
An OMG SysML® Extension for Physical Interaction and Signal Flow Simulation Publication

SysML Extension for Physical Interaction and Signal
Flow Simulation
Version 1.11 – with change bars

OMG Document Number: formal/21-05-043 [smsc/21-05-02]

Release Date: June 2021

Standard Document URL: http://www.omg.org/spec/SysPhS/1.1/PDF

Machine Consumable Files:
Normative:
 https://www.omg.org/spec/SysPhS/20200925/SysPhSProfile.xmi

https://www.omg.org/spec/SysPhS/20200925/SysPhSLibrary.xmi

Informative:
https://www.omg.org/spec/SysPhS/2020092520200925/SysPhSAnnexA-ElectricCircuit.xmi
https://www.omg.org/spec/SysPhS/202009225/SysPhSAnnexA-SignalProcessor.xmi
https://www.omg.org/spec/SysPhS/202009225/SysPhSAnnexA-Hydraulics.xmi
https://www.omg.org/spec/SysPhS/202009225/SysPhSAnnexA-Humidifier.xmi
https://www.omg.org/spec/SysPhS/202009225/SysPhSAnnexA-CruiseController.xmi

http://www.omg.org/spec/SysPhS/1.1/PDF
https://www.omg.org/spec/SysPhS/20200925/SysPhSProfile.xmi
https://www.omg.org/spec/SysPhS/20200925/SysPhSLibrary.xmi
https://www.omg.org/spec/SysPhS/20200925/SysPhSAnnexA-ElectricCircuit.xmi
https://www.omg.org/spec/SysPhS/20200925/SysPhSAnnexA-SignalProcessor.xmi
https://www.omg.org/spec/SysPhS/20200925/SysPhSAnnexA-Hydraulics.xmi
https://www.omg.org/spec/SysPhS/20200925/SysPhSAnnexA-Humidifier.xmi
https://www.omg.org/spec/SysPhS/20200925/SysPhSAnnexA-CruiseController.xmi

ii SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Copyright © 2016-17, No Magic, Inc.
Copyright © 2021, Object Management Group, Inc.

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to
this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY
OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO
EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA
OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 iii

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 9C Medway Rd, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®,
SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are
registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

iv SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

OMG's Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 v

Table of Contents

Preface ... ix

1. Scope .. 1

2. Conformance ... 2

3. References .. 2
3.1 Normative References .. 2
3.2 Non-normative References ... 2

4. Terms and definitions .. 3

5. Symbols ... 3

6. Additional Information .. 3
6.1 Signal flow and physical interaction simulation compared ... 3
6.2 How to read this specification ... 3
6.3 Changes to Adopted OMG Specifications .. 4
6.4 Acknowledgements ... 4

7. SysML Extension for Physical Interaction and Signal Flow Simulation 5
7.1 Introduction.. 5
7.2 Simulation profile ... 5

7.2.1 PhSConstant .. 5
7.2.2 PhSVariable.. 5

8. Language for Mathematical Expressions ... 9

9. Preprocessing SysML Models ... 11
9.1 Introduction.. 11
9.2 Replace connectors typed by association blocks with their internal structure 11

9.2.1 Purpose .. 11
9.2.2 SysML model before processing .. 11
9.2.3 SysML model after processing ... 11

9.3 Non-simulation ports changed to parts ... 12
9.3.1 Purpose .. 12
9.3.2 SysML model before processing .. 12
9.3.3 SysML model after processing ... 12

9.4 Separate blocks owning simulation flow properties, and typing parts and ports.............................. 12
9.4.1 Purpose .. 12
9.4.2 SysML model before processing .. 13
9.4.3 SysML model after processing ... 13

9.5 Reduce nesting of connector ends ... 16
9.5.1 Purpose .. 16
9.5.2 SysML model before processing .. 16
9.5.3 SysML model after processing ... 16

10. Translating Between SysML and Simulation Platforms .. 17
10.1 Introduction.. 17
10.2 Root element ... 17

10.2.1 Purpose .. 17
10.2.2 SysML modeling... 17
10.2.3 Modelica modeling ... 18
10.2.4 Simulink modeling .. 18
10.2.5 Simscape modeling .. 18
10.2.6 Summary .. 19

10.3 Blocks and properties.. 19
10.3.1 Purpose .. 19
10.3.2 SysML modeling... 19
10.3.3 Modelica modeling ... 19
10.3.4 Simulink modeling .. 20
10.3.5 Simscape modeling .. 20
10.3.6 Simulink/Simscape modeling ... 20

vi SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

10.3.7 Summary .. 21
10.4 Generalization ... 21

10.4.1 Purpose .. 21
10.4.2 SysML modeling... 21
10.4.3 Modelica modeling ... 21
10.4.4 Simulink modeling .. 22
10.4.5 Simscape modeling .. 22
10.4.6 Summary .. 22

10.5 Property redefinition .. 22
10.5.1 Purpose .. 22
10.5.2 SysML modeling... 23
10.5.3 Modelica modeling ... 23
10.5.4 Simulink modeling .. 23
10.5.5 Simscape modeling .. 24
10.5.6 Summary .. 24

10.6 PhSVariables and PhSConstants ... 24
10.6.1 Purpose .. 24
10.6.2 SysML modeling... 24
10.6.3 Modelica modeling ... 25
10.6.4 Simulink modeling .. 25
10.6.5 Simscape modeling .. 25
10.6.6 Summary .. 25

10.7 Ports and Flow Properties ... 25
10.7.1 Purpose .. 25
10.7.2 SysML modeling... 25
10.7.3 SysML modeling, signal flow .. 26
10.7.4 Modelica modeling, signal flow .. 26
10.7.5 Simulink modeling, signal flow ... 26
10.7.6 Simscape modeling, signal flow ... 27
10.7.7 SysML modeling, physical interaction .. 27
10.7.8 Modelica modeling, physical interaction .. 27
10.7.9 Simulink modeling, physical interaction ... 28
10.7.10 Simscape modeling, physical interaction ... 28
10.7.11 Summary .. 29

10.8 Connectors .. 29
10.8.1 Purpose .. 29
10.8.2 SysML modeling... 29
10.8.3 Modelica modeling ... 29
10.8.4 Simulink modeling, between blocks with no constraints .. 30
10.8.5 Simulink modeling, between blocks with constraints ... 30
10.8.6 Simulink modeling, between blocks that have constraints and blocks that do not 31
10.8.7 Simscape modeling .. 32
10.8.8 Summary .. 33

10.9 Blocks with constraints .. 33
10.9.1 Purpose .. 33
10.9.2 SysML modeling... 33
10.9.3 SysML modeling, signal flow .. 33
10.9.4 Modelica modeling, signal flow .. 34
10.9.5 Simulink modeling, signal flow ... 34
10.9.6 Simscape modeling, signal flow ... 35
10.9.7 SysML modeling, physical interaction .. 36
10.9.8 Modelica modeling, physical interaction .. 36
10.9.9 Simulink modeling, physical interaction ... 37
10.9.10 Simscape modeling, physical interaction ... 37
10.9.11 Summary ... 38

10.10 Default values and initial values .. 38
10.10.1 Purpose .. 38
10.10.2 SysML Modeling ... 38
10.10.3 Modelica modeling.. 39
10.10.4 Simulink modeling .. 39
10.10.5 Simscape modeling .. 39
10.10.6 Summary .. 40

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 vii

10.11 Data types and units .. 40
10.11.1 Purpose .. 40
10.11.2 SysML modeling ... 40
10.11.3 Modelica modeling.. 40
10.11.4 Simulink modeling .. 40
10.11.5 Simscape modeling .. 41
10.11.6 Summary .. 41

10.12 State machines .. 41
10.12.1 Purpose .. 41
10.12.2 SysML modeling ... 41
10.12.3 Modelica modeling.. 42
10.12.4 Simulink/StateFlow modeling ... 43
10.12.5 Summary .. 45

10.13 Mathematical expressions ... 46

11. Platform-independent Component Library ... 47
11.1 Introduction.. 47
11.2 Component interaction .. 47

11.2.1 Signal flow .. 47
11.2.2 Physical interaction .. 48

11.3 Component behavior ... 48
11.3.1 Introduction .. 48
11.3.2 Real-valued components ... 49
11.3.3 Logical components ... 55
11.3.4 Electrical components .. 56

11.4 Value types with units ... 61
11.5 Platform-dependent extension .. 61

11.5.1 Introduction .. 61
11.5.2 Platform profile ... 61
11.5.3 Platform library... 64

Annex A - Examples (non-normative) .. 65
A0.1 Introduction.. 65
A0.2 Electric Circuits ... 65

A.2.1 Introduction ... 65
A.2.2 System Being Modeled .. 65
A.2.3 Internal Structure .. 65
A.2.4 Blocks and Ports .. 66
A.2.5 Properties (variables) ... 66
A.2.6 Constraints (equations) .. 67
A.2.7 Constraint Properties and Bindings .. 67

A0.3 Signal Processor ... 69
A.3.1 Introduction ... 69
A.3.2 System Being Modeled .. 69
A.3.3 Internal Structure .. 69
A.3.4 Blocks and Ports .. 70
A.3.5 Properties (variables) ... 71
A.3.6 Constraints (equations) .. 72
A.3.7 Constraint properties and bindings .. 72

A0.4 Hydraulics .. 74
A.4.1 Introduction ... 74
A.4.2 System Being Modeled .. 74
A.4.3 Internal Structure .. 74
A.4.4 Blocks and Ports .. 75
A.4.5 Properties (variables) ... 75
A.4.6 Constraints (equations) .. 76
A.4.7 Constraint properties and bindings .. 76

A0.5 Humidifier .. 77
A.5.1 Introduction ... 77
A.5.2 System Being Modeled .. 77
A.5.3 Internal Structure .. 77
A.5.4 Blocks and ports ... 80
A.5.5 Properties (variables) ... 82

viii SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

A.5.6 Constraints (equations) .. 82
A.5.7 Constraint Properties & Bindings ... 84
A.5.8 State Machines ... 88
A.5.9 Initial Values ... 88

A0.6 Cruise Control System .. 92
A.6.1 Introduction ... 92
A.6.2 System Being Modeled .. 92
A.6.3 Internal Structure .. 92
A.6.4 Blocks and Ports .. 94
A.6.5 Properties (variables) ... 100
A.6.6 Constraints (equations) .. 102
A.6.7 Constraint properties and bindings .. 104

Annex B - Platform-Independent Debugging (non-normative) ... 116
B.1 Introduction .. 116
B.2 Preprocessing: Simplifying Models ... 116
B.3 Static Debugging for Failure-to-Execute Simulation ... 121
B.4 Dynamic Debugging for Unexpected Simulation Results ... 127

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 ix

Preface
About the Object Management Group
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Meta-model);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal
Specifications are available from this URL: https://www.omg.org/spec

All of OMG‟s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Milford, MA 01757
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO/IEC standards. Please consult: http://www.iso.org

Issues
The reader is encouraged to report and technical or editing issues/problems with this specification to:
https://www.omg.org/report_issue.htm

https://www.omg.org/
mailto:pubs@omg.org
http://www.iso.org/
https://www.omg.org/report_issue.htm

x SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

This page intentionally left blank.

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 1

1. Scope
Systems engineers coordinate the work of multiple other engineering disciplines (mechanical, material, electrical,
control, and so on), requiring information to flow between systems engineers and those in other disciplines.
Systems engineering information intentionally does not cover all disciplines, but must integrate with them to enable
systems engineers to communicate with other engineers. Using discipline-specific tools separately from system
modeling tools typically leads to redundancy, inconsistency, and less efficient engineering processes.

Many engineering disciplines (mechanical, electrical, and so on) use simulation tools that present graphical
interfaces for linking system components, then solve equations generated from the graphical models, and report
predicted values of system properties over time. Linked components interact physically (mechanically, electrically, and
so on) or send numeric signals to each other (see Subclause 6.1 for the difference between physical interaction and
signal flow). The tools generate (ordinary and algebraic) differential equations to describe the evolution of numeric
system properties over time, and solve them to predict system behavior. These models are sometimes known as
lumped parameter or 1 -D models, but this specification refers to them as physical interaction and signal flow, to
emphasize their applications (or just simulation models for brevity). This kind of simulation is specified without regard
to physical distances between or within components, as compared to distributed simulation models (as in finite element
analysis), in which behavior specifications account for physical distances between or within components. See Subclause
6.1 for more information about this kind of simulation.

Graphical interfaces presented by physical interaction and signal flow simulators express concepts similar to the
Systems Modeling Language (SysML), an extension of the Unified Modeling Language (UML). Both languages show
system components, how components are connected together, and how physical substances and information flow
between components. SysML and these simulators both have underlying textual languages to record models in computer-
processable file formats. Simulators translate models specified through graphical interfaces into file- based formats,
which are then transformed into equations for solution by numerical analysis. SysML-based tools use their filed-
based formats to perform other kinds of analysis and verification, checking completeness of designs against
requirements.

When SysML tools and physical interaction and signal flow simulators are used separately, simulation engineers must
re-specify their systems in each tool they are using, including information that is also available in SysML models. This
additional effort would not be necessary if the information to perform this kind of simulation were available in SysML
and translations were defined between SysML and simulation languages.

This specification:

• Extends SysML with additional information needed to model physical interaction and signal flow simulation
independently of simulation platforms.

• Provides a human-usable textual syntax for mathematical expressions.
• Includes a platform-independent SysML library of simulation elements that can be reused in system models.
• Gives translations between SysML as extended above and two widely-used simulation languages and tools for

physical interaction and signal flow simulation.

With the extension, expression language, libraries, and translations above, information in common between SysML and
simulation languages only needs to be specified once in SysML and translated to simulators, rather than manually
recoded for each simulation language and tool. The library enables SysML models for simulation to be built more
quickly by reusing library elements rather than reconstructing them for each application. Taken together, these
capabilities provide a basis for more efficient integration of SysML models and processes with those of physical
interaction and signal flow simulation.

2 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

2. Conformance
A tool demonstrating conformance to this specification must satisfy at least one of these points:

• Abstract syntax conformance. Tools demonstrating abstract syntax conformance provide user interfaces and/or
APIs that enable:

o Instances of concrete stereotypes defined in this specification (which are applications of
stereotypes to instances of UML metaclasses) to be created, read, updated, and deleted, including links
and references from these to instances of UML elements and instances of SysML stereotypes.

o Bodies and languages of opaque expressions and opaque behaviors to be created, read, updated, and
deleted conforming to the mathematical expression language defined in this specification.

o Links and references to model library elements defined in this specification to be created and
deleted.

The tools also provide a way to validate the well-formedness of the above as defined by stereotypes,
grammars, and model library elements in this specification.

• Concrete syntax conformance. Tool demonstrating concrete syntax conformance provide user interfaces
and/or APIs that enable the mathematical expression language defined in this specification and the SysML
notation for the abstract syntax above to be created, read, updated, and deleted. See the SysML
specification for more about SysML notation conformance.

• Model interchange conformance. Tools demonstrating model interchange conformance can import and export
conformant XMI for all models that are valid under this specification. Model interchange conformance
implies abstract syntax conformance.

• Translation conformance: Tools demonstrating translation conformance can translate between extended
SysML and simulation models per this specification, either in one direction or both directions.

3. References
3.1 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do
not apply.

[1] Object Management Group, “OMG Unified Modeling Language, version 2.5.11,” http://www.omg.org/spec/
UML/2.5.1, December 20177.

[2] Object Management Group, “OMG Systems Modeling Language, version 1.6,” http://www.omg.org/spec/
SysML/1.6, November 20199.

[3] Modelica Association, “Modelica® - A Unified Object-Oriented Language for Systems Modeling, Language
Specification, version 3.4,” http://www.modelica.org/documents/ModelicaSpec34.pdf, April 2017.

[4] Modelica Association, “Modelica Standard Library,” https://github.com/modelica/Modelica, April 2016.

[5] International Organization for Standardization, “ISO/IEC 14977:1996 Information technology – Syntactic
metalanguage – Extended BNF,” http://www.iso.org/standard/26153.html, 1966.

[6] International Organization for Standardization, “ISO 80000-1:2009 Quantities and units -- Part 1: General,”
http://www.iso.org/standard/30669.html, 2009.

3.2 Non-normative References
[1] Kecman, V., State-Space Models of Lumped and Distributed Systems, Springer-Verlag, 1988.

[2] Cellier, F., Elmqvist, H., Otter, M., “Modeling from Physical Principles,” in Levine, W., Control System
Fundamentals, pp. 99-108, CRC Press, 1999.

[3] Raven, F., Automatic Control Engineering (Fifth Edition), McGraw-Hill, January 1995.

[4] The MathWorks, Inc., “Simulink® Documentation,” https://www.mathworks.com/help/releases/R2016a/
simulink/, 2016.

[5] The MathWorks, Inc., “SimscapeTM Documentation,” https://www.mathworks.com/help/releases/
R2016a/physmod/simscape/, 2016.

http://www.omg.org/spec/UML/2.5.1
http://www.omg.org/spec/UML/2.5.1
http://www.omg.org/spec/SysML/1.6
http://www.omg.org/spec/SysML/1.6
http://www.modelica.org/documents/ModelicaSpec34.pdf
https://github.com/modelica/Modelica
http://www.iso.org/standard/26153.html
http://www.iso.org/standard/30669.html
https://www.mathworks.com/help/releases/R2016a/simulink/
https://www.mathworks.com/help/releases/R2016a/simulink/
https://www.mathworks.com/help/releases/R2016a/physmod/simscape/
https://www.mathworks.com/help/releases/R2016a/physmod/simscape/

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 3

[6] The MathWorks, Inc., “MATLAB® Documentation,” https://www.mathworks.com/help/releases/R2016a/matlab,
2016.

[7] The MathWorks, Inc., “StateFlow® Documentation,” https://www.mathworks.com/help/releases/R2016a/
stateflow, 2016.

[8] Bock, C., Barbau, R., Matei, I., Dadfarnia, M., "An Extension of the Systems Modeling Language for
Physical Interaction and Signal Flow Simulation", Systems Engineering, vol. 20, no. 5, pp. 395-431,
2017.

[9] Pop, A., Sjölund, M., Asghar, A., Fritzson, P., Casella, F., "Integrated Debugging of Modelica Models,” in
Modeling, Identification and Control, vol. 35, no. 2, pp. 93-107, 2014.

[10] Dadfarnia, M., Barbau, R., “Platform-Independent Debugging of Physical Interaction and Signal Flow
Models,” Proceedings of the 13th Annual IEEE International Systems Conference, 2019.

4. Terms and definitions
For the purposes of this specification, the term ‘simulation’ will refer to physical interaction and signal flow
simulation, unless qualified. See Clause 1 for more information about this kind of simulation.

Stereotype names are sometimes used in place of instances of the base classes to which the stereotypes are
applied. For example, the phrase “PhSVariable typed by Real” refers to a property that has the PhSVariable
stereotype applied and that is typed by Real.

5. Symbols
There are no symbols introduced by this specification.

6. Additional Information
6.1 Signal flow and physical interaction simulation compared
The differences between physical interaction and signal flow and lie mainly in how components interact, addressing two
kinds of problems::

• In signal flow modeling, system components exchange numeric and boolean values in predetermined directions
(unidirectionally). For each component, some values will be provided by other components (inputs), and some
values will be provided to other components (outputs). Connections between components indicate that valuess
are passed from one output of a source component to one or more inputs of target components. Component
behavior is specified by equations that relate input, output, and component variables. Signal flow is well suited
for describing control systems and signal-processing systems.

• In physical interaction, system components exchange physical substances that carry energy in directions
determined during simulation (possibly bidirectionally). Each exchange is modeled with two numeric values
(flow rate and potential to flow of a physical substance, in terms of one of its conserved characteristics),
compared to one (possibly boolean) value for signal flow, which does not involve physical substances. In physical
interaction, the direction in which substances flow between components is not predetermined, as it is for values in
signal flow. Component behavior in physical interaction is specified by equations that relate flow rate, potential, and
component variables. The direction in which substances flow between components is determined during
simulation and can change during simulation. Physical interaction is well suited for representing systems with
components that exchange physical substances.

In practice, physical interaction and signal flow are often combined in a same model. For example, many systems
have physical components directed by control systems via sensors and actuators.

6.2 How to read this specification
Clauses 1 to 6 contain background and basics for reading this specification. Clause 1 describes the objectives of this
specification and the intended readership. Clause 2 defines conformance. Clause 3 lists other specifications and
documents containing provisions which, through reference in this text, constitute provisions of this specification.

Clause 4 and 5 contains definitions of terms, abbreviations, and symbols used in this document. Clause 6 provides
additional information to this specification.

https://www.mathworks.com/help/releases/R2016a/matlab
https://www.mathworks.com/help/releases/R2016a/stateflow
https://www.mathworks.com/help/releases/R2016a/stateflow

4 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Clauses 7 to 11 are the technical part of this specification. Clause 7 defines a SysML extension for physical
interaction and signal flow simulation. Clause 8 defines a language to be used for expressions representing equations and
algorithmic statements. Clause 9 defines processing of SysML models that must be performed prior to translation
to simulation platforms. Clause 10 provides translations between extended, preprocessed SysML models and two
simulation platforms, Modelica and Simulink (including extensions to Simulink, such as Simscape). Clause 11 defines a
platform-independent simulation library in SysML, with components corresponding to platform- dependent library
components.

Annex A gives additional examples showing how to use the contents of Clauses 7, 8, and 11. Annex 0 gives an
overview of platform-independent debugging procedures for physical interaction and signal flow in SysML models
extended with SysPhS. These are illustrated by applying them to an example from Annex A.

6.3 Changes to Adopted OMG Specifications
None.

6.4 Acknowledgements
The following companies submitted this specification:

• No Magic, Inc.

The following companies and organizations support this specification:

• U.S. National Institute of Standards and Technology
• Office of the Secretary of Defense
• InterCax, LLC
• ModelFoundry Pty. Ltd.
• ModelAlchemy Consulting
• XPLM Solution GmbH
• Koneksys, LLC
• oose Innovative Informatik GmbH

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 5

7. SysML Extension for Physical Interaction and Signal
Flow Simulation
7.1 Introduction
This clause defines a SysML extension for physical interaction and signal flow. It reflects features common to
various physical interaction and signal flow platforms that are not present in SysML. This clause summarizes the
extension. More information is given in Subclauses 10.6 and 10.7.

7.2 Simulation profile

Figure 1: Simulation stereotypes

7.2.1 PhSConstant
Package: SysPhS
isAbstract: No
Extended Metaclass: Property

Description
A PhSConstant has values that do not change during simulation runs. Values can change between simulation runs.

Constraints

[1] Properties stereotyped by PhSConstant must be typed by Real, Integer, or Boolean, or one of their
specializations.

[2] Properties stereotyped by PhSConstant must have multiplicity 1, unless they are also stereotyped by
MultidimensionalElement (see Subclause 11.5).

[3] Properties stereotyped by PhS Constant must not redefine more than one other property, which must have the same
name and type and must be stereotyped by PhSVariable or PhSConstant.

Notation
The stereotype label between guillemets is “phsConstant”.

A compartment with the label “phs constants” may appear as part of a block definition to list the properties
stereotyped by PhSConstant. The properties omit the ‘«phsConstant»’ prefix.

7.2.2 PhSVariable
Package: SysPhS
isAbstract: No
Extended Metaclass: Property

Description

A PhSVariable has values that can vary over time in a continuous or discrete fashion. Continuous variables have
values that are close to their values at nearby times in the past and future. Discrete variables have values that are the same
as their values at nearby times in either the past or future, or both. The effect is that continuous variables vary smoothly
over time, including the possibility of remaining constant, while discrete variables are always constant for a period of
time, then change instantaneously to a possibly very different value for another period of time. Discrete variables can be

«stereotype»
PhSConstant

«metaclass»
UML::Property

«stereotype»
PhSVariable

isContinuous : Boolean = true
isConserved : Boolean = false
changeCycle : Real = 0

6 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

restricted to change values only at regular intervals (change cycle greater than zero), though they do not need to change
at every interval. Variables being continuous or discrete does not imply any restriction on the range of their values,
only the way in which those values change over time.

PhSVariables are used to model exchanges between components (physical interaction and signal flow), as
described below, and behavior within components (see Subclause 6.1).

Component interactions are modeled on blocks describing the things that are interacting, rather than on associations
between these blocks. The interacting blocks can type parts and ports. PhSVariables and flow properties are used to
model component interactions:

• Physical interactions are specified by inout flow properties typed by blocks that characterize substances
crossing their boundaries in terms of a conserved characteristic of those substances. For example, electrons
passing the boundary of an object are modeled as the flow of charge, rather than electrons. Blocks typing the
flow properties (indirectly) specialize ConservedQuantityKind, each named for a physical characteristic (quantity
kind) that is conserved in flows between components (see Subclause 11.2.2). The blocks describe flows with
two PhSVariables, one conserved and one non-conserved, see below.

• Signal flows are specified by in or out flow properties that are also non-conserved PhSVariables. They are
typed by the kind of signal (numeric or boolean).

Connected flow properties are on blocks typing parts or ports that have a connector linking them. Matching flow properties
are defined in SysML. Physical interactions and signal flows can only occur between connected and matching flow
properties that satisfy the constraints in the Constraints section below.

In physical interactions:

• Conserved PhSVariables give the rate at which substances are crossing the boundary of an object (flow rate)
as a rate of the quantity kind that types the flow property. For example, fluids might cross the boundary of a
tank, but the flow rate is given as volume (a quantity kind typing the flow property) per time, regardless of the kind
of fluid. When physical flow properties are connected and match, the values of conserved PhSVariables on
their types on all ends add up to zero (positive and negative flow rates indicate flows in opposite directions).

• Non-conserved PhSVariables give the potential for substances to cross the boundary (potential to flow), whether
any substance is crossing or not, as a potential of the same quantity kind used for the paired conserved
PhSVariable. For example, fluid might have a high potential to flow at the boundary of a tank, but the potential is
in terms of pressure (force per volume surface), whether any fluid is crossing the boundary or not, and
regardless of the kind of fluid. When physical flow properties are connected and match, the values of non-
conserved PhSVariables on all ends are equal.

In signal flows:

• PhSVariables (that are also flow properties) give a numeric or boolean value crossing the boundary of an object.
When signal flow properties are connected and match, their values on all ends are equal (they act like non-
conserved PhSVariables).

Component behavior can be defined for blocks that type parts (component blocks), not ports. Components might pass
physical substances and signals through them, possibly transforming them on the way, or creating, destroying, or
storing them. These behaviors are specified with constraints blocks applied to component blocks. The constraints
are mathematical equations relating values of:

• PhSVariables for flow properties (flow variables, for modeling component interactions above).
• PhSVariables not for flow properties (component variables, internal to components, not for modeling component

interaction). The idea of conservation (or lack thereof) does not apply to these (because they are not related to
interactions with other components), but they are specified as non-conserved.

Constraints on flow variables specify the effect components have on physical substances or signals going through
flow properties and might depend on component variables. Component variables might have values giving:

• Potential differences between physical flow properties. These differences must be non-zero for physical
substances to flow through a component.

• Rates at which physical substances flow through a component. This differs from flow rates through flow
properties when the component creates, destroys, transforms, or stores substances.

• Internal states, such as, how much of a physical substance is currently stored, the temperature of a component, or
the current value of a signal integrator.

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 7

Attributes

• isContinuous: Boolean = true Determines whether the property value varies continuously or discretely.

• isConserved: Boolean = false Determines whether values of the property value are conserved or not.

• changeCycle: Real = 0 Specifies the time interval at which a discrete property value may change.

Constraints

[1] The stereotyped property must be typed by Real, Integer, or Boolean, or one of their specializations.
[2] isContinuous may be true only when the stereotyped property is typed by Real or one of its specializations.
[3] isConserved may be true only when isContinuous is true and the stereotyped property is on a block specialized from

ConservedQuantityKind (see Subclause 11.2.2).
[4] changeCycle may be other than 0 only when isContinuous is false.
[5] changeCycle must be positive or 0.
[6] A property stereotyped by PhSVariable must not be stereotyped by PhSConstant.
[7] Properties stereotyped by PhSVariable must have multiplicity 1 unless they are also stereotyped by

MultidimensionalElement (see Subclause 11.5).
[8] Flow properties stereotyped by PhSVariable that are connected and matching must have opposite directions

(in/out or out/in), the same type and multiplicity, and the same value for isContinuous on the applied
stereotype.

[9] Flow properties stereotyped by PhSVariable that have in direction may connect to and match no more than one other
flow property stereotyped by PhSVariable.

[10] A property stereotyped PhSVariable can redefine at most one other property and it must have the same name and
type and must be stereotyped by PhSVariable.

[11] When a property stereotyped by PhSVariable with isContinuous=true redefines another property, the
PhSVariable applied to the redefined property must have isContinuous=true.

[12] When a property stereotyped by PhSVariable with isContinuous=false redefines another property stereotyped by
PhSVariable with isContinuous=false, the redefining property’s changeCycle must be an integer multiple of the
redefined property’s changeCycle.

Notation

The stereotype label between guillemets is “phsVariable”.

A compartment with the label “phs variables” may appear as part of a block definition to list the properties
stereotyped by PhSVariable. The properties omit the “«phsVariable»” prefix.

A compartment with the label “physical interactions” may appear as part of a block definition to list flow properties
typed by a block specialized from ConservedQuantityKind that has one conserved and one non-conserved
PhSVariable (see Subclause 11.2.2).

A compartment with the label “signal flows” may appear as part of a block definition to list flow properties that have
PhSVariable applied.

8 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

This page intentionally left blank.

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 9

8. Language for Mathematical Expressions
This clause describes a platform-independent textual language for mathematical expressions. The language is for use in
the bodies of:

• OpaqueExpressions of constraints, corresponding to equations.
• OpaqueBehaviors, corresponding to algorithmic statements.

OpaqueExpressions and OpaqueBehaviors that use this language in their body should have an associated ‘SysPhS’
string as their language.

The SysPhS expression grammar includes a subset of Modelica’s grammar, as follows:

• All terminal symbols
• The following non-terminal symbols: equation, statement, if-equation, if-statement, for-statement, for- indices,

for-index, while-statement, expression, simple-expression, logical-expression, logical-term, logical-factor,
relation, relational-operator, arithmetic-expression, add-operator, term, mul-operator, factor, primary, name,
component-reference, function-call-args, function-arguments, function-argumentsnon-first, named-arguments,
named-argument, function-argument, output-expression-list, expression-list, array-subscripts, subscript

Symbols in the Modelica grammar not listed above are not included in the SysPhS expression grammar. The
semantics of the above symbols is given in Modelica (which is the same in MATLAB, the expression language in
Simulink, Simscape, and StateFlow, assuming the translations in Subclause 10.13).

The following non-terminal symbol is included in the SysPhS expression grammar to specify execution of a series of
statements (expressed in extended BNF):

statements : { statement ";" }

When used in OpaqueExpressions, the root non-terminal symbol must be equation. When used in
OpaqueBehaviors, the root non-terminal symbol must be statements.

The following are functions available in SysPhS expressions language: abs, sign, sqrt, div, mod, rem, ceil, floor, sin,
cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh, log, log10, exp, der. The semantics of these functions is given in
Modelica (which is the same in MATLAB).

10 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

This page intentionally left blank.

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 11

9. Preprocessing SysML Models
9.1 Introduction
This clause defines processing of SysML models performed prior to translation to simulation platforms per Clause
10, to enable translations of SysML modeling patterns not covered in Clause 10. Subclause 9.2 covers associations
blocks. Subclauses 9.3 through 9.5 address flow property and connector patterns. Preprocessing should be
performed in the order of the subclauses below. In these subclauses, flow properties with PhSVariable applied or
typed by blocks (indirectly) specializing ConservedQuantityKind are called simulation flow properties.

9.2 Replace connectors typed by association blocks with their internal
structure

9.2.1 Purpose
Many physical phenomena occur due to the relationship between two system components. For example, friction
occurs when two pieces in contact move relative to each other and produce heat. SysML includes association blocks for
modeling complex relationships, which are not available in simulation models. Connectors typed by association blocks
must be replaced with the internal structure of their association blocks before translation to simulation platforms per
the correspondences in Clause 10.

9.2.2 SysML model before processing
SysML association blocks are both associations and blocks. They represent relationships between two blocks, like
associations, and can have structural features, like blocks. Figure 2 shows an example association block in a SysML block
definition diagram on the top, as well as a usage of it in an internal block diagram on the bottom. The top diagram
shows an association block FrictionAssociation relating Flanges. The internal structure of FrictionAssociation has a
part typed by Friction with two ports, each connected to a participant of the association. The lower diagram shows a
connector typed by the association block between the flange of a mass and the flange of a ground. The connector has a
connector property typed by FrictionAssociation.

Figure 2: Association block with internal structure and connector properties in SysML

9.2.3 SysML model after processing
Connectors typed by association blocks, including their connector properties, are replaced by the internal structure of the
association blocks. Figure 3 shows the content of Figure 2 after processing. The connector and its property fa in Figure 2
is replaced by the content of the association block FrictionAssociation (the connector and its property and association
block are removed). The flange of the mass and the flange of the ground replace the participant properties of the
association block and are connected to the property f of type Friction in the same way as in the association block. The
block definition diagram in Figure 2 is not changed.

m:Mass :Ground

«block»
Flange

«block»
FrictionAssociation

«connector»
fa:FrictionAssociation

«participant»
{end=surface1}

p1

«participant»
{end=surface2}

p2
f:Friction

surface1 surface2

:Flange :Flange

fl1 fl2

bdd Example

ibd SystemA

12 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 3: Association block with internal structure and connector properties in SysML

9.3 Non-simulation ports changed to parts

9.3.1 Purpose
SysML supports blocks typing ports that have other properties beside simulation flow properties, but simulation models
do not. These ports must be changed into parts before translation to simulation platforms per Clause 10.

9.3.2 SysML model before processing
Figure 4 shows a port of type Wheel, which has a property radius that is not a simulation flow property.

Figure 4: Association block with internal structure and connector properties in SysML

9.3.3 SysML model after processing
Ports typed by blocks that have other properties besides simulation flow properties (owned or inherited) are changed to
regular parts. Figure 5 changes the port typed by Wheel in Figure 4 to a part. The property is not changed in any other
way in this step, including connectors to it (external connectors to the property are addressed in later processing). The
block definition diagram in Figure 4 is not changed.

Figure 5: Association block with internal structure and connector properties in SysML

9.4 Separate blocks owning simulation flow properties, and typing parts
and ports

9.4.1 Purpose
SysML blocks can have multiple flow properties on part and port types, but simulation models have flows only on port
types, and only one per port for the correspondences in Clause 10. SysML blocks typing parts and ports can be the same
or share properties by generalization, but simulation models use separate types for parts and ports. SysML connectors can
link parts, but simulation models only link ports. Before translation to simulation platforms per Clause 10, SysML parts
must be typed by blocks that have no simulation flow properties (owned or inherited), while ports must be typed by
blocks owning exactly one simulation flow property and no others (owned or inherited), and connectors must only link
ports.

m:Mass :Ground
:Flange :Flange

f:Friction
fl1 fl2

ibd SystemA

:Wheel

: Vehicle

ibd TotalSystem bdd Example

«interfaceBlock»
AMomFlowElement

physical interactions
inout aMomF : FlowingAMom

«block»
Wheel

phs constants
radius : Length

:Wheel

: Vehicle

ibd TotalSystem

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 13

9.4.2 SysML model before processing
Figure 6 shows an example that will be used to illustrate the processing steps in Subclause 9.4.3. Block1 has two
simulation flow properties (sfp0 and sfp1), a PhSVariable (sv), and a port of type Block2 (p). Block2 has two simulation
flow properties (sfp2 and sfp3).

Figure 6: Association block with internal structure and connector properties in SysML

9.4.3 SysML model after processing
The model in Figure 6 is processed in six steps.

9.4.3.1 Move simulation flow properties to their own blocks

Simulation flow properties owned by blocks that also have non-simulation flow properties (owned or inherited) are
moved to a new block and a generalization is added between the original block to the new one. The same is done for
blocks that own multiple simulation flow properties and no other properties, except that one of the simulation flow
properties remains on the original block. Figure 7 shows how simulation flow properties are moved from the blocks in
Figure 6. The two simulation flow properties of Block1 (sfp0 and sfp1) are moved to separate blocks (Sfp0Type and
Sfp1Type), both generalizing Block1. In Block2, the first simulation flow property (sfp2) is left in the block, while the
second (sfp3) is moved to a new block (Sfp3Type) generalizing Block2.

Figure 7: Association block with internal structure and connector properties in SysML

9.4.3.2 Add ports for simulation flow properties inherited to blocks that have non-simulation flow
properties

Ports are added to blocks that have non-simulation flow properties (owned or inherited) for each simulation flow
property that is inherited directly from a block that owns it, such as those added in Subclause 9.4.3.1. The port type is the
block that owns the inherited simulation flow property. In Figure 7, Block1 has non-simulation flow properties, as well as
two simulation flow properties inherited directly from blocks that own them (sfp0 and sfp1, inherited from Sfp0Type and
Sfp1Type, respectively). Figure 8 adds two ports to Block1 (psfp0 and psfp1), typed by the two general blocks. Block2 in
Figure 7 is not changed, because it does not have non-simulation flow properties.

ports
p: Block2

bdd Example

«block»
Block1

phs variables
sv: Real

«block»
Block2

physical interactions
inout sfp2: FlowType2
inout sfp3: FlowType3

physical interactions
inout sfp0: FlowType0
inout sfp1: FlowType1

ports
p: Block2

bdd Example

«block»
Block1

phs variables
sv: Real

«block»
Sfp1Type

«block»
Sfp0Type

physical interactions
inout sfp1: FlowType1

physical interactions
inout sfp0: FlowType0

«block»
Sfp3Type

physical interactions
inout sfp3: FlowType3

«block»
Block2

physical interactions
inout sfp2: FlowType2

14 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 8: Port added to block that has non-simulation flow properties and inherits simulation flow properties in
Figure 7

9.4.3.3 Split up ports typed by blocks that have inherited simulation flow properties
Ports are added for each simulation flow property that is inherited to a block’s port types. The new ports are typed
by the block owning the inherited simulation flow property. In Figure 8, Block1 has a port typed by Block2, which
has a simulation flow property inherited from Sp3Type (sfp3, see Figure 7). Figure 9 adds a new port to Block1
(psfp3) typed by Sp3Type, because of that inherited property.

Figure 9: Port added alongside port typed by block with multiple simulation flow properties in Figure 8

9.4.3.4 Relink binding connectors that involve simulation flow properties moved to added ports

Binding connectors involving simulation flow properties that are moved to ports added in Subclauses 9.4.3.2 and 9.4.3.3
are relinked to their new locations. Specifically, after the processing in Subclause 9.4.3.1, binding connectors linked to,
or through property paths containing, a simulation flow property inherited to a block that has non-simulation flow
properties (owned or inherited) are relinked through the ports added in Subclause 9.4.3.2. Similarly, binding connectors
linked to, or through property paths containing, simulation flow properties on blocks typing ports with multiple
simulation flow properties are relinked through the ports added in Subclause 9.4.3.3. Figure 10 shows binding connectors
before processing linked through simulation flow properties inherited to Block1 (sfp0 and sfp1), and bindings connectors
linked through simulation flow properties of Block2 (p.sfp2 and p.sfp3). Figure 11 relinks these bindings through the
ports added in Subclauses 9.4.3.2 and 9.4.3.3 (psfp0.sfp0, psfp1.sfp1, and psfp3.sfp3).

ports
psfp0: Sfp0Type
psfp1: Sfp1Type
p: Block2

bdd Example

«block»
Block1

phs variables
sv: Real

«block»
Sfp1Type

«block»
Sfp0Type

physical interactions
inout sfp1: FlowType1

physical interactions
inout sfp0: FlowType0

ports
psfp0: Sfp0Type
psfp1: Sfp1Type
p: Block2
psfp3: Sfp3Type

bdd Example

«block»
Block1

phs variables
sv: Real

«block»
Sfp1Type

«block»
Sfp0Type

physical interactions
inout sfp1: FlowType1

physical interactions
inout sfp0: FlowType0

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 15

Figure 10: Bindings involving simulation flow properties before processing

Figure 11: Bindings in Figure 10 relinked through ports added in subclauses 9.4.3.2 and 9.4.3.3

9.4.3.5 Replace or add connectors between properties typed by blocks that have simulation flow
properties moved to added ports

Connectors to parts or ports typed by blocks that inherit simulation flow properties that are moved to ports added in
Subclauses 9.4.3.2 and 9.4.3.3 are replaced by connectors to their new locations. Specifically, after the processing in
Subclause 9.4.3.1, connectors to parts typed by blocks that inherit simulation flow properties are replaced by connectors
to the ports added for these simulation flow properties in Subclause 9.4.3.2. Connectors are added linking the ports added
for ports with multiple simulation flow properties in Subclause 9.4.3.3. In both cases, connectors are replaced or added
only if the other end will have a matching simulation flow property (see Subclause 7.2.4), otherwise the connectors are
deleted (this occurs if some of the simulation flow properties do not match before processing). Figure 12 shows two parts
typed by Block1 in Figure 6, before processing. A connector links the parts, and a second connector links their ports.
Figure 13 replaces the first connector by two connectors between the ports psfp0 and psfp1, respectively, added due to
the inherited simulation flow properties fsp0 and fsp1, respectively. The figure also adds a connector between the ports
added for the simulation flow property psfp3 inherited to Block2.

Figure 12: Connectors between parts and ports from Figure 6 before processing

Figure 13: Connectors in Figure 12 replaced or added between ports added in Subclauses 9.4.3.2 and 9.4.3.3

9.4.3.6 Removing generalizations to blocks owning simulation flow properties

Now that all the port types needed for simulation have been created, some generalizations to blocks dedicated to
simulation flow properties need be removed.

ptc:Block1Constraint

sfp0.a

sfp1.a

a0

a1

p.sfp2.a

p.sfp3.a

a2

a3

par Block1

«equal»

«equal»

«equal»

«equal»

ptc:Block1Constraint

psfp0.sfp0.a

psfp1.sfp1.a

a0

a1

p.sfp2.a

psfp3.sfp3.a

a2

a3

par Block1

«equal»

«equal»

«equal»

«equal»

: Block1 : Block1p p

ibd Example

: Block1 : Block1

psfp0 psfp0
psp1 psfp1
p p
psfp3 psfp3

ibd Example

16 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Generalizations to blocks that own simulation flow properties are removed unless the inherited properties are redefined in
the special block. Figure 14 removes the generalizations in Figure 9 and Figure 7.

Figure 14: Generalizations in Figure 9 and Figure 7 removed

9.5 Reduce nesting of connector ends

9.5.1 Purpose
SysML supports connectors that link ports reached from the block owning the connector through a chain of other
properties (property path), but some simulation models can only link ports reached through one property. These SysML
connectors must be split up to link ports reached through only one property before translation to simulation platforms per
Clause 10.

9.5.2 SysML model before processing
Figure 15 shows a connector linking a port (z) reached through a chain of two other properties (x and y). The length of
the nested connector end property path at that end is 2.

Figure 15: Connector linking port reached through two other properties

9.5.3 SysML model after processing
Connectors that link ports reached from the owner of the connector through a chain of other properties (SysML nested
connector end property paths longer than 1) are relinked to an added intermediate port, and a connector added from that
port (reducing the property path length to 1). Figure 16 adds a proxy port to x’s type with the same type as z, and the
connector in Figure 15 is relinked to the added port. A binding connector is added in x’s type between the new port and
the original end of the connector. This procedure is repeated until connectors only link ports reached from the block
owning the connector through one property.

Figure 16: Connector in Figure 15 split by adding a proxy port and another connector

bdd Example

ports
psfp0: Sfp0Type
psfp1: Sfp1Type
p: Block2
psfp3: Sfp3Type

«block»
Block1

phs variables
sv: Real

«block»
Sfp1Type

«block»
Sfp0Type

physical interactions
inout sfp1: FlowType1

physical interactions
inout sfp0: FlowType0

«block»
Block2

«block»
Sfp3Type

physical interactions
inout sfp3: FlowType3

physical interactions
inout sfp2: FlowType2

x : X

y:Y

a : A

z:Z

z:Z

ibd Example

x: X

y:Y

a: A

z:Z

z:Zz:Z

ibd Example

«equal»
«proxy»

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 17

10. Translating Between SysML and Simulation Platforms
10.1 Introduction
This clause shows how to translate between SysML models extended as in Clause 7 (hereafter referred to as SysML) and
models in multiple simulation platforms. Translations are given as correspondences between patterns of using SysML
and simulation platforms, enabling translation in either direction. However:

• Many SysML capabilities are not supported on simulation platforms (some of these are supported by
transforming SysML models before translation, see Clause 9).

• Simulation platforms have more specific purposes than SysML, resulting in loss of information when translating
from SysML to simulation platforms.

The selected platforms are Modelica and Simulink, including extensions of Simulink, such as Simscape. The modeling
concepts covered by these translations are available in both simulation languages.

• Modelica is a textual simulation language for physical interaction and signal flow modeling supported by
various simulation tools, such as OpenModelica, Dymola®, and MapleSim® that add graphical interfaces and
numerical solvers. Modelica is defined by a grammar but does not have a metamodel. As a result, the terms used
to describe Modelica models correspond to keywords defined in its grammar.

• Simulink is a graphical simulation tool for signal flow modeling (unless extended, see below). Its modeling
concepts can be inferred from the simulation files generated from graphical models (no metamodel or textual
language has been released for Simulink). Two file formats are currently used: the older punctuated textual
format, or the newer XML format. The concepts used in these two formats are the same, but the structure and
the way values are represented differ. Simulink supports S-functions to represent system behaviors as
MATLAB files (generally behavior in state-space form). S-functions always follow the same structure and use
the same concepts.

Simulink includes extensions for other aspects of systems modeling:

• Simscape is the extension of Simulink for physical interaction modeling. Physical components specifications are
persisted in a file that must conform to the Simscape grammar. Simscape concepts are named in the grammar.

• Stateflow® is the Simulink extension for state machines. It uses additional concepts represented along with
Simulink elements.

Subclauses 10.2 through 10.12 are divided into these parts:

• Purpose: Explains the particular kinds of information in system or simulation modeling covered by the
subclause.

• SysML modeling: Describes how the above information is modeled in SysML, extended as in Clause 7 when
necessary, along with a small example.

• Simulation platform modeling: Describes the correspondence between the portions of SysML used as above and
modeling patterns in simulation platforms, along with simulation models corresponding to the SysML example
above.

• Summary: Summarizes the correspondences between SysML and simulation platforms in a table.

Subclause 10.13 covers translations for the expression language in Clause 8.

10.2 Root element

10.2.1 Purpose
Systems and simulation models are organized in a structured way starting with root elements.

10.2.2 SysML modeling
SysML root elements are packages, which are containers for model elements. Figure 17 shows a package P owning a
block B.

18 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 17: Package and model in SysML

10.2.3 Modelica modeling
SysML packages correspond to Modelica models defined as the root element of a file.

The following Modelica code corresponds to Figure 17. It has a model P owning a model B (see Subclause 10.3.3).

10.2.4 Simulink modeling
A SysML package corresponds to a Simulink library paired with a model, defined as root elements of separate files.
The model is executed during simulation, referencing blocks defined in the library (see Subclause 10.3.4 about
defining and referencing Simulink blocks). Only Simulink blocks defined in libraries can be referenced (reused),
either by a library or a model. Models link together references to library blocks, corresponding to SysML connectors
between parts (see Subclause 10.8.4).

The following Simulink codes in separate files correspond to Figure 17. The first has a library P and the second a
model M (the names only appear in the file names). Both include a system, which the library uses to define a
reusable block B.

10.2.5 Simscape modeling
SysML packages correspond to Simscape libraries compiled from directories of files with code corresponding to the
elements in the package. Simscape files each contain a single element (see Subclauses 10.2.5 and 10.7.10) and are stored
in directories named for the Simulink library that will contain the elements after the directory is compiled (the library is
not specified in the files, there is no Simscape language element for it corresponding to SysML packages).

The package P in Figure 17 corresponds to a directory with “P” in its name. The directory has a file containing Simscape
code corresponding to block B (see Subclause 10.3.5).

P

pkg Example

«block»
B

model P
 model B
 end B;
end P;

<Library>
 <System>
 <Block Name="B">
 </Block>
 </System>
</Library>

<Model>
 <System>
 </System>
</Model>

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 19

10.2.6 Summary
SysML Modelica Simulink Simscape

Package Model Library and Model, each
containing a system

Library (compiled from directory of
element files)

Element owned by
package

Element in model Element in system Element in library (compiled from
element file)

10.3 Blocks and properties

10.3.1 Purpose
Systems and simulation models contain classes describing systems and components that share the same features. Systems
and components function (play roles) within others, which are described in models as the usage of one class by another.
For example, a class for cars might have a power source reusing a class for engines.

10.3.2 SysML modeling
Modeling in SysML is based on blocks, which are classes of systems or components, describing objects that share the
same features. These features can be structural or behavioral.

Structural features of blocks are called properties, some of which are for values, such as numbers or strings of characters,
and some of which are usages of other blocks. This difference is indicated by typing a property by a data type or by a
block. Some system properties typed by blocks are parts, corresponding to usages of those block within a system or
component.

Figure 18 shows a SysML block A that contain one part b1 of type B. B is also a SysML block.

Figure 18: Block and part in SysML

10.3.3 Modelica modeling
Modelica is a human-readable textual language for physical interaction and signal flow modeling. It is class-oriented, like
SysML, but with different terminology. Modelica includes various kinds of classes, four of which are used in this
specification: models (corresponding to SysML blocks that do not type ports, see below, and to SysML packages, see
Subclause 10.3.3), connectors (for physical interaction, see Subclause 10.7.8), types (for SysML value types, see
Subclause 10.11.3) and blocks (for SysML state machines, see Subclause 10.12.3). SysML properties correspond to
Modelica components.

The following Modelica example corresponds to the SysML block A in Figure 18. It has a Modelica model A
corresponding to the SysML block A, with a component b1 typed by Modelica model B, corresponding to the SysML
property b1 typed by block B.

It has a model A corresponding to the SysML block A, with a component b1 typed by Modelica model B, corresponding
to the SysML property b1 typed by block B.

«block»
A

parts
b1: B

«block»
B

bdd Example

model A
 B b1;
end A;
model B
end B

20 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

10.3.4 Simulink modeling
Simulink is a graphical language for signal flow modeling that has XML-based file format and an extension for
physical interaction modeling (see Subclause 10.2.5). It is class-oriented to some extent, though not as much as the
other simulation platforms used in this specification. Simulink has an abstraction called blocks that has many
specializations, five of which are used in this specification: subsystems (corresponding to SysML blocks, see below),
references (corresponding to SysML parts, see below), inports and outports (corresponding to SysML ports with in
and out flow properties, see Subclause 10.7.5), and S-functions (corresponding to SysML constraint blocks, see
Subclause 10.9.5). When used as a container, structural features are contained in a Simulink system. Simulink
blocks are identified by an integer (SID) that is unique within its model or library. A SysML block and its parts
correspond a Simulink block with a system containing blocks referencing other blocks (see Subclauses 10.4.4 and
10.5.4 about inherited features).

SysML blocks that do not have constraint properties correspond to Simulink subsystem blocks. SysML blocks with
constraint properties correspond to either Simulink subsystem blocks (when Simscape is not included), or to Simscape
components (when Simscape is included).

The following example shows Simulink code corresponding to Figure 18. It has a Simulink subsystem block A
corresponding to the SysML block A, with a system that contains a reference to the Simulink block B from the
same library Example (see Subclause 10.2.4 about libraries).

10.3.5 Simscape modeling
SysML parts correspond to Simscape member components (see Subclauses 10.4.5 and 10.5.5 about inherited features).

The following example shows Simscape code corresponding to blocks A and B in Figure 18. It has a component A
containing a member component b1 of type B from the same library Example (see Subclause 10.2.4 about libraries).

10.3.6 Simulink/Simscape modeling
Simscape is an extension of Simulink for physical interaction modeling. SysML blocks with constraint properties or
binding connectors correspond to Simscape components.

The following Simulink code corresponds to block A in Figure 18. It has a subsystem block A, with a system that
contains a reference b to the Simscape component B, (defined in Subclause 10.3.5), from the library Example (see
Subclause 10.2.4 about libraries).

<Block BlockType="SubSystem" Name="A" SID="1">
 <System>
 <Block BlockType="Reference" Name="b1" SID="2">
 <P Name="Ports">[0,0]</P>
 <P Name="SourceBlock">Example/B</P>
 </Block>
</System>
</Block>
<Block BlockType="SubSystem" Name="B" SID="3">
 <System>
 </System>
</Block>

component A
 components
 b1=Example.B;
 end
end

component B
end

<Block BlockType="SubSystem" Name="A" SID="1">
 <System>
 <Block BlockType="Reference" Name="b" SID="2">
 <P Name="SourceBlock">Example/B</P>
 <P Name="SourceType">B</P>
 <P Name="SourceFile">Example.B</P>
 <P Name="ComponentPath">Example.B</P>
 <P Name="ClassName">B</P>
 </Block>
 </System>
</Block>

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 21

10.3.7 Summary
SysML Modelica Simulink Simscape

Block with no constraint
properties and no binding
connector

Model SubSystem block with
system

N/A

Block with constraint
properties or binding
connectors

Model SubSystem block with
system

Component

Block name Model name SubSystem name Component name

Property typed by a block,
owned by block

Component owned by
model

Reference block, owned by
system

Member component

Property name Component name Reference block name Member component name

Property type Component type Reference block source Member component type

10.4 Generalization

10.4.1 Purpose
Generalization simplifies systems and simulation modeling by enabling features of one class to be reused by (inherited
to) another class.

10.4.2 SysML modeling
SysML provides a generalization relationship to indicate that one block reuses the features of another. A block
generalized by another block will inherit all the properties of that other block. SysML supports multiple generalizations
of the same block.

Figure 19 shows a block A with a property c1 of type C, and a block B that is a specialization of that block A.

Figure 19: Generalization in SysML

10.4.3 Modelica modeling
SysML generalization corresponds to Modelica class extension, including multiple extensions of the same class.

The following Modelica code corresponds to Figure 19. It has a model A with a component c1 of type C, and a model B
that extends A. As a result, B inherits the component c1 from A.

«block»
C

«block»
A

parts
c1: C

«block»
B

bdd Example

model A
 C c1;
end A;

model B
 extends A;
end B;

22 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

10.4.4 Simulink modeling
Simulink does not support generalization (Simulink blocks cannot inherit features from other blocks). Inherited
features that are not redefined in SysML (see Subclause 10.5) correspond to newly defined (uninherited)
features in Simulink blocks.

The following Simulink code corresponds to Figure 19. It has blocks A and B, each with a system containing a
block c1 that references block C. There is no generalization between A and B.

10.4.5 Simscape modeling
Simscape supports single generalization of components. SysML generalization corresponds to Simscape
superclassing when the special SysML block has only one generalization and does not redefine any properties (see
Subclause 10.5), otherwise, SysML generalization has no correspondence in Simscape, and inherited properties in SysML
that are not redefined correspond to new (uninherited) component members in Simscape.

The following Simscape code corresponds to Figure 19. It has a component A with a member component c1 typed
by C, and the component B generalized by A.

10.4.6 Summary
SysML Modelica Simulink Simscape

Generalization Extend clause N/A Subclassing, when the special SysML
block has only one generalization and
does not redefine properties,
otherwise, N/A.

Inherited features Inherited components Newly defined (uninherited)
features

Inherited member components when
the special SysML block has only one
generalization and does not redefine
properties, otherwise, new
(uninherited) member components.

10.5 Property redefinition

10.5.1 Purpose
Classes that inherit features in systems and simulation models (see Subclause 10.4) can alter those features. For
example, they can change the type of an inherited feature to a specialization of that type.

<Block BlockType="SubSystem" Name="A" SID="1">
 <System>
 <Block BlockType="Reference" Name="c1" SID="2"> <P Name="Ports">[0,0]</P>
 <P Name="SourceBlock">Example/C</P>
 </Block>
 </System>
</Block>
<Block BlockType="SubSystem" Name="B" SID="3">
 <System>
 <Block BlockType="Reference" Name="c1" SID="4">
 <P Name="Ports">[0,0]</P>
 <P Name="SourceBlock">Example/C</P>
 </Block>
 </System>
</Block>

component A
 nodes
 c1 = Example.C;
 end
end
component B < Example.A
end

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 23

10.5.2 SysML modeling
In SysML, blocks can alter inherited properties by redefinition. Figure 20 shows a block A with a property c1 of type C,
and a block B specializing block A. B has a property c1 that redefines C::c1 to be typed by D, a specialization of C.

Figure 20: Property redefinition in SysML

10.5.3 Modelica modeling
Modelica supports alteration of inherited properties as SysML does, except that the property name cannot be changed.
SysML redefined and redefining properties correspond to Modelica replaceable and redeclare components, respectively.

The following Modelica code corresponds to Figure 20. It has a model A with component c1 indicated as replaceable,
and a model B extending A with a component of the same name redeclaring it to alter the type (compare to Subclause
10.4.3).

10.5.4 Simulink modeling
Simulink does not support redefinition because it does not support generalization (see Subclause 10.4.4). The effect of
SysML redefinition can be achieved by using Simulink correspondences for properties (see Subclause 10.2.4) that
redefine inherited ones (see Subclause 10.4.4 about inherited properties that are not redefined).

The following Simulink code corresponds to Figure 20. It has block A and B, each with a system containing a block c1,
one referencing block C and the other block D (compare to Subclause 10.4.4).

«block»
C

«block»
D

«block»
A

parts
c1: C

«block»
B

bdd Example

parts
c1: D {redefines c1}

model A
 replaceable C c1;
end A;

model B
 extends A;
 redeclare D c1;
end B;

<Block BlockType="SubSystem" Name="A" SID="1">
 <System>
 <Block BlockType="Reference" Name="c1" SID="2">
 <P Name="Ports">[0,0]</P>
 <P Name="SourceBlock">Example/C</P>
 </Block>
 </System>
</Block>

<Block BlockType="SubSystem" Name="B" SID="3">
 <System>
 <Block BlockType="Reference" Name="c1" SID="4">
 <P Name="Ports">[0,0]</P>
 <P Name="SourceBlock">Example/D</P>
 </Block>
 </System>
</Block>

24 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

10.5.5 Simscape modeling
Simscape supports generalization (single, see Subclause 10.4.5), but not redefinition. The effect of SysML
redefinition can be achieved by using Simscape correspondences for multiple generalization or inherited SysML properties
that are redefined (see Subclause 10.4.5) and including correspondences for properties (see Subclause 10.2.5) that
redefine inherited properties.

The following Simscape code corresponds to Figure 20. It has component A and B, each with a member component
c1, one typed by component C and the other by D (compare to Subclause 10.4.5).

10.5.6 Summary
SysML Modelica Simulink Simscape

Redefined property Replaceable component N/A N/A

Property that redefines
inherited property of the
same name

Redeclare component Reference, inport, outport,
or connection block

Member component, variable,
parameter, input, output, or node

10.6 PhSVariables and PhSConstants

10.6.1 Purpose
Simulation modeling specifies how numeric and boolean variable values can change in more detail than system
models. Simulation modeling distinguishes numeric variables with values that can change continuously (possible
infinitesimally) over time from those that always change discretely (finitely), possibly only at regular intervals.
It also identifies variables with values that can only change between simulations (constants), rather than during
simulation.

10.6.2 SysML modeling
The simulation extension in Subclause 7.2 distinguishes properties as described above. Continuous SysML
properties are stereotyped by PhSVariable, with isContinuous=true. Discrete properties are stereotyped by PhSVariable,
with isContinuous=false. Constant properties are stereotyped by PhSConstant.

Figure 21: PhSVariable and PhSConstant in SysML

Figure 21 shows a block A with three properties: one continuous PhSVariable v1, one discrete PhSVariable v2, and one
PhSConstant v3.

Note: SysML notation for stereotype properties can omit a property if the default value is used. For example,
isContinuous is true by default, and can be omitted from the notation for variables that are continuous.

bdd Example

«block»
A

attributes
«phsVariable» {isContinuous=true} v1 : Real
«phsVariable» {isContinuous=false} v2 : Real
«phsConstant» v3 : Real

component A
 components
 c1 = Example.C;
 end
end

component B
 components
 c1 = Example.D;
 end
end

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 25

10.6.3 Modelica modeling
The variability of Modelica properties are of four kinds: continuous, discrete, parameter, and constant. By default,
Modelica properties are continuous. PhSVariables with isContinuous=true correspond to continuous components,
PhSVariables with isContinuous=false correspond to discrete components, and PhSConstants correspond to parameter
variables.

The following Modelica code corresponds to Figure 21. It has a model A, with three properties v1, v2 and v3 of type
Real, that are continuous, discrete, and parameter, respectively.

10.6.4 Simulink modeling
See Subclause 10.8 for Simulink corresponding to SysML value properties in the context of SysML constraint
blocks and binding connectors.

10.6.5 Simscape modeling
Data properties in Simscape can either be (continuous) variables or (constant) parameters. Discrete variables are
not supported. PhSVariables with isContinuous=true correspond to Simscape variables, and PhSConstants correspond to
parameters.

The following Simscape code corresponds to Figure 21. It has a component A with one variable v1, and one
parameter v3. The variable v1 is continuous.

10.6.6 Summary
SysML Modelica Simulink Simscape

Property stereotyped by PhSVariable, with
isContinuous=true

Continuous component N/A Variable

Property stereotyped by PhSVariable, with
isContinuous=false

Discrete component N/A N/A

Property stereotyped by PhSConstant Parameter component N/A Parameter

Property type Component type N/A Member type

10.7 Ports and Flow Properties

10.7.1 Purpose
Systems and simulation modeling describe interactions between system components. These interactions include
exchanges of physical substances, signals, or both. System and simulation components include structural features used as
connection points to other components. System and simulation models include connections between these points when
the components are used. System models specify the kind of things exchanged between connection points, while
simulation models give characteristics of these exchanges, in particular the rate of flow and potential to flow.

10.7.2 SysML modeling
In SysML, interactions between parts are modeled using connectors. Connections are often between ports of these parts.
Ports are properties used as connection points to other blocks. This correspondence assumes connectors are only between

model A
 Real v1;
 discrete Real v2;
 parameter Real v3 = “...”;
end A

component A
 variables
 v1 = 1;
 end
 parameters
 v3 = 10;
 end
end

26 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

ports (see Subclause 9.4.2 about connectors between parts). Ports describe flows through them using flow properties,
which specify the kind of things that flow by their type, as well as the direction of flow (in/out/inout).

The extension for simulation in Subclause 7.2 adds information to flow properties needed for simulation, in particular,
flow rates and potentials to flow (conserved and non-conserved PhSVariables, respectively). Physical interaction uses
both of these, while signal flow has semantics equivalent to potential to flow. PhSVariables for physical interactions are
on blocks specialized from ConservedQuantityKind (see Subclause 11.2.2) typing flow properties. PhSVariables for
signals are flow properties (a property with two stereotypes applied) that have a numeric or boolean type specifying the
kind of signal.

Subclauses 10.7.3 through 10.7.6 cover signal flow modeling in SysML and simulation platforms, while Subclauses
10.7.7 through 10.7.10 cover physical interaction modeling.

10.7.3 SysML modeling, signal flow

When modeling signal flow, flow properties on port types must be:

• Stereotyped by a non-conserved PhSVariable.
• Typed by Real, Integer, Boolean, or one of their specializations.
• Either in or out.

Figure 22 shows an example signal flow application. The block Spring has two ports u and y, of type
RealInSignalElement and RealOutSignalElement from the signal flow library (see Subclause 11.2.1), respectively.
RealInSignalElement has an in flow property rsig, while RealOutSignalElement has the same property with an out
direction.

Figure 22: Ports for signal flow in SysML

10.7.4 Modelica modeling, signal flow
SysML ports with a type containing a flow property stereotyped by a non-conserved PhSVariable and typed by
Real, Integer, or Boolean, or one of their specializations, correspond to Modelica components typed by the same
data type. SysML flow properties have no corresponding constructs in Modelica, but the Modelica component
corresponding to the SysML port has a direction given by the flow property.

The following Modelica code corresponds to Figure 22. It has a model Spring, with two components u and y of
type Real and of direction respectively in and out.

10.7.5 Simulink modeling, signal flow
Simulink has several kinds of ports, three of which are used in this specification: inports, outports (for signal flow,
corresponding to SysML ports typed by blocks with in or out flow properties that have PhSVariable applied,
respectively, see below), and connection ports (for physical interaction, see Subclause 10.7.9). Simulink block
definitions contain an array giving the number of each kind of port, with connection ports distinguished by whether they
appear on the left or right of their blocks in Simulink diagrams. The number of inports and outports are given at the 1st
and 2nd positions from the left, respectively, while the number of left and right connection ports are at the 6th and 7th
positions, respectively. Trailing series of zeros on the right can be omitted.

bdd Example
«interfaceBlock»

SysPhSLibrary::
RealInSignalElement

signal flows
in rSig : Real

«interfaceBlock»
SysPhSLibrary::

RealOutSignalElement
signal flows

out rSig : Real

«block»
Spring

ports
u: RealSignalInElement
y: RealSignalOutElement

model Spring
 in Real u;
 out Real y;
end Spring;

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 27

SysML ports with a type containing a flow property stereotyped by a non-conserved PhSVariable and typed by Real,
Integer, or Boolean, or one of their specializations, correspond to Simulink inports or outports, depending on the
direction of the flow property.

The following Simulink code corresponds to Figure 22. It has a block Spring, with one inport u and one outport y.
The Ports property of the block gives the port array, showing the number of inports and outports. The Port property
of the inport or outport specifies the index of that inport or outport, which must be separately sequential integers for each
kind of port, starting with 1.

10.7.6 Simscape modeling, signal flow
SysML ports with a type containing a flow property stereotyped by a non-conserved PhSVariable and typed by a
Real, Integer, or Boolean, or one of their specializations, correspond to Simscape inputs or outputs, depending on
the direction of the flow property.

The following Simscape code corresponds to Figure 22. It has a component Spring, with one input u and one output
y, specifying that they should appear on the left and right sides of blocks referencing the spring in Simulink
diagrams, respectively (see Subclauses 10.8.5 and 10.8.6). Left or right positioning does not restrict how
components can be connected.

10.7.7 SysML modeling, physical interaction
When modeling physical interaction, flow properties of port types must be inout. This flow property must be typed
by a block (indirectly) specializing ConservedQuantityKind (see Subclause 11.2.2), which contains conserved and
non-conserved PhSVariables (the same number of each).

Figure 7 shows an example physical interaction application. The block Spring has two ports p1 and p2, of type
Flange. Flange has an inout flow property lMo typed by FlowingLMom from the physical interaction library (see Subclause
11.2.2), which has one conserved PhSVariable f and one non-conserved PhSVariable lV.

Figure 23: Ports for physical interaction in SysML

10.7.8 Modelica modeling, physical interaction
SysML ports with a type containing a flow property typed by a block (indirectly) specializing
ConservedQuantityKind (see Subclause 11.2.2) correspond to Modelica components that have no direction

«block»
Spring

ports
p1: Flange
p2: Flange

phs variables
{isConserved} f : Force
lV : Velocity

«block»
SysPhSLibrary::

FlowingLMom
«block»
Flange

flow properties
inout lMo : FlowingLMom

bdd Example

<Block BlockType="SubSystem" Name="Spring" SID="1">
 <P Name="Ports">[1,1]</P>
 <System>
 <Block BlockType="Inport" Name="u" SID="2">
 <P Name="Port">1</P>
 </Block>
 <Block BlockType="Outport" Name="y" SID="3">
 <P Name="Port">1</P>
 </Block>
 </System>
</Block>

component Spring
inputs
 u = {0, ‘unit’}; % :left
end

outputs
 y = {0, ‘unit’}; % :right
end
end

28 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

specified, and SysML port types correspond to Modelica connectors. SysML flow properties have no corresponding
constructs in Modelica, but PhSVariables on conserved quantity kind blocks correspond to Modelica components on
connectors. PhSVariables on conserved quantity kind blocks correspond to Modelica components. Conserved
PhSVariables correspond to Modelica flow components, while non-conserved PhSVariables correspond to regular Modelica
components.

The following Modelica code corresponds to Figure 23. It has a model Spring, with two components p1 and p2 of
type Flange. Flange is a connector that has one flow component f, and one regular component lV.

10.7.9 Simulink modeling, physical interaction
Simulink supports connection ports for representing bidirectional flows, but they must be linked to Simscape nodes
(see Subclauses 10.7.10 and 10.8.6).

The following Simulink code corresponds to Figure 11. It has a subsystem block Spring with connection ports p1
and p2. Connection ports must be linked to nodes on Simscape components defined in the subsystem block (see Subclause
10.7.5 about left and right annotation and port arrays).

10.7.10 Simscape modeling, physical interaction
Simscape adds support for physical interaction ports to Simulink, called nodes. Nodes are typed by a domain,
which corresponds to a SysML port type with an inout flow property typed by a block (indirectly) specializing
ConservedQuantityKind (see Subclause 11.2.2). Conserved PhSVariables on these blocks correspond to Simscape
balancing variables in domains.

The following Simscape code corresponds to Figure 23. It has a component Spring, with two nodes p1 and p2 of
type Flange (Simscape nodes use left and right annotations in the same way inputs and outputs do, see Subclause 10.7.6).
Flange is a domain from the package CurrentLibrary, with two variables: one non-balancing variable lV, and one
balancing variable f.

model Spring
 Flange p1;
 Flange p2;
end Spring;
connector Flange
 flow Real f;
 Real lV;
end Flange;

<Block BlockType="SubSystem" Name="Spring" SID="3">
 <P Name="Ports">[0, 0, 0, 0, 0, 1, 1]</P>
 <System>
 <Block BlockType="PMIOPort" Name="p1" SID="1">
 <P Name="Port">1</P>
 <P Name="Side">Left</P>
 </Block>
 <Block BlockType="PMIOPort" Name="p2" SID="2">
 <P Name="Port">2</P>
 <P Name="Side">Right</P>
 </Block>
</System>
</Block>

component Spring
 nodes
 p1 = CurrentLibrary.Flange; % :left
 p2 = CurrentLibrary.Flange; % :right
 end
end

domain Flange
 variables
 lV = {0, 'm/s'};
 end
 variables(Balancing=true)
 f = {0, 'N'};
 end
end

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 29

10.7.11 Summary
SysML Modelica Simulink Simscape

Port typed by block with an in flow property
stereotyped by a non-conserved PhSVariable
and typed by Real, Integer, Boolean or one of
their specializations (signal flow)

Component typed by an
equivalent data type

Inport Input variable

Port typed by block with an out flow property
stereotyped by a non-conserved PhSVariable
and typed by Real, Integer, Boolean or one of
their specializations (signal flow)

Component typed by an
equivalent data type

Outport Output variable

Port typed by block with an inout flow
property typed by block (indirectly)
specializing ConservedQuantityKind
(physical interaction)

Component typed by
connector

Connection port Node typed by
domain

Block (indirectly) specializing
ConservedQuantityKind (physical
interaction)

Connector N/A Domain

PhSVariables on blocks (indirectly)
specializing ConservedQuantityKind
(physical interaction)

Components of connector N/A Variables of domain

10.8 Connectors

10.8.1 Purpose
A connection between two connection points enables exchange of physical substances or signals between these parts.

10.8.2 SysML modeling

In SysML, connectors are used to link two ports. These connections exist only in the context of the block that owns
the connector, and other blocks it generalizes (connectors inherit).

Figure 24 shows an example of SysML connectors. It has a block Example with two parts s1 and s2, of types
SpringA and SpringB , respectively, defined similarly to Spring in Figure 11, Subclause 10.7.7. The blocks SpringA
and SpringB have two ports, p1 and p2 of type Flange, as defined in Figure 23. The figure shows a connector
between the port p2 of s1, and the port p1 of s2.

Figure 24: Connectors in SysML

10.8.3 Modelica modeling
SysML connectors correspond to Modelica connect equations, which link components typed by Modelica
connectors. This depends on the correspondence between SysML port types and Modelica connectors (see
Subclause 10.7.8).

The following Modelica code corresponds to Figure 24. It has a model Example with two components s1 and s2 of types
SpringA and SpringB, respectively. The models SpringA and SpringB have two components p1 and p2 of type Flange,
defined similarly to Spring in Subclause 10.7.8. Model contains a connect equation linking component p2 of s1 to
component p1 of s2.

s1:SpringA

s2:SpringB

p2:Flange

p1:Flange

ibd Example

30 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

10.8.4 Simulink modeling, between blocks with no constraints
SysML connectors correspond to Simulink lines when:

• Simscape is not used with Simulink.
• Simscape is used with Simulink and the SysML connectors are owned by a block with no constraints involving

PhSVariables and that link ports on blocks with no constraints involving PhSVariables, such as those in Subclause
11.3, SysML connectors correspond to Simulink lines (see Subclause 10.8.5 and 10.8.6 for other cases when
Simscape is used with Simulink).

Simulink lines are directed from outports to inports.

The following Simulink code corresponds to Figure 24, assuming SpringA and SpringB do not have constraints
involving PhSVariables. It has a subsystem block Example with two blocks s1 and s2 referring to the blocks SpringA
and SpringB, respectively, and having one inport and one outport each, defined similarly to Spring in Subclause 10.7.5.
A line is defined between the outport port of s1 (p2) and the inport of s2 (p1). Lines identify their end ports by the
identifier of the block defining the port, followed by “#” and the kind of port (“in” and “out” for inports and outports,
respectively, as shown below, or “lconn” and “rconn” for left and right connection ports, respectively, see Subclause
10.7.5), followed by a colon and the index of the port among those of that kind in the defining block (ports are all
ordered).

10.8.5 Simulink modeling, between blocks with constraints
When Simscape is used with Simulink, SysML connectors that are owned by a block with no constraints involving
PhSVariables and that link ports on blocks with constraints involving PhSVariables (see Subclause 10.9) correspond to a
type of Simulink line called connections.

The following Simulink code correspond to Figure 24, assuming SpringA and SpringB have constraints involving
PhSVariables. It has a subsystem block Example with two blocks s1 and s2 referring to Simscape components SpringA
and SpringB, respectively, defined similarly to Spring in Subclause 10.7.10. The springs have one left port (p1) and one
right port (p2) each, linked by a line of type “Connection” (see Subclause 10.8.4 about defining the ends of lines).

model Example
 SpringA s1;
 SpringB s2;
equation
 connect(s1.p2, s2.p1);
end Example;

<Block BlockType="SubSystem" Name="Example" SID="1">
 <P Name="Ports">[0,0]</P>
 <System>
 <Block BlockType="Reference" Name="s1" SID="2">
 <P Name="Ports">[1,1]</P>
 <P Name="SourceBlock">Library/SpringA</P>
 </Block>
 <Block BlockType="Reference" Name="s2" SID="3">
 <P Name="Ports">[1,1]</P>
 <P Name="SourceBlock">Library/SpringB</P>
 </Block>
 <Line>
 <P Name="Src">1#out:1</P>
 <P Name="Dst">2#in:1</P>
 </Line>
 </System>
</Block>

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 31

10.8.6 Simulink modeling, between blocks that have constraints and blocks that
do not
When Simscape is used with Simulink, SysML connectors that are owned by a block with no constraints involving
PhSVariables and that link ports of a block with constraints involving PhSVariables (see Subclause 10.9) to ports of
other blocks without constraints involving PhSVariables, such as those in Subclause 11.3, or vice versa, it is
necessary to use an additional block between them to convert a regular Simulink signal into a Simscape signal, or
vice versa. Specifically, a Simulink connection links a block with constraints (through ports) to or from the converter
block, while a Simulink line connects the converter block to or from a block with no constraints.

The following Simulink code connects a Simulink block and a Simscape component, corresponding to Figure 24,
assuming SpringA does not have constraints involving PhSVariables, while SpringB does. The code has a subsystem
block Example with a block s1 referring to Simulink block SpringA (defined similarly to Spring in Subclause
10.7.5), a block tr1 converting regular signals to physical signals, a block s2 referring to Simscape component
SpringB (defined similarly to Spring in Subclause 10.7.10), a block tr2 converting physical signals to regular
signals, and a block s3 also referring to Simulink block SpringA. Lines of type Connection link s1, tr1, s2, tr2, and
s3.

<Block BlockType="SubSystem" Name="Example" SID="1">
 <P Name="Ports">[0,0]</P>
 <System>
 <Block BlockType="Reference" Name="s1" SID="2">
 <P Name="Ports">[0,0,0,0,0,1,1]</P>
 <P Name="SourceBlock">Library/SpringA</P>
 <P Name="SourceType">SpringA</P>
 <P Name="SourceFile">Library.SpringA</P>
 <P Name="ComponentPath">Library.SpringA</P>
 <P Name="ClassName">SpringA</P>
 </Block>
 <Block BlockType="Reference" Name="s2" SID="3">
 <P Name="Ports">[0,0,0,0,0,1,1]</P>
 <P Name="SourceBlock">Library/SpringB</P>
 <P Name="SourceType">SpringB</P>
 <P Name="SourceFile">Library.SpringB</P>
 <P Name="ComponentPath">Library.SpringB</P>
 <P Name="ClassName">SpringB</P>
 </Block>
 <Line LineType="Connection">
 <P Name="Src">1#rconn:1</P>
 <P Name="Dst">2#lconn:1</P>
 </Line>
 </System>
</Block>

32 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

10.8.7 Simscape modeling
When Simscape is used with Simulink, SysML connectors owned by a block with constraints involving PhSVariables
correspond to Simscape connections.

The following Simscape code corresponds to Figure 24. It has a block Example with two components s1 and s2 of type
Spring A and SpringB, defined similarly to Spring in Subclause 10.7.10, and a connection between s1.p2 and s2.p1.

<Block BlockType="SubSystem" Name="Example" SID="1">
 <P Name="Ports">[0,0]</P>
 <System>
 <Block BlockType="Reference" Name="s1" SID="1">
 <P Name="Ports">[1,1]</P>
 <P Name="SourceBlock">Library/SpringA</P>
 </Block>
 <Block BlockType="Reference" Name="tr1" SID="2">
 <P Name="Ports">[1, 0, 0, 0, 0, 0, 1]</P>
 <P Name="SourceBlock">nesl_utility/Simulink-PS
Converter</P>
 <P Name="SourceType">Simulink-PS
Converter</P>
 </Block>
 <Block BlockType="Reference" Name="s2" SID="3">
 <P Name="Ports">[0,0,0,0,0,1,1]</P>
 <P Name="SourceBlock">Library/SpringB</P>
 <P Name="SourceType">SpringB</P>
 <P Name="SourceFile">Library.SpringB</P>
 <P Name="ComponentPath">Library.SpringB</P>
 <P Name="ClassName">SpringB</P>
 </Block>
 <Block BlockType="Reference" Name="tr2" SID="4">
 <P Name="Ports">[0, 1, 0, 0, 0, 1]</P>
 <P Name="SourceBlock">nesl_utility/PS-Simulink
Converter</P>
 <P Name="SourceType">PS-Simulink
Converter</P>
 </Block>
 <Block BlockType="Reference" Name="s3" SID="5">
 <P Name="Ports">[1,1]</P>
 <P Name="SourceBlock">Library/SpringA</P>
 </Block>
 <Line>
 <P Name="Src">1#out:1</P>
 <P Name="Dst">2#in:1</P>
 </Line>
 <Line LineType="Connection">
 <P Name="Src">2#rconn:1</P>
 <P Name="Dst">3#lconn:1</P>
 </Line>

 <Line LineType="Connection">
 <P Name="Src">3#rconn:1</P>
 <P Name="Dst">4#lconn:1</P>
 </Line>
 <Line>
 <P Name="Src">4#out:1</P>
 <P Name="Dst">5#in:1</P>
 </Line>
 </System>
</Block>

component Example
 components
 s1=Library.SpringA;
 s2=Library.SpringB;
 end
 connections
 connect(s1.p2, s2.p1);
 end
end

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 33

10.8.8 Summary
SysML Modelica Simulink

(without Simscape)
Simulink

(with Simscape)
Simscape

Connector between ports with
in or out flow properties

Connect equation
between components

Line between
inport/outports

Connection line
between connectors

Connect statement

Connector between ports with
inout flow properties

Connect equation
between components

N/A Connection line
between connectors

Connect statement

10.9 Blocks with constraints

10.9.1 Purpose
System behavior is represented in simulation models by expressions relating values of system properties.
Simulating expressions involves computing an unknown variable from known variables.

10.9.2 SysML modeling
Simulation expressions correspond to constraint blocks in SysML. Constraint blocks are blocks that have
parameters and constraint properties (properties typed by constraint blocks). Parameters are properties used in the
equations, while constraints are equations.

SysML blocks use constraint blocks by typing properties with them (constraint properties) and owning binding
connectors that link parameters of the constraint blocks to other properties of the block.

Subclauses 10.9.3 through 10.9.6 cover signal flow modeling, while subclauses 10.9.7 through 10.9.10 cover
physical interaction modeling.

10.9.3 SysML modeling, signal flow
Figure 25 shows an example constraint block for a signal flow application, using ports like those defined in Figure
22, Subclause 10.7.3, except in a system containing a spring attached to another object. The block SpringMassSys
has a SysML constraint property smsc typed by SMSConstraint. The constraint block has six parameters, each bound
to a property reachable from the spring mass system:

• f is bound to the signal coming in through port u, which has a type with an in flow property rsig
• pos is bound to the signal going out through port y, which has a type with an out flow property rsig
• x is bound to PhSVariable position
• k is bound to PhSConstant springcst
• v is bound to PhSVariable velocity
• m is bound to PhSConstant mass, the mass of the object attached to the spring.

The constraint block defines three constraints representing equations, written in the expression language specified in
Clause 8.

Figure 25: Constraint block for signal flow in SysML

u.rsig y.rsig

«constraint»
smsc: SMSConstraint

position

springcst

mass

velocity

f pos

x k v m

«equal» «equal»

«equal»

«equal» «equal»

«equal»

constraints
{der(v)=(f-k*x)/m}
{der(x)=v}
{pos=x}

par SpringMassSys

34 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

10.9.4 Modelica modeling, signal flow
In a SysML block with constraint properties, the constraints correspond to the same equations in Modelica (assuming the
expression language of Clause 8 is used in the constraint block), except the SysML parameters in those constraints
correspond in Modelica to the properties they are bound to in SysML.

The following Modelica code corresponds to Figure 25. It has three equations from the constraint block. SysML
parameter names are replaced in the Modelica equations according to the bindings in Figure 13: f is replaced by u, pos is
replaced by y, x is replaced by position, k is replaced by springcst, v is replaced by velocity, m is replaced by mass.

10.9.5 Simulink modeling, signal flow
SysML constraint blocks for signal flow correspond to Simulink S-functions. S-functions are a kind of MATLAB
function that define input variables, output variables, continuous state variables, and discrete state variables. S-
function variables are identified by numbers, rather than names. State variables are accessible only inside an S-
function (this is different from states in state machines, see Subclause 10.12). SysML constraint block parameters
correspond to S-functions based on how they are bound in SysML, which can be different for each constraint
property typed by the same constraint block. This means that a separate S-function corresponds to each SysML
constraint property. Each S-function is used only in a specific context (corresponding to the constraint property), and the
name of the S-function must reflect that context.

S-functions contain assignments of continuous state variable derivatives, discrete state variables, and output
variables. These assignments correspond to constraints of SysML constraint blocks that have exactly one variable
on the left-hand side, which determines the variable being assigned, and the kind of assignment it is:

• A continuous state variable on the left-hand side corresponds to a derivative assignment.
• A discrete state variable on the left-hand side corresponds to an update assignment.
• An output variable on the left-hand side corresponds to an output assignment.

SysML parameter names are used as variable names in the S-functions. SysML parameters bound to PhSConstants
are replaced in S-functions by the value given for the PhS Constant.

Binding connectors involving ports with in or out flow properties correspond to Simulink lines (see Subclause
10.8.4) linking inports and outports to inputs and outputs of the S-function, respectively.

The following Simulink code corresponds to Figure 25. It has a Simulink block Spring with one inport and
one outport. Spring also contains a S-function block that points at the S-function Spring_sc_SpringConstraint,
which has one inport and one outport. The inports and outports of Spring are linked to the inport and outport of
the S-function block, respectively. The S-function Spring_sc_SpringConstraint has a setup function indicating
that the S-function has one input port, one output port, and two continuous states. The function also registers
two functions that will be called for derivative calculations and output calculations. These functions contain the
assignments from the SysML constraints, with the same substitutions performed as in Modelica (see Subclause
10.9.4).

model Spring
 input Real u;
 output Real y;
 Real position;
 parameter Real springcst = 1;
 Real velocity;
 parameter Real mass = 10;
equations
 der(velocity)=(u-springcst*position)/m;
 der(position)=velocity;
 y=position;
end Spring;

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 35

10.9.6 Simscape modeling, signal flow
Simscape supports signal flow by providing a way to specify input and output signals for components. SysML
blocks with constraint properties correspond to equations in Simulink components, with the same substitutions as in
Modelica (see Subclause 10.9.4). Simscape does not support discrete variables (compare to S-functions, see
Subclause 10.9.5).

The following Simscape code corresponds to Figure 25. It has a component Spring with an input u, an output y, two
parameters springcst and mass, as well as two variables position and velocity (see Subclause 10.11.5 about units and
Subclause 10.7.6 about left and right annotations). The component has equations connecting these variables: two
equations that compute the derivative of the variables, and one that determines the output.

<Block BlockType="SubSystem" Name="Spring" SID="1">
 <P Name="Ports">[1,1]</P>
 <System>
 <Block BlockType="Inport" Name="u" SID="2">
 <P Name="Port">1</P>
 </Block>
 <Block BlockType="Outport" Name="y" SID="3">
 <P Name="Port">1</P>
 </Block>
 <Block BlockType="M-S-Function" Name="sc" SID="4">
 <P Name="FunctionName">Spring_sc_SpringConstraint</P>
 <P Name="Ports">[1,1]</P>
 </Block>
 <Line>
 <P Name="Src">2#out:1</P>
 <P Name="Dst">4#in:1</P>

 </Line>

 <Line>
 <P Name="Src">4#out:1</P>
 <P Name="Dst">3#in:1</P>
 </Line>
 </System>
</Block>
function Spring_sc_SpringConstraint(block)
 setup(block);
end
function setup(block)
 block.NumInputPorts =1;
 block.NumOutputPorts =1;
 block.NumContStates =2;
 block.RegBlockMethod('Derivatives',@Derivative);
 block.RegBlockMethod('Outputs',@Output);
 block.SampleTime=[0 0];
end
function Derivative(block)
 block.Derivatives.Data(1)=(block.InputPort(1).Data-1*block.ContStates.Data(2))/10;
 block.Derivatives.Data(2)=block.ContStates.Data(2);
end
function Output(block)
 block.OutputPort(1).Data=block.ContStates.Data(2);
end

36 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

10.9.7 SysML modeling, physical interaction
Figure 26 shows an example constraint block for a signal flow application, using the port type defined in Figure 23,
Subclause 10.7.7. It has a constraint block SpringConstraint with 8 parameters, each bound to a property reachable
from the spring:

• Force and velocity at the two ends of the spring (f1, v1, f2, v2) are bound to the forces and velocities of conserved
quantity kinds flowing through ports p1 and p2, which have types with inout flow properties.

• Change in length of the spring (x) is bound to the PhSVariable lengthchg.
• Spring constant (k) is bound to the PhS Constant springcst.
• Force going through the spring and difference in velocities of the ends (v, f), are bound to the PhSVariables

forcethru and velocitydiff, respectively.

The PhSVariables and PhS Constants above are defined on the block Spring, but not shown in Figure 11. The
constraint block defines five constraints representing equations, written using the expression language specified in
Clause 8.

Figure 26: Constraint block for physical interaction in SysML

10.9.8 Modelica modeling, physical interaction
In a SysML block with constraint properties, the constraints correspond to the same equations in Modelica (assuming the
expression language of Clause 8 is used in the SysML constraint block), except the SysML parameters in those equations
correspond in Modelica to the properties they are bound to in SysML (and flow properties in SysML property paths
leading to PhSVariables on conserved quantity kinds are omitted in Modelica, see Subclause 10.7.8).

p1.lMo.f

p1.lMo.lV

p2.lMo.f

p2.lMo.lV

«constraint»
sc: SpringConstraint

lengthchg

springcst

forcethru

velocitydiff

f1

v1

f2

v2

x k v
f

constraints
{f1+f2=0}
{f=f1}
{v=v2-v1}
{v=der(x)}
{f=k*x}

par Spring

«equal» «equal»

«equal»

«equal» «equal»

«equal»

«equal» «equal»

component Spring
 inputs
 u = {0, ‘unit’ }; % :left
 end
 outputs
 y = {0, ‘unit’ }; % :right
 end
 parameters
 springcst = 1;
 mass = 10;
 end
 variables
 position = 0;
 velocity = 0;
 end
 equations
 der(velocity)=(u-springcst*position)/m;
 der(position)=velocity;
 y=position;
 end
end

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 37

The following Modelica code corresponds to Figure 26. It has five equations from the SysML constraint block. SysML
parameter names are replaced in the Modelica equations according the bindings in Figure 14: f1 is replaced by p1.f, v1 is
replaced by p1.lV, x is replaced by lengthchg, k is replaced by springcst, v is replaced by velocitydiff, f is replaced by
forcethru, v2 is replaced by p2.v, and f2 is replaced by p2.f.

10.9.9 Simulink modeling, physical interaction
Physical interaction is modeled with the Simscape extension to Simulink, see Subclause 10.9.10.

10.9.10 Simscape modeling, physical interaction
For SysML blocks with constraint properties, the constraints correspond to the same equations in Simscape
components (assuming the expression language of Clause 8 is used in constraint blocks), with the same
substitutions in Simscape as in Modelica (see Subclause 10.9.8), followed by additional substitutions for balancing
variables in Simscape domains (see Subclause 10.7.10 about domains). The additional substitutions are defined in
Simscape branch statements, each introducing a new variable to substitute in equations (after the initial substitutions
above) for each path to a balancing variable on a port.

The following Simscape code corresponds to Figure 26. It has five equations from the SysML constraint block.
Note the additional variables defined by branch statements, which replace p1.f by p1f and p2.f by p2f in the equations
(after the initial substitutions above).

model Spring
 Flange p1;
 Flange p2;
 Real lengthchg;
 parameter Real springcst = “10”;
 Real velocitydiff
 Real forcethru
equation
 p1.f+p2.f=0
 forcethru=p1.f;
 velocitydiff=p1.lV-p2.lV;
 velocitydiff=der(lengthchg);
 forcediff=springcst*lengthchg;
end Spring;

component Spring
 variables
 forcethru={0,'N'};
 velocitydiff={0,'m/s'};
 lengthchg={0, 'm'};
 p1f={0,'N'};
 p2f={0,'N'};
 end
 nodes
 p1=Library.Flange;% :left
 p2=Library.Flange;% :right
 end
 parameters
 springcst={10,'1'};
 end
 function setup
 end
 branches
 p1f: p1.f->*;
 p2f: p2.f->*;
 end
 equations
 p1f+p2f=0;
 forcethru=p1f;
 velocitydiff=p1.lV-p2.lV;
 velocitydiff=der(lengthchg);
 forcethru=springcst*lengthchg;
 end
end

38 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

10.9.11 Summary
SysML Modelica Simulink Simscape

Constraint block, typing
constraint properties

N/A S-function N/A

Constraint parameter bound to a
property path that goes through
an in flow property

N/A (SysML constraint
parameter substituted in
equations)

Input variable N/A (SysML constraint
parameter substituted in
equations)

Constraint parameter bound to a
property path that goes through
an out flow property

N/A (SysML constraint
parameter substituted in
equations)

Output variable N/A (SysML constraint
parameter substituted in
equations)

Constraint parameter bound to
continuous PhSVariable

N/A (SysML constraint
parameter substituted in
equations)

Continuous state variable N/A (SysML constraint
parameter substituted in
equations)

Constraint parameter bound to
discrete PhSVariable

N/A (SysML constraint
parameter substituted in
equations)

Discrete state variable N/A (SysML constraint
parameter substituted in
equations)

Constraint parameter bound to
discrete PhSConstant

N/A (SysML constraint
parameter substituted in
equations)

Numeric or boolean value
(substituted in equations)

N/A (SysML constraint
parameter substituted in
equations)

Constraint Equation in the model
corresponding to the
SysML block containing
the constraint property
(with substitution of
parameters)

Output, discrete, or derivative
assignment depending on
type of the left-hand side
variable in the equations

Equation in the component
corresponding to the
SysML block containing
the constraint property
(with substitution of
parameters)

10.10 Default values and initial values

10.10.1 Purpose
Systems and simulation models can specify values for data type properties to be used when values are not
otherwise given.

10.10.2 SysML Modeling
SysML has two ways to specify values for properties that are used when values are not otherwise given:

• Default values are defined on the properties that will be given the values. A default value is given to
every instance of the block owning the property (or any block it generalizes) when each instance is
created.

• Initial values are defined on other properties that are typed by the block owning the property (or any
block it generalizes) that will be given the values. The values are given to instances of the block when
(and if) they become values of the other properties.

Initial values override default values, because initial values are set when an instance that is already created
becomes the value of another property that specifies initial values, whereas default values are only set when
instances are created. Default and initial values can be changed after they are given to the instances.

Figure 27 shows how default and initial values are used in SysML. The left side of the figure shows a block B with
an attribute val with a default value on 10. The right side shows a block A with an attribute b of type B. An initial
value of 20 is given to the val of b.

Figure 27: Default values and initial value in SysML

bdd Example

b:B

val = 20.0

ibd A

«block»
B

val: Real = 10.0

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 39

10.10.3 Modelica modeling
SysML default and initial values correspond to start values of Modelica components. Start values are marked as
fixed, requiring the values be set at the beginning of the simulation (otherwise, simulators only take the values as
suggestions, calculating their own start values to solve the equations).

The following Modelica code corresponds to Figure 15. It has a model B with a val component. The val component
has a start value of 10. A class A is defined with a component b of type B. A component modification indicates that
the start value of b.val is 20.0.

10.10.4 Simulink modeling
Default values (or overriding initial values) of PhSVariables correspond to initial values of the corresponding S-
functions variables (see Subclause 10.9.5), unless they are initial values for properties below the top-level system
block or are for properties typed by blocks that have parts, whereupon they have the same correspondence with
Simulink as redefined properties (see Subclause 10.5.4 and Subannex A.5.9).

The following Simulink code corresponds to Figure 15, assuming the PhSVariable var is bound to a constraint
parameter (which corresponds to an S-function variable). The code shows an S-function setting initial values for
discrete and continuous variables. It also shows a setup function that defines one continuous variable and one discrete
variable, which are identified by number (1 for both in this example). The properties NumD works, Dwork, NumContStates,
and ContStates are predefined in Simulink, the first two for discrete variables, the second two for continuous variables. A
value of 20 is given to both variables.

10.10.5 Simscape modeling
SysML default values correspond to initial values of Simscape variables and parameters. SysML initial values
correspond to Simscape components used in Simulink. The priority of initial values in Simscape must be set to high
(otherwise simulators calculate initial values that solve the equations at the beginning time of the simulation).

The following Simscape code corresponds to the block definition diagram in Figure 15. It shows a Simscape
component B defining a variable val with an initial value of 10.

The following Simulink code corresponds to the internal block diagram in Figure 15. It has a usage of the Simscape
component in Simulink that overrides the initial value of the variable val with a value of 20.

model B
 Real val(start = 10.0, fixed = true);
end B;
model A
 B b(val.start = 20.0, val.fixed = true);
end A;

function setup(block)
 block.NumDworks = 1;
 block.Dwork(1).Data = 20.0;

 block.NumContStates = 1;
 block.ContStates.Data(1) = 20.0;

end

component B
 variables
 val={value=10,priority=priority.high};
 end
end

<Block BlockType="Reference" Name="b" SID="2">
 <P Name="SourceBlock">Library/B</P>
 <P Name="SourceType">B</P>
 <P Name="SourceFile">Library.B</P>
 <P Name="ComponentPath">Library.B</P>
 <P Name="ClassName">B</P>
 <P Name="val">20.0</P>
</Block>

40 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

10.10.6 Summary
SysML Modelica Simulink Simscape

Default value Start value (fixed) S-function initial value Member initial value (high priority)

Initial value Start value (fixed) N/A Member assignment (high priority)

10.11 Data types and units

10.11.1 Purpose
Systems and simulation models include units of physical quantities to enable checking that variables in expressions
have consistent units.

10.11.2 SysML modeling
Data types in SysML are called value types. SysML numeric value types can be linked to units, where units are
modeled with the SysML Unit block. These units are linked to value types that are generalized by SysML’s
numeric value types. Units and their symbols are from ISO 80000.

Figure 28 shows how a value type with units is defined in SysML, from the units library in Figure 20, Subclause
11.2.2 It has a value type Force that specializes the Real value type and has newton as unit. The newton unit has a
symbol N.

Figure 28: Units in SysML

10.11.3 Modelica modeling
Modelica data types can be subtyped to add a unit symbol. The interpretation of this symbol is not defined in
Modelica.

The following Modelica code corresponds to Figure 28. It has a type Force, which extends Real, and the unit
symbol N assigned to it.

10.11.4 Simulink modeling
Simulink inports and outports can have units. Simulink defines some unit symbols, and modelers can add their
own. The following table shows correspondences between ISO 80000 and Simulink notation for unit
operations when they differ.

Unit operation ISO 80000 Simulink
Exponentiation superscript (as in m3) caret (as in m^3)
Multiplication · (as in N·m) * (as in N*m)

The following table shows correspondences between ISO 80000 and Simulink notation for units when they differ.

ISO 80000 Simulink
Ω ohm
° deg
Å ang
µ u

bdd SysPhSLibrary

«valueType»
Real

«valueType»
{unit=newton}

Force

newton : Unit
symbol=“N”

type Force=Real(unit="N");

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 41

The following Simulink code corresponds to Figure 16. It has an inport In1 with unit N, the symbol for Newton.

10.11.5 Simscape modeling
Unit symbols can be associated to variables and parameters in Simscape. Simscape uses the unit symbols defined in
Simulink (see Subclause 10.11.4).

The following Simscape code corresponds to Figure 28. It has a variable force with an initial value of 0, with
the unit N, the symbol for Newton.

10.11.6 Summary
SysML Modelica Simulink Simscape

Value type specializing Real,
Integer, or Boolean with unit

Equivalent data type with unit
symbol

N/A N/A

Property typed by Real, Integer,
Boolean or one of their
specializations

Component typed by an
equivalent data type

N/A Variable with associated unit

Real Real double double

String String N/A N/A

Boolean Boolean boolean N/A

Integer Integer int32 N/A

10.12 State machines

10.12.1 Purpose
State machines in system and simulation modeling specify how systems and components react to changes, usually
caused by their environment (this is different than simulation state variables, see Subclause 10.9.5). State machines
contain states and transitions between them. Objects are said to be “in” particular states, with transitions
specifying when objects change the state they are in. States define behaviors for objects that are in those states.
Transitions have conditions specifying when their objects change state. When conditions change for an object,
usually as an effect of its environment, transitions can react by changing the state of the object, and consequently
the behavior of the object. State machines can contain other state machines and can be in multiple states at the same
time, but this specification does not provide translations for these capabilities.

10.12.2 SysML modeling
SysML state machines can be behaviors for blocks. The SysML capabilities of concern to simulation are:

• Triggering transitions based on evaluation of boolean expressions, involving time and property values, including
values arriving in flow properties on port types. These can be modeled using TimeEvents and ChangeEvents.

• Sending values out of an object through a port with an out flow property when a specific state is on.

Figure 29 shows a block Computer with a simple state machine.

<Block BlockType="Inport" Name="In1" SID="1">
 <P Name="Unit">N</P>
</Block>

variables
 force={0,'N'};
end

42 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 29: State machine in SysML

RealInSignalElement and RealOutSignalElement from the signal flow library (see Subclause 11.2.1),
respectively. The state machine has one initial pseudostate, and two states StandBy and On. The transition from
the initial pseudostate to StandBy has a relative TimeEvent with an expression indicating that the transition fires 5
seconds after the initial pseudostate is entered. The transition from StandBy to On has a ChangeEvent with an
expression indicating that the transition is triggered when u.sigsp is equal to 1 (this is a signal as in signal flow
simulation, not as in SysML). The transition from On to StandBy has a ChangeEvent with an expression
indicating that the transition is triggered when u.sigsp is equal to 0. When the computer is in StandBy, y.sigsp is
set to 8, and when the computer is On, y.sigsp is set to 3.

10.12.3 Modelica modeling
Modelica 3.3 introduced support for state machines, but they are not widely implemented in simulation tools as of
the date of this specification. Instead, this translation uses the Modelica standard library, which supports some
aspects of state machines. SysML state machines correspond to Modelica models, and all the SimVariables and
constants of a SysML block owning a state machine are the same as in the Modelica state machine. SysML state
machine elements correspond to Modelica state machines as follows:

• Initial pseudostates correspond to InitialSteps.
• States correspond to Steps.
• Transitions correspond to Transitions.
• Time events correspond to transition wait times.
• Change events correspond to transition conditions.
• State behaviors (specified with doActivity) that are OpaqueBehaviors correspond to Modelica code

executed when objects are in particular states.

StandBy

do / y.rsig:=3

do / y.rsig:=8

On

after(5) when(u.sig==1)

when(u.sig==0)

stm Computerbdd Example

«block»
Computer

ports
u: RealSignalInElement
y: RealSignalOutElement

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 43

The following Modelica code corresponds to Figure 29.

The code shows the model Computer with an input variable u, and an output variable y, and a component
_ComputerSM for a state machine ComputerSM, defined next. ComputerSM duplicates the components of
Computer, except for the state machine component. It has an initial step state0, two steps StandBy and On, and three
transitions tr0, tr1 and tr2. Each transition has a condition for traversing it, and each step indicates how many inputs and
outputs it has. ComputerSM contains equations linking ports of steps and transitions, and an algorithm section for
assigning numeric component values when the machine starts or stops each step. Returning to Computer, equations bind its
components to the components of the state machine.

10.12.4 Simulink/StateFlow modeling
Simulink has an extension for state machines called Stateflow, providing some features of SysML state machines
(StateFlow does not extend Simscape). StateFlow supports transitions with conditions determining whether to traverse
them, and actions performed when objects are in particular states. It uses default transitions, rather than transitions from
initial pseudostates as in SysML. StateFlow state machines are blocks, rather than separate behaviors, as in SysML.

model Computer
 input Real u;
 output Real y;
 ComputerSM _ComputerSM;
 model ComputerSM
 Modelica.StateGraph.InitialStep state0(nIn = 0, nOut = 1);
 Modelica.StateGraph.Step StandBy(nIn = 2, nOut = 1);
 Modelica.StateGraph.Step On(nIn = 1, nOut = 1);
 Modelica.StateGraph.Transition tr0(condition = true, enableTimer = true,
 waitTime = 5);
 Modelica.StateGraph.Transition tr1(condition = u==1);
 Modelica.StateGraph.Transition tr2(condition = u==0);
 Real u;
 Real y;
equation
 connect(state0.outPort[1], tr0.inPort);
 connect(tr0.outPort, StandBy.inPort[1]);
 connect(StandBy.outPort[1], tr1.inPort);
 connect(tr1.outPort, On.inPort[1]);
 connect(On.outPort[1], tr2.inPort);
 connect(tr2.outPort, StandBy.inPort[2]);
algorithm
 if StandBy.active then
 y := 8;
 end if;
 if On.active then
 y := 3;
 end if;
 end ComputerSM;
equation
 u = _ComputerSM.u;
 y = _ComputerSM.y;
end Computer;

44 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

The following Simulink and StateFlow code correspond to Figure 29.

<Block BlockType="SubSystem" Name="Computer" SID="2">
 <P Name="Ports">[1,1]</P>
 <P Name="SFBlockType">Chart</P>
 <System>
 <P Name="Open">off</P>
 <Block BlockType="Inport" Name="u" SID="2::1">
 <P Name="Port">1</P>
 </Block>
 <Block BlockType="Outport" Name="y" SID="2::2">
 <P Name="Port">1</P>
 </Block>
 <Block BlockType="S-Function" Name=" SFunction " SID="2::5">
 <P Name="FunctionName">sf_sfun</P><P Name="Ports">[1,2]</P>
 </Block>
 <Block BlockType="Demux" Name="Demux" SID="2::6">
 <P Name="Outputs">1</P>
 </Block>
 <Block BlockType="Terminator" Name="Terminator" SID="2::7"/>
 <Line>
 <P Name="Src">2::1#out:1</P><P Name="Dst">2::5#in:1</P>
 </Line>
 <Line>
 <P Name="Src">2::5#out:2</P><P Name="Dst">2::2#in:1</P>
 </Line>
 <Line>
 <P Name="Src">2::5#out:1</P><P Name="Dst">2::6#in:1</P>
 </Line>
 <Line>
 <P Name="Src">2::6#out:1</P><P Name="Dst">2::7#in:1</P>
 </Line>
 </System>
</Block>

<Stateflow>
 <machine id="1">
 <P Name="isLibrary">0</P>
 <Children>
 <target id="2" name="sfun"/>
 <chart id="3">
 <P Name="name">Computer</P>
 <P Name="chartFileNumber">1</P>
 <P Name="saturateOnIntegerOverflow">1</P>
 <P Name="userSpecifiedStateTransitionExecutionOrder">1</P>
 <P Name="disableImplicitCasting">1</P><P Name="actionLanguage">2</P>
 <Children>

 <state SSID="5">

 <P Name="labelString">StandBy
during:y=8;</P>
 </state>
 <state SSID="6">
 <P Name="labelString">On
during:y=3;</P>
 </state>
 <data SSID="7" name ="u">
 <P Name="scope">INPUT_DATA</P>
 </data>
 <data SSID="8" name ="y">
 <P Name="scope">OUTPUT_DATA</P>
 </data>
 <transition SSID="11">
 <P Name="labelString">[after(5, sec)]</P>
 <src/>
 <dst>
 <P Name="SSID">5</P>
 </dst>
 <P Name="executionOrder">1</P>
 </transition>

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 45

The Block section of the code at the top is the part of state machine represented in Simulink. It shows a block Computer
of type Chart, containing one inport (u), one outport (y), and one S-function corresponding to the state machine. The two
other blocks, Demux and Terminal, are needed by Simulink to execute state machines. Lines connect the inport of the
block to the input of the S-function, and the second output of the S-function to the outport of the block.
The Stateflow section of the code at the bottom is the part of the state machine represented in Stateflow. It shows a
machine containing one input u, one output y, two states StandBy and On, a default transition (which has no
source), and two transitions. The during string in StandBy indicates that the output y is set to 8 while the
computer is in StandBy. The label in the default transition indicates that the transition is fired after 5 seconds. The
condition of the two transitions indicates that the first transition fires when the input u is equal to 1, and the
second transition fires when the input u is equal to 0.

10.12.5 Summary
SysML Modelica Simulink Stateflow

Block with

StateMachine as
classifierBehavior

Model (regular) Block of type SFBlockType N/A

StateMachine Block S-function Chart in machine

Initial pseudostate InitialStep component N/A N/A

State Step component N/A State

Transition Transition component N/A Transition

Transition from initial
PseudoState

Transition component N/A Default transition

doActivity with
OpaqueExpression

Statements in a state
conditionalized by object
being in that state

N/A During statements in a state

ChangeEvent Trigger Transition condition N/A Transition condition

Relative TimeEvent waitTime expression N/A after() statement

 <transition SSID="12">
 <P Name="labelString">[u==1]</P>
 <src>
 <P Name="SSID">5</P>
 </src>
 <dst>
 <P Name="SSID">6</P>
 </dst>
 <P Name="executionOrder">1</P>
 </transition>
 <transition SSID="13">
 <P Name="labelString">[u==0]</P>
 <src>
 <P Name="SSID">6</P>
 </src>
 <dst>
 <P Name="SSID">5</P>
 </dst>
 <P Name="executionOrder">1</P>
 </transition>
 </Children>
 </chart>
 </Children>
 </machine>
 <instance id="4">
 <P Name="name">Computer</P>
 <P Name="machine">1</P>
 <P Name="chart">3</P>
 </instance>
</Stateflow>

46 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

10.13 Mathematical expressions
The following table shows replacements to be made in the syntax of the SysPhS expression language (see Clause
8) when translating to MATLAB, the expression language in Simulink, Simscape, and StateFlow. Translation to
Modelica requires no replacements.

SysPhS expression MATLAB equivalent
‘if’ ... ‘then’ ... ‘elseif’ ... ‘then’ ... ‘else’ ... ‘end’
‘if’

‘if’ ...
...

‘elseif’
...

‘else’ ...

...

‘for’ ... ‘in’ ... ‘loop’ ... ‘end’ ‘for’ ‘for’ ...
...

‘ d’

‘=’ ...

‘=’ ‘==’
‘<>’ ‘~=’
‘not’ ‘~’
‘and’ ‘&&’
‘or’ ‘||’
‘:=’ ‘=’
‘div’ ‘idivide’

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 47

11. Platform-independent Component Library
11.1 Introduction
Subclauses 11.2 and 11.3 define a platform-independent library of reusable blocks for component interaction and
behavior, respectively. Subclause 0 defines value types with units used in Subclause 11.2.2. Subclause 11.5 defines a
simulation platform extension used in Subclause 11.3.

11.2 Component interaction

11.2.1 Signal flow
This subclause defines elements for signal flow. They can be used as (generalizations of) system component blocks or
port types. See Subclause 11.3.4 for additional signal flow elements..

Figure 30: Elements for signal flow

«interfaceBlock»
RealSignalElement

signal flows
inout rSig : Real

«interfaceBlock»
RealInSignalElement

signal flows
in rSig : Real {redefines rSig}

«interfaceBlock»
RealOutSignalElement

signal flows
out rSig : Real {redefines rSig}

«interfaceBlock»
IntegerInSignalElement

signal flows
in iSig : Integer {redefines iSig}

«interfaceBlock»
IntegerOutSignalElement

signal flows
out iSig : Integer {redefines iSig}

«interfaceBlock»
IntegerSignalElement

signal flows
inout iSig : Integer

«interfaceBlock»
BooleanInSignalElement

signal flows
in bSig : Boolean {redefines bSig}

«interfaceBlock»
BooleanOutSignalElement

signal flows
out bSig : Boolean {redefines bSig}

«interfaceBlock»
BooleanSignalElement

signal flows
inout bSig : Boolean

«interfaceBlock»
RealSignalElement

signal flows
inout rSig : Real

«interfaceBlock»
RealInSignalElement

signal flows
in rSig : Real {redefines rSig}

«interfaceBlock»
RealOutSignalElement

signal flows
out rSig : Real {redefines rSig}

«interfaceBlock»
IntegerInSignalElement

signal flows
in iSig : Integer {redefines iSig}

«interfaceBlock»
IntegerOutSignalElement

signal flows
out iSig : Integer {redefines iSig}

«interfaceBlock»
IntegerSignalElement

signal flows
inout iSig : Integer

«interfaceBlock»
BooleanInSignalElement

signal flows
in bSig : Boolean {redefines bSig}

«interfaceBlock»
BooleanOutSignalElement

signal flows
out bSig : Boolean {redefines bSig}

«interfaceBlock»
BooleanSignalElement

signal flows
inout bSig : Boolean

48 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

11.2.2 Physical interaction
This subclause defines elements for physical interaction (see Subclause 0 for and associated value types and units).
Conserved quantity kinds are characteristics of physical substances that are not created or destroyed when
exchanged between components. For example, charge is a characteristic of elementary physical particles that might cross
the boundaries of an object. Conserved quantity kinds are modeled as blocks directly specializing the block
ConservedQuantityKind, which specializes SysML QuantityKind, as shown in Figure 31. These can be conveyed by
item flows and the type of item properties. Specializations of each conserved quantity kind (with names prefixed by
“Flowing”) are only used to type flow properties. They provide two PhSVariables describing the flows, one conserved
(flow rate) and one non-conserved (potential to flow). For example, the flow rate of charge (current) must add to zero
(be conserved) between components, while the potential to flow (voltage) must be the same (see Subclause 7.2.2). These
variables only apply to conserved quantity kinds as they cross the boundary of components via flow properties, because
they are defined with respect to the boundary (rate of crossing it or potential to cross it). The flow properties can be on
blocks used as (generalizations of) part or port types, including interface blocks as shown at the bottom of Figure 31.

Figure 31: Elements for physical interaction

Constraints

[1] Blocks (indirectly) specializing ConservedQuantityKind that type flow properties must have one conserved and
one non-conserved PhSVariable.

[2] Flow properties typed by blocks (indirectly) specializing ConservedQuantityKind must have direction inout and
multiplicity 1.

[3] Flow properties typed by blocks (indirectly) specializing ConservedQuantityKind that are connected and
matching must have the same type and multiplicity.

11.3 Component behavior

11.3.1 Introduction
This subclause defines SysML blocks corresponding to reusable components in the libraries of both Modelica and
Simulink or its extensions. The semantics of these blocks are given by the corresponding elements in the Modelica
libraries (which is the same semantics as in the libraries of Simulink or its extensions). The base classes and
properties (including ports) of component blocks in this subclause have stereotypes from the simulation platform profile
applied (see Subclause 11.5) to specify which simulation library elements correspond to them. For brevity, component
blocks are described in tables, with each row defining one block.

The blocks in Subclauses 11.3.2 and 11.3.3 are for signal flow modeling. The columns of the tables are:

• Component Block: Name of the component block defined by the row.

«interfaceBlock»
LMomFlowElement

phs variables
{isConserved} f : Force
lV : Velocity

«block»
FlowingLMom

physical interactions
inout lMomF: FlowingLMom

«interfaceBlock»
AMomFlowElement

phs variables
{isConserved} trq : Torque
aV : AngularVelocity

«block»
FlowingAMom

physical interactions
inout aMomF: FlowingAMom

«block»
LinearMomentum

«block»
AngularMomentum

«interfaceBlock»
ChargeFlowElement

phs variables
{isConserved} i : Current
v : Voltage

«block»
FlowingCharge

physical interactions
inout cF: FlowingCharge

«block»
Charge

«interfaceBlock»
VolumeFlowElement

phs variables
{isConserved} q : VolumeFlowRate
p : Pressure

«block»
FlowingVolume

physical interactions
inout vF: FlowingVolume

«block»
Volume

«interfaceBlock»
EntropyFlowElement

phs variables
{isConserved} sFR : EntropyFlowRate
t : Temperature

«block»
FlowingEntropy

physical interactions
inout sF: FlowingEntropy

«block»
Entropy

«block»
ConservedQuantityKind

«block»
SysML::QuantityKind

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 49

o Simulink Block: Value of the name property of the SimulinkBlock stereotype applied to the base
class of the block defined by the row.

o Modelica Block: Value of the name property of the ModelicaBlock stereotype applied to the base
classof the block defined by the row is produced from this column by prepending “Modelica.Blocks.”

• Component Ports (Inputs and Outputs): Each line in each row of these columns gives the name of aa
component block port (these correspond to Simulink and Modelica ports and components, see Subclauses 10.7.5
and 10.7.4).

• PhSConstants: Each line in each row of this column gives the name of a property of the block defined by the
row, corresponding to the same line in the two columns below.

o Simulink and Modelica Parameters: Value of the name properties of SimulinkParameter and
ModelicaParameter stereotypes, respectively, applied to the corresponding property on the same line in
the PhSConstants column (the parameter stereotypes are specialized PhSConstants, see Subclause
11.5). Lines that have no corresponding property on the same line in the PhSConstants column, if any,
give other parameters needed to obtain the same behavior in Simulink and Modelica, with the value of
the parameter preceded by an equals sign.

• Platform Behavior: Tells whether the behaviors of the Simulink and Modelica library elements are
supposed to yield the same value or not, when this can be determined from the platform library
specifications. Values are considered the same when they are equal or the numerical difference is small.

Simulation platform data specified in the Component Ports (Input and Output), PhSConstants, and platform
Parameters columns are scalar, unless marked with a V (vector) or an M (matrix). Component input ports for
scalars are typed by RealSignalInElement, IntegerSignalInElement, or BooleanSignalInElement, while component
output ports for scalars are typed by RealSignalOutElement, IntegerSignalOutElement, or
BooleanSignalOutElement (see Subclause 11.2.1). Component input ports for vectors are typed by specializations
of RealVectorSignalInElement, while component output ports for vectors are typed by specializations of
RealVectorSignalOutElement (see Subclause 11.5.3). Component PhSConstants (SimulinkParameters and
ModelicaParameters) for vectors and matrices have MultidimensionalElement applied, with dimension * and *,*,
respectively (see Subclause 11.5.2.4). Models using component library blocks that have vector and matrix
properties should specify initial values using instance specifications, with slots satisfying the constraints specified
in Subclause 11.5.2.4.

The blocks in Subclause 11.3.4 are for electrical components. The columns of the table are explained in thatt
subclause.

11.3.2 Real-valued components

11.3.2.1 Introduction

Simulation platform data specified in the Component ports (Inputs and Output), PhSConstants, and platform Parameters
columns in this subclause are Real, unless otherwise indicated.

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 51

11.3.2.2 Continuous components
Component

Block
Simulink

Block
Modelica Block Component Port

(Inputs)
Component Port

(Output)
PhSConstants Simulink

Parameters
Modelica

Parameters
Platform
Behavior

Integrator Integrator Continuous.Integrator u y init InitialCondition y start Same
Derivative Derivative Continuous.Derivative u y Different
StateSpace StateSpace Continuous.StateSpace u (V) y (V) A (M)

B (M)

C (M)

D (M)

A (M)

B (M)

C (M)

D (M)
 ()

A (M)

B (M)

C (M)

D (M)

Same

Transfer
Function

TransferFcn Continuous.TransferFunction u y num (V)
denom (V)

Numerator (V)
Denominator (V)

b (V)
a (V)

FixedDelay Transport
Delay

Nonlinear.FixedDelay u y delay DelayTime
InitialOutput=0

delayTime Different

VariableDelay Variable
Transport
Delay

Nonlinear.VariableDelay u
delayTime

y delayMax MaximumDelay
InitialOutput=0
VariableDelayType
=Variable time delay
ZeroDelay=on

delayMax Different

11.3.2.3 Discrete components
Component

Block
Simulink

Block
Modelica Block Component Port

(Inputs)
Component Port

(Outputs)
PhSConstants Simulink

Parameters
Modelica

Parameters
Platform
Behavior

StateSpace DiscreteState
Space

Discrete.StateSpace u (V) y (V) A (M)

B (M)

C (M)

A (M)

B (M)

C (M)

A (M)

B (M)

C (M)

Same

TransferFunction Discrete
TransferFcn

Discrete.TransferFunction u y numerator (V)
denominator (V)

Numerator (V)
Denominator (V)

b (V)
a (V)

Same

UnitDelay UnitDelay Discrete.UnitDelay u y initialCondition InitialCondition y_start Same

52 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

11.3.2.4 Non-linear components
Component

Block
Simulink

Block
Modelica Block Component Port

(Inputs)
Component

Port (Outputs)
PhSConstants Simulink Parameters Modelica

Parameters
Platform
Behavior

Saturation Saturate Nonlinear.Limiter u y upper
lower

UpperLimit
LowerLimit

uMax
uMin

Same (min
AND max
mandatory)

Dynamic
Saturation

Reference Nonlinear.VariableLimiter limit1
u

limit2

y SourceBlock=
simulink/Discontinuities
/Saturation Dynamic
SourceType=Saturation
Dynamic

 Same

DeadZone DeadZone Nonlinear.DeadZone u y lower
upper

LowerValue
UpperValue

uMin
uMax

Same

RateLimiter RateLimiter Nonlinear.SlewRateLimiter u y rising
falling

RisingSlewLimit
FallingSlewLimit

Rising
Falling

Different

11.3.2.5 Mathematical components
Component

Block
Simulink

Block
Modelica

Block
Component Port

(Inputs)
Component Port

(Outputs)
PhSConstants Simulink

Parameters
Modelica

Parameters
Platform
Behavior

Gain Gain Math.Gain u y gain Gain k Same
Product Product Math.Product u1

2

y Inputs=** Same

Division Product Math.Division u1

2

y Inputs=*/ Same

Addition Sum Math.Add u1

2

y Inputs=++ Same

Subtraction Sum Math.Add u1

2

y Inputs=+- Same

Abs Abs Math.Abs u y Same
Exp Math Math.Exp u y Operator=exp Same
Log Math Math.Log u y Operator=log Same
Log10 Math Math.Log10 u y Operator=log10 Same
Sign Signum Math.Sign u y Same
Sqrt Sqrt Math.Sqrt u y Same
Sin Trigonometry Math.Sin u y Operator=sin Same
Cos Trigonometry Math.Cos u y Operator=cos Same
Tan Trigonometry Math.Tan u y Operator=tan Same
Asin Trigonometry Math.Asin u y Operator=asin Same

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 53

Acos Trigonometry Math.Acos u y Operator=acos Same
Atan Trigonometry Math.Atan u y Operator=atan Same
Atan2 Trigonometry Math.Atan2 u1

y Operator=atan2 Same
Sinh Trigonometry Math.Sinh u y Operator=sinh Same
Cosh Trigonometry Math.Cosh u y Operator=cosh Same
Tanh Trigonometry Math.Tanh u y Operator=tanh Same

11.3.2.6 Sources and sinks
Component

Block
Simulink

Block
Modelica Block Component Port

(Inputs)
Component Port

(Output)
PhSConstants Simulink

Parameters
Modelica

Parameters
Platform
Behavior

Constant Constant Sources.Constant y k Value k Same
SineWave Sin Sources.Sine y amplitude

offset

frequency
phase

Amplitude
Bias

Frequency
Phase

amplitude
offset
freqHz
phase

Same

Clock Clock Sources.Clock y Same
Pulse DiscretePulse

Generator
Sources.Pulse y amplitude

period
width

Amplitude
Period
PulseWidth
PhaseDelay

amplitude
period
width

Same

Step Step Sources.Step y startTime
after

Time
After
Before=0

startTime
height

Same

RealScope Scope Interaction.Show.RealValue numberPort
BooleanScope Scope Interaction.Show.BooleanValue activePort

11.3.2.7 Routing components

Multiplicities not equal to 1 for flow properties stereotyped by PhSVariable (signal flows) on Component Ports (Inputs and Outputs) are shown between square brackets. These flow
properties have MultidimensionalElement applied, with dimension equal to the multiplicity of the flow property (see Subclause 11.5.2.4). Inputs with multiplicities of 2, 3, 4, 5, 6 are typed
by RealVectorSignal2InElement, RealVectorSignal3InElement, RealVectorSignal4InElement, RealVectorSignal5InElement, RealVectorSignal6InElement, respectively. Outputs with
multiplicities of 2, 3, 4, 5, 6 are typed by RealVectorSignal2OutElement, RealVectorSignal3OutElement, RealVectorSignal4OutElement, RealVectorSignal5OutElement,
RealVectorSignal6OutElement, respectively.

Component
Block

Simulink
Block

Modelica Block Component Port
(Inputs)

Component Port
(Output)

PhSConstants Simulink
Parameters

Modelica
Parameters

Platform
Behavior

Mux2 Mux Routing.Multiplex2 u1

u2

y [2] Inputs=2 Same

54 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Mux3 Mux Routing.Multiplex3 u1

u2

y [3] Inputs=3 Same

Mux4 Mux Routing.Multiplex4 u1

u2

u3

y [4] Inputs=4 Same

Mux5 Mux Routing.Multiplex5 u1

u2

u3

4

y [5] Inputs=5 Same

Mux6 Mux Routing.Multiplex6 u1

u2

u3

u4

y [6] Inputs=6 Same

Demux2 Demux Routing.DeMultiplex2 u [2] y1
y2

 Outputs=2 Same

Demux3 Demux Routing.DeMultiplex3 u [3] y1

y2

 Outputs=3 Same

Demux4 Demux Routing.DeMultiplex4 u [4] y1

y2

y3

 Outputs=4 Same

Demux5 Demux Routing.DeMultiplex5 u [5] y1

y2

y3

4

 Outputs=5 Same

Demux6 Demux Routing.DeMultiplex6 u [6] y1

y2

y3

4

 Outputs=6 Same

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 55

Switch u1

u2

u3

y Criteria =
u2~=0
Threshold=0

 Same

11.3.3 Logical components
Simulation platform data specified in the Component ports (Inputs and Output) and platform Parameters columns in this subclause are Boolean, unless marked with an R (real).

Component
Block

Simulink
Block

Modelica Block Component Port
(Inputs)

Component Port
(Output)

PhSConstants Simulink
Parameters

Modelica
Parameters

Platform
Behavior

AND Logic Logical.And u1

2

y Operator=AND
Inputs=2

 Same

OR Logic Logical.Or u1

2

y Operator=OR
Inputs=2

 Same

NAND Logic Logical.Nand u1

2

y Operator=NAND
Inputs=2

 Same

NOR Logic Logical.Nor u1

2

y Operator=NOR
Inputs=2

 Same

XOR Logic Logical.Xor u1

2

y Operator=XOR
Inputs=2

 Same

NOT Logic Logical.Not u y Operator=NOT
Inputs=1

 Same

Less RelationalOperator Logical.Less u1 (R)
u2 (R)

y Operator = < Same

LessEqual RelationalOperator Logical.LessEqual u1 (R)
u2 (R)

y Operator = <= Same

Greater RelationalOperator Logical.Greater u1 (R)
u2 (R)

y Operator = > Same

GreaterEqual RelationalOperator Logical. GreaterEqual u1 (R)
u2 (R)

y Operator = >= Same

LessThreshold Compare To Constant Logical.LessThreshold u (R) y threshold (R) Const
Relop = <

threshold Same

LessEqual
Threshold

Compare To Constant Logical.LessEqual
Threshold

u (R) y threshold (R) Const
relop =

threshold Same

GreaterThreshold Compare To Constant Logical.GreaterThreshold u (R) y threshold (R) const
relop = >

threshold Same

GreaterEqual
Threshold

Compare To Constant Logical. GreaterEqual
Threshold

u (R) y threshold (R) const

relop =

threshold Same

56 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

11.3.4 Electrical components
Blocks in this subclause are for physical interaction between electrical components, some including signal flow of electrical quantities. The columns are the same as in Subclausess
11.3.2 and 11.3.3, except:

• Values of the name property of the SimulinkBlock and ModelicaBlock stereotypes applied to the base class of the block defined by each row are produced from these
columns by prepending “foundation.electrical.” for SimulinkBlocks and “Modelica.Electrical.Analog.” for ModelicaBlocks. SimulinkBlocks in this table are
Simscape library elements (an extension of Simulink, see Clause 10.1)

• There is only one column for component ports, because they are mostly bidirectional, typed by FlowingChargeElement (see Subclause 11.2.2). Some components have
additional unidirectional ports, typed by signal elements defined in Figure 32. Each line in the Component Ports column gives the name of a port. The corresponding
lines in the Simulink Ports and Modelica Ports columns give the port names on the respective platforms. The component port is stereotyped by SimulinkPort and/or
ModelicaPort when the name is different on that platform (SimulinkPort is used for Simscape ports in this table). In this case, the platform name is given as the value
of the name property of the respective SimulinkPort and/or ModelicaPort stereotype. There is only one column for component ports, because they are mostly
bidirectional, typed by FlowingChargeElement (see Subclause 11.2.2). Some components have additional unidirectional ports, typed by signal elements defined in
Figure 32. Each line in the Component Ports column gives the name of a port. The corresponding lines in the Simulink Ports and Modelica Ports columns give the
port names on the respective platforms. The component port is stereotyped by SimulinkPort and/or ModelicaPort when the name is different on that platform
(SimulinkPort is used for Simscape ports in this table). In this case, the platform name is given as the value of the name property of the respective SimulinkPort
and/or ModelicaPort stereotype.

Component
Block Simulink Block Modelica Block Component

Ports
Simulink

Ports
Modelica

Ports PhSConstants Simulink
Parameters

Modelica
Parameters

Platform
Behavior

Ground elements.reference Basic.Ground p V p
Capacitor elements.capacitor Basic.Capacitor p

n
p
n

p
n

c : Capacitance
Capacitance

c
r=0
g=0

C Same

Diode elements.pwl_diode Ideal.IdealDiode p
n

p
n

p
n

ron : Resistance
goff:Conductance
vforward:Voltage
Resistance
goff:Conductance
vforward:Voltage

Ron
Goff
Vf

Ron
Goff
Vknee

Ideal
Transformer

elements.ideal
_transformer

Ideal.IdealTransformer p1
n1
p2
n2

p1
n1
p2
n2

p1
n1
p2
n2

n : Real Real n n Same

Inductor elements.inductor Basic.Inductor p
n

p
n

p
n

l : Inductance
Inductance

l
r=0
g=0

L Same

Infinite
Resistance

elements.infinite
_resistance

Ideal.Idle p
n

p
n

p
n

 Same

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 57

OpAmp elements.op_amp Ideal.IdealOpAmp3Pin p
n
out

p
n
out

in_p
in_n
out

 Same

Resistor elements.resistor Basic.Resistor p
n

p
n

p
n

r : Resistance
Resistance

R R Same

Variable
Resistor

elements.variable
_resistor

Basic.VariableResistor
VariableResistor

p
n
r : Resistance
SignalInElementig
nalInElement

p
n
R

p
n
R

 Same

CurrentSensor sensors.current Sensors.CurrentSensor p
n
i : Current
SignalOutElement
Current
SignalOutElement

p
n
I

p
n
i

 Same

VoltageSensor sensors.voltage Sensors.VoltageSensor p
n
v : Voltage
SignalOutElement

p
n
V

p
n
v

 Same

SignalCurrent sources.controlled_
current

Sources.SignalCurrent p
n
i : Current
SignalInElement
Current
SignalInElement

p
n
iT

p
n
i

 Same

SignalVoltage sources.controlled_
voltage

Sources.SignalVoltage p
n
v : Voltage
SignalInElemenV
oltage
SignalInElement

p
n
vT

p
n
v

 Same

DCCurrent sources.dc_current Sources.ConstantCurrent p
n

p
n

p
n

i : Current
Current

i0 I Same

DCVoltage sources.dc_voltage Sources.ConstantVoltage p
n

p
n

p
n

v : Voltage
Voltage

v0 V Same

58 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

ACCurrent sources.ac_current Sources.SineCurrent p
n

p
n

p
n

amp : Current
phase : Real
freq : Frequency
Current
phase : Real
freq : Frequency

amp
shift
frequency

I
phase
freqHz

Same

ACVoltage sources.ac_voltage Sources.SineVoltage p
n

p
n

p
n

amp : Voltage
phase : Real
freq : Frequency
Voltage
phase : Real
freq : Frequency

amp
shift
frequency

V
phase
freqHz

Same

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 59

Figure 32 and Figure 33 give additional signal elements and value types with units for electrical modeling (seee
Figure 30 and Figure 34).

Figure 32: Elements for signal flows of electrical quantities

«interfaceBlock»
CurrentSignalElement

signal flows
inout i : Current

«interfaceBlock»
CurrentSignalInElement

signal flows
in i : Current {redefines i}

«interfaceBlock»
CurrentSignalOutElement

signal flows
out i : Current {redefines i}

«interfaceBlock»
VoltageInSignalElement

signal flows
in v : Voltage {redefines v}

«interfaceBlock»
VoltageOutSignalElement

signal flows
out v : Voltage {redefines v}

«interfaceBlock»
VoltageSignalElement

signal flows
inout v : Voltage

«interfaceBlock»
ResistanceInSignalElement

signal flows
in r : Resistance {redefines r}

«interfaceBlock»
ResistanceOutSignalElement

signal flows
out r : Resistance {redefines r}

«interfaceBlock»
ResistanceSignalElement

signal flows
inout r : Resistance

«interfaceBlock»
CurrentSignalElement

signal flows
inout i : Current

«interfaceBlock»
CurrentSignalInElement

signal flows
in i : Current {redefines i}

«interfaceBlock»
CurrentSignalOutElement

signal flows
out i : Current {redefines i}

«interfaceBlock»
VoltageInSignalElement

signal flows
in v : Voltage {redefines v}

«interfaceBlock»
VoltageOutSignalElement

signal flows
out v : Voltage {redefines v}

«interfaceBlock»
VoltageSignalElement

signal flows
inout v : Voltage

«interfaceBlock»
ResistanceInSignalElement

signal flows
in r : Resistance {redefines r}

«interfaceBlock»
ResistanceOutSignalElement

signal flows
out r : Resistance {redefines r}

«interfaceBlock»
ResistanceSignalElement

signal flows
inout r : Resistance

60 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 33: Value types and units for electrical quantities

«valueType»
SysML::Real

«valueType»
{unit=ohm}

Resistance

ohm : Unit
symbol=“Ω”

«valueType»
{unit=farad}

Capacitance

farad : Unit
symbol=“F”

«valueType»
{unit=henry}

Inductance

henry : Unit
symbol=“H”

«valueType»
{unit=siemens}

Conductance

siemens : Unit
symbol=“1/Ω”

«valueType»
{unit=hertz}

Frequency

hertz : Unit
symbol=“1/s”

«valueType»
SysML::Real

«valueType»
{unit=ohm}

Resistance

ohm : Unit
symbol=“Ω”

«valueType»
{unit=farad}

Capacitance

farad : Unit
symbol=“F”

«valueType»
{unit=henry}

Inductance

henry : Unit
symbol=“H”

«valueType»
{unit=siemens}

Conductance

siemens : Unit
symbol=“1/Ω”

«valueType»
{unit=hertz}

Frequency

hertz : Unit
symbol=“1/s”

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 61

11.4 Value types with units
This subclause defines value types with units for physical quantities. See Subclause 11.3.4 for additional value types..

Figure 34: Value types and units for physical quantitiess

11.5 Platform-dependent extension

11.5.1 Introduction
This subclause defines an extension of SysML used by that the platform-independent component library in Subclause
11.3. In this subclause, the Simulink library is taken as including the libraries of its extensions, for brevity.

11.5.2 Platform profile
This subclause defines stereotypes that Subclause 11.3 applies to the base classes and properties (including ports) of its
blocks, to specify which library elements of Modelica and Simulink correspond to them.

Figure 35: Simulation platform stereotypes

11.5.2.1 ModelicaBlock

Package: SysPhSLibrary
isAbstract: No
Generalization: Block

«valueType»
SysML::Real

«valueType»
{unit=newton}

Force

newton : Unit
symbol=“N”

«valueType»
{unit=metrePerSecond}

Velocity

metrePerSecond : Unit
symbol=“m/s”

«valueType»
{unit=newtonmetre}

Torque

newtonmetre : Unit
symbol=“N·m”

«valueType»
{unit=radianPerSecond}
AngularVelocity

radianPerSecond : Unit
symbol=“rad/s”

«valueType»
SysML:: Real

«valueType»
{unit=ampere}

Current

ampere : Unit
symbol=“A”

«valueType»
{unit=volt}
Voltage

volt : Unit
symbol=“V”

«valueType»
SysML:: Real

«valueType»
SysML:: Real

«valueType»
{unit=cubicMetrePerSecond}

VolumeFlowRate

cubicMetrePerSecond : Unit
symbol=“m³/s”

«valueType»
{unit=pascal}
Pressure

pascal : Unit
symbol=“Pa”

«valueType»
SysML:: Real

«valueType»
{unit=wattPerKelvin}

EntropyFlowRate

wattPerKelvin : Unit
symbol=“W/K”

«valueType»
{unit=kelvin}

Temperature

kelvin : Unit
symbol=“K”

«valueType»
SysML:: Real

«valueType»
{unit=second}

Time

second : Unit
symbol=“s”

«stereotype»
Block

«stereotype»
PhSConstant

«metaclass»
Port

«metaclass»
MultiplicityElement

«metaclass»
Slot

«stereotype»
SimulinkBlock

name : String

«stereotype»
ModelicaBlock

name : String

«stereotype»
SimulinkParameter

name : String
value: ValueSpecification [0..1]

«stereotype»
ModelicaParameter

name : String
value: ValueSpecification [0..1]

«stereotype»
SimulinkPort

name : String

«stereotype»
ModelicaPort

name : String

«stereotype»
MultidimensionalElement

dimension: UnlimitedNatural [*] {ordered, non-unique}

62 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Attributes

• name: String Fully qualified name of the component in the Modelica library corresponding to a platform-
independent component block

Description

A class stereotyped by ModelicaBlock has an equivalent in the Modelica library. The value of the name attribute
gives the fully qualified name of the corresponding component in the Modelica library.

11.5.2.2 ModelicaParameter

Package: SysPhSLibrary
isAbstract: No
Extended Metaclass: Port

Attributes
• name: String Name of the port in the Modelica library corresponding to a port of a platform-

independent component block
Description

A port stereotyped by ModelicaPort has an equivalent in the Modelica library. The value of the name attribute gives
the name of the corresponding port in the Modelica library.

Constraints
[1] The stereotyped port must be owned by a class stereotyped by ModelicaBlock.

11.5.2.3 ModelicaPort

Package: SysPhSLibrary
isAbstract: No
Extended Metaclass: Port

Attributes
• name: String Name of the port in the Modelica library corresponding to a port of a platform-

independent component block

Description

A port stereotyped by ModelicaPort has an equivalent in the Modelica library. The value of the name attribute gives
the name of the corresponding port in the Modelica library.

Constraints
[1] The stereotyped port must be owned by a class stereotyped by ModelicaBlock.

11.5.2.4 MultidimensionalElement

Package: SysPhSLibrary
isAbstract: No
Extended Metaclass: MultiplicityElement, Slot

Attributes

Description
The values of a slot stereotyped by MultidimensionalElement can be composed into an array with (possibly multiple)
dimensions specified by the applied stereotype. The values are composed by taking each number in the dimension list of
the applied stereotype from the last number to the second, and creating lists of that length from the result of the next higher
dimension. The last dimension number results in lists of values of the multiplicity element or a slot, while the previous
dimension number results in lists of those lists, and so on, ending at the second dimension number.

Constraints
[1] A multiplicity element stereotyped by MultidimensionalElement must be ordered and non-unique.
[2] When this stereotype is applied to a multiplicity element, the dimensions must be either all unlimited or all

• dimension: UnlimitedNatural [*] {ordered, non-unique} Dimensions of the multiplicity element or slot

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 63

positive integers.
[3] When this stereotype is applied to a multiplicity element and the dimensions are all unlimited, the lower bound

of the multiplicity element must be 0, and the upper bound of the multiplicity element must be unlimited.
[4] When this stereotype is applied to a multiplicity element and the dimensions are all be positive integers, the lower

bound and the upper bound of the multiplicity element must be equal to the product of all the dimensions.
[5] When this stereotype is applied to a slot, the dimensions must all be positive integers and the number of values of

the slot must be equal to the product of all dimensions.
[6] A slot stereotyped by MultidimensionalElement must have its defining feature stereotyped by

MultidimensionalElement.
[7] The number of dimensions of a MultidimensionalElement applied to a slot must be the same as the number of

dimensions of the MultidimensionalElement applied to the defining feature of the slot.
[8] A slot must be stereotyped by MultidimensionalElement if and only if its defining feature is stereotyped by

MultidimensionalElement with dimensions that are all unlimited.

11.5.2.5 SimulinkBlock

Package: SysPhSLibrary
isAbstract: No
Generalization: Block

Attributes
• name: String BlockType in Simulink library corresponding to a platform-independent component

block

Description
A class stereotyped by SimulinkBlock has an equivalent in the libraries of Simulink or its extensions. The value of the
name attribute gives the name of the corresponding component in the libraries of Simulink or its extensions.

11.5.2.6 SimulinkParameter

Package: SysPhSLibrary
isAbstract: No
Generalization: PhSConstant

Attributes
• name: String Name of the parameter in the Simulink library corresponding to a parameter

of a platform-independent component block

• value: ValueSpecification [0..1] Value of the parameter in the Simulink library

Description

A property stereotyped by SimulinkParameter has an equivalent parameter of a Simulink library component. The
value of the name attribute is the name of the corresponding parameter in the Simulink library, and the ‘value’
attribute gives the value of this parameter. If the value attribute is empty, the value of the parameter must be given
using initial values of the stereotyped property.

Constraints
[1] The stereotyped property must be owned by a class stereotyped by SimulinkBlock.

11.5.2.7 SimulinkPort

Package: SysPhSLibrary
isAbstract: No
Extended Metaclass: Port

Attributes
• name: String Name of the port in the Simulink library corresponding to a port of a platform-independent

component block

Description

A port stereotyped by SimulinkPort has an equivalent in the Simulink library. The value of the name attribute gives
the name of the corresponding port in the Simulink library.

64 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Constraints
[1] The stereotyped port must be owned by a class stereotyped by SimulinkBlock.

11.5.3 Platform library
This subclause defines interface blocks used in Subclause 11.3.2 to specify vector signal flows (see Subclause 11.3.1).

Figure 36: Elements for vector signal flow

«interfaceBlock»
RealVectorSignalElement

signal flows
«multidimensionalElement»{dimension=*} in rSig : Real [1..*] {redefines rSig}

signal flows
«multidimensionalElement»{dimension=*} out rSig : Real [1..*] {redefines rSig}

«interfaceBlock»
RealVectorSignalOutElement

«interfaceBlock»
RealVectorSignalInElement

signal flows
«multidimensionalElement» {dimension=*} rSig : Real [1..*]

signal flows
«multidimensionalElement»{dimension=2} in rSig : Real [2] {redefines rSig}

«interfaceBlock»
RealVectorSignal2InElement

signal flows
«multidimensionalElement»{dimension=3} in rSig : Real [3] {redefines rSig}

«interfaceBlock»
RealVectorSignal3InElement

signal flows
«multidimensionalElement»{dimension=4} in rSig : Real [4] {redefines rSig}

«interfaceBlock»
RealVectorSignal4InElement

signal flows
«multidimensionalElement»{dimension=5} in rSig : Real [5] {redefines rSig}

«interfaceBlock»
RealVectorSignal5InElement

signal flows
«multidimensionalElement»{dimension=6} in rSig : Real [6] {redefines rSig}

«interfaceBlock»
RealVectorSignal6InElement

signal flows
«multidimensionalElement»{dimension=2} out rSig : Real [2] {redefines rSig}

«interfaceBlock»
RealVectorSignal2OutElement

signal flows
«multidimensionalElement»{dimension=3} out rSig : Real [3] {redefines rSig}

«interfaceBlock»
RealVectorSignal3OutElement

signal flows
«multidimensionalElement»{dimension=4} out rSig : Real [4] {redefines rSig}

«interfaceBlock»
RealVectorSignal4OutElement

signal flows
«multidimensionalElement»{dimension=5} out rSig : Real [5] {redefines rSig}

«interfaceBlock»
RealVectorSignal5OutElement

signal flows
«multidimensionalElement»{dimension=6} out rSig : Real [6] {redefines rSig}

«interfaceBlock»
RealVectorSignal6OutElement

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 65

Annex A - Examples
(non-normative)

A1.1 Introduction
The following subannexes give example models for systems in various domains, using the simulation profile in
Clause 7, the expression language in Clause 8, and libraries in Clause 11:

• Subannex A.2: Electric circuits (analog electrical interactions).

• Subannex A.3: Signal processing (manipulation of continuously varying numeric signals).
• Subannex A.4: Hydraulics (fluid interactions).
• Subannex A.5: Humidification (physical control example modeled with signal flows and state machines).
• Subannex A.6: Cruise Control System (control example modeled with physical interactions and signal flows)..

Each section describes the system being modeled, then diagrams for internal structure, component types, properties, and
constraints.

A1.2 Electric Circuits

A.2.1 Introduction
This subannex gives a model of an electric circuit as an example of physical interaction (flow of electric charge). It
does not include any signal flows.

A.2.2 System Being Modeled
The electrical circuit has six components: ground, electrical source, inductor, capacitor, and two resistors, see
Figure 37.

Figure 37: Electric circuit example

A.2.3 Internal Structure
Figure 38 shows the internal structure of a Circuit block. Part properties, typed by blocks defined in Subannex A.2.4,
represent components of the system. They are connected through ports, which represent electrical pins, also defined in
Subannex A.2.4. Item flows on connectors indicate that electricity (electric charge) passes through the ports and flows and
between the parts. The diagram connects a voltage source in parallel with a resistor and capacitor in series, as well as a
resistor and inductor in series.

SysML initial values specify property values for components used in internal block diagrams. Figure 38 shows initial
values for resistance, capacitance, inductance, and source amplitude (properties defined in Subannex A.2.4). An
alternative for specifying initial values of part properties in the Circuit block is to specialize it and redefine the part
properties with default values for various configurations (see Subannex A.5.9).

L

Rl
+

C

G

Rc

66 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 38: Internal structure of the circuit example

A.2.4 Blocks and Ports
Figure 39 shows block definitions for components of Circuit in Figure 39. Sources, inductors, conductors, and resistors
each have one positive and one negative pin for electric charge to pass through. Since they are similar in this sense, a
generalized TwoPinElectricalComponent component is defined with positive and negative pins, p and n, as ports. The
ground has only one pin, which is positive. All ports are of type ChargeFlowElement, from the physical interaction
library (see Subclause 11.2.2). Each component has its own behaviors, defined as constraints in A.2.6. Some electricall
value types in Figure 39 are from the electrical components library (see Subclause 11.3.4). Alternatively, somee
components could be reused from that library also.

Figure 39: Electrical blocks, ports & component properties

A.2.5 Properties (variables)
Physical interaction is the movement of physical substances between system components, modeled in terms of
conserved characteristics of the substances. In this example, electric charge is the conserved characteristic of
electrons moving through the circuit. Movement of substances is described by numeric variables for flow rate and
potential to flow of their conserved characteristics. In this example, movement of charge is described by a current
variable for flow rate and a voltage variable for potential to flow. The flow rate variable is conserved (values on ends
of the interaction sum to zero) and the potential variable is not (values on ends of the interaction are the same). This is
modeled in three parts:

ibd Circuit

amp = 220.0{unit = volt}
initial values

s : Source

n

p

c = 0.01{unit = farad}
initial values

c : Capacitor

p

n

l = 0.1{unit = henry}
initial values

i : Inductor

p

n

initial values
r = 10.0{unit = ohm}

rc : Resistor

p

n

r = 20.0{unit = ohm}
initial values

ri : Resistor

p

n

g : Ground

p

ChargeCharge

Charge

Charge

bdd Circuit Components

phs constants phs variables

physical interactions
inout cF : FlowingCharge

«interfaceBlock»
«port» p

«port» p

«port» n

«block»
Ground

SysPhSLibrary::ChargeFlowElement

«block»
SysPhSLibrary::Charge

«block»
SysPhSLibrary::FlowingCharge

{isConserved} i : Current
v : Voltage

amp : Voltage

«block»
Source

phs constants
l : Inductance

«block»
Inductor

phs constants
c : Capacitance

«block»
Capacitor

phs constants
r : Resistance

«block»
Resistor

phs variables

«block»
TwoPinElectricalComponent

iThru : Current
vDrop : Voltage

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 67

• Conserved physical characteristics are modeled as blocks directly specialized from
ConservedQuantityKind in the physical interaction library (see Subclause 11.2.2), Charge in this example.

• Flow variables are modeled as properties with PhSVariable applied on specializations of conserved quantity
kind blocks. In this example, the flow rate and potential PhSVariables are i and v on FlowingCharge (i marked as
isConserved), respectively, typed by Current and Voltage, respectively, all from the physical interaction library.

• Flow in and out of components is modeled by ports typed by interface blocks that have flow properties typed
by flowing conserved quantity kinds. In this example, ports are typed by ChargeFlowElement from the
physical interaction library, which has a flow property cF typed by FlowingCharge, as shown in Figure 39.

Behavior of electrical components in this example is described by the amount of charge going in one pin and out the
other (through the component) per unit time, and the difference in potentials between their positive and negative pins
(across the component), given by the two properties iThru and vDrop on TwoPinElectricalComponent, respectively,
shown in Figure 39. These two properties are typed by Current and Voltage, respectively, from the physical interaction
library (see Subclause 11.2.2), and have the PhSVariable stereotype applied, specifying that their values might change
during simulation.

The resistor, capacitor, inductor, and source have properties r, c, l, and amp, respectively, typed by Resistance,
Capacitance, Inductance, and Voltage, respectively, and all with the PhSConstant stereotype applied, specifying that
their values do not change during each simulation run.

A.2.6 Constraints (equations)
Equations define mathematical relationships between the values of numeric variables. Equations in SysML, are
constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this example, a
constraint block BinaryElectricalComponentConstraint defines parameters and constraints common to resistors,
inductors, capacitors, and sources, as shown in Figure 40. These specify that the voltage v across the component is
equal to the difference between the voltage at the positive and negative pins. The current i through the component is
equal to the current going through the positive pin. The sum of the current going through the two pins adds up to zero
(one is the negative of the other), because the components do not create, destroy, or store charge. The constraints for the
resistor, capacitor, and inductor specify the voltage/current relationship with resistance, capacitance, and inductance,
respectively. The source constraint defines the circuit’s electrical source. The ground constraint specifies that the
voltage at the ground pin is zero. The source constraint defines the voltage across it as a sine wave with the parameter
amp as its amplitude.

Figure 40: Circuit constraint blocks

A.2.7 Constraint Properties and Bindings
Equations in constraint blocks are applied to components using binding connectors in component parametric
diagrams. Component parametric diagrams show properties typed by constraint blocks (constraint properties), as
well as component and port simulation variables and constants. Binding connectors link constraint parameters to

Circuit Constraintsbdd

parameters

posV : Real
negV : Real

i : Real

v : Real
posI : Real
negI : Real

constraints
{0=posI+negI}
{v=posV-negV}
{i=posI}

BinaryElectricalComponentConstraint
«constraint»

parameters
amp : Voltage

constraints
{v=amp*sin(2*3.14*time)}

«constraint»
SourceConstraint

parameters
c : Capacitance

constraints
{c*der(v)=i}

«constraint»
CapacitorConstraint

constraints
{r*i=v}

parameters
r : Resistance

«constraint»
ResistorConstraint

parameters
l : Inductance

constraints
{l*der(i)=v}

InductorConstraint
«constraint»

parameters
posV : Real

constraints
{posV=0}

«constraint»
GroundConstraint

68 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

simulation variables and constants, indicating their values must be the same. Figure 41 through Figure 45 show
parametric diagrams for resistors, capacitors, inductors, sources, and grounds, respectively.

Figure 41: Parametric diagram applying the resistor constraint

Figure 42: Parametric diagram applying the capacitor constraint

Figure 43: Parametric diagram applying the inductor constraint

«equal» «equal» «equal»

«equal»

«equal»

«equal»

«equal»

n

cF.i : Current

cF.v : Voltage

p

cF.i : Current

cF.v : Voltage

r : ResistancevDrop : VoltageiThru : Current

i v r

negI

negV

posI

posV

«constraint»
rC : ResistorConstraint

constraints

parameters

{r*i=v}

par Resistor

«equal» «equal» «equal»

«equal»

«equal»

«equal»

«equal»

n

cF.i : Current

cF.v : Voltage

p

cF.i : Current

cF.v : Voltage

c : CapacitancevDrop : VoltageiThru : Current

i v c

negI

negV

posI

posV

«constraint»
cC : CapacitorConstraint

constraints

parameters

{c*der(v)=i}

par Capacitor

«equal» «equal» «equal»

«equal»

«equal»

«equal»

«equal»

n

cF.i : Current

cF.v : Voltage

p

cF.i : Current

cF.v : Voltage

l : InductancevDrop : VoltageiThru : Current

i v l

negI

negV

posI

posV

«constraint»
lC : InductorConstraint

constraints

parameters

{l*der(i)=v}

par Inductor

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 69

Figure 44: Parametric diagram applying the source constraint

Figure 45: Parametric diagram applying the ground constraint

A1.3 Signal Processor

A.3.1 Introduction
This subannex gives a model of processing a sinusoidal variable as an example of signal flow. It does not include
any physical interactions.

A.3.2 System Being Modeled
The signal processor and its testbed have a wave generator, an amplifier, high-pass and low-pass frequency filters, a
mixer, and a signal sink, see Figure 46.

Figure 46: Signal processor example

A.3.3 Internal Structure
Figure 47 and Figure 48 show the internal structure of blocks TestBed and SignalProcessor, respectively. Part
properties, typed by blocks defined in Subannex A.3.4, represent the components of the system. They are connected
through ports, also defined in Subannex A.3.4, which represent signal outputs and inputs, also defined in Subannex
A.3.4. Signals pass through ports in the direction shown by the arrows. Item flows on connectors indicate that the
signals are real numbers.

Figure 47 connects a signal source to a signal processor, which it connects to a signal sink that displays the output. Figure
48 connects the signal processor input to an amplifier, the output of the amplifier to a high- pass filter in parallel with a
low-pass filter, the outputs of the filters to a mixer, and the output of the mixer to the signal processor output. SysML
initial values specify property values for components used in internal block diagrams. Figure 47shows an initial value for
source amplitude amp, while Figure 48 shows initial values for amplifier signal gain g and filtering properties xi and
alpha (defined in Subannex A.3.4). Simulink without Simscape does not have elements corresponding to initial values

«equal» «equal» «equal»

«equal»

«equal»

«equal»

«equal»

n

cF.i : Current

cF.v : Voltage

p

cF.i : Current

cF.v : Voltage

amp : VoltagevDrop : VoltageiThru : Current

i v amp

negI

negV

posI

posV

«constraint»
sC : SourceConstraint

constraints

parameters

{v=amp*sin(2*3.14*time)}

par Source

«equal»

p

cF.v : Voltage posV

{posV=0}
parameters

constraints

«constraint»
gC : GroundConstraint

par Ground

kSource Sink

70 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

on parts below the top level system (see Subclause 10.10.4). Subannex A.5.9 shows SysML models that have the same
effect as initial values and have corresponding elements in Simulink.

Figure 47: Internal structure of test bed from signal source to sink

Figure 48: Internal structure of the signal processor

A.3.4 Blocks and Ports
Figure 49 and Figure 50 show block definitions for components of TestBed and SignalProcessor in Figure 47 and
Figure 48, respectively. The output for SignalSource is named y and is typed by RealSignalOutElement, from the
signal flow library (see Subclause 11.2.1). The input for SignalSink is named u and is typed by RealSignalInElement,
also from the library. The signal processor has an input and output, transforming the signal from the source and passing
it to the sink.

In Figure 50, amplifiers, low-pass filters, and high-pass filters, each have an input and an output. Since they are similar in
this sense, a generalized TwoPinSignalComponent component has an input u and an output y. Mixers have inputs u1 and
u2, and an output y. Each kind of component has its own behaviors, defined as constraints in Subannex A.3.6.
Alternatively, some of these components could be specified using the source and sink components library (see
Subclause 11.3.2.7).

TestBedibd

scopeSignalOutput : SignalSink

u

dSP : SignalProcessor

y

u

amp = 3.0
initial values

inputSignal : SignalSource

y

Real

Real

SignalProcessoribd

yu

g = 2.0
initial values

a : Amplifier
y

u

alpha = 0.01
xi = 0.0

initial values

hPF : HighPassFilter
y

u

alpha = 3.0
initial values

xi = 0.0

lPF : LowPassFilter

u

y

m : Mixer

u2

yu1

Real

Real

Real

Real
Real

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 71

Figure 49: Total system (source to sink) blocks, ports, & component properties

Figure 50: Signal processing system blocks, ports, & component properties

A.3.5 Properties (variables)
Signal flow is the movement of numbers between system components. These numbers might reflect physical
quantities or not. In this example, they do not (see Subannex A.5 for an example where they do). Signals flowing in and out
of components are modeled by ports typed by interface blocks that have flow properties typed by numbers. In this
example, ports are typed by RealSignalOutElement and RealSignalInElement from the signal flow library (see
Subclause 11.2.1), which both have a flow property rSig typed by Real, from SysML, as shown in Figure 49. This value
type has no unit, reflecting that the signals are not measurements of physical quantities and do not follow conservation
laws.

The amplifier, filters (high-pass and low-pass), signal source, and signal sink have properties g, alpha and xi, amp, and
scope, respectively. The amp, alpha and g properties have the PhS Constant stereotype applied, specifying that their values
are constant during each simulation run. The xi and scope properties have the PhSVariable stereotype applied, specifying
that their values might vary during simulation.

«port» y

«port» y

«port» u

«port» u
phs variables

phs constants

SysPhSLibrary::RealSignalInElement

SysPhSLibrary::RealSignalOutElement

signal flows

signal flows

«interfaceBlock»

«interfaceBlock»

out rSig : Real{redefines rSig}

SignalProcessor

bdd Test Bed Components

in rSig : Real{redefines rSig}

«block»
SignalSource

«block»

SignalSink
«block»

scope : Real

amp : Real

«port» y «port» y

«port» u2«port» u1«port» u

phs constants

phs variables

phs constants phs constants

phs variables

SysPhSLibrary::RealSignalInElement

SysPhSLibrary::RealSignalOutElement
signal flows

signal flows

«interfaceBlock»

«interfaceBlock»

out rSig : Real{redefines rSig}

alpha : Timealpha : Time

out rSig : Real{redefines rSig}

«block»
Mixer

«block»
LowPassFilter

xi : Realxi : Real

«block»
Amplifier

«block»
HighPassFilter

g : Real

«block»
TwoPinSignalComponent

bdd Signal Processor Components

72 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

A.3.6 Constraints (equations)
Equations define mathematical relationships between the values of numeric variables. Equations in SysML, are
constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this example, a
constraint block BinarySignalComponentConstraint defines the parameters for one input (ip) and one output (op),
common to amplifiers, low-pass filters, and high-pass filters, as shown in Figure 51. The amplifier, low-pass filer, and
high-pass filter constraints show the input-output relationship of these components as the signal passes through them.
The amplifier changes the signal strength by a factor gain, the low-pass filter eliminates the high-frequency
components of the incoming signal, and the high-pass filter eliminates the low-frequency components of the signal. The
mixer constraint specifies the relationship between its one output and the two inputs that come from the low-pass and high-
pass filters. The constraint defines the output to be the average of the inputs. The source constraint specifies a sine
wave signal with the parameter amp as its amplitude. The sink constraint displays (scopes) the output signal from the
signal processor.

Figure 51: Signal processing system constraint blocks

A.3.7 Constraint properties and bindings
Equations in constraint blocks are applied to components using binding connectors in component parametric
diagrams. Component parametric diagrams show properties typed by constraint blocks (constraint properties), as
well as component and port simulation variables and constants. Binding connectors link constraint parameters to
simulation variables and constants, indicating their values must be the same. Figure 52 through Figure 57 show
parametric diagrams for the source, amplifier, high-pass filer, low-pass filter, mixer, and sink, respectively.

Figure 52: Parametric diagram applying signal source constraint

Signal Processor Constraintsbdd

parameters
amp : Real
output : Real

constraints
{output=amp*sin(2*3.14*time)+3*sin(3.14*time)+10*sin(2*time)}

«constraint»
SignalSourceConstraint

parameters
ip : Real
op : Real

«constraint»
BinarySignalComponentConstraint

parameters
a : Real
x : Real

constraints

{op=ip-x}
{der(x)=(1/a)*ip-(1/a)*x}

«constraint»
HighPassFilterConstraint

constraints

{op=x}
{der(x)=(1/a)*ip-(1/a)*x}

parameters
x : Real
a : Real

LowPassFilterConstraint
«constraint»

constraints
{scope=input}

parameters
scope : Real
input : Real

SignalSinkConstraint
«constraint»

constraints
{op=(ip1+ip2)/2}

parameters

op : Real

ip1 : Real
ip2 : Real

«constraint»
MixerConstraint

parameters
gain : Real

constraints
{op=ip*gain}

AmplifierConstraint
«constraint»

«equal»

«equal»

amp : Realy

rSig : Real output

amp

«constraint»
sourceC : SignalSourceConstraint

{output=amp*sin(2*3.14*time)+3*sin(3.14*time)+10*sin(2*time)}
parameters

constraints

par SignalSource

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 73

Figure 53: Parametric diagram applying the amplifier constraint

Figure 54: Parametric diagram applying the high-pass filter constraint

Figure 55: Parametric diagram applying the low-pass filter constraint

Figure 56: Parametric diagram applying the mixer constraint

g : Real

«equal»

«equal»«equal»rSig : Real rSig : Real

yu

ip opgain

«constraint»
aC : AmplifierConstraint

parameters

constraints
{op=ip*gain}

par Amplifier

alpha : Time

«equal»

«equal» «equal»

«equal»

xi : Real

rSig : RealrSig : Real

yu

ip
x a

op

parameters

constraints

«constraint»
hPFC : HighPassFilterConstraint

{der(x)=1/a*ip-1/a*x}
{op=ip-x}

par HighPassFilter

alpha : Time

«equal»

«equal» «equal»

«equal»

xi : Real

rSig : RealrSig : Real

yu

ip
x a

op

parameters

constraints

«constraint»
lPFC : LowPassFilterConstraint

{der(x)=1/a*ip-1/a*x}
{op=x}

par LowPassFilter

«equal»

«equal»

«equal»ip1

ip2

op

y

rSig : Real

rSig : Real

rSig : Real

u2

u1

«constraint»
mC : MixerConstraint

{op=(ip1+op2)/2}
parameters

constraints

par Mixer

74 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 57: Parametric diagram applying the signal sink constraint

A1.4 Hydraulics

A.4.1 Introduction
This subannex gives a model of a simple hydraulic system as an example of physical interaction (fluid flow). It does not
include any signal flows.

A.4.2 System Being Modeled
The hydraulic system has three components: two fluid reservoir tanks and a pipe for connecting these tanks, see Figure
58.

Figure 58: Hydraulics example

A.4.3 Internal Structure
Figure 59 shows the internal structure of a ConnectedTanks block. Part properties, typed by blocks defined in
Subannex A.4.4, represent components in this system. They are connected to each other through ports, which
represent openings in the tanks and pipe, also defined in Subannex A.4.4. Item flows on connectors indicate fluid passes
through the ports and between the parts. The diagram connects a tank to each end of a pipe.

SysML initial values specify property values for components used in internal block diagrams. Figure 59 shows
initial values for fluid density, gravity, tank surface area, pipe radius, pipe length, and dynamic viscosity of the
fluid (properties defined in Subannex A.4.4). An alternative for specifying initial values of part properties in the
ConnectedTanks is to specialize it and redefine the part properties with default values for various configurations (see
Subannex A.5.9).

Figure 59: Internal structure of hydraulics system

«equal»

«equal»
scope : Real scope

input

u

rSig : Real
parameters

constraints
{scope=input}

«constraint»
sinkC : SignalSinkConstraint

par SignalSink

Connecting Pipe

Fluid Tank 1 Fluid Tank 2

fluidDensity = 10.0{unit = kilogramPerCubicMeter}

gravity = 9.8{unit = meterPerSquareSecond}
tankSurfaceArea = 4.0{unit = squareMeter}

radius = 0.5{unit = meter}
pipeLength = 10.0{unit = meter}
dynamicViscosity = 2.0{unit = pascalSecond}

fluidDensity = 10.0{unit = kilogramPerCubicMeter}

gravity = 9.8{unit = meterPerSquareSecond}
tankSurfaceArea = 4.0{unit = squareMeter}

fluidLevel = 40.0{unit = meter} fluidLevel = 15.0{unit = meter}

Volume Volume

fluidReservoir2 : Tank
initial values

pipe : Pipe
initial values

fluidReservoir1 : Tank
initial values

ibd ConnectedTanks

pipeOpening2pipeOpening1

tankOpening tankOpening

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 75

A.4.4 Blocks and Ports
Figure 60 shows block definitions for components of ConnectedTanks in Figure 59. Tanks and pipes have openings
for fluid to pass through, one for tanks and two for pipes. The openings are represented by ports of type
VolumeFlowElement, from the physical interaction library (see Subclause 11.2.2). Each type of component has its own
behaviors, defined as constraints in A.4.6.

Figure 60: Hydraulics blocks, ports, & component properties

A.4.5 Properties (variables)
Physical interaction is the movement of physical substances between system components, modeled in terms of
conserved characteristics of the substances. In this example, volume is the conserved characteristic of fluid moving
between the tanks (fluids are substances that can be treated as volumes because they are incompressible, but
otherwise do not resist deformation). Movement of substances is described by numeric variables for flow rate and potential
to flow of their conserved characteristics. In this example, movement of volumes is characterized by a volume per
unit time variable for the flow rate and a pressure variable for potential to flow. The flow rate variable is conserved
(values on ends of the interaction sum to zero) and the potential variable is not (values on ends of the interaction are the
same). This is modeled in three parts:

• Conserved physical characteristics are modeled as blocks directly specialized from
ConservedQuantityKind in the physical interaction library (see Subclause 11.2.2), Volume in this example.

• Flow variables are modeled as properties with the PhSVariable stereotype applied on specializations of
conserved quantity kind blocks. In this example, the flow rate and potential PhSVariables are q and p on Flowing
Volume (q marked as isConserved), respectively, typed by VolumeFlowR ate and Pressure, respectively, all from
the physical interaction library.

• Flows in and out of components are modeled by ports typed by interface blocks that have flow properties
typed by flowing conserved quantity kinds. In this example, ports are typed by VolumeFlowElement from
the physical interaction library, which has a flow property vF typed by Flowing Volume, as shown in Figure 60.
The Tank block has a tankOpening port and the Pipe block has pipeOpening1 and pipeOpening2 ports, all
typed by VolumeFlowElement.

Behavior of the pipe in this example is described by the fluid pressure and volume flow rate at the openings. The
fluid pressure is given by the property fluidPressureDiff (difference in pressure between its two openings) and the
volume flow rate is given by the property fluidFlow (the volume of fluid going in our out the openings per unit time).
These two properties are typed by Pressure and VolumeFlowRate, respectively, from the physical interaction library
(see Subclause 11.2.2), and have the PhSVariable stereotype applied, specifying that their values might vary during
simulation.

The tank has properties fluidLevel, tankSurfaceArea, gravity, and fluidD ensity typed by Length, Area, Acceleration, and
Density, respectively. The property fluidLevel has the PhSVariable stereotype applied, because the amount of fluid in the
tank can vary during simulation, but the other properties have the

PhS Constant stereotype applied, specifying that their values do not change during each simulation run.

SysPhSLibrary::FlowingVolume

inout vF : FlowingVolume

«interfaceBlock»

«port»
pipeOpening2

physical interactions

phs variab les

phs constants

phs variab les

phs constants

phs variab les

«port»
pipeOpening1

«port»
tankOpening

{isConserved} q : VolumeFlowRate
p : Pressure

SysPhSLibrary::Volume

SysPhSLibrary::VolumeFlowElement
tankSurfaceArea : Area
gravity : Acceleration
fluidDensity : Density

fluidPressureDiff : Pressure
fluidFlow : VolumeFlowRate «block»

«block»

pipeLength : Length
radius : Length
dynamicViscosity : Viscosity
resistance : ViscousResistance

fluidLevel : Length

«block»
Pipe

«block»
Tank

Two Tank Componentsbdd

76 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

The pipe has properties pipeLength, radius, dynamic Viscosity, and resistance typed by Length, Length, Viscosity, and
ViscousResistance, respectively, and all with the PhSConstant stereotype applied.

A.4.6 Constraints (equations)
Equations define mathematical relationships between the values of numeric variables. Equations in SysML, are
constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this example, constraint
blocks PipeConstraint and TankConstraint define parameters and equations for pipes and tanks, respectively, as
shown in Figure 61.

The pipe constraints specify that the pressure pressureDiff across it is equal to the difference of fluid pressures
opening1Pressure and opening2Pressure at each end of the pipe. The fluid flow rate through the pipe, fluidFlow, is
proportional to the pressure difference by the constant resistance, which depends on the geometric properties of the pipe
as well as fluidic properties. The magnitude of fluid flow rate through the pipe fluidFlow is the same as the
magnitude of flow rates opening1FluidFlow and opening2FluidFlow going through the pipe’s openings, though the
values differ in sign. The sum of the fluid flow rates going through the two pipe openings is zero (the fluid is assumed
to be incompressible).

The tank constraints specify that the pressure in the tank, pressure depends on the height of the fluid level in the
tank, fluidHeight, as well as properties of the fluid, fluidDensity. Also, the fluid flow in the tank, fluidFlow, is related to
the change in the fluid height level fluidHeight over time and the cross-sectional surface area of the tank, surfaceArea.

Figure 61: Hydraulics model constraint blocks

A.4.7 Constraint properties and bindings
Equations in constraint blocks are applied to components using binding connectors in component parametric
diagrams. Component parametric diagrams show properties typed by constraint blocks (constraint properties), as
well as component and port simulation variables and constants. Binding connectors link constraint parameters to
simulation variables and constants, indicating their values must be the same. Figure 62 and Figure 63 show the
parametric diagrams of the tank and the pipe, respectively.

TwoTankConstraintsbdd

parameters
opening1FluidFlow : Real

viscosity : Real
length : Real

opening2FluidFlow : Real

radius : Real
pressureDiff : Real

opening2Pressure : Real

resistance : Real

opening1Pressure : Real

fluidFlow : Real

constraints

{fluidFlow=opening1FluidFlow}

{pressureDiff=opening2Pressure-opening1Pressure}
{fluidFlow=pressureDiff/resistance}

{opening1FluidFlow+opening2FluidFlow=0}

{resistance=(8*viscosity*length)/(3.1416*(radius^4))}

«constraint»
PipeConstraint

parameters

fluidFlow : Real
fluidHeight : Real

gravity : Real

pressure : Real

fluidDensity : Real

surfaceArea : Real

constraints
{pressure=gravity*fluidHeight*fluidDensity}
{der(fluidHeight)=-fluidFlow/surfaceArea}

«constraint»
TankConstraint

vF.p : Pressure

vF.q : VolumeFlowRate

tankSurfaceArea : Area

fluidLevel : Length

surfaceArea fluidDensity

{pressure=gravity*fluidHeight*fluidDensity}
{der(fluidHeight)=-fluidFlow/surfaceArea}

pressure

fluidFlow

gravity

fluidHeight

fluidDensity : Density

gravity : Acceleration

«equal»

par Tank

«equal»

«equal» «equal»

«equal»

«equal»

tankOpening

parameters

constraints

«constraint»
tC : TankConstraint

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 77

Figure 62: Parametric diagram applying the tank constraint

Figure 63: Parametric diagram applying the pipe constraint

A1.5 Humidifier

A.5.1 Introduction
This subannex gives a model of a room humidifier as an example of signal flows and state machines. Some signals in the
example reflect physical quantities, but this is not physical interaction in the sense of physical substances with flow rates
and potentials, as in Subannexes A.2 and A.4.

A.5.2 System Being Modeled
The total humidifier system has two main components: the humidified room and the humidifier, see Figure 64.
The humidifier uses information about the room’s humidity level to determine how much vapor to input to the
room. The humidifier includes a water tank, a heater controller, and a vapor generation plant.

Figure 64: Total humidifier system example

A.5.3 Internal Structure
Figure 65 through Figure 71 show the internal structure of the total humidifier system and its components
through seven nested internal block diagrams. The internal structure of the block HumidifierSystem shown in
Figure 65 uses the blocks HumidifiedRoom and Humidifier. These two blocks have their own internal structures.
The internal structure of HumidifiedRoom depicted in Figure 66 uses a block RelativeHumidity, which has an
internal structure depicted in Figure 67. The internal structure of Humidifier in Figure 68 uses a block
VaporGenerationPlant, which has an internal structure shown in Figure 69. The internal structure of
VaporGenerationPlant uses blocks Heating and Evaporation, which have internal structures depicted in Figure
70 and Figure 71, respectively. The blocks used in these diagrams are introduced in Subannex A.5.4.

Part properties, typed by blocks defined Subannex A.5.4, represent the components of the system. They are connected
to each other through ports, also defined in Subannex A.5.4, which represent signal outputs and inputs. Signals
pass through ports in the direction shown by the arrows. Item flows on connectors indicate that the signals are
real numbers.

Figure 65 connects the humidified room to the humidifier, showing vapor signals flowing from the humidifier to
the room and humidity signals flowing from the room to the humidifier. Figure 66 directs vapor, saturation vapor
pressure, and humidity signals flowing into the room to a relative humidity part that calculates the humidity flowing out
of the room.

pipeOpening2

fluidFlow : VolumeFlowRate

opening1Pressure

opening1FluidFlow

fluidFlow pressureDiff
opening2FluidFlow

opening2Pressure

{resistance=(8*viscosity*length)/(3.1416*(radius 4̂))}
{fluidFlow=pressureDiff/resistance}
{pressureDiff=opening2Pressure-opening1Pressure}
{opening1FluidFlow+opening2FluidFlow=0}
{fluidFlow=opening1FluidFlow}

fluidPressureDiff : PressurepipeLength : Length

radius : Length

resistance : ViscousResistance«equal»

«equal»

«equal»

«equal» «equal» «equal»

«equal»

«equal»

«equal»

«equal»

pipeOpening1

par Pipe

radius

length

viscosity

resistance

parameters

constraints

«constraint»
pC : PipeConstraint

vF.q : VolumeFlowRate

vF.p : Pressure

dynamicViscosity : Viscosity

vF.p : Pressure

vF.q : VolumeFlowRate

Humidified Room Humidifier

Room Humidity

78 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 67 directs incoming vapor signals to a vapor pressure calculation part, which connects to the relative humidity
calculation to output pressure signals. This figure also directs incoming saturation vapor pressure signals to the relative
humidity calculation, as well as humidity signals to a humidity balance part, which connects to the relative humidity
calculation to output a humidity change signal, which is directed to the output of this internal structure.

Figure 68 transforms humidity signals flowing to the humidifier into vapor signals flowing out of the humidifier. This
is done using a heater control state machine, a usage scenario state machine, another controller state machine,
information from the water tank’s water volume, and information from the vapor generation plant. The state machines
for the heater control, control, and usage scenario parts in Figure 68 are explained in A.5.8.

Figure 69 directs incoming heater power ratio signals to the vapor generation plant calculation part and incoming
water fan signals to the radiation part. Connectors between the vapor generation plant calculation and radiation parts
and the heating and evaporation parts result in vapor signal outputs from the evaporation part and temperature signal
outputs from the heating part.

Figure 70 directs energy signals to the temperature increase part, which connects to the heating calculation to output
temperature-increase signals, which is directed to the output of this internal structure. Figure 70 directs input energy
and temperature signals to evaporation calculation parts, one of which outputs vapor signals for the internal structure.

Initial values for the properties of components in Figure 66 through Figure 71 in Subannex A.5.4 cannot be specified in
internal block diagrams, as in the other subannexes, at least if Simulink is one of the platforms. Simulink without Simscape
does not have elements corresponding to initial values on parts below the top- level system (see Subclause 10.10.4), and
Simscape has no corresponding elements for state machines (see 10.12.4). Subannex A.5.9 shows how to get the effect
of initial values in this example by specializing blocks and redefining their properties with default values.

Figure 65: Internal structure of the total humidifier system

Figure 66: Internal structure of the humidified room

Figure 67: Internal structure of relative humidity

humidifier : Humidifierroom : HumidifiedRoom

ibd HumidifierSystem

humidityOut

vaporIn vaporOut

humidityInReal

Real

sVP : SaturationVaporPressure

rH : RelativeHumidity

mLpH2mLpS : VolumeConversion

toPercentage : PercentageConversion

ibd HumidifiedRoom

Real

Real

Real

Real

Real

humidityOut

op
ip

satVaporPressureOut

humidityOut

satVaporPressureIn

humidityIn

vaporIn

op

ip

vaporIn

hB : HumidityBalance

vPC : VaporPressureCalculation

relHumCalc : RelativeHumidityCalculation

humidityOut

Real

Real

Real

Real

Real

Real

vaporIn

satVaporPressureIn

humidityIn

vapor

pressure

ipPress

opHum

ipChange

ipSat

change

humidity

ibd RelativeHumidity

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 79

Figure 68: Internal structure of the humidifier

Figure 69: Internal structure of the vapor generation plant

Figure 70: Internal structure of heating

heaterControl : HeaterControl

vaporGenerationPlant : VaporGenerationPlant

waterTank : WaterTank

control : Control

usage : UsageScenario

vaporOut

humidityIn

Real

Real

Real

Real
Real

Real

Real

Real

vaporOut

heaterPowerRatioIn

temperatureOut

heaterPowerRatioOut

fanWatIn

fanPowerOut waterTemperatureIn

mode

modeIn

swtch

swtch

waterVolumeIn

waterVolumeOut

consumptionIn

humidityIn
ibd Humidifier

temperatureOut

vGPC : VaporGenerationPlantCalculation

r : Radiation

h : Heating

e : Evaporation

temperatureOut

Real

temperatureIn

vaporOut

vaporOut

Real

energyWatIn

energyWatIn

Real

opEnergy

temperatureIn

radiationWaterOut

fanWatIn

fanWatIn

ipRadiation

Real

Real

Real

ipHtrPwr

heaterPowerRatioIn

ibd VaporGenerationPlant

tI : TemperatureIncrease
hC : HeatingCalculation

energyWatIn

Real

energy

increase

Real
ipTempInc opTemp

temperatureOut

Real

ibd Heating

80 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 71: Internal structure of evaporation

A.5.4 Blocks and ports
Figure 72 through Figure 78 show block definitions for component used in the internal block diagrams shown in Figure
65 through Figure 71, respectively (one each for the total humidifier system, humidified room, relative humidity,
humidifier, vapor generation plant, heating, and environment components). All ports are typed by RealSignalInElement
from the signal flow library (see Subclause 11.2.1). A tilde (~) next to a port name indicates that it receives signals
(conjugated port type), otherwise the port sends signals (the tilde normally appears before the type name, after a colon,
but port types are omitted from the figures for brevity, because they are all the same; compare to the signal port types
in Subannex A.3. Component blocks that do not have internal block diagrams in A.5.3 have their behaviors defined as
constraints in Subannex A.5.6.

Figure 72: Total humidifier system blocks, ports, & component properties

Figure 73: Humidified room blocks, ports, & component properties

eC : EvaporationCalculation

eC2 : EvaporationCalculation2

energy

vaporOutopVapor

vapor

ipVapor

ipTemperaturetemperatureIn

energyWatIn

Real

Real

Real

Real

Evaporationibd

SysPhSLibrary::RealSignalInElement

signal flows

«interfaceBlock»

«port»
vaporIn

«port»
humidityOut

«port»
vaporOut

«port»
humidityIn

in rSig : Real{redefines rSig}

Humidifier
«block»

HumidifiedRoom
«block»

bdd Humidifier System Components

SysPhSLibrary::RealSignalInElement
signal flows

in rSig : Real{redefines rSig}

«port»
humidityOut

phs constants

phs constants

phs constants

«port»
vaporIn

«port»
humidityIn

«port»
satVaporPressureIn

«port» op

«port» ip

«port» satVaporPressureOut

«port» ip

«port» op

«interfaceBlock»

VolumeConversion
«block»

RelativeHumidity
«block»

PercentageConversion
«block»

SaturationVaporPressure
«block»

gain : Realgain : Real

p2 : Real
roomTemperature : Real
p1 : Real
logBase : Real
celciusOffset : Real
hPa2Pa : Real

bdd Humidified Room Components

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 81

Figure 74: Relative humidity blocks, ports, & component properties

Figure 75: Humidifier blocks, ports, & component properties

Figure 76: Vapor generation plant blocks, ports, & component properties

SysPhSLibrary::RealSignalInElement

signal flows
in rSig : Real{redefines rSig}

phs constants
«port»

humidity «interfaceBlock»

«port»
change

«port»
ipChange

«port»
opHum

«port»
ipSat

«port»
ipPress

«port»
pressure

«port»
vapor

phs variables

phs constants
roomTemperature : Real
gasConst : Real
molecularW : Real
celciusOffset : Real
volume : Real

airExchangeRate : Real
envHumidity : Real
volume : Real

HumidityBalance
«block»

VaporPressureCalculation
«block»

RelativeHumidityCalculation
«block»

xInt : Real

bdd Relative Humidity Components

SysPhSLibrary::RealSignalInElement

in rSig : Real{redefines rSig}

«port» waterTemperatureIn

«interfaceBlock»

phs variables

phs constants

«port» swtch

«port» heaterPowerRatioOut
«port»
modeIn

«port»
humidityIn

«port»
consumptionIn

«port»
waterVolumeOut

«port» heaterPowerRatioIn

«port» fanWatIn
«port» vaporOut

«port» temperatureOut

«port»
fanPowerOut

«port»
swtch

«port»
mode

«port»
waterVolumeIn

signal flows

phs constantsphs constants
prLow : Real
prHigh : Real
threshold : Real
targetHumidityIn : Real

bdd Humidifier Components

tankVolume : Real
litpSec2mLiptHr : Real

xInteg : Real

HeaterControl WaterTank
«block» «block»

VaporGenerationPlant
«block»UsageScenario

«block»

safeTemperature : Real

Control
«block»

SysPhSLibrary::RealSignalInElement

in rSig : Real{redefines rSig}

«interfaceBlock»

phs constants

«port»

signal flows
«port»

«port»

«port» «port» «port»

«port»

«port»

«port»
«port»«port»

radiationWaterOut

temperatureIn

fanWatIn
temperatureOutenergyWatIn

«block»
Heating

«block»
Evaporation

temperatureIn

energyWatIn

vaporOut

ipRadiation opEnergy ipHtrPwr

maxHeaterPower : Real

«block»
VaporGenerationPlantCalculation

bdd Vapor Generation Plant Components

phs constants
roomTemperature : Real
radiationFactor : Real
fanEfficiency : Real

Radiation
«block»

82 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 77: Heating blocks, ports, & component properties

Figure 78: Evaporation blocks, ports, & component properties

A.5.5 Properties (variables)
Signals flow is the movement of numbers between system components. These numbers might reflect physical
quantities or not. In this example, they do (see Subannex A.3 for an example where they do not). Signals flowing in and
out of components are modeled by ports typed by interface blocks that have flow properties typed by numbers. In this
example, ports are typed by RealSignalInElement from the signal flow library (see Subclause 11.2.1), which has a flow
property rSig typed by Real, from SysML, as shown in Figure 72. This value type has no unit, even when they reflect
physical quantities, and the values do not follow conservation laws.

The blocks RelativeHumidityCalculation (Figure 74), WaterTank (Figure 75), and HeatingCalculation (Figure 77)
have properties with PhSVariable stereotypes applied, specifying that the value of these properties may vary during
simulation. The blocks Saturation VaporPressure (Figure 73), PercentageConversion (Figure 73),
VolumeConversion (Figure 73), HumidityBalance (Figure 74), VaporPressureCalculation (Figure 74), WaterTank
(Figure 75), HeaterControl (Figure 75), Control (Figure 75), Radiation (Figure 76),
VaporGenerationPlantCalculation (Figure 76), TemperatureIncrease (Figure 77), EvaporationCalculation2 (Figure
78), and EvaporationCalculation (Figure 78), have properties with PhS Constant stereotypes applied, specifying that
the value of these properties are constant during each simulation run.

A.5.6 Constraints (equations)
Equations define mathematical relationships between the values of numeric variables. Equations in SysML, are
constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this example, the
constraint blocks in Figure 79 each define parameters and constraints for a component block in Figure 73 through
Figure 78: VolumeConversion, PercentageConversion, and Saturation VaporPressure in Figure 73;
RelativeHumidityCalculation, VaporePressureCalculation, and HumidityBalance in Figure 74; WaterTank in Figure
75; Radiation and VaporGenerationPlantCalculation in Figure 76; HeatingCalculation and TemperatureIncrease in
Figure 77; and EvaporationCalculation and EvaporationCalculation2 in Figure 78. The constraint blocks have the
name of their components with the suffix “-Constraint” added. The constraints specify manipulation of signals between
inputs and outputs of their component block.

phs constants

«port»

phs variables

«port» «port» «port»
increase energy ipTempInc opTemp

specificHeat : Real
waterVolume : Real xIntg : Real

«block»
«block»

HeatingCalculation
TemperatureIncrease

Heating Componentsbdd

«interfaceBlock»
SysPhSLibrary::RealSignalInElement

signal flows
in rSig : Real{redefines rSig}

phs constants

«port»

phs constants

«port» «port» «port» «port»
energy vapor ipVapor opVapor ipTemperature

evaporationHeat : Real
specificHeat : Real
boilingTemperature : Real
environmentTemperature : Real

boilingTemperature : Real
noPower : Real
litPSec2mLitPHour : Real

«block»«block»
EvaporationCalculation2EvaporationCalculation

Evaporation Componentsbdd

SysPhSLibrary::RealSignalInElement

in rSig : Real{redefines rSig}

«interfaceBlock»

signal flows

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 83

Figure 79: Humidifier constraint blocks

Humidifier System Constraintsbdd

constraints
{vapOut=g*(((max(min(vapor,1),0))*max((temp-boil),0)/(temp-boil))+np*(max((boil-temp),0)/(boil-temp)))}

parameters

temp : Real

vapor : Real
boil : Real

g : Real
np : Real

vapOut : Real

«constraint»
EvaporationCalculation2Constraint

{svpOut=hPa2Pa*(c1*exp((log(logBase)*((c2*roomTemp)/(roomTemp+celciusOff)))))}
constraints

parameters

c2 : Real
logBase : Real
c1 : Real

svpOut : Real

celciusOff : Real
roomTemp : Real

hPa2Pa : Real

SaturationVaporPressureConstraint
«constraint»

parameters

envTemp : Real

vapor : Real
evaporationHeat : Real

energy : Real

boilingTemperature : Real
specificHeat : Real

constraints
{vapor=energy/(evaporationHeat+specificHeat*(boilingTemperature-envTemp))}

EvaporationCalculationConstraint
«constraint»

{pressure=vapor*(gasConst*((roomTemp+celciusOff)/(molecularW*volume)))}
constraints

pressure : Real

celciusOff : Real
molecularW : Real

vapor : Real
gasConst : Real

parameters

roomTemp : Real

volume : Real

VaporPressureCalculationConstraint
«constraint»

parameters

radiationFactor : Real

radiationWatOut : Real

tempIn : Real

roomTmp : Real

fanWatIn : Real

fanEff : Real

constraints
{radiationWatOut=(tempIn-roomTmp)*(radiationFactor+(fanWatIn*fanEff))}

RadiationConstraint
«constraint»

parameters

radiation : Real

energy : Real
maxPwr : Real
htrPwr : Real

constraints
{energy=((maxPwr*htrPwr)-radiation)}

VaporGenerationPlantCalculationConstraint
«constraint»

change : Real

airExRate : Real

humidity : Real

parameters

volume : Real
envH : Real

{change=((humidity-envH)*(volume*airExRate))}
constraints

HumidityBalanceConstraint
«constraint»

parameters

waterVolume : Real

energy : Real
specificHeat : Real

increase : Real

constraints
{increase=energy/(specificHeat*waterVolume)}

«constraint»
TemperatureIncreaseConstraint

parameters

g : Real
op : Real
ip : Real

constraints
{op=ip*g}

PercentageConversionConstraint
«constraint»

constraints
{hum=max(min(1,x),0)}
{der(x)=((press/satVap)-change)/c2}

parameters

press : Real

hum : Real

satVap : Real

c2 : Real

x : Real

change : Real

«constraint»
RelativeHumidityCalculationConstraint

op : Real
parameters

g : Real
ip : Real

constraints
{op=ip*g}

«constraint»
VolumeConversionConstraint

constraints
{tOut=max(min(100,x),0)}
{der(x)=tInc/c1}

parameters

tInc : Real
x : Real
tOut : Real

c1 : Real

HeatingCalculationConstraint
«constraint»

constraints

{der(x)=consIn/lpsmh}
{watV=tankVol-min(50000,x)}

parameters

x : Real

lpsmh : Real
consIn : Real

tankVol : Real
watV : Real

«constraint»
W aterTankConstraint

84 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

A.5.7 Constraint Properties & Bindings
Equations in constraint blocks are applied to components using binding connectors in component parametric
diagrams. Component parametric diagrams show properties typed by constraint blocks (constraint properties), as
well as component and port simulation variables and constants. Binding connectors link constraint parameters to
simulation variables and constants, indicating their values must be the same. Figure 80 through Figure 92 show the
parametric diagrams for the blocks VolumeConversion, PercentageConversion, Saturation VaporPressure,
HumidityBalance, RelativeHumidityCalculation, VaporPressureCalculation, VaporGenerationPlantCalculation,
Radiation, HeatingCalculation, TemperatureIncrease, EvaporationCalculation, EvaporationCalculation2, and
WaterTank, respectively.

Figure 80: Parametric diagram applying the volume conversion constraint

Figure 81: Parametric diagram applying the percentage conversion constraint

Figure 82: Parametric diagram applying the saturation vapor pressure constraint

«equal»

«equal»

«equal»

ip

rSig : Real

gain : Real

op
{op=ip*g}

rSig : Realop
g

ip

«constraint»
vCC : VolumeConversionConstraint

constraints

parameters

par VolumeConversion

«equal»

«equal»

«equal»

par PercentageConversion

ip

rSig : Real

gain : Real

rSig : Real

op

g
op

ip

«constraint»
pCC : PercentageConversionConstraint

{op=ip*g}
constraints

parameters

«equal»

«equal»
«equal» «equal» «equal»

«equal»

«equal»
rSig : Real

satVaporPressureOut

logBase : Real

roomTemperature : Real
p2 : Real hPa2Pa : Real celciusOffset : Real p1 : Real

logBase

roomTemp c2 hPa2Pa celciusOff c1

svpOut

«constraint»
sVPC : SaturationVaporPressureConstraint

parameters

constraints
{svpOut=hPa2Pa*(c1*exp((log(logBase)*((c2*roomTemp)/(roomTemp+celciusOff)))))}

par SaturationVaporPressure

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 85

Figure 83: Parametric diagram applying the humidity balance constraint

Figure 84: Parametric diagram applying the relative humidity calculation constraint

Figure 85: Parametric diagram applying the vapor pressure calculation constraint

«equal»

«equal»

«equal» «equal»

«equal»

par HumidityBalance

change

rSig : Real

volume : Real

airExchangeRate : Real envHumidity : Real

change
envHairExRate

humidity

volume

«constraint»
hBC : HumidityBalanceConstraint

constraints
{change=((humidity-envH)*(volume*airExRate))}

parameters

humidity

rSig : Real

«equal»

«equal»
«equal»

«equal»

«equal»

par RelativeHumidityCalculation

«constraint»
rHCC : RelativeHumidityCalculationConstraint

constraints

parameters

{hum=max(min(1,x),0)}
{der(x)=(press/satVap)-change}

press

satVap

x

hum

change

xInt : Real

rSig : Real

opHum

ipChange

rSig : Real

rSig : Real

ipPress

ipSat

rSig : Real

«equal»

«equal»

«equal»

«equal» «equal» «equal»

«equal»rSig : Real rSig : Real

gasConst : Real

volume : Real
roomTemperature : Real

celciusOffset : Real molecularW : Real

pressurevapor

pressure

vapor

gasConst

volume roomTemp celciusOff molecularW

par VaporPressureCalculation

parameters

constraints

«constraint»
vPCC : VaporPressureCalculationConstraint

{pressure=vapor*(gasConst*((roomTemp+celciusOff)/(molecularW*volume)))}

86 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 86: Parametric diagram applying the vapor generation plant calculation constraint

Figure 87: Parametric diagram applying the radiation constraint

Figure 88: Parametric diagram applying the heating calculation constraint

«equal»

«equal»

«equal»

«equal» rSig : Real

opEnergy

energy
maxPwr

maxHeaterPower : Real
rSig : Real

radiation

htrPwr

ipRadiation

rSig : Real

ipHtrPwr

par VaporGenerationPlantCalculation

«constraint»
vGPCC : VaporGenerationPlantCalculationConstraint

constraints

parameters
{energy=((maxPwr*htrPwr)-radiation)}

«equal»

«equal» «equal» «equal» «equal»

«equal»

par Radiation

rSig : Real

temperatureIn radiationWaterOut

fatWatIn

rSig : Real

rSig : RealtempIn

fanWatIn roomTmp radiationFactor fanEff

radiationWatOut

«constraint»
rC : RadiationConstraint

{radiationWatOut=(tempIn-roomTmp)*(radiationFactor+(fanWatIn*fanEff))}
parameters

constraints

roomTemperature : Real radiationFactor : Real fanEfficiency : Real

«equal»

«equal»

«equal»

par HeatingCalculation

rSig : Real

ipTempInc

rSig : Real

opTemp

xIntg : Real

«constraint»
hCC : HeatingCalculationConstraint

x tOuttInc
parameters

constraints
{tOut=max(min(100,x),0)}
{der(x)=tInc}

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 87

Figure 89: Parametric diagram applying temperature increase constraint

Figure 90: Parametric diagram applying the evaporation calculation constraint

Figure 91: Parametric diagram applying the second evaporation calculation constraint

«equal»

«equal» «equal»

«equal»
rSig : Real

energy

rSig : Real

increase

par TemperatureIncrease

waterVolume

increaseenergy

specificHeat

«constraint»
tIC : TemperatureIncreaseConstraint

parameters

constraints
{increase=energy/(specificHeat*waterVolume)}

specificHeat : Real waterVolume : Real

«equal»

«equal» «equal» «equal» «equal»

«equal»
energy

envTemp specificHeat boilingTemperature evaporationHeat

vapor

vapor

rSig : Real
rSig : Real

energy

environmentTemperature : Real specificHeat : Real boilingTemperature : Real evaporationHeat : Real

EvaporationCalculationpar
«constraint»

eCC : EvaporationCalculationConstraint
constraints

parameters
{vapor=energy/(evaporationHeat+specificHeat*(boilingTemperature-envTemp))}

«equal»

«equal»

«equal» «equal» «equal»

«equal»temp

vapor boil np g
vapOut rSig : Real

opVapor

litPSec2mLitPHour : RealnoPower : RealboilingTemperature : Real

rSig : Real

ipVapor

rSig : Real

ipTemperature

EvaporationCalculation2par
«constraint»

eC2C : EvaporationCalculation2Constraint
constraints

parameters
{vapOut=g*(((max(min(vapor,1),0))*max((temp-boil),0)/(temp-boil))+np*(max((boil-temp),0)/(boil-temp)))}

«equal»

«equal» «equal»

«equal»

«equal»

consIn

lpsmh x

watV

tankVol

rSig : Real

waterVolumeOut

tankVolume : RealxInteg : ReallitpSec2mLitpHr : Real

rSig : Real

consumptionIn parameters

{watV=tankVol-min(50000,x)}
{der(x)=consIn/lpsmh}

constraints

wTC : WaterTankConstraint
«constraint»

par WaterTank

88 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 92: Parametric diagram applying the water tank constraint

A.5.8 State Machines
The state machine diagrams in this example specify how components react to changes by showing states of each
component and the transition between these states. StateFlow only extends Simulink (see Subclause 10.12.4), which
affects modeling of initial values (see Subannex A.5.9).

Figure 93 depicts the state machine of the block HeaterControl, the type of the heatercontrol property in the Humidifier
internal block diagram (see Figure 68). The machine uses information from the block’s ports to decide whether to
operate the heater controller: the humidified room’s current humidity from the input humidityIn, the target humidity from
the property targetHumidity, and the control signal from the input modeIn. Its decision is sent to the vapor generation
plant along the connection from the pin heaterPowerRatioOut.

Figure 94 depicts the state machine of the block Control, the type of the control property in the Humidifier internal
structure (Figure 68). The machine determines the operation of the heater controller heatercontrol and the vapor
generation plant vaporgenerationplant based on information received from the Control block’s ports: a water volume
signal water Volum eIn from the property watertank, a water temperature signal waterTempIn from
vaporgenerationplant, and a switch decision signal swtch from usage.

Figure 95 depicts the state machine of the block UsageScenario, the type of the usage property in the Humidifier
internal structure (Figure 68). The part property usage connects to the control part property with a signal from port
swtch for the state machine UsageScenario to determine the time and duration for which the humidifier should
humidify the room.

Figure 93: Heater Control State Machine Diagram

Figure 94: Humidifier Control State Machine Diagram

Figure 95: Humidifier Usage Scenario State Machine Diagram

A.5.9 Initial Values
Initial values are specified by block property redefinitions with default values in this example. This is necessary
because StateFlow only extends Simulink (see Subclause 10.12.4), one of the desired platforms, and Simulink without
Simscape does not have elements corresponding to SysML initial values on parts below the top level system (see

entry / turnOff

entry / turnOn

HeaterControlSMstm

when (modeIn.rSig==1 and humidityIn.rSig<targetHumidityIn-threshold)

when (modeIn.rSig==0)

when (humidityIn.rSig>targetHumidityIn)

On

Off

entry / warmupActivity

entry / cooldownActivity

entry / onActivityentry / offActivity

ControlStateMachinestm

Off On

WarmUp

CoolDown

when (swtch.rSig==1)

when (swtch.rSig==0) when (swtch.rSig==0)

when (waterTemperatureIn.rSig>=99)

when (waterVolumeIn.rSig==0)when (waterTemperatureIn.rSig<=safeTemperature)

after (300) after (3300)
Started

On
entry / turnOn entry / turnOff

Off

UsageScenarioStateMachinestm

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 89

Subclause 10.10.4). SysML models must specialize component blocks to redefine properties and give default values,
rather than use initial values, if they are to have corresponding elements in Simulink.

Each configuration (scenario) of values requires its own specializations and redefinitions, starting with a specialization the
total system block. Blocks typing part properties of the specialized total system block (and any of their parts,
recursively) are also specialized when they have values to be specified. The additional blocks in Figure 96 through
Figure 102 are specialized from component blocks in Figure 72 through Figure 78, respectively (for parts of the total
humidifier system, humidified room, relative humidity, humidifier, vapor generation plant, heating, and environment
components). For example, Figure 96 shows HumidifierSystemScenario1 specialized from the total system block.
Specialized blocks have the name of their general components with the suffix “-1 ”, indicating that this specialization is
for the first scenario. Part property redefinitions with default values are indicated on each specialized block.

Figure 96: Humidifier System Scenario Initial Values

Figure 97: Humidified Room Scenario Initial Values

HumidifierSystemScenario1bdd
«block»

HumidifierSystem

«block»
Humidifier

«block»
HumidifierSystemScenario1

«block»
HumidifiedRoom

{redefines humidifierSystem}humidifierSystem {redefines room}room

«block»
Humidifier1

«block»
HumidifiedRoom1

parts parts
watertank : WaterTank1{redefines watertank}
heaterControl : HeaterControl1{redefines heaterControl}
control : Control1{redefines control}
vaporGenerationPlant : VaporGenerationPlant1{redefines vaporGenerationPlant}
usage : UsageScenario1{redefines usage}

toPercentage : PercentageConversion1{redefines toPercentage}
mLpH2mLpS : VolumeConversion1{redefines mLpH2mLpS}
sVP : SaturationVaporPressure1{redefines sVP}
rH : RelativeHumidity1{redefines rH}

phs constants

phs constants

phs constants

HumidifiedRoomScenario1bdd

«block»

sVP {redefines sVP}

rH
{redefines rH}

mLpH2mLpS
{redefines mLpH2mLpS}

toPercentage
{redefines toPercentage}

SaturationVaporPressure

SaturationVaporPressure1
«block»

p2 : Real = 7.5{redefines p2}
roomTemperature : Real = 30.0{redefines roomTemperature}
p1 : Real = 6.11{redefines p1}
logBase : Real = 10.0{redefines logBase}
celciusOffset : Real = 273.0{redefines celciusOffset}
hPa2Pa : Real = 100.0{redefines hPa2Pa}

«block»
RelativeHumidity

RelativeHumidity1
«block»

parts
hB : HumidityBalance1{redefines hB}
vPC : VaporPressureCalculation1{redefines vPC}
relHumCalc : RelativeHumidityCalculation1{redefines relHumCalc}

«block»
HumidifiedRoom1

gain : Real = 100.0{redefines gain}

gain : Real = 2.8E-4{redefines gain}

«block»
VolumeConversion1

«block»
VolumeConversion

«block»
PercentageConversion

«block»
PercentageConversion1

90 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 98: Relative Humidity Scenario Initial Values

Figure 99: Humidifier Scenario Initial Values

phs constants

phs constants

phs constants

RelativeHumidityScenario1bdd

«block»

«block»

«block»

«block» «block»

«block»

«block»

HumidityBalance

HumidityBalance1

VaporPressureCalculation VaporPressureCalculation1

RelativeHumidityCalculation1

RelativeHumidityCalculationRelativeHumidity

hB {redefines hB}

{redefines vPC}vPC

{redefines relHumCalc}
relHumCalc

airExchangeRate : Real = 1.0E-8{redefines airExchangeRate}
envHumidity : Real = 0.35{redefines envHumidity}
volume : Real = 25000.0{redefines volume}

C2 : Time = 1.0{redefines C2, unit=second}

roomTemperature : Real = 30.0{redefines roomTemperature}
gasConst : Real = 8.314{redefines gasConst}
molecularW : Real = 18.015{redefines molecularW}
celciusOffset : Real = 273.0{redefines celciusOffset}
volume : Real = 25000.0{redefines volume}

phs constants

phs constants

phs constants

HumidifierScenario1bdd

«block»

«block»

«block»

VaporGenerationPlant

«block»
Humidifier1

«block»
UsageScenario

UsageScenario1
«block»

usage
{redefines usage}

{redefines vaporGenerationPlant}

vaporGenerationPlantVaporGenerationPlant1
parts

r : Radiation1{redefines r}

control

heaterControl

watertank

{redefines control}

{redefines heaterControl}

{redefines watertank}

vGPC : VaporGenerationPlantCalculation1{redefines vGPC}
h : Heating1{redefines h}
e : Evaporation1{redefines e}

Control1

safeTemperature : Real = 50.0{redefines safeTemperature}

HeaterControl1

Control
«block»

HeaterControl
«block»«block»

«block»
WaterTank

«block»
WaterTank1

prLow : Real = 0.0{redefines prLow}
prHigh : Real = 1.0{redefines prHigh}
threshold : Real = 0.5{redefines threshold}
targetHumidityIn : Real = 50.0{redefines targetHumidityIn}

tankVolume : Real = 50000.0{redefines tankVolume}
litpSec2mLitpHr : Time = 3600000.0{redefines litpSec2mLitpHr, unit = second}

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 91

Figure 100: Vapor Generation Plant Scenario Initial Values

Figure 101: Heating Scenario Initial Values

Figure 102: Evaporation Scenario Initial Values

phs constants

phs constants

VaporGenerationPlantScenario1bdd

«block»

«block»

«block»

«block»

«block»

«block»«block»«block»«block»

Radiation

VaporGenerationPlant1

VaporGenerationPlantCalculation

VaporGenerationPlantCalculation1

EvaporationEvaporation1Heating1Heating

r {redefines r}

{redefines vGPC}

{redefines e}{redefines h}
eh

vGPC

parts parts

roomTemperature : Real = 30.0{redefines roomTemperature}
radiationFactor : Real = 0.1{redefines radiationFactor}
fanEfficiency : Real = 0.1{redefines fanEfficiency} maxHeaterPower : Real = 400.0{redefines maxHeaterPower}

tI : TemperatureIncrease1{redefines tI}
hC : HeatingCalculation1{redefines hC}

eC : EvaporationCalculationScenario1{redefines eC}
eC2 : EvaporationCalculation2Scenario1{redefines eC2}

phs constants
phs constants

HeatingScenario1

Heating1
«block»

bdd

«block»
HeatingCalculation

«block»
TemperatureIncrease

«block»
TemperatureIncrease1«block»

HeatingCalculation1

hC
{redefines hC}

tI
{redefines tI}

C1 : Time = 1.0{redefines C1,unit = second}
specificHeat : Real = 4180.0{redefines specificHeat}
waterVolume : Real = 0.1{redefines waterVolume}

EvaporationScenario1

«block»

«block»

«block»
Evaporation1

EvaporationCalculation EvaporationCalculation2

eC2
eC {redefines eC} {redefines eC2}

«block» «block»EvaporationCalculationScenario1 EvaporationCalculation2Scenario1
phs constants

phs constantsevaporationHeat : Real = 2270.0{redefines evaporationHeat}
specificHeat : Real = 1.996{redefines specificHeat}
boilingTemperature : Real = 100.0{redefines boilingTemperature}
environmentTemperature : Real = 20.0{redefines environmentTemperature}

boilingTemperature : Real = 99.99{redefines boilingTemperature}
noPower : Real = 0.0{redefines noPower}
litPSec2mLitPHour : Real = 3600000.0{redefines litPSec2mLitPHour}

92 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

A1.6A1.1 Cruise Control System

A.7.0A.1.1 Introduction
This subannex gives a model of a cruise control system as an example that includes both physical interaction
(linear and angular momentum) and signal flow (control and sensory signals).

A.9.0A.1.1 System Being Modeled
The automobile cruise control total system includes the vehicle, its operating environment, and the physical and
informational processes involved, see Figure 103: Cruise control system example (physical interactions are shown with
solid, bidirectional arrows between system components, and signal flows with dashed, unidirectional arrows).

Figure 103: Cruise control system example

A.13.0A.1.1 Internal Structure
Figure 104 shows the internal structure of a CruiseControlTotalSystem block. Part properties, typed by blocks defined
in Subannex A.6.4, represent components of the system. They are connected to each other directly or through ports,
representing physical interaction or signal flow between them. Item flows on connectors indicate the type of signal or
conserved physical characteristic that passes along them. Signals control production of angular momentum by the engine.
The cruise controller (speedController) receives speed signals from the driver (driver) and the wheels (impeller), where
the former is the goal speed and the latter is the current speed. The cruise controller determines speed adjustments by
sending the engine (powerSource) a signal containing the amount of fuel needed to inject into the engine. Angular
momentum typically flows out from the engine to the wheels and is transformed to linear momentum back into the car
through interaction with the road. This appears in Figure 105 as a connector between wheel and automobile supported by an
association block specifying the transformation, as well as another connector between the wheel and road to depict the
contact between the two. The car's linear momentum is also affected by gravitation (gravVehicleLink) and surrounding
air (atmosphere), appearing in Figure 104 as additional connectors between the car and these components.

SysML initial values specify property values for components used in internal block diagrams. Figure 104 shows initial
values and units for each of the system components (properties defined in Subannex A.6.4). The car gives its cross-
sectional area, drag coefficient, and mass. The driver specifies values for decisions about the car’s speed. The cruise
controller gives its proportional-integrator and throttle-acceleration coefficients that determine the amount of fuel
injected into the engine. The engine specifies its torque coefficient, related to the gears and crankshaft of the car. The
wheel has a radius and a coefficient for dissipation of angular momentum into heat due to rolling resistance. Earth
specifies its gravity and density of its atmosphere. The road gives values determining its slope. Initial values are specified
directly on CruiseControlTotalSystem for brevity, but could be on specializations instead, defining multiple test cases
without modifying the original system model. An alternative to initial values is to use default values on blocks typing
system properties (see Subannex A.5.9).

A1.6 Cruise Control System

Signal flow:
Physical interaction:

Angular
momentum

Desired
speed

Fuel
intake

control

To rolling resistance
(angular momentum

converted to heat)

Between air & car
(linear momentum)

between gravitational
field & car

(linear momentum)

Between wheel and car
(angular momentum
converted from/ to linear
via road)

Wheel rotation
rate

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 93

A.6.1 Introduction
This subannex gives a model of a cruise control system as an example that includes both physical interaction
(linear and angular momentum) and signal flow (control and sensory signals).

A.6.2 System Being Modeled
The automobile cruise control total system includes the vehicle, its operating environment, and the physical and
informational processes involved, see Figure 103: Cruise control system example (physical interactions are shown with
solid, bidirectional arrows between system components, and signal flows with dashed, unidirectional arrows).

Figure 103: Cruise control system example

A.6.3 Internal Structure
Figure 104 shows the internal structure of a CruiseControlTotalSystem block. Part properties, typed by blocks defined
in Subannex A.6.4, represent components of the system. They are connected to each other directly or through ports,
representing physical interaction or signal flow between them. Item flows on connectors indicate the type of signal or
conserved physical characteristic that passes along them. Signals control production of angular momentum by the engine.
The cruise controller (speedController) receives speed signals from the driver (driver) and the wheels (impeller), where
the former is the goal speed and the latter is the current speed. The cruise controller determines speed adjustments by
sending the engine (powerSource) a signal containing the amount of fuel needed to inject into the engine. Angular
momentum typically flows out from the engine to the wheels and is transformed to linear momentum back into the car
through interaction with the road. This appears in Figure 105 as a connector between wheel and automobile supported by an
association block specifying the transformation, as well as another connector between the wheel and road to depict the
contact between the two. The car's linear momentum is also affected by gravitation (gravVehicleLink) and surrounding
air (atmosphere), appearing in Figure 104 as additional connectors between the car and these components.

SysML initial values specify property values for components used in internal block diagrams. Figure 104 shows initial
values and units for each of the system components (properties defined in Subannex A.6.4). The car gives its cross-
sectional area, drag coefficient, and mass. The driver specifies values for decisions about the car’s speed. The cruise
controller gives its proportional-integrator and throttle-acceleration coefficients that determine the amount of fuel
injected into the engine. The engine specifies its torque coefficient, related to the gears and crankshaft of the car. The
wheel has a radius and a coefficient for dissipation of angular momentum into heat due to rolling resistance. Earth
specifies its gravity and density of its atmosphere. The road gives values determining its slope. Initial values are specified
directly on CruiseControlTotalSystem for brevity, but could be on specializations instead, defining multiple test cases
without modifying the original system model. An alternative to initial values is to use default values on blocks typing
system properties (see Subannex A.5.9).

Signal flow:
Physical interaction:

Angular
momentum

Desired
speed

Fuel
intake

control

To rolling resistance
(angular momentum

converted to heat)

Between air & car
(linear momentum)

between gravitational
field & car

(linear momentum)

Between wheel and car
(angular momentum
converted from/ to linear
via road)

Wheel rotation
rate

94 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 104: Internal structure of the cruise control system

A.15.1A.1.1 Blocks and Ports
Figure 105: Total system blocks, ports, & component properties shows block definitions for components of
CruiseControlTotalSystem in Figure 104. Figure 106 and Figure 107 show more detailed definitions about
physical interactions between the car and the surrounding air and gravity, while Figure 109 and Figure 108 show
these between the wheels and car and engine. Figure 110 shows definitions for signal flows in the car. Many
components have their own behaviors, defined as constraints in Subannex A.6.6.

Components involved in the interaction between the car and surrounding air are defined in Figure 106 (the car and
Earth’s port typed by Air). They are generalized by LMomFlowElement from the physical interaction library (see
Subclause 11.2.2) and linked by an association that is also a block, LMomentum Transfer, indicated by a dashed line (the
association end on the library side is owned by the association, to avoid modifying the library element). The association
block represents linear momentum transfer between the vehicle and the air around it. The internal structure of
LMomentumTransfer is defined in Subannex A.6.7 (see Subclause 9.2.2 about association blocks).

Components involved in the interaction between the car and Earth’s gravity are defined in Figure 107 (the car and its
potential energy in Earth’s gravitational field, LMomPotEngTransformation). They are generalized by
LMomFlowElement from the physical interaction library, and linked by an association. The transformation between linear
momentum and potential energy is not modeled with an association between the car and Earth to highlight that
momentum converted to potential energy can only be transferred back to the car, as compared to momentum transferred
to the air, which can be transferred to other objects. The connector to Earth reflects its involvement in converting
between linear momentum and potential energy, even though the Earth is too large to accept or provide momentum. The
connector also provides access to properties needed by interaction equations, such as gravitation of the Earth and slope
of the road, see Subannexes A.6.6 and A.6.7. The internal structure of LMomPotEngTransformation is defined in
Subannex A.6.7.

Components involved in the transformation between angular momentum of the wheels and linear
momentum of the car are shown in Figure 108 (the car, road, and wheel). The car is generalized by

LMomFlowElement as before, while the wheel is generalized by interface block AMomFlowComponent,
which in turn is generalized by AMomFlowElement, from the physical interaction library (see Subclause

11.2.2). The library’s LMomFlowElement and AMomFlowComponent are linked by an association that is
also a block ALMomentum Transformation, indicated by a dashed line (the association ends are owned by the

association, to avoid modifying the library elements). The association block represents transformation
between the wheels’ angular momentum and the car’s linear momentum. It has a port lMTG typed by a

block LMomentumGround (generalized by LMomFlowElement), for connecting to physical objects that are
too large to accept or provide linear momentum, such as the road (generalized by LMomentumGround).

dragCoefficient = 1.0
crossSectionalArea = 2.0{unit = squaredMeter}

mass = 2000.0{unit = kilogram}

initial values
controlledVehicle : Car

initial values

radius = 0.5{unit=meter}

impeller : Wheel
hub

kP = 200.0{unit = hertz}
kI = 30.0{unit = hertzSquared}

throttleAccRatio = 1.0{unit = secondSquaredPerMeter}

initial values
speedController : CruiseController

throttleActuatorJack

speedSensorJack
speedDriverJack

changetime = 100.0{unit = second}
speed1 = 10.0{unit = meterPerSecond}
speed2 = 15.0{unit = meterPerSecond}

initial values
driver : Person

trqCoef = 1.0{unit = new tonMeter}
initial values

powerSource : Engine

crankshaft

SpeedSignal

ThrottleSignalSpeedSignal

AngularMomentum

CruiseControlTotalSystemibd

«connector»
impellerVehicleLink :

ALMomentumTransformation

lMTG

gravVehicleLink :
LMomPotEngTransformation

airVehicleLink :
LMomentumTransfer

«connector»

initial values
acceleration = 9.8

{unit = meterPerSecondSquared}

operatingEnvironment : Earth

density = 1.2
{unit = kilogramPerCubicMeter}

initial values
atmosphere : Air

rise = 0.1

stop = 70.0{unit = second}
start = 50.0{unit = second}

flat = 0.0
initial values

surface : Road

Momentum

LinearMomentum

LinearMomentum

rrCoeff = 0.5

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 95

This

Figure 104: Internal structure of the cruise control system

A.6.4 Blocks and Ports
Figure 105: Total system blocks, ports, & component properties shows block definitions for components of
CruiseControlTotalSystem in Figure 104. Figure 106 and Figure 107 show more detailed definitions about
physical interactions between the car and the surrounding air and gravity, while Figure 109 and Figure 108 show
these between the wheels and car and engine. Figure 110 shows definitions for signal flows in the car. Many
components have their own behaviors, defined as constraints in Subannex A.6.6.

Components involved in the interaction between the car and surrounding air are defined in Figure 106 (the car and
Earth’s port typed by Air). They are generalized by LMomFlowElement from the physical interaction library (see
Subclause 11.2.2) and linked by an association that is also a block, LMomentum Transfer, indicated by a dashed line (the
association end on the library side is owned by the association, to avoid modifying the library element). The association
block represents linear momentum transfer between the vehicle and the air around it. The internal structure of
LMomentumTransfer is defined in Subannex A.6.7 (see Subclause 9.2.2 about association blocks).

Components involved in the interaction between the car and Earth’s gravity are defined in Figure 107 (the car and its
potential energy in Earth’s gravitational field, LMomPotEngTransformation). They are generalized by
LMomFlowElement from the physical interaction library, and linked by an association. The transformation between linear
momentum and potential energy is not modeled with an association between the car and Earth to highlight that
momentum converted to potential energy can only be transferred back to the car, as compared to momentum transferred
to the air, which can be transferred to other objects. The connector to Earth reflects its involvement in converting
between linear momentum and potential energy, even though the Earth is too large to accept or provide momentum. The
connector also provides access to properties needed by interaction equations, such as gravitation of the Earth and slope
of the road, see Subannexes A.6.6 and A.6.7. The internal structure of LMomPotEngTransformation is defined in
Subannex A.6.7.

Components involved in the transformation between angular momentum of the wheels and linear momentum of the
car are shown in Figure 108 (the car, road, and wheel). The car is generalized by LMomFlowElement as before, while
the wheel is generalized by interface block AMomFlowComponent, which in turn is generalized by AMomFlowElement,
from the physical interaction library (see Subclause 11.2.2). The library’s LMomFlowElement and
AMomFlowComponent are linked by an association that is also a block ALMomentum Transformation, indicated by a
dashed line (the association ends are owned by the association, to avoid modifying the library elements). The association
block represents transformation between the wheels’ angular momentum and the car’s linear momentum. It has a port
lMTG typed by a block LMomentumGround (generalized by LMomFlowElement), for connecting to physical objects that
are too large to accept or provide linear momentum, such as the road (generalized by LMomentumGround). This

dragCoefficient = 1.0
crossSectionalArea = 2.0{unit = squaredMeter}

mass = 2000.0{unit = kilogram}

initial values
controlledVehicle : Car

initial values

radius = 0.5{unit=meter}

impeller : Wheel
hub

kP = 200.0{unit = hertz}
kI = 30.0{unit = hertzSquared}

throttleAccRatio = 1.0{unit = secondSquaredPerMeter}

initial values
speedController : CruiseController

throttleActuatorJack

speedSensorJack
speedDriverJack

changetime = 100.0{unit = second}
speed1 = 10.0{unit = meterPerSecond}
speed2 = 15.0{unit = meterPerSecond}

initial values
driver : Person

trqCoef = 1.0{unit = new tonMeter}
initial values

powerSource : Engine

crankshaft

SpeedSignal

ThrottleSignalSpeedSignal

AngularMomentum

CruiseControlTotalSystemibd

«connector»
impellerVehicleLink :

ALMomentumTransformation

lMTG

gravVehicleLink :
LMomPotEngTransformation

airVehicleLink :
LMomentumTransfer

«connector»

initial values
acceleration = 9.8

{unit = meterPerSecondSquared}

operatingEnvironment : Earth

density = 1.2
{unit = kilogramPerCubicMeter}

initial values
atmosphere : Air

rise = 0.1

stop = 70.0{unit = second}
start = 50.0{unit = second}

flat = 0.0
initial values

surface : Road

Momentum

LinearMomentum

LinearMomentum

rrCoeff = 0.5

96 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

connection appears in Figure 104, representing the road’s involvement in the transformation between angular and linear
momentum. The internal structure of AMomFlowComponent is defined in Subannex A.6.7.

Components involved in transferring angular momentum between the car’s internal components are depicted in
Figure 109 (the engine and the wheel, via their crankshaft and hub ports, respectively). The crankshaft and hub ports are
typed by AMomFlowElement from the physical interaction library (crankshafts and hubs are modeled as interface blocks
for brevity).

The library blocks AMomFlowElement and LMomFlowElement have flow properties aMomF and lMomF, respectively.
They are typed by blocks FlowingAMom and FlowingLMom (also from the library) representing flow of conserved
physical characteristics. These give flow rate and potential variables (trq, aV and f, lV). Models use the variables
directly on library blocks or on specialized blocks that inherit them.

Components sending and receiving signals in the vehicle are shown in Figure 110 (the driver, wheels, engine, and the
cruise controller via its ports). Two cruise controller ports receive signals giving the driver’s desired speed and the
vehicle’s current speed, while a third sends signals to the engine setting the fuel injection rate. The speed ports on the
cruise controller are typed by the interface block SpeedInFlowComponent to receive signals from the driver and wheels,
which send them by specializing SpeedOutFlowComponent. The throttle actuator port on the cruise controller is typed by the
interface block ThrottleOutFlowComponent to send fuel injection signals to the engine, which receives them by
specializing ThrottleInFlowComponent.

Figure 105: Total system blocks, ports, & component properties connection appears in Figure 104,
representing the road’s involvement in the transformation between angular and linear momentum. The internal structure
of AMomFlowComponent is defined in Subannex A.6.7.

Components involved in transferring angular momentum between the car’s internal components are depicted in
Figure 109 (the engine and the wheel, via their crankshaft and hub ports, respectively). The crankshaft and hub ports are
typed by AMomFlowElement from the physical interaction library (crankshafts and hubs are modeled as interface blocks
for brevity).

Cruise Control Total Sy stem Structurebdd

phs variables

slope : Angle
acceleration : Acceleration

mass : Mass

LMomPotEngTransformation
«block»

«interf aceBlock»
SysPhsLibrary::AMomFlowElement

phs variables
accCmd : Acceleration
errorInteg : Length

kP : PCoef f icient
kI : ICoef f icient
throttleAccRatio : ThrottleAccelerationRatio

CruiseController
«block»

phs constants
acceleration : Acceleration

Earth
«block»

phs constants
mass : Mass
crossSectionalArea : Area
dragCoef f icient : Real

«block»
Car

phs constants

speed2 : LinearVelocity
changetime : Time

speed1 : LinearVelocity

Person
«block»

phs constants
radius : Length

AMomFlowComponent
«interf aceBlock»

phs constants
density : Density

Air
«block»

trqCoef : Torque
phs constants

«block»
Engine

«interf aceBlock»
ThrottleOutFlowComponent

«block»
CruiseControlTotalSystem

phs variables

start : Time

slope : Angle

stop : Time
rise : Angle

f lat : Angle

«block»
Road

«interf aceBlock»
SpeedInFlowComponent

«block»
Wheel

grav VehicleLink

speedController

impeller

controlledVehicle

surf ace

speedDriv erJack

speedSensorJackthrottleActuatorJack

operatingEnv ironment

atmosphere

hub

powerSource
driv er

crankshaf t

LMomentumTransfer
«association, block»

ALMomentumTransformation
«association, block»

lMTG

LMomentumGround
«block»

airVehicleLink

impellerVehicleLink

phs constants

phs constants

«port»

«port»

«port»
«port»

«port»

«port»

«port»

«port»
«port»

phs constants
rrCoef f : Real

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 97

The library blocks AMomFlowElement and LMomFlowElement have flow properties aMomF and lMomF, respectively.
They are typed by blocks FlowingAMom and FlowingLMom (also from the library) representing flow of conserved
physical characteristics. These give flow rate and potential variables (trq, aV and f, lV). Models use the variables
directly on library blocks or on specialized blocks that inherit them.

Components sending and receiving signals in the vehicle are shown in Figure 110 (the driver, wheels, engine, and the
cruise controller via its ports). Two cruise controller ports receive signals giving the driver’s desired speed and the
vehicle’s current speed, while a third sends signals to the engine setting the fuel injection rate. The speed ports on the
cruise controller are typed by the interface block SpeedInFlowComponent to receive signals from the driver and wheels,
which send them by specializing SpeedOutFlowComponent. The throttle actuator port on the cruise controller is typed by the
interface block ThrottleOutFlowComponent to send fuel injection signals to the engine, which receives them by
specializing ThrottleInFlowComponent.

Figure 105: Total system blocks, ports, & component properties

Cruise Control Total Sy stem Structurebdd

phs variables

slope : Angle
acceleration : Acceleration

mass : Mass

LMomPotEngTransformation
«block»

«interf aceBlock»
SysPhsLibrary::AMomFlowElement

phs variables
accCmd : Acceleration
errorInteg : Length

kP : PCoef f icient
kI : ICoef f icient
throttleAccRatio : ThrottleAccelerationRatio

CruiseController
«block»

phs constants
acceleration : Acceleration

Earth
«block»

phs constants
mass : Mass
crossSectionalArea : Area
dragCoef f icient : Real

«block»
Car

phs constants

speed2 : LinearVelocity
changetime : Time

speed1 : LinearVelocity

Person
«block»

phs constants
radius : Length

AMomFlowComponent
«interf aceBlock»

phs constants
density : Density

Air
«block»

trqCoef : Torque
phs constants

«block»
Engine

«interf aceBlock»
ThrottleOutFlowComponent

«block»
CruiseControlTotalSystem

phs variables

start : Time

slope : Angle

stop : Time
rise : Angle

f lat : Angle

«block»
Road

«interf aceBlock»
SpeedInFlowComponent

«block»
Wheel

grav VehicleLink

speedController

impeller

controlledVehicle

surf ace

speedDriv erJack

speedSensorJackthrottleActuatorJack

operatingEnv ironment

atmosphere

hub

powerSource
driv er

crankshaf t

LMomentumTransfer
«association, block»

ALMomentumTransformation
«association, block»

lMTG

LMomentumGround
«block»

airVehicleLink

impellerVehicleLink

phs constants

phs constants

«port»

«port»

«port»
«port»

«port»

«port»

«port»

«port»
«port»

phs constants
rrCoef f : Real

98 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 106: Air-vehicle interaction blocks, ports, & component properties

Figure 107: Gravity-vehicle interaction blocks, ports, & component properties

Figure 108: Impeller-vehicle interaction blocks, ports, & component properties

Air-Vehicle Interaction Decompositionbdd

phs variables

lV : Velocity
{isConserv ed} f : Force

SysPhSLibrary::FlowingLMom
«block»

SysPhSLibrary::LinearMomentum
«block»

inout lMomF : FlowingLMom
physical interactions

«interf aceBlock»
SysPhSLibrary::LMomFlowElement

Earth
«block»

Air
«block»

Car
«block»

«association, block»
LMomentumTransfer

LinearMomentum
f luidsolid

atmosphere
«port»

Gravity-Vehicle Interaction Decompositionbdd

phs variables
{isConserved} f : Force
lV : Velocity

SysPhSLibrary::FlowingLMom
«block»

inout lMomF : Flow ingLMom
physical interactions

SysPhSLibrary::LMomFlowElement
«interfaceBlock»

SysPhSLibrary::LinearMomentum
«block»«block»

LMomPotEngTransformationCar
«block»

LinearMomentum

Impeller-Vehicle Interaction Decompositionbdd

phs variables
{isConserv ed} trq : Torque
aV : AngularVelocity

SysPhSLibrary::FlowingAMom
«block»

phs variables
{isConserv ed} f : Force
lV : Velocity

«block»
SysPhSLibrary::FlowingLMom

«block»
SysPhSLibrary::AngularMomentum

physical interactions
inout aMomF : FlowingAMom

SysPhSLibrary::AMomFlowElement
«interf aceBlock»

physical interactions
inout lMomF : FlowingLMom

SysPhSLibrary::LMomFlowElement
«interf aceBlock»

«block»
SysPhSLibrary::LinearMomentum

«interf aceBlock»
AMomFlowComponent

LMomentumGround
«block»

«block»
Car

«block»
Wheel

«block»
Road

«block»
Earth

ALMomentumTransformation
«association, block»

toLMFC

toAMFC

impeller

surf ace

lMTG

Momentum

«port»

«port»

«port»

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 99

Figure 106: Air-vehicle interaction blocks, ports, & component properties

Figure 107: Gravity-vehicle interaction blocks, ports, & component properties

Figure 108: Impeller-vehicle interaction blocks, ports, & component properties

Air-Vehicle Interaction Decompositionbdd

phs variables

lV : Velocity
{isConserv ed} f : Force

SysPhSLibrary::FlowingLMom
«block»

SysPhSLibrary::LinearMomentum
«block»

inout lMomF : FlowingLMom
physical interactions

«interf aceBlock»
SysPhSLibrary::LMomFlowElement

Earth
«block»

Air
«block»

Car
«block»

«association, block»
LMomentumTransfer

LinearMomentum
f luidsolid

atmosphere
«port»

Gravity-Vehicle Interaction Decompositionbdd

phs variables
{isConserved} f : Force
lV : Velocity

SysPhSLibrary::FlowingLMom
«block»

inout lMomF : Flow ingLMom
physical interactions

SysPhSLibrary::LMomFlowElement
«interfaceBlock»

SysPhSLibrary::LinearMomentum
«block»«block»

LMomPotEngTransformationCar
«block»

LinearMomentum

Impeller-Vehicle Interaction Decompositionbdd

phs variables
{isConserv ed} trq : Torque
aV : AngularVelocity

SysPhSLibrary::FlowingAMom
«block»

phs variables
{isConserv ed} f : Force
lV : Velocity

«block»
SysPhSLibrary::FlowingLMom

«block»
SysPhSLibrary::AngularMomentum

physical interactions
inout aMomF : FlowingAMom

SysPhSLibrary::AMomFlowElement
«interf aceBlock»

physical interactions
inout lMomF : FlowingLMom

SysPhSLibrary::LMomFlowElement
«interf aceBlock»

«block»
SysPhSLibrary::LinearMomentum

«interf aceBlock»
AMomFlowComponent

LMomentumGround
«block»

«block»
Car

«block»
Wheel

«block»
Road

«block»
Earth

ALMomentumTransformation
«association, block»

toLMFC

toAMFC

impeller

surf ace

lMTG

Momentum

«port»

«port»

«port»

100 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 109: Hub-crankshaft interaction blocks, ports, & component properties

Figure 110: Signal flow interactions blocks, ports, & component properties

A.15.2A.1.1 Properties (variables)
Signal flow is the movement of numbers between system components. These numbers might reflect physical

quantities or not. In this example, they do not (see Subannex A.5 for an example where they do). Signals flowing in and
out of components are modeled by ports typed by interface blocks that have flow properties typed by numbers. In this

example, signal flow ports are typed by SpeedInFlowComponent, SpeedOutFlowComponent, ThrottleInFlowComponent,
or ThrottleOutFlowComponent. SpeedInFlowComponent and SpeedOutFlowComponent are generalized by the block

SpeedFlowComponent, which has the flow property speed typed by Linear Velocity, as shown in Figure 110.
ThrottleInFlowComponent and ThrottleOutFlowComponent are generalized by the block ThrottleFlowComponent,

Hub-Crankshaf t Interaction Decompositionbdd

phs variables

aV : AngularVelocity
{isConserv ed} trq : Torque

SysPhSLibrary::FlowingAMom
«block»

SysPhSLibrary::AngularMomentum
«block»

physical interactions
inout aMomF : FlowingAMom

«interf aceBlock»
SysPhSLibrary::AMomFlowElement

«block»
WheelEngine

«block»

Car
«block»

impeller

hubcrankshaf t

powerSource

AngularMomentum

«port»

«port»«port»

Signal Flow Decompositionbdd

signal flows
out throttleSetting : Real {redef ines throttleSetting}

«interf aceBlock»
ThrottleOutFlowComponent

signal flows
in throttleSetting : Real {redef ines throttleSetting}

«interf aceBlock»
ThrottleInFlowComponent

signal flows
out speed : LinearVelocity {redef ines speed}

«interf aceBlock»
SpeedOutFlowComponent

signal flows
in speed : LinearVelocity {redef ines speed}

«interf aceBlock»
SpeedInFlowComponent

inout speed : LinearVelocity
signal flows

«interf aceBlock»
SpeedFlowComponent

signal flows
inout throttleSetting : Real

ThrottleFlowComponent
«interf aceBlock»

CruiseController
«block»

«block»
Person Wheel

«block»

«block»
Engine

ThrottleSignal

speedDriv erJack

SpeedSignal

speedSensorJack

throttleActuatorJack
«port»

«port» «port»

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 101

which has the flow property throttleSettling typed by Real, from SysML, as shown in Figure 110

Figure 109: Hub-crankshaft interaction blocks, ports, & component properties

Figure 110: Signal flow interactions blocks, ports, & component properties

A.6.5 Properties (variables)
Signal flow is the movement of numbers between system components. These numbers might reflect physical
quantities or not. In this example, they do not (see Subannex A.5 for an example where they do). Signals flowing in and
out of components are modeled by ports typed by interface blocks that have flow properties typed by numbers. In this
example, signal flow ports are typed by SpeedInFlowComponent, SpeedOutFlowComponent,
ThrottleInFlowComponent, or ThrottleOutFlowComponent. SpeedInFlowComponent and SpeedOutFlowComponent
are generalized by the block SpeedFlowComponent, which has the flow property speed typed by Linear Velocity, as
shown in Figure 110. ThrottleInFlowComponent and ThrottleOutFlowComponent are generalized by the block

Hub-Crankshaf t Interaction Decompositionbdd

phs variables

aV : AngularVelocity
{isConserv ed} trq : Torque

SysPhSLibrary::FlowingAMom
«block»

SysPhSLibrary::AngularMomentum
«block»

physical interactions
inout aMomF : FlowingAMom

«interf aceBlock»
SysPhSLibrary::AMomFlowElement

«block»
WheelEngine

«block»

Car
«block»

impeller

hubcrankshaf t

powerSource

AngularMomentum

«port»

«port»«port»

Signal Flow Decompositionbdd

signal flows
out throttleSetting : Real {redef ines throttleSetting}

«interf aceBlock»
ThrottleOutFlowComponent

signal flows
in throttleSetting : Real {redef ines throttleSetting}

«interf aceBlock»
ThrottleInFlowComponent

signal flows
out speed : LinearVelocity {redef ines speed}

«interf aceBlock»
SpeedOutFlowComponent

signal flows
in speed : LinearVelocity {redef ines speed}

«interf aceBlock»
SpeedInFlowComponent

inout speed : LinearVelocity
signal flows

«interf aceBlock»
SpeedFlowComponent

signal flows
inout throttleSetting : Real

ThrottleFlowComponent
«interf aceBlock»

CruiseController
«block»

«block»
Person Wheel

«block»

«block»
Engine

ThrottleSignal

speedDriv erJack

SpeedSignal

speedSensorJack

throttleActuatorJack
«port»

«port» «port»

102 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

ThrottleFlowComponent, which has the flow property throttleSettling typed by Real, from SysML, as shown in Figure
110. This value type has no unit, reflecting that the signals are not measurements of physical quantities and do not
follow conservation laws.

Physical interaction is the movement of physical substances between system components, modeled in terms of
conserved characteristics of the substances. In this example, linear and angular momentum are the conserved
characteristics moving through the car (momentum moves without an associated physical substance) and between
the car and the environment for the driving force and environmental disturbances from gravity or surrounding air.
Movement is described by numeric variables for flow rate and potential to flow of conserved characteristics. In this
example, movement of linear and angular momentum is characterized by force and torque variables for the flow
rate as well as linear and angular velocity variables for potential to flow. The flow rate variable is conserved (values
on ends of the interaction sum to zero) and the potential variable is not (values on ends of the interaction are the
same). This is modeled in three parts:

• Conserved physical characteristics are modeled as blocks directly specializedfromConservedQuantityKind in the
physical interaction library (see Subclause 11.2.2), LinearMomentum and AngularMomentum in this example.

• Flow variables are modeled as properties with the PhSVariable stereotype applied on specializations of
conserved quantity kind blocks. In this example, the linear momentum flow rate and potential PhSVariables are f and
lV on FlowLMom (f marked as isConserved), respectively, typed by Force and Velocity, respectively, all from the
physical interaction library. Similarly, the angular momentum flow rate and potential PhSVariables are trq and aV on
FlowAMom (trq marked as is Conserved), respectively, typed by Torque and Angular Velocity, respectively.

• Flows in and out of components are modeled by ports typed by interface blocks that have flow properties typed by
flowing conserved quantity kinds. In this example, ports are typed by LMomFlowElement or AMomFlowElement
from the physical interaction library, which have flow property lMomF typed by FlowingLMom and flow property aMomF
typed by FlowingAMom, respectively, shown in Figure 106 through Figure 109.

In Figure 105: Total system blocks, ports, & component propertiesthe blocks LMomPotEngTransformation, Road, and
CruiseController have properties with PhSVariable stereotypes applied, specifying that the value of these properties
may vary during simulation. The blocks Car, Earth, Engine, Person, Air, Road, CruiseController, and
AMomFlowComponent have properties with PhSConstant stereotypes applied, specifying that the value of these
properties do not change during each simulation run.

A.15.3 Constraints (equations)

Equations define mathematical relationships between the values of numeric variables. Equations in SysML, are
constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this example, the
constraint blocks in Figure 111 each define parameters and constraints for component blocks in Figure 105 (Car,
Air, LMomPoteEngTransformation, Wheel, Road, Engine, CruiseController, and Person). Constraint blocks for
components are named according to the component they constrain. The constraint block ALMomTransConstraint
defines parameters and constraints for the association block ALMomentumTransformation, and FluidEffectConstraint
defines the parameters and constraints for the association block LMomentumTransfer. The constraints for Air, Road,
and Person are not generally- applicable equations as they are for the other blocks. They are only for when the air
is still (has no velocity), the road slope changes at two distinct times for a specified slope, and the driver changes
the vehicle’s speed at two separate time-stamps. The scenario has been defined with parameters in the constraint
blocks for brevity, but their properties can also be defined with block property redefinitions (Subannex A.5.9) or by
initial values in internal block diagrams (Subannex A.4.3).

The constraint blocks PersonConstraint and CruiseControllerConstraint specify manipulation of signals moving
through their respective component block. The cruise controller constraint calculates the best fuel injection rate to
reach the driver’s desired vehicle speed from vehicle’s current speed. All the other constraints specify physical
interactions, either between components in the car (angular momentum between the engine and wheels) or
between the car and its environment (angular momentum of the wheels to and from linear momentum of the car or air,
to and from potential energy, or to heat due to wheel rolling resistance).Figure 110. This value type has no unit, reflecting
that the signals are not measurements of physical quantities and do not follow conservation laws.

Physical interaction is the movement of physical substances between system components, modeled in terms of
conserved characteristics of the substances. In this example, linear and angular momentum are the conserved
characteristics moving through the car (momentum moves without an associated physical substance) and between
the car and the environment for the driving force and environmental disturbances from gravity or surrounding air.
Movement is described by numeric variables for flow rate and potential to flow of conserved characteristics. In this
example, movement of linear and angular momentum is characterized by force and torque variables for the flow rate
as well as linear and angular velocity variables for potential to flow. The flow rate variable is conserved (values on ends
of the interaction sum to zero) and the potential variable is not (values on ends of the interaction are the same). This is
modeled in three parts:

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 103

• Conserved physical characteristics are modeled as blocks directly specializedfromConservedQuantityKind in the
physical interaction library (see Subclause 11.2.2), LinearMomentum and AngularMomentum in this example.

• Flow variables are modeled as properties with the PhSVariable stereotype applied on specializations of
conserved quantity kind blocks. In this example, the linear momentum flow rate and potential PhSVariables are
f and lV on FlowLMom (f marked as isConserved), respectively, typed by Force and Velocity, respectively, all
from the physical interaction library. Similarly, the angular momentum flow rate and potential PhSVariables
are trq and aV on FlowAMom (trq marked as is Conserved), respectively, typed by Torque and Angular
Velocity, respectively.

• Flows in and out of components are modeled by ports typed by interface blocks that have flow properties typed
by flowing conserved quantity kinds. In this example, ports are typed by LMomFlowElement or
AMomFlowElement from the physical interaction library, which have flow property lMomF typed by
FlowingLMom and flow property aMomF typed by FlowingAMom, respectively, shown in Figure 106 through
Figure 109.

In Figure 105: Total system blocks, ports, & component propertiesthe blocks LMomPotEngTransformation, Road, and
CruiseController have properties with PhSVariable stereotypes applied, specifying that the value of these properties may
vary during simulation. The blocks Car, Earth, Engine, Person, Air, Road, CruiseController, and
AMomFlowComponent have properties with PhSConstant stereotypes applied, specifying that the value of these
properties do not change during each simulation run.

A.6.6 Constraints (equations)
Equations define mathematical relationships between the values of numeric variables. Equations in SysML, are
constraints in constraint blocks that use properties of the blocks (parameters) as variables. In this example, the
constraint blocks in Figure 111 each define parameters and constraints for component blocks in Figure 105 (Car, Air,
LMomPoteEngTransformation, Wheel, Road, Engine, CruiseController, and Person). Constraint blocks for
components are named according to the component they constrain. The constraint block ALMomTransConstraint
defines parameters and constraints for the association block ALMomentumTransformation, and FluidEffectConstraint
defines the parameters and constraints for the association block LMomentumTransfer. The constraints for Air, Road,
and Person are not generally- applicable equations as they are for the other blocks. They are only for when the air is
still (has no velocity), the road slope changes at two distinct times for a specified slope, and the driver changes the
vehicle’s speed at two separate time-stamps. The scenario has been defined with parameters in the constraint blocks
for brevity, but their properties can also be defined with block property redefinitions (Subannex A.5.9) or by initial
values in internal block diagrams (Subannex A.4.3).

The constraint blocks PersonConstraint and CruiseControllerConstraint specify manipulation of signals moving
through their respective component block. The cruise controller constraint calculates the best fuel injection rate to reach
the driver’s desired vehicle speed from vehicle’s current speed. All the other constraints specify physical
interactions, either between components in the car (angular momentum between the engine and wheels) or between
the car and its environment (angular momentum of the wheels to and from linear momentum of the car or air, to and from
potential energy, or to heat due to wheel rolling resistance).

104 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 111: Cruise control total system constraint blocks

A.15.4A.1.1 Constraint properties and bindings
Equations in constraint blocks are applied to components using binding connectors in component parametric
diagrams. Component parametric diagrams show properties typed by constraint blocks (constraint properties), as
well as component and port simulation variables and constants. Binding connectors link constraint parameters to
simulation variables and constants, indicating their values must be the same. Figure 112 through Figure 119 show the
parametric diagrams for the car, air, transformation between linear momentum and gravitational potential energy, wheel,
road, engine, cruise controller, and person, respectively.

Cruise Control Total Sy stem Constraintsbdd

parameters

g : Real
m : Real

angle : Real

f : Real

constraints
{f =m*g*sin(angle)}

«constraint»
LMomPotEngTransformationConstraint

constraints

{sSolid-sFluid=v }

{f Fluid+f Solid=0}
{f Fluid=0.5*density *v 2̂*dragCoef *crossSec}

parameters

sSolid : Real
crossSec : Real

sFluid : Real

v : Real
dragCoef : Real

f Solid : Real

f Fluid : Real

density : Real

«constraint»
FluidEffectConstraint

parameters

stop : Real
rise : Real

slope : Real

v el : Real

f lat : Real
start : Real

constraints

{v el=0}

{if time > start and time < stop then
slope=rise;
else
slope=f lat;
end if }

RoadConstraint
«constraint»

parameters

z : Real
u : Real

ki : Real

thCmd : Real

pConst : Real

kp : Real

curSpd : Real
setSpd : Real

constraints

{u=kp*(setSpd-curSpd)+ki*z}
{thCmd=u*pConst}

{der(z)=setSpd-curSpd}

CruiseControllerConstraint
«constraint»

parameters

gf : Real

trq : Real
av : Real

r : Real

f : Real
lv : Real

gv : Real

constraints

{gf =0}
{trq=f *r}
{av =(lv -gv)/r}

«constraint»
ALMomTransConstraint

parameters
aS1 : Real

trq1 : Real

radius : Real

aS2 : Real

trq2 : Real

lS : Real
rr : Real

constraints

{lS=aS2*radius}
{aS1=-aS2}

{rr*trq1+trq2=0}

WheelConstraint
«constraint»

constraints
{if time<chg then
speedOut=speed1;
else
speedOut=speed2;
end if }

parameters

speed2 : Real

speedOut : Real
speed1 : Real

chg : Real

«constraint»
PersonConstraint

constraints
{f =m*der(lSpeed)}

parameters
f : Real
m : Real
lSpeed : Real

CarConstraint
«constraint»

constraints
{trq=inTrq*trqCoef }

parameters

inTrq : Real
trqCoef : Real

trq : Real

«constraint»
EngineConstraint

parameters
v el : Real

constraints
{v el=0}

«constraint»
AirConstraint

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 105

Figure 111: Cruise control total system constraint blocks

A.6.7 Constraint properties and bindings
Equations in constraint blocks are applied to components using binding connectors in component parametric
diagrams. Component parametric diagrams show properties typed by constraint blocks (constraint properties), as
well as component and port simulation variables and constants. Binding connectors link constraint parameters to
simulation variables and constants, indicating their values must be the same. Figure 112 through Figure 119 show the
parametric diagrams for the car, air, transformation between linear momentum and gravitational potential energy, wheel,
road, engine, cruise controller, and person, respectively.

Cruise Control Total Sy stem Constraintsbdd

parameters

g : Real
m : Real

angle : Real

f : Real

constraints
{f =m*g*sin(angle)}

«constraint»
LMomPotEngTransformationConstraint

constraints

{sSolid-sFluid=v }

{f Fluid+f Solid=0}
{f Fluid=0.5*density *v 2̂*dragCoef *crossSec}

parameters

sSolid : Real
crossSec : Real

sFluid : Real

v : Real
dragCoef : Real

f Solid : Real

f Fluid : Real

density : Real

«constraint»
FluidEffectConstraint

parameters

stop : Real
rise : Real

slope : Real

v el : Real

f lat : Real
start : Real

constraints

{v el=0}

{if time > start and time < stop then
slope=rise;
else
slope=f lat;
end if }

RoadConstraint
«constraint»

parameters

z : Real
u : Real

ki : Real

thCmd : Real

pConst : Real

kp : Real

curSpd : Real
setSpd : Real

constraints

{u=kp*(setSpd-curSpd)+ki*z}
{thCmd=u*pConst}

{der(z)=setSpd-curSpd}

CruiseControllerConstraint
«constraint»

parameters

gf : Real

trq : Real
av : Real

r : Real

f : Real
lv : Real

gv : Real

constraints

{gf =0}
{trq=f *r}
{av =(lv -gv)/r}

«constraint»
ALMomTransConstraint

parameters
aS1 : Real

trq1 : Real

radius : Real

aS2 : Real

trq2 : Real

lS : Real
rr : Real

constraints

{lS=aS2*radius}
{aS1=-aS2}

{rr*trq1+trq2=0}

WheelConstraint
«constraint»

constraints
{if time<chg then
speedOut=speed1;
else
speedOut=speed2;
end if }

parameters

speed2 : Real

speedOut : Real
speed1 : Real

chg : Real

«constraint»
PersonConstraint

constraints
{f =m*der(lSpeed)}

parameters
f : Real
m : Real
lSpeed : Real

CarConstraint
«constraint»

constraints
{trq=inTrq*trqCoef }

parameters

inTrq : Real
trqCoef : Real

trq : Real

«constraint»
EngineConstraint

parameters
v el : Real

constraints
{v el=0}

«constraint»
AirConstraint

106 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 112: Parametric diagram applying the car constraint

Figure 113: Parametric diagram applying the air constraint

Figure 114: Parametric diagram applying the linear momentum-potential energy transformation constraint

Figure 115: Parametric diagram applying the wheel constraint

par Car

cC : CarConstraint
«constraint»

{f=m*der(lSpeed)}

mlSpeed
f

lMomF.lV : Velocity

lMomF.f : Force

mass : Mass

«equal»

«equal»

«equal»

constraints

parameters

par Air

aC : AirConstraint

{vel=0}

«constraint»

vellMomF.lV : Velocity «equal»

constraints

parameters

LMomPotEngTransformationpar

lMPETC : LMomPotEngTransformationConstraint

{f=m*g*sin(angle)}

«constraint»

mgf angle

acceleration : Acceleration
lMomF.f : Force slope : Angle

mass : Mass

«equal»
«equal» «equal»«equal»

constraints

parameters

Wheelpar

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub

{aS1=-aS2}
{lS=aS2*radius}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

lS trq2

radiustrq1

aS1

aS2

aMomF.aV : AngularVelocity speed : LinearVelocity

aMomF.trq : Torque

r̂adius : Length«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

constraints

parameters

rr rrCoef f : Real«equal»

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 107

Figure 112: Parametric diagram applying the car constraint

Figure 113: Parametric diagram applying the air constraint

Figure 114: Parametric diagram applying the linear momentum-potential energy transformation constraint

par Car

cC : CarConstraint
«constraint»

{f=m*der(lSpeed)}

mlSpeed
f

lMomF.lV : Velocity

lMomF.f : Force

mass : Mass

«equal»

«equal»

«equal»

constraints

parameters

par Air

aC : AirConstraint

{vel=0}

«constraint»

vellMomF.lV : Velocity «equal»

constraints

parameters

LMomPotEngTransformationpar

lMPETC : LMomPotEngTransformationConstraint

{f=m*g*sin(angle)}

«constraint»

mgf angle

acceleration : Acceleration
lMomF.f : Force slope : Angle

mass : Mass

«equal»
«equal» «equal»«equal»

constraints

parameters

Wheelpar

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub

{aS1=-aS2}
{lS=aS2*radius}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

lS trq2

radiustrq1

aS1

aS2

aMomF.aV : AngularVelocity speed : LinearVelocity

aMomF.trq : Torque

r̂adius : Length«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

constraints

parameters

rr rrCoef f : Real«equal»

108 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 115: Parametric diagram applying the wheel constraint

Figure 116: Parametric diagram applying the road constraint

Figure 117: Parametric diagram applying the engine constraint

Roadpar
«constraint»

{if time > start and time < stop then
slope=rise;
else
slope=f lat;
end if }
{v el=0}

rC : RoadConstraint

v el

rise

stopstart

f lat

slope

lMomF.lV : Velocityslope : Angle

rise : Angle

start : Time stop : Time

f lat : Angle

«equal»

«equal»

«equal»

«equal»

«equal»
«equal»

constraints

parameters

Enginepar

aMomF.trq : Torque

crankshaft
eC : EngineConstraint

{trq=inTrq*trqCoef}

«constraint»

trqCoef

trq

inTrq

throttleSetting : RealtrqCoef : Torque

«equal»

«equal» «equal»

constraints

parameters

CruiseControllerpar

speed : LinearVelocity

speedSensorJack

speed : LinearVelocity

speedDriverJack

throttleSetting : Real

throttleActuatorJack

«constraint»
cCC : CruiseControllerConstraint

{der(z)=setSpd-curSpd}
{u=kp*(setSpd-curSpd)+ki*z}
{thCmd=u*pConst}

pConst zu

thCmd

kp

ki

curSpd

setSpd

throttleAccRatio : ThrottleAccelerationRatio

accCmd : Acceleration
errorInteg : Length

kP : PCoefficient

kI : ICoefficient

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal» «equal»

constraints

parameters

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 109

Figure 118: Parametric diagram applying the cruise controller constraint

Figure 116: Parametric diagram applying the road constraint

Figure 117: Parametric diagram applying the engine constraint

Roadpar
«constraint»

{if time > start and time < stop then
slope=rise;
else
slope=f lat;
end if }
{v el=0}

rC : RoadConstraint

v el

rise

stopstart

f lat

slope

lMomF.lV : Velocityslope : Angle

rise : Angle

start : Time stop : Time

f lat : Angle

«equal»

«equal»

«equal»

«equal»

«equal»
«equal»

constraints

parameters

Enginepar

aMomF.trq : Torque

crankshaft
eC : EngineConstraint

{trq=inTrq*trqCoef}

«constraint»

trqCoef

trq

inTrq

throttleSetting : RealtrqCoef : Torque

«equal»

«equal» «equal»

constraints

parameters

110 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 118: Parametric diagram applying the cruise controller constraint

Figure 119: Parametric diagram applying the person constraint

Figure 120 and Figure 121 are association block internal block diagrams rather than component parametric
diagrams, to include connectors other than binding. These diagrams bind properties of the blocks linked by the
association (participants) to variables and constants of a block inside the association.

CruiseControllerpar

speed : LinearVelocity

speedSensorJack

speed : LinearVelocity

speedDriverJack

throttleSetting : Real

throttleActuatorJack

«constraint»
cCC : CruiseControllerConstraint

{der(z)=setSpd-curSpd}
{u=kp*(setSpd-curSpd)+ki*z}
{thCmd=u*pConst}

pConst zu

thCmd

kp

ki

curSpd

setSpd

throttleAccRatio : ThrottleAccelerationRatio

accCmd : Acceleration
errorInteg : Length

kP : PCoefficient

kI : ICoefficient

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal» «equal»

constraints

parameters

Personpar

pC : PersonConstraint

{if time<chg then
speedOut=speed1;
else
speedOut=speed2;
end if }

«constraint»

chg
speed2 speed1 speedOut

speed2 : LinearVelocity

speed1 : LinearVelocity

speed : LinearVelocity

changetime : Time «equal»

«equal»
«equal»

«equal»

constraints

parameters

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 111

Figure 119: Parametric diagram applying the person constraint

Figure 120 and Figure 121 are association block internal block diagrams rather than component parametric
diagrams, to include connectors other than binding. These diagrams bind properties of the blocks linked by the
association (participants) to variables and constants of a block inside the association.

[association, block] LMomentumTransf eribd

{f Fluid+f Solid=0}
{f Fluid=0.5*density *v 2̂*dragCoef *crossSec}
{sSolid-sFluid=v }

fEC : FluidEffectConstraint
«constraint»

v
dragCoef

density

crossSec

sSolid f SolidsFluid f Fluid

crossSectionalArea

dragCoef f icientv el

density

fE : FluidEffect

lMomF.lV lMomF.f

solid

lMomF.lV lMomF.f

fluid

crossSectionalArea

dragCoef f icient

«participant»
solid : Car

{end = toSolid}

density

«participant»
f luid : Air

{end = toFluid}

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»«equal»
LinearMomentum

LinearMomentum

constraints

parameters

Personpar

pC : PersonConstraint

{if time<chg then
speedOut=speed1;
else
speedOut=speed2;
end if }

«constraint»

chg
speed2 speed1 speedOut

speed2 : LinearVelocity

speed1 : LinearVelocity

speed : LinearVelocity

changetime : Time «equal»

«equal»
«equal»

«equal»

constraints

parameters

112 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 120: Internal block diagram applying the fluid effect constraint in the association block

[association, block] LMomentumTransf eribd

{f Fluid+f Solid=0}
{f Fluid=0.5*density *v 2̂*dragCoef *crossSec}
{sSolid-sFluid=v }

fEC : FluidEffectConstraint
«constraint»

v
dragCoef

density

crossSec

sSolid f SolidsFluid f Fluid

crossSectionalArea

dragCoef f icientv el

density

fE : FluidEffect

lMomF.lV lMomF.f

solid

lMomF.lV lMomF.f

fluid

crossSectionalArea

dragCoef f icient

«participant»
solid : Car

{end = toSolid}

density

«participant»
f luid : Air

{end = toFluid}

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»«equal»
LinearMomentum

LinearMomentum

constraints

parameters

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 113

Figure 121: Internal block diagram applying a transformation constraint in the association block

ALMomentumTransformation

Figure 122 shows bindings between some value properties on separate components in Figure 104. For example, the
values of some properties of the car and Earth parts are used in the gravitational potential energy block.

Figure 122: Internal block diagram applying property bindings across system components

Figure 120: Internal block diagram applying the fluid effect constraint in the association block

[association, block] ALMomentumTransformationibd

lMTG

«constraint»

{av=(lv-gv)/r}
{trq=f*r}
{gf=0}

aLMTC : ALMomTransConstraint

gf

trq

r

lv

gv
f

avaMomF.aV

aMomF.trq

lMomF.lV

lMomF.f

^radius

aLMTC : ALMomTransComponent

lMomF.lVlMomF.f

lMCG

radius

«participant»
aMFC : AMomFlow Component

{end = toAMFC}
lMFC : LMomFlow Element

«participant»

{end = toLMFC}

«equal»

«equal»
«equal»

«equal»

«equal»

«equal»

«equal» «equal»

«equal»

LinearMomentum
AngularMomentum

constraints

parameters

CruiseControlTotalSy stemProperty Bindingsibd

mass

controlledVehicle : Car

^radius : Length

impeller : Wheel

^radius : Length

aLMTC : ALMomTransComponent

impellerVehicleLink : ALMomentumTransformation
«connector»

acceleration

slope
mass

gravVehicleLink :
LMomPotEngTransformation

acceleration

operatingEnvironment : Earth

slope

surface : Road

«equal»

«equal»

«equal»
«equal»

114 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 121: Internal block diagram applying a transformation constraint in the association block
ALMomentumTransformation

Figure 122 shows bindings between some value properties on separate components in Figure 104. For example, the
values of some properties of the car and Earth parts are used in the gravitational potential energy block.

Figure 122: Internal block diagram applying property bindings across system components

[association, block] ALMomentumTransformationibd

lMTG

«constraint»

{av=(lv-gv)/r}
{trq=f*r}
{gf=0}

aLMTC : ALMomTransConstraint

gf

trq

r

lv

gv
f

avaMomF.aV

aMomF.trq

lMomF.lV

lMomF.f

^radius

aLMTC : ALMomTransComponent

lMomF.lVlMomF.f

lMCG

radius

«participant»
aMFC : AMomFlow Component

{end = toAMFC}
lMFC : LMomFlow Element

«participant»

{end = toLMFC}

«equal»

«equal»
«equal»

«equal»

«equal»

«equal»

«equal» «equal»

«equal»

LinearMomentum
AngularMomentum

constraints

parameters

CruiseControlTotalSy stemProperty Bindingsibd

mass

controlledVehicle : Car

^radius : Length

impeller : Wheel

^radius : Length

aLMTC : ALMomTransComponent

impellerVehicleLink : ALMomentumTransformation
«connector»

acceleration

slope
mass

gravVehicleLink :
LMomPotEngTransformation

acceleration

operatingEnvironment : Earth

slope

surface : Road

«equal»

«equal»

«equal»
«equal»

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 115

This page intentionally left blank.

116 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Annex B - Platform-Independent Debugging
(non-normative)

B.1 Introduction
It is helpful to identify causes of errors in earlier stages of system model development before they propagate to
(potentially multiple) simulation models. It can also verify and increase understanding of the relationships captured in
system models before discipline-specific experts focus on parts of the system in their own models and tools. Any errors
not due to usage of SysML or its extensions, translators, or simulator execution engines will be in the source SysML
models.

This annex gives an overview of platform-independent debugging procedures for physical interaction and signal flow in
SysML models extended with SysPhS, before translation to simulation platforms. They are intended to complement
existing debugging techniques on those platforms.

The type of failure influences the debugging procedures required to identify and fix errors. This annex is concerned with
fixing system model errors that cause failure to:

• Compile or execute simulation models translated from system models,
• Produce expected results from simulation execution.

Failures of translation from extended SysML models to simulation due to incorrect usage of SysPhS or translator
construction are not addressed.

Errors that cause failure to simulate arise from system model structure. These show the modeler’s design does not
properly support simulation. The underlying equations might be inconsistent, including being overconstrained (more
equations than variables) or underconstrained (fewer equations than variables). The model might have equations that
would divide by zero, functions being called outside of their real domain (such as the square root of a negative number),
or other erroneous symbolic transformations.

Errors that cause simulations to produce unintended results arise from the meaning of the system model. These reflect
discrepancies between desired behavior and simulation execution. Although some errors can be identified automatically
depending on the simulation tool being used (such as variable values outside bounds), these errors can also be found
manually after trying to validate the simulation results. These errors can come from incorrect equations, incorrect
parameter or initialization values, and incorrect function calls from equations. Errors can also be due to integration errors
with the solvers being used, which are not considered in this annex.

Debugging errors in physical interactions is more complicated than in signal flows, because following ordered execution
of command sequences or operations does not work for bidirectional relationships (see Clause 6.1 on the bidirectionality
of physical interactions). Debugging errors in physical interactions must examine chains of variable transformations in
the model (mathematical operations on variables to give values to other variables).

This annex describes two debugging techniques for SysML system models of physical interactions and signal flows that
are intended to be translated into simulation platforms:

• Static debugging identifies errors that cause failure to compile simulation models to executable code. These
techniques trace variable (symbolic) transformations through the model to identify erroneous sections.

• Dynamic debugging identifies errors that cause simulation to produce unexpected results. These techniques
involve interactive inspection of models during execution to bookkeep changing variable values over simulated
time. They must be used after static debugging techniques to ensure models can be compiled to executable code.

The rest of this annex gives an overview of these debugging procedures applied to the vehicular cruise control system
example from Subannex A.6.

B.2 Preprocessing: Simplifying Models
If a simulation model fails to compile or execute correctly, the cause can be identified by tracing through chains of
connectors between components. This is the basis for static debugging techniques and facilitates dynamic debugging. It
simplifies debugging to move physical interaction and signal flow connectors into separate models. The two simpler
models can be debugged separately before replicating the resulting fixes in the complete model, a simpler task than
debugging the entire model all at once.

First, create a model of physical interactions only by removing all
connectors in the original model’s internal block diagram (IBD) that do
not represent physical interactions (saving a separate copy of the

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 117

original model first). Any remaining parts or ports that are not at the end
of the remaining connectors or do not possess a port that is at the end
of a B.1 Introduction
It is helpful to identify causes of errors in earlier stages of system model development before they propagate to
(potentially multiple) simulation models. It can also verify and increase understanding of the relationships captured in
system models before discipline-specific experts focus on parts of the system in their own models and tools. Any errors
not due to usage of SysML or its extensions, translators, or simulator execution engines will be in the source SysML
models.

This annex gives an overview of platform-independent debugging procedures for physical interaction and signal flow in
SysML models extended with SysPhS, before translation to simulation platforms. They are intended to complement
existing debugging techniques on those platforms.

The type of failure influences the debugging procedures required to identify and fix errors. This annex is concerned with
fixing system model errors that cause failure to:

• Compile or execute simulation models translated from system models,
• Produce expected results from simulation execution.

Failures of translation from extended SysML models to simulation due to incorrect usage of SysPhS or translator
construction are not addressed.

Errors that cause failure to simulate arise from system model structure. These show the modeler’s design does not
properly support simulation. The underlying equations might be inconsistent, including being overconstrained (more
equations than variables) or underconstrained (fewer equations than variables). The model might have equations that
would divide by zero, functions being called outside of their real domain (such as the square root of a negative number),
or other erroneous symbolic transformations.

Errors that cause simulations to produce unintended results arise from the meaning of the system model. These reflect
discrepancies between desired behavior and simulation execution. Although some errors can be identified automatically
depending on the simulation tool being used (such as variable values outside bounds), these errors can also be found
manually after trying to validate the simulation results. These errors can come from incorrect equations, incorrect
parameter or initialization values, and incorrect function calls from equations. Errors can also be due to integration errors
with the solvers being used, which are not considered in this annex.

Debugging errors in physical interactions is more complicated than in signal flows, because following ordered execution
of command sequences or operations does not work for bidirectional relationships (see Clause 6.1 on the bidirectionality
of physical interactions). Debugging errors in physical interactions must examine chains of variable transformations in
the model (mathematical operations on variables to give values to other variables).

This annex describes two debugging techniques for SysML system models of physical interactions and signal flows that
are intended to be translated into simulation platforms:

• Static debugging identifies errors that cause failure to compile simulation models to executable code. These
techniques trace variable (symbolic) transformations through the model to identify erroneous sections.

• Dynamic debugging identifies errors that cause simulation to produce unexpected results. These techniques
involve interactive inspection of models during execution to bookkeep changing variable values over simulated
time. They must be used after static debugging techniques to ensure models can be compiled to executable code.

The rest of this annex gives an overview of these debugging procedures applied to the vehicular cruise control system
example from Subannex A.6.

B.2 Preprocessing: Simplifying Models
If a simulation model fails to compile or execute correctly, the cause can be identified by tracing through chains of
connectors between components. This is the basis for static debugging techniques and facilitates dynamic debugging. It
simplifies debugging to move physical interaction and signal flow connectors into separate models. The two simpler
models can be debugged separately before replicating the resulting fixes in the complete model, a simpler task than
debugging the entire model all at once.

First, create a model of physical interactions only by removing all connectors in the original model’s internal block
diagram (IBD) that do not represent physical interactions (saving a separate copy of the original model first). Any
remaining parts or ports that are not at the end of the remaining connectors or do not possess a port that is at the end of a
remaining connector are also removed. Figure 123 shows internal structure from the cruise control system example
(Figure 104: Internal structure of the cruise control system in Subannex A.6) with only its physical interactions.

118 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 123: Cruise control total system model with only physical interactions

Next, in the parametric diagrams for the remaining parts or ports, remove equations (constraints) determining values of
variables (constraint parameters) that are bound to (signal flow) out-flow properties (see Clause 7 for discussion on flow
properties for signal flows and physical interactions). Remove part or port properties that are bound to variables on these
out-flow equations as well. Replace any remaining equation variables bound to in-flow properties on the parts or ports by
constant values, either by directly replacing the parameter with a constant value in constraints or by introducing a binding
to a PhSConstant-stereotyped property that has a constant default value or instance value (see Subclause 10.10.2 for
value assignment examples). Figure 124 depicts a parametric diagram for a component in Figure 123, before and after
these changes were made for a physical interactions-only model.

Figure 124: Show two (2) parametric diagrams of the same component (before and after changes for
the physical interactions-only model)

A separate system model for signal flows is created by first removing all connectors in the original model’s IBD that do
not represent signal flows (while saving a separate copy of the original model). Also remove any remaining parts or ports
that are not at the end of the remaining connectors or does not possess a port that is at the end of a connector. Figure 125
shows an IBD with only the signal flows in the original cruise control total system model. remaining connector are also
removed. Figure 123 shows internal structure from the cruise control system example (Figure 104: Internal structure of
the cruise control system in Subannex A.6) with only its physical interactions.

dragCoefficient = 1.0
crossSectionalArea = 2.0{unit = squaredMeter}

mass = 2000.0{unit = kilogram}

initial values

controlledVehicle : Car

initial values

radius = 0.5{unit=meter}

impeller : Wheel
hub

trqCoef = 1.0{unit = newtonMeter}
throttleSetting = 0.8

initial values
powerSource : Engine

crankshaft

AngularMomentum

CruiseControlPhysicalInteractionsibd

«connector»
impellerVehicleLink :

ALMomentumTransformation

lMTG

gravVehicleLink :
LMomPotEngTransformation

airVehicleLink :
LMomentumTransfer

«connector»

initial values
acceleration = 9.8

{unit = meterPerSecondSquared}

operatingEnvironment : Earth

density = 1.2
{unit = kilogramPerCubicMeter}

initial values
atmosphere : Air

rise = 0.1

stop = 70.0{unit = second}
start = 50.0{unit = second}

flat = 0.0
initial values

surface : Road
Momentum

LinearMomentum

LinearMomentum

rrCoeff = 0.5

Wheelpar

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub
{aS1=-aS2}
{lS=aS2*radius}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

lS trq2

radiustrq1

aS1

aS2

aMomF.aV : AngularVelocity speed : LinearVelocity

aMomF.trq : Torque

r̂adius : Length«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

constraints

parameters

rr rrCoeff : Real«equal»

Wheelpar

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub
{aS1=-aS2}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

tq2

trq1

aS1

aS2

aMomF.aV : AngularVelocity aMomF.trq : Torque

«equal»

«equal»

«equal»

constraints

parameters

rr

rrCoeff : Real

«equal»«equal»

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 119

Figure 123: Cruise control total system model with only physical interactions

Next, in the parametric diagrams for the remaining parts or ports, remove equations (constraints) determining values of
variables (constraint parameters) that are bound to (signal flow) out-flow properties (see Clause 7 for discussion on flow
properties for signal flows and physical interactions). Remove part or port properties that are bound to variables on these
out-flow equations as well. Replace any remaining equation variables bound to in-flow properties on the parts or ports by
constant values, either by directly replacing the parameter with a constant value in constraints or by introducing a binding
to a PhSConstant-stereotyped property that has a constant default value or instance value (see Subclause 10.10.2 for
value assignment examples). Figure 124 depicts a parametric diagram for a component in Figure 123, before and after
these changes were made for a physical interactions-only model.

Figure 124: Show two (2) parametric diagrams of the same component (before and after changes for
the physical interactions-only model)

A separate system model for signal flows is created by first removing all connectors in the original model’s IBD that do
not represent signal flows (while saving a separate copy of the original model). Also remove any remaining parts or ports
that are not at the end of the remaining connectors or does not possess a port that is at the end of a connector. Figure 125
shows an IBD with only the signal flows in the original cruise control total system model.

dragCoefficient = 1.0
crossSectionalArea = 2.0{unit = squaredMeter}

mass = 2000.0{unit = kilogram}

initial values

controlledVehicle : Car

initial values

radius = 0.5{unit=meter}

impeller : Wheel
hub

trqCoef = 1.0{unit = newtonMeter}
throttleSetting = 0.8

initial values
powerSource : Engine

crankshaft

AngularMomentum

CruiseControlPhysicalInteractionsibd

«connector»
impellerVehicleLink :

ALMomentumTransformation

lMTG

gravVehicleLink :
LMomPotEngTransformation

airVehicleLink :
LMomentumTransfer

«connector»

initial values
acceleration = 9.8

{unit = meterPerSecondSquared}

operatingEnvironment : Earth

density = 1.2
{unit = kilogramPerCubicMeter}

initial values
atmosphere : Air

rise = 0.1

stop = 70.0{unit = second}
start = 50.0{unit = second}

flat = 0.0
initial values

surface : Road
Momentum

LinearMomentum

LinearMomentum

rrCoeff = 0.5

Wheelpar

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub
{aS1=-aS2}
{lS=aS2*radius}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

lS trq2

radiustrq1

aS1

aS2

aMomF.aV : AngularVelocity speed : LinearVelocity

aMomF.trq : Torque

r̂adius : Length«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

constraints

parameters

rr rrCoeff : Real«equal»

Wheelpar

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub
{aS1=-aS2}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

tq2

trq1

aS1

aS2

aMomF.aV : AngularVelocity aMomF.trq : Torque

«equal»

«equal»

«equal»

constraints

parameters

rr

rrCoeff : Real

«equal»«equal»

120 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Figure 125: Cruise control total system model with only signal flows

Next, in each parametric diagram for the remaining parts or ports, remove equations that play no role in determining
values of variables bound to out-flow properties (see Clause 7 for discussion on flow properties for signal flows and
physical interactions) or equations that do not have any bindings to in-flow properties. Remove part or port properties not
bound to variables on the remaining equations. Of the remaining equations, some variables might be bound to physical
interaction inout-flow properties on the parts or ports. These flow properties are replaced during simplification. If any
equation variable bound to these flow properties determine the value of a variable bound to an out-flow property, then
remove the inout-flow property and give a new constant value to its variable by binding to a PhSConstant-stereotyped
property that has a constant default value or instance value (see Subclause 10.10.2 for value assignment examples). If any
equation variable bound to these flow properties is determined by a variable in the same equation that is bound to an in-
flow property, then remove the inout-flow property and give its variable a new binding to a new property with a
PhSVariable (see Subclause 10.6.2 on applying variable- and constant-value stereotypes to properties).

Figure 126 depicts a parametric diagram for a component in Figure 123, before and after these changes were made for a
signal flows-only model.

Figure 126: Show two (2) parametric diagrams of the same component (before and after changes for the signal
flows-only model)

The remaining sections present the debugging techniques. Static techniques find causes of failure to compile and
simulate translated models. This type of failure prevents generating a simulation run-time from the translated model.
Once compilation succeeds, dynamic debugging techniques identify causes of failure to produce intended simulation
behavior. The underlying theme for static debugging is tracing symbolic transformations in the model to find errors.
Transformation tracing is also useful for dynamic debugging to better understand the model and sources of potential
simulation-related errors.

controlledVehicle : Car

initial values
radius = 0.5{unit=meter}

impeller : Wheel

kP = 200.0{unit = hertz}
kI = 30.0{unit = hertzSquared}

throttleAccRatio = 1.0{unit = secondSquaredPerMeter}

initial values
speedController : CruiseController

throttleActuatorJack

speedSensorJack
speedDriverJack

changetime = 100.0{unit = second}
speed1 = 10.0{unit = meterPerSecond}
speed2 = 15.0{unit = meterPerSecond}

initial values
driver : Person

trqCoef = 1.0{unit = newtonMeter}
initial values

powerSource : Engine

SpeedSignal

ThrottleSignalSpeedSignal

CruiseControlSignalFlowsibd

Wheelpar

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub
{aS1=-aS2}
{lS=aS2*radius}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

lS trq2

radiustrq1

aS1

aS2

aMomF.aV : AngularVelocity speed : LinearVelocity

aMomF.trq : Torque

r̂adius : Length«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

constraints

parameters

rr rrCoeff : Real«equal»

Wheelpar

aMomF.aV : AngularVelocity

hub
{aS1=-aS2}
{lS=aS2*radius}

«constraint»
wC : WheelConstraint

lS
radius

aS1

aS2

aMomF.aV : AngularVelocity speed : LinearVelocity

r̂adius : Length

«equal»

«equal»

«equal»«equal»

constraints

parameters

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 121

Figure 125: Cruise control total system model with only signal flows

Next, in each parametric diagram for the remaining parts or ports, remove equations that play no role in determining
values of variables bound to out-flow properties (see Clause 7 for discussion on flow properties for signal flows and
physical interactions) or equations that do not have any bindings to in-flow properties. Remove part or port properties not
bound to variables on the remaining equations. Of the remaining equations, some variables might be bound to physical
interaction inout-flow properties on the parts or ports. These flow properties are replaced during simplification. If any
equation variable bound to these flow properties determine the value of a variable bound to an out-flow property, then
remove the inout-flow property and give a new constant value to its variable by binding to a PhSConstant-stereotyped
property that has a constant default value or instance value (see Subclause 10.10.2 for value assignment examples). If any
equation variable bound to these flow properties is determined by a variable in the same equation that is bound to an in-
flow property, then remove the inout-flow property and give its variable a new binding to a new property with a
PhSVariable (see Subclause 10.6.2 on applying variable- and constant-value stereotypes to properties).

Figure 126 depicts a parametric diagram for a component in Figure 123, before and after these changes were made for a
signal flows-only model.

Figure 126: Show two (2) parametric diagrams of the same component (before and after changes for the signal
flows-only model)

The remaining sections present the debugging techniques. Static techniques find causes of failure to compile and
simulate translated models. This type of failure prevents generating a simulation run-time from the translated model.
Once compilation succeeds, dynamic debugging techniques identify causes of failure to produce intended simulation
behavior. The underlying theme for static debugging is tracing symbolic transformations in the model to find errors.

controlledVehicle : Car

initial values
radius = 0.5{unit=meter}

impeller : Wheel

kP = 200.0{unit = hertz}
kI = 30.0{unit = hertzSquared}

throttleAccRatio = 1.0{unit = secondSquaredPerMeter}

initial values
speedController : CruiseController

throttleActuatorJack

speedSensorJack
speedDriverJack

changetime = 100.0{unit = second}
speed1 = 10.0{unit = meterPerSecond}
speed2 = 15.0{unit = meterPerSecond}

initial values
driver : Person

trqCoef = 1.0{unit = newtonMeter}
initial values

powerSource : Engine

SpeedSignal

ThrottleSignalSpeedSignal

CruiseControlSignalFlowsibd

Wheelpar

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub
{aS1=-aS2}
{lS=aS2*radius}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

lS trq2

radiustrq1

aS1

aS2

aMomF.aV : AngularVelocity speed : LinearVelocity

aMomF.trq : Torque

r̂adius : Length«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

constraints

parameters

rr rrCoeff : Real«equal»

Wheelpar

aMomF.aV : AngularVelocity

hub
{aS1=-aS2}
{lS=aS2*radius}

«constraint»
wC : WheelConstraint

lS
radius

aS1

aS2

aMomF.aV : AngularVelocity speed : LinearVelocity

r̂adius : Length

«equal»

«equal»

«equal»«equal»

constraints

parameters

122 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Transformation tracing is also useful for dynamic debugging to better understand the model and sources of potential
simulation-related errors.

B.3 Static Debugging for Failure-to-Execute Simulation
The failure of a simulation model (translated from a system model) to compile and execute on a simulation platform
indicates a static error. These errors can be identified with debugging techniques applied to the system model without
translating and simulating it (statically). These techniques trace chains of symbolic transformations in the model, which
appear in SysML as mathematical relationships in constraint equations (in parametrics diagrams) or implied by
connectors (in IBDs). Specifically, tracing refers to tracking transformations of known and unknown variables through a
model. Known variables are properties whose values are assigned a constant value or determined through mathematical
relationships. Tracing is complemented by bookkeeping, which records the known or unknown status of these variables
when operations apply to them in the model.

Static debugging can be performed on complete system models, but is described here on simplified, complementary
models of a system’s physical interactions and signal flows. For models with physical interactions, the first task is to
identify the part, port, or connector property in IBDs where physical interaction will first occur or initiate other physical
interactions in the system. Multiple parts and ports where physical interactions simultaneously occur can initiate further
interactions, but any one can be arbitrarily picked to begin tracing. Tracing and bookkeeping of mathematical
transformations start with properties associated to this selected part or port. Deciding which system component
commences the physical interactions is easy in many cases. For example, the initiators of flow of electric charge in an
electric circuit are the voltage sources or current sources. In the cruise control system represented in IBDs in Figure 104
and Figure 123, the throttle in the engine physically initiates the car’s interaction with the road and air (this happens on
command from the driver, but the command is signal flow, not physical interaction).

When the initiator of physical interaction is not obvious, it can help to inspect the parametric diagrams of parts or ports in
IBDs. Parametric diagrams contain bindings between properties of the parts (or ports) to variables in the part’s constraint
equations. Look for parametric diagrams of parts that have a higher number of PhSConstant-stereotyped properties (with
values given explicitly in the model) than PhSVariable-stereotyped properties (with values determined by mathematical
relationships in the model), except for PhSVariables that give simulation time. The equation variables (constraint
parameters) bound to PhSConstant or time properties are used in the part’s equations (constraints) to determine values of
other variables, which are bound to other properties used in the part’s equations. To find an initiator, search for a part or
port where most of its properties or properties of its ports are bound to constants or time values in its parametric diagram.
The only properties without constant or time values should be flow properties, which can only have their values
determined through connectors. Parts or ports initiating physical interactions have the fewest of these flow properties.

Tracing bindings and constraints in parametric diagrams helps understand and keep track of (bookkeep) which variables
in the equations are known and unknown. Constraint equations show mathematical transformations between known
variables, bound to properties with known values, and unknown variables, bound to properties with unknown values.
Before simulation, the only known variables are the ones bound to PhSConstant properties, the variables bound to
properties given (initial) values at the start of simulation, and properties that give simulation time values. These should
lead to values assigned to all variables in the parametrics diagram of physical interaction-initiating parts. The status of
these variables will change as tracing shows their values being assigned through constraints or connectors, which is
recorded by bookkeeping.

Physical interaction flow properties on the current part in the debugging process link to flow properties on parts or ports
at the other end of the linking connectors. Trace along these connectors to find out whether values are assigned to these
flow properties leads to parametric diagrams of other parts, ports, and connector properties linked to the current part.
Repeat the same methods of tracing and bookkeeping in these other parametric diagrams to determine whether values are
assigned to unknown variables and to find flow properties that lead to new connectors and parametric diagrams. The
trace must go through all connectors and parametric diagrams of the system’s parts, ports, and connector properties.
Figure 127 shows an example of tracing and bookkeeping value assignments between the vehicle’s engine, the physical
interaction-initiating part of the cruise control system, and the rest of the physical interactions-only system IBD from
Figure 123. Bookkeeping of the total trace completes the tracking of value assignments. The bookkeepings of variables
for Figure 127are depicted in the tables that follow the figure. The traces in the bookkeepings correspond to the marked
points in the figure (A, B, C, D, E, & F).

A system model will compile and simulate when translated if it: a) uses all the constraint equations and connectors in the
model for mathematical transformations between known and unknown variables and b) has all its property values
determined by simulation of mathematical transformations. If tracing and bookkeeping identifies a constraint equation or
connector that is not used, the system is overconstrained. In this scenario, the modeler must choose whether unused
equations or connectors should be removed or a new property should be included and related to them. If an unknown
property is not defined by any mathematical constraint or connector, then the system is underconstrained. In this
scenario, the modeler must choose between using this property in a new equation or removing the property. Tracing and

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 123

bookkeeping of equations also helps spot constraint equations that involve a division by zero and functions called outside
their domains. Once corrections to the model are made, they are replicated in the original system model.

B.3 Static Debugging for Failure-to-Execute Simulation
The failure of a simulation model (translated from a system model) to compile and execute on a simulation platform
indicates a static error. These errors can be identified with debugging techniques applied to the system model without
translating and simulating it (statically). These techniques trace chains of symbolic transformations in the model, which
appear in SysML as mathematical relationships in constraint equations (in parametrics diagrams) or implied by
connectors (in IBDs). Specifically, tracing refers to tracking transformations of known and unknown variables through a
model. Known variables are properties whose values are assigned a constant value or determined through mathematical
relationships. Tracing is complemented by bookkeeping, which records the known or unknown status of these variables
when operations apply to them in the model.

Static debugging can be performed on complete system models, but is described here on simplified, complementary
models of a system’s physical interactions and signal flows. For models with physical interactions, the first task is to
identify the part, port, or connector property in IBDs where physical interaction will first occur or initiate other physical
interactions in the system. Multiple parts and ports where physical interactions simultaneously occur can initiate further
interactions, but any one can be arbitrarily picked to begin tracing. Tracing and bookkeeping of mathematical
transformations start with properties associated to this selected part or port. Deciding which system component
commences the physical interactions is easy in many cases. For example, the initiators of flow of electric charge in an
electric circuit are the voltage sources or current sources. In the cruise control system represented in IBDs in Figure 104
and Figure 123, the throttle in the engine physically initiates the car’s interaction with the road and air (this happens on
command from the driver, but the command is signal flow, not physical interaction).

When the initiator of physical interaction is not obvious, it can help to inspect the parametric diagrams of parts or ports in
IBDs. Parametric diagrams contain bindings between properties of the parts (or ports) to variables in the part’s constraint
equations. Look for parametric diagrams of parts that have a higher number of PhSConstant-stereotyped properties (with
values given explicitly in the model) than PhSVariable-stereotyped properties (with values determined by mathematical
relationships in the model), except for PhSVariables that give simulation time. The equation variables (constraint
parameters) bound to PhSConstant or time properties are used in the part’s equations (constraints) to determine values of
other variables, which are bound to other properties used in the part’s equations. To find an initiator, search for a part or
port where most of its properties or properties of its ports are bound to constants or time values in its parametric diagram.
The only properties without constant or time values should be flow properties, which can only have their values
determined through connectors. Parts or ports initiating physical interactions have the fewest of these flow properties.

Tracing bindings and constraints in parametric diagrams helps understand and keep track of (bookkeep) which variables
in the equations are known and unknown. Constraint equations show mathematical transformations between known
variables, bound to properties with known values, and unknown variables, bound to properties with unknown values.
Before simulation, the only known variables are the ones bound to PhSConstant properties, the variables bound to
properties given (initial) values at the start of simulation, and properties that give simulation time values. These should
lead to values assigned to all variables in the parametrics diagram of physical interaction-initiating parts. The status of
these variables will change as tracing shows their values being assigned through constraints or connectors, which is
recorded by bookkeeping.

Physical interaction flow properties on the current part in the debugging process link to flow properties on parts or ports
at the other end of the linking connectors. Trace along these connectors to find out whether values are assigned to these
flow properties leads to parametric diagrams of other parts, ports, and connector properties linked to the current part.
Repeat the same methods of tracing and bookkeeping in these other parametric diagrams to determine whether values are
assigned to unknown variables and to find flow properties that lead to new connectors and parametric diagrams. The
trace must go through all connectors and parametric diagrams of the system’s parts, ports, and connector properties.
Figure 127 shows an example of tracing and bookkeeping value assignments between the vehicle’s engine, the physical
interaction-initiating part of the cruise control system, and the rest of the physical interactions-only system IBD from
Figure 123. Bookkeeping of the total trace completes the tracking of value assignments. The bookkeepings of variables
for Figure 127are depicted in the tables that follow the figure. The traces in the bookkeepings correspond to the marked
points in the figure (A, B, C, D, E, & F).

A system model will compile and simulate when translated if it: a) uses all the constraint equations and connectors in the
model for mathematical transformations between known and unknown variables and b) has all its property values
determined by simulation of mathematical transformations. If tracing and bookkeeping identifies a constraint equation or
connector that is not used, the system is overconstrained. In this scenario, the modeler must choose whether unused
equations or connectors should be removed or a new property should be included and related to them. If an unknown
property is not defined by any mathematical constraint or connector, then the system is underconstrained. In this
scenario, the modeler must choose between using this property in a new equation or removing the property. Tracing and

124 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

bookkeeping of equations also helps spot constraint equations that involve a division by zero and functions called outside
their domains. Once corrections to the model are made, they are replicated in the original system model.

If there is a complementary model of signal flows, repeat the process of tracing and bookkeeping in a similar fashion, but
start tracing from all parts that do not have in-flow properties or do not own ports that have in-flow properties. The in-
flow property on these parts indicate that they receive unidirectional signals from another part in the model, so they
cannot be the initiator of signal flows. Corrections in this model should likewise (the physical interactions model) be
reproduced in the original, complete model of the system. Translate the corrected SysML model and test on simulation
platforms to determine if more debugging is needed.

Figure 127: Shows initiating physical interaction component (at point A), direction of traces, bookkeeping of

variables, and value assignment that occur through the total trace (ending at F)

If there is a complementary model of signal flows, repeat the process of tracing and bookkeeping in a similar fashion, but
start tracing from all parts that do not have in-flow properties or do not own ports that have in-flow properties. The in-
flow property on these parts indicate that they receive unidirectional signals from another part in the model, so they
cannot be the initiator of signal flows. Corrections in this model should likewise (the physical interactions model) be
reproduced in the original, complete model of the system. Translate the corrected SysML model and test on simulation
platforms to determine if more debugging is needed.

dragCoefficient = 1.0
crossSectionalArea = 2.0{unit = squaredMeter}

mass = 2000.0{unit = kilogram}

initial values

controlledVehicle : Car

initial values

radius = 0.5{unit=meter}

impeller : Wheel

hub

trqCoef = 1.0{unit = newtonMeter}
throttleSetting = 0.8

initial values
powerSource : Engine

crankshaft

AngularMomentum

CruiseControlPhysicalInteractionsibd

«connector»
impellerVehicleLink :

ALMomentumTransformation

lMTG

gravVehicleLink :
LMomPotEngTransformation

airVehicleLink :
LMomentumTransfer

«connector»

initial values
acceleration = 9.8

{unit = meterPerSecondSquared}

operatingEnvironment : Earth

density = 1.2
{unit = kilogramPerCubicMeter}

initial values
atmosphere : Air

rise = 0.1

stop = 70.0{unit = second}
start = 50.0{unit = second}

flat = 0.0
initial values

surface : RoadMomentum

LinearMomentum

LinearMomentum

rrCoeff = 0.5

A

F

C

D

E

B

Bookkeeping of variables through parts and ports from A to B

power-
Source

Value
known?

crankshaft Value
known?

hub Value
known?

impeller Value
known?

impeller-
VehicleLink

Value
known?

trqCoeff ☒ torque ☒ torque ☒ torque ☒ torque ☒
throttle-
Setting ☒ angular

velocity ☒ angular
velocity ☒ angular

velocity ☒ angular
velocity ☐

rrCoeff ☒ force ☒
radius ☒ linear

velocity ☐
radius ☒
ground-
force ☐
ground-
linear
velocity

☐

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 125

Figure 127: Shows initiating physical interaction component (at point A), direction of traces, bookkeeping of
variables, and value assignment that occur through the total trace (ending at F)

dragCoefficient = 1.0
crossSectionalArea = 2.0{unit = squaredMeter}

mass = 2000.0{unit = kilogram}

initial values

controlledVehicle : Car

initial values

radius = 0.5{unit=meter}

impeller : Wheel

hub

trqCoef = 1.0{unit = newtonMeter}
throttleSetting = 0.8

initial values
powerSource : Engine

crankshaft

AngularMomentum

CruiseControlPhysicalInteractionsibd

«connector»
impellerVehicleLink :

ALMomentumTransformation

lMTG

gravVehicleLink :
LMomPotEngTransformation

airVehicleLink :
LMomentumTransfer

«connector»

initial values
acceleration = 9.8

{unit = meterPerSecondSquared}

operatingEnvironment : Earth

density = 1.2
{unit = kilogramPerCubicMeter}

initial values
atmosphere : Air

rise = 0.1

stop = 70.0{unit = second}
start = 50.0{unit = second}

flat = 0.0
initial values

surface : RoadMomentum

LinearMomentum

LinearMomentum

rrCoeff = 0.5

A

F

C

D

E

B

Bookkeeping of variables through parts and ports from A to B

power-
Source

Value
known?

crankshaft Value
known?

hub Value
known?

impeller Value
known?

impeller-
VehicleLink

Value
known?

trqCoeff ☒ torque ☒ torque ☒ torque ☒ torque ☒
throttle-
Setting ☒ angular

velocity ☒ angular
velocity ☒ angular

velocity ☒ angular
velocity ☐

rrCoeff ☒ force ☒
radius ☒ linear

velocity ☐
radius ☒
ground-
force ☐
ground-
linear
velocity

☐

126 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

Bookkeeping of variables through parts and ports from C to B to F

surface Value
known?

lMTG
(ground)

Value
known?

impeller-
VehicleLink

Value
known?

controlled-
Vehicle

Value
known?

linear
velocity ☒ force ☒ torque ☒ mass ☒
slope ☒ linear

velocity ☒ angular
velocity ☒ force ☒
force ☒ linear

velocity ☒
linear
velocity ☒
radius ☒
ground-
force ☒
ground-
linear
velocity

☒

Bookkeeping of variables through parts and ports from D to F

Operating-
Environment

Value
known?

grav-
VehicleLink

Value
known?

controlled-
Vehicle

Value
known?

acceleration ☒ slope ☒ mass ☒
acceleration ☒ force ☒
mass ☒ linear

velocity ☒
force ☒

Bookkeeping of variables through parts and ports from E to F

air Value
known?

air-
VehicleLink

Value
known?

controlled-
Vehicle

Value
known?

linear
velocity ☒ density ☒ mass ☒

cross-
sectional
Area

☒ force ☒
dragCoeff ☒ linear

velocity ☒
fluid-
linear
velocity

☒
fluid-
force ☒
velocity ☒
solid-
linear
velocity

☒
solid-
force ☒

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 127

Bookkeeping of variables through parts and ports from C to B to F

surface Value
known?

lMTG
(ground)

Value
known?

impeller-
VehicleLink

Value
known?

controlled-
Vehicle

Value
known?

linear
velocity ☒ force ☒ torque ☒ mass ☒
slope ☒ linear

velocity ☒ angular
velocity ☒ force ☒
force ☒ linear

velocity ☒
linear
velocity ☒
radius ☒
ground-
force ☒
ground-
linear
velocity

☒

Bookkeeping of variables through parts and ports from D to F

Operating-
Environment

Value
known?

grav-
VehicleLink

Value
known?

controlled-
Vehicle

Value
known?

acceleration ☒ slope ☒ mass ☒
acceleration ☒ force ☒
mass ☒ linear

velocity ☒
force ☒

128 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

B.4 Dynamic Debugging for Unexpected Simulation Results
Failure of a simulation model (translated from a system model) to produce expected results when executed indicates a
dynamic error. The simulation model is able to compile and simulate but produces variable values that deviate from
modeler expectations. These errors can be identified with dynamic debugging techniques applied to the system model.
These techniques examine executed simulations to understand exactly when signals and conserved substances flow
through the system and what their characteristics are.

They focus on simulation results for variables involved in the static traces of flow properties linked by connectors in the
previous section. This showed how variables characterizing flow of physical substances and signals during simulation are
related via transformations in the system model (mathematical operations via constraint equations and connectors).
Though dynamic debugging can be performed without prior static debugging, fixing static errors first ensures the
simulation model will compile and execute, and static tracing improves understanding of how variables change during
simulation.

Dynamic debugging can be performed on complete system models, but is described here on simplified, complementary
models of a system’s physical interactions and signal flows. Behavior of conserved substances in physical interactions is
characterized by their flow rate and potential to flow. Flow rate and potential to flow appear in simulation as variables
translated from properties at the ends of connectors in the system model. This enables modelers to track simulation
variables that correspond to properties in SysML system models. The SysPhS translator uses the names of association
ends and constraint parameters in the resulting simulation models to facilitate this but tracking simulation variables might
require some familiarity with the simulation language. Lastly, like static debugging, dynamic debugging starts by tracing
simulation variable transformations at points in the model that initiate physical interactions in the rest of the model.
These points must be identified before debugging.

Physical interaction variables simulate flow of conserved substances only at their corresponding connector endpoint (part
or port) in the system model. A more complete picture of symbolic transformations of these variables is seen by
observing their values over simulated time and comparing them to other physical interaction simulation variables in the
model. Graphical displays in simulation tools show these values, enabling comparison of simulated values to their
intended mathematical relationships. The relationships are defined, correctly or not, through transformations
(mathematical relationships between variables derived from connectors and parametric diagrams in the system model) of
corresponding flow properties in the system model. To visualize these transformations, observe variables when their
corresponding flow properties have not undergone more than one set of transformations (operations that occur on flow
properties in the constraints of one parametric diagram or in the mathematical relationship implied by one connector).
Compare simulation values of these variables with those of other physical interaction variables related to the same part or
port in the system model, as well as simulation variables related to the other end of the variables’ associated connectors.

Bookkeeping of variables through parts and ports from E to F

air Value
known?

air-
VehicleLink

Value
known?

controlled-
Vehicle

Value
known?

linear
velocity ☒ density ☒ mass ☒

cross-
sectional
Area

☒ force ☒
dragCoeff ☒ linear

velocity ☒
fluid-
linear
velocity

☒
fluid-
force ☒
velocity ☒
solid-
linear
velocity

☒
solid-
force ☒

SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1 129

Failure of a simulation model (translated from a system model) to produce expected results when executed indicates a
dynamic error. The simulation model is able to compile and simulate but produces variable values that deviate from
modeler expectations. These errors can be identified with dynamic debugging techniques applied to the system model.
These techniques examine executed simulations to understand exactly when signals and conserved substances flow
through the system and what their characteristics are.

They focus on simulation results for variables involved in the static traces of flow properties linked by connectors in the
previous section. This showed how variables characterizing flow of physical substances and signals during simulation are
related via transformations in the system model (mathematical operations via constraint equations and connectors).
Though dynamic debugging can be performed without prior static debugging, fixing static errors first ensures the
simulation model will compile and execute, and static tracing improves understanding of how variables change during
simulation.

Dynamic debugging can be performed on complete system models, but is described here on simplified, complementary
models of a system’s physical interactions and signal flows. Behavior of conserved substances in physical interactions is
characterized by their flow rate and potential to flow. Flow rate and potential to flow appear in simulation as variables
translated from properties at the ends of connectors in the system model. This enables modelers to track simulation
variables that correspond to properties in SysML system models. The SysPhS translator uses the names of association
ends and constraint parameters in the resulting simulation models to facilitate this but tracking simulation variables might
require some familiarity with the simulation language. Lastly, like static debugging, dynamic debugging starts by tracing
simulation variable transformations at points in the model that initiate physical interactions in the rest of the model.
These points must be identified before debugging.

Physical interaction variables simulate flow of conserved substances only at their corresponding connector endpoint (part
or port) in the system model. A more complete picture of symbolic transformations of these variables is seen by
observing their values over simulated time and comparing them to other physical interaction simulation variables in the
model. Graphical displays in simulation tools show these values, enabling comparison of simulated values to their
intended mathematical relationships. The relationships are defined, correctly or not, through transformations
(mathematical relationships between variables derived from connectors and parametric diagrams in the system model) of
corresponding flow properties in the system model. To visualize these transformations, observe variables when their
corresponding flow properties have not undergone more than one set of transformations (operations that occur on flow
properties in the constraints of one parametric diagram or in the mathematical relationship implied by one connector).
Compare simulation values of these variables with those of other physical interaction variables related to the same part or
port in the system model, as well as simulation variables related to the other end of the variables’ associated connectors.

Analysis of simulation variable results is performed in simulation runs that are sufficiently long for their values to reach a
steady-state or a recognizable pattern of changes. Check that changes follow the mathematical transformations specified
in corresponding constraint equations and connector links in the system model, which can be modified to produce better
results. Figure 128 shows the relationship between simulated variable values over time and flow properties in the
parametrics diagram (from Figure 124) for a component in the physical interactions-only system IBD (from Figure 123).

Figure 128: Relationship between simulation variables and flow properties in the parametric diagrams
for components in the system IBD

Further simplification of system models can determine whether simulation results are valid, especially when physical
interactions are highly complex. One way is to temporarily remove parts, ports, and connectors until modelers have high
confidence in what they expect from variable behavior. Once this simpler model produces expected simulations, the
removed parts, ports, and connectors can be restored and checked (via simulations) in the reverse order that which they
were removed.

Wheelpar

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub
{aS1=-aS2}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

trq2

trq1

aS1

aS2

aMomF.aV : AngularVelocity aMomF.trq : Torque

«equal»

«equal»

«equal»

constraints

parameters

rr

rrCoeff : Real

«equal»«equal»

Time (sec)

Torque
through hub

Torque
through car

130 SysML Extension for Physical Interaction and Signal Flow Simulation, v1.1

For a complementary model of signal flows, if there is one, repeat the process of inspecting simulation variables in a
similar fashion. However, start tracing with all parts that do not have in-flow properties or do not own ports that have in-
flow properties, as chosen during static debugging. Replace remaining parts in a complementary model of signal flows
that only have out-flow properties or only have ports with out-flow properties have their flow properties by PhSConstant-
stereotyped properties with pre-specified values before debugging.

Errors that are found by debugging are corrected in the system model, then tested by translating to simulation models and
executing them. Translating and testing system models to multiple simulation platforms is more robust, because fixes
sometimes work for one simulation platform and not others. For example, a function call in a parametric diagram is
domain-specific, and this might need to be replaced with a more universal function call. It is also possible that some
modeling capabilities in SysML, such as state machines or different ways of defining initial values, cannot be replicated
on some simulation platforms (see Clause 10 for more specific examples about translation differences between
simulation platforms). Analysis of simulation variable results is performed in simulation runs that are sufficiently long
for their values to reach a steady-state or a recognizable pattern of changes. Check that changes follow the mathematical
transformations specified in corresponding constraint equations and connector links in the system model, which can be
modified to produce better results. Figure 128 shows the relationship between simulated variable values over time and
flow properties in the parametrics diagram (from Figure 124) for a component in the physical interactions-only system
IBD (from Figure 123).

Figure 128: Relationship between simulation variables and flow properties in the parametric diagrams for
components in the system IBD

Further simplification of system models can determine whether simulation results are valid, especially when physical
interactions are highly complex. One way is to temporarily remove parts, ports, and connectors until modelers have high
confidence in what they expect from variable behavior. Once this simpler model produces expected simulations, the
removed parts, ports, and connectors can be restored and checked (via simulations) in the reverse order that which they
were removed.

For a complementary model of signal flows, if there is one, repeat the process of inspecting simulation variables in a
similar fashion. However, start tracing with all parts that do not have in-flow properties or do not own ports that have in-
flow properties, as chosen during static debugging. Replace remaining parts in a complementary model of signal flows
that only have out-flow properties or only have ports with out-flow properties have their flow properties by PhSConstant-
stereotyped properties with pre-specified values before debugging.

Errors that are found by debugging are corrected in the system model, then tested by translating to simulation models and
executing them. Translating and testing system models to multiple simulation platforms is more robust, because fixes
sometimes work for one simulation platform and not others. For example, a function call in a parametric diagram is
domain-specific, and this might need to be replaced with a more universal function call. It is also possible that some
modeling capabilities in SysML, such as state machines or different ways of defining initial values, cannot be replicated
on some simulation platforms (see Clause 10 for more specific examples about translation differences between
simulation platforms).

Wheelpar

aMomF.aV : AngularVelocity

aMomF.trq : Torque

hub
{aS1=-aS2}
{rr*trq1+trq2=0}

«constraint»
wC : WheelConstraint

trq2

trq1

aS1

aS2

aMomF.aV : AngularVelocity aMomF.trq : Torque

«equal»

«equal»

«equal»

constraints

parameters

rr

rrCoeff : Real

«equal»«equal»

Time (sec)

Torque
through hub

Torque
through car

	SysML Extension for Physical Interaction and Signal Flow Simulation
	Table of Contents
	Preface
	1. Scope
	2. Conformance
	3. References
	3.1 Normative References
	3.2 Non-normative References

	4. Terms and definitions
	5. Symbols
	6. Additional Information
	6.1 Signal flow and physical interaction simulation compared
	6.2 How to read this specification
	6.3 Changes to Adopted OMG Specifications
	6.4 Acknowledgements

	7. SysML Extension for Physical Interaction and Signal Flow Simulation
	7.1 Introduction
	7.2 Simulation profile
	7.2.1 PhSConstant
	7.2.2 PhSVariable

	8. Language for Mathematical Expressions
	9. Preprocessing SysML Models
	9.1 Introduction
	9.2 Replace connectors typed by association blocks with their internal structure
	9.2.1 Purpose
	9.2.2 SysML model before processing
	9.2.3 SysML model after processing

	9.3 Non-simulation ports changed to parts
	9.3.1 Purpose
	9.3.2 SysML model before processing
	9.3.3 SysML model after processing

	9.4 Separate blocks owning simulation flow properties, and typing parts and ports
	9.4.1 Purpose
	9.4.2 SysML model before processing
	9.4.3 SysML model after processing
	9.4.3.1 Move simulation flow properties to their own blocks
	9.4.3.2 Add ports for simulation flow properties inherited to blocks that have non-simulation flow properties
	9.4.3.3 Split up ports typed by blocks that have inherited simulation flow properties
	9.4.3.4 Relink binding connectors that involve simulation flow properties moved to added ports
	9.4.3.5 Replace or add connectors between properties typed by blocks that have simulation flow properties moved to added ports
	9.4.3.6 Removing generalizations to blocks owning simulation flow properties

	9.5 Reduce nesting of connector ends
	9.5.1 Purpose
	9.5.2 SysML model before processing
	9.5.3 SysML model after processing

	10. Translating Between SysML and Simulation Platforms
	10.1 Introduction
	10.2 Root element
	10.2.1 Purpose
	10.2.2 SysML modeling
	10.2.3 Modelica modeling
	10.2.4 Simulink modeling
	10.2.5 Simscape modeling
	10.2.6 Summary

	10.3 Blocks and properties
	10.3.1 Purpose
	10.3.2 SysML modeling
	10.3.3 Modelica modeling
	10.3.4 Simulink modeling
	10.3.5 Simscape modeling
	10.3.6 Simulink/Simscape modeling
	10.3.7 Summary

	10.4 Generalization
	10.4.1 Purpose
	10.4.2 SysML modeling
	10.4.3 Modelica modeling
	10.4.4 Simulink modeling
	10.4.5 Simscape modeling
	10.4.6 Summary

	10.5 Property redefinition
	10.5.1 Purpose
	10.5.2 SysML modeling
	10.5.3 Modelica modeling
	10.5.4 Simulink modeling
	10.5.5 Simscape modeling
	10.5.6 Summary

	10.6 PhSVariables and PhSConstants
	10.6.1 Purpose
	10.6.2 SysML modeling
	10.6.3 Modelica modeling
	10.6.4 Simulink modeling
	10.6.5 Simscape modeling
	10.6.6 Summary

	10.7 Ports and Flow Properties
	10.7.1 Purpose
	10.7.2 SysML modeling
	10.7.3 SysML modeling, signal flow
	10.7.4 Modelica modeling, signal flow
	10.7.5 Simulink modeling, signal flow
	10.7.6 Simscape modeling, signal flow
	10.7.7 SysML modeling, physical interaction
	10.7.8 Modelica modeling, physical interaction
	10.7.9 Simulink modeling, physical interaction
	10.7.10 Simscape modeling, physical interaction
	10.7.11 Summary

	10.8 Connectors
	10.8.1 Purpose
	10.8.2 SysML modeling
	10.8.3 Modelica modeling
	10.8.4 Simulink modeling, between blocks with no constraints
	10.8.5 Simulink modeling, between blocks with constraints
	10.8.6 Simulink modeling, between blocks that have constraints and blocks that do not
	10.8.7 Simscape modeling
	10.8.8 Summary

	10.9 Blocks with constraints
	10.9.1 Purpose
	10.9.2 SysML modeling
	10.9.3 SysML modeling, signal flow
	10.9.4 Modelica modeling, signal flow
	10.9.5 Simulink modeling, signal flow
	10.9.6 Simscape modeling, signal flow
	10.9.7 SysML modeling, physical interaction
	10.9.8 Modelica modeling, physical interaction
	10.9.9 Simulink modeling, physical interaction
	10.9.10 Simscape modeling, physical interaction
	10.9.11 Summary

	10.10 Default values and initial values
	10.10.1 Purpose
	10.10.2 SysML Modeling
	10.10.3 Modelica modeling
	10.10.4 Simulink modeling
	10.10.5 Simscape modeling
	10.10.6 Summary

	10.11 Data types and units
	10.11.1 Purpose
	10.11.2 SysML modeling
	10.11.3 Modelica modeling
	10.11.4 Simulink modeling
	10.11.5 Simscape modeling
	10.11.6 Summary

	10.12 State machines
	10.12.1 Purpose
	10.12.2 SysML modeling
	10.12.3 Modelica modeling
	10.12.4 Simulink/StateFlow modeling
	10.12.5 Summary

	10.13 Mathematical expressions

	11. Platform-independent Component Library
	11.1 Introduction
	11.2 Component interaction
	11.2.1 Signal flow
	11.2.2 Physical interaction

	11.3 Component behavior
	11.3.1 Introduction
	11.3.2 Real-valued components
	11.3.2.1 Introduction
	11.3.2.2 Continuous components
	11.3.2.3 Discrete components
	11.3.2.4 Non-linear components
	11.3.2.5 Mathematical components
	11.3.2.6 Sources and sinks
	11.3.2.7 Routing components

	11.3.3 Logical components
	11.3.4 Electrical components

	11.4 Value types with units
	11.5 Platform-dependent extension
	11.5.1 Introduction
	11.5.2 Platform profile
	11.5.2.1 ModelicaBlock
	11.5.2.2 ModelicaParameter
	11.5.2.3 ModelicaPort
	11.5.2.4 MultidimensionalElement
	11.5.2.5 SimulinkBlock
	11.5.2.6 SimulinkParameter
	11.5.2.7 SimulinkPort

	11.5.3 Platform library

	Annex A - Examples (non-normative)
	Annex A - Examples (non-normative)
	A1.1 Introduction
	A1.2 Electric Circuits
	A.2.1 Introduction
	A.2.2 System Being Modeled
	A.2.3 Internal Structure
	A.2.4 Blocks and Ports
	A.2.5 Properties (variables)
	A.2.6 Constraints (equations)
	A.2.7 Constraint Properties and Bindings

	A1.3 Signal Processor
	A.3.1 Introduction
	A.3.2 System Being Modeled
	A.3.3 Internal Structure
	A.3.4 Blocks and Ports
	A.3.5 Properties (variables)
	A.3.6 Constraints (equations)
	A.3.7 Constraint properties and bindings

	A1.4 Hydraulics
	A.4.1 Introduction
	A.4.2 System Being Modeled
	A.4.3 Internal Structure
	A.4.4 Blocks and Ports
	A.4.5 Properties (variables)
	A.4.6 Constraints (equations)
	A.4.7 Constraint properties and bindings

	A1.5 Humidifier
	A.5.1 Introduction
	A.5.2 System Being Modeled
	A.5.3 Internal Structure
	A.5.4 Blocks and ports
	A.5.5 Properties (variables)
	A.5.6 Constraints (equations)
	A.5.7 Constraint Properties & Bindings
	A.5.8 State Machines
	A.5.9 Initial Values

	A1.1 Cruise Control System
	A.1.1 Introduction
	A.1.1 System Being Modeled
	A.1.1 Internal Structure

	A1.6 Cruise Control System
	A.6.1 Introduction
	A.6.2 System Being Modeled
	A.6.3 Internal Structure
	A.1.1 Blocks and Ports
	A.6.4 Blocks and Ports
	A.1.1 Properties (variables)
	A.6.5 Properties (variables)
	A.6.6 Constraints (equations)
	A.1.1 Constraint properties and bindings
	A.6.7 Constraint properties and bindings

	Annex B - Platform-Independent Debugging (non-normative)
	Annex B - Platform-Independent Debugging (non-normative)
	B.1 Introduction
	B.2 Preprocessing: Simplifying Models
	First, create a model of physical interactions only by removing all connectors in the original model’s internal block diagram (IBD) that do not represent physical interactions (saving a separate copy of the original model first). Any remaining parts o...
	B.2 Preprocessing: Simplifying Models
	B.3 Static Debugging for Failure-to-Execute Simulation
	B.3 Static Debugging for Failure-to-Execute Simulation
	B.4 Dynamic Debugging for Unexpected Simulation Results

