Date: November 2017

- . 5
’%/= - = 2 /=
5 5 = _ =

N | E/.%'L T
5 /
OBJECT MANAGEMENT GROUP®

SysML Extension for Physical Interaction and Signal
Flow Simulation (SysPhS)

FTF - Beta 2

OMG Document Number: dtc/2017-12-03
Standard document URL: http://www.omg.org/spec/SysPhS/1.0/PDF

Machine consumable files:

Normative:
http:/iwww.omg.org/spec/SysPhS/20171215/SysPhS.xmi
http://www.omg.org/spec/SysPhS/20171215/SysPhSLibrary.xmi

Non-normative:
http://www.omg.org/spec/SysPhS/20171215/SysPhSAnnexA-ElectricCircuit.xmi
http://lwww.omg.org/spec/SysPhS/20171215/SysPhSAnnexA-SignalProcessor.xmi
http://www.omg.org/spec/SysPhS/20171215/SysPhSAnnexA-Hydraulics.xmi
http://www.omg.org/spec/SysPhS/20171215/SysPhSAnnexA-Humidifier.xmi

This OMG document replaces the Beta 1 document (dtc/16-07-01). It is an OMG Beta specification and is
currently in the finalization phase. You may view the pending issues for this specification from the OMG
revision issues web page http://issues.omg.org/issues/lists/syspisf-ftf.

The FTF Recommendation and Report for this specification will be published on December 15, 2017. If you are
reading this after that date, please download the available specification from the OMG Specifications Catalog.

http://doc.omg.org/dtc/2016-07-01
http://www.omg.org/spec/SysPhS/1.0/PDF
http://www.omg.org/spec/SysPhS/20171215/SysPhS.xmi
http://www.omg.org/spec/SysPhS/20171215/SysPhSLibrary.xmi
http://www.omg.org/spec/SysPhS/20171215/SysPhSAnnexA-ElectricCircuit.xmi
http://www.omg.org/spec/SysPhS/20171215/SysPhSAnnexA-SignalProcessor.xmi
http://www.omg.org/spec/SysPhS/20171215/SysPhSAnnexA-Hydraulics.xmi
http://www.omg.org/spec/SysPhS/20171215/SysPhSAnnexA-Humidifier.xmi
http://issues.omg.org/issues/lists/syspisf-ftf

Copyright © 2016-17, No Magic, Inc.
Copyright © 2016-17, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES
The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES
The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.
Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, non-transferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS
The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS
Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

SysML Extension for Physical Interaction and Signal Flow Simulation i

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND
Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS
CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group,
Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE
The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

SysML Extension for Physical Interaction and Signal Flow Simulation iii

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the

Issue Reporting Form on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://issues.omg.org/issues/create-new-issue).

SysML Extension for Physical Interaction and Signal Flow Simulation

http://issues.omg.org/issues/create-new-issue

Table of Contents

SysML Extension for Physical Interaction and Signal Flow Simulation (SysPhS) [
QI L] [N O] (=14 OSSOSO v
e =] = Tot OO U TP TRURPR Xi
OMG «xi
OMG SPECITICALIONS ... ve.viieiteeieeeee st s et te e e e et et e st e et e sees e e e te s be st e ateeseesee e ens e eese e eeaRe et e eneenseneeeeneennenrenneaneas Xi
Issues xi
{00 oL T TP PPSUPRTTPRTOPIS 1
(O00] 01 {0] 40T 19 T3PPSR 2
RETEIBNCES. ...ttt bbb 2
3.1 NOFMALIVE RETEIEINCESttt ettt ettt bbb bt b e Rt e st e e et e b sbeebe s bt ene e e e benbesee s 2
3.2 NON-NOIMALIVE REFEIENCES. ... cviitiieiiiteees bbb bbbt b bbbt s bt ne b neenes 3
4 Terms and defiNItiONSccooiiiii i e 3
5 SYMDOIS ..t nee s 3
6 Additional INfOrmationccoiiiiiiii e 3
6.1 Signal flow and physical interaction Simulation COMPArEd...........ccuoriiiiiiiiiiee e 3
6.2 HOoW t0 read this SPECITICALION.........eiuiiiiece bbbt e b e 4
6.3 Changes to Adopted OMG SPECITICALIONSvcvvivviieieiiise sttt re e e e seesrenes 4
6.4 A oL R 10N =T o [11T) £ 4
7 SysML extension for physical interaction and signal flow simulation 5
7.1 a1l [UTex 1] o TSROSO 5
7.2 SIMUIALION PIOTIIE .. et bbbttt s e e e b e b bt s b e bt bt et e b et sbeneas 5
T.2.1 PRSCONSIANT. ...ttt b et s b etk b etk b etk s bRt be e b et e b b e st ek b e st e b b e st et e b e n et e ne b r e 5
T.2.2 PRSVAITADIE ..o ettt bbbt bR bbbt r et 6
8 Language for mathematical EXPreSSIONS........cccveveieeiiieiie e 8
9 Preprocessing SYSML MOEIS.........coovviiiiiii i 9
9.1 a1l [UTex 1] o TSROSO 9
9.2 Replace connectors typed by association blocks with their internal Structurec.cccocevivvieviiienieie v 9
LS8 R 1 o - S 9
9.2.2 SYSML MOdel DEFOrE PrOCESSINGvveeiiiiiitiitesie ettt sttt e bbbttt eesb e b bt be e ese e e e nbenbenbe s 9
9.2.3 SYSML MOGEI QftEr PrOCESSING ...e.veeueeeiieiteitisierie ettt sttt sttt se e bbbt et e et e e sbesb e besbe et e e ne et e seesbe b e 10
9.3 Non-simulation ports Changed t0 PAITS.........ccviirriieieiere st r e sresre e enee e e nee e e 10
LS TR 00 R U o -SSP 10
9.3.2 SYSML MOdel DEFOrE PrOCESSINGcuveeiiiitiitiiteiie ettt sttt b ettt sb e bbb e se et e e e nbe b e 10
9.3.3 SYSML MOGEI Qftr PrOCESSING ...eveeueeeiieiteitieierie ettt sttt ettt bbbttt e et e sb et sbe et e e ne e st e neenbe b e 10
94 Separate blocks owning simulation flow properties, and typing parts and Portsccccocvvevvveivnieereseneneennens 11

SysML Extension for Physical Interaction and Signal Flow Simulation v

04,1 PUIPOSE ...ttt ettt sttt ekttt ettt ekt ekt e k£ oo ke e b a4 Re e e R e e eRe £ R£ e R £ oAb £ SRR £ SR e e AR £ e Re e ReeRe e Re e eRe e eRe e bt enbeenbennrenreen 11
9.4.2 SySML mMOdel DEFOre PrOCESSING ..vevveviieiiistesieieertereete e ste e sre e e e e see st e besreere e e e e seesrestesreareeseeneeneeneenrens 11
9.4.3 SYSML MOCEl Qfter PrOCESSING ..vvivverieiiieriestiseseeee st erte e ste e sre e e e e see st e s tesseere e e e e seesbestesneereeneeneeseeneeneens 11
9431 Move simulation flow properties to their OWN DIOCKS.ccoiiiiiiiiiii e 11

9.4.3.2 Add ports for simulation flow properties inherited to blocks that have non-simulation flow properties

12
9.4.3.3 Split up ports typed by blocks that have inherited simulation flow propertiesccccevevevieiernneenn 12
9.4.34 Relink binding connectors that involve simulation flow properties moved to added ports.................. 13
9.4.35 Replace or add connectors between properties typed by blocks that have simulation flow properties

(EgTONY=To I (o T o (o [=To o £ TSRS 14
9.4.3.6 Removing generalizations to blocks owning simulation flow properties...........cccocovniiinicic e 14
9.5 Reduce Nesting 0f CONNECIOT BNUSoivieiiiire ettt aesa e b e sneereereeneesneneenreans 15
LS TR0 U o -SSR 15
9.5.2 SYSML MOdel DEFOrE PrOCESSINGveviiiiteitiitiie ettt sttt b bbbt eesb e bbbt et e e sbe b e 15
9.5.3 SYSML MOGEI QftEr PrOCESSING ...e.veeueeeiieite ittt ettt sttt bbbt e b e sb et sbe et e neeneeneesbe e e 15
10 Translating between SysML and simulation platforms...........ccccco e, 16
10.1 INEFOTUCTION ..evieesete et e R et R bt er et r Rt r e e n b r e enas 16
O o To) =] (=104 o | OSSOSO URUPRRSUURUR 17
L0.2.1 PUIMPOSE ..ttt ettt ettt h etk ke ekt ettt e he e £he £ b £ 2 b £ 2R b e eh b e e h £ e eE £ 2 e Ee e b a2 bt e R b e e he e eRe e eReeebe e bt enbeenrenneenreen 17
10.2.2 SYSIML MOUEIING ...vveviieie st ettt e et et sb e et e e Re e s e e e e e e besrenreeneere e e eneennenrennen 17
070 T |V o To =1 Tor- W 4o o (=1 11T S PS 17
10.2.4 SIMUIINK MOGEIING......otiiteieieiiiee et e b e bbbt b et e b e b bt be bt b e et et e e saennas 17
10.2.5 SIMSCAPE MOUBIINGeenvieiitiiteie ettt ettt ettt e e e b ekt sb e b e bt es e e e et e b sb e e be e bt ebe et enbenbesbeneas 18
0 T T 0 4T 1Y RR 18
O T = (oTo3 Y a0 I o] o] 0= TSSO 18
L0.3.1 PUIMPOSE ..ttt ettt etttk bkttt e e bt e e bt £ e b e e b £ 2R b e eR b e eE b e ek £ 2 he e b e e ke e AR e e he e eRe e eRe e beenbeenbeehrennrenbeen 18
10.3.2 SYSIML MOUEIING ...ttt bbbt e bt bt bt b e bt e b et et e bt sb e be e bt e b e et et e neesbennas 18
IO T T |V oo =1 Tor= W 400 (=1 11T PSR 19
10.3.4 SIMUIINK MOGEIING......ciiieieiiiitce ettt st e e e e s e e e et e besrestesneeneeseeneeneenrenns 19
10.3.5 SIMSCAPE MOUBIING ...ttt ettt ettt et e e e b e bt bt ek e Rt e b e e e et e bt sb e e be e bt ebe et enbenbesbennas 20
10.3.6 SIMUIINK/SIMSCAPE MOAETINGcveeieiieiee ittt bttt et bbbt b et e e e b sbe e 20
O R T A T 1 1 4 VYRS 20
10,4 GENEIAIZALIONcvevieieeiees et e R Rt R R Rt 21
L0.4. 1 PUIMPOSE ...ttt ettt et e btk e ekt e bt se e bt e ehe £ b e £ b £ 2R b e e R b £ eE £ e ek £ 2 ke e b e e ke e Rb e e he e e Re e ebe e beenbeenbeenrenneenreen 21
10.4.2 SYSIML MOUEIING ...ttt b et e e b ekt eb e bt bt e bt et et e bt sb e e be e bt e b e et et e nbesbennas 21
O T |V o To =1 Tor= W 40T [=1 11T S PS 21
10.4.4 SIMUIINK MOGEIINGoiiieiicict et se et eeRe e s e e e besbesaeeteaneenee e eneeneesrennes 21
10.4.5 SIMSCAPE MOUBIING ... eeuviteitieteeie ettt bbbttt e e e b e bt bt ke bt e b e e e et e e b sbeebe e bt ebe et enbeneesbennas 22
L0.4.8 SUIMIMAIYtiitiiteite ettt ettt ettt bttt e st e ekt e bt e sbe et e e se e ehe e ehe e be 2 b e 2R b e eR b e eE b e eE £ 2 b e e be e ee e R b e e he e e he e ebeebeanbeenbeesbenbbanbeen 22
ORI (o] o L= T 3 VA (=10 3 11011 o OSSR 23

SysML Extension for Physical Interaction and Signal Flow Simulation vi

LO.5.1 PUIMPOSE ...ttt ettt et b e btk bttt h e e bt £ b £ e b e 2Rt e eR b e eh £ £ eE £ 2o b e e b e e ke e Rk e e Re e e Re e ebe e beenbeenbeenbeenrenreen 23

10.5.2 SYSIML MOUEIING ...vveveiiie sttt et sae et e e Re e s e e e e s e eesresteaneereeneenteneenrennen 23
ORI T |V FoTo =1 Tor- W 400 [=1 11T S SS 23
10.5.4 SIMUIINK MOGEIING......otiiteieiieee e bbbttt b e et e bbb e bt b e et e b e b sbe e 23
10.5.5 SIMSCAPE MOUBIINGeeueitiitieteiiei ettt ettt e e b ekt eb ekt he e b e e e et e b sb e e be e bt ebe et enbenbesaennas 24
O T T 0 4T YRS 24
10.6 PhSVariables and PRSCONSIANTSciiiiiiieiee ettt bbbttt bt 24
L0.6.1 PUIMPOSE ...ttt etttk skt bt ekttt e bt e e bt e b £ £ k£ 2Rt £ eh b e e E £ e eE £ 2ok e e b e e Ee e R b e e Re e eRe e eRe e be e bt en b e ehbenntenreen 24
10.6.2 SYSIML MOUEIING ...ttt bbbttt e bbbtk e bt e b e e e et e bt sb e e beebe e b e et et e neesbeneas 25
0T T \Y oo =1 Tor= W40 (=1 11T P 25
10.6.4 SIMUIINK MOGEIINGciiiieieiciieee et se et e e se e s e e e e s e tesnesreaneeseeseeneeneenrenns 25
10.6.5 SIMSCAPE MOUBIING ... eeuviteitieieiieet ettt ettt ettt e e e b e bt bt b e bt e b e e e et e nbesbeebe e bt ebe et enbenbesaeneas 25
L0.6.8 SUIMIMAIY ... tiitiitiiie ittt ettt ettt ekttt ekt ekttt e e he oo bt e eb e 2 b e e Rt e ea b e eh £ e eb £ e ke e be e beeRb e e heeeRe e ebe e beenbeenbeebbenbeenbeen 26
10.7 POrtS and FIOW PrOPEITIESvcveiuiciieeciesieste ettt ettt ae st e te s se s e e e st e e st e sbesneeneeneanseseeseneennens 26
O R R o oo 1SS 26
10.7.2 SYSIML MOUEIING ...ttt bt e e bt bt bt bt bt e b et et e bt sb e e beebe et e et et e nbesbeneas 26
10.7.3 SySML mModeling, SIGNAT FIOW........c.oiiiiiiii et bttt sae s 27
10.7.4 Modelica modeling, SIgNAI FIOWcc.ooiiiiiieccc et eesre e 27
10.7.5 Simulink modeling, SIgNal FIOWccciiiiiiie e et sre e 27
10.7.6 Simscape modeling, SIGNal TIOWcoi i e e 28
10.7.7 SysML modeling, phySiCal INTEIrACTIONcoiiiiiiiie it 28
10.7.8 Modelica modeling, phySiCal INTEraCtioNc.ccvevverieiiriie s nes 29
10.7.9 Simulink modeling, phySiCal INTErACIONccverieieierc e nes 29
10.7.10 Simscape modeling, PhySiCal INTEIrACLIONciiiiiiiiii e et e 29
L0.7.11 SUIMIMAIY .. tieteeteeiee ettt ettt ettt e st e skt e bt e ebe et e e se e ebe e ehe £ b £ 2 b e 2R b e 2R b e eE b e eE £ 2o ke e Ee e beeae e e heeeheeebe e beanbeenbeesbenbbenbeen 30
O R O 1o Tox (o] £ T TSP PO UR PR USUTPRVRON 30
0 R 0 R o oo 1TSS 30
10.8.2 SYSIML MOUEIING ...ttt bbbttt e bbbt b e bt e b e et et e b sb e e be bt e b e et et e neesbeneas 30
10.8.3 MOGEICA MOUEIING ...ttt b et bbbt b et e b e bbbt be e b e et et e b sbe e 31
10.8.4 Simulink modeling, between blocks With N0 CONSLIAINEScceveieriiriie e e 31
10.8.5 Simulink modeling, between blocks With CONSIIAINTS.........c.cvciviierieicrcce e 32
10.8.6 Simulink modeling, between blocks that have constraints and blocks that do notcccceveiiiciinen, 33
ORI Y14 or: VoL g g ToTo L] T o o ST SO PP 34
O RS T T 0 1 4T VYOS 34
10.9 BIOCKS WIth CONSIITAINTScviiviiciiiteieesie ettt bbbt b et bbbt et b e e bbb n e 34
L0.9.1 PUIMPOSE ...ttt ettt etttk b ekttt e e bt e bt £ b £ £ b £ 2R b e eR b e e E £ e eE £ e ke e Ee e Re e Rb e e Re e eRe e eRe e be e bt enbeehbeenrenreen 34
10.9.2 SYSIML MOUEIING ...ttt b et e e b e bt bt ekt b e e b e et et e bt sb e e b e e bt ebe et et e neesbeneas 34
10.9.3 SysML modeling, SIGNaAI FIOW........cvoiiiiiiiiie et a e seenre e 35
10.9.4 Modelica modeling, SIgNAI FIOWcc.ooiiiiiie e seenre e 35
10.9.5 Simulink modeling, SIGNAI FIOW ..o e ee e 36

SysML Extension for Physical Interaction and Signal Flow Simulation vii

10.9.6 Simscape modeling, SIGNal FIOW ..o e e 37

10.9.7 SysML modeling, physiCal INTEraCtioncccvcieviereiisise s sre e 38
10.9.8 Modelica modeling, phySiCal INTEraCtioNc.ccuevuirieiisiie st sre e 38
10.9.9 Simulink modeling, phySiCal INTErACIONcciiiiiiiiiii e e e 39
10.9.10 Simscape modeling, PhySiCal INTEIrACLIONciiiiiiiiii e e e 39
O R I T 0 4 VYRR 40
10.10 Default values and INILIAL VAIUEScccoiiiiiiiiiice e bbbt 40
L0.10.1 PUIMPOSE ...ttt ettt ekttt ettt e h ekt e ekt e ke et se e he e e bt e b £ 2 ke 2R b e eh b e eE b £ eE £ 2kt e b e e ke e Re e ehe e e he e ebeebeenbeenbeebbenbbenbeen 40
10.10.2 SYSIML MOUEIING ...ttt ettt bbbt e e btk b e ek e bt e b e e et e b sb e e b e e bt ebe et enbeneesbennas 40
OO I 1Y FoTo =T Tor= W 400 [=1 11T RSP 41
10.10.4 SIMUIINK MOGEIING......ciiiieitiiiie et ettt sae et e e se e s e e e e s e besrestesneereeseeneeneenrennen 41
10.10.5 SIMSCAPE MOUBTINGveuvieeitieteitieiee ettt et b bbbt e e e b e s b eb e ekt bt es e e e et e s besbeebe e bt ebe et et e neesbeneas 41
L0.10.6 SUIMIMAIY ...ttt ettt ete ettt ettt e st e skt e bt e ke e et s se e ehe e ohe e bt e b e e R b e ea b e eh e e eE £ 2 bt e b a4 beeab e e heeehe e ebe e beenbeenbeasbenbbanbeen 42
10.11 Data tYPES AN UNILS ...veuveieiiisieiererieeete e ste e stestee e e et e st e stestestesseesee e esseseestesteaseeseeseenseseensesbeaseeseaneenseseeseneennens 42
0 00 0 0o SRS 42
10.11.2 SYSIML MOUEIING ...ttt bbbttt e e b ekt b e b e bt e b e et et e bt sb e e be e bt ebe et entenbesbeneas 42
10.11.3 MOGAEICA MOUEIING ...ttt bbbttt b e et e b bttt be et e et et e b sbe e 43
10.11.4 SIMUIINK MOGEIINGcviieiiiieieee ettt s ee st e e Re e s e e e et e besnesteaneeneeseeneeseenrenns 43
O ST 4 o= VoL T T [=1 T oo OSSP 43
L0.11.6 SUIMIMAIY ... tiiieiteiiee ettt ettt e etttk e st e ekt e bt e ebe e eeese e ehe e ehe £ bt 2 b e 2R b e eh b £ eE b e eb £ 2 ebe e ebe e beeab e ehe e ehe e ebe e beenbeenbeasbenbbenbeen 43
10.12 SEALE MACKINES. ...ttt ettt b e bbbt h ekt e e et e b sh e e bt e b e eh e e Reem b e eeeebenbeebeebeebeane e e ebenbenaens 44
O 00 0 R oo SRR 44
10.12.2 SYSIML MOUEIING ©..vveieeieie sttt e et et st e et e e sees e e e e s e besnesreaneereeseeneeneenrenrn 44
10.12.3 MOAEICA MOUEIING ...ttt e bbbttt b et e b e b bt be bt e b e et et e sbesbeneas 45
10.12.4 SIMUlink/StateFIoW MOTEIINGooeiiie et bbbt see b e 46
O T T 0 4T Y SSTRO 48
10.13 MathematiCal EXPIESSIONScueiurerieieieriestesestesreeees e ste st e testesreaseesee e e s e seestesteaseeseeseensesaessesbesneeseaneenseseeseneennens 48
11 Platform-independent component library..........ccccoovviiiiiiii e, 49
S A [oo [0 Tod o o F OSSOSO UUUTR 49
I O T oo o T=T 1 AT g1 (=] = Ted 1 o OSSOSO UR USRS UUUUR 49
0 TS T - L o) SRS 49
I = 0 |V To7 L) (=1 o o] oSS 49
I B O T o] T=T 1 B o= = AV o SO ST RURORRUSUURUR 50
I 0 A [oo (004 o OSSR SO PP 50
11.3.2 Real-VAIUEH COMPONENTS.....viitiitrerieietesie st siesreereeees e ee st e testeeteeseeseesaessestesaestesseeseeseenseeeseesresseeseeseenseseenrenns 52
11,320 INEFOGUCTION ...etitictiite ettt bbbttt bbb etk b bbb sttt e st sttt n e 52
11.3.2.2 CONLINUOUS COMPONEINTSeuiiiieiteteitestestesieetee e steseesbesbe e esee e esbesbesbesbesbeebeeseenbesbesbesbesbesbeaseeneeseesaeneeees 52
11.3.2.3 DiSCIEte COMPONENTS .. .etiteiteeuieteste e stestea e eseeseesteste bt sbe st ebe e e es b e sbesbesbesbeabeeseenbesbesbenbesbeabeaseenbeneenbeneeeee 52
0 T S N [o B 1T Lol 0 o] =T £ 53

SysML Extension for Physical Interaction and Signal Flow Simulation viii

11.3.2.5 MathematiCal COMPONENTSc..ouiiiiiiti ittt bbbttt besb et e bt st e e e neesnesbe st e 53

11.3.2.6 SOUICES ANG SINKS ...euvivietiiteieieite ettt sttt bbbt b et et b e bbb e st et nb e st st b e st n e 54
0 T A = (o 101 1Yo 0] 4] o 1o 1 - 1 PSS 54
11.3.3 LOGICAI COMPONENES ...ttt sttt ettt e e bbbt bt e s e e e b ekt eb e ek e bt e s e e e et e bt sb e e be e bt et e et enbenbesbeneas 56
11.3.4 EIECIICAl COMPONENTS.......iitiitiiiieiieiete ettt ettt bbbt ke bt e b e e et e b sbeebe e bt e b e et et e neeebeneas 57
11,4 Value tyPes WIth UNIES.......ciiieiicieic e ettt e te et e se e s e se e st e sbesaeeneeneenaeeesenrennens 59
11.5 Platform-dependent EXIENSION........ccueieiiriiiesteseeeee st estesteste s e s e e e e e eestestesseeseeseeseeseestesbesaesseaneeneeeeseneennens 59
T8 A [oo (004 o SRRSO SO U TOTR 59
1152 PlAtfOrm PrOfile. ...t bbb bbb et et neenae e 59
11521 MOUEHCABIOCKottt bbbt bbbt bbbt 60
11522 MOUEHCAPATAMELENcviiveieiiiteiete sttt ettt st bbb bbb st s bbb 60
11.5.2.3 MOUBIICAPOIT. ...ttt bbb bbbt bt bt et e et b e s b e e bt e b e e neene e b nbe b e 60
11.5.2.4 MultidimensioNaIEIBMENTc.oiiiiii ettt bbbttt ee e b e 60
11525 SIMUIINKBIOCKcooiviiiiiiieicisieee ettt sttt bt et nb et e et 61
11.52.6 SIMUIINKPAIAMELETciitiiitiieiee ittt bbbt bbb bbbt e 61
11.5.2.7 SIMUIINKPOIT ...t ettt et bt bt bt bt et e s e b e eb e e b e bt et eeneene e b nbe st e 62
11.5.3 PLAFOIM HDIAIYttt e bbbkt he bt e e et e bbb e bt b e et et e e sbe e 63
A. Examples (NON-NOIMALIVE)couiiiiiiiiiiiiie e 64
Al g1 goTo [0 o3 (o] o OO SO SOPRTSO TR SOPRO 64
A2 LYol L o O (o1 | OO OO T TSSO PR PRSPPSO 64
N R 1o oo [Tox ({0} OO SO URUUOTPTPRR 64
A2.2 System DeING MOUEIEMcc.o ittt b e bbb s e e e b et b 64
AL2.3 INEEINAL SETUCTUIEeeteeete ettt bbbtk b etk b e st b e b e st et e b e st et b et et be s et e 64
N S = (oot G V1o oo o SRS 65
A25 Properties (VArADIES)c.o ittt bbbt b bbbt n et aenae 65
A2.6 CONSLFAINTS (BOUALIONS) ...uviieteitietieit ettt sttt ettt b ettt s e e et et s bt sb e bt eb b e s et e sbesbeebesbeene e s ebenbesaen 66
A.2.7 Constraint properties and DINGINGScc.ooireiiie s nre s 67
A3 ST T o 0 T=T o PSSP 69
e 75 R 1o o o [N Tox {0} PO ST UROUTOUTTPRTR 69
A.3.2 System DeiNG MOUEIEMcc.oii bbbt b e bbbt et e e e b e b b 69
AL3.3 INEEINAL SETUCTUIEeeee ettt bbbt bbb st b e b ettt e st et b et et be e st e 70
NG T S =] [0 ot ST To oo o £SO 70
A.3.5 Properties (VArADIES)c.oiiiiiiiiii ettt bbbt b bbbt n e b e nae 72
A.3.6 CONSLFAINTS (BOUALIONS)vitiieitietieietie ettt sttt bbbttt s et e b e bt sb e sb e e bt eh e e e et e sbesbeebesbeene e s enbeneesren 72
A.3.7 Constraint properties and DINGINGSc.ooirviiie e nre s 73
A4 L Y0 L U0 ot 74
N R 1o o [Tox {To] PO TS TTUUTURURUROUTOUPTURTR 74
A42 System DEING MOUEIEMcc.o it bbbttt bbb e s e e et e b b 74
A3 INEEINAL SETUCTUIEeeteeete ettt ettt bbbt bbb st b e b e st et s b e st et b et et ber et e 75

SysML Extension for Physical Interaction and Signal Flow Simulation ix

YN S =] (oot S T To [o o SO URTUUUPTPRR 75

YN ST o (0] 1= LTI (V7 L T o] [T SRS 76
YN I 0o 4 3 =V 0L S (T 10T LA o] 1 SRS 77
A.47 Constraint properties and DINGINGScooiiiiiiii et bt e b sae 77
A5 L (0T TTo) =] TR UR PP 78
TS A 11 (o o [0 To1 o o PO OO OSSOSO PR 78
A5.2 System BeiNG MOUEIEMcc.o it e et e besaeste s e eneeeereneenrens 78
AB.3 INEEINAI STIUCTUIE ...ttt bttt h e e e b ekt b e s bt e R e eb e e e et e besbeebesbeen e e e e benbesren 79
ALB.A BIOCKS GNU POILS ...tttk ettt bbbtk h et e b et sb e e bt e Rt eb e e e et e nbesbeebesbeene e e ebenbesae 82
YN ST o (0] 1= (LT (Y L T o] [T SRS 85
A5.6 CONSLrAINTS (BQUALIONS) ...vevviieieiereieesiesieseesie e ste e sre et e e e stestestestesseeseeseesesteseesteaseeseessenseseeseessesneenseeenseneennens 85
A5.7 Constraint properties & DINGINGScvo ittt sb e b e 87
ALD.8 SEALE IMACKINES ...ttt bttt bbbt b e bt R e e e b e bt she e bt Rt eh e e e e b e be e he bt Rt ene e e e be et nren 91
A5.9 INILIAI VAIUES ...t ettt bbbt b etk bt et e et et 92

SysML Extension for Physical Interaction and Signal Flow Simulation X

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry standards
consortium that produces and maintains computer industry specifications for interoperable, portable, and reusable enterprise applications
in distributed, heterogeneous environments. Membership includes Information Technology vendors, end users, government agencies,
and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s specifications
implement the Model Driven Architecture®(MDA®), maximizing ROI through a full-lifecycle approach to enterprise integration that
covers multiple operating systems, programming languages, middleware and networking infrastructures, and software development
environments. OMG’s specifications include: UML® (Unified Modeling Language™); CORBA® (Common Object Request Broker
Architecture); CWM™ (Common Warehouse Metamodel); and industry-specific standards for dozens of vertical markets. More
information on the OMG is available at http://www.omg.org.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications are available
from the OMG website at: http://www.omg.org/spec. All of OMG’s formal specifications may be downloaded without charge from our
website. (Products implementing OMG specifications are available from individual suppliers.) Copies of specifications, available in
PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org
Some OMG specifications are also available as 1ISO standards. Please consult http://www.iso.org.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://issues.omg.org/issues/create-
new-issue).

SysML Extension for Physical Interaction and Signal Flow Simulation Xi

http://www.omg.org/
http://www.omg.org/spec
http://www.iso.org/
http://www.omg.org/
http://issues.omg.org/issues/create-new-issue
http://issues.omg.org/issues/create-new-issue

SysML Extension for Physical Interaction and Signal Flow Simulation Xii

1 Scope

Systems engineers coordinate the work of multiple other engineering disciplines (mechanical, material, electrical,
control, and so on), requiring information to flow between systems engineers and those in other disciplines.
Systems engineering information intentionally does not cover all disciplines, but must integrate with them to enable
systems engineers to communicate with other engineers. Using discipline-specific tools separately from system
modeling tools typically leads to redundancy, inconsistency, and less efficient engineering processes.

Many engineering disciplines (mechanical, electrical, and so on) use simulation tools that present graphical
interfaces for linking system components, then solve equations generated from the graphical models, and report
predicted values of system properties over time. Linked components interact physically (mechanically, electrically,
and so on) or send numeric signals to each other (see Subclause 6.1 for the difference between physical interaction
and signal flow). The tools generate (ordinary and algebraic) differential equations to describe the evolution of
numeric system properties over time, and solve them to predict system behavior. These models are sometimes
known as lumped parameter or 1-D models, but this specification refers to them as physical interaction and signal
flow, to emphasize their applications (or just simulation models for brevity). This kind of simulation is specified
without regard to physical distances between or within components, as compared to distributed simulation models
(as in finite element analysis), in which behavior specifications account for physical distances between or within
components. See Subclause 6.1 for more information about this kind of simulation.

Graphical interfaces presented by physical interaction and signal flow simulators express concepts similar to the
Systems Modeling Language (SysML), an extension of the Unified Modeling Language (UML). Both languages
show system components, how components are connected together, and how physical substances and information
flow between components. SysML and these simulators both have underlying textual languages to record models in
computer-processable file formats. Simulators translate models specified through graphical interfaces into file-
based formats, which are then transformed into equations for solution by numerical analysis. SysML-based tools
use their filed-based formats to perform other kinds of analysis and verification, checking completeness of designs
against requirements.

When SysML tools and physical interaction and signal flow simulators are used separately, simulation engineers
must re-specify their systems in each tool they are using, including information that is also available in SysML
models. This additional effort would not be necessary if the information to perform this kind of simulation were
available in SysML and translations were defined between SysML and simulation languages.

This specification:

e Extends SysML with additional information needed to model physical interaction and signal flow
simulation independently of simulation platforms.

e Provides a human-usable textual syntax for mathematical expressions.

e Includes a platform-independent SysML library of simulation elements that can be reused in system
models.

e Gives translations between SysML as extended above and two widely-used simulation languages and tools
for physical interaction and signal flow simulation.

With the extension, expression language, libraries, and translations above, information in common between SysML
and simulation languages only needs to be specified once in SysML and translated to simulators, rather than
manually recoded for each simulation language and tool. The library enables SysML models for simulation to be
built more quickly by reusing library elements rather than reconstructing them for each application. Taken together,
these capabilities provide a basis for more efficient integration of SysML models and processes with those of
physical interaction and signal flow simulation.

SysML Extension for Physical Interaction and Signal Flow Simulation 1

2 Conformance

Atool demonstrating conformance to this specification must satisfy at least one of these points:

e Abstract syntax conformance. Tools demonstrating abstract syntax conformance provide user interfaces
and/or APIs that enable

0 instances of concrete stereotypes defined in this specification (which are applications of
stereotypes to instances of UML metaclasses) to be created, read, updated, and deleted, including
links and references from these to instances of UML elements and instances of SysML
stereotypes.

0 bodies and languages of opaque expressions and opaque behaviors to be created, read, updated,
and deleted conforming to the mathematical expression language defined in this specification.

o0 links and references to model library elements defined in this specification to be created and
deleted.

The tools also provide a way to validate the well-formedness of the above as defined by stereotypes,
grammars, and model library elements in this specification.

e Concrete syntax conformance. Tool demonstrating concrete syntax conformance provide user interfaces
and/or APlIs that enable the mathematical expression language defined in this specification and the SysML
notation for the abstract syntax above to be created, read, updated, and deleted. See the SysML
specification for more about SysML notation conformance.

o Model interchange conformance. Tools demonstrating model interchange conformance can import and
export conformant XMl for all models that are valid under this specification. Model interchange
conformance implies abstract syntax conformance.

e Translation conformance: Tools demonstrating translation conformance can translate between extended
SysML and simulation models per this specification, either in one direction or both directions.

3 References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do

not apply.

[1] Object Management Group, “OMG Unified Modeling Language, version 2.5,” http://www.omg.org/spec/UML/
2.5, March 2015.

[2] Object Management Group, “OMG Systems Modeling Language, version 1.4,” http://www.omg.org/spec/
SysML/1.4, September 2015.

[3] Modelica Association, “Modelica® - A Unified Object-Oriented Language for Systems Modeling, Language
Specification, version 3.4,” http://www.modelica.org/documents/ ModelicaSpec34.pdf, April 2017.

[4] Modelica Association, “Modelica Standard Library,” https://github.com/modelica/Modelica, April 2016.

[5] International Organization for Standardization, “ISO/IEC 14977:1996 Information technology — Syntactic
metalanguage — Extended BNF,” http://www:.iso.org/standard/26153.html, 1966.

[6] International Organization for Standardization, “1SO 80000-1:2009 Quantities and units -- Part 1: General,”
http://www.iso.org/standard/30669.html, 2009.

SysML Extension for Physical Interaction and Signal Flow Simulation 2

http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/SysML/1.4
http://www.omg.org/spec/SysML/1.4
http://www.modelica.org/documents/ModelicaSpec34.pdf
https://github.com/modelica/Modelica
http://www.iso.org/standard/26153.html
http://www.iso.org/standard/30669.html

3.2 Non-normative References

[1] Kecman, V., State-Space Models of Lumped and Distributed Systems, Springer-Verlag, 1988.

[2] Cellier, F., EImgvist, H., Otter, M., “Modeling from Physical Principles,” in Levine, W., Control System
Fundamentals, pp. 99-108, CRC Press, 1999.

[3] Raven, F., Automatic Control Engineering (Fifth Edition), McGraw-Hill, January 1995.

[4] The MathWorks, Inc., “Simulink® User’s Guide,” http://www.mathworks.com/help/pdf_doc/simulink/
sl_using.pdf, 2016.

[5] The MathWorks, Inc., “Simulink® Reference,” http://www.mathworks.com/help/pdf_doc/simulink/slref.pdf,
2016.

[6] The MathWorks, Inc., “Simscape™ Language Guide,” http://se.mathworks.com/help/pdf_doc/
physmod/simscape/simscape_lang.pdf, 2016.

[7] The MathWorks, Inc., “MATLAB® Primer,” http://www.mathworks.com/help/pdf_doc/matlab/ getstart.pdf,
2015.

[8] The MathWorks, Inc., “StateFlow® User Guide,” http://www.mathworks.com/help/pdf_doc/stateflow/
sf_ug.pdf, 2015.

4 Terms and definitions

For the purposes of this specification, the term ‘simulation’ will refer to physical interaction and signal flow
simulation, unless qualified. See Clause 1 for more information about this kind of simulation.

Stereotype names are sometimes used in place of instances of their base classes to which the stereotypes are applied.
For example, the phrase “PhSVariable typed by Real” refers to a property that has the PhSVariable stereotype
applied and that is typed by Real.

5 Symbols

No symbols are introduced by this specification.

6 Additional Information

6.1 Signal flow and physical interaction simulation compared

The differences between physical interaction and signal flow and lie mainly in how components interact, addressing
different kinds of problems:

e Insignal flow modeling, system components exchange numeric and Boolean values in predetermined
directions (unidirectionally). For each component, some values will be provided by other components
(inputs), and some values will be provided to other components (outputs). Connections between
components indicate that values are passed from one output of a source component to one or more inputs of
target components. Component behavior is specified by equations that relate input, output, and component
variables. Signal flow is well suited for describing control systems and signal-processing systems.

SysML Extension for Physical Interaction and Signal Flow Simulation 3

http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/simulink/slref.pdf
http://se.mathworks.com/help/pdf_doc/physmod/simscape/simscape_lang.pdf
http://se.mathworks.com/help/pdf_doc/physmod/simscape/simscape_lang.pdf
http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_ug.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_ug.pdf

o Inphysical interaction, system components exchange physical substances that carry energy in directions
determined during simulation (possibly bidirectionally). Each exchange is modeled with two numeric
values (flow rate and potential to flow of a physical substance, in terms of one of its conserved
characteristics), compared to one (possibly boolean) value for signal flow, which does not involve physical
substances. In physical interaction, the direction in which substances flow between components is not
predetermined, as it is for values in signal flow. Component behavior in physical interaction is specified by
equations that relate flow rate, potential, and component variables. The direction in which substances flow
between components is determined during simulation, and can change during simulation. Physical
interaction is well suited for representing systems with components that exchange physical substances.

In practice, physical interaction and signal flow are often combined in a same model. For example, many systems
have physical components directed by control systems via sensors and actuators.

6.2 How to read this specification

Clauses 1 to 6 contain background and basics for reading this specification. Clause 1 describes the objectives of this
specification and the intended readership. Clause 2 defines conformance. Clause 3 lists other specifications and
documents containing provisions which, through reference in this text, constitute provisions of this specification.

Clause 4 and 5 contains definitions of terms, abbreviations, and symbols used in this document. Clause 6 provides
additional information to this specification.

Clauses 7 to 11 are the technical part of this specification. Clause 7 defines a SysML extension for physical
interaction and signal flow simulation. Clause 8 defines a language to be used for expressions representing equations
and algorithmic statements. Clause 9 defines processing of SysML models that must be performed prior to
translation to simulation platforms. Clause 10 provides translations between extended, preprocessed SysML models
and two simulation platforms, Modelica and Simulink (including extensions to Simulink, such as Simscape). Clause
11 defines a platform-independent simulation library in SysML, with components corresponding to platform-
dependent library components.

Annex A gives additional examples showing how to use the contents of Clauses 7, 8, and 11.

6.3 Changes to Adopted OMG Specifications

None.

6.4 Acknowledgments

The following companies submitted this specification:

. No Magic, Inc.

The following companies and organizations support this specification:

U.S. National Institute of Standards and Technology
Office of the Secretary of Defense

InterCax, LLC

ModelFoundry Pty. Ltd.

ModelAlchemy Consulting

XPLM Solution GmbH

Koneksys, LLC

oose Innovative Informatik GmbH

SysML Extension for Physical Interaction and Signal Flow Simulation 4

7 SysML extension for physical interaction and signal
flow simulation

7.1 Introduction

This clause defines a SysML extension for physical interaction and signal flow. It reflects features common to
various physical interaction and signal flow platforms that are not present in SysML. This clause summarizes the
extension. More information is given in Subclauses 10.6 and 10.7.

7.2 Simulation profile

«metaclass»

UML::Property

T

«stereotype» «stereotype»
PhSConstant PhSVariable

isContinuous : Boolean = true
isConserved : Boolean = false
changeCycle : Real =0

Figure 1: Simulation stereotypes

7.2.1 PhSConstant

Package: SysPhS
isAbstract: No
Extended Metaclass: Property

Description

A PhSConstant has values that do not change during simulation runs. Values can change between simulation runs.

Constraints

[1] Properties stereotyped by PhSConstant must be typed by Real, Integer, or Boolean, or one of their
specializations.

[2] Properties stereotyped by PhSConstant must have multiplicity 1, unless they are also stereotyped by
MultidimensionalElement (see Subclause 11.5).

[3] Properties stereotyped by PhSConstant must not redefine more than one other property, which must have the
same name and type and must be stereotyped by PhSVariable or PhSConstant.

Notation
The stereotype label between guillemets is “phsConstant”.

A compartment with the label “phs constants” may appear as part of a block definition to list the properties
stereotyped by PhSConstant. The properties omit the ‘«phsConstant»’ prefix.

SysML Extension for Physical Interaction and Signal Flow Simulation 5

7.2.2 PhSVariable

Package: SysPhS
isAbstract: No
Extended Metaclass: Property

Description

A PhSVariable has values that can vary over time in a continuous or discrete fashion. Continuous variables have
values that are close to their values at nearby times in the past and future. Discrete variables have values that are the
same as their values at nearby times in either the past or future, or both. The effect is that continuous variables vary
smoothly over time, including the possibility of remaining constant, while discrete variables are always constant for
a period of time, then change instantaneously to a possibly very different value for another period of time. Discrete
variables can be restricted to change values only at regular intervals (change cycle greater than zero), though they do
not need to change at every interval. Variables being continuous or discrete does not imply any restriction on the
range of their values, only the way in which those values change over time.

PhSVariables are used to model exchanges between components (physical interaction and signal flow), as described
below, and behavior within components (see Subclause 6.1).

Component interactions are modeled on blocks describing the things that are interacting, rather than on associations
between these blocks. The interacting blocks can type parts and ports. PhSVariables and flow properties are used to
model component interactions:

e Physical interactions are specified by inout flow properties typed by blocks that characterize substances
crossing their boundaries in terms of a conserved characteristic of those substances. For example, electrons
passing the boundary of an object are modeled as the flow of charge, rather than electrons. Blocks typing
the flow properties (indirectly) specialize ConservedQuantityKind, each named for a physical characteristic
(quantity kind) that is conserved in flows between components (see Subclause 11.2.2). The blocks describe
flows with two PhSVariables, one conserved and one non-conserved, see below.

o Signal flows are specified by in or out flow properties that are also non-conserved PhSVariables. They are
typed by the kind of signal (numeric or boolean).

Connected flow properties are on blocks typing parts or ports that have a connector linking them. Matching flow
properties are defined in SysML. Physical interactions and signal flows can only occur between connected and
matching flow properties that satisfy the constraints in the Constraints section below.

In physical interactions:

e Conserved PhSVariables give the rate at which substances are crossing the boundary of an object (flow
rate) as a rate of the quantity kind that types the flow property. For example, fluids might cross the
boundary of a tank, but the flow rate is given as volume (a quantity kind typing the flow property) per time,
regardless of the kind of fluid. When physical flow properties are connected and match, the values of
conserved PhSVariables on their types on all ends add up to zero (positive and negative flow rates indicate
flows in opposite directions).

e Non-conserved PhSVariables give the potential for substances to cross the boundary (potential to flow),
whether any substance is crossing or not, as a potential of the same quantity kind used for the paired
conserved PhSVariable. For example, fluid might have a high potential to flow at the boundary of a tank,
but the potential is in terms of pressure (force per volume surface), whether any fluid is crossing the
boundary or not, and regardless of the kind of fluid. When physical flow properties are connected and
match, the values of non-conserved PhSVariables on all ends are equal.

SysML Extension for Physical Interaction and Signal Flow Simulation 6

In signal flows:
e PhSVariables (that are also flow properties) give a numeric or boolean value crossing the boundary of an
object. When signal flow properties are connected and match, their values on all ends are equal (they act
like non-conserved PhSVariables).

Component behavior can be defined for blocks that type parts (component blocks), not ports. Components might
pass physical substances and signals through them, possibly transforming them on the way, or creating, destroying,
or storing them. These behaviors are specified with constraints blocks applied to component blocks. The
constraints are mathematical equations relating values of
e PhSVariables for flow properties (flow variables, for modeling component interactions above).
e PhSVariables not for flow properties (component variables, internal to components, not for modeling
component interaction). The idea of conservation (or lack thereof) does not apply to these (because they
are not related to interactions with other components), but they are specified as non-conserved.

Constraints on flow variables specify the effect components have on physical substances or signals going
through flow properties and might depend on component variables. Component variables might have values
giving
e Potential differences between physical flow properties. These differences must be non-zero for
physical substances to flow through a component.
e Rates at which physical substances flow through a component. This differs from flow rates through
flow properties when the component creates, destroys, transforms, or stores substances.
e Internal states, such as, how much of a physical substance is currently stored, the temperature of a
component, or the current value of a signal integrator.

Attributes

isContinuous: Boolean = true Determines whether the property value varies continuously or discretely.
isConserved: Boolean = false ~ Determines whether values of the property value are conserved or not.
changeCycle: Real =0 Specifies the time interval at which a discrete property value may change.

Constraints

[1] The stereotyped property must be typed by Real, Integer, or Boolean, or one of their specializations.

[2] isContinuous may be true only when the stereotyped property is typed by Real or one of its specializations.

[3] isConserved may be true only when isContinuous is true and the stereotyped property is on a block specialized
from ConservedQuantityKind (see Subclause 11.2.2).

[4] changeCycle may be other than 0 only when isContinuous is false.

[5] changeCycle must be positive or 0.

[6] A property stereotyped by PhSVariable must not be stereotyped by PhSConstant.

[7] Properties stereotyped by PhSVariable must have multiplicity 1, unless they are also stereotyped by
MultidimensionalElement (see Subclause 11.5).

[8] Flow properties stereotyped by PhSVariable that are connected and matching must have opposite directions
(infout or out/in), the same type and multiplicity, and the same value for isContinuous on the applied
stereotype.

[9] Flow properties stereotyped by PhSVariable that have in direction may connect to and match no more than one
other flow property stereotyped by PhSVariable.

[10] A property stereotyped PhSVariable can redefine at most one other property and it must have the same name
and type and must be stereotyped by PhSVariable.

[11] When a property stereotyped by PhSVariable with isContinuous=true redefines another property, the
PhSVariable applied to the redefined property must have isContinuous=true.

[12] When a property stereotyped by PhSVariable with isContinuous=false redefines another property stereotyped
by PhSVariable with isContinuous=false, the redefining property’s changeCycle must be an integer multiple of
the redefined property’s changeCycle.

SysML Extension for Physical Interaction and Signal Flow Simulation 7

Notation

The stereotype label between guillemets is “phsVariable”.

A compartment with the label “phs variables” may appear as part of a block definition to list the properties
stereotyped by PhSVariable. The properties omit the “«phsVariable»” prefix.

A compartment with the label “physical interactions” may appear as part of a block definition to list flow
properties typed by a block specialized from ConservedQuantityKind that has one conserved and one non-
conserved PhSVariable (see Subclause 11.2.2).

A compartment with the label “signal flows” may appear as part of a block definition to list flow properties that
have PhSVariable applied.

8 Language for mathematical expressions

This clause describes a platform-independent textual language for mathematical expressions. The language is for use
in the bodies of:

e OpaqueExpressions of constraints, corresponding to equations.

e OpaqueBehaviors, corresponding to algorithmic statements.

OpaqueExpressions and OpaqueBehaviors that use this language in their body should have an associated ‘SysPhS’
string as their language.

The SysPhS expression grammar includes a subset of Modelica’s grammar, as follows:

e All terminal symbols

e The following non-terminal symbols: equation, statement, if-equation, if-statement, for-statement, for-
indices, for-index, while-statement, expression, simple-expression, logical-expression, logical-term,
logical-factor, relation, relational-operator, arithmetic-expression, add-operator, term, mul-operator,
factor, primary, name, component-reference, function-call-args, function-arguments, function-arguments-
non-first, named-arguments, named-argument, function-argument, output-expression-list, expression-list,
array-subscripts, subscript

Symbols in the Modelica grammar not listed above are not included in the SysPhS expression grammar. The
semantics of the above symbols is given in Modelica (which is the same in MATLAB, the expression language in
Simulink, Simscape, and StateFlow, assuming the translations in Subclause 10.13).

The following non-terminal symbol is included in the SysPhS expression grammar to specify execution of a series of
statements (expressed in extended BNF):

|statements : { statement ";" }

When used in OpaqueExpressions, the root non-terminal symbol must be equation. When used in
OpaqueBehaviors, the root non-terminal symbol must be statements.

The following are functions available in SysPhS expressions language: abs, sign, sqrt, div, mod, rem, ceil, floor, sin,
cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh, log, log10, exp, der. The semantics of these functions is given in
Modelica (which is the same in MATLAB).

SysML Extension for Physical Interaction and Signal Flow Simulation 8

9 Preprocessing SysML models

9.1 Introduction

This clause defines processing of SysML models performed prior to translation to simulation platforms per Clause
10, to enable translations of SysML modeling patterns not covered in Clause 10. Subclause 9.2 covers associations
blocks. Subclauses 9.3 through 9.5 address flow property and connector patterns. Preprocessing should be
performed in the order of the subclauses below. In these subclauses, flow properties with PhSVariable applied or
typed by blocks (indirectly) specializing ConservedQuantityKind are called simulation flow properties.

9.2 Replace connectors typed by association blocks with their
internal structure

9.2.1 Purpose

Many physical phenomena occur due to the relationship between two system components. For example, friction
occurs when two pieces in contact move relative to each other and produce heat. SysML includes association blocks
for modeling complex relationships, which are not available in simulation models. Connectors typed by association
blocks must be replaced with the internal structure of their association blocks before translation to simulation
platforms per the correspondences in Clause 10.

9.2.2 SysML model before processing

SysML association blocks are both associations and blocks. They represent relationships between two blocks, like
associations, and can have structural features, like blocks. Figure 2 shows an example association block in a SysML
block definition diagram on the top, as well as a usage of it in an internal block diagram on the bottom. The top
diagram shows an association block FrictionAssociation relating Flanges. The internal structure of
FrictionAssociation has a part typed by Friction with two ports, each connected to a participant of the association.
The lower diagram shows a connector typed by the association block between the flange of a mass and the flange of
a ground. The connector has a connector property typed by FrictionAssociation.

bdd Example

«block»
Flange

surface1[__]surface2
|

1
«block»
FrictionAssociation

| v fll fl2 1+ «participant»
' {end=surface1} - l ' {end=surface2}

,,,,,,,,,,,,,

,,,,,,,,,,,,,

ibd SystemA
:Flange :Flange
;

«connector»
fa:FrictionAssociation

Figure 2: Association block with internal structure and connector properties in SysML

SysML Extension for Physical Interaction and Signal Flow Simulation 9

9.2.3 SysML model after processing

Connectors typed by association blocks, including their connector properties, are replaced by the internal structure
of the association blocks. Figure 3 shows the content of Figure 2 after processing. The connector and its property fa
in Figure 2 is replaced by the content of the association block FrictionAssociation (the connector and its property
and association block are removed). The flange of the mass and the flange of the ground replace the participant
properties of the association block and are connected to the property f of type Friction in the same way as in the
association block. The block definition diagram in Figure 2 is not changed.

ibd SystemA J

:Flange
& Ground]

Figure 3: Connector in Figure 2 replaced with contents of its association block

:Flange f|1 fl2

9.3 Non-simulation ports changed to parts

9.3.1 Purpose

SysML supports blocks typing ports that have other properties beside simulation flow properties, but simulation
models do not. These ports must be changed into parts before translation to simulation platforms per Clause 10.

9.3.2 SysML model before processing

Figure 4 shows a port of type Wheel, which has a property radius that is not a simulation flow property.

ibd TotaISystem) bdd Example)

: Vehicle «interfaceBlock»
‘Wheel AMomFlowElement
physical interactions
inout aMomF : FlowingAMom

i

«block»
Wheel

phs constants
radius : Length

Figure 4: Port typed by block with a non-simulation flow property

9.3.3 SysML model after processing

Ports typed by blocks that have other properties besides simulation flow properties (owned or inherited) are changed
to regular parts. Figure 5 changes the port typed by Wheel in Figure 4 to a part. The property is not changed in any
other way in this step, including connectors to it (external connectors to the property are addressed in later
processing). The block definition diagram in Figure 4 is not changed.

SysML Extension for Physical Interaction and Signal Flow Simulation 10

ibd TotalSystem

: Vehicle

Figure 5: Port in Figure 4 changed to part

9.4 Separate blocks owning simulation flow properties, and typing
parts and ports

9.4.1 Purpose

SysML blocks can have multiple flow properties on part and port types, but simulation models have flows only on
port types, and only one per port for the correspondences in Clause 10. SysML blocks typing parts and ports can be
the same or share properties by generalization, but simulation models use separate types for parts and ports. SysML
connectors can link parts, but simulation models only link ports. Before translation to simulation platforms per
Clause 10, SysML parts must be typed by blocks that have no simulation flow properties (owned or inherited), while
ports must be typed by blocks owning exactly one simulation flow property and no others (owned or inherited), and
connectors must only link ports.

9.4.2 SysML model before processing

Figure 6 shows an example that will be used to illustrate the processing steps in Subclause 9.4.3. Block1 has two
simulation flow properties (sfp0 and sfpl), a PhSVariable (sv), and a port of type Block2 (p). Block2 has two
simulation flow properties (sfp2 and sfp3).

bdd Example J

«block»
Block1l

«block»
Block2

physical interactions
inout sfp0: FlowTypeO
Inout sfpl: FlowTypel

physicalinteractions
inout sfp2: FlowType2
inout sfp3: FlowType3

phs variables
sv: Real

ports
p: Block2

Figure 6: Blocks with multiple simulation properties, one combining them with others

9.4.3 SysML model after processing

The model in Figure 6 is processed in six steps.
9.4.3.1 Move simulation flow properties to their own blocks

Simulation flow properties owned by blocks that also have non-simulation flow properties (owned or inherited) are
moved to a new block and a generalization is added between the original block to the new one. The same is done for
blocks that own multiple simulation flow properties and no other properties, except that one of the simulation flow
properties remains on the original block. Figure 7 shows how simulation flow properties are moved from the blocks
in Figure 6. The two simulation flow properties of Blockl (sfp0 and sfpl) are moved to separate blocks (SfpOType

SysML Extension for Physical Interaction and Signal Flow Simulation 11

and Sfp1Type), both generalizing Blockl. In Block?2, the first simulation flow property (sfp2) is left in the block,
while the second (sfp3) is moved to a new block (Sfp3Type) generalizing Block2.

bdd Example J

«block» «block» «block»
SfpOType SfplType Sfp3Type
physical interactions physical interactions physical interactions
inout sfp0: FlowType0O inout sfpl: FlowTypel inout sfp3: FlowType3

ZF

«block» «block»
Blockl Block2
phs variables physical interactions
sv: Real inout sfp2: FlowType2
ports
p: Block2

Figure 7: Simulation flow properties in Figure 6 moved to their own blocks

9.4.3.2 Add ports for simulation flow properties inherited to blocks that have non-simulation flow
properties

Ports are added to blocks that have non-simulation flow properties (owned or inherited) for each simulation flow
property that is inherited directly from a block that owns it, such as those added in Subclause 9.4.3.1. The port type
is the block that owns the inherited simulation flow property. In Figure 7, Blockl has non-simulation flow
properties, as well as two simulation flow properties inherited directly from blocks that own them (sfp0 and sfp1,
inherited from SfpOType and Sfp1Type, respectively). Figure 8 adds two ports to Block1 (psfp0 and psfpl), typed by
the two general blocks. Block2 in Figure 7 is not changed, because it does not have non-simulation flow properties.

bdd Example

«block» «block»
Sfp0Type SfplType
physicalinteractions physical interactions
inout sfp0: FlowTypeO inout sfpl: FlowTypel

7

[
«block»
Block1

phsvariables
sv: Real

ports
psfpO: SfpOType
psfpl: SfplType
p: Block2

Figure 8: Port added to block that has non-simulation flow properties and inherits simulation flow properties
in Figure 7

9.4.3.3 Split up ports typed by blocks that have inherited simulation flow properties
Ports are added for each simulation flow property that is inherited to a block’s port types. The new ports are typed
by the block owning the inherited simulation flow property. In Figure 8, Blockl has a port typed by Block2, which

has a simulation flow property inherited from Sp3Type (sfp3, see Figure 7). Figure 9 adds a new port to Blockl
(psfp3) typed by Sp3Type, because of that inherited property.

SysML Extension for Physical Interaction and Signal Flow Simulation 12

bdd Example J

«block»
Sfp0Type

«block»
SfplType

physicalinteractions
inout sfp0: FlowType0

L

physicalinteractions
inout sfpl: FlowTypel

|
«block»
Block1
phsvariables
sv: Real

ports
psfp0: SfpOType
psfpl: Sfp1Type
p: Block2
psfp3: Sfp3Type

Figure 9: Port added alongside port typed by block with multiple simulation flow properties in Figure 8

9.4.3.4 Relink binding connectors that involve simulation flow properties moved to added ports

Binding connectors involving simulation flow properties that are moved to ports added in Subclauses 9.4.3.2 and
9.4.3.3 are relinked to their new locations. Specifically, after the processing in Subclause 9.4.3.1, binding connectors
linked to, or through property paths containing, a simulation flow property inherited to a block that has non-
simulation flow properties (owned or inherited) are relinked through the ports added in Subclause 9.4.3.2. Similarly,
binding connectors linked to, or through property paths containing, simulation flow properties on blocks typing ports
with multiple simulation flow properties are relinked through the ports added in Subclause 9.4.3.3. Figure 10 shows
binding connectors before processing linked through simulation flow properties inherited to Block1 (sfp0 and sfpl),
and bindings connectors linked through simulation flow properties of Block2 (p.sfp2 and p.sfp3). Figure 11 relinks
these bindings through the ports added in Subclauses 9.4.3.2 and 9.4.3.3 (psfp0.sfp0, psfpl.sfpl, and psfp3.sfp3).

@ «equal» (20
IE «equab a1
@ «equal» a a2 ptc:Block1Constraint
IE cededly []a3

Figure 10: Bindings involving simulation flow properties before processing

par Blockl
equal
psfp0.sfp0.a «equal» [0
psfpl.sfpl.a «equal» o
p.sfp2.a «equal» a2 ptc:Block1Constraint
psfp3.sfp3.a «equal»

Figure 11: Bindings in Figure 10 relinked through ports added in Subclauses 9.4.3.2 and 9.4.3.3

SysML Extension for Physical Interaction and Signal Flow Simulation 13

9.4.3.5 Replace or add connectors between properties typed by blocks that have simulation flow
properties moved to added ports

Connectors to parts or ports typed by blocks that inherit simulation flow properties that are moved to ports added in
Subclauses 9.4.3.2 and 9.4.3.3 are replaced by connectors to their new locations. Specifically, after the processing in
Subclause 9.4.3.1, connectors to parts typed by blocks that inherit simulation flow properties are replaced by
connectors to the ports added for these simulation flow properties in Subclause 9.4.3.2. Connectors are added
linking the ports added for ports with multiple simulation flow properties in Subclause 9.4.3.3. In both cases,
connectors are replaced or added only if the other end will have a matching simulation flow property (see Subclause
7.2.4), otherwise the connectors are deleted (this occurs if some of the simulation flow properties do not match
before processing). Figure 12 shows two parts typed by Blockl in Figure 6, before processing. A connector links the
parts, and a second connector links their ports. Figure 13 replaces the first connector by two connectors between the
ports psfp0 and psfpl, respectively, added due to the inherited simulation flow properties fsp0 and fsp1, respectively.
The figure also adds a connector between the ports added for the simulation flow property psfp3 inherited to Block2.

ibd Example J
— —
:Block1 d] Eh : Blockl

p p

Figure 12: Connectors between parts and ports from Figure 6 before processing

ibd Example
psfp0 psfp0

] L]
pspl psfpl -
psfp3 psfp3

: Block1 : Block1

Figure 13: Connectors in Figure 12 replaced or added between ports added in Subclauses 9.4.3.2 and 9.4.3.3

9.4.3.6 Removing generalizations to blocks owning simulation flow properties

Now that all the port types needed for simulation have been created, some generalizations to blocks dedicated to
simulation flow properties need be removed.

Generalizations to blocks that own simulation flow properties are removed, unless the inherited properties are
redefined in the special block. Figure 14 removes the generalizations in Figure 9 and Figure 7.

bdd Example J

«block» «block» «block»
Sfp0Type SfplType Sfp3Type
physical interactions physical interactions physical interactions
inout sfp0: FlowTypeO inout sfpl: FlowTypel inout sfp3: FlowType3
«block» «block»
Block1l Block2
phs variables physical interactions
sv: Real inout sfp2: FlowType2
ports

psfp0: Sfp0Type
psfpl: SfplType
p: Block2

psfp3: Sfp3Type

Figure 14: Generalizations in Figure 9 and Figure 7 removed

SysML Extension for Physical Interaction and Signal Flow Simulation 14

9.5 Reduce nesting of connector ends

9.5.1 Purpose

SysML supports connectors that link ports reached from the block owning the connector through a chain ofother
properties (property path), but some simulation models can only link ports reached through one property. These
SysML connectors must be split up to link ports reached through only one property before translation to simulation
platforms per Clause 10.

9.5.2 SysML model before processing

Figure 15 shows a connector linking a port (z) reached through a chain of two other properties (x and y). The length
of the nested connector end property path at that end is 2.

ibd Example J

X: X aA
yAYA zZ

Figure 15: Connector linking port reached through two other properties

9.5.3 SysML model after processing

Connectors that link ports reached from the owner of the connector through a chain of other properties (SysML
nested connector end property paths longer than 1) are relinked to an added intermediate port, and a connector added
from that port (reducing the property path length to 1). Figure 16 adds a proxy port to x’s type with the same type as
z, and the connector in Figure 15 is relinked to the added port. A binding connector is added in x’s type between the
new port and the original end of the connector. This procedure is repeated until connectors only link ports reached
from the block owning the connector through one property.

ibd Example J

X: X a A
z.Z :
equar_ L - z Z{]
«| »
VA

Figure 16: Connector in Figure 15 split by adding a proxy port and another connector

SysML Extension for Physical Interaction and Signal Flow Simulation 15

10 Translating between SysML and simulation

platforms

10.1 Introduction

This clause shows how to translate between SysML models extended as in Clause 7 (hereafter referred to as SysML)
and models in multiple simulation platforms. Translations are given as correspondences between patterns of using
SysML and simulation platforms, enabling translation in either direction. However,

Many SysML capabilities are not supported on simulation platforms (some of these are supported by
transforming SysML models before translation, see Subclause 9).

Simulation platforms have more specific purposes than SysML, resulting in loss of information when
translating from SysML to simulation platforms.

The selected platforms are Modelica and Simulink, including extensions of Simulink, such as Simscape. The
modeling concepts covered by these translations are available in both simulation languages.

Modelica is a textual simulation language for physical interaction and signal flow modeling supported by
various simulation tools, such as OpenModelica, Dymola®, and MapleSim® that add graphical interfaces
and numerical solvers. Modelica is defined by a grammar, but does not have a metamodel. As a result, the
terms used to describe Modelica models correspond to keywords defined in its grammar.

Simulink is a graphical simulation tool for signal flow modeling (unless extended, see below). Its
modeling concepts can be inferred from the simulation files generated from graphical models (no
metamodel or textual language has been released for Simulink). Two file formats are currently used: the
older punctuated textual format, or the newer XML format. The concepts used in these two formats are the
same, but the structure and the way values are represented differ. Simulink supports S-functions to
represent system behaviors as MATLAB files (generally behavior in state-space form). S-functions always
follow the same structure and use the same concepts.

Simulink includes extensions for other aspects of systems modeling:

Simscape is the extension of Simulink for physical interaction modeling. Physical components
specifications are persisted in a file that must conform to the Simscape grammar. Simscape concepts are
named in the grammar.

Stateflow® is the Simulink extension for state machines. It uses additional concepts represented along with
Simulink elements.

Subclauses 10.2 through 10.12 are divided into these parts:

Purpose: Explains the particular kinds of information in system or simulation modeling covered by the
subclause.

SysML modeling: Describes how the above information is modeled in SysML, extended as in Clause 7
when necessary, along with a small example.

Simulation platform modeling: Describes the correspondence between the portions of SysML used as above
and modeling patterns in simulation platforms, along with simulation models corresponding to the SysML
example above.

Summary: Summarizes the correspondences between SysML and simulation platforms in a table.

Subclause 10.13 covers translations for the expression language in Clause 8.

SysML Extension for Physical Interaction and Signal Flow Simulation 16

10.2 Root element
10.2.1 Purpose

Systems and simulation models are organized in a structured way starting with root elements.

10.2.2 SysML modeling

SysML root elements are packages, which are containers for model elements.

pkg Example J
1]

P

«block»
B

Figure 17: Package and model in SysML

Figure 17 shows a package P owning a block B.

10.2.3 Modelica modeling
SysML packages correspond to Modelica models defined as the root element of a file.

The following Modelica code corresponds to Figure 17. It has a model P owning a model B (see Subclause 10.3.3).

model P
model B
end B;

end P;

10.2.4 Simulink modeling

A SysML package corresponds to a Simulink library paired with a model, defined as root elements of separate files.
The model is executed during simulation, referencing blocks defined in the library (see Subclause 10.3.4 about
defining and referencing Simulink blocks). Only Simulink blocks defined in libraries can be referenced (reused),
either by a library or a model. Models link together references to library blocks, corresponding to SysML connectors
between parts (see Subclause 10.8.4).

The following Simulink codes in separate files correspond to Figure 17. The first has a library P and the second a
model M (the names only appear in the file names). Both include a system, which the library uses to define a
reusable block B.

<Library>
<System>
<Block Name="B'">
</Block>
</System>
</Library>

<Model>
<System>
</System>

</Model>

SysML Extension for Physical Interaction and Signal Flow Simulation 17

10.2.5 Simscape modeling

SysML packages correspond to Simscape libraries compiled from directories of files with code corresponding to the
elements in the package. Simscape files each contain a single element (see Subclauses 10.2.5 and 10.7.10) and are
stored in directories named for the Simulink library that will contain the elements after the directory is compiled (the
library is not specified in the files, there is no Simscape language element for it corresponding to SysML packages).

The package P in Figure 7 corresponds to a directory with “P” in its name. The directory has a file containing
Simscape code corresponding to block B (see Subclause 10.3.5).

10.2.6 Summary

SysML Modelica Simulink Simscape
Package Model Library and Model, each Library (compiled from directory of
containing a system element files)
Element owned by Element in model Element in system Element in library (compiled from
package element file)

10.3 Blocks and properties

10.3.1 Purpose

Systems and simulation models contain classes describing systems and components that share the same features.
Systems and components function (play roles) within others, which are described in models as the usage of one class
by another. For example, a class for cars might have a power source reusing a class for engines.

10.3.2 SysML modeling

Modeling in SysML is based on blocks, which are classes of systems or components, describing objects that share
the same features. These features can be structural or behavioral.

Structural features of blocks are called properties, some of which are for values, such as numbers or strings of
characters, and some of which are usages of other blocks. This difference is indicated by typing a property by a data
type or by a block. Some system properties typed by blocks are parts, corresponding to usages of those block within
a system or component.

Figure 18 shows a SysML block A that contain one part bl of type B. B is also a SysML block.

bdd Example J

«block»
A «block»
parts B
bl: B

Figure 18: Block and part in SysML

SysML Extension for Physical Interaction and Signal Flow Simulation 18

10.3.3 Modelica modeling

Modelica is a human-readable textual language for physical interaction and signal flow modeling. It is class-
oriented, like SysML, but with different terminology. Modelica includes various kinds of classes, four of which are
used in this specification: models (corresponding to SysML blocks that do not type ports, see below, and to SysML
packages, see Subclause 10.3.3), connectors (for physical interaction, see Subclause 10.7.8), types (for SysML value
types, see Subclause 10.11.3) and blocks (for SysML state machines, see Subclause 10.12.3). SysML properties
correspond to Modelica components.

The following Modelica example corresponds to the SysML block A in Figure 18. It has a Modelica model A
corresponding to the SysML block A, with a component b1 typed by Modelica model B, corresponding to the
SysML property bl typed by block B.

model A
B bl;
end A;
model B
end B

It has a model A corresponding to the SysML block A, with a component b1 typed by Modelica model B,
corresponding to the SysML property bl typed by block B.

10.3.4 Simulink modeling

Simulink is a graphical language for signal flow modeling that has XML-based file format and an extension for
physical interaction modeling (see Subclause 10.2.5). It is class-oriented to some extent, though not as much as the
other simulation platforms used in this specification. Simulink has an abstraction called blocks that has many
specializations, five of which are used in this specification: subsystems (corresponding to SysML blocks, see
below), references (corresponding to SysML parts, see below), inports and outports (corresponding to SysML ports
with in and out flow properties, see Subclauses 10.7.5), and S-functions (corresponding to SysML constraint blocks,
see Subclause 10.9.5). When used as a container, structural features are contained in a Simulink system. Simulink
blocks are identified by an integer (SID) that is unique within its model or library. A SysML block and its parts
correspond a Simulink block with a system containing blocks referencing other blocks (see Subclauses 10.4.4 and
10.5.4 about inherited features).

SysML blocks that do not have constraint properties correspond to Simulink subsystem blocks. SysML blocks with
constraint properties correspond to either Simulink subsystem blocks (when Simscape is not included), or to
Simscape components (when Simscape is included).

The following example shows Simulink code corresponding to Figure 18. It has a Simulink subsystem block A
corresponding to the SysML block A, with a system that contains a reference to the Simulink block B from the same
library Example (see Subclause 10.2.4 about libraries).

<Block BlockType=""SubSystem™ Name="A" SID=""1">
<System>
<Block BlockType=""Reference"™ Name="h1" SID="2">
<P Name="Ports">[0,0]</P>
<P Name="SourceBlock">Example/B</P>
</Block>
</System>
</Block>

<Block BlockType=""SubSystem"™ Name="B" SID="3"">
<System>
</System>

</Block>

SysML Extension for Physical Interaction and Signal Flow Simulation 19

10.3.5 Simscape modeling

SysML parts correspond to Simscape member components (see 10.4.5 and 10.5.5 about inherited features).

The following example shows Simscape code corresponding to blocks A and B in Figure 18. It has a component A
containing a member component b1 of type B from the same library Example (see Subclause 10.2.4 about libraries).

component A
components
bl=Example.B;
end
end

component B
end

10.3.6 Simulink/Simscape modeling

Simscape is an extension of Simulink for physical interaction modeling. SysML blocks with constraint properties or

binding connectors correspond to Simscape components.

The following Simulink code corresponds to block A in Figure 18. It has a subsystem block A, with a system that
contains a reference b to the Simscape component B, (defined in Subclause 10.3.5), from the library Example (see

Subclause 10.2.4 about libraries).

<Block BlockType=""SubSystem™ Name="A" SID=""1"">

<System>

<Block BlockType=""Reference™ Name="b" SID="2">
<P Name="SourceBlock">Example/B</P>
<P Name="'SourceType'>B</P>
<P Name="SourceFile">Example.B</P>
<P Name=""ComponentPath'>Example.B</P>
<P Name=""ClassName''>B</P>

</Block>
</System>
</Block>

10.3.7 Summary

SysML Modelica Simulink Simscape
Block with no constraint Model SubSystem block with N/A
properties and no binding system
connector
Block with constraint Model SubSystem block with Component
properties or binding system
connectors
Block name Model name SubSystem name Component name

Property typed by a block,
owned by block

Component owned by
model

Reference block, owned by
system

Member component

Property name

Component name

Reference block name

Member component name

Property type

Component type

Reference block source

Member component type

SysML Extension for Physical Interaction and Signal Flow Simulation

20

10.4 Generalization

10.4.1 Purpose

Generalization simplifies systems and simulation modeling by enabling features of one class to be reused by
(inherited to) another class.

10.4.2 SysML modeling

SysML provides a generalization relationship to indicate that one block reuses the features of another. A block
generalized by another block will inherit all the properties of that other block. SysML supports multiple
generalizations of the same block.

Figure 19 shows a block A with a property cl of type C, and a block B that is a specialization of that block A.

bdd Example J

«block»
A

parts «block»
cl:C C

1

«block»
B

Figure 19: Generalization in SysML

10.4.3 Modelica modeling
SysML generalization corresponds to Modelica class extension, including multiple extensions of the same class.

The following Modelica code corresponds to Figure 19. It has a model A with a component c1 of type C, and a
model B that extends A. As a result, B inherits the component c1 from A.

model A
C ci;
end A;

model B
extends A;
end B;

10.4.4 Simulink modeling

Simulink does not support generalization (Simulink blocks cannot inherit features from other blocks). Inherited
features that are not redefined in SysML (see Subclause 10.5) correspond to newly defined (uninherited) features in
Simulink blocks.

The following Simulink code corresponds to Figure 19. It has blocks A and B, each with a system containing a
block c1 that references block C. There is no generalization between A and B.

SysML Extension for Physical Interaction and Signal Flow Simulation 21

<Block BlockType=""SubSystem™ Name="A" SID=""1"">

<System>

<Block BlockType=""Reference™ Name="cl" SID="2">

<P Name="Ports'">[0,0]</P>

<P Name="SourceBlock">Example/C</P>

</Block>
</System>
</Block>

<Block BlockType=""SubSystem™ Name="B" SID="'3"">

<System>

<Block BlockType=""Reference"™ Name="'cl" SID="4">

<P Name="Ports'>[0,0]</P>

<P Name="SourceBlock">Example/C</P>

</Block>
</System>
</Block>

10.4.5 Simscape modeling

Simscape supports single generalization of components. SysML generalization corresponds to Simscape
superclassing when the special SysML block has only one generalization and does not redefine any properties (see
Subclause 10.5), otherwise, SysML generalization has no correspondence in Simscape, and inherited properties in
SysML that are not redefined correspond to new (uninherited) component members in Simscape.

The following Simscape code corresponds to Figure 19. It has a component A with a member component c1 typed

by C, and the component B generalized by A.

component A
nodes
cl = Example.C;
end
end

component B < Example.A
end

10.4.6 Summary

SysML Modelica Simulink Simscape
Generalization Extend clause N/A Subclassing, when the special SysML
block has only one generalization and
does not redefine properties,
otherwise, N/A
Inherited features Inherited components | Newly defined (uninherited) | Inherited member components when

features

the special SysML block has only one
generalization and does not redefine
properties, otherwise, new
(uninherited) member components

SysML Extension for Physical Interaction and Signal Flow Simulation

22

10.5 Property redefinition

10.5.1 Purpose

Classes that inherit features in systems and simulation models (see Subclause 10.4) can alter those features. For
example, they can change the type of an inherited feature to a specialization of that type.

10.5.2 SysML modeling

In SysML, blocks can alter inherited properties by redefinition. Figure 20 shows a block A with a property c1 of type
C, and a block B specializing block A. B has a property c1 that redefines C::c1 to be typed by D, a specialization of
C.

bdd Example
«block»
A
parts «block»
cl:C %
«block» «bI(IJDck»
B
parts
cl: D {redefines c1}

Figure 20: Property redefinition in SysML

10.5.3 Modelica modeling

Modelica supports alteration of inherited properties as SysML does, except that the property name cannot be
changed. SysML redefined and redefining properties correspond to Modelica replaceable and redeclare components,
respectively.

The following Modelica code corresponds to Figure 20. It has a model A with component c1 indicated as
replaceable, and a model B extending A with a component of the same name redeclaring it to alter the type (compare
to Subclause 10.4.3).

model A
replaceable C cl;
end A;

model B
extends A;
redeclare D cl;
end B;

10.5.4 Simulink modeling

Simulink does not support redefinition because it does not support generalization (see Subclause 10.4.4). The effect
of SysML redefinition can be achieved by using Simulink correspondences for properties (see Subclause 10.2.4) that
redefine inherited ones (see Subclause 10.4.4 about inherited properties that are not redefined).

The following Simulink code corresponds to Figure 20. It has block A and B, each with a system containing a block
c1, one referencing block C and the other block D (compare to Subclause 10.4.4).

SysML Extension for Physical Interaction and Signal Flow Simulation 23

<Block BlockType=""SubSystem™ Name="A" SID=""1"">
<System>
<Block BlockType=""Reference™ Name="cl" SID="2">
<P Name="Ports'">[0,0]</P>
<P Name="SourceBlock">Example/C</P>
</Block>
</System>
</Block>

<Block BlockType=""SubSystem™ Name="B" SID="'3"">
<System>
<Block BlockType=""Reference"™ Name="'cl" SID="4">
<P Name="Ports'>[0,0]</P>
<P Name="SourceBlock">Example/D</P>
</Block>
</System>
</Block>

10.5.5 Simscape modeling

Simscape supports generalization (single, see Subclause 10.4.5), but not redefinition. The effect of SysML
redefinition can be achieved by using Simscape correspondences for multiple generalization or inherited SysML
properties that are redefined (see Subclause 10.4.5), and including correspondences for properties (see Subclause
10.2.5) that redefine inherited properties.

The following Simscape code corresponds to Figure 20. It has component A and B, each with a member component
cl, one typed by component C and the other by D (compare to Subclause 10.4.5).
component A

components
cl = Example.C;
end
end

component B

components
cl = Example.D;
end
end

10.5.6 Summary

SysML Modelica Simulink Simscape
Redefined property Replaceable component | N/A N/A
Property that redefines Redeclare component | Reference, inport, outport, | Member component, variable,
inherited property of the or connection block parameter, input, output, or node
same name

10.6 PhSVariables and PhSConstants

10.6.1 Purpose

Simulation modeling specifies how numeric and boolean variable values can change in more detail than system
models. Simulation modeling distinguishes numeric variables with values that can change continuously (possible
infinitesimally) over time from those that always change discretely (finitely), possibly only at regular intervals. It

SysML Extension for Physical Interaction and Signal Flow Simulation 24

also identifies variables with values that can only change between simulations (constants), rather than during
simulation.

10.6.2 SysML modeling

The simulation extension in Subclause 7.2 distinguishes properties as described above. Continuous SysML
properties are stereotyped by PhSVariable, with isContinuous=true. Discrete properties are stereotyped by
PhSVariable, with isContinuous=false. Constant properties are stereotyped by PhSConstant.

bdd Example

«block»

A

attributes
«phsVariable» {isContinuous=true} v1 : Real
«phsVariable» {isContinuous=false} v2 : Real
«phsConstant» v3 : Real

Figure 21: PhSVariables and PhSConstant in SysML

Figure 21 shows a block A with three properties: one continuous PhSVariable v1, one discrete PhSVariable v2, and
one PhSConstant v3.

Note: SysML notation for stereotype properties can omit a property if the default value is used. For example,
isContinuous is true by default, and can be omitted from the notation for variables that are continuous.

10.6.3 Modelica modeling

The variability of Modelica properties are of four kinds: continuous, discrete, parameter, and constant. By default,
Modelica properties are continuous. PhSVariables with isContinuous=true correspond to continuous components,
PhSVariables with isContinuous=false correspond to discrete components, and PhSConstants correspond to
parameter variables.

The following Modelica code corresponds to Figure 21. It has a model A, with three properties v1, v2 and v3 of type
Real, that are continuous, discrete, and parameter, respectively.

model A
Real v1;
discrete Real v2;
parameter Real v3 = “__.~”
end A

10.6.4 Simulink modeling

See Subclause 10.8 for Simulink corresponding to SysML value properties in the context of SysML constraint
blocks and binding connectors.

10.6.5 Simscape modeling

Data properties in Simscape can either be (continuous) variables or (constant) parameters. Discrete variables are not
supported. PhSVariables with isContinuous=true correspond to Simscape variables, and PhSConstants correspond to
parameters.

The following Simscape code corresponds to Figure 21. It has a component A with one variable v1, and one
parameter v3. The variable v1 is continuous.

SysML Extension for Physical Interaction and Signal Flow Simulation 25

component A

variables
vl = 1;
end
parameters
v3 = 10;
end
end

10.6.6 Summary

SysML Modelica Simulink Simscape
Property stereotyped by PhSVariable, with Continuous component N/A Variable
isContinuous=true
Property stereotyped by PhSVariable, with Discrete component N/A N/A
isContinuous=false
Property stereotyped by PhSConstant Parameter component N/A Parameter
Property type Component type N/A Member type

10.7 Ports and Flow Properties

10.7.1 Purpose

Systems and simulation modeling describe interactions between system components. These interactions include
exchanges of physical substances, signals, or both. System and simulation components include structural features
used as connection points to other components. System and simulation models include connections between these
points when the components are used. System models specify the kind of things exchanged between connection
points, while simulation models give characteristics of these exchanges, in particular the rate of flow and potential to
flow.

10.7.2 SysML modeling

In SysML, interactions between parts are modeled using connectors. Connections are often between ports of these
parts. Ports are properties used as connection points to other blocks. This correspondence assumes connectors are
only between ports (see Subclause 9.4.3.2 about connectors between parts). Ports describe flows through them using
flow properties, which specify the kind of things that flow by their type, as well as the direction of flow
(infout/inout).

The extension for simulation in Subclause 7.2 adds information to flow properties needed for simulation, in
particular, flow rates and potentials to flow (conserved and non-conserved PhSVariables, respectively). Physical
interaction uses both of these, while signal flow has semantics equivalent to potential to flow. PhSVariables for
physical interactions are on blocks specialized from ConservedQuantityKind (see Subclause 11.2.2) typing flow
properties. PhSVariables for signals are flow properties (a property with two stereotypes applied) that have a
numeric or boolean type specifying the kind of signal.

Subclauses 10.7.3 through 10.7.6 cover signal flow modeling in SysML and simulation platforms, while Subclauses
10.7.7 through 10.7.10 cover physical interaction modeling.

SysML Extension for Physical Interaction and Signal Flow Simulation 26

10.7.3 SysML modeling, signal flow

When modeling signal flow, flow properties on port types must be
e Stereotyped by a non-conserved PhSVariable.
e Typed by Real, Integer, Boolean, or one of their specializations.
e Eitherinorout.

Figure 22 shows an example signal flow application. The block Spring has two ports u and y, of type
ReallnSignalElement and RealOutSignalElement from the signal flow library (Subclause 11.2.1), respectively.
ReallnSignalElement has an in flow property rsig, while RealOutSignalElement has the same property with an out
direction.

«interfaceBlock»

bdd Example | SysPhSLibrary::

ReallnSignalElement

«block» signal flows
Spring in rSig : Real
ports
u: RealSignallnElement «interfaceBlock»
y: RealSignalOutElement SysPhSLibrary::
RealOutSignalElement
signal flows
out rSig : Real

Figure 22: Ports for signal flow in SysML

10.7.4 Modelica modeling, signal flow

SysML ports with a type containing a flow property stereotyped by a non-conserved PhSVariable and typed by Real,
Integer, or Boolean, or one of their specializations, correspond to Modelica components typed by the same data type.
SysML flow properties have no corresponding constructs in Modelica, but the Modelica component corresponding
to the SysML port has a direction given by the flow property.

The following Modelica code corresponds to Figure 22. It has a model Spring, with two components u and y of type
Real and of direction respectively in and out.

model Spring
in Real u;
out Real y;

end Spring;

10.7.5 Simulink modeling, signal flow

Simulink has several kinds of ports, three of which are used in this specification: inports, outports (for signal flow,
corresponding to SysML ports typed by blocks with in or out flow properties that have PhSVariable applied,
respectively, see below), and connection ports (for physical interaction, see Subclause 10.7.9). Simulink block
definitions contain an array giving the number of each kind of port, with connection ports distinguished by whether
they appear on the left or right of their blocks in Simulink diagrams. The number of inports and outports are given at
the 1st and 2nd positions from the left, respectively, while the number of left and right connection ports are at the 6th
and 7th positions, respectively. Trailing series of zeros on the right can be omitted.

SysML ports with a type containing a flow property stereotyped by a non-conserved PhSVariable and typed by Real,
Integer, or Boolean, or one of their specializations, correspond to Simulink inports or outports, depending on the
direction of the flow property.

SysML Extension for Physical Interaction and Signal Flow Simulation 27

The following Simulink code corresponds to Figure 22. It has a block Spring, with one inport u and one outport y.
The Ports property of the block gives the port array, showing the number of inports and outports. The Port property
of the inport or outport specifies the index of that inport or outport, which must be separately sequential integers for
each kind of port, starting with 1.

<Block BlockType=""SubSystem"™ Name="'Spring" SID="1">
<P Name="Ports'>[1,1]</P>
<System>
<Block BlockType="Inport" Name="u" SID="2">
<P Name="Port'">1</P>
</Block>
<Block BlockType=""Outport" Name="y' SID="'3">
<P Name="Port'">1</P>
</Block>
</System>
</Block>

10.7.6 Simscape modeling, signal flow

SysML ports with a type containing a flow property stereotyped by a non-conserved PhSVariable and typed by a
Real, Integer, or Boolean, or one of their specializations, correspond to Simscape inputs or outputs, depending on the
direction of the flow property.

The following Simscape code corresponds to Figure 22. It has a component Spring, with one input u and one output
y, specifying that they should appear on the left and right sides of blocks referencing the spring in Simulink
diagrams, respectively (see Subclauses 10.8.5 and 10.8.6). Left or right positioning does not restrict how
components can be connected.

component Spring
inputs

u= {0, “unit’}; % :left
end

outputs

y = {0, “unit’}; % :right
end
end

10.7.7 SysML modeling, physical interaction

When modeling physical interaction, flow properties of port types must be inout. This flow property must be typed
by a block (indirectly) specializing ConservedQuantityKind (see Subclause 11.2.2), which contains conserved and
non-conserved PhSVariables (the same number of each).

Figure 7 shows an example physical interaction application. The block Spring has two ports p1 and p2, of type
Flange. Flange has an inout flow property IMo typed by FlowingLMom from the physical interaction library
(Subclause 11.2.2), which has one conserved PhSVariable f and one non-conserved PhSVariable IV.

bdd Example

«block»
«block» «block» SysPhSLibrary::
Spring Flange FlowingLMom
ports flow properties phs variables
pl: Flange inout IMo : FlowingLMom {isConsened} f: Force
p2: Flange IV : Velocity

Figure 23: Ports for physical interaction in SysML

SysML Extension for Physical Interaction and Signal Flow Simulation 28

10.7.8 Modelica modeling, physical interaction

SysML ports with a type containing a flow property typed by a block (indirectly) specializing
ConservedQuantityKind (see Subclause 11.2.2) correspond to Modelica components that have no direction
specified, and SysML port types correspond to Modelica connectors. SysML flow properties have no corresponding
constructs in Modelica, but PhSVariables on conserved quantity kind blocks correspond to Modelica components on
connectors. PhSVariables on conserved quantity kind blocks correspond to Modelica components. Conserved
PhSVariables correspond to Modelica flow components, while non-conserved PhSVariables correspond to regular
Modelica components.

The following Modelica code corresponds to Figure 23. It has a model Spring, with two components p1 and p2 of
type Flange. Flange is a connector that has one flow component f, and one regular component IV.

model Spring
Flange p1;
Flange p2;

end Spring;

connector Flange
flow Real T;
Real 1V;

end Flange;

10.7.9 Simulink modeling, physical interaction

Simulink supports connection ports for representing bidirectional flows, but they must be linked to Simscape nodes
(see Subclauses 10.7.10 and 10.8.6).

The following Simulink code corresponds to Figure 11. It has a subsystem block Spring with connection ports p1
and p2. Connection ports must be linked to nodes on Simscape components defined in the subsystem block (see
Subclause 10.7.5 about left and right annotation and port arrays).

<Block BlockType=""SubSystem"™ Name="'Spring" SID="3">
<P Name='"Ports">[0, 0, 0, 0, O, 1, 1]</P>
<System>
<Block BlockType=""PMIOPort" Name="pl'" SID=""1"">
<P Name=""Port">1</P>
<P Name="Side">Left</P>
</Block>
<Block BlockType=""PMIOPort" Name="p2'" SID="2">
<P Name=""Port'>2</P>
<P Name='"Side">Right</P>
</Block>
</System>
</Block>

10.7.10 Simscape modeling, physical interaction

Simscape adds support for physical interaction ports to Simulink, called nodes. Nodes are typed by a domain, which
corresponds to a SysML port type with an inout flow property typed by a block (indirectly) specializing
ConservedQuantityKind (see Subclause 11.2.2). Conserved PhSVariables on these blocks correspond to Simscape
balancing variables in domains.

The following Simscape code corresponds to Figure 23. It has a component Spring, with two nodes p1 and p2 of
type Flange (Simscape nodes use left and right annotations in the same way inputs and outputs do, see Subclause
10.7.6). Flange is a domain from the package CurrentLibrary, with two variables: one non-balancing variable 1V,
and one balancing variable f.

SysML Extension for Physical Interaction and Signal Flow Simulation 29

component Spring

nodes
pl = CurrentLibrary_Flange; % :left
p2 = CurrentLibrary.Flange; % :right
end
end

domain Flange

variables
1Iv = {0, "m/s"};
end

variables(Balancing=true)
f = {0, "N"};
end
end

10.7.11 Summary

stereotyped by a non-conserved PhSVariable | equivalent data type
and typed by Real, Integer, Boolean or one of
their specializations (signal flow)

SysML Modelica Simulink Simscape
Port typed by block with an in flow property | Component typed by an Inport Input variable
stereotyped by a non-conserved PhSVariable | equivalent data type
and typed by Real, Integer, Boolean or one of
their specializations (signal flow)
Port typed by block with an out flow property | Component typed by an Outport Output variable

specializing ConservedQuantityKind
(physical interaction)

Port typed by block with an inout flow Component typed by Connection port | Node typed by
property typed by block (indirectly) connector domain

specializing ConservedQuantityKind

(physical interaction)

Block (indirectly) specializing Connector N/A Domain
ConservedQuantityKind (physical

interaction)

PhSVariables on blocks (indirectly) Components of connector | N/A Variables of domain

10.8 Connectors

10.8.1 Purpose

A connection between two connection points enables exchange of physical substances or signals between these

parts.

10.8.2 SysML modeling

In SysML, connectors are used to link two ports. These connections exist only in the context of the block that owns

the connector, and other blocks it generalizest (connectors inherit).

SysML Extension for Physical Interaction and Signal Flow Simulation

30

Figure 24 shows an example of SysML connectors. It has a block Example with two parts s1 and s2, of types
SpringA and SpringB, respectively, defined similarly to Spring in Figure 11, Subclause 10.7.7. The blocks SpringA
and SpringB have two ports, p1 and p2 of type Flange, as defined in Figure 23. The figure shows a connector
between the port p2 of s1, and the port p1 of s2.

ibd Example

{1
s1:SpringA
]

p2:Flange
pl:Flange

0
s2:SpringB
0

Figure 24: Connectors in SysML

10.8.3 Modelica modeling

SysML connectors correspond to Modelica connect equations, which link components typed by Modelica
connectors. This depends on the correspondence between SysML port types and Modelica connectors (see Subclause
10.7.8).

The following Modelica code corresponds to Figure 24. It has a model Example with two components s1 and s2 of
types SpringA and SpringB, respectively. The models SpringA and SpringB have two components p1 and p2 of type
Flange, defined similarly to Spring in Subclause 10.7.8. Model contains a connect equation linking component p2 of
s1 to component pl of s2.

model Example

SpringA sl;

SpringB s2;
equation

connect(sl.p2, s2.pl);
end Example;

10.8.4 Simulink modeling, between blocks with no constraints
SysML connectors correspond to Simulink lines when;
e Simscape is not used with Simulink.

e Simscape is used with Simulink and the SysML connectors are owned by a block with no constraints
involving PhSVariables and that link ports on blocks with no constraints involving PhSVariables, such as
those in Subclause 11.3, SysML connectors correspond to Simulink lines (see Subclauses 10.8.5 and 10.8.6
for other cases when Simscape is used with Simulink).

Simulink lines are directed from outports to inports.

The following Simulink code corresponds to Figure 24, assuming SpringA and SpringB do not have constraints
involving PhSVariables. It has a subsystem block Example with two blocks s1 and s2 referring to the blocks
SpringA and SpringB, respectively, and having one inport and one outport each, defined similarly to Spring in
Subclause 10.7.5. Aline is defined between the outport port of s1 (p2) and the inport of s2 (p1). Lines identify their
end ports by the identifier of the block defining the port, followed by “#” and the kind of port (“in” and *“out” for
inports and outports, respectively, as shown below, or “lconn” and “rconn” for left and right connection ports,
respectively, see Subclause 10.7.5), followed by a colon and the index of the port among those of that kind in the
defining block (ports are all ordered).

SysML Extension for Physical Interaction and Signal Flow Simulation 31

<Block BlockType=""SubSystem™ Name="Example' SID=""1">
<P Name="Ports'>[0,0]</P>
<System>
<Block BlockType=""Reference"™ Name="'s1" SID="2">
<P Name="Ports">[1,1]</P>
<P Name="SourceBlock">Library/SpringA</P>
</Block>
<Block BlockType=""Reference"™ Name="s2" SID="3">
<P Name="Ports'>[1,1]</P>
<P Name="SourceBlock">Library/SpringB</P>
</Block>
<Line>
<P Name="'Src''>1#out:1</P>
<P Name="Dst"'>2#in:1</P>
</Line>
</System>

</Block>

10.8.5 Simulink modeling, between blocks with constraints

When Simscape is used with Simulink,, SysML connectors that are owned by a block with no constraints involving
PhSVariables and that link ports on blocks with constraints involving PhSVariables (see Subclause 10.9) correspond

to a type of Simulink line called connections.

The following Simulink code correspond to Figure 24, assuming SpringA and SpringB have constraints involving

PhSVariables. It has a subsystem block Example with two blocks s1 and s2 referring to Simscape components

SpringA and SpringB, respectively, defined similarly to Spring in Subclause 10.7.10. The springs have one left port
(p1) and one right port (p2) each, linked by a line of type “Connection” (see Subclause 10.8.4 about defining the

ends of lines).

<Block BlockType=""SubSystem™ Name="Example' SID=""1">
<P Name="Ports'">[0,0]</P>

<System>

<Block BlockType=""Reference"™ Name="'s1'" SID="2">

<P
<P
<P
<P
<P
<P

Name=""
Name=""
Name=""
Name=""
Name=""
Name=""

</Block>
<Block BlockType=""Reference"™ Name="s2" SID="3">

<P
<P
<P
<P
<P
<P

Name=""
Name=""
Name=""
Name=""
Name=""
Name=""

</Block>
<Line LineType="Connection'>

<P Name="'Src''>1#rconn:1</P>

<P Name='"Dst''>2#lconn:1</P>

</Line>

</System>

</Block>

Ports'>[0,0,0,0,0,1,1]</P>
SourceBlock'">Library/SpringA</P>
SourceType'>SpringA</P>
SourceFile">Library.SpringA</P>
ComponentPath">Library.SpringA</pP>
ClassName">SpringA</P>

Ports'>[0,0,0,0,0,1,1]</P>
SourceBlock'">Library/SpringB</P>
SourceType'>SpringB</P>
SourceFile">Library.SpringB</P>
ComponentPath">Library.SpringB</P>
ClassName"'>SpringB</P>

SysML Extension for Physical Interaction and Signal Flow Simulation

32

10.8.6 Simulink modeling, between blocks that have constraints and blocks that
do not

When Simscape is used with Simulink, SysML connectors that are owned by a block with no constraints involving
PhSVariables and that link ports of a block with constraints involving PhSVariables (see Subclause 10.9) to ports of
other blocks without constraints involving PhSVariables, such as those in Subclause 11.3, or vice versa, it is
necessary to use an additional block between them to convert a regular Simulink signal into a Simscape signal, or
vice versa. Specifically, a Simulink connection links a block with constraints (through ports) to or from the converter
block, while a Simulink line connects the converter block to or from a block with no constraints.

The following Simulink code connects a Simulink block and a Simscape component, corresponding to Figure 24,
assuming SpringA does not have constraints involving PhSVariables, while SpringB does. The code has a subsystem
block Example with a block sl referring to Simulink block SpringA (defined similarly to Spring in Subclause
10.7.5), a block trl converting regular signals to physical signals, a block s2 referring to Simscape component
SpringB (defined similarly to Spring in Subclause 10.7.10), a block tr2 converting physical signals to regular
signals, and a block s3 also referring to Simulink block SpringA. Lines of type Connection link s1, trl, s2, tr2, and
s3.

<Block BlockType=""SubSystem"™ Name="Example' SID=""1">
<P Name="Ports'>[0,0]</P>
<System>
<Block BlockType=""Reference™ Name="'s1" SID="1">
<P Name="Ports'">[1,1]</P>
<P Name="SourceBlock">Library/SpringA</P>
</Block>
<Block BlockType=""Reference'™ Name="trl' SID="2">
<P Name="Ports'>[1, 0, 0, 0, 0, 0, 1]</P>
<P Name="SourceBlock">nesl_utility/Simulink-PS
Converter</pP>
<P Name="SourceType'">Simul ink-PS
Converter</pP>
</Block>
<Block BlockType=""Reference"™ Name="s2" SID="3">
<P Name="Ports'>[0,0,0,0,0,1,1]</P>
<P Name="SourceBlock">Library/SpringB</P>
<P Name="SourceType''>SpringB</P>
<P Name="SourceFile'">Library.SpringB</P>
<P Name=""ComponentPath">Library.SpringB</P>
<P Name=""ClassName''>SpringB</P>
</Block>
<Block BlockType=""Reference" Name="tr2'" SID="4">
<P Name="Ports">[0, 1, 0, 0, O, 1]</P>
<P Name="SourceBlock">nesl_utility/PS-Simulink
Converter</pP>
<P Name="SourceType">PS-Simulink
Converter</pP>
</Block>
<Block BlockType=""Reference"™ Name="s3" SID="5">
<P Name="Ports'>[1,1]</P>
<P Name="SourceBlock">Library/SpringA</P>
</Block>
<Line>
<P Name="'Src''>1#out:1</P>
<P Name="Dst''>2#in:1</P>
</Line>
<Line LineType="Connection'>
<P Name="'Src''>2#rconn:1</P>
<P Name="Dst'>3#lconn:1</P>

SysML Extension for Physical Interaction and Signal Flow Simulation 33

</Line>

<Line LineType="Connection'>
<P Name="'Src''>3#rconn:1</P>
<P Name="Dst''>4#lconn:1</P>

</Line>
<Line>

<P Name="'Src''>4#out:1</P>
<P Name="'Dst''>5#in:1</P>

</Line>
</System>
</Block>

10.8.7 Simscape modeling

When Simscape is used with Simulink, SysML connectors owned by a block with constraints involving
PhSVariables correspond to Simscape connections.

The following Simscape code corresponds to Figure 24. It has a block Example with two components s1 and s2 of
type Spring A and SpringB, defined similarly to Spring in Subclause 10.7.10, and a connection between s1.p2 and

s2.pl.

component Example
components
sl=Library.SpringA;
s2=Library.SpringB;
end
connections

connect(sl.p2, s2.pl);

end
end

10.8.8 Summary

SysML

Modelica

Simulink
(without Simscape)

Simulink
(with Simscape)

Simscape

Connector between ports with
in or out flow properties

Connect equation
between components

Line between
inport/outports

Connection line
between connectors

Connect statement

Connector between ports with
inout flow properties

Connect equation
between components

N/A

Connection line
between connectors

Connect statement

10.9 Blocks with constraints

10.9.1 Purpose

System behavior is represented in simulation models by expressions relating values of system properties. Simulating
expressions involves computing an unknown variable from known variables.

10.9.2 SysML modeling

Simulation expressions correspond to constraint blocks in SysML. Constraint blocks are blocks that have parameters
and constraint properties (properties typed by constraint blocks). Parameters are properties used in the equations,

while constraints are equations.

SysML blocks use constraint blocks by typing properties with them (constraint properties), and owning binding
connectors that link parameters of the constraint blocks to other properties of the block.

SysML Extension for Physical Interaction and Signal Flow Simulation

34

Subclauses 10.9.3 through 10.9.6 cover signal flow modeling, while subclauses 10.9.7 through 10.9.10 cover
physical interaction modeling.

10.9.3 SysML modeling, signal flow

Figure 25 shows an example constraint block for a signal flow application, using ports like those defined in Figure
22, Subclause 10.7.3, except in a system containing a spring attached to another object. The block SpringMassSys
has a SysML constraint property smsc typed by SMSConstraint. The constraint block has six parameters, each bound
to a property reachable from the spring mass system:

o fisbound to the signal coming in through port u, which has a type with an in flow property rsig
pos is bound to the signal going out through port y, which has a type with an out flow property rsig
x is bound to PhSVariable position
k is bound to PhSConstant springcst
v is bound to PhSVariable velocity
m is bound to PhSConstant mass, the mass of the object attached to the spring.

The constraint block defines three constraints representing equations, written in the expression language specified in
Clause 8.

par SpringMassSst

«constraint»
smsc: SMSConstraint

constraints
{der(v)=(f-k*x)/m}
{der(x)=v}
{pos=x}

— «equab» «equab»
posifion] S0 Ly (o cemeb o
. ! |mass |

«equal» «equal»

’springcst ‘ ’ velocity ‘

Figure 25: Constraint block for signal flow in SysML

10.9.4 Modelica modeling, signal flow

In a SysML block with constraint properties, the constraints correspond to the same equations in Modelica
(assuming the expression language of Clause 8 is used in the constraint block), except the SysML parameters in
those constraints correspond in Modelica to the properties they are bound to in SysML.

The following Modelica code corresponds to Figure 25. It has three equations from the constraint block. SysML
parameter names are replaced in the Modelica equations according to the bindings in Figure 13: f is replaced by u,
pos is replaced by y, x is replaced by position, k is replaced by springcst, v is replaced by velocity, m is replaced by
mass.

model Spring

input Real u;

output Real y;

Real position;

parameter Real springcst = 1;

Real velocity;

parameter Real mass = 10;
equations

SysML Extension for Physical Interaction and Signal Flow Simulation 35

der(velocity)=(u-springcst*position)/m;
der(position)=velocity;
y=position;

end Spring;

10.9.5 Simulink modeling, signal flow

SysML constraint blocks for signal flow correspond to Simulink S-functions. S-functions are a kind of MATLAB
function that define input variables, output variables, continuous state variables, and discrete state variables. S-
function variables are identified by numbers, rather than names. State variables are accessible only inside an S-
function (this is different from states in state machines, see Subclause 10.12). SysML constraint block parameters
correspond to S-functions based on how they are bound in SysML, which can be different for each constraint
property typed by the same constraint block. This means that a separate S-function corresponds to each SysML
constraint property. Each S-function is used only in a specific context (corresponding to the constraint property), and
the name of the S-function must reflect that context.

S-functions contain assignments of continuous state variable derivatives, discrete state variables, and output
variables. These assignments correspond to constraints of SysML constraint blocks that have exactly one variable on
the left-hand side, which determines the variable being assigned, and the kind of assignment it is:

e acontinuous state variable on the left-hand side corresponds to a derivative assignment
e adiscrete state variable on the left-hand side corresponds to an update assignment
e an output variable on the left-hand side is corresponds to an output assignment

SysML parameter names are used as variable names in the S-functions. SysML parameters bound to PhSConstants
are replaced in S-functions by the value given for the PhSConstant.

Binding connectors involving ports with in or out flow properties correspond to Simulink lines (see Subclause
10.8.4) linking inports and outports to inputs and outputs of the S-function, respectively.

The following Simulink code corresponds to Figure 25. It has a Simulink block Spring with one inport and one
outport. Spring also contains a S-function block that points at the S-function Spring_sc_SpringConstraint, which has
one inport and one outport. The inports and outports of Spring are linked to the inport and outport of the S-function
block, respectively. The S-function Spring_sc_SpringConstraint has a setup function indicating that the S-function
has one input port, one output port, and two continuous states. The function also registers two functions that will be
called for derivative calculations and output calculations. These functions contain the assignments from the SysML
constraints, with the same substitutions performed as in Modelica (see Subclause 10.9.4).

<Block BlockType="'SubSystem"™ Name="'Spring" SID="1">
<P Name="Ports'>[1,1]</P>
<System>
<Block BlockType=""Inport"” Name="u" SID="2">
<P Name="Port">1</P>
</Block>
<Block BlockType=""Outport"™ Name="y" SID="3">
<P Name=""Port">1</P>
</Block>
<Block BlockType="M-S-Function" Name='sc'" SID="4">
<P Name="FunctionName'>Spring_sc_SpringConstraint</pP>
<P Name="Ports'">[1,1]</P>
</Block>
<Line>
<P Name="'Src''>2#out:1</P>
<P Name="Dst''>4#in:1</P>
</Line>
<Line>

SysML Extension for Physical Interaction and Signal Flow Simulation 36

<P Name="'Src''>4#out:1</P>
<P Name="Dst'>3#in:1</P>
</Line>
</System>
</Block>
function Spring_sc_SpringConstraint(block)
setup(block);
end
function setup(block)
block.NumlnputPorts =1;
block_NumOutputPorts =1;
block.NumContStates =2;
block.RegBlockMethod("Derivatives” ,@Derivative);
block.RegBlockMethod("Outputs®,@0utput);
block.SampleTime=[0 0];
end
function Derivative(block)
block.Derivatives._Data(l)=(block. InputPort(l) .Data-1*block.ContStates._Data(2))/10;
block.Derivatives.Data(2)=block.ContStates.Data(2);
end
function Output(block)
block.OutputPort(l) .Data=block.ContStates.Data(2);
end

10.9.6 Simscape modeling, signal flow

Simscape supports signal flow by providing a way to specify input and output signals for components. SysML
blocks with constraint properties correspond to equations in Simulink components, with the same substitutions as in
Modelica (see Subclause 10.9.4). Simscape does not support discrete variables (compare to S-functions, see
Subclause 10.9.5).

The following Simscape code corresponds to Figure 25. It has a component Spring with an input u, an output y, two
parameters springcst and mass, as well as two variables position and velocity (see Subclause 10.11.5 about units and
Subclause 10.7.6 about left and right annotations). The component has equations connecting these variables: two
equations that compute the derivative of the variables, and one that determines the output.

component Spring
inputs
u= {0, “unit’ }; % :left
end
outputs
y = {0, “unit’ }; % :right
end
parameters
springcst = 1;
mass = 10;
end
variables
position
velocity
end
equations
der(velocity)=(u-springcst*position)/m;
der(position)=velocity;
y=position;
end
end

I
o

SysML Extension for Physical Interaction and Signal Flow Simulation 37

10.9.7 SysML modeling, physical interaction

Figure 26 shows an example constraint block for a signal flow application, using the port type defined in Figure 23,
Subclause 10.7.7. It has a constraint block SpringConstraint with 8 parameters, each bound to a property reachable
from the spring:

o force and velocity at the two ends of the spring (f1, v1, f2, v2) are bound to the forces and velocities of
conserved quantity kinds flowing through ports p1 and p2, which have types with inout flow properties

e Change in length of the spring (x) is bound to the PhSVariable lengthchg
e spring constant (k) ‘ is bound to the PhSConstant springcst

o force going through the spring and difference in velocities of the ends (v, f), are bound to the PhSVariables
forcethru and velocitydiff, respectively.

The PhSVariables and PhSConstants above are defined on the block Spring, but not shown in Figure 11. The
constraint block defines five constraints representing equations, written using the expression language specified in
Clause 8.

par Spring

«constraint»
sc: SpringConstraint

constraints

{f1+f2=0}

{f=f1}

{v=v2-v1}

{v=der(x)}

{f=k*x}

«equalb» «equab»

pl.IMo f a 0 f1 2 g—d p2.IMo.f
«equal» «equab»

pl.IMo.lvV 0 vl v2 O p2.IMo.lvV
equal

lengthchg — % x| v foeaeb

! |
«equab» «equal»

’springcst ‘ ’velocitydiff ‘

Figure 26: Constraint block for physical interaction in SysML

10.9.8 Modelica modeling, physical interaction

In a SysML block with constraint properties, the constraints correspond to the same equations in Modelica
(assuming the expression language of Clause 8 is used in the SysML constraint block), except the SysML
parameters in those equations correspond in Modelica to the properties they are bound to in SysML (and flow
properties in SysML property paths leading to PhSVariables on conserved quantity kinds are omitted in Modelica,
see Subclause 10.7.8).

The following Modelica code corresponds to Figure 26. It has five equations from the SysML constraint block.
SysML parameter names are replaced in the Modelica equations according the bindings in Figure 14: f1 is replaced
by p1.f, vl is replaced by p1.1V, x is replaced by lengthchg, k is replaced by springcst, v is replaced by velocitydiff, f
is replaced by forcethru, v2 is replaced by p2.v, and 2 is replaced by p2.f.

model Spring
Flange p1;
Flange p2;

SysML Extension for Physical Interaction and Signal Flow Simulation 38

Real lengthchg;
parameter Real springcst = “107;
Real velocitydiff
Real forcethru
equation
pl.f+p2.=0
forcethru=pl.f;
velocitydiff=pl.1V-p2.1V;
velocitydiff=der(lengthchg);
forcediff=springcst*lengthchg;
end Spring;

10.9.9 Simulink modeling, physical interaction

Physical interaction is modeled with the Simscape extension to Simulink, see Subclause 10.9.10.

10.9.10 Simscape modeling, physical interaction

For SysML blocks with constraint properties, the constraints correspond to the same equations in Simscape
components (assuming the expression language of Clause 8 is used in constraint blocks), with the same substitutions
in Simscape as in Modelica (see Subclause 10.9.8), followed by additional substitutions for balancing variables in
Simscape domains (see Subclause 10.7.10 about domains). The additional substitutions are defined in Simscape
branch statements, each introducing a new variable to substitute in equations (after the initial substitutions above)
for each path to a balancing variable on a port.

The following Simscape code corresponds to Figure 26. It has five equations from the SysML constraint block.
Note the additional variables defined by branch statements, which replace p1.f by p1f and p2.f by p2f in the
equations (after the initial substitutions above).

component Spring

variables
forcethru={0, "N"};
velocitydiff={0, "m/s"};
lengthchg={0, "m"};
p1f={0,"N"};
p2f={0,"N"};

end

nodes
pl=Library.Flange;% :left
p2=Library.Flange;% :right

end

parameters
springcst={10,"1"};

end

function setup

end

branches
plf: pl.f->*;
p2f: p2.f->*;

end

equations
p1f+p2f=0;
forcethru=plf;
velocitydiff=pl.1V-p2.1V;
velocitydiff=der(lengthchg);
forcethru=springcst*lengthchg;

end

end

SysML Extension for Physical Interaction and Signal Flow Simulation 39

10.9.11 Summary

SysML Modelica Simulink Simscape
Constraint block, typing N/A S-function N/A
constraint properties
Constraint parameter bound to a | N/A (SysML constraint Input variable N/A (SysML constraint

property path that goes through

an in flow property

parameter substituted in
equations)

parameter substituted in
equations)

Constraint parameter bound to a
property path that goes through

an out flow property

N/A (SysML constraint
parameter substituted in
equations)

Output variable

N/A (SysML constraint
parameter substituted in
equations)

Constraint parameter bound to

continuous PhSVariable

N/A (SysML constraint
parameter substituted in
equations)

Continuous state variable

N/A (SysML constraint
parameter substituted in
equations)

Constraint parameter bound to

discrete PhSVariable

N/A (SysML constraint
parameter substituted in
equations)

Discrete state variable

N/A (SysML constraint
parameter substituted in
equations)

Constraint parameter bound to

discrete PhSConstant

N/A (SysML constraint
parameter substituted in
equations)

Numeric or boolean value
(substituted in equations)

N/A (SysML constraint
parameter substituted in
equations)

Constraint Equation in the model Output, discrete, or derivative | Equation in the component
corresponding to the assignment depending on corresponding to the
SysML block containing type of the left-hand side SysML block containing
the constraint property variable in the equations the constraint property
(with substitution of (with substitution of
parameters) parameters)

10.10 Default values and initial values

10.10.1 Purpose

Systems and simulation models can specify values for data type properties to be used when values are not otherwise

given.

10.10.2 SysML Modeling

SysML has two ways to specify values for properties that are used when values are not otherwise given:

o Default values are defined on the properties that will be given the values. A default value is given to every
instance of the block owning the property (or any block it generalizes) when each instance is created.

o Initial values are defined on other properties that are typed by the block owning the property (or any block
it generalizes) that will be given the values. The values are given to instances of the block when (and if)
they become values of the other properties.

Initial values override default values, because initial values are set when an instance that is already created becomes
the value of another property that specifies initial values, whereas default values are only set when instances are
created. Default and initial values can be changed after they are given to the instances.

SysML Extension for Physical Interaction and Signal Flow Simulation

40

Figure 27 shows how default and initial values are used in SysML. The left side of the figure shows a block B with
an attribute val with a default value on 10. The right side shows a block A with an attribute b of type B. An initial
value of 20 is given to the val of b.

bdd Example J ibd A)

«block» b:B
B val = 20.0
val: Real =10.0

Figure 27: Default values and initial value in SysML

10.10.3 Modelica modeling

SysML default and initial values correspond to start values of Modelica components. Start values are marked as
fixed, requiring the values be set at the beginning of the simulation (otherwise, simulators only take the values as
suggestions, calculating their own start values to solve the equations).

The following Modelica code corresponds to Figure 15. It has a model B with a val component. The val component
has a start value of 10. A class A is defined with a component b of type B. A component modification indicates that
the start value of b.val is 20.0.

model B

Real val(start = 10.0, fixed = true);
end B;
model A

B b(val.start = 20.0, val.fixed = true);
end A;

10.10.4 Simulink modeling

Default values (or overriding initial values) of PhSVariables correspond to initial values of the corresponding S-
functions variables (see Subclause 10.9.5) , unless they are initial values for properties below the top level system
block or are for properties typed by blocks that have parts, whereupon they have the same correspondence with
Simulink as redefined properties (see Subclause 10.5.4 and Subannex A.5.9).

The following Simulink code corresponds to Figure 15, assuming the PhSVariable var is bound to a constraint
parameter (which corresponds to an S-function variable). The code shows an S-function setting initial values for
discrete and continuous variables. It also shows a setup function that defines one continuous variable and one
discrete variable, which are identified by number (1 for both in this example). The properties NumDworks, Dwork,
NumContStates, and ContStates are predefined in Simulink, the first two for discrete variables, the second two for
continuous variables. A value of 20 is given to both variables.

function setup(block)
block.NumbDworks = 1;
block.Dwork(1l) .Data = 20.0;

block.NumContStates = 1;
block.ContStates.Data(1l) = 20.0;
end

10.10.5 Simscape modeling

SysML default values correspond to initial values of Simscape variables and parameters. SysML initial values
correspond to Simscape components used in Simulink. The priority of initial values in Simscape must be set to high
(otherwise simulators calculate initial values that solve the equations at the beginning time of the simulation)

SysML Extension for Physical Interaction and Signal Flow Simulation 41

The following Simscape code corresponds to the block definition diagram in Figure 15. It code shows a Simscape
component B defining a variable val with an initial value of 10.

component B
variables
val={value=10,priority=priority._high};
end
end

The following Simulink code corresponds to the internal block diagram in Figure 15s. It has a usage of the
Simscape component in Simulink that overrides the initial value of the variable val with a value of 20.

<Block BlockType=""Reference™ Name="bh" SID="2">
<P Name="SourceBlock">Library/B</P>
<P Name="SourceType''>B</P>
<P Name="SourceFile">Library.B</P>
<P Name=""ComponentPath'>Library.B</P>
<P Name=""ClassName''>B</P>
<P Name="val''>20.0</P>
</Block>

10.10.6 Summary

SysML Modelica Simulink Simscape
Default value Start value (fixed) S-function initial value Member initial value (high priority)
Initial value Start value (fixed) N/A Member assignment (high priority)

10.11 Datatypes and units

10.11.1 Purpose

Systems and simulation models include units of physical quantities to enable checking that variables in expressions
have consistent units.

10.11.2 SysML modeling

Data types in SysML are called value types. SysML numeric value types can be linked to units, where units are
modeled with the SysML Unit block. These units are linked to value types that are generalized by SysML’s humeric
value types. Units and their symbols are from ISO 80000.

Figure 28 shows how a value type with units is defined in SysML, from the units library in Figure 20, Subclause
11.2.2. It has a value type Force that specializes the Real value type and has newton as unit. The newton unit has a

symbol N.
bdd SysPhSLibrary

«valueType»
Real

T

«valueType» newton : Unit
{unit=newton}
Force symbol="N"

Figure 28: Units in SysML

SysML Extension for Physical Interaction and Signal Flow Simulation 42

10.11.3 Modelica modeling

Modelica data types can be subtyped to add a unit symbol. The interpretation of this symbol is not defined in
Modelica.

The following Modelica code corresponds to Figure 28. It has a type Force, which extends Real, and the unit
symbol N assigned to it.

[type Force=Real(unit="N");

10.11.4 Simulink modeling

Simulink inports and outports can have units. Simulink defines some unit symbols, and modelers can add their own.
The following table shows correspondences between 1SO 80000 and Simulink notation for unit operations when
they differ.

Unit operation ISO 80000 Simulink
Exponentiation superscript (as in m3) caret (as in m"3)
Multiplication - (as in N-m) * (as in N*m)

The following table shows correspondences between 1SO 80000 and Simulink notation for units when they differ.

1SO 80000 Simulink
Q ohm
° deg
A ang
Tl u

The following Simulink code corresponds to Figure 16. It has an inport In1 with unit N, the symbol for Newton.

<Block BlockType=""Inport"™ Name="Inl" SID="1">

<P Name=""Unit''>N</P>
</Block>

10.11.5 Simscape modeling

Unit symbols can be associated to variables and parameters in Simscape. Simscape uses the unit symbols defined in

Simulink (see Subclause 10.11.4).

The following Simscape code corresponds to Figure 28. It has a variable force with an initial value of 0, with the

unit N, the symbol for Newton.

variables
force={0,"N"};
end

10.11.6 Summary

SysML Modelica Simulink Simscape
Value type specializing Real, Equivalent data type with unit | N/A N/A
Integer, or Boolean with unit symbol
Property typed by Real, Integer, | Component typed by an N/A Variable with associated unit
Boolean or one of their equivalent data type
specializations

SysML Extension for Physical Interaction and Signal Flow Simulation

43

Real Real double double
String String N/A N/A
Boolean Boolean boolean N/A
Integer Integer int32 N/A

10.12 State machines

10.12.1 Purpose

State machines in system and simulation modeling specify how systems and components react to changes, usually
caused by their environment (this is different than simulation state variables, see Subclause 10.9.5). State machines
contain states and transitions between them. Objects are said to be “in” particular states, with transitions specifying
when objects change the state they are in. States define behaviors for objects that are in those states. Transitions
have conditions specifying when their objects change state. When conditions change for an object, usually as an
effect of its environment, transitions can react by changing the state of the object, and consequently the behavior of
the object. State machines can contain other state machines and can be in multiple states at the same time, but this
specification does not provide translations for these capabilities.

10.12.2 SysML modeling

SysML state machines can be behaviors for blocks. The SysML capabilities of concern to simulation are:

e Triggering transitions based on evaluation of boolean expressions, involving time and property values,
including values arriving in flow properties on port types. These can be modeled using TimeEvents and
ChangeEvents.

e Sending values out of an object through a port with an out flow property when a specific state is on.

Figure 29 shows a block Computer with a simple state machine.

bdd Example stm Computer
(o =
afters) | StandBy | yhen(u.sig==1)
«block» H do / v.rsiq:=8
Computer (&0 Y1978)
_ ports when(u.sig==0)
u: RealSignalinElement
y: RealSignalOutElement On
do /y.rsig:=3
——

Figure 29: State machine in SysML

Computer has ports u and y of type ReallnSignalElement and RealOutSignalElement from the signal flow library
(Subclause 11.2.1), respectively. The state machine has one initial pseudostate, and two states StandBy and On. The
transition from the initial pseudostate to StandBy has a relative TimeEvent with an expression indicating that the
transition fires 5 seconds after the initial pseudostate is entered. The transition from StandBy to On has a
ChangeEvent with an expression indicating that the transition is triggered when u.sigsp is equal to 1 (this is a signal
as in signal flow simulation, not as in SysML). The transition from On to StandBy has a ChangeEvent with an
expression indicating that the transition is triggered when u.sigsp is equal to 0. When the computer is in StandBy,
y.sigsp is set to 8, and when the computer is On, y.sigsp is set to 3.

SysML Extension for Physical Interaction and Signal Flow Simulation 44

10.12.3 Modelica modeling

Modelica 3.3 introduced support for state machines, but they are not widely implemented in simulation tools as of
the date of this specification. Instead, this translation uses the Modelica standard library, which supports some
aspects of state machines. SysML state machines correspond to Modelica models, and all the SimVariables and
constants of a SysML block owning a state machine are the same as in the Modelica state machine. SysML state
machine elements correspond to Modelica state machines as follows:

e Initial pseudostates correspond to InitialSteps.

e States correspond to Steps.

e Transitions correspond to Transitions.

e Time events correspond to transition wait times.

e Change events correspond to transition conditions.

e State behaviors (specified with doActivity) that are OpaqueBehaviors correspond to Modelica code
executed when objects are in particular states.

The following Modelica code corresponds to Figure 29.

model Computer

input Real u;

output Real y;

ComputerSM _ComputerSMm;

model ComputerSMm
Modelica.StateGraph.InitialStep stateO(nln = 0, nOut = 1);
Modelica.StateGraph.Step StandBy(nln = 2, nOut = 1);
Modelica.StateGraph.Step On(nln = 1, nOut = 1);
Modelica.StateGraph.Transition trO(condition = true, enableTimer = true,

waitTime = 5);

Modelica.StateGraph.Transition trl(condition = u==1);
Modelica.StateGraph.Transition tr2(condition = u==0);
Real uj;
Real y;

equation

connect(stateO.outPort[1], trO.inPort);
connect(tr0.outPort, StandBy.inPort[1]);
connect(StandBy.outPort[1], trl.inPort);
connect(trl.outPort, On.inPort[1]);
connect(On.outPort[1], tr2.inPort);
connect(tr2.outPort, StandBy.inPort[2]);
algorithm
if StandBy.active then
y 1= 8;
end if;
if On._active then
y = 3;
end if;
end ComputerSM;
equation
u = _ComputerSM.u;
y = _ComputerSM.y;
end Computer;

The code shows the model Computer with an input variable u, and an output variable y, and a component
_ComputerSM for a state machine ComputerSM, defined next. ComputerSM duplicates the components of
Computer, except for the state machine component. It has an initial step state0, two steps StandBy and On, and three
transitions tr0, trl and tr2. Each transition has a condition for traversing it, and each step indicates how many inputs
and outputs it has. ComputerSM contains equations linking ports of steps and transitions, and an algorithm section

SysML Extension for Physical Interaction and Signal Flow Simulation 45

for assigning numeric component values when the machine starts or stops each step. Returning to Computer,
equations bind its components to the components of the state machine.

10.12.4 Simulink/StateFlow modeling

Simulink has an extension for state machines called Stateflow, providing some features of SysML state machines
(StateFlow does not extend Simscape). StateFlow supports transitions with conditions determining whether to
traverse them, and actions performed when objects are in particular states. It uses default transitions, rather than
transitions from initial pseudostates as in SysML. StateFlow state machines are blocks, rather than separate
behaviors, as in SysML.

The following Simulink and StateFlow code corresponds to Figure 29.

<Block BlockType=""SubSystem"™ Name="'Computer™ SID=""2">
<P Name="Ports'>[1,1]</P>
<P Name="SFBlockType">Chart</P>
<System>
<P Name="Open"'>off</P>
<Block BlockType=""Inport' Name="u" SID="2::1">
<P Name="Port">1</P>
</Block>
<Block BlockType=""Outport"™ Name="y" SID="2::2">
<P Name="Port">1</P>
</Block>
<Block BlockType=""S-Function' Name=" SFunction " SID="2::5">
<P Name="FunctionName'>sf_sfun</P><P Name="Ports'>[1,2]</P>
</Block>
<Block BlockType=""Demux" Name="Demux' SID="2::6">
<P Name="Outputs'>1</P>
</Block>
<Block BlockType="Terminator' Name="Terminator'™ SID="2::7"/>
<Line>
<P Name="'Src''>2::1#out:1</P><P Name="'Dst''>2::5#in:1</P>
</Line>
<Line>
<P Name="'Src''>2: :5#out:2</P><P Name="'Dst''>2::2#in:1</P>
</Line>
<Line>
<P Name="'Src">2::5#out:1</P><P Name="Dst''>2::6#in:1</P>
</Line>
<Line>
<P Name="'Src''>2::6#out:1</P><P Name="'Dst''>2::7#in:1</P>
</Line>
</System>
</Block>

<Stateflow>
<machine id="1">
<P Name="isLibrary'>0</P>
<Children>
<target i1d="2" name="'sfun'/>
<chart id=""3">
<P Name="name">Computer</P>
<P Name="chartFileNumber'>1</P>
<P Name="saturateOnlntegerOverflow'>1</P>
<P Name="userSpecifiedStateTransitionExecutionOrder'>1</P>
<P Name="disablelmplicitCasting">1</P><P Name="'actionlLanguage''>2</P>
<Children>
<state SSID="5">
<P Name="labelString">StandBy

SysML Extension for Physical Interaction and Signal Flow Simulation 46

during:y=8;</P>
</state>
<state SSID="6">
<P Name="labelString">0n
during:y=3;</P>
</state>
<data SSID="7"" name ="u'"">
<P Name="scope'>INPUT_DATA</P>
</data>
<data SSID="8" name ="y'>
<P Name="'scope''>0UTPUT_DATA</P>
</data>
<transition SSID="11">
<P Name="labelString">[after(5, sec)]</P>
<src/>
<dst>
<P Name="'SSID"'>5</P>
</dst>
<P Name="‘executionOrder'>1</P>
</transition>
<transition SSID="12">
<P Name="labelString">[u==1]</P>
<src>
<P Name="'SSID"'>5</P>
</src>
<dst>
<P Name="'SSID"'>6</P>
</dst>
<P Name="‘executionOrder">1</P>
</transition>
<transition SSID="13"">
<P Name="labelString">[u==0]</P>
<src>
<P Name="'SSID"'>6</P>
</src>
<dst>
<P Name="'SSID"'>5</P>
</dst>
<P Name="‘executionOrder'>1</P>
</transition>
</Children>
</chart>
</Children>
</machine>
<instance id="4">
<P Name="name">Computer</P>
<P Name="'machine">1</P>
<P Name="‘chart''>3</P>
</instance>
</Stateflow>

The Block section of the code at the top is the part of state machine represented in Simulink. It shows a block
Computer of type Chart, containing one inport (u), one outport (y), and one S-function corresponding to the state
machine. The two other blocks, Demux and Terminal, are needed by Simulink to execute state machines. Lines
connect the inport of the block to the input of the S-function, and the second output of the S-function to the outport
of the block.

The Stateflow section of the code at the bottom is the part of the state machine represented in Stateflow. It shows a
machine containing one input u, one output y, two states StandBy and On, a default transition (which has no source),
and two transitions. The during string in StandBy indicates that the output y is set to 8 while the computer is in

SysML Extension for Physical Interaction and Signal Flow Simulation 47

StandBy. The label in the default transition indicates that the transition is fired after 5 seconds. The condition of the
two transitions indicate that the first transition fires when the input u is equal to 1, and the second transition fires
when the input u is equal to 0.

10.12.5 Summary

SysML Modelica Simulink Stateflow
Block with Model (regular) Block of type SFBlockType |N/A
StateMachine as
classifierBehavior
StateMachine Block S-function Chart in machine
Initial pseudostate InitialStep component N/A N/A
State Step component N/A State
Transition Transition component N/A Transition
Transition from initial Transition component N/A Default transition
PseudoState
doActivity with Statements in a state N/A During statements in a state
OpaqueExpression conditionalized by object

being in that state

ChangeEvent Trigger Transition condition N/A Transition condition
Relative TimeEvent waitTime expression N/A after() statement

10.13

Mathematical expressions

The following table shows replacements to be made in the syntax of the SysPhS expression language (see Clause 8)
when translating to MATLAB, the expression language in Simulink, Simscape, and StateFlow. Translation to
Modelica requires no replacements.

SysPhS expression MATLAB equivalent

‘if” ... ‘then’ ... “elseif’ ... ‘then’ ... ‘else’ ... ‘end” | ‘if’ ...

“if?
‘elseif’ ...
‘else’ ...
‘end’

“for’ ... “in’ ... ‘loop’ ... ‘end’ ‘for’ “for’ ... ‘=" ...
‘end’

<>’ ez’

‘not’ ~’

‘and’ ‘&&’

lorl ‘”1

‘div’ ‘idivide’

SysML Extension for Physical Interaction and Signal Flow Simulation

48

11 Platform-independent component library

11.1 Introduction

Subclauses 11.2 and 11.3 define a platform-independent library of reusable blocks for component interaction and
behavior, respectively. Subclause 11.4 defines value types with units used in Subclause 11.2.2. Subclause 11.5
defines a simulation platform extension used in Subclause 11.3.

11.2 Component interaction

11.2.1 Signal flow

This subclause defines elements for signal flow. They can be used as (generalizations of) system component blocks
or port types.

«interfaceBlock» «interfaceBlock»
RealSignalElement IntegerSignalElement
signal flows signal flows
rSig : Real iSig : Integer
[] []
«interfaceBlock» «interfaceBlock» «interfaceBlock» «interfaceBlock»
ReallnSignalElement RealOutSignalElement IntegerinSignalElement IntegerOutSignalElement
signal flows signal flows signal flows signal flows
in rSig : Real {redefines rSig} out rSig : Real {redefines rSig} in iSig : Integer {redefines iSig} out iSig : Integer {redefines iSig}

«interfaceBlock»
BooleanSignalElement

signal flows
bSig : Boolean

T

«interfaceBlock» «interfaceBlock»
BooleanInSignalElement BooleanOutSignalElement

signal flows signal flows
in bSig : Boolean {redefines bSig} out bSig : Boolean {redefines bSig}

Figure 30: Elements for signal flow

11.2.2 Physical interaction

This subclause defines elements for physical interaction (see Subclause 11.4 for and associated value types and
units). Conserved quantity kinds are characteristics of physical substances that are not created or destroyed when
exchanged between components. For example, charge is a characteristic of elementary physical particles that might
cross the boundaries of an object. Conserved quantity kinds are modeled as blocks directly specializing the block
ConservedQuantityKind, which specializes SysML QuantityKind, as shown in Figure 19. These can be conveyed
by item flows and the type of item properties. Specializations of each conserved quantity kind (with names prefixed
by “Flowing™) are only used to type flow properties. They provide two PhSVariables describing the flows, one
conserved (flow rate) and one non-conserved (potential to flow). For example, the flow rate of charge (current)
must add to zero (be conserved) between components, while the potential to flow (voltage) must be the same (see
Subclause 7.2.2). These variables only apply to conserved quantity kinds as they cross the boundary of components

SysML Extension for Physical Interaction and Signal Flow Simulation 49

via flow properties, because they are defined with respect to the boundary (rate of crossing it or potential to cross it).
The flow properties can be on blocks used as (generalizations of) part or port types, including interface blocks as
shown at the bottom of Figure 19.

«block»
SysML::QuantityKind

i

«block»
ConservedQuantityKind

T

[l l l |

«block» «block» «block» «block» «block»
LinearMomentum AngularMomentum Charge Volume Entropy
«block» «block» «block» «block» «block»
FlowingLMom FlowingAMom FlowingCharge FlowingVolume FlowingEntropy
phs variables phs variables phs variables phs variables phs variables
{isConsened} f: Force {isConsened} trg: Torque| |{isConsened} i: Current| |[{isConsered} ¢ :VolumeFlowRate {isConsened} sFR : EntropyFlowRate
IV : Velocity aV : AngularVelocity v : Voltage p : Pressure t: Temperature
«interfaceBlock» «interfaceBlock» «interfaceBlock» «interfaceBlock» «interfaceBlock»
LMomFlowElement AMomFlowElement ChargeFlowElement VolumeFlowElement EntropyFlowElement
physical interactions physical interactions physical interactions physical interactions physical interactions
inout IMomF: FlowingLMom | [inout aMomF: FlowingAMom | [inout cF: FlowingCharge | |inout vF: FlowingVolume inout sF: FlowingEntropy

Figure 31: Elements for physical interaction

Constraints

[1] Blocks (indirectly) specializing ConservedQuantityKind that type flow properties must have one conserved
and one non-conserved PhSVariable.

[2] Flow properties typed by blocks (indirectly) specializing ConservedQuantityKind must have direction inout
and multiplicity 1.

[3] Flow properties typed by blocks (indirectly) specializing ConservedQuantityKind that are connected and
matching must have the same type and multiplicity.

11.3 Component behavior

11.3.1 Introduction

This subclause defines SysML blocks corresponding to reusable components in the libraries of both Modelica and
Simulink or its extensions. The semantics of these blocks are given by the corresponding elements in the Modelica
libraries (which is the same semantics as in the libraries of Simulink or its extensions). The base classes and
properties (including ports) of component blocks in this subclause have stereotypes from the simulation platform
profile applied (see Subclause 11.5) to specify which simulation library elements correspond to them. For brevity,
component blocks are described in tables, with each row defining one block.

The blocks in Subclauses 11.3.2 and 11.3.3 are for signal flow modeling. The columns of the tables are:
e Component Block: Name of the component block defined by the row.
o Simulink Block: Value of the name property of the SimulinkBlock stereotype applied to the base class
of the block defined by the row.
0 Modelica Block: Value of the name property of the ModelicaBlock stereotype applied to the base class
of the block defined by the row is produced from this column by prepending “Modelica.Blocks.”.
e Component Ports (Input and Output): Each line in each row of these columns gives the name of a
component block port (these correspond to Simulink and Modelica ports and components, see Subclauses

SysML Extension for Physical Interaction and Signal Flow Simulation 50

10.7.5 and 10.7.4, respectively, without SimulinkPort and ModelicaPort being applied to the component

block port as in Subclause 11.3.4).

e PhSConstants: Each line in each row of this column gives the name of a property of the block defined by
the row, corresponding to the same line in the two columns below.

o Simulink and Modelica Parameters: Value of the name properties of SimulinkParameter and
ModelicaParameter stereotypes, respectively, applied to the corresponding property on the same line in
the PhSConstants column (the parameter stereotypes are specialized PhSConstants, see Subclause
11.5). Lines that have no corresponding property on the same line in the PhSConstants column, if any,
give other parameters needed to obtain the same behavior in Simulink and Modelica, with the value of
the parameter preceded by an equals sign.

o Platform Behavior: Tells whether the behaviors of the Simulink and Modelica library elements are
supposed to yield the same value or not, when this can be determined from the platform library
specifications. Values are considered the same when they are equal or the numerical difference is small.

Simulation platform data specified in the Component Ports (Input and Output), PhSConstants, and platform
Parameters columns are scalar, unless marked with a V (vector) or an M (matrix). Component input ports for scalars
are typed by RealSignallnElement, IntegerSignalinElement, or BooleanSignallnElement, while component output
ports for scalars are typed by RealSignalOutElement, IntegerSignalOutElement, or BooleanSignalOutElement (see
Subclause 11.2.1). Component input ports for vectors are typed by specializations of RealVectorSignallnElement,
while component output ports for vectors are typed by specializations of Real\VectorSignalOutElement (see
Subclause 11.5.3). Component PhSConstants (SimulinkParameters and ModelicaParameters) for vectors and
matrices have MultidimensionalElement applied, with dimension * and *,*, respectively (see Subclause 11.5.2.4).
Models using component library blocks that have vector and matrix properties should specify initial values using
instance specifications, with slots satisfying the constraints specified in Subclause 11.5.2.4.

The blocks in Subclause 11.3.4 are for electrical modelling. The columns of the table are explained in that
subclause.

SysML Extension for Physical Interaction and Signal Flow Simulation 51

11.3.2 Real-valued components

11.3.2.1 Introduction

Simulation platform data specified in the Component ports (Inputs and Output), PhSConstants, and platform Parameters columns in this subclause are
Real, unless otherwise indicated.

11.3.2.2 Continuous components

Component Simulink : Component Port | Component Port Simulink Modelica | Platform
BIFc))ck Block Modelica Block (I?nputs) (gutput) PhsConstants Parameters Parameters| Behavior
Integrator Integrator Continuous. Integrator u y init InitialCondition y_start Same
Derivative Derivative Continuous.Derivative u y Different
StateSpace StateSpace Continuous.StateSpace u (V) y (V) A (M) A (M) A (M) Same
B (M) B (M) B (M)
C (M) C (M) C (M)
D (M) D (M) D (M)
init (V) X0 (V) X_start (V)
Transfer TransferFcn |Continuous. TransferFunction |u y num (V) Numerator (V) b (V)
Function denom (V) Denominator (V) [a (V)
FixedDelay [Transport Nonlinear.FixedDelay u y delay DelayTime delayTime |Different
Delay InitialOutput=0
VariableDelay |Variable Nonlinear.VariableDelay u y delayMax MaximumDelay delayMax |Different
Transport delayTime InitialOutput=0
Delay VariableDelayType
=Variable time delay|
ZeroDelay=on
11.3.2.3 Discrete components
Component Simulink : Component Port|Component Port Simulink Modelica | Platform
BI%ck Block Modelica Block (Fl)nputs) (gutputs) PhysConstants Parameters | Parameters | Behavior
StateSpace DiscreteState |Discrete.StateSpace u (V) y (V) A (M) A (M) A (M) Same
Space B (M) B (M) B (M)
C (M) C (M) C (M)
D (M) D (M) D (M)
TransferFunction |Discrete Discrete. TransferFunction fu v numerator (V) Numerator (V) |b (V) Same
TransferFcn denominator (V) |Denominator (V) [a (V)
UnitDelay UnitDelay |Discrete.UnitDelay u y initialCondition [InitialCondition |y start Same

SysML Extension for Physical Interaction and Signal Flow Simulation

52

11.3.2.4 Non-linear components

Component | Simulink : Component Port| Component A Modelica Platform
BIF(J)ck Block Modelica Block (FIanuts) Port (Oputputs) PhysConstants | Simulink Parameters Parameters | Behavior
Saturation Saturate Nonlinear.Limiter u Y upper UpperLimit uMax Same (min
lower LowerLimit uMin AND max
mandatory)
Dynamic Reference Nonlinear.VariableLimiter [limitl v SourceBlock= Same
Saturation u simulink/Discontinuities
limit2 /Saturation Dynamic
SourceType=Saturation
Dynamic
DeadZone DeadZone Nonlinear.DeadZone u v lower LowerValue uMin Same
upper UpperValue uMax
RateLimiter [RateLimiter |Nonlinear.SlewRateLimiter|u Y rising RisingSlewLimit Rising Different
falling FallingSlewLimit Falling
11.3.2.5 Mathematical components
Component | Simulink Modelica |Component Port|Component Port PhysConstants Simulink Modelica Platform
Block Block Block (Inputs) (Outputs) Parameters | Parameters | Behavior
Gain Gain Math.Gain u y gain Gain Kk Same
Product Product Math.Product |ul v Inputs=** Same
u2
Division Product Math.Division [ul v Inputs=*/ Same
u2
Addition Sum Math.Add ul Y Inputs=++ Same
u2
Subtraction [Sum Math.Add ul Y Inputs=+- Same
u2
Abs Abs Math.Abs u y Same
Exp Math Math.Exp u y Operator=exp Same
Log Math Math.Log u y Operator=log Same
Logl10 Math Math.Log10 |u y Operator=log10 Same
Sign Signum Math.Sign u y Same
Sqrt Sart Math.Sqrt u y Same
Sin Trigonometry [Math.Sin u y Operator=sin Same
Cos Trigonometry [Math.Cos u y Operator=cos Same
Tan Trigonometry [Math.Tan u y Operator=tan Same

SysML Extension for Physical Interaction and Signal Flow Simulation

53

Asin Trigonometry [Math.Asin u y Operator=asin Same
AC0S Trigonometry [Math.Acos u y Operator=acos Same
Atan Trigonometry [Math.Atan u y Operator=atan Same
Atan2 Trigonometry [Math.Atan2 jul Y Operator=atan2 Same
u2
Sinh Trigonometry [Math.Sinh u y Operator=sinh Same
Cosh Trigonometry [Math.Cosh u y Operator=cosh Same
Tanh Trigonometry [Math.Tanh u y Operator=tanh Same
11.3.2.6 Sources and sinks
Component | Simulink : Component Port | Component Port Simulink Modelica Platform
BIF(J)ck Block Modelica Block (l?nputs) ((p)utput) PhsConstants Parameters | Parameters | Behavior
Constant Constant Sources.Constant y k Value k Same
SineWave Sin Sources.Sine Y amplitude Amplitude amplitude Same
offset Bias offset
frequency Frequency freqHz
phase Phase phase
Clock Clock Sources.Clock y Same
Pulse DiscretePulse |Sources.Pulse Y amplitude Amplitude amplitude Same
Generator period Period period
width PulseWidth |width
delay PhaseDelay |startTime
Step Step Sources.Step v startTime Time startTime Same
after After height
Before=0
RealScope Scope Interaction.Show.RealVValue numberPort
BooleanScope [Scope Interaction.Show.BooleanValue |activePort

11.3.2.7 Routing components

Multiplicities not equal to 1 for flow properties stereotyped by PhSVariable (signal flows) on Component Ports (Inputs and Outputs) are shown between
square brackets. These flow properties have MultidimensionalElement applied, with dimension equal to the multiplicity of the flow property (see

Subclause 11.5.2.4). Inputs with multiplicities of 2, 3, 4, 5, 6 are typed by RealVectorSignal2InElement, RealVectorSignal3InElement,
Real\ectorSignal4InElement, RealVectorSignal5InElement, RealVectorSignal6InElement, respectively. Outputs with multiplicities of 2, 3, 4, 5, 6 are

typed by RealVectorSignal20OutElement, RealVectorSignal3OutElement, RealVectorSignal4OutElement, RealVectorSignal5OutElement,
RealVectorSignal6OutElement, respectively.

SysML Extension for Physical Interaction and Signal Flow Simulation

54

Component | Simulink : Component Port| Component Port Simulink Modelica | Platform
Blr())ck Block Modelica Block (I?nputs) ((p)utput) PhsConstants Parameters |Parameters| Behavior
Mux2 Mux Routing.Multiplex2 ul v [2] Inputs=2 Same
u2
Mux3 Mux Routing.Multiplex3 ul v [3] Inputs=3 Same
u2
u3
Mux4 Mux Routing.Multiplex4 ul v [4] Inputs=4 Same
u2
u3
ud
Mux5 Mux Routing.Multiplex5 ul vy [5] Inputs=5 Same
u2
u3
ud
us
Mux6 Mux Routing.Multiplex6 ul v [6] Inputs=6 Same
u2
u3
ud
us
u6
Demux2 Demux Routing.DeMultiplex2 |u [2] vl Outputs=2 Same
y2
Demux3 Demux Routing.DeMultiplex3 |u [3] vl Outputs=3 Same
y2
y3
Demux4 Demux Routing.DeMultiplex4 |u [4] vl Outputs=4 Same
y2
y3
v4
Demux5 Demux Routing.DeMultiplex5 |u [5] y1 Outputs=5 Same
y2
y3
v4
y5
SysML Extension for Physical Interaction and Signal Flow Simulation 55

Demux6 Demux Routing.DeMultiplex6 |u [6] vl Outputs=6 Same
y2
y3
Wz
V5
y6
Switch ul v Criteria = u2~=0 Same
u2 Threshold=0
u3

11.3.3 Logical components

Simulation platform data specified in the Component ports (Inputs and Output) and platform Parameters columns in this subclause are Boolean, unless

marked with an R (real).
Component Simulink : Component Port| Component Port Simulink Modelica |Platform
Block Block Modelica Block (Inputs) (Output) PhsConstants Parameters |Parameters|Behavior

AND Logic Logical.And ul Y Operator=AND Same
u2 Inputs=2

OR Logic Logical.Or ul Y Operator=OR Same
u2 Inputs=2

NAND Logic Logical.Nand ul y Operator=NAND Same
u2 Inputs=2

NOR Logic Logical.Nor ul y Operator=NOR Same
u2 Inputs=2

XOR Logic Logical. Xor ul y Operator=XOR Same
u2 Inputs=2

NOT Logic Logical.Not u y Operator=NOT Same

Inputs=1

Less RelationalOperator |Logical.Less ul (R) y Operator = < Same
u2 (R)

LessEqual RelationalOperator |Logical.LessEqual ul (R) Y Operator = <= Same
u2 (R)

Greater RelationalOperator |Logical.Greater ul (R) Y Operator = > Same
u2 (R)

GreaterEqual RelationalOperator |Logical.GreaterEqual ul (R) Y Operator = >= Same
u2 (R)

LessThreshold [Compare To Constant|Logical.LessThreshold |u (R) Y threshold (R) |Const threshold (Same

Relop =<

SysML Extension for Physical Interaction and Signal Flow Simulation

56

LessEqual Compare To Constant|Logical.LessEqual u(R) y threshold (R) |Const threshold (Same

Threshold Threshold relop = <=

GreaterThreshold [Compare To Constant|Logical.GreaterThreshold |u (R) y threshold (R) |const threshold (Same
relop = >

GreaterEqual Compare To Constant|Logical.GreaterEqual u(R) y threshold (R) |const threshold (Same

Threshold Threshold relop = >=

11.3.4 Electrical components

The columns are the same as in Subclauses 11.3.2 and 11.3.3, except
e Values of the name property of the SimulinkBlock and ModelicaBlock stereotypes applied to the base class of the block defined by each row
are produced from these columns by prepending “foundation.electrical.” for SimulinkBlocks and “Modelica.Electrical. Analog.” for
ModelicaBlocks.
e There is only one column for component ports, because they are bidirectional, unless otherwise noted. Component Ports are typed by
FlowingChargeElement (see Subclause 11.2.2), unless they are indicated as input or output. Input ports are typed by RealSignallnElement, and
output ports are typed by RealSignalOutElement (see Subclause 11.2.1). Each line in the Component Ports column corresponds to a port
stereotyped by SimulinkPort and ModelicaPort (SimulinkPorts are used for Simscape ports in this table). Each line in the Simulink Ports and

Modelica Ports columns gives the value of the name property of the respective SimulinkPort and ModelicaPort stereotypes applied to the port

on the same line in the Component Ports column.

Component Lo . Component | Simulink | Modelica Simulink Modelica | Platform
BIF())ck Simulink Block Modelica Block Pgrts Ports Ports PhSConstants Parameters | Parameters | Behavior
Ground elements.reference Basic.Ground p V p
Capacitor elements.capacitor Basic.Capacitor p p p C c C Same
n n n r=0
g=0
Diode elements.pwl_diode Ideal.ldealDiode p p p ron Ron Ron
n n n goff Goff Goff
vforward Vi Vknee
Ideal elements.ideal Ideal.ldealTransformer |pl pl pl n n n Same
Transformer | transformer nl nl nl
p2 p2 p2
n2 n2 n2
Inductor elements.inductor Basic.Inductor p p p r | L Same
n n n r=0
9=0
Infinite elements.infinite Ideal.ldle p p p Same
Resistance resistance n n n
SysML Extension for Physical Interaction and Signal Flow Simulation 57

OpAmp elements.op_amp Ideal.ldeal OpAmp3Pin |p p in_p Same
n n in_n
out out out
Resistor elements.resistor Basic.Resistor p p p r R R Same
n n n
Controlled elements.controlled Ideal.Controlledldeal |p p p level Threshold level Same
Switch | switch OpeningSwitch n n n
control VT control
(input)
Variable elements.variable Basic.VariableResistor |p p p Same
Resistor |_resistor n n n
r (input) R R
CurrentSensor [sensors.current Sensors.CurrentSensor |p p p Same
n n n
i (output) [i
\/oltageSensor [sensors.voltage Sensors.VoltageSensor |p p p Same
n n n
v (output) |V v
SignalCurrent |sources.controlled_curr [Sources.SignalCurrent |p p p Same
ent n n n
i (input) iT i
SignalVoltage |sources.controlled volt [Sources.SignalVoltage |[p p p Same
age n n n
v (input) vT v
DCCurrent |sources.dc_current Sources.ConstantCurren |p p p i i0 I Same
t n n n
DCVoltage [sources.dc_voltage Sources.ConstantVoltag |p p p Y% VO \Y Same
e n n n
ACCurrent |sources.ac_current Sources.SineCurrent p p p amp amp I Same
n n n phase shift phase
freq frequency freqHz
ACVoltage |sources.ac_voltage Sources.SineVoltage |p p p amp \ Same
n n n shift phase
frequency freqHz
SysML Extension for Physical Interaction and Signal Flow Simulation 58

11.4 Value types with units

This subclause defines value types with units for physical quantities.

«valueType» «valueType» «valueType»
SysML::Real SysML:: Real SysML:: Real
[| [|
«valueType» «valueType» «valueType» «valueType» «valueType» «valueType»
{unit=newton} {unit=metrePerSecond} {unit=newtonmetre} {unit=radianPerSecond} {unit=ampere} {unit=volt}
Force Velocity Torque AngularVelocity Current Voltage
newton : Unit metrePerSecond : Unit newtonmetre : Unit radianPerSecond : Unit ampere : Unit volt : Unit
symbol="N" symbol=“m/s” symbol=“N-m" symbol=“rad/s” symbol="A" symbol=*V"
«valueType» «valueType» «valueType»
SysML:: Real SysML:: Real SysML:: Real
[| %

«valueType» «valueType» «valueType» «valueType» «valueType»
{unit=cubicMetrePerSecond} {unit=pascal} {unit=wattPerKelvin} {unit=kelvin} {unit=second}
VolumeFlowRate Pressure EntropyFlowRate Temperature Time
cubicMetrePerSecond : Unit pascal : Unit wattPerKelvin : Unit kelvin : Unit second : Unit

symbol="m?3/s” symbol=“Pa” symbol="W/K" symbol="K" symbol="s"

Figure 32: Value types and units for physical interaction

11.5 Platform-dependent extension

11.5.1 Introduction

This subclause defines an extension of SysML used by that the platform-independent component library in
Subclause 11.3. In this subclause, the Simulink library is taken as including the libraries of its extensions,

for brevity.

11.5.2 Platform profile

This subclause defines stereotypes that Subclause 11.3 applies to the base classes and properties (including
ports) of its blocks, to specify which library elements of Modelica and Simulink correspond to them.

«stereotype» «stereotype»
Block PhSConstant
\ 4] \ 4 \
«stereotype» «stereotype» «stereotype» «stereotype»
SimulinkBlock | |ModelicaBlock SimulinkParameter ModelicaParameter
name : String name : String name : String name : String
value: ValueSpecification [0..1] | | value: ValueSpecification [0..1]
«metaclass» «metaclass» «metaclass»
Port MultiplicityElement Slot
[s | ‘ [*
«stereotype» «stereotype» «stereotype»
SimulinkPort ModelicaPort MultidimensionalElement
name : String name : String dimension: UnlimitedNatural [*] {ordered, non-unique}

Figure 33: Simulation platform stereotypes

SysML Extension for Physical Interaction and Signal Flow Simulation

59

11.5.2.1 ModelicaBlock
Package: SysPhSLibrary
isAbstract: No
Generalization: Block

Attributes

name: String Fully qualified name of the component in the Modelica library corresponding to a
platform-independent component block

Description

A class stereotyped by ModelicaBlock has an equivalent in the Modelica library. The value of the name
attribute gives the fully qualified name of the corresponding component in the Modelica library.

11.5.2.2 ModelicaParameter
Package: SysPhSLibrary
isAbstract: No
Generalization: PhSConstant

Attributes

name: String Name of the parameter in the Modelica library corresponding to a
parameter of a platform-independent component block
value: ValueSpecification [0..1] Value of the parameter in the Modelica library

Description

A property stereotyped by ModelicaParameter has an equivalent parameter of a Modelica library
component. The value of the name attribute is the name of the corresponding parameter, and the value
attribute gives the value of this parameter. If the value attribute is empty, the value of the parameter must be
given using initial values of the stereotyped property.

Constraints

[1] The stereotyped property must be owned by a class stereotyped by ModelicaBlock.
11.5.2.3 ModelicaPort

Package: SysPhSLibrary

isAbstract: No
Extended Metaclass: Port

Attributes

name: String Name of the port in the Modelica library corresponding to a port of a platform-
independent component block
Description

A port stereotyped by ModelicaPort has an equivalent in the Modelica library. The value of the name
attribute gives the name of the corresponding port in the Modelica library.

Constraints

[1] The stereotyped port must be owned by a class stereotyped by ModelicaBlock.
11.5.2.4 MultidimensionalElement

Package: SysPhSLibrary

isAbstract: No
Extended Metaclass: MultiplicityElement, Slot

SysML Extension for Physical Interaction and Signal Flow Simulation 60

Attributes

dimension: UnlimitedNatural [*] {ordered, non-unique} Dimensions of the multiplicity element or slot

Description

The values of a slot stereotyped by MultidimensionalElement can be composed into an array with (possibly
multiple) dimensions specified by the applied stereotype. The values are composed by taking each number
in the dimension list of the applied stereotype from the last number to the second, and creating lists of that
length from the result of the next higher dimension. The last dimension number results in lists of values of
the multiplicity element or a slot, while the previous dimension number results in lists of those lists, and so
on, ending at the second dimension number.

Constraints

[1] A multiplicity element stereotyped by MultidimensionalElement must be ordered and non-unique.

[2] When this stereotype is applied to a multiplicity element, the dimensions must be either all unlimited
or all positive integers.

[3] When this stereotype is applied to a multiplicity element and the dimensions are all unlimited, the
lower bound of the multiplicity element must be 0, and the upper bound of the multiplicity element
must be unlimited.

[4] When this stereotype is applied to a multiplicity element and the dimensions are all be positive
integers, the lower bound and the upper bound of the multiplicity element must be equal to the
product of all the dimensions.

[5] When this stereotype is applied to a slot, the dimensions must all be positive integers and the number
of values of the slot must be equal to the product of all dimensions.

[6] Aslot stereotyped by MultidimensionalElement must have its defining feature stereotyped by
MultidimensionalElement.

[7]1 The number of dimensions of a MultidimensionalElement applied to a slot must be the same as the
number of dimensions of the MultidimensionalElement applied to the defining feature of the slot.

[8] A slot must be stereotyped by MultidimensionalElement if and only if its defining feature is
stereotyped by MultidimensionalElement with dimensions that are all unlimited.

11.5.2.5 SimulinkBlock
Package: SysPhSLibrary
isAbstract: No
Generalization: Block

Attributes

name: String BlockType in Simulink library corresponding to a platform-independent component block
Description

A class stereotyped by SimulinkBlock has an equivalent in the libraries of Simulink or its extensions. The
value of the name attribute gives the name of the corresponding component in the libraries of Simulink or
its extensions.

11.5.2.6 SimulinkParameter
Package: SysPhSLibrary
isAbstract: No
Generalization: PhSConstant

Attributes

name: String Name of the parameter in the Simulink library corresponding to a
parameter of a platform-independent component block
value: ValueSpecification [0..1] Value of the parameter in the Simulink library

SysML Extension for Physical Interaction and Signal Flow Simulation 61

Description

A property stereotyped by SimulinkParameter has an equivalent parameter of a Simulink library
component. The value of the name attribute is the name of the corresponding parameter in the Simulink
library, and the “value’ attribute gives the value of this parameter. If the value attribute is empty, the value
of the parameter must be given using initial values of the stereotyped property.

Constraints

[1] The stereotyped property must be owned by a class stereotyped by SimulinkBlock.
11.5.2.7 SimulinkPort

Package: SysPhSLibrary

isAbstract: No
Extended Metaclass: Port

Attributes

name: String Name of the port in the Simulink library corresponding to a port of a platform-
independent component block

Description

A port stereotyped by SimulinkPort has an equivalent in the Simulink library. The value of the name
attribute gives the name of the corresponding port in the Simulink library.

Constraints

[1] The stereotyped port must be owned by a class stereotyped by SimulinkBlock.

SysML Extension for Physical Interaction and Signal Flow Simulation

11.5.3 Platform library

This subclause defines interface blocks used in Subclause 11.3.2 to specify vector signal flows (see

Subclause 11.3.1).

«interfaceBlock»
RealVectorSignalElement

signal flows

«multidimensionalElement» {dimension=*} rSig : Real [1..%]

Ay

[

1

«interfaceBlock»
RealVectorSignallnElement

«interfaceBlock»
RealVectorSignalOutElement

signal flows
«multidimensionalElement»{dimension=*} in rSig : Real [1..#] {redefines rSig}

JAN

«multidimensionalElement»{dimension=*} out rSig : Real [1..*] {redefines rSig}

signal flows

N

«interfaceBlock»
RealVectorSignal2InElement

«interfaceBlock»
RealVectorSignal20utElement

signal flows

«multidimensionalElement»{dimension=2} in rSig : Real [2] {redefines rSig}

signal flows
«multidimensionalElement»{dimension=2} out rSig : Real [2] {redefines rSig}

«interfaceBlock»
RealVectorSignal3inElement

«interfaceBlock»
RealVectorSignal30utElement

signal flows

«multidimensionalElement»{dimension=3} in rSig : Real [3] {redefines rSig}

signal flows
«multidimensionalElement»{dimension=3} out rSig : Real [3] {redefines rSig}

«interfaceBlock»
RealVectorSignal4inElement

«interfaceBlock»
RealVectorSignal4OutElement

signal flows

«multidimensionalElement»{dimension=4} in rSig : Real [4] {redefines rSig}

signal flows
«multidimensionalElement»{dimension=4} out rSig : Real [4] {redefines rSig}

«interfaceBlock»
RealVectorSignal5IinElement

«interfaceBlock»
RealVectorSignal50utElement

signal flows

«multidimensionalElement»{dimension=5} in rSig : Real [5] {redefines rSig}

signal flows
«multidimensionalElement»{dimension=5} out rSig : Real [5] {redefines rSig}

«interfaceBlock»
RealVectorSignal6inElement

«interfaceBlock»
RealVectorSignal6OutElement

signal flows

«multidimensionalElement»{dimension=6} in rSig : Real [6] {redefines rSig}

signal flows
«multidimensionalElement»{dimension=6} out rSig : Real [6] {redefines rSig}

Figure 34: Elements for vector signal flow

SysML Extension for Physical Interaction and Signal Flow Simulation

63

A.Examples (non-normative)

A.lIntroduction

The following subannexes give example models for systems in various domains, using the simulation
profile in Clause 7 and libraries in Clause 11:
e Subannex A.2: Electric circuits (analog electrical interactions).
e Subannex A.3: Signal processing (manipulation of continuously varying numeric signals).
e Subannex A.4: Hydraulics (fluid interactions).
e Subannex A.5: Humidification (physical control example modeled with signal flows and state
machines).

Each section describes the system being modeled, then diagrams for internal structure, component types,
properties, and constraints.

A.2 Electric Circuit

A.2.1 Introduction

This subannex gives a model of an electric circuit as an example of physical interaction (flow of electric
charge). It does not include any signal flows.

A.2.2 System being modeled

The electrical circuit has six components: ground, electrical source, inductor, capacitor, and two resistors,
see Figure 35.

Rc RI

? 1.

:
1

Figure 35: Electric circuit example

A.2.3 Internal structure

Figure 36 shows the internal structure of a Circuit block. Part properties, typed by blocks defined in
Subannex A.2.4, represent components of the system. They are connected through ports, which represent
electrical pins, also defined in Subannex A.2.4. Item flows on connectors indicate that electricity (electric
charge) passes through the ports and flows and between the parts. The diagram connects a voltage source in
parallel with a resistor and capacitor in series, as well as a resistor and inductor in series.

SysML initial values specify property values for components used in internal block diagrams. Figure 36
shows initial values for resistance, capacitance, inductance, and source amplitude (properties defined in
Subannex A.2.4). An alternative for specifying initial values of part properties in the Circuit block is to
specialize it and redefine the part properties with default values for various configurations (see Subannex
A.5.9).

SysML Extension for Physical Interaction and Signal Flow Simulation 64

ibd Circuit I
Charge
Lo o
Ly v
rc : Resistor ri: Resistor
initial values initial values
| p r=10.0{unit=ohm} r =20.0{unit=ohm}
Lv] B H
s : Source n n
initial values Charge Charge
amp = 220.0{unit = volt} p p
H H &
n c : Capacitor i : Inductor
initial values initial values
¢ = 0.01{unit = farad} | = 0.1{unit=henry}
[~]
T i
n n
Charge
p
K
g : Ground

Figure 36: Internal structure of the circuit example

A.2.4 Blocks and ports

Figure 37 shows block definitions for components of Circuit in Figure 36. Sources, inductors, conductors,
and resistors each have one positive and one negative pin for electric charge to pass through. Since they are
similar in this sense, a generalized TwoPinElectricalComponent component is defined with positive and
negative pins, p and n, as ports. The ground has only one pin, which is positive. All the ports are of type
ChargeFlowElement, from the physical interaction library (see Subclause 11.2.2). Each component has its
own behaviors, defined as constraints in Subannex A.2.6. Alternatively, these components could be
specified using the electrical components library (see Subclause 11.3.4).

bdd Circuit Components)

«block» «port» p
Ground «interfaceBlock»
«port» p SysPhSLibrary::ChargeFlowElement
«block» physical interactions
TwoPinElectricalComponent «port» n_| inout oF : FlowingCharge
phs variables

iThru : Current
vDrop : Voltage

«block»
SysPhSLibrary::Charge

I

| | | | «block»
«block» «block» «block» «block» SysPhSLibrary::FlowingCharge
Resistor Capacitor Inductor Source phs variables
phs constants phs constants phs constants {isConserved} i: Current
r: Resistance c: Capacitance | : Inductance v : Voltage

phs constants
amp : Voltage

Figure 37: Electrical blocks, ports & component properties

A.2.5 Properties (variables)

Physical interaction is the movement of physical substances between system components, modeled in terms
of conserved characteristics of the substances. In this example, electric charge is the conserved

SysML Extension for Physical Interaction and Signal Flow Simulation 65

characteristic of electrons moving through the circuit. Movement of substances is described by numeric
variables for flow rate and potential to flow of their conserved characteristics. In this example, movement
of charge is described by a current variable for flow rate and a voltage variable for potential to flow. The
flow rate variable is conserved (values on ends of the interaction sum to zero) and the potential variable is
not (values on ends of the interaction are the same). This is modeled in three parts:

e Conserved physical characteristics are modeled as blocks directly specialized from
ConservedQuantityKind in the physical interaction library (see Subclause 11.2.2), Charge in this
example.

e Flow variables are modeled as properties with PhsVariable applied on specializations of conserved
quantity kind blocks. In this example, the flow rate and potential PhsVariables are i and v on
FlowingCharge (i marked as isConserved), respectively, typed by Current and Voltage,
respectively, all from the physical interaction library.

e Flow in and out of components is modeled by ports typed by interface blocks that have flow
properties typed by flowing conserved quantity kinds. In this example, ports are typed by
ChargeFlowElement from the physical interaction library, which has a flow property cF typed by
FlowingCharge, as shown in Figure 37.

Behavior of electrical components in this example is described by the amount of charge going in one pin
and out the other (through the component) per unit time, and the difference in potentials between their
positive and negative pins (across the component), given by the two properties iThru and vDrop on
TwoPinElectricalComponent, respectively, shown in Figure 37. These two properties are typed by Current
and Voltage, respectively, from the physical interaction library (see Subclause 11.2.2), and have the
PhSVariable stereotype applied, specifying that their values might change during simulation.

The resistor, capacitor, inductor, and source have properties r, c, I, and amp, respectively, typed by
Resistance, Capacitance, Inductance, and Voltage, respectively, and all with the PhSConstant stereotype
applied, specifying that their values do not change during each simulation run.

A.2.6 Constraints (equations)

Equations define mathematical relationships between the values of numeric variables. Equations in SysML,
are constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this
example, a constraint block BinaryElectricalComponentConstraint defines parameters and constraints
common to resistors, inductors, capacitors, and sources, as shown in Figure 38. These specify that the
voltage v across the component is equal to the difference between the voltage at the positive and negative
pins. The current i through the component is equal to the current going through the positive pin. The sum of
the current going through the two pins adds up to zero (one is the negative of the other), because the
components do not create, destroy, or store charge. The constraints for the resistor, capacitor, and inductor
specify the voltage/current relationship with resistance, capacitance, and inductance, respectively. The
source constraint defines the circuit’s electrical source. The ground constraint specifies that the voltage at
the ground pin is zero. The source constraint defines the voltage across it as a sine wave with the parameter
amp as its amplitude.

SysML Extension for Physical Interaction and Signal Flow Simulation 66

bdd Circuit Constraints)

«constraint»
BinaryHectricalComponentConstraint

constraints

{0=posl+negl}
{v=posV-negV}
{i=posl}

i : Current
negl: Current
posl: Current
v : Voltage
negV : Voltage
posV : Voltage

parameters

«constraint»
GroundConstraint

constraints

{posV=0}

parameters
posV : Voltage

«constraint»
ResistorConstraint

«constraint»
CapacitorConstraint

«constraint»
InductorConstraint

«constraint»
SourceConstraint

constraints

constraints

constraints

constraints

{ri=v} {c*der(v)=i} {I*der(i)=v} {v=amp*sin(2*3.14*time)}
parameters parameters parameters parameters
r : Resistance ¢ : Capacitance | : Inductance amp : Voltage

Figure 38: Circuit constraint blocks

A.2.7 Constraint properties and bindings

Equations in constraint blocks are applied to components using binding connectors in component
parametric diagrams. Component parametric diagrams show properties typed by constraint blocks
(constraint properties), as well as component and port simulation variables and constants. Binding
connectors link constraint parameters to simulation variables and constants, indicating their values must be
the same. Figure 39 through Figure 43 show parametric diagrams for resistors, capacitors, inductors,
sources, and grounds, respectively.

par Resistor J

(«constraint»)
rC: ResistorConstraint
constraints
{rri=v}
p n
parameters
cF.i: Current «equab :Iposl negl [_| «equab cF.i: Current
cF.v : Voltage «equab :‘ posV negV |: «equab> cF.v : Voltage
i v r
L [1 [1)
«equal» «equal» «equal»
| iThru : Current | | vDrop : Voltage | | r: Resistance |

Figure 39: Parametric diagram applying the resistor constraint

SysML Extension for Physical Interaction and Signal Flow Simulation

67

par Capacitor J

(«constraint»)
cC: CapacitorConstraint
constraints
{c*der(v)=i}
P parameters n
«equal» «equal»
cF.i: Current d :l pos| negl |: g cF.i : Current
«equal» «equal»
cF.v : Voltage : :I posV negV [d cF.v : Voltage
i v c
& J
«equal» «equal» «equal»
iThru : Current vDrop : Voltage ¢ : Capacitance

Figure 40: Parametric diagram applying the capacitor constraint

par Inductor J

«constraint»
iC: InductorConstraint
constraints

{I*der(i)=v}

parameters n

p
- «equal» «equal»
cF.i : Current :‘posl negl [4 cF.i: Current
«equal»
cF.v : Voltage :|posV negV E «equab cF.v : Voltage

i v |
|\ J
«equal» «equal» «equal»
iThru : Current | | vDrop : Voltage | | | 2 Inductance

Figure 41: Parametric diagram applying the inductor constraint

SysML Extension for Physical Interaction and Signal Flow Simulation

par Source J

(«constraint»)
sC : SourceConstraint
constraints
{v=amp*sin(2*3.14*time)}
P parameters n
«equal»
| cF.i: Current | d :|p05| negl «equal» cF.i: Current
I
| cF.v : Voltage | «equal» «equaly» .
I :lposV negV |: cF.v : Voltage
amp i \Y
«equal» «equal» «equal»
| amp : Voltage | | iThru : Current | | vDrop : Voltage

Figure 42: Parametric diagram applying the source constraint

par Ground J r -
«constraint»

gC: GroundConstraint
constraints

{posV=0}
parameters
p
|
cF.v : Voltage «equab :| posV
A J

[
Figure 43: Parametric diagram applying the ground constraint

A.3 Signal Processor

A.3.1 Introduction

This subannex gives a model of processing a sinusoidal variable as an example of signal flow. It does not
include any physical interactions.

A.3.2 System being modeled

The signal processor and its testbed have a wave generator, an amplifier, high-pass and low-pass frequency
filters, a mixer, and a signal sink, see Figure 44.

Source Sink

||

Figure 44: Signal processor example

SysML Extension for Physical Interaction and Signal Flow Simulation 69

A.3.3 Internal structure

Figure 45 and Figure 46 show the internal structure of blocks TestBed and SignalProcessor, respectively.
Part properties, typed by blocks defined in Subannex A.3.4, represent the components of the system. They
are connected through ports, also defined in Subannex A.3.4, which represent signal outputs and inputs,
also defined in Subannex A.3.4. Signals pass through ports in the direction shown by the arrows. Item
flows on connectors indicate that the signals are real numbers.

Figure 45 connects a signal source to a signal processor, which it connects to a signal sink that displays the
output. Figure 46 connects the signal processor input to an amplifier, the output of the amplifier to a high-
pass filter in parallel with a low-pass filter, the outputs of the filters to a mixer, and the output of the mixer
to the signal processor output. SysML initial values specify property values for components used in internal
block diagrams. Figure 45 shows an initial value for source amplitude amp, while Figure 46 shows initial
values for amplifier signal gain g and filtering properties xi and alpha (defined in Subannex A.3.4).
Simulink without Simscape does not have elements corresponding to initial values on parts below the top
level system (see Subclause 10.10.4). Subannex A.5.9 shows SysML models that have the same effect as
initial values and have corresponding elements in Simulink.

ibd TestBed J

inputSignal : SignalSource

initial values
amp =3.0

[

Real

= it

dSP : SignalProcessor

y

Real
u

<]

scopeSignalOutput : SignalSink

Figure 45: Internal structure of test bed from signal source to sink

ibd SignaIProcessor)

u | hPF : HighPassFilter |y

initial values
alpha =0.01
xi=0.0

IPF : LowPasskFilter
—>| initial values
U T alpha=3.0
xi=0.0

a : Amplifier

initial values
g=20

Figure 46: Internal structure of the signal processor

A.3.4 Blocks and ports

Figure 47-Figure 48 show block definitions for components of TestBed and SignalProcessor in Figure 45
and Figure 46, respectively. The output for SignalSource is hamed y and is typed by
RealSignalOutElement, from the signal flow library (see Subclause 11.2.1). The input for SignalSink is

SysML Extension for Physical Interaction and Signal Flow Simulation 70

named u and is typed by RealSignallnElement, also from the library. The signal processor has an input and
output, transforming the signal from the source and passing it to the sink.

In Figure 48, amplifiers, low-pass filters, and high-pass filters, each have an input and an output. Since they
are similar in this sense, a generalized TwoPinSignalComponent component has an input u and an output y.

Mixers have inputs ul and u2, and an output y. Each kind of component has its own behaviors, defined as
constraints in Subannex A.3.6. Alternatively, some of these components could be specified using the
source and sink components library (see Subclause 11.3.2.7).

bdd Test Bed Components)

«interfaceBlock»

SignalSource

phs constants

amp : Real

«olocko SysPhSLib RealSi IINEI t
. - VS ibrary::RealSignallnElemen
SignalSink «port» U
phsvariables - signal flows
scope: Real in rSig : Real {redefines rSig}
«port» U
«block»
SignalProcessor
«block» «port» y
«port» y «interfaceBlock»

SysPhSLibrary::RealSignalOutElement

signal flows

out rSig : Real {redefines rSig}

Figure 47: Total system (source to sink) blocks, ports, & component properties

bdd Signal Processor Components)

«interfaceBlock»

SysPhSLibrary::RealSignallnElement

signal flows

in rSig : Real {redefines rSig}

«port» U «port» ul «port» u2
. .«bIOCk» «block»
TwoPinSignalComponent .
Mixer
AN
«port» Y «port» Y
«interfaceBlock»
SysPhSLibrary::RealSignalOutElement
signal flows
out rSig : Real {redefines rSig}
«block» «block» «block»
HighPassFilter Amplifier Low PassFilter
phs constants phs constants phs constants
alpha : Time g: Real alpha : Time
phs variables phs variables
xi : Real Xi : Real

Figure 48: Signal processing system blocks, ports, & component properties

SysML Extension for Physical Interaction and Signal Flow Simulation

71

A.3.5 Properties (variables)

Signal flow is the movement of numbers between system components. These numbers might reflect
physical quantities or not. In this example, they do not (see Subannex 0 for an example where they do).
Signals flowing in and out of components are modeled by ports typed by interface blocks that have flow
properties typed by numbers. In this example, ports are typed by RealSignalOutElement and
RealSignallnElement from the signal flow library (see Subclause 11.2.1), which both have a flow property
rSig typed by Real, from SysML, as shown in Figure 47. This value type has no unit, reflecting that the
signals are not measurements of physical quantities and do not follow conservation laws.

The amplifier, filters (high-pass and low-pass), signal source, and signal sink have properties g, alpha and
xi, amp, and scope, respectively. The amp, alpha and g properties have the PhSConstant stereotype applied,
specifying that their values are constant during each simulation run. The xi and scope properties have the
PhSVariable stereotype applied, specifying that their values might vary during simulation.

A.3.6 Constraints (equations)

Equations define mathematical relationships between the values of numeric variables. Equations in SysML,
are constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this
example, a constraint block BinarySignalComponentConstraint defines the parameters for one input (ip)
and one output (op), common to amplifiers, low-pass filters, and high-pass filters, as shown in Figure 49.
The amplifier, low-pass filer, and high-pass filter constraints show the input-output relationship of these
components as the signal passes through them. The amplifier changes the signal strength by a factor gain,
the low-pass filter eliminates the high-frequency components of the incoming signal, and the high-pass
filter eliminates the low-frequency components of the signal. The mixer constraint specifies the relationship
between its one output and the two inputs that come from the low-pass and high-pass filters. The constraint
defines the output to be the average of the inputs. The source constraint specifies a sine wave signal with
the parameter amp as its amplitude. The sink constraint displays (scopes) the output signal from the signal
processor.

bdd Signal Processor Oonstraints)

«constraint»
BinarySignalComponentConstraint
parameters
ip : Real
op : Real
AN
«constraint» «constraint» «constraint» «constraint»
AmplifierConstraint | |LowPassFilterConstraint | |HighPassFilterConstraint| |MixerConstraint
constraints constraints constraints constraints
{op=ip*gain} {der(x)=1/a*ip-1/a*x} {der(x)=1/a*ip-1/a*x} {op=(ip1+ip2)/2}
parameters {op=x {op=ip-x} parameters
gain : Real parameters parameters ip1: Real
X : Real a: Real ip2 : Real
a: Real X : Real op : Real
«constraint» «constraint»
SignalSourceConstraint SignalSinkConstraint
constraints constraints
{output=amp*sin(2*3.14*time)+3*sin(3.14*time)+10*sin(2*time)} {scope=input}
parameters parameters
amp : Real scope: Real
output : Real input : Real

Figure 49: Signal processing system constraint blocks

SysML Extension for Physical Interaction and Signal Flow Simulation 72

A.3.7 Constraint properties and bindings

Equations in constraint blocks are applied to components using binding connectors in component
parametric diagrams. Component parametric diagrams show properties typed by constraint blocks
(constraint properties), as well as component and port simulation variables and constants. Binding
connectors link constraint parameters to simulation variables and constants, indicating their values must be
the same. Figure 50 through Figure 55 show parametric diagrams for the source, amplifier, high-pass filer,
low-pass filter, mixer, and sink, respectively.

par SignalSource J

«constraint»
sourceC : SignalSourceConstraint

constraints
{output=amp*sin(2*3.14*time)+3*sin(3.14*time)+10*sin(2*time)}

y «equal»
amp : Real parameters
oo

rSig : Real «equal» output

Figure 50: Parametric diagram applying signal source constraint

par Amplifier J

«constraint»)
aC : AmplifierConstraint
u constraints
{op=ip*gain} y
parameters
rSig : Real «equab [ip op] «equab rSig : Real
gain
[

«equaly»

Figure 51: Parametric diagram applying the amplifier constraint

par HighPassFilter J

«constraint»
hPFC : HighPassFilterConstraint

constraints

{der(x)=1/a*ip-1/a*x}

u {op=ip-x} y
«equaly» parameters «equaly»
rSig : Real 9 :' ip op |: d rSig : Real
X a
«equal» «equal»

xi : Real alpha : Time

Figure 52: Parametric diagram applying the high-pass filter constraint

SysML Extension for Physical Interaction and Signal Flow Simulation 73

par Low PassFilter J

u

«equal»

«constraint»
IPFC: LowPassFilterConstraint

\

constraints
{der(x)=1/a*ip-1/a*x}
{op=x}

parameters

ip op
.

«equal»

y

J

X
«equal» «equal»
| xi: Real | | alpha : Time |

rSig : Real

Figure 53: Parametric diagram applying the low-pass filter constraint

par Mixer J

ul

| «equal»

|
«equal»

. N\
«constraint»

mC: MixerConstraint
constraints

{op=(ip1+ip2)/2}

parameters
e

op[]

y

«equal»

u2

rSig : Real

| Jip2
AN

rSig : Real

Figure 54: Parametric diagram applying the mixer constraint

u

par SignalSink J

«constraint»
sinkC : SignalSinkConstraint

{scope=input}

constraints

rSig : Real

«equaly»

:linput
equal

parameters

Figure 55: Parametric diagram applying the signal sink constraint

A.4 Hydraulics

A.4.1 Introduction

This subannex gives a model of a simple hydraulic system as an example of physical interaction (fluid

flow). It does not include any signal flows.

A.4.2 System being modeled

The hydraulic system has three components: two fluid reservoir tanks and a pipe for connecting these tanks,

see Figure 56.

SysML Extension for Physical Interaction and Signal Flow Simulation

74

Fluid Tank 1 Fluid Tank 2

Connecting Pipe
|
Figure 56: Hydraulics example

A.4.3 Internal structure

Figure 57 shows the internal structure of a ConnectedTanks block. Part properties, typed by blocks defined
in Subannex A.4.4, represent components in this system. They are connected to each other through ports,

which represent openings in the tanks and pipe, also defined in Subannex A.4.4. Item flows on connectors
indicate fluid passes through the ports and between the parts. The diagram connects a tank to each end of a

pipe.

SysML initial values specify property values for components used in internal block diagrams. Figure 57
shows initial values for fluid density, gravity, tank surface area, pipe radius, pipe length, and dynamic
viscosity of the fluid (properties defined in Subannex A.4.4). An alternative for specifying initial values of
part properties in the ConnectedTanks is to specialize it and redefine the part properties with default values
for various configurations (see Subannex A.5.9).

ibd ConnectedTanks J

fluidReservoir1 : Tank

initial values
fluidDensity = 10.0{unit = kilogramPerCubic Meter}
fluidLevel = 40.0{unit = meter}
gravity = 9.8{unit = meterPerSquareSecond}
tankSurfaceArea = 4.0{unit = squareMeter}

tankOpening
< >

A

Volume

A 4

pipe : Pipe

<>|

<>|

fluidReservoir2 : Tank

initiai values

fluidDensity = 10.0{unit = kilogramPerCubic Meter}
fluidLevel = 15.0{unit = meteri

gravity = 9.8{unit = meterPerSquareSecond}
tankSurfaceArea = 4.0{unit = squareMeter}

initial values
pipeOpening1 | dynamicViscosity = 2.0{unit = pascalSecond} [pipeOpening2
pipeLength = 10.0{unit = meter}
radius = 0.5{unit = meter}

Figure 57: Internal structure of hydraulics system

A.4.4 Blocks and ports

Figure 58 shows block definitions for components of ConnectedTanks in Figure 57. Tanks and pipes have
openings for fluid to pass through, one for tanks and two for pipes. The openings are represented by ports
of type VolumeFlowElement, from the physical interaction library (see Subclause 11.2.2). Each type of
component has its own behaviors, defined as constraints in Subannex A.4.6.

SysML Extension for Physical Interaction and Signal Flow Simulation 75

bdd Two Tanks Oomponents)

«block»
Tank
phs variables
fluidLevel : Length «interfaceBlock»
phs constants) SysPhSLibrary::VolumeFlowElement
tankSurfaceArea : Area «port»tankOpening physical interactions
gravity : Acceleration inout vF : FlowingVolume
fluidDensity : Density
«port» pipeOpening1 «port» pipeOpening2
«block»
Pipe =
phs variables
fluidFlow : VolumeFlowRate «block»
fluidPressureDiff : Pressure SysPhSLibrary::Volume
phs constants
pipeLength : Length [ﬁ
radius : Length
dynamicViscosity : Viscosity «block»
resistance : ViscousResistance SysPhSLibrary::FlowingVolume

phs variables
{isConserved} q : VolumeFlowRate
p : Pressure

Figure 58: Hydraulics blocks, ports, & component properties

A.4.5 Properties (variables)

Physical interaction is the movement of physical substances between system components, modeled in terms
of conserved characteristics of the substances. In this example, volume is the conserved characteristic of
fluid moving between the tanks (fluids are substances that can be treated as volumes because they are
incompressible, but otherwise do not resist deformation). Movement of substances is described by numeric
variables for flow rate and potential to flow of their conserved characteristics. In this example, movement
of volumes is characterized by a volume per unit time variable for the flow rate and a pressure variable for
potential to flow. The flow rate variable is conserved (values on ends of the interaction sum to zero) and the
potential variable is not (values on ends of the interaction are the same). This is modeled in three parts:

e Conserved physical characteristics are modeled as blocks directly specialized from
ConservedQuantityKind in the physical interaction library (see Subclause 11.2.2), Volume in this
example.

e Flow variables are modeled as properties with the PhsVariable stereotype applied on
specializations of conserved quantity kind blocks. In this example, the flow rate and potential
PhsVariables are g and p on FlowingVolume (q marked as isConserved), respectively, typed by
VolumeFlowRate and Pressure, respectively, all from the physical interaction library.

e Flows in and out of components are modeled by ports typed by interface blocks that have flow
properties typed by flowing conserved quantity kinds. In this example, ports are typed by
VolumeFlowElement from the physical interaction library, which has a flow property vF typed by
FlowingVolume, as shown in Figure 58. The Tank block has a tankOpening port and the Pipe
block has pipeOpeningl and pipeOpening2 ports, all typed by VolumeFlowElement.

Behavior of the pipe in this example is described by the fluid pressure and volume flow rate at the
openings. The fluid pressure is given by the property fluidPressureDiff (difference in pressure between its
two openings) and the volume flow rate is given by the property fluidFlow (the volume of fluid going in
our out the openings per unit time). These two properties are typed by Pressure and VolumeFlowRate,
respectively, from the physical interaction library (see Subclause 11.2.2), and have the PhSVariable
stereotype applied, specifying that their values might vary during simulation.

The tank has properties fluidLevel, tankSurfaceArea, gravity, and fluidDensity typed by Length, Area,
Acceleration, and Density, respectively. The property fluidLevel has the PhSVariable stereotype applied,
because the amount of fluid in the tank can vary during simulation, but the other properties have the
PhSConstant stereotype applied, specifying that their values do not change during each simulation run.

SysML Extension for Physical Interaction and Signal Flow Simulation 76

The pipe has properties pipeLength, radius, dynamicViscosity, and resistance typed by Length, Length,
Viscosity, and ViscousResistance, respectively, and all with the PhSConstant stereotype applied.

A.4.6 Constraints (equations)

Equations define mathematical relationships between the values of numeric variables. Equations in SysML,
are constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this
example, constraint blocks PipeConstraint and TankConstraint define parameters and equations for pipes
and tanks, respectively, as shown in Figure 59.

The pipe constraints specify that the pressure pressureDiff across it is equal to the difference of fluid
pressures openinglPressure and opening2Pressure at each end of the pipe. The fluid flow rate through the
pipe, fluidFlow, is proportional to the pressure difference by the constant resistance, which depends on the
geometric properties of the pipe as well as fluidic properties. The magnitude of fluid flow rate through the
pipe fluidFlow is the same as the magnitude of flow rates openinglFluidFlow and opening2FluidFlow
going through the pipe’s openings, though the values differ in sign. The sum of the fluid flow rates going
through the two pipe openings is zero (the fluid is assumed to be incompressible).

The tank constraints specify that the pressure in the tank, pressure depends on the height of the fluid level
in the tank, fluidHeight, as well as properties of the fluid, fluidDensity. Also, the fluid flow in the tank,
fluidFlow, is related to the change in the fluid height level fluidHeight over time and the cross-sectional
surface area of the tank, surfaceArea.

bdd Tw oTankConstraints)

«constraint» «constraint»
PipeConstraint TankConstraint
constraints constraints
{resistance=(8"viscosity*length)/(3.1416*(radius"4))} {pressure=gravity*fluidHeight*fluidDensity}
{fluidFlow =pressureDiff/resistance} {der(fluidHeight)=-fluidFlow /surfaceArea}

{pressureDiff=opening2Pressure-opening1Pressure}

{opening1FluidFlow +opening2FluidFlow =0} oressure : Real parameters
{fluidFlow =opening1FluidFlow } fluidFlow - Real

parameters fluidHeight : Real
opening1FluidFlow : Real fluidDensity : Real
opening1Pressure : Real gravity : Real
opening2Pressure : Real surfaceArea : Real

opening2FluidFlow : Real
fluidFlow : Real
pressureDiff : Real
radius : Real

length : Real

viscosity : Real
resistance : Real

Figure 59: Hydraulics model constraint blocks

A.4.7 Constraint properties and bindings

Equations in constraint blocks are applied to components using binding connectors in component
parametric diagrams. Component parametric diagrams show properties typed by constraint blocks
(constraint properties), as well as component and port simulation variables and constants. Binding
connectors link constraint parameters to simulation variables and constants, indicating their values must be
the same. Figure 60 and Figure 61 show the parametric diagrams of the tank and the pipe, respectively.

SysML Extension for Physical Interaction and Signal Flow Simulation 77

| par Tank J

«constraint»

tC: TankConstraint

constraints
{der(fluidHeight)=-fluidFlow/surfaceArea}
{pressure=gravity*fluidHeight*fluidDensity}

tankOpening
«equal»
VF.p : Pressure }
| VF.q : VolumeFlowRate I
I
«equal»

_«eq}m gravity : Acceleration |
fluidLevel : Length

«equal»

parameters
pressure gravity D
fluidFlow
fluidHeight [_|
surfaceArea fluidDensity
- J
«equal» «equal»

tankSurfaceArea : Area |

| fluidDensity : Density |

Figure 60: Parametric diagram applying the tank constraint

par Pipe J

«constraint»
pC: PipeConstraint

’ dynamicViscosity : Viscosity ‘

pipeOpening1

«equal»

constraints

{resistance=(8*viscosity*length)/(3.1416*(radius"4))}
{fluidFlow=pressureDiff/resistance}
{pressureDiff=opening2Pressure-opening1Pressure}
{opening1FluidFlow+opening2FluidFlow=0}
{fluidFlow=opening1FluidFlow}

resistance : ViscousResistance

«equal»

VF.q : VolumeFlowRate

| opening1Pressure
D opening1FluidFlow

parameters

opening2FluidFlow

fluidFlow

opening2Pressure

«equal»

viscosity El

pipeOpening2

resistance

VF.p : Pressure
«equal»
«equal»

«equal»

pressureDiff

«equal» .
radius : Length 7Dradlus
length
«equal»

«equal»

«equal»

VF.q : VolumeFlowRate

’ fluidFlow : VolumeFlowRate ‘
pipeLength : Length

fluidPressureDiff : Pressure

Figure 61: Parametric diagram applying the pipe constraint

A.5 Humidifier

A.5.1 Introduction

This subannex gives a model of a room humidifier as an example of signal flows and state machines. Some
signals in the example reflect physical quantities, but this is not physical interaction in the sense of physical
substances with flow rates and potentials, as in Subannexes A.2 and A.4.

A.5.2 System being modeled

The total humidifier system has two main components: the humidified room and the humidifier, see Figure
62. The humidifier uses information about the room’s humidity level to determine how much vapor to input
to the room. The humidifier includes a water tank, a heater controller, and a vapor generation plant.

SysML Extension for Physical Interaction and Signal Flow Simulation

78

Humidified Room Humidifier
]

Room Humidity

Figure 62: Total humidifier system example

A.5.3 Internal structure

Figure 63 through Figure 69 show the internal structure of the total humidifier system and its components
through seven nested internal block diagrams. The internal structure of the block HumidifierSystem shown
in Figure 63 uses the blocks HumidifiedRoom and Humidifier. These two blocks have their own internal
structures. The internal structure of HumidifiedRoom depicted in Figure 64 uses a block RelativeHumidity,
which has an internal structure depicted in Figure 65. The internal structure of Humidifier in Figure 66 uses
a block VaporGenerationPlant, which has an internal structure shown in Figure 67. The internal structure
of VaporGenerationPlant uses blocks Heating and Evaporation, which have internal structures depicted in
Figure 68 and Figure 69, respectively. The blocks used in these diagrams are introduced in Subannex A.5.4.

Part properties, typed by blocks defined Subannex A.5.4, represent the components of the system. They are
connected to each other through ports, also defined in Subannex A.5.4, which represent signal outputs and

inputs. Signals pass through ports in the direction shown by the arrows. Item flows on connectors indicate

that the signals are real numbers.

Figure 63 connects the humidified room to the humidifier, showing vapor signals flowing from the
humidifier to the room and humidity signals flowing from the room to the humidifier. Figure 64 directs
vapor, saturation vapor pressure, and humidity signals flowing into the room to a relative humidity part that
calculates the humidity flowing out of the room.

Figure 65 directs incoming vapor signals to a vapor pressure calculation part, which connects to the relative
humidity calculation to output pressure signals. This figure also directs incoming saturation vapor pressure
signals to the relative humidity calculation, as well as humidity signals to a humidity balance part, which
connects to the relative humidity calculation to output a humidity change signal, which is directed to the
output of this internal structure.

Figure 66 transforms humidity signals flowing to the humidifier into vapor signals flowing out of the
humidifier. This is done using a heater control state machine, a usage scenario state machine, another
controller state machine, information from the water tank’s water volume, and information from the vapor
generation plant. The state machines for the heater control, control, and usage scenario parts in Figure 66
are explained in Subannex A.5.8.

Figure 67 directs incoming heater power ratio signals to the vapor generation plant calculation part and
incoming water fan signals to the radiation part. Connectors between the vapor generation plant calculation
and radiation parts and the heating and evaporation parts result in vapor signal outputs from the evaporation
part and temperature signal outputs from the heating part.

Figure 68 directs energy signals to the temperature increase part, which connects to the heating calculation
to output temperature-increase signals, which is directed to the output of this internal structure. Figure 68
directs input energy and temperature signals to evaporation calculation parts, one of which outputs vapor
signals for the internal structure.

Initial values for the properties of components in Figure 64 through Figure 69 in Subannex A.5.4 cannot be
specified in internal block diagrams, as in the other subannexes, at least if Simulink is one of the platforms.
Simulink without Simscape does not have elements corresponding to initial values on parts below the top-

level system (see Subclause 10.10.4), and Simscape has no corresponding elements for state machines (see

SysML Extension for Physical Interaction and Signal Flow Simulation 79

Subclause 10.12.4). Subannex A.5.9 shows how to get the effect of initial values in this example by
specializing blocks and redefining their properties with default values.

ibd HumidifierSystemJ

room : HumidifiedRoom_| humidityOut Real humidity In IJ‘I humidifier : Humidifier
Ll
vaporin Real< vaporOut g

Figure 63: Internal structure of the total humidifier system

ibd HumidifiedRoom J

rH: RelativeHumidity

humidityin humidity Out
7 c
>
Real vaporin Real
’ toPercentage : PercentageConversion
(]
op L= P
il it
Real ip ’ mLpH2mLpS : VolumeConversion
satVaporPressureQut

vaporin sVP : SaturationVaporPressure

—

humidity Out

Real

Figure 64: Internal structure of the humidified room

ibd RelativeHumidity J
vPC : VaporPressureCalculation
vaporin Real vapor,
] > >
n
pressure
Real
ipPress
2
satVaporPressureln ipSatJ_‘relHumCalc:RelativeHumidityCaIcuIation opHum
[—3 >Rea| L|_| ° Real _El
1
1] humidity Out
ipChange
humidity In humidit . idi
Y[hB: HumidityBalance Real
change

Figure 65: Internal structure of relative humidity

SysML Extension for Physical Interaction and Signal Flow Simulation 80

ibd HumidifierJ
Real humidityln | heaterControl : HeaterControl
. -
[_Ihumldltyln r > heaterPow erRatioOut
-
|
= modeln
usage : UsageScenario i swtch
Real
ea swich control : Control Real
5 mode
w aterVolumeln L
Prea o
T m—
fanPow erOut w aterTemperatureln v
Real
Real
Real
fanWatln temperatureOut
L] L
vaporGenerationPlant : VaporGenerationPlant L heaterPow erRatioln
n
vaporOut
w aterVolumeOut
A Real
L] vaporOut
waterTank : WaterTank —
consumptionin I__’]
—
Figure 66: Internal structure of the humidifier
ibd VaporGenerationPIanu
energyWatin g_|temperatureOut
heaterPow erRatioln e >
l:_> Real
VGPC : VaporGenerationPlantCalculation
ipRadiation
temperatureln '_]
fanWatln temperatureOut
=
radiationWaterOut energyWatin
]
fanWatin r : Radiation
Real h
temperatureln
L
Figure 67: Internal structure of the vapor generation plant
ibd HeatingJ
tl: Temperaturelncrease | .
increase . - -
— » ipTempinc_| 1 : HeatingCalculation
Real — opTemp
[T1 Real
energyWatin energy _El
temperatureOut
Figure 68: Internal structure of heating
SysML Extension for Physical Interaction and Signal Flow Simulation 81

ibd Evaporation J
energyWatin
["] ’R | ,_Llenergy
eal
L
eC : EvaporationCalculation
1
vapor
Real
ipVapor
L]
temperatureln ipTemperature eC2: EvaporationCalculation2
[_3 > = opVapor vaporOuf_
=
Real >Rea| =]

Figure 69: Internal structure of evaporation

A.5.4 Blocks and ports

Figure 70 through Figure 76 show block definitions for component used in the internal block diagrams
shown in Figure 63 through Figure 69, respectively (one each for the total humidifier system, humidified
room, relative humidity, humidifier, vapor generation plant, heating, and environment components). All
ports are typed by RealSignallnElement from the signal flow library (see Subclause 11.2.1). A tilde (~) next
to a port name indicates that it receives signals (conjugated port type), otherwise the port sends signals (the
tilde normally appears before the type name, after a colon, but port types are omitted from the figures for
brevity, because they are all the same; compare to the signal port types in Subannex 0). Component blocks
that do not have internal block diagrams in Subannex A.5.3 have their behaviors defined as constraints in
Subannex A.5.6.

bdd Humidifier System Components)

«block» «block»
HumidifiedRoom Humidifier
«port» «port» «port» «port»
~JhumidityOut | vaporin ~JvaporOut | humidityln

«interfaceBlock»
SysPhSLibrary::RealSignallnElement

signal flows
in rSig : Real {redefines rSig}

Figure 70: Total humidifier system blocks, ports, & component properties

SysML Extension for Physical Interaction and Signal Flow Simulation 82

bdd Humidified Room Components)

«block»

SaturationVaporPressure

phs constants
p2 : Real
roomTemperature : Real
p1 : Real
logBase : Real
celciusOffset : Real
hPa2Pa : Real

«block»
Relative Humidity

«port» satVaporPressureOu

«port» «port» | «port»

«port»

«block»

. «port» ip
PercentageConversion

«interfaceBlock»
SysPhSLibrary::RealSignallnElement

«port» op

N humidityOut |vaporin | humidityIn safVaporPressureln

phs constants
gain : Real

«port» op

signal flows

«port» ip

VolumeConversion

«block»

in rSig : Real {redefines rSig}

gain : Real

phs constants

Figure 71: Humidified room blocks, ports, & component properties

bdd Relative Humidity Components)

«block»

HumidityBalance

phs constants

airExchangeRate : Real

«block»
VaporPressureCalculation
phs constants

«block»
Relative HumidityCalculation
phs variables
xInt : Real
«port» «port» _«port» «port»
ipChange . |opHum |ipSat ipPress
«port»
hurﬁidity «interfaceBlock» ;'r)gg;ure
SysPhSLibrary::RealSignallnElement =~
R e o o
—| in rSig: Real {redefines rSig}

envHumidity : Real
volume : Real

roomTemperature : Real
gasConst : Real
molecularW : Real

celciusOffset : Real
volume : Real

Figure 72: Relative humidity blocks, ports, & component properties

bdd Humidifier Components)

«block»
WaterTank

«block»
HeaterControl

phs constants phs constants

prLow : Real tankVolume : Real
prHigh : Real litpSec2mLitpHr : Real
threshold : Real phs variables
targetHumidityIn : Real xInteg : Real
. «port» «port» «port» «port»
«port» heaterPowerRatioOut|~ [modeln |humidityIn consumptionin ~ | w aterVolumeOut
- «port» heaterPow erRatioln
«interfaceBlock» ‘
«block» «port» sw tch SysPhSLibrary::RealSignalinElement «port» fanWatln
. — «block»
UsageScenario _ _ signal flows «port> vaporQut VaporGenerationPlant
in rSig: Real {redefines rSig} «port» temperatureOut '
«port» WaterTemperatureln «port» ~T«port» Twports ~T«port»
waterVolumeln [mode [swtch | fanPow erOut
«block»
Control

phs constants
safeTemperature : Real

Figure 73: Humidifier blocks, ports, & component properties

SysML Extension for Physical Interaction and Signal Flow Simulation

83

bdd Vapor Generation Plant Components)

«block»
VaporGenerationPlantCalculation

phs constants
maxHeaterPow er : Real

«block»
Radiation

«port» «port» «port»
ipRadiation ~| opEnergy [ipHtrPwr
«port» temperatureln «interfaceBlock» «port» radiationWaterOut
] SysPhSLibrary::RealSignallnElement =~
«block>? «port» vaporOﬂt signal flows «port» temperatureln
Evaporation . S ; -
in rSig : Real {redefinesrSig} «ports fanWatln
' «port» energyWatln
«port» ~T «port»
energyWatin temperatureOut
«block»
Heating

phs constants
roomTemperature : Real
radiationFactor : Real
fanEfficiency : Real

Figure 74: Vapor generation plant blocks, ports, & component properties

bdd Heating Components)

«block»

Temperaturelncrease

phs constants

specificHeat : Real
w aterVolume : Real

HeatingCalculation

«block»

phs variables

«port»
~Jincrease

xIntg : Real
«port» «port» «port»
energy ipTempinc ~ ~JopTemp

«interfaceBlock»

SysPhSLibrary::RealSignallnElement

signal flows

in rSig: Real {redefines rSig}

Figure 75: Heating blocks, ports, & component properties

bdd Evaporation Components)

«block»
EvaporationCalculation

Evaporati

«block»

onCalculation2

phs constants
evaporationHeat : Real
specificHeat : Real
boilingTemperature : Real
environmentTemperature : Real

phs
boilingTempe!

noPow er : Real
litPSec2mLitPHour : Real

constants
rature : Real

«port»

«port»
energy ~Jvapor

«port»
ipVapor

«port»

«port»
~ |opVapor

ipTemperature

«interfaceBlock»

SysPhSLibrary::RealSignallnElement

signal flows

in rSig: Real {redefines rSig}

Figure 76: Evaporation blocks, ports, & component properties

SysML Extension for Physical Interaction and Signal Flow Simulation

84

A.5.5 Properties (variables)

Signals flow is the movement of numbers between system components. These numbers might reflect
physical quantities or not. In this example, they do (see Subannex 0 for an example where they do not).
Signals flowing in and out of components is modeled by ports typed by interface blocks that have flow
properties typed by numbers. In this example, ports are typed by RealSignallnElement from the signal flow
library (see Subclause 11.2.1), which has a flow property rSig typed by Real, from SysML, as shown in
Figure 70. This value type has no unit, even when they reflect physical quantities, and the values do not
follow conservation laws.

The blocks RelativeHumidityCalculation (Figure 72), WaterTank (Figure 73), and HeatingCalculation
(Figure 75) have properties with PhSVariable stereotypes applied, specifying that the value of these
properties may vary during simulation. The blocks SaturationVaporPressure (Figure 71),
PercentageConversion (Figure 71), VolumeConversion (Figure 71), HumidityBalance (Figure 72),
VaporPressureCalculation (Figure 72), WaterTank (Figure 73), HeaterControl (Figure 73), Control
(Figure 73), Radiation (Figure 74), VaporGenerationPlantCalculation (Figure 74), Temperaturelncrease
(Figure 75), EvaporationCalculation2 (Figure 76), and EvaporationCalculation (Figure 76), have
properties with PhSConstant stereotypes applied, specifying that the value of these properties are constant
during each simulation run.

A.5.6 Constraints (equations)

Equations define mathematical relationships between the values of numeric variables. Equations in SysML,
are constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this
example, the constraint blocks in Figure 77 each define parameters and constraints for a component block
in Figure 71 through Figure 76: VolumeConversion, PercentageConversion, and SaturationVaporPressure
in Figure 71; RelativeHumidityCalculation, VaporePressureCalculation, and HumidityBalance in Figure
72; WaterTank in Figure 73; Radiation and VaporGenerationPlantCalculation in Figure 74;
HeatingCalculation and Temperaturelncrease in Figure 75; and EvaporationCalculation and
EvaporationCalculation2 in Figure 76. The constraint blocks have the name of their components with the
suffix “-Constraint” added. The constraints specify manipulation of signals between inputs and outputs of
their component block.

SysML Extension for Physical Interaction and Signal Flow Simulation 85

bdd Humidifier System Constraints)

«constraint» «constraint»
EvaporationCalculationConstraint TemperaturelncreaseConstraint
constraints constraints

{vapor=energy/(evaporationHeat+specificHeat*(boilingTemperature-envTemp))} | |{increase=energy/(specificHeat*w aterVolume)}

parameters parameters
specificHeat : Real increase : Real
boilingTemperature : Real energy : Real
evaporationHeat : Real specificHeat : Real
vapor : Real w aterVolume : Real
energy : Real
envTemp : Real
«constraint» «constraint»
EvaporationCalculation2Constraint WaterTankConstraint
constraints constraints

{vapOut=g*(((max(min(vapor,1),0))*max((temp-boil),0)/(temp-boil)) +np*(max((boil-temp),0)/(boil-temp)))} | |{w atV=tankVol-min(50000,x)}
{der(x)=consIn/lpsmh}

parameters
g : Real parameters
np : Real watV : Real
temp : Real tankVol : Real
boil : Real x : Real
vapor : Real consin : Real
vapOut : Real Ipsmh : Real
«constraint» «constraint» «constraint»
PercentageConversionConstraint | [HeatingCalculationConstraint | |RelativeHumidityCalculationConstraint
constraints constraints constraints
{op=ip*g} {tOut=max(min(100,x),0)} {hum=max(min(1,x),0)}
p— {der(x)=tinc} {der(x)=(press/satVap)-change}
ip : Real parameters parameters
op : Real tOut : Real hum: Real
g : Real x : Real X : Real
tinc : Real press : Real
satVap : Real
change : Real
«constraint» «constraint»
VaporGenerationPlantCalculationConstraint RadiationConstraint
constraints constraints
{energy=((maxPw r*htrPw r)-radiation)} {radiationWatOut=(tempIn-roomTmp)*(radiationFactor+(fanWatin*fanEff))}
paraneters parameters
energy : Real templn : Real
maxPwr : Real fanWatln : Real
htrPwr : Real radiationFactor : Real
radiation : Real fanEff : Real
roomTmp : Real
radiationWatOut : Real
«constraint» «constraint»
VolumeConversionConstraint SaturationVaporPressureConstraint
constraints constraints
{op=ip*g} {svpOut=hPa2Pa*(c1*exp((log(logBase)*((c2*roomTemp)/(roomTemp+celcius Off)))))}
paraneters parameters
op : Real svpOut : Real
ip : Real hPa2Pa : Real
g : Real c1:Real
logBase : Real
c2: Real
roomTemp : Real
celciusOff : Real

«constraint» «constraint»
HumidityBalance Constraint VaporPressureCalculationConstraint
constraints constraints

{change=((humidity-envH)*(volume*airExRate))} {pressure=vapor*(gasConst*((roomTemp+celcius Off)/(molecularW*volume)))}

paranmeters paranmeters
change : Real pressure : Real
humidity : Real vapor : Real
envH: Real gasConst : Real
volume : Real roomTemp : Real
airExRate : Real celciusOff : Real
molecularW : Real
volume : Real

Figure 77: Humidifier constraint blocks

SysML Extension for Physical Interaction and Signal Flow Simulation

A.5.7 Constraint properties & bindings

Equations in constraint blocks are applied to components using binding connectors in component
parametric diagrams. Component parametric diagrams show properties typed by constraint blocks
(constraint properties), as well as component and port simulation variables and constants. Binding
connectors link constraint parameters to simulation variables and constants, indicating their values must be

the same. Figure 78 through Figure 90 show the parametric diagrams for the blocks VolumeConversion,

PercentageConversion, SaturationVaporPressure, HumidityBalance, RelativeHumidityCalculation,
VaporPressureCalculation, VaporGenerationPlantCalculation, Radiation, HeatingCalculation,

Temperaturelncrease, EvaporationCalculation, EvaporationCalculation2, and WaterTank, respectively.

par VqumeConversion)

ip

«equal»

«constraint»
vCC : VolumeConversionConstraint
constraints

«equaly»

op

rSig : Real

{op=ip*g}
parameters
[Jio op[]
¢}
«equal»
gain : Real

rSig : Real

Figure 78: Parametric diagram applying the volume conversion constraint

par PercentageConversion)

«constraint»
pCC : PercentageConversionConstraint

ip

constraints

{op=ip*g}

«equal»

rSig : Real

\

parameters

ip
9

4

op[

«equal»

op

J

«equaly»

gain : Real

rSig : Real

Figure 79: Parametric diagram applying the percentage conversion constraint

SysML Extension for Physical Interaction and Signal Flow Simulation

87

par SaturationVaporPressureJ

«constraint»
sVPC: SaturationVaporPressureConstraint

constraints

{svpOut=hPa2Pa*(c1*exp((log(logBase)*((c2*roomTemp)/(roomTemp+celcius Off)))))}

satVaporPressureOut

«equal»
logBase : Real 4 :| logBase

«equaly

rSig : Real

«equal»

roomTemperature : Real |

parameters
svpOut E
roomTemp c2 hPa2Pa celcius Off c1
«equaly»
«equal» «equal» «equal»

celciusOffset : Real | p1: Real

2 Rea | hPa2Pa : Real | |

Figure 80: Parametric diagram applying the saturation vapor pressure constraint

par HumidityBalance)

change

«equal»

«constraint»
— hBC : HumidityBalanceConstraint
humidity constraints
{change=((humidity-envH)*(volume*airExRate))}
Sig : Real «equal» parameters
:I humidity
:I volume change |:
airExRate envH
«equal» |—|
I:volume - Reajl «equal» «equal»

| airExchangeRate : Real |

| envHumidity : Real |

rSig : Real

Figure 81: Parametric diagram applying the humidity balance constraint

par RelativeHumidityCaIculation)

«equal»

e - N opHum
«constraint»
ipPress rHCC : RelativeHumidityCalculationConstraint
constraints «equal» rSig : Real
{hum=max(min(1,x),0)}
rSig : Real {der(x)=(press/satVap)-change}
| parameters
«equab» :| press
hum I: ipChange
:l satVap |
«equal»
ipSat X change |: q
«equaly» \ |_| J rSig : Real
rSig : Real

xInt : Real

Figure 82: Parametric diagram applying the relative humidity calculation constraint

SysML Extension for Physical Interaction and Signal Flow Simulation

88

par VaporH'essureCaIculation)

pressure

volume : Real «equaly

«constraint»
VvPCC : VaporPressureCalculationConstraint
constraints
{pressure=vapor*(gasConst*((roomTemp+celcius Off)/(molecularW*volume)))}
vapor parameters
«equal»
:| vapor
rSig : Real f pressurel: «equal»
«equal» :l gasConst
volume roomTemp celcius Off molecularW
),
gasConst : Real
«equal» «equal»
«equal»

celciusOffset : Real molecularW : Real
| roomTemperature : Real |

rSig : Real

Figure 83: Parametric diagram applying the vapor pressure calculation constraint

par VaporGenerationPIantCaIcuIation)

~

opEnergy

rSig : Real

«constraint»
vGPCC : VaporGenerationPlantCalculationConstraint
i constraints
il {energy=((maxPwr*htrPwr)-radiation)}
parameters
rSig : Real «equal» :I P
«equal» energy «equal»
:I radiation maxPwr
> S
ipRadiation
«equal»
rSig : Real
maxHeaterPower : Real

Figure 84: Parametric diagram applying the vapor generation plant calculation constraint

| par Radiation J

rc:

«constraint»
RadiationConstraint

constraints

radiationWaterOut

rSig : Real

temperatureln {radiationWatOut=(tempIn-roomTmp)*(radiationFactor+(fanWatin*fanEff))}
parameters
— «equal» «equal»
rSig : Real |]tempin radiationWatOut [_|
:|fanWatln o
roomTmp radiationFactor fanEli|
fatWatin «equal»
«equal»
«equal» «equal»
rSig : Real
roomTemperature : Real | | radiationFactor : Real | | fanEfficiency : Real
Figure 85: Parametric diagram applying the radiation constraint
SysML Extension for Physical Interaction and Signal Flow Simulation 89

rSig : Real

«equal» :I
energy
envTemp specificHeat boilingTemperature evaporationHeat

[1]] []

par HeatingCaIcuIation)
(|)
«constraint»
hCC : HeatingCalculationConstraint
constraints
ipTempinc {tOut=max(min(100,x),0)}
{der(x)=tinc} opTemp
N parameters |
- «equal» :
rSig : Real :Itlnc tout I: q rSig :|Real
X
\ [])
«equal»
xIntg : Real
Figure 86: Parametric diagram applying the heating calculation constraint
par Temperaturelncreaseﬂ
' N\
«constraint»
tiC : TemperaturelncreaseConstraint
constraints
{increase=energy/(specificHeat*w aterVolume)}
energy parameters increase
«equal» . «equaly» -
rSig : Real d :| energy |ncrease|: d rSig : Real
specificHeat w aterVolume
. [1 [1)
«equal» «equal»
specificHeat : Real waterVolume : Real
Figure 87: Parametric diagram applying temperature increase constraint
par EvaporationCaIcuIation)
«constraint»
eCC : EvaporationCalculationConstraint
constraints
{vapor=energy/(evaporationHeat+specificHeat*(boilingTemperature-envTemp))}
energy parameters
«equal»

vapor

vapor |:

&

«equal» «equal» «equal»

L

«equal»

rSig : Real

environmentTemperature : Real | | specificHeat : Real | | boilingTemperature : Real | | evaporationHeat : Real

Figure 88: Parametric diagram applying the evaporation calculation constraint

SysML Extension for Physical Interaction and Signal Flow Simulation

90

par EvaporationCaIcuIationZ)

«constraint»
eC2C: EvaporationCalculation2Constraint
constraints

{vapOut=g*(((max(min(vapor,1),0))*max((temp-boil),0)/(temp-boil))+np*(max((boil-temp),0)/(boil-temp)))}

ipTemperature

parameters
'Sig - Real «equal» opVapor
temp
«equal» —
vapOut I: rSig : Real
] vapor boil

[) [l
ipVapor «equal»
«equal» «equal» «equal»
rSig : Real
| boilingTemperature : Real | | noPower : Real | | litPSec2mLitPHour : Real

Figure 89: Parametric diagram applying the second evaporation calculation constraint

par WaterTank J p <

«constraint»
wTC : WaterTankConstraint
constraints

{w atV=tankVol-min(50000,x)}

{der(x)=consIn/lpsmh} waterVolumeOut
consumptionin parameters |
w atV |: «equay rSig : Real
- «equal»
rSig : Real :I consin
tankVol |:
P
«equal»
«equal» «equal»

tankVol : Real
| litpSec2mLitpHr : Real | | xInteg : Real | | ankVolume : Rea

Figure 90: Parametric diagram applying the water tank constraint

A.5.8 State Machines

The state machine diagrams in this example specify how components react to changes by showing states of
each component and the transition between these states. StateFlow only extends Simulink (see Subclause
10.12.4), which affects modeling of initial values (see Subannex A.5.9).

Figure 91 depicts the state machine of the block HeaterControl, the type of the heatercontrol property in
the Humidifier internal block diagram (see Figure 66). The machine uses information from the block’s
ports to decide whether to operate the heater controller: the humidified room’s current humidity from the
input humidityln, the target humidity from the property targetHumidity, and the control signal from the
input modeln. Its decision is sent to the vapor generation plant along the connection from the pin
heaterPowerRatioOut.

Figure 92 depicts the state machine of the block Control, the type of the control property in the Humidifier
internal structure (Figure 66). The machine determines the operation of the heater controller heatercontrol
and the vapor generation plant vaporgenerationplant based on information received from the Control
block’s ports: a water volume signal waterVolumeln from the property watertank, a water temperature
signal waterTempln from vaporgenerationplant, and a switch decision signal swtch from usage.

Figure 93 depicts the state machine of the block UsageScenario, the type of the usage property in the
Humidifier internal structure (Figure 66). The part property usage connects to the control part property with
a signal from port swtch for the state machine UsageScenario to determine the time and duration for which
the humidifier should humidify the room.

SysML Extension for Physical Interaction and Signal Flow Simulation 91

stm HeaterControlSM)

. .
Off
. w hen (modeln.rSig==1 and humidity In.rSig<targetHumidity In-threshold)

entry / turnOff

w hen (modeln.rSig==0)

entry / turnOn

w hen (humidity In.rSig>targetHumidity In)

Figure 91: Heater Control State Machine Diagram

stm_ControlStateMachine J

w hen (sw tch.rSig==1) - WarmUp ~ W hen (waterTemperatureln.rSig>=99)

entry / warmupActivity

when (sw tch.rSig==0) w hen (sw tch.rSig==0)

l entry / onActivity

entry / offActivity

CoolDown
entry / cooldownActivity J

w hen (w aterTemperatureln.rSig<=safeTemperature) w hen (w aterVolumeln.rSig==0)

Figure 92: Humidifier Control State Machine Diagram

stm UsageScenarioStateMachine J

. -)

Started after (300) On after (3300) off
entry/ turnOn entry / turnOff

~————

Figure 93: Humidifier Usage Scenario State Machine Diagram

A.5.9 Initial Values

Initial values are specified by block property redefinitions with default values in this example. This is
necessary because StateFlow only extends Simulink (see Subclause 10.12.4), one of the desired platforms,
and Simulink without Simscape does not have elements corresponding to SysML initial values on parts
below the top level system (see Subclause 10.10.4). SysML models must specialize component blocks to
redefine properties and give default values, rather than use initial values, if they are to have corresponding
elements in Simulink.

Each configuration (scenario) of values requires its own specializations and redefinitions, starting with a
specialization the total system block. Blocks typing part properties of the specialized total system block
(and any of their parts, recursively) are also specialized when they have values to be specified. The
additional blocks in Figure 94 through Figure 100 are specialized from component blocks in Figure 70
through Figure 76, respectively (for parts of the total humidifier system, humidified room, relative
humidity, humidifier, vapor generation plant, heating, and environment components). For example, Figure
94 shows HumidifierSystemScenariol specialized from the total system block. Specialized blocks have the
name of their general components with the suffix -1, indicating that this specialization is for the first
scenario. Part property redefinitions with default values are indicated on each specialized block.

SysML Extension for Physical Interaction and Signal Flow Simulation 92

bdd HumidifierSystemScenario1)

«block»
HumidifierSystem

[

«block»
«block» «block» HumidifiedR
Humidifier HumidifierSystem Scenario1 umlcitiedroom

humidifierSystem|{redefines humidifierSystem}

«block» room} {redefines room}
Humidifier1 «block»
parts HumidifiedRoom1

w atertank : WaterTank1{redefines w atertank}

heaterControl : HeaterControl1{redefines heaterControl}

control : Control1{redefines control}

vaporGenerationPlant : VaporGenerationPlant1{redefines vaporGenerationPlant}
usage : UsageScenario1{redefines usage}

parts
toPercentage : PercentageConversion1{redefines toPercentage}
mLpH2mLpS : VolumeConversion1{redefines mLpH2mLpS}
sVP: SaturationVaporPressure1{redefines sVF}
rH : RelativeHumidity 1{redefines rH}

Figure 94: Humidifier System Scenario Initial Values

bdd HumidifiedRoomScenario1)

«block» «block» Perce t:b;ogl:; ersion
SaturationVaporPressure HumidifiedRoom1 reentag verst
Lr sVPJ{redefines sVP}
«block» defi toPe i
SaturationVaporPressure1 toPercentage | {redefines toPercentage}
phs constants «block»

p2 : Real = 7.5{redefines p2} PercentageConversion1
roomTemperature : Re_al = 30.0{redefines roomTemperature} phs constants
p1: Real = 6.11{redefines p1}

in : Real = 100.0{redefi i
logBase : Real = 10.0{redefines logBase} gain - "ea {redefines gain}
celciusOffset : Real = 273.0{redefines celciusOffset}
hPa2Pa : Real = 100.0{redefines hPa2Pa}

«block»
VolumeConversion

«block» .
Re lative Humidity mLpH2mLpS | {redefines mLpH2mLpS}
. «block»
lr rH_J{redefines rt} VolumeConversion1
«block» phs constants
Relative Humidity1 gain : Real = 2.8E-4{redefines gain}
parts

hB : HumidityBalance1{redefines hB}
vPC : VaporPressureCalculation1{redefines vPC}
relHumCalc : RelativeHumidity Calculation1{redefines relHumCalc}

Figure 95: Humidified Room Scenario Initial Values

SysML Extension for Physical Interaction and Signal Flow Simulation 93

bdd RelativeHumidityScenario1)

«block»

«block»

HumidityBalance

Relative Humidity1

[

hB [{redefines hB}

«block»
HumidityBalance 1

RelativeHumidityCalculation

«block»

|

relHumCalc

«block»
RelativeHumidityCalculation1

airExchangeRate : Real = 1.0E-8{redefines airExchangeRate}
envHumidity : Real =
volume : Real = 25000.0{redefines volume}

phs constants

0.35{redefines envHumidity}

vPC

{redefines relHumCalc}

phs constants
C2 : Time = 1.0{redefines C2,unit = second}

{redefines vPC}

«block»

VaporPressureCalculation

«block»

VaporPressureCalculation1

phs constants

roomTemperature : Real = 30.0{redefines roomTemperature}
gasConst : Real = 8.314{redefines gasConst}
molecularW : Real = 18.015{redefines molecular\W}
celciusOffset : Real = 273.0{redefines celciusOffset}
volume : Real = 25000.0{redefines volume}

Figure 96: Relative Humidiity Scenario Initial Values

bdd HumidifierScenario1 J

«block»
UsageScenario

{redefines usage}

tankVolume : Real = 50000.0{redefines tankVolume}

litpSec2mLitpHr : Time = 3600000.0{redefines litpSec2mLitpHr,unit = second}

«block»
UsageScenario1

«block»
<blocky Humidifier1
VaporGenerationPlant
«block»
G tionPlant
VaporGenerationPlant1 yaporsenerationtan
redefines vaporGenerationPlan
parts defi G tionPlant]
r : Radiation1{redefines r}
vGPC : VaporGenerationPlantCalculation1{redefines vGPC}
h : Heating1{redefines h}
e : Evaporation1{redefines e} usage
control
«block» «block» N
Control K— Control1 {redefines control}
phs constants
safeTemperature : Real = 50.0{redefines safeTemperature}
«block» «block»
HeaterControl [HeaterControl1 heaterControl
phs constants N
prLow : Real = 0.0{redefines prLow } {redefines heaterControl}
prHigh : Real = 1.0{redefines prHigh}
threshold : Real = 0.5{redefines threshold}
targetHumidityIn : Real = 50.0{redefines targetHumidityIn}
«block»
«blocky [
WaterTank WaterTank1 w atertank
phs constants

{redefines w atertank}

Figure 97: Humidifier Scenario Initial Values

SysML Extension for Physical Interaction and Signal Flow Simulation

94

bdd VaporGenerationPlantScenario1 J

«block»
Radiation

r J{redefines r}

«block»
VaporGenerationPlant1

«block»
Radiation1

phs constants
roomTemperature : Real = 30.0{redefines roomTemperature}
radiationFactor : Real = 0.1{redefines radiationFactor}
fanEfficiency : Real = 0.1{redefines fanEfficiency}

{redefines h} e

«block»
VaporGenerationPlantCalculation

VGPC,

{redefines vGPC}

«block»
VaporGenerationPlantCalculation1
phs constants
maxHeaterPow er : Real = 400.0{redefines maxHeaterPow er}

{redefines e}

tl : Temperaturelncrease1{redefines tf}
hC : HeatingCalculation1{redefines hC}

eC: EvaporationCalculationScenario1{redefines eC}
eC2 : EvaporationCalculation2Scenario1{redefines eC2}

«block» «block» «block» «block»
Heating Heating1 Evaporation1 Evaporation
parts parts

Figure 98: Vapor Generation Plant Scenario Initial Value

bdd HeatingScenario1)

«block»

HeatingCalculation

«block»
Heating1

«block»
Temperaturelncrease

hC |{redefines hC}

«block»
HeatingCalculation1
phs constants
C1: Time = 1.0{redefines C1,unit = second}

tl

{redefines t}

«block»
Temperaturelncrease1

specificHeat : Real = 4180.0{redefines specificHeat}
w aterVolume : Real = 0.1{redefines w aterVolume}

phs constants

Figure 99: Heating Scenario Initial Values

bdd EvaporationScenariol)

«block»

«block»

«block»
EvaporationCalculation

eC

Evaporation1

{redefines eC}

«block»
EvaporationCalculationScenario1

EvaporationCalculation2

eC2 | {redefines eC2}

phs constants

specificHeat : Real = 1.996{redefines specificHeat}

evaporationHeat : Real = 2270.0{redefines evaporationHeat}

boilingTemperature : Real = 100.0{redefines boilingTemperature}
environmentTemperature : Real = 20.0{redefines environmentTemperature}

«block»
EvaporationCalculation2Scenario1

phs constants

boilingTemperature : Real = 99.99{redefines boilingTemperature}
noPow er : Real = 0.0{redefines noPow er}
litPSec2mLitPHour : Real = 3600000.0{redefines litPSec2mLitPHour}

Figure 100: Evaporation Scenario Initial Values

SysML Extension for Physical Interaction and Signal Flow Simulation

95

SysML Extension for Physical Interaction and Signal Flow Simulation

96

	SysML Extension for Physical Interaction and Signal Flow Simulation (SysPhS)
	Table of Contents
	Preface
	OMG
	OMG Specifications
	Issues

	1 Scope
	2 Conformance
	3 References
	3.1 Normative References
	3.2 Non-normative References

	4 Terms and definitions
	5 Symbols
	6 Additional Information
	6.1 Signal flow and physical interaction simulation compared
	6.2 How to read this specification
	6.3 Changes to Adopted OMG Specifications
	6.4 Acknowledgments

	7 SysML extension for physical interaction and signal flow simulation
	7.1 Introduction
	7.2 Simulation profile
	7.2.1 PhSConstant
	7.2.2 PhSVariable

	8 Language for mathematical expressions
	9 Preprocessing SysML models
	9.1 Introduction
	9.2 Replace connectors typed by association blocks with their internal structure
	9.2.1 Purpose
	9.2.2 SysML model before processing
	9.2.3 SysML model after processing

	9.3 Non-simulation ports changed to parts
	9.3.1 Purpose
	9.3.2 SysML model before processing
	9.3.3 SysML model after processing

	9.4 Separate blocks owning simulation flow properties, and typing parts and ports
	9.4.1 Purpose
	9.4.2 SysML model before processing
	9.4.3 SysML model after processing
	9.4.3.1 Move simulation flow properties to their own blocks
	9.4.3.2 Add ports for simulation flow properties inherited to blocks that have non-simulation flow properties
	9.4.3.3 Split up ports typed by blocks that have inherited simulation flow properties
	9.4.3.4 Relink binding connectors that involve simulation flow properties moved to added ports
	9.4.3.5 Replace or add connectors between properties typed by blocks that have simulation flow properties moved to added ports
	9.4.3.6 Removing generalizations to blocks owning simulation flow properties

	9.5 Reduce nesting of connector ends
	9.5.1 Purpose
	9.5.2 SysML model before processing
	9.5.3 SysML model after processing

	10 Translating between SysML and simulation platforms
	10.1 Introduction
	10.2 Root element
	10.2.1 Purpose
	10.2.2 SysML modeling
	10.2.3 Modelica modeling
	10.2.4 Simulink modeling
	10.2.5 Simscape modeling
	10.2.6 Summary

	10.3 Blocks and properties
	10.3.1 Purpose
	10.3.2 SysML modeling
	10.3.3 Modelica modeling
	10.3.4 Simulink modeling
	10.3.5 Simscape modeling
	10.3.6 Simulink/Simscape modeling
	10.3.7 Summary

	10.4 Generalization
	10.4.1 Purpose
	10.4.2 SysML modeling
	10.4.3 Modelica modeling
	10.4.4 Simulink modeling
	10.4.5 Simscape modeling
	10.4.6 Summary

	10.5 Property redefinition
	10.5.1 Purpose
	10.5.2 SysML modeling
	10.5.3 Modelica modeling
	10.5.4 Simulink modeling
	10.5.5 Simscape modeling
	10.5.6 Summary

	10.6 PhSVariables and PhSConstants
	10.6.1 Purpose
	10.6.2 SysML modeling
	10.6.3 Modelica modeling
	10.6.4 Simulink modeling
	10.6.5 Simscape modeling
	10.6.6 Summary

	10.7 Ports and Flow Properties
	10.7.1 Purpose
	10.7.2 SysML modeling
	10.7.3 SysML modeling, signal flow
	10.7.4 Modelica modeling, signal flow
	10.7.5 Simulink modeling, signal flow
	10.7.6 Simscape modeling, signal flow
	10.7.7 SysML modeling, physical interaction
	10.7.8 Modelica modeling, physical interaction
	10.7.9 Simulink modeling, physical interaction
	10.7.10 Simscape modeling, physical interaction
	10.7.11 Summary

	10.8 Connectors
	10.8.1 Purpose
	10.8.2 SysML modeling
	10.8.3 Modelica modeling
	10.8.4 Simulink modeling, between blocks with no constraints
	10.8.5 Simulink modeling, between blocks with constraints
	10.8.6 Simulink modeling, between blocks that have constraints and blocks that do not
	10.8.7 Simscape modeling
	10.8.8 Summary

	10.9 Blocks with constraints
	10.9.1 Purpose
	10.9.2 SysML modeling
	10.9.3 SysML modeling, signal flow
	10.9.4 Modelica modeling, signal flow
	10.9.5 Simulink modeling, signal flow
	10.9.6 Simscape modeling, signal flow
	10.9.7 SysML modeling, physical interaction
	10.9.8 Modelica modeling, physical interaction
	10.9.9 Simulink modeling, physical interaction
	10.9.10 Simscape modeling, physical interaction
	10.9.11 Summary

	10.10 Default values and initial values
	10.10.1 Purpose
	10.10.2 SysML Modeling
	10.10.3 Modelica modeling
	10.10.4 Simulink modeling
	10.10.5 Simscape modeling
	10.10.6 Summary

	10.11 Data types and units
	10.11.1 Purpose
	10.11.2 SysML modeling
	10.11.3 Modelica modeling
	10.11.4 Simulink modeling
	10.11.5 Simscape modeling
	10.11.6 Summary

	10.12 State machines
	10.12.1 Purpose
	10.12.2 SysML modeling
	10.12.3 Modelica modeling
	10.12.4 Simulink/StateFlow modeling
	10.12.5 Summary

	10.13 Mathematical expressions

	11 Platform-independent component library
	11.1 Introduction
	11.2 Component interaction
	11.2.1 Signal flow
	11.2.2 Physical interaction

	11.3 Component behavior
	11.3.1 Introduction
	11.3.2 Real-valued components
	11.3.2.1 Introduction
	11.3.2.2 Continuous components
	11.3.2.3 Discrete components
	11.3.2.4 Non-linear components
	11.3.2.5 Mathematical components
	11.3.2.6 Sources and sinks
	11.3.2.7 Routing components

	11.3.3 Logical components
	11.3.4 Electrical components

	11.4 Value types with units
	11.5 Platform-dependent extension
	11.5.1 Introduction
	11.5.2 Platform profile
	11.5.2.1 ModelicaBlock
	11.5.2.2 ModelicaParameter
	11.5.2.3 ModelicaPort
	11.5.2.4 MultidimensionalElement
	11.5.2.5 SimulinkBlock
	11.5.2.6 SimulinkParameter
	11.5.2.7 SimulinkPort

	11.5.3 Platform library

	A. Examples (non-normative)
	A.1 Introduction
	A.2 Electric Circuit
	A.2.1 Introduction
	A.2.2 System being modeled
	A.2.3 Internal structure
	A.2.4 Blocks and ports
	A.2.5 Properties (variables)
	A.2.6 Constraints (equations)
	A.2.7 Constraint properties and bindings

	A.3 Signal Processor
	A.3.1 Introduction
	A.3.2 System being modeled
	A.3.3 Internal structure
	A.3.4 Blocks and ports
	A.3.5 Properties (variables)
	A.3.6 Constraints (equations)
	A.3.7 Constraint properties and bindings

	A.4 Hydraulics
	A.4.1 Introduction
	A.4.2 System being modeled
	A.4.3 Internal structure
	A.4.4 Blocks and ports
	A.4.5 Properties (variables)
	A.4.6 Constraints (equations)
	A.4.7 Constraint properties and bindings

	A.5 Humidifier
	A.5.1 Introduction
	A.5.2 System being modeled
	A.5.3 Internal structure
	A.5.4 Blocks and ports
	A.5.5 Properties (variables)
	A.5.6 Constraints (equations)
	A.5.7 Constraint properties & bindings
	A.5.8 State Machines
	A.5.9 Initial Values

