

Date: October 2010

TACSIT Controller Interface for CMS Systems

Version 1.0 - Beta 1

OMG Document Number: dtc/2010-10-11
Standard document URL: http://www.omg.org/spec/TACSIT/1.0
Associated Schema Files*: http://www.omg.org/spec/TACSIT/20100801
 http://www.omg.org/spec/TACSIT/20100802
 http://www.omg.org/spec/TACSIT/20100803

* original file(s): c4i/2010-08-02 (UML PSM), c4i/2010-08-03 (Java PSM), c4i/2010-08-04 (C++ PSM)

This OMG document replaces the submission document (c4i/2010-08-01, Alpha). It is an OMG Adopted
Beta Specification and is currently in the finalization phase. Comments on the content of this document
are welcome, and should be directed to issues@omg.org by February 22, 2010.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on September 24, 2010. If
you are reading this after that date, please download the available specification from the OMG
Specifications Catalog.

Copyright © 2007, 2008, 2009, 2010 BAE Systems
Copyright © 2007, 2008, 2009, 2010 Gallium
Copyright © 2007, 2008, 2009, 2010 Luciad
Copyright © 2010, Object Management Group, Inc.
Copyright © 2007, 2008, 2009, 2010 Raytheon Solipsys
Copyright © 2007, 2008, 2009, 2010 SimVentions

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered

by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , IMM™, MOF™ , OMG Interface Definition Language (IDL)™ , and OMG SysML™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

1 Scope .. 1

2 Conformance Criteria .. 2

3 Normative References ... 2

4 Terms and Definitions ... 3
4.1 General Definitions ...3
4.2 Terms specific to this submission ..4

5 Acronyms and Abbreviations ... 5

6 Additional Information ... 5
6.1 Changes or extensions to OMG specifications ..5
6.2 Submitters ..5

7 Platform Independent Model (PIM) 7
7.1 Package org.omg.tacsit.controller ..7

 7.1.1 Class / Interface Specifications .. 16
7.1.1.1 Interface Entity . 16
7.1.1.2 Interface EntityType . 18
7.1.1.3 getTypeName . 19
7.1.1.4 Interface Projection . 19
7.1.1.5 Class SelectionEvent . 20
7.1.1.6 Interface SelectionListener . 21
7.1.1.7 Interface SelectionManager . 22
7.1.1.8 Interface TACSITController . 25
7.1.1.9 Class ViewEyeProperties . 27
7.1.1.10 Interface Viewport . 28
7.1.1.11 ClassViewportChangeEvent . 31
7.1.1.12 Interface ViewportChangeListener . 32
7.1.1.13 Interface ViewportManager . 33
7.1.1.14 Interface ViewportManagerEvent . 35
7.1.1.15 InterfaceViewportManagerListener . 36
7.1.1.16 EnumerationSelectionMethodology . 37
7.1.1.17 EnumerationSelectionType . 37

7.2 Package org.omg.tacsit.query .. 38
 7.2.1 Class / Interface Specifications .. 38

7.2.1.1 Interface ContainmentQuery . 38
7.2.1.2 Interface EntityQuery . 39
7.2.1.3 Interface EntityTypeQuery . 39
7.2.1.4 Interface GeometryQuery . 40
7.2.1.5 Interface IntersectionQuery . 41
7.2.1.6 InterfaceQueryManager . 41
TACSIT Controller Interface for CMS Systems, Beta 1 i

7.3 Package org.omg.tacsit.geometry ..42
 7.3.1 Class / Interface Specifications ... 42

7.3.1.1 Interface Geometry . 42
7.3.1.2 Interface GeodeticPosition . 43
7.3.1.3 Class ScreenPosition . 44
7.3.1.4 Interface Centered . 45
7.3.1.5 Interface Circle . 46
7.3.1.6 Rectangle . 47

8 Java Platform Specific Model ... 49

9 C++ Platform Specific Model ... 51
ii TACSIT Controller Interface for CMS Systems, Beta 1

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog
is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM)
TACSIT Controller Interface for CMS Systems, v1.0 ix

Platform Specific Model and Interface Specifications
• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
x TACSIT Controller Interface for CMS Systems, v1.0

1 Scope

The domain of Combat Management Systems is characterized by a huge variety of underlying computing platforms, with
different and often incompatible means of providing interactive displays. Standards-based services are essential for
interoperable and open systems.

There is fairly broad agreement of what is considered the TACSIT software component of a tactical / strategic display
system. The TACSIT component is the software that provides users awareness of entities in the operational space relative
to a certain geo-spatial context. The TACSIT, by its nature, displays entities called tracks in their proper geographic
location overlaid on a visual representation of a map while including additional annotations and decision aides to support
the operator. The TACSIT is distinct from other display applications that work around, or in conjunction with it. The
figure below provides an example of the TACSIT software component.

Figure 1.1 - Example of a TACSIT software component

There are many capabilities and services necessary to successfully implement a TACSIT software component.

Within this broader context of TACSIT services, there are several aspects to be considered such as Controllers, Maps,
Tracks, Geometric, and Configuration. This specification is targeted at the Controller services necessary for TACSIT
software component manipulation only. Controller Services provide a means to interact with the TACSIT software
component and receive TACSIT notifications. Some general examples of Controller Services capability include such
functionalities as range scaling, setting the area center/offset, setting view rotation, selecting objects, registering for
events, and receiving cursor location updates.

This document specifies a standard for TACSIT Controller software services in CMS systems, consisting of a standard
means of interacting with TACSIT software components.

The context of this TACSIT Controller service is defined in the following figure and associated text:

TACSIT Software
Component
TACSIT Controller Interface for CMS Systems, v1.0 1

Figure 1.2 - TACSIT Application Context

This specification focuses on the interfaces necessary for software applications to interact with the TACSIT application,
to modify the state of the TACSIT configuration, and to listen for relevant state changes that occur within the TACSIT
(often as a result of user interaction).

2 Conformance Criteria

Implementations of this standard are considerd to be in conformance if they match one or more of the language level
PSMs specified. The implementation must indicate the langage PSM(s) that they match in their statement of
conformance.

3 Normative References

The team considered the OGC “OpenGIS® Implementation Specification for Geographic information - Simple feature
access - Part 1: Common architecture” (Doc: OGC 06-103r3; Version: 1.2.0; Date: 2006-10-05) in that:

• This OMG specification does not conflict with the OGC specification and uses the same names for types and methods
where possible.

• This OMG Specification does not require a Geometry to completely implement the OGC specification.

• The OGC specification is considerably more involved and complex than the requirements for this standard therefore we
have specified a simple Geometry class for this specification.

T
A

C
SIT

 A
P

I

TACSIT Application Context
Note: This is an illustration of the types of interactions in a typical tactical
display application. Each entity in this diagram is isolated from the others
through an API.

TACSIT
Application

Tactical
Apps

Tactical
Apps

Tactical
Apps

Other
Tactical
Displays

Physical Display

Other
Tactical
Displays

Other
Tactical
Displays

Other
Displays

GIS TKUser

Controller
API

Geometric
API

Config
API

Track
API

Map
API
2 TACSIT Controller Interface for CMS Systems, v1.0

4 Terms and Definitions

4.1 General Definitions

Architecture Board (AB) - The OMG plenary that is responsible for ensuring the technical merit and MDA-compliance of
RFPs and their submissions.

Board of Directors (BoD) - The OMG body that is responsible for adopting technology.

Common Object Request Broker Architecture (CORBA) - An OMG distributed computing platform specification that is
independent of implementation languages.

Common Warehouse Metamodel (CWM) - An OMG specification for data repository integration.

CORBA Component Model (CCM) - An OMG specification for an implementation language independent distributed
component model.

Interface Definition Language (IDL) - An OMG and ISO standard language for specifying interfaces and associated data
structures.

Letter of Intent (LOI) - A letter submitted to the OMG BoD's Business Committee signed by an officer of an organization
signifying its intent to respond to the RFP and confirming the organization's willingness to comply with OMG's terms and
conditions, and commercial availability requirements.

Mapping - Specification of a mechanism for transforming the elements of a model conforming to a particular metamodel
into elements of another model that conforms to another (possibly the same) metamodel.

Metadata - Data that represents models. For example, a UML model; a CORBA object model expressed in IDL; and a
relational database schema expressed using CWM.

Metamodel - A model of models.

Meta Object Facility (MOF) - An OMG standard, closely related to UML, that enables metadata management and
language definition.

Model - A formal specification of the function, structure and/or behavior of an application or system.

Model Driven Architecture (MDA) - An approach to IT system specification that separates the specification of
functionality from the specification of the implementation of that functionality on a specific technology platform.

Normative - Provisions that one must conform to in order to claim compliance with the standard. (as opposed to non-
normative or informative which is explanatory material that is included in order to assist in understanding the standard
and does not contain any provisions that must be conformed to in order to claim compliance).

Normative Reference - References that contain provisions that one must conform to in order to claim compliance with the
standard that contains said normative reference.

Platform - A set of subsystems/technologies that provide a coherent set of functionality through interfaces and specified
usage patterns that any subsystem that depends on the platform can use without concern for the details of how the
functionality provided by the platform is implemented.

Platform Independent Model (PIM) - A model of a subsystem that contains no information specific to the platform, or the
technology that is used to realize it.
TACSIT Controller Interface for CMS Systems, v1.0 3

Platform Specific Model (PSM) - A model of a subsystem that includes information about the specific technology that is
used in the realization of it on a specific platform, and hence possibly contains elements that are specific to the platform.

Request for Information (RFI) - A general request to industry, academia, and any other interested parties to submit
information about a particular technology area to one of the OMG's Technology Committee subgroups.

Request for Proposal (RFP) - A document requesting OMG members to submit proposals to the OMG's Technology
Committee. Such proposals must be received by a certain deadline and are evaluated by the issuing task force.

Task Force (TF) - The OMG Technology Committee subgroup responsible for issuing a RFP and evaluating
submission(s).

Technology Committee (TC) - The body responsible for recommending technologies for adoption to the BoD. There are
two TCs in OMG - Platform TC (PTC), that focuses on IT and modeling infrastructure related standards; and Domain TC
(DTC), that focus on domain specific standards.

Unified Modeling Language (UML) - An OMG standard language for specifying the structure and behavior of systems.
The standard defines an abstract syntax and a graphical concrete syntax.

UML Profile - A standardized set of extensions and constraints that tailors UML to particular use.

XML Metadata Interchange (XMI) - An OMG standard that facilitates interchange of models via XML documents.

4.2 Terms specific to this submission

The RFP prompting this response defined the following set of standard terminology which will henceforth be used within
this document:

• TACSIT - A Tactical Situation Display software component that provides a display of relevant tactical information
over and in conjunction with the geographic context of the information.

• Track - A spatial object that is managed within the CMS, such as local radar contacts, radar contacts provided via
external messages, tactical data points, waypoints, etc.

• Viewport - The area of visible geography displayed in the TACSIT window.

• Hook Event - The selection of a track on the TACSIT. The words "selected" and "hooked" are used interchangeably
within this document.

• Primary Hook - The predominant hooked track on the TACSIT.

• Secondary Hook - An alternate or subordinate hooked track on the TACSIT.

• Pre-Hook -The case where the pointer is moved over a track, but no selection / hook action has been initiated by the
operator or the CMS. This condition presumes a particular human interface that includes the use of a pointing device.

• CMS - Combat Management System - The software systems and services used in providing command and control
services to a system.

• C4I - A term used in military and command situations that is an abbreviation for Command, Control, Computers,
Communications, and Inteligence.
4 TACSIT Controller Interface for CMS Systems, v1.0

5 Acronyms and Abbreviations

6 Additional Information

6.1 Changes or extensions to OMG specifications

No changes to UML 2.0 or other OMG specifications are required.

6.2 Submitters

• BAE Systems plc

• LUCIAD

• SimVentions Inc

Table 5.1 - Acronyms and Abbreviations

CMS (Naval) Combat Management System

CORBA Common Object Request Broker Architecture

TACSIT Tactical Situation (Display)

HTTP HyperText Transfer Protocol

OMG Object Management Group

RFP Request For Proposal

UML Unified Modelling Language

XML eXtensible Mark-up Language
TACSIT Controller Interface for CMS Systems, v1.0 5

6 TACSIT Controller Interface for CMS Systems, v1.0

7 Platform Independent Model (PIM)

The PIM consists of the following logical packages:

• TACSIT Controller Interface (org.omg.tacsit.controller)

• TACSIT Query (org.omg.tacsit.query)

• TACSIT Geometry (org.omg.tacsit.geometry)

7.1 Package org.omg.tacsit.controller

The TACSIT Controller package contains most of the major interfaces of this specification. They are categorized in three
logical groups: Top Level, Selection, and Viewport.

Top Level Interfaces and Relationships

The top level interface for this specification is the TACSITController interface. It provides the primary façade for
working with the services herein. The following class diagram shows the relationship between the TACSITController
façade and the various manager interfaces used to implement the functionality of this specification.

Figure 7.1 - Top Level Interfaces

For a detailed description of the these classes, see the definitions outlined in section 6.3.2.

Selection Interfaces and Relationships

The selection functionality of this stanard is contained in the org.omg.tacsit.controller package. They provide the
interfaces for working with the selected item in the TACSIT. The following class diagram shows the relationship between
the various interfaces used to implement the functionality of this portion of the specification.
TACSIT Controller Interface for CMS Systems, v1.0 7

Figure 7.2 - Selection Interfaces

These interfaces are designed to support the common selection requirements involved in a TACSIT system.

These interfaces support the ability to get and set the currently selected item (primary and secondary) via API call. There
are two “reserved” named selections (hooks), primary and secondary, corresponding to SelectionTypes PRIMARY and
SECONDARY. Using these interfaces provides considerable flexibility in managing the selected items and allows for the
following functionality.

• Select by entity / track number (TN), with the ability to specify the type or category of TN (as many CMS support
multiple categories of TN per track such as System TN, Link TN, etc.).

• Select tracks within a geographic geometry such as a bounding box.

• Select tracks at a geographic point where the parameters allow for selection of the closest track(s) within a radius of the
specified point.

• Select tracks with particular attribute(s) such as (Surface, Hostile, Frigate).

The following sequence patterns demonstrate how to perform these functions. These patterns support working with single
entities and groups of entities.
8 TACSIT Controller Interface for CMS Systems, v1.0

Figure 7.3 -

To remove objects (including tracks) from the current selection follow the sequence diagram below. You may remove all
objects, a single object, multiple objects, and all objects with a particular attribute.

• A method to accomplish this is shown in the sequence diagram below.
TACSIT Controller Interface for CMS Systems, v1.0 9

Figure 7.4 -

These interfaces allow you to get and set the category(ies) of selectable items and specify the categories of objects that
are selectable (e.g. vehicular, non-vehicular tracks, countries, overlays, tactical points, reference points, waypoints, etc.).

10 TACSIT Controller Interface for CMS Systems, v1.0

Viewport Interfaces and Relationships

These interfaces are designed to support the common viewport requirements involved in a TACSIT system.

Figure 7.5 - Viewport Interfaces
TACSIT Controller Interface for CMS Systems, v1.0 11

These interfaces are designed to support the common viewport related requirements involved in a TACSIT system. These
interfaces support the ability to manage the current view of the TACSIT. The following section describes the
functionality provided.

To get and set the current range scale (distance from center to nearest edge).

Get and set the viewport range boundaries (within the TACSIT window) by specifying two geographic points (Point 1,
Point 2) and a distance buffer outside 1 and 2.

Figure 7.6 -
12 TACSIT Controller Interface for CMS Systems, v1.0

Get and set the current display center specificed as geographic position.

Figure 7.7 -

You can register listeners for changes in the TACSIT viewport extents including range scale, center.
TACSIT Controller Interface for CMS Systems, v1.0 13

Figure 7.8 -

Set the center of the TACSIT display to an object. If your system requires the center to be consistently updated with the
movement with a particular entity, you must periodically (based on your own timing and performance requirements) call
these methods as required.
14 TACSIT Controller Interface for CMS Systems, v1.0

Figure 7.9 -

Get and set the geographic projection used for a particular Viewport. To get a list of available projections call the method
in the TACSITController class. This provides a simple list of objects that give the names of the projections supported by
the service. You may then use this object to set the projection desired in your viewport.
TACSIT Controller Interface for CMS Systems, v1.0 15

Figure 7.10 -

7.1.1 Class / Interface Specifications

The following provides a detailed description of the interface classes in the query package.

7.1.1.1 Interface Entity

The Entity class is an abstraction of the tactical objects that can be displayed on a Tactical Situation display (TacSit).

The Entity interface specifies the basic methods of interaction between the TACSIT system and the custom clients. Each
application uses their own specific objects for Tracks, items of interest, etc and they implement the Entity interface.
While not specified in this specification, it is assumed that these types of Entity objects are the ones “added” by the
application to the TACSIT to be visualized. Having this Entity interface allows both the TACSIT Controller
implementation and the user-system to share tracks and other “real-world” objects.

Entities are modeled such that it is possible for clients to establish their own specific type and geometry and hence
proceed to interact with them in an application specific manner.

Entities need to be able to indicate if they are still valid: even though they may have been part of a selection at a certain
point in time, by the time that the entities of that selection are accessed the entities may not exist any more in reality.
16 TACSIT Controller Interface for CMS Systems, v1.0

Figure 7.11 - Entity

7.1.1.1.1 equals

Returns true if the given Entity corresponds to this Entity (i.e., the Tactical Objects are the same).

7.1.1.1.2 getType

Returns the type of the Entity. This corresponds to the application specific class of the tactical object that has been added
to the TacSit.

7.1.1.1.3 isPointEntity

This is a convenience method for indicating whether the entity is to be handled as though it is a “single” point rather than
a complex geometry. This is useful for containment and other queries.

Name Entity

Qualified Name org::omg::tacsit::controller::Entity

Visibility public

Base Classifier

Type boolean

Visibility public

Is Abstract false

Parameter in entity : Entity

Type EntityType

Visibility public

Is Abstract false

Parameter

Type boolean

Visibility public

Is Abstract false

Parameter
TACSIT Controller Interface for CMS Systems, v1.0 17

7.1.1.1.4 isValid

Returns true if this instance is valid.

7.1.1.2 Interface EntityType

An EntityType represents the type of an Entity that is handled by the Tacsit.

An EntityType is an implicit grouping of Entities according to their characteristics in reality (e.g., Track, Airfield,
Country, etc.)

Figure 7.12 - Entity Type

Type boolean

Visibility public

Is Abstract false

Parameter

Type boolean

Visibility public

Is Abstract false

Parameter

Type boolean

Visibility public

Is Abstract false

Parameter

Name EntityType

Qualified Name org::omg::tacsit::controller::EntityType

Visibility public

Base Classifier
18 TACSIT Controller Interface for CMS Systems, v1.0

7.1.1.3 getTypeName

Returns the display name of this EntityType.

7.1.1.4 Interface Projection

A projection is a method of mapping the curvi-linear 3D geometry of the Earth’s surface to a 2D TACSIT Viewport (i.e.,
a Map Projection).

For the purpose of the Tacsit Controller interface projections are only needed to refer to by name.

Each “Toolkit” is free to provide whatever projections it supports. This interface provides the users access to the
individually supported projections without having to specify or understand the details of how they are implemented. For
projection details (such as projection parameters) toolkit specific provisions are foreseen.

Figure 7.13 - Projection

7.1.1.4.1 getName

Returns the name of this Projection.

Type String

Visibility public

Is Abstract false

Parameter

Name Projection

Qualified Name org::omg::tacsit::controller::Projection

Visibility public

Base Classifier

Type String

Visibility public

Is Abstract false

Parameter
TACSIT Controller Interface for CMS Systems, v1.0 19

7.1.1.5 Class SelectionEvent

SelectionEvent is the type of event that is passed to a SelectionListener each time there is a change in one of the
selections of a SelectionManager.

Figure 7.14 - SelectionEvent

7.1.1.5.1 getEntities

Returns the list of entities involved in this selection event.

7.1.1.5.2 getSelectionType

Returns the type of selection that has changed.

Name SelectionEvent

Qualified Name org::omg::tacsit::controller::SelectionEvent

Visibility public

Abstract false

Base Classifier

Realized Interface

Type Entity

Visibility public

Is Abstract false

Parameter

Type SelectionType

Visibility public

Is Abstract false

Parameter
20 TACSIT Controller Interface for CMS Systems, v1.0

7.1.1.5.3 getSource

Returns the SelectionManager in which the selection change occurred.

7.1.1.5.4 SelectionEvent

A constructor to build and fill the attributes of the SelectionEvent.

7.1.1.6 Interface SelectionListener

SelectionListener is the type of object that is notified by a SelectionManager where it is registered in case of a change in
one of the selections of that SelectionManager.

Figure 7.15 - SelectionListener

Type SelectionManager

Visibility public

Is Abstract false

Parameter

Type Constructor

Visibility public

Is Abstract false

Parameter • in entities : Entity [0..*]

• inout source : SelectionManager

• inout type : SelectionType

Name SelectionListener

Qualified Name org::omg::tacsit::controller::SelectionListener

Visibility public

Base Classifier
TACSIT Controller Interface for CMS Systems, v1.0 21

7.1.1.6.1 selectionChanged

This method is called by the SelectionManagers where this SelectionListener is registered in case a selection changed for
that SelectionManager. The details of which selection changed and which elements are still in the selection can be
obtained through the given SelectionEvent.

7.1.1.7 Interface SelectionManager

The selection manager is the entry point for managing the selections of the Tacsit controller.

Multiple selections can be managed using the selection manager. Each selection has a specific selection type. Selection
types are predefined. Each selection is managed as a list of the type Entity. Each element can only occur once in the
selection and the order of the elements in the selection is not determined.

Managing a selection through the selection manager means that the selection manager allows retrieving and modifying
each of the selections. It also allows users to register and unregister selection listeners which will be notified in case of
a change in a selection.

The scope of the SelectionManager is determined by the SelectionMethodology of the Tacsit controller.

Figure 7.16 - SelectionManager

7.1.1.7.1 addSelectionListener

Registers the given SelectionListener to this SelectionManager.

Type void

Visibility public

Is Abstract false

Parameter • in event : SelectionEvent

Name SelectionManager

Qualified Name org::omg::tacsit::controller::SelectionManager

Visibility public

Base Classifier
22 TACSIT Controller Interface for CMS Systems, v1.0

After registration the SelectionListener will be notified through its only method each time that a change occurs in one of
the selections managed by this SelectionManager. Registering a SelectionListener that was already registered with this
SelectionManager therefore does not have any effect.

7.1.1.7.2 addToSelection

Adds all elements of the given array of Entities to the selection of the given SelectionType of this SelectionManager. The
given EntityList should not be empty.

After calling this method, getSelection (type) contains all elements of the given array of Entities as well as any entities
previously selected for that type.

Each Entity can be part of only one selection at a time. Therefore, all entities of the given array of Entities that were part
of a selection of another SelectionType than the given type are removed from those selections.

All SelectionListeners registered at the time of the addToSelection are notified by a call of their method
selectionChanged.

7.1.1.7.3 clearAllSelections

Clears all selections of this SelectionManager.

After calling this method, the selection for any SelectionType contains no Entities.

All SelectionListeners registered at the time of the clearAllSelections are notified by a call of their method
selectionChanged.

7.1.1.7.4 clearSelection

Clears the selection of the given SelectionType of this SelectionManager.

Afterwards the selection of the given SelectionType of this SelectionManager does not contain any Entities. All other
selections of this SelectionManager are unchanged.

Type void

Visibility public

IsAbstract false

Parameter • in listener : SelectionListener

Type void

Visibility public

IsAbstract false

Parameter • in entities : Entity [*]

• in type : SelectionType

Type void

Visibility public

IsAbstract false

Parameter
TACSIT Controller Interface for CMS Systems, v1.0 23

All SelectionListeners registered at the time of the clearSelection are notified by a call of their method selectionChanged.

7.1.1.7.5 getSelection

Returns a list of selected Entities of the given SelectionType of this SelectionManager. Note that editing the returned
EntitySet does not have an impact on the selection of the given SelectionType of this SelectionManager.

7.1.1.7.6 removeFromSelection

Removes all Entities in the given EntitySet from the selection to which they belong. Afterwards, these entities will not
be contained in any selection until added (where contains is based on equals).

All SelectionListeners registered at the time of the removeFromSelection are notified by a call of their method
selectionChanged for each SelectionType from which at least one Entity was removed.

7.1.1.7.7 removeSelectionListener

Unregisters the given SelectionListener from this SelectionManager. Afterwards the SelectionListener will not be notified
of changes in the selections of this SelectionManager.

Unregistering a SelectionListener that was not registered therefore does not have any effect.

7.1.1.7.8 setSelection

Changes the selection of the given SelectionType to the given EntitySet. The given EntitySet should not be empty (see
clearSelection and clearAllSelections). Afterwards the set of Entities of getSelection(type) equals the set of Entities of
the given EntitySet.

Type void

Visibility public

IsAbstract false

Parameter • in type : SelectionType

Type Entity

Visibility public

IsAbstract false

Parameter • in type : SelectionType

Type Entity

Visibility public

IsAbstract false

Parameter • in entities : Entity [*]

Type void

Visibility public

IsAbstract false

Parameter • in listener : SelectionListener
24 TACSIT Controller Interface for CMS Systems, v1.0

All SelectionListeners registered at the time of the setSelection are notified by a call of their method selectionChanged.

7.1.1.8 Interface TACSITController

This is the top level façade class for the Tactical Situation display (TACSIT) Controller API which enables clients to
interact with SelectionManagers, Viewports, and Query TacSit content in terms of the Entity class.

The TacSit Controller API does not provide the mechanism for adding Entities to a TacSit. When a client receives an
Entity from a Query, the client of the TacSit controller will interpret the Entity according to interfaces provided by other
components than the Tacsit Controller (for instance an interaction with another component, which is known to have added
the Entity to the TacSit by some other API.

Figure 7.17 - TacsitController

7.1.1.8.1 getProjections

Returns the projections that are supported by the TACSIT.

Type void

Visibility public

IsAbstract false

Parameter • in entities: Entity [*]

• in type : SelectionType

Name TacsitController

Qualified Name org::omg::tacsit::controller::TacsitController

Visibility public

Base Classifier

Type Projection

Visibility public

IsAbstract false

Parameter
TACSIT Controller Interface for CMS Systems, v1.0 25

7.1.1.8.2 getEntityTypes

Returns the Entity Types that are supported by the TACSIT. This will return a list of all Entity Types currently available
for Selection and Query by this TACSITController.

7.1.1.8.3 getQueryManager

Returns the QueryManager for this Tacsit Controller.

7.1.1.8.4 getSelectionManager

Returns the SelectionManager that handles the selection on the viewport with name viewportName.

Depending on the SelectionMethodology of the Tacsit Controller the returned SelectionManagers for multiple viewports
(different named viewports) will be identical or different. If the SelectionMethodology is ViewportDependent then a
different SelectionManager is returned for each individual viewport. If SelectionMethodology is ViewportIndependent,
then one SelectionManager is used for all viewports, thus making selection “global” within the scope of this
TACSITController.

7.1.1.8.5 getSelectionMethodology

Returns the SelectionMethodology of the Tacsit controller. If the SelectionMethodology is ViewportDependent then each
viewport is managed by its own SelectionManager. If SelectionMethodology is ViewportIndependent, then one
SelectionManager is used for all viewports, thus making selection “global” within the scope of this TACSITController.

Type EntityType

Visibility public

IsAbstract false

Parameter

Type QueryManager

Visibility public

IsAbstract false

Parameter

Type SelectionManager

Visibility public

IsAbstract false

Parameter • in viewportName : String

Type SelectionMethodology

Visibility public

IsAbstract false

Parameter
26 TACSIT Controller Interface for CMS Systems, v1.0

7.1.1.8.6 getViewportManager

Returns the ViewportManager for this Tacsit Controller.

7.1.1.9 Class ViewEyeProperties

ViewEyeProperties groups the attributes of a Viewport that have an impact on the position where Entities are displayed in
the Viewport.

Figure 7.18 - ViewEyeProperties

7.1.1.9.1 geoCenter

The geographic center of the Viewport. The geoCenter of the Viewport is the Geoposition that is displayed in the center
of the Viewport (i.e., on a Viewport of w pixels wide and h pixels high, it is displayed on pixel (w/2, h/2)).

Type ViewportManager

Visibility public

IsAbstract false

Parameter

Name ViewEyeProperties

Qualified Name org::omg::tacsit::controller::ViewEyeProperties

Visibility public

Abstract false

Base Classifier

Realized Interface

Type GeoPosition

Default Value

Visibility public

Multiplicity 1
TACSIT Controller Interface for CMS Systems, v1.0 27

7.1.1.9.2 orientation

The orientation of the Viewport.

The orientation is applied on the Viewport as an Angle rotation of the Viewport in clockwise direction around the
Viewport's center. See the definition of Angle for precision guidance.

7.1.1.9.3 projection

The projection of the Viewport. The projection object here is assumed to be one of the Projections provided by the
TACSIT Controller method “getProjections().” This specification does not address any further details of how to handle
projections.

7.1.1.9.4 rangeScale

The rangescale of the Viewport. The rangescale is the Distance from the center of the viewport to the nearest viewport
edge.

7.1.1.9.5 getters/setters

Each of the the attributes of the ViewEyeProperties class has an associated getter and setter method matching in name and
type with the attribute. See the class image above for the signature for these methods.

7.1.1.10 Interface Viewport

The Viewport class enables a TacSit client to interact with the basic properties of a TacSit view. In particular the view's
name, where it is centered, how it is scaled, projected and oriented, and the selections it has (through its
SelectionManager instance).

Type Angle

Default Value

Visibility public

Multiplicity 1

Type Projection

Default Value

Visibility public

Multiplicity

Type Distance

Default Value

Visibility public

Multiplicity 1
28 TACSIT Controller Interface for CMS Systems, v1.0

Figure 7.19 - Viewport

7.1.1.10.1 addViewportChangeListener

Registers the given ViewportChangeListener to this Viewport. After registration the ViewportChangeListener will be
notified through its only method each time that a viewport is changed. Registering a ViewportChangeListener that was
already registered with this Viewport does not have any effect.

7.1.1.10.2 convertGeoPosition

Converts the given GeodeticPosition into a ScreenPosition (pixels). Note that the conversion will not be valid if the give
position is not projectable to the screen in that case an error condition is returned (specified by the PSM).

7.1.1.10.3 convertScreenPosition

Converts the passed screen position (pixels) into a geo position. Note that the conversion will not be valid if the give
screen position is not projectable to the earth model in that case an error condition is returned (specified by the PSM).

Name Viewport

Qualified Name org::omg::tacsit::controller::Viewport

Visibility public

Base Classifier

Type void

Visibility public

IsAbstract false

Parameter • in listener : ViewportChangeListener

Type ScreenPosition

Visibility public

IsAbstract false

Parameter • in geoPos : GeodeticPosition
TACSIT Controller Interface for CMS Systems, v1.0 29

7.1.1.10.4 getName

Returns the name of the Viewport.

7.1.1.10.5 getViewEye

Returns a copy of the current ViewEyeProperties of the Viewport. Modification to the returned ViewEyeProperties object
will have no effect on the Viewport. To effect change, call the setViewEye method with the desired properties.

7.1.1.10.6 removeViewportChangeListener

Unregisters the givenViewportChangeListener from this Viewport. Afterwards the ViewportChangeListener will not be
notified of Viewport changes. Unregistering a ViewportChangeListener that was not registered does not have any effect.

7.1.1.10.7 scaleToPoints

Offset and scale the viewport to contain all points (as possible) passed in the given GeoPositions array. The margin
Distance parameter specifies an additional space that needs to be visible around the broadest points in the points list.

Type GeodeticPosition

Visibility public

IsAbstract false

Parameter • in screenPos : ScreenPosition

Type String

Visibility public

IsAbstract false

Parameter

Type ViewEyeProperties

Visibility public

IsAbstract false

Parameter

Type void

Visibility public

IsAbstract false

Parameter • in listener : ViewportChangeListener
30 TACSIT Controller Interface for CMS Systems, v1.0

7.1.1.10.8 setName

Set the name of the Viewport to the given name.

7.1.1.10.9 setViewEye

Set the ViewEye properties of the Viewport to the given ViewEyeProperties. If any of the attributes of the given
ViewEyeProperties object are not set, the current value of the Viewport for that attribute will not be affected.

Later changes to the given ViewEyeProperties object do not have an effect on the Viewport.

7.1.1.11 ClassViewportChangeEvent

ViewportChangeEvent is the type of event that is passed to a ViewportChangeListener each time the Viewport changes.
Through the ViewportChangeEvent it is possible to know which Viewport has been changed and details of the change.

If there are properties other than the view eye that the client is interested in, they can query the associated Viewport
Object contained in the event available in the getSource() method.

Figure 7.20 - ViewportChangeEvent

Type void

Visibility public

IsAbstract false

Parameter • in margin : double (in meters) - if the margin value is negative,
it is handled as 0.

• in points : GeoPosition [1..n]

Type void

Visibility public

IsAbstract false

Parameter • in name : String

Type void

Visibility public

IsAbstract false

Parameter • in viewEyeProps : ViewEyeProperties
TACSIT Controller Interface for CMS Systems, v1.0 31

7.1.1.11.1 getSource

Returns the Viewport that has changed associated with this event.

7.1.1.11.2 getViewEyeProperties

Returns a copy of the ViewEyeProperties of the Viewport that has changed.

7.1.1.12 Interface ViewportChangeListener

ViewportChangeListener is the type of object that is notified about a Viewport that it is registered for notification of
changes.

Figure 7.21 - ViewportChangeListener

Name ViewportChangeEvent

Qualified Name org::omg::tacsit::controller::ViewportChangeEvent

Visibility public

Abstract true

Type void

Visibility public

IsAbstract false

Parameter

Type ViewEyeProperties

Visibility public

IsAbstract false

Parameter

Name ViewportChangeListener

Qualified Name org::omg::tacsit::controller::ViewportChangeListener

Visibility public

Base Classifier
32 TACSIT Controller Interface for CMS Systems, v1.0

7.1.1.12.1 viewportChanged

This method is called by the Viewport where this ViewportChangeListener is registered in case a Viewport is changed.
The details of the change can be obtained through the given ViewportChangeEvent.

7.1.1.13 Interface ViewportManager

The ViewportManager enables a TacSit client to manage Viewport instances and track changes to the set of Viewports.
Construction of a Viewport is outside of the scope of this interface. Once Viewport objects are created they can be added
to a manager via the addViewport method.

Figure 7.22 - ViewportManager

7.1.1.13.1 addViewport

Add a Viewport to this ViewportManager. If the Viewport is already added to the ViewportManager before, this operation
has no effect.

Type void

Visibility public

IsAbstract false

Parameter • in event : ViewportChangeEvent

Name ViewportManager

Qualified Name org::omg::tacsit::controller::ViewportManager

Visibility public

Base Classifier

Type void

Visibility public

IsAbstract false

Parameter • in viewport : Viewport
TACSIT Controller Interface for CMS Systems, v1.0 33

7.1.1.13.2 addViewportManagerListener

Registers the given ViewportManagerListener to this ViewportManager. After registration the ViewportManagerListener
will be notified through each time that a viewport is added or removed through its corresponding method. Registering a
ViewportManagerListener that was already registered with this ViewportManager does not have any effect.

7.1.1.13.3 getViewport

Returns the Viewport with the given name. If there is no such Viewport, an error condition is given. (specified by the
PSM)

7.1.1.13.4 getViewports

Returns all Viewports managed by this ViewportManager.

7.1.1.13.5 removeViewport

Remove the given Viewport from this ViewportManager. If the given Viewport is not managed by this ViewportManager,
this operation as no effect.

7.1.1.13.6 removeViewportManagerListener

Unregisters the givenViewportManagerListener from this ViewportManager. Afterwards the ViewportManagerListener
will not be notified of added or removed Viewports.

Unregistering a ViewportManagerListener that was not registered does not have any effect.

Type void

Visibility public

IsAbstract false

Parameter • in listener : ViewportManagerListener

Type Viewport

Visibility public

IsAbstract false

Parameter • in name : String

Type Viewport[]

Visibility public

IsAbstract false

Parameter

Type void

Visibility public

IsAbstract false

Parameter • in viewport : Viewport
34 TACSIT Controller Interface for CMS Systems, v1.0

7.1.1.14 Interface ViewportManagerEvent

ViewportManagerEvent is the type of event that is passed to a ViewportManagerListener each time a Viewport is added
or removed from the ViewportManager. Through the ViewportManagerEvent it is possible to know which Viewport has
been added to which ViewportManager.

Figure 7.23 - ViewportManagerEvent

7.1.1.14.1 getSource

Returns the ViewportManager to which a Viewport has been added or removed.

7.1.1.14.2 getViewport

Returns the viewport that has been added or removed by this event.

Type void

Visibility public

IsAbstract false

Parameter • in listener : ViewportManagerListener

Name ViewportManagerEvent

Qualified Name org::omg::tacsit::controller::ViewportManagerEvent

Visibility public

Base Classifier

Type ViewportManager

Visibility public

IsAbstract false

Parameter

Type Viewport

Visibility public

IsAbstract false

Parameter
TACSIT Controller Interface for CMS Systems, v1.0 35

7.1.1.15 InterfaceViewportManagerListener

ViewportManagerListener is the type of object that is notified by a ViewportManager where it is registered in case a
Viewport is added or removed from that ViewportManager.

Figure 7.24 - ViewportManagerListener

7.1.1.15.1 viewportAdded

This method is called by the ViewportManager where this ViewportManagerListener is registered in case a Viewport is
added.

The details of the addition can be obtained through the given ViewportManagerEvent.

7.1.1.15.2 viewportRemoved

This method is called by the ViewportManager where this ViewportManagerListener is registered in case a Viewport is
removed.

The details of the removal can be obtained through the given ViewportManagerEvent.

Name ViewportManagerListener

Qualified Name org::omg::tacsit::controller::ViewportManagerListener

Visibility public

Base Classifier

Type void

Visibility public

IsAbstract false

Parameter • in event : ViewportManagerEvent

Type void

Visibility public

IsAbstract false

Parameter • in event : ViewportManagerEvent
36 TACSIT Controller Interface for CMS Systems, v1.0

7.1.1.16 EnumerationSelectionMethodology

SelectionMethodology determines the scope of the SelectionManagers of the TACSIT Controller API.

Figure 7.25 - SelectionMethodology

If the SelectionMethodology is ViewportDependent each Viewport of the TacsitController has its own SelectionManager.
Therefore the selection on one viewport does not depend on the selection on another viewport.

If SelectionMethodology is ViewportIndependent all Viewports of the TacsitController have a common SelectionManager.
Therefore the selection on one viewport depends on the selection on another viewport: the selections on multiple
viewports are identical.

7.1.1.17 EnumerationSelectionType

SelectionType allows distinguishing different kinds of selection in the Tacsit.

Figure 7.26 - SelectionType

The names of the instances are self explanatory.

Name SelectionMethodology

Qualified Name org::omg::tacsit::controller::SelectionMethodology

Visibility public

Base Classifier

Name SelectionType

Qualified Name org::omg::tacsit::controller::SelectionType

Visibility public

Base Classifier
TACSIT Controller Interface for CMS Systems, v1.0 37

7.2 Package org.omg.tacsit.query

The org.omg.tacsit.query package contains the interfaces for building queries about Entities that are used by the
controller.

Figure 7.27 - Query Interfaces

The query interfaces are designed to provide maximum flexibility to the implementing system while still providing a
useful API. The pattern for executing a query is to “build” a query using the appropriate EntityQuery objects (or its sub-
classes) and to submit that query to the QueryManager. The query manager will return the Entity objects that meet the
query “satisfies” method.

The basic EntityQuery is intended to provide an equals comparison on the entity object to “satisfy” the query. More
specialized queries can be created by overriding the “satisfies” method. With these queries the client application can
compare to any attribute in its system-specific Entity Object and query it from the TACSIT Controller.

7.2.1 Class / Interface Specifications

The following provides a detailed description of the interface classes in the query package.

7.2.1.1 Interface ContainmentQuery

The ContainmentQuery is used to determine whether or not an Entity is completely contained within a Geometry.
Containment is determined by using the Entity's Geometry as an argument to the contains() method on the Geometry
specified by this Query, i.e., this.satisfies(entity) = this.getGeometry().contains(entity.getGeometry())

Figure 7.28 - ContainmentQuery
38 TACSIT Controller Interface for CMS Systems, v1.0

7.2.1.2 Interface EntityQuery

An EntityQuery encapsulates the criteria against which an Entity may be evaluated for membership.

Figure 7.29 - EntityQuery

7.2.1.2.1 satifies

Returns true if the specified Entity satisfies the criteria represented by this EntityQuery; false otherwise.

7.2.1.3 Interface EntityTypeQuery

The EntityTypeQuery is used to determine whether or not a given Entity belongs to a particular EntityType.

Figure 7.30 - EntityTypeQuery

Name ContainmentQuery

Qualified Name org::omg::tacsit::controller::ContainmentQuery

Visibility public

Base Classifier • GeometryQuery

Name EntityQuery

Qualified Name org::omg::tacsit::query::EntityQuery

Visibility public

Base Classifier

Type boolean

Visibility public

IsAbstract false

Parameter • in event : Entity
TACSIT Controller Interface for CMS Systems, v1.0 39

7.2.1.3.1 getEntityTypes

Returns the EntityType to compare with.

7.2.1.4 Interface GeometryQuery

The GeometryQuery is used to determine whether or not a given Entity has a geometrical relationship with a particular
Entity.

Figure 7.31 - GeometryQuery

7.2.1.4.1 getGeometry

Returns the Geometry against which an Entity will be evaluated..

Name EntityTypeQuery

Qualified Name org::omg::tacsit::query::EntityTypeQuery

Visibility public

Base Classifier • EntityQuery

Type EntityType

Visibility public

IsAbstract false

Parameter

Name GeometryQuery

Qualified Name org::omg::tacsit::query::GeometryQuery

Visibility public

Base Classifier • EntityQuery

Type Geometry

Visibility public

IsAbstract false

Parameter
40 TACSIT Controller Interface for CMS Systems, v1.0

7.2.1.5 Interface IntersectionQuery

The IntersectionQuery is used to determine if an Entity intersects geometrically with a Geometry. Intersection is
determined by using the Entity's Geometry as an argument to the intersects() method on the Geometry specified by this
Query, i.e., this.satisfies(entity) = this.getGeometry().intersects(entity.getGeometry())

Figure 7.32 - IntersectionQuery

7.2.1.6 InterfaceQueryManager

The QueryManager supports the execution of queries for entities against the TACSIT Controller.

Queries submitted through the QueryManager are transient in nature; that is, the results of a query represent the state of
the TacSit Controller at the time the Query was executed. Query results will not be maintained by the QueryManager as
the state of the TacSit Controller changes. Since the QueryManager treats the Query objects as stateless, the same Query
may be re-used for any number of subsequent submissions.

Figure 7.33 - QueryManager

Name IntersectionQuery

Qualified Name org::omg::tacsit::query::IntersectionQuery

Visibility public

Base Classifier • GeometryQuery

Name QueryManager

Qualified Name org::omg::tacsit::query::QueryManager

Visibility public

Base Classifier
TACSIT Controller Interface for CMS Systems, v1.0 41

7.2.1.6.1 submitEntityQuery

Returns the set of all Entities that satisfy the criteria expressed in the given EntityQuery..

7.3 Package org.omg.tacsit.geometry

The org.omg.tacsit.geometry package contains the interfaces for describing the location and bounds of regions of interest
to the TACSIT Controller API.

Figure 7.34 - Query Interfaces

The interfaces described here are the minimal subset of possible geometries for interating with the TACSIT.

7.3.1 Class / Interface Specifications

The following provides a detailed description of the interface classes in the query package.

7.3.1.1 Interface Geometry

Geometry is the base class for all representations of geometric shapes. Every Geometry must be able to evaluate
containment and intersection criteria between itself and any other Geometry. For non-closed Geometries, or for
Geometries with edges that cross, it is up to those Geometries to define containment of a specified point within that
Geometry.

Type Entity

Visibility public

IsAbstract false

Parameter • in query : EntityQuery
42 TACSIT Controller Interface for CMS Systems, v1.0

This OMG specification is consistent with the OGC “OpenGIS® Implementation Specification for Geographic
information - Simple feature access - Part 1: Common architecture” (Doc: OGC 06-103r3; Version: 1.2.0; Date: 2006-10-
05) in that this OMG specification does not contradict the OGC specification and uses the same names for types and
methods where possible.

This OMG Specification does not require a Geometry to completely implement the OGC specification.

Figure 7.35 - Geometry

7.3.1.1.1 contains

Returns TRUE if the passed GeodeticPosition object “point” projected on the surface of the Earth is contained within this
Geometry object. .

7.3.1.2 Interface GeodeticPosition

GeoPosition represent a geographical location i.e., a position on the earth.

Figure 7.36 - GeodeticPosition

Name Geometry

Qualified Name org::omg::tacsit::geometry::Geometry

Visibility public

Base Classifier • Cloneable

• Serializable

Type boolean

Visibility public

IsAbstract false

Parameter • in geo : GeodeticPoint
TACSIT Controller Interface for CMS Systems, v1.0 43

7.3.1.2.1 getLatitude

Returns the latitude in Radians.

7.3.1.2.2 getLongitidue

Returns the longitude in Radians.

7.3.1.2.3 getAltitude

Returns the altitude in meters or {Double.NAN} if the altitude is not valid.

7.3.1.3 Class ScreenPosition

ScreenPosition is a simple class to encapsulate a point location on the screen.

Name GeodeticPosition

Qualified Name org::omg::tacsit::geometry::GeodeticPosition

Visibility public

Base Classifier • Geometry

Type double

Visibility public

IsAbstract true

Parameter

Type double

Visibility public

IsAbstract true

Parameter none

Type double

Visibility public

IsAbstract true

Parameter none
44 TACSIT Controller Interface for CMS Systems, v1.0

Figure 7.37 - ScreenPosition

7.3.1.3.1 x

The x position of the point.

7.3.1.3.2 y

The y position of the point.

7.3.1.4 Interface Centered

Centered is a simple class to designate that a particular Geometry object is centred at a certain GeodeticPosition.

Figure 7.38 - Centered

Name ScreenPosition

Qualified Name org.omg.tacsit.geometry.coordinate::ScreenPosition

Visibility public

Abstract false

Type int

Default Value

Visibility public

Multiplicity 1

Type int

Default Value

Visibility public

Multiplicity 1
TACSIT Controller Interface for CMS Systems, v1.0 45

7.3.1.4.1 getCenter()

Returns the center of the geometry..

7.3.1.5 Interface Circle

Circle is a simple centred circular geometry with a radius measured in meters.

Figure 7.39 - Circle

7.3.1.5.1 getRadius()

Returns the radius of the circle in meters.

Name Centered

Qualified Name org::omg::tacsit::geometry::Centered

Visibility public

Base Classifier

Type GeodeticPosition

Visibility public

IsAbstract true

Parameter none

Name Circle

Qualified Name org::omg::geometry::Circle

Visibility public

Base Classifier • Centered

• Geometry

Type double

Visibility public

IsAbstract false

Parameter
46 TACSIT Controller Interface for CMS Systems, v1.0

7.3.1.6 Rectangle

Rectangle is a simple centred geometry with a width and height measured in meters. An orientation is provided to skew
the rectangle as necessary.

Figure 7.40 - Rectangle

7.3.1.6.1 getHeight

Returns the height of the rectangular shape in meters.

7.3.1.6.2 getOrientation

Returns the azimuth of the y axis of the rectangle shape, where zero is north in radians.

7.3.1.6.3 getWidth

Returns the width of the rectangle shape in meters.

Name Rectangle

Qualified Name org::omg::tacsit::geometry::REctangle

Visibility public

Base Classifier • Centered

• Geometry

Type double

Visibility public

IsAbstract false

Parameter

Type double

Visibility public

IsAbstract false

Parameter
TACSIT Controller Interface for CMS Systems, v1.0 47

Type double

Visibility public

IsAbstract false

Parameter
48 TACSIT Controller Interface for CMS Systems, v1.0

8 Java Platform Specific Model

A Java PSM is provided separately. The PSM contains a Java-specialized UML Model, and sample Java classfiles of the
requisite classes.

Note that in the Java PSM, the ScreenPosition class is replaced by the standard Java representation of a screen position
(java.awt.Point). This is noted in the Java UML Model.

Additionally, instead of using array types for parameters and return types with multiple values, a templated version of the
standard Java Collection Object (List) java.util.List<NecessaryType> has been used.
TACSIT Controller Interface for CMS Systems, v1.0 49

50 TACSIT Controller Interface for CMS Systems, v1.0

9 C++ Platform Specific Model

A C++ PSM is provided separately. The PSM contains a sample C++ header files of the requisite classes.
TACSIT Controller Interface for CMS Systems, v1.0 51

52 TACSIT Controller Interface for CMS Systems, v1.0

	1 Scope
	2 Conformance Criteria
	3 Normative References
	4 Terms and Definitions
	4.1 General Definitions
	4.2 Terms specific to this submission

	5 Acronyms and Abbreviations
	6 Additional Information
	6.1 Changes or extensions to OMG specifications
	6.2 Submitters

	7 Platform Independent Model (PIM)
	7.1 Package org.omg.tacsit.controller
	7.1.1 Class / Interface Specifications

	7.2 Package org.omg.tacsit.query
	7.2.1 Class / Interface Specifications

	7.3 Package org.omg.tacsit.geometry
	7.3.1 Class / Interface Specifications

	8 Java Platform Specific Model
	9 C++ Platform Specific Model

