name to the value of the SysML 1.3 QUDV::Unit::name property.

• If the instance specification has a value for the SysML 1.3 QUDV::Unit::name property and the instance
specification has a name, then choose whether to keep the same name for the instance specification or use the value
of the SysML 1.3 QUDV::Unit::name property.

• An InstanceSpecification classified SysML 1.3 QUDV::QuantityKind or one of its specializations:

• If the instance specification has no value for the SysML 1.3 property QUDV::QuantityKind::name, then no further
changes are needed.

• If the instance specification has a value for the SysML 1.3 property QUDV::QuantityKind::name and the instance
specification has no name, then set the name of the instance specification to the value of the SysML 1.3
QUDV::QuantityKind::name property.

• If the instance specification has a value for the SysML 1.3 property QUDV::QuantityKind::name and the instance
specification has a name, then choose whether to keep the same name for the instance specification or use the value
of the SysML 1.3 QUDV::QuantityKind::name property.

• An InstanceSpecification classified by SysML 1.3 QUDV::Scale. Each SysML 1.3 QUDV::ScaleValueDefinition
becomes an EnumerationLiteral such that:

• The numeric value of SysML 1.3 QUDV::ScaleValueDefinition::value becomes a specification of the
corresponding EnumerationLiteral.

• The string value of SysML 1.3 QUDV::ScaleValueDefinition::description becomes a comment on the
corresponding EnumerationLiteral.

• Blocks defined as specializations of SysML 1.3 QUDV::Unit do not require changes in SysML 1.4.

• Blocks defined as specializations of SysML 1.3 QUDV::QuantityKind do not require changes in SysML 1.4 except
for the following:

• Blocks defined specializations of QUDV::SpecializedQuantityKind in SysML 1.3 become corresponding Blocks
defined as specializations of QUDV::QuantityKind in SysML 1.4.

• Usages of SysML 1.3 QUDV::SpecializedQuantityKind::general property become corresponding usages of
QUDV::QuantityKind::general in SysML 1.4.
212  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Annex D: Sample Problem

(informative)

D.1 Purpose

The purpose of this annex is to illustrate how SysML can support the specification, analysis, and design of a system using
some of the basic features of the language.

D.2 Scope

The scope of this example is to provide at least one diagram for each SysML diagram type. The intent is to select
simplified fragments of the problem to illustrate how the diagrams can be applied, and to demonstrate some of the
possible inter-relationships among the model elements in the different diagrams. The sample problem does not highlight
all of the features of the language. The reader should refer to the individual clauses for more detailed features of the
language. The diagrams selected for representing a particular aspect of the model, and the ordering of the diagrams are
intended to be representative of applying a typical systems engineering process, but this will vary depending on the
specific process and methodology that is used.

D.3 Problem Summary

The sample problem describes the use of SysML as it applies to the development of an automobile, in particular a Hybrid
gas/electric powered Sport Utility Vehicle (SUV). This problem is interesting in that it has inherently conflicting
requirements, viz. desire for fuel efficiency, but also desire for large cargo carrying capacity and off-road capability.
Technical accuracy and the feasibility of the actual solution proposed were not high priorities. This sample problem
focuses on design decisions surrounding the power subsystem of the hybrid SUV; the requirements, performance
analyses, structure, and behavior.

This annex is structured to show each diagram in the context of how it might be used on such an example problem. The
first sub clause shows SysML diagrams as they might be used to establish the system context; establishing system
boundaries, and top level use cases. The next sub clause is provided to show how SysML diagrams can be used to analyze
top level system behavior, using sequence diagrams and state machine diagrams. The following sub clause focuses on use
of SysML diagrams for capturing and deriving requirements, using diagrams and tables. A sub clause is provided to
illustrate how SysML is used to depict system structure, including block hierarchy and part relationships. The relationship
of various system parameters, performance constraints, analyses, and timing diagrams are illustrated in the next sub
clause. A sub clause is then dedicated to illustrating definition and depiction of interfaces and flows in a structural
context. The final sub clause focuses on detailed behavior modeling, functional and flow allocation.
 ISO/IEC 2017 - All rights reserved 213

ISO/IEC 19514:2017(E)
D.4 Diagrams

D.4.1 Package Overview (Structure of the Sample Model)

D.4.1.1 Package Diagram - Applying the SysML Profile

As shown in Figure D.1, the HSUVModel is a package that represents the user model. The SysML Profile shall be applied
to this package in order to include stereotypes from the profile. The HSUVModel may also require model libraries, such
as the SI Units Types model library. The model libraries shall be imported into the user model as indicated.

Figure D.1 - Establishing the User Model by Importing and
 Applying SysML Profile & Model Library (Package Diagram)

Figure D.2 details the specification of units and valueTypes employed in this sample problem.

pkg ModelingDomain [Establishing HSUV Model]

«modelLibrary»
SI Definitions

«import»

«profile»
SysML

HSUVModel

«apply»
{strict}

«apply» {strict}
214  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure D.2 - Defining valueTypes and units to be Used in the Sample Problem

D.4.1.2 Package Diagram - Showing Package Structure of the Model

The package diagram (Figure D.3) shows the structure of the model used to evaluate the sample problem. Model elements
are contained in packages, and relationships between packages (or specific model elements) are shown on this diagram.
The relationship between the views (OperationalView and PerformanceView) and the rest of the user model are explicitly
expressed using the «import» relationship. Note that the «view» models contain no model elements of their own, and that
changes to the model in other packages are automatically updated in the Operational and Performance Views.

pkg ModelingDomain [Values and Units]

«modelLibrary»
Automotive Value Types

Automotive Units

«modelLibrary»
SI Definitions

«import»

«unit»
{quantityKind=Power}

hp

«unit»
{quantityKind=Temperature}

°F

«unit»
{quantityKind=Acceleration}

g

«unit»
{quantityKind=Mass}

lb

«unit»
{quantityKind=Pressure}

psi

«unit»
{quantityKind=Time}

sec

«unit»
{quantityKind=Velocity}

mph

«unit»
{quantityKind=Distance}

ft

«unit»
{quantityKind=Volume}

ft^3

«valueType»
unit = g

Accel

«valueType»
unit = hp

Horsepwr

«valueType»
Real

«valueType»
unit = lb

Weight

«valueType»
unit = mph

Vel

«valueType»
unit = sec

Time

«valueType»
unit = ft

Dist

«valueType»
unit = psi

Press

«valueType»
unit = °F

Temp

«valueType»
unit = ft^3

Vol
 ISO/IEC 2017 - All rights reserved 215

ISO/IEC 19514:2017(E)
Figure D.3 - Establishing Structure of the User Model using Packages and Views (Package Diagram)

D.4.2 Setting the Context (Boundaries and Use Cases)

D.4.2.1 Internal Block Diagram - Setting Context

The term “context diagram,” in Figure D.4, refers to a user-defined usage of an internal block diagram, which depicts
some of the top-level entities in the overall enterprise and their relationships. The diagram usage enables the modeler or
methodologist to specify a unique usage of a SysML diagram type using the extension mechanism described in Annex A,
“Diagrams.” The entities are conceptual in nature during the initial phase of development, but will be refined as part of
the development process. The «system» and «external» stereotypes are user defined, not specified in SysML, but help the
modeler to identify the system of interest relative to its environment. Each model element depicted may include a
graphical icon to help convey its intended meaning. The spatial relationship of the entities on the diagram sometimes
conveys understanding as well, although this is not specifically captured in the semantics. Also, a background such as a
map can be included to provide additional context. The associations among the classes may represent abstract conceptual
relationships among the entities, which would be refined in subsequent diagrams. Note how the relationships in this
diagram are also reflected in the Automotive Domain Model Block Definition Diagram, Figure D.15.

pkg HSUV Model

HSUV Use
CasesHSUV Behavior

HSUV
Requirements

HSUV Analysis

HSUV Structure

Automotive
ValueTypes

HSUV Views
HSUV

Viewpoints
HSUV Viewpoint

Methods

«view»
Operational View

«view»
Performance View

«activity»
Requirements

Query

«viewpoint»
Operational
Viewpoint

«viewpoint»
Performance

Viewpoint

«block»
Automotive Domain

Deliver Power
Behavior HSUV Interfaces

«requirement»
Performance
216  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure D.4 - Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram.
 (Internal Block Diagram) Completeness of Diagram Noted in Diagram Description

D.4.2.2 Use Case Diagram - Top Level Use Cases

The use case diagram for “Drive Vehicle” in Figure D.5 depicts the drive vehicle usage of the vehicle system. The subject
(HybridSUV) and the actors (Driver, Registered Owner, Maintainer, Insurance Company, DMV) interact to realize the use
case.

«ContextDiagram»
ibd [block] AutomotiveDomain

«external»
drivingConditions:Environment

x1:

x4:

Maintainer:

x5:

«external»
road:Road

«diagramDescription»
version=”0.1"
description=”Initial concept to identify top level domain entities"
reference=”Ops Concept Description”
completeness=”partial. Does not include gas pump and other
external interfaces.”

«external»
object:ExternalObject

«system»
HSUV:

HybridSUV

«external»
weather:Weatherx2:

Driver:

Passenger:

1..*

1..*

«external»
vehicleCargo:

Baggage

x3:
 ISO/IEC 2017 - All rights reserved 217

ISO/IEC 19514:2017(E)
Figure D.5 - Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram)

D.4.2.3 Use Case Diagram - Operational Use Cases

Goal-level Use Cases associated with “Operate the Vehicle” are depicted in the following diagram. These use cases help
flesh out the specific kind of goals associated with driving and parking the vehicle. Maintenance, registration, and
insurance of the vehicle would be covered under a separate set of goal-oriented use cases.

uc HSUVUseCases [TopLevelUseCases]

HybridSUV

Driver

Operate the
vehicle

Maintain the
vehicle

Maintainer

Insure the
vehicle

Register the
vehicle

InsuranceCompany

Department
Of Motor
Vehicles

Registered
Owner
218  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure D.6 - Establishing Operational Use Cases for “Drive the Vehicle” (Use Case Diagram)

D.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)

D.4.3.1 Sequence Diagram - Drive Black Box

Figure D.7 shows the interactions between driver and vehicle that are necessary for the “Drive the Vehicle” Use Case.
This diagram represents the “DriveBlackBox” interaction, with is owned by the AutomotiveDomain block. “BlackBox”
for the purpose of this example, refers to how the subject system (HybridSUV block) interacts only with outside elements,
without revealing any interior detail.

The conditions for each alternative in the alt controlSpeed sub clause are expressed in OCL, and relate to the states of the
HybridSUV block, as shown in Figure D.8.

uc HSUVUseCases [Operational Use Cases]

HybridSUV

Driver

Accelerate
Drive the vehicle

Steer

Brake

«include»

«include»

«include»

Park «include»

«extend»

Start the vehicle
 ISO/IEC 2017 - All rights reserved 219

ISO/IEC 19514:2017(E)
Figure D.7 - Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram)

D.4.3.2 State Machine Diagram - HSUV Operational States

Figure D.8 depicts the operational states of the HSUV block, via a State Machine named “HSUVOperationalStates.” Note
that this state machine was developed in conjunction with the DriveBlackBox interaction in Figure D.7. Also note that
this state machine refines the requirement “PowerSourceManagment,” which will be elaborated in the requirements sub
clause of this sample problem. This diagram expresses only the nominal states. Exception states, like “acceleratorFailure,”
are not expressed on this diagram.
220  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure D.8 - Finite State Machine Associated with “Drive the Vehicle” (State Machine Diagram)

D.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

Figure D.9 shows a “black box” interaction, but references “StartVehicleWhiteBox” (Figure D.10), which will decompose
the lifelines within the context of the HybridSUV block.

Figure D.9 - Black Box Interaction for “StartVehicle,” referencing White Box Interaction (Sequence Diagram)

stm HSUVOperationalStates

Operate

Idle

Accellerating/
Cruising

Braking

engageBrake

accelerate stopped

releaseBrake

shutOff

Off

start

keyOff

Refines
«requirement»
PowerSource
Management

Nominal
states only
 ISO/IEC 2017 - All rights reserved 221

ISO/IEC 19514:2017(E)
The lifelines on Figure D.10 (“whitebox” sequence diagram) need to come from the Power System decomposition. This
now begins to consider parts contained in the HybridSUV block.

Figure D.10 - White Box Interaction for “StartVehicle” (Sequence Diagram)

D.4.4 Establishing Requirements (Requirements Diagrams and Tables)

D.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy

The vehicle system specification contains many text based requirements. A few requirements are highlighted in Figure
D.11, including the requirement for the vehicle to pass emissions standards, which is expanded for illustration purposes.
The containment (cross hair) relationship, for purposes of this example, refers to the practice of decomposing a complex
requirement into simpler, single requirements.
222  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure D.11 - Establishing HSUV Requirements Hierarchy (containment) - (Requirements Diagram)

D.4.4.2 Requirement Diagram - Derived Requirements

Figure D.12 shows a set of requirements derived from the lowest tier requirements in the HSUV specification. Derived
requirements, for the purpose of this example, express the concepts of requirements in the HSUVSpecification in a
manner that specifically relates them to the HSUV system. Various other model elements may be necessary to help
develop a derived requirement, and these model element may be related by a «refinedBy» relationship. Note how
PowerSourceManagement is “RefinedBy” the HSUVOperationalStates model (Figure D.8). Note also that rationale can be
attached to the «deriveReqt» relationship. In this case, rationale is provided by a referenced document “Hybrid Design
Guidance.”

«requirement»
Eco-Friendliness

«requirement»
Performance

«requirement»
Capacity«requirement»

Ergonomics

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
OffRoadCapability

«requirement»
Acceleration

id = “R1.2.1”
text = “The vehicle shall meet Ultra-Low
Emissions Vehicle standards.”

«requirement»
Emissions

«requirement»
PassengerCapacity

«requirement»
FuelCapacity

«requirement»
CargoCapacity

HSUVSpecification

«requirement»
Qualification

«requirement»
SafetyTest

req [package] HSUVRequirements [HSUV Specification]
 ISO/IEC 2017 - All rights reserved 223

ISO/IEC 19514:2017(E)
Figure D.12 - Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchy
 (Requirements Diagram)

D.4.4.3 Requirement Diagram - Acceleration Requirement Relationships

Figure D.13 focuses on the Acceleration requirement, and relates it to other requirements and model elements. The
“refine” relation, introduced in Figure D.12, shows how the Acceleration requirement is refined by a similarly named use
case. The Power requirement is satisfied by the PowerSubsystem, and a Max Acceleration test case verifies the
Acceleration requirement.

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
RegenerativeBraking

«requirement»
PowerSourceManagement

«requirement»
Power

«deriveReqt»«deriveReqt»

«deriveReqt»

«deriveReqt»

«requirement»
Acceleration

«requirement»
CargoCapacity

«requirement»
FuelCapacity

«requirement»
OffRoadCapability

«requirement»
Range

«deriveReqt» «deriveReqt»

«deriveReqt» «deriveReqt» «deriveReqt»

RefinedBy
HSUVStructure::HSUV.
HSUVOperationalStates

«rationale»
Power delivery shall happen by coordinated
control of gas and electric motors. See
“Hybrid Design Guidance”

«problem»
Power needed for acceleration, off-road
performance & cargo capacity conflicts
with fuel economy

req [package] HSUVRequirements [Requirement Derivation]
224  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure D.13 - Acceleration Requirement Relationships (Requirements Diagram)

D.4.4.4 Table - Requirements Table

Figure D.14 contains two diagrams that show requirement containment (decomposition), and requirements derivation in
tabular form. This is a more compact representation than the requirements diagrams shown previously.

req [package] HSUVRequirements [Acceleration Requirement Refinement and Verification]

«requirement»
Acceleration

HSUVUseCases:
:Accelerate

«block»
PowerSubsystem

«refine»

«satisfy»

«requirement»
Power

«deriveReqt»

«testCase»
Max Acceleration

«verify»
 ISO/IEC 2017 - All rights reserved 225

ISO/IEC 19514:2017(E)
Figure D.14 - Requirements Relationships Expressed in Tabular Format (Table)

D.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block
Diagrams)

D.4.5.1 Block Definition Diagram - Automotive Domain

Figure D.15 provides definition for the concepts previously shown in the context diagram. Note that the interactions
DriveBlackBox and Stac4rtVehicleBlackBox (described in D.4.3, Elaborating Behavior (Sequence and State Machine
Diagrams)) are depicted as owned by the AutomotiveDomain block.

table [requirement] Performance [Decomposition of Performance Requirement]

id name text

2 Performance

The Hybrid SUV shall have the braking, acceleration, and off-
road capability of a typical SUV, but have dramatically better
fuel economy.

2.1 Braking
The Hybrid SUV shall have the braking capability of a typical
SUV.

2.2 FuelEconomy
The Hybrid SUV shall have dramatically better fuel economy
than a typical SUV.

2.3 OffRoadCapability
The Hybrid SUV shall have the off-road capability of a
typical SUV.

2.4 Acceleration
The Hybrid SUV shall have the acceleration of a typical
SUV.

table [requirement] Performance [Tree of Performance Requirements]

id name relation id name relation id name
2.1 Braking deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.2 Range
4.2 FuelCapacity deriveReqt d.2 Range
2.3 OffRoadCapability deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
2.4 Acceleration deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
4.1 CargoCapacity deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
226  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure D.15 - Defining the Automotive Domain (compare with Figure D.4) - (Block Definition Diagram)

D.4.5.2 Block Definition Diagram - Hybrid SUV

Figure D.17 defines components of the HybridSUV block. Note that the BrakePedal and WheelHubAssembly are used
by, but not contained in, the PowerSubsystem block.

Figure D.16 - Defining Structure of the Hybrid SUV System (Block Definition Diagram)

bdd [package] HSUVStructure [Automotive Domain Breakdown]

interactions
DriveBlackBox
StartVehicleBlackBox

«domain»
AutomotiveDomain

«system»
HybridSUV

«external»
Baggage

Driver Maintainer Passenger

«external»
Environment

«external»
Road

1..* road

drivingConditionsvehicleCargoHSUV

«external»
Weather

«external»
ExternalObject

1..* objectweather
 ISO/IEC 2017 - All rights reserved 227

ISO/IEC 19514:2017(E)
D.4.5.3 Internal Block Diagram - Hybrid SUV

Figure D.17 shows how the top level model elements in the above diagram are connected together in the HybridSUV
block.

Figure D.17 - Internal Structure of Hybrid SUV (Internal Block Diagram)

D.4.5.4 Block Definition Diagram - Power Subsystem

Figure D.18 defines the next level of decomposition, namely the components of the PowerSubsystem block. Note how the
use of white diamond (shared aggregation) on FrontWheel, BrakePedal, and others denotes the same “use-not-
composition” kind of relationship previously shown in Figure D.17.

ibd [block] HybridSUV

p:PowerSubsystem

c:chassisSubsytem br:BrakeSubsystem

i: InteriorSubsystem

l:LightingSubsystem

b:BodySubsystem

c-bk:

b-c:

b-i:

i-l:
b-l:

bk-l:

p-c:

p-bk:
228  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
.

Figure D.18 - Defining Structure of Power Subsystem (Block Definition Diagram)

D.4.5.5 Internal Block Diagram for the “Power Subsystem”

Figure D.19 shows how the parts of the PowerSubsystem block, as defined in the diagram above, are used. It shows
connectors between parts, ports, and connectors with item flows. The dashed borders on FrontWheel and BrakePedal
denote the “use-not-composition” relationship depicted elsewhere in Figure D.17 and Figure D.18. The dashed borders on
Fuel denote a store, which keeps track of the amount and mass of fuel in the FuelTankAssy. This is also depicted in
Figure D.18.

Power Subsystem BreakdownHSUV Structure[Package] bdd []

InternalC ombus tionE ngine

E lectricalPowerC ontroller

E lectricMotorGeneratorFuelTankAs s embly

WheelHubAs s embly

PowerC ontrolUnit

PowerS ubs ys tem

Trans mis s ionFuelPump FuelInjector

B rakePedal

Accelerator

FrontWheel

Differential

B atteryPack

Fuel

trsm

difacl

rfw 1

0..1

lfw 1

0..1

bkp 1

0..1

ft

bp epc

emgice

0..1

pcu

fp fi 4
 ISO/IEC 2017 - All rights reserved 229

ISO/IEC 19514:2017(E)
Figure D.19 - Internal Structure of the Power Subsystem (Internal Block Diagram)

Figure D.20 - Blocks Typing Ports in the Power Subsystem (Block Definition Diagram)

Figure D.20 provides definition of the block that types the ports linked by connector c1 in Figure D.19.

ibd [block] PowerSubsystem [Alternative 1 - Combined Motor Generator]

emg:ElectricMotor
Generator

trsm:Transmission

ice:InternalCombustionEngine

acl:accelerator

ecu:PowerControlUnit

ft:FuelTankAssy

dif:Differential

rfw:ChassisSubsytem
.FrontWheel

lfw:ChassisSubsytem
.FrontWheel

Port:ICEFuelFitting

fuelDelivery

torqueOut:

torquein:

spline

fuelSupply:Fuel

epc:ElectricalPower
Controllerbp:BatteryPack

bp-epc:

i1:Electric
Current

i2:Electric
Current

fp:FuelPump

fi:FuelInjector

4
fdist:bkp:BrakeSubsystem

.BrakePedal
<>

4

fuelReturn:Fuel

<>

g1
:T

or
qu

e t2
:T

or
qu

e

t1:Torque

ice

ctrl
I_ICECmds

I_ICECmds

ctrl

ctrl

I_ICEData I_ICEData

trsmepc

c3:

c2:

c1:

I_IEPCCmdI_IEPCData

I_IEPCDataI_EPCCmd

I_TRSMData

I_TRSMCmd

I_TRSMCmd

I_TRSMData

rightHalfShaft

leftHalfShaft

ac
l-e

cu
:

bk
p-

ec
u:

Port:~FuelTankFitting

bdd [block] PowerSubsystem [ICE Port Type Definitions]

rpm : Integer
Temperature : Real
isKnocking : Boolean
reqd isControlOn : Boolean

setThrottle(throttlePosition:Real):void
setMixture(mixture:Real):void

ICE

operations

value properties
230  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
D.4.6 Defining Ports and Flows

D.4.6.1 Block Definition Diagram - ICE Flow Properties

For purposes of example, the ports, flows, and related point-to-point connectors in Figure D.19 are being refined into a
common bus architecture. For this example, ports with flow properties have been used to model the bus architecture.
Figure D.21 is an incomplete first step in the refinement of this bus architecture, as it begins to specify the flow properties
for InternalCombustionEngine, the Transmission, and the ElectricalPowerController.

.

Figure D.21 - Initially Defining Port Types with Flow Properties for the CAN Bus (Block Definition Diagram)

D.4.6.2 Internal Block Diagram - CANbus

Figure D.22 continues the refinement of this Controller Area Network (CAN) bus architecture using ports. The explicit
structural allocation between the original connectors of Figure D.19 and this new bus architecture is shown in Figure
D.39.

bdd CAN Bus Flow Properties

out engineData: ICEData
in mixture: Real
in throttlePosition: Real

FS_ICE

flow properties

rpm: Integer
temperature: Real
isKnocking: Boolean

«signal»
ICEData

FS_TRSM

flow properties

FS_EPC

flow properties

To be specified – What is
being exchanged over the
bus to/from the
transmission.

To be specified – What is
being exchanged over the
bus to/from the electronic
power controller.
 ISO/IEC 2017 - All rights reserved 231

ISO/IEC 19514:2017(E)
Figure D.22 - Consolidating Connectors into the CAN Bus. (Internal Block Diagram)

D.4.6.3 Block Definition Diagram - Fuel Flow Properties

The ports on the FuelTankAssembly and InternalCombustionEngine (as shown in Figure D.19) are defined in Figure
D.23.

Figure D.23 - Elaborating Definition of Fuel Flow. (Block Definition Diagram)

D.4.6.4 Parametric Diagram - Fuel Flow

Figure D.24 is a parametric diagram showing how fuel flowrate is related to FuelDemand and FuelPressure value
properties.

CAN Bus DescriptionPowerSubsystem[Block] ibd []

«block»
 : C AN_B us

«block»
pcu : PowerC ontrolUnit

eepc : ~IFS_EPC etrsm : ~IFS_TRSM eice : ~IFS_ICE

«block»
ice : InternalC ombus tionE ngine

fp : FS_ICE

«block»
epc : E lectricalPowerC ontroller

fp : FS_EPC

«block»
trs m : Trans mis s ion

fp : FS_TRSM

bdd [block] HSUV [PowerSubsystem Fuel Flow Definition]

temperature:Temp
pressure:Press

Fuel

«flowProperties»
 out fuelSupply:Fuel
 in fuelReturn:Fuel

«flowSpecification»
FuelFlow

PowerSubsystem

«flowProperties»
 in fuelSupply:Fuel
 out fuelReturn:Fuel

FuelTankAssembly

«flowProperties»
 out fuelSupply:Fuel
 in fuelReturn:Fuel

InternalCombustionEngine

iceft

FuelTankFitting:~FuelFlow

ICEFuelFitting:FuelFlow

<>
232  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure D.24 - Defining Fuel Flow Constraints (Parametric Diagram)

D.4.6.5 Internal Block Diagram - Fuel Distribution

Figure D.25 shows how the connectors fuelDelivery and fdist on Figure D.19 have been expanded to include design
detail. The fuelDelivery connector is actually two connectors, one carrying fuelSupply and the other carrying fuelReturn.
The fdist connector inside the InternalCombustionEngine block has been expanded into the fuel regulator and fuel rail
parts. These more detailed design elements are related to the original connectors using the allocation relationship. The
Fuel store represents a quantity of fuel in the FuelTankAssy, which is drawn by the FuelPump for use in the engine, and
is refreshed, to some degree, by fuel returning to the FuelTankAssy via the FuelReturnLine.

par [Block]PowerSubsystem

constraints

{flowrate=press/(4*injectorDemand)}

fuelflow:FuelFlow

press:Real

injectorDemand:Real

ice.fr.fuel.FuelPressure::Real

ice.fi.FuelDemand:Real

flowrate:Real

ice.ft.FuelFlowRate:Real
 ISO/IEC 2017 - All rights reserved 233

ISO/IEC 19514:2017(E)
Figure D.25 - Detailed Internal Structure of Fuel Delivery Subsystem (Internal Block Diagram)

D.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)

D.4.7.1 Block Definition Diagram - Analysis Context

Figure D.26 defines the various model elements that will be used to conduct analysis in this example. It depicts each of
the constraint blocks/equations that will be used for the analysis, and key relationships between them.

ice:InternalCombustionEngine

ft:FuelTankAssy

fuelSupply:Fuel

fp:FuelPump

fi1:FuelInjector

4

fuelReturn:Fuel

fre:FuelRegulatorfra:FuelRail

p1:Fuel

p2:Fuel

fi2:FuelInjector

fi3:FuelInjector

fi4:FuelInjector

allocatedFrom
«connector»fdist:

allocatedFrom
«connector»fuelDelivery:

Fuel

fuelFitting:Fuel

fuelSupplyLine:

fuelReturnLine:

ibd [block] PowerSubsystem [Fuel Distribution Detail]
234  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure D.26 - Defining Analyses for Hybrid SUV Engineering Development (Block Definition Diagram)

D.4.7.2 Package Diagram - Performance View Definition

Figure D.27 shows the user-defined Performance Viewpoint, and the elements that populate the HSUV specific
PerformanceView. The PerformanceView itself may contain a number of diagrams depicting the elements it contains.

bdd [package] HSUVAnalysis [Analysis Context]

«constraint»
RollingFriction

Equation

«constraint»
AeroDragEquation

adrag

rdrag dyn

«constraint»
StraightLine

VehicleDynamics

«testCase,Interaction»
MaxAcceleration

1

0..1

ex

«requirement»
Acceleration

«verify»

GlobalTime
delta-t0..1

1

t

0..1

1

UnitCostContext

«domain»
HSUVStructure::

AutomotiveDomain

ad

0..1

1ad

0..1

1ad

0..1

1

parameters

V1:Vol
V2:Vol
V3:Vol

constraints

{pcap = Sum(Vi)}

«constraint»
CapacityEquation

EconomyContextCapacityContext

cap

«constraint»
PayloadEquation

«constraint»
TotalWeight

«constraint»
FuelEfficency

Equation

pl

fe

w

«constraint»
RegenBrake

EfficiencyEquation

rb
 ISO/IEC 2017 - All rights reserved 235

ISO/IEC 19514:2017(E)
Figure D.27 - Establishing a Performance View of the User Model (Package Diagram)

D.4.7.3 Package Diagram - Viewpoint Definition

Figure D.28 shows the Requirements and VnV viewpoint definitions with relationships to stakeholders, concerns and
views. The stakeholder and viewpoint share the same concern via comments that are shown textually as values of the
concern property. The comments could be shown graphically with annotation relationships to stakeholders and
viewpoints, if needed. Note that the value of the stakeholder property is an instance of the stereotype not the class to
which the stereotype is applied.

pkg [package] HSUVViews [Performance View]

Hybrid SUV Model

Driver

Drive Car

id = "2"
Text = "The Hybrid SUV
shall have the braking,
acceleration, and off-road
capability of a typical SUV,
but have dramatically better
fuel economy."

«requirement»
Performance

«Value Type»
CostEffectiveness

«Value Type»
FuelEconomy

«Value Type»
Zero60Time

«Value Type»
CargoCapacity

«Value Type»
QuarterMileTime

«constraint»
EconomyEquation

«constraint»
UnitCostEquation

«constraint»
CapacityEquation

«testCase»
EPAFuel

EconomyTest

«conform» «expose»

«stakeholder»
concern="Will the system
perform adequately?"

«stakeholder»
Customer

«viewpoint»
stakeholder=Customer
purpose="..."
concern="Will the system perform
adiquately?”
language="SysML"
/method=PerformanceQuery
presentation=”BDD High-lelvel
stylesheet in slide format”

«viewpoint»
Performance Viewpoint

«create»View()

«view»
/viewpoint=Performance
Viewpoint
/stakeholder=Customer

«view»
Hybrid SUV Performance

HSUV Functions:SUV
Functional View

«view»
/viewpoint=Functional
Viewpoint

«view»
SUV Functional View
236  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure D.28 - Defining Requirements and VnV viewpoints (Package Diagram)

D.4.7.4 Package Diagram - View Definition

Figure D.29 shows the Requirements and VnV views and the model elements they expose. Note that the expose
relationship relies on the viewpoint method to identify the entire set of elements that appear in the view.

pkg [package] HSUVViews [Viewpoints]

«conform»

«stakeholder»
/concern=”What are the system
requirements?”,”Will the system perform
adequately?”

«stakeholder»
Customer

«viewpoint»
stakeholder=Customer
purpose="Describe the system
requirements."
/concern="What are the system
requirements?”
language="SysML"
/method= Requirements Query
presentation=”Requirements table
report style-sheet in slide format”

«viewpoint»
Requirements

«create»View()

«view»
/viewpoint=VnV
/stakeholder=Customer

«view»
Hybrid SUV Verification

and Validation Plan

«view»
/viewpoint=Requirements
/stakeholder=Customer

«view»
Hybrid SUV Requirements

«viewpoint»
stakeholder=Customer
purpose="Describe the VnV "
/concern="Will the system perform
adequately?”
language="SysML"
/method=VnVQuery
presentation=”VnV report
stylesheet in slide format”

«viewpoint»
VnV

«create»View()

«conform»
 ISO/IEC 2017 - All rights reserved 237

ISO/IEC 19514:2017(E)
Figure D.29 - Requirements and VnV views exposing elements from the model (Package Diagram)

D.4.7.5 Package Diagram - View Hierarchy

Figure D.30 shows the Requirements and VnV views and the supporting views that complete the description of
Requirements and VnV respectively for the Hybrid SUV.

pkg [package] HSUV Views [HSUV Views]

Hybrid SUV Model

Driver

Drive Car

id = "2"
Text = "The Hybrid SUV
shall have the braking,
acceleration, and off-road
capability of a typical SUV,
but have dramatically better
fuel economy."

«requirement»
Performance

Hybrid SUV Constraints

«constraint»
EconomyEquation

«constraint»
UnitCostEquation

«constraint»
CapacityEquation

«testCase»
EPAFuel

EconomyTest

«expose»

«expose»

«expose»

«expose»«view»
/viewpoint=VnV
/stakeholder=Customer

«view»
Hybrid SUV Verification

and Validation Plan

«view»
/viewpoint=Requirements
/stakeholder=Customer

«view»
Hybrid SUV Requirements

«expose»
238  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure D.30 - The Requirements and VnV views with supporting views (Package Diagram)

D.4.7.6 Parametric Diagram - Measures of Effectiveness

Measure of Effectiveness is a user defined stereotype. Figure D.31 shows how the overall cost effectiveness of the HSUV will
be evaluated. It shows the particular measures of effectiveness for one particular alternative for the HSUV design, and can be
reused to evaluate other alternatives.

pkg [package] HSUVViews [HSUV Views]

«view»
/viewpoint=Performance Viewpoint
/stakeholder=Customer

«view»
Hybrid SUV Performance

«view»
/viewpoint=VnV
/stakeholder=Customer

«view»
Hybrid SUV Verification and Validation Plan

System Requirements:Hybrid SUV Requirements
Requirements Test Trace:Hybrid SUV Requirements VnV Trace

«view»
/viewpoint=VnV Analysis
/stakeholder=Customer

«view»
Hybrid SUV

Requirements VnV Trace

:Hybrid SUV Tests

«view»
/viewpoint=Requirements
/stakeholder=Customer

«view»
Hybrid SUV Requirements

Performance Model:Hybrid SUV Performance

Functional Model:Hybrid SUV Functional View

:Hybrid SUV Requirements Rationale

«view»
/viewpoint=Functional Viewpoint
/stakeholder=Customer

«view»
Hybrid SUV Functional View

«view»
/viewpoint=Requirements Analysis
/stakeholder=Customer

«view»
Hybrid SUV Requirements

Rationale

«view»
/viewpoint=Systems Test
/stakeholder=Customer

«view»
Hybrid SUV Tests
 ISO/IEC 2017 - All rights reserved 239

ISO/IEC 19514:2017(E)
Figure D.31 - Defining Measures of Effectiveness and Key Relationships (Parametric Diagram)

D.4.7.7 Parametric Diagram - Economy

Since overall fuel economy is a key requirement on the HSUV design, this example applies significant detail in assessing
it. Figure D.32 shows the constraint blocks and properties necessary to evaluate fuel economy.

par [b lock] M easuresO fEffectiveness [HSUV M O Es]

«objectiveFunction»

:M yO bjectiveFunction
{CE = Sum (W i*P i)}

«m oe»
HSUValt1.CostEffectiveness

«m oe»
HSUValt1.FuelEconom y

«m oe»
HSUValt1.Zero60Tim e

«m oe»
HSUValt1.CargoCapacity

«m oe»
HSUValt1.Q uarterM ileTim e

«m oe»
HSUValt1.UnitCost

:Econom yEquation
f:

:M axAcceleration
Analysis

q:

z:

:CapacityEquation
vc:

:UnitCostEquation
uc:

p4:

p1:

p2:

p3:

p5:

CE:
240  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure D.32 - Establishing Mathematical Relationships for Fuel Economy Calculations (Parametric Diagram)

D.4.7.8 Parametric Diagram - Dynamics

The StraightLineVehicleDynamics constraint block from Figure D.32 has been expanded in Figure D.33. ConstraintNotes
are used, which identify each constraint using curly brackets {}. In addition, Rationale has been used to explain the
meaning of each constraint maintained.

par [block] EconomyContext

dyn:StraightLine
VehicleDynamics

rdrag:Rolling
FrictionEquation

adrag:Aero
DragEquation

w:TotalWeight

pl:PayloadEquation

cgoWt:psgrWt:

psgrWt:

volume:

volume:

vdw: fw:

ad.HSUV.PowerSubsystem.
FuelTank.FuelWeight

Cd:

Cd:

tw:

tw:

tw:

Cf:

Cf:

fe:FuelEfficiency
Equationwhlpwr:

acc:acc:
vel: mpg:

incline:

rb:RegenBrake
EfficiencyEquation

vel:

incline:

ebpwr:

ebpwr:

n_em:

acc:

n_ice:

n_eg:

ad.HSUV.PayloadCapacity

pcap:

cgoWt:

whlpwr:

ad.HSUV.VehicleDryWeight

ad.HSUV.PowerSybsystem.
ElectricMotorGenerator.

GeneratorEfficiency

ad.HSUV.PowerSybsystem.
ElectricMotorGenerator.

MotorEfficiency

ad.HSUV.PowerSybsystem.
InternalCombustionEngine.

ICEEfficiency

ad.drivingConditions.
road.incline

ad.HSUV.position

x:

ad.HSUV.mpg

dt:

delta-t
 ISO/IEC 2017 - All rights reserved 241

ISO/IEC 19514:2017(E)
Figure D.33 - Straight Line Vehicle Dynamics Mathematical Model (Parametric Diagram)

The constraints and parameters in Figure D.33 are detailed in Figure D.34 in Block Definition Diagram format.

par [constraintBlock] StraightLineVehicleDynamics

acc:Accelleration
Equation

vel:VelocityEquation

pos:PostionEquation

pwr:PowerEquation

whlpwr: tw:Cd: Cf:

tp:

tp:

delta-t:

delta-t:

delta-t:

tw:

tw:

a:

a:

v:

v:

acc:

vel:

Cf:

Cd:

whlpwr:

v:

x:

incline:

i:

{v(n+1) = v(n) + a(g)*32*3600/5280*delta-t}

{x(n+1) = x(n) + v(mph)*5280/3600*delta-t}

{tp = whlpwr - (Cd*v) - (Cf*tw*v)}

«rationale»
tp (hp) = wheel power - drag - friction

«rationale»
v(n+1) (mph) = v(n) + delta-v = v(n) + a*delta-t

«rationale»
x(n+1) (ft) = x(n) + delta-x = x(n) + v*delta-t

«rationale»
a(g) = F/m = P*t/m

{a = (550/32)*tp(hp)*delta-t*tw}

x:

dt
242  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)

Figure D.34 - Defining Straight-Line Vehicle Dynamics Mathematical Constraints (Block Definition Diagram)

Note the use of valueTypes originally defined in Figure D.2.

D.4.7.9 (Non-Normative) Timing Diagram - 100hp Acceleration

Timing diagrams, while included in UML 2, are not directly supported by SysML. For illustration purposes, however, the
interaction shown in Figure D.35 was generated based on the constraints and parameters of the
StraightLineVehicleDynamics constraintBlock, as described in the Figure D.33. It assumes a constant 100hp at the drive
wheels, 4000lb gross vehicle weight, and constant values for Cd and Cf.

bdd [package] HSUVAnalysis [Definition of Dynamics]

parameters
whlpowr:Horsepwr
Cd:Real
Cf:Real
tw:Weight
tp:Horsepwr
v:Vel
i:Real

constraints
{tp = whlpowr - (Cd*v) -
(Cf*tw*v)}

«constraint»
PowerEquation

parameters
tw:Weight
delta-t:Time
tp:Horsepwr
a:Accel

constraints
{a = (550/32)*tp(hp)*dt*tw}

«constraint»
AccelerationEquation

parameters
delta-t:Time
v:Vel
a:Accel

constraints
{v(n+1 = v(n)+a*32*3600/5280*dt}

«constraint»
VelocityEquation

parameters
delta-t:Time
v:Vel
x:Dist

constraints
{x(n+1) = x(n)+v*5280/3600*dt}

«constraint»
PositionEquation

parameters
whlpowr:Horsepwr
Cd:Real
Cf:Real
tw:Weight
acc:Accel
vel:Vel
incline:Real

«constraint»
StraightLine

VehicleDynamics

accvel
pwr

pos
 ISO/IEC 2017 - All rights reserved 243

ISO/IEC 19514:2017(E)

Figure D.35 - Results of Maximum Acceleration Analysis (Timing Diagram)

tim MaxAcceleration [100 Wheel Horsepower]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20

Time (sec)

A
cc

el
le

ra
ti

o
n

 (
g

)

0

20

40

60

80

100

120

140

0 5 10 15 20

Time (sec)

V
el

o
ci

ty
 (

m
p

h
)

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20

Time (sec)

D
is

ta
n

ce
 (

ft
)

Satisfies
«requirement»Acceleration

«diagramDescription»
version=”0.1"
description=”Constant
100 wheel horsepower,
4000 lb vehicle weight,
simple drag"
reference=”Equations of
Motion”
completeness=”assumes
perfect tire traction”
244  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
D.4.8 Defining, Decomposing, and Allocating Activities

D.4.8.1 Activity Diagram - Acceleration (top level)

Figure D.36 shows the top level behavior of an activity representing acceleration of the HSUV. It is the intent of the
systems engineer in this example to allocate this behavior to parts of the PowerSubsystem. It is quickly found, however,
that the behavior as depicted cannot be allocated, and must be further decomposed. The stereotypes on the object nodes
between actions in the figure apply to parameters of the behaviors or operations called by the actions (see the notation for
object nodes described in 11.3.1.4, ObjectNode, Variables, and Parameters).

.

Figure D.36 - Behavior Model for “Accelerate” Function (Activity Diagram)

D.4.8.2 Block Definition Diagram - Acceleration

Figure D.37 defines a decomposition of the activities and objectFlows from the activity diagram in Figure D.36.

act Accelerate

PushAccelerator

MeasureVehicle
Conditions

ProvidePower

«continuous»
accelPosition

«continuous»
vehCond

Comment:
Can't allocate
these activities to
PwrSubSystem

«continuous»
drivePower

transModeCmd
 ISO/IEC 2017 - All rights reserved 245

ISO/IEC 19514:2017(E)
Figure D.37 - Decomposition of “Accelerate” Function (Block Definition diagram)

D.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)

Figure D.38 shows the ProvidePower activity, which includes Actions invoking the decomposed Activities and
ObjectNodes from Figure D.37. It also uses AllocateActivityPartitions and an allocation callout to explicitly allocate
activities and an object flow to parts in the PowerSubsystem block.

Note that the incoming and outgoing object flows for the ProvidePower activity have been decomposed. This was done to
distinguish the flow of electrically generated mechanical power and gas generated mechanical power, and to provide
further insight into the specific vehicle conditions being monitored.

Accelerate Activity and Object Flow Breakdown[Activity] bdd []

«activity»
Meas ureVehic leC onditions

«activity»
P rovide Power

«activity»
Meas ureB atteryC onditions

«activity»
Meas ureVehic leVelocity

«activity»
C ontrolE lectricPower

«activity»
P rovideE lectricPower

«activity»
P roportionPower

«activity»
P rovideGas Power

«block»
Gas Power

«block»
E lecPower

«block»
Power

a4a2 drivePowermbatmvel

a1 a3

gasDrivePower elecDrivePower
246  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
.

Figure D.38 - Detailed Behavior Model for “Provide Power” (Activity Diagram)
 Note hierarchical consistency with Figure D.36.

D.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation

Figure D.39 depicts a subset of the PowerSubsystem, specifically showing the allocation relationships generated in Figure
D.38.

«SwimLaneDiagram»
[Figure B.35 Detailed Behavior Model for "Provide Power"]ProvidePower[activity] act

transModeCmd

«continuous»
drivePower«continuous»

vehCond

«continuous»
accelPosition

keyOff
allocatedTo
«itemFlow» i1:ElectricCurrentr

a2 :
ProvideGasPower

a1 :
ProportionPower

a3 : ControlElectricPower a4 : ProvideElectricPower

«allocate»
emg : ElectricMotorGenerator

«allocate»
epc : ElectricalPowerControllerr

«allocate»
ice : InternalCombustionEngine

«allocate»
pcu : PowerControlUnit

«continuous»
eThrottle

«continuous»
driveCurrent

«continuous»
gThrottle

«continuous»
battCond

«continuous»
elecDrivePower

«continuous»
speed

«continuous»
gas

DrivePower
 ISO/IEC 2017 - All rights reserved 247

ISO/IEC 19514:2017(E)
.

Figure D.39 - Flow Allocation to Power Subsystem (Internal Block Diagram)

D.4.8.5 Table - Acceleration Allocation

Figure D.40 shows the same allocation relationships shown in Figure D.39, but in a more compact tabular representation.

Figure D.40 - Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Subsystem (Table)

D.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test

Figure D.41 shows a particular Hybrid SUV (VIN number) satisfying the EPA fuel economy test. Serial numbers of
specific relevant parts are indicated.

Figure D.39 Flow Allocation to Power SubsystemPowerSubsystem[Block] ibd []

«block»
pcu : PowerC ontrolUnit

allocatedFrom
«action» a1 : ProportionPower

eepc : ~IFS_EPC eice : ~IFS_ICE etrsm : ~IFS_TRSM

«block»
epc : E lectricalPowerC ontroller

allocatedFrom
«action» a3 : ControlElectricPower

fp : FS_EPC

«block»
ice : InternalC ombus tionE ngine

allocatedFrom
«action» a2 : ProvidePower

fp : FS_ICE

«block»
emg : E lectricMotorGene rator

allocatedFrom
«action» a4 : ProvideElectricPower

«block»
trs m : Trans miss ion

fp : FS_TRSM
«block»

 can : C AN_B us

«diagramDescription»
{completeness = "partial. Power subsystem elements that have no
allocation yet have been elided",

 description = "allocation of behavior and connectors to elements
of power subsystem",

 reference = "null",
 version = "0.1"}

allocatedFrom
 «objectFlow»currentFlow

i1 : ElectricCurrenti2 : ElectricCurrent

pwrConnector

[Figure B.37 Tabular Representation of Allocation from"Accelerate" Behavior Model to Power Subsystem]HSUV Behavior[package] bdd

Type Name End Relation End Type Name
action a1 : ProportionPower from allocate to part ecu : PowerControlUnit
action a2 : ProvideGasPower from allocate to part ice : InternalCombustionEngine
action a3 : ControlElectricPower from allocate to part epc : ElectricPowerController
action a4 : ProvideElectricPower from allocate to part emg : ElectricMotorGenerator
objectFlow o6 from allocate to connector epc-emg.1
248  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure D.41 - Special Case of Internal Block Diagram Showing Reference to Specific Properties (serial numbers)

VIN = G12345

TestVehicle1: HybridSUV

sn: ID = p67890

p: PowerSubsystem

c-bk:

b-c:

b-i:

bk-l:

c-p: bk-p:

Satisfies
«requirment» Emissions

sn: ID = bk45678

bk: BrakeSubsystem

sn: ID = c34567

c: ChassisSubsystem

sn: ID = lt56789

l: LightingSubsystem

sn: ID = b12345

b: BodySubsystem

sn: ID = i23456

i: Interior

«testCase»
testRun060401:

EPAFuelEconomyTest

sn: ID = sn90123

em: ElectricalMotor
sn: ID = sn89012

t: Transmission
em-t: ice-t:

Verifies
«requirement» Emissions

sn: ID = eid78901

ice: Internal
CombustionEngine

initialValues initialValues

initialValuesinitialValuesinitialValues

initialValues

initialValues
initialValues

initialValues

initialValues

ibd [block] SUV_EPA_Fuel_Economy_Test [Test Results]
 ISO/IEC 2017 - All rights reserved 249

ISO/IEC 19514:2017(E)
250  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Annex E: Non-normative Extensions

(informative)

E.1 Overview

This annex describes useful non-normative extensions to SysML that may be considered for standardization in future
versions of the language.

Non-normative extensions consist of stereotypes and model libraries and are organized by major diagram type, consistent
with how the main body of this International Standard is organized. Stereotypes in this sub clause are specified using a
tabular format, consistent with how non-normative stereotypes are specified in the UML 2 standard. Model libraries are
specified using the guidelines provided in the Profiles & Model Libraries clause of this International Standard.

E.2 Activity Diagram Extensions

E.2.1 Overview

Two non-normative extensions to activities are described for:

• Enhanced Functional Flow Block Diagrams.

• Streaming activities that accept inputs and/or provide outputs while they are active.

More information on these extensions and the standard SysML extensions is available at [Bock. C., “SysML and UML
2.0 Support for Activity Modeling,” vol. 9, no. 2, pp. 160-186, Journal of the International Council of Systems
Engineering, 2006].

E.2.2 Stereotypes

Enhanced Functional Flow Block Diagrams (EFFBD) are a widely-used systems engineering diagram, also called a
behavior diagram. Most of its functionality is a constrained use of UML activities, as described below. This extension
does not address replication, resources, or kill branches. Kill branches can be translated to activities using interruptible
regions and join specifications.

When the «effbd» stereotype is applied to an activity, its contents shall conform to the following constraints:

[1] (On Activity) Activities shall not have partitions.

[2] (On Activity) All decisions, merges, joins, and forks shall be well-nested. In particular, each decision and merge shall be
matched one-to-one, as are forks and joins, accounting for the output parameter sets acting as decisions, and input
parameters and control acting as a join.

Table E.1 - Addition stereotypes for EFFBDs

Stereotype Base class Properties Constraints Description

«effbd» UML4SysML::Activity (or subtype
of «nonStreaming» below)

N/A See below. Specifies that the activity
conforms to the constraints
necessary for EFFBD.
 ISO/IEC 2017 - All rights reserved 251

ISO/IEC 19514:2017(E)
[3] (On Action) All actions shall have exactly one control edge coming into them, and exactly one control edge coming out,
except when using parameter sets.

[4] (Execution constraint) All control shall be enabling.

[5] (On ControlFlow) All control flows into an action target a pin on the action that shall have isControl = true.

[6] (On ObjectNode) Ordering shall be first-in first out, ordering = FIFO.

[7] (On ObjectNode) Object flow shall be never used for control, isControlType = false, except for pins of parameters in
parameter sets.

[8] (On Parameter) Parameters shall take and produce no more than one item, multiplicity.upper =1.

[9] (On Parameter) Output parameters shall produce exactly one value, multiplicity.lower = 1. The «optional» stereotype
cannot be applied to parameters.

[10](On Parameter) Parameters shall not be streaming or exception.

[11] (On ParameterSet) Parameter sets shall only apply to output parameters.

[12](On ParameterSet) Parameter sets shall only apply to control. Parameters in parameter sets shall have pins with
isControlType = true.

[13](On ParameterSet) Parameter sets shall have exactly one parameter, and it shall not be shared with other parameter sets.\

[14](On ParameterSet) If one output parameter is in a parameter set, then all output parameters of the behavior or
operation shall be in parameter sets.

[15](On ActivityEdge) Edges shall not have time constraints.

[16]The following SysML stereotypes shall not be applied: «rate», «controlOperator», «noBuffer», «overwrite».

A second extension distinguishes activities based on whether they can accept inputs or provide outputs after they start and
before they finish (streaming), or only accept inputs when they start and provide outputs when they are finished
(nonstreaming). EFFBD activities are nonstreaming. Streaming activities are often terminated by other activities, while
nonstreaming activities usually terminate themselves.

E.2.3 Stereotype Examples

Figure E.1 shows an example activity diagram with the «effbd» stereotype applied, translated from [Long. J.,
“Relationships between common graphical representations in system engineering,” 2002]. The stereotype applies the
constraints specified in E.2.2, Stereotypes, for example, that the data outputs on all functions are required and that
queuing is FIF.

Table E.2 - Streaming options for activities

Stereotype Base Class Properties Constraints Description

«streaming» UML4SysML::Activity N/A The activity has at least
one streaming
parameter.

Used for activities that can
accept inputs or provide outputs
after they start and before they
finish.

«nonStreaming» UML4SysML::Activity N/A The activity has no
streaming parameters.

Used for activities that accept
inputs only when they start, and
provide outputs only when they
finish.
252  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure E.1 - Example activity with «effbd» stereotype applied

Figure E.2 shows an example activity diagram with the «streaming» and «nonStreaming» stereotypes applied, adapted
from [MathWorks, “Using Simulink,” 2004]. It is a numerical solution for the differential equation x'(t) = -2x(t) + u(t).
Item types are omitted brevity. The «streaming» and «nonStreaming» stereotypes indicate which subactivities take inputs
and produce outputs while they are executing. They are simpler to use than the {stream} notation on streaming inputs and
outputs.

The example assumes a default of zero for the lower input to Add, and that the entire activity is executed with clocked
token flow, to ensure that actions with multiple inputs receive as many of them as possible before proceeding. See the
article referenced in E.2.1, Overview.

Figure E.2 - Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities

External
Input

External
Output

2.1 Serial
Function

2.2 Multi-exit
Function

2.3 Function in
Concurrency

Item 1

2.4 Function in
Multi-exit
Construct

2.5 Function in
an Iterate

[before third time]

Item 2

«optional» [after
third
time]

2.6 Output
Function

«optional»

Item 3

Item 4

«optional»

«optional»

{cc#1}

{cc#2}

«effbd»
act

Generate
u(t)

Add

-2

Display

«streaming»
Integrate

Over Timeu
x’ x

Multiply
-2x

«nonStreaming» «streaming» «streaming»

«nonStreaming»

act
 ISO/IEC 2017 - All rights reserved 253

ISO/IEC 19514:2017(E)
E.3 Requirements Diagram Extensions

E.3.1 Overview

This sub clause describes an example of a non-normative extension for a requirements profile.

E.3.2 Stereotypes

This non-normative extension includes stereotypes for a simplified requirements taxonomy that is intended to be further
adapted as required to support the particular needs of the application or organization. The requirements categories in this
example include functional, interface, performance, physical requirements, and design constraints as shown in Table E.3.
As shown in the table, each category is represented as a stereotype of the generic SysML «requirement». The table also
includes a brief description of the category. The table does not include any stereotype properties or constraints, although
they can be added as deemed appropriate for the application. For example, a constraint that could be applied to a
functional requirement is that only SysML activities and operations can satisfy this category of requirement. Other
examples of requirements categories may include operational, specialized requirements for reliability and maintainability,
store requirements, activation, deactivation, and a high level category for stakeholder needs.

Some general guidance for applying a requirements profile is as follows:

• The categories should be adapted for the specific application or organization and reflected in the table. This includes
agreement on the categories and their associated descriptions, stereotype properties, and constraints. Additional
categories can be added by further subclassing the categories in the table below, or adding additional categories at the
pier level of these categories.

• The default requirement category should be the generic «requirement».

• Apply the more specialized requirement stereotype (functional, interface, performance, physical, design constraint)
as applicable and ensure consistency with the description, stereotype properties, and constraints.

• A specific text requirement can include the application of more than one requirement category, in which case, each
stereotype should be shown in guillemets.

Table E.3 - Additional Requirement Stereotypes

Stereotype Base Class Properties Constraints Description

«extendedRequirement» «requirement» source: String
risk: RiskKind
verifyMethod:
VerifyMethodKind

N/A A mix-in stereotype that contains
generally useful attributes for
requirements.

«functionalRequirement» «extendedrequirement» N/A satisfied by an
operation or
behavior

Requirement that specifies an
operation or behavior that a
system, or part of a system, must
perform.

«interfaceRequirement» «extendedrequirement» N/A satisfied by a
port, connector,
item flow, and/
or constraint
property

Requirement that specifies the
ports for connecting systems and
system parts and the optionally
may include the item flows across
the connector and/or Interface
constraints.

«performanceRequirement» «extendedrequirement» N/A satisfied by a
value property

Requirement that quantitatively
measures the extent to which a
system, or a system part, satisfies
a required capability or condition.
254  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table E.4 provides the definition of the non-normative enumerations that are used to type properties of
“extendedRequirement” stereotype of Figure E.3.

E.3.3 Stereotype Examples

Figure E.3 shows the use of several subtypes of requirements extended to include the properties risk:RiskKind,
verifyMethod:VerficationMethodKind, and a text attribute source:String, used to capture the source of the requirement.

«physicalRequirement» «extendedrequirement» N/A satisfied by a
structural
element.

Requirement that specifies
physical characteristics and/or
physical constraints of the system,
or a system part.

«designConstraint» «extendedrequirement» N/A satisfied by a
block or part

Requirement that specifies a
constraint on the implementation of
the system or system part, such as
the system must use a commercial
off the shelf component.

Table E.4 - Requirement property enumeration types

Enumeration Enumeration
Literals

Example Description

RiskKind High High indicates an unacceptable level of risk

Medium Medium indicates an acceptable level of risk

Low Low indicates a minimal level of risk or no risk

VerificationMethodKind Analysis Analysis indicates that verification will be performed by technical evaluation using
mathematical representations, charts, graphs, circuit diagrams, data reduction, or
representative data. Analysis also includes the verification of requirements under
conditions, which are simulated or modeled; where the results are derived from the
analysis of the results produced by the model.

Demonstration Demonstration indicates that verification will be performed by operation, movement or
adjustment of the item under specific conditions to perform the design functions without
recording of quantitative data.. Demonstration is typically considered the least restrictive
of the verification types.

Inspection Inspection indicates that verification will be performed by examination of the item,
reviewing descriptive documentation, and comparing the appropriate characteristics with
a predetermined standard to determine conformance to requirements without the use of
special laboratory equipment or procedures.

Test Test indicates that verification will be performed through systematic exercising of the
applicable item under appropriate conditions with instrumentation to measure required
parameters and the collection, analysis, and evaluation of quantitative data to show that
measured parameters equal or exceed specified requirements.

Table E.3 - Additional Requirement Stereotypes

Stereotype Base Class Properties Constraints Description
 ISO/IEC 2017 - All rights reserved 255

ISO/IEC 19514:2017(E)
Figure E.3 - Example extensions to Requirement

E.4 Parametric Diagram Extensions for Trade Studies

E.4.1 Overview

This sub clause describes a non-normative extension of a parametric diagram (refer to the Constraint Blocks clause) to
support trade studies and analysis, which are an essential aspect of any systems engineering effort. In particular, a trade
study is used to evaluate a set of alternatives based on a defined set of criteria. The criteria may have a weighting to
reflect their relative importance. An objective function (aka optimization or cost function) can be used to represent the
weighted criteria and determine the overall value of each alternative. The objective function can be more complex than a
simple linear weighting of the criteria and can include probability distribution functions and utility functions associated
with each criteria. However, for this example, we will assume the simpler case.

A measure of effectiveness (moe) represents a parameter whose value is critical for achieving the desired mission cost
effectiveness. It will also be assumed that the overall mission cost effectiveness can be determined by applying an
objective function to a set of criteria, each of which is represented by a measure of effectiveness.

This non-normative extension includes stereotypes for an objective function and a measure of effectiveness. The objective
function is a stereotype of a ConstraintBlock and the measure of effectiveness is a stereotype of a block property.

 Requirement Diagram: Top-Level User Requirements

«requirement»

HybridSUV

«functinalRequirement»
id =”UR1.1"
source = “Marketing”
text = “Load”
verifyMethod =”Test”
risk =”Low”

«functionalRequirement»
Load

«performanceRequirement»
id =”UR1.2"
source = “Marketing”
text = “Eco-Friendliness”
verifyMethod = ”Analysis”
risk = ”High”

«performanceRequirement»
Eco-Friendliness

«performanceRequirement»
id = ”UR1.3"
source = “Marketing”
text = “Performance”
verifyMethod =”Test”
risk =”Medium”

«performanceRequirement»
Performance

«requirement»
Ergonomics

«requirement»
Passengers

«requirement»
Cargo

«requirement»
FuelCapacity

«performanceRequirement»
id = ”UR1.2.1"
source = “Marketing”
text = “The car shall meet 2010 Kyoto
Accord emissions standards .”
verifyMethod =”Test”
risk =”Medium”

«performanceRequirement»
Emissions

«performanceRequirement»
id = “UR1.3.1”
source = “Marketing”
text = “Users shall obtain fuel
economy better than that provided
by 95% of cars built in 2004.”
verifyMethod = “Test”
risk = “High”

«performanceRequirement»
FuelEconomy

«requirement»

Range

«requirement»
Braking

«requirement»

Power

«requirement»
Acceleration
256  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
E.4.2 Stereotypes

«objectiveFunction» «ConstraintBlock» N/A N/A An objective function (aka
optimization or cost function) is used
to determine the overall value of an
alternative in terms of weighted
criteria and/or moe’s.

«moe» UML4SysML::Property N/A N/A A measure of effectiveness (moe)
represents a parameter whose value
is critical for achieving the desired
mission cost effectiveness.

E.4.3 Stereotype Examples

In this example, operational availability, mission response time, and security effectiveness each represent moes along with
life cycle cost. The overall cost effectiveness for each alternative may be defined by an objective function that represents
a weighted sum of their moe values. For each moe, there is a separate parametric model to estimate the value of
operational availability, mission response time, security effectiveness, and life cycle cost to determine an overall cost
effectiveness for each alternative. It is assumed that the moes refer to the values for system alternative j (sj).

Figure E.4 - Example Parametric Diagram using Stereotypes for Measures of Effectiveness

E.5 Model Library for Quantities, Units, Dimensions, and Values (QUDV)

E.5.1 Overview

For any system model, a solid foundation of well-defined quantities, units, and dimensions system is very important.
Properties that describe many aspects of a system depend on it. At the same time, such a foundation should be a shareable
resource that can be reused in many models within and across organizations and projects.

Table E.5 - Stereotypes for Measures of Effectiveness

Stereotype Base Class Properties Constraints Description

«moe»
sj.costEffectiveness

par Effectiveness Model [System Alternative J]

:SecurityModel

«objectiveFunction»
:MyObjectiveFunction

{CE = Sum Wi*Pi}

:ResponseTimeModel

:AvailabilityModel
CE:P3:

P2:

P1:

s:

r:

a:

:CostModel
c:

P4:

«moe»
sj.responseTime

«moe»
sj.security

«moe»
sj.cost

«moe»
sj.availability
 ISO/IEC 2017 - All rights reserved 257

ISO/IEC 19514:2017(E)
The most widely accepted, scrutinized, and globally used system of quantities and system of units are the International
System of Quantities (ISQ) and the International System of Units (SI). They are formally standardized through [ISO31]
and [IEC60027]. The harmonization of these two sets of standards into one new set [ISO/IEC80000] has been published
by ISO in 2009 and 2010. The present QUDV model in SysML is based on ISO/IEC 80000-1:2009, which refers
normatively to the ISO/IEC Guide 99:2007. The ISO/IEC 80000-1:2009 document is also the baseline for the 2010
revision of the IEEE/ASTM American National Standards for Metric Practice SI-10. All the relevant concepts underlying
ISQ and SI are publicly available in [VIM]. See E.5.3, References for references to these documents.

At a minimum, SysML should provide the means to support the imminent international standard [ISO/IEC80000]. In
addition, many other systems of quantities and units are still in use for particular applications and for historical reasons.
A prime example is the system based on UK Imperial units, which is still widely used in North America. SysML should
provide the means to support all such specific systems of quantities and units, including precise definitions of the
relationships between different systems of units, and with explicit and unambiguous unit conversions to and from SI as
well as other systems.

To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in SysML is
explicitly based on the concepts defined in [VIM], which have been written by the authoritative Working Group 2 of the
Joint Committee for Guides in Metrology (JCGM/WG 2), in which the JCGM member organizations are represented:
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. At the same time, the model library is designed in such a way
that extensions to the ISQ and SI can be represented, as well as any alternative systems of quantities and units.

The model library can be used to support SysML user models in various ways. A simple approach is to define and
document libraries of reusable systems of units and quantities for reuse across multiple projects, and to link units and
quantity kinds from these libraries to Unit and QuantityKind stereotypes defined in SysML user models. The name of a
Unit or QuantityKind stereotype, its definitionURI, or other means may be used to link it with definitions made using this
library. Instances of blocks conforming to this model library may be created by instance specifications, as shown in E.5.4,
Usage Examples, or by other means.

Even though this model library is specified in terms of SysML blocks, its contents could equally be specified by UML
classes without dependencies on any SysML extensions. This annex specifies the model library using SysML blocks to
maintain compatibility with the SysML standard. UML and other forms of this same conceptual model are important and
useful to align different standards with each other and with those of [VIM].

Separate forms of this model library, including a UML class model generated as a simple transformation from the model
library specified in this annex, together with additional mappings and resources, example applications, and reference
libraries of systems of units and quantities built using this model, are expected to be published via the SysML Project
Portal wiki at http://www.omgwiki.org/OMGSysML/.

E.5.2 Abstract Syntax

Figures E.5 - E.7 present the QUDV model library in a series of block definition diagrams.

The QUDV Concepts diagram in Figure E.5 presents the core concepts of System of Units, Unit, SystemOfQuantities, and
QuantityKind. The QUDV concepts of Unit and QuantityKind are specialized by restriction from their respective SysML
concepts shown in gray in Figure E.5. The QUDV concepts form the basis of the QUDV subset of the Vocabulary of
International Metrology (VIM) from ISO 80000-1 and JCGM 200:2012. In SysML, a value property typed by a given
ValueType, with stereotype properties that refer to a SysML Unit and/or QuantityKind, defines a quantity in the sense of
ISO 80000-1, Sub clause 3.1. If specified, the unit of the ValueType designates the measurement unit assumed for the
numerical value of such a quantity.
258  ISO/IEC 2017 - All rights reserved

http://www.omgwiki.org/OMGSysML/

 ISO/IEC 19514:2017(E)
In the QUDV Unit diagram in Figure E.6, SimpleUnit provides the basis for defining other units via conversion or
derivation. Additionally, QUDV provides support for specifying a coherent derived unit as a product of the baseUnit(s) of
a given SystemOfUnits. In a coherent SystemOfUnits, there is only one base unit for each base quantity kind.

In the QUDV QuantityKind diagram in Figure E.7, SimpleQuantityKind provides the basis for defining other quantity
kinds via specialization or derivation. QUDV provides a declarative specification of dimensional analysis to assign to
each QuantityKind an expression of its dependence on the baseQuantityKind(s) of a SystemOfQuantities. This
dependence is expressed as a list of QuantityKindFactor(s) corresponding to a product of powers of the base quantities.
E.5.2.15, SystemOfQuantities specifies the derivation of quantity dimensions using an algorithm specified in OCL.

Figure E.5 - QUDV Concepts diagram
 ISO/IEC 2017 - All rights reserved 259

ISO/IEC 19514:2017(E)
Figure E.6 - QUDV Units diagram

Figure E.7 - QUDV Quantity Kinds diagram
260  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
E.5.2.1 AffineConversionUnit

Description

An AffineConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to
another reference measurement unit through an affine conversion relationship with a conversion factor and offset.

The unit conversion relationship is defined by the following equation:

valueRU = factor · valueCU + offset

where:

valueRU is the quantity value expressed in the referenceUnit, and,
valueCU is the quantity value expressed in the AffineConversionUnit.

For example, in the definition of the AffineConversionUnit for “degree Fahrenheit” with respect to the referenceUnit
“degree Celsius,” the factor would be 5/9 and the offset would be -160/9, because

TCelsius = 5/9 · TFahrenheit - 160/9 which is equivalent with TFahrenheit = 9/5 · TCelsius + 32/1

Properties

• factor: Number
Number that specifies the factor in the unit conversion relationship.

• offset: Number
Number that specifies the offset in the unit conversion relationship.

E.5.2.2 ConversionBasedUnit

Description

A ConversionBasedUnit is an abstract classifier that is a Unit that represents a measurement unit that is defined with
respect to another reference unit through an explicit conversion relationship.

Properties

• referenceUnit: Unit
Specifies the unit with respect to which the ConversionBasedUnit is defined.

• isInvertible: Boolean
Specifies whether the unit conversion relationship is invertible. For LinearConversionUnit and
AffineConversionUnit this is always true.

Operations

[1] A ConversionBasedUnit transitively depends on its referenceUnit and all of the Units that its referenceUnit depends on.

dependsOnUnits() : Unit[0..*] {unique}
body: referenceUnit.dependsOnUnits()->including(referenceUnit)->asSet()

E.5.2.3 DerivedQuantityKind

Description

A DerivedQuantityKind is a QuantityKind that represents a kind of quantity that is defined as a product of powers of one
or more other kinds of quantity. A DerivedQuantityKind may also be used to define a synonym kind of quantity for
another kind of quantity.
 ISO/IEC 2017 - All rights reserved 261

ISO/IEC 19514:2017(E)
For example “velocity” can be specified as the product of “length” to the power one times “time” to the power minus one,
and subsequently “speed” can be specified as “velocity” to the power one.

Properties

• factor: QuantityKindFactor [1..*]
Set of QuantityKindFactor that specifies the product of powers of other kind(s) of quantity that define the
DerivedQuantityKind.

Operations

[1] A DerivedQuantityKind transitively depends on its factors' QuantityKinds and all of the QuantityKinds that its factors'
QuantityKinds depend on.

dependsOnQuantityKinds() : QuantityKind[0..*] {unique}
body: factor.quantityKind.dependsOnQuantityKinds()->flatten()->asSet()

->union(factor.quantityKind->flatten()->asSet())->asSet()

E.5.2.4 DerivedUnit

Description

A DerivedUnit is a Unit that represents a measurement unit that is defined as a product of powers of one or more other
measurement units.

For example the measurement unit “metre per second” for “velocity” is specified as the product of “metre” to the power
one times “second” to the power minus one.

Properties

• factor: UnitFactor [1..*]
Set of UnitFactor that specifies the product of powers of other measurement units that define the DerivedUnit.

• hasReducedFactors : Boolean[1] = true
If true, the UnitFactors specifying the product of powers of other measurement units that define the DerivedUnit
cannot be simplified. If false, the DerivedUnit is non-reduced; some UnitFactors can be simplified. A non-reduced
DerivedUnit can have as a general unit other DerivedUnits defined in terms of simplified UnitFactors, possibly in
reduced form.

Operations

[1] A DerivedUnit transitively depends on its factors' Units and all of the Units that its factors' Units depend on.

dependsOnUnits() : Unit[0..*] {unique}
body: factor.unit.dependsOnUnits()->flatten()->asSet()->union(factor.unit->flatten()

->asSet())->asSet()

[1] The query accessibleQuantityKinds() gives all the QuantityKinds directly defined in the SystemOfQuantities or
transitively in any included or used SystemOfQuantities.

allAccessibleQuantityKinds() : QuantityKind[0..*] {unique}
body: allAccessibleSystemOfQuantities()->collect(quantityKind)->flatten()->asSet()
inv SoU3_3:
getEffectiveSystemOfQuantities() = null or let aqk : Set(QuantityKind) =

getEffectiveSystemOfQuantities().allQuantityKinds() in ->allUnits()
->forAll(u | aqk->includesAll(getKindOfQuantitiesForMeasurementUnit(u)))
262  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
E.5.2.5 Dimension

Description

A Dimension represents the [VIM] concept of “quantity dimension” that is defined as “expression of the dependence of a
quantity on the base quantities of a system of quantities as a product of powers of factors corresponding to the base
quantities, omitting any numerical factor.”

For example in the ISQ the quantity dimension of “force” is denoted by dim F = L·M·T-2, where “F” is the symbol for
“force,” and “L,” “M,” and “T” are the symbols for the ISQ base quantities “length,” “mass,” and “time” respectively.

The Dimension of any QuantityKind can be derived through the algorithm that is defined in E.5.2.15, SystemOfQuantities
with SystemOfQuantities. The actual Dimension for a given QuantityKind depends on the choice of baseQuantityKind
specified in a SystemOfQuantities.

Properties

• symbolicExpression: String [0..1]
Symbolic expression of the quantity dimension's product of powers, in terms of symbols of the kinds of quantity
that represent the base kinds of quantity and their exponents. In tool implementations, the symbolicExpression may
automatically derived from the associated factor set.

• factor: QuantityKindFactor [0..*] {ordered}
Ordered set of QuantityKindFactor that specifies the product of powers of base dimensions that define the
Dimension. The possible base dimensions are represented by the ordered set of baseQuantityKind defined in the
SystemOfQuantities for which the Dimension is specified. The order of the factors should follow the ordered set
of baseQuantityKind in SystemOfQuantities.

E.5.2.6 GeneralConversionUnit

Description

A GeneralConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to
another reference measurement unit through a conversion relationship expressed in some syntax through a general
mathematical expression.

The unit conversion relationship is defined by the following equation:

valueRU / valueCU = f(valueRU, valueCU)
where:

valueRU is the quantity value expressed in the referenceUnit and
valueCU is the quantity value expressed in the GeneralConversionUnit and
f(valueRU, valueCU) is a mathematical expression that includes valueRU and valueCU

Properties

• expression: String
Specifies the unit conversion relationship in some expression syntax.

• expressionLanguageURI: String [0..1]
URI that specifies the language for the expression syntax.
 ISO/IEC 2017 - All rights reserved 263

ISO/IEC 19514:2017(E)
E.5.2.7 LinearConversionUnit

Description

A LinearConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to
another measurement reference unit through a linear conversion relationship with a conversion factor.

The unit conversion relationship is defined by the following equation:

valueRU = factor · valueCU

where:

valueRU is the quantity value expressed in the referenceUnit, and,
valueCU is the quantity value expressed in the LinearConversionUnit.

For example, in the definition of the LinearConversionUnit for “inch” with respect to the referenceUnit “metre,” the
factor would be 254/10000, because 0.0254 metre = 1 inch.

Properties

• factor: Number
Number that specifies the factor in the unit conversion relationship.

E.5.2.8 Prefix

Description

A Prefix represents a named multiple or submultiple multiplication factor used in the specification of a PrefixedUnit. A
SystemOfUnits may specify a set of prefixes.

Properties

• symbol: String [0..1]
Short symbolic name of the prefix.

• factor: Rational [1]
Specifies the multiple or submultiple multiplication factor.

E.5.2.9 PrefixedUnit

Description

A PrefixedUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to another
measurement reference unit through a linear conversion relationship with a named prefix that represents a multiple or
submultiple of a unit.

[VIM] defines “multiple of a unit” as “measurement obtained by multiplying a given measurement unit by an integer
greater than one” and “submultiple of a unit” as “measurement unit obtained by dividing a given measurement unit by an
integer greater than one.”

The unit conversion relationship is defined by the following equation:

valueRU = factor · valueCU

where:
264  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
valueRU is the quantity value expressed in the referenceUnit and
valueCU is the quantity value expressed in the PrefixedUnit.

For example, in the definition of the PrefixedUnit for “megabyte” with respect to the referenceUnit “byte,” the prefix
would be the Prefix for “mega” with a factor 106, because 106 byte = 1 megabyte.

See [VIM] for all decimal and binary multiples and decimal submultiples defined in SI.

Properties

• prefix: Prefix
Specifies the prefix that defines the name, symbol, and factor of the multiple or submultiple.

Constraints

[1] The referenceUnit shall not be a PrefixedUnit, i.e., it is not allowed to prefix an already prefixed measurement unit. In
general the referenceUnit should be a SimpleUnit.

package QUDV
context PrefixedUnit
inv: not referenceUnit.oclIsTypeOf(PrefixedUnit)
endpackage

E.5.2.10 QuantityKind

Description

In QUDV, the concept of QuantityKind is an abstract specialization of SysML QuantityKind to support designating a
primary QuantityKind for a given Unit within the scope of a system of units and quantities and to support a richer
vocabulary for defining QuantityKinds.

Properties

• /dependsOnQuantityKinds : QuantityKind[0..*] {readOnly, unique}
The set of all QuantityKinds that this QuantityKind directly or indirectly depends on according to its definition.

• general: QuantityKind[0..*] {unique}
A quantity can be defined to represent a combination of specific characteristics from one or more aspects defined by
general QuantityKinds (see ISO 80000-1, 3.2).

• isNumberOfEntities: Boolean = false
If true, indicates that the QuantityKind represents a number of entities (see ISO 80000-1, 3.8, Note 4).

• isQuantityOfDimensionOne: Boolean = false
If true, indicates that the QuantityKind has dimension one (see ISO 80000-1, 3.8).

Constraints

[1] A QuantityKind cannot be defined in terms of itself. This follows from the quantity calculus used for expressing a derived
QuantityKind in terms of base QuantityKinds chosen for a SystemOfQuantities by means of non-contradictory equations
(See ISO 80000-1, 4.3).

inv acyclic_quantity_kind_dependencies:
dependsOnQuantityKinds()->excludes(self)
 ISO/IEC 2017 - All rights reserved 265

ISO/IEC 19514:2017(E)
Operations

[1] Abstract operation specified in SimpleQuantityKind and DerivedQuantityKind to calculate the value of the derived
property QuantityKind:/dependsOnQuantityKinds.

dependsOnQuantityKinds() : QuantityKind[0..*] {unique}

E.5.2.11 QuantityKindFactor

Description

A QuantityKindFactor represents a factor in the product of powers that defines a DerivedQuantityKind.

Properties

• exponent: Rational
Rational number that specifies the exponent of the power to which the quantityKind is raised.

• quantityKind: QuantityKind
Reference to the QuantityKind that participates in the factor.

E.5.2.12 Rational

Description

A Rational value type represents the mathematical concept of a number that can be expressed as a quotient of two
integers. It may be used to express the exact value of such values, without issues of rounding or other approximations if
the result of the division were used instead.

Properties

• numerator: Integer
An integer number used to express the numerator of a rational number.

• denominator: Integer
An integer number used to express the denominator of a rational number.

Operations

package QUDV
context Rational
def: plus(r : Rational[1]) : Rational[1]

= result.numerator = self.numerator * r.demonimator
+ r.numerator * self.denominator
and result.denominator = self.denominator * r.denominator

context Rational
def: equivalent(r : Rational[1]) : Boolean[1]

= result = (self.numerator * r.demonimator
= r.numerator * self.denominator)

context Rational
def: times(r : Rational[1]) : Rational[1]

= result.numerator = self.numerator * r.numerator
and result.denominator = self.denominator * r.denominator
endpackage
266  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Constraints

[1] The denominator of a rational number shall not be zero.

package QUDV
context Rational
inv: denominator <> 0
endpackage

E.5.2.13 SimpleQuantityKind

Description

A SimpleQuantityKind is a QuantityKind that represents a kind of quantity that does not depend on any other
QuantityKind. Typically a base quantity would be specified as a SimpleQuantityKind.

Operations

[1] A SimpleQuantityKind does not depend on any other QuantityKind.

dependsOnQuantityKinds() : QuantityKind[0..*] {unique}
body: Set{}

E.5.2.14 SimpleUnit

Description

A SimpleUnit is a Unit that represents a measurement unit that does not depend on any other Unit. Typically a base unit
would be specified as a SimpleUnit.

Operations

[1] A SimpleUnit is a Unit that represents a measurement unit that does not depend on any other Unit. Typically a base unit
would be specified as a SimpleUnit.

dependsOnUnits() : Unit[0..*] {unique}
body: Set{}

E.5.2.15 SystemOfQuantities

Description

A SystemOfQuantities represents the [VIM] concept of “system of quantities” that is defined as a “set of quantities
together with a set of non-contradictory equations relating those quantities.” It collects a list of QuantityKind that
specifies the kinds of quantity that are known in the system.

The International System of Quantities (ISQ) is an example of a SystemOfQuantities, defined in [ISO31] and
[ISO/IEC80000].

Properties

• symbol: String [0..1]
Short symbolic name of the system of quantities.

• description: String [0..1]
Textual description of the system of quantities.
 ISO/IEC 2017 - All rights reserved 267

ISO/IEC 19514:2017(E)
• definitionURI: String [0..1]
URI that references an external definition of the system of quantities. Note that as part of [ISO/IEC80000]
normative URIs for each of the ISQ quantities and SI units are being defined.

• quantityKind: QuantityKind [0..*] {ordered}
Ordered set of QuantityKind that specifies the kinds of quantity that are known in the system.

• baseQuantityKind: QuantityKind [0..*] {ordered, subsets quantityKind}
Ordered set of QuantityKind that specifies the base quantities of the system of quantities. This is a subset of the
complete quantityKind list. The base quantities define the basis for the quantity dimension of a kind of quantity.

• /dimension: Dimension [0..*] {ordered, readOnly, nonunique}
Derived ordered set of Dimension. The actual dimension of a QuantityKind depends on the list of
baseQuantityKind that are specified in an actual SystemOfQuantities, see the DerivedDimensions constraint.

• includedSystemOfQuantities: SystemOfQuantities[0..*] {unique}
Including a SystemOfQuantities means including all of the QuantityKind it defines and includes from other
SystemOfQuantities.

• usedSystemOfQuantities: SystemOfQuantities[0..*] {unique}
A QuantityKind can be defined in a SystemOfQuantities in terms of QuantityKinds defined in that
SystemOfQuantities or from other SystemOfQuantities it uses or includes. See for example the units used with the SI
in ISO 80000-1, Table 5.

Constraints

[1] All quantity dimensions are derived through the following algorithm specified in OCL.

package QUDV
-- get the set of units, if any, that a given unit directly depends on
context Unit
def: directUnitDependencies : Set(Unit) =

if oclIsKindOf(ConversionBasedUnit)
then oclAsType(ConversionBasedUnit).referenceUnit
else

if oclIsKindOf(DerivedUnit)
then oclAsType(DerivedUnit).factor->collect(unit)->asSet()
else Set{}

endif
endif

-- get the set of units, if any, that a given unit directly or indirectly depends on
context Unit
def: allUnitDependencies : Set(Unit)

= self->closure(directUnitDependencies)

context Unit
inv acyclic_unit_dependencies

: not allUnitDependencies->excludes(self)

-- get the set of quantityKinds, if any, that a given quantityKind directly depends on
context QuantityKind
def: directQKindDependencies : Set(QuantityKind)

= if oclIsKindOf(DerivedQuantityKind)
then oclAsType(DerivedQuantityKind).factor

->collect(quantityKind)->asSet()
else
268  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
if oclIsKindOf(SpecializedQuantityKind)
then oclAsType(SpecializedQuantityKind).general
else Set{}
endif

endif

context QuantityKind
def: allQuantityKindDependencies : Set(QuantityKind)

= self->closure(directQKindDependencies)

context QuantityKind
inv acyclic_quantity_kind_dependencies

: allQuantityKindDependencies->excludes(self)

--context SystemOfQuantities::deriveQuantityKindDimensions() :
--post: quantityKind->forAll(qK|qK.hasProperDimension(self))
-- The derived dimension of a simple quantity kind must
-- have exactly one factor
-- whose numerator and denominator are equal to 1.

context SimpleQuantityKind
def: hasProperDimension(sq:SystemOfQuantities) : Boolean

= let d:Dimension=sq.getDimension(self)
in d.factor->size()=1
and d.factor->forAll(exponent->forAll(numerator=1 and denominator=1))

-- The derived dimension of a specialized quantity kind is
-- the dimension of its general quantity kind.
context SpecializedQuantityKind
def: hasProperDimension(sq:SystemOfQuantities) : Boolean

= sq.getDimension(self) = sq.getDimension(general)

-- A helper function to produce the factor/quantityKind tuples
-- for a given Dimension.
context Dimension
def: dimFactors : Bag(Tuple(factor:Rational,qKind:QuantityKind))

= self.factor->collect(qkf | Tuple{factor=qkf.exponent,qKind=qkf.quantityKind})

-- A helper function to get all the factor/quantityKind tuples
-- for the dimension factors of a derived quantity kind.
context DerivedQuantityKind
def: derQFactors(sq:SystemOfQuantities) : Bag(Tuple(factor:Rational,qKind:QuantityKind))

= self.factor->collect(qkf |
let qd:Dimension = sq.getDimension(qkf.quantityKind) in
qd.factor->collect(qkf |
Tuple{factor=qkf.exponent.plus(df.exponent),qKind=qkf.quantityKind}))

-- Reduce a bag of factor/quantityKind tuples by combining
-- all factors for the same quantity kind
-- and eliminating the zero-factor/quantityKind tuples
context DerivedQuantityKind
def: reducetoNonZeroUniqueFactors(

qFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind)),
qKinds:Set(QuantityKind))

: Bag(Tuple(factor:Rational,qKind:QuantityKind))
 ISO/IEC 2017 - All rights reserved 269

ISO/IEC 19514:2017(E)
= let uqFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))
= qKinds->collect(

-- for each unique quantity kind, qKind1,
-- from the set of unique quantity kinds, qKinds...
qKind1:QuantityKind|
-- get the sequence of factors from the set of
-- qFactors tuples whose quantity kind is qKind1...
let factor1s:Sequence(Rational)

= qFactors->select(qKind=qKind1)
->collect(factor)->asSequence()

-- start with the first factor, factor1,
-- from all the factor1s associated to qKind1...
in let factor1:Rational=factor1s->first()

-- construct the factor/quantityKind tuple
-- for qKind1 where
-- the factor is the product of factor1 with
-- all remaining factors1s
in Tuple{

factor=factor1s->excluding(factor1)->iterate(
factorI:Rational;
factorN:Rational=factorI |

factorN.plus(factorI)),
qKind=qKind1})

-- eliminate the factor/quantityKind tuples where
-- the factor is zero
in let nqFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))

= uqFactors->select(factor.numerator<>0)
in nqFactors

-- The derived dimension of a derived quantity kind is
-- the simplified set of factor/quantityKind tuples
-- for the derived quantity kind. The simplified set
-- of factor/quantityKind tuples has
-- one factor/quantityKind tuple for each quantityKind where
-- the simplified factor is a non-zero product of
-- all the factors in the factor/quantityKind tuples.
context DerivedQuantityKind
def: hasProperDimension(sq:SystemOfQuantities) : Boolean

= let d:Dimension = sq.getDimension(self)
in let resFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))
= d.dimFactors
-- the unique quantityKinds from the result...
in let resKinds:Set(QuantityKind)

=resFactors->collect(qKind)->asSet()

-- the factor/quantityKind tuples from the derived quantity...
in let qFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))
= self.derQFactors(sq)

-- the unique quantityKinds from the derived quantity...
in let qKinds:Set(QuantityKind)=qFactors->collect(qKind)->asSet()

-- get the reduced non-zero factor/quantityKinds...
in let nqFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))
= self.reducetoNonZeroUniqueFactors(qFactors, qKinds)
270  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
-- condition1: there should be the same number
-- of factor/quantityKind tuples in the result
-- compared to the non-zero unique factor/quantityKind
-- tuples for the derivedQuantityKind
in nqFactors->size() = resFactors->size()

-- condition2: there should be the same set of
-- quantity kinds in the result
-- and in the non-zero unique factor/quantityKind tuples
-- and qKinds->symmetricDifference(resKinds)->isEmpty()

-- condition3: for each quantity kind,
-- the factors in the result and
-- in the reduced non-zero unique factor/quantityKind
-- tuples should be equivalent rationals
and qKinds->forAll(qk:QuantityKind|
let nFactor:Rational

=nqFactors->select(qKind=qk)
->collect(factor)->asSequence()->first()

in let rFactor:Rational
=resFactors->select(qKind=qk)
->collect(factor)->asSequence()->first()

in nFactor.equivalent(rFactor))
endpackage

[2] For a QuantityKind to have a provenance to a single SystemOfQuantities, all included systems of quantities shall be
transitively disjoint with all used systems of quantities.

inv includedSystemOfQuantities_transitivelyDisjoint_usedSystemOfQuantities:
allIncludedSystemOfQuantities()->intersection(self.oclAsSet()

->closure(usedSystemOfQuantities))->isEmpty()

[3] The set of all QuantityKinds in a given SystemOfQuantities shall be partitioned into two disjoint, covering subsets: the set
of base QuantityKinds (typically chosen to be mutually independent) and its complement, the set of derived
QuantityKinds, each of which can be expressed in terms of the base QuantityKinds (See ISO 80000-1, 4.3).

inv allBaseQuantitiesAreQuantities:
allQuantityKinds()->includesAll(allBaseQuantityKinds())

[4] Every QuantityKind shall be defined in only one SystemOfQuantities but it can be in the scope of several
SystemOfQuantities. A given QuantityKind is in scope of a SystemOfQuantities either because it is defined or used in a
SystemOfQuantities or because it is included from the scope of another SystemOfQuantities.

inv singleProvenance:
includedSystemOfQuantities->collect(allQuantityKinds())

->intersection(quantityKind)->isEmpty()

[5] For a QuantityKind to have a provenance to a single SystemOfQuantities, the use and includes relationships among
SystemOfQuantities shall be acyclic.

inv acyclicProvenance:
allAccessibleSystemOfQuantities()->excludes(self)
 ISO/IEC 2017 - All rights reserved 271

ISO/IEC 19514:2017(E)
Operations

[1] The query accessibleQuantityKinds() gives all the QuantityKinds directly defined in the SystemOfQuantities or
transitively in any included or used SystemOfQuantities.

allAccessibleQuantityKinds() : QuantityKind[0..*] {unique}
body: allAccessibleSystemOfQuantities()->collect(quantityKind)->flatten()->asSet()

[2] The query allAccessibleSystemOfQuantities() gives all the SystemOfQuantities directly or transitively included or used.

allAccessibleSystemOfQuantities() : SystemOfQuantities[0..*] {unique}
body: self->closure(includedSystemOfQuantities->union(usedSystemOfQuantities))->asSet()

[3] The query allBaseQuantityKinds() gives all the QuantityKinds directly adopted or transitively adopted from any included
SystemOfQuantities as base QuantityKinds.

allBaseQuantityKinds(): QuantityKind[0..*] {unique}
body: allIncludedSystemOfQuantities()->collect(baseQuantityKind)->flatten()->asSet()

->union(baseQuantityKind)->asSet()

[4] The query allIncludedSystemOfQuantities() gives all the SystemOfQuantities directly or transitively included.

allIncludedSystemOfQuantities () : SystemOfQuantities[0..*] {unique}
body: self->closure(includedSystemOfQuantities)->asSet()

[5] The query allQuantityKinds() gives all the QuantityKinds in scope of a SystemOfQuantities; that is, each QuantityKind is
either directly defined in the SystemOfQuantities, selectively used from another SystemOfQuantities or part of the scope
of all the QuantityKinds included from another SystemOfQuantities.

allQuantityKinds(): QuantityKind[0..*] {unique}
body: allIncludedSystemOfQuantities()->collect(quantityKind)->flatten()->asSet()

->union(quantityKind)->asSet())

E.5.2.16 SystemOfUnits

Description

A SystemOfUnits represents the [VIM] concept of “system of units” that is defined as “set of base units and derived units,
together with their multiples and submultiples, defined in accordance with given rules, for a given system of quantities.”
It collects a list of Units that are known in the system. A QUDV SystemOfUnits only optionally defines multiples and
submultiples.

Properties

• symbol: String [0..1]
Short symbolic name of the system of units.

• description: String [0..1]
Textual description of the system of units.

• definitionURI: String [0..1]
URI that references an external definition of the system of units. Note that as part of [ISO/IEC80000] normative
URIs for each of the quantities in the ISQ and units in the SI are being defined.

• unit: Unit [0..*] {ordered}
Ordered set of Unit that specifies the units that are known in the system.

• baseUnit: Unit [0..*] {ordered, subsets unit}
Ordered set of Unit that specifies the base units of the system of units. A “base unit” is defined in [VIM] as a
272  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
“measurement unit that is adopted by convention for a base quantity.” It is the (preferred) unit in which base
quantities of the associated systemOfQuantities are expressed.

• prefix: Prefix [0..*] {ordered}
Ordered set of Prefix that specifies the prefixes for multiples and submultiples of units in the system.

• systemOfQuantities: SystemOfQuantities [0..1]
Reference to the SystemOfQuantities for which the units are specified.

• includedSystemOfUnits: SystemOfUnits[0..*] {unique}
Including a SystemOfQuantities means including all of the QuantityKind it defines and includes from other
SystemOfQuantities.

• usedSystemOfUnits: SystemOfUnits[0..*] {unique}
A Unit can be defined in a SystemOfUnits in terms of Units defined in that SystemOfUnits or from other
SystemOfUnits it uses or includes. See for example the units used with the SI in ISO 80000-1, Table 5.

Constraints

[1] In a coherent system of units, there shall be only one base unit for each base quantity.

package QUDV
context SystemOfUnits
def: isCoherent() : Boolean =

baseUnit->size() = systemOfQuantities.baseQuantityKind->size()
and baseUnit
->forAll(bU|systemOfQuantities.baseQuantityKind

->one(bQK|bU.primaryQuantityKind=bQK))
and systemOfQuantities.baseQuantityKind
->forAll(bQK|baseUnit->one(bU|bQK=bU.primaryQuantityKind))

endpackage

[2] A coherent derived unit shall be a derived unit that, for a given system of quantities and for a chosen set of base units, is a
product of powers of base units with no other proportionality factor than one.

package QUDV
context SystemOfUnits
def: isCoherent(du : DerivedUnit) : Boolean =

baseUnit->includesAll(du.factor->collect(unit))
and du.factor->collect(exponent)

->forAll(numerator=1 and denominator=1)
endpackage

[3] In a well-formed SystemOfUnits, all of the prefixes of PrefixedUnits shall be defined in the SystemOfUnits.

inv SoU3_1:
allPrefixes()->includesAll(allUnits()->select(oclIsTypeOf(PrefixedUnit))

->collect(oclAsType(PrefixedUnit).prefix))

[4] All the dependent Units of a SystemOfUnits shall be in the scope of that SystemOfUnits.

inv SoU3_2:
allUnits()->includesAll(allUnits()->collect(dependsOnUnits())->flatten()->asSet())

[5] All of the quantityKinds that are measurementUnits of Units in the SystemOfUnits shall be defined in the
systemOfQuantities of that SystemOfUnits.

inv SoU3_3:
getEffectiveSystemOfQuantities() = null or let aqk : Set(QuantityKind) =
 ISO/IEC 2017 - All rights reserved 273

ISO/IEC 19514:2017(E)
getEffectiveSystemOfQuantities().allQuantityKinds() in ->allUnits()
->forAll(u | aqk->includesAll(getKindOfQuantitiesForMeasurementUnit(u)))

[6] For a Unit to have a provenance to a single SystemOfUnits, all included systems of units shall be transitively disjoint with
all used systems of units.

inv includedSystemOfUnits_transitivelyDisjoint_usedSystemOfUnits:
allIncludedSystemOfUnits()->intersection(self.oclAsSet()

->closure(usedSystemOfUnits))->isEmpty()

[7] The set of all Units in a given SystemOfUnits shall be capable of being partitioned into two disjoint, covering subsets: the
set of base Units (typically chosen to be mutually independent) and all its complement, the set of derived Units, each of
which can be expressed in terms of the base Units (See ISO 80000-1, 6.4).

inv allBaseUnitsAreUnits:
allUnits()->includesAll(allBaseUnits())

[8] Every Unit shall be defined in only one SystemOfUnits but it can be in the scope of several SystemOfUnits. A given Unit
is in scope of a SystemOfUnits either because it is defined or used in a SystemOfUnits or because it is included from the
scope of another SystemOfUnits.

inv singleProvenance:
includedSystemOfUnits->collect(allUnits())->intersection(unit)->isEmpty())

[9] For a Unit to have a provenance to a single SystemOfUnits, the use and includes relationships among SystemOfUnits shall
be acyclic.

inv acyclicProvenance:
allAccessibleSystemOfUnits()->excludes(self)

Operations

[1] The query accessibleQuantityKinds() gives all the QuantityKinds directly defined in the SystemOfQuantities or
transitively in any included or used SystemOfQuantities.

allAccessibleQuantityKinds() : QuantityKind[0..*] {unique}
body: allAccessibleSystemOfQuantities()->collect(quantityKind)->flatten()->asSet()
inv SoU3_3:
getEffectiveSystemOfQuantities() = null or let aqk : Set(QuantityKind) =

getEffectiveSystemOfQuantities().allQuantityKinds() in ->allUnits()
->forAll(u | aqk->includesAll(getKindOfQuantitiesForMeasurementUnit(u)))

[2] The query allAccessibleSystemOfUnits() gives all the SystemOfUnits directly or transitively included or used.

allAccessibleSystemOfUnits(): SystemOfUnits[0..*] {unique}
body: self->closure(includedSystemOfUnits->union(usedSystemOfUnits))->asSet()

[3] The query accessibleUnits () gives all the units directly defined in a system of units or transitively in any included or used
system of units.

allAccessibleUnits(): Unit[0..*] {unique}
body: allAccessibleSystemOfUnits()->collect(unit)->flatten()->asSet()

[4] The query allBaseQuantityKinds() gives all the QuantityKinds directly adopted or transitively adopted from any included
SystemOfQuantities as base QuantityKinds in the effective SystemOfQuantities associated to a SystemOfUnits.

allBaseQuantityKinds(): QuantityKind[0..*] {unique}
body: getEffectiveSystemOfQuantities()->allBaseQuantityKinds()->flatten()->asSet()
274  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
[5] The query allBaseUnits() gives all the Units directly adopted or transitively adopted from any included SystemOfUnits as
base Units.

allBaseUnits(): Unit[0..*] {unique}
body: allIncludedSystemOfUnits()->collect(baseUnit)->flatten()->asSet()

->union(baseUnit)->asSet

[6] The query allIncludedSystemOfUnits() gives all the SystemOfUnits directly or transitively included.

allIncludedSystemOfUnits(): SystemOfUnits[0..*] {unique}
body: self->closure(includedSystemOfUnits->union(usedSystemOfUnits))->asSet()

[7] The predicate allMeasurementUnitsDefinedForSomeQuantityKind() determines whether, in a SystemOfUnits, every Unit
shall be defined, by convention, as a multiplicable reference for at least one QuantityKind (see ISO 80000-1, 3.9).

allMeasurementUnitsDefinedForSomeQuantityKind(): Boolean
body: allUnits()->select(quantityKind <> null)

[8] The query allPrefixes() gives all the Prefixes in scope of a SystemOfUnits; that is, each Prefix is either directly defined in
the SystemOfUnits or in any accessible SystemOfUnits.

allPrefixes(): Prefix[0..*] {unique}
body: allAccessibleSystemOfUnits()->including(self)->collect(prefix)->flatten()->asSet()

[9] The query allUnits() gives all the Units in scope of a SystemOfUnits; that is, each Unit is either directly defined in the
SystemOfUnits, selectively used from another SystemOfUnits or part of the scope of all the Units included from another
SystemOfUnits.

allUnits(): Unit[0..*] {unique}
body: allIncludedSystemOfUnits()->collect(unit)->flatten()->asSet()->union(unit)->asSet()

[10]The query getAdoptedBaseUnitForMeasurementUnit() determines for a Unit u in scope of a SystemOfUnits the base
Unit, if any, corresponding to u, which can be u itself if it is a baseUnit in that SystemOfUnits or its reference Unit if it is
a base Unit and u is a PrefixUnit.

getAdoptedBaseUnitForMeasurementUnit(u : Unit) : Unit[0..1]
body: let abu : Set(Unit) = allBaseUnits() in
if (abu->includes(u)) then u
else if (u.oclIsKindOf(PrefixedUnit))

then abu->intersection(u.oclAsType(PrefixedUnit).referenceUnit->asSet())->any(true)
else null endif

endif

[11] The query getAdoptedQuantityKindForAdoptedBaseUnitOfMeasurementUnit() determines for a Unit u in scope of a
SystemOfUnits the base QuantityKind, if any, corresponding to the base Unit of u.

getAdoptedQuantityKindForAdoptedBaseUnitOfMeasurementUnit (u : Unit) : QuantityKind[0..1]
body: let bu : Unit = getAdoptedBaseUnitForMeasurementUnit(u) in
if (bu = null) then Set{}
else let qks : Set(QuantityKind) = getKindOfQuantitiesForMeasurementUnit(bu) in

allBaseQuantityKinds()->intersection(qks)
endif

[12]The query getEffectiveSystemOfQuantities() determines for a SystemOfUnits the SystemOfQuantities, if any, that it is
directly or indirectly associated with via included SystemOfUnits.

getEffectiveSystemOfQuantities () : SystemOfQuantities[0..1]
 ISO/IEC 2017 - All rights reserved 275

ISO/IEC 19514:2017(E)
body: if systemOfQuantities = null then includedSystemOfUnits->
collect(getEffectiveSystemOfQuantities())->flatten()->asSet()->any(true)

else systemOfQuantities endif

[13]The query getKindOfQuantitiesForMeasurementUnit() determines for a Unit u in scope of a SystemOfUnits the set of
QuantityKinds corresponding to u, if specified, or to the Units that u is defined in terms of, if any.

getKindOfQuantitiesForMeasurementUnit(u : Unit) : QuantityKind[0..*] {unique}
body: let bu : Unit = getAdoptedBaseUnitForMeasurementUnit(u) in
if (bu = null) then Set{}
else let qks : Set(QuantityKind) = getKindOfQuantitiesForMeasurementUnit(bu) in

allBaseQuantityKinds()->intersection(qks)
endif

E.5.2.17 Unit

Description

In QUDV, the concept of Unit is an abstract specialization of SysML Unit to support designating a primary QuantityKind
for a given Unit within the scope of a system of units and quantities and to support a richer vocabulary for defining Units.

Properties

• /dependsOnUnits : Unit[0..*] {readOnly, unique}
The set of all Units that this Unit directly or indirectly depends on according to its definition.

• general: Unit[0..*] {unique}
A Unit can be defined as a specialization of zero or more Units. This capability is important for specifying the
 meaning of a unit for a quantity of dimension one (see ISO 80000-1, 3.8 and 3.10).

• isUnitCountOfEntities: Boolean = false
If true, indicates that the measurement unit represents a number of entities (see ISO 80000-1, 3.10, Note 3).

• isUnitForQuantityOfDimensionOne: Boolean = false
If true, indicates that the corresponding QuantityKind has dimension one (see ISO 80000-1, 3.8).

Constraints

[1] A Unit cannot be defined in terms of itself. This follows from the requirement that, in a coherent SystemOfUnits, the
Units of all derived QuantityKinds are expressed in terms of the base Units in accordance with the equations in the
SystemOfQuantities (see ISO 80000-1, 6.4).

inv acyclic_unit_dependencies:
dependsOnUnits()->excludes(self)

Operations

[1] Abstract operation specified in SimpleQuantityKind and DerivedQuantityKind to calculate the value of the derived
property QuantityKind:/dependsOnQuantityKinds.

dependsOnQuantityKinds() : QuantityKind[0..*] {unique}

E.5.2.18 UnitFactor

Description

A UnitFactor represents a factor in the product of powers that defines a DerivedUnit.
276  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Properties

• exponent: Rational
Rational number that specifies the exponent of the power to which the unit is raised.

• unit: Unit
Reference to the Unit that participates in the factor.

E.5.3 References

[VIM]
JCGM 200:2012, International vocabulary of metrology - Basic and general concepts and associated terms (VIM), 3rd
edition (JCGM 200:2008 with minor corrections), 2012, BIPM, Paris, France. http://www.bipm.org/utils/common/
documents/jcgm/JCGM_200_2012.pdf.

[ISO/IEC80000]
ISO/IEC 80000, Quantities and units. 15 parts, some published, some still in progress, harmonized replacement of
[ISO31] and [IEC60027], the new international system of quantities and units.

[ISO31]
ISO 31, Quantities and units (Third edition 1992-08-01). Specifies the international system of units - SI - in 14 parts.

[IEC60027]
IEC 60027-2:2005, Letter symbols to be used in electrical technology - Part 2: Telecommunications and electronics (Third
edition 2005-08).

[SI-Brochure]
Le Système international d'unités (SI) / The International System of Units (SI), 8th edition 2006, BIPM, (French and
English). Available for download in PDF format from http://www.bipm.org/en/si/si_brochure.

[NIST330]
The International System of Units (SI), NIST Special Publication 330, 2008 Edition. NOTE: U.S. version of the English
language text of [SI-Brochure].
Available for download in PDF format from http://physics.nist.gov/cuu/Units/bibliography.html.

[NIST822]
Guide for the Use of the International System of Units (SI), NIST Special Publication 811, 2008 Edition.
Available for download in PDF format from http://physics.nist.gov/cuu/Units/bibliography.html.

[Dybkaer-2010] Rene Dybkaer, “ISO terminological analysis of the VIM3 concepts of ‘quantity’ and ‘kind-of-quantity’”,
Metrologia 47, (2010) 127-143, http://dx.doi.org/10.1088/0026-1394/47/3/003. See also: http://www.bipm.org/en/
publications/guides/rationale_vim3.html.

E.5.4 Usage Examples

E.5.4.1 SI Unit and QuantityKind examples

Figure E.8 shows an approach for defining base units of the System International of Units defined in http://
www.bipm.org/en/si/si_brochure/chapter2/2-1/ and http://physics.nist.gov/cuu/Units/units.html. This approach involves
instantiating the concrete classes of Unit shown in Figure E.6.
 ISO/IEC 2017 - All rights reserved 277

ISO/IEC 19514:2017(E)
Figure E.9 diagram shows the definition of “newton” as a DerivedUnit (E.5.2.4) corresponding to the “force”
DerivedQuantityKind (E.5.2.3). Derived units and quantity kinds are defined as products of factors on other units and
quantity kinds respectively. In the QUDV, the product factors of a DerivedUnit (resp. DerivedQuantityKind) are all of the
UnitFactor (resp. DerivedUnitFactor) at the “factor” ends of association link instances.

Figure E.8 - Base Unit and Quantity Kinds of the SI and ISQ respectively

Figure E.9 - Example of a derived unit and derived quantity kind

Example of QUDV definitions for base units and quantities from ISO 80000-1 Quantities and Units Part 1[package] ISO-80000-1-QUDV Diagrambdd []

definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/kilogram.html"
name = "kilogram"
symbol = "kg"

kilogram : PrefixedUnit

definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/metre.html"
name = "metre"
symbol = "m"

metre : SimpleUnit

name = "International
System of Units"
symbol = "SI"

SI : SystemOfUnits

name = "International
System of Quantities"
symbol = "ISQ"

ISQ : SystemOfQuantities

name = "mass"
symbol = "m"

mass : SimpleQuantityKind

name = "length"
symbol = "l"

length : SimpleQuantityKind

name = "gram"
symbol = "g"

gram : SimpleUnit

factor = 1.0E3
name = "kilo"
symbol = "k"

kilo : Prefix

systemOfQuantities

unit

quantityKind

primaryQuantityKind

quantityKind baseQuantityKind

quantityKind

quantityKind

quantityKind baseQuantityKind

primaryQuantityKind

referenceUnitprefixprefix

unit

baseUnit

unit

baseUnit

Example of QUDV definitions for derived units and quantities from ISO 80000-1 Quantities and Units Part 1ISO-80000-1-QUDV Diagram[package] bdd []

name = "newton"
symbol = "N"

newton : DerivedUnit

name = "force"
symbol = "F"

force : DerivedQuantityKind

exponent = 1/1
length^1 : QuantityKindFactor

exponent = 1/1
mass^1 : QuantityKindFactor

exponent = -2/1
time^-2 : QuantityKindFactor

name = "length"
symbol = "l"

length : SimpleQuantityKind

name = "mass"
symbol = "m"

mass : SimpleQuantityKind

name = "time"
symbol = "t"

time : SimpleQuantityKind

name = "kilogram"
prefix = kilo
referenceUnit = gram
symbol = "kg"

kilogram : PrefixedUnit

exponent = 1/1
kilogram^1 : UnitFactor

exponent = -2/1
second^-2 : UnitFactor

exponent = 1/1
metre^1 : UnitFactor

name = "second"
symbol = "s"

second : SimpleUnit

name = "metre"
symbol = "m"

metre : SimpleUnit

factor

factor

factor

factor

factor

factor

primaryQuantityKind quantityKind

quantityKind quantityKindprimaryQuantityKind primaryQuantityKindquantityKindprimaryQuantityKind

quantityKind quantityKindquantityKind

unitunitunit
278  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
E.5.4.2 Spring Example

Figure E.10 shows a simple model of the length of a spring defined as the linear distance between the linear position of
its two flange ends. QUDV supports defining arbitrary systems of units and quantities. Although this example uses only
one unit, “metre” and one quantity kind, “lengthQK;” this example illustrates specialized value types to make additional
distinctions such as “LinearPosition” vs. “LinearDistance,” two distinct quantities that have the same unit and quantity
kind. This example illustrates an instance of a spring and uses the dot pathname property notation defined for IBDs
(8.3.1.2, Internal Block Diagram) to clearly indicate the role of each instance specification.

Figure E.10 - Spring Length Example

E.6 Model Library of SysML Quantity Kinds and Units for ISO 80000

E.6.1 Overview

This non-normative extension defines a model library of SysML QuantityKind and Unit definitions for a subset of
quantities and units defined by the International System of Quantities (ISQ) and the International System of Units (SI).
The specific quantities and units in this library are defined by ISO 80000-1 Quantities and units - Part1: General. ISO/
IEC 80000 currently has fourteen parts that define many quantities and units for use within various fields of science and
technology. Part 1 defines base quantities and units used by other parts as well as a starting set of derived quantities and
units with special names and symbols.

Spring Length ExampleSpringExample[package] bdd []

position = spring1.a.pos {unit = metre}

«block»
spring1.a : Flange

position = spring1.b.pos {unit = metre}

«block»
spring1.b : Flange

values
position : LinearPosition{unit = metre}

«block»
Flange

a = spring1.a
b = spring1.b
length = spring1.length {unit = metre}
springLength = spring1.springLength

«block»
spring1 : Spring

constraints
springLength : SpringLength

parts
a : Flange
b : Flange

values
length : LinearDistance{unit = metre}

«block»
Spring

constraints
{length.value = | a.position.value - b.position.value |}

parameters
a : Flange
b : Flange
length : LinearDistance

«constraint»
SpringLength

«block»
SpringQuantities : SystemOfQuantities

«constraint»
spring1.springLength : SpringLength

«quantityKind»
lengthQK : SimpleQuantityKind

value = 42.0

«ValueType»
spring1.length : LinearDistance

value = 8.0
spring1.a.pos : LinearPosition

«ValueType»

value = 50.0
spring1.b.pos : LinearPosition

«ValueType»

«block»
SpringUnits : SystemOfUnits

«unit»
metre : SimpleUnit

unit = metre

value : Real

«valueType»
LinearDistance

unit = metre

value : Real

«valueType»
LinearPosition

quantityKind

primaryQuantityKind

systemOfQuantities

baseUnitunit baseQuantityKindquantityKind

values

«valueType»

values

«valueType»
 ISO/IEC 2017 - All rights reserved 279

ISO/IEC 19514:2017(E)
E.6.2 Units and Quantity Kinds

The model library defined in this sub clause contains SysML QuantityKind and Unit elements as defined by Clause 8,
“Blocks.” Each QuantityKind or Unit element may optionally carry a “definitionURI” property to document each quantity
kind and unit using additional information available from some external source. One option is for this definitionURI to
identify an element of a QUDV model (see E.5, Model Library for Quantities, Units, Dimensions, and Values (QUDV))
that more fully describes the same quantities and units, including the systems of quantities and units they belong to, and
the means by which they may be derived from each other. E.5.4, Usage Examples contains examples of such QUDV
definitions that could be referenced by these definitionURIs.

Figure E.11 - Model libraries of SysML Quantity Kinds and Units for the covered content of ISO 80000 parts
3,4,5,6,7,9,10 and 13
280  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure E.12 - Organization of the definitions of units and quantities from the normative parts of ISO 80000 covered in
SysML 1.4, which includes all the normative content of parts 3,4,5,6; the subset of parts 7,9,10 corresponding to the
content from SysML 1.3 and the subset of part 13 pertaining to commonly used units of information. Parts 8,11 and 12
are not covered because none of their units and quantities were referenced in previous versions of SysML nor in the
summary tables in ISO 80000-1
 ISO/IEC 2017 - All rights reserved 281

ISO/IEC 19514:2017(E)
Figure E.13 - Content relationships for the systems of units and quantities in from the different parts of ISO 80000 in
relation to ISO 80000 as a whole and to the International System of Units (SI) and quantities (ISQ)
282  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure E.14 - Table 1 (from ISO 80000-1) SI base units for the ISQ base quantities
 ISO/IEC 2017 - All rights reserved 283

ISO/IEC 19514:2017(E)
Figure E.15 - Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (1)
284  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Figure E.16 - Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (2)
 ISO/IEC 2017 - All rights reserved 285

ISO/IEC 19514:2017(E)
Figure E.17 - Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (3)
286  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
E.6.3 ISO 80000-1 Prefixes

Table E.6 - The decimal and binary prefixes in scope of the International System of Units (SI) which uses the ISO
80000 system of units and its included systems of units such as ISO 80000-13

Figure E.18 - Table 3 (from the SI brochure) SI derived units with special names and symbols

Prefix name Prefix Factor
(num, den)

Defining Part

yocto 1,10^24 ISO 80000-1 General

zepto 1,10^21 ISO 80000-1 General

atto 1,10^18 ISO 80000-1 General

femto 1,10^15 ISO 80000-1 General

pico 1,10^12 ISO 80000-1 General

nano 1,10^9 ISO 80000-1 General

micro 1,10^6 ISO 80000-1 General

milli 1,10^3 ISO 80000-1 General

centi 1,10^2 ISO 80000-1 General

deci 1,10^1 ISO 80000-1 General

deca 10^1,1 ISO 80000-1 General

hecto 10^2,1 ISO 80000-1 General

kilo 10^3,1 ISO 80000-1 General

mega 10^6,1 ISO 80000-1 General

giga 10^9,1 ISO 80000-1 General

tera 10^12,1 ISO 80000-1 General

peta 10^15,1 ISO 80000-1 General

exa 10^18,1 ISO 80000-1 General

zetta 10^21,1 ISO 80000-1 General

yotta 10^24,1 ISO 80000-1 General
 ISO/IEC 2017 - All rights reserved 287

ISO/IEC 19514:2017(E)
kibi (2^10)^1,1 IEC80000-13 Information
Science and Technology

mebi (2^10)^2,1 IEC80000-13 Information
Science and Technology

gibi (2^10)^3,1 IEC80000-13 Information
Science and Technology

tebi (2^10)^4,1 IEC80000-13 Information
Science and Technology

pebi (2^10)^5,1 IEC80000-13 Information
Science and Technology

exbi (2^10)^6,1 IEC80000-13 Information
Science and Technology

zebi (2^10)^7,1 IEC80000-13 Information
Science and Technology

yobi (2^10)^8,1 IEC80000-13 Information
Science and Technology
288  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
E.6.4 ISO 80000-2 Mathematical Signs and Symbols

ISO 80000 part 2 defines Mathematical Signs and Symbols used in other ISO 80000 parts. In the SysML library, this part
contains definitions of constant numbers used across all other parts.

Figure E.19 - Constant numbers used throughout the SysML ISO 80000 library.
 ISO/IEC 2017 - All rights reserved 289

ISO/IEC 19514:2017(E)
E.6.5 Summary of the covered parts of ISO 80000

The following sub clauses provide a summary overview of all definitions of units and quantity kinds grouped by ISO
80000 part (3,4,5,6,7,9,10,13). Note that “quantities” in the ISO documents correspond to “QuantityKinds” in QUDV. As
explained in 8.3.3.2.1, QuantityKind, the type of a SysML value property (i.e., a VIM “quantity”), a SysML ValueType,
specifies the QUDV QuantityKind aspects that this “quantity” has in common with other “quantities” typed by SysML
ValueTypes referencing the same QUDV QuantityKind aspect.

The SysML definitions are indexed and ordered according to their corresponding ISO 80000 definition. The ISO 80000
part document provides the authoritative reference for the meaning of the corresponding SysML definitions of units and
quantity kinds.

Prefixes apply for all units except for units corresponding to quantities of dimension one or for units in non-reduced form.
The 20 decimal prefixes apply to such units in parts 3,4,5,6,7,9,10; the 8 binary prefixes apply to such units in parts 13.
For a derived unit defined in terms of N other units, there are 20^N possible prefixed derived units; far too many to create
explicitly. This library contains only the combinations for the first factor for each derived unit. Finally, the library
includes value type definitions for the possible combinations of quantity kinds and compatible units and prefixed units
represented in the library.

All value type definitions follow the same pattern: a toplevel value type is defined with only the quantity kind. This value
type is compatible with values typed by specializations of that toplevel value type that specify a particular unit. The
following diagram shows the resulting taxonomy for the value types about 'mass' (ISO 80000-4, 4-1) and all applicable
prefixes for the corresponding unit, 'gram' (ISO 80000-4, 4-1.a).

E.6.5.1 ISO 80000-3 Space and Time

All 25 entries (including sub-entries) in the normative contents of ISO 80000-3 are modeled as summarized below.

Figure E.20 - Example of value type definitions for a quantity and applicable units and prefixed units
290  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table E.7 - Normative units in ISO 80000-3 (1 of 2)

Unit name Description Symbol General units Quantity Kinds is unit

for

quantity

of

is

reduced

form?

metre ISO 80000-3, 3-1.a, 3-17.a m ISO 80000-3,

 3-1.1

metre to the
power minus
one

ISO 80000-3, 3-2.a,

3-18.a, 3-19.a,

3-25.a

m-1 ISO 80000-3,

3-2
 [5]

square metre ISO 80000-3, 3-3.a m2 ISO 80000-3,

 3-3

cubic metre ISO 80000-3, 3-4.a m3 ISO 80000-3,

 3-4

litre ISO 80000-3, 3-4.b l

radian ISO 80000-3, 3-5.a rad ISO 80000-3, true

degree angle degree angle ° true

minute angle ISO 80000-3, 3-5.c ' true

second angle ISO 80000-3, 3-5.d " true

gon ISO 80000-3, 3-5.e gon true

steradian ISO 80000-3, 3-6.a srad ISO 80000-3,

 3-6

true

second ISO 80000-3, 3-7.a, 3-12.a,

3-13.a

s ISO 80000-3,

 3-7

minute ISO 80000-3, 3-7.b min

hour ISO 80000-3, 3-7.c h

day ISO 80000-3, 3-7.d d

metre per

second

ISO 80000-3, 3-8.a, 3-20.a m/s ISO 80000-3,

 3-8.1

metre per

second squared

ISO 80000-3, 3-9.a m/s2 ISO 80000-3,

 3-9.1

radian per

second

ISO 80000-3, 3-10.a,

3-16.a

rad/s ISO 80000-3,<XREF>

 3-15.b, 3-16.b<XREF>,

 3-23.<XREF>a
 [4<XREF>]

ISO 80000-3,

3-10
 [5]

radian per

second squared

ISO 80000-3, 3-11.a rad/s2 ISO 80000-3,

 3-11

number of

turns

ISO 80000-3, 3-14.a ISO 80000-3,

 3-14

true

revolution ISO 80000-3, 3-14.a ISO 80000-

3,<XREF>

true
 ISO/IEC 2017 - All rights reserved 291

ISO/IEC 19514:2017(E)
Table E.8 - Normative units in ISO 80000-3 (2 of 2)

Table E.9 - Normative quantity kinds in ISO 80000-3 (1 of 2)

hertz ISO 80000-3, 3-15.a Hz ISO 80000-3,

 3-15.1

Unit name Description Symbol General units Quantity Kinds is unit for

quantity of

dimension

is

reduced

form?

number of

turns per

second

ISO 80000-3, 3-15.b s-1 ISO 80000-

3,<XREF>

ISO 80000-3,
 3-15.2
 [6]

second to the

power minus

one

ISO 80000-3, 3-15.b, 3-

16.b, 3-23.a

s-1 ISO 80000-3,

 3-23
 [6]

revolution per

second

ISO 80000-3, 3-15.b r/s ISO 80000-

3,<XREF>

revolution per

minute

ISO 80000-3, 3-15.b r/min ISO 80000-

3,<XREF>

neper ISO 80000-3, 3-21.a, 3-

22.a, 3-24.b

Np ISO 80000-3,

 3-24

true

bel ISO 80000-3, 3-21.b,

3-22.b

B ISO 80000-3,

3-24
 [6]

true

bel per

second

ISO 80000-3, 3-23.b,

3-24.b

B/s ISO 80000-3,<XREF>

3-15.b, 3-16.b<XREF>,

3-23.<XREF>a
 [4<XREF>]

neper per

second

ISO 80000-3, 3-23.b Np/s ISO 80000-

3,<XREF>

 3-15.b, 3-16.b<XREF>,

Quantity Kind Description Symbol General is

name dimension 1?

length ISO 80000-3, 3-1.1

breadth ISO 80000-3, 3-1.2

ISO 80000-3, 3-1.1 [5]

height ISO 80000-3, 3-1.3

ISO 80000-3, 3-1.1 [5]

thickness ISO 80000-3, 3-1.4

ISO 80000-3, 3-1.1 [5]

radius ISO 80000-3, 3-1.5

ISO 80000-3, 3-1.1 [5]

l, L

b, B

h, H

d,δ
r, R
292  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table E.10 - Normative quantity kinds in ISO 80000-3 (2 of 2)

radial distance ISO 80000-3, 3-1.6

ISO 80000-3, 3-1.1 [5]

diameter ISO 80000-3, 3-1.7

ISO 80000-3, 3-1.1 [5]

length of path ISO 80000-3, 3-1.8 ISO 80000-3, 3-1.1 [5]

distance ISO 80000-3, 3-1.9

ISO 80000-3, 3-1.1 [5]

cartesian
coordinates

ISO 80000-3, 3-1.10 ISO 80000-3, 3-1.1 [5]

position vector ISO 80000-3, 3-1.11 ISO 80000-3, 3-1.1 [5]

displacement ISO 80000-3, 3-1.12 ISO 80000-3, 3-1.1 [5]

radius of curvature ISO 80000-3, 3-1.13

ISO 80000-3, 3-1.1 [5]

curvature ISO 80000-3, 3-2
area ISO 80000-3, 3-3

volume ISO 80000-3, 3-4 V

plane angle ISO 80000-3, 3-5

true

solid angle ISO 80000-3, 3-6

true

time ISO 80000-3, 3-7
speed ISO 80000-3, 3-8.1 ISO 80000-3, 3-8.1 [5]

velocity ISO 80000-3, 3-8.1
speed of
propagation of
waves

ISO 80000-3, 3-8.2 ISO 80000-3, 3-8.1 [5]

acceleration ISO 80000-3, 3-9.1
acceleration of free
fall

ISO 80000-3, 3-9.2 ISO 80000-3, 3-9.1 [5]

angular velocity ISO 80000-3, 3-10
angular
acceleration

ISO 80000-3, 3-11

period duration ISO 80000-3, 3-12 ISO 80000-3, 3-7 [5]

time constant for
an expoentially
varying quantity

ISO 80000-3, 3-13

ISO 80000-3, 3-7 [5]

rotation ISO 80000-3, 3-14 true

frequency ISO 80000-3, 3-15.1

Quantity Kind
name

Description Symbol General is
Dimension 1?

rational frequency ISO 80000-3, 3-15.2

angular frequency ISO 80000-3, 3-16

wavelength ISO 80000-3, 3-17

ISO 80000-3, 3-1.1 [5]

linear repetency ISO 80000-3, 3-18

angular repetency ISO 80000-3, 3-19 k

rQ, ρ
d, D
s
d,r
x, y,z

r
Δr
ρ
χ
A, S()

α ,β,γ ,ϑ,φ
Ω
t
u,v,w
v
c

a
g

ω ,ω
α

T
τ , T()

N
f ,ν

n

ω

λ

 ISO/IEC 2017 - All rights reserved 293

ISO/IEC 19514:2017(E)
E.6.5.2 ISO 80000-4 Mechanics

All 37 entries (including sub-entries) in the normative contents of ISO 80000-4 are modeled as summarized below.

Table E.11 - Normative units in ISO 80000-4 (1 of 2)

phase velocity ISO 80000-3, 3-20.1

ISO 80000-3, 3-8.1 [5]

group velocity ISO 80000-3, 3-20.2 cg, vg ISO 80000-3, 3-8.1 [5]

level of a field
quantity

ISO 80000-3, 3-21 LF true

level of a power
quantity

ISO 80000-3, 3-22 LP true

damping
coefficient for an
exponentially
varying quantity

ISO 80000-3, 3-23 δ

logarithmic
decrement for an
exponentially
varying quantity

ISO 80000-3, 3-24 Λ ISO 80000-3, 3-23 [6] true

attenuation
coefficient for an
exponentially
varying quantity

ISO 80000-3, 3-25.1 α ISO 80000-3,
3-25.3 [6]

phase coefficient
for an
exponentially
varying quantity

ISO 80000-3, 3-25.2 β ISO 80000-3,
3-25.3 [6]

propagation
coefficient for an
exponentially
varying quantity

ISO 80000-3, 3-25.3 γ

Unit name Description Symbol General units Quantity Kinds is unit for
quantity of
dimension 1?

is
reduced
form?

gram ISO 80000-4, 4-1.a g ISO 80000-4,
4-1 [10]

tonne ISO 80000-4, 4-1.b t

kilogram per
cubic metre

ISO 80000-4, 4-2.a kg/m3 ISO 80000-4,
4-2 [10]

mass density
ratio

ISO 80000-4, 4-3.a ISO 80000-4,
4-3 [10]

true

cubic metre
per kilogram

ISO 80000-4, 4-4.a m3/kg ISO 80000-4,
4-4 [10]

kilogram per
square metre

ISO 80000-4, 4-5.a kg/m2 ISO 80000-4,
4-5 [10]

kilogram per
metre

ISO 80000-4, 4-6.a kg/m ISO 80000-4,
4-6 [10]

c,v,cφ ,vφ
294  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table E.12 - Normative units in ISO 80000-4 (2 of 2)

kilogram
metre squared

ISO 80000-4, 4-7.a kg.m2 ISO 80000-4,
4-7 [10]

kilogram metre
per second

ISO 80000-4, 4-8.a kg.m/s ISO 80000-4,
4-8 [10]

newton ISO 80000-4, 4-9.a N ISO 80000-4,
4-9.1 [10]

newton metre
squared per
kilogram squared

ISO 80000-4, 4-10.a N · m2/kg2 ISO 80000-4,
4-10 [10]

newton
second

ISO 80000-4, 4-11.a N.s ISO 80000-4,
4-11 [10]

kilogram metre
squared per second

ISO 80000-4, 4-12.a kg · m 2/s ISO 80000-4,
4-12 [10]

newton metre ISO 80000-4, 4-13.a N.m ISO 80000-4,
4-13.1 [10]

newton metre
second

ISO 80000-4, 4-14.a N.m.s ISO 80000-4,
4-14 [10]

pascal ISO 80000-4, 4-15.a,
4-18.a

Pa ISO 80000-4,
4-15.1 [10]

cubic metre
strain factor

ISO 80000-4, 4-16.a ISO 80000-4,
4-16.a [7]

ISO 80000-4,
4-16.3 [11]

true

strain factor ISO 80000-4, 4-16.a ISO 80000-4,
4-16.1,2,3 [10]

true

metre strain
factor

ISO 80000-4, 4-16.a ISO 80000-4,
4-16.a [7]

ISO 80000-4,
4-16.1 [11]

true

Unit name Description Symbol General units Quantity Kinds is unit for
quantity of
dimension 1?

is
reduced
form?

contraction
to elongation
metre ratio

ISO 80000-4, 4-17.a ISO 80000-4,
4-17 [11]

true

cubic metre
strain factor
per pascal

ISO 80000-4, 4-19.a

ISO 80000-4,
4-19.a [8]

ISO 80000-4,
4-19 [11]

pascal to the
power minus
one

ISO 80000-4, 4-19.a

metre to the
power of four

ISO 80000-4, 4-20.a m 4 ISO 80000-4,
4-20.1 [11]

newton ratio ISO 80000-4, 4-22.a ISO 80000-4,
4-22.1 [13]

true

pascal second ISO 80000-4, 4-23.a Pa.s ISO 80000-4,
4-23 [13]

metre per
second per
metre

ISO 80000-4, 4-23.a ISO 80000-3, 3-15.b,
3-16.b, 3-23.a [4]

ISO 80000-4,
4-23 [13]

false

Pa−1

Pa−1
 ISO/IEC 2017 - All rights reserved 295

ISO/IEC 19514:2017(E)
Table E.13 - Normative quantity kinds in ISO 80000-4 (1 of 4)

square metre
per second

ISO 80000-4, 4-24.a m2/s

pascal second
kilogram per
cubic metre

ISO 80000-4, 4-24.a m2/s ISO 80000-4,
4-24.a [8]

ISO 80000-4,
4-24 [13]

newton per ISO 80000-4, 4-25.a N/m ISO 80000-4,

metre 4-25 [13]

watt ISO 80000-4, 4-26.a,
4-56.a

W ISO 80000-4,
4-26.a [8]

joule per
second

ISO 80000-4, 4-26.a J/s ISO 80000-4,
4-26.a [8]

newton metre
per second

ISO 80000-4, 4-26.a N.m/s ISO 80000-4,
4-26 [13]

joule ISO 80000-4, 4-27.a,
4-34.a, 4-36.a

J ISO 80000-4,
4-34 [14]

output watt ISO 80000-4, 4-28.a

ISO 80000-4, 4-26.a,
4-56.a [8]

ISO 80000-4,
4-28 [13]

output input
watt ratio

ISO 80000-4, 4-28.a ISO 80000-4,
4-28 [13]

true

input watt ISO 80000-4, 4-28.a

ISO 80000-4, 4-26.a,
4-56.a [8]

ISO 80000-4,
4-28 [13]

kilogram per
second

ISO 80000-4, 4-29.a kg/s ISO 80000-4,
4-29 [14]

cubic metre
per second

ISO 80000-4, 4-30.a

ISO 80000-4,
4-30 [14]

joule second ISO 80000-4, 4-37.a J.s ISO 80000-4,
4-37 [14]

Quantity Kind
name

Description Symbol General is dimension
1?

mass ISO 80000-4, 4-1 m

density ISO 80000-4, 4-2 ISO 80000-4, 4-2 [10]

mass density
of a reference
substance

ISO 80000-4, 4-2,
4-3

ISO 80000-4, 4-2 [10]

mass density ISO 80000-4, 4-2
relative mass
density

ISO 80000-4, 4-3 d true

specificVolume ISO 80000-4, 4-4 v

surface density ISO 80000-4, 4-5

linear density ISO 80000-4, 4-6

mass moment
of inertia

ISO 80000-4, 4-7 I, J

momentum ISO 80000-4, 4-8
force ISO 80000-4, 4-9.1

Wout

Win

m3 / s

ρ0

ρ

ρA

ρl

p
F

296  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table E.14 - Normative quantity kinds in ISO 80000-4 (2 of 4)

weight ISO 80000-4, 4-9.2

gravitational
constant between
two mass particles

ISO 80000-4, 4-10

impulse ISO 80000-4, 4-11
moment of
momentum

ISO 80000-4, 4-12

moment of force ISO 80000-4, 4-13.1 M

torque ISO 80000-4, 4-13.2 T ISO 80000-4,
4-13.1 [10]

bending moment
of force

ISO 80000-4, 4-13.3

ISO 80000-4,
4-13.1 [10]

angular impulse ISO 80000-4, 4-14 H

pressure ISO 80000-4, 4-15.1 p

normal stress ISO 80000-4, 4-15.2 σ ISO 80000-4,
4-15.1 [10]

sheer stress ISO 80000-4, 4-15.3 τ ISO 80000-4,
4-15.1 [10]

length of item in a
reference state

ISO 80000-4, 4-16

ISO 80000-3, 3-1.1 [5]

increase in length ISO 80000-4, 4-16

ISO 80000-3, 3-1.1 [5]

strain ISO 80000-4,
4-16.1,2,3

true

Quantity Kind nameDescription Symbol General is dimension
1?

linear strain ISO 80000-4, 4-16.1

ISO 80000-4,
4-16.1,2,3 [10]

true

thickness of a layer
between two surfaces

ISO 80000-4, 4-16.2 d ISO 80000-3, 3-1.4 [5]

sheer strain ISO 80000-4, 4-16.2

ISO 80000-4,
4-16.1,2,3 [10]

true

parallel displacement
between two surfaces
of a layer

ISO 80000-4, 4-16.2 ISO 80000-3, 3-1.12 [5]

increase in
volume

ISO 80000-4, 4-16.3 ISO 80000-3, 3-4 [5]

volume strain ISO 80000-4, 4-16.3

ISO 80000-4,
4-16.1,2,3 [10]

true

volume in a
reference state

ISO 80000-4, 4-16.3

ISO 80000-3, 3-4 [5]

elongation ISO 80000-4, 4-17 ISO 80000-3, 3-1.1 [5]

lateral
contraction

ISO 80000-4, 4-17

ISO 80000-3, 3-1.1 [5]

poisson number ISO 80000-4, 4-17

true

Fg ,G
G

I
L

M b

l0

Δl

ε, e()

γ

Δx

ΔV

ϑ

V0

Δl
Δδ

μ, ν()
 ISO/IEC 2017 - All rights reserved 297

ISO/IEC 19514:2017(E)
Table E.15 - Normative quantity kinds in ISO 80000-4 (3 of 4)

modulus of
elasticity

ISO 80000-4, 4-18.1 E ISO 80000-4,
4-18.1,2,3 [11]

modulus ISO 80000-4,
4-18.1,2,3

ISO 80000-4,
4-15.1 [10]

modulus of
rigidity

ISO 80000-4, 4-18.2 G ISO 80000-4,
4-18.1,2,3 [11]

modulus of
compression

ISO 80000-4, 4-18.3 K ISO 80000-4,
4-18.1,2,3 [11]

compressibility ISO 80000-4, 4-19

increase in
pressure

ISO 80000-4, 4-19 ISO 80000-4,
4-15.1 [10]

surface
considered

ISO 80000-4, 4-20 ISO 80000-3, 3-3 [5]

second axial
moment of area

ISO 80000-4, 4-20.1

radial distance from a
Q-axis in the plane
of the surface
considered

ISO 80000-4, 4-20.1

ISO 80000-3, 3-1.6 [5]

second polar
moment of area

ISO 80000-4, 4-20.2

radial distance from a
Q-axis perpendicular
to the plane of the
surface considered

ISO 80000-4, 4-20.2

ISO 80000-3, 3-1.6 [5]

Quantity Kind
name

Description Symbol General is dimension
1?

section modulus ISO 80000-4, 4-21

maximum radial
distance from a Q-axis
in the plane of the
surface considered

ISO 80000-4, 4-21

ISO 80000-4,
4-20.1 [11]

maximum tangential
component of the
contact force between
two bodies at rest

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

tangential component
of the contact force
between two sliding
bodies

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

contact force between
two sliding bodies

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

χ

Ia

rQ

Ip

rQ

Z, W()
IQ, max
298  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table E.16 - Normative quantity kinds in ISO 80000-4 (4 of 4)

tangential component of
the contact force
between two bodies at
rest

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

tangential component
of the contact force
between two bodies

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

contact force between
two bodies

ISO 80000-4, 4-22 ISO 80000-4, 4-9.1 [10]

normal component
of the contact force
between two sliding
bodies

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [13]

maximum contact force
between two bodies

ISO 80000-4, 4-22

ISO 80000-4, 4-22 [12]

contact force between
two bodies at rest

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

normal component of
the contact force
between two bodies at
rest

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [13]

normal component of
the contact force
between two bodies

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

Quantity Kind
name

Description Symbol General is dimension
1?

dynamic friction factor ISO 80000-4, 4-22.1

true

static friction factor ISO 80000-4, 4-22.2

true

velocity gradient ISO 80000-4, 4-23

dynamic viscosity ISO 80000-4, 4-23

kinematic viscosity ISO 80000-4, 4-24
surface tension ISO 80000-4, 4-25
force component
perpendicular to a line
element in a surface

ISO 80000-4, 4-25 ISO 80000-4, 4-9.1 [10]

length of line element in
a surface

ISO 80000-4, 4-25 ISO 80000-3, 3-1.1 [5]

power ISO 80000-4, 4-26
work ISO 80000-4, 4-27.1 W

potential energy ISO 80000-4, 4-27.2 Ep ISO 80000-4, 4-27.4 [13]

kinetic energy ISO 80000-4, 4-27.3 Ek ISO 80000-4, 4-27.4 [13]

mechanical energy ISO 80000-4, 4-27.4 E ISO 80000-4, 4-27.1 [13]

power efficiency ISO 80000-4, 4-28 η true

F

Fmax

μ, f()
μs , fs()

ν
γ ,σ

P

 ISO/IEC 2017 - All rights reserved 299

ISO/IEC 19514:2017(E)
Contact force between two bodies is an example of a taxonomy of specialized quantity kinds induced by different
measurement procedures.

Per ISO 80000-4, 4-31, 4-32, 4-33 and 4-35, there are no measurement units defined for these generalized quantity kinds;
the unit of a particular quantity (i.e., SysML value property) typed by a SysML ValueType referencing a generalized
quantity kind depends on the dimension of that particular quantity.

E.6.5.3 ISO 80000-5 Thermodynamics

All 33 entries (including sub-entries) in the normative contents of ISO 80000-5 are modeled as summarized below.

Table E.17 - Normative units in ISO 80000-5 (1 of 2)

output power ISO 80000-4, 4-28

ISO 80000-4, 4-26 [13]

input power ISO 80000-4, 4-28

ISO 80000-4, 4-26 [13]

mass flow rate ISO 80000-4, 4-29

volume flow rate ISO 80000-4, 4-30

generalized coordinate ISO 80000-4, 4-31

generalized velocity ISO 80000-4, 4-32

generalized force ISO 80000-4, 4-33

generalized
potential energy

ISO 80000-4, 4-34

generalized
kinetic energy

ISO 80000-4, 4-34

Lagrange function ISO 80000-4, 4-34

ISO 80000-4, 4-34 [14]

generalized momentum ISO 80000-4, 4-35

generalized momentum
of velocity

ISO 80000-4, 4-36

ISO 80000-4, 4-36 [14]

Hamilton function ISO 80000-4, 4-36 H ISO 80000-4, 4-36 [14]

action functional ISO 80000-4, 4-37 S

Unit name Description Symbol General units Quantity Kinds is unit for
quantity of
dimension 1?

is reduced
form?

kelvin ISO 80000-5, 5-1.a,
5-33.a

 ISO 80000-5,
5-1 [17]

degree
celsius

ISO 80000-5, 5-2.a ISO 80000-5,
5-2 [17]

cubic metre
coefficient
per kelvin

ISO 80000-5, 5-3.2

ISO 80000-5,
5-3.a [15]

ISO 80000-5,
5-3.2 [17]

Pout

Pin

qm

qV

qi

qi

.

Qi

V qi ,qi

.





T qi ,qi

.





L qi ,qi

.





pi

pi qi

.

K

°C

K−1
300  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table E.18 - Normative units in ISO 80000-5 (2 of 2)

pascal ratio
per kelvin

ISO 80000-5, 5-3.3

ISO 80000-5,
5-3.a [15]

ISO 80000-5,
5-3.3 [17]

kelvin to the
power minus one

ISO 80000-5, 5-3.a

metre coefficient
per kelvin

ISO 80000-5, 5-3.a

ISO 80000-5,
5-3.a [15]

ISO 80000-5,
5-3.1 [17]

pascal ratio ISO 80000-5, 5-3.a ISO 80000-5,
5-3.3 [17]

true

pascal per kelvin ISO 80000-5, 5-4.a ISO 80000-5,
5-4 [17]

cubic metre ratio
per pascal

ISO 80000-5, 5-5.a

ISO 80000-4,
4-19.a [8]

ISO 80000-5,
5-5.1 [17]

watt per square
metre

ISO 80000-5, 5-8.a

ISO 80000-5,
5-8 [18]

watt per metre
kelvin

ISO 80000-5, 5-9.a

ISO 80000-5,
5-9 [18]

kelvin per metre ISO 80000-5, 5-9.a

ISO 80000-5,
5-9 [18]

watt per square
metre per kelvin

ISO 80000-5, 5-10.a

ISO 80000-5,
5-10.1 [18]

square metre
kelvin per watt

ISO 80000-5, 5-11.a

ISO 80000-5,
5-11 [18]

kelvin per
watt

ISO 80000-5, 5-12.a

ISO 80000-5,
5-12 [18]

watt per
kelvin

ISO 80000-5, 5-13.a

ISO 80000-5,
5-13 [18]

watt square metre
per joule

ISO 80000-5, 5-14.a

ISO 80000-4,
4-24.a [8]

ISO 80000-5,
5-14 [18]

joule per
kelvin

ISO 80000-5, 5-15.a,
5-18.a, 5-21.a, 5-22.a,
5-23.a

ISO 80000-5,
5-18 [19]

Unit name Description Symbol General units Quantity Kinds is unit for
quantity of
dimension 1?

is reduced
form?

joule per kilogram
kelvin

ISO 80000-5, 5-16.a

ISO 80000-5,
5-16.1 [18]

cubic metre per
pascal ratio

ISO 80000-5, 5-17.a ISO 80000-5,
5-17.2 [19]

true

cubic metre per
pascal

ISO 80000-5, 5-17.a

ISO 80000-5,
5-17.2 [19]

joule per kilogram
kelvin ratio

ISO 80000-5, 5-17.a ISO 80000-5,
5-17.1 [19]

true

pascal per cubic
metre

ISO 80000-5, 5-17.a

ISO 80000-5,
5-17.2 [19]

kelvin joule per
kelvin

ISO 80000-5, 5-20.a

ISO 80000-4, 4-27.a,
4-34.a, 4-36.a [8]

ISO 80000-5, 5-20.
 [45]
 [19]

false

K−1

K−1

K−1

Pa / K

Pa−1

W / m2

W / m ⋅ K()
K / m

W / m2 ⋅ K

m2 ⋅ K / W

K / W

W / K

W ⋅m2 / J

J / K

J / kg ⋅ K()

m3 / Pa

Pa / m3

J

 ISO/IEC 2017 - All rights reserved 301

ISO/IEC 19514:2017(E)
Table E.19 - Normative quantity kinds in ISO 80000-5 (1 of 5)

pascal cubic metre ISO 80000-5, 5-20.a

ISO 80000-4, 4-27.a,
4-34.a, 4-36.a [8]

ISO 80000-5,
5-20.3 [19]

kelvin joule per
kelvin kilogram

ISO 80000-5, 5-21.a

ISO 80000-5,
5-21.a [16]

ISO 80000-5,
5-21.5 [20]

false

joule per kilogram ISO 80000-5, 5-21.a

ISO 80000-5,
5-21.1 [19]

kilogram ratio ISO 80000-5, 5-26.a,
5-27.a, 5-28.a, 5-29.a

ISO 80000-5,
5-26 [20]

true

kilogram ratio
fraction

ISO 80000-5, 5-28.a,
5-32.a

ISO 80000-5,
5-28 [21]

true

kilogram per cubic
metre ratio

ISO 80000-5, 5-31.a ISO 80000-5,
5-31 [21]

true

Quantity Kind
name

Description Symbol General is dimension
1?

thermodynamic
temperature

ISO 80000-5,
5-1

celsius Temperature ISO 80000-5,
5-2

ISO 80000-5, 5-1 [17]

linear expansion
coefficient

ISO 80000-5,
5-3.1

increase in temperature ISO 80000-5,
5-3.1,2,3,4

ISO 80000-5, 5-1 [17]

cubic expansion
coefficient

ISO 80000-5,
5-3.2

pressure in a reference
state

ISO 80000-5,
5-3.3

ISO 80000-4, 4-15.1 [10]

relative
pressure coefficient

ISO 80000-5,
5-3.3

pressure ratio ISO 80000-5,
5-3.3

true

increase in pressure
at constant volume

ISO 80000-5,
5-3.3

ISO 80000-4, 4-19 [11]

increase
in temperature at
constant volume

ISO 80000-5,
5-3.3

ISO 80000-5, 5-3.1,2,3,4 [17]

pressure coefficient ISO 80000-5,
5-4

isothermal
compressibility

ISO 80000-5,
5-5.1

increase in pressure
at constant temperature

ISO 80000-5,
5-5.1

ISO 80000-4, 4-19 [11]

increase in volume at
constant temperature

ISO 80000-5,
5-5.1

ISO 80000-4, 4-16.3 [11]

increase in pressure
at constant entropy

ISO 80000-5,
5-5.2

ISO 80000-4, 4-19 [11]

Pa ⋅m3

J / K

J / K

T , Θ()
 t,ϑ

α
l

 ∂T ,dT

α
V

,α ,γ

α
p

∂P()
V

∂T()
V

β

χ
T

∂P()
T

∂V()
T

∂P()
S

302  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table E.20 - Normative quantity kinds in ISO 80000-5 (2 of 5)

Table E.21 - Normative quantity kinds in ISO 80000-5 (3 of 5)

isentropic
compressibility

ISO 80000-5,
5-5.2

increase in volume at
constant entropy

ISO 80000-5,
5-5.2

ISO 80000-4, 4-16.3 [11]

Quantity Kind
name

description symbol general is dimension
1?

amount of heat ISO 80000-5, 5-6

ISO 80000-4, 4-27.4 [13]

heat flow rate ISO 80000-5, 5-7 ISO 80000-4, 4-26 [13]

surface density of heat
flow rate

ISO 80000-5, 5-8

ISO 80000-5, 5-8 [18]

areic heat flow rate ISO 80000-5, 5-8

thermodynamic
temperature gradient

ISO 80000-5, 5-9

thermal conductivity ISO 80000-5, 5-9

coefficient of heat
transfer

ISO 80000-5,
5-10.1

thermodynamic
temperature difference

ISO 80000-5,
5-10.1

ISO 80000-5, 5-1 [17]

surface coefficient of
heat transfer

ISO 80000-5,
5-10.2

surface thermodynamic
temperature difference

ISO 80000-5,
5-10.2

ISO 80000-5,
5-10.2 [18]

surface thermo-
dynamic temperature

ISO 80000-5,
5-10.2

ISO 80000-5,
5-1 [17]

reference thermo-
dynamic temperature

ISO 80000-5,
5-10.2

ISO 80000-5,
5-1 [17]

coefficient of
thermal insulance

ISO 80000-5, 5-11

thermal resistance ISO 80000-5, 5-12
thermal conductance ISO 80000-5, 5-13

thermal diffusivity ISO 80000-5, 5-14
heat capacity ISO 80000-5, 5-15
specific heat capacity ISO 80000-5,

5-16.1

specific heat capacity at
constant pressure

ISO 80000-5,
5-16.2

ISO 80000-5,
5-16.1 [18]

Quantity Kind nameDescription Symbol General is dimension
1?

specific heat capacity
at constant volume

ISO 80000-5, 5-16.3

ISO 80000-5,
5-16.1 [18]

χ
S

∂V()
S

Q

Φ
 q,φ

 q,φ

λ, χ()
K , k()

h, α()
h, α()

M

R
G, H()
α
C
 c

c
p

c
V

 ISO/IEC 2017 - All rights reserved 303

ISO/IEC 19514:2017(E)
Table E.22 - Normative quantity kinds in ISO 80000-5 (4 of 5)

specific heat capacity
at saturation

ISO 80000-5, 5-16.4

ISO 80000-5,
5-16.1 [18]

ratio of the specific
heat capacities

ISO 80000-5, 5-17.1

true

pressure per volume
increase at constant
entropy

ISO 80000-5, 5-17.2

volume per pressure
in a reference state

ISO 80000-5, 5-17.2

isentropic exponent ISO 80000-5, 5-17.2

entropy ISO 80000-5, 5-18
heat received ISO 80000-5, 5-18

ISO 80000-5, 5-6 [18]

specific entropy ISO 80000-5, 5-19
energy ISO 80000-5, 5-20.1 ISO 80000-4, 4-27.4 [13]

internal thermo-
dynamic energy

ISO 80000-5, 5-20.2 ISO 80000-5, 5-18 [19]

volumetric pressure ISO 80000-5, 5-20.3

enthalpy ISO 80000-5, 5-20.3 ISO 80000-5,
5-20.2 [19]

Helmholtz energy ISO 80000-5, 5-20.4

ISO 80000-5,
5-20.2 [19]

Gibbs energy ISO 80000-5, 5-20.5 ISO 80000-5,
5-20.3 [19]

system enthalpy at
thermodynamic
temperature

ISO 80000-5, 5-20.
[45]

specific energy ISO 80000-5, 5-21.1
specific internal
thermodynamic
energy

ISO 80000-5, 5-21.2 ISO 80000-5,
5-21.1 [19]

specific enthalpy ISO 80000-5, 5-21.3 ISO 80000-5,
5-21.2 [19]

specific Helmholtz
energy

ISO 80000-5, 5-21.4

Quantity Kind name Description Symbol General is dimension
1?

specific Gibbs energy ISO 80000-5, 5-21.5

Massieu function ISO 80000-5, 5-22
Planck function ISO 80000-5, 5-23
mass of water
irrespective of the
form of aggregation

ISO 80000-5, 5-24 ISO 80000-4, 4-1 [10]

mass concentration of
water at saturation

ISO 80000-5, 5-24

ISO 80000-4, 4-2 [10]

total volume of water
and dry matter

ISO 80000-5, 5-24 ISO 80000-3, 3-4 [5]

c
sat

γ

χ
S
dQ

 s
E
U

 pV

H

 A, F

G

TS

 e
 u

h

a, f

g

J
Y
 m

w
sat

V

304  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table E.23 - Normative quantity kinds in ISO 80000-5 (5 of 5)

mass concentration of
water

ISO 80000-5, 5-24 ISO 80000-4, 4-2 [10]

mass of water vapour ISO 80000-5, 5-24 ISO 80000-5, 5-24 [20]

mass concentration of
water vapour

ISO 80000-5, 5-25 ISO 80000-4, 4-2 [10]

mass concentration of
water vapour at
saturation

ISO 80000-5, 5-25

ISO 80000-4, 4-2 [10]

mass of water at
saturation

ISO 80000-5, 5-25

ISO 80000-5, 5-24 [20]

mass of water vapour
at saturation

ISO 80000-5, 5-25

ISO 80000-5, 5-24 [20]

mass ratio of water to
dry matter

ISO 80000-5, 5-26 true

mass of dry matter ISO 80000-5, 5-26

ISO 80000-4, 4-1 [10]

mass ratio of water to
dry gas at saturation

ISO 80000-5, 5-26

ISO 80000-5, 5-26 [20] true

mass ratio of water
vapour to try gas

ISO 80000-5, 5-27 ISO 80000-5, 5-26 [20] true

mass ratio of water
vapour to dry gas at
saturation

ISO 80000-5, 5-27

ISO 80000-5, 5-27 [20] true

Quantity Kind
name

Description Symbol General is dimension
1?

mass of dry gas ISO 80000-5, 5-27

ISO 80000-5, 5-26 [20]

mass fraction of
water

ISO 80000-5, 5-28

true

mass fraction of dry
matter

ISO 80000-5, 5-29

ISO 80000-5, 5-28 [21] true

partial pressure of a
gas in a mixture at
saturation

ISO 80000-5, 5-30

ISO 80000-5, 5-30 [21]

partial pressure of a
gas in a mixture

ISO 80000-5, 5-30 ISO 80000-4, 4-15.1 [10]

relative partial
pressure of a gas

ISO 80000-5, 5-30 ISO 80000-5, 5-3.3 [17] true

relative mass
concentration of
water vapour

ISO 80000-5, 5-31

true

relative mass ratio
of water vapour

ISO 80000-5, 5-32 true

dew point
thermodynamic
temperature of
humid air

ISO 80000-5, 5-33

ISO 80000-5, 5-33 [21]

thermodynamic
temperature of
humid air

ISO 80000-5, 5-33 ISO 80000-5, 5-1 [17]

 w

 m
 v

v
sat

m
sat

m
sat

 u

m
d

u
sat

 w

w
sat

m
d

w
H2O

w
d

p
sat

p

φ

T
d

T

 ISO/IEC 2017 - All rights reserved 305

ISO/IEC 19514:2017(E)
E.6.5.4 ISO 80000-6 Electromagnetism

All 62 entries (including sub-entries) in the normative contents of ISO 80000-6 are modeled as summarized below.

Table E.24 - Normative units in ISO 80000-6 (1 of 5)

Unit name Description Symbol General units Quantity Kinds is unit for
quantity of
dimension
1?

is
reduced
form?

ampere IEC 80000-6, 6-1.a A IEC 80000-6,
6-1 [27]

coulomb IEC 80000-6, 6-2.a C IEC 80000-6,
6-2 [27]

coulomb per
cubic metre

IEC 80000-6, 6-3.a

IEC 80000-6,
6-3 [27]

coulomb per
square metre

IEC 80000-6, 6-4.a

IEC 80000-6,
6-4 [27]

coulomb per
metre

IEC 80000-6, 6-5.a

IEC 80000-6,
6-5 [27]

coulomb metre IEC 80000-6, 6-6.a

IEC 80000-6,
6-6 [27]

coulomb per
square metre
per second

IEC 80000-6, 6-7.a IEC 80000-6,
6-8.a [22]

IEC 80000-6,
6-8 [27]

coulomb per
metre squared

IEC 80000-6, 6-7.a

IEC 80000-6,
6-4.a [22]

IEC 80000-6,
6-7 [27]

ampere per
square metre

IEC 80000-6, 6-8.a

IEC 80000-6,
6-8 [27]

coulomb per
metre per
second

IEC 80000-6, 6-9.a

IEC 80000-6,
6-25.a [23]

IEC 80000-6,
6-9 [27]

volt per metre IEC 80000-6, 6-10.a

IEC 80000-6,
6-10 [27]

newton per
coulomb

IEC 80000-6, 6-10.a

IEC 80000-6,
6-10.a [22]

IEC 80000-6,
6-10 [27]

volt IEC 80000-6, 6-11.a V IEC 80000-6,
6-11.1 [27]

volt metre per
metre

IEC 80000-6, 6-11.a

IEC 80000-6,
6-11.a [22]

false

farad volt per
metre squared

IEC 80000-6, 6-12.a

IEC 80000-6,
6-7.a [22]

IEC 80000-6,
6-12 [27]

farad IEC 80000-6, 6-13.a F IEC 80000-6,
6-13 [27]

farad per metre IEC 80000-6, 6-14.a

IEC 80000-6,
6-14.a [22]

IEC 80000-6,
6-14.1 [27]

coulomb per
volt per metre

IEC 80000-6, 6-14.a

IEC 80000-6,
6-14.2 [28]

coulomb per
volt per metre
ratio

IEC 80000-6, 6-15.a IEC 80000-6,
6-15 [28]

true

C / m3

C / m2

C / m

C ⋅m

C / m2 ⋅s()
C / m2

A / m2

C / m ⋅s()
V / m

N / C

V ⋅m / m

F ⋅ V / m2

F / m

C / V ⋅m()
306  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table E.25 - Normative units in ISO 80000-6 (2 of 5)

Table E.26 - Normative units in ISO 80000-6 (3 of 5)

Unit name Description Symbol General units Quantity Kinds is unit for
quantity of
dimension
1?

is reduced
form?

coulomb per
metre squared
ratio

IEC 80000-6, 6-16.a IEC 80000-6,
6-16 [28]

true

square metre
coulomb per
metre squared

IEC 80000-6, 6-17.a C IEC 80000-6,
6-2.a [22]

false

coulomb per
metre squared per
second

IEC 80000-6, 6-18.a

IEC 80000-6,
6-8.a [22]

square metre
ampere per square
metre

IEC 80000-6, 6-19.a A IEC 80000-6,
6-1.a [22]

false

volt second per
metre squared

IEC 80000-6, 6-21

IEC 80000-6,
6-21.a [23]

newton per
ampere per metre

IEC 80000-6, 6-21.a

IEC 80000-6,
6-21.a [23]

tesla IEC 80000-6, 6-21.a T IEC 80000-6,
6-21 [28]

weber IEC 80000-6, 6-22.a Wb IEC 80000-6,
6-22.1 [28]

newton metre per
ampere

IEC 80000-6, 6-22.a

IEC 80000-6,
6-22.a [23]

volt second IEC 80000-6, 6-22.a IEC 80000-6,
6-22.a [23]

ampere square
metre

IEC 80000-6, 6-23.a

IEC 80000-6,
6-23 [28]

ampere square
metre per cubic
metre

IEC 80000-6, 6-24.a

IEC 80000-6,
6-25.a [23]

false

newton per weber IEC 80000-6, 6-25

IEC 80000-6,
6-25.a [23]

ampere per metre IEC 80000-6, 6-25.a

IEC 80000-6,
6-25 [28]

ampere metre per
metre squared

IEC 80000-6, 6-25.a

IEC 80000-6,
6-25.a [23]

false

volt second metre
squared per
ampere per metre
cube

IEC 80000-6, 6-26.a

IEC 80000-6,
6-26.a [24]

false

Unit name Description Symbol General units Quantity Kinds is unit for
quantity of
dimension
1?

is reduced
form?

C / m2 ⋅s()

V ⋅s / A ⋅m2

N / A ⋅m()

N ⋅m / A

V ⋅s

A ⋅m2

A ⋅m2 / m3

N / Wb

A / m

A ⋅m / m2

A ⋅s ⋅m2

A ⋅m3
 ISO/IEC 2017 - All rights reserved 307

ISO/IEC 19514:2017(E)
Table E.27 - Normative units in ISO 80000-6 (4 of 5)

volt second per
ampere per metre

IEC 80000-6, 6-26.a

IEC 80000-6,
6-26.a [24]

newton weber per
ampere per metre
per newton

IEC 80000-6, 6-26.a

IEC 80000-6,
6-26.a [24]

false

henry per metre IEC 80000-6, 6-26.a

IEC 80000-6,
6-26.2 [28]

weber per ampere
per metre

IEC 80000-6, 6-26.a

IEC 80000-6,
6-26.a [24]

henry per metre
ratio

IEC 80000-6, 6-27.a IEC 80000-6,
6-27 [28]

true

ampere per metre
ratio

IEC 80000-6, 6-28.a IEC 80000-6,
6-28 [29]

true

weber per metre
squared

IEC 80000-6, 6-29.a

IEC 80000-6,
6-21.a [23]

volt second
ampere per
ampere per metre
squared

IEC 80000-6, 6-29.a

IEC 80000-6,
6-21 [23]

false

volt second metre IEC 80000-6, 6-30.a IEC 80000-6,
6-30.a [24]

weber metre IEC 80000-6, 6-30.a

IEC 80000-6,
6-30 [29]

weber per metre IEC 80000-6, 6-32.a

IEC 80000-6,
6-32 [29]

newton per
ampere

IEC 80000-6, 6-32.a

IEC 80000-6,
6-32.a [24]

volt second per
metre

IEC 80000-6, 6-32.a

IEC 80000-6,
6-32.a [24]

newton ampere
per metre squared

IEC 80000-6, 6-33.a

IEC 80000-6,
6-33.a [25]

newton coulomb
per metre squared

IEC 80000-6, 6-33.a

IEC 80000-6,
6-33.a [25]

joule per cubic
metre

IEC 80000-6, 6-33.a

IEC 80000-6,
6-33 [29]

Unit name Unit description Symbol general units Quantity Kinds is unit for
quantity of
dimension
1?

is reduced
form?

newton per
metre squared

IEC 80000-6, 6-33.a

IEC 80000-6,
6-33.a [24]

volt ampere per
square metre

IEC 80000-6, 6-34.a

ISO 80000-5,
5-8.a [15]

IEC 80000-6,
6-34 [29]

ampere metre
per metre

IEC 80000-6, 6-37.a

IEC 80000-6,
6-1.a [22]

false

turns IEC 80000-6, 6-38.a IEC 80000-6,
6-38 [29]

true

V ⋅s
A ⋅m

N ⋅ Wb

A ⋅m ⋅ N

H / m

Wb

A ⋅m

Wb / m2

V ⋅s ⋅A
A ⋅m2

V ⋅s ⋅m

Wb ⋅m

Wb / m

N / A

V ⋅s / m

N ⋅A / m2

N ⋅C / m2

J / m3

N / m2

N ⋅A / m2

A ⋅m / m
308  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table E.28 - Normative units in ISO 80000-6 (5 of 5)

ampere per volt
per second

IEC 80000-6, 6-39.a IEC 80000-6,
6-39.a [25]

henry to the
power minus
one

IEC 80000-6, 6-39.a

IEC 80000-6,
6-39 [29]

volt second per
ampere

IEC 80000-6, 6-41.a

IEC 80000-6,
6-41.a [25]

weber per
ampere

IEC 80000-6, 6-41.a

IEC 80000-6,
6-41.a [25]

henry IEC 80000-6, 6-41.a H IEC 80000-6,
6-41.1 [29]

henry factor
squared

IEC 80000-6, 6-42.2 IEC 80000-6,
6-42.2 [29]

true

henry factor IEC 80000-6, 6-42.a IEC 80000-6,
6-42.1 [29]

true

ampere metre
per volt per
square metre

IEC 80000-6, 6-43.a

IEC 80000-6,
6-43.a [25]

false

siemens per
metre

IEC 80000-6, 6-43.a

IEC 80000-6,
6-43 [29]

ampere per volt
per metre

IEC 80000-6, 6-43.a

IEC 80000-6,
6-43.a [25]

metre per
siemens

IEC 80000-6, 6-44

IEC 80000-6,
6-44.a [25]

ohm metre IEC 80000-6, 6-44.a IEC 80000-6,
6-44 [29]

volt ampere IEC 80000-6, 6-45.a,
6-57.a, 6-59.a, 6-61.a

ISO 80000-4, 4-26.a,
4-56.a [8]

IEC 80000-6,
6-59 [30]

ohm IEC 80000-6, 6-46.a Ω IEC 80000-6,
6-46 [30]

volt per ampere IEC 80000-6, 6-46.a

IEC 80000-6,
6-46.a [25]

Unit name Description Symbol General units Quantity Kinds is unit for
quantity of
dimension
1?

is reduced
form?

siemens to the power minus
one

IEC 80000-6, 6-46.a

IEC 80000-6,
6-46.a [25]

siemens IEC 80000-6, 6-47.a S IEC 80000-6,
6-47 [30]

ampere per volt IEC 80000-6, 6-47.a

IEC 80000-6,
6-47.a [26]

ohm to the power minus oneIEC 80000-6, 6-47.a

IEC 80000-6,
6-47.a [26]

ohm ratio IEC 80000-6, 6-53.a IEC 80000-6,
6-53 [30]

true

watt per volt per ampere IEC 80000-6, 6-58.a IEC 80000-6,
6-58 [30]

true

A / V ⋅s()
1/ H

V ⋅s / A

Wb / A

A ⋅m
V ⋅m2

S / m

A / V ⋅m()
m / S

Ω ⋅m

V ⋅A

V / A

1/ S

A / V

1/Ω
 ISO/IEC 2017 - All rights reserved 309

ISO/IEC 19514:2017(E)
Table E.29 - Normative quantity kinds in ISO 80000-6 (1 of 4)

var IEC 80000-6, 6-60.b IEC 80000-6, 6-45.a,
6-57.a, 6-59.a,
6-61.a [25]

IEC 80000-6,
6-60 [30]

second joule per second IEC 80000-6, 6-62.a s.J/s ISO 80000-4, 4-27.a,
4-34.a, 4-36.a [8]

IEC 80000-6,
6-62 [31]

false

watt hour IEC 80000-6, 6-62.b W.h IEC 80000-6,
6-62 [31]

Quantity Kind name Description Symbol General is dimension
1?

electric current in a thin
conducting loop n

IEC 80000-6, 6-1

IEC 80000-6, 6-1 [27]

electric current IEC 80000-6, 6-1

rms current IEC 80000-6, 6-1 IEC 80000-6, 6-1 [27]

electric charge IEC 80000-6, 6-2

volumic electric charge IEC 80000-6, 6-3

areic electric charge IEC 80000-6, 6-4

lineic electric charge IEC 80000-6, 6-5

electric dipole moment IEC 80000-6, 6-6

electric polarization IEC 80000-6, 6-7
electric current density IEC 80000-6, 6-8
areic electric current IEC 80000-6, 6-8 IEC 80000-6, 6-8 [27]

lineic electric current IEC 80000-6, 6-9

electric field strength IEC 80000-6, 6-10
electric potential IEC 80000-6, 6-11.1

electric potential difference IEC 80000-6, 6-11.2

IEC 80000-6,
6-11.1 [27]

electric tension IEC 80000-6, 6-11.3

IEC 80000-6,
6-11.1 [27]

voltage IEC 80000-6, 6-11.3

IEC 80000-6,
6-11.3 [27]

rms voltage IEC 80000-6, 6-11.3 IEC 80000-6,
6-11.3 [27]

electric flux density IEC 80000-6, 6-12 IEC 80000-6, 6-7 [27]

electric flux density in vaccum IEC 80000-6, 6-12 IEC 80000-6, 6-12 [27]

capacitance IEC 80000-6, 6-13

permittivity of vaccum IEC 80000-6, 6-14.1

IEC 80000-6, 6-14.2 [28]

permittivity IEC 80000-6, 6-14.2
relative permittivity IEC 80000-6, 6-15

true

electric susceptibility IEC 80000-6, 6-16 true

var

I
n

I , i
I
Q,q

ρ,ρ
V

ρ
A
,σ

ρ
l
,τ

p
P
J
J
J

s

E
 V ,φ
V

ab

U ,U
ab

U ,U
ab

U

D

C
ε

0

ε
ε

r

χ

310  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table E.30 - Normative quantity kinds in ISO 80000-6 (2 of 4)

electric flux IEC 80000-6, 6-17 IEC 80000-6, 6-2 [27]

displacement current density IEC 80000-6, 6-18

IEC 80000-6, 6-20 [28]

displacement current IEC 80000-6, 6-19.1

IEC 80000-6, 6-19.2 [28]

total current IEC 80000-6, 6-19.2

IEC 80000-6, 6-1 [27]

total current density IEC 80000-6, 6-20

IEC 80000-6, 6-8 [27]

Quantity Kind name Description Symbol General is
dimension
1?

magnetic flux density IEC 80000-6, 6-21
magnetic flux IEC 80000-6, 6-22.1
linked flux in a loop caused by
an electric current in that loop

IEC 80000-6, 6-22.2

IEC 80000-6, 6-22.2 [28]

linked flux IEC 80000-6, 6-22.2
linked flux in a loop m caused
by an electric current in another
loop n

IEC 80000-6, 6-22.2

IEC 80000-6, 6-22.2 [28]

magnetic area moment IEC 80000-6, 6-23
magnetization IEC 80000-6, 6-24

IEC 80000-6, 6-25 [28]

magnetic field strength in
vaccum

IEC 80000-6, 6-25

IEC 80000-6, 6-25 [28]

magnetic field strength IEC 80000-6, 6-25
permeability of vaccum IEC 80000-6, 6-26.1

IEC 80000-6, 6-26.2 [28]

permeability IEC 80000-6, 6-26.2
magnetic flux density of
magnetic field strength

IEC 80000-6, 6-26.2 IEC 80000-6, 6-26.2 [28]

relative permeability IEC 80000-6, 6-27

true

magnetic susceptibility IEC 80000-6, 6-28

true

magnetic polarization IEC 80000-6, 6-29

magnetic dipole moment IEC 80000-6, 6-30

coercivity IEC 80000-6, 6-31

IEC 80000-6, 6-25 [28]

magnetic vector potential IEC 80000-6, 6-32
energy density of electric field IEC 80000-6, 6-33 IEC 80000-6, 6-33 [29]

energy density of magnetic
field

IEC 80000-6, 6-33 IEC 80000-6, 6-33 [29]

electromagnetic energy density IEC 80000-6, 6-33
Poynting vector IEC 80000-6, 6-34

ψ
J

D

I
D

I
tot

,I
t

J
tot

,J
t

B
Φ
χ

m
,χ

χ
χ

 m
M ,H

i

H
0

H
μ

0

μ

μ
r

κ , χ
m()

J
m

j
m

,j

H
c,B

A

 w
S

 ISO/IEC 2017 - All rights reserved 311

ISO/IEC 19514:2017(E)
Table E.31 - Normative quantity kinds in ISO 80000-6 (3 of 4)

phase speed of electromagnetic
waves

IEC 80000-6, 6-35.1 ISO 80000-3, 3-8.2 [5]

phase speed of light in vaccum IEC 80000-6, 6-35.2

IEC 80000-6,
6-35.1 [29]

source voltage IEC 80000-6, 6-36

IEC 80000-6,
6-11.3 [27]

scalar magnetic potential IEC 80000-6, 6-37.1

IEC 80000-6, 6-1 [27]

magnetic tension IEC 80000-6, 6-37.2

IEC 80000-6, 6-1 [27]

magnetomotive force IEC 80000-6, 6-37.3

IEC 80000-6, 6-1 [27]

current linkage IEC 80000-6, 6-37.4

IEC 80000-6, 6-1 [27]

Quantity Kind name Description Symbol General is dimension
1?

number of turns in a
winding

IEC 80000-6, 6-38

reluctance IEC 80000-6, 6-39

permeanance IEC 80000-6, 6-40

inductance IEC 80000-6, 6-41.1

mutual inductance IEC 80000-6, 6-41.1

IEC 80000-6,
6-41.1 [29]

self inductance IEC 80000-6, 6-41.1

IEC 80000-6,
6-41.1 [29]

coupling factor IEC 80000-6, 6-42.1

leakage factor IEC 80000-6, 6-42.2

conductivity IEC 80000-6, 6-43

resistivity IEC 80000-6, 6-44

electric power IEC 80000-6, 6-45 ISO 80000-4, 4-26 [13]

electric resistance IEC 80000-6, 6-46

electric conductance IEC 80000-6, 6-47

initial phase of electric
voltage

IEC 80000-6, 6-48

ISO 80000-3, 3-5 [5]

phase difference IEC 80000-6, 6-48

ISO 80000-3, 3-5 [5]

initial phase of electric
current

IEC 80000-6, 6-48

ISO 80000-3, 3-5 [5]

electric current phasor IEC 80000-6, 6-49

 IEC 80000-6, 6-1 [27
]

voltage phasor IEC 80000-6, 6-50

IEC 80000-6,
6-11.3 [27]

 c

c
0

U
s

V
m
,φ

U
m

F
m

Θ

N

R
m
,R

Λ

L,L
m

L
mn

L
n

k

σ
σ ,γ

ρ

p

R

G

φ
u

φ

φ
i

I

U

312  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table E.32 - Normative quantity kinds in ISO 80000-6 (4 of 4)

E.6.5.5 ISO 80000-7 Light

The subset of the normative contents of ISO 80000-7 is identical to that of SysML 1.4 as summarized below.

complex impedance IEC 80000-6, 6-51.1

 IEC 80000-6, 6-46 [30
]

resistance to alternating
electric current

IEC 80000-6, 6-51.2 IEC 80000-6,
6-51.1 [30]

reactance to alternating
electric current

IEC 80000-6, 6-51.3 IEC 80000-6,
6-51.1 [30]

modulus of impedance IEC 80000-6, 6-51.4 IEC 80000-6,
6-51.1 [30]

Quantity Kind name Description Symbol General is dimension
1?

complex admittance IEC 80000-6, 6-52.1

conductance to
alternating current

IEC 80000-6, 6-52.2 IEC 80000-6,
6-52.1 [30]

susceptance to alternating
current

IEC 80000-6, 6-52.3 IEC 80000-6,
6-52.1 [30]

modulus of admittance IEC 80000-6, 6-52.4 IEC 80000-6,
6-52.1 [30]

quality factor IEC 80000-6, 6-53

true

loss factor IEC 80000-6, 6-54 true

loss angle IEC 80000-6, 6-55

ISO 80000-3, 3-5 [5] true

active power IEC 80000-6, 6-56 IEC 80000-6, 6-59 [30]

apparent power IEC 80000-6, 6-57

power factor IEC 80000-6, 6-58

true

complex power IEC 80000-6, 6-59

reactive power IEC 80000-6, 6-60

IEC 80000-6, 6-59 [30]

non-active power IEC 80000-6, 6-61

IEC 80000-6, 6-56 [30]

active energy IEC 80000-6, 6-62

Z

R

X

Z

Y

G

B

Y

Q

d

δ
P

S

λ

 S

Q

′Q

W

 ISO/IEC 2017 - All rights reserved 313

ISO/IEC 19514:2017(E)
Table E.33 - Units in ISO 80000-7

Table E.34 - Quantity Kinds in ISO 80000-7

E.6.5.6 ISO 80000-9 Physical Chemistry and Molecular Physic

The subset of the normative contents of ISO 80000-9 is identical to that of SysML 1.4 as summarized below.

Table E.35 - Units in ISO 80000-9

Unit name Description Symbol General units Quantity Kinds is unit for
quantity of
dimension 1?

is
reduced
form?

refractive index ISO 80000-7, 7-5.a ISO 80000-7,
7-5 [33]

true

lumen ISO 80000-7, 7-32.a lm ISO 80000-7,
7-32 [33]

candela ISO 80000-7, 7-35.a cd ISO 80000-7,
7-35 [33]

lux ISO 80000-7, 7-36.a lx ISO 80000-7,
7-36 [33]

candela per
square metre

ISO 80000-7, 7-37.a cd/m2 ISO 80000-7,
7-37 [33]

Quantity Kind
name

Description Symbol General is
dimension
1?

speed of light in
vaccum

ISO 80000-7, 7-4.1

ISO 80000-3, 3-8.1 [5]

phase speed of
light in medium

ISO 80000-7, 7-4.2 ISO 80000-3, 3-8.2 [5]

refractive index ISO 80000-7, 7-5 true

radiant flux ISO 80000-7, 7-13 ISO 80000-4, 4-26 [13]

luminous flux ISO 80000-7, 7-32

luminous intensity ISO 80000-7, 7-35

illuminance ISO 80000-7, 7-36

luminance ISO 80000-7, 7-37

Unit name Description Symbol General
units

Quantity Kinds is unit for

quantity of

dimension 1?

is

reduced

form?
mole ISO 80000-9, 9-1.a mol ISO 80000-

9,<XREF>

mole per cubic

metre

ISO 80000-9, 9-13.a mol/m3 ISO 80000-

9,<XREF>

c
0

 c

 n

Φ
v
, Φ()

Iv , I()
E

v
, E()

L
v
, L()
314  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Table E.36 - Quantity Kinds in ISO 80000-9

E.6.5.7 ISO 80000-10 Atomic and Nuclear Physics

The 3 units and 3 quantity kind definitions included were in the non-normative ISO 80000-10 library of SysML 1.3.

Table E.37 - Units in ISO 80000-10

Table E.38 - Quantity Kinds in ISO 80000-10

E.6.5.8 ISO 80000-13 Information Science and Technology

SysML 1.4 adds commonly used 3 units (bit, byte and octet) of information and 3 of their associated quantity kinds.

Table E.39 - Units in ISO 80000-13

Quantity Kind

name

Description Symbol General is dimension

1?

amount of

substance

ISO 80000-9, 9-1

amount of

substance

concentration

ISO 80000-9, 9-13

Unit name Description Symbol General units Quantity Kinds is unit for

quantity of

dimension

is

reduced

form?

becquerel ISO 80000-10,

10-29.a

Bq ISO 80000-

10,<XREF>
gray ISO 80000-10,

10-84.a

Gy ISO 80000-

10,<XREF>
sievert ISO 80000-10,

10-86.a

Sv ISO 80000-

10,<XREF>

Quantity Kind

name

description symbol general is dimension 1?

radionuclide

activity

ISO 80000-10, 10-29

absorbed dose ISO 80000-10, 10-81.1

dose equivalent ISO 80000-10, 10-86

Unit name Description Symbol General
units

Quantity Kinds is unit for

quantity of

dimension 1?

is

reduced

form?
bit IEC 80000-13, 13-9.b bit IEC 80000-

13,<XREF>

true

byte IEC 80000-13, 13-9.c B IEC 80000-

13,<XREF>

true

 n

c
B

A

D
H

 ISO/IEC 2017 - All rights reserved 315

ISO/IEC 19514:2017(E)
Table E.40 - Quantity Kinds in ISO 80000-13

E.7 Distribution Extensions

E.7.1 Overview

This sub clause describes a non-normative extension to provide a candidate set of distributions (see 8.3.2.8,
DistributedProperty). It consists of a profile containing stereotypes that can be used to specify distributions for properties
of blocks.

E.7.2 Stereotypes

E.7.2.1 Package Distributions

Figure E.21 - Basic distribution stereotypes

octet IEC 80000-13, 13-9.c o IEC 80000-

13,<XREF>

true

Quantity Kind

name

Description Symbol General is dimension

1?
storage capacity IEC 80000-13, 13-9 true

storage size IEC 80000-13, 13-9 IEC 80000-

13,<XREF>

true

equivalent binary

storage capacity

IEC 80000-13, 13-10

true

M
M

M
e

«stereotype»
Uniform

«stereotype»
Interval

min: Real
max: Real

«stereotype»
BasicInterval

mean: Real
standardDeviation: Real

«stereotype»
Normal

«stereotype»
SysML::Blocks::

DistributedProperty
316  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
E.7.3 Usage Example

Figure E.22 shows a simple example of using distributions; the force of the Cannon is specified using a Normal
distribution with parameters mean and standard deviation. Whereas the use of a Normal distribution can be inferred from
the names of its parameters, an Interval distribution shares parameters with a Uniform distribution, hence the stereotype
keyword «interval» is used to distinguish it.

Figure E.22 - Distribution Example

Table E.41 - Distribution Stereotypes

Stereotype Base Class Properties Constraints Description

«BasicInterval» «DistributedProperty» min:Real
max:Real

N/A Basic Interval distribution - value
between min and max inclusive

«Interval» «BasicInterval» N/A N/A Interval distribution - unknown
probability between min and max

«Uniform» «BasicInterval» N/A N/A Uniform distribution - constant
probability between min and max

«Normal» «DistributedProperty» mean:Real
standard
Deviation:Real

N/A Normal distribution - constant
probability between min and max

bdd [block] FiringRange

«normal»{mean=100.0,standardDeviation=1.0}force: Newton

«block»
Cannon

«interval»{min=101.0,max=105.0}volume: CubicMeter
density:KilogramPerCubicMeter
acceleration: MeterPerSquareSecond

«block»
Shot
 ISO/IEC 2017 - All rights reserved 317

ISO/IEC 19514:2017(E)
318  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Annex F: Requirements Traceability

(informative)

The OMG SysML requirements traceability matrix traces this International Standard to the original source requirements
in the UML for Systems Engineering RFP (ad/2003-03-41). The traceability matrix is included by reference in a separate
document (ptc/2007-03-09).
 ISO/IEC 2017 - All rights reserved 319

ISO/IEC 19514:2017(E)
320  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
Annex G: Model Interchange

(informative)

G.1 Overview

This annex describes two methods for exchanging SysML models between tools. The first method discussed is XML
Metadata Interchange (XMI), which is the preferred method for exchanging models between UML-based tools. The second
approach describes the use of ISO 10303-233 Application Protocol: Systems engineering (AP233), which is one of the
series of STEP (Standard for the Exchange of Product Model Data) engineering data exchange standards. Other model
interchange approaches are possible, but the ones described in this annex are expected to be the primary ones supported
by SysML.

G.2 Context for Model Interchange

Developing today’s complex systems typically requires engineering teams that are distributed in time and space and that
are often composed of many companies, each with their own culture, methods, and tools. Effective collaboration requires
agreement on, and a thorough understanding of, the various work assignments and resulting artifacts.

Many of these artifacts pertain to shared engineering data (e.g., requirements, system structural and behavioral models,
verification & validation) that transcend the entire life cycle of the system of interest and are the basis for important
systems engineering considerations and decisions. So it is critical that the system information contained in these artifacts
and information models be accurately captured and readable by all appropriate team members in a timely manner.

Today, this information resides in an array of tools where each is only concerned with a portion of systems engineering
data and can’t share its data with other tools because they only understand their own native schema. To mitigate this
situation, collaborating organizations are usually forced to either adopt a common set of tools or develop a unique,
bidirectional interface between many of the tools that each organization uses. This can be an expensive and untimely
approach to data exchange between team members. So there is a need to define standardized approaches for model
interchange between the different data schemas in use.

G.3 XMI Serialization of SysML

UML 2.0 is formally defined using the OMG Meta Object Facility (MOF). MOF can be considered a language for
specifying modeling languages. The OMG XML Metadata Interchange (XMI) 2.1 standard specifies an XML-based
interchange format for any language modeled using MOF. This results in a standard, convenient format for serializing
UML user models as XMI files for interchange between UML tools. The XMI specification also includes rules for
generating an XML Schema that can be used for basic validation of the structure of those UML user model XMI files.

The UML language includes an extension mechanism called UML Profiles. UML Profiles are themselves defined as UML
models (MOF is not used). However, their intent is to specify extensions to the UML language semantics in much the
same way one could extend the UML language by adding to the MOF definition of UML. As UML Profiles are valid
UML models, XMI does provide a mechanism for exchanging the UML Profiles between UML tools. However, as they
are extensions to concepts defined in the UML language itself, the definition of a UML Profile refers to the UML
language definitions. An XMI 2.1 representation of the SysML profile (i.e., the UML Profile for SysML), as well as XMI
 ISO/IEC 2017 - All rights reserved 321

ISO/IEC 19514:2017(E)
2.1 representations of Model Libraries defined by SysML, are provided as support documents to this International
Standard. As with UML, XMI provides a convenient serialized format for model interchange between SysML tools and
basic validation of those files using an XML Schema as well.

The namespace for the standard profile is: http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi.

G.4 SysML Model Interchange Using AP233

AP233 is a data exchange standard designed to support the exchange of systems engineering data between the many and
varied software tools that systems engineers use in the course of their work. Data from systems modeling tools is included
in the scope of AP233, in fact, requirements for AP233 and SysML have been largely aligned by the OMG and the ISO
teams working together and in close cooperation with the INCOSE Model Driven System Design working group.

G.4.1 Scope of AP233

AP233 is not a graphical modeling language, but specifies data exchange mechanisms to support the exchange of data
between Engineering Tools that generate or consume systems engineering data. Figure G.1 illustrates the overlaps
between the types of data that can be exchanged by a tool that supports the AP233 data exchange mechanisms, and the
type of data that is generated or consumed by a SysML modeling tool. In general, there is considerable overlap indicating
the potential support that AP233 can provide as a data exchange standard for SysML modeling tools.

Figure G.1 - SysML/AP233 Data Overlaps

AP233 includes support for assigning program management information as well as system modeling information to
systems engineering data.

Program management capabilities include issue management, risk management and aspects of project management such
as project breakdown, project resource information, organization structure, schedule, and work structure.

System modeling capabilities include requirements and requirements allocation, trade studies with measures of
effectiveness, interface to analysis, function-based behavior, state-based behavior, system hierarchies for the design
system, the realized system and all interfaces.

Additional information about AP233 can be found at http://www.ap233.org/.
322  ISO/IEC 2017 - All rights reserved

http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi

 ISO/IEC 19514:2017(E)
G.4.2 STEP Architecture

AP233 is standardized under ISO Technical Committee 184 (Industrial Automation Systems and Integration),
Subcommittee 4 (Industrial Data). AP233 is part of the family of ISO 10303 standards, referred to as STEP, that include
standardized models and infrastructure for the exchange of product model data.

The STEP architecture is modular. This enables the component information models to be reused across disciplines and
life-cycle stages in different application protocols, which are the models used for implementation. STEP models are
written using the ISO 10303-11 EXPRESS language.

STEP also standardizes a series of implementation methods: a text file structure (ISO 10303-21), a data access interface
(ISO 10303-22) and an XML file format (ISO 10303-28). The data access interface has bindings that provide standardized
APIs for accessing EXPRESS-based data in various programming languages. A conforming STEP implementation is the
combination of a STEP application protocol and one or more of the implementation methods.

The scope of STEP is very large and a number of data exchange standards (e.g., geometry, product life-cycle support,
structural, electrical, and engineering analysis) have been in wide use in industry for more than 15 years. Support for
several systems engineering viewpoints within the scope of AP233 are shared with other application protocols. Since
AP233 is part of STEP, it is easy to relate systems engineering data to that of other engineering disciplines over the life
cycle of a system and to related product models.

For more information on the STEP architecture see the ISO TC184/SC4 Industrial Data subcommittee web page at http:/
/www.tc184-sc4.org.

G.4.3 EXPRESS

AP233, like all STEP application protocols, is defined using the EXPRESS modeling language. EXPRESS is a precise
text-based information modeling language with a related graphical representation called EXPRESS-G.

An example of the text-based format follows:

SCHEMA Ap233_systems_engineering_arm_excerpt;
ENTITY Product;
 id : STRING;
 name : STRING;
 description : OPTIONAL STRING;
END_ENTITY;

ENTITY Product_version;
 id : STRING;
 description : OPTIONAL STRING;
 of_product : Product;
END_ENTITY;

ENTITY Product_view_definition;
 id : OPTIONAL STRING;
 name : OPTIONAL STRING;
 additional_characterization : OPTIONAL STRING;
 initial_context : View_definition_context;
 additional_contexts : SET [0:?] OF View_definition_context;
 defined_version : Product_version;
WHERE
 WR1: NOT (initial_context IN additional_contexts);
 WR2: EXISTS(id) OR (TYPEOF(SELF\Product_view_definition) <> TYPEOF(SELF));
 ISO/IEC 2017 - All rights reserved 323

ISO/IEC 19514:2017(E)
END_ENTITY;

ENTITY View_definition_context;
 application_domain : STRING;
 life_cycle_stage : STRING;
 description : OPTIONAL STRING;
WHERE
 WR1: (SIZEOF (USEDIN(SELF, 'AP233_SYSTEMS_ENGINEERING_ARM_EXCERPT.' +
 'PRODUCT_VIEW_DEFINITION.INITIAL_CONTEXT')) > 0) OR
 (SIZEOF (USEDIN(SELF, 'AP233_SYSTEMS_ENGINEERING_ARM_EXCERPT.' +
 'PRODUCT_VIEW_DEFINITION.ADDITIONAL_CONTEXTS')) > 0);
END_ENTITY;

ENTITY System
 SUBTYPE OF (Product);
END_ENTITY;

ENTITY System_version
 SUBTYPE OF (Product_version);
 SELF\Product_version.of_product : System;
END_ENTITY;

ENTITY System_view_definition
SUBTYPE OF (Product_view_definition);
 SELF\Product_view_definition.defined_version : System_version;
END_ENTITY;

END_SCHEMA;

EXPRESS expressions are similar in nature to OCL expressions and the two languages have similar expressiveness.
EXPRESS has also been approved as an OMG standard with a September 2009 publication of Version 1.0 of the
Reference Metamodel for the EXPRESS Information Modeling Language Specification. This will enable the use of OMG
Model Driven Architecture technologies against AP233 and other STEP models written in EXPRESS.

G.4.4 SysML-AP233 Mapping

A formal and standardized mapping between SysML and AP233 is being developed within the OMG. The mapping is a
specification for SysML and other tool vendors to implement so that their tools can import from and export to AP233 data
exchange files. AP233 usage is aimed primarily at scenarios where SysML data is fed to downstream applications such as
those used in manufacturing, life cycle management or systems maintenance. Additional information can be found at the
OMG SysML Portal at http://www.omgwiki.org/OMGSysML/.
324  ISO/IEC 2017 - All rights reserved

http://www.omgwiki.org/OMGSysML/

 ISO/IEC 19514:2017(E)
Annex H: Legal Information

(informative)

Copyright © 2003-2013, American Systems Corporation
Copyright © 2003-2013, ARTiSAN Software Tools
Copyright © 2003-2013, BAE SYSTEMS
Copyright © 2003-2013, The Boeing Company
Copyright © 2003-2013, Ceira Technologies
Copyright © 2003-2013, Deere & Company
Copyright © 2003-2013, EADS Astrium GmbH
Copyright © 2003-2013, EmbeddedPlus Engineering
Copyright © 2007-2013, European Aeronautic Defence and Space Company N.V.
Copyright © 2003-2013, Eurostep Group AB
Copyright © 2003-2013, Gentleware AG
Copyright © 2003-2013, I-Logix, Inc.
Copyright © 2003-2013, International Business Machines
Copyright © 2003-2013, International Council on Systems Engineering
Copyright © 2003-2013, Israel Aircraft Industries
Copyright © 2003-2013, Lockheed Martin Corporation
Copyright © 2003-2013, Mentor Graphics
Copyright © 2003-2013, Motorola, Inc.
Copyright © 2007-2013, National Aeronautics and Space Administration
Copyright © 2007-2013, No Magic, Inc.
Copyright © 2003-2013, Northrop Grumman
Copyright © 1997-2017, Object Management Group
Copyright © 2003-2013, oose Innovative Informatik GmbH
Copyright © 2003-2013, PivotPoint Technology Corporation
Copyright © 2003-2013, Raytheon Company
Copyright © 2003-2013, Sparx Systems
Copyright © 2003-2013, Telelogic AB
Copyright © 2003-2013, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company’s products. The information contained in this document is subject to change without notice.

The specification customizes the Unified Modeling Language (UML) specification of the Object Management Group
(OMG) to address the requirements of Systems Engineering as specified in the UML for Systems Engineering RFP, OMG
document number ad/2003-03-41. This document includes references to and excerpts from the UML 2 Specification with
copyright holders and conditions as noted in those documents.
 ISO/IEC 2017 - All rights reserved 325

ISO/IEC 19514:2017(E)
LICENSES

Redistribution and use of this specification, with or without modification, are permitted provided that the following
conditions are met: (1) Redistributions of this specification must reproduce the above copyright notice, this list of
conditions and disclaimers in the documentation and/or other materials provided with the distribution; (2) The Copyright
Holders listed in the above copyright notice may not be used to endorse or promote products derived from this
specification without specific prior written permission; (3) All modified versions of this specification must include a
prominent notice stating how and when the specification was modified; and (4) No modifications to this OMG SysML™
specification may be published under or identified by that name, except for versions published by OMG and incorporating
official changes made through the applicable procedures of OMG. OMG SysML™ is a trademark of OMG, and no
unauthorized version or revision of the OMG SysML specification may use the trademark “OMG SysML” or claim any
connection with or endorsement by OMG.

In accordance with the above copyright provisions, the companies listed above have granted to the Object Management
Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute OMG SysML and to
modify OMG SysML and distribute copies of the modified version. Each of the copyright holders listed above has agreed
that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by
reason of having used the specification set forth herein or having conformed any computer software to the specification.
Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, nonsublicenseable, perpetual, worldwide license, to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy,
and distribute this specification as provided under the Copyright Act. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies
of this document in your possession or control.

This document was derived from the “Systems Modeling Language (SysML) Specification, version 1.0 DRAFT,” OMG
document (ad/2006-03-01) submitted to OMG in response to the “UML for Systems Engineering RFP” (ad/2003-03-41).
The complete history of the revisions subsequently published by OMG, culminating in this version of the specification,
can be found here: http://www.omg.org/spec/SysML/.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.
326  ISO/IEC 2017 - All rights reserved

 ISO/IEC 19514:2017(E)
DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED “AS IS” AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The entire risk as to the quality
and performance of software developed using this specification is borne by you. This disclaimer of warranty constitutes
an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Ave, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and
XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names mentioned
are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The Object Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may
authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or other special
designations to indicate compliance with OMG SysML™. Software developed under the terms of this license may claim
compliance or conformance with this specification if and only if the software compliance is of a nature fully matching the
applicable compliance points as stated in the specification. Software developed only partially matching the applicable
compliance points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object Management
Group, Inc., software developed using this specification may claim compliance or conformance with the specification
only if the software satisfactorily completes the testing suites.
 ISO/IEC 2017 - All rights reserved 327

ISO/IEC 19514:2017(E)
328  ISO/IEC 2017 - All rights reserved

	FOREWORD
	INTRODUCTION
	1 Scope
	1.1 General

	2 Normative References
	3 Additional Information
	3.1 Relationships to Other Standards
	3.2 How to Read this International Standard
	3.2.1 Organization

	3.3 Acknowledgments

	4 Language Architecture
	4.1 General
	4.2 Design Principles
	4.3 Architecture
	4.4 Extension Mechanisms
	4.5 SysML Diagrams

	5 Conformance
	5.1 Overview
	5.2 Conformance Types

	6 Language Formalism
	6.1 Levels of Formalism
	6.2 Clause Structure
	6.2.1 Overview
	6.2.2 Diagram Elements
	6.2.3 UML Extensions
	6.2.4 Usage Examples

	6.3 Conventions and Typography

	7 Model Elements
	7.1 Overview
	7.1.1 View and Viewpoint

	7.2 Diagram Elements
	7.3 UML Extensions
	7.3.1 Diagram Extensions
	7.3.1.1 UML Diagram Elements not Included in SysML

	7.3.2 Stereotypes
	Package ModelElements
	7.3.2.1 Conform
	7.3.2.2 ElementGroup
	7.3.2.3 Expose
	7.3.2.4 Problem
	7.3.2.5 Rationale
	7.3.2.6 Stakeholder
	7.3.2.7 View
	7.3.2.8 Viewpoint

	7.4 Usage Examples

	8 Blocks
	8.1 Overview
	8.2 Diagram Elements
	8.2.1 Block Definition Diagram
	8.2.2 Internal Block Diagram

	8.3 UML Extensions
	8.3.1 Diagram Extensions
	8.3.1.1 Block Definition Diagram
	8.3.1.1.1 Block and ValueType Definitions
	8.3.1.1.2 Default «block» stereotype on unlabeled box
	8.3.1.1.3 Labeled compartments
	8.3.1.1.4 Behavior compartment
	8.3.1.1.5 Constraints compartment
	8.3.1.1.6 Namespace compartment
	8.3.1.1.7 Structure compartment
	8.3.1.1.8 BoundReference compartment
	8.3.1.1.9 Default multiplicities
	8.3.1.1.10 Property-specific type

	8.3.1.2 Internal Block Diagram
	8.3.1.2.1 Property types
	8.3.1.2.2 Block reference in diagram frame
	8.3.1.2.3 Compartments on internal properties
	8.3.1.2.4 Compartments on a diagram frame
	8.3.1.2.5 Property path name
	8.3.1.2.6 Nested connector end
	8.3.1.2.7 Property-specific type
	8.3.1.2.8 Initial values compartment
	8.3.1.2.9 Default multiplicities

	8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams
	8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

	8.3.2 Stereotypes
	Package Blocks
	8.3.2.1 AdjunctProperty
	8.3.2.2 Binding Connector
	8.3.2.3 Block
	8.3.2.4 Bound Reference
	8.3.2.5 ClassifierBehaviorProperty
	8.3.2.6 ConnectorProperty
	8.3.2.7 DirectedRelationshipPropertyPath
	8.3.2.8 DistributedProperty
	8.3.2.9 ElementPropertyPath
	8.3.2.10 EndPathMultiplicity
	8.3.2.11 NestedConnectorEnd
	8.3.2.12 ParticipantProperty
	8.3.2.13 PropertySpecificType
	8.3.2.14 ValueType

	8.3.3 Model Libraries
	8.3.3.1 Package PrimitiveValueTypes
	8.3.3.1.1 Boolean
	8.3.3.1.2 Complex
	8.3.3.1.3 Integer
	8.3.3.1.4 Number
	8.3.3.1.5 Real
	8.3.3.1.6 String

	8.3.3.2 Package UnitAndQuantityKind
	8.3.3.2.1 QuantityKind
	8.3.3.2.2 Unit

	8.4 Usage Examples
	8.4.1 Wheel Hub Assembly
	8.4.2 Example Value Type Definitions
	8.4.3 Design Configuration for SUV EPA Fuel Economy Test
	8.4.4 Water Delivery
	8.4.5 Constraining Decomposition
	8.4.6 Units and Quantity Kinds

	9 Ports and Flows
	9.1 Overview
	9.1.1 Ports
	9.1.2 Flow Properties, Provided and Required Features, and Nested Ports
	9.1.3 Proxy Ports and Full Ports
	9.1.4 Item Flows
	9.1.5 Deprecation of Flow Ports and Flow Specifications

	9.2 Diagram Elements
	9.2.1 Block Definition Diagram
	9.2.2 Internal Block Diagram

	9.3 UML Extensions
	9.3.1 Diagram Extensions
	9.3.1.1 DirectedFeature
	9.3.1.2 FlowProperty
	9.3.1.3 FullPort
	9.3.1.4 InvocationOnNestedPortAction
	9.3.1.5 ItemFlow
	9.3.1.6 Port
	9.3.1.7 ProxyPort
	9.3.1.8 TriggerOnNestedPort

	9.3.2 Stereotypes
	Package Ports&Flows
	9.3.2.1 AcceptChangeStructuralFeatureEventAction
	9.3.2.2 Block
	9.3.2.3 ChangeStructuralFeatureEvent
	9.3.2.4 DirectedFeature
	9.3.2.5 FeatureDirection
	9.3.2.6 FlowDirection
	9.3.2.7 FlowProperty
	9.3.2.8 FullPort
	9.3.2.9 InterfaceBlock
	9.3.2.10 InvocationOnNestedPortAction
	9.3.2.11 ItemFlow
	9.3.2.12 ProxyPort
	9.3.2.13 TriggerOnNestedPort

	9.4 Usage Examples
	9.4.1 Ports with Required and Provided Features
	9.4.2 Flow Ports and Item Flows
	9.4.3 Ports with Flow Properties
	9.4.4 Proxy and Full Ports
	9.4.5 Association and Port Decomposition
	9.4.6 Item Flow Decomposition

	10 Constraint Blocks
	10.1 Overview
	10.2 Diagram Elements
	10.2.1 Block Definition Diagram
	10.2.2 Parametric Diagram

	10.3 UML Extensions
	10.3.1 Diagram Extensions
	10.3.1.1 Block Definition Diagram
	10.3.1.1.1 Constraint block definition
	10.3.1.1.2 Parameters compartment

	10.3.1.2 Parametric Diagram

	10.3.2 Stereotypes
	10.3.2.1 ConstraintBlock

	10.4 Usage Examples
	10.4.1 Definition of Constraint Blocks on a Block Definition Diagram
	10.4.2 Usage of Constraint Blocks on a Parametric Diagram

	11 Activities
	11.1 Overview
	11.1.1 Control as Data
	11.1.2 Continuous Systems
	11.1.3 Probability
	11.1.4 Activities as Blocks
	11.1.5 Timelines

	11.2 Diagram Elements
	11.2.1 Activity Diagram

	11.3 UML Extensions
	11.3.1 Diagram Extensions
	11.3.1.1 Activity
	11.3.1.1.1 Notation

	11.3.1.2 CallBehaviorAction
	11.3.1.3 ControlFlow
	11.3.1.3.1 Presentation Option

	11.3.1.4 ObjectNode, Variables, and Parameters
	11.3.1.4.1 Notation

	11.3.2 Stereotypes
	Package Activities
	11.3.2.1 Continuous
	11.3.2.2 ControlOperator
	11.3.2.3 Discrete
	11.3.2.4 NoBuffer
	11.3.2.5 Overwrite
	11.3.2.6 Optional
	11.3.2.7 Probability
	11.3.2.8 Rate

	11.3.3 Model Libraries
	11.3.3.1 Package ControlValues
	11.3.3.1.1 ControlValue

	11.4 Usage Examples

	12 Interactions
	12.1 Overview
	12.2 Diagram Elements
	12.2.1 Sequence Diagram

	12.3 UML Extensions
	12.3.1 Diagram Extensions
	12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing Diagram
	12.3.1.2 Interactions and Parameters
	12.3.1.2.1 Notation

	12.4 Usage Examples
	12.4.1 Sequence Diagrams

	13 State Machines
	13.1 Overview
	13.2 Diagram Elements
	13.2.1 State Machine Diagram

	13.3 UML Extensions
	13.3.1 Diagram Extensions
	13.3.1.1 State Machines and Parameters
	13.3.1.1.1 Notation

	13.4 Usage Examples
	13.4.1 State Machine Diagram

	14 Use Cases
	14.1 Overview
	14.2 Diagram Elements
	14.2.1 Use Case Diagram

	14.3 UML Extensions
	14.4 Usage Examples

	15 Allocations
	15.1 Overview
	15.2 Diagram Elements
	15.2.1 Representing Allocation on Diagrams

	15.3 UML Extensions
	15.3.1 Diagram Extensions
	15.3.1.1 Tables
	15.3.1.2 Allocate Relationship Rendering
	15.3.1.3 Allocation Compartment Format
	15.3.1.4 Allocation Callout Format
	15.3.1.5 AllocatedActivityPartition Label

	15.3.2 Stereotypes
	Package Allocations
	15.3.2.1 Allocate(from Allocations)
	15.3.2.2 AllocateActivityPartition(from Allocations)

	15.4 Usage Examples
	15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks
	15.4.2 Allocate Flow
	15.4.2.1 Allocating Structure
	15.4.2.2 Automotive Example

	15.4.3 Tabular Representation

	16 Requirements
	16.1 Overview
	16.2 Diagram Elements
	16.2.1 Requirement Diagram

	16.3 UML Extensions
	16.3.1 Diagram Extensions
	16.3.1.1 Requirement Diagram
	16.3.1.2 Requirement Notation
	16.3.1.3 Requirement Property Callout Format
	16.3.1.4 Requirements on Other Diagrams
	16.3.1.5 Requirements Table

	16.3.2 Stereotypes
	Package Requirements
	16.3.2.1 Copy
	16.3.2.2 DeriveReqt
	16.3.2.3 Refine
	16.3.2.4 Requirement
	16.3.2.5 TestCase
	16.3.2.6 Satisfy
	16.3.2.7 Trace
	16.3.2.8 Verify

	16.4 Usage Examples
	16.4.1 Requirement Decomposition and Traceability
	16.4.2 Requirements and Design Elements
	16.4.3 Requirements Reuse
	16.4.4 Verification Procedure (Test Case)

	17 Profiles & Model Libraries
	17.1 Overview
	17.2 Diagram Elements
	17.2.1 Profile Definition in Package Diagram
	17.2.1.1 Extension

	17.2.2 Stereotypes Used On Diagrams
	17.2.2.1 StereotypeInNode
	17.2.2.2 StereotypeInComment
	17.2.2.3 StereotypeInCompartment

	17.3 UML Extensions
	17.4 Usage Examples
	17.4.1 Defining a Profile
	17.4.2 Adding Stereotypes to a Profile
	17.4.3 Defining a Model Library that Uses a Profile
	17.4.4 Guidance on Whether to Use a Stereotype or Class
	17.4.5 Using a Profile
	17.4.6 Using a Stereotype
	17.4.7 Using a Model Library Element

	Annex A: Diagrams
	A.1 Overview
	A.2 Guidelines

	Annex B: SysML Diagram Interchange
	B.1 Overview
	B.2 Stereotypes
	B.2.1 SysMLActivityDiagram
	B.2.2 SysMLBehaviorDiagram
	B.2.3 SysMLBlockDefinitionDiagram
	B.2.4 SysMLDiagram
	B.2.5 SysMLDiagramElement
	B.2.6 SysMLDiagramWithAssociations
	B.2.7 SysMLInteractionDiagram
	B.2.8 SysMLInternalBlockDiagram
	B.2.9 SysMLPackageDiagram
	B.2.10 SysMLParametricDiagram
	B.2.11 SysMLRequirementDiagram
	B.2.12 SysMLStateMachineDiagram
	B.2.13 SysMLUseCaseDiagram

	B.3 SysML DI usage notes
	B.4 SysML Notation and DI Representation

	Annex C: Deprecated Elements
	C.1 Overview
	C.1.1 Flow Ports

	C.2 Diagram Elements
	C.2.1 Block Definition Diagram
	C.2.2 Internal Block Diagram

	C.3 UML Extensions
	C.3.1 Diagram Extensions
	C.3.1.1 FlowPort
	C.3.1.2 FlowSpecification

	C.3.2 Stereotypes
	C.3.2.1 Package Ports&Flows
	C.3.2.2 FlowPort
	Description

	C.3.2.3 Semantic Variation Points
	Attributes
	Constraints

	C.3.2.4 FlowSpecification
	Description
	Constraints

	C.3.2.5 ItemFlow (deprecated compatibility rule)

	C.4 Transitioning SysML 1.2 Flow Ports to SysML 1.3 Ports (informative)
	C.5 Transitioning SysML 1.3 Viewpoint and View to SysML 1.4 (informative)
	C.6 Transitioning SysML 1.3 Units and QuantityKinds to SysML 1.4 (informative)

	Annex D: Sample Problem
	D.1 Purpose
	D.2 Scope
	D.3 Problem Summary
	D.4 Diagrams
	D.4.1 Package Overview (Structure of the Sample Model)
	D.4.1.1 Package Diagram - Applying the SysML Profile
	D.4.1.2 Package Diagram - Showing Package Structure of the Model

	D.4.2 Setting the Context (Boundaries and Use Cases)
	D.4.2.1 Internal Block Diagram - Setting Context
	D.4.2.2 Use Case Diagram - Top Level Use Cases
	D.4.2.3 Use Case Diagram - Operational Use Cases

	D.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)
	D.4.3.1 Sequence Diagram - Drive Black Box
	D.4.3.2 State Machine Diagram - HSUV Operational States
	D.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

	D.4.4 Establishing Requirements (Requirements Diagrams and Tables)
	D.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy
	D.4.4.2 Requirement Diagram - Derived Requirements
	D.4.4.3 Requirement Diagram - Acceleration Requirement Relationships
	D.4.4.4 Table - Requirements Table

	D.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams)
	D.4.5.1 Block Definition Diagram - Automotive Domain
	D.4.5.2 Block Definition Diagram - Hybrid SUV
	D.4.5.3 Internal Block Diagram - Hybrid SUV
	D.4.5.4 Block Definition Diagram - Power Subsystem
	D.4.5.5 Internal Block Diagram for the “Power Subsystem”

	D.4.6 Defining Ports and Flows
	D.4.6.1 Block Definition Diagram - ICE Flow Properties
	D.4.6.2 Internal Block Diagram - CANbus
	D.4.6.3 Block Definition Diagram - Fuel Flow Properties
	D.4.6.4 Parametric Diagram - Fuel Flow
	D.4.6.5 Internal Block Diagram - Fuel Distribution

	D.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)
	D.4.7.1 Block Definition Diagram - Analysis Context
	D.4.7.2 Package Diagram - Performance View Definition
	D.4.7.3 Package Diagram - Viewpoint Definition
	D.4.7.4 Package Diagram - View Definition
	D.4.7.5 Package Diagram - View Hierarchy
	D.4.7.6 Parametric Diagram - Measures of Effectiveness
	D.4.7.7 Parametric Diagram - Economy
	D.4.7.8 Parametric Diagram - Dynamics
	D.4.7.9 (Non-Normative) Timing Diagram - 100hp Acceleration

	D.4.8 Defining, Decomposing, and Allocating Activities
	D.4.8.1 Activity Diagram - Acceleration (top level)
	D.4.8.2 Block Definition Diagram - Acceleration
	D.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)
	D.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation
	D.4.8.5 Table - Acceleration Allocation
	D.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test

	Annex E: Non-normative Extensions
	E.1 Overview
	E.2 Activity Diagram Extensions
	E.2.1 Overview
	E.2.2 Stereotypes
	E.2.3 Stereotype Examples

	E.3 Requirements Diagram Extensions
	E.3.1 Overview
	E.3.2 Stereotypes
	E.3.3 Stereotype Examples

	E.4 Parametric Diagram Extensions for Trade Studies
	E.4.1 Overview
	E.4.2 Stereotypes
	E.4.3 Stereotype Examples

	E.5 Model Library for Quantities, Units, Dimensions, and Values (QUDV)
	E.5.1 Overview
	E.5.2 Abstract Syntax
	E.5.2.1 AffineConversionUnit
	Description
	Properties

	E.5.2.2 ConversionBasedUnit
	Description
	Properties
	Operations

	E.5.2.3 DerivedQuantityKind
	Description
	Properties
	Operations

	E.5.2.4 DerivedUnit
	Description
	Properties
	Operations

	E.5.2.5 Dimension
	Description
	Properties

	E.5.2.6 GeneralConversionUnit
	Description
	Properties

	E.5.2.7 LinearConversionUnit
	Description
	Properties

	E.5.2.8 Prefix
	Description
	Properties

	E.5.2.9 PrefixedUnit
	Description
	Properties
	Constraints

	E.5.2.10 QuantityKind
	Description
	Properties
	Constraints
	Operations

	E.5.2.11 QuantityKindFactor
	Description
	Properties

	E.5.2.12 Rational
	Description
	Properties
	Operations
	Constraints

	E.5.2.13 SimpleQuantityKind
	Description
	Operations

	E.5.2.14 SimpleUnit
	Description
	Operations

	E.5.2.15 SystemOfQuantities
	Description
	Properties
	Constraints
	Operations

	E.5.2.16 SystemOfUnits
	Description
	Properties
	Constraints
	Operations

	E.5.2.17 Unit
	Description
	Properties
	Constraints
	Operations

	E.5.2.18 UnitFactor
	Description
	Properties

	E.5.3 References
	E.5.4 Usage Examples
	E.5.4.1 SI Unit and QuantityKind examples
	E.5.4.2 Spring Example

	E.6 Model Library of SysML Quantity Kinds and Units for ISO 80000
	E.6.1 Overview
	E.6.2 Units and Quantity Kinds
	E.6.3 ISO 80000-1 Prefixes
	E.6.4 ISO 80000-2 Mathematical Signs and Symbols
	E.6.5 Summary of the covered parts of ISO 80000
	E.6.5.1 ISO 80000-3 Space and Time
	E.6.5.2 ISO 80000-4 Mechanics
	E.6.5.3 ISO 80000-5 Thermodynamics
	E.6.5.4 ISO 80000-6 Electromagnetism
	E.6.5.5 ISO 80000-7 Light
	E.6.5.6 ISO 80000-9 Physical Chemistry and Molecular Physic
	E.6.5.7 ISO 80000-10 Atomic and Nuclear Physics
	E.6.5.8 ISO 80000-13 Information Science and Technology

	E.7 Distribution Extensions
	E.7.1 Overview
	E.7.2 Stereotypes
	E.7.2.1 Package Distributions

	E.7.3 Usage Example

	Annex F: Requirements Traceability
	Annex G: Model Interchange
	G.1 Overview
	G.2 Context for Model Interchange
	G.3 XMI Serialization of SysML
	G.4 SysML Model Interchange Using AP233
	G.4.1 Scope of AP233
	G.4.2 STEP Architecture
	G.4.3 EXPRESS
	G.4.4 SysML-AP233 Mapping

	Annex H: Legal Information

