

Date: December 2021

Tactical Decision Aids Interface (TDAI)
V1.0 – beta 1

OMG Document Number: dtc/22-01-02

Normative reference: https://www.omg.org/spec/TDAI/1.0/

Machine readable file(s): https://www.omg.org/spec/TDAI/20211101

Associated Normative Machine Consumable Files:

https://www.omg.org/spec/tdai/20211101/tdai.xmi/
https://www.omg.org/spec/TDAI/1.0/tdai.graphqls/
https://www.omg.org/spec/TDAI/1.0/tex.graphqls/
https://www.omg.org/spec/TDAI/20211101/IDL/DataSink.idl
https://www.omg.org/spec/TDAI/20211101/IDL/PlanExecution.idl
https://www.omg.org/spec/TDAI/20211101/IDL/PlanExecutionRecommendations.idl
https://www.omg.org/spec/TDAI/20211101/IDL/Recommendation.idl
https://www.omg.org/spec/TDAI/20211101/IDL/Recommendations.idl
https://www.omg.org/spec/TDAI/20211101/IDL/TacticalPicture.idl
https://www.omg.org/spec/TDAI/20211101/IDL/TacticalPictureRecommendations.idl
https://www.omg.org/spec/TDAI/20211101/IDL/Utils.idl

__

This OMG document replaces the submission document (c4i/21-11-06). It is an OMG Adopted Beta Specification
and is currently in the finalization phase. Comments on the content of this document are welcome and should be
directed to issues@omg.org by July 31, 2022.

You may view the pending issues for this specification from the OMG revision issues web page
https://issues.omg.org/issues/lists.

The FTF Recommendation and Report for this specification will be published in December 2022. If you are reading
this after that date, please download the available specification from the OMG Specifications Catalog.

https://www.omg.org/spec/TDAI/1.0/
https://www.omg.org/spec/TDAI/20211101
https://www.omg.org/spec/tdai/20211101/tdai.xmi
https://www.omg.org/spec/TDAI/1.0/tdai.graphqls
https://www.omg.org/spec/TDAI/1.0/tex.graphqls
https://www.omg.org/spec/TDAI/20211101/IDL/DataSink.idl
https://www.omg.org/spec/TDAI/20211101/IDL/PlanExecution.idl
https://www.omg.org/spec/TDAI/20211101/IDL/PlanExecutionRecommendations.idl
https://www.omg.org/spec/TDAI/20211101/IDL/Recommendation.idl
https://www.omg.org/spec/TDAI/20211101/IDL/Recommendations.idl
https://www.omg.org/spec/TDAI/20211101/IDL/TacticalPicture.idl
https://www.omg.org/spec/TDAI/20211101/IDL/TacticalPictureRecommendations.idl
https://www.omg.org/spec/TDAI/20211101/IDL/Utils.idl

Tactical Decision Aids Interface (TDAI), v1.0 – beta 1 ii

Copyright © 2020-21, BAE Systems
Copyright © 2020-21, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

Tactical Decision Aids Interface (TDAI), v1.0 – beta 1 iii

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group,9C Medway Road, PMB 274,
Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®,
OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube
Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

http://www.omg.org/legal/tm_list.htm

Tactical Decision Aids Interface (TDAI), v1.0 – beta 1 iv

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

Tactical Decision Aids Interface (TDAI), v1.0 – beta 1 v

Table of Contents

1 Scope .. 1
2 Conformance ... 1
3 Normative References .. 2
4 Terms and Definitions .. 3
5 Symbols .. 4
6 Additional Information .. 4

6.1 Acknowledgements ... 4
7 Tactical Decision Aids Interface Overview .. 5

7.1 Use of the Tactical Decision Aids Interface .. 5
7.1.1 Classification App use of the Tactical Decision Aids Interface 6
7.1.2 Plan Monitoring App use of the Tactical Decision Aids Interface 6

8 MetaModel ... 8
8.1 DataModel ... 8

8.1.1 Recommendation .. 8
8.1.2 Utils ... 11

8.2 ServiceModel .. 13
8.2.1 Recommendations .. 13
8.2.2 DataSink .. 16

9 DataModel .. 19
9.1 PlanExecution .. 21

9.1.1 Aircraft ... 23
9.1.2 Ammunition .. 23
9.1.3 Amphibious .. 24
9.1.4 Capability .. 24
9.1.5 CurrentCapability .. 24
9.1.6 Dependency .. 24
9.1.7 Derivation .. 25
9.1.8 DerivationCategory ... 25
9.1.9 DerivationProvenance ... 25
9.1.10 ElectronicEquipment ... 25
9.1.11 Endurance ... 25
9.1.12 EnduranceProperties ... 26
9.1.13 EngineeringCapability ... 26
9.1.14 FireCapability ... 26
9.1.15 LandVehicle .. 26
9.1.16 MaritimeEquipment .. 27
9.1.17 MobilityCapability ... 27
9.1.18 OperationalCapability .. 27
9.1.19 Plan ... 27
9.1.20 PlanExecutionConstituent .. 28

Tactical Decision Aids Interface (TDAI), v1.0 – beta 1 vi

9.1.21 Resource ... 30
9.1.22 ResourceMetaData.. 30
9.1.23 ResourceProperties.. 30
9.1.24 ResourceTasking .. 31
9.1.25 Space .. 31
9.1.26 SubsurfaceVessel ... 31
9.1.27 SurfaceVessel .. 31
9.1.28 SurveillanceCapability ... 31
9.1.29 TargetCapability .. 32
9.1.30 TaskObjective .. 32
9.1.31 TransmissionCapability .. 32
9.1.32 Vehicle.. 33
9.1.33 Vessel ... 33
9.1.34 AmmunitionCategory ... 33
9.1.35 CaliberCategory ... 33
9.1.36 CapabilityCategory ... 33
9.1.37 CapabilityRef .. 33
9.1.38 ConstituentRef ... 33
9.1.39 DependencyCategory .. 34
9.1.40 DerivationDescriptor .. 34
9.1.41 ExtendedPlanStatus ... 34
9.1.42 IntentDescriptor ... 34
9.1.43 ObjectiveCategory .. 34
9.1.44 OrbitCategory ... 34
9.1.45 PlanExecutionConstituentState .. 34
9.1.46 PlanType .. 35
9.1.47 ReadinessDescriptor.. 35
9.1.48 ResourceCategory .. 35
9.1.49 ResourceRef ... 35
9.1.50 SpecificationDescriptor ... 35
9.1.51 TaskingActivity .. 35

9.2 TacticalPicture ... 35
9.2.1 LiveEntityList ... 36
9.2.2 LiveGroupList .. 36
9.2.3 SimulatedEntityList .. 36
9.2.4 SimulatedGroupList ... 36
9.2.5 ActivityDescriptor ... 37
9.2.6 ClassificationDescriptor.. 37
9.2.7 EntityStatusDescriptor .. 37
9.2.8 IdentityDescriptor ... 37
9.2.9 SensorTrackRef ... 37
9.2.10 SystemTrackRef .. 37

10 ServiceModel .. 37
10.1 Plan Execution ... 39
10.2 Tactical Decision Aid ... 39
10.3 Tactical Picture .. 40

Tactical Decision Aids Interface (TDAI), v1.0 – beta 1 vii

10.4 PlanExecutionInformation .. 40
10.4.1 PlanDataSink .. 40
10.4.2 ResourceDataSink .. 45

10.5 PlanExecutionRecommendations .. 49
10.5.1 PlanExecutionAction ... 54
10.5.2 PlanExecutionControl .. 55
10.5.3 ExtendedPlanExecutionAction ... 56
10.5.4 ExtendedPlanExecutionControl .. 57

10.6 TacticalPictureInformation ... 58
10.7 TacticalPictureRecommendations ... 58

10.7.1 Categorization .. 64
10.7.2 ExtendedCategorization .. 64
10.7.3 PictureManagement ... 65
10.7.4 ExtendedPictureManagement ... 66

11 Domain Model Platform-Specific Models ... 68
11.1 DDS PSM ... 68
11.2 GraphQL PSM .. 68

12 Service Model Platform Specific Models .. 69
12.1 DDS PSM ... 69
12.2 GraphQL PSM .. 69

13 Platform Specific Models for Extensible Enumerations 70

Tactical Decision Aids Interface (TDAI), v1.0 – beta 1 viii

Preface
OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML® (Unified
Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel™); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG As noted,
OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications are
available from the OMG website at:
http://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Milford, MA 01757
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Tactical Decision Aids Interface (TDA), v1.0 1

1 Scope
This specification defines the interface between components of a C2 (Command and Control) system
concerned with the dissemination of tactical picture information, recommendations for changes,
refinements and enhancements to that picture and recommendations for courses of action that relate to
the picture with resources for which the C2 system's user have responsibility. As such it is a specification
for an interface between tactical picture management components and tactical decision aids, supporting
the development of open modular C2 systems.

2 Conformance
This specification defines conformance points to promote both applicability and interoperability. The
conformance points recognize the decomposition of the specification into services relating to Tactical
Picture and services relating to Plan Execution. Services within the specification relating specifically to
either Tactical Picture or Plan Execution are optional. The mandatory services within the interface are
those in the AbstractRecommendations package. Conformance Points define a set of services to be
implemented by a Tactical Picture or Plan Execution component and a dependency for a Tactical
Decision Aid. Conformation points are defined for functional subsets, PSM technologies and PSM
external standards. A

Table 2.1 - Conformance Points for TDA

Conformance Point Service Interfaces Rationale

Functional

Basic Tactical
Picture

Configuration, Response,
Categorization,
PictureManagement

These interfaces include the types
of tactical picture
recommendation most likely to be
made by decision aids.

Basic Plan Execution Configuration, Response,
PlanDataSink,
ResourceDataSink,
PlanExecutionAction,
PlanExecutionControl

These interfaces include the types
of plan execution
recommendation most likely to be
made by decision aids.

Extended Tactical
Picture

As per Basic Tactical Picture plus
ExtendedCategorization,
ExtendedPictureManagement

These are the additional interfaces
for tactical picture
recommendations

Extended Plan
Execution

As per Basic Plan Execution plus
ExtendedPlanExecutionAction,
ExtendedPlanExecutionControl

These are the additional interfaces
for plan execution
recommendations

PSM Technologies

DDS As defined by functional
conformance points

A PSM technology for near real
time operation

GraphQL As defined by functional
conformance points

A PSM for flexible data access

External Standards Schema Prefix

STANAG 5516 s5516.* Naval applications

JC3IEDM jc3iedm Applications for joint operations

APP6 app6b, app6c General C2 applications

2

SOPES sopes General C2 applications

3 Normative References
The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this specification. For dated references, subsequent amendments to, or revisions of, any of
these publications do not apply.

Table 3.1 – Normative References

Title (Acronym) Version /
Date

Organization Reference / URL

TACSIT Data Exchange
(TEX)

1.0 /
February
2021

OMG formal/2019-12-02
www.omg.org/spec/TEX

Data Distribution Service
(DDS)

1.4 / March
2015

OMG formal/2015-04-10
www.omg.org/spec/DDS

Interface Definition
Language (IDL)

4.2 / January
2018

OMG formal/2018-01-05
www.omg.org/spec/IDL

Extended View of Time
(EVOT)

2.0 August
2008

OMG formal/2008-08-01
www.omg.org/spec/EVOT

DDS Security 1.1 July 2018 OMG formal/18-04-01
https://www.omg.org/spec/DDS-
SECURITY/

Shared Operational
Picture Exchange
Services (SOPES)

1.0 May
2011

OMG formal/11-05-04
www.omg.org/spec/SOPES

Graph Query Language
(GraphQL)

June 2018 Facebook www.spec.graphql.org/June2018

Quantities and units November
2011

ISO ISO 80000-1 :2009
https://www.iso.org/standard/30669
.html

NATO Tactical Data
Exchange – Link 16

Edition 6

NATO STANAG 5516

Joint C3 Information
Exchange Data Model

Rev D CN 1 NATO STANAG 5525

Joint C3 Information
Exchange Data Model
(JC3IEDM)

v3.1.4 NATO

NATO Joint Military
Symbology (APP-6(B))

June 2008 NATO

NATO Joint Military
Symbology (APP-6(C))

May 2011 NATO

http://www.omg.org/spec/TEX
http://www.omg.org/spec/DDS
http://www.omg.org/spec/IDL
http://www.omg.org/spec/EVOT
https://www.omg.org/spec/DDS-SECURITY/
https://www.omg.org/spec/DDS-SECURITY/
http://www.omg.org/spec/SOPES
http://www.spec.graphql.org/June2018
https://www.iso.org/standard/30669.html
https://www.iso.org/standard/30669.html

3

World Meteorological
Organization (Sea State
Code)

latest WMO www.public.wmo.int/en/resources/st
andards-technical-regulations

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

• API (Application Programming Interface)

• APP (Allied Procedural Publication)

• C2 (Command and Control)

• CMS (Combat Management System)

• CORBA (Common Object Request Broker Architecture)

• CWM (Common Warehouse Metamodel)

• DDS (Data Distribution Service)

• EVOT (Enhanced View of Time)

• GraphQL (Graph Query Language)

• IDL (Interface Definition Language)

• IIOP (Internet Inter-Orb Protocol)

• IPR (Intellectual Property Right)

• ICAO (International Civil Aviation Organization)

• ISO (International Organization for Standardization)

• IMO (International Maritime Organization)

• JC3IEDM (Joint Consultation, Command and Control Information Exchange Data Model)

• LOI (Letter of Intent)

• MDA (Model Driven Architecture)

• MOF (Meta Object Facility)

• NS (Naming Service)

• NATO (North Atlantic Treaty Organization)

• OARIS (Open Architecture Radar Interface Standard)

• ODF (Open Document Format)

• OMG (Object Management Group)

• PIM (Platform Independent Model)

• PSM (Platform Specific Model)

http://www.public.wmo.int/en/resources/standards-technical-regulations
http://www.public.wmo.int/en/resources/standards-technical-regulations

4

• SOA (Service Oriented Architecture)

• SoaML (Service oriented architecture Modeling Language)

• STANAG (NATO Standardization Agreement)

• TF (Task Force)

• UML (Unified Modeling Language)

• XMI (XML Metadata Interchange)

• XML (eXtensible Markup Language)

5 Symbols
No special symbols are introduced in this specification.

6 Additional Information
6.1 Acknowledgements
The following companies submitted this specification:

• BAE Systems

5

7 Tactical Decision Aids Interface Overview
The goal of the Tactical Decision Aids Interface specification is to support the on-going need to extend
and upgrade C2 Systems, particularly to meet growing demand for automation and the exploitation of
machine intelligence. This specification addresses the need to insert functionality into command and
control systems that supports the user’s decision-making process.

To insert such functionality efficiently and affordably, C2 system integrators need the freedom to source
such functionality from multiple potential providers in the form of modular applications. This is especially
so for systems meeting complex requirements in the military domain. This specification enables such an
approach by standardizing the interface for such functionality.

This specification defines a set of services and a supporting data model as C2 Systems typically have
demanding assurance requirements and are qualified for use by an overall design authority based on
evidence built up from the constituent components. The constituent components need to know, a priori,
the standardized data-model and services the system uses, so that they are able to provide qualification
evidence for overall system assurance.

Consistency of semantics across the definitions of services and the data model is important for the
interoperation of different component implementations that meet the standard, enabling the modular
solution sought. To this end, the specification provides meta-models for the services and data-model,
which define super-classes for the data-model and common patterns for the information and
recommendation services.

The specification is organized as follows: -

• Section 8 contains the Meta-Model with packages for super-classes and other classifiers with
broad applicability across the Data Models

• Section 9 contains the Data-Models describing a Data Model for Plan Execution and an
Extension of the TACSIT Data Exchange Data Model to support the Tactical Picture Data Model
requirements

• Section 10 the Service Models describing the Information and Recommendation Service Models
for Tactical Picture and Pan Execution

• Section 11 describes the Domain Model Platform Specific Models for DDS and GraphQL
• Section 12 describes the Service Model Platform Specific Models for DDS and GraphQL
• Section 13 describes the Platform Specific Models for Extensible Enumerations; this section

standardizes the representation of categories defined in a set of external specifications, whilst
providing an extension mechanism that supports additional specifications and system-specific
concepts

The specification is captured as an Enterprise Architect (EA) UML version 2.1 model; sections 8, 9 & 10
are automatically generated into the specification from the model.

7.1 Use of the Tactical Decision Aids Interface
This subsection provides non-normative outline usage of the interface specification for two simple use
cases: creating a ‘Classification App’ that recommends classification categories of TACSIT Entities (e.g.
Frigate, Helicopter, Truck or Submarine); creating a ‘Plan Monitoring App’ that recommends when to
start and stop different elements of an overall plan. These simple use cases use the Tactical Picture and
Plan Execution services separately, other use cases may use these services in combination.

6

7.1.1 Classification App use of the Tactical Decision Aids Interface
(Non-Normative)

An outline design of the Classification App to use the Tactical Decision Aids Interface is as follows: -

• Connect to the TEX and TDAI interfaces of the Tactical Picture component using the appropriate
PSM method and system-specific configuration.

• Use a PSM method to register implementation of the recommendationProcessed operation on
the Response interface.

• Use the PSM mapping of the isSupported operation on the Configuration interface for
recommendClassification to verify that the TacticalPicture implementation supports the relevant
recommendation operation.

• Use the getSupportMapping operation on the Configuration interface to access the extensible
enumeration mapping-file. Verify that there are classification categories in the mapping file
corresponding to the categories in the App’s business rules. E.g. if the App has a rule for
distinguishing helicopters find a helicopter category in the mapping file. Note that it is an option
to design the App with known categories in mind.

• Create and add an Entity Listener to the TEX DataSink interface.
• Use the TEX getSet operation on the DataSink interface to get an initial view of the TEX Entities

in the Tactical Picture.
• Process the initial view of Entities and any changes (including new Entities) from the

dataChanged callback on the listener with the App’s business logic.
• For any Entities for which the App’s business logic can offer an improved classification category,

use the recommendClassification operation on the Categorization interface to recommend the
category to the TacticalPicture component. Internal to the App, note that a recommendation for
this Entity is in progress (do not send further recommendations whilst in-progress).

• Implement the recommendationProcessed operation to clear the in-progress indicator if
accepted, clear and log explanation (error code) if rejected and optionally log if deferred.

• Continue until the App is stopped (system specific mechanism outside of the scope of this
specification).

7.1.2 Plan Monitoring App use of the Tactical Decision Aids Interface
An outline design of the Plan Monitoring App to use the Tactical Decision Aids Interface is as follows: -

• Connect to the TDAI interface of the Plan Execution component using the appropriate PSM
method and system-specific configuration.

• Use a PSM method to register implementation of the recommendationProcessed operation on
the Response interface.

• Use the PSM mapping of the isSupported operation on the Configuration interface for start and
terminate to verify that the Plan Eecution implementation supports the relevant
recommendation operation.

• Use the getSupportMapping operation on the Configuration interface to access the extensible
enumeration mapping-file. Verify that there are plan constituent categories in the mapping file
corresponding to the categories in the App’s business rules. E.g. if the App has a rule for ‘search

7

and rescue’ plans find a ‘search and rescue’ category in the mapping file. Note that it is an
option to design the App with known categories in mind.

• Create and add an Plan Listener to the TDAI PlanDataSink interface.
• Use the TDAI getSet operation on the PlanDataSink interface to get an initial view of the TDAI

PlanConstituents known to the system.
• Process the initial view of PlanConstituents and any changes (including new PlanConstituents)

from the dataChanged callback on the listener with the App’s business logic.
• For any PlanConstituents which the App’s business logic suggests should be started, use the

start operation on the PlanExecutionControl interface to recommend that the PlanConstiuent is
started. Internal to the App, note that a recommendation for this PlanConstiuent is in progress
(do not send further recommendations whilst in-progress).

• Similarly, for any PlanConstituents which the App’s business logic suggests should be
terminated, use the terminate operation on the PlanExecutionControl interface to recommend
that the PlanConstiuent is terminated.

• Implement the recommendationProcessed operation to clear the in-progress indicator if
accepted, clear and log explanation (error code) if rejected and optionally log if deferred.

• Continue until the App is stopped (system specific mechanism outside of the scope of this
specification).

8

8 MetaModel
Parent Package: tactical decision aids
Meta-Model containing super-classes, data-types, patterns and the generic forms of interfaces that have
applicability across the Domain Model and Service Model requirements for the Tactical Decision Aids
specification. This is an extension mechanism supporting the requirements of similar Domain Models and
Service Models that could apply in the future or within a system specific context.

Figure 8.1 MetaModel (Package diagram)

8.1 DataModel
Parent Package: MetaModel
Aspects of the Meta-Model supporting the Domain Models

8.1.1 Recommendation
Parent Package: DataModel
The Recommendation package of the Data Model Meta-Model defines generic concepts to support
system agnostic recommendations.

Figure 8.2 Recommendation and Response (Class diagram)

8.1.1.1 Confidence

DataModel

+ Recommendation

+ Utils

ServiceModel

+ Recommendations

+ DataSink

Confidence

+ hypothesisProbability: Percentage [0..1]
+ modelProbability: Percentage [0..1]
+ outcomeProbability: Percentage [0..1]

«enumeration»
RecommendationBehavior

 MANDATORY
 FOR_VALIDATION
 ADVISORY
 RECOMMENDATION

RecommendationProperties

+ endorsingOperator: QuantityDescriptor
+ endorsementKind: QuantityDescriptor
+ algorithmType: QuantityDescriptor
+ algorithmValidation: QuantityDescriptor
+ priority: QuantityDescriptor

«dataType»
RecommendationRef

ResponseData

+ recommendationRef: RecommendationRef

«Extensible Enumeration»
ResponseExplanation

«enumeration»
Outcome

 ACCEPTED
 DEFERRED
 REJECTED

9

Type: Class
Package: Recommendation
The statistical confidence placed in a recommendation

Table 8.1 - Attributes of Class Confidence
Attribute Notes
 hypothesisProbability Percentage [0..1] The probability of the hypothesis associated with the

Recommendation being true, given the model used as
the Recommendation basis. This is the confidence that
the Recommendation is correct or optimal according to
the model.

 modelProbability Percentage [0..1] The probability of the model on which the
Recommendation is based being applicable. This is the
confidence in model given the particular model inputs.

 outcomeProbability Percentage [0..1] The probability that there will be a successful outcome
from following a Recommendation according to the
model used by the Recommendation. This attribute is
only applicable to Recommendations that lead to actions
on the external environment.

8.1.1.2 RecommendationProperties
Type: Class
Package: Recommendation
Additional extensible metadata relating to the recommendation process

Table 8.2 - Attributes of Class RecommendationProperties
Attribute Notes
 endorsingOperator QuantityDescriptor An extensible categorization of a system user who has

endorsed the recommendation.
 endorsementKind QuantityDescriptor An extensible categorization of the type endorsement

made by the system user
 algorithmType QuantityDescriptor An extensible categorization of type of algorithm used

to make the recommendation
 algorithmValidation QuantityDescriptor An extensible categorization of validation process that

the algorithm has been subjected to
 priority QuantityDescriptor An extensible categorization of the priority that a

recipient should assign to a Recommendation

8.1.1.3 ResponseData
Type: Class
Package: Recommendation
Additional information to describe the action actually performed. Specializations of this call allow the
Decision Aid to find tactical picture updates and plan execution update corresponding to the
recommendations. Binding this information to the response also means the Decision Aid doesn't need to
store recommendation identifiers locally in order to perform post response processing.

Table 8.3 - Attributes of Class ResponseData
Attribute Notes
 recommendationRef RecommendationRef A reference to the original recommendation that is

unique across all clients in the system.

8.1.1.4 Outcome
Type: Enumeration

10

Package: Recommendation
The categories of outcome supported by the recommendation response interface.

Table 8.4 - Attributes of Enumeration Outcome
Attribute Notes
«enum» ACCEPTED The recommendation has been accepted and applied
«enum» DEFERRED The recommendation has been deferred, for instance for

operator approval. An additional response will occur
once a decision has been made.

«enum» REJECTED The recommendation has been rejected. The explanation
attribute contains any reason given for the rejection.

8.1.1.5 Recommendation Outcome
Type: StateMachine
Package: Recommendation

Figure 8.3 Recommendation Outcome (StateMachine diagram)
This diagram defines the state transitions of outcomes of recommendations from Tactical Decision Aids.

8.1.1.5.1 Accepted
Type: State
Package: Recommendation
The outcome of the recommendation is that is accepted and will be applied to the referenced instances.

8.1.1.5.2 Deferred
Type: State
Package: Recommendation

stm Recommendation Outcome

Initial

Accepted

Rejected

Deferred

Final

11

The initial outcome of the recommendation is that is deferred and will be either accepted or rejected after
input from an operator or another system..

8.1.1.5.3 Rejected
Type: State
Package: Recommendation
The outcome of the recommendation is that is rejected and will not be applied to the referenced
instances.

8.1.1.6 RecommendationBehavior
Type: Enumeration
Package: Recommendation
Categorization of Recommendations in terms of the recipient's behavior

Table 8.5 - Attributes of Enumeration RecommendationBehavior
Attribute Notes
«enum» MANDATORY The Recommendation must be followed by the recipient.
«enum» FOR_VALIDATION The recipient should enact subject to a confirmation

process
«enum» ADVISORY The recommendation should be considered alongside

alternative advisory sources of information.
«enum» RECOMMENDATION No statement with respect to Recommendation

categorization

8.1.1.7 RecommendationRef
Type: DataType
Package: Recommendation
A reference to the recommendation that a Decision Aid has made. This must be unique within a system
as a whole and not just within the lifetime of a decision aid or other system component.

8.1.1.8 ResponseExplanation
Type: DataType
Package: Recommendation
An explanation of the response to the recommendation. For example an error code.

8.1.2 Utils
Parent Package: DataModel
The Utils package in the Data Model Meta-Model defines utility classes required by other Data Model and
Service Model packages.

«dataType»
Percentage

«dataType»
Detail

«dataType»
Quantity

«Extensible Enumeration»
QuantityDescriptor

«dataType»
Duration

«Extensible Enumeration»
Descriptor

«Reference»
DataRef

12

Figure 8.4 DataTypes (Class diagram)

Figure 8.5 Structs (Class diagram)

8.1.2.1 AdditionalData
Type: Class
Package: Utils
Standardized encapsulation of qualitative, quantitative and unstructured data extension mechanisms.

Table 8.6 - Attributes of Class AdditionalData
Attribute Notes
 unstructuredData ExtendedData [0..*]
 qualifier Qualifier [0..*] A set of additional qualitative attributes as an extension

mechanism.
 quantifier Quantifier [0..*] A set of additional quantitative attributes as an

extension mechanism.

8.1.2.2 Qualifier
Type: Class
Package: Utils
A class to represent additional, system-specific qualitative or categorical values as a extension
mechanism.

Table 8.7 - Attributes of Class Qualifier
Attribute Notes
 name Descriptor The name of quality being described
 value Descriptor The category value of the quality being described

8.1.2.3 Quantifier
Type: Class
Package: Utils
A abstract mechanism to quantify capabilities and dependencies

Table 8.8 - Attributes of Class Quantifier
Attribute Notes
 value Quantity The numerical value of the concept being quantified
 descriptor QuantityDescriptor An extensible categorization of the type of quantity

being specified. The descriptor is the determiner of the
units (if any) associated with the quantity.

8.1.2.4 DataRef
Type: DataType
Package: Utils
A datatype with a platform specific mapping to represent a reference to a data item instance.

AdditionalData

+ unstructuredData: ExtendedData [0..*]
+ qualifier: Qualifier [0..*]
+ quantifier: Quantifier [0..*]

Quantifier

+ value: Quantity
+ descriptor: QuantityDescriptor

Qualifier

+ name: Descriptor
+ value: Descriptor

13

8.1.2.5 Descriptor
Type: DataType
Package: Utils
A general abstraction of categories to qualify an object.

8.1.2.6 Detail
Type: DataType
Package: Utils
This is a datatype with a platform specific mapping to represent additional information through an
extension mechanism

8.1.2.7 Duration
Type: DataType
Package: Utils
A datatype with a platform specific mapping to represent a relative length of time

8.1.2.8 Percentage
Type: DataType
Package: Utils
A datatype with a platform specific mapping to represent a percentage value

8.1.2.9 Quantity
Type: DataType
Package: Utils
A datatype with a platform specific mapping to represent a scalar quantity

8.1.2.10 QuantityDescriptor
Type: DataType
Package: Utils
An abstraction of the categories of quantity

8.2 ServiceModel
Parent Package: MetaModel
Aspects of the Meta-Model supporting the Service Models

8.2.1 Recommendations
Parent Package: ServiceModel
This package defines the elements of the generic recommendation and response pattern used by Tactical
Decision Aids to make recommendations

14

Figure 8.6 Recommendation (Class diagram)

8.2.1.1 RecommendationMetadata
Type: Class
Package: Recommendations
Additional information to describe and qualify all recommendations

Table 8.9 - Attributes of Class RecommendationMetadata
Attribute Notes
 confidence Confidence The statistical confidence in the Recommendation
 behavior RecommendationBehavior The behavior required of the recipient
 properties RecommendationProperties Additional extensible properties of the Recommendation
 respondee Response The interface instance to which responses to the

recommendation should be directed

8.2.1.2 Configuration
Type: Interface
Package: Recommendations
This interface allows clients (tactical decision aids) to determine system support for the interface in terms
of extensibility methods and the operations implemented.

Table 8.10 - Methods of Interface Configuration
Method Notes Parameters
getSupportMapping() This operation returns the location of

a resource defining the implementing
component's support for extensible
enumeration values. The resource
defines supported extensible
enumeration values, maps them to
extensible enumeration datatypes
defined by this specification and
external specifications from which
they are derived.

isSupported() This operation defines whether a
particular recommendation function
is implemented in the system.

RecommendationOperationKind
kind The operation for which
support is being queried

«ResponseInterface»
Response

+ recommendationProcessed(response: ResponseData, outcome: Outcome, explanation: ResponseExplanation)

«interface»
Configuration

+ getSupportMapping(): URL
+ isSupported(kind: RecommendationOperationKind): Boolean

RecommendationMetadata

+ confidence: Confidence
+ behavior: RecommendationBehavior
+ properties: RecommendationProperties
+ respondee: Response

«interface»
Recommendation

+ recommendProperty(property: Descriptor, item: DataRef, recommendation: RecommendationMetadata)
+ recommendAction(item: DataRef, recommendation: RecommendationMetadata)
+ recommendActionAt(item: DataRef, time: DateTime, recommendation: RecommendationMetadata)
+ recommendRelationship(item1: DataRef, item2: DataRef, recommendation: RecommendationMetadata)
+ recommendEndRelationship(item1: DataRef, item2: DataRef, recommendation: RecommendationMetadata)
+ recommendItem(item: Data, recommendation: RecommendationMetadata)

15

8.2.1.3 Recommendation
Type: Interface
Package: Recommendations
The generic form of a recommendation interface with prototype recommendation operations.

Table 8.11 - Methods of Interface Recommendation
Method Notes Parameters
recommendProperty() The prototype form of an operation

to recommend a value for the
property of an item.

Descriptor property
DataRef item
RecommendationMetadata
recommendation

recommendAction() The prototype form of an operation
to recommend performing an
operation on an item.

DataRef item
RecommendationMetadata
recommendation

recommendActionAt() The prototype form of an operation
to recommend performing an
operation on an item at a future time.

DataRef item
DateTime time
RecommendationMetadata
recommendation

recommendRelationship() The prototype form of an operation
to recommend the creation of a
relationship between two data items.

DataRef item1
DataRef item2
RecommendationMetadata
recommendation

recommendEndRelationship() The prototype form of an operation
to recommend the ending of a
relationship between two data items.

DataRef item1
DataRef item2
RecommendationMetadata
recommendation

recommendItem() The prototype form of an operation
to recommend the creation of an
item.

Data item
RecommendationMetadata
recommendation

8.2.1.4 Response
Type: Interface
Package: Recommendations
This interface is implemented by a tactical decision aid in order to receive responses to its
recommendations. Each response operation contains a reference to the information contained in the
corresponding recommendation.

Table 8.12 - Methods of Interface Response
Method Notes Parameters
recommendationProcessed() This callback operation is invoked

on the Tactical Decision Aid when
the recommendation that it has made
is accepted, deferred or rejected.
This allows the Tactical Decision
Aid to understand when a
recommendation is in progress and
to avoid redundantly repeating
recommendations.

ResponseData response Additional
contextual and qualification data for
the response.
Outcome outcome The outcome of
the recommendation process
ResponseExplanation explanation
Where available, an explanation of
the recommendation processing,
such as a reason for rejection.

16

There is one invocation of this
callback per recommendation unless
the first Outcome is Deferred, in
which case there are two. This is
shown in the Recommendation
Outcome State Machine diagram.

8.2.2 DataSink
Parent Package: ServiceModel
The package defines the pattern for Tactical Decision Aids to receive Information on the instances of a
particular class of data item.

Figure 8.7 DataSinkPattern (Class diagram)

8.2.2.1 Data
Type: Class
Package: DataSink
Represents the primary class of data for the Data Sink. Data items are the Data Sink's atomic unit.

Table 8.13 - Attributes of Class Data
Attribute Notes
«key» id DataRef Unique reference for the data item within the scope of

the system.

8.2.2.2 DataChangedEvent
Type: Class
Package: DataSink
Represents information about a change to a <Data Instance>

8.2.2.3 DataChangedEventList

«DataSink»
DataSink

+ addListener(listener: DataSinkListener, id: DataRef)
+ addListener(listener: DataSinkListener, filter: DataQuery)
+ addListener(listener: DataSinkListener)
+ getSet(): Data[]
+ getSet(filter: DataQuery): Data[]
+ getInstance(id: DataRef): Data
+ removeListener(listener: DataSinkListener)

«ChangeEventList»
DataChangedEventList

«ChangeEvent»
DataChangedEvent

«ChangeSinkListener»
DataSinkListener

+ dataChanged(eventList: DataChangedEventList)

«FilterInterface»
DataQuery

+ satisfies(data: Data): Boolean

Data

«key»
+ id: DataRef

«Reference»
DataRef

(from Utils)

ItemChangedEvent

+ timeStamp: DateTime
+ sequenceNumber: Integer
+ isCreate: Boolean

+data 0..1

+item

0..*

+deleted
0..1

«Reference Relation»

17

Type: Class
Package: DataSink
Represents the list of changes to <Data> since the last event notified to that instance of the listener.
Multiple changes may be consolidated into a single callback to a listener on the interface

8.2.2.4 ItemChangedEvent
Type: Class
Package: DataSink
An abstraction of data sink change event

Table 8.14 - Attributes of Class ItemChangedEvent
Attribute Notes
 timeStamp DateTime The time of the change
 sequenceNumber Integer The time sequenced position of the event for the listener
 isCreate Boolean The event created a new instance

8.2.2.5 DataQuery
Type: Interface
Package: DataSink
This is an interface through which a client can define Queries on <Data> so as to filter the information
returned. Classes implementing the interface provide means to set the query parameters (such as a
constructor).

Table 8.15 - Methods of Interface DataQuery
Method Notes Parameters
satisfies() This operation is the client's

implementation of a filtering query
for <Data>

Data data The data being filtered

8.2.2.6 DataSink
Type: Interface
Package: DataSink
This interface contains operations that give a Tactical Decision Aid access to information about the
execution of <Data>. A Tactical Decision Aid can add and remove listeners as well as reading the
information about individual <Data> or all or a filtered subset of <Data>.

Table 8.16 - Methods of Interface DataSink
Method Notes Parameters
addListener() Operation to add a listener for

callbacks relating to a single <Data
Instance>

DataSinkListener listener The
listener object to receive the callback
DataRef id A reference to a specific
instance of interest

addListener() Operation to add a listener for
callbacks relating to all <Data> that
satisfy the Query

DataSinkListener listener The
listener object to receive the callback
DataQuery filter The filer object to
apply to changes

addListener() Operation to add a listener for
callbacks relating to all <Data>

DataSinkListener listener The
listener object to receive the callback

getSet() Operation to obtain the information
relating to all the <Data>

18

getSet() Operation to obtain the information
relating to all the <Data> satisfying
the query

DataQuery filter The filter object to
apply to instance of the class

getInstance() Operation to obtain the information
relating to the <Data> reference

DataRef id A reference to the
speciifc instance of interest

removeListener() Operation to remove a listener DataSinkListener listener The
listener object to no longer receive
callbacks

8.2.2.7 DataSinkListener
Type: Interface
Package: DataSink
This is an interface for clients to implement callback to receive information on changes to <Data>.

Table 8.17 - Methods of Interface DataSinkListener
Method Notes Parameters
dataChanged() This operation is implemented by the

client to process the data change
callback. Multiple changes can be
notified through a single invocation.

DataChangedEventList eventList
The list of data instances that have
changed

19

9 DataModel
Parent Package: tactical decision aids
The Tactical Decision Aids Data Model defines the representation of information that is passed between
Picture Management Components and Tactical Decision Aid Components.

20

PlanExecution

+ Aircraft

+ Ammunition

+ Amphibious

+ Capability

+ CurrentCapability

+ Dependency

+ Derivation

+ DerivationCategory

+ DerivationProvenance

+ ElectronicEquipment

+ Endurance

+ EnduranceProperties

+ EngineeringCapability

+ FireCapability

+ LandVehicle

+ MaritimeEquipment

+ MobilityCapability

+ OperationalCapability

+ Plan

+ PlanExecutionConstituent

+ Resource

+ ResourceMetaData

+ ResourceProperties

+ ResourceTasking

+ Space

+ SubsurfaceVessel

+ SurfaceVessel

+ SurveillanceCapability

+ TargetCapability

+ TaskObjective

+ TransmissionCapability

+ Vehicle

+ Vessel

+ AmmunitionCategory

+ CaliberCategory

+ CapabilityCategory

+ CapabilityRef

+ ConstituentRef

+ DependencyCategory

+ DerivationDescriptor

+ ExtendedPlanStatus

+ IntentDescriptor

+ ObjectiveCategory

+ OrbitCategory

+ PlanType

+ ReadinessDescriptor

+ ResourceCategory

+ ResourceRef

+ SpecificationDescriptor

+ TaskingActivity

+ PlanExecutionConstituentState

TacticalPicture

+ LiveEntityList

+ LiveGroupList

+ SimulatedEntityList

+ SimulatedGroupList

+ ClassificationDescriptor

+ SensorTrackRef

+ SystemTrackRef

+ ActivityDescriptor

+ EntityStatusDescriptor

+ IdentityDescriptor

21

Figure 9.8 DataModel (Package diagram)

9.1 PlanExecution
Parent Package: DataModel
The Plan Execution package of the Data Model defines the generic concepts necessary to recommend,
execute and amend tactical plans. Domain and system specific concepts are abstracted using the
Descriptor extension mechanism.

Figure 9.9 Capability (Class diagram)

Capability

+ category: CapabilityCategory
+ extendedData: AdditionalData

«key»
+ id: CapabilityRef

FireCapability

+ maxFireRate: Quantifier [0..1]

SurveillanceCapability

+ reportingRate: Quantifier [0..1]
+ operatingBand: Descriptor
+ targetClassification: ClassificationDescriptor [0..*]
+ capacity: Integer [0..1]

Ammunition

+ category: AmmunitionCategory
+ caliber: CaliberCategory
+ extendedData: AdditionalData

MobilityCapability

+ maxLoadVolume: Quantifier [0..1]
+ maxPassengers: Integer [0..1]
+ maxLoadWeight: Quantifier [0..1]

OperationalCapability

+ level: Descriptor

EngineeringCapability

+ outputRate: Quantifier [0..1]
+ targetClassification: ClassificationDescriptor [0..*]

«Extensible Enumeration»
AmmunitionCategory

«Extensible Enumeration»
CaliberCategory

EntityPayload::
EntityPayload

+ id: URI
+ label: String
+ info: String
+ href: URL
+ timeSpan: Period
+ timeStamp: DateTime

TargetCapability

+ classification: ClassificationDescriptor
+ successLikelihood: Percentage

Resource

+ weight: Quantifier [0..1]
+ entity: EntityRef [0..1]
+ extendedData: AdditionalData
+ readiness: ReadinessDescriptor
+ timeOfValidity: DateTime
+ derivation: Derivation

«key»
+ id: ResourceRef

TransmissionCapability

+ power: Quantifier [0..1]
+ dataRate: Quantifier [0..1]
+ operatingBand: Descriptor
+ protocol: Descriptor [0..*]
+ dataClassification: Descriptor [0..*]

+operatingArea

0..1

+owner 0..1

+resource 0..*+ammunition 0..* +target 0..* +coverageArea 0..1

+coverageArea

0..1

+supportingResource 0..*

+engagementZone

0..1

22

Figure 9.10 PlanExecution (Class diagram)

Figure 9.11 Reference DataTypes (Class diagram)

Plan

+ planType: PlanType [0..1]

EntityPayload

EntityPayload::ShapedEntity

+ climbAngle: Angle
+ directionOfMovement: Angle
+ isHeadingRelative: boolean
+ speed: Speed

TaskObjective

+ entityObject: EntityRef [0..1]
+ category: ObjectiveCategory
+ detail: Detail
+ intent: IntentDescriptor
+ priority: Percentage [0..1]

Resource

+ weight: Quantifier [0..1]
+ entity: EntityRef [0..1]
+ extendedData: AdditionalData
+ readiness: ReadinessDescriptor
+ timeOfValidity: DateTime
+ derivation: Derivation

«key»
+ id: ResourceRef

ResourceTasking

+ activity: TaskingActivity

Capability

+ category: CapabilityCategory
+ extendedData: AdditionalData

«key»
+ id: CapabilityRef

Dependency

+ category: DependencyCategory

Utils::Quantifier

+ value: Quantity
+ descriptor: QuantityDescriptor

PlanExecutionConstituent

+ state: PlanExecutionConstituentState
+ extendedStatus: ExtendedPlanStatus
+ timeSpan: Period [0..1]
+ originator: URI
+ progress: Percentage [0..1]

«key»
+ id: ConstituentRef

«Extensible Enumeration»
PlanType

«Extensible Enumeration»
ObjectiveCategory

«Extensible Enumeration»
ExtendedPlanStatus

«Extensible Enumeration»
TaskingActivity

«Extensible Enumeration»
ResourceCategory

«Extensible Enumeration»
CapabilityCategory

«Extensible Enumeration»
DependencyCategory

«Extensible Enumeration»
IntentDescriptor

«Extensible Enumeration»
ReadinessDescriptor

«enumeration»
PlanExecutionConstituentState

 PLANNED
 EXECUTING
 PAUSED
 TERMINATED

ResourceProperties

+ category: ResourceCategory
+ extendedData: AdditionalData

«key»
+ id: ResourceRef

CurrentCapability

+properties 1

+quantifier 0..*

+dependency 0..*

+objective 0..1

+tasking 0..*

+currentObjective

0..1

+capability

1..*

+currentCapability

0..*

+capability 1

+constraint

0..*

+owningPlan 1

+subPlan 0..*

+owner 0..1

+resource 0..*

+dependentResource

+requiredResource

0..*

+currentTask 0..*

+resource 1

+dependentCapability

1

+owningPlan

0..1

+objective 0..*

+quantifier 1

+location

0..1

+capabilityMeans

1

+currentPlan

0..1

«Reference»
ResourceRef

Resource

«Reference»
ConstituentRef

PlanExecutionConstituent Capability

«Reference»
CapabilityRef

«Reference»
DataRef

(from Utils)

«Reference Relation»«Reference Relation» «Reference Relation»

23

Figure 9.12 Resource (Class diagram)

9.1.1 Aircraft
Type: Class
Package: PlanExecution
An airborne resource

Table 9.1 - Attributes of Class Aircraft
Attribute Notes
 maxOperatingAltitude Distance [0..1] The maximum altitude (barometric) at which the aircraft

is able to operate
 stallSpeed Speed [0..1] The minimum speed for the aircraft resource to operate

below which it risks a stall.

9.1.2 Ammunition
Type: Class
Package: PlanExecution
Description of the ammunition associated with a fire capability. Here, ammunition generalizes to include
bombs, torpedoes, decoys and missiles.

Resource

+ weight: Quantifier [0..1]
+ entity: EntityRef [0..1]
+ extendedData: AdditionalData
+ readiness: ReadinessDescriptor
+ timeOfValidity: DateTime
+ derivation: Derivation

«key»
+ id: ResourceRef

SurfaceVessel

+ maxSeaState: Integer [0..1]

SubsurfaceVessel

+ maxOperatingDepth: Distance [0..1]

Vessel

+ minOperatingDepth: Distance [0..1]

Aircraft

+ maxOperatingAltitude: Distance [0..1]
+ stallSpeed: Speed [0..1]

MaritimeEquipment

+ collectionSize: Integer

LandVehicle

+ roadLegal: Boolean
+ offRoadCapable: Boolean
+ minTurningRadius: Distance

Vehicle

+ maxSpeed: Speed [0..1]
+ cruisingSpeed: Speed [0..1]
+ turnRate: Quantifier [0..1]

ElectronicEquipment

+ api: SpecificationDescriptor [0..*]

Space

+ orbit: OrbitCategory

Endurance

+ fuelLevel: Quantifier [0..1]
+ consumptionRate: Quantifier [0..1]
+ extendedData: AdditionalData
+ scheduledRefueling: DateTime [0..1]
+ timeOfValidity: DateTime
+ derivation: Derivation

Utils::AdditionalData

+ unstructuredData: ExtendedData [0..*]
+ qualifier: Qualifier [0..*]
+ quantifier: Quantifier [0..*]

«Extensible Enumeration»
OrbitCategory

«Extensible Enumeration»
SpecificationDescriptor

ResourceProperties

+ category: ResourceCategory
+ extendedData: AdditionalData

«key»
+ id: ResourceRef

EnduranceProperties

+ fuelCapacity: Quantifier [0..1]
+ consumptionRate: Quantifier [0..1]
+ peakConsumptionRate: Quantifier [0..1]
+ extendedData: AdditionalData

«Extensible Enumeration»
DerivationDescriptor

Derivation

DerivationCategory

+ value: DerivationDescriptor

DerivationProvenance

+ provenanceEntity: URI
+ provenanceResource: URL

Amphibious

+ maxOperatingDepth: Distance [0..1]
+ maxSeaState: Integer [0..1]
+ minOperatingDepth: Distance [0..1]
+ minTurningRadius: Distance
+ offRoadCapable: Boolean
+ roadLegal: Boolean

ResourceMetaData

+ distanceUnit: DistanceUnit
+ speedUnit: SpeedUnit
+ derivation: Derivation

+properties

1

+endurance

1

+endurance

0..1

+owner 0..1

+resource 0..*

24

Table 9.2 - Attributes of Class Ammunition
Attribute Notes
 category AmmunitionCategory An extensible categorization of the ammunition type
 caliber CaliberCategory An extensible description of the ammunition caliber (i.e.

size).
 extendedData AdditionalData An extensibility mechanism for system specific

ammunition attributes.

9.1.3 Amphibious
Type: Class
Package: PlanExecution

Table 9.3 - Attributes of Class Amphibious
Attribute Notes
 maxOperatingDepth Distance [0..1] The operating limit of the amphibious vehicle with

respect to depth in the water
 maxSeaState Integer [0..1] The World Meteorological Organization (WMO) sea

state code - range 0 .. 9.
 minOperatingDepth Distance [0..1] The amphibious resource's operating limit with respect

to shallow water
 minTurningRadius Distance The radius of the amphibious vehicle's tightest turning

circle.
 offRoadCapable Boolean Whether the amphibious vehicle can be driven off-road.

More granular off-road capabilities are specified using
the mobility capability specialization.

 roadLegal Boolean The amphibious vehicle is legal for driving on the roads
(in the territory applicable to the current system
context).

9.1.4 Capability
Type: Class
Package: PlanExecution
A Capability is an abstraction of a Resource's fundamental properties with respect to its ability to
undertake tasks

Table 9.4 - Attributes of Class Capability
Attribute Notes
 category CapabilityCategory An extensible categorization of the kind of capability

being described.
 extendedData AdditionalData An extensibility mechanism for system specific

capability attributes.
«key» id CapabilityRef The unique identifier for the instance.

9.1.5 CurrentCapability
Type: Class
Package: PlanExecution

9.1.6 Dependency
Type: Class
Package: PlanExecution

25

This class represents a dependent linkage between two resources or of a resource on a particular
capability.

Table 9.5 - Attributes of Class Dependency
Attribute Notes
 category DependencyCategory This is an extensible categorization of the type of

dependency.

9.1.7 Derivation
Type: Class
Package: PlanExecution
An abstract class for derivation metadata

9.1.8 DerivationCategory
Type: Class
Package: PlanExecution
A system specific categorical derivation

Table 9.6 - Attributes of Class DerivationCategory
Attribute Notes
 value DerivationDescriptor

9.1.9 DerivationProvenance
Type: Class
Package: PlanExecution
Derivation conforming to the W3C PROV recommendation

Table 9.7 - Attributes of Class DerivationProvenance
Attribute Notes
 provenanceEntity URI The entity pertaining to the derivation in the

corresponding provenance resource, conforming to the
W3C PROV recommendation.

 provenanceResource URL The provenance resource conforming to the W3C PROV
recommendation, containing the provenance metadata
for the derivation

9.1.10 ElectronicEquipment
Type: Class
Package: PlanExecution
A resource whose primary capabilities relate to its electronic components.

Table 9.8 - Attributes of Class ElectronicEquipment
Attribute Notes
 api SpecificationDescriptor [0..*] The set of interfaces standards that the equipment

supports through which integrated functionality can be
delivered to Plan Execution.

9.1.11 Endurance
Type: Class
Package: PlanExecution
This class encapsulates the dynamic endurance properties of a resource.

26

Table 9.9 - Attributes of Class Endurance
Attribute Notes
 fuelLevel Quantifier [0..1] The current quantity of fuel available
 consumptionRate Quantifier [0..1] The current rate at which the fuel is consumed.
 extendedData AdditionalData Additional dynamic information related to the

Resource's Endurance
 scheduledRefueling DateTime [0..1] The time at which more fuel is scheduled to be available
 timeOfValidity DateTime The time for which the attributes of the Endurance class

are valid.
 derivation Derivation A description of the means by which the data for the

Resource's Endurance attributes were derived. This
includes sensing, communication routes and human
input.

9.1.12 EnduranceProperties
Type: Class
Package: PlanExecution
This class encapsulates the static, persistent endurance properties of a resource.

Table 9.10 - Attributes of Class EnduranceProperties
Attribute Notes
 fuelCapacity Quantifier [0..1] The maximum quantity of fuel that can be stored
 consumptionRate Quantifier [0..1] The nominal or mean (as defined by the descriptor) rate

at which the fuel is consumed.
 peakConsumptionRate Quantifier [0..1] The peak rate of fuel consumption
 extendedData AdditionalData Additional static information related to the Resource's

Endurance

9.1.13 EngineeringCapability
Type: Class
Package: PlanExecution
A capability to build, maintain, breach or demolish structures or infrastructure in the operational
environment

Table 9.11 - Attributes of Class EngineeringCapability
Attribute Notes
 outputRate Quantifier [0..1] The nominal rate at which the engineering capability can

be delivered.
 targetClassification ClassificationDescriptor [0..*] The categories of object to which the Engineering

Capability can be applied.

9.1.14 FireCapability
Type: Class
Package: PlanExecution
An ability to apply physical effect towards an adversary.

Table 9.12 - Attributes of Class FireCapability
Attribute Notes
 maxFireRate Quantifier [0..1]

9.1.15 LandVehicle
Type: Class

27

Package: PlanExecution
A vehicle primarily for traveling on land

Table 9.13 - Attributes of Class LandVehicle
Attribute Notes
 roadLegal Boolean The land vehicle is legal for driving on the roads (in the

territory applicable to the current system context).
 offRoadCapable Boolean Whether the land vehicle can be driven off-road. More

granular off-road capabilities are specified using the
mobility capability specialization.

 minTurningRadius Distance The radius of the land vehicle's tightest turning circle.

9.1.16 MaritimeEquipment
Type: Class
Package: PlanExecution
Equipment to be deployed in the maritime environment from surface or subsurface vessels. Maritime
equipment do not encompass an entire vessel. The inherited owner-resource self-association relation
from the parent Resource class applies between the Vessel and MaritimeEquipment classes.

Table 9.14 - Attributes of Class MaritimeEquipment
Attribute Notes
 collectionSize Integer Where a resource denotes a set of items this attribute

specifies how many there are. A default of 1 is used for
single items.

9.1.17 MobilityCapability
Type: Class
Package: PlanExecution
An ability to transport objects and personnel.

Table 9.15 - Attributes of Class MobilityCapability
Attribute Notes
 maxLoadVolume Quantifier [0..1] The maximum load by volume (including passengers)

that the Mobility Capability can transport.
 maxPassengers Integer [0..1] The maximum number of passengers that can be

transported
 maxLoadWeight Quantifier [0..1] The maximum load by weight (including passengers)

that the Mobility Capability can transport.

9.1.18 OperationalCapability
Type: Class
Package: PlanExecution
Operational capability describes the overall capabilities of a resource comprising its associated personnel
and equipment. It accounts for training, readiness and equipment status.

Table 9.16 - Attributes of Class OperationalCapability
Attribute Notes
 level Descriptor The organizational level at which the operational

capability is intended to be performed

9.1.19 Plan
Type: Class

28

Package: PlanExecution
A Plan represents an aggregated set of objectives and the resources and tasking to achieve them.

Table 9.17 - Attributes of Class Plan
Attribute Notes
 planType PlanType [0..1] The extensible categorization of the type of plan

9.1.20 PlanExecutionConstituent
Type: Class
Package: PlanExecution
An abstract class for constituent elements of tactical plan execution

Table 9.18 - Attributes of Class PlanExecutionConstituent
Attribute Notes
«key» id ConstituentRef The unique identifier for the instance
 state PlanExecutionConstituentState The state of the plan constituent according to the

PlanExecutionConstituent state machine
 extendedStatus ExtendedPlanStatus The extensible detailed categorization of the state of the

plan execution constituent.
 timeSpan Period [0..1] The time during which the plan execution constituent is

expected to be executed.
 originator URI The originator of the PlanExecutionConstituent. This is

the component that instigated the creation of the
instance.

 progress Percentage [0..1] The proportion of the plan execution constituent's
objectives that have been achieved.

29

Figure 9.13 PlanExecutionConstituent (StateMachine diagram)
This diagram defines the state transitions of a plan execution constituent in response to recommendation actions
from Tactical Decision Aids.

9.1.20.1 Executing
Type: State
Package: PlanExecution
A successful start or resume recommendation transition a plan constituent to this state. A plan constituent
also transitions to this state at the time of the start of its time span.

9.1.20.2 Paused
Type: State
Package: PlanExecution
A successful pause recommendation transitions a plan constituent to this state. The behaviour of the Plan
Execution component with respect to the end of a paused plan constituent's Time Span is implementation
defined, but observable by Tactical Decision Aids through the relevant Data Sink interface.

9.1.20.3 Planned
Type: State
Package: PlanExecution
A successful plan recommendation creates a plan constituent in this state.

9.1.20.4 Terminated

stm PlanExecutionConstituent

Initial

Planned

ExecutingPaused

Terminated

Final

30

Type: State
Package: PlanExecution
A successful terminate recommendation transitions a plan constituent to this state. Plan Execution should
transition plan constituent instances that have been started to this state before they are deleted.

9.1.21 Resource
Type: Class
Package: PlanExecution
A Resource is an abstraction of a physical entity that can be independently tasked to achieve an
objective.

Table 9.19 - Attributes of Class Resource
Attribute Notes
«key» id ResourceRef The unique identifier for the instance
 weight Quantifier [0..1] The current weight of the Resource
 entity EntityRef [0..1] A reference to the entity representing the resource in the

tactical picture
 extendedData AdditionalData Additional dynamic information related to the Resource
 readiness ReadinessDescriptor The extensible categorization of the readiness of

resource (the extent to which resource is ready and
available to be tasked to employ its capabilities).

 timeOfValidity DateTime The time for which the attributes of the Resource class
are valid.

 derivation Derivation A description of the means by which the data for the
Resource's attributes were derived. This includes
sensing, communication routes and human input.

9.1.22 ResourceMetaData
Type: Class
Package: PlanExecution

Table 9.20 - Attributes of Class ResourceMetaData
Attribute Notes
 distanceUnit DistanceUnit The unit used to defined the Resources distance

properties
 speedUnit SpeedUnit The unit used to define the Resource's speed properties
 derivation Derivation A description of the means by which the data for the

Resource Property's attributes were derived. This
includes sensing, communication routes and human
input.

9.1.23 ResourceProperties
Type: Class
Package: PlanExecution
The static, persistent properties of the resource that are not expected to change as a plan is proposed
and executed. Properties are specified in this data model that are expected to be particular pertinent to
the planning of operational utilization of resources. For instance those that provide constraints on
movement and demand conditions on the operating environment.

Table 9.21 - Attributes of Class ResourceProperties

31

Attribute Notes
 category ResourceCategory The extensible categorization of the type of resource
 extendedData AdditionalData Additional static information related to the Resource
«key» id ResourceRef The unique identifier for the instance

9.1.24 ResourceTasking
Type: Class
Package: PlanExecution
Resource Tasking is a Resource's contribution to a Task Objective

Table 9.22 - Attributes of Class ResourceTasking
Attribute Notes
 activity TaskingActivity An extensible categorization of the activity that the

resource has been tasked to undertake.

9.1.25 Space
Type: Class
Package: PlanExecution
A resource beyond the Earth's atmosphere

Table 9.23 - Attributes of Class Space
Attribute Notes
 orbit OrbitCategory The kind of orbit or trajectory that the space resource is

on

9.1.26 SubsurfaceVessel
Type: Class
Package: PlanExecution
A resource operating underwater

Table 9.24 - Attributes of Class SubsurfaceVessel
Attribute Notes
 maxOperatingDepth Distance [0..1] The operating limit of the subsurface vehicle with

respect to depth in the water

9.1.27 SurfaceVessel
Type: Class
Package: PlanExecution
A resource operating on water.

Table 9.25 - Attributes of Class SurfaceVessel
Attribute Notes
 maxSeaState Integer [0..1] The maximum sea state in which the Surface Vessel can

operate specified in terms of the World Meteorological
Organization (WMO) sea state code - range 0 .. 9.

9.1.28 SurveillanceCapability
Type: Class
Package: PlanExecution
A capability to sense or observe objects in the operational environment.

Table 9.26 - Attributes of Class SurveillanceCapability

32

Attribute Notes
 reportingRate Quantifier [0..1]
 operatingBand Descriptor A qualitative description of the band in which the

Surveillance Capability operates
 targetClassification ClassificationDescriptor [0..*] The categories of object which the Surveillance

Capability can detect
 capacity Integer [0..1] The number of objects that the Surveillance Capability

can continuously monitor.

9.1.29 TargetCapability
Type: Class
Package: PlanExecution

Table 9.27 - Attributes of Class TargetCapability
Attribute Notes
 classification ClassificationDescriptor A category of target for which the resource has a Fire

Capability
 successLikelihood Percentage The nominal likelihood that an engagement with the

specified target will be successful.

9.1.30 TaskObjective
Type: Class
Package: PlanExecution
A Task Objective represents the discrete intent with respect to a particular Entity from the tactical picture
within the context of an overall Plan

Table 9.28 - Attributes of Class TaskObjective
Attribute Notes
 entityObject EntityRef [0..1] The Entity from the tactical picture to which the intent

of the Task Objective is directed.
 category ObjectiveCategory An extensible categorization of the kind of tasking

objective set.
 detail Detail Extensible, additional system and/or domain specific

description of the tasking objective
 intent IntentDescriptor Extensible categorization of the kind of effect intended

with respect to the object of the tasking
 priority Percentage [0..1] Optional prioritization of task objectives. HIgher

precentages reflect higher priorities. The values for all
objectives for a plan are not required to sum to 100%.

9.1.31 TransmissionCapability
Type: Class
Package: PlanExecution
A capability for the electronic transmission of data (including voice and video).

Table 9.29 - Attributes of Class TransmissionCapability
Attribute Notes
 power Quantifier [0..1] The nominal output
 dataRate Quantifier [0..1] The rate at which the Transmission Capability can

transmit data
 operatingBand Descriptor A qualitative description of the band in which the

Transmission Capability operates

33

Attribute Notes
 protocol Descriptor [0..*] The transmission protocols supported by the capability.
 dataClassification Descriptor [0..*] The classification of information supported by the

capability

9.1.32 Vehicle
Type: Class
Package: PlanExecution
A resource with its own movement capabilities

Table 9.30 - Attributes of Class Vehicle
Attribute Notes
 maxSpeed Speed [0..1] The maximum speed that at which the vehicle can move
 cruisingSpeed Speed [0..1] The optimum speed, for planning purposes, at which the

vehicle transits between locations.
 turnRate Quantifier [0..1] The rate at which the vehicle can maneuver to change its

heading within the horizontal plane (for planning
purposes).

9.1.33 Vessel
Type: Class
Package: PlanExecution
A waterborne resource

Table 9.31 - Attributes of Class Vessel
Attribute Notes
 minOperatingDepth Distance [0..1] The vessel resource's operating limit with respect to

shallow water

9.1.34 AmmunitionCategory
Type: DataType
Package: PlanExecution
An abstraction of the categories of ammunition

9.1.35 CaliberCategory
Type: DataType
Package: PlanExecution
An abstraction of the categories of ammunition caliber.

9.1.36 CapabilityCategory
Type: DataType
Package: PlanExecution
An abstraction of the categories of capabilities

9.1.37 CapabilityRef
Type: DataType
Package: PlanExecution
A datatype with a platform specific mapping to represent a reference to a Capability. A reference is a
unique identifier within the scope of the Plan Execution component implementing this specification.

9.1.38 ConstituentRef

34

Type: DataType
Package: PlanExecution
A reference to a Plan Execution Constituent. A reference is a unique identifier within the scope of the
Plan Execution component implementing this specification.

9.1.39 DependencyCategory
Type: DataType
Package: PlanExecution
An abstraction of the categories of dependencies

9.1.40 DerivationDescriptor
Type: DataType
Package: PlanExecution
System specific description of the derivation of the associated data

9.1.41 ExtendedPlanStatus
Type: DataType
Package: PlanExecution
An abstraction of additional sub-categories of plan status; each sub-category logically maps to a specific
plan state

9.1.42 IntentDescriptor
Type: DataType
Package: PlanExecution
An abstraction of the categories of intent.

9.1.43 ObjectiveCategory
Type: DataType
Package: PlanExecution
An abstraction of the categories of task objectives.

9.1.44 OrbitCategory
Type: DataType
Package: PlanExecution
An abstraction of the categories of orbits in space

9.1.45 PlanExecutionConstituentState
Type: Enumeration
Package: PlanExecution
Representation of the state machine for plan constituents.

Table 9.32 - Attributes of Enumeration PlanExecutionConstituentState
Attribute Notes
«enum» PLANNED The plan constituent has been created but is not yet

being executed
«enum» EXECUTING The plan constituent has been started but terminated and

has been resumed after any pause.
«enum» PAUSED The plan constituent has been paused, but not yet

resumed after being executed.
«enum» TERMINATED The plan constituent has been terminated after being

executed.

35

9.1.46 PlanType
Type: DataType
Package: PlanExecution
An abstraction of the categories of plans.

9.1.47 ReadinessDescriptor
Type: DataType
Package: PlanExecution
An abstraction of the categories of readiness

9.1.48 ResourceCategory
Type: DataType
Package: PlanExecution
An abstraction of the categories of resources.

9.1.49 ResourceRef
Type: DataType
Package: PlanExecution
A datatype with a platform specific mapping to represent a reference to a Resource. A reference is a
unique identifier within the scope of the Plan Execution component implementing this specification.

9.1.50 SpecificationDescriptor
Type: DataType
Package: PlanExecution
An abstraction of the categories of specifications

9.1.51 TaskingActivity
Type: DataType
Package: PlanExecution
An abstraction of the categories of tasking activity a resource can undertake.

9.2 TacticalPicture
Parent Package: DataModel
The Tactical Picture package in the Data Model describes the particular usage of the TACSIT Data
Exchange (TEX) standard that satisfies this standard's tactical picture requirements.

EntityPayload::
EntityList

GroupPayload::
GroupList

LiveEntityList SimulatedEntityList LiveGroupList SimulatedGroupList

36

Figure 9.14 Live Simulated (Class diagram)
This diagram shows how the live and simulated versions of the tactical picture are represented using
classes from the TACSIT Data Exchange (TEX) specification.

Figure 9.15 Track Categorization (Class diagram)

Figure 9.16 Tracks (Class diagram)
This diagram shows how system tracks and sensor tracks are represented using a reference to the Entity
class from the TACSIT Data Exchange (TEX) specification.

9.2.1 LiveEntityList
Type: Class
Package: TacticalPicture
The list of entities contributing to the live tactical picture (i.e. relating to the real operational environment)

9.2.2 LiveGroupList
Type: Class
Package: TacticalPicture
The list of groups contributing to the live tactical picture (i.e. relating to the real operational environment)

9.2.3 SimulatedEntityList
Type: Class
Package: TacticalPicture
The list of entities contributing to the simulated tactical picture (i.e. relating to a simulation of the
operational environment)

9.2.4 SimulatedGroupList
Type: Class
Package: TacticalPicture
The list of groups contributing to the simulated tactical picture (i.e. relating to a simulation of the
operational environment)

«Extensible Enumeration»
ClassificationDescriptor

«Extensible Enumeration»
IdentityDescriptor

«Extensible Enumeration»
ActivityDescriptor

«Extensible Enumeration»
EntityStatusDescriptor

«dataType»
SystemTrackRef

«dataType»
EntityRef

(from EntityPayload)

«dataType»
SensorTrackRef

37

9.2.5 ActivityDescriptor
Type: DataType
Package: TacticalPicture
Extensible definition of a track's activity.

9.2.6 ClassificationDescriptor
Type: DataType
Package: TacticalPicture
Extensible definition of a track's classification.

9.2.7 EntityStatusDescriptor
Type: DataType
Package: TacticalPicture
Extensible definition of an enitity's status.

9.2.8 IdentityDescriptor
Type: DataType
Package: TacticalPicture
Extensible definition of a track's identity.

9.2.9 SensorTrackRef
Type: DataType
Package: TacticalPicture
A reference to a sensor track - i.e. a track object from the perspective of a sensor subsystem

9.2.10 SystemTrackRef
Type: DataType
Package: TacticalPicture
A reference to a system track - i.e. a track object from the perspective of the compiled tactical picture of a
C2 (Command and Control) system.

10 ServiceModel
Parent Package: tactical decision aids
The Tactical Decision Aids Service Model defines the operations that enable the flow of information from
a Picture Management and a Plan Execution component to Tactical Decision Aid Components as well as
the receipt of recommendations from Tactical Decision Aid components by the Tactical Picture and Plan
Execution components.
The connection between components is initiated by the Tactical Decision Aid components using a PSM
method. These components may require security permissions to do, in which case these are
authenticated by a PSM protocol.
Use of a Data Sink Listener to subscribe to a series of change events requires a long-lived connection
between the Tactical Decision Aid and the Tactical Picture or Plan Execution component providing the
Data Sink interface. Other interface operations are self-contained requests initiated by the Tactical
Decision Aid component and do not require long-lived connections.
Tactical Decision Aids components make recommendations based on their own internal business logic,
information they have access to by other means (including input from system users) and information
received from the Tactical Picture and Plan Execution components through the Data Sink interfaces.

38

Figure 10.17 Recommendations (Interaction diagram)

Figure 10.18 Recommendations Service Mapping (Component diagram)

Tactical Decision Aid Tactical Picture Plan Execution

loop

[each applicable operation]

loop

[each applicable operation]

The PSM realization of RecommendOperationKind includes
values for each operation on the interfaces in the
PlanExecutionRecommendations and
TacticalPictureRecommendations packages. The Tactical
Decision Aid iterates over each of the operations in the
TacticalPictureRecommendations package and then
PlanExecutionRecommendations package on which it is
dependent to establish that the TacticalPicture and
PlanExecution components satisfy these dependencies.

The Tactical decision aid reads and parses the resource
returned by getSupportMapping to verify that the
TacticalPicture and PlanExecution components support
extension categories required by its business logic.

getSupportMapping(): URL

isSupported(RecommendationOperationKind): Boolean

getSupportMapping(): URL

isSupported(RecommendationOperationKind): Boolean

Tactical PicturePlan Execution

«interface»
Recommendations::Configuration

+ getSupportMapping(): URL
+ isSupported(RecommendationOperationKind): Boolean

Tactical Decision Aid

«ResponseInterface»
Recommendations::Response

+ recommendationProcessed(ResponseData, Outcome, ResponseExplanation)

39

Figure 10.19 ServiceModel (Package diagram)

Figure 10.20 ServiceModel (Component diagram)

10.1 Plan Execution
Type: Component
Package: ServiceModel
Abstract component representing components with the functionality to manage and monitor the status of
plans as they are executed. Plan Execution components receive information from system users, tactical
data-links, databases and other components through interfaces outside of the scope of this specification.
Tactical Decision Aids receive information about all plans; the plans they have initiated, plans from other
Tactical Decision Aids and plans originating from outside the scope of this specification.

10.2 Tactical Decision Aid
Type: Component
Package: ServiceModel
Abstract component representing components that provide the functionality to assist with the making of
tactical decisions

PlanExecutionInformation

+ PlanDataSink

+ ResourceDataSink

TacticalPictureInformation PlanExecutionRecommendations

+ PlanExecutionAction

+ PlanExecutionControl

+ ExtendedPlanExecutionAction

+ ExtendedPlanExecutionControl

TacticalPictureRecommendations

+ Categorization

+ ExtendedCategorization

+ PictureManagement

+ ExtendedPictureManagement

Tactical Picture
Information is satisfied by
TACSIT Data Exchange
services.

Tactical Decision Aid

Response

EntityChangeSinkListener

GroupChangeSinkListener

PlanSinkListener

ResourceSinkListener

Plan Execution

Configuration

PlanDataSink

ResourceDataSink

PlanExecutionAction

ExtendedPlanExecutionAction

PlanExecutionControl

ExtendedPlanExecutionControl

Tactical Picture

Configuration

DataSink

Categorization

ExtendedCategorization

PictureManagement

ExtendedPictureManagement

Multiple Tactical Decision Aid
Components may exist in a system.

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

40

10.3 Tactical Picture
Type: Component
Package: ServiceModel
Abstract component representing components that provide the functionality of compiling and managing
the tactical picture. Tactical Picture components receive information from sensors, system users and
other components through interfaces outside of the scope of this specification.

10.4 PlanExecutionInformation
Parent Package: ServiceModel
The interfaces to allow Tactical Decision Aids to receive Plan Execution Information. This is achieved
through two instances of the Data Sink pattern. One enables Tactical Decision Aids to receive a current
view and then changes to Plan Execution Constituents (Plans and their sub-components Task Objectives
and Resource Taskings). The other provides an equivalent service for Resources and their composite
Capabilities and Dependencies.
Navigability of associations between classes in the Plan Execution data model is facilitated by id
attributes with a key stereotype. Navigation of the associations between objects delivered by the Data
Sink services is achieved by a PSM specific methods using the id key attributes.

10.4.1 PlanDataSink
Parent Package: PlanExecutionInformation
The interfaces to allow Tactical Decision Aids to receive Plan Information

Figure 10.21 PlanDataSink (Class diagram)

«DataSink»
PlanDataSink

+ addListener(listener: PlanSinkListener, id: ConstituentRef)
+ addListener(listener: PlanSinkListener)
+ addListener(listener: PlanSinkListener, filter: PlanQuery)
+ getSet(): Plan[]
+ getSet(filter: PlanQuery): Plan[]
+ getInstance(id: ConstituentRef): Plan
+ removeListener(listener: PlanSinkListener)

«ChangeEventList»
PlanChangedEventList

«ChangeEvent»
PlanChangedEvent

«ChangeSinkListener»
PlanSinkListener

+ dataChanged(eventList: PlanChangedEventList)

«FilterInterface»
PlanQuery

+ satisfies(plan: PlanExecutionConstituent): Boolean

«Reference»
ConstituentRef

(from PlanExecution)

PlanExecution::PlanExecutionConstituent

+ state: PlanExecutionConstituentState
+ extendedStatus: ExtendedPlanStatus
+ timeSpan: Period [0..1]
+ originator: URI
+ progress: Percentage [0..1]

«key»
+ id: ConstituentRef

DataSink::ItemChangedEvent

+ timeStamp: DateTime
+ sequenceNumber: Integer
+ isCreate: Boolean

+data 0..1

+deleted

0..1

+item

0..*

«Reference Relation»

41

Figure 10.22 PlanDataSink - All Plan - Polling (Interaction diagram)
Use of the PlanDataSink interface to get a regular view of all plans. To receive a subset of plans the
getSet with a PlanQuery parameter operation is used.

Figure 10.23 PlanDataSink - All Plans - On Change (Interaction diagram)

Plan Execution

(from ServiceModel)

Tactical Decision Aid

(from ServiceModel)

loop

[every polling interval]

getSet(): Plan

Tactical Decision Aid

(from ServiceModel)

Plan Execution

(from ServiceModel)

loop

[for each set of changes]

dataChanged(PlanChangedEventList)

getSet(): Plan

addListener(PlanSinkListener)

42

Use of the PlanDataSink interface to get an initial view of all plans and then receive updates on changes
for an on-change style of use of the interface. The listener interface is added first so that events are not
missed. In this scenario it is preferable to process no-change events than to miss events.

Figure 10.24 PlanDataSink - Filtered Plans (Interaction diagram)
Use of the PlanDataSink interface to get an initial view of a subset of plans and then receive updates on
changes.

Plan Execution

(from ServiceModel)

Tactical Decision Aid

(from ServiceModel)

loop

[For each plan]

loop

[for each plan]

loop

[for each set of changes]

dataChanged(PlanChangedEventList)

satisfies
(PlanExecutionConstituent):

Boolean

addListener(PlanSinkListener, PlanQuery)

getSet(PlanQuery): Plan

return()

satisfies
(PlanExecutionConstituent):

Boolean

43

Figure 10.25 PlanDataSink - Single Plan (Interaction diagram)
Use of the PlanDataSink interface to get an initial view of a specific plan and then receive updates on
changes.

Figure 10.26 PlanDataSink Realization (Class diagram)

10.4.1.1 PlanChangedEvent
Type: Class
Package: PlanDataSink
Represents information about a change to a Plan

Plan Execution

(from ServiceModel)

Tactical Decision Aid

(from ServiceModel)

loop

[for each change]

addListener(PlanSinkListener, ConstituentRef)

removeListener(PlanSinkListener)

getInstance(ConstituentRef):
Plan

dataChanged(PlanChangedEventList)

«DataSink»
PlanDataSink

+ addListener(PlanSinkListener, ConstituentRef)
+ addListener(PlanSinkListener, PlanQuery)
+ addListener(PlanSinkListener)
+ getSet(): Plan[]
+ getSet(PlanQuery): Plan[]
+ getInstance(ConstituentRef): Plan
+ removeListener(PlanSinkListener)

«FilterInterface»
PlanQuery

+ satisfies(PlanExecutionConstituent): Boolean

«ChangeSinkListener»
PlanSinkListener

+ dataChanged(PlanChangedEventList)

«ChangeSinkListener»
DataSink::DataSinkListener

+ dataChanged(DataChangedEventList)

«DataSink»
DataSink::DataSink

+ addListener(DataSinkListener, DataRef)
+ addListener(DataSinkListener)
+ addListener(DataSinkListener, DataQuery)
+ getSet(): Data[]
+ getSet(DataQuery): Data[]
+ getInstance(DataRef): Data
+ removeListener(DataSinkListener)

«FilterInterface»
DataSink::DataQuery

+ satisfies(Data): Boolean

«ChangeEvent...
PlanChangedEventList

ItemChangedEvent

«ChangeEvent»
PlanChangedEvent

PlanExecution::PlanExecutionConstituent

+ state: PlanExecutionConstituentState
+ extendedStatus: ExtendedPlanStatus
+ timeSpan: Period [0..1]
+ originator: URI
+ progress: Percentage [0..1]

«key»
+ id: ConstituentRef

DataSink::Data

«key»
+ id: DataRef

ItemChangedEvent

«ChangeEvent»
DataSink::

DataChangedEvent

«ChangeEvent...
DataSink::

DataChangedEventList

44

10.4.1.2 PlanChangedEventList
Type: Class
Package: PlanDataSink
Represents the list of changes to Plans since the last event notified to that instance of the listener.
Multiple changes may be consolidated into a single callback to a listener on the interface

10.4.1.3 PlanDataSink
Type: Interface
Package: PlanDataSink
This interface contains operations that give a Tactical Decision Aid access to information about the
execution of plan constituents. A Tactical Decision Aid can add and remove listeners as well as reading
the information about individual plan constituents or all or a filtered subset of plan constituents.

Table 10.1 - Methods of Interface PlanDataSink
Method Notes Parameters
addListener() Operation to add a listener for

callbacks relating to a single plan
constituent

PlanSinkListener listener The
listener object to receive the callback
ConstituentRef id A reference to the
specific plan instance of interest

addListener() Operation to add a listener for
callbacks relating to all plan
constituents that satisfy the Query
(including plans created or meeting
the query subsequently)

PlanSinkListener listener The
listener object to receive the callback
PlanQuery filter The object to filter
changes to plans

addListener() Operation to add a listener for
callbacks relating to all plan
constituents, including plan
constituents subsequently created.

PlanSinkListener listener The
listener object to receive the callback

getSet() Operation to obtain the information
relating to all plan constituents

getSet() Operation to obtain the information
relating to all the plan constituents
satisfying the query

PlanQuery filter The object to filter
plan instances

getInstance() Operation to obtain the information
relating to the plan constituent
reference

ConstituentRef id A reference to the
specific plan instance of interest

removeListener() Operation to remove a listener PlanSinkListener listener The
listener object to no longer receive
callbacks

10.4.1.4 PlanQuery
Type: Interface
Package: PlanDataSink
This is an interface through which a client can define Queries on plan constituents so as to filter the
information returned. Classes implementing the interface provide means to set the query parameters
(such as a constructor).

45

Table 10.2 - Methods of Interface PlanQuery
Method Notes Parameters
satisfies() This operation is the client's

implementation of a filtering query
for plan constituents

PlanExecutionConstituent plan The
plan to which to apply the filter

10.4.1.5 PlanSinkListener
Type: Interface
Package: PlanDataSink
This is an interface for clients to implement callback to receive information on changes to plan
constituents.

Table 10.3 - Methods of Interface PlanSinkListener
Method Notes Parameters
dataChanged() This operation is implemented by the

client to process the data changed
callback. Multiple changes can be
notified through a single invocation.

PlanChangedEventList eventList
The list of plan changes recevied by
the listener

10.4.2 ResourceDataSink
Parent Package: PlanExecutionInformation
The interfaces to allow Tactical Decision Aids to receive Resource Information

Figure 10.27 ResourceDataSink (Class diagram)

«ChangeSinkListener»
ResourceSinkListener

+ dataChanged(eventList: ResourceChangedEventList)

«ChangeEventList»
ResourceChangedEventList

«ChangeEvent»
ResourceChangedEvent

«Reference»
ResourceRef

(from PlanExecution)

PlanExecution::Resource

+ weight: Quantifier [0..1]
+ entity: EntityRef [0..1]
+ extendedData: AdditionalData
+ readiness: ReadinessDescriptor
+ timeOfValidity: DateTime
+ derivation: Derivation

«key»
+ id: ResourceRef

«FilterInterface»
ResourceQuery

+ satisfies(resource: Resource): Boolean

«DataSink»
ResourceDataSink

+ addListener(listener: ResourceSinkListener)
+ addListener(listener: ResourceSinkListener, id: ResourceRef)
+ getSet(): Resource[]
+ addListener(listener: ResourceSinkListener, filter: ResourceQuery)
+ getSet(filter: ResourceQuery): Resource[]
+ removeListener(listener: ResourceSinkListener)
+ getInstance(id: ResourceRef): Resource

DataSink::ItemChangedEvent

+ timeStamp: DateTime
+ sequenceNumber: Integer
+ isCreate: Boolean

«Reference Relation»

+item

0..*

+deleted

0..1

+data 0..1

46

Figure 10.28 ResourceDataSink - All Resources - On Change (Interaction diagram)
Use of the ResourceDataSink interface to get an initial view of all resources and then receive updates on
changes for an on-change style of use of the interface. The listener interface is added first so that events
are not missed. In this scenario it is preferable to process no-change events than to miss events.

Figure 10.29 ResourceDataSink - All Resources - Polling (Interaction diagram)

Plan Execution

(from ServiceModel)

Tactical Decision Aid

(from ServiceModel)

loop

[for each set of changes]

addListener(ResourceSinkListener)

dataChanged(ResourceChangedEventList)

getSet(): Resource

Plan Execution

(from ServiceModel)

Tactical Decision Aid

(from ServiceModel)

loop

[every polling interval]

getSet(): Resource

47

Figure 10.30 ResourceDataSink - Filtered Resources (Interaction diagram)
Use of the ResourceDataSink interface to get an initial view of a subset of resources and then receive
updates on changes.

Figure 10.31 ResourceDataSink - Single Resource (Interaction diagram)
Use of the ResourceDataSink interface to get an initial view of a specific resource and then receive
updates on changes.

Plan Execution

(from ServiceModel)

Tactical Decision Aid

(from ServiceModel)

loop

[for each resource]

loop

[for each set of changes]

loop

[for each resource]

getSet(ResourceQuery): Resource

dataChanged(ResourceChangedEventList)

return()

addListener(ResourceSinkListener, ResourceQuery)

satisfies(Resource): Boolean

satisfies(Resource): Boolean

Plan Execution

(from ServiceModel)

Tactical Decision Aid

(from ServiceModel)

loop

[for each change]

addListener(ResourceSinkListener)

removeListener(ResourceSinkListener)

getInstance(ResourceRef): Resource

dataChanged(ResourceChangedEventList)

48

Figure 10.32 ResourceDataSink Realization (Class diagram)

10.4.2.1 ResourceChangedEvent
Type: Class
Package: ResourceDataSink
Represents information about a change to a Resource

10.4.2.2 ResourceChangedEventList
Type: Class
Package: ResourceDataSink
Represents the list of changes to Resources since the last event notified to that instance of the listener.
Multiple changes may be consolidated into a single callback to a listener on the interface

10.4.2.3 ResourceDataSink
Type: Interface
Package: ResourceDataSink
This interface contains operations that give a Tactical Decision Aid access to information about resources
that can execute plans. A Tactical Decision Aid can add and remove listeners as well as reading the
information about individual resources or all or a filtered subset of resources.

Table 10.4 - Methods of Interface ResourceDataSink
Method Notes Parameters
addListener() Operation to add a listener for

callbacks relating to a single
Resource (including Resources
created subsequently)

ResourceSinkListener listener The
listener object to receive the callback

addListener() Operation to add a listener for
callbacks relating to all Resources

ResourceSinkListener listener The
listener object to receive the callback
ResourceRef id A reference to the
specific resource instance of interest

«ChangeSinkListener»
ResourceSinkListener

+ dataChanged(ResourceChangedEventList)

ItemChangedEvent

«ChangeEvent»
ResourceChangedEvent

«ChangeEventList»
ResourceChangedEventList

«DataSink»
ResourceDataSink

+ addListener(ResourceSinkListener)
+ addListener(ResourceSinkListener, ResourceRef)
+ getSet(): Resource[]
+ addListener(ResourceSinkListener, ResourceQuery)
+ getSet(ResourceQuery): Resource[]
+ removeListener(ResourceSinkListener)
+ getInstance(ResourceRef): Resource

«FilterInterface»
ResourceQuery

+ satisfies(Resource): Boolean

PlanExecution::Resource

+ weight: Quantifier [0..1]
+ entity: EntityRef [0..1]
+ extendedData: AdditionalData
+ readiness: ReadinessDescriptor
+ timeOfValidity: DateTime
+ derivation: Derivation

«key»
+ id: ResourceRef

«ChangeSinkListener»
DataSink::DataSinkListener

+ dataChanged(DataChangedEventList)

«DataSink»
DataSink::DataSink

+ addListener(DataSinkListener, DataRef)
+ addListener(DataSinkListener)
+ addListener(DataSinkListener, DataQuery)
+ getSet(): Data[]
+ getSet(DataQuery): Data[]
+ getInstance(DataRef): Data
+ removeListener(DataSinkListener)

«FilterInterface»
DataSink::DataQuery

+ satisfies(Data): Boolean

DataSink::Data

«key»
+ id: DataRef

ItemChangedEvent

«ChangeEvent»
DataSink::

DataChangedEvent

«ChangeEvent...
DataSink::

DataChangedEventList

49

getSet() Operation to obtain the information

relating to all the Resources

addListener() Operation to add a listener for
callbacks relating to all Resources
that satisfy the Query (including
Resources created or meeting the
filter subsequently)

ResourceSinkListener listener The
listener object to receive the callback
ResourceQuery filter The object to
filter changes to resources

getSet() Operation to obtain the information
relating to all the Resources
satisfying the query

ResourceQuery filter The object to
filter resource instances

removeListener() Operation to remove a listener ResourceSinkListener listener The
listener object to no longer receive
callbacks

getInstance() Operation to obtain the information
relating to the Resource reference

ResourceRef id A reference to the
specific resource instance of interest

10.4.2.4 ResourceQuery
Type: Interface
Package: ResourceDataSink
This is an interface through which a client can define Queries on Resources so as to filter the information
returned. Classes implementing the interface provide means to set the query parameters (such as a
constructor).

Table 10.5 - Methods of Interface ResourceQuery
Method Notes Parameters
satisfies() This operation is the client's

implementation of a filtering query
for Resources

Resource resource The resource to
which to apply the filter

10.4.2.5 ResourceSinkListener
Type: Interface
Package: ResourceDataSink
This is an interface for clients to implement callback to receive information on changes to Resources

Table 10.6 - Methods of Interface ResourceSinkListener
Method Notes Parameters
dataChanged() This operation is implemented by the

client to process the dataChanged
callback. Multiple changes can be
notified through a single invocation.

ResourceChangedEventList
eventList The list of resource
changes recevied by the listener

10.5 PlanExecutionRecommendations
Parent Package: ServiceModel

50

Figure 10.33 PlanExecutionInformation Service Mapping (Component diagram)

Figure 10.34 ActionControlRecommendation (Class diagram)

ServiceModel::
Tactical Decision Aid

ServiceModel::Plan
Execution

«DataSink»
ResourceDataSink::ResourceDataSink

+ addListener(ResourceSinkListener)
+ addListener(ResourceSinkListener, ResourceRef)
+ getSet(): Resource[]
+ addListener(ResourceSinkListener, ResourceQuery)
+ getSet(ResourceQuery): Resource[]
+ removeListener(ResourceSinkListener)
+ getInstance(ResourceRef): Resource

«FilterInterface»
ResourceDataSink::ResourceQuery

+ satisfies(Resource): Boolean

«ChangeSinkListener»
ResourceDataSink::ResourceSinkListener

+ dataChanged(ResourceChangedEventList)

«DataSink»
PlanDataSink::PlanDataSink

+ addListener(PlanSinkListener, ConstituentRef)
+ addListener(PlanSinkListener)
+ addListener(PlanSinkListener, PlanQuery)
+ getSet(): Plan[]
+ getSet(PlanQuery): Plan[]
+ getInstance(ConstituentRef): Plan
+ removeListener(PlanSinkListener)

«FilterInterface»
PlanDataSink::PlanQuery

+ satisfies(PlanExecutionConstituent): Boolean

«ChangeSinkListener»
PlanDataSink::PlanSinkListener

+ dataChanged(PlanChangedEventList)

«interface»
PlanExecutionControl

+ start(ConstituentRef, RecommendationMetadata)
+ pause(ConstituentRef, RecommendationMetadata)
+ resume(ConstituentRef, RecommendationMetadata)
+ terminate(ConstituentRef, RecommendationMetadata)

«interface»
ExtendedPlanExecutionControl

+ startAt(ConstituentRef, DateTime, RecommendationMetadata)
+ pauseAt(ConstituentRef, DateTime, RecommendationMetadata)
+ resumeAt(ConstituentRef, DateTime, RecommendationMetadata)
+ terminateAt(ConstituentRef, DateTime, RecommendationMetadata)

51

Figure 10.35 ActionRecommendation (Class diagram)

Figure 10.36 PlanExecutionRecommendations (Interaction diagram)
Use of the PlanExecutionAction and PlanExecutionControl interfaces to recommend and then control the
execution of a plan constituent. The ConstituentRef references the PlanExecutionConstituent. In this

«interface»
PlanExecutionAction

+ recommendConstituent(PlanExecutionConstituent, RecommendationMetadata)

«interface»
ExtendedPlanExecutionAction

+ updateConstituent(PlanExecutionConstituent, RecommendationMetadata)
+ updateStatus(ConstituentRef, QuantityDescriptor, RecommendationMetadata)
+ updateTimeSpan(ConstituentRef, Period, RecommendationMetadata)
+ updateProgress(ConstituentRef, Percentage, RecommendationMetadata)

Plan Execution

(from ServiceModel)

Tactical Decision Aid

(from ServiceModel)

loop

[for each pause required]

resume(ConstituentRef, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, explanation)

recommendationProcessed(response, ACCEPTED, explanation)

pause(ConstituentRef, RecommendationMetadata)

recommendConstituent(PlanExecutionConstituent, RecommendationMetadata)

terminate(ConstituentRef, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, explanation)

start(ConstituentRef, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, explanation)

recommendationProcessed(response, ACCEPTED, explanation)

52

scenario all recommendations are successfully accepted. It is valid for a Tactical Decision Aid to make
additional recommendations before a recommendationProcessed response is received.

Figure 10.37 PlanExecutionRecommendations - Alternate Flows (Interaction diagram)
Use of the PlanExecutionAction and PlanExecutionControl interfaces to recommend and then control the
execution of a plan constituent. In this set of scenarios not all recommendations are successfully
accepted.

Plan Execution

(from ServiceModel)

Tactical Decision Aid

(from ServiceModel)

alt Processing Outcome

[Accepted]

[Rejected]

[Deferred]

alt Deferred Processing Outcome

[Accepted]

[Rejected]

Outcome maybe Accepted, Rejected or
Deferred as above

The error code provides the reason for
rejection such as the referenced plan
not being in existence, it not being
possible to make the recommended
change in the current system state or it
being rejected or otherwise outside the
capabilities of the component required
to enact it

recommendationProcessed(response, REJECTED, error code)

recommendationProcessed(response, REJECTED, error code)

start(ConstituentRef, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, null explanation)

recommendationProcessed(response, ACCEPTED, null explanation)

recommendConstituent(PlanExecutionConstituent, RecommendationMetadata)

recommendationProcessed(ResponseData, Outcome, ResponseExplanation)

recommendationProcessed(response, DEFERRED, deferral explanation)

53

Figure 10.38 ExtendedPlanExecutionRecommendations (Interaction diagram)
Use of the ExtendedPlanExecutionAction and ExtendedPlanExecutionControl interfaces to recommend
update of the content, timing, status and progress or a plan constituent as well as to control the its future
execution. It is valid for the recommendations in this scenario to be made in any order, omitted or
superceded with subsequent recommendations. In this scenario all recommendations are successfully
accepted. It is valid for a Tactical Decision Aid to make additional recommendations before a
recommendationProcessed response is received.

Plan Execution

(from ServiceModel)

Tactical Decision Aid

(from ServiceModel)

alt

[update]

[update time span]

[change start time]

[update progress]

[change or add a pause time]

[change or add a resume time]

[update status]

[change end time]

Operations in the
ExtendedPlanExecutionAction and
ExtendedPlanExecutionControl interfaces
may be executed in any order.

recommendationProcessed(response, ACCEPTED, explanation)

recommendationProcessed(response, ACCEPTED, explanation)

recommendationProcessed(response, ACCEPTED, explanation)

recommendationProcessed(response, ACCEPTED, explanation)

updateStatus(ConstituentRef, QuantityDescriptor, RecommendationMetadata)

startAt(ConstituentRef, DateTime, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, explanation)

updateConstituent(PlanExecutionConstituent, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, explanation)

pauseAt(ConstituentRef, DateTime, RecommendationMetadata)

resumeAt(ConstituentRef, DateTime, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, explanation)

updateProgress(ConstituentRef, Percentage, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, explanation)

terminateAt(ConstituentRef, DateTime, RecommendationMetadata)

updateTimeSpan(ConstituentRef, Period, RecommendationMetadata)

54

Figure 10.39 PlanExecutionRecommendations Service Mapping (Component diagram)

10.5.1 PlanExecutionAction
Type: Interface
Package: PlanExecutionRecommendations
This interface allows client tactical decision aids to make recommendations to enact tactical Plans.
Referenced instances must exist. Therefore decision aids should first create any referenced entities, then
recommend plan(s), then any sub-plans, then contributing task objectives, then implementing resource
tasking recommendations.
All Recommendation operations on the PlanExecutionAction interface receive a PlanExecutionResponse
instance in the callback.
It is invalid to recommend a constituent that already exists. That is, a PlanExecutionConstituent is
returned for the ConstituentRef through the PlanDataSink interface.

ReferencedClass = Plan

Table 10.7 - Methods of Interface PlanExecutionAction
Method Notes Parameters
recommendConstituent() This is the operation to invoke to

recommend a Plan Execution
Constituent specialization such as a
Plan, TaskObjective or
ResourceTasking.

PlanExecutionConstituent plan The
constituent of plan execution being
recommended
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

ServiceModel::Plan
Execution

«interface»
ExtendedPlanExecutionControl

+ startAt(ConstituentRef, DateTime, RecommendationMetadata)
+ pauseAt(ConstituentRef, DateTime, RecommendationMetadata)
+ resumeAt(ConstituentRef, DateTime, RecommendationMetadata)
+ terminateAt(ConstituentRef, DateTime, RecommendationMetadata)

«interface»
PlanExecutionAction

+ recommendConstituent(PlanExecutionConstituent, RecommendationMetadata)

«interface»
PlanExecutionControl

+ start(ConstituentRef, RecommendationMetadata)
+ pause(ConstituentRef, RecommendationMetadata)
+ resume(ConstituentRef, RecommendationMetadata)
+ terminate(ConstituentRef, RecommendationMetadata)

«interface»
ExtendedPlanExecutionAction

+ updateConstituent(PlanExecutionConstituent, RecommendationMetadata)
+ updateStatus(ConstituentRef, QuantityDescriptor, RecommendationMetadata)
+ updateTimeSpan(ConstituentRef, Period, RecommendationMetadata)
+ updateProgress(ConstituentRef, Percentage, RecommendationMetadata)

«interface»
Recommendations::Recommendation

+ recommendProperty(Descriptor, DataRef, RecommendationMetadata)
+ recommendAction(DataRef, RecommendationMetadata)
+ recommendActionAt(DataRef, DateTime, RecommendationMetadata)
+ recommendRelationship(DataRef, DataRef, RecommendationMetadata)
+ recommendEndRelationship(DataRef, DataRef, RecommendationMetadata)
+ recommendItem(Data, RecommendationMetadata)

55

10.5.1.1 MessageEnd
Type: MessageEnd
Package: PlanExecutionRecommendations

10.5.1.2 MessageEnd
Type: MessageEnd
Package: PlanExecutionRecommendations

10.5.1.3 MessageEnd
Type: MessageEnd
Package: PlanExecutionRecommendations

10.5.1.4 MessageEnd
Type: MessageEnd
Package: PlanExecutionRecommendations

10.5.2 PlanExecutionControl
Type: Interface
Package: PlanExecutionRecommendations
This interface allows client tactical decision aids to make recommendations to control the execution of
tactical plan-constituents. All Recommendation operations on the PlanExecutionControl interface receive
a PlanExecutionResponse instance in the callback.
It is invalid to recommend a change to the execution of a constituent that does not exist. That is, no
PlanExecutionConstituent is returned for the ConstituentRef through the PlanDataSink interface.

Table 10.8 - Methods of Interface PlanExecutionControl
Method Notes Parameters
start() This is the operation to invoke to

recommend that a Plan Execution
Constituent specialization such as a
Plan, TaskObjective or
ResourceTasking is started
immediately. The constituent must
not have previously been started.

ConstituentRef id A reference to the
constituent of plan execution for
which the action is being
recommended
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

pause() This is the operation to invoke to
recommend that a Plan Execution
Constituent specialization such as a
Plan, TaskObjective or
ResourceTasking is paused
immediately.

ConstituentRef id The list of plan
changes recevied by the listener
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

56

resume() This is the operation to invoke to
recommend that a Plan Execution
Constituent specialization such as a
Plan, TaskObjective or
ResourceTasking is resumed
immediately. The constituent must
have previously been paused.

ConstituentRef id The list of plan
changes recevied by the listener
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

terminate() This is the operation to invoke to
recommend that a Plan Execution
Constituent specialization such as a
Plan, TaskObjective or
ResourceTasking is terminated
immediately. The constituent must
have previously been started.

ConstituentRef id The list of plan
changes recevied by the listener
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

10.5.3 ExtendedPlanExecutionAction
Type: Interface
Package: PlanExecutionRecommendations
This interface allows client tactical decision aids to make recommendations to update tactical Plans in
whole or part.
All Recommendation operations on the ExtendedPlanAction interface receive a PlanResponse instance
in the callback.
It is invalid to recommend an update to constituent that does not exist. That is, no
PlanExecutionConstituent is returned for the ConstituentRef through the PlanDataSink interface.

Table 10.9 - Methods of Interface ExtendedPlanExecutionAction
Method Notes Parameters
updateConstituent() This is the operation to invoke to

recommend the update of a whole
Plan Execution Constituent
specialization such as a Plan,
TaskObjective or ResourceTasking.

PlanExecutionConstituent
planExecutionConstituent The new
values recommended for the plan
execution constituent.
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

updateStatus() This is the operation to invoke to
recommend a change of a status to a
Plan Execution Constituent
specialization such as a Plan,
TaskObjective or ResourceTasking.
It is invalid to recommend an update
to constituent that does not exist.
That is, there is no instance within
the Plan Execution component with
the specified id.
.

ConstituentRef id A reference to the
plan constituent
QuantityDescriptor status The status
value to update to
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

updateTimeSpan() This is the operation to invoke to
recommend a change of a time span
for a Plan Execution Constituent
specialization such as a Plan,
TaskObjective or ResourceTasking.
It is invalid to recommend an update

ConstituentRef id A reference to the
plan constituent
Period timeSpan The time span
value to update to
RecommendationMetadata
recommendation Qualifying

57

to constituent that does not exist.
That is, there is no instance within
the Plan Execution component with
the specified id.
.

information relating to the
recommendation

updateProgress() This is the operation to invoke to
recommend an update to the progress
achieved for a Plan Execution
Constituent specialization such as a
Plan, TaskObjective or
ResourceTasking. It is invalid to
recommend an update to constituent
that does not exist. That is, there is
no instance within the Plan
Execution component with the
specified id.

ConstituentRef id A reference to the
plan constituent
Percentage progress The progress
value to update to
RecommendationMetadata
recommendation Metadata
pertaining to the recommendation

10.5.4 ExtendedPlanExecutionControl
Type: Interface
Package: PlanExecutionRecommendations
This interface allows client tactical decision aids to make recommendations to control the future execution
of tactical plan-constituents. All Recommendation operations on the ExtendedPlanExecutionControl
interface receive a PlanExecutionResponse instance in the callback.
It is invalid to recommend a change to the execution of a constituent that does not exist. That is, no
PlanExecutionConstituent is returned for the ConstituentRef through the PlanDataSink interface.

Table 10.10 - Methods of Interface ExtendedPlanExecutionControl
Method Notes Parameters
startAt() This is the operation to invoke to

recommend that a Plan Execution
Constituent specialization such as a
Plan, TaskObjective or
ResourceTasking is started at a
future time. This must be before the
end of it's time-span

ConstituentRef id A reference to the
constituent of plan execution for
which the action is being
recommended
DateTime time The time at which it
is recommended to start executing
the planning constituent
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

pauseAt() This is the operation to invoke to
recommend that a Plan Execution
Constituent specialization such as a
Plan, TaskObjective or
ResourceTasking is paused at a
future time. This must be within it's
time-span.

ConstituentRef id A reference to the
constituent of plan execution for
which the action is being
recommended
DateTime time The time at which it
is recommended to pause execution
of the planning constituent
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

58

resumeAt() This is the operation to invoke to
recommend that a Plan Execution
Constituent specialization such as a
Plan, TaskObjective or
ResourceTasking is resumed at a
future time. This must be within it's
time-span.

ConstituentRef id A reference to the
constituent of plan execution for
which the action is being
recommended
DateTime time The time at which it
is recommended to resume execution
of the planning constituent
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

terminateAt() This is the operation to invoke to
recommend that a Plan Execution
Constituent specialization such as a
Plan, TaskObjective or
ResourceTasking is terminated at a
future time. This must be after the
start of it's time-span.

ConstituentRef id A reference to the
constituent of plan execution for
which the action is being
recommended
DateTime time The time at which it
is recommended to terminate the
execution of the planning constituent
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

10.6 TacticalPictureInformation
Parent Package: ServiceModel
Interfaces to allow Tactical Decision Aids to receive tactical picture information are contained in the
TACSIT Data Exchange specification

Figure 10.40 TacticalPictureInformation (Class diagram)
TacticalPictureInformation requirements are satisfied by TACSIT Data Exchange services

10.7 TacticalPictureRecommendations
Parent Package: ServiceModel

See TACSIT Data
Exchange
Services

59

Figure 10.41 CategorizationRecommendation (Class diagram)
This is the interface for making Categorization Recommendations for Entities in the tactical picture

Figure 10.42 PictureManagementRecommendation (Class diagram)

Figure 10.43 TacticalPictureRecommendations (Package diagram)

«interface»
Categorization

+ recommendClassification(classification: ClassificationDescriptor, entity: EntityRef, recommendation: RecommendationMetadata)
+ recommendIdentity(identity: IdentityDescriptor, entity: EntityRef, recommendation: RecommendationMetadata)

«interface»
ExtendedCategorization

+ recommendActivity(activity: ActivityDescriptor, entity: EntityRef, recommendation: RecommendationMetadata)
+ recommendStatus(status: EntityStatusDescriptor, entity: EntityRef, recommendation: RecommendationMetadata)

«interface»
PictureManagement

+ correlate(SystemTrackRef, SystemTrackRef, RecommendationMetadata)
+ decorrelate(SystemTrackRef, SensorTrackRef, RecommendationMetadata)

«interface»
ExtendedPictureManagement

+ move(SystemTrackRef, SensorTrackRef, SystemTrackRef, RecommendationMetadata)
+ repair(SensorTrackRef, SensorTrackRef, RecommendationMetadata)
+ slice(SensorTrackRef, DateTime, RecommendationMetadata)
+ exchange(SensorTrackRef, SensorTrackRef, DateTime, RecommendationMetadata)

60

Figure 10.44 TacticalPictureRecommendations - Categorization (Interaction diagram)
Use of the Categorization and ExtendedCategorization interfaces to recommend categories for entities. In
this scenario all recommendations are successfully accepted. It is valid for a Tactical Decision Aid to
make additional recommendations before a recommendationProcessed response is received.

Tactical Picture

(from ServiceModel)

Tactical Decision Aid

(from ServiceModel)

recommendationProcessed(response, ACCEPTED, explanation)

recommendationProcessed(response, ACCEPTED, explanation)

recommendStatus(EntityStatusDescriptor, EntityRef, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, explanation)

recommendIdentity(IdentityDescriptor, EntityRef, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, explanation)

recommendClassification(ClassificationDescriptor, EntityRef, RecommendationMetadata)

recommendActivity(ActivityDescriptor, EntityRef, RecommendationMetadata)

61

Figure 10.45 TacticalPictureRecommendations - Categorization - Alternate Flow (Interaction diagram)
Use of the Categorization and ExtendedCategorization interfaces to recommend categories for entities. In
this scenario not all recommendations are successfully accepted. Alternate outcome processing is
equivalent for all operations on the Categorization and ExtendedCategorization interfaces.

Tactical Picture

(from ServiceModel)

Tactical Decision Aid

(from ServiceModel)

alt Processing Outcome

[Accepted]

[Rejected]

[Deferred]

alt Deferred Processing Outcome

[Accepted]

[Rejected]

alt Type Of Recommendation

[Classification]

[Identification]

[Activity]

[Status]

The error code provides the reason for
rejection such as the referenced entity not
being in existence, it not being possible to
make the recommended change in the
current system state or the change
violating system specific rules.

recommendationProcessed(response, REJECTED, error code)

recommendationProcessed(response, DEFERRED, deferral explanation)

recommendActivity(ActivityDescriptor, EntityRef, RecommendationMetadata)

recommendationProcessed(response, REJECTED, error code)

recommendIdentity(IdentityDescriptor, EntityRef, RecommendationMetadata)

recommendClassification(ClassificationDescriptor, EntityRef, RecommendationMetadata)

recommendStatus(EntityStatusDescriptor, EntityRef, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, null explanation)

recommendationProcessed(response, ACCEPTED, null explanation)

62

Figure 10.46 TacticalPictureRecommendations - PictureManagement (Interaction diagram)
Use of the PictureManagement and ExtendedPictureManagement interfaces to recommend changes to
the relationships between entities. In this scenario all recommendations are successfully accepted. It is
valid for a Tactical Decision Aid to make additional recommendations before a
recommendationProcessed response is received.

Tactical Picture

(from ServiceModel)

Tactical Decision Aid

(from ServiceModel)

recommendationProcessed(response, ACCEPTED, explanation)

recommendationProcessed(response, ACCEPTED, explanation)

exchange(SensorTrackRef, SensorTrackRef, DateTime, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, explanation)

repair(SensorTrackRef, SensorTrackRef, RecommendationMetadata)

move(SystemTrackRef, SensorTrackRef, SystemTrackRef, RecommendationMetadata)

correlate(SystemTrackRef, SystemTrackRef, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, explanation)

decorrelate(SystemTrackRef, SensorTrackRef, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, explanation)

slice(SensorTrackRef, DateTime, RecommendationMetadata)

recommendationProcessed(response, ACCEPTED, explanation)

63

Figure 10.47 TacticalPictureRecommendations - PictureManagement - Alternate Flow (Interaction diagram)
Use of the PictureManagement and ExtendedPictureManagement interfaces to recommend categories
for entities. In this scenario not all recommendations are successfully accepted. Alternate outcome
processing is equivalent for all operations on the PictureManagement and ExtendedPictureManagement
interfaces.

Figure 10.48 TacticalPictureRecommendations Service Mapping (Component diagram)

Tactical Picture

(from ServiceModel)

Tactical Decision Aid

(from ServiceModel)

alt Type Of Recommendation

[Correlate]

[Decorrelate]

[Move]

[Repair]

[Slice]

[Exchange]

alt Processing Outcome

[Accepted]

[Rejected]

[Deferred]

alt Deferred Processing Outcome

[Accepted]

[Rejected]

The error code provides the reason for
rejection such as a referenced entity not being
in existence, it not being possible to make the
recommended operation in the current system
state or it violating system specific rules.

recommendationProcessed(response, ACCEPTED, null explanation)

repair(SensorTrackRef, SensorTrackRef, RecommendationMetadata)

recommendationProcessed(response, REJECTED, error code)

exchange(SensorTrackRef, SensorTrackRef, DateTime, RecommendationMetadata)

decorrelate(SystemTrackRef, SensorTrackRef, RecommendationMetadata)

move(SystemTrackRef, SensorTrackRef, SystemTrackRef, RecommendationMetadata)

recommendationProcessed(response, DEFERRED, deferral explanation)

correlate(SystemTrackRef, SystemTrackRef, RecommendationMetadata)

recommendationProcessed(response, REJECTED, error code)

recommendationProcessed(response, ACCEPTED, null explanation)

slice(SensorTrackRef, DateTime, RecommendationMetadata)

ServiceModel::
Tactical Picture

«interface»
Categorization

+ recommendClassification(ClassificationDescriptor, EntityRef, RecommendationMetadata)
+ recommendIdentity(IdentityDescriptor, EntityRef, RecommendationMetadata)

«interface»
ExtendedCategorization

+ recommendActivity(ActivityDescriptor, EntityRef, RecommendationMetadata)
+ recommendStatus(EntityStatusDescriptor, EntityRef, RecommendationMetadata)

«interface»
ExtendedPictureManagement

+ move(SystemTrackRef, SensorTrackRef, SystemTrackRef, RecommendationMetadata)
+ repair(SensorTrackRef, SensorTrackRef, RecommendationMetadata)
+ slice(SensorTrackRef, DateTime, RecommendationMetadata)
+ exchange(SensorTrackRef, SensorTrackRef, DateTime, RecommendationMetadata)

«interface»
PictureManagement

+ correlate(SystemTrackRef, SystemTrackRef, RecommendationMetadata)
+ decorrelate(SystemTrackRef, SensorTrackRef, RecommendationMetadata)

64

10.7.1 Categorization
Type: Interface
Package: TacticalPictureRecommendations
This interface allows client tactical decision aids to make recommendations to categorize Entities in the
tactical picture. I.e. recommendation relating to Entity Categorization data as defined by the TACSIT Data
Exchange (TEX) standard. This interface supports recommendations relating to the most common tactical
categorization decisions and hence those recommendations most likely to be generated by decision aids.
All Recommendation operations on the Categorization interface receive a CategorizationResponse
instance in the callback.
It is invalid to recommend a categorization for an Entity that does not exist. That is, no Entity is returned
for the EntityRef through the TEX DataSink interface.

Table 10.11 - Methods of Interface Categorization
Method Notes Parameters
recommendClassification() This is an operation to invoke to

make a Classification
Recommendation. Classification
refers to the kind of platform or
vehicle that the Entity represents.
Examples include truck, ferry,
submarine, helicopter and satellite.

ClassificationDescriptor
classification The classification
being recommended
EntityRef entity The entity to which
the classification applies
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

recommendIdentity() This is an operation to invoke to
make a Identification
Recommendation. Identification
refers to the allegiance or ownership
of platform or vehicle that the Entity
represents. This can be expressed,
for example, as a hostility category
(also known as standard identity) a
nationality, an organization or
personal identifier.

IdentityDescriptor identity The
identity being recommended
EntityRef entity The entity to which
the identity applies
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

10.7.2 ExtendedCategorization
Type: Interface
Package: TacticalPictureRecommendations
This interface allows client tactical decision aids to make specialized recommendations to categorize
Entities in the tactical picture. I.e. recommendation relating to Entity Categorization data as defined by the
TACSIT Data Exchange (TEX) standard. This interface supports recommendations relating to more
advanced or specialized tactical categorization decisions and hence those recommendations that may not
be generated by all decision aids.
All Recommendation operations on the ExtendedCategorization interface receive a
CategorizationResponse instance in the callback.
It is invalid to recommend a categorization for an Entity that does not exist. That is, no Entity is returned
for the EntityRef through the TEX DataSink interface.

Table 10.12 - Methods of Interface ExtendedCategorization

65

Method Notes Parameters
recommendActivity() This is an operation to invoke to

make an Activity Recommendation.
Activity refers to the tasks currently
being undertaken by the platform or
vehicle that the Entity represents.
Examples include Air Defence,
Guard, Patrol, Reconnaissance,
Refuel and Survey.

ActivityDescriptor activity The
activity being recommended
EntityRef entity The entity to which
the activity applies
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

recommendStatus() This is an operation to invoke to
make an Status Recommendation.
Status refers to all aspects of the
current tactical significance of the
platform or vehicle that the Entity
represents. Examples of status
categories include: the extent to
which the Entity poses a threat; the
type of offensive action that the
Entity is subject to, the outcome of
offensive action and other
emergencies.

EntityStatusDescriptor status The
status being recommended
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation
EntityRef entity The entity to which
the status applies

10.7.3 PictureManagement
Type: Interface
Package: TacticalPictureRecommendations
This interface allows client tactical decision aids to make recommendations to manage the relationships
between Entities in the tactical picture. I.e. recommendations relating to the constituent Entities of Groups
as defined by the TACSIT Data Exchange (TEX) standard. This interface supports recommendations
relating to the most common tactical relation decisions and hence those recommendations most likely to
be generated by decision aids.
Recommendation operations on the PictureManagement interface receive operation specific
ResponseData specialization instances in the callback.
It is invalid to invoke an operation for an Entity that does not exist. That is, no Entity is returned for the
EntityRef (SystemTrackRef or SensorTrackRef) through the TEX DataSink interface.

Table 10.13 - Methods of Interface PictureManagement
Method Notes Parameters
correlate() This is the operation to invoke to

make a Correlation
Recommendation. Correlation refers
to the determination that two or more
sensor tracks correspond to the same
object in the tactical environment.
That object is to be represented by a
single system track in an
unambiguous tactical picture.
Correlation relates the sensor tracks
to the single system track. Note that
it is typically possible for multiple
sensors to observe and track the
same object.

SystemTrackRef receiver The
system track to be retained after the
operation
SystemTrackRef donor The system
track to discard after the operation
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

66

Tactical Decision Aids receive a
CorrelationResponse instance in the
callback.

decorrelate() This is the operation to invoke to
make a Decorrelation
Recommendation. Decorrelation is
the reverse of Correlation and is used
to undo incorrect Correlations or to
correct the case when a sensor has
started to track a different object
with the same sensor track.
Tactical Decision Aids receive a
DecorrelationResponse instance in
the callback.

SystemTrackRef systemTrack
SensorTrackRef sensorTrack
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

10.7.4 ExtendedPictureManagement
Type: Interface
Package: TacticalPictureRecommendations
This interface allows client tactical decision aids to make specialized recommendations to manage the
relationships between Entities in the tactical picture. I.e. recommendations relating to the constituent
Entities of Groups as defined by the TACSIT Data Exchange (TEX) standard. This interface supports
recommendations relating more advanced or specialized tactical relation decisions and hence those
recommendations that may not be generated by all decision aids..
Recommendation operations on the ExtendedPictureManagement interface receive operation specific
ResponseData specialization instances in the callback.
It is invalid to invoke an operation for an Entity that does not exist. That is, no Entity is returned for the
EntityRef (SystemTrackRef or SensorTrackRef) through the TEX DataSink interface.

Table 10.14 - Methods of Interface ExtendedPictureManagement
Method Notes Parameters
move() This is the operation to invoke to

make a Move Recommendation.
Move is a sequence of a
Decorrelation followed by a
Correlation and is used to correct the
case when one sensor has started to
track (with the same sensor track) a
different object that is already being
tracked by another sensor. The
sensor track in question is
Decorrelated from its original system
track and Correlated with the system
track that already exists for the new
object that the sensor is actually
tracking.
Tactical Decision Aids receive a
MoveResponse instance in the
callback.

SystemTrackRef receiver The
system track to which the sensor
track is to be moved
SensorTrackRef sensorTrack The
sensor track to move to a different
system track
SystemTrackRef donor The system
track the sensor track is to be moved
from. To be a valid recommendation
the donor track should be supported
by tracks other than the sensor track
being moved.
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

repair() This is the operation to invoke to
make a Repair Recommendation.
Repair is an action on a sensor
track's track report history that is
used to make the track history

SensorTrackRef newSensorTrack
The track currently supported by the
sensor

67

continuous when a sensor has
declared deletion of track before,
later, starting to report the same real
world object with a new sensor track.
The original sensor track's history is
added to the new sensor track's
history. The implementation is such
that the TEX (TACSIT Data
Exchange) Entity History interface
returns the complete history for the
repaired track and no history for the
deleted track as defined by the
RepairResponse instance received in
the callback.

SensorTrackRef oldSensorTrack
The track previously supported by
the sensor
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

slice() This is the operation to invoke to
make a Slice Recommendation. Slice
is an action on a sensor track's track
report history that is used to make
the track history discrete when a
sensor has started to track a different
real world object with the same
sensor track. It is the inverse of
Repair. The original part of sensor
track's history is removed from
sensor track's history and placed into
a new sensor track. The
implementation is such that the TEX
(TACSIT Data Exchange) Entity
History interface returns the pre-slice
history for the original track and the
post-slice history for the new track as
defined by the SliceResponse
instance received in the callback.

SensorTrackRef sensorTrack The
sensor track whose history is to be
sliced into new and old portions
DateTime sliceTime The time at
which to divide the tracks history
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

exchange() This is the operation to invoke to
make an Exchange
Recommendation. Exchange is an
action on a pair of sensor tracks'
track report histories that is used to
make the track histories coherent
when a sensor has swapped the real-
world objects that a pair of sensor
tracks have been tracking. An
exchange operation is a composition
of two slice operations with a
common slice-time followed by two
repair operations. The sensor track
parameters are semantically
commutative: exchanging track-a
with track-b is equivalent to
exchanging track-b with track-a.
Tactical Decision Aids receive an
ExchangeResponse instance in the
callback.

SensorTrackRef sensorTrack1 The
first sensor track to be exchanged
SensorTrackRef sensorTrack2 The
second sensor track to be exchanged
DateTime exchangeTime The time
at which to exchange the tracks
history
RecommendationMetadata
recommendation Qualifying
information relating to the
recommendation

68

11 Domain Model Platform-Specific Models
11.1 DDS PSM
The DDS Data Model PSM defines a set of IDL files for the Data Model packages defined by the PIM.
Topic types (i.e. IDL structs with keys) are defined for classes that classify a single parameter on an
interface method. This avoids redundant indirection. Comments are added to the IDL files to reflect the
mapping rules below.

The detailed rules for the MDA code generation from the Data Model PIM to the DDS PSM IDL are as
follows:

• The PIM attributes are mapped to IDL attributes;

• Optional attributes are mapped to a union type with a single member present when the exists case
attribute is true;

• Collections in the PIM are mapped to IDL sequences;

• Specialization / Generalization PIM relationships are mapped to IDL unions. Generalization classes
that have attributes are mapped to a struct containing a base struct for its common attributes and a
variants union for the specialization attributes.

• The Duration datatype is mapped to an unsigned long long with the CORBA time representation
(100s of nanoseconds since the start of the Gregorian Calendar).

• Other datatypes for real-valued quantities are mapped to a double

• Navigable, by-reference, association roles are mapped to a datatype stereotyped as 'Reference',
which has a 'refers to' relation with the destination class. Reference stereotyped datatypes are
mapped to a string to represent an implementation specific unique id

• Extensible Enumeration datatypes are mapped to a struct with a schemaPrefix string attribute and a
value string attribute

11.2 GraphQL PSM
The GraphQL PSM defines a single schema definition file for a combination of the Data Model and
Service Model packages defined by the PIM. Classes from the Domain Model of the PIM are mapped to
GraphQL types within the schema.

The detailed rules for the MDA code generation from the Data Model PIM to the DDS PSM IDL are as
follows:

• The PIM attributes are mapped to GraphQL attributes;

• PIM attributes with multiplicity 1 are mapped to non-nullable GraphQL attributes

• Collections in the PIM are mapped to GraphQL arrays;

• Specialization / Generalization PIM relationships are mapped to GraphQL unions. Generalization
classes that have attributes are mapped to a GraphQL type containing a base GraphQL type for its
common attributes and a variants GraphQL union for the specialization attributes.

• The Duration datatype is mapped to a GraphQL Long datatype with the CORBA time representation
(100s of nanoseconds since the start of the Gregorian Calendar).

• Other datatypes for real-valued quantities are mapped to a GraphQL Float

• Navigable, by-reference, association roles are mapped to a datatype stereotyped as 'Reference',
which has a 'refers to' relation with the destination class. Reference stereotyped datatypes are

69

mapped to a string to represent an implementation specific unique id and a nullable (by default)
attribute for the type of the destination class, so as to enable deep queries over a graph of instances.

• Extensible Enumeration datatypes are mapped to a struct with a schemaPrefix string attribute and a
value string attribute

12 Service Model Platform Specific Models
12.1 DDS PSM
The DDS Services PSM defines IDL files for each package defined in the Services PIM. For each method
on each interface class an IDL struct for a DDS topic named for the method is generated; each parameter
is mapped to an attribute of the IDL struct. This is unless there is only one attribute (of IDL struct
stereotype) in which case the topic type is defined in the Domain Model (i.e. it corresponds to the single
parameter's class). Return parameters, where specified, are also mapped to DDS Topics.

The PSM method for connecting to other components is through the creation of DDS Entities (specifically
Participants, Data Readers and Data Writers).

Specific rules for the MDA code generation from the Service Model PIM to the DDS PSM IDL are as
follows:

• The Response callback interface in the PIM is mapped to a struct with two keyed attributes of type
short: clientId and requestId; The clientId identifies the Tactical Decision Aid making the request and
the requestId distinguishes the recommendation from others made by the same Tactical Decision Aid.

• The DataSink pattern is mapped to a DDS topic type for the Data class. All interface methods are
satisfied by built-in DDS API methods.

• From the Configuration interface, the getSupportMapping method is mapped to a topic for the input
parameter and a topic for the return parameter and the isSupported method is mapped implicitly to
DDS built-in discovery services.

12.2 GraphQL PSM
The GraphQL PSM defines a single schema definition file for a combination of the Data Model and
Service Model packages defined by the PIM. The schema supports GraphQL clients for Tactical Decision
Aids, Tactical Picture and Plan Execution components. Mutations are used to invoke PIM interface
methods; queries and subscriptions are used to process those invocations.

The PSM method for connecting to other components is through the underlying HTTPS web service
connection. Web-sockets are used for subscription callbacks.

Specific rules for the MDA code generation from the Service Model PIM to the GraphQL PSM IDL are as
follows:

• Each interface method in the Service Model is mapped to a (query) type, an input type and update
type; these are for queries, mutations and subscriptions respectively.

• The GraphQL schema Query type support queries for any combination of interface methods in the
Service Model.

• The GraphQL schema Mutation type supports invocation of single or multiple instances of any
combination of interface methods in the Service Model.

• The GraphQL schema Subscription type supports subscription for any combination of interface
methods in the Service Model.

70

• The Response callback interface in the PIM is mapped to a struct with two keyed attributes of type
short: clientId and requestId; The clientId identifies the Tactical Decision AId making the request and
the requestId distinguishes the recommendation from others made by the same Tactical Decision Aid.

• The DataSink pattern is mapped to the query, input and update types for the Data class. All interface
methods are satisfied by built-in GraphQL features.

• From the Configuration interface, the getSupportMapping method is mapped to the query, input and
update types for the input parameters and the query, input and update types for the return parameter
and the isSupported method is mapped implicitly to GraphQL built-in discovery services.

13 Platform Specific Models for Extensible
Enumerations

The Tactical Decision Aids metamodel defines an Extensible Enumeration stereotype for a datatype that
takes values from a finite set, where the set of values is not defined by the specification. Implementations
define the valid set of values using platform specific mechanisms (see Data Model PSMs). This PSM
defines normative alignment with other specifications by mapping Extensible Enumerations defined by
this specification to definitions in other specifications.

Table 13.1 - Extensible Enumeration Mappings
Extensible
Enumeration

Schema Prefix Reference
Specification

Reference
Definition

Notes

Utils::
QuantityDescriptor

si ISO 80000-1
:2009

N/A SI units. Values are the unit
symbols for base units, special
symbols and derived symbols. E.g.
"kg", "rad" and "m/s2"

TacticalPicture::
ActivityDescriptor

s5516.air STANAG 5516
Ed 6

DFI 1798
DUI 001

Air activities. Values are the string
representation of the DI bit code

TacticalPicture::
ActivityDescriptor

s5516.surf STANAG 5516
Ed 6

DFI 1798
DUI 002

Surface activities. Values are the
string representation of the DI bit
code

TacticalPicture::
ActivityDescriptor

s5516.sub STANAG 5516
Ed 6

DFI 1798
DUI 003

Subsurface activities. Values are
the string representation of the DI
bit code

TacticalPicture::
ActivityDescriptor

s5516.land STANAG 5516
Ed 6

DFI 1798
DUI 004

Land activities. Values are the
string representation of the DI bit
code

TacticalPicture::
ActivityDescriptor

s5516.sp STANAG 5516
Ed 6

DFI 1798
DUI 005

Space activities. Values are the
string representation of the DI bit
code

TacticalPicture::
ActivityDescriptor

s2525.atac STANAG 2525
Rev D CN 1

TABLE A-XLII Values are the string
representation of the Code

TacticalPicture::
ActivityDescriptor

jc3iedm.atac JC3IEDM
v3.1.4

action-task-
activity-code

Values are the capitalized
abbreviations in the Physical Value
column

TacticalPicture::
ActivityDescriptor

app6b.task APP-6(B) June
2008

task graphics Values are the specific one or two
character code within the symbol id
that is associated with the task type

TacticalPicture::
ActivityDescriptor

app6c.act APP-6(C) May
2011

activity symbol
table 6-3

Values (e.g. "Arrest") are from the
function column of table 6-3

71

Extensible
Enumeration

Schema Prefix Reference
Specification

Reference
Definition

Notes

TacticalPicture::
ActivityDescriptor

app6c.task APP-6(C) May
2011

mission tasks
table 7-A-1

Values are the labels (e.g.
"Ambush") from the control
measure column of table 7-A-1

TacticalPicture::
ClassificationDescriptor

s5516.air.pl STANAG 5516
Ed 6

DFI 1797
DUI 001

Air platforms. Values are the string
representation of the DI bit code

TacticalPicture::
ClassificationDescriptor

s5516surf.pl STANAG 5516
Ed 6

DFI 1797
DUI 002

Surface platforms. Values are the
string representation of the DI bit
code

TacticalPicture::
ClassificationDescriptor

s5516.sub.pl STANAG 5516
Ed 6

DFI 1797
DUI 003

Subsurface platforms. Values are
the string representation of the DI
bit code

TacticalPicture::
ClassificationDescriptor

s5516.land.pl STANAG 5516
Ed 6

DFI 1797
DUI 004

Land platforms. Values are the
string representation of the DI bit
code

TacticalPicture::
ClassificationDescriptor

s5516.sp.pl STANAG 5516
Ed 6

DFI 1797
DUI 005

Space platforms. Values are the
string representation of the DI bit
code

TacticalPicture::
ClassificationDescriptor

s5516.air.st STANAG 5516
Ed 6

DFI 804
DUI 001

Air specific type. Values are the
string representation of the DI bit
code

TacticalPicture::
ClassificationDescriptor

s5516.surf.st STANAG 5516
Ed 6

DFI 808
DUI 001

Surface specific type. Values are
the string representation of the DI
bit code

TacticalPicture::
ClassificationDescriptor

s5516.sub.st STANAG 5516
Ed 6

DFI 809
DUI 001

Subsurface specific type. Values
are the string representation of the
DI bit code

TacticalPicture::
ClassificationDescriptor

s5516.land.st STANAG 5516
Ed 6

DFI 810
DUI 001

Land specific type. Values are the
string representation of the DI bit
code

TacticalPicture::
ClassificationDescriptor

s5516.sp.st STANAG 5516
Ed 6

DFI 749
DUI 002

Space specific type. Values are the
string representation of the DI bit
code

TacticalPicture::
ClassificationDescriptor

imo.id IMO N/A The value to a vessel assigned by
Lloyds Registry

TacticalPicture::
ClassificationDescriptor

imo.mmsi IMO N/A The unique Maritime Mobile
Service Identity (MMSI) as
assigned to AIS equipment

TacticalPicture::
ClassificationDescriptor

name N/A N/A The name of the entity (e.g. vessel
or aircraft)

TacticalPicture::
ClassificationDescriptor

callsign N/A N/A A call-sign used by the entity being
classified

TacticalPicture::
ClassificationDescriptor

iso.3166 ISO 3166 2 letter code Values are the 2 letter code for the
country associated with the entity

TacticalPicture::
ClassificationDescriptor

s5516.nat STANAG 5516
Ed 6

DFI 748
DUI 001

Nationality. Values are the string
representation of the DI bit code

TacticalPicture::
ClassificationDescriptor

s5516.nat.ex STANAG 5516
Ed 6

DFI 748
DUI 003

Extended Nationality. Values are
the string representation of the DI
bit code

72

Extensible
Enumeration

Schema Prefix Reference
Specification

Reference
Definition

Notes

TacticalPicture::
ClassificationDescriptor

icao.fi ICAO N/A Flight Id. Values are the string
representation of the aircraft flight
id.

TacticalPicture::
ClassificationDescriptor

icao.id ICAO N/A Values are the string
representation of the ICAO unique
identifier for the aircraft.

TacticalPicture::
ClassificationDescriptor

jc3iedm.air JC3IEDM
v3.1.4

aircraft-type-
category-code

Values are the capitalized
abbreviations in the Physical Value
column

TacticalPicture::
ClassificationDescriptor

jc3iedm.surf JC3IEDM
v3.1.4

surface-vessel-
type-category-
code

Values are the capitalized
abbreviations in the Physical Value
column

TacticalPicture::
ClassificationDescriptor

jc3iedm.sub JC3IEDM
v3.1.4

subsurface-
vessel-type-
category-code

Values are the capitalized
abbreviations in the Physical Value
column

TacticalPicture::
ClassificationDescriptor

jc3iedm.veh JC3IEDM
v3.1.4

vehicle-type-
category-code

Values are the capitalized
abbreviations in the Physical Value
column

TacticalPicture::
ClassificationDescriptor

app6b.sp APP-6(B) June
2008

table B-III Space Entities. Values are the
specific one character code within
the function id that is associated
with the classification

TacticalPicture::
ClassificationDescriptor

app6b.air APP-6(B) June
2008

table B-IV Air Entities. Values are the specific
one to four character code within
the function id that is associated
with the classification

TacticalPicture::
ClassificationDescriptor

app6b.ground APP-6(B) June
2008

table B-V Ground Entities. Values are the
specific one to six character code
within the function id that is
associated with the classification

TacticalPicture::
ClassificationDescriptor

app6b.surf APP-6(B) June
2008

table B-VI Sea Surface Entities. Values are
the specific one to four character
code within the function id that is
associated with the classification

TacticalPicture::
ClassificationDescriptor

app6b.sub APP-6(B) June
2008

table B-VII Sea Subsurface Entities. Values
are the specific one to four
character code within the function
id that is associated with the
classification

TacticalPicture::
ClassificationDescriptor

app6b.sof APP-6(B) June
2008

table B-VIII Special Operations Force Entities.
Values are the specific one to four
character code within the function
id that is associated with the
classification

TacticalPicture::
ClassificationDescriptor

app6c.air.icon APP-6(C) May
2011

air icon Values are labels from the function
column of table 2-4

TacticalPicture::
ClassificationDescriptor

app6c.air.mod APP-6(C) May
2011

air modifier Values are from the modifier
column of tables 2-5 & 2-7

73

Extensible
Enumeration

Schema Prefix Reference
Specification

Reference
Definition

Notes

TacticalPicture::
ClassificationDescriptor

app6c.mis.mod APP-6(C) May
2011

missile
modifier

Values are a concatenation of the
modifier column of tables 2-9 & 2-
10

TacticalPicture::
ClassificationDescriptor

app6c.land.icon APP-6(C) May
2011

land icon Values are labels from the function
column of tables 3-3 & 3-4

TacticalPicture::
ClassificationDescriptor

app6c.land.mod APP-6(C) May
2011

land modifier Values labels are from the modifier
column of tables 3-5 & 3-6

TacticalPicture::
ClassificationDescriptor

app6c.surf.1 APP-6(C) May
2011

sea surface
sector 1
modifier

Values are from the modifier
column of table 4-2

TacticalPicture::
ClassificationDescriptor

app6c.surf.2 APP-6(C) May
2011

sea surface
sector 2
modifier

Values are from the modifier
column of table 4-3

TacticalPicture::
ClassificationDescriptor

app6c.surf.icon APP-6(C) May
2011

sea surface
icon

Values are labels from the
description column of table 4-5

TacticalPicture::
ClassificationDescriptor

app6c.sub.1 APP-6(C) May
2011

sea subsurface
sector 1
modifier

Values are from the modifier
column of table 4-11

TacticalPicture::
ClassificationDescriptor

app6c.sub.2 APP-6(C) May
2011

sea subsurface
sector 2
modifier

Values are from the modifier
column of table 4-12

TacticalPicture::
ClassificationDescriptor

app6c.sub.icon APP-6(C) May
2011

sea subsurface
icon

Values are labels from the
description column of tables 4-14,
15, 16, 17 & 18

TacticalPicture::
ClassificationDescriptor

app6c.sp.icon APP-6(C) May
2011

space icon Values are from the description
column of tables 5-4 & 5-7

TacticalPicture::
ClassificationDescriptor

app6c.sp.mod APP-6(C) May
2011

space modifier Values are from the description
column of tables 5-5 & 5-6

TacticalPicture::
EntityStatusDescriptor

s5516.wes STANAG 5516
Ed 6

DFI 394
DUI 009

Weapon/Engagement Status.
Values are the string
representation of the DI bit code

TacticalPicture::
ActivityDescriptor

jc3iedm.org JC3IEDM
v3.1.4

organisation-
status-
operational-
status-code

Values are the capitalized
abbreviations in the Physical Value
column

TacticalPicture::
ActivityDescriptor

jc3iedm.org.q JC3IEDM
v3.1.4

organisation-
status-
operational-
status-
qualifier-code

Values are the capitalized
abbreviations in the Physical Value
column

TacticalPicture::
ActivityDescriptor

jc3iedm.org.fire JC3IEDM
v3.1.4

organisation-
status-fire-
mode-code

Values are the capitalized
abbreviations in the Physical Value
column

TacticalPicture::
IdentityDescriptor

s5516 STANAG 5516
Ed 6

DFI 376
DUI 007

Non-exercise identities. Values are
the string representation of the DI
bit code

TacticalPicture::
IdentityDescriptor

s5516.ex STANAG 5516
Ed 6

DFI 376
DUI 001

Exercise identities. Values are the
string representation of the DI bit
code

74

Extensible
Enumeration

Schema Prefix Reference
Specification

Reference
Definition

Notes

PlanExecution::
AmmunitionCategory

s5516.mis STANAG 5516
Ed 6

DFI 1622 Non-exercise identities. Values are
the string representation of the DI
bit code

PlanExecution::
AmmunitionCategory

jc3iedm.amm JC3IEDM
v3.1.4

ammunition-
type-category-
code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
CapabilityCategory

jc3iedm.fire JC3IEDM
v3.1.4

fire-capability-
category-code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
CapabilityCategory

jc3iedm.weap JC3IEDM
v3.1.4

weapon-type-
category-code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
CapabilityCategory

jc3iedm.w.sc JC3IEDM
v3.1.4

weapon-type-
subcategory-
code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
CapabilityCategory

jc3iedm.mob JC3IEDM
v3.1.4

mobility-
capability-
category-code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
CapabilityCategory

jc3iedm.eng JC3IEDM
v3.1.4

engineering-
capability-
category-code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
CapabilityCategory

jc3iedm.cargo JC3IEDM
v3.1.4

cargo-
category-code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
CapabilityCategory

jc3iedm.maint JC3IEDM
v3.1.4

maintenance-
capability-
category-code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
CapabilityCategory

jc3iedm.supp JC3IEDM
v3.1.4

support-
capability-
category-code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
CapabilityCategory

jc3iedm.surv JC3IEDM
v3.1.4

surveillance-
capability-
category-code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
CapabilityCategory

jc3iedm.trans JC3IEDM
v3.1.4

transmission-
capability-
category-code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
CapabilityCategory

jc3iedm.op JC3IEDM
v3.1.4

operational-
capability-
category-code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
DependencyCategory

jc3iedm.mob.dc JC3IEDM
v3.1.4

mobility-
capability-
descriptor-
code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
ExtendedPlanStatus

jc3iedm.dev JC3IEDM
v3.1.4

plan-status-
development-
status-code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
ExtendedPlanStatus

jc3iedm.state JC3IEDM
v3.1.4

plan-status-
state-code

Values are the capitalized
abbreviations in the Physical Value
column

75

Extensible
Enumeration

Schema Prefix Reference
Specification

Reference
Definition

Notes

PlanExecution::
ObjectiveCategory

jc3iedm.qual JC3IEDM
v3.1.4

action-
objective-
qualifier-code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
OrbitCategory

app6c.sp.mod APP-6(C) May
2011

space modifier Values are from the description
column of table 5-5

PlanExecution::
ReadinessDescriptor

jc3iedm.org JC3IEDM
v3.1.4

organisation-
status-
readiness-
code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
SpecificationDescriptor

jc3iedm.elec JC3IEDM
v3.1.4

electronic-
equipment-
type-category-
code

Values are the capitalized
abbreviations in the Physical Value
column

PlanExecution::
SpecificationDescriptor

jc3iedm.elec.ex JC3IEDM
v3.1.4

electronic-
equipment-
type-
subcategory-
code

Values are the capitalized
abbreviations in the Physical Value
column

Note: that the following Extensible Enumerations can (also) use values from the corresponding Extensible
Enumerations with mappings defined above.

• PlanExecution::DependencyCategory : PlanExecution::CapabilityCategory

• PlanExecution::IntentDescriptor : TacticalPicture::ActivityDescriptor

• PlanExecution::ObjectiveCategory : TacticalPicture::ActivityDescriptor

• PlanExecution::PlanType : TacticalPicture::ActivityDescriptor

• PlanExecution::ResourceCategory : TacticalPicture::ClassificationDescriptor

• PlanExecution::ResourceCategory : TacticalPicture::CapabilityCategory

• PlanExecution::TaskingActivity: TacticalPicture::ActivityDescriptor

Note: The SOPES specification provides a UML wrapper for the attributes defined by JC3IEDM.

Implementations use the getSupportMapping method to get a URL to a file to determine a components
support for specific Extensible Enumeration values. The file is formatted using JSON as per this non-
normative example, which shows how values from the external specifications are appended to the
schema prefix.
{

 “mapping category”: {

 “descriptor”: “TacticalPicture::ClassificationDescriptor”,

 “values”: {

 {

 “value”: “s5516.air.pl.4”,

 “description”: “BOMBER”

 },

 {

76

 “value”: “s5516.air.pl.13”,

 “description”: “MISSILE”

 },

 {

 “value”: “s5516.air.pl.22”,

 “description”: “CIVIL, AIRLINER”

 },

 {

 “value”: “jc3iedm.air.AIRRW”,

 “description”: “A machine or device capable of
atmospheric flight and dependent on rotating blades for lift.”

 },

 {

 “value”: “jc3iedm.air. LGTAIR”,
 “description”: “A machine or device capable of
atmospheric flight weighing less than the air it displaces.”

 }

 }

 }

}

The ResponseExplanation datatype may take values with meanings from Table 13.2 below.
Table 13.2 – ResponseExplanation Extensible Enumeration Mapping

Value Meaning
tda.error.none No error
tda.deferred.user Recommendation referred to an operator
tda.error.noentity Entity does not exist
tda.error.noplan Plan constituent does not exist
tda.error.noresource Resource instance does not exist
tda.error.noref Reference to another instance is invalid
tda.error.rule Recommendation violates a system rule
tda.error.state Recommendation is invalid in the current system state

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgements

	7 Tactical Decision Aids Interface Overview
	7.1 Use of the Tactical Decision Aids Interface
	7.1.1 Classification App use of the Tactical Decision Aids Interface
	7.1.2 Plan Monitoring App use of the Tactical Decision Aids Interface

	8 MetaModel
	8.1 DataModel
	8.1.1 Recommendation
	8.1.1.1 Confidence
	8.1.1.2 RecommendationProperties
	8.1.1.3 ResponseData
	8.1.1.4 Outcome
	8.1.1.5 Recommendation Outcome
	8.1.1.5.1 Accepted
	8.1.1.5.2 Deferred
	8.1.1.5.3 Rejected

	8.1.1.6 RecommendationBehavior
	8.1.1.7 RecommendationRef
	8.1.1.8 ResponseExplanation

	8.1.2 Utils
	8.1.2.1 AdditionalData
	8.1.2.2 Qualifier
	8.1.2.3 Quantifier
	8.1.2.4 DataRef
	8.1.2.5 Descriptor
	8.1.2.6 Detail
	8.1.2.7 Duration
	8.1.2.8 Percentage
	8.1.2.9 Quantity
	8.1.2.10 QuantityDescriptor

	8.2 ServiceModel
	8.2.1 Recommendations
	8.2.1.1 RecommendationMetadata
	8.2.1.2 Configuration
	8.2.1.3 Recommendation
	8.2.1.4 Response

	8.2.2 DataSink
	8.2.2.1 Data
	8.2.2.2 DataChangedEvent
	8.2.2.3 DataChangedEventList
	8.2.2.4 ItemChangedEvent
	8.2.2.5 DataQuery
	8.2.2.6 DataSink
	8.2.2.7 DataSinkListener

	9 DataModel
	9.1 PlanExecution
	9.1.1 Aircraft
	9.1.2 Ammunition
	9.1.3 Amphibious
	9.1.4 Capability
	9.1.5 CurrentCapability
	9.1.6 Dependency
	9.1.7 Derivation
	9.1.8 DerivationCategory
	9.1.9 DerivationProvenance
	9.1.10 ElectronicEquipment
	9.1.11 Endurance
	9.1.12 EnduranceProperties
	9.1.13 EngineeringCapability
	9.1.14 FireCapability
	9.1.15 LandVehicle
	9.1.16 MaritimeEquipment
	9.1.17 MobilityCapability
	9.1.18 OperationalCapability
	9.1.19 Plan
	9.1.20 PlanExecutionConstituent
	9.1.20.1 Executing
	9.1.20.2 Paused
	9.1.20.3 Planned
	9.1.20.4 Terminated

	9.1.21 Resource
	9.1.22 ResourceMetaData
	9.1.23 ResourceProperties
	9.1.24 ResourceTasking
	9.1.25 Space
	9.1.26 SubsurfaceVessel
	9.1.27 SurfaceVessel
	9.1.28 SurveillanceCapability
	9.1.29 TargetCapability
	9.1.30 TaskObjective
	9.1.31 TransmissionCapability
	9.1.32 Vehicle
	9.1.33 Vessel
	9.1.34 AmmunitionCategory
	9.1.35 CaliberCategory
	9.1.36 CapabilityCategory
	9.1.37 CapabilityRef
	9.1.38 ConstituentRef
	9.1.39 DependencyCategory
	9.1.40 DerivationDescriptor
	9.1.41 ExtendedPlanStatus
	9.1.42 IntentDescriptor
	9.1.43 ObjectiveCategory
	9.1.44 OrbitCategory
	9.1.45 PlanExecutionConstituentState
	9.1.46 PlanType
	9.1.47 ReadinessDescriptor
	9.1.48 ResourceCategory
	9.1.49 ResourceRef
	9.1.50 SpecificationDescriptor
	9.1.51 TaskingActivity

	9.2 TacticalPicture
	9.2.1 LiveEntityList
	9.2.2 LiveGroupList
	9.2.3 SimulatedEntityList
	9.2.4 SimulatedGroupList
	9.2.5 ActivityDescriptor
	9.2.6 ClassificationDescriptor
	9.2.7 EntityStatusDescriptor
	9.2.8 IdentityDescriptor
	9.2.9 SensorTrackRef
	9.2.10 SystemTrackRef

	10 ServiceModel
	10.1 Plan Execution
	10.2 Tactical Decision Aid
	10.3 Tactical Picture
	10.4 PlanExecutionInformation
	10.4.1 PlanDataSink
	10.4.1.1 PlanChangedEvent
	10.4.1.2 PlanChangedEventList
	10.4.1.3 PlanDataSink
	10.4.1.4 PlanQuery
	10.4.1.5 PlanSinkListener

	10.4.2 ResourceDataSink
	10.4.2.1 ResourceChangedEvent
	10.4.2.2 ResourceChangedEventList
	10.4.2.3 ResourceDataSink
	10.4.2.4 ResourceQuery
	10.4.2.5 ResourceSinkListener

	10.5 PlanExecutionRecommendations
	10.5.1 PlanExecutionAction
	10.5.1.1 MessageEnd
	10.5.1.2 MessageEnd
	10.5.1.3 MessageEnd
	10.5.1.4 MessageEnd

	10.5.2 PlanExecutionControl
	10.5.3 ExtendedPlanExecutionAction
	10.5.4 ExtendedPlanExecutionControl

	10.6 TacticalPictureInformation
	10.7 TacticalPictureRecommendations
	10.7.1 Categorization
	10.7.2 ExtendedCategorization
	10.7.3 PictureManagement
	10.7.4 ExtendedPictureManagement

	11 Domain Model Platform-Specific Models
	11.1 DDS PSM
	11.2 GraphQL PSM

	12 Service Model Platform Specific Models
	12.1 DDS PSM
	12.2 GraphQL PSM

	13 Platform Specific Models for Extensible Enumerations

