
An OMG® Systems Modeling Publication

Systems Modeling Application
Programming Interface (API) and
Services

Version 1.0 Beta 2
(Revision 2024-02)

OMG Document Number: None

Date: February 2024

Standard document URL: https://www.omg.org/spec/SystemsModelingAPI/1.0/

Machine Readable File(s): https://www.omg.org/spec/SystemsModelingAPI/20240201/

Normative:

https://www.omg.org/spec/SystemsModelingAPI/20240201/Systems-Modeling-API.xmi
https://www.omg.org/spec/SystemsModelingAPI/20240201/OpenAPI.json
https://www.omg.org/spec/SystemsModelingAPI/20240201/Schemas.json
https://www.omg.org/spec/SystemsModelingAPI/20240201/OSLC-Domain-Model.zip

Non-normative:

https://www.omg.org/spec/SystemsModelingAPI/20240201/API-Cookbook.zip

https://www.omg.org/spec/SystemsModelingAPI/1.0/
https://www.omg.org/spec/SystemsModelingAPI/20230201/
https://www.omg.org/spec/SystemsModelingAPI/20230201/Systems-Modeling-API.xmi
https://www.omg.org/spec/SystemsModelingAPI/20230201/OpenAPI.json
https://www.omg.org/spec/SystemsModelingAPI/20230201/Schemas.json
https://www.omg.org/spec/SystemsModelingAPI/20230201/OSLC-Domain-Model.zip
https://www.omg.org/spec/SystemsModelingAPI/20230201/API-Cookbook.zip

Copyright © 2019-2024, 88solutions Corporation
Copyright © 2019-2024, Airbus
Copyright © 2019-2024, Aras Corporation
Copyright © 2019-2024, Association of Universities for Research in Astronomy (AURA)
Copyright © 2019-2024, BigLever Software
Copyright © 2019-2024, Boeing
Copyright © 2022-2024, Budapest University of Technology and Economics
Copyright © 2021-2024, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Copyright © 2019-2024, Contact Software GmbH
Copyright © 2019-2024, Dassault Systèmes (No Magic)
Copyright © 2020-2024, DEKonsult
Copyright © 2020-2024, Delligatti Associates, LLC
Copyright © 2019-2024, DSC Corporation
Copyright © 2019-2024, The Charles Stark Draper Laboratory, Inc.
Copyright © 2020-2024, ESTACA
Copyright © 2022-2024, Galois
Copyright © 2019-2024, GfSE e.V.
Copyright © 2019-2024, George Mason University
Copyright © 2019-2024, IBM
Copyright © 2019-2024, Idaho National Laboratory
Copyright © 2019-2024, INCOSE
Copyright © 2019-2024, Intercax LLC
Copyright © 2019-2024, Jet Propulsion Laboratory (California Institute of Technology)
Copyright © 2019-2024, Kenntnis LLC
Copyright © 2020-2024, Kungliga Tekniska högskolon (KTH)
Copyright © 2019-2024, LightStreet Consulting LLC
Copyright © 2019-2024, Lockheed Martin Corporation
Copyright © 2019-2024, Maplesoft
Copyright © 2021-2024, MID GmbH
Copyright © 2020-2024, MITRE
Copyright © 2019-2024, Model Alchemy Consulting
Copyright © 2019-2024, Model Driven Solutions, Inc.
Copyright © 2019-2024, Model Foundry Pty. Ltd.
Copyright © 2023-2024, Object Management Group, Inc.
Copyright © 2019-2024, On-Line Application Research Corporation (OAC)
Copyright © 2019-2024, oose Innovative Informatik eG
Copyright © 2019-2024, Østfold University College
Copyright © 2019-2024, PTC
Copyright © 2020-2024, Qualtech Systems, Inc.
Copyright © 2019-2024, SAF Consulting
Copyright © 2019-2024, Simula Research Laboratory AS
Copyright © 2019-2024, System Strategy, Inc.
Copyright © 2019-2024, Thematix
Copyright © 2019-2024, Tom Sawyer
Copyright © 2022-2024, Tucson Embedded Systems, Inc.
Copyright © 2019-2024, Universidad de Cantabria
Copyright © 2019-2024, University of Alabama in Huntsville
Copyright © 2019-2024, University of Detroit Mercy
Copyright © 2019-2024, University of Kaiserslauten
Copyright © 2020-2024, Willert Software Tools GmbH (SodiusWillert)

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the
terms, conditions and notices set forth below. This document does not represent a commitment to
implement any portion of this specification in any companys products. The information contained in this
document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document
and distribute copies of the modified version. Each of the copyright holders listed above has agreed that
no person shall be deemed to have infringed the copyright in the included material of any such copyright
holder by reason of having used the specification set forth herein or having conformed any computer
software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby
grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications
that are based upon this specification, and to use, copy, and distribute this specification as provided
under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will
not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these
terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in
your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be responsible for
identifying patents for which a license may be required by any OMG specification, or for conducting legal
inquiries into the legal validity or scope of those patents that are brought to its attention. OMG
specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and
communications regulations and statutes. This document contains information which is protected by
copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or
used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR

OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne
by you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this
specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in
subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights
clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement
and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its
successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 9C Medway Road, PMB 274, Milford, MA 01757,
U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, Financial Instrument Global
Identifier®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language™, UML®, UML Cube Logo®,
VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or
through its designees) is and shall at all times be the sole entity that may authorize developers, suppliers
and sellers of computer software to use certification marks, trademarks or other special designations to
indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable
compliance points may claim only that the software was based on this specification, but may not claim
compliance or conformance with this specification. In the event that testing suites are implemented or
approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing
suites.

https://www.omg.org/legal/tm_list.htm

OMG’S ISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page https://www.omg.org, under
Documents, Report a Bug/Issue.

http://www.omg.org/

Table of Contents
0 Preface...5
1 Scope...1
2 Conformance...3
3 Normative References...5
4 Terms and Definitions...7
5 Symbols ..9
6 Introduction...11

6.1 API and Services Architecture..11
6.2 Document Conventions...12
6.3 Document Organization ..13
6.4 Acknowledgements...13

7 Platform Independent Model (PIM)..15
7.1 API Model...15

7.1.1 Record ...15
7.1.2 Project Data Versioning ..16
7.1.3 ExternalData and ExternalRelationship ..19
7.1.4 Query ..20

7.2 API Services..21
7.2.1 ProjectService ...21
7.2.2 ElementNavigationService..22
7.2.3 ProjectDataVersioningService ..23
7.2.4 QueryService...27
7.2.5 ExternalRelationshipService ...27
7.2.6 ProjectUsageService ...28

8 Platform Specific Models (PSMs) ..29
8.1 REST/HTTP PSM...29

8.1.1 Overview...29
8.1.2 PIM API Model - REST/HTTP PSM Model Mapping...29
8.1.3 PIM API Services - REST/HTTP PSM Endpoints Mapping..30

8.2 OSLC 3.0 PSM ...35
8.2.1 Overview...35
8.2.2 OSLC Nomenclature...36
8.2.3 PIM API Model – OSLC PSM Resource Mapping ..37
8.2.4 PIM API Services – OSLC PSM Service Mapping ..39

A Annex: Conformance Test Suite ..49
A.1 ProjectService Conformance Test Cases ...49
A.2 ElementNavigationService Conformance Test Cases..51
A.3 ProjectDataVersioningService Conformance Test Cases ..54
A.4 QueryService Conformance Test Cases...64
A.5 ExternalRelationshipService Test Cases..66
A.6 ProjectUsageService Conformance Test Cases ...68
A.7 Cross-Cutting Conformance Test Cases ..69

B Annex: API and Services Examples and Cookbook ..75
B.1 Examples ..75
B.2 Cookbook ...86

Systems Modeling API and Services v1.0 Beta 1 i

List of Tables
1. Operations ..21
2. Operations ..22
3. Operations ..23
4. Operations ..23
5. Operations ..26
6. Operations ..27
7. Operations ..27
8. Operations ..28
9. PIM API Model - REST/HTTP PSM Model Mapping Table ...29
10. PIM to REST / HTTP PSM Mapping ..30
11. PIM Concept to OSLC Resource type Mapping..38
12. PIM API Services - OSLC Services Mapping...39

ii Systems Modeling API and Services v1.0 Beta 1

List of Figures
1. API and Services Provider and Consumer...3
2. API and Services Architecture...11
3. Use of PIM and PSMs by Providers and Consumers ..12
4. Types of Records ...15
5. Project Data Versioning API Model ..16
6. External Relationship API Model ..19
7. Query API Model...20
8. ProjectService Operations..21
9. ElementNavigationService Operations ..22
10. ProjectDataVersioningService Operations ..23
11. QueryService Operations ...27
12. ExternalRelationshipService Operations ...27
13. ProjectUsageService Operations..28

Systems Modeling API and Services v1.0 Beta 1 iii

iv Systems Modeling API and Services v1.0 Beta 1

0 Preface
OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML®

(Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. All OMG
Specifications are available from the OMG website at: https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Milford, MA 01757
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page https://www.omg.org, under Specifications, Report an Issue.

Systems Modeling API and Services v1.0 Beta 1 v

https://www.omg.org/
https://www.omg.org/spec
mailto:pubs@omg.org
https://www.iso.org/
https://www.omg.org/

vi Systems Modeling API and Services v1.0 Beta 1

1 Scope
The purpose of this standard is to specify the Systems Modeling Application Programming Interface (API) and
Services that provide standard services to access, navigate, and operate on KerML-based models [KerML], and, in
particular, SysML models [SysML]. The standard services facilitate interoperability both across SysML modeling
environments and between SysML modeling environments and other engineering tools and enterprise services.

The Systems Modeling API and Services specifies the types and details of the requests that can be made and
responses that can be received by software applications that are consuming the services to software applications that
are providing the services.

The Systems Modeling API and Services specification includes the Platform Independent Model (PIM) - see Clause
7 - and two Platform Specific Models (PSMs) - see Clause 8: REST/HTTP PSM and OSLC PSM.

Systems Modeling API and Services v1.0 Beta 1 1

2 Systems Modeling API and Services v1.0 Beta 1

2 Conformance
This specification defines the Systems Modeling API and Services that provide standard services to access, navigate,
and operate on KerML-based models [KerML] and, in particular, SysML models [SysML]. The specification
comprises this document together with the content of the machine-readable files listed on the cover page. If there are
any conflicts between this document and the machine-readable files, the machine-readable files take precedence.

A Systems Modeling API and Services Provider is a software application that provides the services defined in this
specification.

A Systems Modeling API and Services Consumer is a software application that consumes the services defined in
this specification and provided by the Service Provider.

Consumers send requests to Providers and receive responses with results, as illustrated in Fig. 1 below.

For brevity, this specification uses the phrase Service Provider for Systems Modeling API and Services Provider,
and the term Service Consumer for Systems Modeling API and Services Consumer.

Figure 1. API and Services Provider and Consumer

A Service Provider can conform to this specification at the PSM or PIM level.

1. PSM-level Conformance - A Service Provider demonstrating PSM-level Conformance implements one
or more of the Systems Modeling API and Services PSMs defined in this specification. For example, a
Provider can implement the REST/HTTP PSM, the OSLC PSM, or both. PSM-level conformance of
Service Providers ensures interoperability of Service Consumers using the PSM across the different
Service Providers. See Clause 8.

2. PIM-level Conformance - A Service Provider demonstrating PIM-level Conformance implements a PSM
that is not defined in this specification but is based on Systems Modeling API and Services PIM defined in
this specification. The Service Provider shall define the PSM and the mapping from PIM to PSM with the
goal that the new PSM may become part of future versions of this specification. See Clause 7.

A Service Provider tool must demonstrate conformance to one or more services, as described below.

1. ProjectService Conformance - A Service Provider must implement all the operations in the
ProjectService, and demonstrate that the implementation successfully passes all the ProjectService
Conformance Test Cases (see A.1) and Cross-Cutting Conformance Test Cases (see A.7).

2. ElementNavigationService Conformance - A Service Provider must implement all the operations in the
ElementNavigationService, and demonstrate that the implementation successfully passes all

Systems Modeling API and Services v1.0 Beta 1 3

the ElementNavigationService Conformance Test Cases (see A.2) and Cross-Cutting Conformance Test
Cases (see A.7).

3. ProjectDataVersioningService Conformance - A Service Provider must implement all the operations in
the ProjectDataVersioningService, and demonstrate that the implementation successfully passes all
the ProjectDataVersioningService Conformance Test Cases (see A.3) and Cross-Cutting Conformance
Test Cases (see A.7).

1. Derived Property Conformance - A Service Provider conformant to the
ProjectDataVersioningService may optionally demonstrate this additional conformance. The
Derived Property Conformance is relevant for project commits where Element (KerML) data is
created or updated. In order to demonstrate Derived Property Conformance, a service provider
must do the following when ProjectDataVersioningService.createCommit operation is invoked.

1. Compute or verify all derived properties for Element data that is created or updated in
the commit

2. Include the derived properties in the response, i.e. DataVersion.payload should include
derived properties for Element data.

4. QueryService Conformance - A Service Provider must implement all the operations in the Query
Service, and demonstrate that the implementation successfully passes all the QueryService Conformance
Test Cases (see A.4) and Cross-Cutting Conformance Test Cases (see A.7).

5. ExternalRelationshipService Conformance - A Service Provider must implement all the operations in
the ExternalRelationshipService, and demonstrate that the implementation successfully passes all
the ExternalRelationshipService Test Cases (see A.5) and Cross-Cutting Conformance Test Cases (see
A.7).

6. ProjectUsageService Conformance - A Service Provider must implement all the operations in the
ProjectUsageService, and demonstrate that the implementation successfully passes all
the ProjectUsageService Conformance Test Cases (see A.6) and Cross-Cutting Conformance Test
Cases (see A.7).

4 Systems Modeling API and Services v1.0 Beta 1

3 Normative References
[GraphQL] GraphQL
https://graphql.org/

[Gremlin] Gremlin Graph Traversal Machine and Language
https://tinkerpop.apache.org/gremlin.html

[IRI] Internationalized Resource Identifiers (IRI)
https://www.w3.org/International/articles/idn-and-iri/

[KerML] Kernel Modeling Language (KerML), Version 1.0
https://www.omg.org/spec/KERML/1.0

[MOFVD] MOF2 Versioning and Development Lifecycle (MOFVDTM), Version 2.0
https://www.omg.org/spec/MOFVD/2.0

[OpenAPI] OpenAPI Specification
https://www.openapis.org/

[OSLC] Open Services for Lifecycle Collaboration (OSLC)
http://open-services.net/

[QVT] MOF Query/View/Transformation (QVTTM), Version 1.3
https://www.omg.org/spec/QVT/1.3

[SEBoK] Systems Engineering Body of Knowledge (SEBoK)
www.sebokwiki.org

[SE Handbook] INCOSE Systems Engineering Handbook
https://www.incose.org/products-and-publications/se-handbook

[SMOF] MOF Support for Semantic Structures (SMOFTM), Version 1.0
https://www.omg.org/spec/SMOF/1.0

[SPARQL] SPARQL Query Language for RDF
https://www.w3.org/TR/rdf-sparql-query/

[SQL] ISO/IEC 9075:2016, Information technology — Database languages — SQL
https://www.iso.org/standard/63555.html

[STEP] ISO 10303-233:2012 (STEP)
https://www.iso.org/standard/55257.html

[SysML] OMG Systems Modeling Language (SysML®), Version 2.0
https://www.omg.org/spec/SYSML/2.0

[UML] Unified Modeling Language (UML), Version 2.5.1
https://www.omg.org/spec/UML/2.5.1

[UUID] Universally Unique IDentifier (UUID) URN Namespace
https://tools.ietf.org/html/rfc4122

Systems Modeling API and Services v1.0 Beta 1 5

https://graphql.org/
https://tinkerpop.apache.org/gremlin.html
https://www.w3.org/International/articles/idn-and-iri/
https://www.omg.org/spec/KERML/1.0
https://www.omg.org/spec/MOFVD/2.0
https://www.openapis.org/
http://open-services.net/
https://www.omg.org/spec/QVT/1.3
http://www.sebokwiki.org/
https://www.incose.org/products-and-publications/se-handbook
https://www.omg.org/spec/SMOF/1.0
https://www.w3.org/TR/rdf-sparql-query/
https://www.iso.org/standard/63555.html
https://www.iso.org/standard/55257.html
https://www.omg.org/spec/SYSML/2.0
https://www.omg.org/spec/UML/2.5.1
https://tools.ietf.org/html/rfc4122

[XMI] XML Metadata Interchange (XMI®), Version 2.5.1
https://www.omg.org/spec/XMI/2.5.1

6 Systems Modeling API and Services v1.0 Beta 1

https://www.omg.org/spec/XMI/2.5.1

4 Terms and Definitions
Various terms and definitions are specified throughout the body of this specification.

Systems Modeling API and Services v1.0 Beta 1 7

8 Systems Modeling API and Services v1.0 Beta 1

5 Symbols
There are no special symbols defined in this specification.

Systems Modeling API and Services v1.0 Beta 1 9

10 Systems Modeling API and Services v1.0 Beta 1

6 Introduction
6.1 API and Services Architecture
The Systems Modeling API and Services includes the following.

(1) Platform-Independent Model (PIM) provides a service specification independent of any platform or
technology. This specification defines each of the services and their operations with inputs and outputs. The PIM
serves as the logical API model.

(2) Platform-Specific Models (PSMs) are bindings of the PIM using a particular technology, such as REST/HTTP,
SOAP, Java, and .NET. Multiple platform-specific models can exist for a given PIM. Two PSMs are provided in this
specification:

• REST/HTTP PSM - a binding of the PIM as a REST/HTTP API using OpenAPI specification.
• OSLC PSM - a binding of the PIM as services based on the OSLC standard.

For each PSM, a mapping is defined. This mapping is used to generate the PSM from the PIM.

Fig. 2 illustrates the PIM, PSMs, Service Providers that implement API PSMs, and Service Consumers that consume
the API PSMs from multiple Providers.

Figure 2. API and Services Architecture

Service specifications in the PIM do not prescribe or constrain the architecture of the Service Providers. For
example, Service Providers with file-based, 3-tier application-based, or federated microservices-based architectures
can all implement one or more PSMs derived from the same service specifications (PIM).

Service Consumers that use a specific PSM should be interoperable across multiple Service Providers that
implement that PSM without requiring any modification in the consumer.

Systems Modeling API and Services v1.0 Beta 1 11

Figure 3. Use of PIM and PSMs by Providers and Consumers

Fig. 3 illustrates the role of PIM and PSMs in the context of Systems Modeling API and Services providers and
consumers. The Systems Modeling API and Services, version 1.0, includes two PSMs, specifically the REST/HTTP
PSM and OSLC 3.0 PSM.
A System Modeling API and Services provider implements either or both the PSMs using its native technology
stack, such as databases and web-service frameworks. Service consumers, such as those used for programmatic,
graphical, or textual authoring, navigation, and querying data use the PSMs (e.g. REST/HTTP API), agnostic of the
native technology stack of the providers.
The choice of REST/HTTP PSM is key. Most modern programming languages provide libraries for consuming
REST/HTTP APIs. Enterprise applications, written in any modern programming language, can consume the
standard Systems Modeling API and Services, and interoperate with multiple providers.

6.2 Document Conventions
The following stylistic conventions are applied in the presentation of the Platform Independent Model (PIM) of the
Systems Modeling API and Services.

Service definitions

1. Names of classes representing services start with an uppercase letter and use the camel case notation, such
as ElementNavigationService.

2. Names of operations representing the API calls available for each service start with a lowercase letter and
are italicized, such as getElementById

Input and output data

1. Names of classes representing data that is the input or output of services start with an uppercase letter,
such as Project and Data

2. Names of attributes representing the details of the data that is the input or output of services start with a
lowercase letter and are italicized, such as identifier

12 Systems Modeling API and Services v1.0 Beta 1

The services and operations in the PIM are presented using class diagrams and tables with descriptions of each
operation.

The input and output data for services in the PIM are presented using class diagrams followed by detailed
descriptions.

6.3 Document Organization
The rest of this document is organized into two major clauses.

• Clause 7 - Platform Independent Model (PIM) of the Systems Modeling API and Services
• Clause 8 - Platform Specific Models (PSMs) of the Systems Modeling API and Services

◦ 8.1 - REST/HTTP PSM
◦ 8.2 - OSLC PSM

These clauses are followed by two annexes.

• Annex A defines the suite of conformance tests that must be used to demonstrate the conformance of
Service Providers to this specification - see Clause 2.

• Annex B includes the following.
◦ Examples of requests and responses for the REST/HTTP API endpoints, and
◦ Cookbook with a collection of recipes, as Jupyter notebooks, demonstrating patterns and

examples for using the Systems Modeling API and Services

6.4 Acknowledgements
The primary authors of this specification document, the PIM, and the REST/HTTP PSM are:

• Manas Bajaj, Intercax LLC
• Ivan Gomes, Twingineer LLC

The primary authors of the OSLC PSM are:

• David Honey, IBM
• Jad El-Khoury, KTH Royal Institute of Technology
• Jim Amsden, IBM

The specification was formally submitted for standardization by the following organizations:

• 88Solutions Corporation
• Dassault Systèmes
• GfSE e.V.
• IBM
• INCOSE
• Intercax LLC
• Lockheed Martin Corporation
• Model Driven Solutions, Inc.
• PTC
• Simula Research Laboratory AS

However, work on the specification was also supported by over 200 people in 80 organizations that participated in
the SysML v2 Submission Team (SST). The following individuals had leadership roles in the SST:

• Manas Bajaj, Intercax LLC (API and services development lead)

Systems Modeling API and Services v1.0 Beta 1 13

• Yves Bernard, Airbus (v1 to v2 transformation co-lead)
• Bjorn Cole, Lockheed Martin Corporation (metamodel development co-lead)
• Sanford Friedenthal, SAF Consulting (SST co-lead, requirements V&V lead)
• Charles Galey, Lockheed Martin Corporation (metamodel development co-lead)
• Karen Ryan, Siemens (metamodel development co-lead)
• Ed Seidewitz, Model Driven Solutions (SST co-lead, pilot implementation lead)
• Tim Weilkiens, oose (v1 to v2 transformation co-lead)

The specification was prepared using CATIA No Magic modeling tools and the OpenMBEE system for model
publication (http://www.openmbee.org), with the invaluable support of the following individuals:

• Tyler Anderson, No Magic/Dassault Systèmes
• Christopher Delp, Jet Propulsion Laboratory
• Ivan Gomes, Jet Propulsion Laboratory
• Robert Karban, Jet Propulsion Laboratory
• Christopher Klotz, No Magic/Dassault Systèmes
• John Watson, Lightstreet consulting

The following individuals made significant contributions to the API and Services pilot implementation developed by
the SST in conjunction with the development of this specification:

• Manas Bajaj, Intercax LLC
• Ivan Gomes, Twingineer LLC
• Brian Miller, Intercax LLC

14 Systems Modeling API and Services v1.0 Beta 1

http://www.openmbee.org/

7 Platform Independent Model (PIM)
7.1 API Model
7.1.1 Record

+description : String
+humanIdentifier : String{readOnly,subsets alias}
+alias : String [1..*]{readOnly}
+resourceIdentifier : IRI [0..1]
+id : UUID{readOnly}

attributes

Record

Query

BranchTag

CommitReferenceProject DataIdentityCommit DataVersion

Figure 4. Types of Records

Record - A Record represents any data that is consumed (input) or produced (output) by the Systems Modeling API
and Services. A Record is an abstract concept from which other concrete concepts inherit. A Record has the
following attributes:

• id is the UUID assigned to the record
• resourceIdentifier is an IRI for the record
• alias is a collection of other identifiers for this record, especially if the record was created or represented

in other software applications and systems
• humanIdentifier is a human-friendly unique identifier for this record
• description is a statement that provides details about the record.

Systems Modeling API and Services v1.0 Beta 1 15

7.1.2 Project Data Versioning

+created : ISO8601DateTime
attributes

Commit

+created : ISO8601DateTime
+name : String
+queries : Query [0..*]

attributes

Project

+description : String
+humanIdentifier : String{readOnly,subsets alias}
+alias : String [1..*]{readOnly}
+resourceIdentifier : IRI [0..1]
+id : UUID{readOnly}

attributes

Record

DataIdentity

+name : String
+created : ISO8601DateTime

attributes

{referencedCommit.owningProject =
owningProject}

CommitReference

DataVersion

Tag

Branch

ExternalRelationship

+getId() : UUID
operations

Data

ExternalData
{usedProject =

usedProjectCommit.
owningProject}

ProjectUsage Element

Relationship

+owningProject

1

+commit
s 0..*

{redefines
owningProject}

+owningProject 1

{subsets
commitReferences}

+tags

0..*

{redefines
referencedCommit}

head 1

+/versionedData
0..*

{redefines
referencedCommit}

+taggedCommi
t

commi
t 1

change
1..*

version

1

payload

0..1

referencedCommit
1

{subsets
branches}

+defaultBranch1

+owningProject +commitReference
s

0..*
{redefines
owningProject}

+owningProject 1

{subsets
commitReferences}

+branches

1..*

+usedProjectComm
it

/project 1

0..1

identity

1

version

1..*

previous
Commits

0..*

Figure 5. Project Data Versioning API Model

The class diagram above presents concepts related to Project and Data Versioning Service.

Data - Data represents any entity that can be created, updated, deleted, and queried by the Systems Modeling API
and Services. In the PIM, Data is represented as an Interface that is realized by the following concepts in the scope
of Systems Modeling API and Services.

• Element, root metaclass in the SysML v2 language metamodel
• External Data
• External Relationship
• Project Usage

Each realization of Data must implement the getId() operation that provides a valid UUID.

Data Identity - Data Identity is a subclass of Record that represents a unique, version-independent representation of
Data through its lifecycle. A Data Identity is associated with 1 or more Data Version records that represent different
versions of the same Data. A Data Identity record has the following additional attributes:

• createdAt is a derived attribute that references the Commit in a project in which the given Data was
created

• deletedAt is a derived attribute that references the Commit in a project in which the given Data was
deleted

Data Version - Data Version is a subclass of Record that represents Data at a specific version in its lifecycle. A
Data Version record is associated with up to one (0..1) Data Identity record. Data Version serves as a wrapper for
Data (payload) in the context of a Commit in a Project; associating the data identity with the state of the Data
(payload) in the specific (range of) Commits, or no payload if no Data element with the given identifier is present at

16 Systems Modeling API and Services v1.0 Beta 1

that Commit. Different versions of the same Data, identified by the same UUID values returned by Data.getId(), are
represented in the following manner:

• One (1) Data Identity record is created for all versions of the same Data, where Data Identity.id returns the
same UUID value as Data.getId()

• A Data Version record is created for each version of Data (and, if needed, also for a Commit where no
Data exists for the given identity), where:

◦ Data Version.payload is set to Data if exists in the commit, null otherwise.
◦ Data Version.identity is set to the Data Identity common to all versions of the same Data.
◦ Data Version.id is set to a new, randomly generated UUID for the specific Data Version record.

Data Version record has the following additional attributes:

• commit: project commit at which the wrapped data (payload) was created, modified, or deleted.
• /project: derived attribute referencing the owning project

Project - Project is a subclass of Record that represents a container for other Records and an entry point for version
management and data navigation. The Project record has the following attributes:

• identifiedData is a derived attribute that is the set of Data Identity records corresponding to the Data
contained in the project

• commit is the set of all commits in the Project
• commitReference is the set of all commit references in the Project
• branch is the set of all the branches in the Project and a subset of commitReference
• defaultBranch is the default branch in the Project and a subset of branch
• tag is the set of all the tags in the Project and a subset of commitReference
• usage is the set of Project Usage records representing all other Projects being used by the given Project

(Project Usage.usedProject)
• queries is the set of Query records owned by the project. Each Query record represents a saved query for

the given project. See Query for details.
• created is the creation timestamp for the project, in ISO8601DateTIme format.

A project also represents a permission target at which access and authorization controls may be applied to teams
associated with a project.

Project Usage - Project Usage is a subclass of Record that represents the use of a Project in the context of another
Project. Project Usage is represented as a realization of Data, and has the following attributes:

• usedProject references the Project being used
• usedProjectCommit references the Commit of the Project being used

Commit - Commit is a subclass of Record that represents the changes made to a Project at a specific point in time in
its lifecycle, such as the creation, update, or deletion of data in a Project. A Project has 0 or more Commits. A
Commit has the following attributes:

• timestamp is the timestamp at which the Commit was created
• owningProject is the Project that owns the Commit.
• previousCommit is the set of immediately preceding Commits
• change is the set of Data Version records representing Data that is created, updated, or deleted in the

Commit
• versionedData is the set of cumulative Data Version records in a Project at the Commit

Clarifications and Invariants:

Systems Modeling API and Services v1.0 Beta 1 17

• Commit.versionedData must indicate only the Data records that actually exist at the given Commit; all
listed DataVersion records must have their payload attribute set to a non-null Data record.

• Commit.change indicates deletions by listing DataVersion records with their payload attribute set to null.
This is only valid if at least one Commit in previousCommits contains a DataVersion with the same
identity in its versionedData (i.e. only existing Data records may be deleted).

• DataVersion.identity is unique among records listed in Commit.versionedData and in Commit.change.
• A Commit must resolve all conflicts in its parent Commits: if the Commit C has two parent Commits Ca

and Cb in C.previousCommits, where Ca.versionedData lists a DataVersion Da but C.versionedData does
not contain Da (either the Data associated with Da.identity is different, or not present at all), then C.change
must list a DataVersion with Da.identity

Commits are immutable. For a given Commit record, the value of Commit.change cannot be modified after a
Commit has been created. If a modification is required, a new Commit record can be created with a different value
of Commit.change.

Commits are not destructible1. A Commit record cannot be deleted during normal end-user operation. Commits
represent the history and evolution of a Project. Deleting and mutating Commit records must be disabled for the
normal end-user operations to preserve Project history.

1Note: A provider tool may provide administrative functions to repair the Commit graph of a Project but this is not
considered a normal end-user operation.

Commit Reference - Commit Reference is an abstract subclass of Record that references a specific Commit
(Commit Reference.referencedCommit). Project.commit is the set of all the Commit records for a given Project.
Project.commitRefererence identifies specific Commit records in a Project that provide the context for navigating the
Data in a Project. Two special types of Commit Reference are Branch and Tag, as described below.

Branch - Branch is an indirect subclass of Record (via CommitReference) that represents an independent line of
development in a project. A Project can have 1 or more branches. When a Project is created, a default branch is also
created. The default branch of a project can be changed, and a project can have only 1 default branch.

A Branch is a type of Commit Reference. A Branch is a pointer to a commit (Branch.head). The commit history of a
Project on a given branch can be computed by recursively navigating Commit.previousCommit, starting from the
head commit of the branch (Branch.head). A Branch has the following additional attributes:

• creationTimestamp is the timestamp at which the branch was created
• deletionTimestamp is the timestamp at which the branch was deleted
• head is the commit to which the branch is currently pointing. It represents the latest state of the project on

the given branch.
• owningProject is the project that owns the given branch

Branches are immutable. Since a Branch is a pointer to a Commit, it can be updated to point to a different Commit.
If a new Commit is created on a Project Branch, the value of Branch.head refers to that new Commit.

Branches are destructible under normal end-user operation. Branches can be deleted and merged with other
branches.

Tag - Tag is an indirect subclass of Record (via Commit Reference) used for annotating specific commits-of-interest
during Project development, such as for representing Project milestones, releases, baselines, or snapshots. A Project
can have 0 or more tags.

A Tag is a type of Commit Reference. A Tag is a pointer to a commit (Tag.taggedCommit).

18 Systems Modeling API and Services v1.0 Beta 1

Tags are immutable. Tag.taggedCommit cannot be modified after a Tag record has been created. If
Tag.taggedCommit needs to be modified to refer to a different Commit record, then the existing Tag can be deleted
and a new Tag can be created with the same name and description.

Tags are destructible under normal end-user operation.

The table below summarizes the Mutability and Destruction semantics for Commit, Branch, and Tag.

Type of Record Mutable Destructible

Commit No No

Branch Yes Yes

Tag No Yes

7.1.3 ExternalData and ExternalRelationship

+getId() : UUID
operations

Data

attributes

language : String [0..1]
specification : String [0..1]

ExternalRelationship

resourceIdentifier : IRI
attributes

ExternalData

Element

externalDataEnd

elementEnd

Figure 6. External Relationship API Model

The class diagram above presents concepts related to ExternalRelationship Service.

ExternalRelationship - ExternalRelationship is a realization of Data, and represents the relationship between a
KerML Element [KerML] in a provider tool or repository to ExternalData in another tool or repository. The
ExternalData may be a KerML Element or a non-KerML Element. A hyperlink between a KerML Element to a web
resource is the most primitive example of an ExternalRelationship. An ExternalRelationship has the following
attributes:

• specification is the formal representation of the semantics of the ExternalRelationship. The specification
can be a collection of mathematical expressions. For example, an ExternalRelationship can be defined to
map the attributes of a KerML Element to the attributes of an ExternalData. In this case, the specification
would contain mathematical expressions, such as equations, representing the mapping. This is an optional
attribute.

• language is the name of the expression language used for the specification. This is an optional attribute.

ExternalData - ExternalData is a realization of Data, and represents a resource external to a given tool or
repository. ExternalData is defined only for the purpose of defining an ExternalRelationship. An ExternalData has
the following additional attributes.

• resourceIdentifier is the IRI of the resource represented by the ExternalData

Systems Modeling API and Services v1.0 Beta 1 19

7.1.4 Query

+description : String
+humanIdentifier : String{readOnly,subsets alias}
+alias : String [1..*]{readOnly}
+resourceIdentifier : IRI [0..1]
+id : UUID{readOnly}

attributes

Record

orderBy : String [0..*]
scope : Data [0..*]
select : String [0..*]
+name : String

attributes

Query

in
>=
>
<=
<
=
instanceOf

Operator

Project

CompositeConstraint

value : String [1..*]
property : String
inverse : Boolean

attributes

PrimitiveConstraint

or
and

JoinOperator

Constraint
+constraint
2..*

+project
1

+queries
0..*

operatoroperator

where

Figure 7. Query API Model

The class diagram above presents concepts related to the Query service.

Query - Query is a subclass of Record that represents a precise and language-independent request for information
retrieval using the Systems Modeling API and Services. Query can be mapped to commonly used query languages,
such as SQL, Gremlin, GraphQL, and SPARQL.

A Query record has the following attributes:

• name is the name of the Query

20 Systems Modeling API and Services v1.0 Beta 1

• select is a list of properties of Data (or its realizations) that will be included for each Data object in the
query response. If no properties are specified, then all the properties will be included for each Data object
in the query response.

• scope is a list of Data objects that define the scope context for query execution. The default scope of a
Query is the owning Project.

• where is a Constraint that represents the conditions that Data objects in the query response must satisfy
• orderBy is a list of properties of Data (or its realizations) that are used for sorting the Data objects in the

query response. The order of properties in the list governs the sorting order.

Constraint - Constraint is an abstract concept that represents conditions that must be satisfied by Data objects in the
query response.

PrimitiveConstraint is a concrete subtype of Constraint that represents simple conditions that can be modeled using
the property-operator-value tuple, e.g. mass <= 4 kg., or type instanceOf Generalization. A PrimitiveConstraint has
the following attributes:

• property is a property of Data (or its realizations) that is being constrained
• operator is of type Enumeration whose literals are mathematical operators, as shown in the figure above
• value is a list of primitive objects, such as String, Boolean, Integer, Double, and UUID
• inverse is of type Boolean. If true, a logical NOT operator is applied to the PrimitiveConstraint.

CompositeConstraint is a concrete subtype of Constraint that represents complex conditions composed of two or
more Constraints using logical AND or OR operator. CompositeConstraint has the following attributes:

• constraint is the set of Constraints being composed
• operator is the logical operator for composing the Constraints

7.2 API Services
7.2.1 ProjectService

deleteProject(projectId : UUID) : Project
updateProject(projectId : UUID, name : String [0..1], description : String [0..1], defaultBranch : Branch [0..1]) : Project
createProject(name : String, description : String [0..1]) : Project
getProjectById(projectId : UUID) : Project [0..1]
getProjects() : Project [0..*]

operations

ProjectService

Figure 8. ProjectService Operations

Table 1. Operations

Name Documentation

getProjectById Get project with the given id (projectId).

getProjects Get all projects.

createProject Create a new project with the given name and
description (optional).

deleteProject Delete the project with the given id (projectId).

updateProject Update the project with the given id (projectId).

Systems Modeling API and Services v1.0 Beta 1 21

7.2.2 ElementNavigationService

getRootElements(project : Project, commit : Commit) : Element [0..*]
getRelationshipsByRelatedElement(project : Project, commit : Commit, elementId : UUID, direction : Direction) : Relationship [0..*]
getElementById(project : Project, commit : Commit, elementId : UUID) : Element [0..1]
getElements(project : Project, commit : Commit) : Element [0..*]

operations

ElementNavigationService

both
out
in

Direction
«enumeration»

Figure 9. ElementNavigationService Operations

Element is the root metaclass in the KerML abstract syntax [KerML]. Relationship is a subtype of Element. Both
Element and Relationship realize the Data interface defined in the API Model (refer to 7.1.2 - Project Data
Versioning).

Table 2. Operations

Name Documentation

getRootElements Get all the root elements in the given project at the
given commit.

getElements Get all the elements in a given project at the given
commit.

getElementById Get element with the given id (elementId) in the given
project at the given commit.

getRelationshipsByRelatedElement Get relationships that are incoming, outgoing, or both
relative to the given related element.

22 Systems Modeling API and Services v1.0 Beta 1

7.2.3 ProjectDataVersioningService

diffCommits(baseCommit : Commit, compareCommit : Commit) : DataDifference [0..*]
mergeIntoBranch(baseBranch : Branch, commitsToMerge : Commit [1..*], resolution : Data [0..*], description : String [0..1]) : MergeResult
deleteTag(project : Project, tagId : UUID) : Tag [0..1]
createTag(project : Project, tagName : String, taggedCommit : Commit) : Tag [1]
getTaggedCommit(project : Project, tag : Tag) : Commit
getTagById(project : Project, tagId : UUID) : Tag
getTags(project : Project) : Tag [1..*]
deleteBranch(project : Project, branchId : UUID) : Branch [0..1]
createBranch(project : Project, branchName : String, head : Commit) : Branch [1]
setDefaultBranch(project : Project, branchId : UUID) : Project [1]
getDefaultBranch(project : Project) : Branch [1]
getBranchById(project : Project, branchId : UUID) : Branch [0..1]
getBranches(project : Project) : Branch [1..*]
getCommitChangeById(project : Project, commit : Commit, changeId : UUID) : DataVersion
getCommitChange(project : Project, commit : Commit) : DataVersion [1..*]
createCommit(change : DataVersion [1..*], branch : Branch [0..1], previousCommits : Commit [0..*], project : Project) : Commit
getCommitById(project : Project, commitId : UUID) : Commit [0..1]
getHeadCommit(project : Project, branch : Branch [0..1]) : Commit
getCommits(project : Project) : Commit [0..*]

operations

ProjectDataVersioningService

compareData : DataVersion [0..1]
baseData : DataVersion [0..1]

attributes

DataDifference

conflict : DataIdentity [0..*]
mergeCommit : Commit [0..1]

attributes

MergeResult

DELETED
UPDATED
CREATED

ChangeType
«enumeration»

Figure 10. ProjectDataVersioningService Operations

Table 4. Operations

Name Documentation

getCommitChangeById
Get the change with the given id (changeId) in the given
commit of the given project. The changeId is the id of
the DataVersion that changed in the commit.

deleteTag Delete the tag with the given id (tadId) in the given
project.

Systems Modeling API and Services v1.0 Beta 1 23

Name Documentation

getCommitChange

Get the change in the given commit of the given project.
The operation getCommitChange in
ProjectDataVersioningService has an optional argument
changeTypes that is a collection typed by the
enumeration ChangeType with three literals
(CREATED, UPDATED, DELETED).
If the argument changeTypes is passed, then only the
changes of the given type will be returned by the
operation as DataVersion records. Some examples to
elaborate this behavior are included below.
If changeTypes = [], i.e. the argument is not specified,
then the DataVersion records for all the data that was
created, updated, or deleted in the given commit will be
returned.
If changeTypes = ['DELETED'], then the DataVersion
records for all the data that was deleted in the given
commit will be returned.
If changeTypes = ['CREATED', 'UPDATED'], then the
DataVersion records for all the data that was created or
updated in the given commit will be returned.

setDefaultBranch Set the branch with the given branchId as the default
branch of the given project.

deleteBranch Delete the branch with the given id (branchId) in the
given project.

mergeIntoBranch

Merge the given commits (commitsToMerge) in the
given branch (baseBranch). The commits included in
commitsToMerge may be commits referenced by a
CommitReference, such as Branch.head or
Tag.taggedCommit, or any other commit in the owning
project (Project.commits). This operation returns a
MergeResult which will include either of the following:
(1) commit after the merge operation if successful, or
(2) a set of DataIdentity records representing the merge
conflicts if the merge operation is unsuccessful. Two
optional inputs may be provided: (1) resolution as a set
of Data that will resolve the merge conflicts, and (2)
description of the merged commit if this operation is
successful.

createBranch
Create a new branch with the given name (branchName)
in the given project, and set the head of the new branch
as the given commit (head).

getBranches Get all the branches in the given project.

getBranchById Get the branch with the given id (branchId) in the given
project.

getDefaultBranch Get the default branch of the given project.

24 Systems Modeling API and Services v1.0 Beta 1

Name Documentation

diffCommits

Get the difference between two commits -
compareCommit and baseCommit. The set of all
DataVersion records in a project at a given commit is
accessible as Commit.versionedData. From a set
theoretic perspective, this operation
gets compareCommit.versionedData -
baseCommit.versionedData and returns a
DataDifference object with baseData and compareData
for each difference. If any data is present in the
compareCommit but absent in the baseCommit,
DataDifference.compareData will include the
corresponding DataVersion and
DataDifference.baseData will be empty. If any data is
absent in the compareCommit but present in the
baseCommit, DataDifference.compareData will be
empty and DataDifference.baseData will include the
corresponding DataVersion. If any data is present in
both but different in the compareCommit and
baseCommit, DataDifference.compareData and
DataDifference.baseData will include the corresponding
DataVersion records.
The operation diffCommits in
ProjectDataVersioningService has an optional argument
changeTypes that is a collection typed by the
enumeration ChangeType with three literals
(CREATED, UPDATED, DELETED).
If the argument changeTypes is passed, then only the
changes of the given type will be returned by the
operation as DataDifference objects. Some examples to
elaborate this behavior are included below.
If changeTypes = [], i.e. the argument is not specified,
then the DataDifference objects for all the data that was
created, updated, or deleted in the compareCommit
versus the baseCommit will be returned.
If changeTypes = ['DELETED'], then the
DataDifference objects for all the data that was deleted
in the compareCommit versus the baseCommit will be
returned. If changeTypes = ['CREATED', 'UPDATED'],
then the DataDifference objects for all the data that was
created or updated in the compareCommit versus the
baseCommit will be returned.

Systems Modeling API and Services v1.0 Beta 1 25

Name Documentation

createCommit

Create a new commit with the given change (collection
of DataVersion records) in the given branch of the
project. If the branch is not specified, the default branch
of the project is used. Commit.change should include
the following for each Data object that needs to be
created, updated, or deleted in the new commit. (1)
Creating Data - Commit.change should include a
DataVersion record with DataVersion.payload
populated with the Data being created.
DataVersion.identity is not provided, thereby indicating
that a new DataIdentity needs to be created in the new
commit. (2) Updating Data - Commit.change should
include a DataVersion record with DataVersion.payload
populated with the updated Data. DataVersion.identity
should be populated with the DataIdentity for which a
new DataVersion record will be created in the new
commit. (3) Deleting Data - Commit.change should
include a DataVersion record with DataVersion.payload
not provided, thereby indicating deletion of DataIdentity
in the new commit. DataVersion.identity should be
populated with the DataIdentity that will be deleted in
the new commit. When a DataIdentity is deleted in a
commit, all its versions (DataVersion) are also deleted,
and any references from other DataIdentity are also
removed to maintain data integrity. In addition, for
Element Data (KerML), deletion of an Element must
also result in deletion of incoming Relationships. When
Element Data (KerML) is created or updated, derived
properties must be computed or verified if the API
provider claims Derived Property Conformance.

getTaggedCommit Get the tagged commit of the given tag in the given
project.

getCommitById Get the commit with the given id (commitId) in the
given project.

createTag
Create a new tag with the given name (tagName) in the
given project, and set the taggedCommit of the new tag
as the given commit (taggedCommit).

getHeadCommit
Get the head commit of the given branch in the given
project. If the branch is not specified, the default branch
of the project is used.

getTags Get all the tags in the given project.

getCommits Get all the commits in the given project.

getTagById Get the tag with the given id (tagId) in the given project.

26 Systems Modeling API and Services v1.0 Beta 1

7.2.4 QueryService

executeQuery(query : Query, commit : Commit [0..1]) : Data [0..*]
executeQueryById(queryId : UUID, commit : Commit [0..1]) : Data [0..*]
deleteQuery(project : Project, queryId : UUID) : Query
updateQuery(project : Project, updateQuery : Query) : Query
createQuery(name : String, project : Project, select : String [0..*], scope : Data [0..*], where : Constraint, orderBy : String [0..*]) : Query
getQueryById(project : Project) : Query [0..1]
getQueries(project : Project) : Query [0..*]

operations

QueryService

Figure 11. QueryService Operations

Table 6. Operations

Name Documentation

getQueries Get all the queries in the given project.

updateQuery Update the given query (updateQuery) in the given
project.

deleteQuery Delete the query with the given id (queryId) in the given
project.

executeQueryById

Execute the query with the given id in the owning
project (Query.project) at the given commit. If the
commit is not specified, then the head commit of the
default branch of the project will be used.

createQuery Create a query in the given project with the given
inputs.

getQueryById Get the query with the given id (queryId) in the given
project.

executeQuery

Execute the given query in the owning project
(Query.project) at the given commit. If the commit is
not specified, then the head commit of the default
branch of the project will be used.

7.2.5 ExternalRelationshipService

getExternalRelationshipById(project : Project, commit : Commit, externalRelationshipId : UUID) : ExternalRelationship [0..1]
getExternalRelationshipsByElement(project : Project, commit : Commit, elementId : UUID) : ExternalRelationship [0..*]
getExternalRelationships(project : Project, commit : Commit) : ExternalRelationship [0..*]

operations

ExternalRelationshipService

Figure 12. ExternalRelationshipService Operations

Table 7. Operations

Name Documentation

getExternalRelationshipsByElement
Get all the external relationships in the given project at
the given commit, where the id of elementEnd of the
external relationship is the given elementId.

Systems Modeling API and Services v1.0 Beta 1 27

Name Documentation

getExternalRelationshipById Get the external relationship with the given id
(externalRelationshipId).

getExternalRelationships Get all the external relationships in a given project at a
given commit.

7.2.6 ProjectUsageService

deleteProjectUsage(project : Project, branch : Branch [0..1], projectUsageId : UUID) : Commit
createProjectUsage(project : Project, branch : Branch [0..1], projectUsage : ProjectUsage) : Commit
getProjectUsages(project : Project, commit : Commit) : ProjectUsage [0..*]

operations

ProjectUsageService

Figure 13. ProjectUsageService Operations

Table 8. Operations

Name Documentation

createProjectUsage

Create a new project usage in the given project at the
head commit of the given branch. This operation returns
a new commit that includes the new project usage, and
sets the head of the given branch to the new commit. If
a project branch is not given, then the default branch of
the project will be used.

deleteProjectUsage

Deletes the project usage with the given id
(projectUsageId) from the given project at the head
commit of the given branch. This operation returns a
new commit where the given project usage does not
exist, and sets the head of the given branch to the new
commit. If a project branch is not given, then the default
branch of the project will be used.

getProjectUsages Get all the project usages in the given project at the
given commit.

28 Systems Modeling API and Services v1.0 Beta 1

8 Platform Specific Models (PSMs)
8.1 REST/HTTP PSM
8.1.1 Overview

The REST/HTTP Platform-Specific Model (PSM) for the Systems Modeling API and Services is described using
OpenAPI Specification (OAS) 3.1 and is included with this specification. The REST/HTTP PSM is described in the
following sections.

• PIM API Model - REST/HTTP PSM Model Mapping: This section presents the mapping from the PIM
API Model concepts to the JSON Models in the REST/HTTP PSM (OpenAPI specification).

• PIM API Services - REST/HTTP PSM Endpoints Mapping: This section presents the mapping from
the PIM API Service definitions and operations to the API endpoints in the REST/HTTP PSM (OpenAPI
specification).

8.1.2 PIM API Model - REST/HTTP PSM Model Mapping

The table below presents the mapping from the PIM API Model concepts to the JSON Models in the REST/HTTP
PSM (OpenAPI specification).

Table 9. PIM API Model - REST/HTTP PSM Model Mapping Table

PIM Concept REST/HTTP PSM Model (JSON)

Project Project

Commit Commit

Tag Tag

Branch Branch

Data Data

DataIdentity DataIdentity

DataVersion DataVersion

Element Element

Relationship Relationship

ExternalData ExternalData

ExternalRelationship ExternalRelationship

ProjectUsage ProjectUsage

Query Query

PrimitiveConstraint PrimitiveConstraint

CompositeConstraint CompositeConstraint

DataDifference DataDifference

MergeResult.mergeCommit Commit

MergeResult.conflict DataIdentity [0..*]

Systems Modeling API and Services v1.0 Beta 1 29

8.1.3 PIM API Services - REST/HTTP PSM Endpoints Mapping

The table below presents the mapping between the PIM Services to the REST/HTTP PSM Endpoints. This is
followed by a detailed description of the pagination strategy used by the REST/HTTP PSM.

Table 10. PIM to REST / HTTP PSM Mapping

PIM Service REST / HTTP PSM Endpoint

ProjectService

createProject POST /projects

getProjects GET /projects

getProjectById GET /projects/{projectId}

updateProject PUT /projects/{projectId}

deleteProject DELETE /projects/{projectId}

ElementNavigationService

getElements GET/projects/{projectId}/commits/{commitId}/elements

getElementById GET /projects/{projectId}/commits/{commitId}/elements/{elementId}

getRelationshipsByRelatedElement

GET
/projects/{projectId}/commits/{commitId}/elements/{relatedElementId}/
relationships

• direction query parameter with allowable values {in, out, both}

getRootElements GET /projects/{projectId}/commits/{commitId}/roots

ProjectDataVersioningService

getCommits GET /projects/{projectId}/commits

getHeadCommit

• GET /projects/{projectId}/branches/{branchId} returns the branch
with the given branch ID. If the branch ID is not provided, then
the ID of the default branch of the project is used. Use the
following steps to get the ID of the default branch.

◦ GET /projects/{projectId} return the project with the
given project ID

◦ Project.defaultBranch provides the ID of the default
branch of the project

• Branch.head provides the ID of the head commit of the branch
• GET /projects/{projectId}/commits/{commitId} returns the head

commit with the the given commit ID

getCommitById GET /projects/{projectId}/commits/{commitId}

30 Systems Modeling API and Services v1.0 Beta 1

PIM Service REST / HTTP PSM Endpoint

createCommit

POST /projects/{projectId}/commit

• The body of the POST request is a CommitRequest.
• The content of CommitRequest.change for creating, updating, and

deleting Data maps directly to the corresponding PIM operation
(createCommit), and is described below.

◦ For creating new Data, CommitRequest.change should
include a DataVersion where DataVersion.payload
includes the Data being created and
DataVersion.identity is not specified.

◦ For updating existing Data, CommitRequest.change
should include a DataVersion where
DataVersion.payload includes the updated Data, and
DataVersion.identity is the DataIdentity for which a
new DataVersion will be created in the commit.

◦ For deleting existing Data, CommitRequest.change
should include a DataVersion where
DataVerision.payload is not specified, and
DataVersion.identity is the DataIdentity that will be
deleted in the commit.

getCommitChange GET /projects/{projectId}/commits/{commitId}/changes

getCommitChangeById GET /projects/{projectId}/commits/{commitId}/changes/{changeId}

getBranches GET /projects/{projectId}/branches

getBranchById GET /projects/{projectId}/branches/{branchId}

getDefaultBranch

• GET /projects/{projectId} returns a Project with the given ID
(projectId)

• Project.defaultBranch provides the ID of the default branch of the
project

setDefaultBranch

• PUT /projects/{projectId}
• The body of the PUT request is a ProjectRequest. Set the ID of

the new default branch as ProjectRequest.defaultBranch in the
body.

createBranch POST /projects/{projectId}/branches

deleteBranch DELETE /projects/{projectId}/branches/{branchId}

getTags GET /projects/{projectId}/tags

getTagById GET /projects/{projectId}/tags/{tagId}

Systems Modeling API and Services v1.0 Beta 1 31

PIM Service REST / HTTP PSM Endpoint

getTaggedCommit

• GET /projects/{projectId}/tags/{tagId} returns the tag with the
given ID (tagId)

• Tag.taggedCommit provides the ID of the tagged commit
• GET /projects/{projectId}/commits/{commitId} returns the

tagged commit given its ID (see the previous step)

createTag POST /projects/{projectId}/tags

deleteTag DELETE /projects/{projectId}/tags/{tagId}

mergeIntoBranch POST /projects/{projectId}/branches/{targetBranchId}/merge

diffCommits GET /projects/{projectId}/commits/{compareCommitId}/diff

QueryService

getQueries GET /projects/{projectId}/queries

getQueryById GET /projects/{projectId}/queries/{queryId}

createQuery POST /projects/{projectId}/queries

updateQuery PUT /projects/{projectId}/queries/{queryId}

deleteQuery DELETE /projects/{projectId}/queries/{queryId}

executeQueryById GET /projects/{projectId}/queries/{queryId}/results

executeQuery

GET /projects/{projectId}/query-results
POST /projects/{projectId}/query-results
Either the GET or the POST endpoint may be used. The POST endpoint is
provided for compatibility with clients that don't support GET requests with
a body

ExternalRelationshipService

getExternalRelationships

• POST /projects/{projectId}/queries with QueryRequest JSON
model

◦ Query.where is set to a PrimitiveConstraint
◦ PrimitiveConstraint.property = @type
◦ PrimitiveConstraint.value = 'ExternalRelationship'
◦ PrimitiveConstraint.operator = '='

• Execute the query with the following request
◦ GET /projects/{projectId}/queries/{queryId}/results?

commitId={commitId}, where {projectId} and
{commitId} are the ids of the given Project and
Commit

32 Systems Modeling API and Services v1.0 Beta 1

PIM Service REST / HTTP PSM Endpoint

getExternalRelationshipsByElement

• POST /projects/{projectId}/queries with QueryRequest JSON
model

◦ Query.where is set to a CompositeConstraint
◦ CompositeConstraint.constraints includes the following

2 instances of PrimitiveConstraint with the and operator
▪ PrimitiveConstraint 1

▪ PrimitiveConstraint.property =
@type

▪ PrimitiveConstraint.value =
'ExternalRelationship'

▪ PrimitiveConstraint.operator = '='
▪ PrimitiveConstraint 2

▪ PrimitiveConstraint.property =
elementEnd

▪ PrimitiveConstraint.value =
{elementId}

▪ PrimitiveConstraint.operator = '='
• Execute the query with the following request

◦ GET /projects/{projectId}/queries/{queryId}/results?
commitId={commitId}, where {projectId} and
{commitId} are the ids of the given Project and
Commit

getExternalRelationshipsById

• POST /projects/{projectId}/queries with Query JSON model
◦ Query.where is set to a CompositeConstraint
◦ CompositeConstraint.constraints includes the following

2 instances of PrimitiveConstraint with the and operator
▪ PrimitiveConstraint 1

▪ PrimitiveConstraint.property =
@type

▪ PrimitiveConstraint.value =
'ExternalRelationship'

▪ PrimitiveConstraint.operator = '='
▪ PrimitiveConstraint 2

▪ PrimitiveConstraint.property = @id
▪ PrimitiveConstraint.value =

{externalRelationshipId}
▪ PrimitiveConstraint.operator = '='

• Execute the query with the following request
◦ GET /projects/{projectId}/queries/{queryId}/results?

commitId={commitId}, where {projectId} and
{commitId} are the ids of the given Project and
Commit

Project Usage Service

Systems Modeling API and Services v1.0 Beta 1 33

PIM Service REST / HTTP PSM Endpoint

getProjectUsages

• POST /projects/{projectId}/queries with QueryRequest JSON
model

◦ Query.where is set to a PrimitiveConstraint
◦ PrimitiveConstraint.property = @type
◦ PrimitiveConstraint.value = 'ProjectUsage'
◦ PrimitiveConstraint.operator = '='

• Execute the query with the following request
◦ GET /projects/{projectId}/queries/{queryId}/results?

commitId={commitId}, where {projectId} and
{commitId} are the ids of the given Project and
Commit

createProjectUsage

• POST /projects/{projectId}/commits?branchId={branchId} with
CommitRequest JSON model, such that:

◦ CommitRequest.change = DataVersion with the
following inputs

▪ DataVersion.payload = ProjectUsage with the
following inputs

▪ ProjectUsage.usedProjectCommit =
{commitId} of the Project and
Commit being used.

deleteProjectUsage

• POST /projects/{projectId}/commits?branchId={branchId} with
CommitRequest JSON model, such that:

◦ CommitRequest.change = DataVersion with the
following inputs

▪ DataVersion.identity = DataIdentity with the
following inputs

▪ DataIdentity.id = {projectUsageId}
▪ DataVersion.payload = null

Pagination
The REST/HTTP PSM uses a Cursor-based pagination strategy for the responses received from the GET requests.
The following 3 query parameters can be specified in any GET request that returns a collection of records.

1. page[size] specifies the maximum number of records that will be returned per page in the response
2. page[before] specifies the URL of the page succeeding the page being requested
3. and page[after] specifies the URL of a page preceding the page being requested

If neither page[before] nor page[after] is specified, the first page is returned with the same number of records as
specified in the page[size] query parameter. If the page[size] parameter is not specified, then a default page size is
used, which can be set by the API provider.

The Link header in the response includes links (URLs) to the previous page and the next page, if any, for the given
page in the response. The specification of these links is conformant to the IETF Web Linking standard. As an
example, the value of the Link response header is shown below. The rel value associated with each page link

34 Systems Modeling API and Services v1.0 Beta 1

https://tools.ietf.org/html/rfc5988

specifies the type of relationship the linked page has with the page returned in the response. Page link specified with
rel value as next is the link for the next (or succeeding) page to the page returned in the response, and the page link
specified with rel value as prev is the link for the previous (or preceding) page to the page returned in the response.

<http://sysml2-api-host:9000/projects?
page[after]=MTYxODg2MTQ5NjYzMnwyMDEwOWY0MC00ODI1LTQxNmEtODZmNi03NTA4YWM0MmEwMjE&
page[size]=3>; rel="next",

<http://sysml2-api-host:9000/projects?
page[before]=MTYxODg2MTQ5NjYzMnwxMDg2MDFjMS1iNzk1LTRkMGEtYTFiYy1lZjEyYmMwNTU5ZjI&
page[size]=3>; rel="prev"

Example

An example demonstrating the Cursor-based paginated responses received from GET requests to the /projects
endpoint is presented here. The term "User" in the example scenario presented below refers to an API user that
could be a human user or a software program.

Step 1 - User makes a GET request to the /projects endpoint with page[size] query parameter set to 3. If successful,
this request will return the first page with a maximum of 3 project records. The URL for this GET request is shown
below.

http://sysml2-api-host:9000/projects?page[size]=3

Step 2 - If there are more than 3 projects in the provider repository, the Link header in the response will provide the
URL for the next page with rel value equal to next. The User gathers the link to the next page.

<http://sysml2-api-host:9000/projects?
page[after]=MTYxODg2MjE2NTMxNXwwOGY0MzNkYi1iNmQ0LTQxYjgtOTAyMC1lODIwZWJjNDE3YmU&
page[size]=3>; rel="next"

Step 3 - User makes a GET request to the URL for the next page gathered from Step 2. The Link header in the
response will provide the URL for the next page with rel value equal to next. Additionally, the Link header will
include the URL for the previous page with rel value equal to prev.

<http://sysml2-dev.intercax.com:9000/projects?
page[after]=MTYxODg2MjY4OTYxNHwyMDEwOWY0MC00ODI1LTQxNmEtODZmNi03NTA4YWM0MmEwMjE&
page[size]=3>; rel="next",

<http://sysml2-dev.intercax.com:9000/projects?
page[before]=MTYxODg2MjY4OTYxNHwxMDg2MDFjMS1iNzk1LTRkMGEtYTFiYy1lZjEyYmMwNTU5ZjI&
page[size]=3>; rel="prev"

Step 4 - User continues Step 3 until the Link header in the response does not include the URL for the next page (rel
value as next).

8.2 OSLC 3.0 PSM
8.2.1 Overview

The OSLC Platform-Specific Model (PSM) for the Systems Modeling API and Services is described using OpenAPI
Specification (OAS) 2.0 and is included with this specification.

Note that the URLs listed in the OpenAPI Specification are provided as examples only. With OSLC, all URLs are
implementation-specific. A OSLC client typically relies on the OSLC discovery mechanism (https://docs.oasis-
open-projects.org/oslc-op/core/v3.0/ps01/discovery.html), to determine what services are provided by an OSLC
server, as well as the necessary information (such as a service URL) to be able to consume any such service. At the

Systems Modeling API and Services v1.0 Beta 1 35

https://docs.oasis-open-projects.org/oslc-op/core/v3.0/ps01/discovery.html
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/ps01/discovery.html

least, an OSLC client requires a discovery URL to bootstrap this discovery for any particular server. The various
approaches for bootstrapping and discovery are further detailed in the OSLC standard.

• 8.2.2 presents a brief introduction to OSLC and its nomenclature.
• 8.2.3 presents the mapping of PIM concepts to OSLC resource types
• 8.2.4 presents the mapping of PIM services and operations to OSLC services

An OSLC implementation may typically need to realize a broader set of services than those defined by the PIM for
full integration with other OSLC-compliant systems. Services such as Delegated UI for Selection and Creation,
resource UI Preview, authentication, and support for arbitrary queries (beyond those defined in the PIM).

8.2.2 OSLC Nomenclature
What is OSLC?

Open Services for Lifecycle Collaboration (OSLC) is an open community creating specifications for integrating
tools. OSLC specifications allow conforming independent software and product lifecycle tools to integrate their data
and workflows in support of end-to-end lifecycle processes. OSLC is based on the W3C Linked Data and the use of
RDF to represent artifacts using common vocabularies, and HTTP to discover, create, read, update, and delete such
artifacts. For a more comprehensive introduction, see the OSLC Primer and the OSLC specifications at https://open-
services.net/specifications/.

OSLC servers may support any or all of the following:

1. Creation factories for creating a resource of some RDF type associated with the factory. For example, a
client might create a new change request by an HTTP POST including the RDF representation of the
change request to be created to the URI of a change request creation factory.

2. REST services to read, update, and/or delete resources at the resource's URI.
3. Query capabilities that allow OSLC clients to query for resources of an RDF type associated with the

query capability. For example, a client might query for change requests by an HTTP GET or POST to the
query base URI of a query capability for change requests. See OSLC Query Version 3.0 for further details.

4. Creation dialog that allows some other application to embed it in an iFrame of an application dialog that
allows a user to fill in information and create a resource of some type associated with the creation dialog.

5. Selection dialog that allows an application to display it to select a resource of some type associated with
the dialog in order to create and persist a link to that resource in the application.

6. Resource preview, such as a pop-up display, that is shown as a rich hover when a user hovers over a link
to a resource managed by the OSLC server.

OSLC Discovery

OSLC clients and other servers discover the OSLC capabilities offered by a server through OSLC discovery. This
allows clients to discover the URIs of creation factories, query capabilities, creation dialogs, and selection dialogs
without the need for hard coding or constructing URIs for them. Discovery starts with a known URI for an OSLC
Service Provider Catalog. That service provider catalog may reference zero, one, or many service providers. Servers
that support the concept of project as a container of resources, often for access control, often define a service
provider for each such container. A service provider may declare one or many services, each of which may define
the creation factories, query capabilities, creation dialogs, and selection dialogs supported by that service. For more
details, see OSLC Core Version 3.0. Part 2: Discovery.

A creation factory for a specific RDF type is discovered by:

1. Start with a known OSLC service provider catalog URI, perform HTTP GET.
2. Get the URIs of service providers from the response.
3. For each service provider, perform HTTP GET.

36 Systems Modeling API and Services v1.0 Beta 1

https://archive.open-services.net/resources/tutorials/oslc-primer
https://open-services.net/specifications/
https://open-services.net/specifications/
https://docs.oasis-open-projects.org/oslc-op/query/v3.0/ps01/oslc-query.html
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/ps02/discovery.html

4. From the response, look for services described in the response data, that declare a creation factory for the
RDF type.

5. Get the URI of the creation factory.

A query capability for a specific RDF type is discovered by:

1. Start with a known OSLC service provider catalog URI, perform HTTP GET.
2. Get the URIs of service providers from the response.
3. For each service provider, perform HTTP GET.
4. From the response, look for services described in the response data, that declare a query capability for the

RDF type.
5. Get the query base URI of the query capability.

OSLC Resource Shapes

Resource shapes specify a standard way (using RDF) of describing resources of specific RDF types and their
properties. For more details, see OSLC Core Version 3.0. Part 6: Resource Shape. Resource shapes may be
discovered in a number of ways:

1. The definition of a creation factory may reference a resource shape that describes the properties that might
be included in the RDF content POSTed to that creation factory.

2. The definition of a query capability may reference a resource shape that describes the properties of the
query results and references a shape that describes the properties that might be queried as a condition, or
selected to be included in the results.

3. A resource may reference an instance shape that describes the properties of that resource.

Linked Data Platform Containers

Linked Data Platform Containers (LDPC) are a way of representing containers as an RDF resource. OSLC
specifications specify LPDCs as a container representation. See W3C Linked Data Platform 1.0 for further
information.

OSLC Service Providers

A "global" service provider will contain one or more services that cross all systems modeling projects. A service
provider will be declared for each systems modeling project that provides capabilities specific to that project.

RDF Media Types

OSLC recommends that servers support RDF/XML (application/rdf+xml), Turtle (text/turtle, application/x-turtle),
and JSON-LD (application/ld+json).

8.2.3 PIM API Model – OSLC PSM Resource Mapping

The mapping from the PIM API Model to the OSLC PSM resource types includes the following.

1. Mapping from the KerML and SysML abstract syntax (Element and subtypes) to OSLC resource shapes
and vocabulary. The package containing the resulting OSLC resource shapes and vocabulary is included
with this specification - see OSLC_Systems_Modeling_Resource_Shapes_and_Vocabulary.zip.

2. Mapping from the API Model concepts to resource types in other OSLC specifications, such as OSLC
Configuration Management specification and OSLC Query specification. This mapping is shown in the
table below. References to the OSLC specifications mentioned in the table below are as follows.

1. OSLC Configuration Management refers to OSLC Configuration Management Version 1.0
available at https://oslc-op.github.io/oslc-specs/specs/config/oslc-config-mgt.html.

Systems Modeling API and Services v1.0 Beta 1 37

https://docs.oasis-open-projects.org/oslc-op/core/v3.0/ps02/resource-shape.html
https://www.w3.org/TR/ldp/
https://oslc-op.github.io/oslc-specs/specs/config/oslc-config-mgt.html

2. OSLC Query refers to OSLC Query Version 3.0 available at https://docs.oasis-open-
projects.org/oslc-op/query/v3.0/os/oslc-query.html

Table 11. PIM Concept to OSLC Resource type Mapping

PIM Concept OSLC Resource Type (OSLC Specification) dcterms:identifier

Project Component (oslc_config:Component)
(OSLC Configuration Management) PIM project id

Branch Stream (oslc_config:Stream)
(OSLC Configuration Management) PIM branch id

Tag Baseline (oslc_config:Baseline)
(OSLC Configuration Management) PIM tag id

Commit Not supported by OSLC Configuration Management. PIM commit id

DataIdentity Concept resource
(OSLC Configuration Management) PIM Data Identity id

DataVersion Version resource (oslc_config:VersionResource)
(OSLC Configuration Management) PIM Data Version id

Query OSLC Query
(OSLC Query)

PrimitiveConstraint oslc.where in OSLC Query
(OSLC Query)

CompositeConstraint oslc.where in OSLC Query
(OSLC Query)

ProjectUsage
Not Available.
PIM Project concept is mapped to OSLC Component
but OSLC does not define Component Usage.

DataDifference Not Available

MergeResult Not Available

38 Systems Modeling API and Services v1.0 Beta 1

https://docs.oasis-open-projects.org/oslc-op/query/v3.0/os/oslc-query.html
https://docs.oasis-open-projects.org/oslc-op/query/v3.0/os/oslc-query.html

8.2.4 PIM API Services – OSLC PSM Service Mapping

The table below presents the mapping between the PIM Services to the OSLC 3.0 PSM.

Table 12. PIM API Services - OSLC Services Mapping

PIM Services OSLC PSM

ProjectService

getProjectById

In OSLC, a Project is identified by its URL. So simply perform a GET on the Project
URL.
To search for a project with a given dcterms:identifier (or any other property that is
deemed to return a single query result):

1. Discover a query capability for components (oslc_config:Component). See
OSLC Discovery section.

2. Perform a GET on the query base, specifying a query for the
dcterms:identifier in a oslc.where query parameter, and specifying which
properties, if any, of the component should be returned in the query result
using an oslc.select query parameter.

Example: Query for components with identifier 123, returning all properties.

GET queryBaseUri?
oslc.where=dcterms%3Aidentifier%3D%22123%22&
oslc.select=*

createProject

1. Discover a creation factory for components (oslc_config:Component).
See OSLC Discovery section.

2. POST the RDF content describing the component (with a Content-Type
header set to an RDF media type supported by the server) to the creation
factory. The RDF content should be compliant with the resource shape
specified for the creation factory, and that resource shape must be
compatible with the resource shape for Component as described in the
OSLC specification (see https://docs.oasis-open-projects.org/oslc-op/
config/v1.0/ps01/config-resources.html#ComponentShape).

Example:

POST creationFactoryUri

Systems Modeling API and Services v1.0 Beta 1 39

https://docs.oasis-open-projects.org/oslc-op/config/v1.0/ps01/config-resources.html#ComponentShape
https://docs.oasis-open-projects.org/oslc-op/config/v1.0/ps01/config-resources.html#ComponentShape

PIM Services OSLC PSM

getProjects

1. Discover a query capability for components (oslc_config:Component).
See OSLC Discovery section.

2. Perform a GET on the query base, specifying which properties, if any, of
the component should be returned in the query result using an oslc.select
query parameter.

Example: Query for components returning their name (dcterms:title) and id
(dcterms:identifier)

GET queryBaseUri?
oslc.select=dcterms%3Atitle%2Cdcterms%3Aidentifier

updateProject

Execute an HTTP PUT with the revised content of the component. The RDF content
should be compliant with the instance resource shape of the Component, and this
should be compatible with the resource shape for Component as described in the
OSLC specification (see https://docs.oasis-open-projects.org/oslc-op/config/v1.0/
ps01/config-resources.html#ComponentShape)

deleteProject

Not supported directly. Deletion operation is not supported for Components in the
OSLC Configuration Management specification. See https://oslc-op.github.io/oslc-
specs/specs/config/config-resources.html#componentoperations. However, providers
may implement deletion operation for Components.

ElementNavigation
Service

getElements

1. Discover a query capability for elements (an API-specific RDF type) for
the specified project. See OSLC Discovery section.

2. Perform a GET on the query base, specifying which properties, if any, of
the commit should be returned in the query result using an oslc.select query
parameter.

Example: Query for elements returning name (dcterms:title) and identifier
(dcterms:identifier).

GET queryBaseUri?
oslc.select=dcterms%3Atitle%2Cdcterms%3Aidentifier

40 Systems Modeling API and Services v1.0 Beta 1

https://docs.oasis-open-projects.org/oslc-op/config/v1.0/ps01/config-resources.html#ComponentShape
https://docs.oasis-open-projects.org/oslc-op/config/v1.0/ps01/config-resources.html#ComponentShape
https://oslc-op.github.io/oslc-specs/specs/config/config-resources.html#componentoperations
https://oslc-op.github.io/oslc-specs/specs/config/config-resources.html#componentoperations

PIM Services OSLC PSM

getElementById

In OSLC, an Element is identified by its URL. So simply perform a GET on the
Element URL.
To search for an Element with a given dcterms:identifier (or any other property that
is deemed to return a single query result):

1. Discover a query capability for elements (an API-specific RDF type) for
the specified project. See OSLC Discovery section.

2. Perform a GET on the query base, specifying a query for the
dcterms:identifier in a oslc.where query parameter, and specifying which
properties, if any, of the commit should be returned in the query result
using an oslc.select query parameter.

Example: Query for elements with identifier 123, returning all properties.

GET queryBaseUri?
oslc.where=dcterms%3Aidentifier%3D%22123%22&
oslc.select=*

getRelationshipsByRelated
Element

1. Discover the query capability for Elements for the particular project (and
its specific commit). See OSLC Discovery section.

2. Perform a GET on the query base, setting the oslc.where query parameter
to:

1. sysml:out = URI of the subject element to get all the outgoing
Relationships from that element

2. sysml:in = URI of the subject element to get all the incoming
Relationships to the element

Example 1: Query for Relationships outgoing from an element
<http://sysml2.server.com/elements/123>:

GET queryBaseUri?
oslc.where=sysml:out=<http://sysml2.server.com/elements/123> and
rdf:type=<http://omg.org/ns/sysml/v2/metamodel%23Relationship>
&oslc.prefix=sysml=<http://omg.org/ns/sysml/v2/metamodel%23>

Example 2: Query for Relationships incoming to an element
<http://sysml2.server.com/elements/123>:

GET queryBaseUri?
oslc.where=sysml:in=<http://sysml2.server.com/elements/123> and
rdf:type=<http://omg.org/ns/sysml/v2/metamodel%23Relationship>
&oslc.prefix=sysml=<http://omg.org/ns/sysml/v2/metamodel%23>

For Direction equal to both: perform and merge the separate queries on in and out
values.

getRootElements
Not Available.
OSLC Query does not currently support the ability to search for resources, where
certain properties (owner in this case) are not set.

Systems Modeling API and Services v1.0 Beta 1 41

PIM Services OSLC PSM

ProjectDataVersioning
Service

getBranchById

1. Discover a query capability for streams (oslc_config:Stream) for the
specified project. See OSLC Discovery section.

2. Perform a GET on the query base, specifying a query for the
dcterms:identifier in a oslc.where query parameter, and specifying which
properties, if any, of the component should be returned in the query result
using an oslc.select query parameter.

Example: Query for streams with identifier 123, returning all properties.

GET queryBaseUri?
oslc.where=dcterms%3Aidentifier%3D%22123%22&
oslc.select=*

getTagById

1. Discover a query capability for baselines (oslc_config:Baseline) for the
specified project. See OSLC Discovery section.

2. Perform a GET on the query base, specifying a query for the
dcterms:identifier in a oslc.where query parameter, and specifying which
properties, if any, of the component should be returned in the query result
using an oslc.select query parameter.

Example: Query for baselines with identifier 123, returning all properties.

GET queryBaseUri?
oslc.where=dcterms%3Aidentifier%3D%22123%22&
oslc.select=*

getCommits Not available. The OSLC Configuration Management specification does not define
any notion of a commit. Versions of specific resources may be fetched.

getBranches

1. Discover a query capability for streams (oslc_config:Stream) for the
specified project. See OSLC Discovery section.

2. Perform a GET on the query base, specifying which properties, if any, of
the stream should be returned in the query result using an oslc.select query
parameter.

Example: Query for branches returning their name (dcterms:title) and id
(dcterms:identifier)

GET queryBaseUri?
oslc.select=dcterms%3Atitle%2Cdcterms%3Aidentifier

42 Systems Modeling API and Services v1.0 Beta 1

PIM Services OSLC PSM

createCommit

Not available. The OSLC Configuration Management specification does not define
any notion of a commit. New versions may be created in the context of a stream or
change set. However, the OSLC Configuration Management specification does not
define any means to commit a change set or deliver the changes in a stream or change
set to another stream.
For creating new versions of a resource in the context of a stream or a change set, see
below.

1. Execute a PUT on version resource concept URI with configuration context
parameter/header set to the URI of a stream (branch). Body contains the
updated RDF representation of the element version.

Note that this only supports a new commit along a branch with the previous latest
commit being its previous commit. If a client wants to commit from an earlier
version, they must first create a stream (branch) from that earlier baseline (commit)
and then use a PUT with that new stream.
The OSLC Configuration Management specification does not currently define any
mechanisms for creating new versions of multiple versioned resources in a single
REST operation.
Example 1:

PUT conceptResourceUri?
oslc_config.context=urlEncodedStreamUri

Example 2:

Headers: Configuration-Context=streamUri
PUT conceptResourceUri

getCommitById

1. Discover a query capability for commits (a API-specific RDF type) for the
specified project. See OSLC Discovery section.

2. Perform a GET on the query base, specifying a query for the
dcterms:identifier in a oslc.where query parameter, and specifying which
properties, if any, of the commit should be returned in the query result
using an oslc.select query parameter.

Example: Query for commits with identifier 123, returning all properties.

GET queryBaseUri?
oslc.where=dcterms%3Aidentifier%3D%22123%22&
oslc.select=*

getCommitChange

Not available. The OSLC Configuration Management specification does not define
any notion of a commit. New versions may be created in the context of a stream or
change set. However, the OSLC Configuration Management specification does not
define any means to commit a change set or deliver the changes in a stream or change
set to another stream.

Systems Modeling API and Services v1.0 Beta 1 43

PIM Services OSLC PSM

getCommitChangeById

Not available. The OSLC Configuration Management specification does not define
any notion of a commit. New versions may be created in the context of a stream or
change set. However, the OSLC Configuration Management specification does not
define any means to commit a change set or deliver the changes in a stream or change
set to another stream.

deleteBranch

Execute an HTTP DELETE on the URI of the stream. Note that servers may reject
the delete request if the stream is used or referenced by other configurations.
A server may also support archiving (soft delete) a stream using a HTTP PUT with
content that includes a oslc:archived "true"^^xsd:boolean property.

getDefaultBranch Not available. The OSLC Configuration Management specification does not define
any notion of a default stream.

deleteTag

Execute an HTTP DELETE on the URI of the baseline. Note that a server might
reject a request to delete a baseline if it is used or referenced by other configurations.
A server may also support archiving (soft delete) a baseline using a HTTP PUT with
content that includes a oslc:archived "true"^^xsd:boolean property.

setDefaultBranch Not available. The OSLC Configuration Management specification does not define
any notion of a default stream.

getHeadCommit

Not available. The OSLC Configuration Management specification does not define
any notion of a commit. New versions may be created in the context of a stream or
change set. However, OSLC Configuration Management does not define any means
to commit a change set or deliver the changes in a stream or change set to another
stream.

getTaggedCommit

Not available. The OSLC Configuration Management specification does not define
any notion of a commit. New versions may be created in the context of a stream or
change set. However, OSLC Configuration Management does not define any means
to commit a change set or deliver the changes in a stream or change set to another
stream. A baseline can provide a set of versioned resources but it is not a commit.

getTags

1. Discover a query capability for baselines (oslc_config:Baseline) for the
specified project. See OSLC Discovery section.

2. Perform a GET on the query base, specifying which properties, if any, of
the baseline should be returned in the query result using an oslc.select
query parameter.

Example: Query for tags returning their name (dcterms:title) and id
(dcterms:identifier)

GET queryBaseUri?
oslc.select=dcterms%3Atitle%2Cdcterms%3Aidentifier

44 Systems Modeling API and Services v1.0 Beta 1

PIM Services OSLC PSM

createTag

1. Get the baselines LDPC URI from the RDF of a stream.
2. POST the RDF representation of the baseline to the LDPC URI (with a

Content-Type header set to an RDF media type supported by the
server). The RDF content should be compatible with the resource shape for
Baseline as described in the specification (see https://docs.oasis-open-
projects.org/oslc-op/config/v1.0/ps01/config-
resources.html#BaselineShape)

Example: Create a baseline from a stream

POST baselinesLdpcUri

createBranch

A server might support either or both of the following:
A) Use a creation factory:

1. Discover a creation factory for streams (oslc_config:Stream) for the
specified project. See OSLC Discovery section.

2. POST the RDF content describing the stream (with a Content-Type header
set to an RDF media type supported by the server) to the creation
factory. The RDF content should be compliant with the resource shape
specified for the creation factory, and that resource shape must be
compatible with the resource shape for Stream as described in the
specification (see https://docs.oasis-open-projects.org/oslc-op/config/v1.0/
ps01/config-resources.html#StreamShape)

Example:

POST creationFactoryUri

or
B) Use the streams LDPC of a component

1. Get the URI of the streams LDPC from the RDF of a component.
2. POST the RDF content describing the stream (with a Content-Type header

set to an RDF media type supported by the server) to the LDPC. The RDF
content should be compatible with the resource shape for Stream as
described in the specification (see https://docs.oasis-open-projects.org/oslc-
op/config/v1.0/ps01/config-resources.html#StreamShape)

Example:

POST streamsLdpcUri

mergeIntoBranch Not Available

diffCommits Not Available

QueryService

Systems Modeling API and Services v1.0 Beta 1 45

https://docs.oasis-open-projects.org/oslc-op/config/v1.0/ps01/config-resources.html#BaselineShape
https://docs.oasis-open-projects.org/oslc-op/config/v1.0/ps01/config-resources.html#BaselineShape
https://docs.oasis-open-projects.org/oslc-op/config/v1.0/ps01/config-resources.html#BaselineShape
https://docs.oasis-open-projects.org/oslc-op/config/v1.0/ps01/config-resources.html#StreamShape
https://docs.oasis-open-projects.org/oslc-op/config/v1.0/ps01/config-resources.html#StreamShape
https://docs.oasis-open-projects.org/oslc-op/config/v1.0/ps01/config-resources.html#StreamShape
https://docs.oasis-open-projects.org/oslc-op/config/v1.0/ps01/config-resources.html#StreamShape

PIM Services OSLC PSM

getQueryById
Not Available
OSLC does not provide any RDF representation or persistence mechanisms of OSLC
queries.

getQueries
Not Available
OSLC does not provide any RDF representation or persistence mechanisms of OSLC
queries.

executeQueryById
Not Available
OSLC does not provide any RDF representation or persistence mechanisms of OSLC
queries.

createQuery
Not Available
OSLC does not provide any RDF representation or persistence mechanisms of OSLC
queries.

updateQuery
Not Available
OSLC does not provide any RDF representation or persistence mechanisms of OSLC
queries.

deleteQuery
Not Available
OSLC does not provide any RDF representation or persistence mechanisms of OSLC
queries.

executeQuery

1. Discover a query capability for the specified project. See OSLC Discovery
section.

2. Perform a GET on the query base, specifying the following. See OSLC
Query Capability in OSLC Nomenclature

1. The oslc.where query parameter to filter for the desired elements
2. The oslc.select query parameter, to define the element properties

that should be returned in the query result.

ExternalRelationship
Service

OSLC does/can not differentiate between properties/relationships/elements that are
external or otherwise.
The services below are just specific examples of the getElements and
getElementById service operation mappings above.

getExternalRelationships
ById See getElementById under ElementNavigationService

getExternalRelationships
ByElementEnd See getRelationshipsByRelatedElement under ElementNavigationService

getExternalRelationships See getElements under Element Navigation Service

ProjectUsageService

createProjectUsage Not available. The OSLC Configuration Management specification does not define
any notion of component usage.

deleteProjectUsage Not available. The OSLC Configuration Management specification does not define
any notion of component usage.

46 Systems Modeling API and Services v1.0 Beta 1

PIM Services OSLC PSM

getProjectUsages Not available. The OSLC Configuration Management specification does not define
any notion of component usage.

Systems Modeling API and Services v1.0 Beta 1 47

48 Systems Modeling API and Services v1.0 Beta 1

A Annex: Conformance Test Suite
(Normative)

A.1 ProjectService Conformance Test Cases

Operation create_project
PIM-PS-001

Description Create Project - success

Input 1. _description : String[0..1]
2. _name : String[1]

Scenario

Precondition
(OCL)

let _record : Record = Record.allInstances()

Steps Execute operation create_project(name = _name, description = _description) :
Project[1]

Result

1. Result, defined as project : Project[1], is a created Project
2. The id attribute value of the created Project is randomly generated and universally

unique, including (but not limited to) not being used as the id attribute value for any
previously existing Record

3. A Branch is created and specified as the defaultBranch attribute value for the
created Project

4. The id attribute value of the created Branch (defaultBranch) is randomly generated
and universally unique, including (but not limited to) not being used as the id attribute
value for any previously existing Record.

5. The name attribute value of the created Branch (defaultBranch) is specified as
'main'

6. The description attribute value is specified as inputted
7. The name attribute value is specified as inputted

Postcondition
(OCL)

let project : Project = create_project(_name, _description)
project->size() = 1
Project.allInstances()->includes(project)
_record.id->excludes(project.id)
project.defaultBranch->notEmpty()
_record.id->excludes(project.defaultBranch.id)
project.defaultBranch.name = 'main'
project.description = _description
project.name = _name

Systems Modeling API and Services v1.0 Beta 1 49

Operation get_projects
PIM-PS-002

Description Get Projects - success

Input None

Scenario

Precondition
(OCL)

Steps Execute operation get_projects() : Project[0..*]
Result Result, defined as project : Project[0..*], is all of the existing Projects

Postcondition
(OCL)

let project : Project = get_projects()
project = Project.allInstances()

Operation get_project_by_id
PIM-PS-003

Description Get Project by ID - exists

Input 1. _projectId : UUID[1]

Scenario A Project with an id attribute value equal to _projectId exists

Precondition
(OCL)

let _project : Project = Project.allInstances()->select(id = _projectId)
_project->size() = 1

Steps Execute operation get_project_by_id(projectId = _projectId) : Project[0..1]

Result Result, defined as project : Project[1], is the Project with an id attribute value equal to
_projectId

Postcondition
(OCL)

let project : Project = get_project_by_id(_projectId)
project = _project

PIM-PS-004

Description Get Project by ID - does not exist

Input 1. _projectId : UUID[1]

Scenario A Project with an id attribute value equal to _projectId does not exist

Precondition
(OCL)

Project.allInstances()->select(projectId = _projectId)->isEmpty()

50 Systems Modeling API and Services v1.0 Beta 1

Steps Execute operation get_project_by_id(projectId = _projectId) : Project[0..1]

Result 1. Result, defined as project : Project[0], does not include any Projects
2. Result communicates that a Project with the provided ID does not exist

Postcondition
(OCL)

let project : Project = get_project_by_id(_projectId)
project->isEmpty()

A.2 ElementNavigationService Conformance Test Cases

Operation get_elements
PIM-EN-001

Description Get Elements - success

Input 1. _project : Project[1]
2. _commit : Commit[1]

Scenario
1. The inputted Project exists
2. The inputted Commit exists
3. The inputted Commit belongs to the inputted Project

Precondition
(OCL)

Project.allInstances()->includes(_project)
Commit.allInstance()->includes(_commit)
_commit.owningProject = _project

Steps Execute operation get_elements(project = _project, commit = _commit) :
Element[0..*]

Result Result, defined as element : Element[0..*], is all Elements at the inputted Commit

Postcondition
(OCL)

let element : Element = get_elements(_project, _commit)
element = _commit.version.data->select(oclIsKindOf(Element))

Operation get_element_by_id
PIM-EN-002

Description Get Element by ID - success

Input
1. _project : Project[1]
2. _commit : Commit[1]
3. _elementId : UUID[1]

Systems Modeling API and Services v1.0 Beta 1 51

Scenario

1. The inputted Project exists
2. The inputted Commit exists
3. The inputted Commit belongs to the inputted Project
4. An Element with an id attribute value equal to _elementId exists at the inputted

Commit

Precondition
(OCL)

Project.allInstances()->includes(_project)
Commit.allInstance()->includes(_commit)
_commit.owningProject = _project
let _element : Element = _commit.version->select(identity.id = _elementId
and data.oclIsKindOf(Element)).data
_element.size() = 1

Steps Execute operation get_element_by_id(project = _project, commit = _commit,
elementId = _elementId) : Element[0..1]

Result Result, defined as element : Element[1], is the Element with an id attribute value equal to
_elementId at the inputted Commit

Postcondition
(OCL)

let element : Element = get_element_by_id(_project, _commit, _elementId)
element = _element

PIM-EN-003

Description Get Element by ID - does not exist at Commit

Input
1. _project : Project[1]
2. _commit : Commit[1]
3. _elementId : UUID[1]

Scenario

1. The inputted Project exists
2. The inputted Commit exists
3. The inputted Commit belongs to the inputted Project
4. An Element with an id attribute value equal to _elementId does not exist at the

inputted Commit

Precondition
(OCL)

Project.allInstances()->includes(_project)
Commit.allInstance()->includes(_commit)
_commit.owningProject = _project
_commit.version->select(identity.id = _elementId and
data.oclIsKindOf(Element)).data->isEmpty()

Steps Execute operation get_element_by_id(project = _project, commit = _commit,
elementId = _elementId) : Element[0..1]

52 Systems Modeling API and Services v1.0 Beta 1

Result
1. Result, defined as element : Element[0], does not include any Elements
2. Result communicates that an Element with the provided ID at the inputted Commit

does not exist

Postcondition
(OCL)

let element : Element = get_element_by_id(_project, _commit, _id)
element->isEmpty()

Operation get_relationships_by_source
PIM-EN-004

Description Get Relationships by source (Element) - success

Input
1. _project : Project[1]
2. _commit : Commit[1]
3. _elementId : UUID[1]

Scenario

1. The inputted Project exists
2. The inputted Commit exists
3. The inputted Commit belongs to the inputted Project
4. An Element with an id attribute value equal to _elementId exists at the inputted

Commit

Precondition
(OCL)

Project.allInstances()->includes(_project)
Commit.allInstance()->includes(_commit)
_commit.owningProject = _project
let _element : Element = _commit.version->select(identity.id = _id and
data.oclIsKindOf(Element)).data
_element.size() = 1

Steps Execute operation get_relationships_by_source(project = _project, commit =
_commit, elementId = _elementId) : Relationship[0..*]

Result Result, defined as relationship : Relationship[0..*], is all the Relationships whose
source attribute value includes the Element with id attribute value equal to _elementId

Postcondition
(OCL)

let relationship : Relationship = get_relationship_by_source(_project,
_commit, _elementId)
relationship = _commit.version->select(data.oclIsKindOf(Relationship) and
data.source->includes(_element))

Operation get_relationships_by_target
PIM-EN-005

Description Get Relationships by target (Element) - success

Systems Modeling API and Services v1.0 Beta 1 53

Input
1. _project : Project[1]
2. _commit : Commit[1]
3. _elementId : UUID[1]

Scenario

1. The inputted Project exists
2. The inputted Commit exists
3. The inputted Commit belongs to the inputted Project
4. An Element with an id attribute value equal to _elementId exists at the inputted

Commit

Precondition
(OCL)

Project.allInstances()->includes(_project)
Commit.allInstance()->includes(_commit)
_commit.owningProject = _project
let _element : Element = _commit.version->select(identity.id = _id and
data.oclIsKindOf(Element)).data
_element.size() = 1

Steps Execute operation get_relationships_by_target(project = _project, commit =
_commit, elementId = _elementId) : Relationship[0..*]

Result Result, defined as relationship : Relationship[0..*], is all the Relationships whose
target attribute value includes the Element with id attribute value equal to _elementId

Postcondition
(OCL)

let relationship : Relationship = get_relationship_by_target(_project,
_commit, _elementId)
relationship = _commit.version->select(data.oclIsKindOf(Relationship) and
data.target->includes(_element))

A.3 ProjectDataVersioningService Conformance Test Cases

Operation create_branch
PIM-PCB-001

Description Create Branch - success

Input
1. _project : Project[1]
2. _head : Commit[1]
3. _name : String[1]

Scenario
1. The inputted Project exists
2. The inputted Commit (_head) exists
3. The inputted Commit (_head) belongs to the inputted Project

54 Systems Modeling API and Services v1.0 Beta 1

Precondition
(OCL)

Project.allInstances()->includes(_project)
Commit.allInstance()->includes(_head)
_head.owningProject = _project
let _record : Record = Record.allInstances()

Steps Execute operation create_branch(project = _project, head = _head, name =
_name) : Branch[1]

Result

1. Result, defined as branch : Branch[1], is a created Branch in the inputted Project
2. The id attribute value of the created Branch is randomly generated and universally

unique, including (but not limited to) not being used as the id attribute value for any
previously existing Record.

3. The owningProject attribute value of the created Branch is specified as inputted, i.e.
equal to _project

4. The head attribute value of the created Branch is specified as inputted
5. The name attribute value of the created Branch is specified as inputted

Postcondition
(OCL)

let branch : Branch = create_branch(_project, _head, _name)
branch->size() = 1
Branch.allInstances()->includes(branch)
_project.branch->includes(branch)
_record.id->excludes(branch.id)
branch.owningProject = _project
branch.head = _head
branch.name = _name

Operation get_branches
PIM-PCB-002

Description Get Branches - success

Input 1. _project : Project[1]

Scenario The inputted Project exists

Precondition
(OCL)

Project.allInstances()->includes(_project)

Steps Execute operation get_branches(project = _project) : Branch[0..*]
Result Result, defined as branch : Branch[0..*], is all Branches in the inputted Project

Postcondition
(OCL)

let branch : Branch = get_branches(_project)
branch = _project.branch

Systems Modeling API and Services v1.0 Beta 1 55

Operation get_branch_by_id
PIM-PCB-003

Description Get Branch by ID - success

Input 1. _project : Project[1]
2. _branchId : UUID[1]

Scenario 1. The inputted Project exists
2. A Branch with an id attribute value equal to _branchId exists in the inputted Project

Precondition
(OCL)

Project.allInstances()->includes(_project)
let _branch : Branch = _project.branch->select(id = _branchId)
_branch.size() = 1

Steps Execute operation get_branch_by_id(project = _project, branchId = _branchId)
: Branch[0..1]

Result Result, defined as branch : Branch[1], is the Branch with an id attribute value equal to
_branchId in the inputted Project

Postcondition
(OCL)

let branch : Branch = get_branch_by_id(_project, _branchId)
branch = _branch

PIM-PCB-004

Description Get Branch by ID - does not exist in Project

Input 1. _project : Project[1]
2. _branchId : UUID[1]

Scenario
1. The inputted Project exists
2. A Branch with an id attribute value equal to _branchId does not exist in the inputted

Project

Precondition
(OCL)

Project.allInstances()->includes(_project)
_project.branch->select(id = _branchId)->isEmpty()

Steps Execute operation get_branch_by_id(project = _project, branchId = _branchId)
: Branch[0..1]

56 Systems Modeling API and Services v1.0 Beta 1

Result
1. Result, defined as branch : Branch[0], does not include any Branches
2. Result communicates that a Branch with the provided ID in the inputted Project does

not exist

Postcondition
(OCL)

let branch : Branch = get_branch_by_id(_project, _branchId)
branch->isEmpty()

Operation delete_branch
PIM-PCB-005

Description Delete Branch - success

Input 1. _project : Project[1]
2. _branchId : UUID[1]

Scenario 1. The inputted Project exists
2. A Branch with an id attribute value equal to _branchId exists in the inputted Project

Precondition
(OCL)

Project.allInstances()->includes(_project)
let _branch : Branch = _project.branch->select(id = _branchId)
_branch.size() = 1

Steps Execute operation delete_branch(project = _project, branchId = _branchId) :
Branch[0..1]

Result
1. Result, defined as branch : Branch[1], is the Branch with an id attribute value

equal to _branchId in the inputted Project
2. Branch with an id attribute value equal to _branchId does not exist

Postcondition
(OCL)

let branch : Branch = delete_branch(_project, _branchId)
_project.branch->excludes(branch)
Branch.allInstances()->excludes(branch)
_project.branch->select(id = _branchId)->isEmpty()
Branch.allInstances()->select(id = _branchId)->isEmpty()

PIM-PCB-006

Description Delete Branch - does not exist in Project

Input 1. _project : Project[1]
2. _branchId : UUID[1]

Systems Modeling API and Services v1.0 Beta 1 57

Scenario
1. The inputted Project exists
2. A Branch with an id attribute value equal to _branchId does not exist in the inputted

Project

Precondition
(OCL)

Project.allInstances()->includes(_project)
_project.branch->select(id = _branchId)->isEmpty()

Steps Execute operation delete_branch(project = _project, branchId = _branchId) :
Branch[0..1]

Result
1. Result, defined as branch : Branch[0], does not include any Branches
2. Result communicates that a Branch with the provided ID in the inputted Project does

not exist

Postcondition
(OCL)

let branch : Branch = delete_branch(_project, _branchId)
branch->isEmpty()

Operation get_default_branch
PIM-PCB-007

Description Get default Branch - success

Input 1. _project : Project[1]

Scenario The inputted Project exists

Precondition
(OCL)

Project.allInstances()->includes(_project)

Steps Execute operation get_default_branch(project = _project) : Branch[1]

Result 1. Result, defined as branch : Branch[1], is the defaultBranch attribute value of
the inputted Project

Postcondition
(OCL)

let branch = get_default_branch(_project)
branch = _project.defaultBranch

Operation set_default_branch
PIM-PCB-008

Description Set default Branch - success

58 Systems Modeling API and Services v1.0 Beta 1

Input 1. _project : Project[1]
2. _branchId : UUID[1]

Scenario 1. The inputted Project exists
2. A Branch with an id attribute value equal to _branchId exists in the inputted Project

Precondition
(OCL)

Project.allInstances()->includes(_project)
let _branch : Branch = _project.branch->select(id = _branchId)
_branch.size() = 1

Steps Execute operation set_default_branch(project = _project, branchId =
_branchId) : Project[1]

Result
1. Result, defined as project : Project[1], is the inputted Project
2. The defaultBranch attribute value of the inputted Project is specified as the Branch

with an id attribute value equal to _branchId

Postcondition
(OCL)

let project : Project = set_default_branch(_project, _branchId)
project.defaultBranch = _branch

PIM-PCB-009

Description Set default Branch - does not exist in Project

Input 1. _project : Project[1]
2. _branchId : UUID[1]

Scenario
1. The inputted Project exists
2. A Branch with an id attribute value equal to _branchId does not exist in the inputted

Project

Precondition
(OCL)

Project.allInstances()->includes(_project)
_project.branch->select(id = _branchId)->isEmpty()
let _defaultBranch : Branch = _project.defaultBranch

Steps Execute operation set_default_branch(project = _project, branchId =
_branchId) : Project[1]

Systems Modeling API and Services v1.0 Beta 1 59

Result

1. Result, defined as project : Project[1], is the inputted Project
2. The defaultBranch attribute value of the inputted Project is unchanged
3. Result communicates that a Branch with the provided ID in the inputted Project does

not exist

Postcondition
(OCL)

let project : Project = set_default_branch(_project, _branchId)
project.defaultBranch = _defaultBranch

Operation create_commit
PIM-PCB-010

Description Create Commit - success

Input

1. _project : Project[1]
2. _change : DataVersion[1..*]
3. _branch : Branch[0..1]
4. _previousCommit : Commit[0..*]

Scenario

1. The inputted Project exists
2. The inputted Branch, optional and if provided, exists in the inputted Project
3. The inputted Commits (_previousCommit), optional and if provided, exists in the

inputted Commit

Precondition
(OCL)

Project.allInstances()->includes(_project)
_branch->isEmpty() or _project.branch->includes(_branch)
_previousCommit->isEmpty() or _previousCommit->forAll(owningProject =
_project)
let _record : Record = Record.allInstances()
let _head : Commit = _branch.head

Steps
Execute operation create_commit(project = _project, change = _change, branch
=
_branch, previousCommit = _previousCommit) : Commit[1]

60 Systems Modeling API and Services v1.0 Beta 1

Result

1. Result, defined as commit : Commit[1], is a created Commit
2. The id attribute value of the created Commit is randomly generated and universally

unique, including (but not limited to) not being used as the id attribute value for any
previously existing Record.

3. The owningProject attribute value of the created Commit is specified as inputted
(_project)

4. The change attribute value of the created Commit is specified as inputted
5. The previousCommit attribute value of the created Commit is specified as the union

of the head attribute value of the inputted Branch, if provided, and the inputted
Commits (_previousCommit)

6. The version attribute value of the created Commit includes the new changes
7. The head attribute value of the inputted Branch, if provided, is updated to the created

Commit

Postcondition
(OCL)

let commit : Commit = create_commit(_project, _change, _branch,
_previousCommit)
commit->size() = 1
_record.id->excludes(commit.id)
commit.owningProject = _project
commit.change = _change
commit.previousCommit = _head->union(_previousCommit)
commit.version->includes(_change)
_branch->isEmpty() or _branch.head = commit

Operation get_commit_by_id
PIM-PCB-011

Description Get commit by ID - success

Input 1. _project : Project[1]
2. _commitId : UUID[1]

Scenario 1. The inputted Project exists
2. A Commit with an id attribute value equal to _commitId exists in the inputted Project

Precondition
(OCL)

Project.allInstances()->includes(_project)
let _commit : Commit = _project.commit->select(id = _commitId)
_commit.size() = 1

Steps Execute operation get_commit_by_id(project = _project, commitId = _commitId)
: Commit[0..1]

Result Result, defined as commit : Commit[1], is the Commit with an id attribute value equal to
_commitId in the inputted Project

Systems Modeling API and Services v1.0 Beta 1 61

Postcondition
(OCL)

let commit : Commit = get_commit_by_id(_project, _commitId)
commit = _commit

PIM-PCB-012

Description Get commit by ID - does not exist in Project

Input 1. _project : Project[1]
2. _commitId : UUID[1]

Scenario
1. The inputted Project exists
2. A Commit with an id attribute value equal to _commitId does not exist in the

inputted Project

Precondition
(OCL)

Project.allInstances()->includes(_project)
_project.commit->select(id = _commitId)->isEmpty()

Steps Execute operation get_commit_by_id(project = _project, commitId = _commitId)
: Commit[0..1]

Result Result, defined as commit : Commit[0], does not include any Commits

Postcondition
(OCL)

let commit : Commit = get_commit_by_id(_project, _commitId)
commit->isEmpty()

Operation get_head
PIM-PCB-013

Description Get head Commit of Branch - success

Input 1. _project : Project[1]
2. _branch : Branch[1]

Scenario
1. The inputted Project exists
2. The inputted Branch exists
3. The inputted Branch belongs to the inputted Project

Precondition
(OCL)

Project.allInstances()->includes(_project)
Branch.allInstance()->includes(_branch)
_branch.owningProject = _project

Steps Execute operation get_head(project = _project, branch = _branch) :
Commit[0..1]

62 Systems Modeling API and Services v1.0 Beta 1

Result Result, defined as head : Commit[0..1], is the Commit that is the head attribute value of the
inputted Branch

Postcondition
(OCL)

let head : Commit = get_head(_project, _branch)
Bag{0, 1}->includes(head->size())
head = _project.head

PIM-PCB-014

Description Get head Commit of Branch - Branch does not exist

Input 1. _project : Project[1]
2. _branch : Branch[1]

Scenario 1. The inputted Project exists
2. The inputted Branch does not exist

Precondition
(OCL)

Project.allInstances()->includes(_project)
Branch.allInstance()->excludes(_branch)

Steps Execute operation get_head(project = _project, branch = _branch) :
Commit[0..1]

Result 1. Result, defined as head : Commit[0], does not include any Commits
2. Result communicates that the inputted Branch does not exist

Postcondition
(OCL)

let head : Commit = get_head(_project, _branch)
head->isEmpty()

PIM-PCB-015

Description Get head Commit of Branch - Branch not in Project

Input 1. _project : Project[1]
2. _branch : Branch[1]

Scenario
1. The inputted Project exists
2. The inputted Branch exists
3. The inputted Branch does not belong to the inputted Project

Systems Modeling API and Services v1.0 Beta 1 63

Precondition
(OCL)

Project.allInstances()->includes(_project)
Branch.allInstance()->includes(_branch)
_branch.owningProject <> _project

Steps Execute operation get_head(project = _project, branch = _branch) :
Commit[0..1]

Result 1. Result, defined as head : Commit[0], does not include any Commits
2. Result communicates that the provided input is invalid

Postcondition
(OCL)

let head : Commit = get_head(_project, _branch)
head->isEmpty()

A.4 QueryService Conformance Test Cases

Operation create_query
PIM-QS-001

Description Create Query - success

Input

1. _project : Project[1]
2. _select : String[0..*]
3. _scope : DataIdentity[0..*]
4. _where : Constraint[0..1]
5. _orderBy : String[0..*]

Scenario 1. The inputted Project exists

Precondition
(OCL)

Project.allInstances()->includes(_project)
let _record : Record = Record.allInstances()

Steps Execute operation create_query(project = _project, select = _select, scope =
_scope, where = _where, orderBy = _orderBy) : Query[1]

64 Systems Modeling API and Services v1.0 Beta 1

Result

1. Result, defined as query : Query[1], is a created Query in the inputted Project
2. The id attribute value of the created Query is randomly generated and universally

unique, including (but not limited to) not being used as the id attribute value for any
previously existing Record.

3. The owningProject attribute value of the created Query is specified as inputted, i.e.
equal to _project

4. The select attribute value of the created Query is specified as inputted
5. The scope attribute value of the created Query is specified as inputted
6. The where attribute value of the created Query is specified as inputted
7. The orderBy attribute value of the created Query is specified as inputted

Postcondition
(OCL)

let query : Query = create_query(_project, _select, _scope, _where,
_orderBy)
query->size() = 1
Query.allInstances()->includes(query)
_project.query->includes(query)
_record.id->excludes(query.id)
query.owningProject = _project
query.select = _select
query.scope = _scope
query.where = _where
query.orderBy = orderBy

PIM-QS-002

Description Execute Query - success

Input 1. _query : Query[1]
2. _commit : Commit[1]

Scenario
1. The inputted Query exists
2. The inputted Commit exists
3. The inputted Query and Commit both belong to the same Project

Precondition
(OCL)

Query.allInstances()->includes(_query)
Commit.allInstances()->includes(_commit)
_query.owningProject = _commit.owningProject

Steps Execute operation execute_query(query = _query, commit = _commit) :
Data[0..*]

Result

1. Result, defined as data : Data[0..*], is all of the Datas at the inputted Commit
that satisfy the conditions of the inputted Query

2. If inputted Query has a non-empty scope attribute value, result only includes Data
within the Query's scope

Systems Modeling API and Services v1.0 Beta 1 65

Postcondition
(OCL)

let data : Data = execute_query(_query, _commit)
_commit.versionedData->includesAll(data)
_query.scope->isEmpty() or _query.scope->includesAll(data)

A.5 ExternalRelationshipService Test Cases

Operation get_external_relationships
PIM-ER-001

Description Get ExternalRelationships - success

Input 1. _project : Project[1]
2. _commit : Commit[1]

Scenario
1. The inputted Project exists
2. The inputted Commit exists
3. The inputted Commit belongs to the inputted Project

Precondition
(OCL)

Project.allInstances()->includes(_project)
Commit.allInstance()->includes(_commit)
_commit.owningProject = _project

Steps Execute operation get_external_relationships(project = _project, commit =
_commit) : ExternalRelationship[0..*]

Result 1. Result, defined as externalRelationship : ExternalRelationship[0..*], is
all of the existing ExternalRelationships at the inputted Commit

Postcondition
(OCL)

let externalRelationship : ExternalRelationship =
get_external_relationships(_project, _commit)
externalRelationship =
_commit.version.data->select(oclIsKindOf(ExternalRelationship))

Operation get_external_relationship_by_id
PIM-ER-002

Description Get ExternalRelationship by ID - success

Input
1. _project : Project[1]
2. _commit : Commit[1]
3. _externalRelationshipId : UUID[1]

66 Systems Modeling API and Services v1.0 Beta 1

Scenario

1. The inputted Project exists
2. The inputted Commit exists
3. The inputted Commit belongs to the inputted Project
4. An ExternalRelationship with an id attribute value equal to

_externalRelationshipId exists at the inputted Commit

Precondition
(OCL)

Project.allInstances()->includes(_project)
Commit.allInstance()->includes(_commit)
_commit.owningProject = _project
let _externalRelationship : ExternalRelationship =
_commit.version->select(identity.id = _externalRelationshipId and
data.oclIsTypeOf(ExternalRelationship)).data
_externalRelationship.size() = 1

Steps

Execute operation get_external_relationship_by_id(project = _project,
commit = _commit,
externalRelationshipId = _externalRelationshipId) :
ExternalRelationship[0..1]

Result
1. Result, defined as externalRelationship : ExternalRelationship[1], is the

Element with an id attribute value equal to _externalRelationshipId at the
inputted Commit

Postcondition
(OCL)

let externalRelationship : ExternalRelationship =
get_external_relationship_by_id(_project, _commit,
_externalRelationshipId)
externalRelationship = _externalRelationship

PIM-ER-003

Description Get ExternalRelationship by ID - does not exist at Commit

Input
1. _project : Project[1]
2. _commit : Commit[1]
3. _externalRelationshipId : UUID[1]

Scenario

1. The inputted Project exists
2. The inputted Commit exists
3. The inputted Commit belongs to the inputted Project
4. An ExternalRelationship with an id attribute value equal to

_externalRelationshipId does not exist at the inputted Commit

Systems Modeling API and Services v1.0 Beta 1 67

Precondition
(OCL)

Project.allInstances()->includes(_project)
Commit.allInstance()->includes(_commit)
_commit.owningProject = _project
_commit.version->select(identity.id = _externalRelationshipId and
data.oclIsTypeOf(ExternalRelationship)).data->isEmpty()

Steps

Execute operation get_external_relationship_by_id(project = _project, commit
=
_commit, externalRelationshipId = _externalRelationshipId) :
ExternalRelationship[0..1]

Result

1. Result, defined as externalRelationship : ExternalRelationship[0], does
not include any ExternalRelationships

2. Result communicates that an ExternalRelationship with the provided ID at the inputted
Commit does not exist

Postcondition
(OCL)

let externalRelationship : ExternalRelationship =
get_external_relationship_by_id(_project, _commit,
_externalRelationshipId)
externalRelationship->isEmpty()

A.6 ProjectUsageService Conformance Test Cases

Operation get_project_usages
PIM-PU-001

Description Get ExternalRelationships - success

Input 1. _project : Project[1]
2. _commit : Commit[1]

Scenario
1. The inputted Project exists
2. The inputted Commit exists
3. The inputted Commit belongs to the inputted Project

Precondition
(OCL)

Project.allInstances()->includes(_project)
Commit.allInstance()->includes(_commit)
_commit.owningProject = _project

Steps Execute operation get_project_usages(project = _project,
commit = _commit) : ProjectUsage[0..*]

68 Systems Modeling API and Services v1.0 Beta 1

Result 1. Result, defined as projectUsage : ProjectUsage[0..*], is all of the existing
ProjectUsages at the inputted Commit

Postcondition
(OCL)

let projectUsage : ProjectUsage =
get_project_usages(_project, _commit)
projectUsage =
_commit.version.data->select(oclIsKindOf(ProjectUsage))

A.7 Cross-Cutting Conformance Test Cases

Operations with Invalid Input
PIM-CC-001

Description Execute operation - missing Project input

Input 1. _project : Project[0]

Scenario

Precondition
(OCL)

Steps

Execute any of the following operations, defined as x(project : Project[1], …):

• get_elements(project = _project, …)
• get_element_by_id(project = _project, …)
• get_relationships_by_source(project = _project, …)
• get_relationships_by_target(project = _project, …)
• create_branch(project = _project, …)
• get_branches(project = _project)
• get_branch_by_id(project = _project, …)
• delete_branch(project = _project, …)
• get_default_branch(project = _project)
• set_default_branch(project = _project, …)
• create_commit(project = _project, …)
• get_commit_by_id(project = _project, …)
• get_head(project = _project, …)
• create_query(project = _project, …)

Result 1. Result, defined as result : OclAny[0], does not include any OclAny
2. Result communicates that project is a required input

Postcondition
(OCL)

let result : OclAny = x(_project, …)
result->isEmpty()

Systems Modeling API and Services v1.0 Beta 1 69

PIM-CC-002

Description Execute operation - missing Commit input

Input 1. _commit : Commit[0]

Scenario

Precondition
(OCL)

Steps

Execute any of the following operations, defined as x(commit : Commit[1], …):

• get_elements(…, commit = _commit)
• get_element_by_id(…, commit = _commit, …)
• get_relationships_by_source(…, commit = _commit, …)
• get_relationships_by_target(…, commit = _commit, …)
• create_branch(…, head = _commit, …)

Result 1. Result, defined as result : OclAny[0], does not include any OclAny
2. Result communicates that commit is a required input

Postcondition
(OCL)

let result : OclAny = x(_commit, …)
result->isEmpty()

PIM-CC-003

Description Execute operation - Project input does not exist

Input 1. _project : Project[1]

Scenario The inputted Project does not exist

Precondition
(OCL)

Project.allInstances()->excludes(_project)

70 Systems Modeling API and Services v1.0 Beta 1

Steps

Execute any of the following operations, defined as x(project : Project[1], …):

• get_elements(project = _project, …)
• get_element_by_id(project = _project, …)
• get_relationships_by_source(project = _project, …)
• get_relationships_by_target(project = _project, …)
• create_branch(project = _project, …)
• get_branches(project = _project)
• get_branch_by_id(project = _project, …)
• delete_branch(project = _project, …)
• get_default_branch(project = _project)
• set_default_branch(project = _project, …)
• create_commit(project = _project, …)
• get_commit_by_id(project = _project, …)
• get_head(project = _project, …)
• create_query(project = _project, …)

Result 1. Result, defined as result : OclAny[0], does not include any OclAny
2. Result communicates that the inputted Project does not exist

Postcondition
(OCL)

let result : OclAny = x(_project, …)
result->isEmpty()

PIM-CC-004

Description Execute operation - Commit input does not exist

Input 1. _commit : Commit[1]

Scenario The inputted Commit does not exist

Precondition
(OCL)

Commit.allInstances()->excludes(_commit)

Steps

Execute any of the following operations, defined as x(commit : Commit[1], …):

• get_elements(…, commit = _commit)
• get_element_by_id(…, commit = _commit, …)
• get_relationships_by_source(…, commit = _commit, …)
• get_relationships_by_target(…, commit = _commit, …)
• create_branch(…, head = _commit, …)

Result 1. Result, defined as result : OclAny[0], does not include any OclAny
2. Result communicates that the inputted Commit does not exist

Systems Modeling API and Services v1.0 Beta 1 71

Postcondition
(OCL)

let result : OclAny = x(_commit, …)
result->isEmpty()

PIM-CC-005

Description Execute operation - Commit input is not owned by Project input

Input 1. _project : Project[1]
2. _commit : Commit[1]

Scenario
1. The inputted Project exists
2. The inputted Commit does not exist
3. The inputted Commit does not belong to the inputted Project

Precondition
(OCL)

Project.allInstances()->includes(_project)
Commit.allInstances()->includes(_commit)
_commit.owningProject <> _project

Steps

Execute any of the following operations, defined as x(project : Project[1], commit :
Commit[1], …):

• get_elements(project = _project, commit = _commit)
• get_element_by_id(project = _project, commit = _commit, …)
• get_relationships_by_source(project = _project, commit =

_commit, …)
• get_relationships_by_target(project = _project, commit =

_commit, …)
• create_branch(project = _project, head = _commit, …)

Result 1. Result, defined as result : OclAny[0], does not include any OclAny
2. Result communicates that the provided input is invalid

Postcondition
(OCL)

let result : OclAny = x(_project, _commit, …)
result->isEmpty()

PIM-CC-006

Description Execute operation - missing name input

Input 1. _name : String[0]

Scenario

72 Systems Modeling API and Services v1.0 Beta 1

Precondition
(OCL)

Steps

Execute any of the following operations, defined as x(name : String[1], …) : OclAny:

• create_project(name = _name, …)
• create_branch(…, name = _name, …)

Result 1. Result, defined as result : OclAny[0], does not include any OclAny
2. Result communicates that name is a required input

Postcondition
(OCL)

let result : OclAny = x(_name, …)
result->isEmpty()

PIM-CC-007

Description Execute operation - missing UUID input

Input 1. _id : UUID[0]

Scenario

Precondition
(OCL)

Steps

Execute any of the following operations, defined as x(id : UUID[1], …) : OclAny:

• get_project_by_id(projectId = _id)
• get_element_by_id(…, elementId = _id)
• get_relationships_by_source(…, elementId = _id)
• get_relationships_by_target(…, elementId = _id)
• get_branch_by_id(…, branchId = _id)
• delete_branch(…, branchId = _id)
• set_default_branch(…, branchId = _id)
• get_commit_by_id(…, commitId = _id)

Result 1. Result, defined as result : OclAny[0], does not include any OclAny
2. Result communicates that the input for which _id is used is a required input

Postcondition
(OCL)

let result : OclAny = x(_id, …)
result->isEmpty()

Systems Modeling API and Services v1.0 Beta 1 73

74 Systems Modeling API and Services v1.0 Beta 1

B Annex: API and Services Examples and
Cookbook
(Informative)

B.1 Examples
In this section, examples of REST/HTTP PSM (API) requests and responses are presented. The examples are
organized per the tags in the OpenAPI specification that group individual endpoints, such as Project, Branch,
Commit, and Element. The tags defined in the OpenAPI specification of the REST/HTTP PSM are generally
organized by PIM Services. For each request, the curl notation and the resulting response with JSON
data are presented.

The term Protocol://FQDN in the request URLs indicates the protocol (e.g. http/https) and the Fully Qualified
Domain Name (FQDN) of the System Modeling API and Services Provider, e.g. https://sysml2-test.omg.org.

Project
GET /projects

Gets all the projects.

Request:

curl -X GET "Protocol://FQDN/projects" -H "accept: application/json"

Response:

[
{

"@id": "09257c67-2dce-4177-a95a-f2ede95b3ef3",
"@type": "Project",
"defaultBranch": {

"@id": "71904fd1-2d86-4bb3-a626-ca94097f746c"
},
"description": null,
"name": "1c-Parts Tree Redefinition Mon Oct 18 21:43:35 CDT 2021"

},
{

"@id": "0d885964-c176-4006-9809-4c74621da0f0",
"@type": "Project",
"defaultBranch": {

"@id": "0a021fc1-b70c-4256-9342-41ed383d3933"
},
"description": null,
"name": "Hello SysML v2"

},
{

"@id": "11507ece-f27b-4b01-bc7e-1fe8cb4b665c",
"@type": "Project",
"defaultBranch": {

"@id": "3e01a5f9-95bc-40de-8332-3d0d2c111d55"
},
"description": null,

Systems Modeling API and Services v1.0 Beta 1 75

"name": "8-Requirements Wed Oct 20 14:24:05 CDT 2021"
}

]

GET /projects/{projectId}

Gets the project with id {projectId}.

Request:

curl -X GET "protocol://FQDN/projects/0d885964-c176-4006-9809-4c74621da0f0" -H
"accept: application/json"

Response:

{
"@id": "0d885964-c176-4006-9809-4c74621da0f0",
"@type": "Project",
"defaultBranch": {

"@id": "0a021fc1-b70c-4256-9342-41ed383d3933"
},
"description": null,
"name": "Hello SysML v2"

}

POST /projects

Creates a new project using the project data specified in the body of the request.

Request:

curl -X POST "Protocol://FQDN/projects" -H "accept: application/json" -H
"Content-Type: application/json" -d "{ \"@type\": \"Project\", \"description\":
\"Getting started with SysML v2 REST/HTTP API\", \"name\": \"SysML v2 API Start\"}"

Response (body):

{
"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288",
"@type": "Project",
"defaultBranch": {

"@id": "e9e33b09-ad9b-45ea-a85b-107dc862c1ff"
},
"description": "Getting started with SysML v2 REST/HTTP API",
"name": "SysML v2 API Start"

}

Branch
GET /projects/{projectId}/branches

Gets all the branches in the project with id {projectId}.

Request:

curl -X GET "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/branches"
-H "accept: application/json"

76 Systems Modeling API and Services v1.0 Beta 1

Response (body):

[
{

"@id": "e9e33b09-ad9b-45ea-a85b-107dc862c1ff",
"@type": "Branch",
"head": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},
"name": "main",
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"referencedCommit": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},
"timestamp": "2021-11-06T15:45:34.967737-04:00"

},
{

"@id": "feefb263-f330-49da-b679-1d65602bf611",
"@type": "Branch",
"head": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},
"name": null,
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"referencedCommit": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},
"timestamp": "2021-11-06T15:55:57.332349-04:00"

}
]

GET /projects/{projectId}/branches/{branchId}

Gets the branch with id {branchId} in the project with id {projectId}.

Request:

curl -X GET "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/branches/
e9e33b09-ad9b-45ea-a85b-107dc862c1ff" -H "accept: application/json"

Response (body):

{
"@id": "e9e33b09-ad9b-45ea-a85b-107dc862c1ff",
"@type": "Branch",
"head": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},
"name": "main",
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"referencedCommit": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},

Systems Modeling API and Services v1.0 Beta 1 77

"timestamp": "2021-11-06T15:45:34.967737-04:00"
}

POST /projects/{projectId}/branches

Creates a new branch in the project with id {projectId} using the branch data specified in the body of the request.

Request:

curl -X POST "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/branches"
-H "accept: application/json" -H "Content-Type: application/json" -d "{ \"@type\":
\"Branch\", \"head\": { \"@id\": \"068440fd-9294-4acf-bc61-00b9156c9dde\" },
\"name\": \"SysML v2 API Explore Branch\", \"owningProject\": { \"@id\":
\"6b5e80d1-7291-4eef-880c-c462ca5a3288\" }}"

Response (body):

{
"@id": "feefb263-f330-49da-b679-1d65602bf611",
"@type": "Branch",
"head": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},
"name": null,
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"referencedCommit": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},
"timestamp": "2021-11-06T15:55:57.332349-04:00"

}

Tag
GET /projects/{projectId}/tags

Gets all the tags in the project with id {projectId}.

Request:

curl -X GET "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/tags" -H
"accept: application/json"

Response:

[
{

"@id": "d4657183-c4c1-45e9-90ac-dc984fc7c488",
"@type": "Tag",
"name": "Release 1",
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"referencedCommit": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},
"taggedCommit": {

78 Systems Modeling API and Services v1.0 Beta 1

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},
"timestamp": "2021-11-06T16:18:42.992149-04:00"

}
]

POST /projects/{projectId}/tags

Creates a new tag in the project with id {projectId} using the tag data specified in the body of the request.

Request:

curl -X POST "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/tags" -H
"accept: application/json" -H "Content-Type: application/json" -d "{ \"name\":
\"Release 1\", \"taggedCommit\": { \"@id\":
\"068440fd-9294-4acf-bc61-00b9156c9dde\" }}"

Response (body):

{
"@id": "d4657183-c4c1-45e9-90ac-dc984fc7c488",
"@type": "Tag",
"name": "Release 1",
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"referencedCommit": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},
"taggedCommit": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},
"timestamp": "2021-11-06T16:18:42.992149-04:00"

}

GET /projects/{projectId}/tags/{tagId}

Gets the tag with id {tagId} in the project with id {projectId}.

Request:

curl -X GET "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/tags/
d4657183-c4c1-45e9-90ac-dc984fc7c488" -H "accept: application/json"

Response (body):

{
"@id": "d4657183-c4c1-45e9-90ac-dc984fc7c488",
"@type": "Tag",
"name": "Release 1",
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"referencedCommit": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},
"taggedCommit": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"

Systems Modeling API and Services v1.0 Beta 1 79

},
"timestamp": "2021-11-06T16:18:42.992149-04:00"

}

Commit
GET /projects/{projectId}/commits

Gets all the commits in a project with id {projectId}.

Request:

curl -X GET "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/commits"
-H "accept: application/json"

Response:

[
{

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde",
"@type": "Commit",
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"previousCommit": null,
"timestamp": "2021-11-06T15:54:11.867499-04:00"

},
{

"@id": "cd4e9929-a51f-4f68-b87e-42b63083d9e6",
"@type": "Commit",
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"previousCommit": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},
"timestamp": "2021-11-06T16:39:46.579269-04:00"

}
]

GET /projects/{projectId}/commits/{commitId}

Gets the commit with id {commitId} in the project with id {projectId}.

Request:

curl -X GET "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/commits/
cd4e9929-a51f-4f68-b87e-42b63083d9e6" -H "accept: application/json"

Response (body):

{
"@id": "cd4e9929-a51f-4f68-b87e-42b63083d9e6",
"@type": "Commit",
"change": [

{
"@id": "635e54a6-f091-4925-b784-96c5243ca99d",
"identity": {

80 Systems Modeling API and Services v1.0 Beta 1

"@id": "7787bf4a-48fb-4176-a495-d23b38c2f3ec",
"@type": "DataIdentity"

},
"payload": null

}
],
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"previousCommit": {

"@id": "068440fd-9294-4acf-bc61-00b9156c9dde"
},
"timestamp": "2021-11-06T16:39:46.579269-04:00"

}

POST /projects/{projectId}/commits

Creates a new commit in the given project with id {projectId} using the commit data specified in the body of the
request. If the branch is not specified ({branchId} query parameter is absent), the default branch of the project will
reference the new commit.

Request:

curl -X POST "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/commits"
-H "accept: application/json" -H "Content-Type: application/json" -d "{ \"@type\":
\"Commit\", \"change\": [{ \"@type\": \"DataVersion\", \"payload\":
{ \"@type\": \"PartDefinition\", \"name\":\"Vehicle_B\" },
\"identity\":{ \"@type\":\"DataIdentity\" } }],
\"containingProject\": { \"id\": \"6b5e80d1-7291-4eef-880c-c462ca5a3288\"
}, \"previousCommit\": { \"id\":
\"d3b258d4-c2e3-4385-b044-e32f535ae673\" }}"

Response:

{
"@id": "42122503-70f1-42e9-ac6d-9b1ea2790138",
"@type": "Commit",
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"previousCommit": {

"@id": "d3b258d4-c2e3-4385-b044-e32f535ae673"
},
"timestamp": "2021-11-06T17:01:11.031488-04:00"

}

Element
GET /projects/{projectId}/commits/{commitId}/elements

Gets all the elements at the commit with id {commitId} in the project with id {projectId}.

Request:

curl -X GET "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/commits/
42122503-70f1-42e9-ac6d-9b1ea2790138/elements" -H "accept: application/json"

Systems Modeling API and Services v1.0 Beta 1 81

Response:

[
{

"@type": "PartDefinition",
"@id": "4ace3d89-fd5d-4a03-a303-376eea6fbf29",
"identifier": "4ace3d89-fd5d-4a03-a303-376eea6fbf29",
"name": "Vehicle_B",
...

},
{

"@type": "PartDefinition",
"@id": "72f90039-064b-4e91-a21d-7c58813aa4c1",
"identifier": "72f90039-064b-4e91-a21d-7c58813aa4c1",
"name": "Vehicle_A",
...

}
]

GET /projects/{projectId}/commits/{commitId}/elements/{elementId}

Gets the element with id {elementId} at the commit with id {commitId} in the project with id {projectId}.

Request:

curl -X GET "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/commits/
42122503-70f1-42e9-ac6d-9b1ea2790138/elements/72f90039-064b-4e91-a21d-7c58813aa4c1"
-H "accept: application/json"

Response:

{
"@type": "PartDefinition",
"@id": "72f90039-064b-4e91-a21d-7c58813aa4c1",
"name": "Vehicle_A",
...

}

Query
GET /projects/{projectId}/queries

Gets all the queries defined in the project with id {projectId}.

Request:

curl -X GET "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/queries"
-H "accept: application/json"

Response (body):

[
{

"@id": "1e368830-eee5-404a-be93-490a2b84d28f",
"@type": "Query",
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},

82 Systems Modeling API and Services v1.0 Beta 1

"scope": [],
"select": [

"owner",
"@type",
"name",
"@id"

],
"where": {

"@type": "PrimitiveConstraint",
"inverse": false,
"operator": "=",
"property": "@type",
"value": "PartDefinition"

}
},
{

"@id": "2cfc2123-90c3-48a9-a165-b50d21ab067d",
"@type": "Query",
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"scope": [],
"select": [

"owner",
"@type",
"name",
"@id"

],
"where": {

"@type": "PrimitiveConstraint",
"inverse": false,
"operator": "=",
"property": "@type",
"value": "PartDefinition"

}
},
{

"@id": "930167d5-0d5e-4f2e-8544-8f66f200e56a",
"@type": "Query",
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"scope": [],
"select": [

"owner",
"@type",
"name",
"@id"

],
"where": {

"@type": "PrimitiveConstraint",
"inverse": false,
"operator": "=",
"property": "name",
"value": "Vehicle_A"

}
},
{

"@id": "ab894e8b-d6be-4af0-b029-b52058f20b93",
"@type": "Query",

Systems Modeling API and Services v1.0 Beta 1 83

"owningProject": {
"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"

},
"scope": [],
"select": [

"owner",
"@type",
"name",
"@id"

],
"where": {

"@type": "PrimitiveConstraint",
"inverse": false,
"operator": "=",
"property": "name",
"value": "Vehicle_A"

}
}

]

POST /projects/{projectId}/queries

Creates a new query in project with id {projectId} using the query data specified in the body of the request.

Request:

curl -X POST "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/queries"
-H "accept: application/json" -H "Content-Type: application/json" -d "{ \"@type\":
\"Query\", \"select\": [\"name\",\"@id\",\"@type\",\"owner\"], \"where\":
{ \"@type\": \"PrimitiveConstraint\", \"inverse\": false, \"operator\":
\"=\", \"property\": \"@type\", \"value\": \"PartDefinition\" }}"

Response (body):

{
"@id": "2cfc2123-90c3-48a9-a165-b50d21ab067d",
"@type": "Query",
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"scope": [],
"select": [

"owner",
"@type",
"name",
"@id"

],
"where": {

"@type": "PrimitiveConstraint",
"inverse": false,
"operator": "=",
"property": "@type",
"value": "PartDefinition"

}
}

84 Systems Modeling API and Services v1.0 Beta 1

GET /projects/{projectId}/queries/{queryId}

Gets the query with id {queryId} in project with id {projectId}.

Request:

curl -X GET "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/queries/
2cfc2123-90c3-48a9-a165-b50d21ab067d" -H "accept: application/json"

Response (body):

{
"@id": "2cfc2123-90c3-48a9-a165-b50d21ab067d",
"@type": "Query",
"owningProject": {

"@id": "6b5e80d1-7291-4eef-880c-c462ca5a3288"
},
"scope": [],
"select": [

"owner",
"@type",
"name",
"@id"

],
"where": {

"@type": "PrimitiveConstraint",
"inverse": false,
"operator": "=",
"property": "@type",
"value": "PartDefinition"

}
}

GET /projects/{projectId}/queries/{queryId}/results

Executes the query with id {queryId} in project with id {projectId}. If the commit is not specified ({commitId}
query parameter is absent), the query is executed at the head commit in the default branch of the project.

Request:

curl -X GET "Protocol://FQDN/projects/6b5e80d1-7291-4eef-880c-c462ca5a3288/queries/
2cfc2123-90c3-48a9-a165-b50d21ab067d/
results?commitId=42122503-70f1-42e9-ac6d-9b1ea2790138" -H "accept: application/json"

Response (body):

[
{

"@type": "PartDefinition",
"@id": "4ace3d89-fd5d-4a03-a303-376eea6fbf29",
"name": "Vehicle_B",
"owner": null

},
{

"@type": "PartDefinition",
"@id": "72f90039-064b-4e91-a21d-7c58813aa4c1",
"name": "Vehicle_A",
"owner": null

Systems Modeling API and Services v1.0 Beta 1 85

}
]

B.2 Cookbook
The Systems Modeling API Cookbook is a collection of recipes demonstrating patterns and examples for using the
Systems Modeling API and Services. Each recipe is a Jupyter notebook (IPython) with a series of API calls using
the REST/HTTP PSM of the API.

The Systems Modeling API Cookbook is available as a zip file (Systems-Modeling-API-Cookbook.zip) containing
the Jupyter (IPython) notebooks with this specification.

86 Systems Modeling API and Services v1.0 Beta 1

https://jupyter.org/

	Table of Contents
	List of Tables
	List of Figures
	0 Preface
	OMG Specifications

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Introduction
	6.1 API and Services Architecture
	6.2 Document Conventions
	6.3 Document Organization
	6.4 Acknowledgements

	7 Platform Independent Model (PIM)
	7.1 API Model
	7.1.1 Record
	7.1.2 Project Data Versioning
	7.1.3 ExternalData and ExternalRelationship
	7.1.4 Query

	7.2 API Services
	7.2.1 ProjectService
	7.2.2 ElementNavigationService
	7.2.3 ProjectDataVersioningService
	7.2.4 QueryService
	7.2.5 ExternalRelationshipService
	7.2.6 ProjectUsageService

	8 Platform Specific Models (PSMs)
	8.1 REST/HTTP PSM
	8.1.1 Overview
	8.1.2 PIM API Model - REST/HTTP PSM Model Mapping
	8.1.3 PIM API Services - REST/HTTP PSM Endpoints Mapping
	Pagination
	Example

	8.2 OSLC 3.0 PSM
	8.2.1 Overview
	8.2.2 OSLC Nomenclature
	What is OSLC?
	OSLC Discovery
	OSLC Resource Shapes
	Linked Data Platform Containers
	OSLC Service Providers
	RDF Media Types

	8.2.3 PIM API Model – OSLC PSM Resource Mapping
	8.2.4 PIM API Services – OSLC PSM Service Mapping

	A Annex: Conformance Test Suite
	A.1 ProjectService Conformance Test Cases
	Operation create_project
	PIM-PS-001

	Operation get_projects
	PIM-PS-002

	Operation get_project_by_id
	PIM-PS-003
	PIM-PS-004

	A.2 ElementNavigationService Conformance Test Cases
	Operation get_elements
	PIM-EN-001

	Operation get_element_by_id
	PIM-EN-002
	PIM-EN-003

	Operation get_relationships_by_source
	PIM-EN-004

	Operation get_relationships_by_target
	PIM-EN-005

	A.3 ProjectDataVersioningService Conformance Test Cases
	Operation create_branch
	PIM-PCB-001

	Operation get_branches
	PIM-PCB-002

	Operation get_branch_by_id
	PIM-PCB-003
	PIM-PCB-004

	Operation delete_branch
	PIM-PCB-005
	PIM-PCB-006

	Operation get_default_branch
	PIM-PCB-007

	Operation set_default_branch
	PIM-PCB-008
	PIM-PCB-009

	Operation create_commit
	PIM-PCB-010

	Operation get_commit_by_id
	PIM-PCB-011
	PIM-PCB-012

	Operation get_head
	PIM-PCB-013
	PIM-PCB-014
	PIM-PCB-015

	A.4 QueryService Conformance Test Cases
	Operation create_query
	PIM-QS-001
	PIM-QS-002

	A.5 ExternalRelationshipService Test Cases
	Operation get_external_relationships
	PIM-ER-001

	Operation get_external_relationship_by_id
	PIM-ER-002
	PIM-ER-003

	A.6 ProjectUsageService Conformance Test Cases
	Operation get_project_usages
	PIM-PU-001

	A.7 Cross-Cutting Conformance Test Cases
	Operations with Invalid Input
	PIM-CC-001
	PIM-CC-002
	PIM-CC-003
	PIM-CC-004
	PIM-CC-005
	PIM-CC-006
	PIM-CC-007

	B Annex: API and Services Examples and Cookbook
	B.1 Examples
	Project
	GET /projects
	GET /projects/{projectId}
	POST /projects

	Branch
	GET /projects/{projectId}/branches
	GET /projects/{projectId}/branches/{branchId}
	POST /projects/{projectId}/branches

	Tag
	GET /projects/{projectId}/tags
	POST /projects/{projectId}/tags
	GET /projects/{projectId}/tags/{tagId}

	Commit
	GET /projects/{projectId}/commits
	GET /projects/{projectId}/commits/{commitId}
	POST /projects/{projectId}/commits

	Element
	GET /projects/{projectId}/commits/{commitId}/elements
	GET /projects/{projectId}/commits/{commitId}/elements/{elementId}

	Query
	GET /projects/{projectId}/queries
	POST /projects/{projectId}/queries
	GET /projects/{projectId}/queries/{queryId}
	GET /projects/{projectId}/queries/{queryId}/results

	B.2 Cookbook

