
An OMG® TACSIT data Exchange (TEX)TM Publication

TACSIT data Exchange (TEX)

Version 1.0

OMG Document Number formal/2020-12-02

Release Date: March 2021

Normative Reference: https://www.omg.org/spec/TEX/1.0

Associated Normative Machine Consumable Files:

https://www.omg.org/spec/TEX/20200520/tex.xmi
https://www.omg.org/spec/TEX/20180618/ts/tacsit-tex-datainterfac.d.ts
https://www.omg.org/spec/TEX/20180618/ts/tacsit-tex-datapayload.d.ts
https://www.omg.org/spec/TEX/20180618/dds/
DataPayload_DDS_PSM.zip https://www.omg.org/spec/TEX/20180618/
DataPayload_CS_PSM.zip https://www.omg.org/spec/TEX/20180618/
DataInterface_CS_PSM.zip https://www.omg.org/spec/TEX/20180618/
DataSink_CS_PSM.zip
https://www.omg.org/spec/TEX/20180618/EntityChangeSinkEvent.xsd
https://www.omg.org/spec/TEX/20180618/EntityHistoryPayload.xsd https://
www.omg.org/spec/TEX/20180618/GroupChangeEvent.xsd https://
www.omg.org/spec/TEX/20180618/GroupChangeSinkEvent.xsd https://
www.omg.org/spec/TEX/20180618/GroupMetaData.xsd
https://www.omg.org/spec/TEX/20180618/HistoryChangeEvent.xsd https://
www.omg.org/spec/TEX/20180618/EntityChangeEvent.xsd
https://www.omg.org/spec/TEX/20180618/TCI_DDS_PSM.zip
https://www.omg.org/spec/TEX/20180618/TCI_CS_PSM.zip
https://www.omg.org/spec/TEX/20180618/tacsit-tci-controller.d.t.s

https://www.omg.org/spec/TEX/20180618/tex.xmi
https://www.omg.org/spec/TEX/20180618/tex.xmi
https://www.omg.org/spec/TEX/20180618/tex.xmi
https://www.omg.org/spec/TEX/20180618/ts/tacsit-tex-datainterfac.d.ts
https://www.omg.org/spec/TEX/20180618/ts/tacsit-tex-datapayload.d.ts
https://www.omg.org/spec/TEX/20180618/dds/DataPayload_DDS_PSM.zip
https://www.omg.org/spec/TEX/20180618/DataPayload_CS_PSM.zip
https://www.omg.org/spec/TEX/20180618/DataInterface_CS_PSM.zip
https://www.omg.org/spec/TEX/20180618/DataSink_CS_PSM.zip
https://www.omg.org/spec/TEX/20180618/EntityChangeSinkEvent.xsd
https://www.omg.org/spec/TEX/20180618/EntityHistoryPayload.xsd
https://www.omg.org/spec/TEX/20180618/GroupChangeEvent.xsd
https://www.omg.org/spec/TEX/20180618/GroupChangeSinkEvent.xsd
https://www.omg.org/spec/TEX/20180618/GroupMetaData.xsd
https://www.omg.org/spec/TEX/20180618/HistoryChangeEvent.xsd
https://www.omg.org/spec/TEX/20180618/EntityChangeEvent.xsd
https://www.omg.org/spec/TEX/20180618/TCI_DDS_PSM.zip
https://www.omg.org/spec/TEX/20180618/TCI_CS_PSM.zip
https://www.omg.org/spec/TEX/20180618/tacsit-tci-controller.d.t.s

ii TACSIT data Exchange (TEX), v1.0

Copyright © 2017, 2018, 2019, 2020 Thales
Copyright © 2017, 2018, 2019, 2020, SimVentions
Copyright © 2017, 2018, 2019, 2020, BAE Systems
Copyright © 2017, 2018, 2019, 2020, Object Management Group, Inc.

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to
this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

TACSIT data Exchange (TEX), v1.0 iii

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY
OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO
EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA
OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 9C Medway Rd, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®,
SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are
registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

iv TACSIT data Exchange (TEX), v1.0

OMG's Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

TACSIT data Exchange (TEX), v1.0 v

Table of Contents

1 Scope .. 1

2 Conformance .. 1

3 Normative References ... 1

4 Terms and definitions ... 2

5 Symbols .. 3

6 Additional Information .. 5
6.1 Problem Statement (non-normative) .. 5
6.2 Design Rationale (non-normative) .. 6
6.2.1 Architecture Patterns .. 6
6.2.2 Payload vs. Interface vs. Data Sink ... 9
6.2.3 One Namespace to Rule Them All ... 11
6.2.4 Dependencies .. 12
6.2.5 Optional Capabilities ... 12
6.2.6 Extensibility .. 13
6.2.7 Use patterns ... 13
6.2.8 On Giant’s Shoulders .. 21
6.3 Changes to Adopted OMG Specifications ... 21
6.4 Acknowledgements .. 21

7 Data Payload Platform – Independent Model ... 23
7.1 Util ... 23
7.1.1 AngleUnit (Enumeration) .. 24
7.1.2 CoordinateKind (Enumeration) .. 25
7.1.3 CoordinateOrientation (Enumeration) ... 25
7.1.4 CoordinateOrigin (Enumeration) .. 26
7.1.5 DistanceUnit (Enumeration) ... 27
7.1.6 Identity (Enumeration) .. 28
7.1.7 SpeedUnit (Enumeration) ... 28
7.1.8 Environment (Enumeration) ... 29
7.1.9 TrackPhase (Enumeration) ... 29
7.1.10 Angle (DataType) ... 30
7.1.11 DateTime (DataType) ... 30
7.1.12 Distance (DataType) .. 30
7.1.13 Period (DataType) .. 30
7.1.14 Projection (DataType) ... 30
7.1.15 Speed (DataType) .. 30
7.1.16 String (DataType) ... 31
7.1.17 URI (DataType) ... 31
7.1.18 URL (DataType) .. 31
7.2 GroupPayload ... 31
7.2.1 CoordinateUnits (Class) .. 32
7.2.2 EntityRelationship (Class) .. 32
7.2.3 ExtensionSchema (Class) ... 33
7.2.4 GroupList (Class)... 34
7.2.5 GroupMetaData (Class) ... 34
7.2.6 GroupPayload (Class) ... 35
7.2.7 GroupRef (DataType) .. 36
7.3 EntityPayload .. 36
7.3.1 AggregateEntity (Class) .. 39
7.3.2 AmbiguousBearings (Class) .. 39
7.3.3 Annulus (Class) ... 39
7.3.4 Arc (Class) .. 40
7.3.5 Archband (Class) ... 41

vi TACSIT data Exchange (TEX), v1.0

7.3.6 Arrow (Class) ... 42
7.3.7 Bearing (Class) .. 43
7.3.8 CartesianPosition (Class) ... 43
7.3.9 Circle (Class) .. 44
7.3.10 CompositeEntity (Class) ... 44
7.3.11 Corridor (Class) ... 44
7.3.12 Ellipse (Class) .. 45
7.3.13 EntityList (Class) ... 46
7.3.14 EntityMetaData (Class) .. 46
7.3.15 EntityPayload (Class) .. 46
7.3.16 ExtendedData (Class) .. 48
7.3.17 FreeShapedEntity (Class) ... 49
7.3.18 GeodeticPosition (Class) .. 49
7.3.19 InterpolationMethodology (Enumeration) ... 50
7.3.20 Multipoint (Class) ... 51
7.3.21 Orbit (Class) ... 51
7.3.22 Point (Class) ... 52
7.3.23 PolarPosition (Class) .. 52
7.3.24 Polygon (Class) .. 53
7.3.25 Polyline (Class) .. 53
7.3.26 PositionCoordinate (Class) .. 54
7.3.27 Rectangle (Class) .. 56
7.3.28 ReportType (Enumeration) ... 56
7.3.29 ShapedEntity (Class) ... 57
7.3.30 StickyNote (Class) ... 59
7.3.31 Text (Class) .. 60
7.3.32 EntityType (DataType) ... 60
7.4 CategorizationData ... 61
7.4.1 ADSBCategorizationData (Class) ... 62
7.4.2 AISCategorizationData (Class) ... 62
7.4.3 APP6BCategorizationData (Class) ... 63
7.4.4 APP6CCategorizationData (Class) ... 64
7.4.5 CategorizationData (Class) ... 65
7.4.6 CategorizationIn3D (Class) ... 66
7.4.7 MilitaryCategorizationData (Class) .. 66
7.4.8 STANAG2525CCategorizationData (Class) ... 67
7.4.9 STANAG2525DCategorizationData (Class) ... 68
7.4.10 STANAG5516CategorizationData (Class) ... 71
7.4.11 STANG5516SymbolCategorizationData (Class) ... 71
7.5 EntityHistory ... 72
7.5.1 EntityHistoryList (Class) ... 73
7.5.2 EntityHistoryPayload (Class) ... 73
7.6 CallbackData ... 74
7.6.1 ChangeKind (Enumeration) .. 75
7.6.2 EntityChangeEvent (Class) ... 76
7.6.3 EntityChangeEventList (Class) .. 77
7.6.4 EntityChangeSinkEvent (Class) ... 77
7.6.5 EntityChangeSinkEventList (Class) ... 77
7.6.6 GroupChangeEvent (Class) .. 78
7.6.7 GroupChangeSinkEvent (Class) .. 78
7.6.8 GroupChangeSinkEventList (Class) .. 79
7.6.9 HistoryChangeEvent (Class) .. 79
7.6.10 HistoryChangeEventList (Class) .. 80
7.6.11 TEXAttribute (Class) .. 80
7.7 EntityPayloadManagement .. 80
7.7.1 EntityPayloadChunk (Class) ... 81

8 Data Interface Platform-Independent Model ... 83
8.1 GroupManager (Interface) .. 83
8.2 Group (Interface) ... 85

TACSIT data Exchange (TEX), v1.0 vii

8.3 Entity (Interface) ... 88
8.4 EntityHistory (Interface) ... 90
8.5 GroupChangeListener (Interface) ... 91
8.6 EntityChangeListener (Interface) .. 91
8.7 HistoryChangeListener (Interface) .. 92
8.8 EntityQuerier (Interface) .. 93

9 Data Sink Interface Platform-Independent Model .. 95
9.1 DataSink (Interface) .. 95
9.2 EntityChangeSinkListener (Interface) .. 99
9.3 GroupChangeSinkListener (Interface).. 100

10 Data Payload Platform-Specific Models .. 101
10.1 Payload Media Types ... 101
10.2 XML PSM .. 101
10.3 Java PSM .. 101
10.4 C# PSM ... 101
10.5 DDS PSM .. 101
10.6 NVG PSM .. 102
10.6.1 Overview and Limitations ... 102
10.6.2 Mapping .. 102
10.7 NVGjs PSM .. 111

11 Data Interface Platform-Specific Models ... 113
11.1 Java PSM .. 113
11.2 C# PSM ... 113
11.3 DDS PSM .. 113
11.4 TypeScript PSM ... 113
11.4.1 Overview and Limitations ... 113
11.4.2 Mapping .. 114

12 Data Sink Platform-Specific Models .. 115
12.1 C# PSM ... 115
12.2 DDS PSM .. 115
12.3 HTTP PSM .. 115
12.3.1 Overview and Limitations ... 115
12.3.2 General Conventions and Considerations .. 116
12.3.3 Mapping .. 116

Annex A : Standardized Extension Schema .. 121

Annex B : New PSM for the TCI Standard .. 123

viii TACSIT data Exchange (TEX), v1.0

Table of Contents
Figure 6-1: Example of a TACSIT software component ... 5
Figure 6-2: Standalone Architecture Pattern (non-normative) ... 6
Figure 6-3: Distributed Without TACSIT back-end Architecture Pattern (non-normative) 7
Figure 6-4: Distributed With TACSIT back-end Architecture Pattern (non-normative) 9
Figure 6-5: Example of use of a web-based TACSIT system (non-normative) .. 11
Figure 6-6: Enhancement to TACSIT TCI by TACSIT TEX (non-normative) .. 12
Figure 6-7: The 'Initialization' Use pattern (non-normative) .. 14
Figure 6-8: The 'Update of a Single Track/BSO' Use pattern (non-normative) .. 16
Figure 6-9: The 'Update of a Group of Tracks/BSOs' Use pattern (non-normative) 18
Figure 6-10: The 'Display of a Single Track/BSO History' Use pattern (non-normative) 19
Figure 6-11: The 'TEX and TCI' Use pattern (non-normative) ... 20
Figure 7-1: DataPayload (Class diagram) .. 23
Figure 7-2: Util (Class diagram) ... 24
Figure 7-3: GroupPayload (Class diagram) ... 31
Figure 7-4: EntityPayload - 1 of 2 (Class diagram) .. 37
Figure 7-5: EntityPayload - 2 of 2 (Class diagram) .. 38
Figure 7-6: CategorizationData (Class diagram) .. 62
Figure 7-7: EntityHistory (Class diagram) ... 73
Figure 7-8: CallbackData (Class diagram) ... 75
Figure 7-9: EntityPayloadManagement (Class diagram) ... 81
Figure 8-1: DataInterface (Class diagram) ... 83
Figure 9-1: DataSink (Class diagram) ... 95

Table of Tables
Table 10-1: Mapping between TEX and NVG 2.0 .. 102

TACSIT data Exchange (TEX), v1.0 ix

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language®); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel™);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Medway, MA 01757
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

x TACSIT data Exchange (TEX), v1.0

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification via the report form at:
https://issues.omg.org/issues/create-new-issue.

https://issues.omg.org/issues/create-new-issue

TACSIT data Exchange (TEX), v1.0 1

1 Scope
The domain of military and operational Command and Control systems is characterized by a huge variety of underlying
computing platforms. A standard-based interface to common TACtical SITuation (TACSIT) services is thus essential for
interoperable and open systems. In this scope, a first standard has already been issued by the OMG: the TACSIT
Controller Interface consists of set of interfaces to interact with TACSIT display systems.

This specification offers data interfaces to TACSIT systems. More specifically, it standardizes:

• The data that need to be exchanged with TACSIT systems.

• The interfaces needed to exchange data from/to TACSIT systems.

2 Conformance
Implementations are considered to be in conformance to this standard if:

• It implements at least one the of the Data Payload PSM (see Clause 10).

• And it implements at least one the of the Data Interface PSM (see Clause11) and/or at least one of the Data Sink
PSM (see Clause 12) matching the preceding Data Payload PSM.

Implementing one of the Data Payload PSM shall implement the optional points as specified in Clause 6.2.5 and may
include extensions as specified in Clause 6.2.6.

The conditions under which a Data Payload PSM matches a Data Interface PSM or a Data Sink PSM are specified in the
specification of the Data Interface PSM (see Clause 11) or of the Data Sink PSM (see Clause 12).

Note: Implementing this standard does not entail to implement OMG's TCI standard even if there is a natural synergy
between them.

3 Normative References
• TACSIT Controller Interface (TCI) 1.0 (formal/13-02-04) targets at the Controller services necessary for

TACSIT software component manipulation only including such functionalities as range scaling, setting the area
center/offset, setting view rotation, selecting objects, registering for events, and receiving cursor location
updates;

• The Open Architecture Radar Interface Standard (OARIS) 1.0 (formal/16-03-02) primarily defines the interface
between the CMS and a Radar system within a modular combat system architecture for naval platforms.

• The NATO Vector Graphics (NVG) protocol intends to provide military systems developers with a simple, yet
extensible, specification for encoding battle-space information to support geospatial viewing
(https://tide.act.nato.int/tidepedia/index.php/NATO_Vector_Graphics_%28NVG%29); it is standardized by
NATO as STANAG 4733.

• The FIPS 10-4 (Federal Information Processing Standards) standard, Countries, Dependencies, Areas of Special
Sovereignty, and Their Principal Administrative Divisions, is a list of two-letter country codes used by the U.S.
Government for geographical data processing in many publications, such as the CIA World Factbook. See
https://en.wikipedia.org/wiki/List_of_FIPS_country_codes for a list of these codes.

• NATO Joint Military Symbology is the NATO standard for military map marking symbols. Originally published
in 1986 as Allied Procedural Publication 6 (APP-6B and APP-6C). See
http://armawiki.zumorc.de/files/NATO/APP-06(B)%20Joint%20Symbology.pdf for version B. See
http://armawiki.zumorc.de/files/NATO/APP-6%28C%29.pdf for version C.

• HTTP: IETF Network Working Group “Hypertext Transfer Protocol – HTTP 1.1”, online at
http://tools.ietf.org/html/rfc2616.

http://armawiki.zumorc.de/files/NATO/APP-6%28C%29.pdf

2 TACSIT data Exchange (TEX), v1.0

• RFC3986: IETF Network Working Group “Uniform Resource Identifier (URI): Generic Syntax”, online at
https://www.ietf.org/rfc/rfc3986.

• Media type definition (MIME): IETF Network Working Group:

o RFC 2045 - MIME formats and encodings

o RFC 2046 - Definition of media types

o RFC 2077 - Model top-level media type

o RFC 7303 - XML Media Types

o RFC 6657 - Update to MIME regarding "charset" Parameter Handling in Textual Media Types

o RFC 6838 - Media type specifications and registration procedures

• SSE: Web Hypertext Application Technology Working Group “Server-sent events”, online at
https://html.spec.whatwg.org/multipage/server-sent-events.html;

• TS: TypeScript, online at http://www.typescriptlang.org;

• ECMAScript: standardized by ECMA International in ECMA-262 and ISO/IEC 16262;

• JSON: standardized by ECMA International in ECMA-404.

4 Terms and definitions
For the purposes of this specification, the following terms and definitions apply.

Battle Space Object (BSO)
“A Battle Space Object (BSO) is a discrete entity; thing or being that does exist at a particular time or place on the battle
space and has military or civilian significance.” (From NATO’s
http://tide.act.nato.int/tidepedia/index.php?title=Battlespace_Object). See Track.

Datum

“A Geodetic system or geodetic datum is a coordinate system, and a set of reference points, used to locate places on the
Earth (or similar objects).” (From http://en.wikipedia.org/wiki/Geodetic_datum).

ECEF

“ECEF ("Earth-Centred, Earth-Fixed"), also known as ECR ("Earth Centred Rotational"), is a Cartesian coordinate
system, and is sometimes known as a "conventional terrestrial" system. It represents positions as an X, Y, and Z
coordinate. The point (0, 0, 0) is defined as the center of mass of the Earth, hence the name Earth-Centred. Its axes are
aligned with the International Reference Pole (IRP) and International Reference Meridian (IRM) that are fixed with
respect to the surface of the Earth, hence the name Earth-Fixed. This term can cause confusion since the Earth does not
rotate about the z-axis (unlike an inertial system such as ECI) and is therefore alternatively called ECR. The z-axis is
pointing towards the north, but it does not coincide exactly with the instantaneous Earth rotational axis. The slight
"wobbling" of the rotational axis is known as polar motion. The x-axis intersects the sphere of the Earth at 0° latitude
(Equator) and 0° longitude (Greenwich). This means that ECEF rotates with the earth and therefore, coordinates of a
point fixed on the surface of the earth do not change. Conversion from a WGS84 Datum to ECEF can be used as an
intermediate step in converting velocities to the North East Down coordinates system.” (From
http://en.wikipedia.org/wiki/ECEF).

TACSIT

A Tactical Situation Display software component provides a display of relevant tactical information over and in
conjunction with the geographic context of the information.

https://www.ietf.org/rfc/rfc3986
https://html.spec.whatwg.org/multipage/server-sent-events.html
http://www.typescriptlang.org/

TACSIT data Exchange (TEX), v1.0 3

Track

A spatial object that is managed within the CMS, such as local radar contacts, radar contacts provided via external
messages, tactical data points, waypoints, etc. See BSO.

WGS84

“The World Geodetic System (WGS) is a standard for use in cartography, geodesy, and navigation. It comprises a
standard coordinate system for the Earth, a standard spheroidal reference surface (the datum or reference ellipsoid) for
raw altitude data, and a gravitational equipotential surface (the geoid) that defines the nominal sea level. The latest
revision is WGS 84 (aka WGS 1984, EPSG:4326), established in 1984 and last revised in 2004.” (From
http://en.wikipedia.org/wiki/WGS84#A_new_World_Geodetic_System).

5 Symbols
None.

4 TACSIT data Exchange (TEX), v1.0

This page intentionally left blank.

TACSIT data Exchange (TEX), v1.0 5

6 Additional Information
6.1 Problem Statement (non-normative)

The domain of C2 Systems is characterized by a huge variety of underlying computing platforms, with different and
often incompatible means of providing interactive displays. Standards-based services are essential for interoperable and
open systems.

There is fairly broad agreement of what is considered the TACSIT software component of a tactical / strategic display
system. The TACSIT component is the software that provides users awareness of entities in the operational space relative
to a certain geospatial context. The TACSIT, by its nature, displays entities called tracks or BSO’s (Battle Space Object)
in their proper geographic location overlaid on a visual representation of a map while including additional annotations
and decision aides to support the operator. The TACSIT is distinct from other display applications that work around, or in
conjunction with it.

The figure below provides an example of what the TACSIT software component is versus other typical tactical display
applications and decision aids.

Figure 6-1: Example of a TACSIT software component

There are many capabilities and services necessary to successfully implement a TACSIT software component. Within
this broader context of TACSIT services, this specification is targeted at the Data Services necessary to exchange
Tracks/BSO’s data with TACSIT services.

More specifically, the considered data encompass all the data needed to draw Tracks/BSO’s over a map as points (icons),
multilines or surfaces.

The data necessary to infer the military icons, annotations, and decision aides to be drawn must be exchangeable with
TACSIT systems. Only the strictly required, limited-to-core data must be exchanged to avoid the transfer of unused data,
e.g. between web browser and server and/or over poor communication means (satellite, radio…).

In the context of TEX, the needed data to draw a military symbol on a map (2D/3D) are:

• Data common to any Tracks/BSO: name, identifier, positions...; these data will be limited to the strict minimum.

6 TACSIT data Exchange (TEX), v1.0

• Data depending on the symbology used (APP-6B, 2525D, AIS...) they will be called “Categorization Data”;
since such symbologies picture domain information, Categorization Data tend to hold business-specific
information but the aim is to draw the symbol;

• Business-specific data that may be drawn/written around the symbol: they will be considered as “Extended
Data” and designed as key/value pairs.

Next, the grouping of Tracks/BSO’s needs also to be considered. Indeed, operators of TACSIT may find it useful to
group the Tracks/BSO’s by Group name. These TACSIT groups provide a list of Tracks/BSO’s, which is defined either
by extension, i.e. by a set of items, or by intention, i.e. by a filter to be applied on all known Tracks/BSO’s. Such
TACSIT groups aid Situation Awareness, Common Operational Picture (COP), Recognized Ground/Air/Maritime
Picture (RGP, RAP and RMP), orders and plans pictures. However, since this capability may be meaningless for some
systems or harmful to performance, TACSIT groups are made optional in this specification.

6.2 Design Rationale (non-normative)

6.2.1 Architecture Patterns

Even if this specification does not limit the use of its interfaces to any specific architecture, it has been designed with
three specific patterns of architecture in mind: one with a standalone system and two based on distributed systems.

This section describes these three architecture patterns and how they relate to the other TACSIT standard, namely [TCI].

Note: the description of these patterns implies the concept of “channel” which encompasses any means of
communication between components – e.g., intra-process calls, remote procedure invocations (CORBA, HTTP/REST,
HTTP/SOAP...), publish/subscribe (DDS...) – and any necessary in-between items (ESB, Reverse Proxy...).

6.2.1.1 Standalone Architecture Pattern

In this first pattern, the application runs on one standalone computer. It has two types of components:

• The TACSIT component,

• The specific business applications such as business object forms, business objects lists and so forth.

The following figure depicts this pattern:

Figure 6-2: Standalone Architecture Pattern (non-normative)

TACSIT data Exchange (TEX), v1.0 7

These two components communicate through two channels:

• The first conforms to [TCI] and allows a business application to control the display of the TACSIT component
as well as to get the entity selection currently set by the user.

• The second one conforms to the “Data Interface” package introduced in the present specification and allows the
TACSIT component and the business application components to exchange displayed data and/or get callback on
the modification thereof.

Both channels work together based on the common Entity concept (which designs a Track/BSO).

6.2.1.2 Distributed Without TACSIT Back-end Architecture Pattern

In this second pattern, the application is made up of graphical user interfaces (GUI) and one business back-end. It is
constituted of the following components:

• The TACSIT component,

• The specific business HMIs such as business object forms, business objects lists and so forth,

• The business back-end or business server that serves business data to the business HMIs and display data to the
TACSIT component.

The following figure depicts this pattern:

Figure 6-3: Distributed Without TACSIT back-end Architecture Pattern (non-normative)

8 TACSIT data Exchange (TEX), v1.0

These components communicate through the following channels:

• A first channel conforms to [TCI] and allows a business HMI to control the display of the TACSIT component
as well as to get the entity selection currently set by the user.

• A second channel conforms to the “Data Interface” package introduced in the present specification and allows
the TACSIT component and the HMI components to exchange displayed data and/or get callback on the
modification thereof.

• A third channel takes place between the business HMI and the business back-end and is considered as
proprietary in the solution.

• A last channel allows the TACSIT component to fetch to-be-displayed data from the business back-end; it
conforms to the “Data Sink” package introduced in the present specification.

TCI's and TEX' channels work jointly based on the common Entity concept.

6.2.1.3 Distributed With TACSIT Back-end Architecture Pattern

In this third pattern, the application is made up of graphical user interfaces (GUI), one business back-end and one
TACSIT back-end. With regards to the preceding pattern, the back end is here split in two back-ends: one for the
TACSIT display data and the other one for the business data. The pattern is thus constituted of the following
components:

• The TACSIT component,

• The specific business HMIs such as business object forms, business objects lists and so forth,

• The business back-end or business server that serves business data to the business HMIs,

• The TACSIT back-end or TACSIT server that serves display data to the TACSIT component.

TACSIT data Exchange (TEX), v1.0 9

The following figure depicts this pattern:

Figure 6-4: Distributed With TACSIT back-end Architecture Pattern (non-normative)

These components communicate through the following channels:

• A first channel conforms to [TCI] and allows a business HMI to control the display of the TACSIT component
as well as to get the entity selection currently set by the user.

• A second channel conforms to the “Data Interface” introduced in the present specification and allows the
TACSIT component and the HMI components to exchange displayed data and/or get callback on the
modification thereof.

• A third channel takes place between the business HMI and the business back-end and is considered as
proprietary in the solution.

• A fourth channel allows the TACSIT component to fetch to-be-displayed data from the TACSIT back-end; it
conforms to the “Data Sink” interfaces introduced in the present specification.

• A last (optional) channel allows both back-ends to exchange information preventing them to serve inconsistent
data; this channel is out of the scope of TEX.

TCI's and TEX' channels work jointly based on the common Entity concept.

6.2.2 Payload vs. Interface vs. Data Sink

As described in the above section, TEX specifies interfaces to push and pull data to and from a TACSIT system.

10 TACSIT data Exchange (TEX), v1.0

These interfaces are either implemented by a TACSIT system and used by an external system or used by a TACSIT
system and implemented by an external system.

In the first case (implemented by a TACSIT system), the interfaces allow external systems to push and pull data to and
from a TACSIT system.

In the second case (implemented by an external system), the interfaces allow a TACSIT system to get data from the
external system; in this case, the external system is named a “data sink” for the TACSIT system and the matching
interface “data sink interface” while the preceding interface are simply named “data interfaces”.

An important point here is that TACSIT data interfaces and data sink interface shares the same specification of the
transported data (the payload).

TEX interfaces are therefore designed by splitting the data (payload) from the interfaces and by splitting data interfaces
from data sink interfaces. In that way, the transported data, i.e. the payload in the interfaces and data sink, are designed in
a specific package (namely DataPayload) while the interfaces are designed in another package (namely DataInterface)
and the interfaces for the data sink in a third package (namely DataSink).

This design allows the use of different PSMs for payload, data interfaces and data sink interfaces.

The following figure show a system based on what has already been introduced in the preceding section as a Lightweight
Without TACSIT Back-end Architecture Pattern. The TACSIT system provides data interfaces to other browser-based
applications (Biz GUI in the figure) and requests data sink interface implemented at server level (Biz Server in the
figure). This last interface is designed to get data from the field and needs to perform fast enough to ensure a correct
understanding of the tactical situation.

In this example, the payload PSM could be XML, the interface PSM TypeScript and the data sink PSM HTTP.

TACSIT data Exchange (TEX), v1.0 11

Figure 6-5: Example of use of a web-based TACSIT system (non-normative)

6.2.3 One Namespace to Rule Them All

This specification adds new capabilities to [TCI] by providing new packages aside of the previous TCI ones. As depicted
in the following figure, TEX does not add a new namespace but enhance org.omg.tacsit with three new packages:
DataPayload, DataInterface and DataSink as introduced in the preceding section. The TCI and TEX level exist so only
for the sake of documentation management as depicted in the following diagram by dashed boxes.

12 TACSIT data Exchange (TEX), v1.0

Figure 6-6: Enhancement to TACSIT TCI by TACSIT TEX (non-normative)

6.2.4 Dependencies

The DataInterface package uses the DataPayload package. Incidentally, it also uses the Controller package (more
specifically, it subclasses the Entity interface) defined by the [TCI] specification.

The DataSink package also uses the DataPayload package yet uses the Query package from TCI (more specifically the
EntityQuery interface) from TCI.

The DataPayload PIM is described in section 7, the DataInterface PIM in section 8 and the DataSink PIM in section 9.

6.2.5 Optional Capabilities

Some capabilities have been considered as optional, meaning that conforming implementations are not obliged to
implement them. Yet, in these cases, the matching method are designed to be implemented and to return the
NotImplemented exception. A user of such a method needs to be aware that the targeted TACSIT implementation(s) may
or may not offer these capabilities.

The optional capabilities are:

• The entity grouping capability may be restricted because it may be expensive to implement and/or costly in
terms of memory and CPU consumption and/or not useful for the specific domain of interest; this restriction is
done either by not allowing the creation of new groups or by limiting the number of such groups; whatever the
way the restriction is done, a TACSIT system has always at least one such group to hold entities;

• A TACSIT system may be unable to accept entity modification from an external system (for instance, because in
some system it may be considered that it is not the TACSIT system's role to maintain data coherence of entities
across a system with multiple TACSIT instances): all interfaces that change entities or groups can thus return
the NotImplemented exception;

• Listeners may offer a rate at which the client is informed of the changes.

TACSIT data Exchange (TEX), v1.0 13

6.2.6 Extensibility

This standard holds an extensible capability. Here, 'extensible' means that this capability may be extended in a non-
foreseen way while keeping the conformance of the implementation with regards to the standard.

This extensible capability is the specification of the data of an entity used to choose the symbol used to draw the given
entity. The extensibility is provided through:

• An abstract class, CategorizationData (See Clause 7), that is to be sub-classed for each new categorization.

• A couple of tags, SymbolSet and SymbolId, that may be used by the Data Payload PSMs to generically
implement such categorization: SymbolSet is a unique string that identify the specified symbology (e.g. “app6a”
for the APP-6A symbology), and SymbolId is a human-readable specification of the method to work out a
symbol id from the attributes.

A typical use of these tags is to specify the way a categorization data in transported as a string built from the SymbolSet,
the character “:” and the string resulting of the application of SymbolId to the attributes of the actual CategorizationData
class.

A CategorizationData for which a SymbolSet is already known in this standard shall not be defined otherwise by an
implementation.

6.2.7 Use patterns

This section exemplifies potential patterns on how to use the interfaces specified in this document with sequence
diagrams. These use patterns are not normative, meaning that the interfaces may be used otherwise. Specifically, they are
designed in the context of the “Distributed Without TACSIT back-end” Architecture Pattern (see Section 6.2.1.2).
Nevertheless, they may easily be translated to any of the other Architecture Patterns in Section 6.2.1 and most probably
to any other pattern.

In the following diagrams, colors are used to point out items related to the TEX standard (blue-colored) and items related
to the TCI standards (green-colored). Nevertheless, these colors are meant to ease the reading of these diagrams and do
not bring any new semantics to them.

6.2.7.1 Initialization

In this example of initialization, an operator launches a TACSIT situation viewer, requests the list of groups (overlays)
and ask for the display of one of them.

More specifically:

1. The operator starts the TACSIT system, which consequently is created.

2. The TACSIT system retrieves from its configuration the connection means (depending on the PSM used) of the
DataSink interface of the Business server.

3. The TACSIT system invokes the DataSink interface:

• To get the list of groups, and

• To iteratively get the definition of each of these groups (meta data as well as list of entity pointers).

4. The operator requests the listing of the groups; The TACSIT system uses the preceding groups definition to
display an HMI listing the group’s name, permissions, entities number and so forth.

5. The operator selects a group and requests its display on the map.

6. The TACSIT system:

• Invokes the DataSink interface to fetch the full definition of the entities of the selected group.

• Displays these entities on the map using the data provided by the DataPayload PIM; and

• Invokes the DataSink interface to add a listener on the modification of the selected group in order to
refresh the entities on the map.

14 TACSIT data Exchange (TEX), v1.0

Figure 6-7: The 'Initialization' Use pattern (non-normative)

6.2.7.2 Update of a Single Track/BSO

This use pattern is the follow up of the preceding one. The operator launches two business GUIs displaying the same
entity, uses one of them to modify this entity. The second GUI receives a notification of this modification and refreshes
itself.

More specifically:

1. The operator starts her/his entity form (called “Biz GUI”) providing the group name and the entity named s/he
wants to work on.

2. The entity form retrieves from its configuration the connection means (depending on the PSM used) of the
DataInterface:DataManager interface of the TACSIT system (this component was fully initialized during the
preceding use pattern);

TACSIT data Exchange (TEX), v1.0 15

3. The entity form uses this DataInterface interface to get the list of groups and all the data for the specific group to
be used (from its name).

4. The entity form uses this DataInterface interface to add a listener on the modifications of this group.

5. The entity form uses this DataInterface interface to get the complete definition of the wanted entity from its
name and fill in the form with them.

6. The entity form uses this DataInterface interface to add a listener on the modifications of this entity.

7. The operator starts another GUI displaying the same entity (e.g., a grid): follows then the same kind of sequence
as from (2) to (6).

8. S/he updates the entity with her/his form and saves these modifications.

9. The form uses its DataInterface interface to update the entity in the TACSIT system.

10. The TACSIT component works out the callbacks that need to be fired.

11. and iteratively invokes them, including the other GUI's callback interface provided to the business server at form
initialization (see bullet 6).

12. Eventually, the other GUI refreshes itself with the new data provided with the callback.

16 TACSIT data Exchange (TEX), v1.0

Figure 6-8: The 'Update of a Single Track/BSO' Use pattern (non-normative)

sd Update of a single track

:Biz GUI

:TACSIT

Operator

form: Biz GUI

(1)

(2)
(3)

(4)

(5)

(6)

(7)

(8)
(9)

(10)

(11)

(12)

Data Interface

Data Interface

entityCB

Data Interface

consider Same as for the form

update the entity()

draw HMI with entity()

refresh HMI()

fetch GroupManager from configuration()

update the entity()

get the payload of an entity()

request other GUI()

get the payload of the wanted entity()

Group:addListener(entityCB): ok

get the data of the selected group()

*EntityChangeListener:entityChanged(EntityChangeEventList): ok

add a listener on the modifications of an entity()

get the definition of an entity()

get the list of groups()

add a listener on the modifications of
the selected entity()

get the definition of the wanted entity()

GroupManager:getGroup(url): Group

get the list of groups()

Entity:update(newPayload)

request track form()

modifiy the track through its form()

Entity:read(): EntityPayload

add a listener on the modifications of a group()

invoke callback()

add a listener on the modifications of
the selected group()

work out
the CBs()

Entity:addListener(historyCB): ok

Group:getEntity(url): Entity

get the data of a group()

GroupManager:l istGroups(name): DataPayload:GroupList

TACSIT data Exchange (TEX), v1.0 17

6.2.7.3 Update of a Group of Tracks/BSO

This use pattern is the follow up of the two preceding ones. The business server receives some updates either from
outside of the system (e.g., from a tactical data link) or from inside of the system (e.g., another operator). It sends these
updates to the TACSIT components that in turn send updates to the business GUIs for purposes of refreshing.

More specifically:

1. The business server receives new tracks and works out the list of callbacks that need to be invoked to inform the
DataSink clients.

2. The business server iteratively invokes these callbacks through the DataSink interface (set up during the
initialization of the TACSIT system).

3. The TACSIT system redraws the updated entities on the map.

4. The TACSIT system works out the list of entity callbacks that needs to be invoked.

5. The TACSIT system iteratively invokes these callbacks through the DataInterface interface (set up during the
initialization of the business GUIs).

6. The TACSIT system works out the new history for the updated entities.

7. The TACSIT system works out the list of history callbacks that needs to be invoked.

8. The TACSIT system iteratively invokes these callbacks through the DataInterface interface (set up during the
initialization of the business GUIs).

9. The Business GUIs refresh themselves from the data provided along with the callbacks.

18 TACSIT data Exchange (TEX), v1.0

Figure 6-9: The 'Update of a Group of Tracks/BSOs' Use pattern (non-normative)

6.2.7.4 Display of a Single Track/BSO History

This use pattern is the follow up of the first pattern. The operator requests the display of the history path of an entity.

More specifically:

1. The operator asks the TACSIT system for a display of the history path of an entity (however this is done through
the GUI).

2. The TACSIT system invokes the business server for this information through its DataSink interface.

3. The TACSIT system draws the history path of the entity.

sd Update of a group of tracks

:Biz Server :Biz GUI:TACSIT

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Data InterfaceentityCB DataInterface historyCB

work out
the CBs()

*EntityChangeListener:entityChanged(EntityChangeEventList): ok

redraw entities()

invoke callback()

work out
the CBs()

*EntityChangeSinkListener:entityChanged(EntityChangeSinkEventList): ok

new tracks!()

invoke callback()

refresh HMI()

work out
the CBs()

*HistoryChangeListener:historyChanged(HistoryChangeEventList): ok

invoke callback()

work out the
history()

TACSIT data Exchange (TEX), v1.0 19

Figure 6-10: The 'Display of a Single Track/BSO History' Use pattern (non-normative)

6.2.7.5 TEX and TCI

This use pattern is the follow up of the first pattern. The operator plays around with its entity form and the TACSIT
selection to show off. The main point here is to illustrate the interoperability between TEX and TCI.

More specifically:

1. The operator selects an entity in the TACSIT component.

2. The operator asks the entity form to display the currently selected entity (by whatever means this is done
through the GUI).

3. The form invokes the TACSIT system to get the selected entities through the Controller interface (TCI).

4. The form invokes the TACSIT system to translate (“cast”) the preceding TCI entity onto a TEX one.

5. The form invokes the TACSIT system to get the entity payload of the obtained TEX entity and refreshes itself.

6. Now, the operator requests the form to create a new entity and modify it.

7. The form invokes the TACSIT system to create a new entity with the new payload; the TACSIT component
outputs the created entity.

8. The form does not need to translate the new TEX Entity onto a TCI Entity since TEX Entity is a subclass of TCI
Entity.

9. The form may now invoke the TACSIT system to set the selection to the new entity through the Controller
interface (TCI).

sd Display of a single track history

:Biz Server:TACSIT

Operator

(1)
(2)

(3)

Data Sink

get the history data for the entity()

select a track and request history()

DataSink:getHistory(uri, length): HistoryPayload

draw history()

20 TACSIT data Exchange (TEX), v1.0

Figure 6-11: The 'TEX and TCI' Use pattern (non-normative)

sd TEX and TCI

form: Biz GUI :TACSIT

Operator

No need for strong
casting here since a TEX
Entity *is* a TCI Entity.

(1)

(2)
(3)

(4)

(5)

(6)
(7)

(8)

(9)

GroupManager Data Interface

get the selected entities()

create a new entity()

select an entity()

Controller:setSelection(other_tex_entity)

DataInterface:castEntity(tci_entity[0]): DataInterface:Entity

other_tex_entity=

get the entity payload()

create a new entity()

get the entity payload()

SelectionManager:getSelection(): Controller:Entity[]

create a new entity with the new payload()

tex_entity=

request the display of the selected entity()

set the selection()

refresh()

cast a TCI entity onto a TEX one()

set the selection to the new entity()

cast the preceding TCI entity onto a TEX one()

tci_entity[]=

Entity:read(tex_entity): EntityPayload

get the selected entities()

Group:addEntity(payload): DataInterface:Entity

TACSIT data Exchange (TEX), v1.0 21

6.2.8 On Giant’s Shoulders

This specification reuses several structures from [OARIS]. In order to avoid hard-to-maintain dependencies between the
two set of standards, these structures have been copied rather than referenced.

Nevertheless, the specification still does maintain documentary references to OARIS as notes in diagram and text in
order to keep the design rationale behind the structures.

As for the overlap with TCI, it is done by references due to the closeness of the two standards.

6.3 Changes to Adopted OMG Specifications

This specification adds the following PSM to the TCI specification:

• DDS PSM,

• C# PSM,

• TypeScript PSM.

These PSM are presented in Annex B.

6.4 Acknowledgements

The following companies submitted this specification:

• Thales,

• SimVentions Inc,

• BAE Systems.

The following companies supported this specification:

• General Dynamics.

22 TACSIT data Exchange (TEX), v1.0

This page intentionally left blank.

TACSIT data Exchange (TEX), v1.0 23

7 Data Payload Platform – Independent Model
The DataPayload package defines the data which may be exchanged to/from a TACSIT system.

It is subdivided into 6 other packages:

- EntityPayload for the entities.

- CategorizationData for the data of the entity which are used to draw the entities.

- GroupPayload for the groups of entities.

- EntityHistory for the timed status of the entities.

- CallbackData contains the classes which are exchanged in callback methods, whatever the direction of the interfaces.

- A utility package containing the general-purpose data types and enumerations.

Note: Implementation details (such as getter and setter if any) are postponed to PSM-level choices.

Figure 7-1: DataPayload (Class diagram)

7.1 Util

This package contains several datatypes and enumeration used by other packages.

24 TACSIT data Exchange (TEX), v1.0

Figure 7-2: Util (Class diagram)

7.1.1 AngleUnit (Enumeration)

Enumeration of the known Angle Units: radian, degree and grad.

Connections

Connector Source Target Notes

Aggregation angleUnit

Source -> Destination

AngleUnit

CoordinateUnits

The angle unit used by the group.
RAD is the default.

TACSIT data Exchange (TEX), v1.0 25

Attributes

Attribute Notes Default

RAD Radian.

DEG Degree.

GRAD Grad.

7.1.2 CoordinateKind (Enumeration)

Enumeration of the coordinate systems, which compliant implementations may implement.

(from [OARIS])

Connections

Connector Source Target Notes

Aggregation coordKind

Source -> Destination

CoordinateKind

CoordinateUnits

The coordinate kind unit used by
the group. GEODETIC is the
default.

Attributes

Attribute Notes Default

CARTESIAN Cartesian Coordinates (x, y, z).

POLAR Polar coordinates (azimuth, elevation, range).

GEODETIC Geodetic coordinates (latitude, longitude,
altitude).

7.1.3 CoordinateOrientation (Enumeration)

Enumeration of the coordinate systems, which compliant implementations may use. A compliant implementation may
not fully support all of these coordinate systems.

(from [OARIS])

Connections

Connector Source Target Notes

Aggregation
coordOrientation

Source -> Destination

CoordinateOrientation

CoordinateUnits

The coordinate orientation used by
the group. Default depend upon the
coordinate kind.

26 TACSIT data Exchange (TEX), v1.0

Attributes

Attribute Notes Default

NORTH_HORIZONTAL Valid for Polar Coordinate Kind Azimuth has
origin (0.0) at North, positive clockwise,
measured in the horizontal plane Elevation has
origin (0.0) at the Horizontal, positive up,
measured in the vertical plane.

NORTH_DOWN Valid for Polar Coordinate Kind Azimuth has
origin (0.0) at North, clockwise positive,
measured in the horizontal plane Elevation has
origin (0.0) when pointing directly down, and
180.0 degrees when pointing directly up,
measured in the vertical plane.

EAST_NORTH_UP Valid for Cartesian coordinate type x is positive
to the East y is positive to the North z is
positive up.

EAST_NORTH_DOWN Valid for Cartesian coordinate type x is positive
to the East y is positive to the North z is
positive down.

NORTH_EAST_UP Valid for Cartesian coordinate type x is positive
to the North y is positive to the East z is
positive up.

NORTH_EAST_DOWN Valid for Cartesian coordinate type x is positive
to the North y is positive to the East z is
positive down.

EARTH_CENTRED Cartesian system with origin at centre of the
Earth (absolute reference point) x positive
through Greenwich meridian y positive through
90 degrees east (of Greenwich meridian) z
positive through north pole x & y are in the
equatorial plane.

LAT_LONG_HEIGHT WGS84 has unique well-defined orientation
(NIMA Technical Report TR8350.2).

AHEAD_HORIZONTAL Valid for Polar Coordinate Kind Azimuth has
origin (0.0) ahead of the relevant entity,
positive clockwise, measured in the horizontal
plane Elevation has origin (0.0) at the
Horizontal, positive up, measured in the vertical
plane.

7.1.4 CoordinateOrigin (Enumeration)

Enumeration of the origins of the coordinate system.

(from [OARIS])

TACSIT data Exchange (TEX), v1.0 27

Connections

Connector Source Target Notes

Aggregation coordOrigin

Source -> Destination

CoordinateOrigin

CoordinateUnits

The coordinate Origin used by the
group.
ABSOLUTE_REFERENCE_POINT
is the default.

Attributes

Attribute Notes Default

PLATFORM_REFERENCE_POINT The origin of the coordinate system is
‘well known’ reference point for the
platform (on which the TACSIT
system reside).

ABSOLUTE_REFERENCE_POINT The origin for the coordinate system is
a fixed point in Earth (e.g., WGS84)
coordinates. This point is known to the
TACSIT system using the interface by
means beyond the scope of the
interface.

EARTH_REFERENCED This value signifies that the origin for
the coordinate system is well-defined
with respect to the Earth by the
coordinate system. E.g. centre of the
Earth for Earth-Centred Earth-Fixed or
the WGS84 spheroid for WGS84

ENTITY_REFERENCED The origin of the coordinate system is
defined by the position of the relevant
entity.

7.1.5 DistanceUnit (Enumeration)

Enumeration of the known Distance Units: International system (m), nautical mile and mile.

Connections

Connector Source Target Notes

Aggregation distanceUnit

Source -> Destination

DistanceUnit

CoordinateUnits

The distance unit used by the
group. SI is the default.

28 TACSIT data Exchange (TEX), v1.0

Attributes

Attribute Notes Default

SI International System: meter.

NauticalMile Nautical Mile: "A nautical mile (symbol M,
NM or nmi) is a unit of distance, set by
international agreement as being exactly 1,852
meters (about 6,076 feet)."
(https://en.wikipedia.org/wiki/Nautical_mile)

Mile Mile. The mile is an English unit of length
equal to 1,760 yards and standardized as exactly
1,609.344 meters by international agreement in
1959. (https://en.wikipedia.org/wiki/Mile)

7.1.6 Identity (Enumeration)

Identity according to STANAG 5516.

Attributes

Attribute Notes Default

PENDING No identity assessment has yet been made

UNKNOWN The entity's identity is not yet determined

ASSUMED_FRIEND The entity is assumed to be friendly

FRIEND The entity is friendly

NEUTRAL The entity is neutral

SUSPECT The entity is considered suspicious

HOSTILE The entity is considered hostile

7.1.7 SpeedUnit (Enumeration)

Enumeration of the known Speed Units: International system (m/s), nautical knot and mile per hour.

Connections

Connector Source Target Notes

Aggregation speedUnit

Source -> Destination

SpeedUnit

CoordinateUnits

The speed Unit used by the group.
SI is the default.

TACSIT data Exchange (TEX), v1.0 29

Attributes

Attribute Notes Default

SI International System: meter per second.

Knot The knot is a unit of speed equal to one nautical
mile (1.852 km) per hour, approximately 1.151
mph.

(https://en.wikipedia.org/wiki/Knot_%28unit%29)

MilesPerHour Miles per hour is an imperial and United States
customary unit of speed expressing the number of
statute miles covered in one hour.
(https://en.wikipedia.org/wiki/Miles_per_hour)

The English statute mile was established by a
Weights and Measures Act of Parliament in 1593
during the reign of Queen Elizabeth I.
(https://en.wikipedia.org/wiki/Mile#Statute_mile)

1 mph = 0.44704 m/s

7.1.8 Environment (Enumeration)

The sensor tracking environment.

Attributes

Attribute Notes Default

AIR The entity is in the air environment

LAND The entity is on land

SURFACE The entity is on the surface of the sea

SUBSURFACE The entity is under the sea

SPACE The entity is in space

7.1.9 TrackPhase (Enumeration)

The detection lifecycle phase of the track.

30 TACSIT data Exchange (TEX), v1.0

Attributes

Attribute Notes Default

DEAD_RECKONED Track provided based on extrapolated position
(dead-reckoned)

DELETED Track has been deleted.

LOST Track has been lost

TRACKED Regular update of new and existing track

7.1.10 Angle (DataType)

An angle is the measure of a rotation. The actual unit of this measure is specified elsewhere (see AngleUnit).

Implementation details are postponed to PSM-level choices.

7.1.11 DateTime (DataType)

DateTime is a specific time.

Implementation details (e.g. ISO 8601) are postponed to PSM-level choices.

7.1.12 Distance (DataType)

A distance is a measure of length. The actual unit of this measure is specified elsewhere (see DistanceUnit).

Implementation details are postponed to PSM-level choices.

7.1.13 Period (DataType)

A Period is the meantime between two times; it is specified as a couple of DateTime.

7.1.14 Projection (DataType)

A map projection is a systematic transformation of the latitudes and longitudes of locations on the surface of a sphere or
an ellipsoid into locations on a plane. It is specified as a string naming the projection used, e.g. WGS84.

Connections

Connector Source Target Notes

Aggregation projection

Source -> Destination

Projection

CoordinateUnits

The Projection used by the group.
WGS84 is the default.

7.1.15 Speed (DataType)

A speed is a measure of how fast something moves. The actual unit of this measure is specified elsewhere (see
SpeedUnit).

Implementation details are postponed to PSM-level choices.

TACSIT data Exchange (TEX), v1.0 31

7.1.16 String (DataType)

A string is a sequence of characters.

Implementation details (such as UTF-8 encoding and so forth) are postponed to PSM-level choices.

7.1.17 URI (DataType)

An URI (Uniform Resource Identifier) is used to identify resources (entity, groups...). It is to be formatted as defined by
RFC3986.

Implementation details (such as size limitation) are postponed to PSM-level choices.

7.1.18 URL (DataType)

An URL (Uniform Resource Locator) is used to reference resources. It is to be formatted as defined by RFC3986.

Implementation details (such as size limitation) are postponed to PSM-level choices.

7.2 GroupPayload

GroupPayload is the package of the classes needed to define the data exchanged with a TACSIT system for groups of
entities.

Figure 7-3: GroupPayload (Class diagram)

32 TACSIT data Exchange (TEX), v1.0

7.2.1 CoordinateUnits (Class)

This class contains the metadata that are specific to units: unit of distance, unit of angle and so forth.

Connections

Connector Source Target Notes

Aggregation angleUnit

Source -> Destination

AngleUnit

CoordinateUnits

The angle unit used by the group.
RAD is the default.

Aggregation coordKind

Source -> Destination

CoordinateKind

CoordinateUnits

The coordinate kind unit used by the
group. GEODETIC is the default.

Aggregation
coordOrientation

Source -> Destination

CoordinateOrientation

CoordinateUnits

The coordinate orientation used by
the group. Default depend upon the
coordinate kind.

Aggregation coordOrigin

Source -> Destination

CoordinateOrigin

CoordinateUnits

The coordinate Origin used by the
group.
ABSOLUTE_REFERENCE_POINT
is the default.

Aggregation
distanceUnit

Source -> Destination

DistanceUnit

CoordinateUnits

The distance unit used by the group.
SI is the default.

Aggregation projection

Source -> Destination

Projection

CoordinateUnits

The Projection used by the group.
WGS84 is the default.

Aggregation speedUnit

Source -> Destination

SpeedUnit

CoordinateUnits

The speed Unit used by the group. SI
is the default.

Aggregation
unitsMetaData

Source -> Destination

CoordinateUnits

GroupMetaData

The metadata for the units: distance,
angle and so forth.

7.2.2 EntityRelationship (Class)

An item of relationship from an entity to another one. This item is moreover specified by a category and lives within a
time span.

TACSIT data Exchange (TEX), v1.0 33

Connections

Connector Source Target Notes

Aggregation from

Source -> Destination

EntityRef

EntityRelationship

The 'from' side of a relationship.

Aggregation links

Source -> Destination

EntityRelationship

GroupPayload

List of relationships among Entities
owned by the group.

Aggregation to

Source -> Destination

EntityRef

EntityRelationship

The 'to' side of a relationship.

Attributes

Attribute Notes Default

category String Category of the relationship. This is a String
whose content is to be specified by the
implementation.

timeSpan Period A show/hide period.

7.2.3 ExtensionSchema (Class)

An extension schema is a namespace for the keys used in the extended data of an entity.

Annex A standardizes a first set of extension schemas.

Connections

Connector Source Target Notes

Association schema

Source -> Destination

ExtendedData

ExtensionSchema

Optional namespace of the key of
an extended data.

Aggregation schemas

Source -> Destination

ExtensionSchema

GroupMetaData

List of the extension schema that
may be used to define the key of
the extended data of the entities of
the group.

Attributes

Attribute Notes Default

name String Name of the schema.

34 TACSIT data Exchange (TEX), v1.0

7.2.4 GroupList (Class)

A list of groups of entities. This is actually a list of references to groups.

Connections

Connector Source Target Notes

Aggregation groups

Source -> Destination

GroupRef

GroupList

List of grouped groups.

7.2.5 GroupMetaData (Class)

The Meta Data of a group: these metadata apply by default to all the entities of the group.

These data include the units which are used in all the attributes of all the entities of the group.

Connections

Connector Source Target Notes

Aggregation metaData

Source -> Destination

GroupMetaData

GroupPayload

the (optional) metadata of a group.

Aggregation schemas

Source -> Destination

ExtensionSchema

GroupMetaData

List of the extension schema that
may be used to define the key of
the extended data of the entities of
the group.

Aggregation
unitsMetaData

Source -> Destination

CoordinateUnits

GroupMetaData

The metadata for the units:
distance, angle and so forth.

TACSIT data Exchange (TEX), v1.0 35

Attributes

Attribute Notes Default

category String Category of the group of entities. This is a
String whose content is to be specified by the
implementation.

identifier String An external identifier for the group. This
identifier is not bound to be unique among
groups.

publisher String The publisher of the group.

isReadOnly boolean State if the group is read only.

securityCategory String Description of the security classification (e.g.
"Releasable for Internet transmission").

securityClassification
String

Security classification in the preceding policy
(e.g. UNCLASSIFED, NATO COSMIC
SECRET).

securityPolicy String Type of security Policy (e.g.: NATO).

7.2.6 GroupPayload (Class)

The definition of a group of entities as it appears in the exchanges with TACSIT.

Note: the 'id' attribute is used by the TACSIT system to identify the GroupPayload when the 'identifier' attribute of the
GroupMetatData is used by the system which requested the creation of this GroupPayload to identity internally it.
'identifier' is so a way to let this using system to find back its data when getting back the group from TACSIT.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

GroupRef

GroupPayload

Aggregation entities

Source -> Destination

EntityRef

GroupPayload

List of references to Entities
owned by the group.

Aggregation links

Source -> Destination

EntityRelationship

GroupPayload

List of relationships among
Entities owned by the group.

Aggregation metaData

Source -> Destination

GroupMetaData

GroupPayload

the (optional) metadata of a
group.

36 TACSIT data Exchange (TEX), v1.0

Aggregation
updatedGroup

Source -> Destination

GroupPayload

GroupChangeSinkEvent

The created or modified group.

Aggregation
updatedGroup

Source -> Destination

GroupPayload

GroupChangeEvent

The created or modified group.

Attributes

Attribute Notes Default

id URI A Uniform Resource Identifier (URI) that
uniquely identifies the object.

version String Version of the group.

7.2.7 GroupRef (DataType)

A GroupRef is a reference to a group. Its actual representation depends upon the PSM used.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

GroupRef

GroupPayload

Aggregation deleted

Source -> Destination

GroupRef

GroupChangeEvent

The deleted group.

Aggregation deleted

Source -> Destination

GroupRef

GroupChangeSinkEvent

The deleted group.

Aggregation groups

Source -> Destination

GroupRef

GroupList

List of grouped groups.

7.3 EntityPayload

EntityPayload is the package of the classes needed to define the data exchanged with a TACSIT system for entities.

TACSIT data Exchange (TEX), v1.0 37

Figure 7-4: EntityPayload - 1 of 2 (Class diagram)

38 TACSIT data Exchange (TEX), v1.0

Figure 7-5: EntityPayload - 2 of 2 (Class diagram)

TACSIT data Exchange (TEX), v1.0 39

7.3.1 AggregateEntity (Class)

Content Grouping.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

AggregateEntity

EntityPayload

Aggregation
groupedEntities

Source -> Destination

EntityPayload

AggregateEntity

List of entities in the group.

7.3.2 AmbiguousBearings (Class)

An entity that is known to exist somewhere along a line of one of two angles of azimuth from an origin (typically the
location of a passive towed array sonar), but there is no information regarding its range (distance from the origin). On a
TACSIT each ambiguous bearing should be represented as a line from the origin to the edge of the display.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

AmbiguousBearings

ShapedEntity

Aggregation origin

Source -> Destination

PositionCoordinate

AmbiguousBearings

The origin of the ambiguous
bearings.

Attributes

Attribute Notes Default

bearingA Angle one of the ambiguous angles of azimuth

bearingB Angle the other ambiguous angle of azimuth

7.3.3 Annulus (Class)

An entity represented as an area between two concentric circles and two radials of those circles. The annulus is defined
by the two radii of the circles.

40 TACSIT data Exchange (TEX), v1.0

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Annulus

ShapedEntity

Aggregation center

Source -> Destination

PositionCoordinate

Annulus

The center of the annulus.

Attributes

Attribute Notes Default

minRadius Distance The radius of the smaller circle. This number
should be positive

The Distance unit is set by the Group.

maxRadius Distance The radius of the larger circle. This number
should be positive

The Distance unit is set by the Group.

7.3.4 Arc (Class)

An entity represented as a segment of the outline of an ellipse. It is defined by the ellipse it is part of and the start and end
angle of the arc on that ellipse. The arc is defined in a clockwise direction from the start angle to the end angle.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Arc

ShapedEntity

Aggregation center

Source -> Destination

PositionCoordinate

Arc

The center of the arc.

TACSIT data Exchange (TEX), v1.0 41

Attributes

Attribute Notes Default

NSSemiAxis Distance The North-South (before rotation) semi-axis of
the ellipse. This number should be positive. The
Distance unit is set by the Group.

EWSemiAxis Distance The East-West (before rotation) semi-axis of
the ellipse. This number should be positive. The
Distance unit is set by the Group.

startAngle Angle The start angle of the arc along an ellipse prior
to rotation.

The unit is set by the group.

endAngle Angle The end angle of the arc along an ellipse prior
to rotation.

The unit is set by the group.

rotation Angle Rotation in the counterclockwise direction.

The unit is set by the group.

7.3.5 Archband (Class)

An entity represented as an area between two concentric circles and two radials of those circles. The arcband is defined
by the two radii of the circles and the two angles of the radials moving from startangle to endangle in a clockwise
direction.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Arcband

ShapedEntity

Aggregation center

Source -> Destination

PositionCoordinate

Arcband

The center of the arcband.

42 TACSIT data Exchange (TEX), v1.0

Attributes

Attribute Notes Default

minRadius Distance The radius of the smaller circle. This number
should be positive

The Distance unit is set by the Group.

maxRadius Distance The radius of the smaller circle. This number
should be positive

The Distance unit is set by the Group.

startAngle Angle The start angle of the arc along an ellipse prior
to rotation.

The unit is set by the group.

endAngle Angle The end angle of the arc along an ellipse prior
to rotation.

The unit is set by the group.

7.3.6 Arrow (Class)

An entity represented as a polyline.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Arrow

ShapedEntity

Aggregation points

Source -> Destination

PositionCoordinate

ordered

Arrow

The points that make up the arrow.
The order of points defines the
direction proceeding from tail to
point.

Attributes

Attribute Notes Default

width Distance Width of the arrow body. Width must be greater
than zero.

The Distance unit is set by the Group.

TACSIT data Exchange (TEX), v1.0 43

7.3.7 Bearing (Class)

An entity that is known to exist somewhere along a line of azimuth from an origin (typically the location of a passive
sensor), but there is no information regarding its range (distance from the origin). On a TACSIT a bearing should be
represented as a line from the origin to the edge of the display.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Bearing

ShapedEntity

Aggregation origin

Source -> Destination

PositionCoordinate

Bearing

The origin of the bearing.

Attributes

Attribute Notes Default

azimuth Angle The angle of azimuth for the bearing

7.3.8 CartesianPosition (Class)

Coordinates in a Cartesian reference frame as described by a coordinate specification object (from [OARIS]).

Connections

Connector Source Target Notes

Generalization

Source -> Destination

CartesianPosition

PositionCoordinate

Attributes

Attribute Notes Default

x Distance X position of the point.

The Distance unit is set by the Group.

y Distance Y position of the point.

The Distance unit is set by the Group.

z Distance Altitude of the point.

The Distance unit is set by the Group.

44 TACSIT data Exchange (TEX), v1.0

7.3.9 Circle (Class)

An entity represented as a circle.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Circle

ShapedEntity

Aggregation center

Source -> Destination

PositionCoordinate

Circle

The coordinates of the center of the
circle.

Attributes

Attribute Notes Default

radius Distance Radius of the center of the circle.

The Distance unit is set by the Group.

7.3.10 CompositeEntity (Class)

Content unbreakable composition made of basic shapes (no recursion).

Connections

Connector Source Target Notes

Generalization

Source -> Destination

CompositeEntity

EntityPayload

Aggregation
composedEntities

Source -> Destination

ShapedEntity

CompositeEntity

List of entities in the composition.

7.3.11 Corridor (Class)

An entity represented as a corridor.

TACSIT data Exchange (TEX), v1.0 45

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Corridor

ShapedEntity

Aggregation points

Source -> Destination

PositionCoordinate

ordered

Corridor

The waypoints of the corridor.

Attributes

Attribute Notes Default

width Distance Width of the Corridor. Width must be greater
than zero.

The Distance unit is set by the Group.

7.3.12 Ellipse (Class)

An entity represented as an ellipse.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Ellipse

ShapedEntity

Aggregation center

Source -> Destination

PositionCoordinate

Ellipse

The coordinates of the center of the
ellipse.

Attributes

Attribute Notes Default

NSSemiAxis Distance The North-South (before rotation) semi-axis of
the ellipse. This number should be positive. The
Distance unit is set by the Group.

EWSemiAxis Distance The East-West (before rotation) semi-axis of
the ellipse. This number should be positive. The
Distance unit is set by the Group.

rotation Angle Rotation in the counterclockwise direction.

The unit is set by the group.

46 TACSIT data Exchange (TEX), v1.0

7.3.13 EntityList (Class)

A list of entities. This is actually a list of references to entities.

Connections

Connector Source Target Notes

Aggregation entities

Source -> Destination

EntityRef

EntityList

The grouped entities.

7.3.14 EntityMetaData (Class)

The Meta Data of an Entity.

Connections

Connector Source Target Notes

Aggregation metaData

Source -> Destination

EntityMetaData

EntityPayload

Metadata for the entity. These
metadata, if present, replace the
ones of the group.

Attributes

Attribute Notes Default

publisher String The publisher of the entity.

identifier String An external identifier for the entity. This
identifier is not bound to be unique among
entities.

securityPolicy String Type of security Policy (e.g.: NATO).

securityClassification
String

Security classification in the preceding policy
(e.g. UNCLASSIFED, NATO COSMIC
SECRET).

securityCategory String Description of the security classification (e.g.
"Releasable for Internet transmission").

7.3.15 EntityPayload (Class)

The definition of an entity as it appears in the exchanges with TACSIT.

The 'reportType' attributes gives the lifecycle status of this payload showing that it is a creation, a modification and so
forth.

TACSIT data Exchange (TEX), v1.0 47

Note: the 'id' attribute is used by the TACSIT system to identify the EntityPayload while the 'identifier' attribute of the
EntityMetatData is used by the system which requested the creation of this EntityPayload to identify it internally.
'identifier' is so a way to let this using system to find back its data when getting back an entity from TACSIT.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

AggregateEntity

EntityPayload

Generalization

Source -> Destination

CompositeEntity

EntityPayload

Dependency

Source -> Destination

EntityRef

EntityPayload

Generalization

Source -> Destination

ShapedEntity

EntityPayload

Aggregation
groupedEntities

Source -> Destination

EntityPayload

AggregateEntity

List of entities in the group.

Aggregation metaData

Source -> Destination

EntityMetaData

EntityPayload

Metadata for the entity. These
metadata, if present, replace the
ones of the group.

Aggregation reportType

Source -> Destination

ReportType

EntityPayload

Lifecycle status of the
EntityPayload.

Default is UPDATE.

Aggregation states

Source -> Destination

EntityPayload

EntityHistoryPayload

The list of time-stamped states of
the history.

Aggregation
updatedEntity

Source -> Destination

EntityPayload

EntityChangeEvent

The created or modified entity.

48 TACSIT data Exchange (TEX), v1.0

Attributes

Attribute Notes Default

id URI A Uniform Resource Identifier (URI) that
uniquely identifies the object.

label String Short description.

info String Additional human-readable text.

href URL A URL to human readable content providing
more information about the object.

timeSpan Period A show/hide period.

timeStamp DateTime The date of validity of the information held by
the entity.

7.3.16 ExtendedData (Class)

This class allows for extended data for an entity. An extended data is defined by a schema/key/value triple, the schema
being a group of keys (sort of namespace).

Extended Data are typically used to holds business-specific data that may be drawn/written around a symbol.

Annex A standardizes a first set of extended data keys.

Connections

Connector Source Target Notes

Aggregation
extendedData

Source -> Destination

ExtendedData

ShapedEntity

Extensible data.

Association schema

Source -> Destination

ExtendedData

ExtensionSchema

Optional namespace of the key of
an extended data.

Attributes

Attribute Notes Default

key String Key of the extended data to be taken in the
schema.

value String Value matching the key.

TACSIT data Exchange (TEX), v1.0 49

7.3.17 FreeShapedEntity (Class)

An entity represented in a client specific format through the SVG (Scalable Vector Graphics) standard.

It has an optional origin. If it contains an origin, then the SVG coordinates are interpreted as Cartesian relative to that
origin. If there is no origin, then the coordinates are interpreted with respect to a related entity (from an Entity Relation)
as Cartesian. If there is no related entity, then the coordinates are interpreted as absolute latitudes (y) and longitudes (x).

This class supports the display of geometry for entities for which the TACSIT has no pre-defined symbology standard.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

FreeShapedEntity

ShapedEntity

Aggregation origin

Source -> Destination

PositionCoordinate

FreeShapedEntity

The origin by which to interpret the
coordinates within the SVG free
shape definition.

Attributes

Attribute Notes Default

svgDefinition String An SVG xml file defining the appearance of the
free shaped entity.

7.3.18 GeodeticPosition (Class)

Coordinates in a Geodetic reference frame as described by a coordinate specification object (from [OARIS]).

The datum (WGS84...) is set by the group.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

GeodeticPosition

PositionCoordinate

50 TACSIT data Exchange (TEX), v1.0

Attributes

Attribute Notes Default

latitude Angle Latitude of the point.

The Angle unit as well as the projection are set
by the Group.

longitude Angle Longitude of the point.

The Angle unit as well as the projection are set
by the Group.

altitude Distance Altitude of the point.

The Distance unit as well as the projection are
set by the Group.

7.3.19 InterpolationMethodology (Enumeration)

Interpolation of the line positions between two points is performed using one of the following methodologies:

- Rhumb Line – constant heading.

- Great Circle – shortest path.

- ScreenProjection - Screen.

Connections

Connector Source Target Notes

Aggregation legType

Source -> Destination

InterpolationMethodology

ShapedEntity

Interpolation method for the
shape.

Attributes

Attribute Notes Default

RhumbLine Interpolation along a straight line on a Mercator
projection chart.

GreatCircle Interpolation along the surface of the sphere.

ScreenProjection Interpolation along a straight line on the screen.

TACSIT data Exchange (TEX), v1.0 51

7.3.20 Multipoint (Class)

A multipoint is a list of points without the semantics of a polyline (each point must be linked with a line) or a polygon
(each point must be linked with a line and the figure is closed). The semantics is given by the associated
CategorizationData. As examples, 2525 and APP-6 series make a clear difference between multipoint and line.

The rotation says that once the figure is drawn according to the CategorizationData, it must be rotated.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Multipoint

ShapedEntity

Aggregation points

Source -> Destination

PositionCoordinate

ordered

Multipoint

The coordinates of the mulitpoints

Attributes

Attribute Notes Default

rotation Angle Rotation in the counterclockwise direction.

The unit is set by the group.

7.3.21 Orbit (Class)

An entity represented as an orbit path.

The intended result the shape formed by linking together two half circles with two lines (a.k.a. an athletics’ track by the
sportsmen among us). The first circle is centered on point one and the second circle is centered on point two. Both of
them has the same radius given by the width attribute.

52 TACSIT data Exchange (TEX), v1.0

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Orbit

ShapedEntity

Aggregation pointOne

Source -> Destination

PositionCoordinate

Orbit

First of the 2 points of the
supporting corridor defining the
sides of the orbit. The orbit is
centered on the line across these 2
points.

Aggregation pointTwo

Source -> Destination

PositionCoordinate

Orbit

Second of the 2 points of the
supporting corridor defining the
sides of the orbit. The orbit is
centered on the line across these 2
points.

Attributes

Attribute Notes Default

width Distance Width of the orbit. Width must be greater than
zero.

The Distance unit is set by the Group.

7.3.22 Point (Class)

An entity represented as a point.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Point

ShapedEntity

Aggregation center

Source -> Destination

PositionCoordinate

Point

The coordinates of the point.

7.3.23 PolarPosition (Class)

Coordinates in a polar reference frame as a described by a coordinate specification object (from [OARIS]).

TACSIT data Exchange (TEX), v1.0 53

Connections

Connector Source Target Notes

Generalization

Source -> Destination

PolarPosition

PositionCoordinate

Attributes

Attribute Notes Default

azimuth Angle Azimuth of the point.

The Angle unit is set by the Group.

elevation Angle Elevation of the point.

The Angle unit is set by the Group.

range Distance Distance of the point from the center.

The Distance unit as well as the projection are
set by the Group.

7.3.24 Polygon (Class)

An entity represented as a polygon.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Polygon

ShapedEntity

Aggregation points

Source -> Destination

PositionCoordinate

ordered

Polygon

The points of the polygon

7.3.25 Polyline (Class)

An entity represented as a polyline.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Polyline

ShapedEntity

54 TACSIT data Exchange (TEX), v1.0

Aggregation points

Source -> Destination

PositionCoordinate

ordered

Polyline

The coordinates of the points of the
polyline

7.3.26 PositionCoordinate (Class)

A georeferenced point.

The type of coordinate (WGS84/Cartesian/Polar), the type of orientation as well as the type of origin are set by the group.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

PolarPosition

PositionCoordinate

Generalization

Source -> Destination

GeodeticPosition

PositionCoordinate

Generalization

Source -> Destination

CartesianPosition

PositionCoordinate

Aggregation center

Source -> Destination

PositionCoordinate

Annulus

The center of the annulus.

Aggregation center

Source -> Destination

PositionCoordinate

Point

The coordinates of the point.

Aggregation center

Source -> Destination

PositionCoordinate

Circle

The coordinates of the center of the
circle.

Aggregation center

Source -> Destination

PositionCoordinate

Arc

The center of the arc.

Aggregation center

Source -> Destination

PositionCoordinate

Rectangle

The coordinates of the center of the
rectangle.

Aggregation center

Source -> Destination

PositionCoordinate

Arcband

The center of the arcband.

Aggregation center

Source -> Destination

PositionCoordinate

Ellipse

The coordinates of the center of the
ellipse.

TACSIT data Exchange (TEX), v1.0 55

Aggregation origin

Source -> Destination

PositionCoordinate

AmbiguousBearings

The origin of the ambiguous
bearings.

Aggregation origin

Source -> Destination

PositionCoordinate

FreeShapedEntity

The origin by which to interpret the
coordinates within the SVG free
shape definition.

Aggregation origin

Source -> Destination

PositionCoordinate

Bearing

The origin of the bearing.

Aggregation point

Source -> Destination

PositionCoordinate

StickyNote

Location of the end of the handle.

Aggregation point

Source -> Destination

PositionCoordinate

Text

Position of the text (see
description).

Aggregation pointOne

Source -> Destination

PositionCoordinate

Orbit

First of the 2 points of the
supporting corridor defining the
sides of the orbit. The orbit is
centered on the line across these 2
points.

Aggregation points

Source -> Destination

PositionCoordinate

ordered

Polygon

The points of the polygon

Aggregation points

Source -> Destination

PositionCoordinate

ordered

Arrow

The points that make up the arrow.
The order of points defines the
direction proceeding from tail to
point.

Aggregation points

Source -> Destination

PositionCoordinate

ordered

Corridor

The waypoints of the corridor.

Aggregation points

Source -> Destination

PositionCoordinate

ordered

Polyline

The coordinates of the points of the
polyline

Aggregation points

Source -> Destination

PositionCoordinate

ordered

Multipoint

The coordinates of the mulitpoints

Aggregation pointTwo

Source -> Destination

PositionCoordinate

Orbit

Second of the 2 points of the
supporting corridor defining the
sides of the orbit. The orbit is
centered on the line across these 2
points.

56 TACSIT data Exchange (TEX), v1.0

7.3.27 Rectangle (Class)

An entity represented as a rectangle.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Rectangle

ShapedEntity

Aggregation center

Source -> Destination

PositionCoordinate

Rectangle

The coordinates of the center of the
rectangle.

Attributes

Attribute Notes Default

NSHalfDistance
AngleUnit

The dimension from center point to edge (half
distance) of the rectangle along its North-South
length. This number should be positive.

The Distance unit is set by the Group.

EWHalfDistance Distance The dimension from center point to edge (half
distance) of the rectangle along its East-West
length. This number should be positive.

The Distance unit is set by the Group.

rotation Angle Rotation in the counterclockwise direction.

The unit is set by the group.

7.3.28 ReportType (Enumeration)

Enumeration of the lifecycle status for an EntityPayload.

Connections

Connector Source Target Notes

Aggregation reportType

Source -> Destination

ReportType

EntityPayload

Lifecycle status of the
EntityPayload.

Default is UPDATE.

TACSIT data Exchange (TEX), v1.0 57

Attributes

Attribute Notes Default

NEW State that the EntityPayload has been created.

UPDATE State that the EntityPayload has been modified.

LOST State that the EntityPayload has been lost.

RESUMED State that the EntityPayload has been resumed
(after lost).

DROPPED State that an EntityPayload has been dropped
from the system.

7.3.29 ShapedEntity (Class)

The base for most items.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

FreeShapedEntity

ShapedEntity

Generalization

Source -> Destination

Rectangle

ShapedEntity

Generalization

Source -> Destination

Text

ShapedEntity

Generalization

Source -> Destination

Bearing

ShapedEntity

Generalization

Source -> Destination

Circle

ShapedEntity

Generalization

Source -> Destination

Point

ShapedEntity

Generalization

Source -> Destination

Arc

ShapedEntity

Generalization Arrow ShapedEntity

58 TACSIT data Exchange (TEX), v1.0

Source -> Destination

Generalization

Source -> Destination

Polygon

ShapedEntity

Generalization

Source -> Destination

Polyline

ShapedEntity

Generalization

Source -> Destination

ShapedEntity

EntityPayload

Generalization

Source -> Destination

StickyNote

ShapedEntity

Generalization

Source -> Destination

AmbiguousBearings

ShapedEntity

Generalization

Source -> Destination

Orbit

ShapedEntity

Generalization

Source -> Destination

Annulus

ShapedEntity

Generalization

Source -> Destination

Corridor

ShapedEntity

Generalization

Source -> Destination

Arcband

ShapedEntity

Generalization

Source -> Destination

Ellipse

ShapedEntity

Generalization

Source -> Destination

Multipoint

ShapedEntity

Aggregation
categorization

Source -> Destination

CategorizationData

ShapedEntity

Data needed to draw the symbol
of the entity.

Aggregation
CategorizationIn3D

Source -> Destination

CategorizationIn3D

ShapedEntity

Data needed to draw the symbol
of the entity in 3D.

TACSIT data Exchange (TEX), v1.0 59

Aggregation
composedEntities

Source -> Destination

ShapedEntity

CompositeEntity

List of entities in the composition.

Aggregation
extendedData

Source -> Destination

ExtendedData

ShapedEntity

Extensible data.

Aggregation legType

Source -> Destination

InterpolationMethodology

ShapedEntity

Interpolation method for the
shape.

7.3.30 StickyNote (Class)

A note with a handle.

Also known as a Post-It note ("Post-It" is a registered 3M trademark).

Connections

Connector Source Target Notes

Generalization

Source -> Destination

StickyNote

ShapedEntity

Aggregation point

Source -> Destination

PositionCoordinate

StickyNote

Location of the end of the handle.

Attributes

Attribute Notes Default

text String Text of the note

font String Font family (aka typeface) used to write the text
within the note.

textColor String Color of the text in the note.

The way this color is mapped to RGB or other
values is implementation dependent.

backgroundColor String Color of the note itself.

The way this color is mapped to RGB or other
values is implementation dependent.

borderStyle String Style of the border of the note.

The way this style is mapped is implementation
dependent.

60 TACSIT data Exchange (TEX), v1.0

offsetX int Horizontal gap between the center of the text
block and the end of the handle. In pixels.

offsetY int Vertical gap between the center of the text
block and the end of the handle. In pixels.

7.3.31 Text (Class)

An entity represented as a text.

The 'point' attribute gives the left-lower starting position for left-to-right top-to-bottom languages, the right-lower starting
position for right-to-left top-to-bottom languages, the left-upper starting position for top-to-bottom left-to-right languages
and the right-upper starting position for top-to-bottom right-to-left languages.

This attribute is implementation dependent for the other languages.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Text

ShapedEntity

Aggregation point

Source -> Destination

PositionCoordinate

Text

Position of the text (see
description).

Attributes

Attribute Notes Default

content String The text to be displayed.

rotation Angle Rotation in the counterclockwise direction.

The unit is set by the group.

7.3.32 EntityType (DataType)

An EntityRef is a reference to an EntityPayload. Its actual representation depends upon the PSM used.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

EntityRef

EntityPayload

Aggregation deleted

Source -> Destination

EntityRef

EntityChangeEvent

The deleted entity.

TACSIT data Exchange (TEX), v1.0 61

Aggregation deleted

Source -> Destination

EntityRef

EntityChangeSinkEvent

The deleted entity.

Aggregation entities

Source -> Destination

EntityRef

EntityList

The grouped entities.

Aggregation entities

Source -> Destination

EntityRef

GroupPayload

List of references to Entities
owned by the group.

Aggregation from

Source -> Destination

EntityRef

EntityRelationship

The 'from' side of a relationship.

Aggregation reference

Source -> Destination

EntityRef

EntityHistoryPayload

The entity concerned by the
history.

Aggregation to

Source -> Destination

EntityRef

EntityRelationship

The 'to' side of a relationship.

7.4 CategorizationData

CategorizationData are data needed to draw an Entity depending on the chosen symbology: 2525, APP-6...

62 TACSIT data Exchange (TEX), v1.0

Figure 7-6: CategorizationData (Class diagram)

7.4.1 ADSBCategorizationData (Class)

This class encapsulates data specifically received from ADS-B broadcast.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

ADSBCategorizationData

CategorizationData

7.4.2 AISCategorizationData (Class)

The data needed for displaying the AIS symbol set.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

AISCategorizationData

CategorizationData

TACSIT data Exchange (TEX), v1.0 63

Attributes

Attribute Notes Default

cargoCategory char The IMO categorization of the cargo carried as
identified on AIS

shipCategory String The type of ship.

navigationalStatus String Description of current navigational status and
readiness

7.4.3 APP6BCategorizationData (Class)

The data needed for displaying APP-6B symbol set (see [APP-6B]).

The method to work out the symbol id is to concatenate the attributes codeScheme, frameShape, functionID,
sizeAndMobility, countryCode, orderOfBattle.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

APP6BCategorizationData

MilitaryCategorizationData

Attributes

Attribute Notes Default

codeScheme char Code scheme, position 1. This position
indicates the overall symbology set to which a
symbol belongs.

countryCode char Country code, positions 13 and 14. These
positions identify the country with which a
symbol is associated. Country code identifiers
are listed in Federal Information Processing
Standard Pub 10 series (See [FIPS 10-4]).

frameShape char Affiliation, battle dimension, and status, 2, 3,
and 4. These positions determine the frame
shape of a symbol and indicate its actual or
planned location.

functionID char Function ID, positions 5 through 10. These
positions identify a symbol’s function, with
each position providing increasing levels of
detail and specialization.

modifiers String The semicolon-separated list of Symbol
Modifier Fields as defined is [APP6B].

A Symbol Modifier Field is defined as a key-
value pair delimited

64 TACSIT data Exchange (TEX), v1.0

with the ':' character.

orderOfBattle char Order of battle, position 15. This position
provides additional information about the role
of a symbol in the battlespace. For example, a
bomber that has nuclear weapons on board may
be strategic force-related, or a tactical graphic
may also perform the role of a control point.

sizeAndMobility char Size/mobility indicator code, positions 11 and
12. These positions identify the size and
mobility of a symbol.

7.4.4 APP6CCategorizationData (Class)

The data needed for displaying APP-6C symbol set as described in [APP-6C].

The method to work out the symbol id is to concatenate the attributes.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

APP6CCategorizationData

MilitaryCategorizationData

Attributes

Attribute Notes Default

amplifier char The Unit Echelon/Equipment Mobility/Naval
Towed Array Amplifier is comprised of two
digits.

entity char

entitySubType char

entityType char

headQuarterTaskForceDummy
char

The Headquarters/Task Force/Dummy is
comprised of one digit.

nationalAddition char Specified by national or geopolitical symbol
set.

This is to accommodate national
modifications/additions that are not included
in APP-6C.

nationalAdditionId char National or geopolitical identifier.

This is to accommodate national
modifications/additions that are not included
in APP-6C.

TACSIT data Exchange (TEX), v1.0 65

nationalAdditionVersion char National or geopolitical symbol set version.

This is to accommodate national
modifications/additions that are not included
in APP-6C.

sectorOneModifier char

sectorTwoModifier char

standardIdentity char Standard identity is comprised of two digits.
The first digit represents the context of the
symbol and the second digit reflects the
standard identities.

status char The status is comprised of one digit.

symbolSet char The symbol set is comprised of two digits.

use char This one-digit field indicates whether the
symbol identification code uses the third ten
digit set.

version char This field identifies a version change for the
symbol identification code which occurs
when there is a change in an established icon,
modifier, or drawing rule for a control
measure symbol. Subsequent changes will
create further version changes for the symbol
identification

code. The basis for all symbol versions in all
sets is APP-6(C).

7.4.5 CategorizationData (Class)

The data of an entity used to choose the symbol used to draw the given entity.

Each leaf subclass must define a SymbolSet (as a String) and a SymbolId (as a method to work out a symbol id from the
attributes) that may be used in the PSMs.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

ADSBCategorizationData

CategorizationData

Generalization

Source -> Destination

MilitaryCategorizationData

CategorizationData

Generalization

Source -> Destination

AISCategorizationData

CategorizationData

66 TACSIT data Exchange (TEX), v1.0

Aggregation
categorization

Source -> Destination

CategorizationData

ShapedEntity

Data needed to draw the symbol
of the entity.

7.4.6 CategorizationIn3D (Class)

The data of an entity used for the 3D rendering of this entity.

Connections

Connector Source Target Notes

Aggregation
CategorizationIn3D

Source -> Destination

CategorizationIn3D

ShapedEntity

Data needed to draw the symbol of
the entity in 3D.

Attributes

Attribute Notes Default

extrudeHeight Distance Line and point symbols can be extruded above
the terrain for visual emphasis, forming what
appear to be walls on the terrain surface. This
attribute gives the height of the lower border of
this "wall".

7.4.7 MilitaryCategorizationData (Class)

The military categorization data: APP-6, 2525...

Connections

Connector Source Target Notes

Generalization

Source ->
Destination

APP6BCategorizationData

MilitaryCategorizationData

Generalization

Source ->
Destination

MilitaryCategorizationData

CategorizationData

Generalization

Source ->
Destination

STANAG2525CCategorizationData

MilitaryCategorizationData

Generalization

Source ->
Destination

STANAG5516CategorizationData

MilitaryCategorizationData

TACSIT data Exchange (TEX), v1.0 67

Generalization

Source ->
Destination

APP6CCategorizationData

MilitaryCategorizationData

Generalization

Source ->
Destination

STANAG2525DCategorizationData

MilitaryCategorizationData

7.4.8 STANAG2525CCategorizationData (Class)

The data needed for displaying the 2525C symbol set.

For a full definition of the specifications of using MILSTD-2525 Symbology refer to the published version from the US-
DOD.

Excerpt from Appendix A of the 2525C Symbology Standard:

A.5.1 Technical specifications. Composition, construction, display, and transmission of tactical symbols are explained in
the detailed requirements section of the standard.

A.5.2 Symbol identification coding scheme. A SIDC is a 15-character alphanumeric identifier that provides the
information necessary to display or transmit a tactical symbol between MIL-STD-2525 compliant systems.

Apendix A of 2525C Specification outlines the order of concatenation of attribute data. Copied here for convenience

Attribute - # of Chars

Coding Scheme - 1 (S for Warfighting)

Standard ID - 1

Battle Dimension - 1

Status/OPCON -1

Function ID - 6

Symbol Modifier - 2

Country Code - 2

Order of Battle - 1

68 TACSIT data Exchange (TEX), v1.0

Connections

Connector Source Target Notes

Generalization

Source ->
Destination

STANAG2525CCategorizationData

MilitaryCategorizationData

Attributes

Attribute Notes Default

codingScheme char Version: See detailed specification of
this field in the Specification (MIL-
STD-2525D Appendix A.5).

standardID_AmpDescriptor char Standard Identity: See detailed
specification of this field in the
Specification (MIL-STD-2525D
Appendix A.5).

battleDimension char Symbol Set: See detailed specification
of this field in the Specification (MIL-
STD-2525D Appendix A.5).

status_OPCON char Status: See detailed specification of
this field in the Specification (MIL-
STD-2525D Appendix A.5).

functionID char HQ/Task Force/Dummy: See detailed
specification of this field in the
Specification (MIL-STD-2525D
Appendix A.5).

symbolModifier char Amplifier/Descriptor: See detailed
specification of this field in the
Specification (MIL-STD-2525D
Appendix A.5).

countryCode char Entity: See detailed specification of
this field in the Specification (MIL-
STD-2525D Appendix A.5).

orderOfBattle char

7.4.9 STANAG2525DCategorizationData (Class)

The data needed for displaying the 2525D symbol set.

For a full definition of the specifications of using MILSTD-2525 Symbology refer to the latest published version from
the US-DOD.

Excerpt from Appendix A of the 2525D Symbology Standard:

TACSIT data Exchange (TEX), v1.0 69

A.5.1 Symbol identification codes. A symbol identification code is a numeric code that uniquely identifies the elements
needed to build a MIL–STD–2525D compliant symbol. The numeric codes provide the same type of descriptions used in
message formats but further focus the data to a specific domain for ease in creating the symbols with less band width.

A.5.2 Elements of the symbol identification codes. The symbol identification code is composed of eleven elements of
information which are presented in two sets of ten digits. An additional set of ten digits composed of three elements must
be used when a symbology originator version extension flag is used. This extension is conditional.

Apendix A of 2525D Specification outlines the order of concatenation of attribute data. Copied here for convenience

Attribute - # of Chars

Set A:

Version - 2

Standard ID - 2

Symbol Set - 2

Status -1

HQ Task Force Dummy - 1

Amp / Descr - 2

Set B:

Entity - 2

Entity Type - 2

Entity Subtype - 2

Sector 1 Mod - 2

Sector 2 Mod - 2

Conditional Set C

Symbology Orig ID - 3

Symbology Orig Symbol Set - 1

Specified by Symbol Originator - 2,2,2

Connections

Connector Source Target Notes

Generalization

Source ->
Destination

STANAG2525DCategorizationData MilitaryCategorizationData

70 TACSIT data Exchange (TEX), v1.0

Attributes

Attribute Notes Default

version char Version: See detailed specification of this field
in the Specification (MIL-STD-2525D
Appendix A.5).

standardIdentity char Standard Identity: See detailed specification of
this field in the Specification (MIL-STD-
2525D Appendix A.5).

symbolSet char Symbol Set: See detailed specification of this
field in the Specification (MIL-STD-2525D
Appendix A.5).

status char Status: See detailed specification of this field
in the Specification (MIL-STD-2525D
Appendix A.5).

HQ_TF_Dummy char HQ/Task Force/Dummy: See detailed
specification of this field in the Specification
(MIL-STD-2525D Appendix A.5).

amp_Descriptor char Amplifier/Descriptor: See detailed
specification of this field in the Specification
(MIL-STD-2525D Appendix A.5).

entity char Entity: See detailed specification of this field
in the Specification (MIL-STD-2525D
Appendix A.5).

entityType char Entity Type: See detailed specification of this
field in the Specification (MIL-STD-2525D
Appendix A.5).

entitySubType char Entity Subtype: See detailed specification of
this field in the Specification (MIL-STD-
2525D Appendix A.5).

sector1Mod char Sector 1 modifier: See detailed specification
of this field in the Specification (MIL-STD-
2525D Appendix A.5).

sector2Mod char Sector 2 modifier: See detailed specification
of this field in the Specification (MIL-STD-
2525D Appendix A.5).

cond_symbolOrigID char Conditional Set C Attribute - Symbology
Originator ID: See detailed specification of
this field in the Specification (MIL-STD-
2525D Appendix A.5).

cond_symbolOrigSymbolSet
char

Conditional Set C Attribute - Symbology
Originator Symbol Set: See detailed
specification of this field in the Specification
(MIL-STD-2525D Appendix A.5).

TACSIT data Exchange (TEX), v1.0 71

cond_specFromSymbolOrig
char

Conditional Set C Attribute - Specified From
Symbology Originator: See detailed
specification of this field in the Specification
(MIL-STD-2525D Appendix A.5).

7.4.10 STANAG5516CategorizationData (Class)

This is a base class to support the display of entities based on the STANAG 5516 data model. This class contains
attributes that relate to display filtering for any entities that have no symbol

Note that this STANAG does not define symbology. The purpose of this class is to support custom symbology based on
5516 data model.

Connections

Connector Source Target Notes

Generalization

Source ->
Destination

STANAG5516SymbolCategorizationData

STANAG5516CategorizationData

Generalization

Source ->
Destination

STANAG5516CategorizationData

MilitaryCategorizationData

Attributes

Attribute Notes Default

environment Environment The environment that the Entity is in or to
which it applies

identity Identity The standard identity of the (track-like) entity

isForceTell boolean The ForceTell indicator is set

isInExercise boolean The Entity has an Exercise indicator and so is
part of an exercise.

isSimulation boolean The Simulation indicator is set - e.g. the entity
is for operator training purposes.

trackState TrackPhase If a track-like entity the state or phase of its
lifecycle. Indicates whether tracking is active

7.4.11 STANG5516SymbolCategorizationData (Class)

The data needed to display symbol sets aimed at data models derived from STANAG 5516. This STANAG does not
define symbology. The purpose of this class is to support custom symbology based on 5516 data model.

72 TACSIT data Exchange (TEX), v1.0

Connections

Connector Source Target Notes

Generalization

Source ->
Destination

STANAG5516SymbolCategorizationData

STANAG5516CategorizationData

Attributes

Attribute Notes Default

hasSpecialProcessing char The Special Processing indicator is set

isAnEmergency boolean The Emergency indicator is set

isOfSpecialInterest
boolean

The Special Interest indicator is set

platformIdentity char The code for the per environment defined
platform identify for the Entity according to
STANAG 5516. If no identity is defined then
the code refers to a value in the reference point
tables within STANAG 5516.

7.5 EntityHistory

EntityHistory is the package of the classes needed to define the data exchanged with a TACSIT system for histories of
entities.

TACSIT data Exchange (TEX), v1.0 73

Figure 7-7: EntityHistory (Class diagram)

7.5.1 EntityHistoryList (Class)

List of entity histories.

Connections

Connector Source Target Notes

Aggregation histories

Source -> Destination

EntityHistoryPayload

EntityHistoryList

The grouped histories

7.5.2 EntityHistoryPayload (Class)

The definition of the history of an entity as it appears in the exchanges with TACSIT.

Such a history is defined:

- For one entity.

- By a collection of Entity Payloads which are the different states in the history (as a reminder, an EntityPayload holds a
TimeStamp attribute giving the date of validity of the data).

Connections

Connector Source Target Notes

Aggregation histories

Source -> Destination

EntityHistoryPayload

EntityHistoryList

The grouped histories

74 TACSIT data Exchange (TEX), v1.0

Aggregation reference

Source -> Destination

EntityRef

EntityHistoryPayload

The entity concerned by the
history.

Aggregation states

Source -> Destination

EntityPayload

EntityHistoryPayload

The list of time-stamped states of
the history.

Aggregation
updatedHistory

Source -> Destination

EntityHistoryPayload

HistoryChangeEvent

The created or modified history.

7.6 CallbackData

The CallbackData contains the classes which are exchanged in callback methods.

TACSIT data Exchange (TEX), v1.0 75

Figure 7-8: CallbackData (Class diagram)

7.6.1 ChangeKind (Enumeration)

The enumeration of the types of entity, group, or history changes.

Connections

Connector Source Target Notes

Aggregation kind

Source -> Destination

ChangeKind

EntityChangeSinkEvent

The operation performed by the
event.

Aggregation kind ChangeKind GroupChangeEvent The operation performed by the
event.

76 TACSIT data Exchange (TEX), v1.0

Source -> Destination

Aggregation kind

Source -> Destination

ChangeKind

GroupChangeSinkEvent

The operation performed by the
event.

Aggregation kind

Source -> Destination

ChangeKind

HistoryChangeEvent

The operation performed by the
event.

Aggregation kind

Source -> Destination

ChangeKind

EntityChangeEvent

The operation performed by the
event.

Attributes

Attribute Notes Default

CREATE Entity/group/history creation.

UPDATE Entity/group/history update.

DELETE Entity/group/history deletion.

RESTRUCTURE Update of the inner structure of a
CompositeEntity.

7.6.2 EntityChangeEvent (Class)

A creation, modification, or deletion event of an entity.

Connections

Connector Source Target Notes

Aggregation deleted

Source -> Destination

EntityRef

EntityChangeEvent

The deleted entity.

Aggregation entities

Source -> Destination

EntityChangeEvent

ordered

EntityChangeEventList

The list of events.

Aggregation kind

Source -> Destination

ChangeKind

EntityChangeEvent

The operation performed by the
event.

Aggregation
updatedAttributes

Source -> Destination

TEXAttribute

EntityChangeEvent

Liste of the attributes that changed
(when changeKind is UPDATE).

TACSIT data Exchange (TEX), v1.0 77

Aggregation
updatedEntity

Source -> Destination

EntityPayload

EntityChangeEvent

The created or modified entity.

7.6.3 EntityChangeEventList (Class)

List of events of creation, modification and/or deletion of entities.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

EntityChangeListener

EntityChangeEventList

Aggregation entities

Source -> Destination

EntityChangeEvent

ordered

EntityChangeEventList

The list of events.

7.6.4 EntityChangeSinkEvent (Class)

An event of creations, modifications or deletions of entities used in DataSink.

Connections

Connector Source Target Notes

Aggregation deleted

Source -> Destination

EntityRef

EntityChangeSinkEvent

The deleted entity.

Aggregation entities

Source -> Destination

EntityChangeSinkEvent

ordered

EntityChangeSinkEventList

The list of events

Aggregation kind

Source -> Destination

ChangeKind

EntityChangeSinkEvent

The operation performed by the
event.

Aggregation
updatedEntity

Source -> Destination

EntityPayloadChunk

EntityChangeSinkEvent

The created or modified entity.

7.6.5 EntityChangeSinkEventList (Class)

List of events of creation, modification and/or deletion of entities used in DataSink.

78 TACSIT data Exchange (TEX), v1.0

Connections

Connector Source Target Notes

Dependency

Source -> Destination

EntityChangeSinkListener

EntityChangeSinkEventList

Aggregation entities

Source -> Destination

EntityChangeSinkEvent

ordered

EntityChangeSinkEventList

The list of events

7.6.6 GroupChangeEvent (Class)

An event of creation, modification, or deletion of group.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

GroupChangeListener

GroupChangeEvent

Aggregation deleted

Source -> Destination

GroupRef

GroupChangeEvent

The deleted group.

Aggregation kind

Source -> Destination

ChangeKind

GroupChangeEvent

The operation performed by the
event.

Aggregation
updatedGroup

Source -> Destination

GroupPayload

GroupChangeEvent

The created or modified group.

7.6.7 GroupChangeSinkEvent (Class)

A creation, modification, or deletion event of a group. Group modification events include adding and removing entities
as well as adding and removing entity relationships.

Connections

Connector Source Target Notes

Aggregation deleted

Source -> Destination

GroupRef

GroupChangeSinkEvent

The deleted group.

Aggregation groups GroupChangeSinkEvent GroupChangeSinkEventList The list of events.

TACSIT data Exchange (TEX), v1.0 79

Source -> Destination

Aggregation kind

Source -> Destination

ChangeKind

GroupChangeSinkEvent

The operation performed by
the event.

Aggregation
updatedGroup

Source -> Destination

GroupPayload

GroupChangeSinkEvent

The created or modified
group.

7.6.8 GroupChangeSinkEventList (Class)

List of events of creation, modification and/or deletion of groups.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

GroupChangeSinkListener

GroupChangeSinkEventList

Aggregation groups

Source -> Destination

GroupChangeSinkEvent

GroupChangeSinkEventList

The list of events.

7.6.9 HistoryChangeEvent (Class)

An event of creations, modifications, or deletions of histories.

Connections

Connector Source Target Notes

Aggregation histories

Source -> Destination

HistoryChangeEvent

ordered

HistoryChangeEventList

The list of events.

Aggregation kind

Source -> Destination

ChangeKind

HistoryChangeEvent

The operation performed by the
event.

Aggregation
updatedHistory

Source -> Destination

EntityHistoryPayload

HistoryChangeEvent

The created or modified history.

80 TACSIT data Exchange (TEX), v1.0

Attributes

Attribute Notes Default

timeOfDeleted DateTime The time of the deleted history if this event is a
deletion event.

7.6.10 HistoryChangeEventList (Class)

List of events of creation, modification and/or deletion of history.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

HistoryChangeListener

HistoryChangeEventList

Aggregation histories

Source -> Destination

HistoryChangeEvent

ordered

HistoryChangeEventList

The list of events.

7.6.11 TEXAttribute (Class)

One of the attributes used package wide in DataPayload.

Connections

Connector Source Target Notes

Aggregation
updatedAttributes

Source -> Destination

TEXAttribute

EntityChangeEvent

Liste of the attributes that changed
(when changeKind is UPDATE).

Attributes

Attribute Notes Default

context String Name of the context class of the attribute.

attribute String Name of the attribute.

7.7 EntityPayloadManagement

EntityPayloadManagement is the package of the classes needed to define the changes to the EntiotyPayload.

TACSIT data Exchange (TEX), v1.0 81

Figure 7-9: EntityPayloadManagement (Class diagram)

7.7.1 EntityPayloadChunk (Class)

Fragment of EntityPayload. This class is further defined by the PSM used.

For example, this could be implemented as a list of key/Value pairs.

Connections

Connector Source Target Notes

Aggregation
updatedEntity

Source -> Destination

EntityPayloadChunk

EntityChangeSinkEvent

The created or modified entity.

82 TACSIT data Exchange (TEX), v1.0

This page intentionally left blank.

TACSIT data Exchange (TEX), v1.0 83

8 Data Interface Platform-Independent Model
The DataInterface package define the interfaces provided or requested by a TACSIT system. It uses the DataPayload
package for the content of the methods of its interfaces (payload).

It also uses the Controller package from TCI.

Figure 8-1: DataInterface (Class diagram)

8.1 GroupManager (Interface)

This interface allows to create and list groups. It is the entry point of the API.

It must be noted that groups may be limited in number.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

GroupManager

GroupChangeListener

Dependency

Source -> Destination

GroupManager

Group

84 TACSIT data Exchange (TEX), v1.0

Operations

Method Parameters Info Notes

createGroup() Group GroupPayload [in] ovl throws
GroupCreationNotAllowed

throws
GroupAlreadyKnown,
TooManyGroups,
GroupCreationNotAllowed

Create a group from the
given payload.

The implementation shall
return the
GroupAlreadyKnown
exception if the name is
already used.

The implementation may
choose to limit the creation
of groups existing in the
system at the same time by
returning either the
TooManyGroups exception
(when the number of
groups is limited by the
implementation) or the
GroupCreationNotAllowed
exception (when the
creation of new groups is
not allowed by the
implementation).

listGroups() GroupList String [in] namePattern

List the references of the
already defined groups
filtered by their name
(namePattern is a regexp).

getGroup() Group URI [in] uri throws UnknownURI Get the interface to a group
from its URI and return the
UnknownURI exception if
the entity does not exist
(anymore).

addListener() void GroupChangeListener [in] l

integer [in] rate

throws InadequateRate,
TooManyListeners,
NotImplemented

Listen to the group
creation, deletion, and
update events at a given
rate.

This method may return the
InadequateRate exception
(if the implementation
deems this parameter as
unsuitable) or the
TooManyListeners
exception (if the
implementation limits the
number of listeners) or the
NotImplemented exception
if this capability is not
available.

TACSIT data Exchange (TEX), v1.0 85

addListener() void GroupChangeListener [in] l throws TooManyListerners Listen to the group
creation, deletion, and
update events.

This method may return the
TooManyListeners
exception (if the
implementation limits the
number of listeners).

removeListener() void GroupChangeListener [in] l throws UnknownListerner Remove a previously set
listener and return the
UnknownListener
exception if the listener
does not exist (anymore).

castEntity() Entity Entity [in] e throws UnknownEntity Translate an Entity from
the package Controller
(from standard TCI) to the
local Entity (from TEX). If
not possible, the exception
EntityUknown is thrown.

8.2 Group (Interface)

This interface accesses to a group.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

GroupManager

Group

Dependency

Source -> Destination

Group

Entity

Dependency

Source -> Destination

Group

EntityChangeListener

Dependency

Source -> Destination

Group

EntityQuerier

86 TACSIT data Exchange (TEX), v1.0

Operations

Method Parameters Info Notes

addEntities() void EntityList [in] ents throws NotImplemented Grouped creation of entities.

The implementation may
return a NotImplemented
exception.

addEntity() Entity EntityPayload [in] ent throws NotImplemented Add an entity to the group
and returns the possibly
modified entity with its
URI.

The implementation may
return a NotImplemented
exception.

addEntityRelationship()
void

EntityRelationship [in] er

Adds an entity relationship
(a pair-wise relation
between two of the group's
entities) to the group.

The implementation may
return a NotImplemented
exception.

addListener() void EntityChangeListener [in] l

integer [in] rate

throws InadequateRate,
TooManyListerner,
NotImplemented

Listen to the entity creation,
deletion, and update events
in the group at a given rate.

This method may return the
InadequateRate exception
(if the implementation
deems this parameter as
unsuitable) or the
TooManyListeners
exception (if the
implementation limits the
number of listeners) or the
NotImplemented exception
if this capability is not
available.

addListener() void EntityChangeListener [in] l throws
TooManyListerner

Listen to the entity creation,
deletion, and update events
in the group.

This method may return the
TooManyListeners
exception (if the
implementation limits the
number of listeners).

delete() void

throws NotImplemented Delete the group.

The implementation may
return a NotImplemented
exception.

TACSIT data Exchange (TEX), v1.0 87

getEntity() Entity URI [in] uri throws UnknownURI Get the interface of an entity
from its URI and return the
UnknownURI exception if
the entity does not exist
(anymore).

isEditable() boolean

Returns true if the group
may be edited according to
the TACSIT system.

listEntities() EntityList String [in] namePattern

List the references to the
entities of the group after
filtering them on their name
(namePattern is a regexp).

queryEntities() EntityList EntityQuerier [in] p

List the references to the
entities of the group that
match the predicate in
argument.

read() GroupPayload

Get the payload of the
group.

removeListener() void EntityChangeListener [in] l throws
UnknownListener

Remove a previously set
listener and return the
UnknownListener exception
if the listener does not exist
(anymore).

removeEntities() void EntityList [in] ents throws NotImplemented Grouped retrieval of
entities.

The implementation may
return a NotImplemented
exception.

removeEntity() void EntityRef [in] ent throws UnknownEntity,
NotImplemented

Remove an entity in the
group and return the
UnknownEntity exception if
the entity does not exist
(anymore).

The implementation may
return a NotImplemented
exception.

removeEntityRelationship()
void

EntityRelationship [in] er

Removes an entity
relationship (a pair-wise
relation between two of the
group's entities) to the
group.

The implementation may
return a NotImplemented
exception or the Group has
no such entity relationship
the

88 TACSIT data Exchange (TEX), v1.0

UnknownEntityRelationship
exception

update() GroupPayload GroupMetaData [in] gmd throws NotImplemented Update the meta data of the
group and return the new
group.

The implementation may
return a NotImplemented
exception.

updateEntities() void EntityList [in] ents throws NotImplemented Grouped modification of
entities.

The implementation may
return a NotImplemented
exception.

updateEntity()
EntityPayload

EntityPayload [in] ent throws NotImplemented Modify an entity in the
group (based on its URI)
and returns the possibly
modified entity.

The implementation may
return a NotImplemented
exception.

8.3 Entity (Interface)

This interface accesses to an entity.

Connections

Connector Source Target Notes

Generalization

Source -> Destination

Entity

Entity

Dependency

Source -> Destination

Group

Entity

Dependency

Source -> Destination

Entity

HistoryChangeListener

Dependency

Source -> Destination

Entity

EntityHistory

TACSIT data Exchange (TEX), v1.0 89

Operations

Method Parameters Info Notes

read() EntityPayload

Get the payload of the
entity.

getHistory() EntityHistory

Get the interface to the
history of the entity.

getGroup() Group

Get back the matching
Group interface.

update() EntityPayload EntityPayload [in] payload throws NotImplemented Update the entity and
return the new payload.

The implementation may
return a NotImplemented
exception.

update() EntityPayload EntityPayloadChunk [in]
chunk

throws NotImplemented Update the entity with a
subset of the data defined
in an EntityPayload and
return the new payload.

The implementation may
return a
InconsistentChunk
exception.

The implementation may
return a NotImplemented
exception.

delete() void

throws NotImplemented Delete the entity.

The implementation may
return a NotImplemented
exception.

addListener() void HistoryChangeListener [in] l

integer [in] rate

throws InadequateRate,
TooManyListerners,
NotImplemented

Listen to the history
creation, deletion, and
update events for the
entity at a given rate.

This method may return
the InadequateRate
exception (if the
implementation deems
this parameter as
unsuitable) or the
TooManyListeners
exception (if the
implementation limits the
number of listeners) or
the NotImplemented
exception if this
capability is not available.

90 TACSIT data Exchange (TEX), v1.0

addListener() void HistoryChangeListener [in] l throws
TooManyListerners

Listen to the history
creation, deletion, and
update events for the
entity.

This method may return
the TooManyListeners
exception (if the
implementation limits the
number of listeners).

removeListener() void HistoryChangeListener [in] l throws UnknownListener Remove a previously set
listener and return the
UnknownListener
exception if the listener
does not exist (anymore).

8.4 EntityHistory (Interface)

This interface access to the history of an entity.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

Entity

EntityHistory

Operations

Method Parameters Info Notes

getTimeSpan()
EntityHistoryPayload

Period [in] filter

Get the payload of the
history filtered on the
date (no history before
this date will be
returned).

getHistorySampling()
EntityHistoryPayload

integer [in] maxPoints

boolean [in] fromStart

Get the payload of the
history sampled with a
'maxPoints' maximum
number of points.

If 'fromStart' is false, the
les than 'maxPoints' most
recent data are returned.

Otherwise, an equal
distribution of
'maxPoints' data taken
among the known points
is returned.

TACSIT data Exchange (TEX), v1.0 91

getEntity() Entity

Get back the matching
Entity interface.

getLength() integer

Get the number of data in
the history.

getHistoryStart()
DateTime

Get the date of the first
data in the history.

8.5 GroupChangeListener (Interface)

Interface invoked as a callback when a group is created, modified, or deleted.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

GroupManager

GroupChangeListener

Dependency

Source -> Destination

GroupChangeListener

GroupChangeEvent

Operations

Method Parameters Info Notes

groupChanged() void GroupChangeEvent [in] e throws StopListening This method is called for
each creation,
modification, and
deletion of group.

The implementation of
this callback may return
the exception
StopListening as soon it
wants to kill the listeners.

8.6 EntityChangeListener (Interface)

Interface invoked as a callback when entities are created, modified, or deleted within a group.

The implementation of this callback may return the exception StopListening as soon it wants to kill the listeners.

92 TACSIT data Exchange (TEX), v1.0

Connections

Connector Source Target Notes

Dependency

Source -> Destination

Group

EntityChangeListener

Dependency

Source -> Destination

EntityChangeListener

EntityChangeEventList

Operations

Method Parameters Info Notes

entityChanged() void EntityChangeEventList [in] e throws StopListening Interface invoked as a
callback when a bulk of
entity creation,
modification or deletion
happens.

8.7 HistoryChangeListener (Interface)

Interface invoked as a callback when histories are created, modified, or deleted for an entity.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

Entity

HistoryChangeListener

Dependency

Source -> Destination

HistoryChangeListener

HistoryChangeEventList

Operations

Method Parameters Info Notes

historyChanged() void HistoryChangeEventList [in] e throws StopListening Interface invoked as a
callback when a bulk of
history creation,
modification or deletion
happens.

The implementation of
this callback may return
the exception
StopListening as soon it
wants to kill the listeners.

TACSIT data Exchange (TEX), v1.0 93

8.8 EntityQuerier (Interface)

Predicate function for the query service.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

Group

EntityQuerier

Operations

Method Parameters Info Notes

match() boolean EntityPayload [in] e

Predicate function
returning true if e
matches the predicate.

94 TACSIT data Exchange (TEX), v1.0

This page intentionally left blank.

TACSIT data Exchange (TEX), v1.0 95

9 Data Sink Interface Platform-Independent Model
The DataSink package contains the interfaces that a feeding data server must implement. It uses the DataPayload package
for the content of the methods of its interfaces (payload).

It also uses the Query package from TCI.

Figure 9-1: DataSink (Class diagram)

9.1 DataSink (Interface)

This interface is requested by a TACSIT system to get data from a business server.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

DataSink

GroupChangeSinkListener

Dependency

Source -> Destination

DataSink

EntityQuery

Dependency

Source -> Destination

DataSink

EntityChangeSinkListener

96 TACSIT data Exchange (TEX), v1.0

Operations

Method Parameters Info Notes

addListener() void URI [in] group

EntityChangeSinkListener [in] l

integer [in] rate

throws UnknownURI,
IsNotAGroup,
InadequateRate,
TooManyListerners

Listen to the entity
creation, deletion, and
update events in a group.

The method shall return
the UnknownURI or
IsNotAGroup exceptions
if the URI does not
identify a group
(anymore).

It may return the
InadequateRate exception
(if the implementation
deems this parameter as
unsuitable) or the
TooManyListeners
exception (if the
implementation limits the
number of listeners).

addListener() void GroupChangeSinkListener [in] l

integer [in] rate

throws UnknownURI,
IsNotAGroup,
InadequateRate,
TooManyListerners

Listen to the create,
update, and delete events
for a group.

It may return the
InadequateRate exception
(if the implementation
deems this parameter as
unsuitable) or the
TooManyListeners
exception (if the
implementation limits the
number of listeners).

addListener() void GroupChangeSinkListener [in] l throws UnknownURI,
IsNotAGroup,
InadequateRate,
TooManyListerners

Listen to the create,
update and delete events
for a group.

It may return the
TooManyListeners
exception (if the
implementation limits the
number of listeners).

addListener() void URI [in] group

EntityChangeSinkListener [in] l

throws UnknownURI,
IsNotAGroup,
TooManyListerners

Listen to the entity
creation, deletion, and
update events in a group.

The method shall return
the UnknownURI or
IsNotAGroup exceptions
if the URI does not
identify a group
(anymore).

TACSIT data Exchange (TEX), v1.0 97

It may return the
TooManyListeners
exception (if the
implementation limits the
number of listeners).

getGroup()
GroupPayload

URI [in] group throws UnknownURI,
IsNotAGroup

Invoked by the TACSIT
system to get the
definition of a group
from its URI.

The method shall return
the UnknownURI or
IsNotAGroup exceptions
if the URI does not
identify a group
(anymore).

getGroupItems()
EntityPayload

URI [in] group throws UnknownURI,
IsNotAGroup

Invoked by the TACSIT
system to get the list of
the entities of a group
given by an URI.

The method shall return
the UnknownURI or
IsNotAGroup exceptions
if the URI does not
identify a group
(anymore).

getGroupItems()
EntityPayload

URI [in] group

EntityQuery [in] filter

throws UnknownURI,
IsNotAGroup

Invoked by the TACSIT
system to get the filtered
list of the entities of a
group given by an URI.

The method shall return
the UnknownURI or
IsNotAGroup exceptions
if the URI does not
identify a group
(anymore).

getGroupItemsDelta()
EntityPayload

URI [in] group

DateTime [in] since

throws UnknownURI,
IsNotAGroup

Invoked by the TACSIT
system to get the list of
the entities of a group
given by an URI. The
returned entities are only
those that have been
modified since the given
date.

The method shall return
the UnknownURI or
IsNotAGroup exceptions
if the URI does not
identify a group
(anymore).

98 TACSIT data Exchange (TEX), v1.0

getGroupItemsDelta()
EntityPayload

URI [in] group

DateTime [in] since

EntityQuery [in] filter

throws UnknownURI,
IsNotAGroup

Invoked by the TACSIT
system to get the filtered
list of the entities of a
group given by an URI.
The returned entities are
only those that have been
modified since the given
date.

The method shall return
the UnknownURI or
IsNotAGroup exceptions
if the URI does not
identify a group
(anymore).

getGroupItemsPatch()
EntityChangeSinkEvent

URI [in] group

DateTime [in] since

throws UnknownURI,
IsNotAGroup

Invoked by the TACSIT
system to get the list of
the entity deltas of a
group given by an URI.
The returned deltas are
only those that have been
modified since the given
date.

The method shall return
the UnknownURI or
IsNotAGroup exceptions
if the URI does not
identify a group
(anymore).

getGroupItemsPatch()
EntityChangeSinkEvent

URI [in] group

DateTime [in] since

EntityQuery [in] filter

throws UnknownURI,
IsNotAGroup

Invoked by the TACSIT
system to get the list of
the entity deltas of a
group given by an URI.
The returned deltas are
only those that have been
modified since the given
date.

The method shall return
the UnknownURI or
IsNotAGroup exceptions
if the URI does not
identify a group
(anymore).

getHistories()
EntityHistoryPayload

URI [in] group

EntityQuery [in] filter

integer [in] depth

throws UnknownURI,
IsNotAGroup

Invoked by the TACSIT
system to get the histories
of the entities of a group
and which match a given
Query within a given
depth.

The method shall return
the UnknownURI or
IsNotAGroup exceptions

TACSIT data Exchange (TEX), v1.0 99

if the URI does not
identify a group
(anymore).

getHistory()
EntityHistoryPayload

URI [in] entity

integer [in] depth

throws UnknownURI,
IsNotAnEntity

Invoked by the TACSIT
system to get the history
of an entity with a given
depth.

The method shall return
the UnknownURI or
IsNotAnEntity exceptions
if the URI does not
identify an entity
(anymore).

listGroups() GroupList string [in] namePattern

Invoked by the TACSIT
system to get the list of
the known groups filtered
by their name
(namePattern is a
regexp).

removeListener() void EntityChangeSinkListener [in] l throws
UnknownListerner

This interface accesses to
a group and return the
UnknownListener
exception if the listener
does not exist (anymore).

9.2 EntityChangeSinkListener (Interface)

Interface invoked as a callback when entities are created, modified, or deleted within a group.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

DataSink

EntityChangeSinkListener

Dependency

Source -> Destination

EntityChangeSinkListener

EntityChangeSinkEventList

100 TACSIT data Exchange (TEX), v1.0

Operations

Method Parameters Info Notes

entityChanged() void EntityChangeSinkEventList
[in] e

throws StopListening Interface invoked as a
callback when a bulk of
entity creation,
modification or deletion
happens.

The implementation of
this callback may return
the exception
StopListening as soon it
wants to kill the listeners.

9.3 GroupChangeSinkListener (Interface)

Interface invoked as a callback when groups are created, modified, or deleted.

Connections

Connector Source Target Notes

Dependency

Source -> Destination

DataSink

GroupChangeSinkListener

Dependency

Source -> Destination

GroupChangeSinkListener

GroupChangeSinkEventList

Operations

Method Parameters Info Notes

entityChanged() void GroupChangeSinkEventList
[in] e

Interface invoked as a
callback when a bulk of
group modification
(includes add and remove
entities as well as creation
and deletion of entity
relationships), creation
and deletion happens.

The implementation of
this callback may return
the exception
StopListening as soon it
wants to kill the listeners.

TACSIT data Exchange (TEX), v1.0 101

10 Data Payload Platform-Specific Models
10.1 Payload Media Types

Several of the Data Interface PSM or Data Sink PSM are generic of the Data Payload PSM they use. For that purpose,
they need a codification of the known Data Payload PSM. This codification is obtained using media types, also known as
MIME types (see [MIME]).

Data Payload PSM supported by this specification and the matching media types (see [MIME]) are:

• application/x.tacsit+xml: See section 10.2.

• application/x.tacsit+json: reserved.

• application/x.tacsit-nvg+xml: See section 10.3.

• application/x.tacsit-nvg+json: reserved.

A version may be appended to the media type as specified by [MIME], i.e. after a semicolon. This version shall be the
version number of this standard, e.g.: application/x.tacsit+xml; version=1.0.0.

10.2 XML PSM

This is a placeholder for a future PSM.

10.3 Java PSM

This is a placeholder for a future PSM.

10.4 C# PSM

The C# PSM maps the Data Payload PIM classes to C# classes using MDA code generation. The detailed rules for the
code generation are as follows:

• The PIM attributes are mapped to a C# class private member attributes (camel case) and a public read-write
property (Pascal case).

• A public constructor is defined for all the mandatory attributes.

• Optional attributes that cannot take a null value (enumerations and scalar data-types) are mapped to an
instantiation of the System.Nullable class;

• Ordered collections in the PIM are mapped to an instantiation of the IList interface.

• Unordered collections in the PIM are mapped to an instantiation of the IEnumerable interface.

• Specialization / Generalization PIM relationships are mapped to C# class inheritance.

• The String, DateTime and URI classes are mapped to their C# built-in class library equivalents.

• The Period class is mapped to a class with a pair of DateTime attributes.

10.5 DDS PSM

The DDS PSM defines a set of IDL files for the Data Payload PIM classes. DDS provides the functionality of the Data
Interface and Data Sink PIMs; therefore, no specific DDS PSM is provided for these. The Data Payload PSM defines the
following DDS topic types:

• EntityPayload,

• GroupPayload.

The detailed rules for the MDA code generation from the Data Payload PIM to the DDS PSM IDL are as follows:

102 TACSIT data Exchange (TEX), v1.0

• The PIM attributes are mapped to IDL attributes.

• Optional attributes are mapped to a union type with a single member present when the exists case attribute is
true.

• Collections in the PIM are mapped to IDL sequences.

• Specialization / Generalization PIM relationships are mapped to IDL unions. Additional data classes are
introduced for generalization classes that have attributes.

• The String and URI classes are mapped to an IDL string.

• The DataTime and Period classes are mapped to unsigned long long and a struct with a pair of DateTime
attributes.

10.6 NVG PSM

10.6.1 Overview and Limitations

The NATO Vector Graphic (see [NVG]) STANAG provides a simple specification for encoding battle-space information
to support geospatial viewing based on an XML file exchange format. The NVG PSM maps the TEX PIM onto the NVG
Data Format allowing sending and receiving TEX data as NVG-formatted data.

This PSM:

• Deals only with geodetic coordinates (latitude/longitude).

• Does not deal with annulus entities.

10.6.2 Mapping

The following table specifies the mapping between TEX PIM and the NVG 2.0 schema by showing the correspondence
between on the one hand TEX classes and attributes and on the other hand NVG XML elements.

In this table, “@X” references an attribute (TEX or NVG) named X and elements standardized by NVG and actually
reused are written in bold font.

The needed and referenced XSD files are provided separately.
Table 10-1: Mapping between TEX and NVG 2.0

TEX NVG Comment

GroupRef

URL

GroupList

List of URLs

GroupPayload

<nvg:nvg>

@id

@uri

@version

@version

entities

See EntityPayload

Here entities are included
as is and not through
references.

metadata

The content of TEX
metadata is spread along
3 NVG elements:
metadata, extended data
and schema

TACSIT data Exchange (TEX), v1.0 103

TEX NVG Comment

<nvg:metadata> The content of the
metadata element shall
match the
GroupMetaData XSD

@isReadOnly

@readonly boolean

CoordinateUnits

units

links

links

<nvg:ExtendedData schemaRef="TEX:metadata">

@publisher

<nvg:SimpleData
key="dcterms:publisher">

@identifier

<nvg:SimpleData
key="dcterms:identifier">

@securityPolicy

<nvg:SimpleData
key="dcterms:security.policy">

@securityClassification <nvg:SimpleData key="dcterms:security.classification">

@securityCategory

<nvg:SimpleData key="dcterms:security.category">

@category

<nvg:SimpleData
key="dcterms:subject.category">

schemas

<nvg:Schema schemaId="name">

EntityRef

URL

EntityList

List of URLs

EntityPayload

None

Abstract class

@id

@uri

@label

@label

@info

<nvg:textInfo>

@href

@href

@timeSpan

<nvg:TimeSpan>

See [NVG] for the actual
format.

@timeStamp

<nvg:TimeStamp>

See [NVG] for the actual
format.

metaData

<nvg:ExtendedData schemaRef="TEX:metadata">

104 TACSIT data Exchange (TEX), v1.0

TEX NVG Comment

@publisher

<nvg:SimpleData
key="dcterms:publisher">

@identifier

<nvg:SimpleData
key="dcterms:identifier">

@securityPolicy

<nvg:SimpleData
key="dcterms:security.policy">

@securityClassification <nvg:SimpleData key="dcterms:security.classification">

@securityCategory

<nvg:SimpleData key="dcterms:security.category">

@reportType

@reportType

Stringified enumerate

ShapedEntity

None

Abstract class

See EntityPayload

@directionOfMovement

@directionOfMovement

@isHeadingRelative

@isHeadingRelative

@climbAngle

@climbAngle

@speed

@speed

@categorization

@symbol

Value is SymbolSet + “:”
+ SymbolId as specified
in the categorization
class.

@categorization.modifiers

@modifiers

For APP-6B

@categorizationIn3D

@3Dsymbol

Content of
@extrudeHeight

@legType

@leg-type

Stringified enumerate.

extendedData

<nvg:ExtendedData>

schema

<nvg:Section schemaRef="schema">

@key

<nvg:SimpleData key="key">

@value

value

AggregateEntity

None

Abstract class

See EntityPayload

groupedEntities

See EntityPayload

TACSIT data Exchange (TEX), v1.0 105

TEX NVG Comment

Bearing

<nvg:content-
item>

See ShapedEntity

@azimuth

<nvg:ExtendedData schemaRef="TEX:Bearing">
<nvg:SimpleData key="azimuth">
angle
</nvg:SimpleData> </nvg:ExtendedData>

point

Only GeodeticPosition

@latitude

@x

@longitude

@y

@altitude

@z

AmbiguousBearing

<nvg:content-
item>

See ShapedEntity

@bearingA
@bearingB

<nvg:ExtendedData schemaRef="TEX:AmbiguousBearing">
<nvg:SimpleData key="bearingA">
angle
</nvg:SimpleData>
<nvg:SimpleData key="bearingB">
angle
</nvg:SimpleData></nvg:ExtendedData>

point

Only GeodeticPosition

@latitude

@x

@longitude

@y

@altitude

@z

Text

<nvg:text>

See ShapedEntity

@content

<nvg:content>

@rotation

@rotation

point

Only GeodeticPosition

@latitude

@x

106 TACSIT data Exchange (TEX), v1.0

TEX NVG Comment

@longitude

@y

@altitude

@z

Point

<nvg:point>

See ShapedEntity

center

Only GeodeticPosition

@latitude

@x

@longitude

@y

@altitude

@z

Multipoint

<nvg:multipoint>

See ShapedEntity

@rotation

@rotation

points

@points See [NVG] for the formatting of this

attribute (list of (Longitude,Latitude)
couples).
Only GeodeticPosition and no altitude

Circle

<nvg:circle>

See ShapedEntity

@radius

@r

center

Only GeodeticPosition

@latitude

@cx

@longitude

@cy

@altitude

@minaltitude
@maxaltitude

Ellipse

<nvg:ellipse>

See ShapedEntity

@NSSemiAxis

@rx

@EWSemiAxis

@ry

@rotation

@rotation

TACSIT data Exchange (TEX), v1.0 107

TEX NVG Comment

center

Only GeodeticPosition

@latitude

@cx

@longitude

@cy

@altitude

@minaltitude
@maxaltitude

Rectangle

<nvg:rect>

See ShapedEntity

@NSHalfDistance

@rx

@EWHalfDistance

@ry

@rotation

@rotation

center

Only GeodeticPosition

@latitude

@cx

@longitude

@cy

@altitude

@minaltitude
@maxaltitude

Polyline

<nvg:polyline>

See ShapedEntity

points

@points See [NVG] for the formatting of this

attribute (list of (Longitude,Latitude)
couples).
Only GeodeticPosition and no altitude

Arrow

<nvg:arrow>

See ShapedEntity

@width

@width

points

@points See [NVG] for the formatting of this

attribute (list of (Longitude,Latitude)
couples).
Only GeodeticPosition and no altitude

Corridor

<nvg:corridor>

See ShapedEntity

108 TACSIT data Exchange (TEX), v1.0

TEX NVG Comment

@width

@width

points

@points See [NVG] for the formatting of this

attribute (list of (Longitude,Latitude)
couples).
Only GeodeticPosition and no altitude

Orbit

<nvg:orbit>

See ShapedEntity

@width

@width

pointOne
pointTwo

@points See [NVG] for the formatting of this

attribute (list of 2 (Longitude,Latitude)
couples).
Only GeodeticPosition and no altitude

Polygon

<nvg:polygon>

See ShapedEntity

points

@points See [NVG] for the formatting of this

attribute (list of (Longitude,Latitude)
couples).
Only GeodeticPosition and no altitude

Arc

<nvg:arc>

See ShapedEntity

@NSSemiAxis

@rx

@EWSemiAxis

@ry

@startAngle

@startangle

@endAngle

@endangle

@rotation

@rotation

center

Only GeodeticPosition

@latitude

@cx

@longitude

@cy

@altitude

@minaltitude
@maxaltitude

Arcband

<nvg:arcband>

See ShapedEntity

TACSIT data Exchange (TEX), v1.0 109

TEX NVG Comment

@minRadius

@minr

@maxRadius

@maxr

@startAngle

@startangle

@endAngle

@endangle

center

Only GeodeticPosition

@latitude

@cx

@longitude

@cy

@altitude

@minaltitude
@maxaltitude

StickyNote

<nvg:content-
item>

See ShapedEntity

@text

<nvg:ExtendedData schemaRef="TEX:StickyNote">
<nvg:SimpleData key="dcterms:title">
text
</nvg:SimpleData> </nvg:ExtendedData>

@font

@font

@textColor

@textcolor

@backgroundColor

@backgroundcolor

@borderStyle

@borderstyle

@offsetX

@offsetx

@offsetY

@offsety

center

Only GeodeticPosition

@latitude

@cx

@longitude

@cy

Annulus

No mapping

FreeShapedEntity

<nvg:content-
item>

See ShapedEntity

110 TACSIT data Exchange (TEX), v1.0

TEX NVG Comment

@svgDefinition

<nvg:ExtendedData schemaRef="TEX:FreeShapedEntity">
<nvg:SimpleData key="svgDefinition">
SVG content
</nvg:SimpleData>
<nvg:SimpleData key="bearingB">
angle
</nvg:SimpleData></nvg:ExtendedData>
Only GeodeticPosition

point

@latitude

@x

@longitude

@y

@altitude

@z

EntityHistoryPayload

<nvgtex:history>

See EntityHistoryPayload
XSD

reference

@id

See EntityRef

See EntityPayload

EntityHistoryList

<nvgtex:histories>

See EntityHistoryPayload
XSD

histories

See EntityHistoryPayload

GroupChangeEvent

<nvgtex:GroupChangeEvent>

See GroupChangeEvent
XSD

@kind

@kind

deleted

@deleted

See GroupRef

updatedGroup

See GroupPayload

GroupChangeSinkEventList

<nvgtex:GroupChangeSinkEventList> See GroupChangeSinkEvent XSD

See GroupChangeSinkEvent

GroupChangeSinkEvent

<nvgtex:GroupChangeSinkEvent> See GroupChangeSinkEvent XSD

@kind

@kind

deleted

@deleted

See GroupRef

See GroupPayload

TACSIT data Exchange (TEX), v1.0 111

TEX NVG Comment

EntityChangeEventList

<nvgtex:EntityChangeEventList>

See EntityChangeEvent
XSD

See EntityChangeEvent

EntityChangeEvent

<nvgtex:EntityChangeEvent>

See EntityChangeEvent
XSD

@kind

@kind

updatedAttributes

<nvgtex:updatedAttributes>

@context

@context

@attribute

@attribute

deleted

@deleted

See EntityRef

See EntityPayload

EntityChangeSinkEventList

<nvgtex:EntityChangeSinkEventList> See EntityChangeSinkEvent XSD

See EntityChangeSinkEvent

EntityChangeSinkEvent

<nvgtex:EntityChangeSinkEvent> See EntityChangeSinkEvent XSD

@kind

@kind

deleted

@deleted

See EntityRef

See EntityPayload

HistoryChangeEventList

<nvgtex:HistoryChangeEventList> See HistoryChangeEventList XSD

See HistoryChangeEvent

HistoryChangeEvent

<nvgtex:HistoryChangeEvent>

See HistoryChangeEvent
XSD

@kind

@kind

updatedEntity

See EntityPayload

EntityPayloadChunk

same as EntityPayload

10.7 NVGjs PSM

This is a placeholder for a future PSM based on current work by NATO on a JSON version of NVG.

112 TACSIT data Exchange (TEX), v1.0

This page intentionally left blank.

TACSIT data Exchange (TEX), v1.0 113

11 Data Interface Platform-Specific Models
11.1 Java PSM

This is a placeholder for a future PSM.

11.2 C# PSM

The C# PSM maps the Data Interface PIM classes and interfaces to C# classes and interfaces using MDA code
generation. The detailed rules for the code generation are as follows:

• PIM classes are mapped to C# classes.

• PIM interfaces are mapped to C# interfaces.

• Listener interfaces are mapped to the C# event mechanism; rate limited, or unlimited events are accessed
through a factory method.

• The PIM attributes are mapped to a C# class private member attributes (camel case) and a public read-write
property (Pascal case).

• A public constructor is defined for all the mandatory attributes.

• Optional attributes that cannot take a null value (enumerations and scalar data-types) are mapped to an
instantiation of the System.Nullable class;

• Ordered collections in the PIM are mapped to an instantiation of the IList interface.

• Unordered collections in the PIM are mapped to an instantiation of the IEnumerable interface.

• Specialization / Generalization PIM relationships are mapped to C# class inheritance.

11.3 DDS PSM

The DDS PSM for the Data Interface is implicitly provided by DDS DCPS using the topic types defined by the Data
Payload PSM. DDS partitions are used to separate and identity different TACSIT and client instances.

11.4 TypeScript PSM

11.4.1 Overview and Limitations

TypeScript (See [TS]) is a strict syntactical superset of ECMAScript 2015 (See [ECMAScript]) and adds optional static
typing to the language. TypeScript was chosen as target of PSM since it is free and open-source and supports the
concepts of interface, namespace as well as definition files that can contain type information. This allows providing this
PSM as definition files.

The mapping is quite direct and consists in transforming interface to interface and method to method. The datatypes are
transformed in their TypeScript equivalents: integer to number, string to string and boolean to boolean. All Data Payload
classes are mapped to only one class: DataPayload. This class allows the PSM to remain generic from the payload PSM
by providing two attributes:

• media-type is a string that contains the media type of the PSM as specified in Section 10.1.

• payload is an Object that contains the data itself and that needs to be casted accordingly to the media type and to
the awaited type.

The TypeScript PSM is not foreseen to use other Data Payload PSM than the XML and JSON-based ones.

114 TACSIT data Exchange (TEX), v1.0

11.4.2 Mapping

The PSM is provided separately as two files:

• tacsit-tex-datapayload.d.ts declares the module tacsit as well as the DataPayload class.

• tacsit-tex-datainterface.d.ts declares the interfaces as specified by the Data Interface PIM.

These files depend upon TCI: See Annex B.

TACSIT data Exchange (TEX), v1.0 115

12 Data Sink Platform-Specific Models
12.1 C# PSM

The C# PSM maps the Data Sink PIM classes and interfaces to C# classes and interfaces using MDA code generation.
The detailed rules for the code generation are as follows:

• PIM classes are mapped to C# classes.

• PIM interfaces are mapped to C# interfaces.

• Listener interfaces are mapped to the C# event mechanism; rate limited or unlimited and group specific events
are accessed through a factory method.

• The PIM attributes are mapped to a C# class private member attributes (camel case) and a public read-write
property (Pascal case).

• A public constructor is defined for all the mandatory attributes.

• Optional attributes that cannot take a null value (enumerations and scalar data-types) are mapped to an
instantiation of the System.Nullable class;

• Ordered collections in the PIM are mapped to an instantiation of the IList interface.

• Unordered collections in the PIM are mapped to an instantiation of the IEnumerable interface.

• Specialization / Generalization PIM relationships are mapped to C# class inheritance.

12.2 DDS PSM

The DDS PSM for the Data Interface is implicitly provided by DDS DCPS using the topic types defined by the Data
Payload PSM. DDS partitions are used to separate and identity different TACSIT and client instances.

12.3 HTTP PSM

12.3.1 Overview and Limitations

Any instantiation of a Data Sink can be represented as Hypertext Transfer Protocol (see [HTTP]) resources. These
resources are referenced by a base URL that depends on the implementation. See [RFC3986], section 5 for more details.
This base URL will be denoted as baseURL throughout this section.

The resources considered by this mapping are:

• {baseURL}/groups for the TACSIT groups.

• {baseURL}/groups/{id} for a specific group.

• {baseURL}/entities/{id} for a specific entity.

• {baseURL}/listeners for the Data Listeners.

As explained in the design rationale, this PSM does not address data modeling of the payload since this is coped with by
the “Data Payload PSM” sections. Yet, The HTTP PSM is not foreseen to use other Data Payload PSM than the XML
and JSON-based ones.

This PSM does not map the listener methods because this exchange pattern does not fit with the simple HTTP style.
Future version of this specification may consider the use of server-sent events over HTTP (See [SSE]).

116 TACSIT data Exchange (TEX), v1.0

12.3.2 General Conventions and Considerations

12.3.2.1 Response Codes

Any HTTP operation (see [HTTP], section 9) on a given resource that is not implemented must return an HTTP response
with a status code of 405 (Method Not Allowed).

Other HTTP status codes may be added by security mechanisms or other extensions.

12.3.2.2 Content Compression

For improved performance it is recommended that the server support client requests for GZIP compression. Clients will
request compression by setting the “Accept-Encoding” HTTP header to “gzip.” The server should honor this request for
all documents, so that devices may benefit from the reduced bandwidth needs and improved battery life when requesting
compressed content.

12.3.2.3 Media Types

See Section 10.1 for the payload media types supported by this specification.

This PSM nevertheless uses another media type:

• application/x.tacsit-link: a (list of) URL.

A version may also be appended to this media type, e.g.: application/x.tacsit-link; version=1.0.0.

12.3.3 Mapping

12.3.3.1 Mapping of Entity Queries

This mapping from an EntityQuery (see [TCI]) to a string is needed by the following interfaces.

It is implementation dependent.

12.3.3.2 URL: {baseURL}/groups – Verb: GET

This resource maps the following method:

• DataSink:listGroups.

The “Accept” request header must be set to application/x.tacsit-link.

The “If-Modified-Since” and “If-Unmodified-Since” request headers may be set.

The request may have the following query field:

• namePattern=”string”: the namePattern argument of the getGroups method.

The “Content-Type” response header must be application/x.tacsit-link.

The “Last-Modified” request header must be set.

The payload of the response is a list of URLs representing groups: BaseURL/Groups/{id} where id is the identifier of a
group. These URL may subsequently be invoked to get more information for given groups.

TACSIT data Exchange (TEX), v1.0 117

The return code must be:

• 200 (OK): successful request.

• 204 (Empty): successful request, the resulting list is empty.

• 304 (Not Modified): the “If-Modified-Since” request header was used, and the resulting list did not change.
Meanwhile;

• 400 (Bad Request): namePattern cannot be parsed.

• 412 (Precondition Failed): the “If-Unmodified-Since” request header was used, and the resulting list did change.
Meanwhile;

• 415 (Unsupported Media Type): the “Accept” request header is wrongly set.

• 5xx range: implementation-specific server problem.

12.3.3.3 URL: {baseURL}/groups/{id} – Verb: Get

In the URL, id is the identifier of a known group.

This resource maps the following methods:

• DataSink:getGroup(URI),

• DataSink:getGroupItems(URI),

• DataSink:getGroupItemsDelta(URI, DateTime),

• DataSink:getGroupItems(URI, EntityQuery),

• DataSink:getGroupItemsPatch(URI, DateTime),

• DataSink:getGroupItemsDelta(URI, DateTime, EntityQuery),

• DataSink:getGroupItemsPatch(URI, DateTime, EntityQuery),

• DataSink:getHistories(URI, EntityQuery,int).

The “Accept” request header must be set to any payload media types (i.e. not application/x.tacsit-link).

The “If-Modified-Since” and “If-Unmodified-Since” request headers may be set.

The request may have the following query field:

• since=”date”: the “since” argument of the methods taking a DateTime argument (“date” is an ISO date);

• entityQuery=”string”: the “filter” argument of the methods taking an EntityQuery argument; the mapping of
such an EntityQuery to a string is specified in section 12.1.3.1;

• return=”content|patch|delta|history”: if “content”, the method is “getGroupItems”, if “patch”, the method is
“getGroupItemsPatch”, if “delta”, the method is “getGroupItemsPatch”, if “history”, the method is getHistories.

• depth=”integer”: if the preceding query is set to “history”, this query specifies the “depth” argument of the
method getHistories.

The “Content-Type” response header must be a payload media types (i.e. not application/x.tacsit-link).

The “Last-Modified” request header must be set.

118 TACSIT data Exchange (TEX), v1.0

The payload of the response is either a GroupPayload or a list of EntityPayload or a list of EntityChangeSinkEvent or a
list of EntityHistoryPayload depending on the method actually invoked (i.e. on the query fields), and using the PSM
specified by the “Content-Type” response header.

The return code must be:

• 200 (OK): successful request.

• 204 (Empty): successful request, the result is empty.

• 304 (Not Modified): the “If-Modified-Since” request header was used, and the resulting list did not change
meanwhile; this is mandatory only for the getGroup and getGroupItems methods.

• 400 (Bad Request): a query field cannot be parsed.

• 404 (Not Found): UnknownURI or IsNotAGroup exceptions.

• 412 (Precondition Failed): the “If-Unmodified-Since” request header was used, and the resulting list did change
meanwhile; this is mandatory only for the getGroup and getGroupItems methods.

• 415 (Unsupported Media Type): the “Accept” request header is wrongly set.

• 5xx range: implementation-specific server problem.

12.3.3.4 URL: {baseURL}/entities/{id} – Verb: Get

In the URL, id is the identifier of a known entity.

This resource maps the following method:

• DataSink:getHistory(URI, integer).

The “Accept” request header must be set to any payload media types (i.e. not application/x.tacsit-link).

The “If-Modified-Since” and “If-Unmodified-Since” request headers may be set.

The request may have the following query field:

• entityQuery=”string”: the “filter” argument of the methods taking an EntityQuery argument; the mapping of
such an EntityQuery to a string is specified in section 12.1.3.1;

• depth=”integer”: the “depth” argument of the method getHistory.

The “Content-Type” response header must be a payload media types (i.e. not application/x.tacsit-link).

The “Last-Modified” request header must be set.

The payload of the response is an HistoryEntityPayload using the PSM specified by the “Content-Type” response header.

The return code must be:

• 200 (OK): successful request.

• 204 (Empty): successful request, the result is empty.

• 304 (Not Modified): the “If-Modified-Since” request header was used, and the resulting list did not change
meanwhile; this code is not mandatory to implement.

• 400 (Bad Request): a query field cannot be parsed.

• 404 (Not Found): UnknownURI or IsNotAnEntity exceptions.

TACSIT data Exchange (TEX), v1.0 119

• 412 (Precondition Failed): the “If-Unmodified-Since” request header was used, and the resulting list did change
meanwhile; this code is not mandatory to implement.

• 415 (Unsupported Media Type): the “Accept” request header is wrongly set.

• 5xx range: implementation-specific server problem.

120 TACSIT data Exchange (TEX), v1.0

This page intentionally left blank.

TACSIT data Exchange (TEX), v1.0 121

Annex A:
Standardized Extension Schema

(informative)

This annex introduces the standardised set ExtendedData by grouping them by ExtensionSchema as designed in the
Payload PIM.

ExtensionSchema “AIS”
This schema holds the following ExtendedData:

• “callSign” (string): The radio call sign of the platform received on AIS.

• “IMONumber” (string): The international maritime organization number allows encyclopedic information to be
looked up in database provided by organizations such as Lloyds.

• “MMSI” (string): The maritime mobile service identity, allocated to the ship with the radio license.

• “nationality”: The nationality of the platform as received on AIS.

• “beam” (Distance): The beam width of the ship - port to starboard.

• “length” (Distance): The length of a ship - bow to stern.

• “maximumDraught” (Distance): The maximum present static draught as reported on AIS in accordance with
IMO Resolution A.851.

• “positionalFixMethod” (string): The method used to obtain the positional fix reported on AIS.

• “RAIMinUse” (boolean): Whether receiver autonomous integrity monitoring is in use.

• “rateOfTurn” (real): The rate of turn as reported by AIS.

ExtensionSchema “5516”

This schema holds the following ExtendedData:

• “hasSpecialProcessing” (boolean): The Special Processing indicator is set.

• “isAnEmergency” (boolean): The Emergency indicator is set.

• “isForceTell” (boolean): The ForceTell indicator is set.

• “isInExercise” (boolean): The Entity has an Exercise indicator and so is part of an exercise.

• “isOfSpecialInterest” (boolean): The Special Interest indicator is set.

• “isSimulation” (boolean): The Simulation indicator is set - e.g. the entity is for operator training purposes.

• “Strength” (integer): The estimated number of objects represented by the Entity.

• “trackState” (string): If a track-like entity the state or phase of its life cycle; Indicates whether tracking is active;
possible values: DEAD_RECKONED, DELETED, LOST, TRACKED.

• “hasMode4” (boolean): The Mode IV Indicator is set.

• “mode1Code” (short): Mode I Code received.

• “mode2Code” (short): Mode II Code received.

• “mode3Code” (short): Mode III Code received.

• “className” (string): This is semantically equivalent to the platform specific type except for being
unconstrained to being in the STANAG 5516 pre-defined list.

122 TACSIT data Exchange (TEX), v1.0

• “environment” (string): The environment that the Entity is in or to which it applies; possible values: AIR,
LAND, SURFACE, SUBSURFACE, SPACE.

• “identity” (string): The standard identity of the (track-like) entity; possible values: PENDING, UNKNOWN,
ASSUMED_FRIEND, NEUTRAL, SUSPECT, HOSTILE).

• “nationality”: The nationality or country of origin of the object represented by the Entity.

• “platformActivity” (short): The code for the per environment defined platform activity for the Entity according
to STANAG 5516; The activity describes what the object that the Entity represents is doing.

• “platformIdentity” (short): The code for the per environment defined platform identify for the Entity according
to STANAG 5516; If no identity is defined then the code refers to a value in the reference point tables within
STANAG 5516.

• “platformSpecificType” (short): The per environment defined specific type for the Entity according to
STANAG5516; This defines the manufacture or build type of the object represented by the Entity, E.g. B747, L-
100 HERCULES, HALIFAX FF;

• “unitName” (string): The name of the actual object instance represented by the entity, E.g. ship name, flight id.

ExtensionSchema “ADS-B”
This schema holds the following ExtendedData:

• “barometricVerticalRate” (real): The rate of change of height / altitude of the broadcasting aircraft calculated by
barometric means.

• “country” (string): The country (abbreviated) of the aircraft, broadcast on ADS-B.

• “flightID” (string): The flight ID of the aircraft, broadcast on ADS-B.

• “flightLevel” (Distance): The flight level of the broadcasting aircraft.

• “fullCountry (string): The country (unabbreviated) of the aircraft, broadcast on ADS-B.

• “isOnTheGround” (boolean): Whether the broadcasting platform is currently on the ground.

• “modeSAddress” (string): The mode S address of the aircraft, broadcast on ADS-B, as set for IFF responses.

ExtensionSchema “APP6B”

This is a placeholder for a future extension schema.

ExtensionSchema “APP6C”

This is a placeholder for a future extension schema.

ExtensionSchema “2525C”

This is a placeholder for a future extension schema.

ExtensionSchema “2525D”

This is a placeholder for a future extension schema.

TACSIT data Exchange (TEX), v1.0 123

Annex B: New PSM for the TCI Standard

(normative)

DDS PSM
The DDS PSM defines a set of IDL files for the TCI PIM classes. The TCI PSM defines the following DDS topic types:

• EntityQuery,

• QueryResult,

• SelectionEvent,

• TACSITController,

• Viewport

The detailed rules for the MDA code generation from the Data Payload PIM to the DDS PSM IDL are as follows:

• The PIM attributes are mapped to IDL attributes.

• Optional attributes are mapped to a union type with a single member present when the exists case attribute is
true.

• Collections in the PIM are mapped to IDL sequences.

• Specialization / Generalization PIM relationships are mapped to IDL unions (or enumerations in the case of
attribute-less abstractions).

• PIM accessor operations (read/get) are mapped to IDL attributes.

• Listener interfaces are mapped to DDS DCPS.

• Manager classes are mapped to DDS DCPS.

C# PSM
The C# PSM maps the TCI PIM classes and interfaces to C# classes and interfaces using MDA code generation. The
detailed rules for the code generation are as follows:

• PIM classes are mapped to C# classes.

• PIM interfaces are mapped to C# interfaces.

• Listener interfaces are mapped to the C# event mechanism; rate limited, or unlimited events are accessed
through a factory method.

• The PIM attributes are mapped to a C# class private member attributes (camel case) and a public read-write
property (Pascal case).

• A public constructor is defined for all the mandatory attributes.

• Optional attributes that cannot take a null value (enumerations and scalar data-types) are mapped to an
instantiation of the System.Nullable class;

• Ordered collections in the PIM are mapped to an instantiation of the IList interface.

• Unordered collections in the PIM are mapped to an instantiation of the IEnumerable interface.

• Specialization / Generalization PIM relationships are mapped to C# class inheritance.

TypeScript PSM
For now, this PSM only map the interfaces of TCI needed by TEX: the EntityType interface and the GeodeticPosition
interface.

It is to be found in tacsit-tci-controller.d.ts that declares these two interfaces.

124 TACSIT data Exchange (TEX), v1.0

	TACSIT data Exchange (TEX)
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and definitions
	5 Symbols
	6 Additional Information
	6.1 Problem Statement (non-normative)
	6.2 Design Rationale (non-normative)
	6.2.1 Architecture Patterns
	6.2.1.1 Standalone Architecture Pattern
	6.2.1.2 Distributed Without TACSIT Back-end Architecture Pattern
	6.2.1.3 Distributed With TACSIT Back-end Architecture Pattern

	6.2.2 Payload vs. Interface vs. Data Sink
	6.2.3 One Namespace to Rule Them All
	6.2.4 Dependencies
	6.2.5 Optional Capabilities
	6.2.6 Extensibility
	6.2.7 Use patterns
	6.2.7.1 Initialization
	6.2.7.2 Update of a Single Track/BSO
	6.2.7.3 Update of a Group of Tracks/BSO
	6.2.7.4 Display of a Single Track/BSO History
	6.2.7.5 TEX and TCI

	6.2.8 On Giant’s Shoulders

	6.3 Changes to Adopted OMG Specifications
	6.4 Acknowledgements

	7 Data Payload Platform – Independent Model
	7.1 Util
	7.1.1 AngleUnit (Enumeration)
	7.1.2 CoordinateKind (Enumeration)
	7.1.3 CoordinateOrientation (Enumeration)
	7.1.4 CoordinateOrigin (Enumeration)
	7.1.5 DistanceUnit (Enumeration)
	7.1.6 Identity (Enumeration)
	7.1.7 SpeedUnit (Enumeration)
	7.1.8 Environment (Enumeration)
	7.1.9 TrackPhase (Enumeration)
	7.1.10 Angle (DataType)
	7.1.11 DateTime (DataType)
	7.1.12 Distance (DataType)
	7.1.13 Period (DataType)
	7.1.14 Projection (DataType)
	7.1.15 Speed (DataType)
	7.1.16 String (DataType)
	7.1.17 URI (DataType)
	7.1.18 URL (DataType)

	7.2 GroupPayload
	7.2.1 CoordinateUnits (Class)
	7.2.2 EntityRelationship (Class)
	7.2.3 ExtensionSchema (Class)
	7.2.4 GroupList (Class)
	7.2.5 GroupMetaData (Class)
	7.2.6 GroupPayload (Class)
	7.2.7 GroupRef (DataType)

	7.3 EntityPayload
	7.3.1 AggregateEntity (Class)
	7.3.2 AmbiguousBearings (Class)
	7.3.3 Annulus (Class)
	7.3.4 Arc (Class)
	7.3.5 Archband (Class)
	7.3.6 Arrow (Class)
	7.3.7 Bearing (Class)
	7.3.8 CartesianPosition (Class)
	7.3.9 Circle (Class)
	7.3.10 CompositeEntity (Class)
	7.3.11 Corridor (Class)
	7.3.12 Ellipse (Class)
	7.3.13 EntityList (Class)
	7.3.14 EntityMetaData (Class)
	7.3.15 EntityPayload (Class)
	7.3.16 ExtendedData (Class)
	7.3.17 FreeShapedEntity (Class)
	7.3.18 GeodeticPosition (Class)
	7.3.19 InterpolationMethodology (Enumeration)
	7.3.20 Multipoint (Class)
	7.3.21 Orbit (Class)
	7.3.22 Point (Class)
	7.3.23 PolarPosition (Class)
	7.3.24 Polygon (Class)
	7.3.25 Polyline (Class)
	7.3.26 PositionCoordinate (Class)
	7.3.27 Rectangle (Class)
	7.3.28 ReportType (Enumeration)
	7.3.29 ShapedEntity (Class)
	7.3.30 StickyNote (Class)
	7.3.31 Text (Class)
	7.3.32 EntityType (DataType)

	7.4 CategorizationData
	7.4.1 ADSBCategorizationData (Class)
	7.4.2 AISCategorizationData (Class)
	7.4.3 APP6BCategorizationData (Class)
	7.4.4 APP6CCategorizationData (Class)
	7.4.5 CategorizationData (Class)
	7.4.6 CategorizationIn3D (Class)
	7.4.7 MilitaryCategorizationData (Class)
	7.4.8 STANAG2525CCategorizationData (Class)
	7.4.9 STANAG2525DCategorizationData (Class)
	7.4.10 STANAG5516CategorizationData (Class)
	7.4.11 STANG5516SymbolCategorizationData (Class)

	7.5 EntityHistory
	7.5.1 EntityHistoryList (Class)
	7.5.2 EntityHistoryPayload (Class)

	7.6 CallbackData
	7.6.1 ChangeKind (Enumeration)
	7.6.2 EntityChangeEvent (Class)
	7.6.3 EntityChangeEventList (Class)
	7.6.4 EntityChangeSinkEvent (Class)
	7.6.5 EntityChangeSinkEventList (Class)
	7.6.6 GroupChangeEvent (Class)
	7.6.7 GroupChangeSinkEvent (Class)
	7.6.8 GroupChangeSinkEventList (Class)
	7.6.9 HistoryChangeEvent (Class)
	7.6.10 HistoryChangeEventList (Class)
	7.6.11 TEXAttribute (Class)

	7.7 EntityPayloadManagement
	7.7.1 EntityPayloadChunk (Class)

	8 Data Interface Platform-Independent Model
	8.1 GroupManager (Interface)
	8.2 Group (Interface)
	8.3 Entity (Interface)
	8.4 EntityHistory (Interface)
	8.5 GroupChangeListener (Interface)
	8.6 EntityChangeListener (Interface)
	8.7 HistoryChangeListener (Interface)
	8.8 EntityQuerier (Interface)

	9 Data Sink Interface Platform-Independent Model
	9.1 DataSink (Interface)
	9.2 EntityChangeSinkListener (Interface)
	9.3 GroupChangeSinkListener (Interface)

	10 Data Payload Platform-Specific Models
	10.1 Payload Media Types
	10.2 XML PSM
	10.3 Java PSM
	10.4 C# PSM
	10.5 DDS PSM
	10.6 NVG PSM
	10.6.1 Overview and Limitations
	10.6.2 Mapping

	10.7 NVGjs PSM

	11 Data Interface Platform-Specific Models
	11.1 Java PSM
	11.2 C# PSM
	11.3 DDS PSM
	11.4 TypeScript PSM
	11.4.1 Overview and Limitations
	11.4.2 Mapping

	12 Data Sink Platform-Specific Models
	12.1 C# PSM
	12.2 DDS PSM
	12.3 HTTP PSM
	12.3.1 Overview and Limitations
	12.3.2 General Conventions and Considerations
	12.3.2.1 Response Codes
	12.3.2.2 Content Compression
	12.3.2.3 Media Types

	12.3.3 Mapping
	12.3.3.1 Mapping of Entity Queries
	12.3.3.2 URL: {baseURL}/groups – Verb: GET
	12.3.3.3 URL: {baseURL}/groups/{id} – Verb: Get
	12.3.3.4 URL: {baseURL}/entities/{id} – Verb: Get

	Annex A : Standardized Extension Schema (informative)
	ExtensionSchema “5516”
	Annex B : New PSM for the TCI Standard (normative)

