
An OMG SysML® Extension for Physical Interaction and Signal Flow Simulation Publication 

 

 
SysML Extension for Physical Interaction and Signal 
Flow Simulation 
Version 1.11 – with change bars 

 

OMG Document Number: formal/21-05-043 [smsc/21-05-02]  

Release Date: June 2021 

Standard Document URL: http://www.omg.org/spec/SysPhS/1.1/PDF 

Machine Consumable Files:  
Normative: 
 https://www.omg.org/spec/SysPhS/20200925/SysPhSProfile.xmi 

 
https://www.omg.org/spec/SysPhS/20200925/SysPhSLibrary.xmi 

Informative: 
https://www.omg.org/spec/SysPhS/2020092520200925/SysPhSAnnexA-ElectricCircuit.xmi 
https://www.omg.org/spec/SysPhS/202009225/SysPhSAnnexA-SignalProcessor.xmi 
https://www.omg.org/spec/SysPhS/202009225/SysPhSAnnexA-Hydraulics.xmi 
https://www.omg.org/spec/SysPhS/202009225/SysPhSAnnexA-Humidifier.xmi 
https://www.omg.org/spec/SysPhS/202009225/SysPhSAnnexA-CruiseController.xmi 
 

http://www.omg.org/spec/SysPhS/1.1/PDF
https://www.omg.org/spec/SysPhS/20200925/SysPhSProfile.xmi
https://www.omg.org/spec/SysPhS/20200925/SysPhSLibrary.xmi
https://www.omg.org/spec/SysPhS/20200925/SysPhSAnnexA-ElectricCircuit.xmi
https://www.omg.org/spec/SysPhS/20200925/SysPhSAnnexA-SignalProcessor.xmi
https://www.omg.org/spec/SysPhS/20200925/SysPhSAnnexA-Hydraulics.xmi
https://www.omg.org/spec/SysPhS/20200925/SysPhSAnnexA-Humidifier.xmi
https://www.omg.org/spec/SysPhS/20200925/SysPhSAnnexA-CruiseController.xmi


ii SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 

Copyright © 2016-17, No Magic, Inc. 
Copyright © 2021, Object Management Group, Inc. 

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES 

The material in this document details an Object Management Group specification in accordance with the terms, 
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this 
specification in any company's products. The information contained in this document is subject to change without notice. 

LICENSES 

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, 
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the 
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed 
the copyright in the included material of any such copyright holder by reason of having used the specification set forth 
herein or having conformed any computer software to the specification. 

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a 
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this 
specification to create and distribute software and special purpose specifications that are based upon this specification, 
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the 
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the 
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in 
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to 
this specification. This limited permission automatically terminates without notice if you breach any of these terms or 
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or 
control.  

PATENTS 

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may 
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a 
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of 
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users 
are responsible for protecting themselves against liability for infringement of patents. 

GENERAL USE RESTRICTIONS 

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations 
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this 
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or 
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission 
of the copyright owner. 

DISCLAIMER OF WARRANTY 

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN 
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE 
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, 
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY 
OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO 
EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE 
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA 
OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, 
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGES.  



SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 iii 

The entire risk as to the quality and performance of software developed using this specification is borne by you. This 
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification. 

RESTRICTED RIGHTS LEGEND 

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of 
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) 
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal 
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and 
may be contacted through the Object Management Group, 9C Medway Rd, PMB 274, Milford, MA 01757, U.S.A. 

TRADEMARKS 

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL 
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®, 
SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are 
registered trademarks of the Object Management Group, Inc.  

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names 
mentioned are used for identification purposes only and may be trademarks of their respective owners. 

COMPLIANCE 

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its 
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer 
software to use certification marks, trademarks or other special designations to indicate compliance with these materials. 

Software developed under the terms of this license may claim compliance or conformance with this specification if and 
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the 
specification. Software developed only partially matching the applicable compliance points may claim only that the 
software was based on this specification, but may not claim compliance or conformance with this specification. In the 
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this 
specification may claim compliance or conformance with the specification only if the software satisfactorily completes 
the testing suites. 



iv SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 

OMG's Issue Reporting Procedure 

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers 
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed 
on the main web page https://www.omg.org, under Documents, Report a Bug/Issue. 



SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 v 

Table of Contents 

Preface ................................................................................................................................. ix 

1. Scope ................................................................................................................................ 1 

2. Conformance ..................................................................................................................... 2 

3. References ........................................................................................................................ 2 
3.1 Normative References ........................................................................................................................ 2 
3.2 Non-normative References ............................................................................................................... 2 

4. Terms and definitions ........................................................................................................ 3 

5. Symbols ............................................................................................................................. 3 

6. Additional Information ........................................................................................................ 3 
6.1 Signal flow and physical interaction simulation compared ................................................................. 3 
6.2 How to read this specification ........................................................................................................... 3 
6.3 Changes to Adopted OMG Specifications .......................................................................................... 4 
6.4 Acknowledgements ............................................................................................................................. 4 

7. SysML Extension for Physical Interaction and Signal Flow Simulation .............................. 5 
7.1 Introduction.......................................................................................................................................... 5 
7.2 Simulation profile ................................................................................................................................. 5 

7.2.1 PhSConstant .......................................................................................................................................... 5 
7.2.2 PhSVariable............................................................................................................................................ 5 

8. Language for Mathematical Expressions ........................................................................... 9 

9. Preprocessing SysML Models ......................................................................................... 11 
9.1 Introduction........................................................................................................................................ 11 
9.2 Replace connectors typed by association blocks with their internal structure ................................. 11 

9.2.1 Purpose ................................................................................................................................................ 11 
9.2.2 SysML model before processing .......................................................................................................... 11 
9.2.3 SysML model after processing ............................................................................................................. 11 

9.3 Non-simulation ports changed to parts ............................................................................................. 12 
9.3.1 Purpose ................................................................................................................................................ 12 
9.3.2 SysML model before processing .......................................................................................................... 12 
9.3.3 SysML model after processing ............................................................................................................. 12 

9.4 Separate blocks owning simulation flow properties, and typing parts and ports.............................. 12 
9.4.1 Purpose ................................................................................................................................................ 12 
9.4.2 SysML model before processing .......................................................................................................... 13 
9.4.3 SysML model after processing ............................................................................................................. 13 

9.5 Reduce nesting of connector ends ................................................................................................... 16 
9.5.1 Purpose ................................................................................................................................................ 16 
9.5.2 SysML model before processing .......................................................................................................... 16 
9.5.3 SysML model after processing ............................................................................................................. 16 

10. Translating Between SysML and Simulation  Platforms ................................................ 17 
10.1 Introduction...................................................................................................................................... 17 
10.2 Root element ................................................................................................................................... 17 

10.2.1 Purpose .............................................................................................................................................. 17 
10.2.2 SysML modeling................................................................................................................................. 17 
10.2.3 Modelica modeling ............................................................................................................................. 18 
10.2.4 Simulink modeling .............................................................................................................................. 18 
10.2.5 Simscape modeling ............................................................................................................................ 18 
10.2.6 Summary ............................................................................................................................................ 19 

10.3 Blocks and properties...................................................................................................................... 19 
10.3.1 Purpose .............................................................................................................................................. 19 
10.3.2 SysML modeling................................................................................................................................. 19 
10.3.3 Modelica modeling ............................................................................................................................. 19 
10.3.4 Simulink modeling .............................................................................................................................. 20 
10.3.5 Simscape modeling ............................................................................................................................ 20 
10.3.6 Simulink/Simscape modeling ............................................................................................................. 20 



vi SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 

10.3.7 Summary ............................................................................................................................................ 21 
10.4 Generalization ................................................................................................................................. 21 

10.4.1 Purpose .............................................................................................................................................. 21 
10.4.2 SysML modeling................................................................................................................................. 21 
10.4.3 Modelica modeling ............................................................................................................................. 21 
10.4.4 Simulink modeling .............................................................................................................................. 22 
10.4.5 Simscape modeling ............................................................................................................................ 22 
10.4.6 Summary ............................................................................................................................................ 22 

10.5 Property redefinition ...................................................................................................................... 22 
10.5.1 Purpose .............................................................................................................................................. 22 
10.5.2 SysML modeling................................................................................................................................. 23 
10.5.3 Modelica modeling ............................................................................................................................. 23 
10.5.4 Simulink modeling .............................................................................................................................. 23 
10.5.5 Simscape modeling ............................................................................................................................ 24 
10.5.6 Summary ............................................................................................................................................ 24 

10.6 PhSVariables and PhSConstants ................................................................................................... 24 
10.6.1 Purpose .............................................................................................................................................. 24 
10.6.2 SysML modeling................................................................................................................................. 24 
10.6.3 Modelica modeling ............................................................................................................................. 25 
10.6.4 Simulink modeling .............................................................................................................................. 25 
10.6.5 Simscape modeling ............................................................................................................................ 25 
10.6.6 Summary ............................................................................................................................................ 25 

10.7 Ports and Flow Properties ............................................................................................................... 25 
10.7.1 Purpose .............................................................................................................................................. 25 
10.7.2 SysML modeling................................................................................................................................. 25 
10.7.3 SysML modeling, signal flow .............................................................................................................. 26 
10.7.4 Modelica modeling, signal flow .......................................................................................................... 26 
10.7.5 Simulink modeling, signal flow ........................................................................................................... 26 
10.7.6 Simscape modeling, signal flow ......................................................................................................... 27 
10.7.7 SysML modeling, physical interaction ................................................................................................ 27 
10.7.8 Modelica modeling, physical interaction ............................................................................................ 27 
10.7.9 Simulink modeling, physical interaction ............................................................................................. 28 
10.7.10 Simscape modeling, physical interaction ......................................................................................... 28 
10.7.11 Summary .......................................................................................................................................... 29 

10.8 Connectors ...................................................................................................................................... 29 
10.8.1 Purpose .............................................................................................................................................. 29 
10.8.2 SysML modeling................................................................................................................................. 29 
10.8.3 Modelica modeling ............................................................................................................................. 29 
10.8.4 Simulink modeling, between blocks with no constraints .................................................................... 30 
10.8.5 Simulink modeling, between blocks with constraints ......................................................................... 30 
10.8.6 Simulink modeling, between blocks that have constraints and blocks that do not ............................ 31 
10.8.7 Simscape modeling ............................................................................................................................ 32 
10.8.8 Summary ............................................................................................................................................ 33 

10.9 Blocks with constraints .................................................................................................................... 33 
10.9.1 Purpose .............................................................................................................................................. 33 
10.9.2 SysML modeling................................................................................................................................. 33 
10.9.3 SysML modeling, signal flow .............................................................................................................. 33 
10.9.4 Modelica modeling, signal flow .......................................................................................................... 34 
10.9.5 Simulink modeling, signal flow ........................................................................................................... 34 
10.9.6 Simscape modeling, signal flow ......................................................................................................... 35 
10.9.7 SysML modeling, physical interaction ................................................................................................ 36 
10.9.8 Modelica modeling, physical interaction ............................................................................................ 36 
10.9.9 Simulink modeling, physical interaction ............................................................................................. 37 
10.9.10 Simscape modeling, physical interaction ......................................................................................... 37 
10.9.11 Summary ....................................................................................................................................... 38 

10.10 Default values and initial values .................................................................................................... 38 
10.10.1 Purpose ............................................................................................................................................ 38 
10.10.2 SysML Modeling ............................................................................................................................... 38 
10.10.3 Modelica modeling............................................................................................................................ 39 
10.10.4 Simulink modeling ............................................................................................................................ 39 
10.10.5 Simscape modeling .......................................................................................................................... 39 
10.10.6 Summary .......................................................................................................................................... 40 



SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 vii 

10.11 Data types and units ...................................................................................................................... 40 
10.11.1 Purpose ............................................................................................................................................ 40 
10.11.2 SysML modeling ............................................................................................................................... 40 
10.11.3 Modelica modeling............................................................................................................................ 40 
10.11.4 Simulink modeling ............................................................................................................................ 40 
10.11.5 Simscape modeling .......................................................................................................................... 41 
10.11.6 Summary .......................................................................................................................................... 41 

10.12 State machines .............................................................................................................................. 41 
10.12.1 Purpose ............................................................................................................................................ 41 
10.12.2 SysML modeling ............................................................................................................................... 41 
10.12.3 Modelica modeling............................................................................................................................ 42 
10.12.4 Simulink/StateFlow modeling ........................................................................................................... 43 
10.12.5 Summary .......................................................................................................................................... 45 

10.13 Mathematical expressions ............................................................................................................. 46 

11. Platform-independent Component Library ..................................................................... 47 
11.1 Introduction...................................................................................................................................... 47 
11.2 Component interaction .................................................................................................................... 47 

11.2.1 Signal flow .......................................................................................................................................... 47 
11.2.2 Physical interaction ............................................................................................................................ 48 

11.3 Component behavior ....................................................................................................................... 48 
11.3.1 Introduction ........................................................................................................................................ 48 
11.3.2 Real-valued components ................................................................................................................... 49 
11.3.3 Logical components ........................................................................................................................... 55 
11.3.4 Electrical components ........................................................................................................................ 56 

11.4 Value types with units ..................................................................................................................... 61 
11.5 Platform-dependent extension ........................................................................................................ 61 

11.5.1 Introduction ........................................................................................................................................ 61 
11.5.2 Platform profile ................................................................................................................................... 61 
11.5.3 Platform library................................................................................................................................. 64 

Annex A - Examples (non-normative) .................................................................................. 65 
A0.1 Introduction...................................................................................................................................... 65 
A0.2 Electric Circuits ............................................................................................................................... 65 

A.2.1 Introduction ........................................................................................................................................... 65 
A.2.2 System Being Modeled ........................................................................................................................ 65 
A.2.3 Internal Structure .................................................................................................................................. 65 
A.2.4 Blocks and Ports .................................................................................................................................. 66 
A.2.5 Properties (variables) ........................................................................................................................... 66 
A.2.6 Constraints (equations) ........................................................................................................................ 67 
A.2.7 Constraint Properties and Bindings ...................................................................................................... 67 

A0.3 Signal Processor ............................................................................................................................. 69 
A.3.1 Introduction ........................................................................................................................................... 69 
A.3.2 System Being Modeled ........................................................................................................................ 69 
A.3.3 Internal Structure .................................................................................................................................. 69 
A.3.4 Blocks and Ports .................................................................................................................................. 70 
A.3.5 Properties (variables) ........................................................................................................................... 71 
A.3.6 Constraints (equations) ........................................................................................................................ 72 
A.3.7 Constraint properties and bindings ...................................................................................................... 72 

A0.4 Hydraulics ........................................................................................................................................ 74 
A.4.1 Introduction ........................................................................................................................................... 74 
A.4.2 System Being Modeled ........................................................................................................................ 74 
A.4.3 Internal Structure .................................................................................................................................. 74 
A.4.4 Blocks and Ports .................................................................................................................................. 75 
A.4.5 Properties (variables) ........................................................................................................................... 75 
A.4.6 Constraints (equations) ........................................................................................................................ 76 
A.4.7 Constraint properties and bindings ...................................................................................................... 76 

A0.5 Humidifier ........................................................................................................................................ 77 
A.5.1 Introduction ........................................................................................................................................... 77 
A.5.2 System Being Modeled ........................................................................................................................ 77 
A.5.3 Internal Structure .................................................................................................................................. 77 
A.5.4 Blocks and ports ................................................................................................................................... 80 
A.5.5 Properties (variables) ........................................................................................................................... 82 



viii SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 

A.5.6 Constraints (equations) ........................................................................................................................ 82 
A.5.7 Constraint Properties & Bindings ......................................................................................................... 84 
A.5.8 State Machines ..................................................................................................................................... 88 
A.5.9 Initial Values ......................................................................................................................................... 88 

A0.6 Cruise Control System .................................................................................................................... 92 
A.6.1 Introduction ........................................................................................................................................... 92 
A.6.2 System Being Modeled ........................................................................................................................ 92 
A.6.3 Internal Structure .................................................................................................................................. 92 
A.6.4 Blocks and Ports .................................................................................................................................. 94 
A.6.5 Properties (variables) ......................................................................................................................... 100 
A.6.6 Constraints (equations) ...................................................................................................................... 102 
A.6.7 Constraint properties and bindings .................................................................................................... 104 

Annex B - Platform-Independent Debugging (non-normative) ........................................... 116 
B.1 Introduction ...................................................................................................................................... 116 
B.2 Preprocessing: Simplifying Models ................................................................................................. 116 
B.3 Static Debugging for Failure-to-Execute Simulation ....................................................................... 121 
B.4 Dynamic Debugging for Unexpected Simulation Results ............................................................... 127 



SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 ix 

Preface 
About the Object Management Group 
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies and academia.  

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach 
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Meta-model); 
and industry-specific standards for dozens of vertical markets.  

More information on the OMG is available at https://www.omg.org/.  

OMG Specifications  
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal 
Specifications are available from this URL: https://www.omg.org/spec  

All of OMG‟s formal specifications may be downloaded without charge from our website. (Products implementing 
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF 
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, 
Inc. at: 

OMG Headquarters 
9C Medway Road, PMB 274 
Milford, MA 01757 
USA 

Tel: +1-781-444-0404 
Fax: +1-781-444-0320 

Email: pubs@omg.org 

Certain OMG specifications are also available as ISO/IEC standards. Please consult: http://www.iso.org  

 

Issues 
The reader is encouraged to report and technical or editing issues/problems with this specification to: 
https://www.omg.org/report_issue.htm 

  

https://www.omg.org/
mailto:pubs@omg.org
http://www.iso.org/
https://www.omg.org/report_issue.htm


x SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank. 



SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 1 

1. Scope  
Systems engineers coordinate the work of multiple other engineering disciplines (mechanical, material, electrical, 
control, and so on), requiring information to flow between systems engineers and those in other disciplines. 
Systems engineering information intentionally does not cover all disciplines, but must integrate with them to enable 
systems engineers to communicate with other engineers. Using discipline-specific tools separately from system 
modeling tools typically leads to redundancy, inconsistency, and less efficient engineering processes. 

Many engineering disciplines (mechanical, electrical, and so on) use simulation tools that present graphical 
interfaces for linking system components, then solve equations generated from the graphical models, and report 
predicted values of system properties over time. Linked components interact physically (mechanically, electrically, and 
so on) or send numeric signals to each other (see Subclause 6.1 for the difference between physical interaction and 
signal flow). The tools generate (ordinary and algebraic) differential equations to describe the evolution of numeric 
system properties over time, and solve them to predict system behavior. These models are sometimes known as 
lumped parameter or 1 -D models, but this specification refers to them as physical interaction and signal flow, to 
emphasize their applications (or just simulation models for brevity). This kind of simulation is specified without regard 
to physical distances between or within components, as compared to distributed simulation models (as in finite element 
analysis), in which behavior specifications account for physical distances between or within components. See Subclause 
6.1 for more information about this kind of simulation. 

Graphical interfaces presented by physical interaction and signal flow simulators express concepts similar to the 
Systems Modeling Language (SysML), an extension of the Unified Modeling Language (UML). Both languages show 
system components, how components are connected together, and how physical substances and information flow 
between components. SysML and these simulators both have underlying textual languages to record models in computer-
processable file formats. Simulators translate models specified through graphical interfaces into file- based formats, 
which are then transformed into equations for solution by numerical analysis. SysML-based tools use their filed-
based formats to perform other kinds of analysis and verification, checking completeness of designs against 
requirements. 

When SysML tools and physical interaction and signal flow simulators are used separately, simulation engineers must 
re-specify their systems in each tool they are using, including information that is also available in SysML models. This 
additional effort would not be necessary if the information to perform this kind of simulation were available in SysML 
and translations were defined between SysML and simulation languages. 

This specification: 

• Extends SysML with additional information needed to model physical interaction and signal flow simulation 
independently of simulation platforms. 

• Provides a human-usable textual syntax for mathematical expressions. 
• Includes a platform-independent SysML library of simulation elements that can be reused in system models. 
• Gives translations between SysML as extended above and two widely-used simulation languages and tools for 

physical interaction and signal flow simulation. 

With the extension, expression language, libraries, and translations above, information in common between SysML and 
simulation languages only needs to be specified once in SysML and translated to simulators, rather than manually 
recoded for each simulation language and tool. The library enables SysML models for simulation to be built more 
quickly by reusing library elements rather than reconstructing them for each application. Taken together, these 
capabilities provide a basis for more efficient integration of SysML models and processes with those of physical 
interaction and signal flow simulation. 
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2. Conformance  
A tool demonstrating conformance to this specification must satisfy at least one of these points: 

• Abstract syntax conformance. Tools demonstrating abstract syntax conformance provide user interfaces and/or 
APIs that enable: 

o Instances of concrete stereotypes defined in this specification (which are applications of 
stereotypes to instances of UML metaclasses) to be created, read, updated, and deleted, including links 
and references from these to instances of UML elements and instances of SysML stereotypes. 

o Bodies and languages of opaque expressions and opaque behaviors to be created, read, updated, and 
deleted conforming to the mathematical expression language defined in this specification. 

o Links and references to model library elements defined in this specification to be created and 
deleted. 

The tools also provide a way to validate the well-formedness of the above as defined by stereotypes, 
grammars, and model library elements in this specification. 

• Concrete syntax conformance. Tool demonstrating concrete syntax conformance provide user interfaces 
and/or APIs that enable the mathematical expression language defined in this specification and the SysML 
notation for the abstract syntax above to be created, read, updated, and deleted. See the SysML 
specification for more about SysML notation conformance. 

• Model interchange conformance. Tools demonstrating model interchange conformance can import and export 
conformant XMI for all models that are valid under this specification. Model interchange conformance 
implies abstract syntax conformance. 

• Translation conformance: Tools demonstrating translation conformance can translate between extended 
SysML and simulation models per this specification, either in one direction or both directions. 

3. References  
3.1 Normative References 
The following normative documents contain provisions which, through reference in this text, constitute provisions 
of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do 
not apply. 

[1] Object Management Group, “OMG Unified Modeling Language, version 2.5.11,” http://www.omg.org/spec/ 
UML/2.5.1, December 20177. 

[2] Object Management Group, “OMG Systems Modeling Language, version 1.6,” http://www.omg.org/spec/ 
SysML/1.6, November 20199. 

[3] Modelica Association, “Modelica® - A Unified Object-Oriented Language for Systems Modeling, Language 
Specification, version 3.4,” http://www.modelica.org/documents/ModelicaSpec34.pdf, April 2017. 

[4] Modelica Association, “Modelica Standard Library,” https://github.com/modelica/Modelica, April 2016. 

[5] International Organization for Standardization, “ISO/IEC 14977:1996 Information technology – Syntactic 
metalanguage – Extended BNF,” http://www.iso.org/standard/26153.html, 1966. 

[6] International Organization for Standardization, “ISO 80000-1:2009 Quantities and units -- Part 1: General,” 
http://www.iso.org/standard/30669.html, 2009. 

3.2 Non-normative References 
[1] Kecman, V., State-Space Models of Lumped and Distributed Systems, Springer-Verlag, 1988. 

[2] Cellier, F., Elmqvist, H., Otter, M., “Modeling from Physical Principles,” in Levine, W., Control System 
Fundamentals, pp. 99-108, CRC Press, 1999. 

[3] Raven, F., Automatic Control Engineering (Fifth Edition), McGraw-Hill, January 1995. 

[4] The MathWorks, Inc., “Simulink® Documentation,” https://www.mathworks.com/help/releases/R2016a/ 
simulink/, 2016. 

[5] The MathWorks, Inc., “SimscapeTM Documentation,” https://www.mathworks.com/help/releases/ 
R2016a/physmod/simscape/, 2016. 

http://www.omg.org/spec/UML/2.5.1
http://www.omg.org/spec/UML/2.5.1
http://www.omg.org/spec/SysML/1.6
http://www.omg.org/spec/SysML/1.6
http://www.modelica.org/documents/ModelicaSpec34.pdf
https://github.com/modelica/Modelica
http://www.iso.org/standard/26153.html
http://www.iso.org/standard/30669.html
https://www.mathworks.com/help/releases/R2016a/simulink/
https://www.mathworks.com/help/releases/R2016a/simulink/
https://www.mathworks.com/help/releases/R2016a/physmod/simscape/
https://www.mathworks.com/help/releases/R2016a/physmod/simscape/
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2016. 

[7] The MathWorks, Inc., “StateFlow® Documentation,” https://www.mathworks.com/help/releases/R2016a/ 
stateflow, 2016. 

[8] Bock, C., Barbau, R., Matei, I., Dadfarnia, M., "An Extension of the Systems Modeling Language for 
Physical Interaction and Signal Flow Simulation", Systems Engineering, vol. 20, no. 5, pp. 395-431, 
2017. 

[9] Pop, A., Sjölund, M., Asghar, A., Fritzson, P., Casella, F., "Integrated Debugging of Modelica Models,” in 
Modeling, Identification and Control, vol. 35, no. 2, pp. 93-107, 2014. 

[10] Dadfarnia, M., Barbau, R., “Platform-Independent Debugging of Physical Interaction and Signal Flow 
Models,” Proceedings of the 13th Annual IEEE International Systems Conference, 2019. 

4. Terms and definitions  
For the purposes of this specification, the term ‘simulation’ will refer to physical interaction and signal flow 
simulation, unless qualified. See Clause 1 for more information about this kind of simulation. 

Stereotype names are sometimes used in place of instances of the base classes to which the stereotypes are 
applied. For example, the phrase “PhSVariable typed by Real” refers to a property that has the PhSVariable 
stereotype applied and that is typed by Real. 

5. Symbols  
There are no symbols introduced by this specification. 

6. Additional Information 
6.1 Signal flow and physical interaction simulation compared 
The differences between physical interaction and signal flow and lie mainly in how components interact, addressing two 
kinds of problems:: 

• In signal flow modeling, system components exchange numeric and boolean values in predetermined directions 
(unidirectionally). For each component, some values will be provided by other components (inputs), and some 
values will be provided to other components (outputs). Connections between components indicate that valuess 
are passed from one output of a source component to one or more inputs of target components. Component 
behavior is specified by equations that relate input, output, and component variables. Signal flow is well suited 
for describing control systems and signal-processing systems. 

• In physical interaction, system components exchange physical substances that carry energy in directions 
determined during simulation (possibly bidirectionally). Each exchange is modeled with two numeric values 
(flow rate and potential to flow of a physical substance, in terms of one of its conserved characteristics), 
compared to one (possibly boolean) value for signal flow, which does not involve physical substances. In physical 
interaction, the direction in which substances flow between components is not predetermined, as it is for values in 
signal flow. Component behavior in physical interaction is specified by equations that relate flow rate, potential, and 
component variables. The direction in which substances flow between components is determined during 
simulation and can change during simulation. Physical interaction is well suited for representing systems with 
components that exchange physical substances. 
 

In practice, physical interaction and signal flow are often combined in a same model. For example, many systems 
have physical components directed by control systems via sensors and actuators. 

6.2 How to read this specification 
Clauses 1 to 6 contain background and basics for reading this specification. Clause 1 describes the objectives of this 
specification and the intended readership. Clause 2 defines conformance. Clause 3 lists other specifications and 
documents containing provisions which, through reference in this text, constitute provisions of this specification. 

Clause 4 and 5 contains definitions of terms, abbreviations, and symbols used in this document. Clause 6 provides 
additional information to this specification. 

https://www.mathworks.com/help/releases/R2016a/matlab
https://www.mathworks.com/help/releases/R2016a/stateflow
https://www.mathworks.com/help/releases/R2016a/stateflow
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Clauses 7 to 11 are the technical part of this specification. Clause 7 defines a SysML extension for physical 
interaction and signal flow simulation. Clause 8 defines a language to be used for expressions representing equations and 
algorithmic statements. Clause 9 defines processing of SysML models that must be performed prior to translation 
to simulation platforms. Clause 10 provides translations between extended, preprocessed SysML models and two 
simulation platforms, Modelica and Simulink (including extensions to Simulink, such as Simscape). Clause 11 defines a 
platform-independent simulation library in SysML, with components corresponding to platform- dependent library 
components. 

Annex A gives additional examples showing how to use the contents of Clauses 7, 8, and 11. Annex 0 gives an  
overview of platform-independent debugging procedures for physical interaction and signal flow in SysML models 
extended with SysPhS. These are illustrated by applying them to an example from Annex A. 

6.3 Changes to Adopted OMG Specifications 
None. 
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7. SysML Extension for Physical Interaction and Signal 
Flow Simulation 
7.1 Introduction 
This clause defines a SysML extension for physical interaction and signal flow. It reflects features common to 
various physical interaction and signal flow platforms that are not present in SysML. This clause summarizes the 
extension. More information is given in Subclauses 10.6 and 10.7. 

7.2 Simulation profile 

 
Figure 1: Simulation stereotypes 

7.2.1 PhSConstant 
Package: SysPhS 
isAbstract: No 
Extended Metaclass: Property 
 
Description 
A PhSConstant has values that do not change during simulation runs. Values can change between simulation runs. 

Constraints 

[1] Properties stereotyped by PhSConstant must be typed by Real, Integer, or Boolean, or one of their 
specializations. 

[2] Properties stereotyped by PhSConstant must have multiplicity 1, unless they are also stereotyped by 
MultidimensionalElement (see Subclause 11.5). 

[3] Properties stereotyped by PhS Constant must not redefine more than one other property, which must have the same 
name and type and must be stereotyped by PhSVariable or PhSConstant. 
 

Notation 
The stereotype label between guillemets is “phsConstant”. 

A compartment with the label “phs constants” may appear as part of a block definition to list the properties 
stereotyped by PhSConstant. The properties omit the ‘«phsConstant»’ prefix. 

 

7.2.2 PhSVariable 
Package: SysPhS 
isAbstract: No 
Extended Metaclass: Property 
 
Description 

A PhSVariable has values that can vary over time in a continuous or discrete fashion. Continuous variables have 
values that are close to their values at nearby times in the past and future. Discrete variables have values that are the same 
as their values at nearby times in either the past or future, or both. The effect is that continuous variables vary smoothly 
over time, including the possibility of remaining constant, while discrete variables are always constant for a period of 
time, then change instantaneously to a possibly very different value for another period of time. Discrete variables can be 

«stereotype»
PhSConstant

«metaclass»
UML::Property

«stereotype»
PhSVariable

isContinuous : Boolean = true
isConserved : Boolean = false
changeCycle : Real = 0
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restricted to change values only at regular intervals (change cycle greater than zero), though they do not need to change 
at every interval. Variables being continuous or discrete does not imply any restriction on the range of their values, 
only the way in which those values change over time. 

PhSVariables are used to model exchanges between components (physical interaction and signal flow), as 
described below, and behavior within components (see Subclause 6.1). 

Component interactions are modeled on blocks describing the things that are interacting, rather than on associations 
between these blocks. The interacting blocks can type parts and ports. PhSVariables and flow properties are used to 
model component interactions: 

• Physical interactions are specified by inout flow properties typed by blocks that characterize substances 
crossing their boundaries in terms of a conserved characteristic of those substances. For example, electrons 
passing the boundary of an object are modeled as the flow of charge, rather than electrons. Blocks typing the 
flow properties (indirectly) specialize ConservedQuantityKind, each named for a physical characteristic (quantity 
kind) that is conserved in flows between components (see Subclause 11.2.2). The blocks describe flows with 
two PhSVariables, one conserved and one non-conserved, see below. 

• Signal flows are specified by in or out flow properties that are also non-conserved PhSVariables. They are 
typed by the kind of signal (numeric or boolean). 

Connected flow properties are on blocks typing parts or ports that have a connector linking them. Matching flow properties 
are defined in SysML. Physical interactions and signal flows can only occur between connected and matching flow 
properties that satisfy the constraints in the Constraints section below. 

In physical interactions: 

• Conserved PhSVariables give the rate at which substances are crossing the boundary of an object (flow rate) 
as a rate of the quantity kind that types the flow property. For example, fluids might cross the boundary of a 
tank, but the flow rate is given as volume (a quantity kind typing the flow property) per time, regardless of the kind 
of fluid. When physical flow properties are connected and match, the values of conserved PhSVariables on 
their types on all ends add up to zero (positive and negative flow rates indicate flows in opposite directions). 

• Non-conserved PhSVariables give the potential for substances to cross the boundary (potential to flow), whether 
any substance is crossing or not, as a potential of the same quantity kind used for the paired conserved 
PhSVariable. For example, fluid might have a high potential to flow at the boundary of a tank, but the potential is 
in terms of pressure (force per volume surface), whether any fluid is crossing the boundary or not, and 
regardless of the kind of fluid. When physical flow properties are connected and match, the values of non-
conserved PhSVariables on all ends are equal. 

In signal flows: 

• PhSVariables (that are also flow properties) give a numeric or boolean value crossing the boundary of an object. 
When signal flow properties are connected and match, their values on all ends are equal (they act like non-
conserved PhSVariables). 

Component behavior can be defined for blocks that type parts (component blocks), not ports. Components might pass 
physical substances and signals through them, possibly transforming them on the way, or creating, destroying, or 
storing them. These behaviors are specified with constraints blocks applied to component blocks. The constraints 
are mathematical equations relating values of: 

• PhSVariables for flow properties (flow variables, for modeling component interactions above). 
• PhSVariables not for flow properties (component variables, internal to components, not for modeling component 

interaction). The idea of conservation (or lack thereof) does not apply to these (because they are not related to 
interactions with other components), but they are specified as non-conserved. 

Constraints on flow variables specify the effect components have on physical substances or signals going through 
flow properties and might depend on component variables. Component variables might have values giving: 

• Potential differences between physical flow properties. These differences must be non-zero for physical 
substances to flow through a component. 

• Rates at which physical substances flow through a component. This differs from flow rates through flow 
properties when the component creates, destroys, transforms, or stores substances. 

• Internal states, such as, how much of a physical substance is currently stored, the temperature of a component, or 
the current value of a signal integrator. 
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Attributes 

• isContinuous: Boolean = true Determines whether the property value varies continuously or discretely. 

• isConserved: Boolean = false Determines whether values of the property value are conserved or not. 

• changeCycle: Real = 0 Specifies the time interval at which a discrete property value may change. 
 
Constraints 

[1] The stereotyped property must be typed by Real, Integer, or Boolean, or one of their specializations. 
[2] isContinuous may be true only when the stereotyped property is typed by Real or one of its specializations. 
[3] isConserved may be true only when isContinuous is true and the stereotyped property is on a block specialized from 

ConservedQuantityKind (see Subclause 11.2.2). 
[4] changeCycle may be other than 0 only when isContinuous is false. 
[5] changeCycle must be positive or 0. 
[6] A property stereotyped by PhSVariable must not be stereotyped by PhSConstant. 
[7] Properties stereotyped by PhSVariable must have multiplicity 1 unless they are also stereotyped by 

MultidimensionalElement (see Subclause 11.5). 
[8] Flow properties stereotyped by PhSVariable that are connected and matching must have opposite directions 

(in/out or out/in), the same type and multiplicity, and the same value for isContinuous on the applied 
stereotype. 

[9] Flow properties stereotyped by PhSVariable that have in direction may connect to and match no more than one other 
flow property stereotyped by PhSVariable. 

[10] A property stereotyped PhSVariable can redefine at most one other property and it must have the same name and 
type and must be stereotyped by PhSVariable. 

[11] When a property stereotyped by PhSVariable with isContinuous=true redefines another property, the 
PhSVariable applied to the redefined property must have isContinuous=true. 

[12] When a property stereotyped by PhSVariable with isContinuous=false redefines another property stereotyped by 
PhSVariable with isContinuous=false, the redefining property’s changeCycle must be an integer multiple of the 
redefined property’s changeCycle. 
 

Notation 

The stereotype label between guillemets is “phsVariable”. 

A compartment with the label “phs variables” may appear as part of a block definition to list the properties 
stereotyped by PhSVariable. The properties omit the “«phsVariable»” prefix. 

A compartment with the label “physical interactions” may appear as part of a block definition to list flow properties 
typed by a block specialized from ConservedQuantityKind that has one conserved and one non-conserved 
PhSVariable (see Subclause 11.2.2). 

A compartment with the label “signal flows” may appear as part of a block definition to list flow properties that have 
PhSVariable applied. 
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8. Language for Mathematical Expressions 
This clause describes a platform-independent textual language for mathematical expressions. The language is for use in 
the bodies of: 

• OpaqueExpressions of constraints, corresponding to equations. 
• OpaqueBehaviors, corresponding to algorithmic statements. 

OpaqueExpressions and OpaqueBehaviors that use this language in their body should have an associated ‘SysPhS’ 
string as their language. 

The SysPhS expression grammar includes a subset of Modelica’s grammar, as follows: 

• All terminal symbols 
• The following non-terminal symbols: equation, statement, if-equation, if-statement, for-statement, for- indices, 

for-index, while-statement, expression, simple-expression, logical-expression, logical-term, logical-factor, 
relation, relational-operator, arithmetic-expression, add-operator, term, mul-operator, factor, primary, name, 
component-reference, function-call-args, function-arguments, function-argumentsnon-first, named-arguments, 
named-argument, function-argument, output-expression-list, expression-list, array-subscripts, subscript 

Symbols in the Modelica grammar not listed above are not included in the SysPhS expression grammar. The 
semantics of the above symbols is given in Modelica (which is the same in MATLAB, the expression language in 
Simulink, Simscape, and StateFlow, assuming the translations in Subclause 10.13). 

The following non-terminal symbol is included in the SysPhS expression grammar to specify execution of a series of 
statements (expressed in extended BNF): 

statements : { statement ";" } 

When used in OpaqueExpressions, the root non-terminal symbol must be equation. When used in 
OpaqueBehaviors, the root non-terminal symbol must be statements. 

The following are functions available in SysPhS expressions language: abs, sign, sqrt, div, mod, rem, ceil, floor, sin, 
cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh, log, log10, exp, der. The semantics of these functions is given in 
Modelica (which is the same in MATLAB). 
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9. Preprocessing SysML Models 
9.1 Introduction 
This clause defines processing of SysML models performed prior to translation to simulation platforms per Clause 
10, to enable translations of SysML modeling patterns not covered in Clause 10. Subclause 9.2 covers associations 
blocks. Subclauses 9.3 through 9.5 address flow property and connector patterns. Preprocessing should be 
performed in the order of the subclauses below. In these subclauses, flow properties with PhSVariable applied or 
typed by blocks (indirectly) specializing ConservedQuantityKind are called simulation flow properties. 

9.2 Replace connectors typed by association blocks with their internal 
structure 

9.2.1 Purpose 
Many physical phenomena occur due to the relationship between two system components. For example, friction 
occurs when two pieces in contact move relative to each other and produce heat. SysML includes association blocks for 
modeling complex relationships, which are not available in simulation models. Connectors typed by association blocks 
must be replaced with the internal structure of their association blocks before translation to simulation platforms per 
the correspondences in Clause 10. 

9.2.2 SysML model before processing 
SysML association blocks are both associations and blocks. They represent relationships between two blocks, like 
associations, and can have structural features, like blocks. Figure 2 shows an example association block in a SysML block 
definition diagram on the top, as well as a usage of it in an internal block diagram on the bottom. The top diagram 
shows an association block FrictionAssociation relating Flanges. The internal structure of FrictionAssociation has a 
part typed by Friction with two ports, each connected to a participant of the association. The lower diagram shows a 
connector typed by the association block between the flange of a mass and the flange of a ground. The connector has a 
connector property typed by FrictionAssociation. 

 
Figure 2: Association block with internal structure and connector properties in SysML 

9.2.3 SysML model after processing 
Connectors typed by association blocks, including their connector properties, are replaced by the internal structure of the 
association blocks. Figure 3 shows the content of Figure 2 after processing.  The connector and its property fa in Figure 2 
is replaced by the content of the association block FrictionAssociation (the connector and its property and association 
block are removed). The flange of the mass and the flange of the ground replace the participant properties of the 
association block and are connected to the property f of type Friction in the same way as in the association block. The 
block definition diagram in Figure 2 is not changed. 

m:Mass :Ground

«block»
Flange

«block»
FrictionAssociation

«connector»
fa:FrictionAssociation

«participant»
{end=surface1}

p1

«participant»
{end=surface2}

p2
f:Friction

surface1 surface2

:Flange :Flange

fl1 fl2

bdd Example 

ibd SystemA 
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Figure 3: Association block with internal structure and connector properties in SysML 

9.3 Non-simulation ports changed to parts 

9.3.1 Purpose 
SysML supports blocks typing ports that have other properties beside simulation flow properties, but simulation models 
do not.  These ports must be changed into parts before translation to simulation platforms per Clause 10. 

9.3.2 SysML model before processing 
Figure 4 shows a port of type Wheel, which has a property radius that is not a simulation flow property. 

 
Figure 4: Association block with internal structure and connector properties in SysML 

9.3.3 SysML model after processing 
Ports typed by blocks that have other properties besides simulation flow properties (owned or inherited) are changed to 
regular parts. Figure 5 changes the port typed by Wheel in Figure 4 to a part. The property is not changed in any other 
way in this step, including connectors to it (external connectors to the property are addressed in later processing).  The 
block definition diagram in Figure 4 is not changed. 

 
Figure 5: Association block with internal structure and connector properties in SysML 

9.4 Separate blocks owning simulation flow properties, and typing parts 
and ports 

9.4.1 Purpose 
SysML blocks can have multiple flow properties on part and port types, but simulation models have flows only on port 
types, and only one per port for the correspondences in Clause 10. SysML blocks typing parts and ports can be the same 
or share properties by generalization, but simulation models use separate types for parts and ports. SysML connectors can 
link parts, but simulation models only link ports.  Before translation to simulation platforms per Clause 10, SysML parts 
must be typed by blocks that have no simulation flow properties (owned or inherited), while ports must be typed by 
blocks owning exactly one simulation flow property and no others (owned or inherited), and connectors must only link 
ports. 

m:Mass :Ground
:Flange :Flange

f:Friction
fl1 fl2

ibd SystemA

:Wheel

: Vehicle

ibd TotalSystem bdd Example 

«interfaceBlock»
AMomFlowElement

physical interactions
inout aMomF : FlowingAMom

«block»
Wheel

phs constants
radius : Length

:Wheel

: Vehicle

ibd TotalSystem
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9.4.2 SysML model before processing 
Figure 6 shows an example that will be used to illustrate the processing steps in Subclause 9.4.3. Block1 has two 
simulation flow properties (sfp0 and sfp1), a PhSVariable (sv), and a port of type Block2 (p). Block2 has two simulation 
flow properties (sfp2 and sfp3). 

 
Figure 6: Association block with internal structure and connector properties in SysML 

9.4.3 SysML model after processing 
The model in Figure 6 is processed in six steps. 

9.4.3.1 Move simulation flow properties to their own blocks 

Simulation flow properties owned by blocks that also have non-simulation flow properties (owned or inherited) are 
moved to a new block and a generalization is added between the original block to the new one. The same is done for 
blocks that own multiple simulation flow properties and no other properties, except that one of the simulation flow 
properties remains on the original block. Figure 7 shows how simulation flow properties are moved from the blocks in 
Figure 6. The two simulation flow properties of Block1 (sfp0 and sfp1) are moved to separate blocks (Sfp0Type and 
Sfp1Type), both generalizing Block1. In Block2, the first simulation flow property (sfp2) is left in the block, while the 
second (sfp3) is moved to a new block (Sfp3Type) generalizing Block2. 

 
Figure 7: Association block with internal structure and connector properties in SysML 

9.4.3.2 Add ports for simulation flow properties inherited to blocks that have non-simulation flow    
properties 

Ports are added to blocks that have non-simulation flow properties (owned or inherited) for each simulation flow 
property that is inherited directly from a block that owns it, such as those added in Subclause 9.4.3.1. The port type is the 
block that owns the inherited simulation flow property. In Figure 7, Block1 has non-simulation flow properties, as well as 
two simulation flow properties inherited directly from blocks that own them (sfp0 and sfp1, inherited from Sfp0Type and 
Sfp1Type, respectively). Figure 8 adds two ports to Block1 (psfp0 and psfp1), typed by the two general blocks.  Block2 in 
Figure 7 is not changed, because it does not have non-simulation flow properties. 

ports
p: Block2

bdd Example 

«block»
Block1

phs variables
sv: Real

«block»
Block2

physical interactions
inout sfp2: FlowType2
inout sfp3: FlowType3

physical interactions
inout sfp0: FlowType0
inout sfp1: FlowType1

ports
p: Block2

bdd Example 

«block»
Block1

phs variables
sv: Real

«block»
Sfp1Type

«block»
Sfp0Type

physical interactions
inout sfp1: FlowType1

physical interactions
inout sfp0: FlowType0

«block»
Sfp3Type

physical interactions
inout sfp3: FlowType3

«block»
Block2

physical interactions
inout sfp2: FlowType2
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Figure 8: Port added to block that has non-simulation flow properties and inherits simulation flow properties in 
Figure 7 

9.4.3.3 Split up ports typed by blocks that have inherited simulation flow properties 
Ports are added for each simulation flow property that is inherited to a block’s port types. The new ports are typed 
by the block owning the inherited simulation flow property. In Figure 8, Block1 has a port typed by Block2, which 
has a simulation flow property inherited from Sp3Type (sfp3, see Figure 7). Figure 9 adds a new port to Block1 
(psfp3) typed by Sp3Type, because of that inherited property. 

 
Figure 9: Port added alongside port typed by block with multiple simulation flow properties in Figure 8 

9.4.3.4 Relink binding connectors that involve simulation flow properties moved to added ports 

Binding connectors involving simulation flow properties that are moved to ports added in Subclauses 9.4.3.2 and 9.4.3.3 
are relinked to their new locations. Specifically, after the processing in Subclause 9.4.3.1, binding connectors linked to, 
or through property paths containing, a simulation flow property inherited to a block that has non-simulation flow 
properties (owned or inherited) are relinked through the ports added in Subclause 9.4.3.2. Similarly, binding connectors 
linked to, or through property paths containing, simulation flow properties on blocks typing ports with multiple 
simulation flow properties are relinked through the ports added in Subclause 9.4.3.3. Figure 10 shows binding connectors 
before processing linked through simulation flow properties inherited to Block1 (sfp0 and sfp1), and bindings connectors 
linked through simulation flow properties of Block2 (p.sfp2 and p.sfp3). Figure 11 relinks these bindings through the 
ports added in Subclauses 9.4.3.2 and 9.4.3.3 (psfp0.sfp0, psfp1.sfp1, and psfp3.sfp3). 

ports
psfp0: Sfp0Type
psfp1: Sfp1Type
p: Block2

bdd Example 

«block»
Block1

phs variables
sv: Real

«block»
Sfp1Type

«block»
Sfp0Type

physical interactions
inout sfp1: FlowType1

physical interactions
inout sfp0: FlowType0

ports
psfp0: Sfp0Type
psfp1: Sfp1Type
p: Block2
psfp3: Sfp3Type

bdd Example 

«block»
Block1

phs variables
sv: Real

«block»
Sfp1Type

«block»
Sfp0Type

physical interactions
inout sfp1: FlowType1

physical interactions
inout sfp0: FlowType0



SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 15 

 
Figure 10: Bindings involving simulation flow properties before processing 

 
Figure 11: Bindings in Figure 10 relinked through ports added in subclauses 9.4.3.2 and 9.4.3.3 

9.4.3.5 Replace or add connectors between properties typed by blocks that have simulation flow 
properties moved to added ports 

Connectors to parts or ports typed by blocks that inherit simulation flow properties that are moved to ports added in 
Subclauses 9.4.3.2 and 9.4.3.3 are replaced by connectors to their new locations. Specifically, after the processing in 
Subclause 9.4.3.1, connectors to parts typed by blocks that inherit simulation flow properties are replaced by connectors 
to the ports added for these simulation flow properties in Subclause 9.4.3.2. Connectors are added linking the ports added 
for ports with multiple simulation flow properties in Subclause 9.4.3.3. In both cases, connectors are replaced or added 
only if the other end will have a matching simulation flow property (see Subclause 7.2.4), otherwise the connectors are 
deleted (this occurs if some of the simulation flow properties do not match before processing). Figure 12 shows two parts 
typed by Block1 in Figure 6, before processing. A connector links the parts, and a second connector links their ports. 
Figure 13 replaces the first connector by two connectors between the ports psfp0 and psfp1, respectively, added due to 
the inherited simulation flow properties fsp0 and fsp1, respectively. The figure also adds a connector between the ports 
added for the simulation flow property psfp3 inherited to Block2. 

 
Figure 12: Connectors between parts and ports from Figure 6 before processing 

 
Figure 13: Connectors in Figure 12 replaced or added between ports added in Subclauses 9.4.3.2 and 9.4.3.3 

9.4.3.6 Removing generalizations to blocks owning simulation flow properties 

Now that all the port types needed for simulation have been created, some generalizations to blocks dedicated to 
simulation flow properties need be removed.  

ptc:Block1Constraint

sfp0.a

sfp1.a

a0

a1

p.sfp2.a

p.sfp3.a

a2

a3

par Block1

«equal»

«equal»

«equal»

«equal»

ptc:Block1Constraint

psfp0.sfp0.a

psfp1.sfp1.a

a0

a1

p.sfp2.a

psfp3.sfp3.a

a2

a3

par Block1

«equal»

«equal»

«equal»

«equal»

: Block1 : Block1p p

ibd Example

: Block1 : Block1

psfp0 psfp0
psp1 psfp1
p p
psfp3 psfp3

ibd Example
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Generalizations to blocks that own simulation flow properties are removed unless the inherited properties are redefined in 
the special block. Figure 14 removes the generalizations in Figure 9 and Figure 7. 

 
Figure 14: Generalizations in Figure 9 and Figure 7 removed 

9.5 Reduce nesting of connector ends 

9.5.1 Purpose 
SysML supports connectors that link ports reached from the block owning the connector through a chain of other 
properties (property path), but some simulation models can only link ports reached through one property. These SysML 
connectors must be split up to link ports reached through only one property before translation to simulation platforms per 
Clause 10. 

9.5.2 SysML model before processing 
Figure 15 shows a connector linking a port (z) reached through a chain of two other properties (x and y). The length of 
the nested connector end property path at that end is 2. 

 
Figure 15: Connector linking port reached through two other properties 

9.5.3 SysML model after processing 
Connectors that link ports reached from the owner of the connector through a chain of other properties (SysML nested 
connector end property paths longer than 1) are relinked to an added intermediate port, and a connector added from that 
port (reducing the property path length to 1). Figure 16 adds a proxy port to x’s type with the same type as z, and the 
connector in Figure 15 is relinked to the added port. A binding connector is added in x’s type between the new port and 
the original end of the connector. This procedure is repeated until connectors only link ports reached from the block 
owning the connector through one property. 

 
Figure 16: Connector in Figure 15 split by adding a proxy port and another connector 

bdd Example

ports
psfp0: Sfp0Type
psfp1: Sfp1Type
p: Block2
psfp3: Sfp3Type

«block»
Block1

phs variables
sv: Real

«block»
Sfp1Type

«block»
Sfp0Type

physical interactions
inout sfp1: FlowType1

physical interactions
inout sfp0: FlowType0

«block»
Block2

«block»
Sfp3Type

physical interactions
inout sfp3: FlowType3

physical interactions
inout sfp2: FlowType2

x : X

y:Y

a : A

z:Z

z:Z

ibd Example 

x: X

y:Y

a: A

z:Z

z:Zz:Z

ibd Example 

«equal»
«proxy»
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10. Translating Between SysML and Simulation Platforms 
10.1 Introduction 
This clause shows how to translate between SysML models extended as in Clause 7 (hereafter referred to as SysML) and 
models in multiple simulation platforms.  Translations are given as correspondences between patterns of using SysML 
and simulation platforms, enabling translation in either direction. However: 

• Many SysML capabilities are not supported on simulation platforms (some of these are supported by 
transforming SysML models before translation, see Clause 9). 

• Simulation platforms have more specific purposes than SysML, resulting in loss of information when translating 
from SysML to simulation platforms. 

The selected platforms are Modelica and Simulink, including extensions of Simulink, such as Simscape. The modeling 
concepts covered by these translations are available in both simulation languages. 

• Modelica is a textual simulation language for physical interaction and signal flow modeling supported by 
various simulation tools, such as OpenModelica, Dymola®, and MapleSim® that add graphical interfaces and 
numerical solvers. Modelica is defined by a grammar but does not have a metamodel. As a result, the terms used 
to describe Modelica models correspond to keywords defined in its grammar. 

• Simulink is a graphical simulation tool for signal flow modeling (unless extended, see below).  Its modeling 
concepts can be inferred from the simulation files generated from graphical models (no metamodel or textual 
language has been released for Simulink). Two file formats are currently used: the older punctuated textual 
format, or the newer XML format. The concepts used in these two formats are the same, but the structure and 
the way values are represented differ.  Simulink supports S-functions to represent system behaviors as 
MATLAB files (generally behavior in state-space form). S-functions always follow the same structure and use 
the same concepts. 

Simulink includes extensions for other aspects of systems modeling: 

• Simscape is the extension of Simulink for physical interaction modeling. Physical components specifications are 
persisted in a file that must conform to the Simscape grammar. Simscape concepts are named in the grammar. 

• Stateflow® is the Simulink extension for state machines. It uses additional concepts represented along with 
Simulink elements. 

Subclauses 10.2 through 10.12 are divided into these parts: 

• Purpose: Explains the particular kinds of information in system or simulation modeling covered by the 
subclause. 

• SysML modeling: Describes how the above information is modeled in SysML, extended as in Clause 7 when 
necessary, along with a small example. 

• Simulation platform modeling: Describes the correspondence between the portions of SysML used as above and 
modeling patterns in simulation platforms, along with simulation models corresponding to the SysML example 
above. 

• Summary: Summarizes the correspondences between SysML and simulation platforms in a table. 

Subclause 10.13 covers translations for the expression language in Clause 8. 

10.2 Root element 

10.2.1 Purpose 
Systems and simulation models are organized in a structured way starting with root elements. 

10.2.2 SysML modeling 
SysML root elements are packages, which are containers for model elements. Figure 17 shows a package P owning a 
block B. 
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Figure 17: Package and model in SysML 

10.2.3 Modelica modeling 
SysML packages correspond to Modelica models defined as the root element of a file.  

The following Modelica code corresponds to Figure 17.  It has a model P owning a model B (see Subclause 10.3.3). 

 

10.2.4 Simulink modeling 
A SysML package corresponds to a Simulink library paired with a model, defined as root elements of separate files. 
The model is executed during simulation, referencing blocks defined in the library (see Subclause 10.3.4 about 
defining and referencing Simulink blocks). Only Simulink blocks defined in libraries can be referenced (reused), 
either by a library or a model. Models link together references to library blocks, corresponding to SysML connectors 
between parts (see Subclause 10.8.4). 
 
The following Simulink codes in separate files correspond to Figure 17. The first has a library P and the second a 
model M (the names only appear in the file names). Both include a system, which the library uses to define a 
reusable block B. 

 

 

10.2.5 Simscape modeling 
SysML packages correspond to Simscape libraries compiled from directories of files with code corresponding to the 
elements in the package.  Simscape files each contain a single element (see Subclauses 10.2.5 and 10.7.10) and are stored 
in directories named for the Simulink library that will contain the elements after the directory is compiled (the library is 
not specified in the files, there is no Simscape language element for it corresponding to SysML packages).  

The package P in Figure 17 corresponds to a directory with “P” in its name.  The directory has a file containing Simscape 
code corresponding to block B (see Subclause 10.3.5). 

P

pkg Example

«block»
B

model P 
  model B  
  end B; 
end P; 

<Library> 
 <System> 
   <Block Name="B"> 
   </Block> 
 </System> 
</Library> 

<Model> 
  <System>  
  </System>  
</Model> 
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10.2.6 Summary 
SysML Modelica Simulink Simscape 

Package Model Library and Model, each 
containing a system 

Library (compiled from directory of 
element files) 

Element owned by 
package 

Element in model Element in system Element in library (compiled from 
element file) 

10.3 Blocks and properties 

10.3.1 Purpose 
Systems and simulation models contain classes describing systems and components that share the same features. Systems 
and components function (play roles) within others, which are described in models as the usage of one class by another.  
For example, a class for cars might have a power source reusing a class for engines. 

10.3.2 SysML modeling 
Modeling in SysML is based on blocks, which are classes of systems or components, describing objects that share the 
same features. These features can be structural or behavioral.  

Structural features of blocks are called properties, some of which are for values, such as numbers or strings of characters, 
and some of which are usages of other blocks. This difference is indicated by typing a property by a data type or by a 
block. Some system properties typed by blocks are parts, corresponding to usages of those block within a system or 
component.  

Figure 18 shows a SysML block A that contain one part b1 of type B. B is also a SysML block. 

 
Figure 18: Block and part in SysML 

10.3.3 Modelica modeling 
Modelica is a human-readable textual language for physical interaction and signal flow modeling. It is class-oriented, like 
SysML, but with different terminology. Modelica includes various kinds of classes, four of which are used in this 
specification: models (corresponding to SysML blocks that do not type ports, see below, and to SysML packages, see 
Subclause 10.3.3), connectors (for physical interaction, see Subclause 10.7.8), types (for SysML value types, see 
Subclause 10.11.3) and blocks (for SysML state machines, see Subclause 10.12.3). SysML properties correspond to 
Modelica components.  

The following Modelica example corresponds to the SysML block A in Figure 18. It has a Modelica model A 
corresponding to the SysML block A, with a component b1 typed by Modelica model B, corresponding to the SysML 
property b1 typed by block B. 

 
It has a model A corresponding to the SysML block A, with a component b1 typed by Modelica model B, corresponding 
to the SysML property b1 typed by block B. 

«block»
A

parts
b1: B

«block»
B

bdd Example

model A 
  B b1; 
end A; 
model B 
end B 
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10.3.4 Simulink modeling 
Simulink is a graphical language for signal flow modeling that has XML-based file format and an extension for 
physical interaction modeling (see Subclause 10.2.5). It is class-oriented to some extent, though not as much as the 
other simulation platforms used in this specification. Simulink has an abstraction called blocks that has many 
specializations, five of which are used in this specification: subsystems (corresponding to SysML blocks, see below), 
references (corresponding to SysML parts, see below), inports and outports (corresponding to SysML ports with in 
and out flow properties, see Subclause 10.7.5), and S-functions (corresponding to SysML constraint blocks, see 
Subclause 10.9.5). When used as a container, structural features are contained in a Simulink system. Simulink 
blocks are identified by an integer (SID) that is unique within its model or library. A SysML block and its parts 
correspond a Simulink block with a system containing blocks referencing other blocks (see Subclauses 10.4.4 and 
10.5.4 about inherited features).  

SysML blocks that do not have constraint properties correspond to Simulink subsystem blocks. SysML blocks with 
constraint properties correspond to either Simulink subsystem blocks (when Simscape is not included), or to Simscape 
components (when Simscape is included).  

The following example shows Simulink code corresponding to Figure 18. It has a Simulink subsystem block A 
corresponding to the SysML block A, with a system that contains a reference to the Simulink block B from the 
same library Example (see Subclause 10.2.4 about libraries). 

 

10.3.5 Simscape modeling 
SysML parts correspond to Simscape member components (see Subclauses 10.4.5 and 10.5.5 about inherited features).  

The following example shows Simscape code corresponding to blocks A and B in Figure 18.  It has a component A 
containing a member component b1 of type B from the same library Example (see Subclause 10.2.4 about libraries). 

 

10.3.6 Simulink/Simscape modeling 
Simscape is an extension of Simulink for physical interaction modeling. SysML blocks with constraint properties or 
binding connectors correspond to Simscape components.  

The following Simulink code corresponds to block A in Figure 18.  It has a subsystem block A, with a system that 
contains a reference b to the Simscape component B, (defined in Subclause 10.3.5), from the library Example (see 
Subclause 10.2.4 about libraries). 

 

<Block BlockType="SubSystem" Name="A" SID="1"> 
  <System> 
    <Block BlockType="Reference" Name="b1" SID="2"> 
      <P Name="Ports">[0,0]</P> 
      <P Name="SourceBlock">Example/B</P> 
    </Block> 
</System> 
</Block> 
<Block BlockType="SubSystem" Name="B" SID="3"> 
  <System> 
  </System> 
</Block> 

component A 
  components 
    b1=Example.B; 
  end 
end 
 
component B 
end 
 

<Block BlockType="SubSystem" Name="A" SID="1"> 
  <System> 
    <Block BlockType="Reference" Name="b" SID="2"> 
      <P Name="SourceBlock">Example/B</P> 
      <P Name="SourceType">B</P> 
      <P Name="SourceFile">Example.B</P> 
      <P Name="ComponentPath">Example.B</P> 
      <P Name="ClassName">B</P> 
    </Block> 
  </System> 
</Block> 
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10.3.7 Summary 
SysML Modelica Simulink Simscape 

Block with no constraint 
properties and no binding 
connector 

Model SubSystem block with 
system 

N/A 

Block with constraint 
properties or binding 
connectors 

Model SubSystem block with 
system 

Component 

Block name Model name SubSystem name Component name 

Property typed by a block, 
owned by block 

Component owned by 
model 

Reference block, owned by 
system 

Member component 

Property name Component name Reference block name Member component name 

Property type Component type Reference block source Member component type 

10.4 Generalization 

10.4.1 Purpose 
Generalization simplifies systems and simulation modeling by enabling features of one class to be reused by (inherited 
to) another class. 

10.4.2 SysML modeling 
SysML provides a generalization relationship to indicate that one block reuses the features of another. A block 
generalized by another block will inherit all the properties of that other block. SysML supports multiple generalizations 
of the same block.  

Figure 19 shows a block A with a property c1 of type C, and a block B that is a specialization of that block A. 

 
Figure 19: Generalization in SysML 

10.4.3 Modelica modeling 
SysML generalization corresponds to Modelica class extension, including multiple extensions of the same class.  

The following Modelica code corresponds to Figure 19.  It has a model A with a component c1 of type C, and a model B 
that extends A. As a result, B inherits the component c1 from A. 

 

«block»
C

«block»
A

parts
c1: C

«block»
B

bdd Example

model A 
  C c1; 
end A; 
 
model B 
  extends A; 
end B; 
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10.4.4 Simulink modeling 
Simulink does not support generalization (Simulink blocks cannot inherit features from other blocks). Inherited 
features that are not redefined in SysML (see Subclause 10.5) correspond to newly defined (uninherited) 
features in Simulink blocks. 

The following Simulink code corresponds to Figure 19. It has blocks A and B, each with a system containing a 
block c1 that references block C. There is no generalization between A and B. 

 

10.4.5 Simscape modeling 
Simscape supports single generalization of components. SysML generalization corresponds to Simscape 
superclassing when the special SysML block has only one generalization and does not redefine any properties (see 
Subclause 10.5), otherwise, SysML generalization has no correspondence in Simscape, and inherited properties in SysML 
that are not redefined correspond to new (uninherited) component members in Simscape. 

The following Simscape code corresponds to Figure 19. It has a component A with a member component c1 typed 
by C, and the component B generalized by A. 

 

10.4.6 Summary 
SysML Modelica Simulink Simscape 

Generalization Extend clause N/A Subclassing, when the special SysML 
block has only one generalization and 
does not redefine properties, 
otherwise, N/A. 

Inherited features Inherited components Newly defined (uninherited) 
features 

Inherited member components when 
the special SysML block has only one 
generalization and does not redefine 
properties, otherwise, new 
(uninherited) member components. 

 

10.5 Property redefinition 

10.5.1 Purpose 
Classes that inherit features in systems and simulation models (see Subclause 10.4) can alter those features.  For 
example, they can change the type of an inherited feature to a specialization of that type. 

<Block BlockType="SubSystem" Name="A" SID="1"> 
  <System> 
    <Block BlockType="Reference" Name="c1" SID="2"> <P Name="Ports">[0,0]</P> 
      <P Name="SourceBlock">Example/C</P> 
    </Block> 
  </System> 
</Block> 
<Block BlockType="SubSystem" Name="B" SID="3"> 
  <System> 
    <Block BlockType="Reference" Name="c1" SID="4"> 
      <P Name="Ports">[0,0]</P> 
      <P Name="SourceBlock">Example/C</P> 
    </Block> 
  </System> 
</Block> 

component A 
  nodes 
    c1 = Example.C; 
  end 
end 
component B < Example.A  
end 
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10.5.2 SysML modeling 
In SysML, blocks can alter inherited properties by redefinition. Figure 20 shows a block A with a property c1 of type C, 
and a block B specializing block A. B has a property c1 that redefines C::c1 to be typed by D, a specialization of C. 

 
Figure 20: Property redefinition in SysML 

10.5.3 Modelica modeling 
Modelica supports alteration of inherited properties as SysML does, except that the property name cannot be changed. 
SysML redefined and redefining properties correspond to Modelica replaceable and redeclare components, respectively.  

The following Modelica code corresponds to Figure 20.  It has a model A with component c1 indicated as replaceable, 
and a model B extending A with a component of the same name redeclaring it to alter the type (compare to Subclause 
10.4.3). 

 

10.5.4 Simulink modeling 
Simulink does not support redefinition because it does not support generalization (see Subclause 10.4.4). The effect of 
SysML redefinition can be achieved by using Simulink correspondences for properties (see Subclause 10.2.4) that 
redefine inherited ones (see Subclause 10.4.4 about inherited properties that are not redefined).  

The following Simulink code corresponds to Figure 20.  It has block A and B, each with a system containing a block c1, 
one referencing block C and the other block D (compare to Subclause 10.4.4). 

 

«block»
C

«block»
D

«block»
A

parts
c1: C

«block»
B

bdd Example

parts
c1: D {redefines c1}

model A 
  replaceable C c1;  
end A; 

model B 
  extends A; 
  redeclare D c1;  
end B; 

<Block BlockType="SubSystem" Name="A" SID="1"> 
  <System> 
    <Block BlockType="Reference" Name="c1" SID="2"> 
      <P Name="Ports">[0,0]</P> 
      <P Name="SourceBlock">Example/C</P> 
    </Block> 
  </System> 
</Block> 
 
<Block BlockType="SubSystem" Name="B" SID="3"> 
  <System> 
    <Block BlockType="Reference" Name="c1" SID="4"> 
      <P Name="Ports">[0,0]</P> 
      <P Name="SourceBlock">Example/D</P> 
    </Block> 
  </System> 
</Block> 
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10.5.5 Simscape modeling 
Simscape supports generalization (single, see Subclause 10.4.5), but not redefinition. The effect of SysML 
redefinition can be achieved by using Simscape correspondences for multiple generalization or inherited SysML properties 
that are redefined (see Subclause 10.4.5) and including correspondences for properties (see Subclause 10.2.5) that 
redefine inherited properties. 

The following Simscape code corresponds to Figure 20. It has component A and B, each with a member component 
c1, one typed by component C and the other by D (compare to Subclause 10.4.5). 

 

10.5.6 Summary 
SysML Modelica Simulink Simscape 

Redefined property Replaceable component N/A N/A 

Property that redefines 
inherited property of the 
same name 

Redeclare component Reference, inport, outport, 
or connection block 

Member component, variable, 
parameter, input, output, or node 

 

10.6 PhSVariables and PhSConstants 

10.6.1 Purpose 
Simulation modeling specifies how numeric and boolean variable values can change in more detail than system 
models. Simulation modeling distinguishes numeric variables with values that can change continuously (possible 
infinitesimally) over time from those that always change discretely (finitely), possibly only at regular intervals. 
It also identifies variables with values that can only change between simulations (constants), rather than during 
simulation. 

10.6.2 SysML modeling 
The simulation extension in Subclause 7.2 distinguishes properties as described above. Continuous SysML 
properties are stereotyped by PhSVariable, with isContinuous=true. Discrete properties are stereotyped by PhSVariable, 
with isContinuous=false. Constant properties are stereotyped by PhSConstant. 

 
Figure 21: PhSVariable and PhSConstant in SysML 

Figure 21 shows a block A with three properties: one continuous PhSVariable v1, one discrete PhSVariable v2, and one 
PhSConstant v3. 

Note: SysML notation for stereotype properties can omit a property if the default value is used. For example, 
isContinuous is true by default, and can be omitted from the notation for variables that are continuous. 

bdd Example

«block»
A

attributes 
«phsVariable» {isContinuous=true} v1 : Real
«phsVariable» {isContinuous=false} v2 : Real
«phsConstant» v3 : Real

component A 
  components 
    c1 = Example.C; 
  end 
end 
 
component B 
  components 
    c1 = Example.D; 
  end 
end 
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10.6.3 Modelica modeling 
The variability of Modelica properties are of four kinds: continuous, discrete, parameter, and constant. By default, 
Modelica properties are continuous. PhSVariables with isContinuous=true correspond to continuous components, 
PhSVariables with isContinuous=false correspond to discrete components, and PhSConstants correspond to parameter 
variables. 

The following Modelica code corresponds to Figure 21. It has a model A, with three properties v1, v2 and v3 of type 
Real, that are continuous, discrete, and parameter, respectively. 

 

10.6.4 Simulink modeling 
See Subclause 10.8 for Simulink corresponding to SysML value properties in the context of SysML constraint 
blocks and binding connectors. 

10.6.5 Simscape modeling 
Data properties in Simscape can either be (continuous) variables or (constant) parameters. Discrete variables are 
not supported. PhSVariables with isContinuous=true correspond to Simscape variables, and PhSConstants correspond to 
parameters. 

The following Simscape code corresponds to Figure 21. It has a component A with one variable v1, and one 
parameter v3. The variable v1 is continuous. 

 

10.6.6 Summary 
SysML Modelica Simulink Simscape 

Property stereotyped by PhSVariable, with 
isContinuous=true 

Continuous component N/A Variable 

Property stereotyped by PhSVariable, with 
isContinuous=false 

Discrete component N/A N/A 

Property stereotyped by PhSConstant Parameter component N/A Parameter 

Property type Component type N/A Member type 

 

10.7 Ports and Flow Properties 

10.7.1 Purpose 
Systems and simulation modeling describe interactions between system components. These interactions include 
exchanges of physical substances, signals, or both. System and simulation components include structural features used as 
connection points to other components. System and simulation models include connections between these points when 
the components are used.  System models specify the kind of things exchanged between connection points, while 
simulation models give characteristics of these exchanges, in particular the rate of flow and potential to flow. 

10.7.2 SysML modeling 
In SysML, interactions between parts are modeled using connectors. Connections are often between ports of these parts. 
Ports are properties used as connection points to other blocks. This correspondence assumes connectors are only between 

model A 
  Real v1; 
  discrete Real v2; 
  parameter Real v3 = “...”; 
end A 

component A 
  variables 
    v1 = 1; 
  end 
  parameters 
    v3 = 10; 
  end 
end 
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ports (see Subclause 9.4.2 about connectors between parts). Ports describe flows through them using flow properties, 
which specify the kind of things that flow by their type, as well as the direction of flow (in/out/inout).  

The extension for simulation in Subclause 7.2 adds information to flow properties needed for simulation, in particular, 
flow rates and potentials to flow (conserved and non-conserved PhSVariables, respectively). Physical interaction uses 
both of these, while signal flow has semantics equivalent to potential to flow. PhSVariables for physical interactions are 
on blocks specialized from ConservedQuantityKind (see Subclause 11.2.2) typing flow properties. PhSVariables for 
signals are flow properties (a property with two stereotypes applied) that have a numeric or boolean type specifying the 
kind of signal.  

Subclauses 10.7.3 through 10.7.6 cover signal flow modeling in SysML and simulation platforms, while Subclauses 
10.7.7 through 10.7.10 cover physical interaction modeling. 

10.7.3 SysML modeling, signal flow 

When modeling signal flow, flow properties on port types must be: 

• Stereotyped by a non-conserved PhSVariable. 
• Typed by Real, Integer, Boolean, or one of their specializations. 
• Either in or out. 

Figure 22 shows an example signal flow application. The block Spring has two ports u and y, of type 
RealInSignalElement and RealOutSignalElement from the signal flow library (see Subclause 11.2.1), respectively. 
RealInSignalElement has an in flow property rsig, while RealOutSignalElement has the same property with an out 
direction. 

 
Figure 22: Ports for signal flow in SysML 

10.7.4 Modelica modeling, signal flow 
SysML ports with a type containing a flow property stereotyped by a non-conserved PhSVariable and typed by 
Real, Integer, or Boolean, or one of their specializations, correspond to Modelica components typed by the same 
data type. SysML flow properties have no corresponding constructs in Modelica, but the Modelica component 
corresponding to the SysML port has a direction given by the flow property. 

The following Modelica code corresponds to Figure 22. It has a model Spring, with two components u and y of 
type Real and of direction respectively in and out. 

 

10.7.5 Simulink modeling, signal flow 
Simulink has several kinds of ports, three of which are used in this specification: inports, outports (for signal flow, 
corresponding to SysML ports typed by blocks with in or out flow properties that have PhSVariable applied, 
respectively, see below), and connection ports (for physical interaction, see Subclause 10.7.9). Simulink block 
definitions contain an array giving the number of each kind of port, with connection ports distinguished by whether they 
appear on the left or right of their blocks in Simulink diagrams. The number of inports and outports are given at the 1st 
and 2nd positions from the left, respectively, while the number of left and right connection ports are at the 6th and 7th 
positions, respectively. Trailing series of zeros on the right can be omitted. 

bdd Example
«interfaceBlock»

SysPhSLibrary::
RealInSignalElement

signal flows
in rSig : Real

«interfaceBlock»
SysPhSLibrary::

RealOutSignalElement
signal flows

out rSig : Real

«block»
Spring

ports 
u: RealSignalInElement
y: RealSignalOutElement

model Spring  
  in Real u; 
  out Real y;  
end Spring; 
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SysML ports with a type containing a flow property stereotyped by a non-conserved PhSVariable and typed by Real, 
Integer, or Boolean, or one of their specializations, correspond to Simulink inports or outports, depending on the 
direction of the flow property. 

The following Simulink code corresponds to Figure 22. It has a block Spring, with one inport u and one outport y. 
The Ports property of the block gives the port array, showing the number of inports and outports. The Port property 
of the inport or outport specifies the index of that inport or outport, which must be separately sequential integers for each 
kind of port, starting with 1. 

 
 

10.7.6 Simscape modeling, signal flow 
SysML ports with a type containing a flow property stereotyped by a non-conserved PhSVariable and typed by a 
Real, Integer, or Boolean, or one of their specializations, correspond to Simscape inputs or outputs, depending on 
the direction of the flow property. 

The following Simscape code corresponds to Figure 22. It has a component Spring, with one input u and one output 
y, specifying that they should appear on the left and right sides of blocks referencing the spring in Simulink 
diagrams, respectively (see Subclauses 10.8.5 and 10.8.6). Left or right positioning does not restrict how 
components can be connected. 

 

10.7.7 SysML modeling, physical interaction 
When modeling physical interaction, flow properties of port types must be inout. This flow property must be typed 
by a block (indirectly) specializing ConservedQuantityKind (see Subclause 11.2.2), which contains conserved and 
non-conserved PhSVariables (the same number of each). 

Figure 7 shows an example physical interaction application. The block Spring has two ports p1 and p2, of type 
Flange. Flange has an inout flow property lMo typed by FlowingLMom from the physical interaction library (see Subclause 
11.2.2), which has one conserved PhSVariable f and one non-conserved PhSVariable lV. 

 
Figure 23: Ports for physical interaction in SysML 

10.7.8 Modelica modeling, physical interaction 
SysML ports with a type containing a flow property typed by a block (indirectly) specializing 
ConservedQuantityKind (see Subclause 11.2.2) correspond to Modelica components that have no direction 

«block»
Spring

ports
p1: Flange
p2: Flange

phs variables
{isConserved} f : Force
lV : Velocity

«block»
SysPhSLibrary::

FlowingLMom
«block»
Flange

flow properties
inout lMo : FlowingLMom

bdd Example

<Block BlockType="SubSystem" Name="Spring" SID="1"> 
  <P Name="Ports">[1,1]</P> 
  <System> 
    <Block BlockType="Inport" Name="u" SID="2"> 
      <P Name="Port">1</P> 
      </Block> 
    <Block BlockType="Outport" Name="y" SID="3"> 
      <P Name="Port">1</P> 
    </Block> 
  </System> 
</Block> 

component Spring 
inputs 
  u = {0, ‘unit’}; % :left 
end 
 
outputs 
  y = {0, ‘unit’}; % :right 
end 
end 
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specified, and SysML port types correspond to Modelica connectors. SysML flow properties have no corresponding 
constructs in Modelica, but PhSVariables on conserved quantity kind blocks correspond to Modelica components on 
connectors. PhSVariables on conserved quantity kind blocks correspond to Modelica components. Conserved 
PhSVariables correspond to Modelica flow components, while non-conserved PhSVariables correspond to regular Modelica 
components. 

The following Modelica code corresponds to Figure 23. It has a model Spring, with two components p1 and p2 of 
type Flange. Flange is a connector that has one flow component f, and one regular component lV. 

 

10.7.9 Simulink modeling, physical interaction 
Simulink supports connection ports for representing bidirectional flows, but they must be linked to Simscape nodes 
(see Subclauses 10.7.10 and 10.8.6). 

The following Simulink code corresponds to Figure 11. It has a subsystem block Spring with connection ports p1 
and p2. Connection ports must be linked to nodes on Simscape components defined in the subsystem block (see Subclause 
10.7.5 about left and right annotation and port arrays). 

 

10.7.10 Simscape modeling, physical interaction 
Simscape adds support for physical interaction ports to Simulink, called nodes. Nodes are typed by a domain, 
which corresponds to a SysML port type with an inout flow property typed by a block (indirectly) specializing 
ConservedQuantityKind (see Subclause 11.2.2). Conserved PhSVariables on these blocks correspond to Simscape 
balancing variables in domains. 

The following Simscape code corresponds to Figure 23. It has a component Spring, with two nodes p1 and p2 of 
type Flange (Simscape nodes use left and right annotations in the same way inputs and outputs do, see Subclause 10.7.6). 
Flange is a domain from the package CurrentLibrary, with two variables: one non-balancing variable lV, and one 
balancing variable f. 

 

model Spring 
  Flange p1; 
  Flange p2; 
end Spring; 
connector Flange 
  flow Real f; 
  Real lV; 
end Flange; 

<Block BlockType="SubSystem" Name="Spring" SID="3"> 
  <P Name="Ports">[0, 0, 0, 0, 0, 1, 1]</P> 
  <System> 
    <Block BlockType="PMIOPort" Name="p1" SID="1"> 
      <P Name="Port">1</P> 
      <P Name="Side">Left</P> 
   </Block> 
   <Block BlockType="PMIOPort" Name="p2" SID="2"> 
      <P Name="Port">2</P> 
      <P Name="Side">Right</P> 
   </Block> 
</System> 
</Block> 

component Spring 
  nodes 
    p1 = CurrentLibrary.Flange; % :left 
    p2 = CurrentLibrary.Flange; % :right 
  end 
end 
 
domain Flange 
  variables 
    lV = {0, 'm/s'}; 
  end 
  variables(Balancing=true) 
    f = {0, 'N'}; 
  end 
end 
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10.7.11 Summary 
SysML Modelica Simulink Simscape 

Port typed by block with an in flow property 
stereotyped by a non-conserved PhSVariable 
and typed by Real, Integer, Boolean or one of 
their specializations (signal flow) 

Component typed by an 
equivalent data type 

Inport Input variable 

Port typed by block with an out flow property 
stereotyped by a non-conserved PhSVariable 
and typed by Real, Integer, Boolean or one of 
their specializations (signal flow) 

Component typed by an 
equivalent data type 

Outport Output variable 

Port typed by block with an inout flow 
property typed by block (indirectly) 
specializing ConservedQuantityKind 
(physical interaction) 

Component typed by 
connector 

Connection port Node typed by 
domain 

Block (indirectly) specializing 
ConservedQuantityKind (physical 
interaction) 

Connector N/A Domain 

PhSVariables on blocks (indirectly) 
specializing ConservedQuantityKind 
(physical interaction) 

Components of connector N/A Variables of domain 

10.8 Connectors 

10.8.1 Purpose 
A connection between two connection points enables exchange of physical substances or signals between these parts. 

10.8.2 SysML modeling 

In SysML, connectors are used to link two ports. These connections exist only in the context of the block that owns 
the connector, and other blocks it generalizes (connectors inherit). 

Figure 24 shows an example of SysML connectors. It has a block Example with two parts s1 and s2, of types 
SpringA and SpringB , respectively, defined similarly to Spring in Figure 11, Subclause 10.7.7. The blocks SpringA 
and SpringB have two ports, p1 and p2 of type Flange, as defined in Figure 23. The figure shows a connector 
between the port p2 of s1, and the port p1 of s2. 

 
Figure 24: Connectors in SysML 

10.8.3 Modelica modeling 
SysML connectors correspond to Modelica connect equations, which link components typed by Modelica 
connectors. This depends on the correspondence between SysML port types and Modelica connectors (see 
Subclause 10.7.8). 

The following Modelica code corresponds to Figure 24. It has a model Example with two components s1 and s2 of types 
SpringA and SpringB, respectively. The models SpringA and SpringB have two components p1 and p2 of type Flange, 
defined similarly to Spring in Subclause 10.7.8. Model contains a connect equation linking component p2 of s1 to 
component p1 of s2. 

s1:SpringA

s2:SpringB

p2:Flange

p1:Flange

ibd Example
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10.8.4 Simulink modeling, between blocks with no constraints 
SysML connectors correspond to Simulink lines when: 

• Simscape is not used with Simulink. 
• Simscape is used with Simulink and the SysML connectors are owned by a block with no constraints involving 

PhSVariables and that link ports on blocks with no constraints involving PhSVariables, such as those in Subclause 
11.3, SysML connectors correspond to Simulink lines (see Subclause 10.8.5 and 10.8.6 for other cases when 
Simscape is used with Simulink). 

Simulink lines are directed from outports to inports. 

The following Simulink code corresponds to Figure 24, assuming SpringA and SpringB do not have constraints 
involving PhSVariables. It has a subsystem block Example with two blocks s1 and s2 referring to the blocks SpringA 
and SpringB, respectively, and having one inport and one outport each, defined similarly to Spring in Subclause 10.7.5. 
A line is defined between the outport port of s1 (p2) and the inport of s2 (p1). Lines identify their end ports by the 
identifier of the block defining the port, followed by “#” and the kind of port (“in” and “out” for inports and outports, 
respectively, as shown below, or “lconn” and “rconn” for left and right connection ports, respectively, see Subclause 
10.7.5), followed by a colon and the index of the port among those of that kind in the defining block (ports are all 
ordered). 

 

10.8.5 Simulink modeling, between blocks with constraints 
When Simscape is used with Simulink, SysML connectors that are owned by a block with no constraints involving 
PhSVariables and that link ports on blocks with constraints involving PhSVariables (see Subclause 10.9) correspond to a 
type of Simulink line called connections.  

The following Simulink code correspond to Figure 24, assuming SpringA and SpringB have constraints involving 
PhSVariables.  It has a subsystem block Example with two blocks s1 and s2 referring to Simscape components SpringA 
and SpringB, respectively, defined similarly to Spring in Subclause 10.7.10. The springs have one left port (p1) and one 
right port (p2) each, linked by a line of type “Connection” (see Subclause 10.8.4 about defining the ends of lines). 

model Example 
  SpringA s1; 
  SpringB s2; 
equation 
  connect(s1.p2, s2.p1); 
end Example; 

<Block BlockType="SubSystem" Name="Example" SID="1"> 
  <P Name="Ports">[0,0]</P> 
  <System> 
    <Block BlockType="Reference" Name="s1" SID="2"> 
      <P Name="Ports">[1,1]</P> 
      <P Name="SourceBlock">Library/SpringA</P> 
    </Block> 
    <Block BlockType="Reference" Name="s2" SID="3"> 
      <P Name="Ports">[1,1]</P> 
      <P Name="SourceBlock">Library/SpringB</P> 
    </Block> 
    <Line> 
      <P Name="Src">1#out:1</P> 
      <P Name="Dst">2#in:1</P> 
    </Line> 
  </System> 
</Block> 
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10.8.6 Simulink modeling, between blocks that have constraints and blocks that 
do not 
When Simscape is used with Simulink, SysML connectors that are owned by a block with no constraints involving 
PhSVariables and that link ports of a block with constraints involving PhSVariables (see Subclause 10.9) to ports of 
other blocks without constraints involving PhSVariables, such as those in Subclause 11.3, or vice versa, it is 
necessary to use an additional block between them to convert a regular Simulink signal into a Simscape signal, or 
vice versa. Specifically, a Simulink connection links a block with constraints (through ports) to or from the converter 
block, while a Simulink line connects the converter block to or from a block with no constraints. 

The following Simulink code connects a Simulink block and a Simscape component, corresponding to Figure 24, 
assuming SpringA does not have constraints involving PhSVariables, while SpringB does. The code has a subsystem 
block Example with a block s1 referring to Simulink block SpringA (defined similarly to Spring in Subclause 
10.7.5), a block tr1 converting regular signals to physical signals, a block s2 referring to Simscape component 
SpringB (defined similarly to Spring in Subclause 10.7.10), a block tr2 converting physical signals to regular 
signals, and a block s3 also referring to Simulink block SpringA. Lines of type Connection link s1, tr1, s2, tr2, and 
s3. 

<Block BlockType="SubSystem" Name="Example" SID="1"> 
  <P Name="Ports">[0,0]</P> 
  <System> 
    <Block BlockType="Reference" Name="s1" SID="2"> 
      <P Name="Ports">[0,0,0,0,0,1,1]</P> 
      <P Name="SourceBlock">Library/SpringA</P> 
      <P Name="SourceType">SpringA</P> 
      <P Name="SourceFile">Library.SpringA</P> 
      <P Name="ComponentPath">Library.SpringA</P> 
      <P Name="ClassName">SpringA</P> 
    </Block> 
    <Block BlockType="Reference" Name="s2" SID="3"> 
      <P Name="Ports">[0,0,0,0,0,1,1]</P> 
      <P Name="SourceBlock">Library/SpringB</P> 
      <P Name="SourceType">SpringB</P> 
      <P Name="SourceFile">Library.SpringB</P> 
      <P Name="ComponentPath">Library.SpringB</P> 
      <P Name="ClassName">SpringB</P> 
    </Block> 
    <Line LineType="Connection"> 
      <P Name="Src">1#rconn:1</P> 
      <P Name="Dst">2#lconn:1</P> 
    </Line> 
  </System> 
</Block> 
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10.8.7 Simscape modeling 
When Simscape is used with Simulink, SysML connectors owned by a block with constraints involving PhSVariables 
correspond to Simscape connections.  

The following Simscape code corresponds to Figure 24.  It has a block Example with two components s1 and s2 of type 
Spring A and SpringB, defined similarly to Spring in Subclause 10.7.10, and a connection between s1.p2 and s2.p1. 

 

<Block BlockType="SubSystem" Name="Example" SID="1"> 
  <P Name="Ports">[0,0]</P> 
  <System> 
    <Block BlockType="Reference" Name="s1" SID="1"> 
      <P Name="Ports">[1,1]</P> 
      <P Name="SourceBlock">Library/SpringA</P> 
    </Block> 
    <Block BlockType="Reference" Name="tr1" SID="2"> 
      <P Name="Ports">[1, 0, 0, 0, 0, 0, 1]</P> 
      <P Name="SourceBlock">nesl_utility/Simulink-PS 
Converter</P> 
      <P Name="SourceType">Simulink-PS 
Converter</P> 
    </Block> 
    <Block BlockType="Reference" Name="s2" SID="3"> 
      <P Name="Ports">[0,0,0,0,0,1,1]</P> 
      <P Name="SourceBlock">Library/SpringB</P> 
      <P Name="SourceType">SpringB</P> 
      <P Name="SourceFile">Library.SpringB</P> 
      <P Name="ComponentPath">Library.SpringB</P> 
      <P Name="ClassName">SpringB</P> 
    </Block> 
    <Block BlockType="Reference" Name="tr2" SID="4"> 
      <P Name="Ports">[0, 1, 0, 0, 0, 1]</P> 
      <P Name="SourceBlock">nesl_utility/PS-Simulink 
Converter</P> 
      <P Name="SourceType">PS-Simulink 
Converter</P> 
    </Block> 
    <Block BlockType="Reference" Name="s3" SID="5"> 
      <P Name="Ports">[1,1]</P> 
      <P Name="SourceBlock">Library/SpringA</P> 
    </Block> 
    <Line> 
      <P Name="Src">1#out:1</P> 
      <P Name="Dst">2#in:1</P> 
    </Line> 
    <Line LineType="Connection"> 
      <P Name="Src">2#rconn:1</P> 
      <P Name="Dst">3#lconn:1</P> 
    </Line> 

   <Line LineType="Connection"> 
      <P Name="Src">3#rconn:1</P> 
      <P Name="Dst">4#lconn:1</P> 
   </Line> 
   <Line> 
     <P Name="Src">4#out:1</P> 
     <P Name="Dst">5#in:1</P> 
   </Line> 
 </System> 
</Block> 

component Example 
  components 
    s1=Library.SpringA; 
    s2=Library.SpringB; 
  end 
 connections 
 connect(s1.p2, s2.p1); 
 end 
end 
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10.8.8 Summary 
SysML Modelica Simulink 

(without Simscape) 
Simulink 

(with Simscape) 
Simscape 

Connector between ports with 
in or out flow properties 

Connect equation 
between components 

Line between 
inport/outports 

Connection line 
between connectors 

Connect statement 

Connector between ports with 
inout flow properties 

Connect equation 
between components 

N/A Connection line 
between connectors 

Connect statement 

10.9 Blocks with constraints 

10.9.1 Purpose 
System behavior is represented in simulation models by expressions relating values of system properties. 
Simulating expressions involves computing an unknown variable from known variables. 

10.9.2 SysML modeling 
Simulation expressions correspond to constraint blocks in SysML. Constraint blocks are blocks that have 
parameters and constraint properties (properties typed by constraint blocks). Parameters are properties used in the 
equations, while constraints are equations. 

SysML blocks use constraint blocks by typing properties with them (constraint properties) and owning binding 
connectors that link parameters of the constraint blocks to other properties of the block. 

Subclauses 10.9.3 through 10.9.6 cover signal flow modeling, while subclauses 10.9.7 through 10.9.10 cover 
physical interaction modeling. 

10.9.3 SysML modeling, signal flow 
Figure 25 shows an example constraint block for a signal flow application, using ports like those defined in Figure 
22, Subclause 10.7.3, except in a system containing a spring attached to another object. The block SpringMassSys 
has a SysML constraint property smsc typed by SMSConstraint. The constraint block has six parameters, each bound 
to a property reachable from the spring mass system: 

• f is bound to the signal coming in through port u, which has a type with an in flow property rsig 
• pos is bound to the signal going out through port y, which has a type with an out flow property rsig 
• x is bound to PhSVariable position 
• k is bound to PhSConstant springcst 
• v is bound to PhSVariable velocity 
• m is bound to PhSConstant mass, the mass of the object attached to the spring. 

The constraint block defines three constraints representing equations, written in the expression language specified in 
Clause 8. 

 
Figure 25: Constraint block for signal flow in SysML 

u.rsig y.rsig

«constraint»
smsc: SMSConstraint

position

springcst

mass

velocity

f pos

x k v m

«equal» «equal»

«equal»

«equal» «equal»

«equal»

constraints
{der(v)=(f-k*x)/m}
{der(x)=v}
{pos=x}

par SpringMassSys
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10.9.4 Modelica modeling, signal flow 
In a SysML block with constraint properties, the constraints correspond to the same equations in Modelica (assuming the 
expression language of Clause 8 is used in the constraint block), except the SysML parameters in those constraints 
correspond in Modelica to the properties they are bound to in SysML.  

The following Modelica code corresponds to Figure 25.  It has three equations from the constraint block. SysML 
parameter names are replaced in the Modelica equations according to the bindings in Figure 13: f is replaced by u, pos is 
replaced by y, x is replaced by position, k is replaced by springcst, v is replaced by velocity, m is replaced by mass. 

 

10.9.5 Simulink modeling, signal flow 
SysML constraint blocks for signal flow correspond to Simulink S-functions. S-functions are a kind of MATLAB 
function that define input variables, output variables, continuous state variables, and discrete state variables. S- 
function variables are identified by numbers, rather than names. State variables are accessible only inside an S- 
function (this is different from states in state machines, see Subclause 10.12). SysML constraint block parameters 
correspond to S-functions based on how they are bound in SysML, which can be different for each constraint 
property typed by the same constraint block. This means that a separate S-function corresponds to each SysML 
constraint property. Each S-function is used only in a specific context (corresponding to the constraint property), and the 
name of the S-function must reflect that context. 

S-functions contain assignments of continuous state variable derivatives, discrete state variables, and output 
variables. These assignments correspond to constraints of SysML constraint blocks that have exactly one variable 
on the left-hand side, which determines the variable being assigned, and the kind of assignment it is: 

• A continuous state variable on the left-hand side corresponds to a derivative assignment. 
• A discrete state variable on the left-hand side corresponds to an update assignment. 
• An output variable on the left-hand side corresponds to an output assignment. 

SysML parameter names are used as variable names in the S-functions. SysML parameters bound to PhSConstants 
are replaced in S-functions by the value given for the PhS Constant. 

Binding connectors involving ports with in or out flow properties correspond to Simulink lines (see Subclause 
10.8.4) linking inports and outports to inputs and outputs of the S-function, respectively. 

The following Simulink code corresponds to Figure 25. It has a Simulink block Spring with one inport and 
one outport. Spring also contains a S-function block that points at the S-function Spring_sc_SpringConstraint, 
which has one inport and one outport. The inports and outports of Spring are linked to the inport and outport of 
the S-function block, respectively. The S-function Spring_sc_SpringConstraint has a setup function indicating 
that the S-function has one input port, one output port, and two continuous states. The function also registers 
two functions that will be called for derivative calculations and output calculations. These functions contain the 
assignments from the SysML constraints, with the same substitutions performed as in Modelica (see Subclause 
10.9.4). 

model Spring 
  input Real u; 
  output Real y; 
  Real position; 
  parameter Real springcst = 1; 
  Real velocity; 
  parameter Real mass = 10; 
equations 
  der(velocity)=(u-springcst*position)/m;  
  der(position)=velocity; 
  y=position; 
end Spring; 
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10.9.6 Simscape modeling, signal flow 
Simscape supports signal flow by providing a way to specify input and output signals for components. SysML 
blocks with constraint properties correspond to equations in Simulink components, with the same substitutions as in 
Modelica (see Subclause 10.9.4). Simscape does not support discrete variables (compare to S-functions, see 
Subclause 10.9.5). 

The following Simscape code corresponds to Figure 25. It has a component Spring with an input u, an output y, two 
parameters springcst and mass, as well as two variables position and velocity (see Subclause 10.11.5 about units and 
Subclause 10.7.6 about left and right annotations). The component has equations connecting these variables: two 
equations that compute the derivative of the variables, and one that determines the output. 

<Block BlockType="SubSystem" Name="Spring" SID="1"> 
  <P Name="Ports">[1,1]</P> 
  <System> 
    <Block BlockType="Inport" Name="u" SID="2"> 
      <P Name="Port">1</P> 
      </Block> 
    <Block BlockType="Outport" Name="y" SID="3"> 
      <P Name="Port">1</P> 
    </Block> 
    <Block BlockType="M-S-Function" Name="sc" SID="4"> 
      <P Name="FunctionName">Spring_sc_SpringConstraint</P> 
      <P Name="Ports">[1,1]</P> 
    </Block> 
    <Line> 
      <P Name="Src">2#out:1</P> 
      <P Name="Dst">4#in:1</P> 

    </Line> 

    <Line> 
      <P Name="Src">4#out:1</P> 
      <P Name="Dst">3#in:1</P> 
    </Line> 
  </System> 
</Block> 
function Spring_sc_SpringConstraint(block) 
  setup(block); 
end 
function setup(block) 
  block.NumInputPorts =1; 
  block.NumOutputPorts =1; 
  block.NumContStates =2; 
  block.RegBlockMethod('Derivatives',@Derivative); 
  block.RegBlockMethod('Outputs',@Output); 
  block.SampleTime=[0 0]; 
end 
function Derivative(block) 
  block.Derivatives.Data(1)=(block.InputPort(1).Data-1*block.ContStates.Data(2))/10; 
  block.Derivatives.Data(2)=block.ContStates.Data(2); 
end 
function Output(block) 
  block.OutputPort(1).Data=block.ContStates.Data(2); 
end 
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10.9.7 SysML modeling, physical interaction 
Figure 26 shows an example constraint block for a signal flow application, using the port type defined in Figure 23, 
Subclause 10.7.7. It has a constraint block SpringConstraint with 8 parameters, each bound to a property reachable 
from the spring: 

• Force and velocity at the two ends of the spring (f1, v1, f2, v2) are bound to the forces and velocities of conserved 
quantity kinds flowing through ports p1 and p2, which have types with inout flow properties. 

• Change in length of the spring (x) is bound to the PhSVariable lengthchg. 
• Spring constant (k) is bound to the PhS Constant springcst. 
• Force going through the spring and difference in velocities of the ends (v, f), are bound to the PhSVariables 

forcethru and velocitydiff, respectively. 

The PhSVariables and PhS Constants above are defined on the block Spring, but not shown in Figure 11. The 
constraint block defines five constraints representing equations, written using the expression language specified in 
Clause 8. 

 
Figure 26: Constraint block for physical interaction in SysML 

10.9.8 Modelica modeling, physical interaction 
In a SysML block with constraint properties, the constraints correspond to the same equations in Modelica (assuming the 
expression language of Clause 8 is used in the SysML constraint block), except the SysML parameters in those equations 
correspond in Modelica to the properties they are bound to in SysML (and flow properties in SysML property paths 
leading to PhSVariables on conserved quantity kinds are omitted in Modelica, see Subclause 10.7.8).  

p1.lMo.f

p1.lMo.lV

p2.lMo.f

p2.lMo.lV

«constraint»
sc: SpringConstraint

lengthchg

springcst

forcethru

velocitydiff

f1

v1

f2

v2

x k v
f

constraints
{f1+f2=0}
{f=f1}
{v=v2-v1}
{v=der(x)}
{f=k*x}

par Spring 

«equal» «equal»

«equal»

«equal» «equal»

«equal»

«equal» «equal»

component Spring 
  inputs 
    u = {0, ‘unit’ }; % :left 
  end 
  outputs 
    y = {0, ‘unit’ }; % :right 
  end 
  parameters 
    springcst = 1; 
    mass = 10; 
  end 
  variables 
    position = 0; 
    velocity = 0; 
  end 
  equations 
    der(velocity)=(u-springcst*position)/m; 
    der(position)=velocity; 
    y=position; 
  end 
end 
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The following Modelica code corresponds to Figure 26.  It has five equations from the SysML constraint block. SysML 
parameter names are replaced in the Modelica equations according the bindings in Figure 14: f1 is replaced by p1.f, v1 is 
replaced by p1.lV, x is replaced by lengthchg, k is replaced by springcst, v is replaced by velocitydiff, f is replaced by 
forcethru, v2 is replaced by p2.v, and f2 is replaced by p2.f. 

 

10.9.9 Simulink modeling, physical interaction 
Physical interaction is modeled with the Simscape extension to Simulink, see Subclause 10.9.10. 

10.9.10 Simscape modeling, physical interaction 
For SysML blocks with constraint properties, the constraints correspond to the same equations in Simscape 
components (assuming the expression language of Clause 8 is used in constraint blocks), with the same 
substitutions in Simscape as in Modelica (see Subclause 10.9.8), followed by additional substitutions for balancing 
variables in Simscape domains (see Subclause 10.7.10 about domains). The additional substitutions are defined in 
Simscape branch statements, each introducing a new variable to substitute in equations (after the initial substitutions 
above) for each path to a balancing variable on a port. 

The following Simscape code corresponds to Figure 26. It has five equations from the SysML constraint block. 
Note the additional variables defined by branch statements, which replace p1.f by p1f and p2.f by p2f in the equations 
(after the initial substitutions above).

 
 

model Spring 
  Flange p1; 
  Flange p2; 
  Real lengthchg; 
  parameter Real springcst = “10”; 
  Real velocitydiff 
  Real forcethru 
equation 
  p1.f+p2.f=0 
  forcethru=p1.f; 
  velocitydiff=p1.lV-p2.lV; 
  velocitydiff=der(lengthchg); 
  forcediff=springcst*lengthchg; 
end Spring; 

component Spring 
  variables 
    forcethru={0,'N'}; 
    velocitydiff={0,'m/s'}; 
    lengthchg={0, 'm'}; 
    p1f={0,'N'}; 
    p2f={0,'N'}; 
  end 
  nodes 
    p1=Library.Flange;% :left 
    p2=Library.Flange;% :right 
  end 
  parameters 
    springcst={10,'1'}; 
  end 
  function setup 
  end 
  branches 
    p1f: p1.f->*; 
    p2f: p2.f->*; 
  end 
  equations 
    p1f+p2f=0; 
    forcethru=p1f; 
    velocitydiff=p1.lV-p2.lV; 
    velocitydiff=der(lengthchg); 
    forcethru=springcst*lengthchg; 
  end 
end 
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10.9.11 Summary 
SysML Modelica Simulink Simscape 

Constraint block, typing 
constraint properties 

N/A S-function N/A 

Constraint parameter bound to a 
property path that goes through 
an in flow property 

N/A (SysML constraint 
parameter substituted in 
equations) 

Input variable N/A (SysML constraint 
parameter substituted in 
equations) 

Constraint parameter bound to a 
property path that goes through 
an out flow property 

N/A (SysML constraint 
parameter substituted in 
equations) 

Output variable N/A (SysML constraint 
parameter substituted in 
equations) 

Constraint parameter bound to 
continuous PhSVariable 

N/A (SysML constraint 
parameter substituted in 
equations) 

Continuous state variable N/A (SysML constraint 
parameter substituted in 
equations) 

Constraint parameter bound to 
discrete PhSVariable 

N/A (SysML constraint 
parameter substituted in 
equations) 

Discrete state variable N/A (SysML constraint 
parameter substituted in 
equations) 

Constraint parameter bound to 
discrete PhSConstant 

N/A (SysML constraint 
parameter substituted in 
equations) 

Numeric or boolean value 
(substituted in equations) 

N/A (SysML constraint 
parameter substituted in 
equations) 

Constraint Equation in the model 
corresponding to the 
SysML block containing 
the constraint property 
(with substitution of 
parameters) 

Output, discrete, or derivative 
assignment depending on 
type of the left-hand side 
variable in the equations 

Equation in the component 
corresponding to the 
SysML block containing 
the constraint property 
(with substitution of 
parameters) 

 

10.10 Default values and initial values 

10.10.1 Purpose 
Systems and simulation models can specify values for data type properties to be used when values are not 
otherwise given. 

10.10.2 SysML Modeling 
SysML has two ways to specify values for properties that are used when values are not otherwise given: 

• Default values are defined on the properties that will be given the values. A default value is given to 
every instance of the block owning the property (or any block it generalizes) when each instance is 
created. 

• Initial values are defined on other properties that are typed by the block owning the property (or any 
block it generalizes) that will be given the values. The values are given to instances of the block when 
(and if) they become values of the other properties. 

Initial values override default values, because initial values are set when an instance that is already created 
becomes the value of another property that specifies initial values, whereas default values are only set when 
instances are created. Default and initial values can be changed after they are given to the instances. 

Figure 27 shows how default and initial values are used in SysML. The left side of the figure shows a block B with 
an attribute val with a default value on 10. The right side shows a block A with an attribute b of type B. An initial 
value of 20 is given to the val of b. 

 
Figure 27: Default values and initial value in SysML 

bdd Example

b:B

val = 20.0

ibd A

«block»
B

val: Real = 10.0



SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 39 

10.10.3 Modelica modeling 
SysML default and initial values correspond to start values of Modelica components. Start values are marked as 
fixed, requiring the values be set at the beginning of the simulation (otherwise, simulators only take the values as 
suggestions, calculating their own start values to solve the equations). 

The following Modelica code corresponds to Figure 15. It has a model B with a val component. The val component 
has a start value of 10. A class A is defined with a component b of type B. A component modification indicates that 
the start value of b.val is 20.0. 

 

10.10.4 Simulink modeling 
Default values (or overriding initial values) of PhSVariables correspond to initial values of the corresponding S- 
functions variables (see Subclause 10.9.5), unless they are initial values for properties below the top-level system 
block or are for properties typed by blocks that have parts, whereupon they have the same correspondence with 
Simulink as redefined properties (see Subclause 10.5.4 and Subannex A.5.9). 

The following Simulink code corresponds to Figure 15, assuming the PhSVariable var is bound to a constraint 
parameter (which corresponds to an S-function variable). The code shows an S-function setting initial values for 
discrete and continuous variables. It also shows a setup function that defines one continuous variable and one discrete 
variable, which are identified by number (1 for both in this example). The properties NumD works, Dwork, NumContStates, 
and ContStates are predefined in Simulink, the first two for discrete variables, the second two for continuous variables. A 
value of 20 is given to both variables. 

 

10.10.5 Simscape modeling 
SysML default values correspond to initial values of Simscape variables and parameters. SysML initial values 
correspond to Simscape components used in Simulink. The priority of initial values in Simscape must be set to high 
(otherwise simulators calculate initial values that solve the equations at the beginning time of the simulation).  

The following Simscape code corresponds to the block definition diagram in Figure 15. It shows a Simscape 
component B defining a variable val with an initial value of 10. 

 
The following Simulink code corresponds to the internal block diagram in Figure 15. It has a usage of the Simscape 
component in Simulink that overrides the initial value of the variable val with a value of 20.

 

model B 
  Real val(start = 10.0, fixed = true); 
end B; 
model A 
  B b(val.start = 20.0, val.fixed = true); 
end A; 

function setup(block) 
  block.NumDworks = 1; 
  block.Dwork(1).Data = 20.0; 
   
  block.NumContStates = 1; 
  block.ContStates.Data(1) = 20.0; 

end 

component B 
  variables 
    val={value=10,priority=priority.high}; 
  end 
end 

<Block BlockType="Reference" Name="b" SID="2"> 
  <P Name="SourceBlock">Library/B</P> 
  <P Name="SourceType">B</P> 
  <P Name="SourceFile">Library.B</P> 
  <P Name="ComponentPath">Library.B</P> 
  <P Name="ClassName">B</P> 
  <P Name="val">20.0</P> 
</Block> 
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10.10.6 Summary 
SysML Modelica Simulink Simscape 

Default value Start value (fixed) S-function initial value Member initial value (high priority) 

Initial value Start value (fixed) N/A Member assignment (high priority) 

10.11 Data types and units 

10.11.1 Purpose 
Systems and simulation models include units of physical quantities to enable checking that variables in expressions 
have consistent units. 

10.11.2 SysML modeling 
Data types in SysML are called value types. SysML numeric value types can be linked to units, where units are 
modeled with the SysML Unit block. These units are linked to value types that are generalized by SysML’s 
numeric value types. Units and their symbols are from ISO 80000. 

Figure 28 shows how a value type with units is defined in SysML, from the units library in Figure 20, Subclause 
11.2.2 It has a value type Force that specializes the Real value type and has newton as unit. The newton unit has a 
symbol N. 

 
Figure 28: Units in SysML 

10.11.3 Modelica modeling 
Modelica data types can be subtyped to add a unit symbol. The interpretation of this symbol is not defined in 
Modelica. 

The following Modelica code corresponds to Figure 28. It has a type Force, which extends Real, and the unit 
symbol N assigned to it.

 

10.11.4 Simulink modeling 
Simulink inports and outports can have units. Simulink defines some unit symbols, and modelers can add their 
own. The following table shows correspondences between ISO 80000 and Simulink notation for unit 
operations when they differ. 

Unit operation ISO 80000 Simulink 
Exponentiation superscript (as in m3) caret (as in m^3) 
Multiplication · (as in N·m) * (as in N*m) 

 
The following table shows correspondences between ISO 80000 and Simulink notation for units when they differ. 

ISO 80000 Simulink 
Ω ohm 
° deg 
Å ang 
µ u 

bdd SysPhSLibrary

«valueType»
Real

«valueType»
{unit=newton}

Force

newton : Unit
symbol=“N”

type Force=Real(unit="N"); 
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The following Simulink code corresponds to Figure 16. It has an inport In1 with unit N, the symbol for Newton. 

 

10.11.5 Simscape modeling 
Unit symbols can be associated to variables and parameters in Simscape. Simscape uses the unit symbols defined in 
Simulink (see Subclause 10.11.4). 

The following Simscape code corresponds to Figure 28. It has a variable force with an initial value of 0, with 
the unit N, the symbol for Newton. 

 

10.11.6 Summary 
SysML Modelica Simulink Simscape 

Value type specializing Real, 
Integer, or Boolean with unit 

Equivalent data type with unit 
symbol 

N/A N/A 

Property typed by Real, Integer, 
Boolean or one of their 
specializations 

Component typed by an 
equivalent data type 

N/A Variable with associated unit 

Real Real double double 

String String N/A N/A 

Boolean Boolean boolean N/A 

Integer Integer int32 N/A 

10.12 State machines 

10.12.1 Purpose 
State machines in system and simulation modeling specify how systems and components react to changes, usually 
caused by their environment (this is different than simulation state variables, see Subclause 10.9.5). State machines 
contain states and transitions between them. Objects are said to be “in” particular states, with transitions 
specifying when objects change the state they are in. States define behaviors for objects that are in those states. 
Transitions have conditions specifying when their objects change state. When conditions change for an object, 
usually as an effect of its environment, transitions can react by changing the state of the object, and consequently 
the behavior of the object. State machines can contain other state machines and can be in multiple states at the same 
time, but this specification does not provide translations for these capabilities. 

10.12.2 SysML modeling 
SysML state machines can be behaviors for blocks. The SysML capabilities of concern to simulation are: 

• Triggering transitions based on evaluation of boolean expressions, involving time and property values, including 
values arriving in flow properties on port types. These can be modeled using TimeEvents and ChangeEvents. 

• Sending values out of an object through a port with an out flow property when a specific state is on. 

Figure 29 shows a block Computer with a simple state machine. 

<Block BlockType="Inport" Name="In1" SID="1">  
     <P Name="Unit">N</P>  
</Block> 

variables 
  force={0,'N'}; 
end 
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Figure 29: State machine in SysML 

RealInSignalElement and RealOutSignalElement from the signal flow library (see Subclause 11.2.1), 
respectively. The state machine has one initial pseudostate, and two states StandBy and On. The transition from 
the initial pseudostate to StandBy has a relative TimeEvent with an expression indicating that the transition fires 5 
seconds after the initial pseudostate is entered. The transition from StandBy to On has a ChangeEvent with an 
expression indicating that the transition is triggered when u.sigsp is equal to 1 (this is a signal as in signal flow 
simulation, not as in SysML). The transition from On to StandBy has a ChangeEvent with an expression 
indicating that the transition is triggered when u.sigsp is equal to 0. When the computer is in StandBy, y.sigsp is 
set to 8, and when the computer is On, y.sigsp is set to 3. 

10.12.3 Modelica modeling 
Modelica 3.3 introduced support for state machines, but they are not widely implemented in simulation tools as of 
the date of this specification. Instead, this translation uses the Modelica standard library, which supports some 
aspects of state machines. SysML state machines correspond to Modelica models, and all the SimVariables and 
constants of a SysML block owning a state machine are the same as in the Modelica state machine. SysML state 
machine elements correspond to Modelica state machines as follows: 

• Initial pseudostates correspond to InitialSteps. 
• States correspond to Steps. 
• Transitions correspond to Transitions. 
• Time events correspond to transition wait times. 
• Change events correspond to transition conditions. 
• State behaviors (specified with doActivity) that are OpaqueBehaviors correspond to Modelica code 

executed when objects are in particular states. 

StandBy

do / y.rsig:=3

do / y.rsig:=8

On

after(5) when(u.sig==1)

when(u.sig==0)

stm Computerbdd Example 

«block»
Computer

ports 
u: RealSignalInElement
y: RealSignalOutElement
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The following Modelica code corresponds to Figure 29. 

 
The code shows the model Computer with an input variable u, and an output variable y, and a component 
_ComputerSM for a state machine ComputerSM, defined next. ComputerSM duplicates the components of 
Computer, except for the state machine component. It has an initial step state0, two steps StandBy and On, and three 
transitions tr0, tr1 and tr2. Each transition has a condition for traversing it, and each step indicates how many inputs and 
outputs it has. ComputerSM contains equations linking ports of steps and transitions, and an algorithm section for 
assigning numeric component values when the machine starts or stops each step. Returning to Computer, equations bind its 
components to the components of the state machine. 

10.12.4 Simulink/StateFlow modeling 
Simulink has an extension for state machines called Stateflow, providing some features of SysML state machines 
(StateFlow does not extend Simscape). StateFlow supports transitions with conditions determining whether to traverse 
them, and actions performed when objects are in particular states. It uses default transitions, rather than transitions from 
initial pseudostates as in SysML. StateFlow state machines are blocks, rather than separate behaviors, as in SysML. 

model Computer 
  input Real u; 
  output Real y; 
  ComputerSM _ComputerSM; 
  model ComputerSM 
    Modelica.StateGraph.InitialStep state0(nIn = 0, nOut = 1); 
    Modelica.StateGraph.Step StandBy(nIn = 2, nOut = 1); 
    Modelica.StateGraph.Step On(nIn = 1, nOut = 1); 
    Modelica.StateGraph.Transition tr0(condition = true, enableTimer = true, 
                                       waitTime = 5); 
    Modelica.StateGraph.Transition tr1(condition = u==1); 
    Modelica.StateGraph.Transition tr2(condition = u==0); 
    Real u; 
    Real y; 
equation 
   connect(state0.outPort[1], tr0.inPort); 
   connect(tr0.outPort, StandBy.inPort[1]); 
   connect(StandBy.outPort[1], tr1.inPort); 
   connect(tr1.outPort, On.inPort[1]); 
   connect(On.outPort[1], tr2.inPort); 
   connect(tr2.outPort, StandBy.inPort[2]); 
algorithm 
   if StandBy.active then 
     y := 8; 
   end if; 
   if On.active then 
     y := 3; 
   end if; 
 end ComputerSM; 
equation 
  u = _ComputerSM.u; 
  y = _ComputerSM.y; 
end Computer; 
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The following Simulink and StateFlow code correspond to Figure 29. 

 
 
 

<Block BlockType="SubSystem" Name="Computer" SID="2"> 
  <P Name="Ports">[1,1]</P> 
  <P Name="SFBlockType">Chart</P> 
  <System> 
    <P Name="Open">off</P> 
    <Block BlockType="Inport" Name="u" SID="2::1"> 
      <P Name="Port">1</P> 
    </Block> 
    <Block BlockType="Outport" Name="y" SID="2::2"> 
      <P Name="Port">1</P> 
    </Block> 
    <Block BlockType="S-Function" Name=" SFunction " SID="2::5"> 
      <P Name="FunctionName">sf_sfun</P><P Name="Ports">[1,2]</P> 
    </Block> 
    <Block BlockType="Demux" Name="Demux" SID="2::6"> 
      <P Name="Outputs">1</P> 
    </Block> 
    <Block BlockType="Terminator" Name="Terminator" SID="2::7"/> 
    <Line> 
      <P Name="Src">2::1#out:1</P><P Name="Dst">2::5#in:1</P> 
    </Line> 
    <Line> 
      <P Name="Src">2::5#out:2</P><P Name="Dst">2::2#in:1</P> 
    </Line> 
    <Line> 
      <P Name="Src">2::5#out:1</P><P Name="Dst">2::6#in:1</P> 
    </Line> 
   <Line> 
     <P Name="Src">2::6#out:1</P><P Name="Dst">2::7#in:1</P> 
   </Line> 
  </System> 
</Block> 
 
<Stateflow> 
  <machine id="1"> 
    <P Name="isLibrary">0</P> 
    <Children> 
      <target id="2" name="sfun"/> 
      <chart id="3"> 
        <P Name="name">Computer</P> 
        <P Name="chartFileNumber">1</P> 
        <P Name="saturateOnIntegerOverflow">1</P> 
        <P Name="userSpecifiedStateTransitionExecutionOrder">1</P> 
        <P Name="disableImplicitCasting">1</P><P Name="actionLanguage">2</P> 
        <Children> 

          <state SSID="5"> 

          <P Name="labelString">StandBy 
during:y=8;</P> 
          </state> 
          <state SSID="6"> 
             <P Name="labelString">On 
during:y=3;</P> 
          </state> 
          <data SSID="7" name ="u"> 
            <P Name="scope">INPUT_DATA</P> 
          </data> 
          <data SSID="8" name ="y"> 
            <P Name="scope">OUTPUT_DATA</P> 
          </data> 
          <transition SSID="11"> 
            <P Name="labelString">[after(5, sec)]</P> 
            <src/> 
            <dst> 
              <P Name="SSID">5</P> 
            </dst> 
            <P Name="executionOrder">1</P> 
          </transition> 
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The Block section of the code at the top is the part of state machine represented in Simulink. It shows a block Computer 
of type Chart, containing one inport (u), one outport (y), and one S-function corresponding to the state machine. The two 
other blocks, Demux and Terminal, are needed by Simulink to execute state machines. Lines connect the inport of the 
block to the input of the S-function, and the second output of the S-function to the outport of the block. 
The Stateflow section of the code at the bottom is the part of the state machine represented in Stateflow. It shows a 
machine containing one input u, one output y, two states StandBy and On, a default transition (which has no 
source), and two transitions. The during string in StandBy indicates that the output y is set to 8 while the 
computer is in StandBy. The label in the default transition indicates that the transition is fired after 5 seconds. The 
condition of the two transitions indicates that the first transition fires when the input u is equal to 1, and the 
second transition fires when the input u is equal to 0. 

10.12.5 Summary 
SysML Modelica Simulink Stateflow 

Block with 

StateMachine as 
classifierBehavior 

Model (regular) Block of type SFBlockType N/A 

StateMachine Block S-function Chart in machine 

Initial pseudostate InitialStep component N/A N/A 

State Step component N/A State 

Transition Transition component N/A Transition 

Transition from initial 
PseudoState 

Transition component N/A Default transition 

doActivity with 
OpaqueExpression 

Statements in a state 
conditionalized by object 
being in that state 

N/A During statements in a state 

ChangeEvent Trigger Transition condition N/A Transition condition 

Relative TimeEvent waitTime expression N/A after() statement 

          <transition SSID="12"> 
            <P Name="labelString">[u==1]</P> 
            <src> 
              <P Name="SSID">5</P> 
            </src> 
            <dst> 
              <P Name="SSID">6</P> 
            </dst> 
            <P Name="executionOrder">1</P> 
          </transition> 
          <transition SSID="13"> 
            <P Name="labelString">[u==0]</P> 
            <src> 
              <P Name="SSID">6</P> 
            </src> 
            <dst> 
              <P Name="SSID">5</P> 
            </dst> 
            <P Name="executionOrder">1</P> 
          </transition> 
        </Children> 
      </chart> 
    </Children> 
  </machine> 
  <instance id="4"> 
   <P Name="name">Computer</P> 
   <P Name="machine">1</P> 
   <P Name="chart">3</P> 
  </instance> 
</Stateflow> 
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10.13 Mathematical expressions 
The following table shows replacements to be made in the syntax of the SysPhS expression language (see Clause 
8) when translating to MATLAB, the expression language in Simulink, Simscape, and StateFlow. Translation to 
Modelica requires no replacements. 

SysPhS expression  MATLAB equivalent 
‘if’ ... ‘then’ ... ‘elseif’ ... ‘then’ ... ‘else’ ... ‘end’ 
‘if’ 

‘if’ ... 
... 

‘elseif’ 
... 

‘else’ ... 
 

... 

‘for’ ... ‘in’ ... ‘loop’ ... ‘end’ ‘for’ ‘for’ ... 
... 

‘ d’ 

‘=’ ... 

‘=’ ‘==’  
‘<>’ ‘~=’  
‘not’ ‘~’  
‘and’ ‘&&’  
‘or’ ‘||’  
‘:=’ ‘=’  
‘div’ ‘idivide’  
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11. Platform-independent Component Library 
11.1 Introduction 
Subclauses 11.2 and 11.3 define a platform-independent library of reusable blocks for component interaction and 
behavior, respectively. Subclause 0 defines value types with units used in Subclause 11.2.2. Subclause 11.5 defines a 
simulation platform extension used in Subclause 11.3. 

11.2 Component interaction 

11.2.1 Signal flow 
This subclause defines elements for signal flow. They can be used as (generalizations of) system component blocks or 
port types. See Subclause 11.3.4 for additional signal flow elements.. 

 
 

Figure 30: Elements for signal flow 

«interfaceBlock»
RealSignalElement

signal flows 
inout rSig : Real

«interfaceBlock»
RealInSignalElement

signal flows 
in rSig : Real {redefines rSig}

«interfaceBlock»
RealOutSignalElement

signal flows 
out rSig : Real {redefines rSig}

«interfaceBlock»
IntegerInSignalElement

signal flows 
in iSig : Integer {redefines iSig}

«interfaceBlock»
IntegerOutSignalElement

signal flows 
out iSig : Integer {redefines iSig}

«interfaceBlock»
IntegerSignalElement

signal flows 
inout iSig : Integer

«interfaceBlock»
BooleanInSignalElement

signal flows 
in bSig : Boolean {redefines bSig}

«interfaceBlock»
BooleanOutSignalElement

signal flows 
out bSig : Boolean {redefines bSig}

«interfaceBlock»
BooleanSignalElement

signal flows 
inout bSig : Boolean

«interfaceBlock»
RealSignalElement

signal flows 
inout rSig : Real

«interfaceBlock»
RealInSignalElement

signal flows 
in rSig : Real {redefines rSig}

«interfaceBlock»
RealOutSignalElement

signal flows 
out rSig : Real {redefines rSig}

«interfaceBlock»
IntegerInSignalElement

signal flows 
in iSig : Integer {redefines iSig}

«interfaceBlock»
IntegerOutSignalElement

signal flows 
out iSig : Integer {redefines iSig}

«interfaceBlock»
IntegerSignalElement

signal flows 
inout iSig : Integer

«interfaceBlock»
BooleanInSignalElement

signal flows 
in bSig : Boolean {redefines bSig}

«interfaceBlock»
BooleanOutSignalElement

signal flows 
out bSig : Boolean {redefines bSig}

«interfaceBlock»
BooleanSignalElement

signal flows 
inout bSig : Boolean
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11.2.2 Physical interaction 
This subclause defines elements for physical interaction (see Subclause 0 for and associated value types and units). 
Conserved quantity kinds are characteristics of physical substances that are not created or destroyed when 
exchanged between components. For example, charge is a characteristic of elementary physical particles that might cross 
the boundaries of an object. Conserved quantity kinds are modeled as blocks directly specializing the block 
ConservedQuantityKind, which specializes SysML QuantityKind, as shown in Figure 31. These can be conveyed by 
item flows and the type of item properties. Specializations of each conserved quantity kind (with names prefixed by 
“Flowing”) are only used to type flow properties. They provide two PhSVariables describing the flows, one conserved 
(flow rate) and one non-conserved (potential to flow). For example, the flow rate of charge (current) must add to zero 
(be conserved) between components, while the potential to flow (voltage) must be the same (see Subclause 7.2.2). These 
variables only apply to conserved quantity kinds as they cross the boundary of components via flow properties, because 
they are defined with respect to the boundary (rate of crossing it or potential to cross it). The flow properties can be on 
blocks used as (generalizations of) part or port types, including interface blocks as shown at the bottom of Figure 31. 

 

 
Figure 31: Elements for physical interaction 

Constraints 

[1] Blocks (indirectly) specializing ConservedQuantityKind that type flow properties must have one conserved and 
one non-conserved PhSVariable. 

[2] Flow properties typed by blocks (indirectly) specializing ConservedQuantityKind must have direction inout and 
multiplicity 1. 

[3] Flow properties typed by blocks (indirectly) specializing ConservedQuantityKind that are connected and 
matching must have the same type and multiplicity. 
 

11.3 Component behavior 

11.3.1 Introduction 
This subclause defines SysML blocks corresponding to reusable components in the libraries of both Modelica and 
Simulink or its extensions. The semantics of these blocks are given by the corresponding elements in the Modelica 
libraries (which is the same semantics as in the libraries of Simulink or its extensions). The base classes and 
properties (including ports) of component blocks in this subclause have stereotypes from the simulation platform profile 
applied (see Subclause 11.5) to specify which simulation library elements correspond to them. For brevity, component 
blocks are described in tables, with each row defining one block. 

The blocks in Subclauses 11.3.2 and 11.3.3 are for signal flow modeling. The columns of the tables are: 

• Component Block: Name of the component block defined by the row. 

«interfaceBlock»
LMomFlowElement

phs variables
{isConserved} f : Force
lV : Velocity

«block»
FlowingLMom

physical interactions 
inout lMomF: FlowingLMom

«interfaceBlock»
AMomFlowElement

phs variables
{isConserved} trq : Torque
aV : AngularVelocity

«block»
FlowingAMom

physical interactions 
inout aMomF: FlowingAMom

«block»
LinearMomentum

«block»
AngularMomentum

«interfaceBlock»
ChargeFlowElement

phs variables
{isConserved} i : Current
v : Voltage

«block»
FlowingCharge

physical interactions 
inout cF: FlowingCharge

«block»
Charge

«interfaceBlock»
VolumeFlowElement

phs variables
{isConserved} q : VolumeFlowRate
p : Pressure

«block»
FlowingVolume

physical interactions 
inout vF: FlowingVolume

«block»
Volume

«interfaceBlock»
EntropyFlowElement

phs variables
{isConserved} sFR : EntropyFlowRate
t : Temperature

«block»
FlowingEntropy

physical interactions 
inout sF: FlowingEntropy

«block»
Entropy

«block»
ConservedQuantityKind

«block»
SysML::QuantityKind
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o Simulink Block: Value of the name property of the SimulinkBlock stereotype applied to the base 
class of the block defined by the row. 

o Modelica Block: Value of the name property of the ModelicaBlock stereotype applied to the base 
classof the block defined by the row is produced from this column by prepending “Modelica.Blocks.” 

• Component Ports (Inputs and Outputs): Each line in each row of these columns gives the name of aa 
component block port (these correspond to Simulink and Modelica ports and components, see Subclauses 10.7.5 
and 10.7.4). 

• PhSConstants: Each line in each row of this column gives the name of a property of the block defined by the 
row, corresponding to the same line in the two columns below. 

o Simulink and Modelica Parameters: Value of the name properties of SimulinkParameter and 
ModelicaParameter stereotypes, respectively, applied to the corresponding property on the same line in 
the PhSConstants column (the parameter stereotypes are specialized PhSConstants, see Subclause 
11.5). Lines that have no corresponding property on the same line in the PhSConstants column, if any, 
give other parameters needed to obtain the same behavior in Simulink and Modelica, with the value of 
the parameter preceded by an equals sign. 

• Platform Behavior: Tells whether the behaviors of the Simulink and Modelica library elements are 
supposed to yield the same value or not, when this can be determined from the platform library 
specifications. Values are considered the same when they are equal or the numerical difference is small. 
 

Simulation platform data specified in the Component Ports (Input and Output), PhSConstants, and platform 
Parameters columns are scalar, unless marked with a V (vector) or an M (matrix).  Component input ports for 
scalars are typed by RealSignalInElement, IntegerSignalInElement, or BooleanSignalInElement, while component 
output ports for scalars are typed by RealSignalOutElement, IntegerSignalOutElement, or 
BooleanSignalOutElement (see Subclause 11.2.1). Component input ports for vectors are typed by specializations 
of RealVectorSignalInElement, while component output ports for vectors are typed by specializations of 
RealVectorSignalOutElement (see Subclause 11.5.3). Component PhSConstants (SimulinkParameters and 
ModelicaParameters) for vectors and matrices have MultidimensionalElement applied, with dimension * and *,*, 
respectively (see Subclause 11.5.2.4). Models using component library blocks that have vector and matrix 
properties should specify initial values using instance specifications, with slots satisfying the constraints specified 
in Subclause 11.5.2.4.  

The blocks in Subclause 11.3.4 are for electrical components. The columns of the table are explained in thatt 
subclause. 

11.3.2 Real-valued components 

11.3.2.1 Introduction 

Simulation platform data specified in the Component ports (Inputs and Output), PhSConstants, and platform Parameters 
columns in this subclause are Real, unless otherwise indicated. 
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11.3.2.2 Continuous components 
Component 

Block 
Simulink 

Block 
Modelica Block Component Port 

(Inputs) 
Component Port 

(Output) 
PhSConstants Simulink 

Parameters 
Modelica 

Parameters 
Platform 
Behavior 

Integrator Integrator Continuous.Integrator u y init InitialCondition y start Same 
Derivative Derivative Continuous.Derivative u y    Different 
StateSpace StateSpace Continuous.StateSpace u (V) y (V) A (M) 

B (M) 

C (M) 

D (M) 
  

A (M) 

B (M) 

C (M) 

D (M) 
 ( ) 

A (M) 

B (M) 

C (M) 

D (M) 
  

Same 

Transfer 
Function 

TransferFcn Continuous.TransferFunction u y num (V) 
denom (V) 

Numerator (V) 
Denominator (V) 

b (V) 
a (V) 

 

FixedDelay Transport 
Delay 

Nonlinear.FixedDelay u y delay DelayTime 
InitialOutput=0 

delayTime Different 

VariableDelay Variable 
Transport 
Delay 

Nonlinear.VariableDelay u 
delayTime 

y delayMax MaximumDelay 
InitialOutput=0 
VariableDelayType 
=Variable time delay 
ZeroDelay=on 

delayMax Different 

 

11.3.2.3 Discrete components 
Component 

Block 
Simulink 

Block 
Modelica Block Component Port 

(Inputs) 
Component Port 

(Outputs) 
PhSConstants Simulink 

Parameters 
Modelica 

Parameters 
Platform 
Behavior 

StateSpace DiscreteState 
Space 

Discrete.StateSpace u (V) y (V) A (M) 

B (M) 

C (M) 
  

A (M) 

B (M) 

C (M) 
  

A (M) 

B (M) 

C (M) 
  

Same 

TransferFunction Discrete 
TransferFcn 

Discrete.TransferFunction u y numerator (V) 
denominator (V) 

Numerator (V) 
Denominator (V) 

b (V) 
a (V) 

Same 

UnitDelay UnitDelay Discrete.UnitDelay u y initialCondition InitialCondition y_start Same 
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11.3.2.4 Non-linear components 
Component 

Block 
Simulink 

Block 
Modelica Block Component Port 

(Inputs) 
Component 

Port (Outputs) 
PhSConstants Simulink Parameters Modelica 

Parameters 
Platform 
Behavior 

Saturation Saturate Nonlinear.Limiter u y upper 
lower 

UpperLimit 
LowerLimit 

uMax 
uMin 

Same (min 
AND max 
mandatory) 

Dynamic 
Saturation 

Reference Nonlinear.VariableLimiter limit1 
u 

limit2 

y  SourceBlock= 
simulink/Discontinuities 
/Saturation Dynamic 
SourceType=Saturation 
Dynamic 

 Same 

DeadZone DeadZone Nonlinear.DeadZone u y lower 
upper 

LowerValue 
UpperValue 

uMin 
uMax 

Same 

RateLimiter RateLimiter Nonlinear.SlewRateLimiter u y rising 
falling 

RisingSlewLimit 
FallingSlewLimit 

Rising 
Falling 

Different 

 

11.3.2.5 Mathematical components 
Component 

Block 
Simulink 

Block 
Modelica 

Block 
Component Port 

(Inputs) 
Component Port 

(Outputs) 
PhSConstants Simulink 

Parameters 
Modelica 

Parameters 
Platform 
Behavior 

Gain Gain Math.Gain u y gain Gain k Same 
Product Product Math.Product u1 

2 

y  Inputs=**  Same 

Division Product Math.Division u1 

2 

y  Inputs=*/  Same 

Addition Sum Math.Add u1 

2 

y  Inputs=++  Same 

Subtraction Sum Math.Add u1 

2 

y  Inputs=+-  Same 

Abs Abs Math.Abs u y    Same 
Exp Math Math.Exp u y  Operator=exp  Same 
Log Math Math.Log u y  Operator=log  Same 
Log10 Math Math.Log10 u y  Operator=log10  Same 
Sign Signum Math.Sign u y    Same 
Sqrt Sqrt Math.Sqrt u y    Same 
Sin Trigonometry Math.Sin u y  Operator=sin  Same 
Cos Trigonometry Math.Cos u y  Operator=cos  Same 
Tan Trigonometry Math.Tan u y  Operator=tan  Same 
Asin Trigonometry Math.Asin u y  Operator=asin  Same 
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Acos Trigonometry Math.Acos u y  Operator=acos  Same 
Atan Trigonometry Math.Atan u y  Operator=atan  Same 
Atan2 Trigonometry Math.Atan2 u1 

 

y  Operator=atan2  Same 
Sinh Trigonometry Math.Sinh u y  Operator=sinh  Same 
Cosh Trigonometry Math.Cosh u y  Operator=cosh  Same 
Tanh Trigonometry Math.Tanh u y  Operator=tanh  Same 
 

11.3.2.6 Sources and sinks 
Component 

Block 
Simulink 

Block 
Modelica Block Component Port 

(Inputs) 
Component Port 

(Output) 
PhSConstants Simulink 

Parameters 
Modelica 

Parameters 
Platform 
Behavior 

Constant Constant Sources.Constant  y k Value k Same 
SineWave Sin Sources.Sine  y amplitude 

offset 

frequency 
phase 

Amplitude 
Bias 

Frequency 
Phase 

amplitude 
offset 
freqHz 
phase 

Same 

Clock Clock Sources.Clock  y    Same 
Pulse DiscretePulse 

Generator 
Sources.Pulse  y amplitude 

period 
width 

 

Amplitude 
Period 
PulseWidth 
PhaseDelay 

amplitude 
period 
width 

 

Same 

Step Step Sources.Step  y startTime 
after 

Time 
After 
Before=0 

startTime 
height 

Same 

RealScope Scope Interaction.Show.RealValue numberPort      
BooleanScope Scope Interaction.Show.BooleanValue activePort      

11.3.2.7 Routing components 

Multiplicities not equal to 1 for flow properties stereotyped by PhSVariable (signal flows) on Component Ports (Inputs and Outputs) are shown between square brackets. These flow 
properties have MultidimensionalElement applied, with dimension equal to the multiplicity of the flow property (see Subclause 11.5.2.4). Inputs with multiplicities of 2, 3, 4, 5, 6 are typed 
by RealVectorSignal2InElement, RealVectorSignal3InElement, RealVectorSignal4InElement, RealVectorSignal5InElement, RealVectorSignal6InElement, respectively. Outputs with 
multiplicities of 2, 3, 4, 5, 6 are typed by RealVectorSignal2OutElement, RealVectorSignal3OutElement, RealVectorSignal4OutElement, RealVectorSignal5OutElement, 
RealVectorSignal6OutElement, respectively. 

Component 
Block 

Simulink 
Block 

Modelica Block Component Port 
(Inputs) 

Component Port 
(Output) 

PhSConstants Simulink 
Parameters 

Modelica 
Parameters 

Platform 
Behavior 

Mux2 Mux Routing.Multiplex2 u1 

u2 

y [2]  Inputs=2  Same 
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Mux3 Mux Routing.Multiplex3 u1 

u2 

 

y [3]  Inputs=3  Same 

Mux4 Mux Routing.Multiplex4 u1 

u2 

u3 

 

y [4]  Inputs=4  Same 

Mux5 Mux Routing.Multiplex5 u1 

u2 

u3 

4 

 

y [5]  Inputs=5  Same 

Mux6 Mux Routing.Multiplex6 u1 

u2 

u3 

u4 

 

 

y [6]  Inputs=6  Same 

Demux2 Demux Routing.DeMultiplex2 u [2] y1 
y2 

 Outputs=2  Same 

Demux3 Demux Routing.DeMultiplex3 u [3] y1 

y2 
 

 Outputs=3  Same 

Demux4 Demux Routing.DeMultiplex4 u [4] y1 

y2 

y3 
 

 Outputs=4  Same 

Demux5 Demux Routing.DeMultiplex5 u [5] y1 

y2 

y3 

4 
 

 Outputs=5  Same 

Demux6 Demux Routing.DeMultiplex6 u [6] y1 

y2 

y3 

4 

 

 

 Outputs=6  Same 
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Switch   u1 

u2 

u3 

y  Criteria = 
u2~=0 
Threshold=0 

 Same 

 

11.3.3 Logical components 
Simulation platform data specified in the Component ports (Inputs and Output) and platform Parameters columns in this subclause are Boolean, unless marked with an R (real). 

Component 
Block 

Simulink 
Block 

Modelica Block Component Port 
(Inputs) 

Component Port 
(Output) 

PhSConstants Simulink 
Parameters 

Modelica 
Parameters 

Platform 
Behavior 

AND Logic Logical.And u1 

2 

y  Operator=AND 
Inputs=2 

 Same 

OR Logic Logical.Or u1 

2 

y  Operator=OR 
Inputs=2 

 Same 

NAND Logic Logical.Nand u1 

2 

y  Operator=NAND 
Inputs=2 

 Same 

NOR Logic Logical.Nor u1 

2 

y  Operator=NOR 
Inputs=2 

 Same 

XOR Logic Logical.Xor u1 

2 

y  Operator=XOR 
Inputs=2 

 Same 

NOT Logic Logical.Not u y  Operator=NOT 
Inputs=1 

 Same 

Less RelationalOperator Logical.Less u1 (R) 
u2 (R) 

y  Operator = <  Same 

LessEqual RelationalOperator Logical.LessEqual u1 (R) 
u2 (R) 

y  Operator = <=  Same 

Greater RelationalOperator Logical.Greater u1 (R) 
u2 (R) 

y  Operator = >  Same 

GreaterEqual RelationalOperator Logical. GreaterEqual u1 (R) 
u2 (R) 

y  Operator = >=  Same 

LessThreshold Compare To Constant Logical.LessThreshold u (R) y threshold (R) Const 
Relop = < 

threshold Same 

LessEqual 
Threshold 

Compare To Constant Logical.LessEqual 
Threshold 

u (R) y threshold (R) Const 
relop = 

 

threshold Same 

GreaterThreshold Compare To Constant Logical.GreaterThreshold u (R) y threshold (R) const 
relop = > 

threshold Same 

GreaterEqual 
Threshold 

Compare To Constant Logical. GreaterEqual 
Threshold 

u (R) y threshold (R) const 

relop = 
 

threshold Same 
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11.3.4 Electrical components 
Blocks in this subclause are for physical interaction between electrical components, some including signal flow of electrical quantities. The columns are the same as in Subclausess 
11.3.2 and 11.3.3, except: 

• Values of the name property of the SimulinkBlock and ModelicaBlock stereotypes applied to the base class of the block defined by each row are produced from these 
columns by prepending “foundation.electrical.” for SimulinkBlocks and “Modelica.Electrical.Analog.” for ModelicaBlocks. SimulinkBlocks in this table are 
Simscape library elements (an extension of Simulink, see Clause 10.1) 

• There is only one column for component ports, because they are mostly bidirectional, typed by FlowingChargeElement (see Subclause 11.2.2). Some components have 
additional unidirectional ports, typed by signal elements defined in Figure 32. Each line in the Component Ports column gives the name of a port. The corresponding 
lines in the Simulink Ports and Modelica Ports columns give the port names on the respective platforms. The component port is stereotyped by SimulinkPort and/or 
ModelicaPort when the name is different on that platform (SimulinkPort is used for Simscape ports in this table). In this case, the platform name is given as the value 
of the name property of the respective SimulinkPort and/or ModelicaPort stereotype. There is only one column for component ports, because they are mostly 
bidirectional, typed by FlowingChargeElement (see Subclause 11.2.2). Some components have additional unidirectional ports, typed by signal elements defined in 
Figure 32. Each line in the Component Ports column gives the name of a port. The corresponding lines in the Simulink Ports and Modelica Ports columns give the 
port names on the respective platforms. The component port is stereotyped by SimulinkPort and/or ModelicaPort when the name is different on that platform 
(SimulinkPort is used for Simscape ports in this table). In this case, the platform name is given as the value of the name property of the respective SimulinkPort 
and/or ModelicaPort stereotype. 

Component 
Block Simulink Block Modelica Block Component 

Ports 
Simulink 

Ports 
Modelica 

Ports PhSConstants Simulink 
Parameters 

Modelica 
Parameters 

Platform 
Behavior 

Ground elements.reference Basic.Ground p V p     
Capacitor elements.capacitor Basic.Capacitor p 

n 
p 
n 

p 
n 

c : Capacitance 
Capacitance 

c 
r=0 
g=0 

C Same 

Diode elements.pwl_diode Ideal.IdealDiode p 
n 

p 
n 

p 
n 

ron : Resistance 
goff:Conductance 
vforward:Voltage 
Resistance 
goff:Conductance 
vforward:Voltage 

Ron 
Goff 
Vf 

Ron 
Goff 
Vknee 

 

Ideal 
Transformer 

elements.ideal 
_transformer 

Ideal.IdealTransformer p1 
n1 
p2 
n2 

p1 
n1 
p2 
n2 

p1 
n1 
p2 
n2 

n : Real Real n n Same 

Inductor elements.inductor Basic.Inductor p 
n 

p 
n 

p 
n 

l : Inductance 
Inductance 

l 
r=0 
g=0 

L Same 

Infinite 
Resistance 

elements.infinite 
_resistance 

Ideal.Idle p 
n 

p 
n 

p 
n 

   Same 
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OpAmp elements.op_amp Ideal.IdealOpAmp3Pin p 
n 
out 

p 
n 
out 

in_p 
in_n 
out 

   Same 

Resistor elements.resistor Basic.Resistor p 
n 

p 
n 

p 
n 

r : Resistance 
Resistance 

R R Same 

Variable 
Resistor 

elements.variable 
_resistor 

Basic.VariableResistor 
VariableResistor 

p 
n 
r  : Resistance 
SignalInElementig
nalInElement 

p 
n 
R 

p 
n 
R 

   Same 

CurrentSensor sensors.current Sensors.CurrentSensor p 
n 
i  : Current 
SignalOutElement 
Current 
SignalOutElement 

p 
n 
I 

p 
n 
i 

   Same 

VoltageSensor sensors.voltage Sensors.VoltageSensor p 
n 
v  : Voltage 
SignalOutElement 

p 
n 
V 

p 
n 
v 

   Same 

SignalCurrent sources.controlled_
current 

Sources.SignalCurrent p 
n 
i  : Current 
SignalInElement 
Current 
SignalInElement 

p 
n 
iT 

p 
n 
i 

   Same 

SignalVoltage sources.controlled_
voltage 

Sources.SignalVoltage p 
n 
v : Voltage 
SignalInElemenV
oltage 
SignalInElement 

p 
n 
vT 

p 
n 
v 

   Same 

DCCurrent sources.dc_current Sources.ConstantCurrent p 
n 

p 
n 

p 
n 

i : Current 
Current 

i0 I Same 

DCVoltage sources.dc_voltage Sources.ConstantVoltage p 
n 

p 
n 

p 
n 

v : Voltage 
Voltage 

v0 V Same 
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ACCurrent sources.ac_current Sources.SineCurrent p 
n 

p 
n 

p 
n 

amp : Current 
phase : Real 
freq : Frequency 
Current 
phase : Real 
freq : Frequency 

amp 
shift 
frequency 

I 
phase 
freqHz 

Same 

ACVoltage sources.ac_voltage Sources.SineVoltage p 
n 

p 
n 

p 
n 

amp : Voltage 
phase : Real 
freq : Frequency 
Voltage 
phase : Real 
freq : Frequency 

amp 
shift 
frequency 

V 
phase 
freqHz 

Same 
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Figure 32 and Figure 33 give additional signal elements and value types with units for electrical modeling (seee 
Figure 30 and Figure 34). 

 

 

Figure 32: Elements for signal flows of electrical quantities 

«interfaceBlock»
CurrentSignalElement

signal flows 
inout i : Current

«interfaceBlock»
CurrentSignalInElement

signal flows 
in i : Current {redefines i}

«interfaceBlock»
CurrentSignalOutElement

signal flows 
out i : Current {redefines i}

«interfaceBlock»
VoltageInSignalElement

signal flows 
in v : Voltage {redefines v}

«interfaceBlock»
VoltageOutSignalElement

signal flows 
out v : Voltage {redefines v}

«interfaceBlock»
VoltageSignalElement

signal flows 
inout v : Voltage

«interfaceBlock»
ResistanceInSignalElement

signal flows 
in r : Resistance {redefines r}

«interfaceBlock»
ResistanceOutSignalElement

signal flows 
out r : Resistance {redefines r}

«interfaceBlock»
ResistanceSignalElement

signal flows 
inout r : Resistance

«interfaceBlock»
CurrentSignalElement

signal flows 
inout i : Current

«interfaceBlock»
CurrentSignalInElement

signal flows 
in i : Current {redefines i}

«interfaceBlock»
CurrentSignalOutElement

signal flows 
out i : Current {redefines i}

«interfaceBlock»
VoltageInSignalElement

signal flows 
in v : Voltage {redefines v}

«interfaceBlock»
VoltageOutSignalElement

signal flows 
out v : Voltage {redefines v}

«interfaceBlock»
VoltageSignalElement

signal flows 
inout v : Voltage

«interfaceBlock»
ResistanceInSignalElement

signal flows 
in r : Resistance {redefines r}

«interfaceBlock»
ResistanceOutSignalElement

signal flows 
out r : Resistance {redefines r}

«interfaceBlock»
ResistanceSignalElement

signal flows 
inout r : Resistance
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Figure 33: Value types and units for electrical quantities 

«valueType»
SysML::Real

«valueType»
{unit=ohm}

Resistance

ohm : Unit
symbol=“Ω”

«valueType»
{unit=farad}

Capacitance

farad : Unit
symbol=“F”

«valueType»
{unit=henry}

Inductance

henry : Unit
symbol=“H”

«valueType»
{unit=siemens}

Conductance

siemens : Unit
symbol=“1/Ω”

«valueType»
{unit=hertz}

Frequency

hertz : Unit
symbol=“1/s”

«valueType»
SysML::Real

«valueType»
{unit=ohm}

Resistance

ohm : Unit
symbol=“Ω”

«valueType»
{unit=farad}

Capacitance

farad : Unit
symbol=“F”

«valueType»
{unit=henry}

Inductance

henry : Unit
symbol=“H”

«valueType»
{unit=siemens}

Conductance

siemens : Unit
symbol=“1/Ω”

«valueType»
{unit=hertz}

Frequency

hertz : Unit
symbol=“1/s”
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11.4 Value types with units 
This subclause defines value types with units for physical quantities. See Subclause 11.3.4 for additional value types.. 

 
Figure 34: Value types and units for physical quantitiess 

11.5 Platform-dependent extension 

11.5.1 Introduction 
This subclause defines an extension of SysML used by that the platform-independent component library in Subclause 
11.3.  In this subclause, the Simulink library is taken as including the libraries of its extensions, for brevity. 

11.5.2 Platform profile 
This subclause defines stereotypes that Subclause 11.3 applies to the base classes and properties (including ports) of its 
blocks, to specify which library elements of Modelica and Simulink correspond to them. 

 
Figure 35: Simulation platform stereotypes 

11.5.2.1 ModelicaBlock 

Package: SysPhSLibrary  
isAbstract: No 
Generalization: Block 

«valueType»
SysML::Real

«valueType»
{unit=newton}

Force

newton : Unit
symbol=“N”

«valueType»
{unit=metrePerSecond}

Velocity

metrePerSecond : Unit
symbol=“m/s”

«valueType»
{unit=newtonmetre}

Torque

newtonmetre : Unit
symbol=“N·m”

«valueType»
{unit=radianPerSecond}
AngularVelocity

radianPerSecond : Unit
symbol=“rad/s”

«valueType»
SysML:: Real

«valueType»
{unit=ampere}

Current

ampere : Unit
symbol=“A”

«valueType»
{unit=volt}
Voltage

volt : Unit
symbol=“V”

«valueType»
SysML:: Real

«valueType»
SysML:: Real

«valueType»
{unit=cubicMetrePerSecond}

VolumeFlowRate

cubicMetrePerSecond : Unit
symbol=“m³/s”

«valueType»
{unit=pascal}
Pressure

pascal : Unit
symbol=“Pa”

«valueType»
SysML:: Real

«valueType»
{unit=wattPerKelvin}

EntropyFlowRate

wattPerKelvin : Unit
symbol=“W/K”

«valueType»
{unit=kelvin}

Temperature

kelvin : Unit
symbol=“K”

«valueType»
SysML:: Real

«valueType»
{unit=second}

Time

second : Unit
symbol=“s”

«stereotype»
Block

«stereotype»
PhSConstant

«metaclass»
Port

«metaclass»
MultiplicityElement

«metaclass»
Slot

«stereotype»
SimulinkBlock

name : String

«stereotype»
ModelicaBlock

name : String

«stereotype»
SimulinkParameter

name : String
value: ValueSpecification [0..1]

«stereotype»
ModelicaParameter

name : String
value: ValueSpecification [0..1]

«stereotype»
SimulinkPort

name : String

«stereotype»
ModelicaPort

name : String

«stereotype»
MultidimensionalElement

dimension: UnlimitedNatural [*] {ordered, non-unique}
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Attributes 

• name: String Fully qualified name of the component in the Modelica library corresponding to a platform-
independent component block 

Description 

A class stereotyped by ModelicaBlock has an equivalent in the Modelica library. The value of the name attribute 
gives the fully qualified name of the corresponding component in the Modelica library. 

11.5.2.2 ModelicaParameter 

Package: SysPhSLibrary  
isAbstract: No 
Extended Metaclass: Port 

Attributes 
• name: String Name of the port in the Modelica library corresponding to a port of a platform- 

independent component block 
Description 

A port stereotyped by ModelicaPort has an equivalent in the Modelica library. The value of the name attribute gives 
the name of the corresponding port in the Modelica library. 

Constraints 
[1] The stereotyped port must be owned by a class stereotyped by ModelicaBlock. 

11.5.2.3 ModelicaPort 

Package: SysPhSLibrary 
isAbstract: No 
Extended Metaclass: Port 

Attributes 
• name: String Name of the port in the Modelica library corresponding to a port of a platform- 

independent component block 

Description 

A port stereotyped by ModelicaPort has an equivalent in the Modelica library. The value of the name attribute gives 
the name of the corresponding port in the Modelica library. 

Constraints 
[1] The stereotyped port must be owned by a class stereotyped by ModelicaBlock. 

11.5.2.4 MultidimensionalElement 

Package: SysPhSLibrary 
isAbstract: No 
Extended Metaclass: MultiplicityElement, Slot 

Attributes 

Description 
The values of a slot stereotyped by MultidimensionalElement can be composed into an array with (possibly multiple) 
dimensions specified by the applied stereotype. The values are composed by taking each number in the dimension list of 
the applied stereotype from the last number to the second, and creating lists of that length from the result of the next higher 
dimension. The last dimension number results in lists of values of the multiplicity element or a slot, while the previous 
dimension number results in lists of those lists, and so on, ending at the second dimension number. 

Constraints 
[1] A multiplicity element stereotyped by MultidimensionalElement must be ordered and non-unique. 
[2] When this stereotype is applied to a multiplicity element, the dimensions must be either all unlimited or all 

• dimension: UnlimitedNatural [*] {ordered, non-unique} Dimensions of the multiplicity element or slot 
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positive integers. 
[3] When this stereotype is applied to a multiplicity element and the dimensions are all unlimited, the lower bound 

of the multiplicity element must be 0, and the upper bound of the multiplicity element must be unlimited. 
[4] When this stereotype is applied to a multiplicity element and the dimensions are all be positive integers, the lower 

bound and the upper bound of the multiplicity element must be equal to the product of all the dimensions. 
[5] When this stereotype is applied to a slot, the dimensions must all be positive integers and the number of values of 

the slot must be equal to the product of all dimensions. 
[6] A slot stereotyped by MultidimensionalElement must have its defining feature stereotyped by 

MultidimensionalElement. 
[7] The number of dimensions of a MultidimensionalElement applied to a slot must be the same as the number of 

dimensions of the MultidimensionalElement applied to the defining feature of the slot. 
[8] A slot must be stereotyped by MultidimensionalElement if and only if its defining feature is stereotyped by 

MultidimensionalElement with dimensions that are all unlimited. 

11.5.2.5 SimulinkBlock 

Package: SysPhSLibrary 
isAbstract: No 
Generalization: Block 

Attributes 
• name: String BlockType in Simulink library corresponding to a platform-independent component 

block 

Description 
A class stereotyped by SimulinkBlock has an equivalent in the libraries of Simulink or its extensions. The value of the 
name attribute gives the name of the corresponding component in the libraries of Simulink or its extensions. 

11.5.2.6 SimulinkParameter  

Package: SysPhSLibrary 
isAbstract: No 
Generalization: PhSConstant 

Attributes 
• name: String Name of the parameter in the Simulink library corresponding to a parameter 

of a platform-independent component block 

• value: ValueSpecification [0..1] Value of the parameter in the Simulink library 

Description 

A property stereotyped by SimulinkParameter has an equivalent parameter of a Simulink library component. The 
value of the name attribute is the name of the corresponding parameter in the Simulink library, and the ‘value’ 
attribute gives the value of this parameter. If the value attribute is empty, the value of the parameter must be given 
using initial values of the stereotyped property. 

Constraints 
[1] The stereotyped property must be owned by a class stereotyped by SimulinkBlock. 

11.5.2.7 SimulinkPort 

Package: SysPhSLibrary 
isAbstract: No 
Extended Metaclass: Port 

Attributes 
• name: String Name of the port in the Simulink library corresponding to a port of a platform-independent 

component block 

Description 

A port stereotyped by SimulinkPort has an equivalent in the Simulink library. The value of the name attribute gives 
the name of the corresponding port in the Simulink library. 
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Constraints 
[1] The stereotyped port must be owned by a class stereotyped by SimulinkBlock. 

11.5.3 Platform library 
This subclause defines interface blocks used in Subclause 11.3.2 to specify vector signal flows (see Subclause 11.3.1). 

 
Figure 36: Elements for vector signal flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

«interfaceBlock»
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signal flows
«multidimensionalElement»{dimension=*} in rSig : Real [1..*] {redefines rSig}

signal flows
«multidimensionalElement»{dimension=*} out rSig : Real [1..*] {redefines rSig}

«interfaceBlock»
RealVectorSignalOutElement

«interfaceBlock»
RealVectorSignalInElement

signal flows
«multidimensionalElement» {dimension=*} rSig : Real [1..*]

signal flows
«multidimensionalElement»{dimension=2} in rSig : Real [2] {redefines rSig}

«interfaceBlock»
RealVectorSignal2InElement

signal flows
«multidimensionalElement»{dimension=3} in rSig : Real [3] {redefines rSig}

«interfaceBlock»
RealVectorSignal3InElement

signal flows
«multidimensionalElement»{dimension=4} in rSig : Real [4] {redefines rSig}

«interfaceBlock»
RealVectorSignal4InElement

signal flows
«multidimensionalElement»{dimension=5} in rSig : Real [5] {redefines rSig}

«interfaceBlock»
RealVectorSignal5InElement

signal flows
«multidimensionalElement»{dimension=6} in rSig : Real [6] {redefines rSig}

«interfaceBlock»
RealVectorSignal6InElement

signal flows
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«interfaceBlock»
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«multidimensionalElement»{dimension=4} out rSig : Real [4] {redefines rSig}
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«interfaceBlock»
RealVectorSignal6OutElement
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Annex A - Examples 
(non-normative) 

A1.1 Introduction 
The following subannexes give example models for systems in various domains, using the simulation profile in 
Clause 7, the expression language in Clause 8, and libraries in Clause 11: 

• Subannex A.2: Electric circuits (analog electrical interactions). 

• Subannex A.3: Signal processing (manipulation of continuously varying numeric signals). 
• Subannex A.4: Hydraulics (fluid interactions). 
• Subannex A.5: Humidification (physical control example modeled with signal flows and state machines). 
• Subannex A.6: Cruise Control System (control example modeled with physical interactions and signal flows).. 

Each section describes the system being modeled, then diagrams for internal structure, component types, properties, and 
constraints. 

A1.2 Electric Circuits 

A.2.1 Introduction 
This subannex gives a model of an electric circuit as an example of physical interaction (flow of electric charge). It 
does not include any signal flows. 

A.2.2 System Being Modeled 
The electrical circuit has six components: ground, electrical source, inductor, capacitor, and two resistors, see 
Figure 37. 

 
Figure 37: Electric circuit example 

A.2.3 Internal Structure 
Figure 38 shows the internal structure of a Circuit block. Part properties, typed by blocks defined in Subannex A.2.4, 
represent components of the system. They are connected through ports, which represent electrical pins, also defined in 
Subannex A.2.4. Item flows on connectors indicate that electricity (electric charge) passes through the ports and flows and 
between the parts. The diagram connects a voltage source in parallel with a resistor and capacitor in series, as well as a 
resistor and inductor in series. 

SysML initial values specify property values for components used in internal block diagrams. Figure 38 shows initial 
values for resistance, capacitance, inductance, and source amplitude (properties defined in Subannex A.2.4). An 
alternative for specifying initial values of part properties in the Circuit block is to specialize it and redefine the part 
properties with default values for various configurations (see Subannex A.5.9). 

L

Rl
+

C

G

Rc



66 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 

 
Figure 38: Internal structure of the circuit example 

A.2.4 Blocks and Ports 
Figure 39 shows block definitions for components of Circuit in Figure 39. Sources, inductors, conductors, and resistors 
each have one positive and one negative pin for electric charge to pass through. Since they are similar in this sense, a 
generalized TwoPinElectricalComponent component is defined with positive and negative pins, p and n, as ports. The 
ground has only one pin, which is positive. All ports are of type ChargeFlowElement, from the physical interaction 
library (see Subclause 11.2.2). Each component has its own behaviors, defined as constraints in A.2.6. Some electricall 
value types in Figure 39 are from the electrical components library (see Subclause 11.3.4). Alternatively, somee 
components could be reused from that library also. 

 
Figure 39: Electrical blocks, ports & component properties 

A.2.5 Properties (variables) 
Physical interaction is the movement of physical substances between system components, modeled in terms of 
conserved characteristics of the substances. In this example, electric charge is the conserved characteristic of 
electrons moving through the circuit. Movement of substances is described by numeric variables for flow rate and 
potential to flow of their conserved characteristics. In this example, movement of charge is described by a current 
variable for flow rate and a voltage variable for potential to flow. The flow rate variable is conserved (values on ends 
of the interaction sum to zero) and the potential variable is not (values on ends of the interaction are the same). This is 
modeled in three parts: 
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• Conserved physical characteristics are modeled as blocks directly specialized from 
ConservedQuantityKind in the physical interaction library (see Subclause 11.2.2), Charge in this example. 

• Flow variables are modeled as properties with PhSVariable applied on specializations of conserved quantity 
kind blocks. In this example, the flow rate and potential PhSVariables are i and v on FlowingCharge (i marked as 
isConserved), respectively, typed by Current and Voltage, respectively, all from the physical interaction library. 

• Flow in and out of components is modeled by ports typed by interface blocks that have flow properties typed 
by flowing conserved quantity kinds. In this example, ports are typed by ChargeFlowElement from the 
physical interaction library, which has a flow property cF typed by FlowingCharge, as shown in Figure 39. 

Behavior of electrical components in this example is described by the amount of charge going in one pin and out the 
other (through the component) per unit time, and the difference in potentials between their positive and negative pins 
(across the component), given by the two properties iThru and vDrop on TwoPinElectricalComponent, respectively, 
shown in Figure 39. These two properties are typed by Current and Voltage, respectively, from the physical interaction 
library (see Subclause 11.2.2), and have the PhSVariable stereotype applied, specifying that their values might change 
during simulation. 

The resistor, capacitor, inductor, and source have properties r, c, l, and amp, respectively, typed by Resistance, 
Capacitance, Inductance, and Voltage, respectively, and all with the PhSConstant stereotype applied, specifying that 
their values do not change during each simulation run. 

A.2.6 Constraints (equations) 
Equations define mathematical relationships between the values of numeric variables. Equations in SysML, are 
constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this example, a 
constraint block BinaryElectricalComponentConstraint defines parameters and constraints common to resistors, 
inductors, capacitors, and sources, as shown in Figure 40. These specify that the voltage v across the component is 
equal to the difference between the voltage at the positive and negative pins. The current i through the component is 
equal to the current going through the positive pin. The sum of the current going through the two pins adds up to zero 
(one is the negative of the other), because the components do not create, destroy, or store charge. The constraints for the 
resistor, capacitor, and inductor specify the voltage/current relationship with resistance, capacitance, and inductance, 
respectively. The source constraint defines the circuit’s electrical source. The ground constraint specifies that the 
voltage at the ground pin is zero. The source constraint defines the voltage across it as a sine wave with the parameter 
amp as its amplitude. 

 
Figure 40: Circuit constraint blocks 

A.2.7 Constraint Properties and Bindings 
Equations in constraint blocks are applied to components using binding connectors in component parametric 
diagrams. Component parametric diagrams show properties typed by constraint blocks (constraint properties), as 
well as component and port simulation variables and constants. Binding connectors link constraint parameters to 
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simulation variables and constants, indicating their values must be the same. Figure 41 through Figure 45 show 
parametric diagrams for resistors, capacitors, inductors, sources, and grounds, respectively. 

 
Figure 41: Parametric diagram applying the resistor constraint 

 
Figure 42: Parametric diagram applying the capacitor constraint 

 
Figure 43: Parametric diagram applying the inductor constraint 
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Figure 44: Parametric diagram applying the source constraint 

 
Figure 45: Parametric diagram applying the ground constraint 

A1.3 Signal Processor 

A.3.1 Introduction 
This subannex gives a model of processing a sinusoidal variable as an example of signal flow. It does not include 
any physical interactions. 

A.3.2 System Being Modeled 
The signal processor and its testbed have a wave generator, an amplifier, high-pass and low-pass frequency filters, a 
mixer, and a signal sink, see Figure 46. 

 
Figure 46: Signal processor example 

A.3.3 Internal Structure 
Figure 47 and Figure 48 show the internal structure of blocks TestBed and SignalProcessor, respectively. Part 
properties, typed by blocks defined in Subannex A.3.4, represent the components of the system. They are connected 
through ports, also defined in Subannex A.3.4, which represent signal outputs and inputs, also defined in Subannex 
A.3.4. Signals pass through ports in the direction shown by the arrows. Item flows on connectors indicate that the 
signals are real numbers. 

Figure 47 connects a signal source to a signal processor, which it connects to a signal sink that displays the output. Figure 
48 connects the signal processor input to an amplifier, the output of the amplifier to a high- pass filter in parallel with a 
low-pass filter, the outputs of the filters to a mixer, and the output of the mixer to the signal processor output. SysML 
initial values specify property values for components used in internal block diagrams. Figure 47shows an initial value for 
source amplitude amp, while Figure 48 shows initial values for amplifier signal gain g and filtering properties xi and 
alpha (defined in Subannex A.3.4). Simulink without Simscape does not have elements corresponding to initial values 
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on parts below the top level system (see Subclause 10.10.4). Subannex A.5.9 shows SysML models that have the same 
effect as initial values and have corresponding elements in Simulink. 

 
Figure 47:  Internal structure of test bed from signal source to sink 

 
Figure 48: Internal structure of the signal processor 

A.3.4 Blocks and Ports 
Figure 49 and Figure 50 show block definitions for components of TestBed and SignalProcessor in Figure 47 and 
Figure 48, respectively. The output for SignalSource is named y and is typed by RealSignalOutElement, from the 
signal flow library (see Subclause 11.2.1). The input for SignalSink is named u and is typed by RealSignalInElement, 
also from the library. The signal processor has an input and output, transforming the signal from the source and passing 
it to the sink. 

In Figure 50, amplifiers, low-pass filters, and high-pass filters, each have an input and an output. Since they are similar in 
this sense, a generalized TwoPinSignalComponent component has an input u and an output y. Mixers have inputs u1 and 
u2, and an output y. Each kind of component has its own behaviors, defined as constraints in Subannex A.3.6. 
Alternatively, some of these components could be specified using the source and sink components library (see 
Subclause 11.3.2.7). 

 

 

TestBedibd 

scopeSignalOutput : SignalSink

u

dSP : SignalProcessor

y

u

amp = 3.0
initial values

inputSignal : SignalSource

y

Real

Real

SignalProcessoribd 

yu

g = 2.0
initial values

a : Amplifier
y

u

alpha = 0.01
xi = 0.0

initial values

hPF : HighPassFilter
y

u

alpha = 3.0
initial values

xi = 0.0

lPF : LowPassFilter

u

y

m : Mixer

u2

yu1

Real

Real

Real

Real
Real



SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 71 

 
Figure 49: Total system (source to sink) blocks, ports, & component properties 

 
Figure 50: Signal processing system blocks, ports, & component properties 

A.3.5 Properties (variables) 
Signal flow is the movement of numbers between system components. These numbers might reflect physical 
quantities or not. In this example, they do not (see Subannex A.5 for an example where they do). Signals flowing in and out 
of components are modeled by ports typed by interface blocks that have flow properties typed by numbers. In this 
example, ports are typed by RealSignalOutElement and RealSignalInElement from the signal flow library (see 
Subclause 11.2.1), which both have a flow property rSig typed by Real, from SysML, as shown in Figure 49. This value 
type has no unit, reflecting that the signals are not measurements of physical quantities and do not follow conservation 
laws. 

The amplifier, filters (high-pass and low-pass), signal source, and signal sink have properties g, alpha and xi, amp, and 
scope, respectively. The amp, alpha and g properties have the PhS Constant stereotype applied, specifying that their values 
are constant during each simulation run. The xi and scope properties have the PhSVariable stereotype applied, specifying 
that their values might vary during simulation. 
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A.3.6 Constraints (equations) 
Equations define mathematical relationships between the values of numeric variables. Equations in SysML, are 
constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this example, a 
constraint block BinarySignalComponentConstraint defines the parameters for one input (ip) and one output (op), 
common to amplifiers, low-pass filters, and high-pass filters, as shown in Figure 51. The amplifier, low-pass filer, and 
high-pass filter constraints show the input-output relationship of these components as the signal passes through them. 
The amplifier changes the signal strength by a factor gain, the low-pass filter eliminates the high-frequency 
components of the incoming signal, and the high-pass filter eliminates the low-frequency components of the signal. The 
mixer constraint specifies the relationship between its one output and the two inputs that come from the low-pass and high-
pass filters. The constraint defines the output to be the average of the inputs. The source constraint specifies a sine 
wave signal with the parameter amp as its amplitude. The sink constraint displays (scopes) the output signal from the 
signal processor. 

 
Figure 51: Signal processing system constraint blocks 

A.3.7 Constraint properties and bindings 
Equations in constraint blocks are applied to components using binding connectors in component parametric 
diagrams. Component parametric diagrams show properties typed by constraint blocks (constraint properties), as 
well as component and port simulation variables and constants. Binding connectors link constraint parameters to 
simulation variables and constants, indicating their values must be the same. Figure 52 through Figure 57 show 
parametric diagrams for the source, amplifier, high-pass filer, low-pass filter, mixer, and sink, respectively. 

 
Figure 52: Parametric diagram applying signal source constraint 
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Figure 53: Parametric diagram applying the amplifier constraint 

 
Figure 54: Parametric diagram applying the high-pass filter constraint 

 
Figure 55: Parametric diagram applying the low-pass filter constraint 

 
Figure 56: Parametric diagram applying the mixer constraint 
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Figure 57: Parametric diagram applying the signal sink constraint 

A1.4 Hydraulics 

A.4.1 Introduction 
This subannex gives a model of a simple hydraulic system as an example of physical interaction (fluid flow). It does not 
include any signal flows. 

A.4.2 System Being Modeled 
The hydraulic system has three components: two fluid reservoir tanks and a pipe for connecting these tanks, see Figure 
58. 

 
Figure 58: Hydraulics example 

A.4.3 Internal Structure 
Figure 59 shows the internal structure of a ConnectedTanks block. Part properties, typed by blocks defined in 
Subannex A.4.4, represent components in this system. They are connected to each other through ports, which 
represent openings in the tanks and pipe, also defined in Subannex A.4.4. Item flows on connectors indicate fluid passes 
through the ports and between the parts. The diagram connects a tank to each end of a pipe. 

SysML initial values specify property values for components used in internal block diagrams. Figure 59 shows 
initial values for fluid density, gravity, tank surface area, pipe radius, pipe length, and dynamic viscosity of the 
fluid (properties defined in Subannex A.4.4). An alternative for specifying initial values of part properties in the 
ConnectedTanks is to specialize it and redefine the part properties with default values for various configurations (see 
Subannex A.5.9). 

 
Figure 59: Internal structure of hydraulics system 
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A.4.4 Blocks and Ports 
Figure 60 shows block definitions for components of ConnectedTanks in Figure 59. Tanks and pipes have openings 
for fluid to pass through, one for tanks and two for pipes. The openings are represented by ports of type 
VolumeFlowElement, from the physical interaction library (see Subclause 11.2.2). Each type of component has its own 
behaviors, defined as constraints in A.4.6. 

 
Figure 60: Hydraulics blocks, ports, & component properties 

A.4.5 Properties (variables) 
Physical interaction is the movement of physical substances between system components, modeled in terms of 
conserved characteristics of the substances. In this example, volume is the conserved characteristic of fluid moving 
between the tanks (fluids are substances that can be treated as volumes because they are incompressible, but 
otherwise do not resist deformation). Movement of substances is described by numeric variables for flow rate and potential 
to flow of their conserved characteristics. In this example, movement of volumes is characterized by a volume per 
unit time variable for the flow rate and a pressure variable for potential to flow. The flow rate variable is conserved 
(values on ends of the interaction sum to zero) and the potential variable is not (values on ends of the interaction are the 
same). This is modeled in three parts: 

• Conserved physical characteristics are modeled as blocks directly specialized from 
ConservedQuantityKind in the physical interaction library (see Subclause 11.2.2), Volume in this example. 

• Flow variables are modeled as properties with the PhSVariable stereotype applied on specializations of 
conserved quantity kind blocks. In this example, the flow rate and potential PhSVariables are q and p on Flowing 
Volume (q marked as isConserved), respectively, typed by VolumeFlowR ate and Pressure, respectively, all from 
the physical interaction library. 

• Flows in and out of components are modeled by ports typed by interface blocks that have flow properties 
typed by flowing conserved quantity kinds. In this example, ports are typed by VolumeFlowElement from 
the physical interaction library, which has a flow property vF typed by Flowing Volume, as shown in Figure 60. 
The Tank block has a tankOpening port and the Pipe block has pipeOpening1 and pipeOpening2 ports, all 
typed by VolumeFlowElement. 

Behavior of the pipe in this example is described by the fluid pressure and volume flow rate at the openings. The 
fluid pressure is given by the property fluidPressureDiff (difference in pressure between its two openings) and the 
volume flow rate is given by the property fluidFlow (the volume of fluid going in our out the openings per unit time). 
These two properties are typed by Pressure and VolumeFlowRate, respectively, from the physical interaction library 
(see Subclause 11.2.2), and have the PhSVariable stereotype applied, specifying that their values might vary during 
simulation. 

The tank has properties fluidLevel, tankSurfaceArea, gravity, and fluidD ensity typed by Length, Area, Acceleration, and 
Density, respectively. The property fluidLevel has the PhSVariable stereotype applied, because the amount of fluid in the 
tank can vary during simulation, but the other properties have the 

PhS Constant stereotype applied, specifying that their values do not change during each simulation run. 

SysPhSLibrary::FlowingVolume

inout vF : FlowingVolume

«interfaceBlock»

«port» 
pipeOpening2

physical interactions

phs variab les
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The pipe has properties pipeLength, radius, dynamic Viscosity, and resistance typed by Length, Length, Viscosity, and 
ViscousResistance, respectively, and all with the PhSConstant stereotype applied. 

A.4.6 Constraints (equations) 
Equations define mathematical relationships between the values of numeric variables. Equations in SysML, are 
constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this example, constraint 
blocks PipeConstraint and TankConstraint define parameters and equations for pipes and tanks, respectively, as 
shown in Figure 61. 

The pipe constraints specify that the pressure pressureDiff across it is equal to the difference of fluid pressures 
opening1Pressure and opening2Pressure at each end of the pipe. The fluid flow rate through the pipe, fluidFlow, is 
proportional to the pressure difference by the constant resistance, which depends on the geometric properties of the pipe 
as well as fluidic properties. The magnitude of fluid flow rate through the pipe fluidFlow is the same as the 
magnitude of flow rates opening1FluidFlow and opening2FluidFlow going through the pipe’s openings, though the 
values differ in sign. The sum of the fluid flow rates going through the two pipe openings is zero (the fluid is assumed 
to be incompressible). 

The tank constraints specify that the pressure in the tank, pressure depends on the height of the fluid level in the 
tank, fluidHeight, as well as properties of the fluid, fluidDensity. Also, the fluid flow in the tank, fluidFlow, is related to 
the change in the fluid height level fluidHeight over time and the cross-sectional surface area of the tank, surfaceArea. 

 
Figure 61: Hydraulics model constraint blocks 

A.4.7 Constraint properties and bindings 
Equations in constraint blocks are applied to components using binding connectors in component parametric 
diagrams. Component parametric diagrams show properties typed by constraint blocks (constraint properties), as 
well as component and port simulation variables and constants. Binding connectors link constraint parameters to 
simulation variables and constants, indicating their values must be the same. Figure 62 and Figure 63 show the 
parametric diagrams of the tank and the pipe, respectively. 
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Figure 62: Parametric diagram applying the tank constraint 

 
Figure 63: Parametric diagram applying the pipe constraint 

A1.5 Humidifier 

A.5.1 Introduction 
This subannex gives a model of a room humidifier as an example of signal flows and state machines. Some signals in the 
example reflect physical quantities, but this is not physical interaction in the sense of physical substances with flow rates 
and potentials, as in Subannexes A.2 and A.4. 

A.5.2 System Being Modeled 
The total humidifier system has two main components: the humidified room and the humidifier, see Figure 64. 
The humidifier uses information about the room’s humidity level to determine how much vapor to input to the 
room. The humidifier includes a water tank, a heater controller, and a vapor generation plant. 

 
Figure 64: Total humidifier system example 

A.5.3 Internal Structure 
Figure 65 through Figure 71 show the internal structure of the total humidifier system and its components 
through seven nested internal block diagrams. The internal structure of the block HumidifierSystem shown in 
Figure 65 uses the blocks HumidifiedRoom and Humidifier. These two blocks have their own internal structures. 
The internal structure of HumidifiedRoom depicted in Figure 66 uses a block RelativeHumidity, which has an 
internal structure depicted in Figure 67. The internal structure of Humidifier in Figure 68 uses a block 
VaporGenerationPlant, which has an internal structure shown in Figure 69. The internal structure of 
VaporGenerationPlant uses blocks Heating and Evaporation, which have internal structures depicted in Figure 
70 and Figure 71, respectively. The blocks used in these diagrams are introduced in Subannex A.5.4. 

Part properties, typed by blocks defined Subannex A.5.4, represent the components of the system. They are connected 
to each other through ports, also defined in Subannex A.5.4, which represent signal outputs and inputs. Signals 
pass through ports in the direction shown by the arrows. Item flows on connectors indicate that the signals are 
real numbers. 

Figure 65 connects the humidified room to the humidifier, showing vapor signals flowing from the humidifier to 
the room and humidity signals flowing from the room to the humidifier. Figure 66 directs vapor, saturation vapor 
pressure, and humidity signals flowing into the room to a relative humidity part that calculates the humidity flowing out 
of the room. 
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Figure 67 directs incoming vapor signals to a vapor pressure calculation part, which connects to the relative humidity 
calculation to output pressure signals. This figure also directs incoming saturation vapor pressure signals to the relative 
humidity calculation, as well as humidity signals to a humidity balance part, which connects to the relative humidity 
calculation to output a humidity change signal, which is directed to the output of this internal structure. 

Figure 68 transforms humidity signals flowing to the humidifier into vapor signals flowing out of the humidifier. This 
is done using a heater control state machine, a usage scenario state machine, another controller state machine, 
information from the water tank’s water volume, and information from the vapor generation plant. The state machines 
for the heater control, control, and usage scenario parts in Figure 68 are explained in A.5.8. 

Figure 69 directs incoming heater power ratio signals to the vapor generation plant calculation part and incoming 
water fan signals to the radiation part. Connectors between the vapor generation plant calculation and radiation parts 
and the heating and evaporation parts result in vapor signal outputs from the evaporation part and temperature signal 
outputs from the heating part. 

Figure 70 directs energy signals to the temperature increase part, which connects to the heating calculation to output 
temperature-increase signals, which is directed to the output of this internal structure. Figure 70 directs input energy 
and temperature signals to evaporation calculation parts, one of which outputs vapor signals for the internal structure. 

Initial values for the properties of components in Figure 66 through Figure 71 in Subannex A.5.4 cannot be specified in 
internal block diagrams, as in the other subannexes, at least if Simulink is one of the platforms. Simulink without Simscape 
does not have elements corresponding to initial values on parts below the top- level system (see Subclause 10.10.4), and 
Simscape has no corresponding elements for state machines (see 10.12.4). Subannex A.5.9 shows how to get the effect 
of initial values in this example by specializing blocks and redefining their properties with default values. 

 
Figure 65: Internal structure of the total humidifier system 

 
Figure 66: Internal structure of the humidified room 

 
Figure 67: Internal structure of relative humidity 
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Figure 68: Internal structure of the humidifier 

 
Figure 69: Internal structure of the vapor generation plant 

 
Figure 70: Internal structure of heating 
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Figure 71: Internal structure of evaporation 

A.5.4 Blocks and ports 
Figure 72 through Figure 78 show block definitions for component used in the internal block diagrams shown in Figure 
65 through Figure 71, respectively (one each for the total humidifier system, humidified room, relative humidity, 
humidifier, vapor generation plant, heating, and environment components). All ports are typed by RealSignalInElement 
from the signal flow library (see Subclause 11.2.1). A tilde (~) next to a port name indicates that it receives signals 
(conjugated port type), otherwise the port sends signals (the tilde normally appears before the type name, after a colon, 
but port types are omitted from the figures for brevity, because they are all the same; compare to the signal port types 
in Subannex A.3. Component blocks that do not have internal block diagrams in A.5.3 have their behaviors defined as 
constraints in Subannex A.5.6. 

 
Figure 72: Total humidifier system blocks, ports, & component properties 

 
Figure 73: Humidified room blocks, ports, & component properties 
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Figure 74: Relative humidity blocks, ports, & component properties 

 
Figure 75: Humidifier blocks, ports, & component properties 

 
Figure 76: Vapor generation plant blocks, ports, & component properties 
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Figure 77:  Heating blocks, ports, & component properties 

 
Figure 78: Evaporation blocks, ports, & component properties 

A.5.5 Properties (variables) 
Signals flow is the movement of numbers between system components. These numbers might reflect physical 
quantities or not. In this example, they do (see Subannex A.3 for an example where they do not). Signals flowing in and 
out of components are modeled by ports typed by interface blocks that have flow properties typed by numbers. In this 
example, ports are typed by RealSignalInElement from the signal flow library (see Subclause 11.2.1), which has a flow 
property rSig typed by Real, from SysML, as shown in Figure 72. This value type has no unit, even when they reflect 
physical quantities, and the values do not follow conservation laws. 

The blocks RelativeHumidityCalculation (Figure 74), WaterTank (Figure 75), and HeatingCalculation (Figure 77) 
have properties with PhSVariable stereotypes applied, specifying that the value of these properties may vary during 
simulation. The blocks Saturation VaporPressure (Figure 73), PercentageConversion (Figure 73), 
VolumeConversion (Figure 73), HumidityBalance (Figure 74), VaporPressureCalculation (Figure 74), WaterTank 
(Figure 75), HeaterControl (Figure 75), Control (Figure 75), Radiation (Figure 76), 
VaporGenerationPlantCalculation (Figure 76), TemperatureIncrease (Figure 77), EvaporationCalculation2 (Figure 
78), and EvaporationCalculation (Figure 78), have properties with PhS Constant stereotypes applied, specifying that 
the value of these properties are constant during each simulation run. 

A.5.6 Constraints (equations) 
Equations define mathematical relationships between the values of numeric variables. Equations in SysML, are 
constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this example, the 
constraint blocks in Figure 79 each define parameters and constraints for a component block in Figure 73 through 
Figure 78: VolumeConversion, PercentageConversion, and Saturation VaporPressure in Figure 73; 
RelativeHumidityCalculation, VaporePressureCalculation, and HumidityBalance in Figure 74; WaterTank in Figure 
75; Radiation and VaporGenerationPlantCalculation in Figure 76; HeatingCalculation and TemperatureIncrease in 
Figure 77; and EvaporationCalculation and EvaporationCalculation2 in Figure 78. The constraint blocks have the 
name of their components with the suffix “-Constraint” added. The constraints specify manipulation of signals between 
inputs and outputs of their component block. 

phs constants

«port»

phs variables

«port» «port» «port»
increase energy ipTempInc opTemp

specificHeat : Real
waterVolume : Real xIntg : Real

«block»
«block»

HeatingCalculation
TemperatureIncrease

Heating Componentsbdd

«interfaceBlock»
SysPhSLibrary::RealSignalInElement

signal flows
in rSig : Real{redefines rSig}

phs constants

«port»

phs constants

«port» «port» «port» «port»
energy vapor ipVapor opVapor ipTemperature

evaporationHeat : Real
specificHeat : Real
boilingTemperature : Real
environmentTemperature : Real

boilingTemperature : Real
noPower : Real
litPSec2mLitPHour : Real

«block»«block»
EvaporationCalculation2EvaporationCalculation

Evaporation Componentsbdd

SysPhSLibrary::RealSignalInElement

in rSig : Real{redefines rSig}

«interfaceBlock»

signal flows



SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 83 

 
Figure 79: Humidifier constraint blocks 
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A.5.7 Constraint Properties & Bindings 
Equations in constraint blocks are applied to components using binding connectors in component parametric 
diagrams. Component parametric diagrams show properties typed by constraint blocks (constraint properties), as 
well as component and port simulation variables and constants. Binding connectors link constraint parameters to 
simulation variables and constants, indicating their values must be the same. Figure 80 through Figure 92 show the 
parametric diagrams for the blocks VolumeConversion, PercentageConversion, Saturation VaporPressure, 
HumidityBalance, RelativeHumidityCalculation, VaporPressureCalculation, VaporGenerationPlantCalculation, 
Radiation, HeatingCalculation, TemperatureIncrease, EvaporationCalculation, EvaporationCalculation2, and 
WaterTank, respectively. 

 
Figure 80: Parametric diagram applying the volume conversion constraint 

 
Figure 81: Parametric diagram applying the percentage conversion constraint 

 
Figure 82:  Parametric diagram applying the saturation vapor pressure constraint 
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Figure 83: Parametric diagram applying the humidity balance constraint 

 
Figure 84: Parametric diagram applying the relative humidity calculation constraint 

 
Figure 85: Parametric diagram applying the vapor pressure calculation constraint 
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Figure 86: Parametric diagram applying the vapor generation plant calculation constraint 

 
Figure 87: Parametric diagram applying the radiation constraint 

 
Figure 88: Parametric diagram applying the heating calculation constraint 

«equal»

«equal»

«equal»

«equal» rSig : Real

opEnergy

energy
maxPwr

maxHeaterPower : Real
rSig : Real

radiation

htrPwr

ipRadiation

rSig : Real

ipHtrPwr

par VaporGenerationPlantCalculation

«constraint»
vGPCC : VaporGenerationPlantCalculationConstraint

constraints

parameters
{energy=((maxPwr*htrPwr)-radiation)}

«equal»

«equal» «equal» «equal» «equal»

«equal»

par Radiation

rSig : Real

temperatureIn radiationWaterOut

fatWatIn

rSig : Real

rSig : RealtempIn

fanWatIn roomTmp radiationFactor fanEff

radiationWatOut

«constraint»
rC : RadiationConstraint

{radiationWatOut=(tempIn-roomTmp)*(radiationFactor+(fanWatIn*fanEff))}
parameters

constraints

roomTemperature : Real radiationFactor : Real fanEfficiency : Real

«equal»

«equal»

«equal»

par HeatingCalculation

rSig : Real

ipTempInc

rSig : Real

opTemp

xIntg : Real
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Figure 89: Parametric diagram applying temperature increase constraint 

 
Figure 90: Parametric diagram applying the evaporation calculation constraint 

 
Figure 91: Parametric diagram applying the second evaporation calculation constraint 
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Figure 92: Parametric diagram applying the water tank constraint 

A.5.8 State Machines 
The state machine diagrams in this example specify how components react to changes by showing states of each 
component and the transition between these states. StateFlow only extends Simulink (see Subclause 10.12.4), which 
affects modeling of initial values (see Subannex A.5.9). 

Figure 93 depicts the state machine of the block HeaterControl, the type of the heatercontrol property in the Humidifier 
internal block diagram (see Figure 68). The machine uses information from the block’s ports to decide whether to 
operate the heater controller: the humidified room’s current humidity from the input humidityIn, the target humidity from 
the property targetHumidity, and the control signal from the input modeIn. Its decision is sent to the vapor generation 
plant along the connection from the pin heaterPowerRatioOut. 

Figure 94 depicts the state machine of the block Control, the type of the control property in the Humidifier internal 
structure (Figure 68). The machine determines the operation of the heater controller heatercontrol and the vapor 
generation plant vaporgenerationplant based on information received from the Control block’s ports: a water volume 
signal water Volum eIn from the property watertank, a water temperature signal waterTempIn from 
vaporgenerationplant, and a switch decision signal swtch from usage. 

Figure 95 depicts the state machine of the block UsageScenario, the type of the usage property in the Humidifier 
internal structure (Figure 68). The part property usage connects to the control part property with a signal from port 
swtch for the state machine UsageScenario to determine the time and duration for which the humidifier should 
humidify the room. 

 
Figure 93: Heater Control State Machine Diagram 

 
Figure 94: Humidifier Control State Machine Diagram 

 
Figure 95: Humidifier Usage Scenario State Machine Diagram 

A.5.9 Initial Values 
Initial values are specified by block property redefinitions with default values in this example. This is necessary 
because StateFlow only extends Simulink (see Subclause 10.12.4), one of the desired platforms, and Simulink without 
Simscape does not have elements corresponding to SysML initial values on parts below the top level system (see 
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Subclause 10.10.4). SysML models must specialize component blocks to redefine properties and give default values, 
rather than use initial values, if they are to have corresponding elements in Simulink. 

Each configuration (scenario) of values requires its own specializations and redefinitions, starting with a specialization the 
total system block. Blocks typing part properties of the specialized total system block (and any of their parts, 
recursively) are also specialized when they have values to be specified. The additional blocks in Figure 96 through 
Figure 102 are specialized from component blocks in Figure 72 through Figure 78, respectively (for parts of the total 
humidifier system, humidified room, relative humidity, humidifier, vapor generation plant, heating, and environment 
components). For example, Figure 96 shows HumidifierSystemScenario1 specialized from the total system block. 
Specialized blocks have the name of their general components with the suffix “-1 ”, indicating that this specialization is 
for the first scenario. Part property redefinitions with default values are indicated on each specialized block. 

 
Figure 96: Humidifier System Scenario Initial Values 

 
Figure 97: Humidified Room Scenario Initial Values 

HumidifierSystemScenario1bdd
«block»

HumidifierSystem

«block»
Humidifier

«block»
HumidifierSystemScenario1

«block»
HumidifiedRoom

{redefines humidifierSystem}humidifierSystem {redefines room}room

«block»
Humidifier1

«block»
HumidifiedRoom1

parts parts
watertank : WaterTank1{redefines watertank}
heaterControl : HeaterControl1{redefines heaterControl}
control : Control1{redefines control}
vaporGenerationPlant : VaporGenerationPlant1{redefines vaporGenerationPlant}
usage : UsageScenario1{redefines usage}

toPercentage : PercentageConversion1{redefines toPercentage}
mLpH2mLpS : VolumeConversion1{redefines mLpH2mLpS}
sVP : SaturationVaporPressure1{redefines sVP}
rH : RelativeHumidity1{redefines rH}

phs constants

phs constants

phs constants

HumidifiedRoomScenario1bdd

«block»

sVP {redefines sVP}

rH
{redefines rH}

mLpH2mLpS
{redefines mLpH2mLpS}

toPercentage
{redefines toPercentage}

SaturationVaporPressure

SaturationVaporPressure1
«block»

p2 : Real = 7.5{redefines p2}
roomTemperature : Real = 30.0{redefines roomTemperature}
p1 : Real = 6.11{redefines p1}
logBase : Real = 10.0{redefines logBase}
celciusOffset : Real = 273.0{redefines celciusOffset}
hPa2Pa : Real = 100.0{redefines hPa2Pa}

«block»
RelativeHumidity

RelativeHumidity1
«block»

parts
hB : HumidityBalance1{redefines hB}
vPC : VaporPressureCalculation1{redefines vPC}
relHumCalc : RelativeHumidityCalculation1{redefines relHumCalc}

«block»
HumidifiedRoom1

gain : Real = 100.0{redefines gain}

gain : Real = 2.8E-4{redefines gain}

«block»
VolumeConversion1

«block»
VolumeConversion

«block»
PercentageConversion

«block»
PercentageConversion1
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Figure 98: Relative Humidity Scenario Initial Values 

 
Figure 99: Humidifier Scenario Initial Values 
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airExchangeRate : Real = 1.0E-8{redefines airExchangeRate}
envHumidity : Real = 0.35{redefines envHumidity}
volume : Real = 25000.0{redefines volume}

C2 : Time = 1.0{redefines C2, unit=second}

roomTemperature : Real = 30.0{redefines roomTemperature}
gasConst : Real = 8.314{redefines gasConst}
molecularW : Real = 18.015{redefines molecularW}
celciusOffset : Real = 273.0{redefines celciusOffset}
volume : Real = 25000.0{redefines volume}

phs constants
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«block»

«block»

«block»

VaporGenerationPlant

«block»
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«block»
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UsageScenario1
«block»
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{redefines usage}

{redefines vaporGenerationPlant}

vaporGenerationPlantVaporGenerationPlant1
parts

r : Radiation1{redefines r}
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heaterControl

watertank

{redefines control}

{redefines heaterControl}

{redefines watertank}

vGPC : VaporGenerationPlantCalculation1{redefines vGPC}
h : Heating1{redefines h}
e : Evaporation1{redefines e}

Control1

safeTemperature : Real = 50.0{redefines safeTemperature}

HeaterControl1

Control
«block»

HeaterControl
«block»«block»

«block»
WaterTank

«block»
WaterTank1

prLow : Real = 0.0{redefines prLow}
prHigh : Real = 1.0{redefines prHigh}
threshold : Real = 0.5{redefines threshold}
targetHumidityIn : Real = 50.0{redefines targetHumidityIn}

tankVolume : Real = 50000.0{redefines tankVolume}
litpSec2mLitpHr : Time = 3600000.0{redefines litpSec2mLitpHr, unit = second}
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Figure 100: Vapor Generation Plant Scenario Initial Values 

 
Figure 101: Heating Scenario Initial Values 

 
Figure 102:  Evaporation Scenario Initial Values 
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roomTemperature : Real = 30.0{redefines roomTemperature}
radiationFactor : Real = 0.1{redefines radiationFactor}
fanEfficiency : Real = 0.1{redefines fanEfficiency} maxHeaterPower : Real = 400.0{redefines maxHeaterPower}

tI : TemperatureIncrease1{redefines tI}
hC : HeatingCalculation1{redefines hC}
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eC2 : EvaporationCalculation2Scenario1{redefines eC2}
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waterVolume : Real = 0.1{redefines waterVolume}
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«block»

«block»

«block»
Evaporation1

EvaporationCalculation EvaporationCalculation2

eC2
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«block» «block»EvaporationCalculationScenario1 EvaporationCalculation2Scenario1
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phs constantsevaporationHeat : Real = 2270.0{redefines evaporationHeat}
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A1.6A1.1 Cruise Control System 

A.7.0A.1.1 Introduction 
This subannex gives a model of a cruise control system as an example that includes both physical interaction 
(linear and angular momentum) and signal flow (control and sensory signals). 

A.9.0A.1.1 System Being Modeled 
The automobile cruise control total system includes the vehicle, its operating environment, and the physical and 
informational processes involved, see Figure 103: Cruise control system example (physical interactions are shown with 
solid, bidirectional arrows between system components, and signal flows with dashed, unidirectional arrows). 

 
Figure 103: Cruise control system example 

A.13.0A.1.1 Internal Structure 
Figure 104 shows the internal structure of a CruiseControlTotalSystem block. Part properties, typed by blocks defined 
in Subannex A.6.4, represent components of the system. They are connected to each other directly or through ports, 
representing physical interaction or signal flow between them. Item flows on connectors indicate the type of signal or 
conserved physical characteristic that passes along them. Signals control production of angular momentum by the engine. 
The cruise controller (speedController) receives speed signals from the driver (driver) and the wheels (impeller), where 
the former is the goal speed and the latter is the current speed. The cruise controller determines speed adjustments by 
sending the engine (powerSource) a signal containing the amount of fuel needed to inject into the engine. Angular 
momentum typically flows out from the engine to the wheels and is transformed to linear momentum back into the car 
through interaction with the road. This appears in Figure 105 as a connector between wheel and automobile supported by an 
association block specifying the transformation, as well as another connector between the wheel and road to depict the 
contact between the two. The car's linear momentum is also affected by gravitation (gravVehicleLink) and surrounding 
air (atmosphere), appearing in Figure 104 as additional connectors between the car and these components. 

SysML initial values specify property values for components used in internal block diagrams. Figure 104 shows initial 
values and units for each of the system components (properties defined in Subannex A.6.4). The car gives its cross-
sectional area, drag coefficient, and mass. The driver specifies values for decisions about the car’s speed. The cruise 
controller gives its proportional-integrator and throttle-acceleration coefficients that determine the amount of fuel 
injected into the engine. The engine specifies its torque coefficient, related to the gears and crankshaft of the car. The 
wheel has a radius and a coefficient for dissipation of angular momentum into heat due to rolling resistance. Earth 
specifies its gravity and density of its atmosphere. The road gives values determining its slope. Initial values are specified 
directly on CruiseControlTotalSystem for brevity, but could be on specializations instead, defining multiple test cases 
without modifying the original system model. An alternative to initial values is to use default values on blocks typing 
system properties (see Subannex A.5.9). 
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A.6.1 Introduction 
This subannex gives a model of a cruise control system as an example that includes both physical interaction 
(linear and angular momentum) and signal flow (control and sensory signals). 

A.6.2 System Being Modeled 
The automobile cruise control total system includes the vehicle, its operating environment, and the physical and 
informational processes involved, see Figure 103: Cruise control system example (physical interactions are shown with 
solid, bidirectional arrows between system components, and signal flows with dashed, unidirectional arrows). 

 

Figure 103: Cruise control system example 

A.6.3 Internal Structure 
Figure 104 shows the internal structure of a CruiseControlTotalSystem block. Part properties, typed by blocks defined 
in Subannex A.6.4, represent components of the system. They are connected to each other directly or through ports, 
representing physical interaction or signal flow between them. Item flows on connectors indicate the type of signal or 
conserved physical characteristic that passes along them. Signals control production of angular momentum by the engine. 
The cruise controller (speedController) receives speed signals from the driver (driver) and the wheels (impeller), where 
the former is the goal speed and the latter is the current speed. The cruise controller determines speed adjustments by 
sending the engine (powerSource) a signal containing the amount of fuel needed to inject into the engine. Angular 
momentum typically flows out from the engine to the wheels and is transformed to linear momentum back into the car 
through interaction with the road. This appears in Figure 105 as a connector between wheel and automobile supported by an 
association block specifying the transformation, as well as another connector between the wheel and road to depict the 
contact between the two. The car's linear momentum is also affected by gravitation (gravVehicleLink) and surrounding 
air (atmosphere), appearing in Figure 104 as additional connectors between the car and these components. 

SysML initial values specify property values for components used in internal block diagrams. Figure 104 shows initial 
values and units for each of the system components (properties defined in Subannex A.6.4). The car gives its cross-
sectional area, drag coefficient, and mass. The driver specifies values for decisions about the car’s speed. The cruise 
controller gives its proportional-integrator and throttle-acceleration coefficients that determine the amount of fuel 
injected into the engine. The engine specifies its torque coefficient, related to the gears and crankshaft of the car. The 
wheel has a radius and a coefficient for dissipation of angular momentum into heat due to rolling resistance. Earth 
specifies its gravity and density of its atmosphere. The road gives values determining its slope. Initial values are specified 
directly on CruiseControlTotalSystem for brevity, but could be on specializations instead, defining multiple test cases 
without modifying the original system model. An alternative to initial values is to use default values on blocks typing 
system properties (see Subannex A.5.9). 
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Figure 104: Internal structure of the cruise control system 

A.15.1A.1.1 Blocks and Ports 
Figure 105: Total system blocks, ports, & component properties shows block definitions for components of 
CruiseControlTotalSystem in Figure 104. Figure 106 and Figure 107 show more detailed definitions about 
physical interactions between the car and the surrounding air and gravity, while Figure 109 and Figure 108 show 
these between the wheels and car and engine. Figure 110 shows definitions for signal flows in the car. Many 
components have their own behaviors, defined as constraints in Subannex A.6.6. 

Components involved in the interaction between the car and surrounding air are defined in Figure 106 (the car and 
Earth’s port typed by Air). They are generalized by LMomFlowElement from the physical interaction library (see 
Subclause 11.2.2) and linked by an association that is also a block, LMomentum Transfer, indicated by a dashed line (the 
association end on the library side is owned by the association, to avoid modifying the library element). The association 
block represents linear momentum transfer between the vehicle and the air around it. The internal structure of 
LMomentumTransfer is defined in Subannex A.6.7 (see Subclause 9.2.2 about association blocks). 

Components involved in the interaction between the car and Earth’s gravity are defined in Figure 107 (the car and its 
potential energy in Earth’s gravitational field, LMomPotEngTransformation). They are generalized by 
LMomFlowElement from the physical interaction library, and linked by an association. The transformation between linear 
momentum and potential energy is not modeled with an association between the car and Earth to highlight that 
momentum converted to potential energy can only be transferred back to the car, as compared to momentum transferred 
to the air, which can be transferred to other objects. The connector to Earth reflects its involvement in converting 
between linear momentum and potential energy, even though the Earth is too large to accept or provide momentum. The 
connector also provides access to properties needed by interaction equations, such as gravitation of the Earth and slope 
of the road, see Subannexes A.6.6 and A.6.7. The internal structure of LMomPotEngTransformation is defined in 
Subannex A.6.7. 

Components involved in the transformation between angular momentum of the wheels and linear 
momentum of the car are shown in Figure 108 (the car, road, and wheel). The car is generalized by 

LMomFlowElement as before, while the wheel is generalized by interface block AMomFlowComponent, 
which in turn is generalized by AMomFlowElement, from the physical interaction library (see Subclause 

11.2.2). The library’s LMomFlowElement and AMomFlowComponent are linked by an association that is 
also a block ALMomentum Transformation, indicated by a dashed line (the association ends are owned by the 

association, to avoid modifying the library elements). The association block represents transformation 
between the wheels’ angular momentum and the car’s linear momentum. It has a port lMTG typed by a 

block LMomentumGround (generalized by LMomFlowElement), for connecting to physical objects that are 
too large to accept or provide linear momentum, such as the road (generalized by LMomentumGround). 
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This 

 

Figure 104: Internal structure of the cruise control system 

A.6.4 Blocks and Ports 
Figure 105: Total system blocks, ports, & component properties shows block definitions for components of 
CruiseControlTotalSystem in Figure 104. Figure 106 and Figure 107 show more detailed definitions about 
physical interactions between the car and the surrounding air and gravity, while Figure 109 and Figure 108 show 
these between the wheels and car and engine. Figure 110 shows definitions for signal flows in the car. Many 
components have their own behaviors, defined as constraints in Subannex A.6.6. 

Components involved in the interaction between the car and surrounding air are defined in Figure 106 (the car and 
Earth’s port typed by Air). They are generalized by LMomFlowElement from the physical interaction library (see 
Subclause 11.2.2) and linked by an association that is also a block, LMomentum Transfer, indicated by a dashed line (the 
association end on the library side is owned by the association, to avoid modifying the library element). The association 
block represents linear momentum transfer between the vehicle and the air around it. The internal structure of 
LMomentumTransfer is defined in Subannex A.6.7 (see Subclause 9.2.2 about association blocks). 

Components involved in the interaction between the car and Earth’s gravity are defined in Figure 107 (the car and its 
potential energy in Earth’s gravitational field, LMomPotEngTransformation). They are generalized by 
LMomFlowElement from the physical interaction library, and linked by an association. The transformation between linear 
momentum and potential energy is not modeled with an association between the car and Earth to highlight that 
momentum converted to potential energy can only be transferred back to the car, as compared to momentum transferred 
to the air, which can be transferred to other objects. The connector to Earth reflects its involvement in converting 
between linear momentum and potential energy, even though the Earth is too large to accept or provide momentum. The 
connector also provides access to properties needed by interaction equations, such as gravitation of the Earth and slope 
of the road, see Subannexes A.6.6 and A.6.7. The internal structure of LMomPotEngTransformation is defined in 
Subannex A.6.7. 

Components involved in the transformation between angular momentum of the wheels and linear momentum of the 
car are shown in Figure 108 (the car, road, and wheel). The car is generalized by LMomFlowElement as before, while 
the wheel is generalized by interface block AMomFlowComponent, which in turn is generalized by AMomFlowElement, 
from the physical interaction library (see Subclause 11.2.2). The library’s LMomFlowElement and 
AMomFlowComponent are linked by an association that is also a block ALMomentum Transformation, indicated by a 
dashed line (the association ends are owned by the association, to avoid modifying the library elements). The association 
block represents transformation between the wheels’ angular momentum and the car’s linear momentum. It has a port 
lMTG typed by a block LMomentumGround (generalized by LMomFlowElement), for connecting to physical objects that 
are too large to accept or provide linear momentum, such as the road (generalized by LMomentumGround). This 

dragCoefficient = 1.0
crossSectionalArea = 2.0{unit = squaredMeter}

mass = 2000.0{unit = kilogram}

initial values
controlledVehicle : Car

initial values

radius = 0.5{unit=meter}

impeller : Wheel
hub

kP = 200.0{unit = hertz}
kI = 30.0{unit = hertzSquared}

throttleAccRatio = 1.0{unit = secondSquaredPerMeter}

initial values
speedController : CruiseController

throttleActuatorJack

speedSensorJack
speedDriverJack

changetime = 100.0{unit = second}
speed1 = 10.0{unit = meterPerSecond}
speed2 = 15.0{unit = meterPerSecond}

initial values
driver : Person

trqCoef = 1.0{unit = new tonMeter}
initial values

powerSource : Engine

crankshaft

SpeedSignal

ThrottleSignalSpeedSignal

AngularMomentum

CruiseControlTotalSystemibd

«connector»
impellerVehicleLink : 

ALMomentumTransformation

lMTG

gravVehicleLink : 
LMomPotEngTransformation

airVehicleLink : 
LMomentumTransfer

«connector»

initial values
acceleration = 9.8

{unit = meterPerSecondSquared}

operatingEnvironment : Earth

density = 1.2
{unit = kilogramPerCubicMeter}

initial values
atmosphere : Air

rise = 0.1

stop = 70.0{unit = second}
start = 50.0{unit = second}

flat = 0.0
initial values

surface : Road

Momentum

LinearMomentum

LinearMomentum

rrCoeff = 0.5



96 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 

connection appears in Figure 104, representing the road’s involvement in the transformation between angular and linear 
momentum. The internal structure of AMomFlowComponent is defined in Subannex A.6.7. 

Components involved in transferring angular momentum between the car’s internal components are depicted in 
Figure 109 (the engine and the wheel, via their crankshaft and hub ports, respectively). The crankshaft and hub ports are 
typed by AMomFlowElement from the physical interaction library (crankshafts and hubs are modeled as interface blocks 
for brevity). 

The library blocks AMomFlowElement and LMomFlowElement have flow properties aMomF and lMomF, respectively. 
They are typed by blocks FlowingAMom and FlowingLMom (also from the library) representing flow of conserved 
physical characteristics. These give flow rate and potential variables (trq, aV and f, lV). Models use the variables 
directly on library blocks or on specialized blocks that inherit them. 

Components sending and receiving signals in the vehicle are shown in Figure 110 (the driver, wheels, engine, and the 
cruise controller via its ports). Two cruise controller ports receive signals giving the driver’s desired speed and the 
vehicle’s current speed, while a third sends signals to the engine setting the fuel injection rate. The speed ports on the 
cruise controller are typed by the interface block SpeedInFlowComponent to receive signals from the driver and wheels, 
which send them by specializing SpeedOutFlowComponent. The throttle actuator port on the cruise controller is typed by the 
interface block ThrottleOutFlowComponent to send fuel injection signals to the engine, which receives them by 
specializing ThrottleInFlowComponent. 

 
Figure 105: Total system blocks, ports, & component properties connection appears in Figure 104, 
representing the road’s involvement in the transformation between angular and linear momentum. The internal structure 
of AMomFlowComponent is defined in Subannex A.6.7. 

Components involved in transferring angular momentum between the car’s internal components are depicted in 
Figure 109 (the engine and the wheel, via their crankshaft and hub ports, respectively). The crankshaft and hub ports are 
typed by AMomFlowElement from the physical interaction library (crankshafts and hubs are modeled as interface blocks 
for brevity). 
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The library blocks AMomFlowElement and LMomFlowElement have flow properties aMomF and lMomF, respectively. 
They are typed by blocks FlowingAMom and FlowingLMom (also from the library) representing flow of conserved 
physical characteristics. These give flow rate and potential variables (trq, aV and f, lV). Models use the variables 
directly on library blocks or on specialized blocks that inherit them. 

Components sending and receiving signals in the vehicle are shown in Figure 110 (the driver, wheels, engine, and the 
cruise controller via its ports). Two cruise controller ports receive signals giving the driver’s desired speed and the 
vehicle’s current speed, while a third sends signals to the engine setting the fuel injection rate. The speed ports on the 
cruise controller are typed by the interface block SpeedInFlowComponent to receive signals from the driver and wheels, 
which send them by specializing SpeedOutFlowComponent. The throttle actuator port on the cruise controller is typed by the 
interface block ThrottleOutFlowComponent to send fuel injection signals to the engine, which receives them by 
specializing ThrottleInFlowComponent. 

 

Figure 105: Total system blocks, ports, & component properties 
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Figure 106: Air-vehicle interaction blocks, ports, & component properties 

 
Figure 107: Gravity-vehicle interaction blocks, ports, & component properties 

 
Figure 108: Impeller-vehicle interaction blocks, ports, & component properties 
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Figure 106: Air-vehicle interaction blocks, ports, & component properties 

 

Figure 107: Gravity-vehicle interaction blocks, ports, & component properties 

 

Figure 108: Impeller-vehicle interaction blocks, ports, & component properties 
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Figure 109: Hub-crankshaft interaction blocks, ports, & component properties 

 
Figure 110: Signal flow interactions blocks, ports, & component properties 

A.15.2A.1.1 Properties (variables) 
Signal flow is the movement of numbers between system components. These numbers might reflect physical 

quantities or not. In this example, they do not (see Subannex A.5 for an example where they do). Signals flowing in and 
out of components are modeled by ports typed by interface blocks that have flow properties typed by numbers. In this 

example, signal flow ports are typed by SpeedInFlowComponent, SpeedOutFlowComponent, ThrottleInFlowComponent, 
or ThrottleOutFlowComponent. SpeedInFlowComponent and SpeedOutFlowComponent are generalized by the block 

SpeedFlowComponent, which has the flow property speed typed by Linear Velocity, as shown in Figure 110. 
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which has the flow property throttleSettling typed by Real, from SysML, as shown in Figure 110

 

Figure 109: Hub-crankshaft interaction blocks, ports, & component properties 

 

Figure 110: Signal flow interactions blocks, ports, & component properties 

A.6.5 Properties (variables) 
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example, signal flow ports are typed by SpeedInFlowComponent, SpeedOutFlowComponent, 
ThrottleInFlowComponent, or ThrottleOutFlowComponent. SpeedInFlowComponent and SpeedOutFlowComponent 
are generalized by the block SpeedFlowComponent, which has the flow property speed typed by Linear Velocity, as 
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ThrottleFlowComponent, which has the flow property throttleSettling typed by Real, from SysML, as shown in Figure 
110. This value type has no unit, reflecting that the signals are not measurements of physical quantities and do not 
follow conservation laws. 

Physical interaction is the movement of physical substances between system components, modeled in terms of 
conserved characteristics of the substances. In this example, linear and angular momentum are the conserved 
characteristics moving through the car (momentum moves without an associated physical substance) and between 
the car and the environment for the driving force and environmental disturbances from gravity or surrounding air. 
Movement is described by numeric variables for flow rate and potential to flow of conserved characteristics. In this 
example, movement of linear and angular momentum is characterized by force and torque variables for the flow 
rate as well as linear and angular velocity variables for potential to flow. The flow rate variable is conserved (values 
on ends of the interaction sum to zero) and the potential variable is not (values on ends of the interaction are the 
same). This is modeled in three parts: 

• Conserved physical characteristics are modeled as blocks directly specializedfromConservedQuantityKind in the 
physical interaction library (see Subclause 11.2.2), LinearMomentum and AngularMomentum in this example. 

• Flow variables are modeled as properties with the PhSVariable stereotype applied on specializations of 
conserved quantity kind blocks. In this example, the linear momentum flow rate and potential PhSVariables are f and 
lV on FlowLMom (f marked as isConserved), respectively, typed by Force and Velocity, respectively, all from the 
physical interaction library. Similarly, the angular momentum flow rate and potential PhSVariables are trq and aV on 
FlowAMom (trq marked as is Conserved), respectively, typed by Torque and Angular Velocity, respectively. 

• Flows in and out of components are modeled by ports typed by interface blocks that have flow properties typed by 
flowing conserved quantity kinds. In this example, ports are typed by LMomFlowElement or AMomFlowElement 
from the physical interaction library, which have flow property lMomF typed by FlowingLMom and flow property aMomF 
typed by FlowingAMom, respectively, shown in Figure 106 through Figure 109. 

In Figure 105: Total system blocks, ports, & component propertiesthe blocks LMomPotEngTransformation, Road, and 
CruiseController have properties with PhSVariable stereotypes applied, specifying that the value of these properties 
may vary during simulation. The blocks Car, Earth, Engine, Person, Air, Road, CruiseController, and 
AMomFlowComponent have properties with PhSConstant stereotypes applied, specifying that the value of these 
properties do not change during each simulation run. 

A.15.3 Constraints (equations) 

Equations define mathematical relationships between the values of numeric variables. Equations in SysML, are 
constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this example, the 
constraint blocks in Figure 111 each define parameters and constraints for component blocks in Figure 105 (Car, 
Air, LMomPoteEngTransformation, Wheel, Road, Engine, CruiseController, and Person). Constraint blocks for 
components are named according to the component they constrain. The constraint block ALMomTransConstraint 
defines parameters and constraints for the association block ALMomentumTransformation, and FluidEffectConstraint 
defines the parameters and constraints for the association block LMomentumTransfer. The constraints for Air, Road, 
and Person are not generally- applicable equations as they are for the other blocks. They are only for when the air 
is still (has no velocity), the road slope changes at two distinct times for a specified slope, and the driver changes 
the vehicle’s speed at two separate time-stamps. The scenario has been defined with parameters in the constraint 
blocks for brevity, but their properties can also be defined with block property redefinitions (Subannex A.5.9) or by 
initial values in internal block diagrams (Subannex A.4.3). 

The constraint blocks PersonConstraint and CruiseControllerConstraint specify manipulation of signals moving 
through their respective component block. The cruise controller constraint calculates the best fuel injection rate to 
reach the driver’s desired vehicle speed from vehicle’s current speed. All the other constraints specify physical 
interactions, either between components in the car (angular momentum between the engine and wheels) or 
between the car and its environment (angular momentum of the wheels to and from linear momentum of the car or air, 
to and from potential energy, or to heat due to wheel rolling resistance).Figure 110. This value type has no unit, reflecting 
that the signals are not measurements of physical quantities and do not follow conservation laws. 

Physical interaction is the movement of physical substances between system components, modeled in terms of 
conserved characteristics of the substances. In this example, linear and angular momentum are the conserved 
characteristics moving through the car (momentum moves without an associated physical substance) and between 
the car and the environment for the driving force and environmental disturbances from gravity or surrounding air. 
Movement is described by numeric variables for flow rate and potential to flow of conserved characteristics. In this 
example, movement of linear and angular momentum is characterized by force and torque variables for the flow rate 
as well as linear and angular velocity variables for potential to flow. The flow rate variable is conserved (values on ends 
of the interaction sum to zero) and the potential variable is not (values on ends of the interaction are the same). This is 
modeled in three parts: 
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• Conserved physical characteristics are modeled as blocks directly specializedfromConservedQuantityKind in the 
physical interaction library (see Subclause 11.2.2), LinearMomentum and AngularMomentum in this example. 

• Flow variables are modeled as properties with the PhSVariable stereotype applied on specializations of 
conserved quantity kind blocks. In this example, the linear momentum flow rate and potential PhSVariables are 
f and lV on FlowLMom (f marked as isConserved), respectively, typed by Force and Velocity, respectively, all 
from the physical interaction library. Similarly, the angular momentum flow rate and potential PhSVariables 
are trq and aV on FlowAMom (trq marked as is Conserved), respectively, typed by Torque and Angular 
Velocity, respectively. 

• Flows in and out of components are modeled by ports typed by interface blocks that have flow properties typed 
by flowing conserved quantity kinds. In this example, ports are typed by LMomFlowElement or 
AMomFlowElement from the physical interaction library, which have flow property lMomF typed by 
FlowingLMom and flow property aMomF typed by FlowingAMom, respectively, shown in Figure 106 through 
Figure 109. 

In Figure 105: Total system blocks, ports, & component propertiesthe blocks LMomPotEngTransformation, Road, and 
CruiseController have properties with PhSVariable stereotypes applied, specifying that the value of these properties may 
vary during simulation. The blocks Car, Earth, Engine, Person, Air, Road, CruiseController, and 
AMomFlowComponent have properties with PhSConstant stereotypes applied, specifying that the value of these 
properties do not change during each simulation run. 

A.6.6 Constraints (equations) 
Equations define mathematical relationships between the values of numeric variables. Equations in SysML, are 
constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this example, the 
constraint blocks in Figure 111 each define parameters and constraints for component blocks in Figure 105 (Car, Air, 
LMomPoteEngTransformation, Wheel, Road, Engine, CruiseController, and Person). Constraint blocks for 
components are named according to the component they constrain. The constraint block ALMomTransConstraint 
defines parameters and constraints for the association block ALMomentumTransformation, and FluidEffectConstraint 
defines the parameters and constraints for the association block LMomentumTransfer. The constraints for Air, Road, 
and Person are not generally- applicable equations as they are for the other blocks. They are only for when the air is 
still (has no velocity), the road slope changes at two distinct times for a specified slope, and the driver changes the 
vehicle’s speed at two separate time-stamps. The scenario has been defined with parameters in the constraint blocks 
for brevity, but their properties can also be defined with block property redefinitions (Subannex A.5.9) or by initial 
values in internal block diagrams (Subannex A.4.3). 

The constraint blocks PersonConstraint and CruiseControllerConstraint specify manipulation of signals moving 
through their respective component block. The cruise controller constraint calculates the best fuel injection rate to reach 
the driver’s desired vehicle speed from vehicle’s current speed. All the other constraints specify physical 
interactions, either between components in the car (angular momentum between the engine and wheels) or between 
the car and its environment (angular momentum of the wheels to and from linear momentum of the car or air, to and from 
potential energy, or to heat due to wheel rolling resistance). 
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Figure 111: Cruise control total system constraint blocks 

A.15.4A.1.1 Constraint properties and bindings 
Equations in constraint blocks are applied to components using binding connectors in component parametric 
diagrams. Component parametric diagrams show properties typed by constraint blocks (constraint properties), as 
well as component and port simulation variables and constants. Binding connectors link constraint parameters to 
simulation variables and constants, indicating their values must be the same. Figure 112 through Figure 119 show the 
parametric diagrams for the car, air, transformation between linear momentum and gravitational potential energy, wheel, 
road, engine, cruise controller, and person, respectively. 
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Figure 111: Cruise control total system constraint blocks 

A.6.7 Constraint properties and bindings 
Equations in constraint blocks are applied to components using binding connectors in component parametric 
diagrams. Component parametric diagrams show properties typed by constraint blocks (constraint properties), as 
well as component and port simulation variables and constants. Binding connectors link constraint parameters to 
simulation variables and constants, indicating their values must be the same. Figure 112 through Figure 119 show the 
parametric diagrams for the car, air, transformation between linear momentum and gravitational potential energy, wheel, 
road, engine, cruise controller, and person, respectively. 

 

 

Cruise Control Total Sy stem Constraintsbdd

parameters

g : Real
m : Real

angle : Real

f  : Real

constraints
{f =m*g*sin(angle)}

«constraint»
LMomPotEngTransformationConstraint

constraints

{sSolid-sFluid=v }

{f Fluid+f Solid=0}
{f Fluid=0.5*density *v 2̂*dragCoef *crossSec}

parameters

sSolid : Real
crossSec : Real

sFluid : Real

v  : Real
dragCoef  : Real

f Solid : Real

f Fluid : Real

density  : Real

«constraint»
FluidEffectConstraint

parameters

stop : Real
rise : Real

slope : Real

v el : Real

f lat : Real
start : Real

constraints

{v el=0}

{if  time > start and time < stop then
slope=rise;
else
slope=f lat;
end if }

RoadConstraint
«constraint»

parameters

z : Real
u : Real

ki : Real

thCmd : Real

pConst : Real

kp : Real

curSpd : Real
setSpd : Real

constraints

{u=kp*(setSpd-curSpd)+ki*z}
{thCmd=u*pConst}

{der(z)=setSpd-curSpd}

CruiseControllerConstraint
«constraint»

parameters

gf  : Real

trq : Real
av  : Real

r : Real

f  : Real
lv  : Real

gv  : Real

constraints

{gf =0}
{trq=f *r}
{av =(lv -gv )/r}

«constraint»
ALMomTransConstraint

parameters
aS1 : Real

trq1 : Real

radius : Real

aS2 : Real

trq2 : Real

lS : Real
rr : Real

constraints

{lS=aS2*radius}
{aS1=-aS2}

{rr*trq1+trq2=0}

WheelConstraint
«constraint»

constraints
{if  time<chg then
speedOut=speed1;
else
speedOut=speed2;
end if }

parameters

speed2 : Real

speedOut : Real
speed1 : Real

chg : Real

«constraint»
PersonConstraint

constraints
{f =m*der(lSpeed)}

parameters
f  : Real
m : Real
lSpeed : Real

CarConstraint
«constraint»

constraints
{trq=inTrq*trqCoef }

parameters

inTrq : Real
trqCoef  : Real

trq : Real

«constraint»
EngineConstraint

parameters
v el : Real

constraints
{v el=0}

«constraint»
AirConstraint
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Figure 112: Parametric diagram applying the car constraint 

 
Figure 113: Parametric diagram applying the air constraint 

 
Figure 114: Parametric diagram applying the linear momentum-potential energy transformation constraint 

 
Figure 115: Parametric diagram applying the wheel constraint 

par Car

cC : CarConstraint
«constraint»

{f=m*der(lSpeed)}

mlSpeed
f

lMomF.lV : Velocity

lMomF.f : Force

mass : Mass

«equal»

«equal»

«equal»

constraints

parameters

par Air

aC : AirConstraint

{vel=0}

«constraint»

vellMomF.lV : Velocity «equal»

constraints

parameters

LMomPotEngTransformationpar 

lMPETC : LMomPotEngTransformationConstraint

{f=m*g*sin(angle)}

«constraint»

mgf angle

acceleration : Acceleration
lMomF.f : Force slope : Angle

mass : Mass

«equal»
«equal» «equal»«equal»

constraints

parameters

Wheelpar 

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub

{aS1=-aS2}
{lS=aS2*radius}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

lS trq2

radiustrq1

aS1

aS2

aMomF.aV : AngularVelocity speed : LinearVelocity

aMomF.trq : Torque

r̂adius : Length«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

constraints

parameters

rr rrCoef f : Real«equal»
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Figure 112: Parametric diagram applying the car constraint 

 
Figure 113: Parametric diagram applying the air constraint 

 
Figure 114: Parametric diagram applying the linear momentum-potential energy transformation constraint 

 

par Car

cC : CarConstraint
«constraint»

{f=m*der(lSpeed)}

mlSpeed
f

lMomF.lV : Velocity

lMomF.f : Force

mass : Mass

«equal»

«equal»

«equal»

constraints

parameters

par Air

aC : AirConstraint

{vel=0}

«constraint»

vellMomF.lV : Velocity «equal»

constraints

parameters

LMomPotEngTransformationpar 

lMPETC : LMomPotEngTransformationConstraint

{f=m*g*sin(angle)}

«constraint»

mgf angle

acceleration : Acceleration
lMomF.f : Force slope : Angle

mass : Mass

«equal»
«equal» «equal»«equal»

constraints

parameters

Wheelpar 

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub

{aS1=-aS2}
{lS=aS2*radius}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

lS trq2

radiustrq1

aS1

aS2

aMomF.aV : AngularVelocity speed : LinearVelocity

aMomF.trq : Torque

r̂adius : Length«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

constraints

parameters

rr rrCoef f : Real«equal»
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Figure 115: Parametric diagram applying the wheel constraint 

 
Figure 116: Parametric diagram applying the road constraint 

 
Figure 117: Parametric diagram applying the engine constraint 

 

Roadpar 
«constraint»

{if  time > start and time < stop then
slope=rise;
else
slope=f lat;
end if }
{v el=0}

rC : RoadConstraint

v el

rise

stopstart

f lat

slope

lMomF.lV : Velocityslope : Angle

rise : Angle

start : Time stop : Time

f lat : Angle

«equal»

«equal»

«equal»

«equal»

«equal»
«equal»

constraints

parameters

Enginepar 

aMomF.trq : Torque

crankshaft
eC : EngineConstraint

{trq=inTrq*trqCoef}

«constraint»

trqCoef

trq

inTrq

throttleSetting : RealtrqCoef : Torque

«equal»

«equal» «equal»

constraints

parameters

CruiseControllerpar 

speed : LinearVelocity

speedSensorJack

speed : LinearVelocity

speedDriverJack

throttleSetting : Real

throttleActuatorJack

«constraint»
cCC : CruiseControllerConstraint

{der(z)=setSpd-curSpd}
{u=kp*(setSpd-curSpd)+ki*z}
{thCmd=u*pConst}

pConst zu

thCmd

kp

ki

curSpd

setSpd

throttleAccRatio : ThrottleAccelerationRatio

accCmd : Acceleration
errorInteg : Length

kP : PCoefficient

kI : ICoefficient

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal» «equal»

constraints

parameters
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Figure 118: Parametric diagram applying the cruise controller constraint 

 
Figure 116: Parametric diagram applying the road constraint 

 
Figure 117: Parametric diagram applying the engine constraint 

Roadpar 
«constraint»

{if  time > start and time < stop then
slope=rise;
else
slope=f lat;
end if }
{v el=0}

rC : RoadConstraint

v el

rise

stopstart

f lat

slope

lMomF.lV : Velocityslope : Angle

rise : Angle

start : Time stop : Time

f lat : Angle

«equal»

«equal»

«equal»

«equal»

«equal»
«equal»

constraints

parameters

Enginepar 

aMomF.trq : Torque

crankshaft
eC : EngineConstraint

{trq=inTrq*trqCoef}

«constraint»

trqCoef

trq

inTrq

throttleSetting : RealtrqCoef : Torque

«equal»

«equal» «equal»

constraints

parameters
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Figure 118: Parametric diagram applying the cruise controller constraint 

 
Figure 119: Parametric diagram applying the person constraint 

Figure 120 and Figure 121 are association block internal block diagrams rather than component parametric 
diagrams, to include connectors other than binding. These diagrams bind properties of the blocks linked by the 
association (participants) to variables and constants of a block inside the association. 

CruiseControllerpar 

speed : LinearVelocity

speedSensorJack

speed : LinearVelocity

speedDriverJack

throttleSetting : Real

throttleActuatorJack

«constraint»
cCC : CruiseControllerConstraint

{der(z)=setSpd-curSpd}
{u=kp*(setSpd-curSpd)+ki*z}
{thCmd=u*pConst}

pConst zu

thCmd

kp

ki

curSpd

setSpd

throttleAccRatio : ThrottleAccelerationRatio

accCmd : Acceleration
errorInteg : Length

kP : PCoefficient

kI : ICoefficient

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal» «equal»

constraints

parameters

Personpar 

pC : PersonConstraint

{if  time<chg then
speedOut=speed1;
else
speedOut=speed2;
end if }

«constraint»

chg
speed2 speed1 speedOut

speed2 : LinearVelocity

speed1 : LinearVelocity

speed : LinearVelocity

changetime : Time «equal»

«equal»
«equal»

«equal»

constraints

parameters
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Figure 119: Parametric diagram applying the person constraint 

Figure 120 and Figure 121 are association block internal block diagrams rather than component parametric 
diagrams, to include connectors other than binding. These diagrams bind properties of the blocks linked by the 
association (participants) to variables and constants of a block inside the association. 

[association, block] LMomentumTransf eribd

{f Fluid+f Solid=0}
{f Fluid=0.5*density *v 2̂*dragCoef *crossSec}
{sSolid-sFluid=v }

fEC : FluidEffectConstraint
«constraint»

v
dragCoef

density

crossSec

sSolid f SolidsFluid f Fluid

crossSectionalArea

dragCoef f icientv el

density

fE : FluidEffect

lMomF.lV lMomF.f

solid

lMomF.lV lMomF.f

fluid

crossSectionalArea

dragCoef f icient

«participant»
solid : Car

{end = toSolid}

density

«participant»
f luid : Air

{end = toFluid}

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»«equal»
LinearMomentum

LinearMomentum

constraints

parameters

Personpar 

pC : PersonConstraint

{if  time<chg then
speedOut=speed1;
else
speedOut=speed2;
end if }

«constraint»

chg
speed2 speed1 speedOut

speed2 : LinearVelocity

speed1 : LinearVelocity

speed : LinearVelocity

changetime : Time «equal»

«equal»
«equal»

«equal»

constraints

parameters



112 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 

 
Figure 120: Internal block diagram applying the fluid effect constraint in the association block 

[association, block] LMomentumTransf eribd

{f Fluid+f Solid=0}
{f Fluid=0.5*density *v 2̂*dragCoef *crossSec}
{sSolid-sFluid=v }

fEC : FluidEffectConstraint
«constraint»

v
dragCoef

density

crossSec

sSolid f SolidsFluid f Fluid

crossSectionalArea

dragCoef f icientv el

density

fE : FluidEffect

lMomF.lV lMomF.f

solid

lMomF.lV lMomF.f

fluid

crossSectionalArea

dragCoef f icient

«participant»
solid : Car

{end = toSolid}

density

«participant»
f luid : Air

{end = toFluid}

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»«equal»
LinearMomentum

LinearMomentum

constraints

parameters
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Figure 121: Internal block diagram applying a transformation constraint in the association block 

ALMomentumTransformation 

Figure 122 shows bindings between some value properties on separate components in Figure 104. For example, the 
values of some properties of the car and Earth parts are used in the gravitational potential energy block. 

 
Figure 122: Internal block diagram applying property bindings across system components 

Figure 120: Internal block diagram applying the fluid effect constraint in the association block 

[association, block] ALMomentumTransformationibd 

lMTG

«constraint»

{av=(lv-gv)/r}
{trq=f*r}
{gf=0}

aLMTC : ALMomTransConstraint

gf

trq

r

lv

gv
f

avaMomF.aV

aMomF.trq

lMomF.lV

lMomF.f

^radius

aLMTC : ALMomTransComponent

lMomF.lVlMomF.f

lMCG

radius

«participant»
aMFC : AMomFlow Component

{end = toAMFC}
lMFC : LMomFlow Element

«participant»

{end = toLMFC}

«equal»

«equal»
«equal»

«equal»

«equal»

«equal»

«equal» «equal»

«equal»

LinearMomentum
AngularMomentum

constraints

parameters

CruiseControlTotalSy stemProperty Bindingsibd 

mass

controlledVehicle : Car

^radius : Length

impeller : Wheel

^radius : Length

aLMTC : ALMomTransComponent

impellerVehicleLink : ALMomentumTransformation
«connector»

acceleration

slope
mass

gravVehicleLink : 
LMomPotEngTransformation

acceleration

operatingEnvironment : Earth

slope

surface : Road

«equal»

«equal»

«equal»
«equal»
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Figure 121: Internal block diagram applying a transformation constraint in the association block 
ALMomentumTransformation 

Figure 122 shows bindings between some value properties on separate components in Figure 104. For example, the 
values of some properties of the car and Earth parts are used in the gravitational potential energy block. 

 

Figure 122: Internal block diagram applying property bindings across system components 

 

[association, block] ALMomentumTransformationibd 

lMTG

«constraint»

{av=(lv-gv)/r}
{trq=f*r}
{gf=0}

aLMTC : ALMomTransConstraint

gf

trq

r

lv

gv
f

avaMomF.aV

aMomF.trq

lMomF.lV

lMomF.f

^radius

aLMTC : ALMomTransComponent

lMomF.lVlMomF.f

lMCG

radius

«participant»
aMFC : AMomFlow Component

{end = toAMFC}
lMFC : LMomFlow Element

«participant»

{end = toLMFC}

«equal»

«equal»
«equal»

«equal»

«equal»

«equal»

«equal» «equal»

«equal»

LinearMomentum
AngularMomentum

constraints

parameters

CruiseControlTotalSy stemProperty Bindingsibd 

mass

controlledVehicle : Car

^radius : Length

impeller : Wheel

^radius : Length

aLMTC : ALMomTransComponent

impellerVehicleLink : ALMomentumTransformation
«connector»

acceleration

slope
mass

gravVehicleLink : 
LMomPotEngTransformation

acceleration

operatingEnvironment : Earth

slope

surface : Road

«equal»

«equal»

«equal»
«equal»
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Annex B - Platform-Independent Debugging 
(non-normative) 

B.1 Introduction 
It is helpful to identify causes of errors in earlier stages of system model development before they propagate to 
(potentially multiple) simulation models. It can also verify and increase understanding of the relationships captured in 
system models before discipline-specific experts focus on parts of the system in their own models and tools. Any errors 
not due to usage of SysML or its extensions, translators, or simulator execution engines will be in the source SysML 
models.  

This annex gives an overview of platform-independent debugging procedures for physical interaction and signal flow in 
SysML models extended with SysPhS, before translation to simulation platforms. They are intended to complement 
existing debugging techniques on those platforms.   

The type of failure influences the debugging procedures required to identify and fix errors. This annex is concerned with 
fixing system model errors that cause failure to:   

• Compile or execute simulation models translated from system models, 
• Produce expected results from simulation execution. 

Failures of translation from extended SysML models to simulation due to incorrect usage of SysPhS or translator 
construction are not addressed.  

Errors that cause failure to simulate arise from system model structure. These show the modeler’s design does not 
properly support simulation. The underlying equations might be inconsistent, including being overconstrained (more 
equations than variables) or underconstrained (fewer equations than variables). The model might have equations that 
would divide by zero, functions being called outside of their real domain (such as the square root of a negative number), 
or other erroneous symbolic transformations.   

Errors that cause simulations to produce unintended results arise from the meaning of the system model. These reflect 
discrepancies between desired behavior and simulation execution. Although some errors can be identified automatically 
depending on the simulation tool being used (such as variable values outside bounds), these errors can also be found 
manually after trying to validate the simulation results. These errors can come from incorrect equations, incorrect 
parameter or initialization values, and incorrect function calls from equations. Errors can also be due to integration errors 
with the solvers being used, which are not considered in this annex.   

Debugging errors in physical interactions is more complicated than in signal flows, because following ordered execution 
of command sequences or operations does not work for bidirectional relationships (see Clause 6.1 on the bidirectionality 
of physical interactions). Debugging errors in physical interactions must examine chains of variable transformations in 
the model (mathematical operations on variables to give values to other variables).  

This annex describes two debugging techniques for SysML system models of physical interactions and signal flows that 
are intended to be translated into simulation platforms: 

• Static debugging identifies errors that cause failure to compile simulation models to executable code. These 
techniques trace variable (symbolic) transformations through the model to identify erroneous sections. 

• Dynamic debugging identifies errors that cause simulation to produce unexpected results. These techniques 
involve interactive inspection of models during execution to bookkeep changing variable values over simulated 
time. They must be used after static debugging techniques to ensure models can be compiled to executable code. 

The rest of this annex gives an overview of these debugging procedures applied to the vehicular cruise control system 
example from Subannex A.6. 

B.2 Preprocessing: Simplifying Models 
If a simulation model fails to compile or execute correctly, the cause can be identified by tracing through chains of 
connectors between components. This is the basis for static debugging techniques and facilitates dynamic debugging. It 
simplifies debugging to move physical interaction and signal flow connectors into separate models. The two simpler 
models can be debugged separately before replicating the resulting fixes in the complete model, a simpler task than 
debugging the entire model all at once.  

First, create a model of physical interactions only by removing all 
connectors in the original model’s internal block diagram (IBD) that do 
not represent physical interactions (saving a separate copy of the 
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original model first). Any remaining parts or ports that are not at the end 
of the remaining connectors or do not possess a port that is at the end 
of a B.1 Introduction 
It is helpful to identify causes of errors in earlier stages of system model development before they propagate to 
(potentially multiple) simulation models. It can also verify and increase understanding of the relationships captured in 
system models before discipline-specific experts focus on parts of the system in their own models and tools. Any errors 
not due to usage of SysML or its extensions, translators, or simulator execution engines will be in the source SysML 
models.  

This annex gives an overview of platform-independent debugging procedures for physical interaction and signal flow in 
SysML models extended with SysPhS, before translation to simulation platforms. They are intended to complement 
existing debugging techniques on those platforms.   

The type of failure influences the debugging procedures required to identify and fix errors. This annex is concerned with 
fixing system model errors that cause failure to:   

• Compile or execute simulation models translated from system models, 
• Produce expected results from simulation execution. 

Failures of translation from extended SysML models to simulation due to incorrect usage of SysPhS or translator 
construction are not addressed.  

Errors that cause failure to simulate arise from system model structure. These show the modeler’s design does not 
properly support simulation. The underlying equations might be inconsistent, including being overconstrained (more 
equations than variables) or underconstrained (fewer equations than variables). The model might have equations that 
would divide by zero, functions being called outside of their real domain (such as the square root of a negative number), 
or other erroneous symbolic transformations.   

Errors that cause simulations to produce unintended results arise from the meaning of the system model. These reflect 
discrepancies between desired behavior and simulation execution. Although some errors can be identified automatically 
depending on the simulation tool being used (such as variable values outside bounds), these errors can also be found 
manually after trying to validate the simulation results. These errors can come from incorrect equations, incorrect 
parameter or initialization values, and incorrect function calls from equations. Errors can also be due to integration errors 
with the solvers being used, which are not considered in this annex.   

Debugging errors in physical interactions is more complicated than in signal flows, because following ordered execution 
of command sequences or operations does not work for bidirectional relationships (see Clause 6.1 on the bidirectionality 
of physical interactions). Debugging errors in physical interactions must examine chains of variable transformations in 
the model (mathematical operations on variables to give values to other variables).  

This annex describes two debugging techniques for SysML system models of physical interactions and signal flows that 
are intended to be translated into simulation platforms: 

• Static debugging identifies errors that cause failure to compile simulation models to executable code. These 
techniques trace variable (symbolic) transformations through the model to identify erroneous sections. 

• Dynamic debugging identifies errors that cause simulation to produce unexpected results. These techniques 
involve interactive inspection of models during execution to bookkeep changing variable values over simulated 
time. They must be used after static debugging techniques to ensure models can be compiled to executable code. 

The rest of this annex gives an overview of these debugging procedures applied to the vehicular cruise control system 
example from Subannex A.6. 

B.2 Preprocessing: Simplifying Models 
If a simulation model fails to compile or execute correctly, the cause can be identified by tracing through chains of 
connectors between components. This is the basis for static debugging techniques and facilitates dynamic debugging. It 
simplifies debugging to move physical interaction and signal flow connectors into separate models. The two simpler 
models can be debugged separately before replicating the resulting fixes in the complete model, a simpler task than 
debugging the entire model all at once.  

First, create a model of physical interactions only by removing all connectors in the original model’s internal block 
diagram (IBD) that do not represent physical interactions (saving a separate copy of the original model first). Any 
remaining parts or ports that are not at the end of the remaining connectors or do not possess a port that is at the end of a 
remaining connector are also removed. Figure 123 shows internal structure from the cruise control system example 
(Figure 104: Internal structure of the cruise control system in Subannex A.6) with only its physical interactions. 
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Figure 123: Cruise control total system model with only physical interactions 

Next, in the parametric diagrams for the remaining parts or ports, remove equations (constraints) determining values of 
variables (constraint parameters) that are bound to (signal flow) out-flow properties (see Clause 7 for discussion on flow 
properties for signal flows and physical interactions). Remove part or port properties that are bound to variables on these 
out-flow equations as well. Replace any remaining equation variables bound to in-flow properties on the parts or ports by 
constant values, either by directly replacing the parameter with a constant value in constraints or by introducing a binding 
to a PhSConstant-stereotyped property that has a constant default value or instance value (see Subclause 10.10.2 for 
value assignment examples). Figure 124 depicts a parametric diagram for a component in Figure 123, before and after 
these changes were made for a physical interactions-only model. 

Figure 124: Show two (2) parametric diagrams of the same component (before and after changes for 
the physical interactions-only model) 

A separate system model for signal flows is created by first removing all connectors in the original model’s IBD that do 
not represent signal flows (while saving a separate copy of the original model). Also remove any remaining parts or ports 
that are not at the end of the remaining connectors or does not possess a port that is at the end of a connector. Figure 125 
shows an IBD with only the signal flows in the original cruise control total system model. remaining connector are also 
removed. Figure 123 shows internal structure from the cruise control system example (Figure 104: Internal structure of 
the cruise control system in Subannex A.6) with only its physical interactions. 

dragCoefficient = 1.0
crossSectionalArea = 2.0{unit = squaredMeter}

mass = 2000.0{unit = kilogram}

initial values

controlledVehicle : Car

initial values

radius = 0.5{unit=meter}

impeller : Wheel
hub

trqCoef = 1.0{unit = newtonMeter}
throttleSetting = 0.8

initial values
powerSource : Engine

crankshaft

AngularMomentum

CruiseControlPhysicalInteractionsibd

«connector»
impellerVehicleLink : 

ALMomentumTransformation

lMTG

gravVehicleLink : 
LMomPotEngTransformation

airVehicleLink : 
LMomentumTransfer

«connector»

initial values
acceleration = 9.8

{unit = meterPerSecondSquared}

operatingEnvironment : Earth

density = 1.2
{unit = kilogramPerCubicMeter}

initial values
atmosphere : Air

rise = 0.1

stop = 70.0{unit = second}
start = 50.0{unit = second}

flat = 0.0
initial values

surface : Road
Momentum

LinearMomentum

LinearMomentum

rrCoeff = 0.5

Wheelpar 

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub
{aS1=-aS2}
{lS=aS2*radius}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

lS trq2

radiustrq1

aS1

aS2

aMomF.aV : AngularVelocity speed : LinearVelocity

aMomF.trq : Torque

r̂adius : Length«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

constraints

parameters

rr rrCoeff : Real«equal»

Wheelpar 

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub
{aS1=-aS2}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

tq2

trq1

aS1

aS2

aMomF.aV : AngularVelocity aMomF.trq : Torque

«equal»

«equal»

«equal»

constraints

parameters

rr

rrCoeff : Real

«equal»«equal»
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Figure 123: Cruise control total system model with only physical interactions 

Next, in the parametric diagrams for the remaining parts or ports, remove equations (constraints) determining values of 
variables (constraint parameters) that are bound to (signal flow) out-flow properties (see Clause 7 for discussion on flow 
properties for signal flows and physical interactions). Remove part or port properties that are bound to variables on these 
out-flow equations as well. Replace any remaining equation variables bound to in-flow properties on the parts or ports by 
constant values, either by directly replacing the parameter with a constant value in constraints or by introducing a binding 
to a PhSConstant-stereotyped property that has a constant default value or instance value (see Subclause 10.10.2 for 
value assignment examples). Figure 124 depicts a parametric diagram for a component in Figure 123, before and after 
these changes were made for a physical interactions-only model. 

Figure 124: Show two (2) parametric diagrams of the same component (before and after changes for 
the physical interactions-only model) 

A separate system model for signal flows is created by first removing all connectors in the original model’s IBD that do 
not represent signal flows (while saving a separate copy of the original model). Also remove any remaining parts or ports 
that are not at the end of the remaining connectors or does not possess a port that is at the end of a connector. Figure 125 
shows an IBD with only the signal flows in the original cruise control total system model. 

 

dragCoefficient = 1.0
crossSectionalArea = 2.0{unit = squaredMeter}

mass = 2000.0{unit = kilogram}

initial values

controlledVehicle : Car

initial values

radius = 0.5{unit=meter}

impeller : Wheel
hub

trqCoef = 1.0{unit = newtonMeter}
throttleSetting = 0.8

initial values
powerSource : Engine

crankshaft

AngularMomentum

CruiseControlPhysicalInteractionsibd

«connector»
impellerVehicleLink : 

ALMomentumTransformation

lMTG

gravVehicleLink : 
LMomPotEngTransformation

airVehicleLink : 
LMomentumTransfer

«connector»

initial values
acceleration = 9.8

{unit = meterPerSecondSquared}

operatingEnvironment : Earth

density = 1.2
{unit = kilogramPerCubicMeter}

initial values
atmosphere : Air

rise = 0.1

stop = 70.0{unit = second}
start = 50.0{unit = second}

flat = 0.0
initial values

surface : Road
Momentum

LinearMomentum

LinearMomentum

rrCoeff = 0.5

Wheelpar 

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub
{aS1=-aS2}
{lS=aS2*radius}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

lS trq2

radiustrq1

aS1

aS2

aMomF.aV : AngularVelocity speed : LinearVelocity

aMomF.trq : Torque

r̂adius : Length«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

constraints

parameters

rr rrCoeff : Real«equal»

Wheelpar 

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub
{aS1=-aS2}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

tq2

trq1

aS1

aS2

aMomF.aV : AngularVelocity aMomF.trq : Torque

«equal»

«equal»

«equal»

constraints

parameters

rr

rrCoeff : Real

«equal»«equal»



120 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 

 
Figure 125: Cruise control total system model with only signal flows 

Next, in each parametric diagram for the remaining parts or ports, remove equations that play no role in determining 
values of variables bound to out-flow properties (see Clause 7 for discussion on flow properties for signal flows and 
physical interactions) or equations that do not have any bindings to in-flow properties. Remove part or port properties not 
bound to variables on the remaining equations. Of the remaining equations, some variables might be bound to physical 
interaction inout-flow properties on the parts or ports. These flow properties are replaced during simplification. If any 
equation variable bound to these flow properties determine the value of a variable bound to an out-flow property, then 
remove the inout-flow property and give a new constant value to its variable by binding to a PhSConstant-stereotyped 
property that has a constant default value or instance value (see Subclause 10.10.2 for value assignment examples). If any 
equation variable bound to these flow properties is determined by a variable in the same equation that is bound to an in-
flow property, then remove the inout-flow property and give its variable a new binding to a new property with a 
PhSVariable (see Subclause 10.6.2 on applying variable- and constant-value stereotypes to properties).  

Figure 126 depicts a parametric diagram for a component in Figure 123, before and after these changes were made for a 
signal flows-only model. 

Figure 126: Show two (2) parametric diagrams of the same component (before and after changes for the signal 
flows-only model) 

The remaining sections present the debugging techniques. Static techniques find causes of failure to compile and 
simulate translated models. This type of failure prevents generating a simulation run-time from the translated model.  
Once compilation succeeds, dynamic debugging techniques identify causes of failure to produce intended simulation 
behavior. The underlying theme for static debugging is tracing symbolic transformations in the model to find errors. 
Transformation tracing is also useful for dynamic debugging to better understand the model and sources of potential 
simulation-related errors. 
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Figure 125: Cruise control total system model with only signal flows 

Next, in each parametric diagram for the remaining parts or ports, remove equations that play no role in determining 
values of variables bound to out-flow properties (see Clause 7 for discussion on flow properties for signal flows and 
physical interactions) or equations that do not have any bindings to in-flow properties. Remove part or port properties not 
bound to variables on the remaining equations. Of the remaining equations, some variables might be bound to physical 
interaction inout-flow properties on the parts or ports. These flow properties are replaced during simplification. If any 
equation variable bound to these flow properties determine the value of a variable bound to an out-flow property, then 
remove the inout-flow property and give a new constant value to its variable by binding to a PhSConstant-stereotyped 
property that has a constant default value or instance value (see Subclause 10.10.2 for value assignment examples). If any 
equation variable bound to these flow properties is determined by a variable in the same equation that is bound to an in-
flow property, then remove the inout-flow property and give its variable a new binding to a new property with a 
PhSVariable (see Subclause 10.6.2 on applying variable- and constant-value stereotypes to properties).  

Figure 126 depicts a parametric diagram for a component in Figure 123, before and after these changes were made for a 
signal flows-only model. 

Figure 126: Show two (2) parametric diagrams of the same component (before and after changes for the signal 
flows-only model) 

The remaining sections present the debugging techniques. Static techniques find causes of failure to compile and 
simulate translated models. This type of failure prevents generating a simulation run-time from the translated model.  
Once compilation succeeds, dynamic debugging techniques identify causes of failure to produce intended simulation 
behavior. The underlying theme for static debugging is tracing symbolic transformations in the model to find errors. 
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Transformation tracing is also useful for dynamic debugging to better understand the model and sources of potential 
simulation-related errors. 

B.3 Static Debugging for Failure-to-Execute Simulation 
The failure of a simulation model (translated from a system model) to compile and execute on a simulation platform 
indicates a static error. These errors can be identified with debugging techniques applied to the system model without 
translating and simulating it (statically).  These techniques trace chains of symbolic transformations in the model, which 
appear in SysML as mathematical relationships in constraint equations (in parametrics diagrams) or implied by 
connectors (in IBDs). Specifically, tracing refers to tracking transformations of known and unknown variables through a 
model. Known variables are properties whose values are assigned a constant value or determined through mathematical 
relationships.  Tracing is complemented by bookkeeping, which records the known or unknown status of these variables 
when operations apply to them in the model.    

Static debugging can be performed on complete system models, but is described here on simplified, complementary 
models of a system’s physical interactions and signal flows. For models with physical interactions, the first task is to 
identify the part, port, or connector property in IBDs where physical interaction will first occur or initiate other physical 
interactions in the system. Multiple parts and ports where physical interactions simultaneously occur can initiate further 
interactions, but any one can be arbitrarily picked to begin tracing. Tracing and bookkeeping of mathematical 
transformations start with properties associated to this selected part or port. Deciding which system component 
commences the physical interactions is easy in many cases. For example, the initiators of flow of electric charge in an 
electric circuit are the voltage sources or current sources. In the cruise control system represented in IBDs in Figure 104 
and Figure 123, the throttle in the engine physically initiates the car’s interaction with the road and air (this happens on 
command from the driver, but the command is signal flow, not physical interaction).   

When the initiator of physical interaction is not obvious, it can help to inspect the parametric diagrams of parts or ports in 
IBDs. Parametric diagrams contain bindings between properties of the parts (or ports) to variables in the part’s constraint 
equations. Look for parametric diagrams of parts that have a higher number of PhSConstant-stereotyped properties (with 
values given explicitly in the model) than PhSVariable-stereotyped properties (with values determined by mathematical 
relationships in the model), except for PhSVariables that give simulation time. The equation variables (constraint 
parameters) bound to PhSConstant or time properties are used in the part’s equations (constraints) to determine values of 
other variables, which are bound to other properties used in the part’s equations. To find an initiator, search for a part or 
port where most of its properties or properties of its ports are bound to constants or time values in its parametric diagram. 
The only properties without constant or time values should be flow properties, which can only have their values 
determined through connectors. Parts or ports initiating physical interactions have the fewest of these flow properties.  

Tracing bindings and constraints in parametric diagrams helps understand and keep track of (bookkeep) which variables 
in the equations are known and unknown. Constraint equations show mathematical transformations between known 
variables, bound to properties with known values, and unknown variables, bound to properties with unknown values. 
Before simulation, the only known variables are the ones bound to PhSConstant properties, the variables bound to 
properties given (initial) values at the start of simulation, and properties that give simulation time values. These should 
lead to values assigned to all variables in the parametrics diagram of physical interaction-initiating parts. The status of 
these variables will change as tracing shows their values being assigned through constraints or connectors, which is 
recorded by bookkeeping.   

Physical interaction flow properties on the current part in the debugging process link to flow properties on parts or ports 
at the other end of the linking connectors. Trace along these connectors to find out whether values are assigned to these 
flow properties leads to parametric diagrams of other parts, ports, and connector properties linked to the current part. 
Repeat the same methods of tracing and bookkeeping in these other parametric diagrams to determine whether values are 
assigned to unknown variables and to find flow properties that lead to new connectors and parametric diagrams. The 
trace must go through all connectors and parametric diagrams of the system’s parts, ports, and connector properties. 
Figure 127 shows an example of tracing and bookkeeping value assignments between the vehicle’s engine, the physical 
interaction-initiating part of the cruise control system, and the rest of the physical interactions-only system IBD from 
Figure 123. Bookkeeping of the total trace completes the tracking of value assignments. The bookkeepings of variables 
for Figure 127are depicted in the tables that follow the figure. The traces in the bookkeepings correspond to the marked 
points in the figure (A, B, C, D, E, & F).   

A system model will compile and simulate when translated if it: a) uses all the constraint equations and connectors in the 
model for mathematical transformations between known and unknown variables and b) has all its property values 
determined by simulation of mathematical transformations. If tracing and bookkeeping identifies a constraint equation or 
connector that is not used, the system is overconstrained. In this scenario, the modeler must choose whether unused 
equations or connectors should be removed or a new property should be included and related to them. If an unknown 
property is not defined by any mathematical constraint or connector, then the system is underconstrained. In this 
scenario, the modeler must choose between using this property in a new equation or removing the property. Tracing and 
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bookkeeping of equations also helps spot constraint equations that involve a division by zero and functions called outside 
their domains. Once corrections to the model are made, they are replicated in the original system model.   

B.3 Static Debugging for Failure-to-Execute Simulation 
The failure of a simulation model (translated from a system model) to compile and execute on a simulation platform 
indicates a static error. These errors can be identified with debugging techniques applied to the system model without 
translating and simulating it (statically).  These techniques trace chains of symbolic transformations in the model, which 
appear in SysML as mathematical relationships in constraint equations (in parametrics diagrams) or implied by 
connectors (in IBDs). Specifically, tracing refers to tracking transformations of known and unknown variables through a 
model. Known variables are properties whose values are assigned a constant value or determined through mathematical 
relationships.  Tracing is complemented by bookkeeping, which records the known or unknown status of these variables 
when operations apply to them in the model.    

Static debugging can be performed on complete system models, but is described here on simplified, complementary 
models of a system’s physical interactions and signal flows. For models with physical interactions, the first task is to 
identify the part, port, or connector property in IBDs where physical interaction will first occur or initiate other physical 
interactions in the system. Multiple parts and ports where physical interactions simultaneously occur can initiate further 
interactions, but any one can be arbitrarily picked to begin tracing. Tracing and bookkeeping of mathematical 
transformations start with properties associated to this selected part or port. Deciding which system component 
commences the physical interactions is easy in many cases. For example, the initiators of flow of electric charge in an 
electric circuit are the voltage sources or current sources. In the cruise control system represented in IBDs in Figure 104 
and Figure 123, the throttle in the engine physically initiates the car’s interaction with the road and air (this happens on 
command from the driver, but the command is signal flow, not physical interaction).   

When the initiator of physical interaction is not obvious, it can help to inspect the parametric diagrams of parts or ports in 
IBDs. Parametric diagrams contain bindings between properties of the parts (or ports) to variables in the part’s constraint 
equations. Look for parametric diagrams of parts that have a higher number of PhSConstant-stereotyped properties (with 
values given explicitly in the model) than PhSVariable-stereotyped properties (with values determined by mathematical 
relationships in the model), except for PhSVariables that give simulation time. The equation variables (constraint 
parameters) bound to PhSConstant or time properties are used in the part’s equations (constraints) to determine values of 
other variables, which are bound to other properties used in the part’s equations. To find an initiator, search for a part or 
port where most of its properties or properties of its ports are bound to constants or time values in its parametric diagram. 
The only properties without constant or time values should be flow properties, which can only have their values 
determined through connectors. Parts or ports initiating physical interactions have the fewest of these flow properties.  

Tracing bindings and constraints in parametric diagrams helps understand and keep track of (bookkeep) which variables 
in the equations are known and unknown. Constraint equations show mathematical transformations between known 
variables, bound to properties with known values, and unknown variables, bound to properties with unknown values. 
Before simulation, the only known variables are the ones bound to PhSConstant properties, the variables bound to 
properties given (initial) values at the start of simulation, and properties that give simulation time values. These should 
lead to values assigned to all variables in the parametrics diagram of physical interaction-initiating parts. The status of 
these variables will change as tracing shows their values being assigned through constraints or connectors, which is 
recorded by bookkeeping.   

Physical interaction flow properties on the current part in the debugging process link to flow properties on parts or ports 
at the other end of the linking connectors. Trace along these connectors to find out whether values are assigned to these 
flow properties leads to parametric diagrams of other parts, ports, and connector properties linked to the current part. 
Repeat the same methods of tracing and bookkeeping in these other parametric diagrams to determine whether values are 
assigned to unknown variables and to find flow properties that lead to new connectors and parametric diagrams. The 
trace must go through all connectors and parametric diagrams of the system’s parts, ports, and connector properties. 
Figure 127 shows an example of tracing and bookkeeping value assignments between the vehicle’s engine, the physical 
interaction-initiating part of the cruise control system, and the rest of the physical interactions-only system IBD from 
Figure 123. Bookkeeping of the total trace completes the tracking of value assignments. The bookkeepings of variables 
for Figure 127are depicted in the tables that follow the figure. The traces in the bookkeepings correspond to the marked 
points in the figure (A, B, C, D, E, & F).   

A system model will compile and simulate when translated if it: a) uses all the constraint equations and connectors in the 
model for mathematical transformations between known and unknown variables and b) has all its property values 
determined by simulation of mathematical transformations. If tracing and bookkeeping identifies a constraint equation or 
connector that is not used, the system is overconstrained. In this scenario, the modeler must choose whether unused 
equations or connectors should be removed or a new property should be included and related to them. If an unknown 
property is not defined by any mathematical constraint or connector, then the system is underconstrained. In this 
scenario, the modeler must choose between using this property in a new equation or removing the property. Tracing and 



124 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 

bookkeeping of equations also helps spot constraint equations that involve a division by zero and functions called outside 
their domains. Once corrections to the model are made, they are replicated in the original system model.   

If there is a complementary model of signal flows, repeat the process of tracing and bookkeeping in a similar fashion, but 
start tracing from all parts that do not have in-flow properties or do not own ports that have in-flow properties. The in-
flow property on these parts indicate that they receive unidirectional signals from another part in the model, so they 
cannot be the initiator of signal flows. Corrections in this model should likewise (the physical interactions model) be 
reproduced in the original, complete model of the system. Translate the corrected SysML model and test on simulation 
platforms to determine if more debugging is needed. 

 
Figure 127: Shows initiating physical interaction component (at point A), direction of traces, bookkeeping of 

variables, and value assignment that occur through the total trace (ending at F) 

 
If there is a complementary model of signal flows, repeat the process of tracing and bookkeeping in a similar fashion, but 
start tracing from all parts that do not have in-flow properties or do not own ports that have in-flow properties. The in-
flow property on these parts indicate that they receive unidirectional signals from another part in the model, so they 
cannot be the initiator of signal flows. Corrections in this model should likewise (the physical interactions model) be 
reproduced in the original, complete model of the system. Translate the corrected SysML model and test on simulation 
platforms to determine if more debugging is needed. 
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Figure 127: Shows initiating physical interaction component (at point A), direction of traces, bookkeeping of 
variables, and value assignment that occur through the total trace (ending at F) 
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Bookkeeping of variables through parts and ports from C to B to F
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B.4 Dynamic Debugging for Unexpected Simulation Results 
Failure of a simulation model (translated from a system model) to produce expected results when executed indicates a 
dynamic error. The simulation model is able to compile and simulate but produces variable values that deviate from 
modeler expectations. These errors can be identified with dynamic debugging techniques applied to the system model. 
These techniques examine executed simulations to understand exactly when signals and conserved substances flow 
through the system and what their characteristics are. 

They focus on simulation results for variables involved in the static traces of flow properties linked by connectors in the 
previous section. This showed how variables characterizing flow of physical substances and signals during simulation are 
related via transformations in the system model (mathematical operations via constraint equations and connectors). 
Though dynamic debugging can be performed without prior static debugging, fixing static errors first ensures the 
simulation model will compile and execute, and static tracing improves understanding of how variables change during 
simulation.   

Dynamic debugging can be performed on complete system models, but is described here on simplified, complementary 
models of a system’s physical interactions and signal flows. Behavior of conserved substances in physical interactions is 
characterized by their flow rate and potential to flow. Flow rate and potential to flow appear in simulation as variables 
translated from properties at the ends of connectors in the system model. This enables modelers to track simulation 
variables that correspond to properties in SysML system models. The SysPhS translator uses the names of association 
ends and constraint parameters in the resulting simulation models to facilitate this but tracking simulation variables might 
require some familiarity with the simulation language. Lastly, like static debugging, dynamic debugging starts by tracing 
simulation variable transformations at points in the model that initiate physical interactions in the rest of the model. 
These points must be identified before debugging.  

Physical interaction variables simulate flow of conserved substances only at their corresponding connector endpoint (part 
or port) in the system model. A more complete picture of symbolic transformations of these variables is seen by 
observing their values over simulated time and comparing them to other physical interaction simulation variables in the 
model. Graphical displays in simulation tools show these values, enabling comparison of simulated values to their 
intended mathematical relationships. The relationships are defined, correctly or not, through transformations 
(mathematical relationships between variables derived from connectors and parametric diagrams in the system model) of 
corresponding flow properties in the system model. To visualize these transformations, observe variables when their 
corresponding flow properties have not undergone more than one set of transformations (operations that occur on flow 
properties in the constraints of one parametric diagram or in the mathematical relationship implied by one connector). 
Compare simulation values of these variables with those of other physical interaction variables related to the same part or 
port in the system model, as well as simulation variables related to the other end of the variables’ associated connectors.  
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Failure of a simulation model (translated from a system model) to produce expected results when executed indicates a 
dynamic error. The simulation model is able to compile and simulate but produces variable values that deviate from 
modeler expectations. These errors can be identified with dynamic debugging techniques applied to the system model. 
These techniques examine executed simulations to understand exactly when signals and conserved substances flow 
through the system and what their characteristics are. 

They focus on simulation results for variables involved in the static traces of flow properties linked by connectors in the 
previous section. This showed how variables characterizing flow of physical substances and signals during simulation are 
related via transformations in the system model (mathematical operations via constraint equations and connectors). 
Though dynamic debugging can be performed without prior static debugging, fixing static errors first ensures the 
simulation model will compile and execute, and static tracing improves understanding of how variables change during 
simulation.   

Dynamic debugging can be performed on complete system models, but is described here on simplified, complementary 
models of a system’s physical interactions and signal flows. Behavior of conserved substances in physical interactions is 
characterized by their flow rate and potential to flow. Flow rate and potential to flow appear in simulation as variables 
translated from properties at the ends of connectors in the system model. This enables modelers to track simulation 
variables that correspond to properties in SysML system models. The SysPhS translator uses the names of association 
ends and constraint parameters in the resulting simulation models to facilitate this but tracking simulation variables might 
require some familiarity with the simulation language. Lastly, like static debugging, dynamic debugging starts by tracing 
simulation variable transformations at points in the model that initiate physical interactions in the rest of the model. 
These points must be identified before debugging.  

Physical interaction variables simulate flow of conserved substances only at their corresponding connector endpoint (part 
or port) in the system model. A more complete picture of symbolic transformations of these variables is seen by 
observing their values over simulated time and comparing them to other physical interaction simulation variables in the 
model. Graphical displays in simulation tools show these values, enabling comparison of simulated values to their 
intended mathematical relationships. The relationships are defined, correctly or not, through transformations 
(mathematical relationships between variables derived from connectors and parametric diagrams in the system model) of 
corresponding flow properties in the system model. To visualize these transformations, observe variables when their 
corresponding flow properties have not undergone more than one set of transformations (operations that occur on flow 
properties in the constraints of one parametric diagram or in the mathematical relationship implied by one connector). 
Compare simulation values of these variables with those of other physical interaction variables related to the same part or 
port in the system model, as well as simulation variables related to the other end of the variables’ associated connectors.  

Analysis of simulation variable results is performed in simulation runs that are sufficiently long for their values to reach a 
steady-state or a recognizable pattern of changes. Check that changes follow the mathematical transformations specified 
in corresponding constraint equations and connector links in the system model, which can be modified to produce better 
results. Figure 128 shows the relationship between simulated variable values over time and flow properties in the 
parametrics diagram (from Figure 124) for a component in the physical interactions-only system IBD (from Figure 123).   

 
Figure 128: Relationship between simulation variables and flow properties in the parametric diagrams 
for components in the system IBD 

Further simplification of system models can determine whether simulation results are valid, especially when physical 
interactions are highly complex. One way is to temporarily remove parts, ports, and connectors until modelers have high 
confidence in what they expect from variable behavior. Once this simpler model produces expected simulations, the 
removed parts, ports, and connectors can be restored and checked (via simulations) in the reverse order that which they 
were removed.  
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For a complementary model of signal flows, if there is one, repeat the process of inspecting simulation variables in a 
similar fashion. However, start tracing with all parts that do not have in-flow properties or do not own ports that have in-
flow properties, as chosen during static debugging. Replace remaining parts in a complementary model of signal flows 
that only have out-flow properties or only have ports with out-flow properties have their flow properties by PhSConstant-
stereotyped properties with pre-specified values before debugging.  

Errors that are found by debugging are corrected in the system model, then tested by translating to simulation models and 
executing them. Translating and testing system models to multiple simulation platforms is more robust, because fixes 
sometimes work for one simulation platform and not others. For example, a function call in a parametric diagram is 
domain-specific, and this might need to be replaced with a more universal function call. It is also possible that some 
modeling capabilities in SysML, such as state machines or different ways of defining initial values, cannot be replicated 
on some simulation platforms (see Clause 10 for more specific examples about translation differences between 
simulation platforms). Analysis of simulation variable results is performed in simulation runs that are sufficiently long 
for their values to reach a steady-state or a recognizable pattern of changes. Check that changes follow the mathematical 
transformations specified in corresponding constraint equations and connector links in the system model, which can be 
modified to produce better results. Figure 128 shows the relationship between simulated variable values over time and 
flow properties in the parametrics diagram (from Figure 124) for a component in the physical interactions-only system 
IBD (from Figure 123).   

 

Figure 128: Relationship between simulation variables and flow properties in the parametric diagrams for 
components in the system IBD 
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For a complementary model of signal flows, if there is one, repeat the process of inspecting simulation variables in a 
similar fashion. However, start tracing with all parts that do not have in-flow properties or do not own ports that have in-
flow properties, as chosen during static debugging. Replace remaining parts in a complementary model of signal flows 
that only have out-flow properties or only have ports with out-flow properties have their flow properties by PhSConstant-
stereotyped properties with pre-specified values before debugging.  

Errors that are found by debugging are corrected in the system model, then tested by translating to simulation models and 
executing them. Translating and testing system models to multiple simulation platforms is more robust, because fixes 
sometimes work for one simulation platform and not others. For example, a function call in a parametric diagram is 
domain-specific, and this might need to be replaced with a more universal function call. It is also possible that some 
modeling capabilities in SysML, such as state machines or different ways of defining initial values, cannot be replicated 
on some simulation platforms (see Clause 10 for more specific examples about translation differences between 
simulation platforms). 
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