
Date: July 2016

SysML Extension for Physical Interaction and Signal
Flow Simulation (SysPISF)
FTF – Beta 1

__

OMG Document Number: dtc/2016-07-01

Standard document URL: http://www.omg.org/spec/SysPISF/1.0/PDF

Machine consumable files:
Normative:

http://www.omg.org/spec/SysPISF/20160201/SysPISFProfile.xmi
http://www.omg.org/spec/SysPISF/20160201/SysPISFLibrary.xmi

__
This OMG document replaces the submission document (mantis/16-03-10). It is an OMG Adopted Beta
specification and is currently in the finalization phase. Comments on the content of this document are welcome,
and should be entered by October 1, 2016 using the Issue Reporting Form on the main web page
http://www.omg.org, under Documents, Report a Bug/Issue (http://issues.omg.org/issues/create-new-issue).

The FTF Recommendation and Report for this specification will be published on December 16, 2016. If you are
reading this after that date, please download the available specification from the OMG Specifications Catalog.

http://doc.omg.org/dtc/2016-07-01
http://www.omg.org/spec/SysPISF/1.0/PDF
http://www.omg.org/spec/SysPISF/20160201/SysPISFProfile.xmi
http://www.omg.org/spec/SysPISF/20160201/SysPISFLibrary.xmi
http://www.omg.org/
http://issues.omg.org/issues/create-new-issue

SysML Extension for Physical Interaction and Signal Flow Simulation ii

Copyright © 2016, No Magic, Inc.
Copyright © 2016, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES
The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES
The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.
Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, non-transferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS
The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS
Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

SysML Extension for Physical Interaction and Signal Flow Simulation iii

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND
Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS
CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group,
Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE
The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

SysML Extension for Physical Interaction and Signal Flow Simulation iv

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://issues.omg.org/issues/create-new-issue).

http://issues.omg.org/issues/create-new-issue

SysML Extension for Physical Interaction and Signal Flow Simulation v

Table of Contents

1 Scope .. 1

2 Conformance .. 2

3 References .. 2

3.1 Normative References .. 2
3.2 Non-normative References ... 3

4 Terms and Definitions .. 3

5 Symbols .. 3

6 Additional Information ... 3

6.1 Signal flow and physical interaction simulation compared .. 3
6.2 How to read this specification .. 4
6.3 Changes to Adopted OMG Specifications .. 4
6.4 Acknowledgments .. 4

7 SysML extension for physical interaction and signal flow simulation ... 5

7.1 Introduction .. 5
7.2 Simulation profile ... 5

7.2.1 SimBlock ... 5
7.2.2 SimConstant .. 5
7.2.3 SimProperty ... 6
7.2.4 SimVariable ... 6

8 Language for mathematical expressions ... 7

9 Pre-processing SysML models ... 8

9.1 Introduction .. 8
9.2 Association blocks .. 8

9.2.1 Purpose .. 8
9.2.2 SysML model before processing ... 8
9.2.3 SysML model after processing .. 9

9.3 Signal flow using SimBlocks ... 9
9.3.1 Purpose .. 9
9.3.2 SysML model before processing ... 9
9.3.3 SysML model after processing .. 9

10 Translating between SysML and simulation platforms .. 10

10.1 Introduction .. 10
10.2 Blocks and properties ... 11

10.2.1 Purpose .. 11
10.2.2 SysML modeling ... 11
10.2.3 Modelica modeling .. 11
10.2.4 Simulink modeling .. 11
10.2.5 Simulink/Simscape modeling .. 12

SysML Extension for Physical Interaction and Signal Flow Simulation vi

10.2.6 Simscape modeling .. 12
10.2.7 Summary ... 13

10.3 Root element .. 13
10.3.1 Purpose .. 13
10.3.2 SysML modeling ... 13
10.3.3 Modelica modeling .. 14
10.3.4 Simulink modeling .. 14
10.3.5 Summary ... 14

10.4 Generalization .. 14
10.4.1 Purpose .. 14
10.4.2 SysML modeling ... 14
10.4.3 Modelica modeling .. 15
10.4.4 Simulink modeling .. 15
10.4.5 Simscape modeling .. 16
10.4.6 Summary ... 16

10.5 SimVariables and SimConstants... 16
10.5.1 Purpose .. 16
10.5.2 SysML modeling ... 16
10.5.3 Modelica modeling .. 17
10.5.4 Simulink modeling .. 17
10.5.5 Simscape modeling .. 17
10.5.6 Summary ... 18

10.6 Ports, FlowProperties, SimProperties, and SimBlocks ... 18
10.6.1 Purpose .. 18
10.6.2 SysML modeling ... 18
10.6.3 SysML modeling, signal flow .. 18
10.6.4 Modelica modeling, signal flow .. 19
10.6.5 Simulink modeling, signal flow ... 19
10.6.6 Simscape modeling, signal flow .. 19
10.6.7 SysML modeling, physical interaction .. 20
10.6.8 Modelica modeling, physical interaction ... 20
10.6.9 Simulink modeling, physical interaction ... 21
10.6.10 Simscape modeling, physical interaction ... 21
10.6.11 Summary ... 21

10.7 Connectors .. 22
10.7.1 Purpose .. 22
10.7.2 SysML modeling ... 22
10.7.3 Modelica modeling .. 22
10.7.4 Simulink modeling, signal flow ... 22
10.7.5 Simulink modeling, physical interaction ... 23
10.7.6 Simulink modeling, physical interaction and signal flow .. 23
10.7.7 Simscape modeling .. 24
10.7.8 Summary ... 25

SysML Extension for Physical Interaction and Signal Flow Simulation vii

10.8 Blocks with constraint properties and binding connectors.. 25
10.8.1 Purpose .. 25
10.8.2 SysML modeling ... 25
10.8.3 SysML modeling, signal flow .. 25
10.8.4 Modelica modeling, signal flow .. 26
10.8.5 Simulink modeling, signal flow ... 26
10.8.6 Simscape modeling, signal flow .. 28
10.8.7 SysML modeling, physical interaction .. 29
10.8.8 Modelica modeling, physical interaction ... 29
10.8.9 Simulink modeling, physical interaction ... 29
10.8.10 Simscape modeling, physical interaction ... 30
10.8.11 Summary ... 30

10.9 Default values and initial values ... 31
10.9.1 Purpose .. 31
10.9.2 SysML Modeling ... 31
10.9.3 Modelica modeling .. 31
10.9.4 Simulink modeling .. 32
10.9.5 Simscape modeling .. 32

10.10 Data types and units.. 33
10.10.1 Purpose .. 33
10.10.2 SysML modeling ... 33
10.10.3 Modelica modeling .. 33
10.10.4 Simulink modeling .. 33
10.10.5 Simscape modeling .. 33
10.10.6 Summary ... 34

10.11 State machines .. 34
10.11.1 Purpose .. 34
10.11.2 SysML modeling ... 34
10.11.3 Modelica modeling .. 35
10.11.4 Simulink/StateFlow modeling ... 36
10.11.5 Summary ... 38

10.12 Mathematical expressions... 38

11 Platform-independent component library ... 39

11.1 Introduction .. 39
11.2 Port types .. 39

11.2.1 Signal flow... 39
11.2.2 Physical interaction .. 40

11.3 Component blocks .. 41
11.3.1 Real-valued components .. 42

11.3.1.1 Continuous components ... 42
11.3.1.2 Discrete components .. 42
11.3.1.3 Non-linear components .. 43

SysML Extension for Physical Interaction and Signal Flow Simulation viii

11.3.1.4 Mathematical components ... 43
11.3.1.5 Sources and sinks ... 44
11.3.1.6 Routing components .. 44

11.3.2 Logical components ... 46
11.3.3 Electrical components .. 47

11.4 Simulation platform stereotypes ... 49
11.4.1 ModelicaBlock... 49
11.4.2 ModelicaParameter .. 49
11.4.3 ModelicaPort ... 50
11.4.4 MultidimentionalElement .. 50
11.4.5 SimulinkBlock ... 51
11.4.6 SimulinkParameter .. 51
11.4.7 SimulinkPort .. 51

A. Tutorial (non-normative) .. 52

A.1 Introduction .. 52
A.2 System being modeled .. 52
A.3 Blocks and ports ... 52
A.4 Internal structure (parts and connectors) .. 53
A.5 Properties (variables) .. 53
A.6 Constraint blocks and constraints (equations) .. 54
A.7 Constraint properties and bindings ... 55
A.8 Initial values ... 56

SysML Extension for Physical Interaction and Signal Flow Simulation ix

Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry standards
consortium that produces and maintains computer industry specifications for interoperable, portable, and reusable enterprise applications
in distributed, heterogeneous environments. Membership includes Information Technology vendors, end users, government agencies,
and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s specifications
implement the Model Driven Architecture®(MDA®), maximizing ROI through a full-lifecycle approach to enterprise integration that
covers multiple operating systems, programming languages, middleware and networking infrastructures, and software development
environments. OMG’s specifications include: UML® (Unified Modeling Language™); CORBA® (Common Object Request Broker
Architecture); CWM™ (Common Warehouse Metamodel); and industry-specific standards for dozens of vertical markets. More
information on the OMG is available at http://www.omg.org.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications are available
from the OMG website at: http://www.omg.org/spec. All of OMG’s formal specifications may be downloaded without charge from our
website. (Products implementing OMG specifications are available from individual suppliers.) Copies of specifications, available in
PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Some OMG specifications are also available as ISO standards. Please consult http://www.iso.org.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://issues.omg.org/issues/create-
new-issue).

http://www.omg.org/
http://www.omg.org/spec
http://www.iso.org/
http://www.omg.org/
http://issues.omg.org/issues/create-new-issue
http://issues.omg.org/issues/create-new-issue

SysML Extension for Physical Interaction and Signal Flow Simulation x

SysML Extension for Physical Interaction and Signal Flow Simulation 1

1 Scope
Systems engineers coordinate the work of multiple other engineering disciplines (mechanical, material, electrical,
control, and so on), requiring information to flow between systems engineers and those in other disciplines.
Systems engineering information intentionally does not cover all disciplines, but must integrate with them to enable
systems engineers to communicate with other engineers. Using discipline-specific tools separately from system
modeling tools typically leads to redundancy, inconsistency, and less efficient engineering processes.

Many engineering disciplines (mechanical, electrical, and so on) use simulation tools that present graphical
interfaces for linking system components, then solve equations generated from the graphical models, and report
predicted values of system properties over time. Linked components interact physically (mechanically, electrically,
and so on) or send numeric signals to each other (see Subclause 6.1 for the difference between physical interaction
and signal flow). The tools generate (ordinary and algebraic) differential equations to describe the evolution of
numeric system properties over time, and solve them to predict system behavior. These models are sometimes
known as lumped parameter or 1-D models, but this specification refers to them as physical interaction and signal
flow, to emphasize their applications (or just simulation models for brevity). This kind of simulation is specified
without regard to physical distances between or within components, as compared to distributed simulation models
(as in finite element analysis), in which behavior specifications account for physical distances between or within
components. See Subclause 6.1 for more information about this kind of simulation.

Graphical interfaces presented by physical interaction and signal flow simulators express concepts similar to the
Systems Modeling Language (SysML), an extension of the Unified Modeling Language (UML). Both languages
show system components, how components are connected together, and how physical substances and information
flow between components. SysML and these simulators both have underlying textual languages to record models in
computer-processable file formats. Simulators translate models specified through graphical interfaces into file-
based formats, which are then transformed into equations for solution by numerical analysis. SysML-based tools
use their filed-based formats to perform other kinds of analysis and verification, checking completeness of designs
against requirements.

When SysML tools and physical interaction and signal flow simulators are used separately, simulation engineers
must re-specify their systems in each tool they are using, including information that is also available in SysML
models. This additional effort would not be necessary if the information to perform this kind of simulation were
available in SysML and translations were defined between SysML and simulation languages.

This specification:

• Extends SysML with additional information needed to perform physical interaction and signal flow
simulation independently of simulation platforms.

• Provides a human-usable textual syntax for mathematical expressions.

• Includes a platform-independent SysML library of simulation elements that can be reused in system
models.

• Gives translations between SysML as extended above and two widely-used simulation languages and tools
for physical interaction and signal flow simulation.

With the extension, expression language, libraries, and translations above, information in common between SysML
and simulation languages only needs to be specified once in SysML and translated to simulators, rather than
manually recoded for each simulation language and tool. The library enables SysML models for simulation to be
built more quickly by reusing library elements rather than reconstructing them for each application. Taken together,
these capabilities provide a basis for more efficient integration of SysML models and processes with those of
physical interaction and signal flow simulation.

SysML Extension for Physical Interaction and Signal Flow Simulation 2

2 Conformance
A tool demonstrating conformance to this specification must satisfy at least one of these points:

• Abstract syntax conformance. Tools demonstrating abstract syntax conformance provide user interfaces
and/or APIs that enable

o instances of concrete stereotypes defined in this specification (which are applications of
stereotypes to instances of UML metaclasses) to be created, read, updated, and deleted, including
links and references from these to instances of UML elements and instances of SysML
stereotypes.

o bodies and languages of opaque expressions and opaque behaviors to be created, read, updated,
and deleted conforming to the mathematical expression language defined in this specification.

o links and references to model library elements defined in this specification to be created and
deleted.

The tools also provide a way to validate the well-formedness of the above as defined by stereotypes,
grammars, and model library elements in this specification.

• Concrete syntax conformance. Tool demonstrating concrete syntax conformance provide user interfaces
and/or APIs that enable the mathematical expression language defined in this specification and the SysML
notation for the abstract syntax above to be created, read, updated, and deleted. See the SysML
specification for more about SysML notation conformance.

• Model interchange conformance. Tools demonstrating model interchange conformance can import and
export conformant XMI for all models that are valid under this specification. Model interchange
conformance implies abstract syntax conformance.

• Translation conformance: Tools demonstrating translation conformance can translate between extended
SysML and simulation models per this specification, either in one direction or both directions.

3 References
3.1 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do
not apply.

[1] Object Management Group, “OMG Unified Modeling Language, version 2.5,” http://www.omg.org/spec/UML/
2.5, March 2015.

[2] Object Management Group, “OMG Systems Modeling Language, version 1.4,” http://www.omg.org/spec/
SysML/1.4, September 2015.

[3] Modelica Association, “Modelica® - A Unified Object-Oriented Language for Systems Modeling, Language
Specification, version 3.3, revision 1,” https://www.modelica.org/documents/ ModelicaSpec33Revision1.pdf,
July 2014.

[4] Modelica Association, “Modelica Standard Library,” https://github.com/modelica/Modelica, 2015.

[5] International Standards Organization, “Information technology – Syntactic metalanguage – Extended BNF,”
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_ IEC_14977_1996(E).zip, 1966.

http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/SysML/1.4
http://www.omg.org/spec/SysML/1.4
https://www.modelica.org/documents/ModelicaSpec33Revision1.pdf
https://github.com/modelica/Modelica
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_%20IEC_14977_1996(E).zip

SysML Extension for Physical Interaction and Signal Flow Simulation 3

3.2 Non-normative References

[1] Kecman, V., State-Space Models of Lumped and Distributed Systems, Springer-Verlag, 1988.

[2] Cellier, F., Elmqvist, H., Otter, M., “Modeling from Physical Principles,” in Levine, W., Control System
Fundamentals, pp. 99-108, CRC Press, 1999.

[3] Raven, F., Automatic Control Engineering (Fifth Edition), McGraw-Hill, January 1995.

[4] The MathWorks, Inc., “Simulink® User’s Guide,” http://www.mathworks.com/help/pdf_doc/simulink/
sl_using.pdf, 2016.

[5] The MathWorks, Inc., “Simulink® Reference,” http://www.mathworks.com/help/pdf_doc/simulink/slref.pdf,
2016.

[6] The MathWorks, Inc., “SimscapeTM Language Guide,” http://se.mathworks.com/help/pdf_doc/
physmod/simscape/simscape_lang.pdf, 2016.

[7] The MathWorks, Inc., “MATLAB® Primer,” http://www.mathworks.com/help/pdf_doc/matlab/ getstart.pdf,
2015.

[8] The MathWorks, Inc., “StateFlow® User Guide,” http://www.mathworks.com/help/pdf_doc/stateflow/
sf_ug.pdf, 2015.

4 Terms and Definitions
For the purposes of this specification, the term ‘simulation’ will refer to physical interaction and signal flow
simulation, unless qualified. See Clause 1 for more information about this kind of simulation.

Stereotype names are sometimes used in place of instances of their base classes to which the stereotypes are applied.
For example, the phrase ‘a property typed by a SimBlock’ refers to a property typed by an instance of Class, where
the instance has the SimBlock stereotype applied.

5 Symbols
No symbols are introduced by this specification.

6 Additional Information
6.1 Signal flow and physical interaction simulation compared
The differences between physical interaction and signal flow and lie mainly in how components interact, addressing
different kinds of problems:

• In signal flow modeling, system components exchange numeric and Boolean values in predetermined
directions. For each component, some values will be provided by other components (inputs), and some
values will be provided to other components (outputs). Component behavior is specified with assignments
and algorithmic control statements. Connections between components indicate that values are passed from
one output of a source component to one or more inputs of target components. Component behavior is
specified by assigning values to outputs, based on values of inputs and other component variables. Signal
flow is better suited for describing control systems and signal-processing systems. It is also used to define
interconnected mathematical equations, although physical interaction might be more suited to represent

http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/simulink/slref.pdf
http://se.mathworks.com/help/pdf_doc/physmod/simscape/simscape_lang.pdf
http://se.mathworks.com/help/pdf_doc/physmod/simscape/simscape_lang.pdf
http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_ug.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_ug.pdf

SysML Extension for Physical Interaction and Signal Flow Simulation 4

some of these systems.

• In physical interaction, system components exchange (possibly abstract) conserved physical substances that
carry energy. Each exchange is characterized by two numerical values (flow rate and potential to flow of a
physical substance), compared to one for signal flow, which does not involve physical substances. In
physical interaction, the direction in which substances (and their numerical values) flow between
components is not predetermined, as it is for numerical values in signal flow. Component behavior in
physical interaction is specified by equations, as opposed to assignments as in signal flow, to indicate that
inputs and outputs are unknown at the time of modeling. The direction in which substances flow between
components is determined during simulation, and can change during simulation. Physical interaction is well
suited for representing systems with components that exchange conserved substances, but is more
cumbersome for using of algorithmic control statements.

In practice, physical interaction and signal flow are often combined in a same model. For example, many systems
have physical components directed by control systems via sensors and actuators.

6.2 How to read this specification
Clauses 1 to 6 contain background and basics for reading this specification. Clause 1 describes the objectives of this
specification and the intended readership. Clause 2 defines conformance. Clause 3 lists other specifications and
documents containing provisions which, through reference in this text, constitute provisions of this specification.

Clause 4 and 5 contains definitions of terms, abbreviations, and symbols used in this document. Clause 6 provides
additional information to this specification.

Clauses 7 to 11 are the technical part of this specification. Clause 7 defines a SysML extension for physical
interaction and signal flow simulation. Clause 8 defines a language to be used for expressions representing equations
and algorithmic statements. Clause 9 defines processing of SysML models that can be performed prior to translation
to simulation platforms. Clause 10 provides translations between SysML as extended in Clause 7 and two simulation
platforms, Modelica and Simulink (including extensions to Simulink, such as Simscape). Clause 11 defines a
platform-independent simulation library in SysML, with components corresponding to platform-dependent library
components. Clause 11.4 gives additional examples showing how to use the contents of Clauses 7, 8, and 11.

6.3 Changes to Adopted OMG Specifications
None.

6.4 Acknowledgments
The following companies submitted this specification:

• No Magic, Inc.

The following companies and organizations support this specification:

• U.S. National Institute of Standards and Technology
• Office of the Secretary of Defense
• InterCax, LLC
• ModelFoundry Pty. Ltd.
• ModelAlchemy Consulting
• XPLM Solution GmbH
• Koneksys, LLC
• oose Innovative Informatik GmbH

SysML Extension for Physical Interaction and Signal Flow Simulation 5

7 SysML extension for physical interaction and signal
flow simulation

7.1 Introduction
This clause defines a SysML extension for physical interaction and signal flow. It reflects features common to
various physical interaction and signal flow platforms that are not present in SysML. This clause summarizes the
extension. More information is given in Subclauses 10.5 and 10.6.

7.2 Simulation profile

Figure 1: Simulation stereotypes

7.2.1 SimBlock

Package: SimulationProfile
isAbstract: No
Generalization: Block

Description

A SimBlock contains the characteristics of either a type of conserved physical substance, or a type of signal. A
SimBlock contains only SimVariables, which can be conserved (for flow rate) or non-conserved (for potential to
flow).

Constraints

[1] All owned properties must be stereotyped by SimVariable.

7.2.2 SimConstant

Package: SimulationProfile
isAbstract: No
Extended Metaclass: Property

Description

A SimConstant has values that do not change during simulation. Values can change between simulation.

«stereotype»
SimConstant

«metaclass»
UML::Property

«stereotype»
SimVariable

isContinuous : Boolean = true
isConserved : Boolean = false
changeCycle : Integer = 0

«stereotype»
SysML::Block

«stereotype»
SimBlock

«stereotype»
SimProperty

referTo : FlowProperty

SysML Extension for Physical Interaction and Signal Flow Simulation 6

Constraints

[1] A property stereotyped by SimConstant must not be stereotyped by SimVariable.

Notation
A compartment with the label ‘sim constants’ may appear as part of a block definition to list the properties
stereotyped by SimConstant. The properties omit the ‘«simConstant»’ prefix.

7.2.3 SimProperty

Package: SimulationProfile
isAbstract: No
Extended Metaclass: Property

Description

A SimProperty defines a relationship between a flow property and the characteristics of a conserved physical
substance or signal flowing through that property. The flow property is identified by the referTo attribute, and
characteristics of the signal or conserved physical substance are given by the SimProperty’s type, which must be a
SimBlock (for physical interaction) or Real, Integer, or Boolean (for signal flow).

Attributes

referTo: FlowProperty Identifies a flow property for flows characterized by the type of the SimProperty.

Constraints

[1] The type must be Real, Integer, Boolean or a Class stereotyped by SimBlock.
[2] The value of referTo must be a FlowProperty.
[3] When the type is Real, Integer, Boolean the property referred to must have flow direction in or out, not inout.

Notation

A compartment with the label ‘sim properties’ may appear as part of a block definition to list the properties
stereotyped by SimProperty. The properties omit the ‘«simProperty»‘ prefix.

7.2.4 SimVariable

Package: SimulationProfile
isAbstract: No
Extended Metaclass: Property

Description

A SimVariable has values that can vary over time in a continuous or discrete fashion. When flow properties are
defined on ports linked to other ports by connectors, the values of conserved SimVariables owned by SimBlocks that
refer to the flow properties add up to zero (the values have opposite signs). The change cycle for continuous
SimVariables is zero. Conserved SimVariables are for physical interactions, while non-conserved SimVariables are
for signal flow.

Attributes

isContinuous: Boolean = true Determines whether the property value varies continuously or discretely.
isConserved: Boolean = false Determines whether values of the property value are conserved or not.
changeCycle: Real = 0 Specifies the time interval at which a discrete property value changes.

SysML Extension for Physical Interaction and Signal Flow Simulation 7

Constraints

[1] The type must be Real, Integer, or Boolean.
[2] isConserved can be true only when the stereotyped property is owned by SimBlock
[3] changeCycle can be set to a value other than 0 only when isContinuous = false.
[4] The value of changeCycle must be positive or equal to 0.
[5] A property stereotyped by SimVariable must not be stereotyped by SimConstant.

Notation

A compartment with the label ‘sim variables’ may appear as part of a block definition to list the properties
stereotyped by SimVariable. The properties omit the ‘«simVariable»’ prefix.

8 Language for mathematical expressions
This clause describes a platform-independent textual language for mathematical expressions. The language is for use
in the bodies of:

• OpaqueExpressions of constraints, corresponding to equations.
• OpaqueBehaviors, corresponding to algorithmic statements.

OpaqueExpressions and OpaqueBehaviors that use this language in their body should have an associated ‘SysPISF’
string as their language.

The grammar of the SysPISF grammar includes a subset of Modelica’s grammar, as follows:

• All terminal symbols (IDENT, Q-IDENT, Q-CHAR, S-ESCAPE, S-CHAR, DIGIT, UNSIGNED_INTEGER,
UNSIGNED_NUMBER)

• The following non-terminal symbols: equation, statement, if_equation, if_statement, for_statement,
for_indices, for_index, while_statement, expression, simple_expression, logical_expression, logical_term,
logical_factor, relation, rel_op, arithmetic_expression, add_op, term, mul_op, factor, primary, name,
component_reference, function_call_args, function_arguments, named_arguments, named_argument,
function_argument, output_expression_list, expression_list, array_subscripts, subscript

Symbols in the Modelica grammar not listed above are not included in the SysPISF grammar. The semantics of the
above symbols is given in Modelica (which is the same in MATLAB, the expression language in Simulink,
Simscape, and StateFlow, assuming the translations in Subclause 10.12).

The following non-terminal symbol is included in the SysPISF grammar to specify execution of a series of
statements (expressed in extended BNF):

statements : { statement ";" }

When used in OpaqueExpressions, the root non-terminal symbol must be equation. When used in
OpaqueBehaviors, the root non-terminal symbol must be statements.

The following are functions available in SysPISF expressions language: abs, sign, sqrt, div, mod, rem, ceil, floor,
sin, cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh, log, log10, exp, der. The semantics of these functions is given
in Modelica (which is the same in MATLAB, assuming the translations in Subclause 10.12).

SysML Extension for Physical Interaction and Signal Flow Simulation 8

9 Pre-processing SysML models
9.1 Introduction
This clause defines processing of SysML models performed prior to translation to simulation models per Clause 10,
to:

• Enable translations of SysML modeling patterns not covered in Clause 10 (association blocks, Subclause
9.2).

• Accommodate longer lifecycle development in SysML while simplifying simulation models in the short
term (physical modeling of signal flow, Subclause 9.3).

Pre-processing should be done on copies of SysML models, because processing changes these models, while SysML
modelers continue using the original ones.

9.2 Association blocks
9.2.1 Purpose
Many physical phenomena occur due to the relationship between two system components. For example, friction
occurs when two pieces in contact move relative to each other and produce heat. SysML supports a modeling
technique for complex relationships (association blocks) that is not available in simulation models. SysML models
using this technique are processed into simpler models suitable for the translations to simulation platforms in Clause
10.

9.2.2 SysML model before processing
SysML association blocks are both associations and blocks. They represent relationships between two blocks, like
associations, and can have structural features, like blocks. Figure 2 shows an example of association block in
SysML.

Figure 2: Association blocks and connector properties in SysML

The upper part of Figure 2 shows an association block FrictionAssociation relating Flanges (defined in Subclause
10.6.7). The internal structure of FrictionAssociation shows a part typed by Friction with two ports, each being
connected to a participant of the association. The lower part of Figure 2 shows a connector between the flange of a
mass and the flange of a ground. The connector has an associated connector property typed by FrictionAssociation.

m:Mass :Ground

«block»
Flange

«block»
FrictionAssociation

fa:FrictionAssociation

«participant»
{end=surface1}

p1

«participant»
{end=surface2}

p2
f:Friction

surface1 surface2

:Flange :Flange

fl1 fl2

bdd Example

ibd SystemA

SysML Extension for Physical Interaction and Signal Flow Simulation 9

9.2.3 SysML model after processing
SysML connector properties are replaced by the internal structure of their types (association blocks).

Figure 3 shows the content of Figure 2 after processing. The connector property fa in Figure 2 has been replaced by
the content of the association block FrictionAssociation (the connector property and association block are removed).
The flange of the mass and the flange of the ground replace the participant properties of the association block and
are connected to the property f of type Friction in the same way as in the association block.

Figure 3: Replacement of connector properties

9.3 Signal flow using SimBlocks

9.3.1 Purpose
The type of signals in signal flow modeling is given by the type of SimProperties (see Subclause 7.2.3). As an
alternative, SimProperties can be typed by SimBlocks that have a single SimVariable giving the signal type. This is
useful when conserved physical substances carrying signals will be specified later in model development, by adding
flow property types and flow rate SimVariables. SysML models using this technique can be processed into the
simpler models of Subclause 10.6.3 for translation to simulation platforms.

9.3.2 SysML model before processing
Figure 4 shows an example of the alternative for signal flow modeling. It has a block Spring with two ports u and y,
of type SigPin and ~SigPin, respectively. SigPin has an in flow property, and a SimProperty referring to it typed by
SignalFlow. SignalFlow has a continuous SimVariable s.

Figure 4: Signal definition using a SimBlock

9.3.3 SysML model after processing
The type of the SimProperty is replaced by the type of the SimVariable in the SimBlock. The SimBlock can be
deleted if it is not used elsewhere. Figure 5 shows the content of Figure 4 after processing.

Figure 5: Replacement of SimProperty type

m:Mass :Ground
:Flange :Flange

f:Friction
fl1 fl2

ibd SystemA

«block»
Spring
ports

u: SigPin
y: ~SigPin sim properties

sigsp: SignalFlow {referTo=sig}

«block»
SigPin

sim variables
s : Real

«simBlock»
SignalFlow

flow properties
in sig: Signal

bdd Example

«block»
Spring
ports

u: SigPin
y: ~SigPin sim properties

sigsp: Real {referTo=sig}

«block»
SigPin

flow properties
in sig: Signal

bdd Example

SysML Extension for Physical Interaction and Signal Flow Simulation 10

10 Translating between SysML and simulation
platforms

10.1 Introduction
This clause shows how to translate between SysML models extended as in Clause 7 (hereafter referred to as SysML)
and models in multiple simulation platforms. Translations are given as correspondences between patterns of using
SysML and simulation platforms, enabling translation in either direction. However, simulation platforms have more
specific purposes than SysML, resulting in loss of information when translating from SysML to simulation
platforms.

The selected platforms are Modelica and Simulink, including extensions of Simulink, such as Simscape. The
modeling concepts covered by these translations are available in both simulation languages.

• Modelica is a textual simulation language for physical interaction and signal flow modeling supported by
various simulation tools, such as OpenModelica, Dymola®, and MapleSim® that add graphical interfaces
and numerical solvers. Modelica is defined by a grammar, but does not have a metamodel. As a result, the
terms used to describe Modelica models correspond to keywords defined in its grammar.

• Simulink is a graphical simulation tool for signal flow modeling (unless extended, see below). Its
modeling concepts can be inferred from the simulation files generated from graphical models (no
metamodel or textual language has been released for Simulink). Two file formats are currently used: the
older punctuated textual format, or the newer XML format. The concepts used in these two formats are the
same, but the structure and the way values are represented differ. Simulink supports S-Functions to
represent system behaviors as MATLAB files (generally behavior in state-space form). S-Functions always
follow the same structure and use the same concepts.

Simulink includes extensions for other aspects of systems modeling:

• Simscape is the extension of Simulink for physical interaction modeling. Physical components
specifications are persisted in a file that must conform to the Simscape grammar. Simscape concepts are
named in the grammar.

• Stateflow® is the Simulink extension for state machines. It uses additional concepts represented along with
Simulink elements.

Subclauses 10.2 through 10.11 are divided into these parts:

• Purpose: Explains the particular kinds of information in system or simulation modeling covered by the
subclause.

• SysML modeling: Describes how the above information is modeled in SysML, extended as in Clause 7
when necessary, along with a small example.

• Simulation platform modeling: Describes the correspondence between the portions of SysML used as above
and modeling patterns in simulation platforms, along with simulation models corresponding to the SysML
example above.

• Summary: Summarizes the correspondences between SysML and simulation platforms in a table.

Subclause 10.12 covers translations for the expression language in Clause 8.

SysML Extension for Physical Interaction and Signal Flow Simulation 11

10.2 Blocks and properties

10.2.1 Purpose
Systems and simulation models contain classes describing systems and components that share the same features.
Systems and components function (play roles) within others, which are described in models as the usage of one class
by another. For example, a class for cars might have a power source reusing a class for engines.

10.2.2 SysML modeling
Modeling in SysML is based on blocks, which are classes of systems or components, describing objects that share
the same features. These features can be structural or behavioral.

Structural features of blocks are called properties, some of which are for values, such as numbers or strings of
characters, and some of which are usages of other blocks. This difference is indicated by typing a property by a data
type or by a block. Some system properties typed by blocks are parts, corresponding to usages of those block within
a system or component.

Figure 6 shows a SysML block A that contain one part b1 of type B. B is also a SysML block.

Figure 6: Block and part in SysML

10.2.3 Modelica modeling
Modelica is a textual language for physical interaction and signal flow modeling. It defines syntax and semantics
that can be used to specify system simulations. Modelica is a class-oriented language, defining structural and
behavioral features, like SysML, but with different terminology. Structural features in Modelica are called
components. The simulation process starts by instantiating classes, then performing numerical analysis to compute
values of all data components. Modelica includes various kinds of classes (model, record, block, connector, type,
package, operator), some of which have restrictions and/or enhancements.

SysML blocks correspond to Modelica models, the most general kind of Modelica class and the most commonly
used. SysML properties correspond to Modelica components, including the name and type.

The following Modelica example corresponds to the SysML block A in Figure 6.
model A
 B b1;
end A;
model B
end B

The Modelica model A is defined, and it has a component named b1 of type B, which is also a Modelica model.

10.2.4 Simulink modeling
The structure of Simulink models differs from the structure of SysML and Modelica. Simulink has a concept similar
to SysML blocks (and of the same name), but it can be used either as a container of structural features (subsystems),

«block»
A

parts
b1: B

bdd Example

SysML Extension for Physical Interaction and Signal Flow Simulation 12

as a reference to user-defined blocks, or as a reference to blocks from a library. When used as a container, structural
features are actually contained in a System. Systems can be owned by models or libraries.

A SysML block and its parts correspond a Simulink block with a system containing blocks referencing other blocks.

SysML blocks that do not have constraint properties correspond to Simulink subsystem blocks. SysML blocks with
constraint properties correspond to either Simulink subsystem blocks (when Simscape is not used, signal flow), or to
Simscape components (when Simscape is used, physical interaction).

The following example shows Simulink code corresponding to Figure 6. It has a Simulink subsystem block A
corresponding to the SysML block A, with a system that contains a reference to the Simulink block B.
<Block BlockType="SubSystem" Name="A" SID="1">
 <System>
 <Block BlockType="Reference" Name="b1" SID="2">
 <P Name="Ports">[0,0]</P>
 <P Name="SourceBlock">LibraryFile/B</P>
 </Block>
 </System>
</Block>

<Block BlockType="SubSystem" Name="B" SID="3">
 <System>
 </System>
</Block>

10.2.5 Simulink/Simscape modeling
Simscape is an extension of Simulink for physical interaction modeling. SysML blocks with constraint properties or
binding connectors correspond to Simscape components.

The following example shows Simscape code corresponding to block B Figure 6, assuming the block has constraint
parameters.
component B
end

The following Simulink code corresponds to block A in Figure 6. It has a subsystem block A, with a system that
contains a reference b to the Simscape component B from the package Library.
<Block BlockType="SubSystem" Name="A" SID="1">
 <System>
 <Block BlockType="Reference" Name="b" SID="2">
 <P Name="SourceBlock">Library/B</P>
 <P Name="SourceType">B</P>
 <P Name="SourceFile">Library.B</P>
 <P Name="ComponentPath">Library.B</P>
 <P Name="ClassName">B</P>
 </Block>
 </System>
</Block>

10.2.6 Simscape modeling
SysML parts correspond to Simscape member components.

The following example shows Simscape code corresponding to block A in Figure 6. It has a component A
containing a member component b1 of type B (from the package Library).

SysML Extension for Physical Interaction and Signal Flow Simulation 13

component A
 components
 b1=Library.B;
 end
end

10.2.7 Summary

SysML Modelica Simulink Simscape

Block with no constraint
properties and no binding
connector

Model SubSystem block with
system

N/A

Block with constraint
properties or binding
connectors

Model SubSystem block with
system

Component

Block name Model name SubSystem name Component name

Property typed by a block,
owned by block

Component owned by
model

Reference block, owned by
system

Member component

Property name Component name Reference block name Member component name

Property type Component type Reference block source Member component type

Restrictions

• SysML properties must be typed

10.3 Root element

10.3.1 Purpose
Systems and simulation models are organized in a structured way starting with root elements.

10.3.2 SysML modeling
SysML root elements are packages, which are containers for model elements.

Figure 7: Package and model in SysML

Figure 7 shows a package P owning a block B.

P

«block»
B

pkg Example

SysML Extension for Physical Interaction and Signal Flow Simulation 14

10.3.3 Modelica modeling
A Modelica file can contain any type of class as root, including a model. SysML packages correspond to Modelica
models. The following Modelica code corresponds to Figure 7. It has a model P owning a model B.
model P
 model B
 end B;
end P;

10.3.4 Simulink modeling
A Simulink file can contain a model or a library as root. Simulink blocks defined in a model cannot be reused,
whereas blocks defined in a library can. A model is then used to contain references to reusable blocks. Both a library
and a model are needed to be equivalent to a SysML package.

The following Simulink code corresponds to Figure 7. It has a library P and a model M, each owning a system with
a block B.
<Library>
 <System>
 <Block name=”B”>
 …
 </Block>
 </System>
</Library>

<Model>
 <System>
 <Block name=”B”>
 </Block>
 </System>
</Model>

10.3.5 Summary
SysML Modelica Simulink

Package Model Library+System, Model+system

Object owned by package Object owned by package Object owned by system

10.4 Generalization

10.4.1 Purpose
Generalization simplifies systems and simulation modeling by enabling features of one class to be reused by
(inherited to) another class.

10.4.2 SysML modeling
SysML provides a generalization relationship to indicate that one block reuses the features of another. A block
generalized by another block will inherit all the properties of that other block. SysML supports multiple
generalizations of the same block, but not all the simulation languages and tools do.

Figure 8 shows a block A with a property c1 of type C, and a block B that is a specialization of that block A.

SysML Extension for Physical Interaction and Signal Flow Simulation 15

Figure 8: Generalization in SysML

10.4.3 Modelica modeling
A Modelica class can be generalized by another Modelica class. This is done through an “extend” clause. There can
be several “extend” clauses, for multiple generalizations of the same class. Modelica components inherited from
more general classes can be redefined.

The following Modelica code corresponds to Figure 8. It has a model A with a component c1 of type C, and a model
B that extends A. As a result, B inherits the component c1 from A.
model A
 C c1;
end A;

model B
 extends A;
end B;

10.4.4 Simulink modeling
Simulink does not support generalization. Simulink blocks cannot inherit features from another blocks. It is possible
for a system to use another block and add to its behavior, but this does not necessarily correspond to generalization.
As a result, features that are inherited in SysML must be explicitly added to all Simulink blocks that are generalized
in SysML.

The following Simulink code corresponds to Figure 8. The blocks A and B are defined, and the system contain a
block c1 that is a reference to the block C from the library LibraryFile. There is no generalization between A and B.
<Block BlockType="SubSystem" Name="A" SID="1">
 <System>
 <Block BlockType="Reference" Name="c1" SID="2">
 <P Name="Ports">[0,0]</P>
 <P Name="SourceBlock">LibraryFile/C</P>
 </Block>
 </System>
</Block>
<Block BlockType="SubSystem" Name="B" SID="3">
 <System>
 <Block BlockType="Reference" Name="c1" SID="4">
 <P Name="Ports">[0,0]</P>
 <P Name="SourceBlock">LibraryFile/C</P>
 </Block>
 </System>
</Block>

«block»
A

parts
c1: C

«block»
B

bdd Example

SysML Extension for Physical Interaction and Signal Flow Simulation 16

10.4.5 Simscape modeling
Simscape supports generalization of components, but not multiple generalizations of the same component.
Component members and equations are available to other components by generalization.

The following Simscape code corresponds to Figure 8. The component A has a node c1 typed by C (from the
package CurrentLibrary), and the component B is generalized by A (from the package CurrentLibrary).
component A
 nodes
 c1 = CurrentLibrary.C;
 end
end

component B < CurrentLibrary.A
end

10.4.6 Summary

SysML Modelica Simulink Simscape

Generalization Extend clause N/A Subclassing

Inherited features Not translated Translated Not translated

Restrictions

• SysML blocks must not have multiple generalizations

10.5 SimVariables and SimConstants

10.5.1 Purpose
Simulation modeling specifies how variable values can change during simulation, particularly for numeric values,
whereas system models do not. Simulation modeling distinguishes numeric variables with values that can change
continuously (possible infinitesimally) over time from those that always change discretely (finitely), possibly only at
regular intervals. It also identifies variables with values that can only change between simulations (constants),
rather than during simulation.

10.5.2 SysML modeling
The simulation extension in Subclause 7.2 distinguishes properties as described above. Continuous SysML
properties are stereotyped by SimVariable, with isContinuous=true. Discrete properties are stereotyped by
SimVariable, with isContinuous=false. Constant properties are stereotyped by SimConstant.

Figure 9: SimVariables and SimConstant in SysML

«block»
A

attributes
«SimVariable» v1 : Real {isContinuous=true}
«SimVariable» v2 : Real {isContinuous=false}
«SimConstant» v3 : Real

bdd Example

SysML Extension for Physical Interaction and Signal Flow Simulation 17

Figure 9 shows a block A with three properties: one continuous SimVariable v1, one discrete SimVariable v2, and
one SimConstant v3.

Note: SysML notation for stereotype properties can omit a property if the default value is used. For example,
isContinuous is true by default, and can be omitted from the notation for variables that are continuous.

10.5.3 Modelica modeling
The variability of Modelica properties are of four kinds: continuous, discrete, parameter, and constant. By default,
Modelica properties are continuous. SimVariables with isContinuous=true correspond to continuous components,
SimVariables with isContinuous=false correspond to discrete components, and SimConstants correspond to
parameter variables.

The following Modelica code corresponds to Figure 9. It has a model A, with three properties v1, v2 and v3 of type
Real, that are continuous, discrete, and parameter, respectively.

model A
 Real v1;
 discrete Real v2;
 parameter Real v3 = “...”;
end A

10.5.4 Simulink modeling
See Subclause 10.8 for Simulink corresponding to SysML value properties in the context of SysML constraint
blocks and binding connectors.

10.5.5 Simscape modeling
Data properties in Simscape can either be (continuous) variables or (constant) parameters. Discrete variables are not
supported. SimVariables with isContinuous=true correspond to Simscape variables, and SimConstants correspond to
parameters.

The following Simscape code corresponds to Figure 9. It has a component A with one variable v1, and one
parameter v3. The variable v1 is continuous.
component A
 variables
 v1 = 1;
 end
 parameters
 v3 = 10;
 end
end

SysML Extension for Physical Interaction and Signal Flow Simulation 18

10.5.6 Summary

SysML Modelica Simulink Simscape

Property stereotyped by SimVariable, with
isContinuous=true

Continuous component N/A Variable

Property stereotyped by SimVariable, with
isContinuous=false

Discrete component N/A N/A

Property stereotyped by SimConstant Parameter component N/A Parameter

Property type (DataType) Component type (Type) N/A Member type
(DataType)

Restrictions

• SysML properties must be typed

10.6 Ports, FlowProperties, SimProperties, and SimBlocks

10.6.1 Purpose
Systems and simulation modeling describe interactions between system components. These interactions include
exchanges of conserved physical substances, signals, or both. System and simulation components include structural
features used as connection points to other components. System and simulation models include connections between
these points when the components are used. System models specify the kind of things exchanged between
connection points, while simulation models give characteristics of these exchanges, in particular the rate of flow and
potential to flow.

10.6.2 SysML modeling
In SysML, interactions between parts are modeled using connectors. Connections are often between ports of these
parts. Ports are properties used as connection points to other blocks.

The type of a port describes individual flows through the port using flow properties, which have flow directions
(in/out/inout).

The extension for simulation in Subclause 7.2 adds information needed for simulation that is not available in
SysML, in particular, flow rates and potentials to flow. Physical interaction uses both of these, while signal flow
only uses potential to flow. These are given by attributes of SimVariables (non-conserved and coniserved,
respectively). SimVariables are linked to flow properties by adding SimVariables to SimBlocks, then typing
SimProperties by those SimBlocks, and linking those SimProperties to flow properties via the referTo attribute of
SimProperty. To simplify signal flow modeling, which only uses potentials to flow, SimVariables and SimBlocks
can be omitted, and signal types (Real, Integer, or Boolean) given by the type of SimProperties.

Subclauses 10.6.3 through 10.6.6 cover signal flow modeling in SysML and simulation platforms, while subclauses
10.6.7 through 10.6.10 cover physical interaction modeling.

10.6.3 SysML modeling, signal flow
When modeling signal flow, flow properties of the port type must be either in or out. A flow property in the opposite
direction can be obtained by conjugating the ports. The SimProperty referring to this flow property must be typed by
Real, Integer, or Boolean.

SysML Extension for Physical Interaction and Signal Flow Simulation 19

Figure 10 shows an example signal flow application. The block Spring has two ports u and y, of type SigPin (v is
conjugated). SigPin has an in flow property sig and a SimProperty sig referring to that flow property. The
SimProperty is typed by Real.

Figure 10: Ports for signal flow in SysML

See Subclause 9.3 for an alternative way for modeling signal flow in SysML that is useful when conserved physical
substances carrying signals will be specified later in model development.

10.6.4 Modelica modeling, signal flow
SysML ports with a type containing a flow property referred to by a SimProperty typed by Real, Integer, or Boolean
correspond to Modelica components typed by that data type. The Modelica component has a direction given by the
flow property, accounting for conjugation of the port, if any.

The following Modelica code corresponds to Figure 10. It has a model Spring, with two components u and y of type
Real and of direction respectively in and out.

model Spring
 in Real u;
 out Real y;
end Spring;

10.6.5 Simulink modeling, signal flow
SysML ports with a type containing a flow property referred to by a SimProperty typed by a Real, Integer, or
Boolean correspond to Simulink inports or outports. The choice is made depending on the direction of the flow
property, accounting for conjugation of the port, if any.

The following Simulink code corresponds to Figure 10. It has a block Spring, with one inport u and one outport y.
Note the Ports property of the block, which counts the number of inports (1st position) and outports (2nd position).
<Block BlockType="SubSystem" Name="Spring" SID="1">
 <P Name="Ports">[1,1]</P>
 <System>
 <Block BlockType="Inport" Name="u" SID="2">
 <P Name="Port">1</P>
 </Block>
 <Block BlockType="Outport" Name="y" SID="3">
 <P Name="Port">1</P>
 </Block>
 </System>
</Block>

10.6.6 Simscape modeling, signal flow
The following Simscape code corresponds to Figure 10. It has a component Spring, with one input u (displayed on
the left side of the block) and one output y (displayed on the right side of the block).

«block»
Spring
ports

u: SigPin
y: ~SigPin sim properties

sigsp: Real {referTo=sig}

«block»
SigPin

flow properties
in sig: Signal

bdd Example

SysML Extension for Physical Interaction and Signal Flow Simulation 20

component Spring
inputs
 u = {0, ‘unit’}; % :left
end

outputs
 y = {0, ‘unit’}; % :right
end
end

10.6.7 SysML modeling, physical interaction
When modeling for physical interaction, flow properties of the port type must be inout. The SimProperty referring to
this flow property must be typed by a SimBlock, which contains conserved and non-conserved SimVariables (the
same number of each).

Figure 7 shows an example physical interaction application. The block Spring has two ports p1 and p2, of type
Flange. Flange has an inout flow property mo and a SimProperty me, referring to that flow property. The
SimProperty is typed by the SimBlock MomentumFlow, which has one conserved SimVariable f and one non-
conserved SimVariable v.

Figure 11: Ports for physical interaction in SysML

10.6.8 Modelica modeling, physical interaction
In physical interaction modeling, SysML ports correspond to Modelica components, and SysML port types
correspond to Modelica connectors. SysML flow properties have no corresponding constructs in simulation
platforms. SimProperties and SimBlocks do not either, but are used to identify SimVariables, which correspond to
variables in simulation platforms. SimVariables from SimBlocks typing SimProperties correspond to Modelica
connectors. Conserved SimVariables correspond to Modelica flow components. Modelica components
corresponding to SysML ports have no direction, indicating that information can go in either direction. The direction
is determined during simulation, rather than when components are defined.

The following Modelica code corresponds to Figure 11. It has a model Spring, with two components p1 and p2 of
type Flange. Flange is a connector that has one flow component f, and one regular component v.
model Spring
 Flange p1;
 Flange p2;
end Spring;
connector Flange
 flow Real f;
 Real v;
end Flange;

«block»
Spring
ports

p1: Flange
p2: Flange

«block»
Flange

sim variables
f : Real {isConserved}
v : Real

«simBlock»
MomentumFlow

flow properties
inout mo: Momentum

sim properties
me: MomentumFlow {referTo=mo}

bdd Example

SysML Extension for Physical Interaction and Signal Flow Simulation 21

10.6.9 Simulink modeling, physical interaction
Simulink supports connection ports for representing bidirectional flows, but exchanges between them are defined in
Simscape (see Subclause 10.6.10). Simulink connection ports must be connected to Simscape nodes.

10.6.10 Simscape modeling, physical interaction
Simscape adds support for physical ports to Simulink. These ports can receive an input signal, an output signal, or
an inout signal. They can either be defined directly in Simulink (called connection ports) or they can be defined in
Simscape (called nodes). Nodes are typed by a domain, which corresponds to a SysML port type with an inout
flowProperty and SimProperties. Conserved SimVariables in SimBlocks correspond to Modelica balancing variables
in the domain.

The following Simscape code corresponds to Figure 11. It has a component Spring, with two nodes p1 and p2 of
type Flange. These two nodes will be displayed on the left side and right side of the block in Simulink, respectively.
Flange is a domain from the package CurrentLibrary, with two variables: one non-balancing variable v, and one
balancing variable f.
component Spring
 nodes
 p1 = CurrentLibrary.Flange; % :left
 p2 = CurrentLibrary.Flange; % :right
 end
end

domain Flange
 variables
 v = {0, 'm/s'};
 end
 variables(Balancing=true)
 f = {0, 'N'};
 end
end

10.6.11 Summary

SysML Modelica Simulink Simscape

Port typed by block with an in flow property
and a SimProperty typed by a DataType

component typed by a data
type

inport input variable

Port typed by block with an out flow property
and a SimProperty typed by a DataType

component typed by a data
type

outport output variable

Port typed by block with an inout flow
property and associated SimProperties

component typed by
connector

Connector Node typed by
domain

Block with a flow property and an associated
SimProperty typed by SimBlock

connector N/A domain

SimVariables owned by SimBlock components owned by
connector

N/A variables owned by
domain

Restrictions:

• Ports must be typed.

Note: Conjugation of a port reverses the direction of the flow properties in that port.

SysML Extension for Physical Interaction and Signal Flow Simulation 22

10.7 Connectors

10.7.1 Purpose
Once connection points for parts are defined, it is possible to specify connections between these points. A connection
between two connection points belonging to different parts enables exchange of conserved physical substances or
signals between these parts through their connection points.

10.7.2 SysML modeling
In SysML, connectors are used to link two ports belonging to two parts. These connections exist only in the context
of the block that owns the connector, and other blocks generalized by it (connectors inherit).

Figure 12 shows an example of SysML connectors. It has two parts s1 and s2, of type Spring. The block Spring has
two ports, p1 and p2 of type Flange, as defined in Figure 11. The figure shows a connector between the port p2 of
s1, and the port p1 of s2.

Figure 12: Connectors in SysML

10.7.3 Modelica modeling
SysML connectors correspond to Modelica connect equations, which link two components typed by Modelica
connectors. This depends on the correspondence between SysML port types and Modelica connectors (see Subclause
10.6.8).

The following Modelica code corresponds to Figure 12. It has a model Model with two components s1 and s2, of
type Spring. Spring is a model with two components p1 and p2 of type Flange (see Subclause 10.6.8 for a
definition). Model contains a connect equation linking the component p2 of s1 to the component p1 of s2.
model Model
 Spring s1;
 Spring s2;
equation
 connect(s1.p2, s2.p1);
end Model;

model Spring
 Flange p1;
 Flange p2;
end Spring;

10.7.4 Simulink modeling, signal flow
The correspondence between SysML connectors and Simulink constructs depends on the kind of Simulink ports
being connected. Connections between Simulink inports and Simulink outports are represented by regular Simulink
lines. Simulink lines have a direction, which must be consistent with the kind of Simulink ports being connected
(inports or outports). SysML connectors have no direction.

s1:Spring

s2:Spring

p2:Flange
p1:Flange

ibd Example

SysML Extension for Physical Interaction and Signal Flow Simulation 23

The following Simulink code corresponds to Figure 12. It has two blocks s1 and s2, each referencing to the Spring
block and having one inport and one outport (see Subclause 10.6.5). A line is defined between the outport port of s1
(p2) and the inport of s2 (p1).
<Block BlockType="Reference" Name="s1" SID="1">
 <P Name="Ports">[1,1]</P>
 <P Name="SourceBlock">Library/Spring</P>
</Block>
<Block BlockType="Reference" Name="s2" SID="2">
 <P Name="Ports">[1,1]</P>
 <P Name="SourceBlock">Library/Spring</P>
</Block>
<Line>
 <P Name="Src">1#out:1</P>
 <P Name="Dst">2#in:1</P>
</Line>

10.7.5 Simulink modeling, physical interaction
If two SysML blocks correspond to Simscape components, and the blocks are connected through bidirectional ports
(have types with inout flow properties), SysML connectors correspond to a type of Simulink line called connections.

The following Simulink code correspond to Figure 12. It has two blocks s1 and s2 referring to Simscape component
Spring. Spring has one left port (p1), and one right port (p2). A line of type “connection” connects the right port of
s1 to the left port of s2.
<Block BlockType="Reference" Name="s1" SID="1">
 <P Name="Ports">[0,0,0,0,0,1,1]</P>
 <P Name="SourceBlock">Library/Spring</P>
 <P Name="SourceType">Spring</P>
 <P Name="SourceFile">Library.Spring </P>
 <P Name="ComponentPath">Library.Spring </P>
 <P Name="ClassName">Spring</P>
</Block>
<Block BlockType="Reference" Name="s2" SID="2">
 <P Name="Ports">[0,0,0,0,0,1,1]</P>
 <P Name="SourceBlock">Library/Spring</P>
 <P Name="SourceType">Spring</P>
 <P Name="SourceFile">Library.Spring </P>
 <P Name="ComponentPath">Library.Spring </P>
 <P Name="ClassName">Spring</P>
</Block>
<Line LineType="Connection">
 <P Name="Src">1#rconn:1</P>
 <P Name="Dst">2#lconn:1</P>
</Line>

10.7.6 Simulink modeling, physical interaction and signal flow
When physical interaction and signal flow are combined in Simulink, a signal flow might be defined between a port
of a regular Simulink block and a port of a Simscape block. Since the connected ports are of different kind, it is
necessary to use an additional block that will convert a regular Simulink signal into a Simscape signal, or vice versa.

The following Simulink code connects a signal flow component and a physical interaction component,
corresponding to Figure 12. It has a block s1 referring to a Simulink block Spring, a block tr1 converting regular
signals to physical signals, a block s2 referring to a Simscape component Spring, a block tr2 converting physical
signals to regular signals, and a block s3 also referring to a Simulink block Spring. Lines of type Connection link s1,
tr1, s2, tr2, and s3.

SysML Extension for Physical Interaction and Signal Flow Simulation 24

<Block BlockType="Reference" Name="s1" SID="1">
 <P Name="Ports">[1,1]</P>
 <P Name="SourceBlock">Library/Spring</P>
</Block>

<Block BlockType="Reference" Name="tr1" SID="2">
 <P Name="Ports">[1, 0, 0, 0, 0, 0, 1]</P>
 <P Name="SourceBlock">nesl_utility/Simulink-PS
Converter</P>
 <P Name="SourceType">Simulink-PS
Converter</P>
</Block>

<Block BlockType="Reference" Name="s2" SID="3">
 <P Name="Ports">[0,0,0,0,0,1,1]</P>
 <P Name="SourceBlock">Library/Spring</P>
 <P Name="SourceType">Spring</P>
 <P Name="SourceFile">Library.Spring </P>
 <P Name="ComponentPath">Library.Spring </P>
 <P Name="ClassName">Spring</P>
</Block>

<Block BlockType="Reference" Name="tr2" SID="4">
 <P Name="Ports">[0, 1, 0, 0, 0, 1]</P>
 <P Name="SourceBlock">nesl_utility/PS-Simulink
Converter</P>
 <P Name="SourceType">PS-Simulink
Converter</P>
</Block>

<Block BlockType="Reference" Name="s3" SID="5">
 <P Name="Ports">[1,1]</P>
 <P Name="SourceBlock">Library/Spring</P>
</Block>

<Line>
 <P Name="Src">1#out:1</P>
 <P Name="Dst">2#in:1</P>
</Line>
<Line LineType="Connection">
 <P Name="Src">2#rconn:1</P>
 <P Name="Dst">3#lconn:1</P>
</Line>
<Line LineType="Connection">
 <P Name="Src">3#rconn:1</P>
 <P Name="Dst">4#lconn:1</P>
</Line>
<Line>
 <P Name="Src">4#out:1</P>
 <P Name="Dst">5#in:1</P>
</Line>

10.7.7 Simscape modeling
SysML connectors correspond to Simscape connections.

The following Simscape code corresponds to Figure 12. It has two components s1 and s2 of type Spring, with a
connection between s1.p2 and s2.p1.

SysML Extension for Physical Interaction and Signal Flow Simulation 25

component Model
 components
 s1=Library.Spring;
 s2=Library.Spring;
 end
 connections
 connect(s1.p2, s2.p1);
 end
end

10.7.8 Summary
SysML Modelica Simulink Simscape

Connector between ports with in or
out flow properties

Connect equation between
components

Line between
inport/outports

Connect statement

Connector between ports with
inout flow properties

Connect equation between
ports

Physical line between
left/right connectors

Connect statement

Connector owner Class containing equations System of the Subsystem Component

10.8 Blocks with constraint properties and binding connectors

10.8.1 Purpose
System behavior is represented in simulation models by assignments or equations relating values of system
properties. Simulating assignments and equations involves computing an unknown variable from known variables.
In assignments, unknown and known variables are specified at the time of modeling, while in equations, unknown
and known variables are determined during simulation.

10.8.2 SysML modeling
Simulation equations and assignments correspond to constraint blocks in SysML. Constraint blocks are blocks that
have parameters and constraint properties (properties typed by constraint blocks). Parameters are properties present
in the equations, while constraints are equations. Modeling assignments in SysML is not used in this translation.

Regular SysML blocks use constraint blocks by typing properties with them (constraint properties), and owning
binding connectors that link parameters of the constraint blocks to other properties of the block.

Subclauses 10.8.3 through 10.8.6 cover signal flow modeling, while subclauses 10.8.7 through 10.8.10 cover
physical interaction modeling.

10.8.3 SysML modeling, signal flow
Figure 13 shows an example constraint block for a signal flow application, using the port types defined in Figure 10,
Subclause 10.6.3. It has a SysML constraint property sc typed by SpringConstraint. The constraint block has six
parameters, each bound to a property reachable from the containing block Spring: f is bound to the signal of a port u,
which has a type with an in flow property, pos is bound to the signal of a port y, which has a type with an out flow
property, x is bound to a SimVariable position, k is bound to a SimConstant springcst, v is bound to the SimVariable
velocity, and m is connected to the SimConstant mass. The constraint block defines three constraints representing
equations, written in the expression language specified in Clause 8.

SysML Extension for Physical Interaction and Signal Flow Simulation 26

Figure 13: Constraint block for signal flow in SysML

10.8.4 Modelica modeling, signal flow
In a SysML block that contains a constraint property, the equations from the constraint block are the same as in
Modelica (assuming the expression language of Clause 8 is used in the constraint block) and the SysML parameters
in those equations are replaced in Modelica by the properties they are bound to in SysML.

The following Modelica code corresponds to Figure 13. It has three equations from the constraint block. Parameter
names in the Modelica equations are replaced by the property names they are bound to in SysML: f is replaced by u,
x is replaced by position, k is replaced by springcst, v is replaced by velocity, m is replaced by mass, and pos is
replaced by y. Note that the bound property for SysML ports is modified in the corresponding Modelica, to reflect
that SimProperties have no corresponding construct in Modelica.
model Spring
 input Real u;
 output Real y;
 Real position;
 parameter Real springcst = 1;
 Real velocity;
 parameter Real mass = 10;
equations
 der(velocity)=(u-springcst*position)/m;
 der(position)=velocity;
 y=position;
end Spring;

10.8.5 Simulink modeling, signal flow
SysML constraint blocks for signal flow correspond to Simulink S-Functions. S-Functions are a kind of MATLAB
function that define input variables, output variables, continuous state variables, and discrete state variables. S-
Function variables are identified by numbers, rather than names. State variable are accessible only inside an S-
Function (this is different from states in state machines, see Subclause 10.11). SysML constraint block parameters
correspond to S-Functions based on how they are bound in SysML, which can be different for each constraint
property typed by the same constraint block. This means that a separate S-Function corresponds to each SysML
constraint property. Each S-Function is used only in a specific context (corresponding to the constraint property),
and the name of the S-Function must reflect that context.

u.sigsp y.sigsp

«constraint»
sc: SpringConstraint

position

springcst

mass

velocity

f pos

x
k v

m

«equals» «equals»

«equals»

«equals» «equals»

«equals»

{der(v)=(f-k*x)/m}
{der(x)=v}

{pos=x}

par Spring

SysML Extension for Physical Interaction and Signal Flow Simulation 27

S-Functions contain assignments of continuous state variable derivatives, discrete state variables, and output
variables. These assignments correspond to constraints of SysML constraint blocks that have exactly one variable on
the left-hand side, which determines the variable being assigned, and the kind of assignment it is:

• a continuous state variable on the left-hand side corresponds to a derivative assignment

• a discrete state variable on the left-hand side corresponds to an update assignment

• an output variable on the left-hand side is corresponds to an output assignment

SysML parameter names are used as variable names in the S-Functions. SysML parameters bound to SimConstants
are replaced in S-Functions by the value given for the SimConstant.

Binding connectors involving ports with in or out flow properties correspond to Simulink lines (see Subclause
10.7.4) linking inports and outports to inputs and outputs of the S-Function, respectively.

The following Simulink code corresponds to Figure 13.
<Block BlockType="SubSystem" Name="Spring" SID="1">
 <P Name="Ports">[1,1]</P>
 <System>
 <Block BlockType="Inport" Name="u" SID="2">
 <P Name="Port">1</P>
 </Block>
 <Block BlockType="Outport" Name="y" SID="3">
 <P Name="Port">1</P>
 </Block>
 <Block BlockType="M-S-Function" Name="sc" SID="4">
 <P Name="FunctionName">Spring_sc_SpringConstraint</P>
 <P Name="Ports">[1,1]</P>
 </Block>
 <Line>
 <P Name="Src">2#out:1</P>
 <P Name="Dst">4#in:1</P>
 </Line>
 <Line>
 <P Name="Src">4#out:1</P>
 <P Name="Dst">3#in:1</P>
 </Line>
 </System>
</Block>
function Spring_sc_SpringConstraint(block)
 setup(block);
end
function setup(block)
 block.NumInputPorts =1;
 block.NumOutputPorts =1;
 block.NumContStates =2;
 block.RegBlockMethod('Derivatives',@Derivative);
 block.RegBlockMethod('Outputs',@Output);
 block.SampleTime=[0 0];
end
function Derivative(block)
 block.Derivatives.Data(1)=(block.InputPort(1).Data-1*block.ContStates.Data(2))/10;
 block.Derivatives.Data(2)=block.ContStates.Data(2);
end
function Output(block)
 block.OutputPort(1).Data=block.ContStates.Data(2);
end

SysML Extension for Physical Interaction and Signal Flow Simulation 28

The top part of the code shows a Simulink block Spring with one inport and one outport. Spring also contains a S-
Function block that points at the S-Function Spring_sc_SpringConstraint, which has one inport and one outport.
The inports and outports of Spring are linked to the inport and outport of the S-Function block, respectively.

The bottom part of the code shows the S-Function Spring_sc_SpringConstraint. The setup function indicates that the
S-Function has one input port, one output port, and two continuous states. The function also registers two functions
that will be called for derivative calculations and output calculations. These functions contain the assignments from
the SysML constraints, with all the necessary substitutions performed.

10.8.6 Simscape modeling, signal flow
Simscape supports signal flow by providing a way to specify input and output signals for components. The content
of SysML constraint blocks and binding connectors is be merged in Simulink components, with the necessary
substitutions made in the equations (similar to Modelica, see Subclause 10.8.4). Simscape does not support discrete
variables (compare to S-Functions, see Subclause 10.8.5).

The following Simscape code corresponds to Figure 13. It has a component Spring with an input u, an output y, two
parameters springcst and mass, as well as two variables position and velocity. The component has equations
connecting these variables: two equations that compute the derivative of the continuous variables, and one that
determines the output.
component Spring
 inputs
 u = 0;
 end
 outputs
 y = 0;
 end
 parameters
 springcst = 1;
 mass = 10;
 end
 variables
 position = 0;
 velocity = 0;
 end
 equations
 der(velocity)=(u-springcst*position)/m;
 der(position)=velocity;
 y=position;
 end
end

SysML Extension for Physical Interaction and Signal Flow Simulation 29

10.8.7 SysML modeling, physical interaction
Figure 14 shows an example constraint block for a signal flow application, using the port typed defined in Figure 11,
Subclause 10.6.7. It has a constraint block SpringConstraint with 8 parameters, and 5 constraints. The parameters
include the force and the velocity from the two ends of the spring (f1, v1, f2, v2), the position of the spring (x), the
spring constant (k), as well as the force and velocity related to the spring (v, f). The constraints relate values of the
parameters. These constraints are written using the expression language specified in Clause 8.

Figure 14: Constraint block for physical interaction in SysML

10.8.8 Modelica modeling, physical interaction
The correspondence between physical interaction in SysML and Modelica is the same as for signal flow (see
Subclause 10.8.4). In a SysML block with constraint properties, the equations of the constraint blocks are the same
as in Modelica (assuming the expression language of Clause 8 is used in the SysML constraint block), except the
SysML parameters in those equations correspond in Modelica to the properties they are bound to in SysML.

The following Modelica code corresponds to Figure 14. It has a model Spring with two components p1 and p2 of
type Flange, three continuous components position, velocity, and force of type Real, and one parameter springcst of
type Real. Spring also contains the equations linking the variables together, with parameter names in the Modelica
equations replaced by the property names they are bound to in SysML: f1 is replaced by p1.f, v1 is replaced by p1.v,
x is replaced by position, k is replaced by springcst, v is replaced by velocity, f is replaced by force, v2 is replaced by
p2.v, and f2 is replaced by p2.f.
model Spring
 Flange p1;
 Flange p2;
 Real position;
 parameter Real springcst = “10”;
 Real velocity
 Real force
equation
 p1.f+p2.f=0
 force=p1.f;
 velocity=p1.v-p2.v;
 velocity=der(position);
 force=springcst*position;
end Spring;

10.8.9 Simulink modeling, physical interaction
Physical interaction is modeled with the Simscape extension to Simulink, see Subclause 10.8.10.

p1.me.f

p1.me.v

p2.me.f

p2.me.v

«constraint»
sc: SpringConstraint

position

springcst

force

velocity

f1

v1

f2

v2

x k v f

{f1+f2=0}
{f=f1}

{v=v2-v1}
{v=der(x)}

{f=k*x}

«equals»

«equals»

«equals»

«equals»

«equals»

«equals» «equals»

«equals»

par Spring

SysML Extension for Physical Interaction and Signal Flow Simulation 30

10.8.10 Simscape modeling, physical interaction
For SysML blocks with constraint properties, the constraints of the constraint blocks are the same as the equations in
the corresponding Simscape components (see Subclause 10.2.6), with substitutions in Simscape similar to those for
Modelica (see Subclause 10.8.8), plus additional subsitutions for conserved variables on Simscape domains (see
Subclause 10.6.10), which cannot be used in Simscape equations. A new Simscape variable is defined for each
conserved variable used by a node (even if multiple nodes have the same domain), along with a branch statement
indicating that the new variable value is the same as the conserved variable. The new variable is used in Simscape
equations instead of the conserved variable.

The following Simscape code corresponds to Figure 14. It has a component Spring, with two nodes (p1, p2) of type
Flange, five variables (force, velocity, position, p1f, p2f) and one parameter (springcst). Note the last two variables
and the corresponding branch statement, which replace p1.f by p1f and p2.f by p2f.
component Spring
 variables
 force={0,'N'};
 velocity={0,'m/s'};
 position={0, 'm'};
 p1f={0,'N'};
 p2f={0,'N'};
 end
 nodes
 p1=Library.Flange;% :left
 p2=Library.Flange;% :right
 end
 parameters
 springcst={10,'1'};
 end
 function setup
 end
 branches
 p1f: p1.f->*;
 p2f: p2.f->*;
 end
 equations
 p1f+p2f=0;
 force=p1f;
 velocity=p1.v-p2.v;
 velocity=der(position);
 force=springcst*position;
 end
end

10.8.11 Summary

SysML Modelica Simulink Simscape

Constraint block, used in
constraint properties

N/A S-Function N/A

Constraint parameter bound to a
SimProperty referring to an in
flow property

N/A (parameter substituted
in equations)

Input variable N/A (parameter substituted
in equations)

Constraint parameter bound to a
SimProperty referring to an out
flow property

N/A (parameter substituted
in equations)

Output variable N/A (parameter substituted
in equations)

SysML Extension for Physical Interaction and Signal Flow Simulation 31

Constraint parameter bound to
continuous SimVariable

N/A (parameter substituted
in equations)

Continuous state variable N/A (parameter substituted
in equations)

Constraint parameter bound to
discrete SimVariable

N/A (parameter substituted
in equations)

Discrete state variable N/A (parameter substituted
in equations)

Constraint parameter bound to
discrete SimParameter

N/A (parameter substituted
in equations)

Numerical value (substituted
in equations)

N/A (parameter substituted
in equations)

Constraint Equation in the model
containing the constraint
property (with substitution
of parameters)

Output, discrete, or derivative
assignment depending on
type of the left-hand side
variable in the equations

Equation in the component
containing the constraint
property (with substitution
of parameters)

Restrictions:

• constraint parameters must be named, but not necessarily be public or typed

10.9 Default values and initial values

10.9.1 Purpose
Systems and simulation models can specify values for data type properties to be used when values are not otherwise
given.

10.9.2 SysML Modeling
SysML has two ways to specify values for properties that are used when values are not otherwise given:

• Default values are defined on the properties that will be given the values. A default value is given to every
instance of the block owning the property (or any block it generalizes) when each instance is created.

• Initial values are defined on other properties that are typed by the block owning the property (or any block
it generalizes) that will be given the values. The values are given to instances of the block when (and if)
they become values of the other properties.

Initial values override default values, because initial values are set when an instance that is already created becomes
the value of another property that specifies initial values, but default values are only set when instances are created.
Default and initial values can be changed after they are given to the instances.

Figure 15 shows how default and initial values are used in SysML. The left side of the figure shows a block B with
an attribute val with a default value on 10. The right side shows a block A with an attribute b of type B. An initial
value of 20 is given to the val of b.

Figure 15: Default values and initial value in SysML

10.9.3 Modelica modeling
SysML default values correspond to start values of Modelica components. Start values are usually marked as fixed,
requiring at the beginning time of the simulation (otherwise, simulators only take the values as suggestions,

bdd Example

b:B
val = 20.0

ibd A

«block»
B

val: Real = 10.0

SysML Extension for Physical Interaction and Signal Flow Simulation 32

calculating their own start values to solve the equations). Initial values in SysML correspond to start values on
components, marked as fixed.

The following Modelica code corresponds to Figure 11. It has a model B with a val component. The val component
has a start value of 10. A class A is defined with a component b of type B. A component modification indicates that
the start value of b.val is 20.0.
model B
 Real val(start = 10.0, fixed = true);
end B;
model A
 B b(val.start = 20.0, val.fixed = true);
end A;

10.9.4 Simulink modeling
Default values (or overriding initial values) of SimVariables correspond to initial values of the corresponding S-
Functions variables.

The following Simulink code corresponds to Figure 11, assuming the SimVariable var is bound to a constraint
parameter (which translates into an S-Function variable, see Subclause 10.8.5). The code shows an S-Function
setting initial values for discrete and continuous variables. It also shows a setup function that defines one
continuous variable and one discrete variable, which are identified by number (1 for both in this example, see
Subclause 10.8.5). The properties NumDworks, Dwork, NumContStates, and ContStates are predefined in Simulink,
the first two for discrete variables, the second two for continuous variables. A value of 20 is given to both variables.
function setup(block)
 block.NumDworks = 1;
 block.Dwork(1).Data = 20.0;

 block.NumContStates = 1;
 block.ContStates.Data(1) = 20.0;
end

10.9.5 Simscape modeling
SysML default values correspond to initial values of Simscape variables and parameters. SysML initial values
correspond to Simscape components used in Simulink. The priority of the initial value in Simscape must be set to
high (otherwise simulators calculate initial values that solve the equations at the beginning time of the simulation)

The following Simscape code corresponds to the BDD in Figure 11. It code shows a Simscape component B
defining a variable val with an initial value of 10.
component B
 variables
 val={value=10,priority=priority.high};
 end
end

The following Simulink code corresponds to the IBD in Figure 11. It has a usage of the Simscape component in
Simulink that overrides the initial value of the variable val with a value of 20.
<Block BlockType="Reference" Name="b" SID="2">
 <P Name="SourceBlock">Library/B</P>
 <P Name="SourceType">B</P>
 <P Name="SourceFile">Library.B</P>
 <P Name="ComponentPath">Library.B</P>
 <P Name="ClassName">B</P>
 <P Name="val">20.0</P>
</Block>

SysML Extension for Physical Interaction and Signal Flow Simulation 33

10.10 Data types and units

10.10.1 Purpose
Systems and simulation models include units of physical quantities to enable checking that variables in equations
and assignments have consistent units.

10.10.2 SysML modeling
SysML numeric data types can be linked to units, where units are modeled with the SysML Unit block. These units
are linked to datatypes that are generalized by one SysML’s numeric data types.

Figure 16 shows how a data type with units is defined. It has a value type Force, which specializes the Real
datatype, and has newton as unit. The newton unit has a symbol N.

Figure 16: Units in SysML

10.10.3 Modelica modeling
Modelica data types can be subtyped to add a unit symbol. The interpretation of this symbol is not defined in
Modelica.

The following Modelica code corresponds to Figure 16. It has a type Force, which extends from Real, and the
symbol N assigned to it.
type Force=Real(unit=”N”);

10.10.4 Simulink modeling
Simulink does not support modeler-defined datatypes and units.

10.10.5 Simscape modeling
Unit symbols can be associated to variables and parameters in Simscape. Simscape will check that variables in
equations have consistent units. Simscape has predefined unit symbols, and modelers can define their own.

The following Simscape code corresponds to Figure 16. It has a variable force with an initial value of 0, and a
predefined unit symbol N. Simscape interprets N as the unit for Newton, and checks consistency of units in
equations involving force.
variables
 force={0,'N'};
end

«valueType»
Real

«valueType»
{unit=newton}

Force

«unit»
{symbol=N}

newton

bdd Example

SysML Extension for Physical Interaction and Signal Flow Simulation 34

10.10.6 Summary

SysML Modelica Simulink Simscape

ValueType with unit Type with unit symbol N/A N/A

Property typed by ValueType Component typed by type N/A Variable with associated unit

Real Real double double

String String N/A N/A

Boolean Boolean boolean N/A

Integer Integer int32 N/A

10.11 State machines

10.11.1 Purpose
State machines in system and simulation modeling specify how systems and components react to changes, usually
caused by their environment (this is different than simulation state variables, see Subclause 10.8.5). State machines
contain states and transitions between them. Objects are said to be “in” particular states, with transitions specifying
when objects change the state they are in. States define behaviors for objects that are in those states. Transitions
have conditions specifying when their objects change state. When conditions change for an object, usually as an
effect of its environment, transitions can react by changing the state of the object, and consequently the behavior of
the object. State machines can contain other state machines and can be in multiple states at the same time, but this
specification does not provide translations for these capabilities.

10.11.2 SysML modeling
SysML state machines can be behaviors for blocks. The SysML capabilities of concern to simulation are:

• Triggering transitions based on evaluation of expressions, involving time and property values, including
values arriving in flow properties on port types. These can be modeled using ChangeEvents.

• Sending values out of an object through a port with an out flow property when a specific state is on.

 Figure 17 shows a block Computer with a simple state machine.

Figure 17: State machine in SysML

Computer has one port u of type SigPin (see Subclause 10.6.3 for the definition of SigPin), and one conjugated port
y of type SigPin. The state machine has one initial pseudostate, and two states StandBy and On. The transition from

StandBy

do / y.sigsp=3

do / y.sigsp=8

On

when(
{modelica} time>5

{simulink} after(5, sec)
)

when(u.sigsp==1)when(u.sigsp==0)

«block»
Computer

ports
u: SigPin
y: ~SigPin

stm Computerbdd Example

SysML Extension for Physical Interaction and Signal Flow Simulation 35

the initial pseudostate to StandBy has a ChangeEvent with an expression indicating that the transition is triggered 5
seconds after the beginning of the simulation. The expression has a body written in Modelica, and a body in
Simulink (indicated by the language name between curly brackets). The transition from StandBy to On has a
ChangeEvent with an expression indicating that the transition is triggered when u.sigsp is equal to 1 (this is a signal
as in signal flow simulation, not as in SysML). The transition from On to StandBy has a ChangeEvent with an
expression indicating that the transition is triggered when u.sigsp is equal to 0. When the computer is in StandBy,
y.sigsp is set to 8, and when the computer is On, y.sigsp is set to 3.

10.11.3 Modelica modeling
Modelica 3.3 introduced support for state machines, but they are not widely implemented in simulation tools as of
the date of this specification. Instead, this translation uses the Modelica standard library, which supports some
aspects of state machines. SysML state machines correspond to Modelica models, and all the SimVariables and
constants of a SysML block owning a state machine are the same as in the Modelica state machine. SysML state
machine elements correspond to Modelica state machines as follows:

• Initial pseudostates correspond to InitialSteps.
• States correspond to Steps.
• Transitions correspond to Transitions.
• Change events correspond to transition conditions.
• State behaviors (specified with doActivity) that are OpaqueBehaviors correspond to Modelica code

executed when objects are in particular states.

The following Modelica code corresponds to Figure 17.
model Computer
 input Real u;
 output Real y;
 ComputerSM _ComputerSM;
 model ComputerSM
 Modelica.StateGraph.InitialStep state0(nIn = 0, nOut = 1);
 Modelica.StateGraph.Step StandBy(nIn = 2, nOut = 1);
 Modelica.StateGraph.Step On(nIn = 1, nOut = 1);
 Modelica.StateGraph.Transition tr0(condition = time>5);
 Modelica.StateGraph.Transition tr1(condition = u==1);
 Modelica.StateGraph.Transition tr2(condition = u==0);
 Real u;
 Real y;
 equation
 connect(state0.outPort[1], tr0.inPort);
 connect(tr0.outPort, StandBy.inPort[1]);
 connect(StandBy.outPort[1], tr1.inPort);
 connect(tr1.outPort, On.inPort[1]);
 connect(On.outPort[1], tr2.inPort);
 connect(tr2.outPort, StandBy.inPort[2]);
 algorithm
 if StandBy.active then
 y := 8;
 end if;
 if On.active then
 y := 3;
 end if;
 end ComputerSM;
equation
 u = _ComputerSM.u;
 y = _ComputerSM.y;
end Computer;

SysML Extension for Physical Interaction and Signal Flow Simulation 36

The code shows the model Computer with an input variable u, and an output variable y, and a component
_ComputerSM for a state machine ComputerSM, defined next. ComputerSM duplicates the components of
Computer, except for the state machine component. It has an initial step state0, two steps StandBy and On, and three
transitions tr0, tr1 and tr2. Each transition has a condition for traversing it, and each step indicates how many inputs
and outputs it has. ComputerSM contains equations linking ports of steps and transitions, and an algorithm section
for assigning numeric component values when the machine starts or stops each step. Returning to Computer,
equations bind its components to the components of the state machine.

10.11.4 Simulink/StateFlow modeling
Simulink has an extension for state machines called Stateflow, providing some features of SysML state machines.
StateFlow supports transitions with conditions determining whether to traverse them, and actions performed when
objects are in particular states. It uses default transitions, rather than transitions from initial pseudostates as in
SysML. StateFlow state machines are blocks, rather than separate behaviors, as in SysML.

The following Simulink and StatFlow code corresponds to Figure 17.
<Block BlockType="SubSystem" Name="Computer" SID="2">
 <P Name="Ports">[1,1]</P>
 <P Name="SFBlockType">Chart</P>
 <System>
 <P Name="Open">off</P>
 <Block BlockType="Inport" Name="u" SID="2::1">
 <P Name="Port">1</P>
 </Block>
 <Block BlockType="Outport" Name="y" SID="2::2">
 <P Name="Port">1</P>
 </Block>
 <Block BlockType="S-Function" Name=" SFunction " SID="2::5">
 <P Name="FunctionName">sf_sfun</P><P Name="Ports">[1,2]</P>
 </Block>
 <Block BlockType="Demux" Name="Demux" SID="2::6">
 <P Name="Outputs">1</P>
 </Block>
 <Block BlockType="Terminator" Name="Terminator" SID="2::7"/>

 <Line>
 <P Name="Src">2::1#out:1</P><P Name="Dst">2::5#in:1</P>
 </Line>
 <Line>
 <P Name="Src">2::5#out:2</P><P Name="Dst">2::2#in:1</P>
 </Line>
 <Line>
 <P Name="Src">2::5#out:1</P><P Name="Dst">2::6#in:1</P>
 </Line>
 <Line>
 <P Name="Src">2::6#out:1</P><P Name="Dst">2::7#in:1</P>
 </Line>
 </System>
</Block>

<Stateflow>
 <machine id="1">
 <P Name="isLibrary">0</P>
 <Children>
 <target id="2" name="sfun"/>
 <chart id="3">
 <P Name="name">Computer</P>

SysML Extension for Physical Interaction and Signal Flow Simulation 37

 <P Name="chartFileNumber">1</P>
 <P Name="saturateOnIntegerOverflow">1</P>
 <P Name="userSpecifiedStateTransitionExecutionOrder">1</P>
 <P Name="disableImplicitCasting">1</P><P Name="actionLanguage">2</P>
 <Children>
 <state SSID="5">
 <P Name="labelString">StandBy
during:y=8;</P>
 </state>
 <state SSID="6">
 <P Name="labelString">On
during:y=3; </P>
 </state>
 <data SSID="7" name ="u">
 <P Name="scope">INPUT_DATA</P>
 </data>
 <data SSID="8" name ="y">
 <P Name="scope">OUTPUT_DATA</P>
 </data>
 <transition SSID="11">
 <P Name="labelString">[after(5, sec)]</P>
 <src/>
 <dst>
 <P Name="SSID">5</P>
 </dst>
 <P Name="executionOrder">1</P>
 </transition>
 <transition SSID="12">
 <P Name="labelString">[u==1]</P>
 <src>
 <P Name="SSID">5</P>
 </src>
 <dst>
 <P Name="SSID">6</P>
 </dst>
 <P Name="executionOrder">1</P>
 </transition>
 <transition SSID="13">
 <P Name="labelString">[u==0]</P>
 <src>
 <P Name="SSID">6</P>
 </src>
 <dst>
 <P Name="SSID">5</P>
 </dst>
 <P Name="executionOrder">1</P>
 </transition>
 </Children>
 </chart>
 </Children>
 </machine>
 <instance id="4">
 <P Name="name">Computer</P>
 <P Name="machine">1</P>
 <P Name="chart">3</P>
 </instance>
</Stateflow>

SysML Extension for Physical Interaction and Signal Flow Simulation 38

The Block section of the code at the top is the part of state machine represented in Simulink. It shows a block
Computer of type Chart, containing one inport (u), one outport (y), and one S-Function corresponding to the state
machine. The two other blocks, Demux and Terminal, are needed by Simulink to execute state machines. Lines
connect the inport of the block to the input of the S-function, and the second output of the S-Function to the outport
of the block.

The Stateflow section of the code at the bottom is the part of the state machine represented in Stateflow. It shows a
machine containing one input u, one output y, two states StandBy and On, a default transition (which has no source),
and two transitions. The during string in StandBy indicates that the output y is set to 8 while the computer is in
StandBy. The label in the default transition indicates that the transition is fired after 5 seconds. The condition of the
two transitions indicate that the first transition fires when the input u is equal to 1, and the second transition fires
when the input u is equal to 0.

10.11.5 Summary
SysML Modelica Simulink Stateflow

Block with
StateMachine as
classifierBehevior

Model (regular) Block of type SFBlockType N/A

StateMachine Block S-Function Chart in machine

Initial pseudostate InitialStep component N/A N/A

State Step component N/A State

Transition Transition component N/A Transition

Transition from initial
PseudoState

Transition component N/A Default transition

doActivity with
OpaqueExpression

Statements in a state
conditionalized by object
being in that state

N/A During statements in a state

ChangeEvent Trigger Transition condition N/A Transition condition

10.12 Mathematical expressions
The following table shows replacements to be made in the syntax of the SysPISF expression language (see Clause 8)
when translating to MATLAB, the expression language in Simulink, Simscape, and StateFlow. Translation to
Modelica requires no replacements.

SysPISF expression MATLAB equivalent
‘if’ … ‘then’ … ‘elseif’ … ‘then’ … ‘else’ … ‘end’
‘if’

‘if’ …
…
‘elseif’ …
…
‘else’ …
‘end’

‘for’ … ‘in’ … ‘loop’ … ‘end’ ‘for’ ‘for’ … ‘=’ …
…
‘end’

‘=’ ‘==’
‘<>’ ‘~=’
‘not’ ‘~’
‘and’ ‘&&’

SysML Extension for Physical Interaction and Signal Flow Simulation 39

‘or’ ‘||’
‘:=’ ‘=’
‘div’ ‘idivide’

11 Platform-independent component library
11.1 Introduction
This clause defines a platform-independent library of port types and component blocks for physical interaction and
signal flow modeling in Subclauses 11.2 and 11.3, respectively. These elements can be reused in system models.
Subclause 11.4 defines simulation platform stereotypes used in Subclause 11.3.

11.2 Port types

11.2.1 Signal flow

This subclause defines signal flow port types.

Figure 18: Basic signal flow port types

«block»
RealSignalPin

in inRealSignal : RealSignal
«simProperty» inSim : Real{refersTo=inRealSignal}

«block»
RealSignal

«block»
BooleanSignalPin

in inBooleanSignal : BooleanSignal
«simProperty» inSim : Boolean {refersTo=inBooleanSignal}

«block»
BooleanSignal

«block»
IntegerSignalPin

in inIntegerSignal : BooleanSignal
«simProperty» inSim : Integer {refersTo=inIntegerSignal}

«block»
IntegerSignal

SysML Extension for Physical Interaction and Signal Flow Simulation 40

11.2.2 Physical interaction
This subclause defines basic physical interaction port types (see Figure 19) and associated value types and units (see
Figure 20).

Figure 19: Basic physical interaction port types

sim properties
lmflowsim: LMomentumFlow {referTo=lmflow}

«block»
LMomentumPort

sim variables
f : Force {isContinuous, isConserved}
v : Velocity {isContinuous}

«simBlock»
LMomentumFlow

flow properties
inout lmflow: LMomentum

sim properties
amflowsim: AMomentumFlow {referTo=amflow}

«block»
AMomentumPort

sim variables
t : Torque {isContinuous, isConserved}
w : AngularVelocity {isContinuous}

«simBlock»
AMomentumFlow

flow properties
inout amflow: AMomentum

«block»
LMomentum

«block»
AMomentum

sim properties
cflowsim: ChargeFlow {referTo=cflow}

«block»
ChargePort

sim variables
i : Current {isContinuous, isConserved}
v : Voltage {isContinuous}

«simBlock»
ChargeFlow

flow properties
inout cflow: Charge

«block»
Charge

sim properties
fflowsim: FluidFlow {referTo=fflow}

«block»
FluidPort

sim variables
q : FlowRate {isContinuous, isConserved}
p : Pressure {isContinuous}

«simBlock»
FluidFlow

flow properties
inout fflow: Fluid

«block»
Fluid

sim properties
eflowsim: EntropyFlow {referTo=eflow}

«block»
EntropyPort

sim variables
sf : EntropyFlowRate {isContinuous, isConserved}
t : Temperature {isContinuous}

«simBlock»
EntropyFlow

flow properties
inout eflow: Entropy

«block»
Entropy

SysML Extension for Physical Interaction and Signal Flow Simulation 41

Figure 20: Basic physical interaction value types and units

11.3 Component blocks
This subclause defines SysML blocks corresponding to reusable component types supported by the libraries of both
Modelica and Simulink or its extensions. The semantics of these blocks are given in the Modelica libraries (which is
the same in the libraries of Simulink or its extensions). The base classes and properties (including ports) of
component blocks have stereotypes of the simulation platform profile applied (see Subclause 11.4) to specify which
simulation library elements correspond to them. For brevity, the blocks are described in tables, with each row
defining one block.

The blocks in Subclauses 11.3.1 and 11.3.2 are for signal flow modeling. The columns of the tables are:
• Block: Name of the component block defined by the row.

o Simulink name: Value of the name property of the SimulinkBlock stereotype applied to the base class
of the block defined in the row.

o Modelica name: Value of the name property of the ModelicaBlock stereotype applied to the base class
of the block defined in the row.

• InputPorts and OutputPort: Each line in the cells of these columns is the name of a port stereotyped by
ModelicaPort and SimulinkPort on the block defined in the row.

• Parameters: Each line in the cells of this column is the name of a property of the block defined by the row,
with a corresponding line in the two columns below.
o Simulink Parameters, Modelica Parameters: Value of the name properties of SimulinkParameter and

ModelicaParameter stereotypes, respectively, applied to the corresponding property in the Parameter
column. Additional lines, if any, indicate other parameters needed to obtain the same behavior in
Simulink and Modelica, with the value of the parameter indicated by an equals sign.

• Behavior: Tells whether the behaviors of the Simulink and Modelica library elements is supposed to yield
the same value or not, when this can be determined from the library specifications.

The values of simulation platform variables specified in the Input, Output, and Parameter columns are scalar, unless
followed by a V (vector) or an M (matrix). This is represented in the block defined by each row using the
MultidimensionalElement stereotype (see Subclause 11.4).

The blocks in Subclause 11.3.3 are for electrical modelling. The columns of the table are explained in that
subclause.

«valueType»
Real

«valueType»
{unit=newton}

Force

newton : Unit

symbol=“N”

«valueType»
{unit=metrePerSecond}

Velocity

metrePerSecond : Unit

symbol=“m/s”

«valueType»
{unit=newtonmetre}

Torque

newtonmetre : Unit

symbol=“N*m”

«valueType»
{unit=radianPerSecond}

AngularVelocity

radianPerSecond : Unit

symbol=“rad/s”

«valueType»
Real

«valueType»
{unit=ampere}

Current

ampere : Unit

symbol=“A”

«valueType»
{unit=volt}
Voltage

volt : Unit

symbol=“V”

«valueType»
Real

«valueType»
Real

«valueType»
{unit=cubicMetrePerSecond}

FlowRate

cubicMetrePerSecond : Unit

symbol=“m^3/s”

«valueType»
{unit=pascal}

Pressure

pascal : Unit

symbol=“Pa”

«valueType»
Real

«valueType»
{unit=wattPerKelvin}
EntropyFlowRate

wattPerKelvin : Unit

symbol=“W/K”

«valueType»
{unit=kelvin}

Temperature

kelvin : Unit

symbol=“K”

SysML Extension for Physical Interaction and Signal Flow Simulation 42

11.3.1 Real-valued components

The input, outputs and parameters of the following blocks are of type Real, unless otherwise indicated.

11.3.1.1 Continuous components

Block Simulink name Modelica name Input
Ports

Output
Port

Parameters Simulink
Parameters

Modelica
Parameters

Behavior

Integrator Integrator Modelica.Blocks.Continuous.Integrator u y init InitialCondition y_start Same
Derivative Derivative Modelica.Blocks.Continuous.Derivative u y Different
StateSpace StateSpace Modelica.Blocks.Continuous.StateSpace u (V) y (V) A (M)

B (M)
C (M)
D (M)
init (V)

A (M)
B (M)
C (M)
D (M)
X0 (V)

A (M)
B (M)
C (M)
D (M)
x_start (V)

Same

TransferFunction TransferFcn Modelica.Blocks.Continuous.TransferFunction u y num (V)
denom (V)

Numerator (V)
Denominator (V)

b (V)
a (V)

FixedDelay TransportDelay Modelica.Blocks.Nonlinear.FixedDelay u y delay DelayTime
InitialOutput=0

delayTime Different

VariableDelay VariableTimeDelay Modelica.Blocks.Nonlinear.VariableDelay u
delayTime

y delayMax MaximumDelay
InitialOutput=0

delayMax Different

11.3.1.2 Discrete components

Block Simulink name Modelica name Input
Ports

Output
Port

Parameters Simulink
Parameters

Modelica
Parameters

Behavior

State space DiscreteStateSpace Modelica.Blocks.Discrete.StateSpace u (V) y (V) A (M)
B (M)
C (M)
D (M)

A (M)
B (M)
C (M)
D (M)

A (M)
B (M)
C (M)
D (M)

Same

Transfer
Function

DiscreteTransferFcn Unit u y numerator (V)
denominator
(V)

Numerator (V)
Denominator
(V)

b (V)
a (V)

Same

Unit delay UnitDelay Modelica.Blocks.Discrete.UnitDelay u y initialCondition InitialCondition y_start Same

SysML Extension for Physical Interaction and Signal Flow Simulation 43

11.3.1.3 Non-linear components

Block Simulink name Modelica name Input
Ports

Output
Port

Parameters Simulink
Parameters

Modelica
Parameters

Behavior

Saturation Saturate Modelica.Blocks.Nonlinear.Limiter u y upper
lower

UpperLimit
LowerLimit

uMax
uMin

Same (min AND
max mandatory)

Dynamic
Saturation

Reference Modelica.Blocks.Nonlinear.VariableLimiter limit1
u
limit2

y SourceBlock=
simulink/Discontinuities
/Saturation Dynamic
SourceType=Saturation
Dynamic

 Same

Dead zone DeadZone Modelica.Blocks.Nonlinear.DeadZone u y lower
upper

LowerValue
UpperValue

uMin
uMax

Same

Rate limiter RateLimiter Modelica.Blocks.Nonlinear.SlewRateLimiter u y rising
falling

RisingSlewLimit
FallingSlewLimit

Rising
Falling

Different

11.3.1.4 Mathematical components

Block Simulink name Modelica name Input
Ports

Output
Port

Parameters Simulink
Parameters

Modelica
Parameters

Behavior

Gain Gain Modelica.Blocks.Math.Gain u y gain Gain k Same
Product Product Modelica.Blocks.Math.Product u1

u2
y Inputs=** Same

Division Product Modelica.Blocks.Math.Division u1
u2

y Inputs=*/ Same

Addition Add Modelica.Blocks.Math.Add u1
u2

y Inputs=++ Same

Subtraction Add Modelica.Blocks.Math.Add u1
u2

y Inputs=+- Same

Abs Abs Modelica.Blocks.Math.Abs u y Same
Exp Math Modelica.Blocks.Math.Exp u y Operator=exp Same
Log Math Modelica.Blocks.Math.Log u y Operator=log Same
Log10 Math Modelica.Blocks.Math.Log10 u y Operator=log10 Same
Sign Signum Modelica.Blocks.Math.Sign u y Same
Sqrt Sqrt Modelica.Blocks.Math.Sqrt u y Same
Sin Trigonometry Modelica.Blocks.Math.Sin u y Operator=sin Same
Cos Trigonometry Modelica.Blocks.Math.Cos u y Operator=cos Same
Tan Trigonometry Modelica.Blocks.Math.Tan u y Operator=tan Same
Asin Trigonometry Modelica.Blocks.Math.Asin u y Operator=asin Same

SysML Extension for Physical Interaction and Signal Flow Simulation 44

Acos Trigonometry Modelica.Blocks.Math.Acos u y Operator=acos Same
Atan Trigonometry Modelica.Blocks.Math.Atan u y Operator=atan Same
Atan2 Trigonometry Modelica.Blocks.Math.Atan2 u1

u2
y Operator=atan2 Same

Sinh Trigonometry Modelica.Blocks.Math.Sinh u y Operator=sinh Same
Cosh Trigonometry Modelica.Blocks.Math.Cosh u y Operator=cosh Same
Tanh Trigonometry Modelica.Blocks.Math.Tanh u y Operator=tanh Same

11.3.1.5 Sources and sinks

Block Simulink name Modelica name Input
Ports

Output
Port

Parameters Simulink
Parameters

Modelica
Parameters

Behavior

Constant Constant Modelica.Blocks.Sources.Constant y k Value k Same
Sine wave Sin Modelica.Blocks.Sources.Sine y amplitude

offset
frequency
phase

Amplitude
Bias
Frequency
Phase

amplitude
offset
freqHz
phase

Same

Clock Clock Modelica.Blocks.Sources.Clock y Same
Pulse DiscretePulseGenerator Modelica.Blocks.Sources.Pulse y amplitude

period
width
delay

Amplitude
Period
PulseWidth
PhaseDelay

amplitude
period
width
startTime

Same

Step Step Modelica.Blocks.Sources.Step y startTime
after

Time
After
Before=0

startTime
height

Same

RealScope Scope Modelica.Blocks.Interaction.Show.RealValue numberPort
BooleanScope Scope Modelica.Blocks.Interaction.Show.BooleanValue activePort

11.3.1.6 Routing components

Block Simulink name Modelica name Input
Ports

Output
Ports

Parameters Simulink
Parameters

Modelica
Parameters

Behavior

Mux2 Mux Modelica.Blocks.Routing.Multiplex2 u1
u2

y Inputs=2 Same

Mux3 Mux Modelica.Blocks.Routing.Multiplex3 u1
u2
u3

y Inputs=3 Same

SysML Extension for Physical Interaction and Signal Flow Simulation 45

Mux4 Mux Modelica.Blocks.Routing.Multiplex4 u1
u2
u3
u4

y Inputs=4 Same

Mux5 Mux Modelica.Blocks.Routing.Multiplex5 u1
u2
u3
u4
u5

y Inputs=5 Same

Mux6 Mux Modelica.Blocks.Routing.Multiplex6 u1
u2
u3
u4
u5
u6

y Inputs=6 Same

Demux2 Demux Modelica.Blocks.Routing.DeMultiplex2 u y1
y2

 Outputs=2 Same

Demux3 Demux Modelica.Blocks.Routing.DeMultiplex3 u y1
y2
y3

 Outputs=3 Same

Demux4 Demux Modelica.Blocks.Routing.DeMultiplex4 u y1
y2
y3
y4

 Outputs=4 Same

Demux5 Demux Modelica.Blocks.Routing.DeMultiplex5 u y1
y2
y3
y4
y5

 Outputs=5 Same

Demux6 Demux Modelica.Blocks.Routing.DeMultiplex6 u y1
y2
y3
y4
y5
y6

 Outputs=6 Same

Switch u1
u2
u3

y Criteria = u2~=0
Threshold=0

 Same

SysML Extension for Physical Interaction and Signal Flow Simulation 46

11.3.2 Logical components

The input, outputs and parameters of the following blocks are of type Boolean, unless otherwise indicated.

Block Simulink name Modelica name Input
Ports

Output
Port

Parameters Simulink
Parameters

Modelica
Parameters

Behavior

AND Logic Modelica.Blocks.Logical.And u1
u2

y Operator=AND
Inputs=2

 Same

OR Logic Modelica.Blocks.Logical.Or u1
u2

y Operator=OR
Inputs=2

 Same

NAND Logic Modelica.Blocks.Logical.Nand u1
u2

y Operator=NAND
Inputs=2

 Same

NOR Logic Modelica.Blocks.Logical.Nor u1
u2

y Operator=NOR
Inputs=2

 Same

XOR Logic Modelica.Blocks.Logical.Xor u1
u2

y Operator=XOR
Inputs=2

 Same

NOT Logic Modelica.Blocks.Logical.Not u y Operator=NOT
Inputs=1

 Same

Less RelationalOperator Modelica.Blocks.Logical.Less u1 (R)
u2 (R)

y Operator = < Same

LessEqual RelationalOperator Modelica.Blocks.Logical.LessEqual u1 (R)
u2 (R)

y Operator = <= Same

Greater RelationalOperator Modelica.Blocks.Logical.Greater u1 (R)
u2 (R)

y Operator = > Same

GreaterEqual RelationalOperator Modelica.Blocks.Logical.GreaterEqual u1 (R)
u2 (R)

y Operator = >= Same

LessThreshold Compare To
Constant

Modelica.Blocks.Logical.LessThreshold u (R) y threshold (R) Const
Relop = <

threshold Same

LessEqualThreshold Compare To
Constant

Modelica.Blocks.Logical.LessEqualThreshold u (R) y threshold (R) Const
relop = <=

threshold Same

GreaterThreshold Compare To
Constant

Modelica.Blocks.Logical.GreaterThreshold u (R) y threshold (R) const
relop = >

threshold Same

GreaterEqualThreshold Compare To
Constant

Modelica.Blocks.Logical.GreaterEqualThreshold u (R) y threshold (R) const
relop = >=

threshold Same

SysML Extension for Physical Interaction and Signal Flow Simulation 47

11.3.3 Electrical components

The columns are the same as in Subclauses 11.3.1 and 11.3.2, except there is only one column for ports, because they are bidirectional, unless otherwise
noted. Each line in the Ports column corresponds to a port stereotyped by SimulinkPort and ModelicaPort (the SimulinkPorts is for Simscape ports in
this table). Each line in the Simulink Ports and Modelica Ports columns give the value of the name property of the SimulinkPort and ModelicaPort
stereotypes, respectively, for the corresponding port in the Ports column.

Block Simulink name Modelica name Ports Simulink
Ports

Modelica
Ports

Parameters Simulink
Parameters

Modelica
Parameters

Behavior

Ground Reference Ground p V p
Capacitor capacitor Capacitor p

n
p
n

p
n

c c
r=0
g=0

C Same

Diode pwl_diode IdealDiode p
n

p
n

p
n

ron
goff
vforward

Ron
Goff
Vf

Ron
Goff
Vknee

IdealTransformer ideal_transformer IdealTransformer p1
n1
p2
n2

p1
n1
p2
n2

p1
n1
p2
n2

n n n Same

Inductor inductor Inductor p
n

p
n

p
n

r l
r=0
g=0

L Same

InfiniteResistance infinite_resistance Idle p
n

p
n

p
n

 Same

OpAmp op_amp IdealOpAmp3Pin p
n
out

p
n
out

in_p
in_n
out

 Same

Resistor resistor Resistor p
n

p
n

p
n

r R R Same

ControlledSwitch controlled_switch ControlledIdealOpeningSwitch p
n
control (input)

p
n
vT

p
n
control

level Threshold level Same

VariableResistor variable_resistor VariableResistor p
n
r (input)

p
n
R

p
n
R

 Same

CurrentSensor current CurrentSensor p
n
i (output)

p
n
I

p
n
i

 Same

SysML Extension for Physical Interaction and Signal Flow Simulation 48

VoltageSensor voltage VoltageSensor p
n
v (output)

p
n
V

p
n
v

 Same

SignalCurrent controlled_current SignalCurrent p
n
i (input)

p
n
iT

p
n
i

 Same

SignalVoltage controlled_voltage SignalVoltage p
n
v (input)

p
n
vT

p
n
v

 Same

DCCurrent dc_current ConstantCurrent p
n

p
n

p
n

i i0 I Same

DCVoltage dc_voltage ConstantVoltage p
n

p
n

p
n

v v0 V Same

ACCurrent ac_current SineCurrent p
n

p
n

p
n

amp
phase
freq

amp
shift
frequency

I
phase
freqHz

Same

ACVoltage ac_voltage SineVoltage p
n

p
n

p
n

 amp
shift
frequency

V
phase
freqHz

Same

SysML Extension for Physical Interaction and Signal Flow Simulation 49

11.4 Simulation platform stereotypes
This subclause defines stereotypes that the platform-independent component library in Subclause 11.3.2
applies to the base classes and properties (including ports) of its blocks, to specify which library elements
of Modelica and Simulink correspond to them. In this subclause, the Simulink library is taken as including
the libraries of its extensions, for brevity.

Figure 21: Simulation platform stereotypes

11.4.1 ModelicaBlock
Package: SimulationLibrary
isAbstract: No
Generalization: Block

Attributes

name: String Fully qualified name of the component in the Modelica library corresponding to a
platform-independent component block

Description

A class stereotyped by ModelicaBlock has an equivalent in the Modelica library. The value of the name
attribute gives the fully qualified name of the corresponding component in the Modelica library.

11.4.2 ModelicaParameter
Package: SimulationLibrary
isAbstract: No
Extended Metaclass: Property

Attributes

name: String Name of the parameter in the Modelica library corresponding to a parameter of a
platform-independent component block

value: String[0..1] Value of the parameter in the Modelica library

Description

A property stereotyped by ModelicaParameter has an equivalent parameter of a Modelica library
component. The value of the name attribute is the name of the corresponding parameter, and the value
attribute gives the value of this parameter. If the value attribute is empty, the value of the parameter must be
given using initial values of the stereotyped property.

«stereotype»
Block

«stereotype»
SimulinkBlock

«stereotype»
ModelicaBlock

name : String name : String

«metaclass»
Property

«stereotype»
SimulinkParameter

«stereotype»
ModelicaParameter

name : String
value: String

name : String
value: String

«metaclass»
Port

«stereotype»
SimulinkPort

«stereotype»
ModelicaPort

name : String name : String

«metaclass»
MultiplicityElement

«stereotype»
MultidimensionalElement
dimensions: Integer []

«metaclass»
Slot

SysML Extension for Physical Interaction and Signal Flow Simulation 50

Constraints

[1] Must be owned by a class stereotyped by ModelicaBlock.

11.4.3 ModelicaPort
Package: SimulationLibrary
isAbstract: No
Extended Metaclass: Port

Attributes

name: String Name of the port in the Modelica library corresponding to a port of a platform-
independent component block

Description

A property stereotyped by ModelicaPort has an equivalent in the Modelica library. The value of the name
attribute gives the name of the corresponding port in the Modelica library.

Constraints

[1] Must be owned by a class stereotyped by ModelicaBlock.

11.4.4 MultidimentionalElement
Package: SimulationLibrary
isAbstract: No
Extended Metaclass: MultiplicityElement, Slot

Attributes

dimensions: UnlimitedNatural [*] {ordered, non-unique} Dimensions of the multiplicity element or slot

Description

The values of a slot stereotyped by MultidimensionalElement can be composed into an array with (possibly
multiple) dimensions specified by the applied stereotype. The values are composed by taking each number
in the dimension list of the applied stereotype from the last number to the second, and creating lists of that
length from the result of the next higher dimension. The last dimension number results in lists of values of
the multiplicity element or a slot, while the previous dimension number results in lists of those lists, and so
on, ending at the second dimension number.

Constraints

[1] A multiplicity element stereotyped by MultidimensionalElement must be ordered and non-unique.
[2] When this stereotype is applied to a multiplicity element, the dimensions must be either all unlimited

or all positive integers.
[3] When this stereotype is applied to a multiplicity element and the dimensions are all unlimited, the

lower bound of the multiplicity element must be 0, and the upper bound of the multiplicity element
must be unlimited.

[4] When this stereotype is applied to a multiplicity element and the dimensions are all be positive
integers, the lower bound and the upper bound of the multiplicity element must be equal to the
product of all the dimensions.

[5] When this stereotype is applied to a slot, the dimensions must all be positive integers and the number
of values of the slot must be equal to the product of all dimensions.

[6] A slot stereotyped by MultidimensionalElement must have its defining feature stereotyped by
MultidimensionalElement.

[7] The number of dimensions of a MultidimensionalElement applied to a slot must be the same as the
number of dimensions of the MultidimensionalElement applied to the defining feature of the slot.

[8] A slot must be stereotyped by MultidimensionalElement if and only if its defining feature is
stereotyped by MultidimensionalElement with dimensions that are all unlimited.

SysML Extension for Physical Interaction and Signal Flow Simulation 51

11.4.5 SimulinkBlock
Package: SimulationLibrary
isAbstract: No
Generalization: Block

Attributes

name: String BlockType in Simulink library corresponding to a platform-independent component block

Description

A class stereotyped by SimulinkBlock has an equivalent in the libraries of Simulink or its extensions. The
value of the name attribute gives the name of the corresponding component in the libraries of Simulink or
its extensions.

11.4.6 SimulinkParameter
Package: SimulationLibrary
isAbstract: No
Extended Metaclass: Property

Attributes
name: String Name of the parameter in the Simulink library corresponding to a parameter of a

platform-independent component block
value: String[0..1] Value of the parameter in the Simulink library

Description

A property stereotyped by SimulinkParameter has an equivalent parameter of a Simulink library
component. The value of the name attribute is the name of the corresponding parameter in the Simulink
library, and the ‘value’ attribute gives the value of this parameter. If the value attribute is empty, the value
of the parameter must be given using initial values of the stereotyped property.

Constraints
[1] Must be owned by a class stereotyped by SimulinkBlock.

11.4.7 SimulinkPort
Package: SimulationLibrary
isAbstract: No
Extended Metaclass: Port

Attributes

name: String Name of the port in the Simulink library corresponding to a port of a platform-
independent component block

Description

A property stereotyped by SimulinkPort has an equivalent in the Simulink library. The value of the name
attribute gives the name of the corresponding port in the Simulink library.

Constraints

[1] Must be owned by a class stereotyped by SimulinkBlock.

SysML Extension for Physical Interaction and Signal Flow Simulation 52

A. Tutorial (non-normative)
A.1 Introduction
This clause shows how to use the simulation profile and library to create a simple electrical circuit model.

A.2 System being modeled
The electrical circuit is made of three components: a ground, an electrical source, and a resistor, see Figure
22.

Figure 22: Electric circuit example

A.3 Blocks and ports
The electrical circuit model in SysML has a main block, the circuit. Create a Circuit block in a Block
Definition Diagram (BDD). The circuit has three parts: a source, a ground, and a resistor. These parts are of
different types, with different behaviors (behaviors are defined in Subclauses A.6 and A.7). Create a block
for each of these part types. The three parts of the Circuit block are connected through ports, which
represent electrical pins (connections are defined in Subclause A.4). The source and resistor have a positive
and a negative pin. The ground has only one pin, which is positive. Electricity (electric charges) is
transmitted through the pins. Create an abstract block TwoPinComponent with two ports (pins). The two
ports are named p and n, and they are of type ChargePort, from the simulation library (see Subclause
11.2.2). Figure 23 shows what the BDD should look like, with the blocks Circuit, Ground,
TwoPinComponent, Source, and Resistor.

Figure 23: Electrical blocks, parts, and ports

SysML Extension for Physical Interaction and Signal Flow Simulation 53

A.4 Internal structure (parts and connectors)
Create an Internal Block Diagram (IBD) for Circuit from Subclause A.3. Add properties for the source,
resistor, and ground, typed by the corresponding blocks from Subclause A.3 (some tools might require
property definition in BDDs before showing them in IBDs). Connect the ports with connectors. The
positive pin of the source is connected to the negative pin of the resistor. The positive pin of the resistor is
connected to the negative pin of the source. The ground is also connected to the negative pin of the source.
Figure 24 shows what the IBD should look like.

Figure 24: Internal structure of circuit

A.5 Properties (variables)
Flows of conserved physical substances are described by numeric variables for potential to flow and flow
rate corresponding to the physical domain being modeled, in this example, flows of electrical charges
described by voltage and current. For electrical components, voltage is the difference in potentials of the
positive and negative pins (across the component), while current is the amount of charge going through the
component per unit time. Create two properties v and i on TwoPinComponent. Their type must be a
ValueType that has a unit with a symbol. Voltage and Current are provided by the simulation library.
Apply the SimVariable stereotype to the properties, because the voltage and the current will vary over time
during simulation. Create a property r in the resistor for its resistance. Create a new ValueType called
Resistance to type for this property. The unit of Resistance must be an instance of SysML Unit with a
symbol slot set to ohm. Generalize Resistance by Real. Apply the SimConstant stereotype to the r property,
because the resistance will not change during simulation. Figure 25 shows what the BDD should look like
at this point.

SysML Extension for Physical Interaction and Signal Flow Simulation 54

Figure 25: Component properties

A.6 Constraint blocks and constraints (equations)
Equations define mathematical relationships between numeric properties. In SysML, equations are
represented as constraints in constraint blocks. Parameters of constraint blocks correspond to SimVariables
and SimConstant of blocks (i, v, r in this example), as well as to SimVariables present in the type of the
ports (pv, pi, nv, ni in this example).

Create an abstract constraint block TwoPinComponentConstraint to define parameters and equations
common to sources and resistors. The equations should state that the voltage of the component is equal to
the difference between the voltage at the positive and negative pin. The current of the component is equal
to the current going through the positive pin. The sum of the current going through the two pins must add
up to zero (one is the negative of the other). The ground constraint states that the voltage at the ground pin
is zero. The source constraint defines the voltage as a sine wave with the current simulation time as
parameter. Figure 26 shows what these constraints should look like in a BDD.

SysML Extension for Physical Interaction and Signal Flow Simulation 55

Figure 26: Constraints

A.7 Constraint properties and bindings
The values of constraint parameters are equated to variable and constant values with binding connectors.
Create constraint properties on each block (properties typed by constraint blocks) and bind the block
variables and constants to the constraint parameters to apply the constraint to the block. Figure 27, Figure
28, and Figure 29 show the bindings for the ground, the source, and the resistor respectively. For the
ground constraint, bind gc.pv to p.cflowsim.v . For the source constraint, bind sc.pi to p.cflowsim.i, sc.pv to
p.cflowsim.v, sc.v to v, sc.i to i, sc.ni to n.cflowsim.i, and sc.nv to n.cflowsim.v . For the resistor constraint,
bind rc.pi to p.cflowsim.i, rc.pv to p.cflowsim.v, rc.v to v, rc.i to i, rc.ni to n.cflowsim.i, rc.nv to
n.cflowsim.v, and rc.r to r.

Figure 27: Parametric diagram of the ground

SysML Extension for Physical Interaction and Signal Flow Simulation 56

Figure 28: Parametric diagram of the source

Figure 29: Parametric diagram of the resistor

A.8 Initial values
Set the value for resistance using initial values. Tools might provide a graphical way to do this. Otherwise,
create an InstanceSpecification classified by Resistor, give a default value for its resistance, then use the
InstanceSpecification as the default value of r part in circuit. The resulting diagram is shown in Figure 30

SysML Extension for Physical Interaction and Signal Flow Simulation 57

Figure 30: Internal structure of circuit with initial values

	SysML Extension for Physical Interaction and Signal Flow Simulation (SysPISF)
	Table of Contents
	Preface
	OMG
	OMG Specifications
	Issues

	1 Scope
	2 Conformance
	3 References
	3.1 Normative References
	3.2 Non-normative References

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Signal flow and physical interaction simulation compared
	6.2 How to read this specification
	6.3 Changes to Adopted OMG Specifications
	6.4 Acknowledgments

	7 SysML extension for physical interaction and signal flow simulation
	7.1 Introduction
	7.2 Simulation profile
	7.2.1 SimBlock
	7.2.2 SimConstant
	7.2.3 SimProperty
	7.2.4 SimVariable

	8 Language for mathematical expressions
	9 Pre-processing SysML models
	9.1 Introduction
	9.2 Association blocks
	9.2.1 Purpose
	9.2.2 SysML model before processing
	9.2.3 SysML model after processing

	9.3 Signal flow using SimBlocks
	9.3.1 Purpose
	9.3.2 SysML model before processing
	9.3.3 SysML model after processing

	10 Translating between SysML and simulation platforms
	10.1 Introduction
	10.2 Blocks and properties
	10.2.1 Purpose
	10.2.2 SysML modeling
	10.2.3 Modelica modeling
	10.2.4 Simulink modeling
	10.2.5 Simulink/Simscape modeling
	10.2.6 Simscape modeling
	10.2.7 Summary

	10.3 Root element
	10.3.1 Purpose
	10.3.2 SysML modeling
	10.3.3 Modelica modeling
	10.3.4 Simulink modeling
	10.3.5 Summary

	10.4 Generalization
	10.4.1 Purpose
	10.4.2 SysML modeling
	10.4.3 Modelica modeling
	10.4.4 Simulink modeling
	10.4.5 Simscape modeling
	10.4.6 Summary

	10.5 SimVariables and SimConstants
	10.5.1 Purpose
	10.5.2 SysML modeling
	10.5.3 Modelica modeling
	10.5.4 Simulink modeling
	10.5.5 Simscape modeling
	10.5.6 Summary

	10.6 Ports, FlowProperties, SimProperties, and SimBlocks
	10.6.1 Purpose
	10.6.2 SysML modeling
	10.6.3 SysML modeling, signal flow
	10.6.4 Modelica modeling, signal flow
	10.6.5 Simulink modeling, signal flow
	10.6.6 Simscape modeling, signal flow
	10.6.7 SysML modeling, physical interaction
	10.6.8 Modelica modeling, physical interaction
	10.6.9 Simulink modeling, physical interaction
	10.6.10 Simscape modeling, physical interaction
	10.6.11 Summary

	10.7 Connectors
	10.7.1 Purpose
	10.7.2 SysML modeling
	10.7.3 Modelica modeling
	10.7.4 Simulink modeling, signal flow
	10.7.5 Simulink modeling, physical interaction
	10.7.6 Simulink modeling, physical interaction and signal flow
	10.7.7 Simscape modeling
	10.7.8 Summary

	10.8 Blocks with constraint properties and binding connectors
	10.8.1 Purpose
	10.8.2 SysML modeling
	10.8.3 SysML modeling, signal flow
	10.8.4 Modelica modeling, signal flow
	10.8.5 Simulink modeling, signal flow
	10.8.6 Simscape modeling, signal flow
	10.8.7 SysML modeling, physical interaction
	10.8.8 Modelica modeling, physical interaction
	10.8.9 Simulink modeling, physical interaction
	10.8.10 Simscape modeling, physical interaction
	10.8.11 Summary

	10.9 Default values and initial values
	10.9.1 Purpose
	10.9.2 SysML Modeling
	10.9.3 Modelica modeling
	10.9.4 Simulink modeling
	10.9.5 Simscape modeling

	10.10 Data types and units
	10.10.1 Purpose
	10.10.2 SysML modeling
	10.10.3 Modelica modeling
	10.10.4 Simulink modeling
	10.10.5 Simscape modeling
	10.10.6 Summary

	10.11 State machines
	10.11.1 Purpose
	10.11.2 SysML modeling
	10.11.3 Modelica modeling
	10.11.4 Simulink/StateFlow modeling
	10.11.5 Summary

	10.12 Mathematical expressions

	11 Platform-independent component library
	11.1 Introduction
	11.2 Port types
	11.2.1 Signal flow
	11.2.2 Physical interaction

	11.3 Component blocks
	11.3.1 Real-valued components
	11.3.1.1 Continuous components
	11.3.1.2 Discrete components
	11.3.1.3 Non-linear components
	11.3.1.4 Mathematical components
	11.3.1.5 Sources and sinks
	11.3.1.6 Routing components

	11.3.2 Logical components
	11.3.3 Electrical components

	11.4 Simulation platform stereotypes
	11.4.1 ModelicaBlock
	11.4.2 ModelicaParameter
	11.4.3 ModelicaPort
	11.4.4 MultidimentionalElement
	11.4.5 SimulinkBlock
	11.4.6 SimulinkParameter
	11.4.7 SimulinkPort

	A. Tutorial (non-normative)
	A.1 Introduction
	A.2 System being modeled
	A.3 Blocks and ports
	A.4 Internal structure (parts and connectors)
	A.5 Properties (variables)
	A.6 Constraint blocks and constraints (equations)
	A.7 Constraint properties and bindings
	A.8 Initial values

