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SYSPHS11-2: Add example combining physical interaction and signal flow

SYSPHS11-3: Explain how to identify source of errors in (debug) physical interaction models
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Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry standards
consortium that produces and maintains computer industry specifications for interoperable, portable, and reusable enterprise applications
in distributed, heterogeneous environments. Membership includes Information Technology vendors, end users, government agencies,
and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s specifications
implement the Model Driven Architecture®(MDA®), maximizing ROI through a full-lifecycle approach to enterprise integration that
covers multiple operating systems, programming languages, middleware and networking infrastructures, and software development
environments. OMG’s specifications include: UML® (Unified Modeling Language™); CORBA® (Common Object Request Broker
Architecture); CWM™ (Common Warehouse Metamodel); and industry-specific standards for dozens of vertical markets. More
information on the OMG is available at http://www.omg.org.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications are available
from the OMG website at: http://www.omg.org/spec. All of OMG’s formal specifications may be downloaded without charge from
our website. (Products implementing OMG specifications are available from individual suppliers.) Copies of specifications, available
in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Some OMG specifications are also available as ISO standards. Please consult http://www.iso.org.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.
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1 Scope

Systems engineers coordinate the work of multiple other engineering disciplines (mechanical, material, electrical,
control, and so on), requiring information to flow between systems engineers and those in other disciplines.
Systems engineering information intentionally does not cover all disciplines, but must integrate with them to enable
systems engineers to communicate with other engineers. Using discipline-specific tools separately from system
modeling tools typically leads to redundancy, inconsistency, and less efficient engineering processes.

Many engineering disciplines (mechanical, electrical, and so on) use simulation tools that present graphical
interfaces for linking system components, then solve equations generated from the graphical models, and report
predicted values of system properties over time. Linked components interact physically (mechanically, electrically,
and so on) or send numeric signals to each other (see Subclause 6.1 for the difference between physical interaction
and signal flow). The tools generate (ordinary and algebraic) differential equations to describe the evolution of
numeric system properties over time, and solve them to predict system behavior. These models are sometimes
known as lumped parameter or 1-D models, but this specification refers to them as physical interaction and signal
flow, to emphasize their applications (or just simulation models for brevity). This kind of simulation is specified
without regard to physical distances between or within components, as compared to distributed simulation models
(as in finite element analysis), in which behavior specifications account for physical distances between or within
components. See Subclause 6.1 for more information about this kind of simulation.

Graphical interfaces presented by physical interaction and signal flow simulators express concepts similar to the
Systems Modeling Language (SysML), an extension of the Unified Modeling Language (UML). Both languages
show system components, how components are connected together, and how physical substances and information
flow between components. SysML and these simulators both have underlying textual languages to record models in
computer-processable file formats. Simulators translate models specified through graphical interfaces into file-
based formats, which are then transformed into equations for solution by numerical analysis. SysML-based tools
use their filed-based formats to perform other kinds of analysis and verification, checking completeness of designs
against requirements.

When SysML tools and physical interaction and signal flow simulators are used separately, simulation engineers
must re-specify their systems in each tool they are using, including information that is also available in SysML
models. This additional effort would not be necessary if the information to perform this kind of simulation were
available in SysML and translations were defined between SysML and simulation languages.

This specification:

e Extends SysML with additional information needed to model physical interaction and signal flow
simulation independently of simulation platforms.

e Provides a human-usable textual syntax for mathematical expressions.

e Includes a platform-independent SysML library of simulation elements that can be reused in system
models.

e  Gives translations between SysML as extended above and two widely-used simulation languages and tools
for physical interaction and signal flow simulation.

With the extension, expression language, libraries, and translations above, information in common between SysML
and simulation languages only needs to be specified once in SysML and translated to simulators, rather than
manually recoded for each simulation language and tool. The library enables SysML models for simulation to be
built more quickly by reusing library elements rather than reconstructing them for each application. Taken together,
these capabilities provide a basis for more efficient integration of SysML models and processes with those of
physical interaction and signal flow simulation.
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2 Conformance

A tool demonstrating conformance to this specification must satisfy at least one of these points:

Abstract syntax conformance. Tools demonstrating abstract syntax conformance provide user interfaces
and/or APIs that enable

o instances of concrete stereotypes defined in this specification (which are applications of
stereotypes to instances of UML metaclasses) to be created, read, updated, and deleted, including
links and references from these to instances of UML elements and instances of SysML
stereotypes.

o bodies and languages of opaque expressions and opaque behaviors to be created, read, updated,
and deleted conforming to the mathematical expression language defined in this specification.

o links and references to model library elements defined in this specification to be created and
deleted.

The tools also provide a way to validate the well-formedness of the above as defined by stereotypes,
grammars, and model library elements in this specification.

Concrete syntax conformance. Tool demonstrating concrete syntax conformance provide user interfaces
and/or APIs that enable the mathematical expression language defined in this specification and the SysML
notation for the abstract syntax above to be created, read, updated, and deleted. See the SysML
specification for more about SysML notation conformance.

Model interchange conformance. Tools demonstrating model interchange conformance can import and
export conformant XMI for all models that are valid under this specification. Model interchange
conformance implies abstract syntax conformance.

Translation conformance: Tools demonstrating translation conformance can translate between extended
SysML and simulation models per this specification, either in one direction or both directions.

3 References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do

not apply.
SYSPHS11-6:Update XMI and normative refs to SysML 1.6 / UML2.5.1

(1]

(2]

(3]

(4]
(3]

Object Management Group, “OMG Unified Modeling Language, version 2.5.1,” http://www.omg.org/spec/
UML/2.5.1, December 2017.

Object Management Group, “OMG Systems Modeling Language, version 1.6,” http://www.omg.org/spec/
SysML/1.6, November 2019.

Modelica Association, “Modelica® - A Unified Object-Oriented Language for Systems Modeling, Language
Specification, version 3.4,” http://www.modelica.org/documents/ ModelicaSpec34.pdf, April 2017.

Modelica Association, “Modelica Standard Library,” https://github.com/modelica/Modelica, April 2016.

International Organization for Standardization, “ISO/IEC 14977:1996 Information technology — Syntactic
metalanguage — Extended BNF,” http://www.iso.org/standard/26153.html, 1966.

International Organization for Standardization, “ISO 80000-1:2009 Quantities and units -- Part 1: General,”
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[10]

4 Terms and Definitions

For the purposes of this specification, the term ‘simulation’ will refer to physical interaction and signal flow
simulation, unless qualified. See Clause 1 for more information about this kind of simulation.

SYSPHS11-3: Explain how to identify source of errors in (debug) physical interaction models

Stereotype names are sometimes used in place of instances of the base classes to which the stereotypes are applied.
For example, the phrase “PhSVariable typed by Real” refers to a property that has the PhSVariable stereotype
applied and that is typed by Real.

5 Symbols

No symbols are introduced by this specification.

6 Additional Information
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6.1 Signal flow and physical interaction simulation compared

SYSPHS11-3: Explain how to identify source of errors in (debug) physical interaction models

The differences between physical interaction and signal flow and lie mainly in how components interact, addressing
kinds of problems:

e Insignal flow modeling, system components exchange numeric and boolean values in predetermined
directions (unidirectionally). For each component, some values will be provided by other components
(inputs), and some values will be provided to other components (outputs). Connections between
components indicate that values are passed from one output of a source component to one or more inputs of
target components. Component behavior is specified by equations that relate input, output, and component
variables. Signal flow is well suited for describing control systems and signal-processing systems.

e In physical interaction, system components exchange physical substances that carry energy in directions
determined during simulation (possibly bidirectionally). Each exchange is modeled with two numeric
values (flow rate and potential to flow of a physical substance, in terms of one of its conserved
characteristics), compared to one (possibly boolean) value for signal flow, which does not involve physical
substances. In physical interaction, the direction in which substances flow between components is not
predetermined, as it is for values in signal flow. Component behavior in physical interaction is specified by
equations that relate flow rate, potential, and component variables. The direction in which substances flow
between components is determined during simulation, and can change during simulation. Physical
interaction is well suited for representing systems with components that exchange physical substances.

In practice, physical interaction and signal flow are often combined in a same model. For example, many systems
have physical components directed by control systems via sensors and actuators.

6.2 How to read this specification

Clauses 1 to 6 contain background and basics for reading this specification. Clause 1 describes the objectives of this
specification and the intended readership. Clause 2 defines conformance. Clause 3 lists other specifications and
documents containing provisions which, through reference in this text, constitute provisions of this specification.

Clause 4 and 5 contains definitions of terms, abbreviations, and symbols used in this document. Clause 6 provides
additional information to this specification.

Clauses 7 to 11 are the technical part of this specification. Clause 7 defines a SysML extension for physical
interaction and signal flow simulation. Clause 8 defines a language to be used for expressions representing equations
and algorithmic statements. Clause 9 defines processing of SysML models that must be performed prior to
translation to simulation platforms. Clause 10 provides translations between extended, preprocessed SysML models
and two simulation platforms, Modelica and Simulink (including extensions to Simulink, such as Simscape). Clause
11 defines a platform-independent simulation library in SysML, with components corresponding to platform-
dependent library components.

SYSPHS11-3: Explain how to identify source of errors in (debug) physical interaction models

Annex A gives additional examples showing how to use the contents of Clauses 7, 8, and 11._ 0

A

6.3 Changes to Adopted OMG Specifications

None.
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7 SysML Extension for Physical Interaction and Signal
Flow Simulation

7.1 Introduction

This clause defines a SysML extension for physical interaction and signal flow. It reflects features common to
various physical interaction and signal flow platforms that are not present in SysML. This clause summarizes the
extension. More information is given in Subclauses 10.6 and 10.7.

7.2 Simulation profile

«metaclass»

UML::Property

f

«stereotype» «stereotype»

PhSConstant PhSVariable

isContinuous : Boolean = true
isConserved : Boolean = false
changeCycle : Real = 0

Figure 1: Simulation stereotypes

7.2.1 PhSConstant

Package: SysPhS
isAbstract: No
Extended Metaclass: Property

Description
A PhSConstant has values that do not change during simulation runs. Values can change between simulation runs.

Constraints

[1] Properties stereotyped by PhSConstant must be typed by Real, Integer, or Boolean, or one of their
specializations.

[2] Properties stereotyped by PhSConstant must have multiplicity 1, unless they are also stereotyped by
MultidimensionalElement (see Subclause 11.5).

[3] Properties stereotyped by PhSConstant must not redefine more than one other property, which must have the
same name and type and must be stereotyped by PhSVariable or PhSConstant.

Notation
The stereotype label between guillemets is “phsConstant”.

A compartment with the label “phs constants” may appear as part of a block definition to list the properties
stereotyped by PhSConstant. The properties omit the ‘«phsConstant»’ prefix.
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7.2.2 PhSVariable

Package: SysPhS
isAbstract: No
Extended Metaclass: Property

Description

A PhSVariable has values that can vary over time in a continuous or discrete fashion. Continuous variables have
values that are close to their values at nearby times in the past and future. Discrete variables have values that are the
same as their values at nearby times in either the past or future, or both. The effect is that continuous variables vary
smoothly over time, including the possibility of remaining constant, while discrete variables are always constant for
a period of time, then change instantaneously to a possibly very different value for another period of time. Discrete
variables can be restricted to change values only at regular intervals (change cycle greater than zero), though they do
not need to change at every interval. Variables being continuous or discrete does not imply any restriction on the
range of their values, only the way in which those values change over time.

PhSVariables are used to model exchanges between components (physical interaction and signal flow), as described
below, and behavior within components (see Subclause 6.1).

Component interactions are modeled on blocks describing the things that are interacting, rather than on associations
between these blocks. The interacting blocks can type parts and ports. PhSVariables and flow properties are used to
model component interactions:

e Physical interactions are specified by inout flow properties typed by blocks that characterize substances
crossing their boundaries in terms of a conserved characteristic of those substances. For example, electrons
passing the boundary of an object are modeled as the flow of charge, rather than electrons. Blocks typing
the flow properties (indirectly) specialize ConservedQuantityKind, each named for a physical characteristic
(quantity kind) that is conserved in flows between components (see Subclause 11.2.2). The blocks describe
flows with two PhSVariables, one conserved and one non-conserved, see below.

o Signal flows are specified by in or out flow properties that are also non-conserved PhSVariables. They are
typed by the kind of signal (numeric or boolean).

Connected flow properties are on blocks typing parts or ports that have a connector linking them. Matching flow
properties are defined in SysML. Physical interactions and signal flows can only occur between connected and
matching flow properties that satisfy the constraints in the Constraints section below.

In physical interactions:

e Conserved PhSVariables give the rate at which substances are crossing the boundary of an object (flow
rate) as a rate of the quantity kind that types the flow property. For example, fluids might cross the
boundary of a tank, but the flow rate is given as volume (a quantity kind typing the flow property) per time,
regardless of the kind of fluid. When physical flow properties are connected and match, the values of
conserved PhSVariables on their types on all ends add up to zero (positive and negative flow rates indicate
flows in opposite directions).

e Non-conserved PhSVariables give the potential for substances to cross the boundary (potential to flow),
whether any substance is crossing or not, as a potential of the same quantity kind used for the paired
conserved PhSVariable. For example, fluid might have a high potential to flow at the boundary of a tank,
but the potential is in terms of pressure (force per volume surface), whether any fluid is crossing the
boundary or not, and regardless of the kind of fluid. When physical flow properties are connected and
match, the values of non-conserved PhSVariables on all ends are equal.
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In signal flows:
e PhSVariables (that are also flow properties) give a numeric or boolean value crossing the boundary of an
object. When signal flow properties are connected and match, their values on all ends are equal (they act
like non-conserved PhSVariables).

Component behavior can be defined for blocks that type parts (component blocks), not ports. Components might
pass physical substances and signals through them, possibly transforming them on the way, or creating, destroying,
or storing them. These behaviors are specified with constraints blocks applied to component blocks. The
constraints are mathematical equations relating values of:

e PhSVariables for flow properties (flow variables, for modeling component interactions above).

e PhSVariables not for flow properties (component variables, internal to components, not for modeling
component interaction). The idea of conservation (or lack thereof) does not apply to these (because they
are not related to interactions with other components), but they are specified as non-conserved.

Constraints on flow variables specify the effect components have on physical substances or signals going
through flow properties and might depend on component variables. Component variables might have values
giving:
e Potential differences between physical flow properties. These differences must be non-zero for
physical substances to flow through a component.

e Rates at which physical substances flow through a component. This differs from flow rates through
flow properties when the component creates, destroys, transforms, or stores substances.

e Internal states, such as, how much of a physical substance is currently stored, the temperature of a
component, or the current value of a signal integrator.

Attributes

e isContinuous: Boolean = true  Determines whether the property value varies continuously or discretely.
e isConserved: Boolean = false  Determines whether values of the property value are conserved or not.
e changeCycle: Real =0 Specifies the time interval at which a discrete property value may change.

Constraints

[1] The stereotyped property must be typed by Real, Integer, or Boolean, or one of their specializations.

[2] isContinuous may be true only when the stereotyped property is typed by Real or one of its specializations.

[3] isConserved may be true only when isContinuous is true and the stereotyped property is on a block specialized

from ConservedQuantityKind (see Subclause 11.2.2).

] changeCycle may be other than 0 only when isContinuous is false.

] changeCycle must be positive or 0.

] A property stereotyped by PhSVariable must not be stereotyped by PhSConstant.

] Properties stereotyped by PhSVariable must have multiplicity 1, unless they are also stereotyped by

MultidimensionalElement (see Subclause 11.5).

[8] Flow properties stereotyped by PhSVariable that are connected and matching must have opposite directions
(in/out or out/in), the same type and multiplicity, and the same value for isContinuous on the applied
stereotype.

[9] Flow properties stereotyped by PhSVariable that have in direction may connect to and match no more than one
other flow property stereotyped by PhSVariable.

[10] A property stereotyped PhSVariable can redefine at most one other property and it must have the same name
and type and must be stereotyped by PhSVariable.

[11] When a property stereotyped by PhSVariable with isContinuous=true redefines another property, the
PhSVariable applied to the redefined property must have isContinuous=true.
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[12] When a property stereotyped by PhSVariable with isContinuous=false redefines another property stereotyped
by PhSVariable with isContinuous=false, the redefining property’s changeCycle must be an integer multiple of
the redefined property’s changeCycle.

Notation

The stereotype label between guillemets is “phsVariable”.

A compartment with the label “phs variables” may appear as part of a block definition to list the properties
stereotyped by PhSVariable. The properties omit the “«phsVariable»” prefix.

A compartment with the label “physical interactions” may appear as part of a block definition to list flow
properties typed by a block specialized from ConservedQuantityKind that has one conserved and one non-
conserved PhSVariable (see Subclause 11.2.2).

A compartment with the label “signal flows” may appear as part of a block definition to list flow properties that
have PhSVariable applied.
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8 Language for Mathematical Expressions

This clause describes a platform-independent textual language for mathematical expressions. The language is for use
in the bodies of:
e  OpaqueExpressions of constraints, corresponding to equations.

e  OpaqueBehaviors, corresponding to algorithmic statements.

OpaqueExpressions and OpaqueBehaviors that use this language in their body should have an associated ‘SysPhS’
string as their language.

The SysPhS expression grammar includes a subset of Modelica’s grammar, as follows:
e  All terminal symbols

e  The following non-terminal symbols: equation, statement, if-equation, if-statement, for-statement, for-
indices, for-index, while-statement, expression, simple-expression, logical-expression, logical-term,
logical-factor, relation, relational-operator, arithmetic-expression, add-operator, term, mul-operator,
factor, primary, name, component-reference, function-call-args, function-arguments, function-arguments-
non-first, named-arguments, named-argument, function-argument, output-expression-list, expression-list,
array-subscripts, subscript

Symbols in the Modelica grammar not listed above are not included in the SysPhS expression grammar. The
semantics of the above symbols is given in Modelica (which is the same in MATLAB, the expression language in
Simulink, Simscape, and StateFlow, assuming the translations in Subclause 10.13).

The following non-terminal symbol is included in the SysPhS expression grammar to specify execution of a series of
statements (expressed in extended BNF):

statements : { statement ";" }

When used in OpaqueExpressions, the root non-terminal symbol must be equation. When used in
OpaqueBehaviors, the root non-terminal symbol must be statements.

The following are functions available in SysPhS expressions language: abs, sign, sqrt, div, mod, rem, ceil, floor, sin,
cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh, log, log10, exp, der. The semantics of these functions is given in
Modelica (which is the same in MATLAB).
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9 Preprocessing SysML Models

9.1 Introduction

This clause defines processing of SysML models performed prior to translation to simulation platforms per Clause
10, to enable translations of SysML modeling patterns not covered in Clause 10. Subclause 9.2 covers associations
blocks. Subclauses 9.3 through 9.5 address flow property and connector patterns. Preprocessing should be
performed in the order of the subclauses below. In these subclauses, flow properties with PhSVariable applied or
typed by blocks (indirectly) specializing ConservedQuantityKind are called simulation flow properties.

9.2 Replace connectors typed by association blocks with their
internal structure

9.2.1 Purpose

Many physical phenomena occur due to the relationship between two system components. For example, friction
occurs when two pieces in contact move relative to each other and produce heat. SysML includes association blocks
for modeling complex relationships, which are not available in simulation models. Connectors typed by association
blocks must be replaced with the internal structure of their association blocks before translation to simulation
platforms per the correspondences in Clause 10.

9.2.2 SysML model before processing

SysML association blocks are both associations and blocks. They represent relationships between two blocks, like
associations, and can have structural features, like blocks. Figure 2 shows an example association block in a SysML
block definition diagram on the top, as well as a usage of it in an internal block diagram on the bottom. The top
diagram shows an association block FrictionAssociation relating Flanges. The internal structure of
FrictionAssociation has a part typed by Friction with two ports, each connected to a participant of the association.
The lower diagram shows a connector typed by the association block between the flange of a mass and the flange of
a ground. The connector has a connector property typed by FrictionAssociation.

bdd Example

«block»
Flange

surface1 surface2

«block»
FrictionAssociation

....................................

| «participant» E fl1 fl2 | «participant» E
E {end=surface1} .. : {end=surface2} !
: p1 ; ' p2 :

ibd SystemA

:Flange :Flange
m:Mass T :Ground
|

«connector»
fa:FrictionAssociation

Figure 2: Association block with internal structure and connector properties in SysML
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9.2.3 SysML model after processing

Connectors typed by association blocks, including their connector properties, are replaced by the internal structure
of the association blocks. Figure 3 shows the content of Figure 2 after processing. The connector and its property fa
in Figure 2 is replaced by the content of the association block FrictionAssociation (the connector and its property
and association block are removed). The flange of the mass and the flange of the ground replace the participant
properties of the association block and are connected to the property f of type Friction in the same way as in the
association block. The block definition diagram in Figure 2 is not changed.

ibd SystemA

m:Mass

:Flange fl1

fl2 :Flange
(]

(] f:Friction :Ground

Figure 3: Connector in Figure 2 replaced with contents of its association block

9.3 Non-simulation ports changed to parts

9.3.1 Purpose

SysML supports blocks typing ports that have other properties beside simulation flow properties, but simulation
models do not. These ports must be changed into parts before translation to simulation platforms per Clause 10.

9.3.2 SysML model before processing

Figure 4 shows a port of type Wheel, which has a property radius that is not a simulation flow property.

ibd TotalSystem bdd Example

: Vehicle «interfaceBlock»
AMomFlowElement

‘Wheel
physical interactions
inout aMomF : FlowingAMom

i

«block»

Wheel

phs constants
radius : Length

Figure 4: Port typed by block with a non-simulation flow property

9.3.3 SysML model after processing

Ports typed by blocks that have other properties besides simulation flow properties (owned or inherited) are changed
to regular parts. Figure 5 changes the port typed by Wheel in Figure 4 to a part. The property is not changed in any
other way in this step, including connectors to it (external connectors to the property are addressed in later
processing). The block definition diagram in Figure 4 is not changed.
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ibd TotalSystem

: Vehicle

Figure 5: Port in Figure 4 changed to part

9.4 Separate blocks owning simulation flow properties, and typing
parts and ports

9.4.1 Purpose

SysML blocks can have multiple flow properties on part and port types, but simulation models have flows only on
port types, and only one per port for the correspondences in Clause 10. SysML blocks typing parts and ports can be
the same or share properties by generalization, but simulation models use separate types for parts and ports. SysML
connectors can link parts, but simulation models only link ports. Before translation to simulation platforms per
Clause 10, SysML parts must be typed by blocks that have no simulation flow properties (owned or inherited), while
ports must be typed by blocks owning exactly one simulation flow property and no others (owned or inherited), and
connectors must only link ports.

9.4.2 SysML model before processing

Figure 6 shows an example that will be used to illustrate the processing steps in Subclause 9.4.3. Blockl has two
simulation flow properties (sfp0 and sfp1), a PhSVariable (sv), and a port of type Block2 (p). Block2 has two
simulation flow properties (sfp2 and sfp3).

bdd Example

«block» «block»
Block1 Block2
physical interactions ) physical interactions
inout sfp0: FlowType0 inout sfp2: FlowType2
inout sfp1: FlowType1 inout sfp3: FlowType3

phs variables
sv: Real
ports
p: Block2

Figure 6: Blocks with multiple simulation properties, one combining them with others
9.4.3 SysML model after processing
The model in Figure 6 is processed in six steps.
9.4.3.1 Move simulation flow properties to their own blocks
Simulation flow properties owned by blocks that also have non-simulation flow properties (owned or inherited) are
moved to a new block and a generalization is added between the original block to the new one. The same is done for
blocks that own multiple simulation flow properties and no other properties, except that one of the simulation flow

properties remains on the original block. Figure 7 shows how simulation flow properties are moved from the blocks
in Figure 6. The two simulation flow properties of Blockl (sfp0 and sfp1) are moved to separate blocks (Sfp0Type
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and Sfp1Type), both generalizing Blockl. In Block2, the first simulation flow property (sfp2) is left in the block,
while the second (sfp3) is moved to a new block (Sfp3Type) generalizing Block2.

bdd Example
«block» «block» «block»
Sfp0Type Sfp1Type Sfp3Type
physical interactions physical interactions physical interactions
inout sfp0: FlowType0 inout sfp1: FlowType1 inout sfp3: FlowType3
| ZF
«block» «block»
Block1 Block2
phs variables physical interactions
sv: Real inout sfp2: FlowType2
ports
p: Block2

Figure 7: Simulation flow properties in Figure 6 moved to their own blocks

9.4.3.2 Add ports for simulation flow properties inherited to blocks that have non-simulation flow
properties

Ports are added to blocks that have non-simulation flow properties (owned or inherited) for each simulation flow
property that is inherited directly from a block that owns it, such as those added in Subclause 9.4.3.1. The port type
is the block that owns the inherited simulation flow property. In Figure 7, Blockl has non-simulation flow
properties, as well as two simulation flow properties inherited directly from blocks that own them (sfp0 and sfp1,
inherited from Sfp0Type and Sfp1 Type, respectively). Figure 8 adds two ports to Blockl (psfp0 and psfp1), typed by
the two general blocks. Block2 in Figure 7 is not changed, because it does not have non-simulation flow properties.

bdd Example

«block» «block»
Sfp0Type Sfp1Type
) physical interactions physical interactions
inout sfp0: FlowType0 inout sfp1: FlowType1

ZF

«block»

Block1

phs variables
sv: Real

ports
psfp0: Sfp0Type
psfp1: Sfp1Type
p: Block2

Figure 8: Port added to block that has non-simulation flow properties and inherits simulation flow properties
in Figure 7

9.4.3.3 Split up ports typed by blocks that have inherited simulation flow properties
Ports are added for each simulation flow property that is inherited to a block’s port types. The new ports are typed
by the block owning the inherited simulation flow property. In Figure 8, Block! has a port typed by Block2, which

has a simulation flow property inherited from Sp3Type (sfp3, see Figure 7). Figure 9 adds a new port to Blockl
(psfp3) typed by Sp3Type, because of that inherited property.
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bdd Example

«block» «block»
Sfp0Type Sfp1Type
. physical interactions physical interactions
inout sfp0: FlowTypeO inout sfp1: FlowType1

4

r

«block»

Block1

phs variables
sv: Real

ports
psfp0: Sfp0Type
psfp1: Sfp1Type
p: Block2
psfp3: Sfp3Type

Figure 9: Port added alongside port typed by block with multiple simulation flow properties in Figure 8

9.4.3.4 Relink binding connectors that involve simulation flow properties moved to added ports

Binding connectors involving simulation flow properties that are moved to ports added in Subclauses 9.4.3.2 and
9.4.3.3 are relinked to their new locations. Specifically, after the processing in Subclause 9.4.3.1, binding connectors
linked to, or through property paths containing, a simulation flow property inherited to a block that has non-
simulation flow properties (owned or inherited) are relinked through the ports added in Subclause 9.4.3.2. Similarly,
binding connectors linked to, or through property paths containing, simulation flow properties on blocks typing ports
with multiple simulation flow properties are relinked through the ports added in Subclause 9.4.3.3. Figure 10 shows
binding connectors before processing linked through simulation flow properties inherited to Block! (sfp0 and sfp1),
and bindings connectors linked through simulation flow properties of Block2 (p.sfp2 and p.sfp3). Figure 11 relinks
these bindings through the ports added in Subclauses 9.4.3.2 and 9.4.3.3 (psfp0.sfp0, psfpl.sfpl, and psfp3.sfp3).

par Block1

-
sfp0.a coquab | ]a0
sfp1.a coqualy | ]a1

p.sfp2.a «equab> | ]a2

p.sfp3.a coqual | ]a3
-

ptc:Block1Constraint

\

J

Figure 10: Bindings involving simulation flow properties before processing

par Block1

p.sfp2.a

psfp0.sfp0.a

psfp1.sfp1.a

Bl

psfp3.sfp3.a

- N
«equal» :l a0
«equal» :l al
«equaly o ptc:Block1Constraint
«equal» :| a3
- /

Figure 11: Bindings in Figure 10 relinked through ports added in Subclauses 9.4.3.2 and 9.4.3.3
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9.4.3.5 Replace or add connectors between properties typed by blocks that have simulation flow
properties moved to added ports

Connectors to parts or ports typed by blocks that inherit simulation flow properties that are moved to ports added in
Subclauses 9.4.3.2 and 9.4.3.3 are replaced by connectors to their new locations. Specifically, after the processing in
Subclause 9.4.3.1, connectors to parts typed by blocks that inherit simulation flow properties are replaced by
connectors to the ports added for these simulation flow properties in Subclause 9.4.3.2. Connectors are added
linking the ports added for ports with multiple simulation flow properties in Subclause 9.4.3.3. In both cases,
connectors are replaced or added only if the other end will have a matching simulation flow property (see Subclause
7.2.4), otherwise the connectors are deleted (this occurs if some of the simulation flow properties do not match
before processing). Figure 12 shows two parts typed by Block! in Figure 6, before processing. A connector links the
parts, and a second connector links their ports. Figure 13 replaces the first connector by two connectors between the
ports psfp0 and psfp1, respectively, added due to the inherited simulation flow properties fsp0 and fsp1, respectively.
The figure also adds a connector between the ports added for the simulation flow property psfp3 inherited to Block2.

ibd Example

: Block1 p P

: Block1

Figure 12: Connectors between parts and ports from Figure 6 before processing

ibd Example

Figure 13: Connectors in Figure 12 replaced or added between ports added in Subclauses 9.4.3.2 and 9.4.3.3

9.4.3.6 Removing generalizations to blocks owning simulation flow properties

Now that all the port types needed for simulation have been created, some generalizations to blocks dedicated to
simulation flow properties need be removed.

Generalizations to blocks that own simulation flow properties are removed, unless the inherited properties are
redefined in the special block. Figure 14 removes the generalizations in Figure 9 and Figure 7.

bdd Example

«block»

Sfp0Type

«block»
Sfp1Type

«block»

Sfp3Type

physical interactions
inout sfp0: FlowType0

physical interactions
inout sfp1: FlowType1

physical interactions
inout sfp3: FlowType3

«block» «block»
Block1 Block2
phs variables physical interactions
sv: Real inout sfp2: FlowType2
ports

psfp0: SfpOType
psfp1: Sfp1Type
p: Block2

psfp3: Sfp3Type

Figure 14: Generalizations in Figure 9 and Figure 7 removed
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9.5 Reduce nesting of connector ends

9.5.1 Purpose

SysML supports connectors that link ports reached from the block owning the connector through a chain of other
properties (property path), but some simulation models can only link ports reached through one property. These
SysML connectors must be split up to link ports reached through only one property before translation to simulation
platforms per Clause 10.

9.5.2 SysML model before processing

Figure 15 shows a connector linking a port (z) reached through a chain of two other properties (x and y). The length
of the nested connector end property path at that end is 2.

ibd Example

x: X a:A
AS
zZ

Figure 15: Connector linking port reached through two other properties

ol
]

9.5.3 SysML model after processing

Connectors that link ports reached from the owner of the connector through a chain of other properties (SysML
nested connector end property paths longer than 1) are relinked to an added intermediate port, and a connector added
from that port (reducing the property path length to 1). Figure 16 adds a proxy port to x’s type with the same type as
z, and the connector in Figure 15 is relinked to the added port. A binding connector is added in x’s type between the
new port and the original end of the connector. This procedure is repeated until connectors only link ports reached
from the block owning the connector through one property.

ibd Example

x: X a:A
. «equal» ,__|Z:Z zZ
yY LJ L:l
z:Z «proxy»

Figure 16: Connector in Figure 15 split by adding a proxy port and another connector

L
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10 Translating Between SysML and Simulation
Platforms

10.1 Introduction

This clause shows how to translate between SysML models extended as in Clause 7 (hereafter referred to as SysML)
and models in multiple simulation platforms. Translations are given as correspondences between patterns of using
SysML and simulation platforms, enabling translation in either direction. However,

e  Many SysML capabilities are not supported on simulation platforms (some of these are supported by
transforming SysML models before translation, see Clause 9).

e Simulation platforms have more specific purposes than SysML, resulting in loss of information when
translating from SysML to simulation platforms.

The selected platforms are Modelica and Simulink, including extensions of Simulink, such as Simscape. The
modeling concepts covered by these translations are available in both simulation languages.

e  Modelica is a textual simulation language for physical interaction and signal flow modeling supported by
various simulation tools, such as OpenModelica, Dymola®, and MapleSim® that add graphical interfaces
and numerical solvers. Modelica is defined by a grammar, but does not have a metamodel. As a result, the
terms used to describe Modelica models correspond to keywords defined in its grammar.

e Simulink is a graphical simulation tool for signal flow modeling (unless extended, see below). Its
modeling concepts can be inferred from the simulation files generated from graphical models (no
metamodel or textual language has been released for Simulink). Two file formats are currently used: the
older punctuated textual format, or the newer XML format. The concepts used in these two formats are the
same, but the structure and the way values are represented differ. Simulink supports S-functions to
represent system behaviors as MATLAB files (generally behavior in state-space form). S-functions always
follow the same structure and use the same concepts.

Simulink includes extensions for other aspects of systems modeling:

e Simscape is the extension of Simulink for physical interaction modeling. Physical components
specifications are persisted in a file that must conform to the Simscape grammar. Simscape concepts are
named in the grammar.

e Stateflow® is the Simulink extension for state machines. It uses additional concepts represented along with
Simulink elements.

Subclauses 10.2 through 10.12 are divided into these parts:

e  Purpose: Explains the particular kinds of information in system or simulation modeling covered by the
subclause.

o SysML modeling: Describes how the above information is modeled in SysML, extended as in Clause 7
when necessary, along with a small example.

o Simulation platform modeling: Describes the correspondence between the portions of SysML used as above
and modeling patterns in simulation platforms, along with simulation models corresponding to the SysML
example above.

e Summary: Summarizes the correspondences between SysML and simulation platforms in a table.

Subclause 10.13 covers translations for the expression language in Clause 8.
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10.2 Root element
10.2.1 Purpose

Systems and simulation models are organized in a structured way starting with root elements.

10.2.2 SysML modeling

SysML root elements are packages, which are containers for model elements. Figure 17 shows a package P owning
a block B.

pkg Example

P

«block»
B

Figure 17: Package and model in SysML

10.2.3 Modelica modeling
SysML packages correspond to Modelica models defined as the root element of a file.

The following Modelica code corresponds to Figure 17. It has a model P owning a model B (see Subclause 10.3.3).

model P
model B
end B;

end P;

10.2.4 Simulink modeling

A SysML package corresponds to a Simulink library paired with a model, defined as root elements of separate files.
The model is executed during simulation, referencing blocks defined in the library (see Subclause 10.3.4 about
defining and referencing Simulink blocks). Only Simulink blocks defined in libraries can be referenced (reused),
either by a library or a model. Models link together references to library blocks, corresponding to SysML connectors
between parts (see Subclause 10.8.4).

The following Simulink codes in separate files correspond to Figure 17. The first has a library P and the second a
model M (the names only appear in the file names). Both include a system, which the library uses to define a
reusable block B.

<Library>
<System>
<Block Name="B">
</Block>
</System>
</Library>

<Model>
<System>
</System>

</Model>
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10.2.5 Simscape modeling

SysML packages correspond to Simscape libraries compiled from directories of files with code corresponding to the
elements in the package. Simscape files each contain a single element (see Subclauses 10.2.5and 10.7.10) and are
stored in directories named for the Simulink library that will contain the elements after the directory is compiled (the
library is not specified in the files, there is no Simscape language element for it corresponding to SysML packages).

The package P in Figure 7 corresponds to a directory with “P” in its name. The directory has a file containing
Simscape code corresponding to block B (see Subclause 10.3.5).

10.2.6 Summary

SysML Modelica Simulink Simscape
Package Model Library and Model, each Library (compiled from directory of
containing a system element files)
Element owned by Element in model Element in system Element in library (compiled from
package element file)

10.3 Blocks and properties

10.3.1 Purpose

Systems and simulation models contain classes describing systems and components that share the same features.
Systems and components function (play roles) within others, which are described in models as the usage of one class
by another. For example, a class for cars might have a power source reusing a class for engines.

10.3.2 SysML modeling

Modeling in SysML is based on blocks, which are classes of systems or components, describing objects that share
the same features. These features can be structural or behavioral.

Structural features of blocks are called properties, some of which are for values, such as numbers or strings of
characters, and some of which are usages of other blocks. This difference is indicated by typing a property by a data
type or by a block. Some system properties typed by blocks are parts, corresponding to usages of those block within

a system or component.

Figure 18 shows a SysML block 4 that contain one part b/ of type B. B is also a SysML block.

bdd Example

«block» «block»
A B
parts
b1: B

Figure 18: Block and part in SysML
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10.3.3 Modelica modeling

Modelica is a human-readable textual language for physical interaction and signal flow modeling. It is class-
oriented, like SysML, but with different terminology. Modelica includes various kinds of classes, four of which are
used in this specification: models (corresponding to SysML blocks that do not type ports, see below, and to SysML
packages, see Subclause 10.3.3), connectors (for physical interaction, see Subclause 10.7.8), types (for SysML value
types, see Subclause 10.11.3) and blocks (for SysML state machines, see Subclause 10.12.3). SysML properties
correspond to Modelica components.

The following Modelica example corresponds to the SysML block A4 in Figure 18. It has a Modelica model 4
corresponding to the SysML block 4, with a component b/ typed by Modelica model B, corresponding to the
SysML property b/ typed by block B.

model A
B bl;
end A;
model B
end B

It has a model 4 corresponding to the SysML block A, with a component 5/ typed by Modelica model B,
corresponding to the SysML property b/ typed by block B.

10.3.4 Simulink modeling

Simulink is a graphical language for signal flow modeling that has XML-based file format and an extension for
physical interaction modeling (see Subclause 10.2.5). It is class-oriented to some extent, though not as much as the
other simulation platforms used in this specification. Simulink has an abstraction called blocks that has many
specializations, five of which are used in this specification: subsystems (corresponding to SysML blocks, see
below), references (corresponding to SysML parts, see below), inports and outports (corresponding to SysML ports
with in and out flow properties, see Subclause 10.7.5), and S-functions (corresponding to SysML constraint blocks,
see Subclause 10.9.5). When used as a container, structural features are contained in a Simulink system. Simulink
blocks are identified by an integer (SID) that is unique within its model or library. A SysML block and its parts
correspond a Simulink block with a system containing blocks referencing other blocks (see Subclauses 10.4.4 and
10.5.4 about inherited features).

SysML blocks that do not have constraint properties correspond to Simulink subsystem blocks. SysML blocks with
constraint properties correspond to either Simulink subsystem blocks (when Simscape is not included), or to
Simscape components (when Simscape is included).

The following example shows Simulink code corresponding to Figure 18. It has a Simulink subsystem block A4
corresponding to the SysML block 4, with a system that contains a reference to the Simulink block B from the same
library Example (see Subclause 10.2.4 about libraries).

<Block BlockType="SubSystem" Name="A" SID="1">
<System>
<Block BlockType="Reference" Name="bl" SID="2">
<P Name="Ports">[0,0]</P>
<P Name="SourceBlock">Example/B</P>
</Block>
</System>
</Block>

<Block BlockType="SubSystem" Name="B" SID="3">
<System>
</System>

</Block>
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10.3.5 Simscape modeling

SysML parts correspond to Simscape member components (see Subclauses 10.4.5 and 10.5.5 about inherited

features).

The following example shows Simscape code corresponding to blocks 4 and B in Figure 18. It has a component 4
containing a member component b/ of type B from the same library Example (see Subclause 10.2.4 about libraries).

component A
components
bl=Example.B;
end
end

component B
end

10.3.6 Simulink/Simscape modeling

Simscape is an extension of Simulink for physical interaction modeling. SysML blocks with constraint properties or

binding connectors correspond to Simscape components.

The following Simulink code corresponds to block 4 in Figure 18. It has a subsystem block 4, with a system that
contains a reference b to the Simscape component B, (defined in Subclause 10.3.5), from the library Example (see

Subclause 10.2.4 about libraries).

<Block BlockType="SubSystem" Name="A" SID="1">

<System>

<Block BlockType="Reference" Name="b" SID="2">
<P Name="SourceBlock">Example/B</P>
<P Name="SourceType">B</P>
<P Name="SourceFile">Example.B</P>
<P Name="ComponentPath">Example.B</P>
<P Name="ClassName">B</P>

</Block>
</System>
</Block>

10.3.7 Summary

SysML Modelica Simulink Simscape
Block with no constraint Model SubSystem block with N/A
properties and no binding system
connector
Block with constraint Model SubSystem block with Component
properties or binding system
connectors
Block name Model name SubSystem name Component name

Property typed by a block,
owned by block

Component owned by
model

Reference block, owned by
system

Member component

Property name

Component name

Reference block name

Member component name

Property type

Component type

Reference block source

Member component type
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10.4 Generalization

10.4.1 Purpose

Generalization simplifies systems and simulation modeling by enabling features of one class to be reused by
(inherited to) another class.

10.4.2 SysML modeling

SysML provides a generalization relationship to indicate that one block reuses the features of another. A block
generalized by another block will inherit all the properties of that other block. SysML supports multiple
generalizations of the same block.

Figure 19 shows a block A4 with a property c/ of type C, and a block B that is a specialization of that block 4.

bdd Example

«block»

A

parts «block»
cl:C Cc

T

«block»

Figure 19: Generalization in SysML

10.4.3 Modelica modeling
SysML generalization corresponds to Modelica class extension, including multiple extensions of the same class.

The following Modelica code corresponds to Figure 19. It has a model 4 with a component ¢/ of type C, and a
model B that extends 4. As a result, B inherits the component ¢/ from 4.

model A
C cl;
end A;

model B
extends A;
end B;

10.4.4 Simulink modeling

Simulink does not support generalization (Simulink blocks cannot inherit features from other blocks). Inherited
features that are not redefined in SysML (see Subclause 10.5) correspond to newly defined (uninherited) features in
Simulink blocks.

The following Simulink code corresponds to Figure 19. It has blocks 4 and B, each with a system containing a
block ¢! that references block C. There is no generalization between 4 and B.
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<Block BlockType="SubSystem" Name="A" SID="1">
<System>
<Block BlockType="Reference" Name="cl" SID="2">
<P Name="Ports">[0,0]</P>
<P Name="SourceBlock">Example/C</P>
</Block>
</System>
</Block>

<Block BlockType="SubSystem" Name="B" SID="3">
<System>
<Block BlockType="Reference" Name="cl" SID="4">
<P Name="Ports">[0,0]</P>
<P Name="SourceBlock">Example/C</P>
</Block>
</System>
</Block>

10.4.5 Simscape modeling

Simscape supports single generalization of components. SysML generalization corresponds to Simscape
superclassing when the special SysML block has only one generalization and does not redefine any properties (see
Subclause 10.5), otherwise, SysML generalization has no correspondence in Simscape, and inherited properties in
SysML that are not redefined correspond to new (uninherited) component members in Simscape.

The following Simscape code corresponds to Figure 19. It has a component 4 with a member component ¢/ typed

by C, and the component B generalized by 4.

component A
nodes
cl = Example.C;
end
end

component B < Example.A
end

10.4.6 Summary

SysML Modelica Simulink

Simscape

Generalization Extend clause N/A

Subclassing, when the special SysML
block has only one generalization and
does not redefine properties,
otherwise, N/A.

features

Inherited features Inherited components | Newly defined (uninherited)

Inherited member components when
the special SysML block has only one
generalization and does not redefine
properties, otherwise, new
(uninherited) member components.
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10.5 Property redefinition

10.5.1 Purpose

Classes that inherit features in systems and simulation models (see Subclause 10.4) can alter those features. For
example, they can change the type of an inherited feature to a specialization of that type.

10.5.2 SysML modeling

In SysML, blocks can alter inherited properties by redefinition. Figure 20 shows a block 4 with a property ¢/ of type
C, and a block B specializing block A. B has a property c/ that redefines C::c! to be typed by D, a specialization of
C.

bdd Example
«block»
A
parts «block»
c1:C c
«block» «block»
B D
parts
c1: D {redefines c1}

Figure 20: Property redefinition in SysML

10.5.3 Modelica modeling

Modelica supports alteration of inherited properties as SysML does, except that the property name cannot be
changed. SysML redefined and redefining properties correspond to Modelica replaceable and redeclare components,
respectively.

The following Modelica code corresponds to Figure 20. It has a model 4 with component ¢/ indicated as
replaceable, and a model B extending 4 with a component of the same name redeclaring it to alter the type (compare
to Subclause 10.4.3).

model A
replaceable C cl;
end A;

model B
extends A;
redeclare D cl;
end B;

10.5.4 Simulink modeling

Simulink does not support redefinition because it does not support generalization (see Subclause 10.4.4). The effect
of SysML redefinition can be achieved by using Simulink correspondences for properties (see Subclause 10.2.4) that
redefine inherited ones (see Subclause 10.4.4 about inherited properties that are not redefined).

The following Simulink code corresponds to Figure 20. It has block 4 and B, each with a system containing a block
cl, one referencing block C and the other block D (compare to Subclause 10.4.4).
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<Block BlockType="SubSystem" Name="A" SID="1">
<System>
<Block BlockType="Reference" Name="cl" SID="2">
<P Name="Ports">[0,0]</P>
<P Name="SourceBlock">Example/C</P>
</Block>
</System>
</Block>

<Block BlockType="SubSystem" Name="B" SID="3">
<System>
<Block BlockType="Reference" Name="cl" SID="4">
<P Name="Ports">[0,0]</P>
<P Name="SourceBlock">Example/D</P>
</Block>
</System>
</Block>

10.5.5 Simscape modeling

Simscape supports generalization (single, see Subclause 10.4.5), but not redefinition. The effect of SysML
redefinition can be achieved by using Simscape correspondences for multiple generalization or inherited SysML
properties that are redefined (see Subclause 10.4.5), and including correspondences for properties (see Subclause
10.2.5) that redefine inherited properties.

The following Simscape code corresponds to Figure 20. It has component 4 and B, each with a member component
cl, one typed by component C and the other by D (compare to Subclause 10.4.5).
component A

components
cl = Example.C;
end
end

component B

components
cl = Example.D;
end
end

10.5.6 Summary

SysML Modelica Simulink Simscape
Redefined property Replaceable component | N/A N/A
Property that redefines Redeclare component | Reference, inport, outport, | Member component, variable,
inherited property of the or connection block parameter, input, output, or node
same name

10.6 PhSVariables and PhSConstants

10.6.1 Purpose

Simulation modeling specifies how numeric and boolean variable values can change in more detail than system
models. Simulation modeling distinguishes numeric variables with values that can change continuously (possible
infinitesimally) over time from those that always change discretely (finitely), possibly only at regular intervals. It
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also identifies variables with values that can only change between simulations (constants), rather than during
simulation.

10.6.2 SysML modeling

The simulation extension in Subclause 7.2 distinguishes properties as described above. Continuous SysML
properties are stereotyped by PhSVariable, with isContinuous=true. Discrete properties are stereotyped by
PhSVariable, with isContinuous=false. Constant properties are stereotyped by PhSConstant.

bdd Example

«block»

A

attributes
«phsVariable» {isContinuous=true} v1 : Real
«phsVariable» {isContinuous=false} v2 : Real
«phsConstant» v3 : Real

Figure 21: PhSVariables and PhSConstant in SysML

Figure 21 shows a block 4 with three properties: one continuous PhSVariable v/, one discrete PhSVariable v2, and
one PhSConstant v3.

Note: SysML notation for stereotype properties can omit a property if the default value is used. For example,
isContinuous is true by default, and can be omitted from the notation for variables that are continuous.

10.6.3 Modelica modeling

The variability of Modelica properties are of four kinds: continuous, discrete, parameter, and constant. By default,
Modelica properties are continuous. PhSVariables with isContinuous=true correspond to continuous components,
PhSVariables with isContinuous=false correspond to discrete components, and PhSConstants correspond to
parameter variables.

The following Modelica code corresponds to Figure 21. It has a model A, with three properties v/, v2 and v3 of type
Real, that are continuous, discrete, and parameter, respectively.

model A
Real vl;
discrete Real v2;
parameter Real v3 = “...”;
end A

10.6.4 Simulink modeling

See Subclause 10.8 for Simulink corresponding to SysML value properties in the context of SysML constraint
blocks and binding connectors.

10.6.5 Simscape modeling

Data properties in Simscape can either be (continuous) variables or (constant) parameters. Discrete variables are not
supported. PhSVariables with isContinuous=true correspond to Simscape variables, and PhSConstants correspond to
parameters.

The following Simscape code corresponds to Figure 21. It has a component 4 with one variable v/, and one
parameter v3. The variable v/ is continuous.
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component A

variables
vl = 1;
end
parameters
v3 = 10;
end
end

10.6.6 Summary

SysML Modelica Simulink Simscape
Property stereotyped by PhSVariable, with Continuous component N/A Variable
isContinuous=true
Property stereotyped by PhSVariable, with Discrete component N/A N/A
isContinuous=false
Property stereotyped by PhSConstant Parameter component N/A Parameter
Property type Component type N/A Member type

10.7 Ports and Flow Properties

10.7.1 Purpose

Systems and simulation modeling describe interactions between system components. These interactions include
exchanges of physical substances, signals, or both. System and simulation components include structural features
used as connection points to other components. System and simulation models include connections between these
points when the components are used. System models specify the kind of things exchanged between connection
points, while simulation models give characteristics of these exchanges, in particular the rate of flow and potential to
flow.

10.7.2 SysML modeling

In SysML, interactions between parts are modeled using connectors. Connections are often between ports of these
parts. Ports are properties used as connection points to other blocks. This correspondence assumes connectors are
only between ports (see Subclause 9.4.2 about connectors between parts). Ports describe flows through them using
flow properties, which specify the kind of things that flow by their type, as well as the direction of flow
(in/out/inout).

The extension for simulation in Subclause 7.2 adds information to flow properties needed for simulation, in
particular, flow rates and potentials to flow (conserved and non-conserved PhSVariables, respectively). Physical
interaction uses both of these, while signal flow has semantics equivalent to potential to flow. PhSVariables for
physical interactions are on blocks specialized from ConservedQuantityKind (see Subclause 11.2.2) typing flow
properties. PhSVariables for signals are flow properties (a property with two stereotypes applied) that have a
numeric or boolean type specifying the kind of signal.

Subclauses 10.7.3 through 10.7.6 cover signal flow modeling in SysML and simulation platforms, while Subclauses
10.7.7 through 10.7.10 cover physical interaction modeling.
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10.7.3 SysML modeling, signal flow

When modeling signal flow, flow properties on port types must be
e  Stereotyped by a non-conserved PhSVariable.
e Typed by Real, Integer, Boolean, or one of their specializations.
e Either in or out.

Figure 22 shows an example signal flow application. The block Spring has two ports « and y, of type
ReallnSignalElement and RealOutSignalElement from the signal flow library (see Subclause 11.2.1), respectively.
ReallnSignalElement has an in flow property rsig, while RealOutSignalElement has the same property with an out
direction.

«interfaceBlock»

bdd Example ] SysPhSLibrary::

ReallnSignalElement

«block» signal flows
Spring in rSig : Real
ports
u: RealSignallnElement «interfaceBlock»
y: RealSignalOutElement SysPhSLibrary::
RealOutSignalElement
signal flows
out rSig : Real

Figure 22: Ports for signal flow in SysML

10.7.4 Modelica modeling, signal flow

SysML ports with a type containing a flow property stereotyped by a non-conserved PhSVariable and typed by Real,
Integer, or Boolean, or one of their specializations, correspond to Modelica components typed by the same data type.
SysML flow properties have no corresponding constructs in Modelica, but the Modelica component corresponding
to the SysML port has a direction given by the flow property.

The following Modelica code corresponds to Figure 22. It has a model Spring, with two components # and y of type
Real and of direction respectively in and out.

model Spring
in Real u;
out Real vy;

end Spring;

10.7.5 Simulink modeling, signal flow

Simulink has several kinds of ports, three of which are used in this specification: inports, outports (for signal flow,
corresponding to SysML ports typed by blocks with in or out flow properties that have PhSVariable applied,
respectively, see below), and connection ports (for physical interaction, see Subclause 10.7.9). Simulink block
definitions contain an array giving the number of each kind of port, with connection ports distinguished by whether
they appear on the left or right of their blocks in Simulink diagrams. The number of inports and outports are given at
the 1st and 2nd positions from the left, respectively, while the number of left and right connection ports are at the 6th
and 7th positions, respectively. Trailing series of zeros on the right can be omitted.

SysML ports with a type containing a flow property stereotyped by a non-conserved PhSVariable and typed by Real,
Integer, or Boolean, or one of their specializations, correspond to Simulink inports or outports, depending on the
direction of the flow property.
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The following Simulink code corresponds to Figure 22. It has a block Spring, with one inport u and one outport y.
The Ports property of the block gives the port array, showing the number of inports and outports. The Port property
of the inport or outport specifies the index of that inport or outport, which must be separately sequential integers for
each kind of port, starting with 1.

<Block BlockType="SubSystem" Name="Spring" SID="1">
<P Name="Ports">[1,1]</P>
<System>
<Block BlockType="Inport" Name="u" SID="2">
<P Name="Port">1</P>
</Block>
<Block BlockType="Outport" Name="y" SID="3">
<P Name="Port">1</P>
</Block>
</System>
</Block>

10.7.6 Simscape modeling, signal flow

SysML ports with a type containing a flow property stereotyped by a non-conserved PhSVariable and typed by a
Real, Integer, or Boolean, or one of their specializations, correspond to Simscape inputs or outputs, depending on the
direction of the flow property.

The following Simscape code corresponds to Figure 22. It has a component Spring, with one input # and one output
v, specifying that they should appear on the left and right sides of blocks referencing the spring in Simulink
diagrams, respectively (see Subclauses 10.8.5 and 10.8.6). Left or right positioning does not restrict how
components can be connected.

component Spring
inputs

u = {0, ‘unit’}; % :left
end

outputs

y = {0, ‘unit’}; % :right
end
end

10.7.7 SysML modeling, physical interaction

When modeling physical interaction, flow properties of port types must be inout. This flow property must be typed
by a block (indirectly) specializing ConservedQuantityKind (see Subclause 11.2.2), which contains conserved and
non-conserved PhSVariables (the same number of each).

Figure 7 shows an example physical interaction application. The block Spring has two ports p/ and p2, of type
Flange. Flange has an inout flow property IMo typed by FlowinglLMom from the physical interaction library (see
Subclause 11.2.2), which has one conserved PhSVariable f'and one non-conserved PhSVariable /7.

bdd Example
«block»
«block» «block» SysPhSLibrary::
Spring Flange FlowingLMom
ports flow properties phs variables
p1: Flange inout IMo : FlowingLMom {isConserved} f: Force
p2: Flange IV : Velocity

Figure 23: Ports for physical interaction in SysML
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10.7.8 Modelica modeling, physical interaction

SysML ports with a type containing a flow property typed by a block (indirectly) specializing
ConservedQuantityKind (see Subclause 11.2.2) correspond to Modelica components that have no direction
specified, and SysML port types correspond to Modelica connectors. SysML flow properties have no corresponding
constructs in Modelica, but PhSVariables on conserved quantity kind blocks correspond to Modelica components on
connectors. PhSVariables on conserved quantity kind blocks correspond to Modelica components. Conserved
PhSVariables correspond to Modelica flow components, while non-conserved PhSVariables correspond to regular
Modelica components.

The following Modelica code corresponds to Figure 23. It has a model Spring, with two components p/ and p2 of
type Flange. Flange is a connector that has one flow component f, and one regular component /V.

model Spring
Flange pl;
Flange p2;

end Spring;

connector Flange
flow Real £f;
Real 1V;

end Flange;

10.7.9 Simulink modeling, physical interaction

Simulink supports connection ports for representing bidirectional flows, but they must be linked to Simscape nodes
(see Subclauses 10.7.10 and 10.8.6).

The following Simulink code corresponds to Figure 11. It has a subsystem block Spring with connection ports p/
and p2. Connection ports must be linked to nodes on Simscape components defined in the subsystem block (see
Subclause 10.7.5 about left and right annotation and port arrays).

<Block BlockType="SubSystem" Name="Spring" SID="3">
<P Name="Ports">[0, 0, 0, 0, 0, 1, 1]1</P>
<System>
<Block BlockType="PMIOPort" Name="pl" SID="1">
<P Name="Port">1</P>
<P Name="Side">Left</P>
</Block>
<Block BlockType="PMIOPort" Name="p2" SID="2">
<P Name="Port">2</P>
<P Name="Side">Right</P>
</Block>
</System>
</Block>

10.7.10 Simscape modeling, physical interaction

Simscape adds support for physical interaction ports to Simulink, called nodes. Nodes are typed by a domain, which
corresponds to a SysML port type with an inout flow property typed by a block (indirectly) specializing
ConservedQuantityKind (see Subclause 11.2.2). Conserved PhSVariables on these blocks correspond to Simscape
balancing variables in domains.

The following Simscape code corresponds to Figure 23. It has a component Spring, with two nodes p/ and p2 of
type Flange (Simscape nodes use left and right annotations in the same way inputs and outputs do, see Subclause
10.7.6). Flange is a domain from the package CurrentLibrary, with two variables: one non-balancing variable IV,
and one balancing variable f.
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component Spring

nodes
pl = Currentlibrary.Flange; % :left
p2 = Currentlibrary.Flange; % :right
end
end

domain Flange

variables
1v = {0, 'm/s'};
end

variables (Balancing=true)
£ = {0, 'N'"};
end
end

10.7.11 Summary

specializing ConservedQuantityKind
(physical interaction)

SysML Modelica Simulink Simscape
Port typed by block with an in flow property | Component typed by an Inport Input variable
stereotyped by a non-conserved PhSVariable |equivalent data type
and typed by Real, Integer, Boolean or one of
their specializations (signal flow)
Port typed by block with an out flow property | Component typed by an Outport Output variable
stereotyped by a non-conserved PhSVariable |equivalent data type
and typed by Real, Integer, Boolean or one of
their specializations (signal flow)
Port typed by block with an inout flow Component typed by Connection port | Node typed by
property typed by block (indirectly) connector domain
specializing ConservedQuantityKind
(physical interaction)
Block (indirectly) specializing Connector N/A Domain
ConservedQuantityKind (physical
interaction)
PhSVariables on blocks (indirectly) Components of connector | N/A Variables of domain

10.8 Connectors

10.8.1 Purpose

A connection between two connection points enables exchange of physical substances or signals between these

parts.

10.8.2 SysML modeling

In SysML, connectors are used to link two ports. These connections exist only in the context of the block that owns

the connector, and other blocks it generalizes (connectors inherit).
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Figure 24 shows an example of SysML connectors. It has a block Example with two parts s/ and s2, of types
SpringA and SpringB, respectively, defined similarly to Spring in Figure 11, Subclause 10.7.7. The blocks SpringA
and SpringB have two ports, pl and p2 of type Flange, as defined in Figure 23. The figure shows a connector
between the port p2 of s/, and the port p/ of s2.

ibd Example

1

)
s1:SpringA
1

p2:Flange
p1:Flange
)
s2:SpringB
1

L

Figure 24: Connectors in SysML

10.8.3 Modelica modeling

SysML connectors correspond to Modelica connect equations, which link components typed by Modelica
connectors. This depends on the correspondence between SysML port types and Modelica connectors (see Subclause
10.7.8).

The following Modelica code corresponds to Figure 24. It has a model Example with two components s/ and s2 of
types SpringA and SpringB, respectively. The models SpringA and SpringB have two components p/ and p2 of type
Flange, defined similarly to Spring in Subclause 10.7.8. Model contains a connect equation linking component p2 of
s1 to component p/ of 52.

model Example

SpringA sl;

SpringB s2;
equation

connect (sl.p2, s2.pl);
end Example;

10.8.4 Simulink modeling, between blocks with no constraints
SysML connectors correspond to Simulink lines when:
e Simscape is not used with Simulink.

e Simscape is used with Simulink and the SysML connectors are owned by a block with no constraints
involving PhSVariables and that link ports on blocks with no constraints involving PhSVariables, such as
those in Subclause 11.3, SysML connectors correspond to Simulink lines (see Subclause 10.8.5 and 10.8.6
for other cases when Simscape is used with Simulink).

Simulink lines are directed from outports to inports.

The following Simulink code corresponds to Figure 24, assuming SpringA4 and SpringB do not have constraints
involving PhSVariables. It has a subsystem block Example with two blocks s/ and s2 referring to the blocks
SpringA and SpringB, respectively, and having one inport and one outport each, defined similarly to Spring in
Subclause 10.7.5. A line is defined between the outport port of s/ (p2) and the inport of s2 (p/). Lines identify their
end ports by the identifier of the block defining the port, followed by “#” and the kind of port (“in” and “out” for
inports and outports, respectively, as shown below, or “lconn” and “rconn” for left and right connection ports,
respectively, see Subclause 10.7.5), followed by a colon and the index of the port among those of that kind in the
defining block (ports are all ordered).
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<Block BlockType="SubSystem" Name="Example" SID="1">
<P Name="Ports">[0,0]</P>
<System>
<Block BlockType="Reference" Name="sl" SID="2">
<P Name="Ports">[1,1]</P>
<P Name="SourceBlock">Library/SpringA</P>
</Block>
<Block BlockType="Reference" Name="s2" SID="3">
<P Name="Ports">[1,1]</P>
<P Name="SourceBlock">Library/SpringB</P>
</Block>
<Line>
<P Name="Src">l#out:1</P>
<P Name="Dst">2#in:1</P>
</Line>
</System>
</Block>

10.8.5 Simulink modeling, between blocks with constraints

When Simscape is used with Simulink,, SysML connectors that are owned by a block with no constraints involving
PhSVariables and that link ports on blocks with constraints involving PhSVariables (see Subclause 10.9) correspond
to a type of Simulink line called connections.

The following Simulink code correspond to Figure 24, assuming Spring4 and SpringB have constraints involving
PhSVariables. It has a subsystem block Example with two blocks s/ and 52 referring to Simscape components
SpringA and SpringB, respectively, defined similarly to Spring in Subclause 10.7.10. The springs have one left port
(p1) and one right port (p2) each, linked by a line of type “Connection” (see Subclause 10.8.4 about defining the
ends of lines).

<Block BlockType="SubSystem" Name="Example" SID="1">
<P Name="Ports">[0,0]</P>
<System>
<Block BlockType="Reference" Name="sl" SID="2">
<P Name="Ports">[0,0,0,0,0,1,1]1</P>
<P Name="SourceBlock">Library/SpringA</P>
<P Name="SourceType">SpringA</P>
<P Name="SourceFile">Library.SpringA</pP>
<P Name="ComponentPath">Library.SpringA</P>
<P Name="ClassName">SpringA</P>
</Block>
<Block BlockType="Reference" Name="s2" SID="3">
<P Name="Ports">[0,0,0,0,0,1,1]1</P>
<P Name="SourceBlock">Library/SpringB</P>
<P Name="SourceType">SpringB</P>
<P Name="SourceFile">Library.SpringB</P>
<P Name="ComponentPath">Library.SpringB</P>
<P Name="ClassName">SpringB</P>
</Block>
<Line LineType="Connection">
<P Name="Src">l#rconn:1</P>
<P Name="Dst">2#lconn:1</P>
</Line>
</System>
</Block>
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10.8.6 Simulink modeling, between blocks that have constraints and blocks that
do not

When Simscape is used with Simulink, SysML connectors that are owned by a block with no constraints involving
PhSVariables and that link ports of a block with constraints involving PhSVariables (see Subclause 10.9) to ports of
other blocks without constraints involving PhSVariables, such as those in Subclause 11.3, or vice versa, it is
necessary to use an additional block between them to convert a regular Simulink signal into a Simscape signal, or
vice versa. Specifically, a Simulink connection links a block with constraints (through ports) to or from the converter
block, while a Simulink line connects the converter block to or from a block with no constraints.

The following Simulink code connects a Simulink block and a Simscape component, corresponding to Figure 24,
assuming SpringA does not have constraints involving PhSVariables, while SpringB does. The code has a subsystem
block Example with a block s/ referring to Simulink block SpringA4 (defined similarly to Spring in Subclause
10.7.5), a block #r/ converting regular signals to physical signals, a block s2 referring to Simscape component
SpringB (defined similarly to Spring in Subclause 10.7.10), a block 72 converting physical signals to regular
signals, and a block s3 also referring to Simulink block SpringA. Lines of type Connection link si, trl, s2, tr2, and
s3.

<Block BlockType="SubSystem" Name="Example" SID="1">
<P Name="Ports">[0,0]</P>
<System>
<Block BlockType="Reference" Name="sl" SID="1">
<P Name="Ports">[1,1]</P>
<P Name="SourceBlock">Library/SpringA</P>
</Block>
<Block BlockType="Reference" Name="trl" SID="2">
<P Name="Ports">[1, 0, 0, 0, 0, 0, 11</P>
<P Name="SourceBlock">nesl utility/Simulink-PS
Converter</P>
<P Name="SourceType">Simulink-PS
Converter</P>
</Block>
<Block BlockType="Reference" Name="s2" SID="3">
<P Name="Ports">[0,0,0,0,0,1,1]1</P>
<P Name="SourceBlock">Library/SpringB</P>
<P Name="SourceType">SpringB</P>
<P Name="SourceFile">Library.SpringB</P>
<P Name="ComponentPath">Library.SpringB</P>
<P Name="ClassName">SpringB</P>
</Block>
<Block BlockType="Reference" Name="tr2" SID="4">
<P Name="Ports">[0, 1, 0, 0, 0, 11</P>
<P Name="SourceBlock">nesl utility/PS-Simulink
Converter</P>
<P Name="SourceType">PS-Simulink
Converter</P>
</Block>
<Block BlockType="Reference" Name="s3" SID="5">
<P Name="Ports">[1,1]</P>
<P Name="SourceBlock">Library/SpringA</P>
</Block>
<Line>
<P Name="Src">l#out:1</P>
<P Name="Dst">2#in:1</P>
</Line>
<Line LineType="Connection">
<P Name="Src">2#rconn:1</P>
<P Name="Dst">3#lconn:1</P>
</Line>
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<Line LineType="Connection">
<P Name="Src">3#rconn:1</P>
<P Name="Dst">4#lconn:1</P>

</Line>
<Line>

<P Name="Src">4#out:1</P>
<P Name="Dst">5#in:1</P>

</Line>
</System>
</Block>

10.8.7 Simscape modeling

When Simscape is used with Simulink, SysML connectors owned by a block with constraints involving
PhSVariables correspond to Simscape connections.

The following Simscape code corresponds to Figure 24. It has a block Example with two components s/ and s2 of
type Spring A and SpringB, defined similarly to Spring in Subclause 10.7.10, and a connection between s/.p2 and

s2.pl.

component Example
components

sl=Library.Springh;
s2=Library.SpringB;

end
connections
connect (sl.p2,
end
end

s2.pl);

10.8.8 Summary

SysML

Modelica

(without Simscape)

Simulink

Simulink
(with Simscape)

Simscape

Connector between ports with
in or out flow properties

Connect equation
between components

Line between
inport/outports

Connection line
between connectors

Connect statement

inout flow properties

Connector between ports with

Connect equation
between components

N/A

Connection line

between connectors

Connect statement

10.9 Blocks with constraints

10.9.1 Purpose

System behavior is represented in simulation models by expressions relating values of system properties. Simulating

expressions involves computing an unknown variable from known variables.

10.9.2 SysML modeling

Simulation expressions correspond to constraint blocks in SysML. Constraint blocks are blocks that have parameters
and constraint properties (properties typed by constraint blocks). Parameters are properties used in the equations,

while constraints are equations.

SysML blocks use constraint blocks by typing properties with them (constraint properties), and owning binding
connectors that link parameters of the constraint blocks to other properties of the block.
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Subclauses 10.9.3 through 10.9.6 cover signal flow modeling, while subclauses 10.9.7 through 10.9.10 cover
physical interaction modeling.

10.9.3 SysML modeling, signal flow

Figure 25 shows an example constraint block for a signal flow application, using ports like those defined in Figure
22, Subclause 10.7.3, except in a system containing a spring attached to another object. The block SpringMassSys
has a SysML constraint property smsc typed by SMSConstraint. The constraint block has six parameters, each bound
to a property reachable from the spring mass system:

e fis bound to the signal coming in through port «, which has a type with an in flow property rsig
pos is bound to the signal going out through port y, which has a type with an out flow property rsig
x is bound to PhSVariable position
k is bound to PhSConstant springcst
v is bound to PhSVariable velocity
m is bound to PhSConstant mass, the mass of the object attached to the spring.

The constraint block defines three constraints representing equations, written in the expression language specified in

Clause 8.
par SpringMassSys

«constraint»
smsc: SMSConstraint

constraints
{der(v)=(f-k*x)/m}
{der(x)=v}
{pos=x}

- «equal» «equal» -
— «equal» «equal»
[1 [

«equal» «equal»

| springcst || velocity |

Figure 25: Constraint block for signal flow in SysML

10.9.4 Modelica modeling, signal flow

In a SysML block with constraint properties, the constraints correspond to the same equations in Modelica
(assuming the expression language of Clause 8 is used in the constraint block), except the SysML parameters in
those constraints correspond in Modelica to the properties they are bound to in SysML.

The following Modelica code corresponds to Figure 25. It has three equations from the constraint block. SysML
parameter names are replaced in the Modelica equations according to the bindings in Figure 13: fis replaced by u,
pos is replaced by y, x is replaced by position, k is replaced by springcst, v is replaced by velocity, m is replaced by
mass.
model Spring

input Real u;

output Real y;

Real position;

parameter Real springcst = 1;
Real velocity;
parameter Real mass = 10;
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equations
der (velocity)=(u-springcst*position) /m;
der (position)=velocity;
y=position;

end Spring;

10.9.5 Simulink modeling, signal flow

SysML constraint blocks for signal flow correspond to Simulink S-functions. S-functions are a kind of MATLAB
function that define input variables, output variables, continuous state variables, and discrete state variables. S-
function variables are identified by numbers, rather than names. State variables are accessible only inside an S-
function (this is different from states in state machines, see Subclause 10.12). SysML constraint block parameters
correspond to S-functions based on how they are bound in SysML, which can be different for each constraint
property typed by the same constraint block. This means that a separate S-function corresponds to each SysML
constraint property. Each S-function is used only in a specific context (corresponding to the constraint property), and
the name of the S-function must reflect that context.

S-functions contain assignments of continuous state variable derivatives, discrete state variables, and output
variables. These assignments correspond to constraints of SysML constraint blocks that have exactly one variable on
the left-hand side, which determines the variable being assigned, and the kind of assignment it is:

e A continuous state variable on the left-hand side corresponds to a derivative assignment.
e A discrete state variable on the left-hand side corresponds to an update assignment.
e An output variable on the left-hand side corresponds to an output assignment.

SysML parameter names are used as variable names in the S-functions. SysML parameters bound to PhSConstants
are replaced in S-functions by the value given for the PhSConstant.

Binding connectors involving ports with in or out flow properties correspond to Simulink lines (see Subclause
10.8.4) linking inports and outports to inputs and outputs of the S-function, respectively.

The following Simulink code corresponds to Figure 25. It has a Simulink block Spring with one inport and one
outport. Spring also contains a S-function block that points at the S-function Spring sc_SpringConstraint, which has
one inport and one outport. The inports and outports of Spring are linked to the inport and outport of the S-function
block, respectively. The S-function Spring_sc_SpringConstraint has a setup function indicating that the S-function
has one input port, one output port, and two continuous states. The function also registers two functions that will be
called for derivative calculations and output calculations. These functions contain the assignments from the SysML
constraints, with the same substitutions performed as in Modelica (see Subclause 10.9.4).

<Block BlockType="SubSystem" Name="Spring" SID="1">
<P Name="Ports">[1,1]</P>
<System>
<Block BlockType="Inport" Name="u" SID="2">
<P Name="Port">1</P>
</Block>
<Block BlockType="Outport" Name="y" SID="3">
<P Name="Port">1</P>
</Block>
<Block BlockType="M-S-Function" Name="sc" SID="4">
<P Name="FunctionName">Spring sc_SpringConstraint</Pp>
<P Name="Ports">[1,1]</P>
</Block>
<Line>
<P Name="Src">2#out:1</P>
<P Name="Dst">4#in:1</P>
</Line>
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<Line>
<P Name="Src">4#out:1</P>
<P Name="Dst">3#in:1</P>
</Line>
</System>
</Block>
function Spring sc_ SpringConstraint (block)
setup (block) ;
end
function setup (block)
block.NumInputPorts =1;
block.NumOutputPorts =1;
block.NumContStates =2;
block.RegBlockMethod ('Derivatives',@Derivative) ;
block.RegBlockMethod ('Outputs', @Output) ;
block.SampleTime=[0 0];
end
function Derivative (block)
block.Derivatives.Data (l)=(block.InputPort(l).Data-1*block.ContStates.Data(2))/10;
block.Derivatives.Data (2)=block.ContStates.Data(2);
end
function Output (block)
block.OutputPort (1) .Data=block.ContStates.Data(2);
end

10.9.6 Simscape modeling, signal flow

Simscape supports signal flow by providing a way to specify input and output signals for components. SysML
blocks with constraint properties correspond to equations in Simulink components, with the same substitutions as in
Modelica (see Subclause 10.9.4). Simscape does not support discrete variables (compare to S-functions, see
Subclause 10.9.5).

The following Simscape code corresponds to Figure 25. It has a component Spring with an input u, an output y, two
parameters springcst and mass, as well as two variables position and velocity (see Subclause 10.11.5 about units and
Subclause 10.7.6 about left and right annotations). The component has equations connecting these variables: two
equations that compute the derivative of the variables, and one that determines the output.

component Spring
inputs
u = {0, ‘unit’ }; % :left
end
outputs
y = {0, ‘unit’ }; % :right
end
parameters
springcst = 1;
mass = 10;
end
variables
position
velocity
end
equations
der (velocity)=(u-springcst*position) /m;
der (position)=velocity;
y=position;
end
end

0;
0;
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10.9.7 SysML modeling, physical interaction

Figure 26 shows an example constraint block for a signal flow application, using the port type defined in Figure 23,
Subclause 10.7.7. It has a constraint block SpringConstraint with 8 parameters, each bound to a property reachable
from the spring:

e Force and velocity at the two ends of the spring (f1, v, f2, v2) are bound to the forces and velocities of
conserved quantity kinds flowing through ports p/ and p2, which have types with inout flow properties.

e  Change in length of the spring (x) is bound to the PhSVariable lengthchg.
e Spring constant (k) is bound to the PhSConstant springcst.

e Force going through the spring and difference in velocities of the ends (v, f), are bound to the PhSVariables
forcethru and velocitydiff, respectively.

The PhSVariables and PhSConstants above are defined on the block Spring, but not shown in Figure 11. The
constraint block defines five constraints representing equations, written using the expression language specified in
Clause 8.

par Spring

«constraint»
sc: SpringConstraint

constraints
{f1+f2=0}
{f=f1}
{v=v2-v1}
{v=der(x)}
{f=k*x}

«equal» «equal»

p1.Mo.f 11 f2 [ p2.IMo.f

| |

p1.IMo.lV o v v2 O e p2.Mo.IV
| « 1»

lengthehg |————————1x L

[1 [1

«equal» «equal»

il

| springcst | | velocitydiff |

Figure 26: Constraint block for physical interaction in SysML

10.9.8 Modelica modeling, physical interaction

In a SysML block with constraint properties, the constraints correspond to the same equations in Modelica
(assuming the expression language of Clause 8 is used in the SysML constraint block), except the SysML
parameters in those equations correspond in Modelica to the properties they are bound to in SysML (and flow
properties in SysML property paths leading to PhSVariables on conserved quantity kinds are omitted in Modelica,
see Subclause 10.7.8).

The following Modelica code corresponds to Figure 26. It has five equations from the SysML constraint block.
SysML parameter names are replaced in the Modelica equations according the bindings in Figure 14: f7 is replaced
by pl.f, vl is replaced by p1.1V, x is replaced by lengthchg, k is replaced by springcst, v is replaced by velocitydiff, f
is replaced by forcethru, v2 is replaced by p2.v, and /2 is replaced by p2.f.

model Spring
Flange pl;
Flange p2;
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Real lengthchg;
parameter Real springcst = “107;
Real velocitydiff
Real forcethru
equation
pl.f+p2.£f=0
forcethru=pl.f;
velocitydiff=pl.1lV-p2.1V;
velocitydiff=der (lengthchg) ;
forcediff=springcst*lengthchg;
end Spring;

10.9.9 Simulink modeling, physical interaction

Physical interaction is modeled with the Simscape extension to Simulink, see Subclause 10.9.10.

10.9.10 Simscape modeling, physical interaction

For SysML blocks with constraint properties, the constraints correspond to the same equations in Simscape
components (assuming the expression language of Clause 8 is used in constraint blocks), with the same substitutions
in Simscape as in Modelica (see Subclause 10.9.8), followed by additional substitutions for balancing variables in
Simscape domains (see Subclause 10.7.10 about domains). The additional substitutions are defined in Simscape
branch statements, each introducing a new variable to substitute in equations (after the initial substitutions above)
for each path to a balancing variable on a port.

The following Simscape code corresponds to Figure 26. It has five equations from the SysML constraint block.
Note the additional variables defined by branch statements, which replace p/.f by pifand p2.f by p2fin the
equations (after the initial substitutions above).

component Spring

variables
forcethru={0, 'N'};
velocitydiff={0, 'm/s'};
lengthchg={0, 'm'};
plf={0, 'N'};
p2£={0, 'N"};

end

nodes
pl=Library.Flange;% :left
p2=Library.Flange;% :right

end

parameters
springcst={10,'1"'};

end

function setup

end

branches
plf: pl.f->*;
p2f: p2.f->*;

end

equations
plf+p2£=0;
forcethru=plf;
velocitydiff=pl.1lV-p2.1V;
velocitydiff=der (lengthchg) ;
forcethru=springcst*lengthchg;

end

end

SysML Extension for Physical Interaction and Signal Flow Simulation 43




10.9.11 Summary

SysML Modelica Simulink Simscape
Constraint block, typing N/A S-function N/A
constraint properties
Constraint parameter bound to a | N/A (SysML constraint Input variable N/A (SysML constraint

property path that goes through
an in flow property

parameter substituted in
equations)

parameter substituted in
equations)

Constraint parameter bound to a
property path that goes through
an out flow property

N/A (SysML constraint
parameter substituted in
equations)

Output variable

N/A (SysML constraint
parameter substituted in
equations)

Constraint parameter bound to
continuous PhSVariable

N/A (SysML constraint
parameter substituted in
equations)

Continuous state variable

N/A (SysML constraint
parameter substituted in
equations)

Constraint parameter bound to
discrete PhSVariable

N/A (SysML constraint
parameter substituted in
equations)

Discrete state variable

N/A (SysML constraint
parameter substituted in
equations)

Constraint parameter bound to

N/A (SysML constraint

Numeric or boolean value

N/A (SysML constraint

discrete PhSConstant parameter substituted in (substituted in equations) parameter substituted in
equations) equations)

Constraint Equation in the model Output, discrete, or derivative | Equation in the component
corresponding to the assignment depending on corresponding to the
SysML block containing | type of the left-hand side SysML block containing
the constraint property variable in the equations the constraint property
(with substitution of (with substitution of
parameters) parameters)

10.10 Default values and initial values

10.10.1 Purpose

Systems and simulation models can specify values for data type properties to be used when values are not otherwise

given.

10.10.2 SysML Modeling

SysML has two ways to specify values for properties that are used when values are not otherwise given:

e  Default values are defined on the properties that will be given the values. A default value is given to every
instance of the block owning the property (or any block it generalizes) when each instance is created.

e [nitial values are defined on other properties that are typed by the block owning the property (or any block
it generalizes) that will be given the values. The values are given to instances of the block when (and if)
they become values of the other properties.

Initial values override default values, because initial values are set when an instance that is already created becomes
the value of another property that specifies initial values, whereas default values are only set when instances are
created. Default and initial values can be changed after they are given to the instances.
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Figure 27 shows how default and initial values are used in SysML. The left side of the figure shows a block B with
an attribute val with a default value on 10. The right side shows a block 4 with an attribute b of type B. An initial
value of 20 is given to the val of b.

bdd Example ibd A

«bIoBck» b'B
val: Real = 10.0 val =20.0

Figure 27: Default values and initial value in SysML

10.10.3 Modelica modeling

SysML default and initial values correspond to start values of Modelica components. Start values are marked as
fixed, requiring the values be set at the beginning of the simulation (otherwise, simulators only take the values as
suggestions, calculating their own start values to solve the equations).

The following Modelica code corresponds to Figure 15. It has a model B with a val component. The va/ component
has a start value of 10. A class A4 is defined with a component b of type B. A component modification indicates that
the start value of b.val is 20.0.

model B

Real val(start = 10.0, fixed = true);
end B;
model A

B b(val.start = 20.0, val.fixed = true);
end A;

10.10.4 Simulink modeling

Default values (or overriding initial values) of PhSVariables correspond to initial values of the corresponding S-
functions variables (see Subclause 10.9.5) , unless they are initial values for properties below the top level system
block or are for properties typed by blocks that have parts, whereupon they have the same correspondence with
Simulink as redefined properties (see Subclause 10.5.4 and Subannex A.5.9).

The following Simulink code corresponds to Figure 15, assuming the PhSVariable var is bound to a constraint
parameter (which corresponds to an S-function variable). The code shows an S-function setting initial values for
discrete and continuous variables. It also shows a sefup function that defines one continuous variable and one
discrete variable, which are identified by number (1 for both in this example). The properties NumDworks, Dwork,
NumContStates, and ContStates are predefined in Simulink, the first two for discrete variables, the second two for
continuous variables. A value of 20 is given to both variables.

function setup (block)
block.NumDworks = 1;
block.Dwork (1) .Data = 20.0;

block.NumContStates = 1
block.ContStates.Data (1l
end

)y = 20.0;

10.10.5 Simscape modeling

SysML default values correspond to initial values of Simscape variables and parameters. SysML initial values
correspond to Simscape components used in Simulink. The priority of initial values in Simscape must be set to high
(otherwise simulators calculate initial values that solve the equations at the beginning time of the simulation)
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The following Simscape code corresponds to the block definition diagram in Figure 15. It shows a Simscape
component B defining a variable val with an initial value of 10.

component B
variables
val={value=10,priority=priority.high};
end
end

The following Simulink code corresponds to the internal block diagram in Figure 15. It has a usage of the Simscape
component in Simulink that overrides the initial value of the variable val with a value of 20.

<Block BlockType="Reference" Name="b" SID="2">
<P Name="SourceBlock">Library/B</P>
<P Name="SourceType">B</P>
<P Name="SourceFile">Library.B</P>
<P Name="ComponentPath">Library.B</P>
<P Name="ClassName">B</P>
<P Name="val">20.0</P>
</Block>

10.10.6 Summary

SysML Modelica Simulink Simscape
Default value Start value (fixed) S-function initial value Member initial value (high priority)
Initial value Start value (fixed) N/A Member assignment (high priority)

10.11 Data types and units

10.11.1 Purpose

Systems and simulation models include units of physical quantities to enable checking that variables in expressions
have consistent units.

10.11.2 SysML modeling

Data types in SysML are called value types. SysML numeric value types can be linked to units, where units are
modeled with the SysML Unit block. These units are linked to value types that are generalized by SysML’s numeric
value types. Units and their symbols are from ISO 80000.

Figure 28 shows how a value type with units is defined in SysML, from the units library in Figure 20, Subclause
11.2.2. It has a value type Force that specializes the Real value type and has newfon as unit. The newton unit has a

symbol N.
bdd SysPhSLibrary

«valueType»

Real

T

«valueType» newton : Unit
{unit=newton}

Force symbol="N"

Figure 28: Units in SysML

SysML Extension for Physical Interaction and Signal Flow Simulation 46



10.11.3 Modelica modeling

Modelica data types can be subtyped to add a unit symbol. The interpretation of this symbol is not defined in

Modelica.

The following Modelica code corresponds to Figure 28. It has a type Force, which extends Real, and the unit

symbol N assigned to it.

‘type Force=Real (unit="N") ;

10.11.4 Simulink modeling

Simulink inports and outports can have units. Simulink defines some unit symbols, and modelers can add their own.
The following table shows correspondences between ISO 80000 and Simulink notation for unit operations when

they differ.
Unit operation ISO 80000 Simulink
Exponentiation superscript (as in m?) caret (as in m"3)
Multiplication - (as in N-m) * (as in N*m)

The following table shows correspondences between ISO 80000 and Simulink notation for units when they differ.

ISO 80000 Simulink
Q ohm
° deg
A ang
u u

The following Simulink code corresponds to Figure 16. It has an inport /n/ with unit N, the symbol for Newton.

<Block BlockType="Inport" Name="Inl" SID="1">

<P Name="Unit">N</P>
</Block>

10.11.5 Simscape modeling

Unit symbols can be associated to variables and parameters in Simscape. Simscape uses the unit symbols defined in

Simulink (see Subclause 10.11.4).

The following Simscape code corresponds to Figure 28. It has a variable force with an initial value of 0, with the

unit N, the symbol for Newton.

variables
force={0, 'N'};
end

10.11.6 Summary

SysML Modelica Simulink Simscape
Value type specializing Real, Equivalent data type with unit | N/A N/A
Integer, or Boolean with unit symbol
Property typed by Real, Integer, | Component typed by an N/A Variable with associated unit
Boolean or one of their equivalent data type
specializations

SysML Extension for Physical Interaction and Signal Flow Simulation

47




Real Real double double
String String N/A N/A
Boolean Boolean boolean N/A
Integer Integer int32 N/A

10.12 State machines

10.12.1 Purpose

State machines in system and simulation modeling specify how systems and components react to changes, usually
caused by their environment (this is different than simulation state variables, see Subclause 10.9.5). State machines
contain states and transitions between them. Objects are said to be “in” particular states, with transitions specifying
when objects change the state they are in. States define behaviors for objects that are in those states. Transitions
have conditions specifying when their objects change state. When conditions change for an object, usually as an
effect of its environment, transitions can react by changing the state of the object, and consequently the behavior of
the object. State machines can contain other state machines and can be in multiple states at the same time, but this
specification does not provide translations for these capabilities.

10.12.2 SysML modeling
SysML state machines can be behaviors for blocks. The SysML capabilities of concern to simulation are:

e Triggering transitions based on evaluation of boolean expressions, involving time and property values,
including values arriving in flow properties on port types. These can be modeled using TimeEvents and
ChangeEvents.

e Sending values out of an object through a port with an out flow property when a specific state is on.

Figure 29 shows a block Computer with a simple state machine.

bdd Example stm Computer

VTR
afters) [ StandBy | yhen(u.sig==1)
«block» H o /v reias
Computer (&0 YS9 )
_ ports when(u.sig==0)
u: RealSignallnElement
y: RealSignalOutElement On
do /vy.rsig:=3
N

Figure 29: State machine in SysML

Computer has ports u and y of type ReallnSignalElement and RealOutSignalElement from the signal flow library
(see Subclause 11.2.1), respectively. The state machine has one initial pseudostate, and two states StandBy and On.
The transition from the initial pseudostate to StandBy has a relative TimeEvent with an expression indicating that the
transition fires 5 seconds after the initial pseudostate is entered. The transition from StandBy to On has a
ChangeEvent with an expression indicating that the transition is triggered when u.sigsp is equal to 1 (this is a signal
as in signal flow simulation, not as in SysML). The transition from On to StandBy has a ChangeEvent with an
expression indicating that the transition is triggered when u.sigsp is equal to 0. When the computer is in StandBy,
y.sigsp is set to 8, and when the computer is On, y.sigsp is set to 3.
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10.12.3 Modelica modeling

Modelica 3.3 introduced support for state machines, but they are not widely implemented in simulation tools as of
the date of this specification. Instead, this translation uses the Modelica standard library, which supports some
aspects of state machines. SysML state machines correspond to Modelica models, and all the SimVariables and
constants of a SysML block owning a state machine are the same as in the Modelica state machine. SysML state
machine elements correspond to Modelica state machines as follows:

o Initial pseudostates correspond to InitialSteps.

e  States correspond to Steps.

e  Transitions correspond to Transitions.

e Time events correspond to transition wait times.

e  Change events correspond to transition conditions.

e  State behaviors (specified with doActivity) that are OpaqueBehaviors correspond to Modelica code
executed when objects are in particular states.

The following Modelica code corresponds to Figure 29.

model Computer

input Real u;

output Real y;

ComputerSM ComputerSM;

model ComputerSM
Modelica.StateGraph.InitialStep stateO(nIn = 0, nOut = 1);
Modelica.StateGraph.Step StandBy(nIn = 2, nOut = 1);
Modelica.StateGraph.Step On(nIn = 1, nOut = 1);
Modelica.StateGraph.Transition tr0O(condition = true, enableTimer = true,

waitTime = 5);
Modelica.StateGraph.Transition trl (condition = u==1);
Modelica.StateGraph.Transition tr2(condition = u==0);
Real u;
Real vy;
equation
connect (state0.outPort[1l], tr0.inPort);
connect (trO.outPort, StandBy.inPort[1l]);
connect (StandBy.outPort[1l], trl.inPort);
connect (trl.outPort, On.inPort[1l]);
connect (On.outPort[1l], tr2.inPort);
connect (tr2.outPort, StandBy.inPort[2]);
algorithm
if StandBy.active then
y := 8;
end 1if;
if On.active then
y = 3;
end if;
end ComputerSM;
equation
u = ComputerSM.u;
y = ComputerSM.y;

end Computer;

The code shows the model Computer with an input variable u, and an output variable y, and a component
_ComputerSM for a state machine ComputerSM, defined next. ComputerSM duplicates the components of
Computer, except for the state machine component. It has an initial step state0, two steps StandBy and On, and three
transitions 0, trl and tr2. Each transition has a condition for traversing it, and each step indicates how many inputs
and outputs it has. ComputerSM contains equations linking ports of steps and transitions, and an algorithm section
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for assigning numeric component values when the machine starts or stops each step. Returning to Computer,
equations bind its components to the components of the state machine.

10.12.4 Simulink/StateFlow modeling

Simulink has an extension for state machines called Stateflow, providing some features of SysML state machines
(StateFlow does not extend Simscape). StateFlow supports transitions with conditions determining whether to
traverse them, and actions performed when objects are in particular states. It uses default transitions, rather than
transitions from initial pseudostates as in SysML. StateFlow state machines are blocks, rather than separate
behaviors, as in SysML.

The following Simulink and StateFlow code corresponds to Figure 29.

<Block BlockType="SubSystem" Name="Computer" SID="2">
<P Name="Ports">[1,1]</P>
<P Name="SFBlockType">Chart</P>
<System>
<P Name="Open">off</P>
<Block BlockType="Inport" Name="u" SID="2::1">
<P Name="Port">1</P>
</Block>
<Block BlockType="Outport" Name="y" SID="2::2">
<P Name="Port">1</P>
</Block>
<Block BlockType="S-Function" Name=" SFunction " SID="2::5">
<P Name="FunctionName">sf sfun</P><P Name="Ports">[1,2]</P>
</Block>
<Block BlockType="Demux" Name="Demux" SID="2::6">
<P Name="Outputs">1</P>
</Block>
<Block BlockType="Terminator" Name="Terminator" SID="2::7"/>
<Line>
<P Name="Src">2::1#out:1</P><P Name="Dst">2::5#in:1</P>
</Line>
<Line>
<P Name="Src">2::5#out:2</P><P Name="Dst">2::2#in:1</P>
</Line>
<Line>
<P Name="Src">2::5#out:1</P><P Name="Dst">2::6#in:1</P>
</Line>
<Line>
<P Name="Src">2::6#out:1</P><P Name="Dst">2::7#in:1</P>
</Line>
</System>
</Block>

<Stateflow>
<machine id="1">
<P Name="isLibrary">0</P>
<Children>
<target id="2" name="sfun"/>
<chart id="3">
<P Name="name">Computer</P>
<P Name="chartFileNumber">1</P>
<P Name="saturateOnIntegerOverflow">1</P>
<P Name="userSpecifiedStateTransitionExecutionOrder">1</P>
<P Name="disableImplicitCasting">1</P><P Name="actionLanguage">2</P>
<Children>
<state SSID="5">
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<P Name="labelString">StandBy
during:y=8;</P>
</state>
<state SSID="6">
<P Name="labelString">On
during:y=3;</P>
</state>
<data SSID="7" name ="u">
<P Name="scope">INPUT DATA</P>
</data>
<data SSID="8" name ="y">
<P Name="scope">OUTPUT DATA</P>
</data>
<transition SSID="11">
<P Name="labelString">[after (5, sec)]</P>
<src/>
<dst>
<P Name="SSID">5</P>
</dst>
<P Name="executionOrder">1</P>
</transition>
<transition SSID="12">
<P Name="labelString">[u==1]</P>
<src>
<P Name="SSID">5</P>
</src>
<dst>
<P Name="SSID">6</P>
</dst>
<P Name="executionOrder">1</P>
</transition>
<transition SSID="13">
<P Name="labelString">[u==0]</P>
<src>
<P Name="SSID">6</P>
</src>
<dst>
<P Name="SSID">5</P>
</dst>
<P Name="executionOrder">1</P>
</transition>
</Children>
</chart>
</Children>
</machine>
<instance id="4">
<P Name="name">Computer</P>
<P Name="machine">1</P>
<P Name="chart">3</P>
</instance>
</Stateflow>

The Block section of the code at the top is the part of state machine represented in Simulink. It shows a block
Computer of type Chart, containing one inport (), one outport (y), and one S-function corresponding to the state
machine. The two other blocks, Demux and Terminal, are needed by Simulink to execute state machines. Lines
connect the inport of the block to the input of the S-function, and the second output of the S-function to the outport
of the block.

The Stateflow section of the code at the bottom is the part of the state machine represented in Stateflow. It shows a
machine containing one input «, one output y, two states StandBy and On, a default transition (which has no source),
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and two transitions. The during string in StandBy indicates that the output y is set to 8 while the computer is in
StandBy. The label in the default transition indicates that the transition is fired after 5 seconds. The condition of the
two transitions indicates that the first transition fires when the input u is equal to 1, and the second transition fires
when the input u is equal to 0.

10.12.5 Summary

SysML Modelica Simulink Stateflow
Block with Model (regular) Block of type SFBlockType |N/A
StateMachine as
classifierBehavior
StateMachine Block S-function Chart in machine
Initial pseudostate InitialStep component N/A N/A
State Step component N/A State
Transition Transition component N/A Transition
Transition from initial Transition component N/A Default transition
PseudoState
doActivity with Statements in a state N/A During statements in a state
OpaqueExpression conditionalized by object

being in that state

ChangeEvent Trigger Transition condition N/A Transition condition
Relative TimeEvent waitTime expression N/A after() statement

10.13 Mathematical expressions

The following table shows replacements to be made in the syntax of the SysPhS expression language (see Clause 8)
when translating to MATLAB, the expression language in Simulink, Simscape, and StateFlow. Translation to
Modelica requires no replacements.

SysPhS expression MATLAB equivalent

‘if” ... ‘then’ ... ‘elseif” ... ‘then’ ... ‘else’ ... ‘end’ | ‘if* ...

‘if’
‘elseif” ...
‘else’ ...
‘end’

‘for’ ... “in’ ... ‘loop’ ... ‘end’ ‘for’ “for’ ... =" ...
‘end’

6:’ ‘::’

6<>’ ‘N:,

6n0t7 ‘N?

‘and’ ‘&&

60r’ ‘||?

[ [

‘div’ ‘idivide’
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11 Platform-independent Component Library

11.1 Introduction

Subclauses 11.2 and 11.3 define a platform-independent library of reusable blocks for component interaction and
behavior, respectively. Subclause 0 defines value types with units used in Subclause 11.2.2. Subclause 11.5 defines
a simulation platform extension used in Subclause 11.3.

11.2 Component interaction

11.2.1 Signal flow

SYSPHS11-11: Electrical component behavior library missing units

This subclause defines elements for signal flow. They can be used as (generalizations of) system component blocks
or port types. 11.34

«interfaceBlock» «interfaceBlock»
RealSignalElement IntegerSignalElement
signal flows signal flows
inout rSig : Real inout iSig : Integer
[ ] [ ]
«interfaceBlock» «interfaceBlock» «interfaceBlock» «interfaceBlock»
ReallnSignalElement RealOutSignalElement IntegerinSignalElement IntegerOutSignalElement
signal flows signal flows signal flows signal flows

in rSig : Real {redefines rSig} out rSig : Real {redefines rSig} in iSig : Integer {redefines iSig} out iSig : Integer {redefines iSig}

«interfaceBlock»
BooleanSignalElement

signal flows
inout bSig : Boolean

T

«interfaceBlock» «interfaceBlock»
BooleaninSignalElement BooleanOutSignalElement
signal flows signal flows
in bSig : Boolean {redefines bSig} out bSig : Boolean {redefines bSig}

Figure 30: Elements for signal flow

11.2.2 Physical interaction

This subclause defines elements for physical interaction (see Subclause 0 for and associated value types and units).
Conserved quantity kinds are characteristics of physical substances that are not created or destroyed when
exchanged between components. For example, charge is a characteristic of elementary physical particles that might
cross the boundaries of an object. Conserved quantity kinds are modeled as blocks directly specializing the block
ConservedQuantityKind, which specializes SysML QuantityKind, as shown in Figure 31. These can be conveyed
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by item flows and the type of item properties. Specializations of each conserved quantity kind (with names prefixed

by “Flowing”) are only used to type flow properties. They provide two PhSVariables describing the flows, one
conserved (flow rate) and one non-conserved (potential to flow). For example, the flow rate of charge (current)
must add to zero (be conserved) between components, while the potential to flow (voltage) must be the same (see
Subclause 7.2.2). These variables only apply to conserved quantity kinds as they cross the boundary of components

via flow properties, because they are defined with respect to the boundary (rate of crossing it or potential to cross it).

The flow properties can be on blocks used as (generalizations of) part or port types, including interface blocks as
shown at the bottom of Figure 31.

«block»

SysML::QuantityKind

i

«block»
ConservedQuantityKind

T
[ [ [ l |

«block» «block» «block» «block» «block»
LinearMomentum AngularMomentum Charge Volume Entropy

T i T i T

«block» «block» «block» «block» «block»
FlowingLMom FlowingAMom FlowingCharge FlowingVolume FlowingEntropy

phs variables
{isConsened} sFR : EntropyFlowRate
t: Temperature

phs variables
{isConsered} f: Force
IV : Velocity

phs variables
{isConsened} trq: Torque
aV : AngularVelocity

phs variables
{isConsenved} i: Current
v : Voltage

phs variables
{isConsened} q : VolumeFlowRate
p: Pressure

«interfaceBlock» «interfaceBlock» «interfaceBlock» «interfaceBlock» «interfaceBlock»

LMomFlowElement

AMomFlowElement

ChargeFlowElement

VolumeFlowElement

EntropyFlowElement

physical interactions
inout IMomF: FlowingLMom

physical interactions
inout aMomF: FlowingAMom

physical interactions
inout cF: FlowingCharge

physical interactions
inout vF: FlowingVolume

physical interactions
inout sF: FlowingEntropy

Figure 31: Elements for physical interaction
Constraints
(1]
(2]
(3]

Blocks (indirectly) specializing ConservedQuantityKind that type flow properties must have one conserved
and one non-conserved PhSVariable.

Flow properties typed by blocks (indirectly) specializing ConservedQuantityKind must have direction inout
and multiplicity 1.

Flow properties typed by blocks (indirectly) specializing ConservedQuantityKind that are connected and
matching must have the same type and multiplicity.

11.3 Component behavior

11.3.1 Introduction

This subclause defines SysML blocks corresponding to reusable components in the libraries of both Modelica and
Simulink or its extensions. The semantics of these blocks are given by the corresponding elements in the Modelica
libraries (which is the same semantics as in the libraries of Simulink or its extensions). The base classes and
properties (including ports) of component blocks in this subclause have stereotypes from the simulation platform
profile applied (see Subclause 11.5) to specify which simulation library elements correspond to them. For brevity,
component blocks are described in tables, with each row defining one block.

SYSPHS11-11: Electrical component behavior library missing units
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The blocks in Subclauses 11.3.2 and 11.3.3 are for signal flow modeling. The columns of the tables are:

o  Component Block: Name of the component block defined by the row.
o Simulink Block: Value of the name property of the SimulinkBlock stereotype applied to the base class
of the block defined by the row.
o Modelica Block: Value of the name property of the ModelicaBlock stereotype applied to the base class
of the block defined by the row is produced from this column by prepending “Modelica.Blocks.”

o  Component Ports (Inputs and Outputs): Each line in each row of these columns gives the name of a
component block port (these correspond to Simulink and Modelica ports and components, see Subclauses
10.7.5 and 10.7.4).

e  PhSConstants: Each line in each row of this column gives the name of a property of the block defined by
the row, corresponding to the same line in the two columns below.

o Simulink and Modelica Parameters: Value of the name properties of SimulinkParameter and
ModelicaParameter stereotypes, respectively, applied to the corresponding property on the same line in
the PhSConstants column (the parameter stereotypes are specialized PhSConstants, see Subclause
11.5). Lines that have no corresponding property on the same line in the PhSConstants column, if any,
give other parameters needed to obtain the same behavior in Simulink and Modelica, with the value of
the parameter preceded by an equals sign.

e Platform Behavior: Tells whether the behaviors of the Simulink and Modelica library elements are
supposed to yield the same value or not, when this can be determined from the platform library
specifications. Values are considered the same when they are equal or the numerical difference is small.

Simulation platform data specified in the Component Ports (Input and Output), PhSConstants, and platform
Parameters columns are scalar, unless marked with a V (vector) or an M (matrix). Component input ports for scalars
are typed by RealSignallnElement, IntegerSignallnElement, or BooleanSignallnElement, while component output
ports for scalars are typed by RealSignalOutElement, IntegerSignalOutElement, or BooleanSignalOutElement (see
Subclause 11.2.1). Component input ports for vectors are typed by specializations of RealVectorSignallnElement,
while component output ports for vectors are typed by specializations of Real VectorSignalOutElement (see
Subclause 11.5.3). Component PhSConstants (SimulinkParameters and ModelicaParameters) for vectors and
matrices have MultidimensionalElement applied, with dimension * and *,*, respectively (see Subclause 11.5.2.4).
Models using component library blocks that have vector and matrix properties should specify initial values using
instance specifications, with slots satisfying the constraints specified in Subclause 11.5.2.4.

The blocks in Subclause 11.3.4 are for electrical . The columns of the table are explained in that
subclause.
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11.3.2 Real-valued components

11.3.2.1 Introduction

Simulation platform data specified in the Component ports (Inputs and Output), PhSConstants, and platform Parameters columns in this subclause are
Real, unless otherwise indicated.

11.3.2.2 Continuous components

Component Simulink . Component Port | Component Port Simulink Modelica | Platform
BlI())ck Block Modelica Block (Il)nputs) (gutput) PhSConstants Parameters Parameters| Behavior
Integrator Integrator Continuous.Integrator u y init Initial Condition y_start Same
Derivative Derivative Continuous.Derivative u y Different
StateSpace StateSpace Continuous.StateSpace u (V) v (V) A (M) A (M) A (M) Same
B (M) B (M) B (M)
CM) C M) CM)
D (M) D (M) D (M)
init (V) X0 (V) x_start (V)
Transfer TransferFecn  |Continuous. TransferFunction ju y num (V) Numerator (V) b (V)
Function denom (V) Denominator (V) |a (V)
FixedDelay  |Transport Nonlinear.FixedDelay u y delay DelayTime delayTime |Different
Delay InitialOutput=0
VariableDelay (Variable Nonlinear.VariableDelay u y delayMax MaximumDelay delayMax |Different
Transport delayTime InitialOutput=0
Delay VariableDelayType
=Variable time delay|
ZeroDelay=on
11.3.2.3 Discrete components
Component Simulink . Component Port| Component Port Simulink Modelica | Platform
Bllt))ck Block Modelica Block (I;nputs) (Oputputs) PhSConstants Parameters Parameters | Behavior
StateSpace DiscreteState [Discrete.StateSpace u (V) v (V) A (M) A (M) A (M) Same
Space B (M) B (M) B (M)
Cc M) C (M) C (M)
D (M) D (M) D (M)
TransferFunction|Discrete Discrete. TransferFunction [u y numerator (V) Numerator (V) |b (V) Same
TransferFcn denominator (V) |Denominator (V) |a (V)
UnitDelay UnitDelay  |Discrete.UnitDelay u y initialCondition  [InitialCondition |y start Same
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11.3.2.4 Non-linear components

Component Simulink . Component Port| Component . . Modelica Platform
Block Block Modelica Block (Inputs) Port (Outputs) PhSConstants | Simulink Parameters Parameters | Behavior
Saturation Saturate Nonlinear.Limiter u v upper UpperLimit uMax Same (min
lower LowerLimit uMin AND max
mandatory)
Dynamic Reference Nonlinear.VariableLimiter (limitl y SourceBlock= Same
Saturation u simulink/Discontinuities
limit2 /Saturation Dynamic
SourceType=Saturation
Dynamic
DeadZone DeadZone Nonlinear.DeadZone u y lower LowerValue uMin Same
upper UpperValue uMax
RateLimiter |RateLimiter [Nonlinear.SlewRateLimiter [u y rising RisingSlewLimit Rising Different
falling FallingSlewLimit Falling
11.3.2.5 Mathematical components
Component | Simulink Modelica |Component Port| Component Port PhSConstants Simulink Modelica Platform
Block Block Block (Inputs) (Outputs) Parameters | Parameters | Behavior
Gain Gain Math.Gain u y gain Gain k Same
Product Product Math.Product [ul y Inputs=** Same
u2
Division Product Math.Division [ul v Inputs=*/ Same
u2
Addition Sum Math.Add ul v Inputs=++ Same
u2
Subtraction  [Sum Math.Add ul v Inputs=+- Same
u2
Abs Abs Math.Abs u y Same
Exp Math Math.Exp u y Operator=exp Same
Log Math Math.Log u y Operator=log Same
Logl0 Math Math.Logl0 |u y Operator=log10 Same
Sign Signum Math.Sign u y Same
Sqrt Sqrt Math.Sqrt u y Same
Sin Trigonometry [Math.Sin u y Operator=sin Same
Cos Trigonometry [Math.Cos u y Operator=cos Same
Tan Trigonometry Math.Tan u y Operator=tan Same
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Asin Trigonometry |Math.Asin u y Operator=asin Same
Acos Trigonometry [Math.Acos u y Operator=acos Same
Atan Trigonometry [Math.Atan u y Operator=atan Same
Atan2 Trigonometry [Math.Atan2  [ul y Operator=atan2 Same
u2
Sinh Trigonometry [Math.Sinh u y Operator=sinh Same
Cosh Trigonometry [Math.Cosh u y Operator=cosh Same
Tanh Trigonometry |Math.Tanh u y Operator=tanh Same
11.3.2.6 Sources and sinks
Component | Simulink . Component Port| Component Port Simulink Modelica Platform
BlI())ck Block Modelica Block (II)nputs) (?)utput) PhSConstants Parameters | Parameters | Behavior
Constant Constant Sources.Constant y k Value k Same
SineWave Sin Sources.Sine v amplitude Amplitude amplitude Same
offset Bias offset
frequency Frequency freqHz
phase Phase phase
Clock Clock Sources.Clock y Same
Pulse DiscretePulse [Sources.Pulse y amplitude Amplitude amplitude Same
Generator period Period period
width PulseWidth  |width
delay PhaseDelay  |startTime
Step Step Sources.Step y startTime Time startTime Same
after After height
Before=0
RealScope Scope Interaction.Show.RealValue numberPort
BooleanScope [Scope Interaction.Show.BooleanValue |activePort

11.3.2.7 Routing components

Multiplicities not equal to 1 for flow properties stereotyped by PhSVariable (signal flows) on Component Ports (Inputs and Outputs) are shown between
square brackets. These flow properties have MultidimensionalElement applied, with dimension equal to the multiplicity of the flow property (see

Subclause 11.5.2.4). Inputs with multiplicities of 2, 3, 4, 5, 6 are typed by RealVectorSignal2InElement, Real VectorSignal3InElement,
RealVectorSignal4InElement, Real VectorSignal5InElement, RealVectorSignal6InElement, respectively. Outputs with multiplicities of 2, 3,4, 5, 6 are

typed by RealVectorSignal2OutElement, Real VectorSignal3OutElement, Real VectorSignal4OutElement, Real VectorSignal5OutElement,
RealVectorSignal60OutElement, respectively.
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Component | Simulink . Component Port| Component Port Simulink Modelica | Platform
BlI())ck Block Modelica Block (Il)nputs) (gutput) PhSConstants Parameters |Parameters| Behavior
Mux2 Mux Routing.Multiplex2 ul y [2] Inputs=2 Same
u2
Mux3 Mux Routing. Multiplex3 ul y [3] Inputs=3 Same
u2
u3
Mux4 Mux Routing.Multiplex4 ul y [4] Inputs=4 Same
u2
u3
u4
Mux5 Mux Routing. Multiplex5 ul v [5] Inputs=5 Same
u2
u3
ud
us
Mux6 Mux Routing.Multiplex6 ul y [6] Inputs=6 Same
u2
u3
u4
us
u6
Demux2 Demux Routing.DeMultiplex2 [u [2] yl Outputs=2 Same
y2
Demux3 Demux Routing.DeMultiplex3 |u [3] yl Outputs=3 Same
y2
y3
Demux4 Demux Routing.DeMultiplex4 |u [4] vl Outputs=4 Same
y2
y3
v4
Demux5 Demux Routing.DeMultiplex5 [u [5] yl Outputs=5 Same
y2
y3
y4
yS
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Demux6 Demux Routing. DeMultiplex6 |u [6] yl Outputs=6 Same
y2
y3
v4
yS
y6
Switch ul y Criteria = u2~=0 Same
u2 Threshold=0
u3

11.3.3 Logical components

Simulation platform data specified in the Component ports (Inputs and Output) and platform Parameters columns in this subclause are Boolean, unless

marked with an R (real).
Component Simulink . Component Port| Component Port Simulink Modelica |Platform
BlI())ck Block Modelica Block (I;nputs) (gutput) PhSConstants Parameters |Parameters|Behavior

AND Logic Logical. And ul y Operator=AND Same
u2 Inputs=2

OR Logic Logical.Or ul y Operator=OR Same
u2 Inputs=2

NAND Logic Logical.Nand ul y Operator=NAND Same
u2 Inputs=2

NOR Logic Logical.Nor ul y Operator=NOR Same
u2 Inputs=2

XOR Logic Logical. Xor ul y Operator=XOR Same
u2 Inputs=2

NOT Logic Logical.Not u y Operator=NOT Same

Inputs=1

Less RelationalOperator  |Logical.Less ul (R) y Operator = < Same
u2 (R)

LessEqual RelationalOperator  |Logical.LessEqual ul (R) y Operator = <= Same
u2 (R)

Greater RelationalOperator  |Logical.Greater ul (R) y Operator = > Same
u2 (R)

GreaterEqual RelationalOperator  |Logical.GreaterEqual ul (R) y Operator = >= Same
u2 (R)

LessThreshold  |Compare To Constant|Logical.LessThreshold  |u (R) y threshold (R) |Const threshold [Same

Relop =<
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LessEqual Compare To Constant|Logical.LessEqual u (R) y threshold (R) |Const threshold [Same

Threshold Threshold relop = <=

GreaterThreshold |(Compare To Constant|Logical.GreaterThreshold [u (R) y threshold (R) |const threshold  [Same
relop = >

GreaterEqual Compare To Constant|Logical.GreaterEqual u (R) y threshold (R) |const threshold |Same

Threshold Threshold relop =>=

11.3.4 Electrical components

SYSPHS11-11: Electrical component behavior library missing units

The columns are
the same as in Subclauses 11.3.2 and 11.3.3, except

e  Values of the name property of the SimulinkBlock and ModelicaBlock stereotypes applied to the base class of the block defined by each row
are produced from these columns by prepending “foundation.electrical.” for SimulinkBlocks and “Modelica.Electrical. Analog.” for
ModelicaBlocks. 10.1

e  There is only one column for component ports, because they are bidirectional, typed by FlowingChargeElement (see Subclause 11.2.2)

. Each line in the Component Ports
column a port in the Simulink Ports and Modelica Ports columns give the
stereotyped by SimulinkPort and/or ModelicaPort

(SimulinkPort is used for Simscape ports in this table). value of the name property of the
respective SimulinkPort and/or ModelicaPort stereotype.

Component R . Component | Simulink | Modelica Simulink Modelica | Platform
Bll())ck Simulink Block Modelica Block P(l))rts Ports Ports PhSConstants Parameters | Parameters | Behavior
Ground elements.reference |Basic.Ground p vV p
Capacitor elements.capacitor |Basic.Capacitor P p P c c C Same |
n n n =0
=0
Diode elements.pwl_diode|ldeal.IdealDiode P p P ron Ron Ron
n n n goff’ Goff Goff
vforward VI Vknee
Ideal elements.ideal Ideal.Ideal Transformer |pl pl pl n n n Same
Transformer | transformer nl nl nl
p2 p2 p2
n2 n2 n2
Inductor elements.inductor |Basic.Inductor p P p 1 L Same
n n n =0
g=0
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Infinite elements.infinite  (Ideal.Idle p p p Same
Resistance resistance n n n
OpAmp elements.op amp (Ideal.IdealOpAmp3Pin |p p in_p Same
n n in_n
out out out
Resistor elements.resistor  |Basic.Resistor P p P r R R Same
n n n
Variable elements.variable |Basic.VariableResistor |p p P Same
Resistor |_resistor n n n
r R R
CurrentSensor |sensors.current Sensors.CurrentSensor  |p p p Same
n n n
i [ i
VoltageSensor [sensors.voltage Sensors.VoltageSensor  |p p p Same
n n n
\4 \% \4
SignalCurrent |[sources.controlled |Sources.SignalCurrent  |p p P Same
current n n n
i iT i
SignalVoltage [sources.controlled [Sources.SignalVoltage |p p P Same
voltage n n n
\4 vT \4
DCCurrent  [sources.dc_current [Sources.ConstantCurrent |p p p i i0 1 Same
n n n
DCVoltage [sources.dc_voltage [Sources.ConstantVoltage |p p p \é v0 \% Same
n n n
ACCurrent  [sources.ac_current |Sources.SineCurrent p p p amp amp 1 Same
n n n phase shift phase
freq frequency freqHz
ACVoltage |sources.ac_voltage |Sources.SineVoltage p p p amp \% Same
n n n shift phase
frequency freqHz
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Figure 32
Figure 30

Figure 33
Figure 34

«interfaceBlock»
CurrentSignalElement

inout i : Current

signal flows

Z}

«interfaceBlock»

VoltageSignalElement

signal flows
inout v : Voltage

Z}

«interfaceBlock»
CurrentSignallnElement

«interfaceBlock»

CurrentSignalOutElement

VoltagelnSignalElement

«interfaceBlock»

«interfaceBlock»

VoltageOutSignalElement

signal flows
ini : Current {redefines i}

signal flows

out i : Current {redefines i}

in v : Voltage {redefines v}

signal flows

signal flows

out v : Voltage {redefines v}

«interfaceBlock»

ResistanceSignalElement

signal flows

inout r : Resistance

T

«interfaceBlock»

ResistancelnSignalElement

ResistanceOutSignalElement

«interfaceBlock»

signal flows

in r : Resistance {redefines r}

out r : Resistance {redefines r}

signal flows

Figure 32

«valueType»

SysML::Real

T

«valueType» «valueType» «valueType» «valueType» «valueType»
{unit=ohm} {unit=farad} {unit=henry} {unit=siemens} {unit=hertz}
Resistance Capacitance Inductance Conductance Frequency
ohm : Unit farad : Unit henry : Unit siemens : Unit hertz : Unit
symbol="Q” symbol=“F" symbol="H" symbol="1/Q” symbol=1/s”
Figure 33

11.4 Value types with units

SYSPHS11-11: Electrical component behavior library missing units

This subclause defines value types with units for physical quantities. 11.34
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«valueType»

SysML:: Real

«valueType»

«valueType»

>I
>I

SysML::Real SysML:: Real
[ | [ |
«valueType» «valueType» «valueType» «valueType» «valueType» «valueType»
{unit=newton} {unit=metrePerSecond} {unit=newtonmetre} {unit=radianPerSecond} {unit=ampere} {unit=volt}
Force Velocity Torque AngularVelocity Current Voltage
newton : Unit metrePerSecond : Unit newtonmetre : Unit radianPerSecond : Unit ampere : Unit volt : Unit
symbol="N" symbol="m/s” symbol=“N-m” symbol=“rad/s” symbol="A" symbol="V"
«valueType» «valueType» «valueType»
SysML:: Real SysML:: Real SysML:: Real
[ | Zﬁ
«valueType» «valueType» «valueType» «valueType» «valueType»
{unit=cubicMetrePerSecond} {unit=pascal} {unit=wattPerKelvin} {unit=kelvin} {unit=second}
VolumeFlowRate Pressure EntropyFlowRate Temperature Time
cubicMetrePerSecond : Unit pascal : Unit wattPerKelvin : Unit kelvin : Unit second : Unit
symbol=‘m?/s” symbol="Pa” symbol="W/K” symbol="K” symbol="s”

Figure 34: Value types and units for physical

11.5 Platform-dependent extension

11.5.1 Introduction

This subclause defines an extension of SysML used by that the platform-independent component library in
Subclause 11.3. In this subclause, the Simulink library is taken as including the libraries of its extensions,

for brevity.

11.5.2 Platform profile

This subclause defines stereotypes that Subclause 11.3 applies to the base classes and properties (including
ports) of its blocks, to specify which library elements of Modelica and Simulink correspond to them.

«stereotype» «stereotype»
Block PhSConstant
[ | I |
«stereotype» «stereotype» «stereotype» «stereotype»
SimulinkBlock ModelicaBlock SimulinkParameter ModelicaParameter
name : String name : String name : String name : String
value: ValueSpecification [0..1] value: ValueSpecification [0..1]
«metaclass» «metaclass» «metaclass»
Port MultiplicityElement Slot
[ | [
«stereotype» «stereotype» «stereotype»
SimulinkPort ModelicaPort MultidimensionalElement
name : String name : String dimension: UnlimitedNatural [*] {ordered, non-unique}

Figure 35: Simulation platform stereotypes
11.5.2.1 ModelicaBlock

Package: SysPhSLibrary
isAbstract: No
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Generalization: Block

Attributes

e name: String Fully qualified name of the component in the Modelica library corresponding to
a platform-independent component block

Description

A class stereotyped by ModelicaBlock has an equivalent in the Modelica library. The value of the name
attribute gives the fully qualified name of the corresponding component in the Modelica library.

11.5.2.2 ModelicaParameter
Package: SysPhSLibrary
isAbstract: No

Generalization: PhSConstant

Attributes

e name: String Name of the parameter in the Modelica library corresponding
to a parameter of a platform-independent component block

e value: ValueSpecification [0..1] Value of the parameter in the Modelica library

Description

A property stereotyped by ModelicaParameter has an equivalent parameter of a Modelica library
component. The value of the name attribute is the name of the corresponding parameter, and the value
attribute gives the value of this parameter. If the value attribute is empty, the value of the parameter must be
given using initial values of the stereotyped property.

Constraints

[1] The stereotyped property must be owned by a class stereotyped by ModelicaBlock.
11.5.2.3 ModelicaPort

Package: SysPhSLibrary

isAbstract: No
Extended Metaclass: Port

Attributes

e name: String Name of the port in the Modelica library corresponding to a port of a platform-
independent component block
Description

A port stereotyped by ModelicaPort has an equivalent in the Modelica library. The value of the name
attribute gives the name of the corresponding port in the Modelica library.

Constraints

[1] The stereotyped port must be owned by a class stereotyped by ModelicaBlock.
11.5.2.4 MultidimensionalElement

Package: SysPhSLibrary

isAbstract: No
Extended Metaclass: MultiplicityElement, Slot

Attributes

e dimension: UnlimitedNatural [*] {ordered, non-unique} ~ Dimensions of the multiplicity element
or slot
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Description

The values of a slot stereotyped by MultidimensionalElement can be composed into an array with (possibly
multiple) dimensions specified by the applied stereotype. The values are composed by taking each number
in the dimension list of the applied stereotype from the last number to the second, and creating lists of that
length from the result of the next higher dimension. The last dimension number results in lists of values of
the multiplicity element or a slot, while the previous dimension number results in lists of those lists, and so
on, ending at the second dimension number.

Constraints

[1] A multiplicity element stereotyped by MultidimensionalElement must be ordered and non-unique.

[2] When this stereotype is applied to a multiplicity element, the dimensions must be either all unlimited
or all positive integers.

[3] When this stereotype is applied to a multiplicity element and the dimensions are all unlimited, the
lower bound of the multiplicity element must be 0, and the upper bound of the multiplicity element
must be unlimited.

[4] When this stereotype is applied to a multiplicity element and the dimensions are all be positive
integers, the lower bound and the upper bound of the multiplicity element must be equal to the
product of all the dimensions.

[5] When this stereotype is applied to a slot, the dimensions must all be positive integers and the number
of values of the slot must be equal to the product of all dimensions.

[6] A slot stereotyped by MultidimensionalElement must have its defining feature stereotyped by
MultidimensionalElement.

[7] The number of dimensions of a MultidimensionalElement applied to a slot must be the same as the
number of dimensions of the MultidimensionalElement applied to the defining feature of the slot.

[8] A slot must be stereotyped by MultidimensionalElement if and only if its defining feature is
stereotyped by MultidimensionalElement with dimensions that are all unlimited.

11.5.2.5 SimulinkBlock
Package: SysPhSLibrary
isAbstract: No
Generalization: Block

Attributes

e name: String BlockType in Simulink library corresponding to a platform-independent component
block

Description

A class stereotyped by SimulinkBlock has an equivalent in the libraries of Simulink or its extensions. The
value of the name attribute gives the name of the corresponding component in the libraries of Simulink or
its extensions.

11.5.2.6 SimulinkParameter
Package: SysPhSLibrary
isAbstract: No

Generalization: PhSConstant

Attributes
e name: String Name of the parameter in the Simulink library corresponding to a
parameter of a platform-independent component block
e value: ValueSpecification Value of the parameter in the Simulink library
[0..1]
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Description

A property stereotyped by SimulinkParameter has an equivalent parameter of a Simulink library
component. The value of the name attribute is the name of the corresponding parameter in the Simulink
library, and the ‘value’ attribute gives the value of this parameter. If the value attribute is empty, the value
of the parameter must be given using initial values of the stereotyped property.

Constraints

[1] The stereotyped property must be owned by a class stereotyped by SimulinkBlock.

11.5.2.7 SimulinkPort
Package: SysPhSLibrary
isAbstract: No

Extended Metaclass: Port

Attributes

e name: String Name of the port in the Simulink library corresponding to a port of a platform-
independent component block

Description

A port stereotyped by SimulinkPort has an equivalent in the Simulink library. The value of the name
attribute gives the name of the corresponding port in the Simulink library.

Constraints

[1] The stereotyped port must be owned by a class stereotyped by SimulinkBlock.
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11.5.3 Platform library

This subclause defines interface blocks used in Subclause 11.3.2 to specify vector signal flows (see
Subclause 11.3.1).

«interfaceBlock»
RealVectorSignalElement

signal flows
«multidimensionalElement» {dimension="} rSig : Real [1..*]

Ay

[

1

«interfaceBlock»
RealVectorSignallnElement

«interfaceBlock»
RealVectorSignalOutElement

«multidimensionalElement»{dimension=*} in rSig : Real [1..*] {redefines rSig}

signal flows

JAN

«multidimensionalElement»{dimension=*} out rSig : Real [1..*] {redefines rSig}

signal flows

N

«interfaceBlock»
RealVectorSignal2inElement

signal flows
«multidimensionalElement»{dimension=2} in rSig : Real [2] {redefines rSig}

«interfaceBlock»
RealVectorSignal2OutElement

signal flows
«multidimensionalElement»{dimension=2} out rSig : Real [2] {redefines rSig}

«interfaceBlock»
RealVectorSignal3inElement

«interfaceBlock»
RealVectorSignal30utElement

signal flows
«multidimensionalElement»{dimension=3} in rSig : Real [3] {redefines rSig}

signal flows
«multidimensionalElement»{dimension=3} out rSig : Real [3] {redefines rSig}

«interfaceBlock»
RealVectorSignal4inElement

«interfaceBlock»
RealVectorSignal4OutElement

signal flows
«multidimensionalElement»{dimension=4} in rSig : Real [4] {redefines rSig}

«interfaceBlock»
RealVectorSignal5InElement
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signal flows
«multidimensionalElement»{dimension=5} in rSig : Real [5] {redefines rSig}

«interfaceBlock»
RealVectorSignal6inElement

signal flows
«multidimensionalElement»{dimension=6} in rSig : Real [6] {redefines rSig}

signal flows
«multidimensionalElement»{dimension=4} out rSig : Real [4] {redefines rSig}

«interfaceBlock»
RealVectorSignal50utElement

signal flows
«multidimensionalElement»{dimension=5} out rSig : Real [5] {redefines rSig}

«interfaceBlock»
RealVectorSignal6OutElement

signal flows
«multidimensionalElement»{dimension=6} out rSig : Real [6] {redefines rSig}

Figure 36: Elements for vector signal flow

69




This page intentionally left blank.

SysML Extension for Physical Interaction and Signal Flow Simulation

70



A. Examples (non-normative)

A.1 Introduction

The following subannexes give example models for systems in various domains, using the simulation
profile in Clause 7, the expression language in Clause 8, and libraries in Clause 11:

SYSPHS11-2: Add example combining physical interaction and signal flow

Subannex A.2: Electric circuits (analog electrical interactions).

Subannex A.3: Signal processing (manipulation of continuously varying numeric signals).
Subannex A.4: Hydraulics (fluid interactions).

Subannex A.5: Humidification (physical control example modeled with signal flows and state
machines).

e Subannex A.6: Cruise Control System (control example modeled with physical interactions and

signal flows).

Each section describes the system being modeled, then diagrams for internal structure, component types,
properties, and constraints.

A.2 Electric Circuit

A.2.1 Introduction

This subannex gives a model of an electric circuit as an example of physical interaction (flow of electric
charge). It does not include any signal flows.

A.2.2 System being modeled

The electrical circuit has six components: ground, electrical source, inductor, capacitor, and two resistors,
see Figure 37.

Rc RI

¢ 1.

T

= G

Figure 37: Electric circuit example

A.2.3 Internal structure

Figure 38 shows the internal structure of a Circuit block. Part properties, typed by blocks defined in
Subannex A.2.4, represent components of the system. They are connected through ports, which represent
electrical pins, also defined in Subannex A.2.4. Item flows on connectors indicate that electricity (electric
charge) passes through the ports and flows and between the parts. The diagram connects a voltage source in
parallel with a resistor and capacitor in series, as well as a resistor and inductor in series.

SysML initial values specify property values for components used in internal block diagrams. Figure 38
shows initial values for resistance, capacitance, inductance, and source amplitude (properties defined in
Subannex A.2.4). An alternative for specifying initial values of part properties in the Circuit block is to
specialize it and redefine the part properties with default values for various configurations (see Subannex
A.5.9).
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ibd Circuit )

p

A
L]
s : Source

initial values
amp = 220.0{unit = volt}

"]
L

n

Charge

P
v

L]
rc : Resistor

p
Iy

initial values
r = 10.0{unit = ohm}

A

L]
ri : Resistor

v
n

Charge
p

A

initial values
r = 20.0{unit = ohm}

A

Lvf
c : Capacitor

v
n

Charge
p

A

initial values
¢ = 0.01{unit = farad}
7]

L]
i : Inductor

initial values
I = 0.1{unit = henry}
"1

v
n

v
n

Charge
p

Lif
g : Ground

Figure 38: Internal structure of the circuit example

A.2.4 Blocks and ports

Figure 39 shows block definitions for components of Circuit in Figure 38. Sources, inductors, conductors,
and resistors each have one positive and one negative pin for electric charge to pass through. Since they are
similar in this sense, a generalized TwwoPinElectricalComponent component is defined with positive and

negative pins, p and n, as ports. The ground has only one pin, which is positive. All ports are of type

ChargeFlowElement, from the physical interaction library (see Subclause 11.2.2). Each component has its
own behaviors, defined as constraints in A.2.6.

Alternatively, components could be
library
bdd Circuit Components )
«block» «porty p
Ground «interfaceBlock»
SysPhSLibrary::ChargeFlowElement
«port» p
. «blf)Ck” physical interactions
TwoPinElectricalComponent «port» n | inout cF : FlowingCharge
phs variables
iThru : Current
vDrop : Voltage
«block»
SysPhSLibrary::Charge
«block» «block» «block» «block» «block»
Resistor Capacitor Inductor Source SysPhSLibrary::FlowingCharge
phs constants phs constants phs constants phs constants . Phs variables
r : Resistance ¢ : Capacitance I': Inductance amp : Voltage {isConserved} i : Current
v : Voltage
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A.2.5 Properties (variables)

Physical interaction is the movement of physical substances between system components, modeled in terms
of conserved characteristics of the substances. In this example, electric charge is the conserved
characteristic of electrons moving through the circuit. Movement of substances is described by numeric
variables for flow rate and potential to flow of their conserved characteristics. In this example, movement
of charge is described by a current variable for flow rate and a voltage variable for potential to flow. The
flow rate variable is conserved (values on ends of the interaction sum to zero) and the potential variable is
not (values on ends of the interaction are the same). This is modeled in three parts:

e  Conserved physical characteristics are modeled as blocks directly specialized from
ConservedQuantityKind in the physical interaction library (see Subclause 11.2.2), Charge in this
example.

e Flow variables are modeled as properties with PhSVariable applied on specializations of
conserved quantity kind blocks. In this example, the flow rate and potential PhSVariables are i
and v on FlowingCharge (i marked as isConserved), respectively, typed by Current and Voltage,
respectively, all from the physical interaction library.

¢ Flow in and out of components is modeled by ports typed by interface blocks that have flow
properties typed by flowing conserved quantity kinds. In this example, ports are typed by
ChargeFlowElement from the physical interaction library, which has a flow property cF typed by
FlowingCharge, as shown in Figure 39.

Behavior of electrical components in this example is described by the amount of charge going in one pin
and out the other (through the component) per unit time, and the difference in potentials between their
positive and negative pins (across the component), given by the two properties iThru and vDrop on
TwoPinElectrical Component, respectively, shown in Figure 39. These two properties are typed by Current
and Voltage, respectively, from the physical interaction library (see Subclause 11.2.2), and have the
PhSVariable stereotype applied, specifying that their values might change during simulation.

The resistor, capacitor, inductor, and source have properties r, ¢, /, and amp, respectively, typed by
Resistance, Capacitance, Inductance, and Voltage, respectively, and all with the PhSConstant stereotype
applied, specifying that their values do not change during each simulation run.

A.2.6 Constraints (equations)

Equations define mathematical relationships between the values of numeric variables. Equations in SysML,
are constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this
example, a constraint block BinaryElectricalComponentConstraint defines parameters and constraints
common to resistors, inductors, capacitors, and sources, as shown in Figure 40. These specify that the
voltage v across the component is equal to the difference between the voltage at the positive and negative
pins. The current i through the component is equal to the current going through the positive pin. The sum of
the current going through the two pins adds up to zero (one is the negative of the other), because the
components do not create, destroy, or store charge. The constraints for the resistor, capacitor, and inductor
specify the voltage/current relationship with resistance, capacitance, and inductance, respectively. The
source constraint defines the circuit’s electrical source. The ground constraint specifies that the voltage at
the ground pin is zero. The source constraint defines the voltage across it as a sine wave with the parameter
amp as its amplitude.
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bdd Circuit Constraints)

«constraint»
BinaryElectricalComponentConstraint

constraints «constraint»
O0=posl+negl
§v=gosv-neg\}/} GroundConstraint
{i=posl} constraints

parameters {pOSV=0}
i:Real parameters
negl: Real posV: Real
posl: Real
v: Real
negV : Real
posV: Real

1

«constraint» «constraint» «constraint» «constraint»
ResistorConstraint CapacitorConstraint InductorConstraint SourceConstraint
constraints constraints constraints constraints
{ri=v} {c*der(v)=i} {I*der(i)=v} {v=amp*sin(2*3.14*time)}
parameters parameters parameters parameters
r: Resistance ¢ : Capacitance | Inductance amp : Voltage

Figure 40: Circuit constraint blocks

A.2.7 Constraint properties and bindings

Equations in constraint blocks are applied to components using binding connectors in component
parametric diagrams. Component parametric diagrams show properties typed by constraint blocks
(constraint properties), as well as component and port simulation variables and constants. Binding
connectors link constraint parameters to simulation variables and constants, indicating their values must be
the same. Figure 41 through Figure 45 show parametric diagrams for resistors, capacitors, inductors,
sources, and grounds, respectively.

par Resistor

( «constraint» )
rC : ResistorConstraint
constraints
{ri=v}
P n
parameters
cF.i: Current «equal :| pos| negl «equab» cF.i: Current
: equal
cF.v: Voltage «equal» :|posV negVE «equal» cF.v: Voltage
i \ r
[ ] [ ] [1 )
«equal» «equal» «equal»
| iThru : Current | | vDrop : Voltage | | r: Resistance

Figure 41: Parametric diagram applying the resistor constraint
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par Capacitor

( «constraint» )
cC : CapacitorConstraint
constraints
0 {c*der(v)=i}
parameters n
|
cF.i: Current «cqua» :I posl| negl «equal» cF.i: Current
: equal
cF.v: Voltage «equal» :lpoSV negV[ ] «equal» cF.v: Voltage
i v c
L1 [1 [1
«equal» «equal» «equal»
| iThru : Current | | vDrop : Voltage | ¢ : Capacitance
Figure 42: Parametric diagram applying the capacitor constraint
parlnductor)
( «constraint» ]
IC : InductorConstraint
constraints
o {I*der(i)=v}
parameters n
I
cF.i: Current «equad :l posl| negl «equal» cF.i: Current
: equal
cF.v: Voltage «equal» :l posV ”egVE «equal» cF.v: Voltage
i v |
[ [1 [1
«equal» «equal» «equal»
| iThru : Current | | vDrop : Voltage | | | Inductance
Figure 43: Parametric diagram applying the inductor constraint
par Source
( «constraint» )
sC : SourceConstraint
constraints
b {v=amp*sin(2*3.14*time)}
parameters n
. equal ]
cF.i: Current || «equab :| posl negl «equal» cF.i: Current
|
- I
cF.v: Voltage «equab» []posv negV[ | «equal» cF.v: Voltage
i \ amp
[ [1 [1 )
«equal» «equal» «equal»
| iThru : Current | | vDrop : Voltage | | amp : Voltage

Figure 44: Parametric diagram applying the source constraint
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par Ground J

«constraint»
gC : GroundConstraint
constraints

{posV=0}

p parameters

|
cF.v: Voltage «equab | ]posv

Figure 45: Parametric diagram applying the ground constraint

A.3 Signal Processor

A.3.1 Introduction

This subannex gives a model of processing a sinusoidal variable as an example of signal flow. It does not
include any physical interactions.

A.3.2 System being modeled

The signal processor and its testbed have a wave generator, an amplifier, high-pass and low-pass frequency

filters, a mixer, and a signal sink, see Figure 46.
:Io(g)—» Sink

Figure 46: Signal processor example

Source

||

A.3.3 Internal structure

Figure 47 and Figure 48 show the internal structure of blocks TestBed and SignalProcessor, respectively.
Part properties, typed by blocks defined in Subannex A.3.4, represent the components of the system. They
are connected through ports, also defined in Subannex A.3.4, which represent signal outputs and inputs,
also defined in Subannex A.3.4. Signals pass through ports in the direction shown by the arrows. Item
flows on connectors indicate that the signals are real numbers.

Figure 47 connects a signal source to a signal processor, which it connects to a signal sink that displays the
output. Figure 48 connects the signal processor input to an amplifier, the output of the amplifier to a high-
pass filter in parallel with a low-pass filter, the outputs of the filters to a mixer, and the output of the mixer
to the signal processor output. SysML initial values specify property values for components used in internal
block diagrams. Figure 47 shows an initial value for source amplitude amp, while Figure 48 shows initial
values for amplifier signal gain g and filtering properties xi and alpha (defined in Subannex A.3.4).
Simulink without Simscape does not have elements corresponding to initial values on parts below the top
level system (see Subclause 10.10.4). Subannex A.5.9 shows SysML models that have the same effect as
initial values and have corresponding elements in Simulink.
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ibd TestBed |

inputSignal : SignalSource

initial values

amp = 3.0

Real
u

<3

dSP : SignalProcessor

y
Real

14—

u

U]
scopeSignalOutput : SignalSink

Figure 47: Internal structure of test bed from signal source to sink

ibd SignalProcessor )

u | hPF : HighPassFilter

initial values

) y
alpha =0.01 E> Real
xi =0.0 1
a : Amplifier 4

initial values

g=20

IPF : LowPassFilter

initial values

u alpha = 3.0
xi =0.0 I?

Figure 48: Internal structure of the signal processor

A.3.4 Blocks and ports

Figure 49-Figure 50 show block definitions for components of TestBed and SignalProcessor in Figure 47
and Figure 48, respectively. The output for SignalSource is named y and is typed by
RealSignalOutElement, from the signal flow library (see Subclause 11.2.1). The input for SignalSink is
named u and is typed by RealSignallnElement, also from the library. The signal processor has an input and
output, transforming the signal from the source and passing it to the sink.

In Figure 50, amplifiers, low-pass filters, and high-pass filters, each have an input and an output. Since they
are similar in this sense, a generalized TwoPinSignalComponent component has an input # and an output y.
Mixers have inputs #/ and u2, and an output y. Each kind of component has its own behaviors, defined as
constraints in Subannex A.3.6. Alternatively, some of these components could be specified using the
source and sink components library (see Subclause 11.3.2.7).
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bdd TestBed Components)
«block» «interfaceBlock»
SignalSink SysPhSLibrary::RealSignallnElement
«port» u
phs variables > signal flons
scope: Real in rSig : Real{redefinesrSig}
«port»u
«block»
SignalProcessor
«porty»
«block» \ P y
SignalSource «porty» y «interfaceBlock»
SysPhSLibrary::RealSignalOutElement
phs constants
amp : Real signal flows
out rSig : Real{redefines rSig}

Figure 49: Total system (source to sink) blocks, ports, & component properties

bdd Signal Processor Components )

«interfaceBlock»
SysPhSLibrary::RealSignallnElement

signal flons
out rSig : Real{redefines rSig}
«port» u «port» ut «port» u2
«block» «block»
TwoPinSignalComponent Mixer
«port» y «port» y

«interfaceBlock»
SysPhSLibrary::RealSignalOutElement

signal flows
out rSig : Real{redefines rSig}

«block» «block» «block»
HighPassFilter Amplifier LowPassFilter
phs constants phs constants phs constants
alpha : Time g: Real alpha : Time
phs variables phs variables
xi : Real xi : Real

Figure 50: Signal processing system blocks, ports, & component properties

A.3.5 Properties (variables)

Signal flow is the movement of numbers between system components. These numbers might reflect
physical quantities or not. In this example, they do not (see Subannex A.5 for an example where they do).
Signals flowing in and out of components are modeled by ports typed by interface blocks that have flow
properties typed by numbers. In this example, ports are typed by RealSignalOutElement and
RealSignallnElement from the signal flow library (see Subclause 11.2.1), which both have a flow property
rSig typed by Real, from SysML, as shown in Figure 49. This value type has no unit, reflecting that the
signals are not measurements of physical quantities and do not follow conservation laws.
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The amplifier, filters (high-pass and low-pass), signal source, and signal sink have properties g, alpha and
xi, amp, and scope, respectively. The amp, alpha and g properties have the PhSConstant stereotype applied,
specifying that their values are constant during each simulation run. The xi and scope properties have the
PhSVariable stereotype applied, specifying that their values might vary during simulation.

A.3.6 Constraints (equations)

Equations define mathematical relationships between the values of numeric variables. Equations in SysML,
are constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this
example, a constraint block BinarySignalComponentConstraint defines the parameters for one input (ip)
and one output (op), common to amplifiers, low-pass filters, and high-pass filters, as shown in Figure 51.
The amplifier, low-pass filer, and high-pass filter constraints show the input-output relationship of these
components as the signal passes through them. The amplifier changes the signal strength by a factor gain,
the low-pass filter eliminates the high-frequency components of the incoming signal, and the high-pass
filter eliminates the low-frequency components of the signal. The mixer constraint specifies the relationship
between its one output and the two inputs that come from the low-pass and high-pass filters. The constraint
defines the output to be the average of the inputs. The source constraint specifies a sine wave signal with
the parameter amp as its amplitude. The sink constraint displays (scopes) the output signal from the signal
processor.

bdd Signal Processor Constraints )
«constraint»
BinarySignalComponentConstraint
parameters
ip : Real
op : Real
I | |
«constraint» «constraint» «constraint» «constraint»
Amplifier Constraint LowPassFilterConstraint HighPassFilterConstraint MixerConstraint
constraints constraints constraints constraints
{op=ip*gain} {der(x)=(1/a)*ip-(1/a)*x} {der(x)=(1/a)*ip-(1/a)*x} {op=(ip1+ip2)/2}
parameters {op=4} {op=ip-% parameters
gain : Real parameters parameters ip1 : Real
X : Real a: Real ip2 : Real
a: Real X : Real op : Real
«constraint» «constraint»
SignalSourceConstraint SignalSinkConstraint
constraints constraints
{output=amp*sin(2*3.14*time)+3*sin(3. 14*time)+ 10*sin(2*time)} {scope=input}
parameters parameters
amp : Real scope : Real
output : Real input : Real

Figure 51: Signal processing system constraint blocks

A.3.7 Constraint properties and bindings

Equations in constraint blocks are applied to components using binding connectors in component
parametric diagrams. Component parametric diagrams show properties typed by constraint blocks
(constraint properties), as well as component and port simulation variables and constants. Binding
connectors link constraint parameters to simulation variables and constants, indicating their values must be
the same. Figure 52 through Figure 57 show parametric diagrams for the source, amplifier, high-pass filer,
low-pass filter, mixer, and sink, respectively.
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par SignalSource J

«constraint»
sourceC : SignalSourceConstraint

constraints
{output=amp*sin(2*3.14*time)+3*sin(3.14*time)+10*sin(2*time)}

«equal»
! [ Jamp

rSig : Real «equal» :| output
\

Figure 52: Parametric diagram applying signal source constraint

par Amplifier J

«constraint»
aC : AmplifierConstraint

. constraints
u {op=ip*gain}

y
parameters

rSig : Real «equal» :| ip gain op E «equal» rSig : Real

J

«equal»

g: Real

Figure 53: Parametric diagram applying the amplifier constraint

par HighPassFiIter)

«constraint»
hPFC : HighPassFilterConstraint
constraints
{der(x)=1/a*ip-1/a*x}
u {op=ip-x}

y

parameters

— «equal» .
rSig : Real q :l ip op I: «equab rSig : Real
X a
T[] [1 )

«equal» «equal»

| xi : Real | | alpha : Time |

Figure 54: Parametric diagram applying the high-pass filter constraint

par LowPassFilter J p

«constraint»
IPFC : LowPassFilterConstraint

constraints
{der(x)=1/a*ip-1/a*x}

u {op=x} .
parameters
iy «equaly .
rSig : Real q :‘ ip op I: «equal» 59 Real
X a
[ W )
«equal» «equal»
| Xi : Real | | alpha : Time |

Figure 55: Parametric diagram applying the low-pass filter constraint
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«constraint»

par Mixer J
mC : MixerConstraint

ul constraints

{op=(ip1+op2)/2}

rSig : Real «equaly parameters | y
—lq—j ip1 op [ ] «equa rSig : Real

| «e
qual» .
u2 :| ip2

rSig : Real

Figure 56: Parametric diagram applying the mixer constraint

par SignalSink

«constraint»
sinkC : SignalSinkConstraint

constraints
{scope=input}

- parameters
rSig : Real «equal :‘ input
«equal»
scoe

u

Figure 57: Parametric diagram applying the signal sink constraint

A.4 Hydraulics

A.4.1 Introduction

This subannex gives a model of a simple hydraulic system as an example of physical interaction (fluid
flow). It does not include any signal flows.

A.4.2 System being modeled

The hydraulic system has three components: two fluid reservoir tanks and a pipe for connecting these tanks,
see Figure 58.

Fluid Tank 1 Fluid Tank 2

Connecting Pipe

Figure 58: Hydraulics example

A.4.3 Internal structure

Figure 59 shows the internal structure of a ConnectedTanks block. Part properties, typed by blocks defined
in Subannex A.4.4, represent components in this system. They are connected to each other through ports,
which represent openings in the tanks and pipe, also defined in Subannex A.4.4. Item flows on connectors
indicate fluid passes through the ports and between the parts. The diagram connects a tank to each end of a
pipe.

SysML initial values specify property values for components used in internal block diagrams. Figure 59
shows initial values for fluid density, gravity, tank surface area, pipe radius, pipe length, and dynamic
viscosity of the fluid (properties defined in Subannex A.4.4). An alternative for specifying initial values of
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part properties in the ConnectedTanks is to specialize it and redefine the part properties with default values
for various configurations (see Subannex A.5.9).

ibd ConnectedTanks ]

fluidReservoir1 : Tank

initial values
fluidDensity = 10.0{unit = kilogramPerCubic Meter}
fluidLevel = 40.0{unit = meter}
gravity = 9.8{unit = meterPerSquareSecond}
tankSurfaceArea = 4.0{ul_ni1t = squareMeter}
A

tankOpening

fluidReservoir2 : Tank

initial values
fluidDensity = 10.0{unit = kilogramPerCubic Meter}
fluidLevel = 15.0{unit = meteri
gravity = 9.8{unit = meterPerSquareSecond}
tankSurfaceArea = 4.0{unit = squareMeter}
[}

tankOpening

Volume

pipe : Pipe
initial values
dynamicViscosity = 2.0{unit = pascalSecond} | pipeOpening2
pipeLength = 10.0{unit = meter}
radius = 0.5{unit = meter}

pipeOpening1

Figure 59: Internal structure of hydraulics system

A.4.4 Blocks and ports

Figure 60 shows block definitions for components of ConnectedTanks in Figure 59. Tanks and pipes have
openings for fluid to pass through, one for tanks and two for pipes. The openings are represented by ports
of type VolumeFlowElement, from the physical interaction library (see Subclause 11.2.2). Each type of
component has its own behaviors, defined as constraints in A.4.6.

bdd Two Tank Components )

«block»
Tank

phs variables

fluidLevel : Length «interfaceBlock»
«port» | SysPhSLibrary::VolumeFlowEle ment
tankOpening

phs constants

tankSurfaceArea : Area physical interactions
gravity : Acceleration inout vF : FlowingVolume
fluidDensity : Density
«port» «port»
pipeOpening1 pipeOpening2
«block»
Pipe
phs variables
fluidFlow : VolumeFlowRate «block»
fluidPressureDiff : Pressure SysPhSLibrary::Volume
phs constants
pipeLength : Length LF
radius : Length
dynamicViscosity : Viscosity «block»
resistance : ViscousResistance SysPhSLibrary::FlowingVolume

phs variables
{isConserved} q : VolumeFlowRate
p : Pressure

Figure 60: Hydraulics blocks, ports, & component properties

A.4.5 Properties (variables)

Physical interaction is the movement of physical substances between system components, modeled in terms
of conserved characteristics of the substances. In this example, volume is the conserved characteristic of
fluid moving between the tanks (fluids are substances that can be treated as volumes because they are
incompressible, but otherwise do not resist deformation). Movement of substances is described by numeric
variables for flow rate and potential to flow of their conserved characteristics. In this example, movement
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of volumes is characterized by a volume per unit time variable for the flow rate and a pressure variable for
potential to flow. The flow rate variable is conserved (values on ends of the interaction sum to zero) and the
potential variable is not (values on ends of the interaction are the same). This is modeled in three parts:

e  Conserved physical characteristics are modeled as blocks directly specialized from
ConservedQuantityKind in the physical interaction library (see Subclause 11.2.2), Volume in this
example.

e Flow variables are modeled as properties with the PhSVariable stereotype applied on
specializations of conserved quantity kind blocks. In this example, the flow rate and potential
PhSVariables are ¢ and p on FlowingVolume (g marked as isConserved), respectively, typed by
VolumeFlowRate and Pressure, respectively, all from the physical interaction library.

e Flows in and out of components are modeled by ports typed by interface blocks that have flow
properties typed by flowing conserved quantity kinds. In this example, ports are typed by
VolumeFlowElement from the physical interaction library, which has a flow property vF typed by
FlowingVolume, as shown in Figure 60. The Tank block has a tankOpening port and the Pipe
block has pipeOpeningl and pipeOpening? ports, all typed by VolumeFlowElement.

Behavior of the pipe in this example is described by the fluid pressure and volume flow rate at the
openings. The fluid pressure is given by the property fluidPressureDiff (difference in pressure between its
two openings) and the volume flow rate is given by the property fluidFlow (the volume of fluid going in
our out the openings per unit time). These two properties are typed by Pressure and VolumeFlowRate,
respectively, from the physical interaction library (see Subclause 11.2.2), and have the PhSVariable
stereotype applied, specifying that their values might vary during simulation.

The tank has properties fluidLevel, tankSurfaceArea, gravity, and fluidDensity typed by Length, Area,
Acceleration, and Density, respectively. The property fluidLevel has the PhSVariable stereotype applied,
because the amount of fluid in the tank can vary during simulation, but the other properties have the
PhSConstant stereotype applied, specifying that their values do not change during each simulation run.

The pipe has properties pipeLength, radius, dynamicViscosity, and resistance typed by Length, Length,
Viscosity, and ViscousResistance, respectively, and all with the PhSConstant stereotype applied.

A.4.6 Constraints (equations)

Equations define mathematical relationships between the values of numeric variables. Equations in SysML,
are constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this
example, constraint blocks PipeConstraint and TankConstraint define parameters and equations for pipes
and tanks, respectively, as shown in Figure 61.

The pipe constraints specify that the pressure pressureDiff across it is equal to the difference of fluid
pressures opening 1 Pressure and opening2Pressure at each end of the pipe. The fluid flow rate through the
pipe, fluidFlow, is proportional to the pressure difference by the constant resistance, which depends on the
geometric properties of the pipe as well as fluidic properties. The magnitude of fluid flow rate through the
pipe fluidFlow is the same as the magnitude of flow rates opening FluidFlow and opening2FluidFlow
going through the pipe’s openings, though the values differ in sign. The sum of the fluid flow rates going
through the two pipe openings is zero (the fluid is assumed to be incompressible).

The tank constraints specify that the pressure in the tank, pressure depends on the height of the fluid level
in the tank, fluidHeight, as well as properties of the fluid, fluidDensity. Also, the fluid flow in the tank,
SfluidFlow, is related to the change in the fluid height level fluidHeight over time and the cross-sectional
surface area of the tank, surfaceArea.
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bdd TwoTankConstraints )

«constraint» «constrainty»
PipeConstraint TankConstraint
constraints constraints
{resistance=(8*viscosity*length)/(3.1416*(radius"4))} {pressure=gravity*fluidHeight*fluidDensity}
{fluidFlow=pressureDiff/resistance} {der(fluidHeight)=-fluidFlow/surfaceArea}
{pressureDiff=opening2Pressure-opening1Pressure}
{opening1FluidFlow+opening2FluidFlow=0} pressure : Realparameters
{fluidFlow=opening1FluidFlow} fluidFlow - Real
parameters fluidHeight : Real
opening1FluidFlow : Real fluidDensity : Real
opening1Pressure : Real gravity : Real
opening2Pressure : Real surfaceArea : Real
opening2FluidFlow : Real
fluidFlow : Real
pressureDiff : Real
radius : Real
length : Real
viscosity : Real
resistance : Real

Figure 61: Hydraulics model constraint blocks

A.4.7 Constraint properties and bindings

Equations in constraint blocks are applied to components using binding connectors in component
parametric diagrams. Component parametric diagrams show properties typed by constraint blocks
(constraint properties), as well as component and port simulation variables and constants. Binding
connectors link constraint parameters to simulation variables and constants, indicating their values must be
the same. Figure 62 and Figure 63 show the parametric diagrams of the tank and the pipe, respectively.

‘ par Tank

s - 3
- «constraint»
tankOpening tC : TankConstraint
| constraints
. «equal» {der(fluidHeight)=-fluidFlow/surfaceArea}
F.p : Pressure
vrp Y {pressure=gravity*fluidHeight*fluidDensity}
parameters
VF.q : VolumeFlowRate | «equal» . N
| | :] pressure gravity [14(“ gravity : Acceleration |
«equah fluidFlow

. «equal»
fluidHeight D fluidLevel : Length

surfaceArea fluidDensity

«equal» «equal»

tankSurfaceArea : Area |

fluidDensity : Density

Figure 62: Parametric diagram applying the tank constraint
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par Pipe

«constraint» N - -
pC : PipeConstraint ’ dynamicViscosity : Viscosity ‘

constraints
{resistance=(8*viscosity*length)/(3.1416*(radius"™))}
{fluidFlow=pressureDiff/resistance} - K .
«equal» {pressureDiff=opening2Pressure-opening1Pressure} ’ resistance : ViscousResistance ‘
VF.p : Pressure {opening1FluidFlow+opening2FluidFlow=0}
{fluidFlow=0pening1FluidFlow}

pipeOpening1

parameters «equal» pipeOpening2

VF.q : VolumeFlowRate «equal» viscosity equal
opening1Pressure . « »
opening1FluidFlow «equal» r

opening2Pressure [ _|

«equal» . . . «equal»
radius : Length qim radius opening2FluidFlow VF.q : VolumeFlowRate

length fluidFlow pressureDiff

J

«equal» «equal» «equal»

’ pipeLength : Length ‘ ’ﬂuidFIow :VqumeFIowRate‘ ’fluidPressureDiff: Pressure

Figure 63: Parametric diagram applying the pipe constraint

A.5 Humidifier

A.5.1 Introduction

This subannex gives a model of a room humidifier as an example of signal flows and state machines. Some
signals in the example reflect physical quantities, but this is not physical interaction in the sense of physical
substances with flow rates and potentials, as in Subannexes A.2 and A 4.

A.5.2 System being modeled

The total humidifier system has two main components: the humidified room and the humidifier, see Figure
64. The humidifier uses information about the room’s humidity level to determine how much vapor to input
to the room. The humidifier includes a water tank, a heater controller, and a vapor generation plant.

Humidified Room Humidifier

Room Humidity

Figure 64: Total humidifier system example

A.5.3 Internal structure

Figure 65 through Figure 71 show the internal structure of the total humidifier system and its components
through seven nested internal block diagrams. The internal structure of the block HumidifierSystem shown
in Figure 65 uses the blocks HumidifiedRoom and Humidifier. These two blocks have their own internal
structures. The internal structure of HumidifiedRoom depicted in Figure 66 uses a block RelativeHumidity,
which has an internal structure depicted in Figure 67. The internal structure of Humidifier in Figure 68 uses
a block VaporGenerationPlant, which has an internal structure shown in Figure 69. The internal structure
of VaporGenerationPlant uses blocks Heating and Evaporation, which have internal structures depicted in
Figure 70 and Figure 71, respectively. The blocks used in these diagrams are introduced in Subannex A.5.4.

Part properties, typed by blocks defined Subannex A.5.4, represent the components of the system. They are
connected to each other through ports, also defined in Subannex A.5.4, which represent signal outputs and
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inputs. Signals pass through ports in the direction shown by the arrows. Item flows on connectors indicate
that the signals are real numbers.

Figure 65 connects the humidified room to the humidifier, showing vapor signals flowing from the
humidifier to the room and humidity signals flowing from the room to the humidifier. Figure 66 directs
vapor, saturation vapor pressure, and humidity signals flowing into the room to a relative humidity part that
calculates the humidity flowing out of the room.

Figure 67 directs incoming vapor signals to a vapor pressure calculation part, which connects to the relative
humidity calculation to output pressure signals. This figure also directs incoming saturation vapor pressure
signals to the relative humidity calculation, as well as humidity signals to a humidity balance part, which
connects to the relative humidity calculation to output a humidity change signal, which is directed to the
output of this internal structure.

Figure 68 transforms humidity signals flowing to the humidifier into vapor signals flowing out of the
humidifier. This is done using a heater control state machine, a usage scenario state machine, another
controller state machine, information from the water tank’s water volume, and information from the vapor
generation plant. The state machines for the heater control, control, and usage scenario parts in Figure 68
are explained in A.5.8.

Figure 69 directs incoming heater power ratio signals to the vapor generation plant calculation part and
incoming water fan signals to the radiation part. Connectors between the vapor generation plant calculation
and radiation parts and the heating and evaporation parts result in vapor signal outputs from the evaporation
part and temperature signal outputs from the heating part.

Figure 70 directs energy signals to the temperature increase part, which connects to the heating calculation
to output temperature-increase signals, which is directed to the output of this internal structure. Figure 70
directs input energy and temperature signals to evaporation calculation parts, one of which outputs vapor
signals for the internal structure.

Initial values for the properties of components in Figure 66 through Figure 71 in Subannex A.5.4 cannot be
specified in internal block diagrams, as in the other subannexes, at least if Simulink is one of the platforms.
Simulink without Simscape does not have elements corresponding to initial values on parts below the top-
level system (see Subclause 10.10.4), and Simscape has no corresponding elements for state machines (see
10.12.4). Subannex A.5.9 shows how to get the effect of initial values in this example by specializing
blocks and redefining their properties with default values.

ibd HumidifierSystem J

room : HumidifiedRoom L humidityOut Real humiditylnlj_| humidifier : Humidifier

vaporin Real vaporOut
& < =

Figure 65: Internal structure of the total humidifier system
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Real

vaporin

?—

ibd HumidifiedRoom J

humidityln rH : RelativeHumidity humidityOut
] >
Real vaporin "Real
satVaporPressureln toPercentage : PercentageConversion
ip
ip mLpH2mLpS : VolumeConversion
satVaporPressureOut

L1
sVP : SaturationVaporPressure

Figure 66: Internal structure of the humidified room

ibd RelativeHumidity J

vaporin

jeal

VvPC : VaporPressureCalculation

=

&

>

pressure

ipPress

satvaporPressureln Real ipSatJ_‘relHumCalc : RelativeHumidityCalculation opHum Real
» ea
- - 1 -]
ipChange humidityOut
humidityln -
Y Real humidity | - hB : HumidityBalance Real
change
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S

ibd Humidifier J
Real humidityln 'J_lheaterControI : HeaterControl
humidityin > =21 heaterPowerRatioOut
= =
—
modeln
N swich
usage : UsageScenario
Real
control : Control
4 mode
waterVolumeln =2
»
'Real L|—I
fanPowerOut waterTemperatureln v
Real Real
Real
fanWatin temperatureOut
] il
vaporGenerationPlant : VaporGenerationPlant | heaterPowerRatioln
—
n
|RA
vaporOut
waterVolumeOut v
l?'l Real
L vaporOut
waterTank : WaterTank -y
consumptionin L:l
—
Figure 68: Internal structure of the humidifier
ibd VaporGenerationPlant ) energyWatln temperatureOut
heaterPowerRatioln = >
l:_, Real
Y Real VGPC : VaporGenerationPlantCalculation
opEnergy
ipHtrPwr
Real
ipRadiation
temperatureln ﬁ[{l
fanWatin emperatureOu
I:_’ e : Evaporation
radiationWaterOut energyWatin
{1 vaporOut
fanWatin r : Radiation Real
r=
Real | temperatureln
vaporOut
U
Figure 69: Internal structure of the vapor generation plant
ibd Heating ]
tl : Temperaturelncrease | increase )
ipTempinc | ¢ . HeatingCalculation |opTemp
'T‘ Real
energyWatin energy _El
temperatureOut

Figure 70: Internal structure of heating
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ibd Evaporation J
energyWatin
L]
eC : EvaporationCalculation
1
vapor
Real
ipVapor
L]
temperatureln i eC2 : EvaporationCalculation2
L ipTemperature opVapor vaporOut
B >Real — =]
Real L

Figure 71: Internal structure of evaporation

A.5.4 Blocks and ports

Figure 72 through Figure 78 show block definitions for component used in the internal block diagrams
shown in Figure 65 through Figure 71, respectively (one each for the total humidifier system, humidified
room, relative humidity, humidifier, vapor generation plant, heating, and environment components). All
ports are typed by RealSignallnElement from the signal flow library (see Subclause 11.2.1). A tilde (~) next
to a port name indicates that it receives signals (conjugated port type), otherwise the port sends signals (the
tilde normally appears before the type name, after a colon, but port types are omitted from the figures for
brevity, because they are all the same; compare to the signal port types in Subannex A.3. Component
blocks that do not have internal block diagrams in A.5.3 have their behaviors defined as constraints in

Subannex A.5.6.

bdd Humidifier System Components )

«block» «block»
HumidifiedRoom Humidifier
«port» «port» «port» «port»
J, humidityOut | vaporin _JvaporOut | humidityIn

«interfaceBlock»
SysPhSLibrary::RealSignalinElement

signal flows

in rSig : Real{redefines rSig}

Figure 72: Total humidifier system blocks, ports, & component properties
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bdd Humidified Room Components )

«block»
SaturationVaporPressure

phs constants
p2 : Real
roomTemperature : Real
p1:Real
logBase : Real
celciusOffset : Real
hPa2Pa : Real

«port» satVaporPressureOut| _

«block»
Relative Humidity

«port»
humidityOut

«port»
vaporin

«port»
humidityln

«port»
satVaporPressureln

«block»
PercentageConversion

«port» ip

«interfaceBlock»

SysPhSLibrary::RealSignallnElement

gain : Real

phs constants

«port» op

signal flows

in rSig : Real{redefines rSig}

«port» op «block»
~ VolumeConversion
«port» ip phs constants

| gain :

Real

Figure 73: Humidified room blocks, ports, & component properties

bdd Relative Humidity Components )

RelativeHumidityCalculation

«block»

phs variables

xInt : Real
«port» «port» «port» | «port»
ipChange _ [opHum |ipSat ipPress

«block» «port»

HumidityBalance humidity

phs constants «port»

airExchangeRate : Real change

envHumidity : Real ~
wolume : Real

«interfaceBlock»

SysPhSLibrary::RealSignallnElement

«port»

«block»

VaporPressureCalculation

pressure

signal flows

in rSig : Real{redefines rSig}

«port»
vapor

phs constants

roomTemperature : Real
gasConst : Real
molecularW : Real
celciusOffset : Real
wlume : Real

Figure 74: Relative humidity blocks, ports, & component properties

bdd Humidifier Components )

threshold : Real

targetHumidityIn : Real

«block» «block»
HeaterControl WaterTank
phs constants phs constants
prLow : Real tankVolume : Real
prHigh : Real litpSec2mLiptHr : Real

phs variables

«port»
modeln

«port» heaterPowerRatioOut

xInteg : Real
«port» «port» «port»
humidityIn consumptionin _ waterVolumeOut

«block»

UsageScenario

«port» swtch

SysPhSLibrary::RealSignallnElement

«port» heaterPowerRatioln

«interfaceBlock»

in rSig : Real{redefines rSig}

signal flows

«port» fanWatIn \
«block»
ﬂ)ort» vaporOut VaporGenerationPlant

«port» temperatureOut

¥

«port» waterTemperatureln

«port» ~T«port» T«porty ~T«port»
waterVolumeln |mode |[swtch fanPowerOut
«block»
Control
phs constants
safeTemperature : Real

Figure 75: Humidifier blocks, ports, & component properties
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bdd Vapor Generation Plant Components )

«block»
VaporGenerationPlantCalculation

phs constants
maxHeaterPower : Real

«port» «port» «port»
«port» ipRadiation ~ ~ |opEnergy |ipHtrPwr «port» —
temperatureln - radiationWaterOut «block»
«interfaceBlock» — Radiation
‘ SysPhSLibrary::RealSignalinElement
«block» «port» «port» phs constants
Evaporation vaporout ~ signal flows T ——— roomTemperature : Real
P in rSig : Real{redefines rSig} P radiationFactor : Real
, fanEfficiency : Real
«port»
«port»
energyWatin «port» ~‘I «port» fanWatin
energyWatln temperatureOut
«block»
Heating

Figure 76: Vapor generation plant blocks, ports, & component properties

bdd Heating Components )

«block»
Temperaturelncrease . «block» .
HeatingCalculation
phs constants -
specificHeat : Real nfq - Rphls variables
waterVolume : Real xinig - Rea
«port» «port» «port» «port»
~] increase energy ipTempinc  ~|opTemp

SysPhSLibrary::RealSignallnElement

signal flows
in rSig : Real{redefines rSig}

Figure 77: Heating blocks, ports, & component properties

bdd Evaporation Components )

«block» «block»
EvaporationCalculation EvaporationCalculation2
phs constants phs constants
evaporationHeat : Real boilingTemperature : Real
specificHeat : Real noPower : Real
boilingTemperature : Real litPSec2mLitPHour : Real
environmentTemperature : Real

«port» «port» «port» «port» «port»
energy  ~|vapor ipVapor  ~ |opVapor ipTemperature

«interfaceBlock»
SysPhSLibrary::RealSignalinElement

signal flows
in rSig : Real{redefines rSig}

Figure 78: Evaporation blocks, ports, & component properties
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A.5.5 Properties (variables)

Signals flow is the movement of numbers between system components. These numbers might reflect
physical quantities or not. In this example, they do (see Subannex A.3 for an example where they do not).
Signals flowing in and out of components are modeled by ports typed by interface blocks that have flow
properties typed by numbers. In this example, ports are typed by RealSignallnElement from the signal flow
library (see Subclause 11.2.1), which has a flow property rSig typed by Real, from SysML, as shown in
Figure 72. This value type has no unit, even when they reflect physical quantities, and the values do not
follow conservation laws.

The blocks RelativeHumidityCalculation (Figure 74), WaterTank (Figure 75), and HeatingCalculation
(Figure 77) have properties with PhSVariable stereotypes applied, specifying that the value of these
properties may vary during simulation. The blocks SaturationVaporPressure (Figure 73),
PercentageConversion (Figure 73), VolumeConversion (Figure 73), HumidityBalance (Figure 74),
VaporPressureCalculation (Figure 74), WaterTank (Figure 75), HeaterControl (Figure 75), Control
(Figure 75), Radiation (Figure 76), VaporGenerationPlantCalculation (Figure 76), Temperaturelncrease
(Figure 77), EvaporationCalculation2 (Figure 78), and EvaporationCalculation (Figure 78), have
properties with PhSConstant stereotypes applied, specifying that the value of these properties are constant
during each simulation run.

A.5.6 Constraints (equations)

Equations define mathematical relationships between the values of numeric variables. Equations in SysML,
are constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this
example, the constraint blocks in Figure 79 each define parameters and constraints for a component block
in Figure 73 through Figure 78: VolumeConversion, PercentageConversion, and SaturationVaporPressure
in Figure 73; RelativeHumidityCalculation, VaporePressureCalculation, and HumidityBalance in Figure
74; WaterTank in Figure 75; Radiation and VaporGenerationPlantCalculation in Figure 76;
HeatingCalculation and Temperaturelncrease in Figure 77; and EvaporationCalculation and
EvaporationCalculation? in Figure 78. The constraint blocks have the name of their components with the
suffix “-Constraint” added. The constraints specify manipulation of signals between inputs and outputs of
their component block.
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bdd Humidifier System Constraints )

«constraint» «constraint»
EvaporationCalculationConstraint TemperaturelncreaseConstraint
constrants constrants
{vapor=energy/(evaporationHeat+specificHeat*(boilingTemperature-envTemp))}|  {increase=energy/(specificHeat*water\Volume)}
parameters parameters
specificHeat : Real increase : Real
boiling Temperature : Real energy : Real
evaporationHeat : Real specificHeat : Real
vapor : Real water\Volume : Real
energy : Real
envlemp : Real
«constraint» «constraint»
EvaporationCalculation2Constraint W aterTankC onstraint
constraints constraits
{vapOut=g*(((max(min(vapor,1),0)) ‘max( (temp-boil) 0)/(temp-boil) +np* (max( (boikemp),0) (boiemp) )} |  [watV=tankVol-min(50000,x)}
paramees {der(x)=consh/lpsmh}
g : Real parameters
np : Real watV : Real
temp : Real [tankVol : Real
boail : Real X : Real
vapor : Real lconsin : Real
vapOut : Real Ipsmh : Real
«constraint» «constraint» «constraint»
PercentageConversionConstraint| |[HeatingCalculationConstraint RelativeHumidityCalculationConstraint
constrarts constrarts constrants
{op=ip*g} { tOut=max(min(100,x),0)} {hum=max(min(1,x),0)}
paramebn {der(x)=tinc/c1} {der(x)= ((press/sat\/ap)-change)/cZ}
ip: Real parameters parameters
op : Real tOut : Real hum : Real
g : Real X : Real X: Real
tinc : Real press : Real
c1:Real satVap : Real
change : Real
c2: Real
«constraint» «constraint»
VaporGenerationPlantCalculationConstraint RadiationConstraint
constraints constraints
{energy=((maxPwr*htrPwr)-radiation)} {radiationWatOut= (templn-roomT mp)*(radiationF actor +(fanWatIn*fanEf))}
parameters parameters
energy: Real templn : Real
maxPwr : Real fanWatln : Real
htrPwr : Real radiationFactor : Real
radiation : Real fanEff : Real
roomTmp : Real
radiationWatOut : Real
«constraint» «constraint»
VolumeConversionConstraint SaturationVaporPressureConstraint
constraints constraints
{op=ip*g} {swpOut=hPa2Pa*(c1*exp((log(logBase)*((c2*roomTemp)/(roomTemp+celcdus Off))) )}
parameters parameters
op : Real swpOut : Real
ip: Real hPa2Pa : Real
g : Real c1:Real
logBase : Real
c2: Real
roomTemp : Real
celciusOff : Real

«constraint» «constraint»
HumidityBalanceConstraint VaporPressureCalculationConstraint
constraints constraints
{chang e=((humidit-envH )*(volume*airExRate))} { pressure=vapor*(gasConst{ (roomTemp+ celcius Offy/(molecular W*volume)) )}
parameters parameters
change : Real pressure : Real
humidity : Real vapor : Real
envH : Real gasConst : Real
\olume : Real roomTemp : Real
airExRate : Real celciusOff : Real
molecularW : Real
\volume : Real

Figure 79: Humidifier constraint blocks
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A.5.7 Constraint properties & bindings

Equations in constraint blocks are applied to components using binding connectors in component
parametric diagrams. Component parametric diagrams show properties typed by constraint blocks
(constraint properties), as well as component and port simulation variables and constants. Binding
connectors link constraint parameters to simulation variables and constants, indicating their values must be
the same. Figure 80 through Figure 92 show the parametric diagrams for the blocks VolumeConversion,
PercentageConversion, SaturationVaporPressure, HumidityBalance, RelativeHumidityCalculation,
VaporPressureCalculation, VaporGenerationPlantCalculation, Radiation, HeatingCalculation,
Temperaturelncrease, EvaporationCalculation, EvaporationCalculation2, and WaterTank, respectively.

par VqumeConversion)

([ «constraint» )
- vCC : VolumeConversionConstraint
i

P - constraints op
{op=ip*g}

arameters | [P
Sig : Real «equal» :| ip p op |: «equab» rSig : Real

9

y [ ] J

«equal»

gain : Real

Figure 80: Parametric diagram applying the volume conversion constraint

par PercentageConversion )

f «constraint» )
pCC : PercentageConversionConstraint

constraints
. =i op
ip {op=ip*g}

parameters «equal»

) op |: rSig : Real
rSig : Real «equal> :| p g

«equal»

gain : Real

Figure 81: Parametric diagram applying the percentage conversion constraint
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par SaturationVaporPressure )

-

«constraint»
sVPC : SaturationVaporPressureConstraint

constraints

{svpOut=hPa2Pa*(c1*exp((log(logBase)*((c2*roomTe mp)/(room Temp+celciusOff)))))}

satVaporPressureOut

«equal»
logBase : Real :] logBase

«equal»

i rSig : Real

«equal»

roomTemperature : Real |

parameters
svpOut [:
roomTemp c2 hPa2Pa celciusOff cl

[ [1 [1 [] [1 )

equal |

«equal» «equal «equab «equal»

. . : . p1: Real
p2 : Real hPa2Pa : Real celciusOffset : Real

Figure 82: Parametric diagram applying the saturation vapor pressure constraint

par HumidityBaIance)

humidity

«constraint»
hBC : HumidityBalanceConstraint

constraints
{change=((humidity-envH)*(volume*airExRate))}

hange
P «equal» parameters c
rS|g : Real q :‘ hUmIdlty
«equal»
:| volume change[ rSig : Real
airExRate envH
«equal»
wb ] [ J
«equal» «equal»
volume : Real
airExchangeRate : Real envHumidity : Real
Figure 83: Parametric diagram applying the humidity balance constraint
par RelativeHumidityCaIcuIation) |
( - a opHum
«constraint»
ipPress rHCC : RelativeHumidityCalculationConstraint
constraints «equal» rSig : Real
{hum=max(min(1,x),0)}
rSig : Real {der(x)=(press/satVap)-change}
parameters
«equal» press
:I hum E ipChange
:| satVap p g
|
ipSat X change |: «equad
Sig : Real

rSig : Real

«equal»

xInt : Real

Figure 84: Parametric diagram applying the relative humidity calculation constraint
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par VaporPressureCaIcuIationJ

pressure

I rSig : Real I

«constraint»
vPCC : VaporPressureCalculationConstraint
constraints
{pressure=vapor*(gasConst*((room Temp+celciusOff)/(molecularW*volume)))}
vapor parameters
«equal»
al jvapor
rSig : Real «equal»
«equal» j gasConst pressure I:
volume roomTemp celcius Off molecularW
| gasConst : Real I
«equal» «equal» «equal»
equal )
| volume :Reall «equad | celciusOffset : Real | | molecularW : Real |
|roomTemperature : Real |

Figure 85: Parametric diagram applying the vapor pressure calculation constraint

par VaporGenerationPlantCalculation )

opEnergy

{ rSig : Real

rSig : Real

1l

( «constraint» A
VGPCC : VaporGenerationPlantCalculationConstraint
P constraints
ipHtrPwr {energy=((maxPwr*htrPwr)-radiation)}
parameters
rSig : Real «equal» :] htrPwr
«equaly»
ener
«equal» :] radiation maxPwr gy
| J
ipRadiation
«equal»

| maxHeaterPower : Real

Figure 86: Parametric diagram applying the vapor generation plant calculation constraint

par Radiation

«constraint»
rC : RadiationConstraint

radiationWaterOut

rSig : Real

constraints
temperatureln {radiationWatOut=(tempIn-roomTmp)*(radiationF actor+(fanWatIn*fanEff))}
parameters
— «equal» «equal»
rSig : Real || tempin radiationWatOut [_|
fanWatl
:l anivatn roomTmp radiationFactor fanEff
fatWatin
«equal» «equal» «equal» «equal»
rSig : Real
roomTemperature : Real | | radiationFactor : Real | | fanEfficiency : Real

Figure 87: Parametric diagram applying the radiation constraint
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par HeatingCaIcuIation)

s N

«constraint»
hCC : HeatingCalculationConstraint

constraints

ipTemplinc {tOut=max(min(100,x),0)}
{der(x)=tInc} opTemp
«equal» parameters |
rSig : Real tinc «equal» —_—
rSig : Real
] ) 1out [
. [ 1 )
«equal»
xIntg : Real
Figure 88: Parametric diagram applying the heating calculation constraint
par Temperaturelncrease )
( «constraint» )
tIC : TemperaturelncreaseConstraint
constraints
energy {increase=energy/(specificHeat*waterVolume)} increase
parameters
«equal» increase «equal» —
rSig : Real :l energy E rSig : Real
specificHeat waterVolume
«equal» «equal»

specificHeat : Real

waterVolume : Real

Figure 89: Parametric diagram applying temperature increase constraint

par EvaporatlonCaIcuI':l'non)r

«constraint»

eCC : EvaporationCalculationConstraint

constraints

{vapor=energy/(evaporationHeat+specificHeat*(boiling Temperature-envTemp))} vapor
energy parameters
«equal» vapor rSig : Real
rSig : Real :] energy
envlemp specificHeat boilingTemperature evaporationHeat
1 [1 [1 [1 )
«equal» «equal» «equal» «equal»
environmentTemperature : Real | | specificHeat : Real | | boilingTemperature : Real | | evaporationHeat : Real
Figure 90: Parametric diagram applying the evaporation calculation constraint
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par EvaporationCalculation2 )

'a N B
«constraint»

eC2C : EvaporationCalculation2Constraint

constraints

opVapor

ipTemperature . i’ i i X
{vapOut=g*(((max (min(vapor,1),0))*max((temp-boil ),0)/(temp-boil ))+np*(max((boil-temp),0)/(boil-temp)))}
«equal» parameters
rSig : Real q
;:] temp
«equal»
vapOut

|| vapor boil np g

. J
ipVapor

«equal»
«equal» «equal» «equal»
rSig : Real
’ boilingTemperature : Real ‘ ’ noPower : Real ‘ ’ litPSec2mLitPHour : Real

rSig : Real

Figure 91: Parametric diagram applying the second evaporation calculation constraint

par WaterTank p \

«constraint»
wTC : WaterTankConstraint

constraints

{watV=tankVol-min(50000,x)}
{der(x)=conslIn/lpsmh} waterVolumeOut
consumptionin parameters

«equal» -
watV rSig : Real

«equal»
rSig : Real % :| consin tankVol

Ipsmh X

\ [_I [_I ) «equal»

«equal» «equal»

tankVolume : Real

litpSec2mLitpHr : Real xInteg : Real

Figure 92: Parametric diagram applying the water tank constraint

A.5.8 State Machines

The state machine diagrams in this example specify how components react to changes by showing states of
each component and the transition between these states. StateFlow only extends Simulink (see Subclause
10.12.4), which affects modeling of initial values (see Subannex A.5.9).

Figure 93 depicts the state machine of the block HeaterControl, the type of the heatercontrol property in
the Humidifier internal block diagram (see Figure 68). The machine uses information from the block’s
ports to decide whether to operate the heater controller: the humidified room’s current humidity from the
input humidityln, the target humidity from the property targetHumidity, and the control signal from the
input modeln. Its decision is sent to the vapor generation plant along the connection from the pin
heaterPowerRatioOut.

Figure 94 depicts the state machine of the block Control, the type of the control property in the Humidifier
internal structure (Figure 68). The machine determines the operation of the heater controller heatercontrol
and the vapor generation plant vaporgenerationplant based on information received from the Control
block’s ports: a water volume signal waterVolumeln from the property watertank, a water temperature
signal waterTempln from vaporgenerationplant, and a switch decision signal swtch from usage.

Figure 95 depicts the state machine of the block UsageScenario, the type of the usage property in the
Humidifier internal structure (Figure 68). The part property usage connects to the control part property with
a signal from port swrch for the state machine UsageScenario to determine the time and duration for which
the humidifier should humidify the room.
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stm HeaterControlSM )

Off
when (modeln.rSig==1 and humidityln.rSig<targetHumidityln-threshold)
H entry / turnOff

when (modeln.rSig==0)

entry / turnOn

when (humidityln.rSig>targetHumidityIn)

Figure 93: Heater Control State Machine Diagram

stm ControlStateMachine J

when (swtch.rSig==1) - prva— N\ when (waterTemperatureln.rSig>=99)
armUp

entry / warmupActivity

\ J

when (swtch.rSig==0) when (swtch.rSig==0)

entry / offActivity l entry / onActivity

¢

\ f CoolDown
when (waterTemperatureln.rSig<=safeTemperature)

entry / cooldownActivity when (waterVolumeln.rSig==0)

G J

Figure 94: Humidifier Control State Machine Diagram

stm UsageScenarioStateMachine )

! G
after (300) On after (3300) off
Started entry / turnOn entry / turnOff
-—

Figure 95: Humidifier Usage Scenario State Machine Diagram

A.5.9 Initial Values

Initial values are specified by block property redefinitions with default values in this example. This is
necessary because StateFlow only extends Simulink (see Subclause 10.12.4), one of the desired platforms,
and Simulink without Simscape does not have elements corresponding to SysML initial values on parts
below the top level system (see Subclause 10.10.4). SysML models must specialize component blocks to
redefine properties and give default values, rather than use initial values, if they are to have corresponding
elements in Simulink.

Each configuration (scenario) of values requires its own specializations and redefinitions, starting with a
specialization the total system block. Blocks typing part properties of the specialized total system block
(and any of their parts, recursively) are also specialized when they have values to be specified. The
additional blocks in Figure 96 through Figure 102 are specialized from component blocks in Figure 72
through Figure 78, respectively (for parts of the total humidifier system, humidified room, relative
humidity, humidifier, vapor generation plant, heating, and environment components). For example, Figure
96 shows HumidifierSystemScenariol specialized from the total system block. Specialized blocks have the
name of their general components with the suffix “-/”, indicating that this specialization is for the first
scenario. Part property redefinitions with default values are indicated on each specialized block.
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bdd HumidifierSystemScenario1 )

«block»
HumidifierSystem

i

«block» «block» Hum;zitslt?:(li(aoom
Humidifier HumidifierSystemScenario1
humidifierSystem | {redefines humidifierSystem} room | {redefines room}
«block» «block»
Humidifier1 HumidifiedRoom1
parts

parts

toPercentage : PercentageConversion1{redefines toPercentage}
heaterControl : HeaterControl1{redefines heaterControl} mLpH2mLpS : VolumeConversion1{redefines mLpH2mLpS}
control : Control1{redefines control} sVP : SaturationVaporPressure1{redefines sVP}
vaporGenerationPlant : VaporGenerationPlant1{redefines vaporGenerationPlant} rH : RelativeHumidity1{redefines rH}

usage : UsageScenario1{redefines usage}

watertank : WaterTank1{redefines watertank}

Figure 96: Humidifier System Scenario Initial Values

bdd HumidifiedRoomScenario1 )

«block» «block» Percent;gsglg;wersion
SaturationVaporPressure HumidifiedRoom1
Lr sVP [{redefines sVP}
<blocky toPercentage
. redefines toPercentage
SaturationVaporPressure1 { ge}

phs constants «block» .
p2 : Real = 7.5{redefines p2} PercentageConversion1
roomTemperature : Real = 30.0{redefines roomTemperature} phs constants
p1: Real = 6.11{redefines p1} gain : Real = 100.0{redefines gain}
logBase : Real = 10.0{redefines logBase}
celciusOffset : Real = 273.0{redefines celciusOffset}
hPa2Pa : Real = 100.0{redefines hPa2Pa} «block»

VolumeConversion
mLpH2mLpS
<fb|°Ck» . {redefines mLpH2mLpS} T
RelativeHumidity H
) «block»
lr {redefines rHj VolumeConversion1
_«block»_ . phs constants
RelativeHumidity1 gain : Real = 2.8E-4{redefines gain}
parts

hB : HumidityBalance 1{redefines hB}
VPC : VaporPressureCalculation1{redefines vPC}
relHumCalc : RelativeHumidityCalculation1{redefines rel[HumCalc}

Figure 97: Humidified Room Scenario Initial Values
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bdd RelativeHumidityScenariot J

«block»
VaporPressureCalculation

«block» «block»
— RelativeHumidity RelativeHumidityCalculation
«DIOCK»
HumidityBalance
relHumCalc
T hB | {redefines hB} {redefines relHumCalc}
block «block»
Humi:i(itfl.:a;;ncﬂ RelativeHumidityCalculation1
phs constants . phs constants .
airExchangeRate : Real = 1.0E-8{redefines airExchangeRate} C2:Time = 1.0fredefines C2, unit=second}
envHumidity : Real = 0.35{redefines envHumidity}
volume : Real =25000.0{redefines volume}
vPC | {redefines vPC}

«block»
VaporPressureCalculation1

phs constants
roomTemperature : Real = 30.0{redefines roomTemperature}
gasConst: Real = 8.314{redefines gasConst}
molecularW : Real = 18.015{redefines molecularW}
celciusOffset : Real = 273.0{redefines celciusOffset}
volume : Real = 25000.0{redefines volume}

Figure 98: Relative Humidiity Scenario Initial Values

bdd HumidifierScenario1 J

tankVolume : Real = 50000.0{redefines tankVolume}
litpSec2mLitpHr : Time = 3600000.0{redefines litpSec2mLitpHr, un

it = second}

«block»
Humidifier1
«block»
VaporGenerationPlant
«block»
f UsageScenario
«block» :
aporGenerationPlant
VaporGenerationPlant1 Jap :
{redefines vaporGenerationPlant}
parts
r: Radiation1{redefines r}
VGPC : VaporGenerationPlantCalculation1{redefines vGPC}
h : Heating1{redefines h} usage
e : Evaporation1{redefines e} {redefines usage}
«block»
control UsageScenario1
«block» «block»
Control [ Control1 {redefines control}
phs constants
safeTemperature : Real = 50.0{redefines safeTemperature}
«block» «block»
HeaterControl <} HeaterControlt heaterControl
phs constants -
prLow: Real = 0.0{redefines prLow} {redefines heaterControl}
prHigh : Real = 1.0{redefines prHigh}
threshold : Real = 0.5{redefines threshold}
targetHumidityIn : Real = 50.0{redefines targetHumidityIn}
«block»
«blocky [ WaterTank1
WaterTank watertank
phs constants

{redefines watertank}

Figure 99: Humidifier Scenario Initial Values
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bdd VaporGenerationPlantScenario1 )

VaporGenerationPlant1

«block»

«block»
Radiation
? r | {redefines r}
«block»
Radiation1

phs constants
roomTemperature : Real = 30.0{redefines roomTemperature}
radiationFactor : Real = 0.1{redefines radiationFactor}
fanEfficiency : Real = 0.1{redefines fanEfficiency}

«block»
VaporGenerationPlantCalculation

VGPC
{redefines vGPC}

«block»
VaporGenerationPlantCalculation1

phs constants
maxHeaterPower : Real = 400.0{redefines maxHeaterPower}

h e
{redefines h} {redefines e}
«block» «block» «block» «block»
Heating <— Heating1 Evaporation1 —D Evaporation
parts arts

tl : Temperaturelncrease 1{redefines tl}

hC : HeatingCalculation1{redefines hC} eC2 : EvaporationCalculation2Scenario1{redefines eC2}

P
eC : EvaporationCalculationScenario1{redefines eC}

Figure 100: Vapor Generation Plant Scenario Initial Values

bdd HeatingScenario1 )

«block» «block»
HeatingCalculation «block» Temperaturelncrease
Heating1
tl
hC {redefines tl}
{redefines hC} <blocky
«block» Temperaturelncrease1

HeatingCalculation1

phs constants
C1:Time = 1.0{redefines C1,unit = second}

phs constants
specificHeat : Real = 4180.0{redefines specificHeat}
waterVolume : Real = 0.1{redefines waterVolume}

Figure 101: Heating Scenario Initial Values

bdd EvaporationScenario1 )

Evaporation1

«block»

«block»
EvaporationCalculation

eC | {redefines eC}

«block»
EvaporationCalculation2

{redefines eC2}

N

eC

«block»
EvaporationCalculationScenario1

«block»
EvaporationCalculation2Scenario1

phs constants
evaporationHeat : Real = 2270.0{redefines evaporationHeat}
specificHeat : Real = 1.996{redefines specificHeat}
boilingTemperature : Real = 100.0{redefines boilingTemperature}

environmentTemperature : Real = 20.0{redefines environmentTemperature}

phs constants
boilingTemperature : Real = 99.99{redefines boilingTemperature}
noPower : Real = 0.0{redefines noPower}
litPSec2mLitPHour : Real = 3600000.0{redefines litPSec2mLitPHour}

Figure 102: Evaporation Scenario Initial Values

SYSPHS11-2: Add example combining physical interaction and signal flow
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A.6 Cruise Control System

A.6.1 Introduction

This subannex gives a model of a cruise control system as an example that includes both physical
interaction (linear and angular momentum) and signal flow (control and sensory signals).

A.6.2 System being modeled

The automobile cruise control total system includes the vehicle, its operating environment, and the physical
and informational processes involved, see Figure 103: Cruise control system example (physical interactions
are shown with solid, bidirectional arrows between system components, and signal flows with dashed,
unidirectional arrows).

Between air & car
(linear momentum)

Desired
speed | ol < ==
Wheel rotation :
rate | . .
ol ol rosianee
|, eme—m—ss Angular ' ular u
control => momgentum \vconverted to heat)

between gravitational
field & car
(linear momentum)

Between wheel and car
(angular momentum
converted from/ to linear
via road)

Signal flow:  —————__ >
Physical interaction: >

Figure 103: Cruise control system example

A.6.3 Internal structure

Figure 104 shows the internal structure of a CruiseControlTotalSystem block. Part properties, typed by
blocks defined in Subannex A.6.4, represent components of the system. They are connected to each other
directly or through ports, representing physical interaction or signal flow between them. Item flows on
connectors indicate the type of signal or conserved physical characteristic that passes along them. Signals
control production of angular momentum by the engine. The cruise controller (speedController) receives
speed signals from the driver (driver) and the wheels (impeller), where the former is the goal speed and the
latter is the current speed. The cruise controller determines speed adjustments by sending the engine
(powerSource) a signal containing the amount of fuel needed to inject into the engine. Angular momentum
typically flows out from the engine to the wheels and is transformed to linear momentum back into the car
through interaction with the road. This appears in Figure 104 as a connector between wheel and automobile
supported by an association block specifying the transformation, as well as another connector between the
wheel and road to depict the contact between the two. The car's linear momentum is also affected by
gravitation (gravVehicleLink) and surrounding air (atmosphere), appearing in Figure 104 as additional
connectors between the car and these components.
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SysML initial values specify property values for components used in internal block diagrams. Figure 104
shows initial values and units for each of the system components (properties defined in Subannex A.6.4).
The car gives its cross-sectional area, drag coefficient, and mass. The driver specifies values for decisions
about the car’s speed. The cruise controller gives its proportional-integrator and throttle-acceleration
coefficients that determine the amount of fuel injected into the engine. The engine specifies its torque
coefficient, related to the gears and crankshaft of the car. The wheel has a radius and a coefficient for
dissipation of angular momentum into heat due to rolling resistance. Earth specifies its gravity and density
of its atmosphere. The road gives values determining its slope. Initial values are specified directly on
CruiseControlTotalSystem for brevity, but could be on specializations instead, defining multiple test cases
without modifying the original system model. An alternative to initial values is to use default values on
blocks typing system properties (see Subannex A.5.9).

ibd CruiseControlTotalSystem J

controlledVehicle : Car

initial values
crossSectionalArea = 2.0{unit = squaredMeter}
dragCoefficient=1.0

mass = 2000.0{unit = kilogram}

initial values
acceleration=9.8
{unit = meterPerSecondSquared}

«connector»
airVehicleLink:

I
-
]
1
1
1
1
|
r
1
1
1
1
'

impeller:Wheel L
[i]crankshaft hub initial values
< » rrCoeff =0.5

AngularMomgntum L|'|radius = 0.5{unit=meter}

:- 1 1
- J '
H 1 A
' ' '
' ' '
' ' '
' ' '
' ' '
1 ' J
- J 1
I ' '
1 i i
E L driver:Person _______| H ! LMomentumTransfer !
i ! initial values \ ! t here: A !
' :changetime = 100.0{unit = second} i H E = mt{)slp Ire. . i
! | speed1 = 10.0{unit = meterPerSecond} 1 ! < h > density= 1.2 ues !
I ! speed2 = 15.0{unit = meterPerSecond} | 1 LinearMoment y=1. ’ I
' [t | ! ineariomentum {unit = kilogramPerCubicMeter} !
'
: : 5 :
H ; I I
! Speedignal 1 LinearMomentum i \
! dDriverJack [ gravVehicleLink : 1 !
I speedbriverJac ' LMomPotEngTransformation ' '
! speedSensorJack| H ' '
1 speedController : CruiseController ! ' !
' 1
I initial values ! «connector» ' |
i kI = 30.0{unit = hertzSquared} ! im pellerVehicleLink : e 1 E
! kP = 200.0{unit= hertz} | -~ -1 ALMomentumTransformation : H
! throttleAccRatio = 1.0{unit = secondSquaredPerMeter} | | surface : Road '
! n H initial values '
! throttleActuatorJack ! ) E::t;_%% !
| ' A =0. I
I A SpeedSignal ThrottleSignal ! start = 50.0{unit = second} '
! 9 H Momentum stop = 70.0{unit = second}| H
I ' ¥ !
E powerSource : Engine E : :
! initial values ' 1 H
H trqCoef = 1.0{unit = new tonMeter} ' ! '
'
i
'
'
'
'
'
'
'
'
'
'
'
'
'

Figure 104: Internal structure of the cruise control system

A.6.4 Blocks and ports

Figure 105: Total system blocks, ports, & component properties shows block definitions for components of
CruiseControlTotalSystem in Figure 104. Figure 106 and Figure 107 show more detailed definitions about
physical interactions between the car and the surrounding air and gravity, while Figure 109 and Figure 108
show these between the wheels and car and engine. Figure 110 shows definitions for signal flows in the car.
Many components have their own behaviors, defined as constraints in Subannex A.6.6.

Components involved in the interaction between the car and surrounding air are defined in Figure 106 (the
car and Earth’s port typed by A4ir). They are generalized by LMomFlowElement from the physical
interaction library (see Subclause 11.2.2), and linked by an association that is also a block,
LMomentumTransfer, indicated by a dashed line (the association end on the library side is owned by the
association, to avoid modifying the library element). The association block represents linear momentum
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transfer between the vehicle and the air around it. The internal structure of LMomentumTransfer is defined
in Subannex A.6.7 (see Subclause 9.2.2 about association blocks).

Components involved in the interaction between the car and Earth’s gravity are defined in Figure 107 (the
car and its potential energy in Earth’s gravitational field, LMomPotEngTransformation). They are
generalized by LMomFlowElement from the physical interaction library, and linked by an association. The
transformation between linear momentum and potential energy is not modeled with an association between
the car and Earth to highlight that momentum converted to potential energy can only be transferred back to
the car, as compared to momentum transferred to the air, which can be transferred to other objects. The
connector to Earth reflects its involvement in converting between linear momentum and potential energy,
even though the Earth is too large to accept or provide momentum. The connector also provides access to
properties needed by interaction equations, such as gravitation of the Earth and slope of the road, see
Subannexes A.6.6 and A.6.7. The internal structure of LMomPotEngTransformation is defined in Subannex
A.6.7.

Components involved in the transformation between angular momentum of the wheels and linear
momentum of the car are shown in Figure 108 (the car, road. and wheel). The car is generalized by
LMomFlowElement as before, while the wheel is generalized by interface block AMomFlowComponent,
which in turn is generalized by AMomFlowElement, from the physical interaction library (see Subclause
11.2.2). The library’s LMomFlowElement and AMomEFlowComponent are linked by an association that is
also a block ALMomentumTransformation, indicated by a dashed line (the association ends are owned by
the association, to avoid modifying the library elements). The association block represents transformation
between the wheels’ angular momentum and the car’s linear momentum. It has a port /M7TG typed by a
block LMomentumGround (generalized by LMomFlowElement), for connecting to physical objects that are
too large to accept or provide linear momentum, such as the road (generalized by LMomentumGround).
This connection appears in Figure 104, representing the road’s involvement in the transformation between
angular and linear momentum. The internal structure of AMomFlowComponent is defined in Subannex
A.6.7.

Components involved in transferring angular momentum between the car’s internal components are
depicted in Figure 109 (the engine and the wheel, via their crankshaft and hub ports, respectively). The
crankshaft and hub ports are typed by AMomFlowElement from the physical interaction library (crankshafts
and hubs are modeled as interface blocks for brevity).

The library blocks AMomFlowElement and LMomFlowElement have flow properties aMomF and IMomF',
respectively. They are typed by blocks FlowingAMom and FlowingLMom (also from the library)
representing flow of conserved physical characteristics. These give flow rate and potential variables (¢rg,
aV and f. [V). Models use the variables directly on library blocks or on specialized blocks that inherit them.

Components sending and receiving signals in the vehicle are shown in Figure 110 (the driver, wheels,
engine, and the cruise controller via its ports). Two cruise controller ports receive signals giving the
driver’s desired speed and the vehicle’s current speed, while a third sends signals to the engine setting the
fuel injection rate. The speed ports on the cruise controller are typed by the interface block
SpeedInFlowComponent to receive signals from the driver and wheels, which send them by specializing
SpeedOutFlowComponent. The throttle actuator port on the cruise controller is typed by the interface block
ThrottleOutFlowComponent to send fuel injection signals to the engine, which receives them by
specializing ThrottlelnFlowComponent.
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bdd Cruise Control Total Sy stem Structure)

controlledVehicle

«block»

CruiseControlTotalSystem

«block»
Car

phs constants

operatingEnvironment

«block»
Earth

acceleration : Acceleration

mass : Mass

crossSectionalArea : Area
dragCoefficient : Real

powerSource

«block»
Engine

phs constants
trqCoef : Torque

driver

«block»
Person

phs constants
speed1 : LinearVelocity
speed?2 : LinearVelocity
changetime : Time

phs constants

Kport»
atmosphere

«block»
Ar

phs constants
density : Density

airVehicleLink

«association, block»
LMomentumTransfer

grav VehicleLink

«block»

LMomPotEngTransformation

phs variables
mass : Mass
slope : Angle
acceleration : Acceleration

«port»
surface
«port»
crankshaft «block» . lerVehicleLink
«interfaceBlock» Road fmpeflervenicietin
SysPhsLibrary::AMomFlowElement phs variables «association, block»
=~ slope : Angle ALMomentumTransformation
::Eg o phs constants
flat : Angle
start : Time
«port» stop: Time
«block» impeller rise : Angle
Wheel «port»
speedController IMTG
phs constants
rrCoeff : Real «block» «block»
CruiseController LMomentumGround
phs variables
accCmd : Acceleration -
errorinteg : Length
Z phs constants
«interfaceBlock» throttleAccRatio : ThrottleAccelerationRatio
AMomFlowComponent kI : ICoefficient
kP : PCoefficient
phs constants
radius : Length
Kport»
throttleActuatorJack ;(gggd»SensorJack
«interfaceBlock» «port» -
ThrottleOutFlowComponent speedDriv erJack «nterfaceBlock»

SpeedinFlowComponent

Figure 105: Total system blocks, ports, & component properties
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bdd Air-Vehicle Interaction Decomposition)

«association, block» «block»
LMomentumTransfer Earth
|
: «block»
! «port» SysPhSLibrary::LinearMomentum
. X _ atmosphere JAN
«block» solid : fluid «block»
Car LinearMomentum Ar Piock
«DIOCK»
SysPhSLibrary::FlowingLMom
«interfaceBlock» phs variables
SysPhSLibrary::LMomFlowElement {isConserved}f : Force
physical interactions IV': Velocity
inout IMomF : FlowingLMom

Figure 106: Air-vehicle interaction blocks, ports, & component properties

bdd Gravity-Vehicle Interaction Decomposition )
«block» LinearMomentum «block»
c ————Pp— LMomPotEnaT ; " «block»
ar omTottng ranstormation SysPhSLibrary::LinearMomentum
«interfaceBlock» «block»
SysPhSLibrary::LMomFlowEement SysPhSLibrary::FlowingLMom
physical interactions phs variables
inout IMomF : Flow ingLMom {isConserved}f : Force
IV : Velocity

Figure 107: Gravity-vehicle interaction blocks, ports, & component properties
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bdd Impeller-Vehicle Interaction Decomposition)
«b(l;)ck» <blockn
a Earth
«block»
————— «port» SysPhSLibrary::LinearMomentum
« »
surface
SysPhSLibrary::LMomFlowElement book ?
«DlOCK»
hysical interactions block
«port» ) prysica Road «block»
impeller inout IMomF : Flowingl-Mom SysPhSLibrary::FlowingLMom
«block» toLMFC 4& ) phs variables
Wheel «block» {isConserved}f : Force
A IV : Velocity
Momentum LMomentumGround
«port»
Y IMTG «block»
«interfaceBlock» toAMFC SysPhSLibrary::AngularMomentum
AlomFlowComponent : «association, block» Zﬁ
________ ALMomentumTransformation
«block»
v rE——— SysPhSLibrary::FlowingAMom
«interfaceBlock»
hs variables
SysPhSLibrary::AMomFlowElement (isConserved) trq - Torque
physical interactions aV : AngularVelocity
inout aMomF : FlowingAMom

Figure 108: Impeller-vehicle interaction blocks, ports, & component properties

bdd Hub-Crankshaft Interaction Decom position)

«block»
Car
«port» «block»
powerSource impeller SysPhSLibrary::AngularMomentum
«block» «block» JAN
Engine Wheel
«port» «port» . «block» .
crankshaft hub SysPhSLibrary::FlowingAMom
- phs variables
«interfaceBlock» {isConserved} trq : Torque
SysPhSLibrary::AMomFlowElement aV : AngularVelocity

physical interactions
inout aMomF : FlowingAMom

AngularMomentum

< >

Figure 109: Hub-crankshaft interaction blocks, ports, & component properties
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bdd Signal Flow Decomposition)

«interfaceBlock»
ThrottleFlowComponent

signal flows
inout throttleSetting : Real

I 1

«interfaceBlock» ThrottleSignal «interfaceBlock»
ThrottleOutFlowComponent 4 ThrottleinFlowComponent
signal flows signal flows

out throttleSetting : Real {redefines throttleSetting} in throttleSetting : Real {redefines throttleSetting}
«port»
throttleActuatorJack
«block»
Engine
c _«bg)Ck); " «interfaceBlock»
ruiset-onfroer SpeedFlowComponent
signal flows
inout speed : LinearVelocity
A
«port» «port»
speedDriv erJack speedSensorJack
«interfaceBlock» SpeedSignal «interfaceBlock»
SpeedinFlowComponent <4 SpeedOutFlowComponent
signal flows signal flows
in speed : LinearVelocity {redefines speed} out speed : LinearVelocity {redefines speed}
«block» «block»
Person Wheel

Figure 110: Signal flow interactions blocks, ports, & component properties

A.6.5 Properties (variables)

Signal flow is the movement of numbers between system components. These numbers might reflect
physical quantities or not. In this example, they do not (see Subannex A.5 for an example where they do).

Signals flowing in and out of components are modeled by ports typed by interface blocks that have flow
properties typed by numbers. In this example, signal flow ports are typed by SpeedInFlowComponent,
SpeedOutFlowComponent, ThrottleInFlowComponent, or ThrottleOQutFlowComponent.
SpeedInFlowComponent and SpeedOutFlowComponent are generalized by the block
SpeedFlowComponent, which has the flow property speed typed by LinearVelocity, as shown in Figure
110, ThrottleInFlowComponent and ThrottleOutFlowComponent are generalized by the block
ThrottleFlowComponent, which has the flow property throttleSettling typed by Real, from SysML, as
shown in Figure 110. This value type has no unit, reflecting that the signals are not measurements of
physical quantities and do not follow conservation laws.

Physical interaction is the movement of physical substances between system components, modeled in terms
of conserved characteristics of the substances. In this example, linear and angular momentum are the
conserved characteristics moving through the car (momentum moves without an associated physical
substance) and between the car and the environment for the driving force and environmental disturbances
from gravity or surrounding air. Movement is described by numeric variables for flow rate and potential to
flow of conserved characteristics. In this example, movement of linear and angular momentum is
characterized by force and torque variables for the flow rate as well as linear and angular velocity variables
for potential to flow. The flow rate variable is conserved (values on ends of the interaction sum to zero) and
the potential variable is not (values on ends of the interaction are the same). This is modeled in three parts:
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e Conserved physical characteristics are modeled as blocks directly specialized from
ConservedQuantityKind in the physical interaction library (see Subclause 11.2.2),
LinearMomentum and AngularMomentum in this example.

e Flow variables are modeled as properties with the PhsVariable stereotype applied on
specializations of conserved quantity kind blocks. In this example, the linear momentum flow rate
and potential PhsVariables are f'and [V on FlowLMom (f marked as isConserved), respectively,
typed by Force and Velocity, respectively, all from the physical interaction library. Similarly, the
angular momentum flow rate and potential PhsVariables are trq and al on FlowAMom (trq
marked as isConserved), respectively, typed by Torque and AngularVelocity, respectively

e Flows in and out of components are modeled by ports typed by interface blocks that have flow
properties typed by flowing conserved quantity kinds. In this example, ports are typed by
LMomFlowElement or AMomFlowElement from the physical interaction library, which have flow
property [IMomF typed by FlowingLMom and flow property aMomF typed by FlowingAMom,
respectively, shown in Figure 106 through Figure 109.

In Figure 105: Total system blocks, ports, & component propertiesthe blocks LMomPotEngTransformation,
Road, and CruiseController have properties with PhSVariable stereotypes applied, specifying that the value
of these properties may vary during simulation. The blocks Car, Earth, Engine, Person, Air, Road,
CruiseController, and AMomFlowComponent have properties with PhSConstant stereotypes applied,

specifying that the value of these properties do not change during each simulation run.

A.6.6 Constraints (equations)

Equations define mathematical relationships between the values of numeric variables. Equations in SysML,
are constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this

example, the constraint blocks in Figure 111 _each define parameters and constraints for component blocks
in Figure 105 (Car, Air, LMomPoteEngTransformation, Wheel, Road, Engine, CruiseController, and
Person). Constraint blocks for components are named according to the component they constrain. The
constraint block ALMomTransConstraint defines parameters and constraints for the association block
ALMomentumTransformation, and FluidEffectConstraint defines the parameters and constraints for the
association block LMomentumTransfer. The constraints for Air, Road, and Person are not generally-
applicable equations as they are for the other blocks. They are only for when the air is still (has no
velocity), the road slope changes at two distinct times for a specified slope, and the driver changes the
vehicle’s speed at two separate time-stamps. The scenario has been defined with parameters in the
constraint blocks for brevity, but their properties can also be defined with block property redefinitions
(Subannex A.5.9) or by initial values in internal block diagrams (Subannex A.4.3).

The constraint blocks PersonConstraint and CruiseControllerConstraint specify manipulation of signals
moving through their respective component block. The cruise controller constraint calculates the best fuel

injection rate to reach the driver’s desired vehicle speed from vehicle’s current speed. All the other
constraints specify physical interactions, either between components in the car (angular momentum
between the engine and wheels) or between the car and its environment (angular momentum of the wheels
to and from linear momentum of the car or air, to and from potential energy, or to heat due to wheel rolling

resistance).
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bdd Cruise Control Total Sy stem Constraints)

«constraint»
CarConstraint

«constraint»
FluidEffectConstraint

«constraint»

LMomPotEngTransformationConstraint

constraints
{f=m*der(ISpeed)}

pararneters
f : Real
m : Real
ISpeed : Real

«constraint»
AirConstraint

constraints
{vel=0}

paraneters
vel: Real

«constraint»
WheelConstraint

constraints
{aS1=-aS2}
{IS=aS2*radius}
{rr*trq1+trq2=0}

paraneters

aS1 : Real
aS2 : Real
trq1 : Real
trg2 : Real
radius : Real
IS : Real

rr : Real

constraints
{f Fluid+f Solid=0}

{fFluid=0.5*density *v*2*dragCoef *crossSec}

{sSolid-sFluid=v}

constraints
{f=m*g*sin(angle)}

paraneters
fFluid : Real
sFluid : Real
fSolid : Real
sSolid : Real
crossSec : Real
density : Real
dragCoef : Real
v : Real

pararneters
f : Real
m : Real
g : Real
angle : Real

«constraint»
EngineConstraint

constraints
{trg=inTrq*trqCoef}

paraneters
trq : Real
inTrq : Real

trqCoef : Real

«constraint»
ALMomTransConstraint

constraints
{av=(lv-gv)/r}
{trq=f*r}
{gf =0}

pararreters

av : Real
trq : Real
r : Real

Iv : Real
f : Real

gv : Real
of : Real

«constraint»

CruiseControllerConstraint

constraints
{der(z)=setSpd-curSpd}
{u=kp*(setSpd-curSpd)+ki*z}
{thCmd=u*pConst}

paraneters

setSpd : Real
curSpd : Real

ki: Real

kp: Real

thCmd : Real

u : Real

z: Real

pConst : Real

«constraint»
RoadConstraint

constraints
{if time > start and time < stop then

slope=rise;
else
slope=flat;
end if}
{vel=0}

paraneters
slope : Real
flat : Real
start : Real
stop : Real
rise : Real
vel: Real

«constraint»
PersonConstraint

constraints
{if time<chg then
speedOut=speed1;
else
speedOut=speed?2;
end if}

pararneters
speedOut : Real
speed1 : Real
speed?2 : Real
chg : Real

A.6.7 Constraint properties and bindings

Figure 111: Cruise control total system constraint blocks

Equations in constraint blocks are applied to components using binding connectors in component

parametric diagrams. Component parametric diagrams show properties typed by constraint blocks

(constraint properties), as well as component and port simulation variables and constants. Binding

connectors link constraint parameters to simulation variables and constants, indicating their values must be

the same. Figure 112 through Figure 119 show the parametric diagrams for the car, air, transformation
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between linear momentum and gravitational potential energy, wheel, road, engine, cruise controller, and

person, respectively.

par Car J

«constraint»
cC : CarConstraint

{f=m*der(ISpeed)}

constraints

IMomF.f : Force

I
«equal» :I ¢

ISpeed m

[1_[]

parameters

IMomF.IV : Velocity

«equal»

«equal»

mass : Mass

Figure 112; Parametric diagram applying the car constraint

par Air J

«constraint»
aC : AirConstraint

{vel=0}

constraints

IMomF.IV : Velocity

«equal»

:|vel

parameters

Figure 113: Parametric diagram applying the air constraint

par LMom PotEngTransformation)

-

«constraint»

IMPETC : LMomPotEngTransformationConstraint

constraints

{f=m*g*sin(angle)}

___________

parameters

f angle g9 m
il [1 [1 )
«equal»
«equal» «equal» «equa]» ___________ .
R I ' mass :Mass
L 1

IMomF.f : Force | |slope: Angle!
L

Figure 114: Parametric diagram applying the linear momentum-potential enerqy transformation

constraint
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par Wheel |

p

«constraint»
wC : WheelConstraint

hub

aMomF.aV : AngularVeIocityl'

aMomF .trq : Torque

constraints
{aS1=-aS2}
{IS=aS2*radius}
{rr*trq1+trq2=0}

B «equal»

«equal»

e

:|a81
:|trq1

parameters

ITE

«equal | rcoeff : Real
«equal» !"radius : Length |

radius E

par Road |

flat: Angle

- «equal»
rise : Angle 9

aS2 Is tra2 E «equal aMomF .trq : Torque
«equal» «equal»
aMomF.aV : AngularVelocity speed : LinearVelocity
Figure 115: Parametric diagram applying the wheel constraint
«constraint»
rC : RoadConstraint
constraints
{if time > start and time < stop then
slope=rise;
else
slope=flat;
end if}
{vel=0}
parameters
«equal»
& Mt
:lrise
«equal» |«equal»
«equal»
«equal»
start: Time stop: Time
slope : Angle IMomF.IV : Velocity

Figure 116: Parametric diagram applying the road constraint
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par Engine J

crankshaft

«constraint»
eC : EngineConstraint

constraints

{trg=inTrg*trqCoef}

parameters

aMomF.trq : Torque «equal» :| trq

trqCoef inTrq
JtraCoet T

«equal»

«equal»

trgCoef : Torque throttleSetting : Real

Figure 117: Parametric diagram applying the engine constraint

par CruiseControIIer)

speedDriverJack

speed : LinearVelocity

speedSensorJack

speed: LinearVelocity

throttleActuatorJack

«equal» ||
|

; equal
ki [] G988 [ - ICoefficient

throttleSetting : Real

kP : PCoefficient

«constraint»
cCC: CruiseControllerConstraint
constraints
{der(z)=setSpd-curSpd}
{u=kp*(setSpd-curSpd)+ki*z}
{thCmd=u*pConst}
parameters
«equal» thCmd I:
:l setSpd
«equal» :IcurSpd
«equal»
u pConst 2 ke[]
«equal» «equal» «equal»
accCmd : Acceleration

errorinteg : Length

| throttleAccRatio : ThrottleAccelerationRatio

Figure 118: Parametric diagram applying the cruise controller constraint
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par Person J p

«constraint»
pC : PersonConstraint

constraints
{if time<chg then
speedOut=speed1;

else
speedOut=speed?;
end if}
parameters
chg

speed2 speed1 speedOut

[1)

«equaly»
«equal» «equal» |

changetime : Time speed1 : LinearVelocity «equal»

speed? : LinearVelocity

speed : LinearVelocity

Figure 119: Parametric diagram applying the person constraint

Figure 120 and Figure 121 are association block internal block diagrams rather than component

parametric diagrams, to include connectors other than binding. These diagrams bind properties of the

blocks linked by the association (participants) to variables and constants of a block inside the association.
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ibd [association, block] LMomentumTransfed

«equal»
LinearMomentum

fE : FluidEffect
s N\
«constraint»
fEC : FluidEffectConstraint
constraints
{f Fluid+f Solid=0}
{f Fluid=0.5*density *v/2*dragCoef *crossSec}
{sSolid-sFluid=v }
parameters
«equal»
vel :l v dragCoef |: «equal»
rd_er;s_it;/-; «equal» :l density
L, N «equal»
crossSec[
sFluid fFluid sSolid fSolid
1 [1 [1 [1] )
«equal» | crossSectionalArea \
«equal» tem - ---=!
equal» «equal»
fluid solid
MomF IV | [ |IMomF.IV | |IMomF.f |

LinearMomentum

: «participant» :
: solid : Car 1

1
1 {end = toSolid} 1

«equal»
«equal»

Figure 120: Internal block diagram applying the fluid effect constraint in the association block

LMomentumTransfer
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ibd [association, block] ALMomentumTransformation )

aLMTC : ALMomTransComponent

«constraint»
aLMTC : ALMomTransConstraint
constraints
{av=(lv-gv)ir}
{trq=f*r}
{gf=0}
paraneters
aMomF.av | «equab Jav «equal [ IMomF.IV
Iv |:
aMomF.trq | «equal» irg
f E «equal» | IMomF.f
|
Mradius '7<<equa > ] gf gv
«equal» «equal»
IMCG
IMomF.f IMomF.IV
«equal»
AngularMomentum
g LinearMomentum
1
! «participant» !
! aMFC : AMomFlow Component ! «equal» | _____ .
| {end = toAMFC} ! ' «participant» |
:'““““_ """""""" i ' IMFC : LMomFlow Element
: radius ! : {end = toLMFC} |
1
: ________________________ : .
]
(54|
IMTG

Figure 121: Internal block diagram applying a transformation constraint in the association block

Figure 122 shows bindings between some value properties on separate components in Figure 104. For

ALMomentumTransformation

example, the values of some properties of the car and Earth parts are used in the gravitational potential

energy block.
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ibd CruiseControlTotalSy stemProperty Bindings)

[ - =

gravVehicleLink: LoperatingEnvironment : Earth
LMomPotEngTransformation

«equal»
mass

surface : Road

«equal»
slope slope
- «equal»
acceleration

«connector»
impellerVehicleLink : ALMomentumTransformation

impeller : Wheel

aLMTC : ALMomTransComponent

Aradius : Length

«equal»

“radius : Length

Figure 122: Internal block diagram applying property bindings across system components

SYSPHS11-3: Explain how to identify source of errors in (debug) physical interaction models

B.Platform-Independent Debuqqging (non-normative)

B.1 Introduction

It is helpful to identify causes of errors in earlier stages of system model development, before they
propagate to (potentially multiple) simulation models. It can also verify and increase understanding of the
relationships captured in system models before discipline-specific experts focus on parts of the system in
their own models and tools. Any errors not due to usage of SysML or its extensions, translators, or
simulator execution engines will be in the source SysML models.

This annex gives an overview of platform-independent debugging procedures for physical interaction and
signal flow in SysML models extended with SysPhS, before translation to simulation platforms. They are
intended to complement existing debugging techniques on those platforms.

The type of failure influences the debugging procedures required to identify and fix errors. This annex is
concerned with fixing system model errors that cause failure to:

e Compile or execute simulation models translated from system models

e Produce expected results from simulation execution.

Failures of translation from extended SysML models to simulation due to incorrect usage of SysPhS or
translator construction are not addressed.

Errors that cause failure to simulate arise from system model structure. These show the modeler’s design
does not properly support simulation. The underlying equations might be inconsistent, including being
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overconstrained (more equations than variables) or underconstrained (fewer equations than variables). The

model might have equations that would divide by zero. functions being called outside of their real domain
(such as the square root of a negative number), or other erroneous symbolic transformations.

Errors that cause simulations to produce unintended results arise from the meaning of the system model.
These reflect discrepancies between desired behavior and simulation execution. Although some errors can

be identified automatically depending on the simulation tool being used (such as variable values outside
bounds). these errors can also be found manually after trying to validate the simulation results. These errors
can come from incorrect equations, incorrect parameter or initialization values, and incorrect function calls
from equations. Errors can also be due to integration errors with the solvers being used, which are not
considered in this annex.

Debugging errors in physical interactions is more complicated than in signal flows, because following
ordered execution of command sequences or operations does not work for bidirectional relationships (see

Clause 6.1 on the bidirectionality of physical interactions). Debugging errors in physical interactions must
examine chains of variable transformations in the model (mathematical operations on variables to give
values to other variables).

This annex describes two debugging techniques for SysML system models of physical interactions and
signal flows that are intended to be translated into simulation platforms:

e  Static debugging identifies errors that cause failure to compile simulation models to executable
code. These techniques trace variable (symbolic) transformations through the model to identify

erroneous sections.

e Dynamic debugging identifies errors that cause simulation to produce unexpected results. These
techniques involve interactive inspection of models during execution to bookkeep changing

variable values over simulated time. They must be used after static debugging techniques to ensure
models can be compiled to executable code.

The rest of this annex gives an overview of these debugging procedures applied to the vehicular cruise
control system example from Subannex A.6.

B.2 Preprocessing: Simplifying Models

If a simulation model fails to compile or execute correctly, the cause can be identified by tracing through

chains of connectors between components. This is the basis for static debugging techniques and facilitates

dynamic debugging. It simplifies debugging to move physical interaction and signal flow connectors into
separate models. The two simpler models can be debugged separately before replicating the resulting fixes

in the complete model, a simpler task than debugging the entire model all at once.

First, create a model of physical interactions only by removing all connectors in the original model’s
internal block diagram (IBD) that do not represent physical interactions (saving a separate copy of the
original model first). Any remaining parts or ports that are not at the end of the remaining connectors or do
not possess a port that is at the end of a remaining connector are also removed. Figure 123 shows internal
structure from the cruise control system example (Figure 104: Internal structure of the cruise control system
in Subannex A.6) with only its physical interactions.
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initial values

:ci:iontrolleid’)ilehicle :};ar

: : R ] i acceleration = 9.8
1 initial values ! i A
! crossSectionalArea = 2.0{unit = squaredMeter} ! _ «oonnector» i {unit = meterPerSecondSquared}
i dragCoefficient = 1.0 : airVehicleLink : [ T
i mass = 2000.0{unit = kilogram} ' LMomentumTransfer !
o TTTTTTTTTTTTTTTT atmosphere : Air
H initial values
! 4. > density =1.2
: LinearMomentum {unit = kilogramPerCubicMeter}

LinearMomentum

Momentum

r “Enai ; gravVehicleLink :
powersource : Engine H LMomPotEngTransformation H
initial values H 1
trqCoef = 1.0{unit = newtonMeter} H E
thmme‘,ﬁfmng =08 T «connector» IMTG :
S S——— [ impellerVehicleLink : 1
cranksha i ALMomentumTransformation H

surface : Road
initial values
initial values flat =09
rise = 0.1
mCoeff =05 start = 50.0{unit = second}
AngularMomentum radius = 0.5{unit=meter} stop = 70.0{unit = second}

Figure 123: Cruise control total system model with only physical interactions

Next, in the parametric diagrams for the remaining parts or ports, remove equations (constraints)
determining values of variables (constraint parameters) that are bound to (signal flow) out-flow properties
(see Clause 7 for discussion on flow properties for signal flows and physical interactions). Remove part or
port properties that are bound to variables on these out-flow equations as well. Replace any remaining
equation variables bound to in-flow properties on the parts or ports by constant values, either by directly
replacing the parameter with a constant value in constraints or by introducing a binding to a PhASConstant-
stereotyped property that has a constant default value or instance value (see Subclause 10.10.2 for value
assignment examples). Figure 124 depicts a parametric diagram for a component in Figure 123, before and
after these changes were made for a physical interactions-only model.

par Wheel o par Wheel ] -
«constraint» «constraint»
wC : WheelConstraint wC : WheelConstraint
constraints constraints
{aS1=-aS2} {aS1=-as2}
hub {IS=aS2*radius} hub {rr*trq1+trq2=0}
{rr*trq1+trq2=0} parameters

parameters
N - «equal» aMomF.aV : AngularVelocity «equal»
| aMomF.aV : AngularVelocity I"|«equal» Jest ] rrCoeff: Real ‘ | |--|—:|as1

«equal» radiusE «equal> [wadius : Length «equal»

trg1 :I trg1
aMomF.trq : Torque :I «equal» aMomF.trq : Torque _I tq2
asS2 IS tra2 E aMomF.trq : Torque as2

«equal» «equab» |cequal»

«equal» «equal»

| aMomF.aV : AngularVelocity | | aMomF.trq : Torque

| aMomF.aV : AngularVelocity |

speed : LinearVelocity

rrCoeff : Real

Figure 124: Show two (2) parametric diagrams of the same component (before and after changes for
the physical interactions-only model)

A separate system model for signal flows is created by first removing all connectors in the original model’s
IBD that do not represent signal flows (while saving a separate copy of the original model). Also remove
any remaining parts or ports that are not at the end of the remaining connectors or does not possess a port
that is at the end of a connector. Figure 125 shows an IBD with only the signal flows in the original cruise
control total system model.
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Figure 125: Cruise control total system model with only signal flows

Next, in each parametric diagram for the remaining parts or ports, remove equations that play no role in
determining values of variables bound to out-flow properties (see Clause 7 for discussion on flow
properties for signal flows and physical interactions) or equations that do not have any bindings to in-flow
properties. Remove part or port properties not bound to variables on the remaining equations. Of the
remaining equations, some variables might be bound to physical interaction inout-flow properties on the
parts or ports. These flow properties are replaced during simplification. If any equation variable bound to
these flow properties determine the value of a variable bound to an out-flow property, then remove the
inout-flow property and give a new constant value to its variable by binding to a PASConstant-stereotyped
property that has a constant default value or instance value (see Subclause 10.10.2 for value assignment
examples). If any equation variable bound to these flow properties is determined by a variable in the same
equation that is bound to an in-flow property, then remove the inout-flow property and give its variable a
new binding to a new property with a PhSVariable (see Subclause 10.6.2 on applying variable- and
constant-value stereotypes to properties). Figure 126 depicts a parametric diagram for a component in
Figure 123, before and after these changes were made for a signal flows-only model.

ar Wheel ar Wheel
p—) «constraint» p—) «constraint»
wC : WheelConstraint wC : WheelConstraint
@1 cosn;t}raims constraints
aS1=-a aS1=-aS2
{IS=aS2*radius} %IS=aSZ*raLius)
hub {rrtrq1+trq2=0} hub

parameters

parameters

|aMomF.aV:AngularVeIocityl‘j «equal» ]aS1 "I: «equab [\ coeff: Real ‘ |aMomF.aV:AngularVeIocityl'—| «equal» :l S1
a

radius|_] «equal» | nadiys : Length

«equal»

I S e
aMomF .trq : Torque “radius : Length
d d aS2 IS "'QZE «equaly aMomF.trq : Torque 9

aS2 IS

«equal» «equal» «equal» «equal»

aMomF.aV : AngularVeIocityl speed : LinearVelocity | aMomF.aV : AngularVeIocityl speed : LinearVelocity

Figure 126: Show two (2) parametric diagrams of the same component (before and after changes for
the signal flows-only model)
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The remaining sections present the debugging techniques. Static techniques find causes of failure to
compile and simulate translated models. This type of failure prevents generating a simulation run-time from
the translated model. Once compilation succeeds, dynamic debugging techniques identify causes of failure
to produce intended simulation behavior. The underlying theme for static debugging is tracing symbolic

transformations in the model to find errors. Transformation tracing is also useful for dynamic debugging to
better understand the model and sources of potential simulation-related errors.

B.3 Static Debuqging for Failure-to-Execute Simulation

The failure of a simulation model (translated from a system model) to compile and execute on a simulation
platform indicates a static error. These errors can be identified with debugging techniques applied to the
system model without translating and simulating it (statically). These techniques trace chains of symbolic
transformations in the model, which appear in SysML as mathematical relationships in constraint equations
(in parametrics diagrams) or implied by connectors (in IBDs). Specifically, tracing refers to tracking
transformations of known and unknown variables through a model. Known variables are properties whose
values are assigned a constant value or determined through mathematical relationships. Tracing is
complemented by bookkeeping, which records the known or unknown status of these variables when
operations apply to them in the model.

Static debugging can be performed on complete system models, but is described here on simplified,

complementary models of a system’s physical interactions and signal flows. For models with physical
interactions, the first task is to identify the part, port, or connector property in IBDs where physical

interaction will first occur or initiate other physical interactions in the system. Multiple parts and ports
where physical interactions simultaneously occur can initiate further interactions, but any one can be
arbitrarily picked to begin tracing. Tracing and bookkeeping of mathematical transformations start with
properties associated to this selected part or port. Deciding which system component commences the
physical interactions is easy in many cases. For example, the initiators of flow of electric charge in an
electric circuit are the voltage sources or current sources. In the cruise control system represented in IBDs
in Figure 104 and Figure 123, the throttle in the engine physically initiates the car’s interaction with the

road and air (this happens on command from the driver, but the command is signal flow, not physical
interaction).

When the initiator of physical interaction is not obvious, it can help to inspect the parametric diagrams of
parts or ports in IBDs. Parametric diagrams contain bindings between properties of the parts (or ports) to
variables in the part’s constraint equations. Look for parametric diagrams of parts that have a higher
number of PhSConstant-stereotyped properties (with values given explicitly in the model) than
PhSVariable-stereotyped properties (with values determined by mathematical relationships in the model),
except for PhSVariables that give simulation time. The equation variables (constraint parameters) bound to
PhSConstant or time properties are used in the part’s equations (constraints) to determine values of other
variables, which are bound to other properties used in the part’s equations. To find an initiator, search for a
part or port where most of its properties or properties of its ports are bound to constants or time values in its
parametric diagram. The only properties without constant or time values should be flow properties, which
can only have their values determined through connectors. Parts or ports initiating physical interactions
have the fewest of these flow properties.

Tracing bindings and constraints in parametric diagrams helps understand and keep track of (bookkeep)
which variables in the equations are known and unknown. Constraint equations show mathematical
transformations between known variables, bound to properties with known values, and unknown variables,
bound to properties with unknown values. Before simulation, the only known variables are the ones bound
to PhSConstant properties, the variables bound to properties given (initial) values at the start of simulation,
and properties that give simulation time values. These should lead to values assigned to all variables in the
parametrics diagram of physical interaction-initiating parts. The status of these variables will change as
tracing shows their values being assigned through constraints or connectors, which is recorded by

bookkeeping.
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Physical interaction flow properties on the current part in the debugging process link to flow properties on

parts or ports at the other end of the linking connectors. Trace along these connectors to find out whether
values are assigned to these flow properties leads to parametric diagrams of other parts, ports, and

connector properties linked to the current part. Repeat the same methods of tracing and bookkeeping in
these other parametric diagrams to determine whether values are assigned to unknown variables and to find
flow properties that lead to new connectors and parametric diagrams. The trace must go through all
connectors and parametric diagrams of the system’s parts, ports, and connector properties. Figure 127
shows an example of tracing and bookkeeping value assignments between the vehicle’s engine, the
physical interaction-initiating part of the cruise control system, and the rest of the physical interactions-only
system IBD from Figure 123. Bookkeeping of the total trace completes the tracking of value assignments.
The bookkeepings of variables for Figure 127 are depicted in the tables that follow the figure. The traces in
the bookkeepings correspond to the marked points in the figure (A, B, C, D. E, & F).

A system model will compile and simulate when translated if it a) uses all the constraint equations and
connectors in the model for mathematical transformations between known and unknown variables and b)
has all its property values determined by simulation of mathematical transformations. If tracing and
bookkeeping identifies a constraint equation or connector that is not used, the system is overconstrained. In
this scenario, the modeler must choose whether unused equations or connectors should be removed or a
new property should be included and related to them. If an unknown property is not defined by any
mathematical constraint or connector, then the system is underconstrained. In this scenario, the modeler
must choose between using this property in a new equation or removing the property. Tracing and
bookkeeping of equations also helps spot constraint equations that involve a division by zero and functions
called outside their domains. Once corrections to the model are made, they are replicated in the original

system model.

If there is a complementary model of signal flows, repeat the process of tracing and bookkeeping in a
similar fashion, but start tracing from all parts that do not have in-flow properties or do not own ports that
have in-flow properties. The in-flow property on these parts indicate that they receive unidirectional signals
from another part in the model, so they cannot be the initiator of signal flows. Corrections in this model
should likewise (the physical interactions model) be reproduced in the original, complete model of the
system. Translate the corrected SysML model and test on simulation platforms to determine if more
debugging is needed.

CruiseControlPhysicallnteractions J

E initial values
1 acceleration = 9.8

A

initial values E .
crossSectionalArea = 2.0{unit = squaredMeter} ! _ «connector» {unit = meterPerSecondSquared}
dragCoefficient = 1.0 : airVehicleLink : B
mass = 2000.0{unit = kilogram} ! LMomentumTransfer :
""""""""""""""""""""""""""""" 1 : atmosphere : Air
‘:- . H . initial values
:<_ A > density =1.2
: LinearMomentum {unit = kilogramPerCubicMeter}
: LinearMomentum E ;
Source Enai F < 5 < | gravVehicleLink : :
PowerSource : Engine | < — | LMomPotEngTransformation |
initial values H ' D
trqCoef = 1.0{unit = newtonMeter} : :
throttI?_S_?ttlng =0.8 ; «connector MTG E
W rankshaft .5_ ...... impellerVehicleLink : :
ALMomentumTransformation :

Momentum surface : Road
| impeller : Wheel flat = 0 gmialvalues
initial values rise = 0.1
<4 > mCoeff =05 C start = 50.0{unit = second}
AngularMomentum hub | radius = 0.5{unit=meter} stop = 70.0{unit = second}

Figure 127: Shows initiating physical interaction component (at point A), direction of traces,
bookkeeping of variables, and value assignment that occur through the total trace (ending at F)
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Bookkeeping of variables through parts and ports from A to B

power- Value crankshaft Value hub Value impeller Value impeller- Value
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throttle- angular angular angular angular
Setting velocity velocity velocity velocity D
rrCoeff force
radius linear
velocity D
radius
ground-
force D
ground-
linear D
velocity
Bookkeeping of variables through parts and ports from C to B to F
surface Value IMTG Value impeller- Value controlled- Value
known? (ground)  known? VehicleLink known? Vehicle known?
linear force torque mass
velocity
slope linear angular force
velocity velocity
force linear
velocity
linear
velocity
radius
ground-
force
ground-
linear
velocity
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Bookkeeping of variables through parts and ports from D to F
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They focus on simulation results for variables involved in the static traces of flow properties linked by

connectors in the previous section. This showed how variables characterizing flow of physical substances
and signals during simulation are related via transformations in the system model (mathematical operations

via constraint equations and connectors). Though dynamic debugging can be performed without prior static

debugging, fixing static errors first ensures the simulation model will compile and execute, and static
tracing improves understanding of how variables change during simulation.

Dynamic debugging can be performed on complete system models, but is described here on simplified,
complementary models of a system’s physical interactions and signal flows. Behavior of conserved
substances in physical interactions is characterized by their flow rate and potential to flow. Flow rate and
potential to flow appear in simulation as variables translated from properties at the ends of connectors in
the system model. This enables modelers to track simulation variables that correspond to properties in
SysML system models. The SysPhS translator uses the names of association ends and constraint parameters

in the resulting simulation models to facilitate this, but tracking simulation variables might require some

familiarity with the simulation language. Lastly, like static debugging, dynamic debugging starts by tracing
simulation variable transformations at points in the model that initiate physical interactions in the rest of the

model. These points must be identified before debugging.

Physical interaction variables simulate flow of conserved substances only at their corresponding connector
endpoint (part or port) in the system model. A more complete picture of symbolic transformations of these
variables is seen by observing their values over simulated time and comparing them to other physical
interaction simulation variables in the model. Graphical displays in simulation tools show these values,
enabling comparison of simulated values to their intended mathematical relationships. The relationships are
defined, correctly or not, through transformations (mathematical relationships between variables derived
from connectors and parametric diagrams in the system model) of corresponding flow properties in the
system model. To visualize these transformations, observe variables when their corresponding flow
properties have not undergone more than one set of transformations (operations that occur on flow
properties in the constraints of one parametric diagram or in the mathematical relationship implied by one
connector). Compare simulation values of these variables with those of other physical interaction variables
related to the same part or port in the system model, as well as simulation variables related to the other end
of the variables’ associated connectors.

Analysis of simulation variable results is performed in simulation runs that are sufficiently long for their
values to reach a steady-state or a recognizable pattern of changes. Check that changes follow the
mathematical transformations specified in corresponding constraint equations and connector links in the
system model, which can be modified to produce better results. Figure 128 shows the relationship between
simulated variable values over time and flow properties in the parametrics diagram (from Figure 124) for a
component in the physical interactions-only system IBD (from Figure 123).
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d
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Figure 128: Relationship between simulation variables and flow properties in the parametric

diagrams for components in the system IBD
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Further simplification of system models can determine whether simulation results are valid, especially
when physical interactions are highly complex. One way is to temporarily remove parts. ports, and
connectors until modelers have high confidence in what they expect from variable behavior. Once this
simpler model produces expected simulations, the removed parts, ports, and connectors can be restored and
checked (via simulations) in the reverse order that which they were removed.

For a complementary model of signal flows, if there is one, repeat the process of inspecting simulation
variables in a similar fashion. However, start tracing with all parts that do not have in-flow properties or do
not own ports that have in-flow properties, as chosen during static debugging. Replace remaining parts in a
complementary model of signal flows that only have out-flow properties or only have ports with out-flow
properties have their flow properties by PhSConstant-stereotyped properties with pre-specified values

before debugging.

Errors that are found by debugging are corrected in the system model, then tested by translating to
simulation models and executing them. Translating and testing system models to multiple simulation
platforms is more robust, because fixes sometimes work for one simulation platform and not others. For
example, a function call in a parametric diagram is domain-specific, and this might need to be replaced
with a more universal function call. It is also possible that some modeling capabilities in SysML, such as
state machines or different ways of defining initial values, cannot be replicated on some simulation
platforms (see Clause 10 for more specific examples about translation differences between simulation

platforms).
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