
Telecom Log Service Specification

July 2003
Version 1.1.2 - editorial update

formal/03-07-xx

An Adopted Specification of the Object Management Group, Inc.

Copyright © 1998, Alcatel Corporate Research Center
Copyright © 1998, Cooperative Research Centre for Distributed Systems Technology (DSTC)
Copyright © 1998, Expersoft Corporation
Copyright © 1998, Hewlett Packard Company
Copyright © 1998, Nortel Technology
Copyright © 1998, Telefónica Investigación y Desarrollo S.A. Unipersonal

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
1. Telecom Log Service . 1-1

1.1 Introduction . 1-1

1.2 The Log Interfaces . 1-1
1.2.1 Log Inheritance. 1-4
1.2.2 LogRecord and TypedLogRecord 1-6
1.2.3 Logging Scenarios . 1-7
1.2.4 Log Control and Management 1-9
1.2.5 Log Record Manipulation. 1-18
1.2.6 Log Network. 1-24
1.2.7 Log Lifecycle Management 1-24

1.3 The Log Factory Interfaces . 1-25
1.3.1 Log Factory Inheritance 1-26
1.3.2 Log Lookup . 1-27
1.3.3 Log Creation. 1-27
1.3.4 Log Events . 1-28

1.4 Log Generated Events . 1-29
1.4.1 ObjectCreation Event . 1-29
1.4.2 ObjectDeletion Event . 1-30
1.4.3 ThresholdAlarm Event 1-30
1.4.4 AttributeValueChange Event 1-31
1.4.5 StateChange Event . 1-31
1.4.6 ProcessingErrorAlarm Event 1-32

1.5 Conformance Criteria . 1-32
July 2003 Telecom Log Service, v1.1.2 i

Contents
Appendix A - Complete OMG IDL A-1

Appendix B - Common Mistakes . B-1

Index. 1

Reference Sheet . 1
ii Telecom Log Service, v1.1.2 July 2003

Preface
About This Document

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The Open Group

The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.
July 2003 Telecom Log Service, v1.1.2 v

The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

• Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

• Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

• Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

• Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of
test suites used to validate conformance to an open standard or specification. The Open
Group portfolio of test suites includes tests for CORBA, the Single UNIX
Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX Realtime,
Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are essential
for proper development and maintenance of standards-based products, ensuring
conformance of products to industry-standard APIs, applications portability, and
interoperability. In-depth testing identifies defects at the earliest possible point in the
development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

OMG Documents

The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications

Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications

Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.
vi Telecom Log Service, v1.1.2 July 2003

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
Contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments

This specification represents the hard work and contribution of many individuals and
companies. We would like to acknowledge the following for their contributions, both
large and small:

• Alcatel Corporate Research Center

• Cooperative Research Centre for Distributed Systems Technology (DSTC)

• Expersoft Corporation

• Hewlett Packard Company
July 2003 Telecom Log Service, v1.1.2 vii

• Nortel Technology

• Telefónica Investigación y Desarrollo S.A. Unipersonal
viii Telecom Log Service, v1.1.2 July 2003

Telecom Log Service 1
Note – Editorial changes are in this color.

Contents

This chapter contains the following sections.

1.1 Introduction

This chapter presents a specification of the Telecom Log Service that can be used in a
pure CORBA environment as well as by TMN systems via a gateway function. This
specification not only supports the functionality defined in the ITU-T X.735
specification, but also extends it to allow logging of any type of event and querying of
LogRecords based on constraint languages. It also provides capabilities to form log
networks for storing and forwarding events.

Section Title Page

“Introduction” 1-1

“The Log Interfaces” 1-2

“The Log Factory Interfaces” 1-25

“Log Generated Events” 1-29

“Conformance Criteria” 1-32
July 2003 TelecomLog Service, v1.1.2 1-1

1

1.2 The Log Interfaces

Log objects are consumers of events. Log objects store events that fulfill some
constraint expression (a filter).

Each log object has a log repository that can consist of one or more files or databases.
A log object stores events as entries in its associated log repository. Log entries are
accessible by querying the log. Events stored in a log can be of any type, as long as the
underlying log repository supports their storage.

Log objects are suppliers of events. A log object generates events when its capacity
threshold is reached, one of its log attributes change, its log state changes, or the log is
deleted.

Log objects behave as event suppliers when they are connected with other logs to form
a “log and forward” network.

In summary, a log object is both an event consumer and event supplier. It interacts with
CORBA events in three distinct ways:

1. Writing to a log: Events supplied to a log are stored as log records. These are
incoming events.

2. Forwarding from a log: Events supplied to a log are also forwarded to other logs or
to any application that wishes to receive them. These are outgoing events.

3. Log generated events: Logs will generate their own events when something of their
state changes, for instance when a threshold is being crossed or a log attribute is
changed. These are also outgoing events.

An event channel interacts with events in two ways (incoming and outgoing). Log
writing and forwarding naturally map to an event channel. The log generated events are
emitted through the log factory (see Section 1.3, “The Log Factory Interfaces,” on
page 1-25) and are different from those that are forwarded through the log.

To take advantage of the natural mapping described above, logs are modeled as
event/notification channels. Log inherits from the typed or untyped event/notification
channel. Events are forwarded to a log object by connecting to the event channel or
notification channel of the log. By leveraging features of event/notification channel,
logs can:

• Support both the push and pull models of event communication.

• Support either the typed or untyped models of event communication.

• Support multiple suppliers, and allow them to disconnect cleanly. The one to one
supplier to proxy consumer relationship of the Event Service is preserved.

• Support multiple consumers, and allow them to disconnect cleanly. The one to one
consumer to proxy supplier relationship of the Event Service is preserved.

• Form a log network of various topologies by simply connecting to other logs as
event channels. A log network supports “log-and-forward” scenarios.
1-2 Telecom Log Service, v1.1.2 July 2003

1

A log that inherits from notification channel can apply filtering to the events it logs.
Filters are set and modified using the CosNotifyFilter::Filter object associated with a
log and applies to events before they are logged. There can also be filters on the
notification channel to filter incoming or outgoing events.

Logs can leverage from the notification service QoS framework to support the QoS
requirements on the notification aspect of logs. Figure 1-1 gives a graphical
representation of the log.

Figure 1-1 The Log

Figure Key:

• S: event/notification supplier

• W: event/notification unaware writer

• PC: proxy consumer

• PS: proxy supplier

• C: event/notification consumer

Event/Notification
Channel

S

S

S

W

PC

PC

PC

PS

PS

PS

C

C

C

log filter

LOG

Write Forward

Store

Persistent Store
LOG
July 2003 Telecom Log Service: The Log Interfaces 1-3

1

1.2.1 Log Inheritance

Figure 1-2 Log Inheritance

There are six types of logs, each type of log has its own corresponding log factory (see
Section 1.3, “The Log Factory Interfaces,” on page 1-25 for more details):

• The Log interface does not inherit from any event service interfaces. Log serves as
an abstract interface to which all other log interfaces can inherit from. Log defines
attributes and operations common to all other log interfaces.

• The BasicLog interface inherits from the Log interface. BasicLog allows “event
unaware” clients to access a log directly without any knowledge of events or
notifications. It does not support event forwarding, nor does it emit log events (see
Section 1.4, “Log Generated Events,” on page 1-29 for more details).

• The EventLog interface inherits from the Log and
CosEventChannelAdmin::EventChannel interfaces. EventLog receives and
forwards untyped events via a CosEventChannelAdmin::EventChannel.
EventLog is created by and emits log generated events via the EventLogFactory
interface (see Section 1.3, “The Log Factory Interfaces,” on page 1-25 for more
details).

• The NotifyLog interface inherits from the EventLog and
CosNotifyChannelAdmin::EventChannel interfaces. NotifyLog receives and
forwards untyped events via a CosNotifyChannelAdmin::EventChannel.
NotifyLog supports filtering on incoming, logged, and outgoing events. NotifyLog
is created by and emits log generated events via the NotifyLogFactory interface
(see Section 1.3, “The Log Factory Interfaces,” on page 1-25 for more details).

Log

Typed
Event
Channel

Event
Channel

Typed
Notify
Channel

Typed
Event
Log

Event
Log

Notify
Channel

Typed
Notify
Log

Notify
Log

Basic
Log
1-4 Telecom Log Service, v1.1.2 July 2003

1

• The TypedEventLog interface inherits from the Log and
CosTypedEventChannelAdmin::TypedEventChannel interfaces.
TypedEventLog receives and forwards typed events via a
CosTypedEventChannelAdmin::TypedEventChannel. TypedEventLog is
created by and emits log generated events via the TypedEventLogFactory
interface (see Section 1.3, “The Log Factory Interfaces,” on page 1-25 for more
details).

• The TypedNotifyLog interface inherits from the TypedEventLog and
CosTypedNotifyChannelAdmin::TypedEventChannel interfaces.
TypedNotifyLog receives and forwards events via a
CosTypedNotifyChannelAdmin::TypedEventChannel. In addition, it supports
filtering on incoming, logging and outgoing events. It emits events via the
TypedNotifyLogFactory (see Section 1.3, “The Log Factory Interfaces,” on
page 1-25 for more details).

Note – The TypedEventLog and TypedNotifyLog interfaces are optional for an
implementation of the Telecom Log Service.

This inheritance allows clients to access the log at any level it wishes:

• directly

• event service

• notification service

• typed event service

• typed notification service

A client can widen a derived log interface to any of its base interfaces. For instance a
NotifyLog object can be widened to either an EventLog for event aware applications,
or a Log for “event unaware” applications.

The following table lists the features supported by various types of logs.
July 2003 Telecom Log Service: The Log Interfaces 1-5

1

1.2.2 LogRecord and TypedLogRecord

Log records are created as a result of the receipt of events or notifications, either via
the event or notification channel, or by explicitly invoking one of the write operations.
A LogRecord contains the following:

struct LogRecord {
RecordId id;
TimeT time;
NVList attr_list;
any info;

};

• id - Unique number assigned to the record by the log.

• time - Timestamp indicating the time an event is logged.

• attr_list - User defined name/value pairs that are not a part of the event received by
the log. These attributes contain log record related information and can be queried
or modified.

Table 1-1 Features of logs

write store forward emit events QoS

BasicLog write operation no filter no no log QoS

EventLog untyped push/pull
supplier;
no filter

no filter untyped
push/pull
consumer;
no filter

emit via
EventLogFactory;
no filter

log QoS

NotifyLog untyped/structured
push/pull supplier;
notification filter
applied to
incoming events

log filter applied
in addition to
notification
filter; only
filtered events
are logged

untyped/structured
push/pull
consumer;
notification filter
applied to outgoing
events

emit via
NotifyLogFactory
filter applied to
outgoing events

notification
QoS + log
QoS

TypedEventLog typed
push/pull supplier;
no filter

no filter typed
push/pull
consumer;
no filter

emit via
TypedEventLog
Factory
no filter

log QoS

TypedNotify
Log

typed
push/pull supplier;
notification filter
applied to
incoming events

log filter applied
in addition to
notification
filter; only
filtered events
are logged

typed
push/pull
consumer;
notification filter
applied to outgoing
events

emit via
TypedNotifyLog
Factory
filters applied to
outgoing events

notification
QoS + log
QoS
1-6 Telecom Log Service, v1.1.2 July 2003

1

• info - The event data stored in a CORBA any. Note that a structured or typed event
can be wrapped in a CORBA any as specified by the Notification Service
specification.

Typed events can also be stored in a typed log as TypedLogRecord, which contains
the following:

struct TypedLogRecord {
DsLogAdmin::RecordId id;
DsLogAdmin::TimeT time;
DsLogAdmin::NVList attr_list;
CORBA::RepositoryId interface_id;
CORBA::Identifier operation_name;
ArgumentList arg_list;

};

• id - Unique number assigned to the record by the log.

• time - Timestamp indicating the time the event was logged.

• attr_list - User defined name/value pairs that are not a part of the event received by
the log. These attributes contain log record related information and can be queried
or modified.

• interface_id - Repository id of the interface that sent the typed event.

• operation_name - Name of the operation that emitted the typed event.

• arg_list - Argument list that contains the event data.

LogRecords and TypedLogRecords can be queried, retrieved, and deleted based
on record id, log time, attributes, or event contents (see Section 1.2.5, “Log Record
Manipulation,” on page 1-18 for more details).

Note – The LogRecord format is supported by all log interfaces. TypedLogRecord
format is only supported by TypedEventLog and TypedNotifyLog. The same typed
event can be represented as a LogRecord or a TypedLogRecord, depending on the
operations client invokes to retrieve it (see Section 1.2.5, “Log Record Manipulation,”
on page 1-18 for more details).

1.2.3 Logging Scenarios

Figure 1-3 on page 1-8 shows the basic steps involved in logging.
July 2003 Telecom Log Service: The Log Interfaces 1-7

1

Figure 1-3 Event Logging and Forwarding

Figure key:

• S: even/notification supplier

• W: event/notification unaware writer

• F1, F3: notification filters

• F2: log filter

• C: event/notification consumer

The basic steps involved in logging are:

1. The client (push or pull style event/notification supplier) connects to the log object
via the event or notification channel interface it supports.

2. NotifyLog or TypedNotifyLog clients can specify filters (F1) on the supplier side
of notification channel.

3. NotifyLog or TypedNotifyLog clients can specify filter (F2) on the log object.

4. The client sends events to the log object. Event aware clients invoke one of the push
or pull operations while event unaware clients invoke the write operation.

5. Notification filters (F1) are applied to incoming events.

6. The log object receives events from the client.

7. The log filters (F2) are applied to each event.

8. For each event that passes both filters F1 and F2 a log record is created that consists
of the log record id, the log time, and the event data. The LogRecord data is stored
in the log repository and can be retrieved via the query operations supported by the
log.

Event/Notification
Channel

W

log filter (F2)

LOG
Persistent Store

LOG

F1 F3S C
1-8 Telecom Log Service, v1.1.2 July 2003

1

As shown in Figure 1-3 on page 1-8, the basic steps involved in log event forwarding
are:

• The client (push or pull style event/notification consumer) connects to the log object
via the event or notification channel interface it supports.

• NotifyLog or TypedNotifyLog clients can specify filters (F3) on the consumer
side of notification channel.

• The client sends events to the log object. Event aware client uses push or pull
model; event unaware client invokes the write operation.

• Notification filters (F1) are applied to incoming events.

• Notification filters (F3) are applied to outgoing events.

• Events that pass both filters F1 and F3 are forwarded to the client (event/notification
consumer object).

See Section 1.3, “The Log Factory Interfaces,” on page 1-25 and Section 1.4, “Log
Generated Events,” on page1-29 for details on receiving log generated events from log
factories.

1.2.4 Log Control and Management

The Log interface supports the following log control and management functions.

Monitoring and setting of:

• administrative state

• availability status

• maximum log size

• log full action

• log duration

• log scheduling

• log capacity thresholds

• expiration time (lifetime) for log records

• quality of service properties

Monitoring only of:

• operational state

• current log size (in octets and number of records)

EventLog and TypedEventLog also support monitoring and setting of log
forwarding state.

NotifyLog and TypedNotifyLog also support event filtering on incoming, logged,
and outgoing events.
July 2003 Telecom Log Service: The Log Interfaces 1-9

1

1.2.4.1 Log Id and Factory

LogId id();
LogMgr my_factory();

The id() operation returns the id of a log. Log objects are created by a log factory
(described in the next section) and each log is assigned an id that uniquely identifies
the log object within the factory.

The my_factory() operation returns the log factory object that created the log. The
return type LogMgr is the abstract interface of all log factories. A client should narrow
LogMgr to the actual derived log factory interface (see Section 1.3.1, “Log Factory
Inheritance,” on page 1-26 for more details on log factory inheritance). Clients need to
narrow the LogMgr to a specific log factory interface if they wish to create new logs
or receive log generated events.

Note that the CosNotifyChannelAdmin::EventChannel interface defines a
MyFactory attribute that returns a CosNotifyChannelAdmin::NotifyFactory
object. It is up to the implementation of the Telecom Log Service to use either the
NotifyLogFactory or CosNotifyChannelAdmin::NotifyFactory to create the
notification channel. Therefore, for a NotifyLog object, the my_factory() operation
will return a NotifyLogFactory object, while the MyFactory attribute (inherited
from CosNotifyChannelAdmin::EventChannel interface) may return a
CosNotifyChannelAdmin::NotifyFactory object or raise a CORBA
NO_IMPLEMENT exception (since it cannot return the NotifyLogFactory).

1.2.4.2 Operational State

enum OperationalState {disabled, enabled};

OperationalState get_operational_state();

The get_operational_state() operation returns the operational capability of the log
to perform its function. The following operational states are defined:

• enabled: The log is operational and ready for use.

• disabled: The log is not available for use due to some run time problem. New
records cannot be created.

A StateChange event is generated whenever the operational state of a log changes.

1.2.4.3 Administrative State

enum AdministrativeState {locked, unlocked}; // logging on/off

AdministrativeState get_administrative_state();

void set_administrative_state(in AdministrativeState state);
1-10 Telecom Log Service, v1.1.2 July 2003

1

• The get_administrative_state() operation returns the administrative state of the
log.

• The set_administrative_state() operation sets the administrative state of the log.

These operations allow clients to control the administrative capability of the log to
perform its function. The following administrative states are defined:

• Unlocked: Use of the log has been permitted by a managing system. Information
from subordinate records may be retrieved and, conditional on the values of other
state and status attributes, new records may be created.

• Locked: Use of the log has been prohibited by a managing system. Log records
may be retrieved but new records will not be created. Records may be deleted.

By default, the administrative state is set to “unlocked” when a log object is created.

Administrative state can also be thought of as the “logging state” and is used to turn
logging on and off. Administrative state does not affect log’s ability to forward events.
If the administrative state of the log is locked, events will pass through the
event/notification channel as long as the forwarding state is on.

A StateChange event is generated whenever the administrative state of a log is set.

1.2.4.4 Log Size

// size in bytes
ulong long get_max_size();
void set_max_size(in ulong long size) raises (InvalidParam);

ulong long get_current_size(); // size in bytes
ulong long get_n_records();

The get_max_size() operation returns the size of the log measured in number of
bytes. A log may have an indeterminate size.

The set_max_size() operation sets the maximum log size. If a value of zero is
supplied, then the log size will be set to have no predefined limit. If the maximum log
size specified is less than the current log size, an InvalidParam exception will be
raised.

The get_current_size() operation returns the current size of the log measured in
bytes.

The get_n_records() operation returns the current number of records contained in the
log.

An AttributeValueChange event is generated whenever the size of a log is set.
July 2003 Telecom Log Service: The Log Interfaces 1-11

1

1.2.4.5 Log Full Action

typedef unsigned short LogFullActionType;

const LogFullActionType wrap = 0;
const LogFullActionType halt = 1;
LogFullActionType get_log_full_action();
void set_log_full_action(in LogFullActionType action)

raises (InvalidLogFullAction);

The get_log_full_action() operation returns the action that will be taken when the
maximum size of the log has been reached. Two options are currently defined:

• wrap: The oldest records in the log, based on the log time, will be deleted to free
resources for the creation of new records.

• halt: No more records will be logged and all incoming events are discarded.
Records already in the log will be retained.

Note – A specific implementation of the Telecom Log Service can define and support
more LogFullActionTypes if desired.

The set_log_full_action() operation sets which action should be taken when the
maximum size of the log has been reached.

When a log is full its availability status will change to indicate the log full condition. If
the log’s full action is set to “halt,” then no new log records will be added and the event
will be lost. When log records are deleted the log will leave the log full condition and
new log records can be added to the log. If the log’s full action is set to “wrap,” then
new records will be added overwriting the oldest records contained in the log. When
log records are deleted the log will leave the log full condition and new log records
will no longer overwrite existing log records in the log.

An AttributeValueChange event is generated whenever the log full action of a log is
set.

1.2.4.6 Log Duration

struct TimeInterval {
TimeT start;
TimeT stop;
};

TimeInterval get_interval();
void set_interval(in TimeInterval interval)

raises (InvalidTime, InvalidTimeInterval);

The get_interval() operation returns the coarse grained time interval during which an
unlocked and enabled Log is functional.

The set_interval() operation sets the start and stop time during which an unlocked
and enabled log is functional.
1-12 Telecom Log Service, v1.1.2 July 2003

1

The start field indicates the date and time at which an unlocked and enabled log starts
functioning. Specifying 0 for the start field means to start logging immediately.

The stop field indicates the date and time at which an unlocked and enabled lock stops
functioning. Specifying 0 for the stop field means to keep logging indefinitely (do not
stop until the log is destroyed).

A race condition could exist when setting the start/stop time. For instance, if a Log
start time is specified so close to the time the set_interval() operation is invoked, then
by the time the Log is activated it may have missed some events that should have been
logged. To avoid this race condition, it is recommended that:

• If a client wants to set the start/stop time immediately after a Log is created, then
the client should invoke the set_interval() operation before connecting the Log to
an event supplier.

• If a Log is in operation, then the client should set the administrative state of the log
to locked by invoking the set_administrative_state() operation before invoking
the set_interval() operation.

By default, the duration of a log is for its lifetime and logging takes place immediately
after the log is created and stops when the log is destroyed.

Log duration does not effect the status of event forwarding (see Section 1.2.4.12,
“Forwarding State,” on page 1-17).

An AttributeValueChange event is generated whenever the log duration interval of a
log is set (either start or stop).

1.2.4.7 Log Scheduling

struct Time24 {
unsigned short hour; // 0-23
unsigned short minute;// 0-59

};

struct Time24Interval {
Time24 start;

 Time24 stop;
};

 typedef sequence<Time24Interval> IntervalsOfDay;

 const short Sunday = 1;
 const short Monday = 2;
 const short Tuesday = 4;
 const short Wednesday = 8;
 const short Thursday = 16;
 const short Friday = 32;
 const short Saturday = 64;

 typedef short DaysOfWeek;// Bit mask of week days
July 2003 Telecom Log Service: The Log Interfaces 1-13

1

 struct WeekMaskItem {
 DaysOfWeek days;
 IntervalsOfDay intervals;
 };
 typedef sequence<WeekMaskItem> WeekMask;

WeekMask get_week_mask();
void set_week_mask(in WeekMask masks)

raises (InvalidTime, InvalidTimeInterval, InvalidMask);

The get_week_mask() operation returns the fine grained time intervals during which
an unlocked and enabled Log is functional.

• The start field of Time24Interval indicates the hour and minute of the day when
an unlocked and enabled log starts functioning.

• The stop field of Time24Interval indicates the hour and minute of the day when
an unlocked and enabled log stops functioning.

• The days field of WeekMaskItem indicates which days of the week the start and
stop time fields are valid (a bit mask OR’ed together to specify week days, with the
1st bit indicating Sunday and the 7th bit indicating Saturday).

These fields (start, stop, days) are contained in a WeekMaskItem structure. A
week_mask may contain more than one WeekMaskItem structure.

The set_week_mask() operation sets the fine grained time intervals during which an
unlocked and enabled log is functional. These fine grained time intervals are only valid
within the coarse grained time interval specified by the log duration operations.

The weekly scheduling only applies during log duration time (start/stop time). A log
performs its logging function when the logging time falls within the log duration and
one or more of the log scheduling times is indicated in the weekly mask.

The weekly schedule does not effect the status to event forwarding (see
Section 1.2.4.12, “Forwarding State,” on page 1-17).

By default, the weekly mask is empty when a log is created. An empty weekly mask
means that logging should take place during the whole week.

An AttributeValueChange event is generated whenever the week mask of a log is
set.

1.2.4.8 Availability Status

struct AvailabilityStatus {
boolean off_duty;
boolean log_full;

};
1-14 Telecom Log Service, v1.1.2 July 2003

1

AvailabilityStatus get_availability_status();

The get_availability_status() operation returns a struct that reflects the availability
status of the Log.

The log_full field indicates whether the log is full or not. If log_full equals TRUE,
then records can only be retrieved; however, no new records can be added.

The off_duty field indicates whether the log is scheduled to log events or not. A log is
considered “on duty” only if all of the following are true:

• Operational state is “enabled.”

• Administrative state is “unlocked.”

• Current time falls within the log duration time.

• Current time falls within one (or more) of the log scheduling times.

1.2.4.9 Log Record Compaction

unsigned long get_max_record_life();
void set_max_record_life(in unsigned long life);

The get_max_record_life() operation returns the maximum number of seconds a
record is stored in a log.

The set_max_record_life() operation sets the maximum number of seconds a record
is stored in a log.

Log record compaction can be achieved by setting a maximum record lifetime (in
seconds) to automatically clean out stale records. A value of 0 effectively disables this
feature and is interpreted to store the log records indefinitely (until the log is
destroyed).

By default, the maximum record life is set to 0 upon log creation.

An AttributeValueChange event is generated whenever the max record life of a log
is set.

1.2.4.10 Quality of Service

typedef unsigned long QoSType;
typedef sequence<QoSType> QoSList;

const QoSType QoSNone = 0;
const QoSType QoSFlush = 1;
const QoSType QoSReliability= 2;

QoSList get_log_qos();
void set_log_qos(in QoSList qos) raises(UnsupportedQoS);
void flush() raises(UnsupportedQoS);
July 2003 Telecom Log Service: The Log Interfaces 1-15

1

The Notification Service has specified a very elaborate QoS administrative framework.
This framework is leveraged to handle the QoS for the notification channel aspect of
logs.

In addition to the QoS framework defined by the Notification Service, The Telecom
Log Service defines a lightweight QoS framework that adds some additional QoS
properties that apply only to logs. This framework can easily be extended to handle
proprietary QoS features that various implementations deem appropriate.

The following quality of service properties are supported by the log interface:

• QoSNone: No quality of service is promised by the log implementation.

• QoSFlush: Log records are made persistent by the log. It is left up to the
implementation to decide on the various persistence strategies (e.g., write through
vs. write back) to support. A log provides its client with a degree of control by
supporting the QoSFlush property and the flush() operation.

• QoSReliability: All log records sent to Log are guaranteed to be available. This QoS
may suffer a performance hit, but will gain high availability (crash recovery).

The get_log_qos() operation returns a list of the quality of service properties
supported by the log.

The set_log_qos() operation sets the quality of service properties of the log. If an
implementation does not support the specified quality of service property, it raises the
UnsupportedQoS exception.

The flush() operation guarantees that all events sent to the log prior to the invocation
of the flush() operation will be written to final storage medium before the flush()
operation completes. If a log implementation does not support QoSFlush property, then
invoking the flush() operation will raise a CORBA UnsupportedQoS exception.

By default, a log has QoSNone property upon creation.

An AttributeValueChange event is generated whenever the quality of service of a
log is set.

1.2.4.11 Log Capacity Alarm Threshold

CapacityAlarmThresholdList get_capacity_alarm_thresholds();
void set_capacity_alarm_thresholds(in CapacityAlarmThresholdList t)

raises (InvalidThreshold);

The get_capacity_alarm_thresholds() operation returns a sequence of value that
specifies, as a percentage of max log size, the points at which a ThresholdAlarm
event will be generated.

The set_capacity_alarm_threshold() operation sets the points at which a
ThresholdAlarm event will be generated.

Log capacity alarm thresholds are used to warn clients when a log is approaching full.
If the capacity of a log exceeds that of one of its log capacity alarm thresholds, then a
ThresholdAlarm event is generated to indicate that the log is approaching full.
1-16 Telecom Log Service, v1.1.2 July 2003

1

When a log object is created with the wrap option, the capacity threshold alarms are
triggered as if coupled to a gauge that counts from zero to the highest capacity
threshold value defined and then resets to zero.

Note – A wrapping log can be viewed as a circular buffer. The margin between the
highest capacity alarm threshold and 100% can be regarded as a safety factor, to allow
sufficient time for log users to retrieve log records upon receipt of a capacity alarm,
before those records that entered the log after the previous capacity alarm are
overwritten. Resetting the hidden gauge to zero each time the highest threshold is
crossed, ensures the behavior that a capacity alarm will be generated every time the
same fraction of the log capacity is written to the log, and therefore the same safety
factor is maintained. In other words, every time a fixed percentage of the log capacity
is written to the wrapping log, a capacity alarm is emitted.

Log objects always forward capacity threshold alarms if they have been programmed to
halt when the log full condition occurs. For a log that has a log full action of halt, the
user must set the capacity alarm threshold; otherwise, the log assumes a threshold set
at 100%.

An AttributeValueChange event is generated whenever the capacity alarm threshold
of a log is set.

Clients using a log that has a log full action of halt should register with the log factory
to receive the ThresholdAlarm event in order to be informed of a log full and halt
condition. New events delivered to a log in the “halt” state will not be logged, but the
events may still be forwarded if the log forwarding state (described below) is “on.”

Note – BasicLogs are simple logs that are not aware of events nor are
BasicLogFactorys capable of generating events. Therefore an implementation needs
to choose a different technique to announce that a log is approaching full. Some
example techniques are for the BasicLog to write to stderr or syslog.

1.2.4.12 Forwarding State

enum ForwardingState {on, off};

ForwardingState get_forwarding_state();
void set_forwarding_state(in ForwardingState state);

• The get_forwarding_state() operation returns the forwarding state of a log.

• The set_forwarding_state() operation sets the forwarding state of a log.

These operations allow clients to control whether a log should forward records to any
event consumers connected to the log. The following forwarding states are defined:

• on: The log will forward incoming events from all suppliers to all consumers
currently connected.

• off: The log will not forward incoming events from suppliers to any consumers.
July 2003 Telecom Log Service: The Log Interfaces 1-17

1

By default, the forwarding state is set to ‘on’ when a log object is created.

Log forwarding is determined solely by forwarding state, it is not affected by the log’s
administrative state, availability state, log duration, scheduling, or log full action.

A StateChange event is generated whenever the forwarding state of a log is set.

1.2.4.13 Log Filtering

CosNotifyFilter::Filter get_filter();
void set_filter(in CosNotifyFilter::Filter filter);

NotifyLog and TypedNotifyLog objects apply filtering to events they log. These
filters are in addition to the filters being applied on the notification channel (i.e., filters
set for the notification proxy consumer and supplier admin objects). Events that pass
the filters for the notification proxy consumer and the log filter will be logged.

Log filters are set and modified via the CosNotifyFilter::Filter object associated with
a log. The default constraint language supported by the filter is the same as the one
specified by the Notification Service.

The get_filter() operation returns the CosNotifyFilter::Filter object for the log.

The set_filter() operation sets the CosNotifyFilter::Filter object for the log (e.g.,
supply an external filter object that implements a different constraint language).

By default, the CosNotifyFilter::Filter object contains no filter when a log is created
and all events will be logged.

An AttributeValueChange event is generated whenever the filter of a log is set.

1.2.5 Log Record Manipulation

The Log interface allows log clients to manipulate log records in the following
manner:

• write records to the log

• query records from the log

• retrieve records from the log

• delete records from the log

• query/modify log record attributes

Note – It is up to the implementation to provide the locking mechanism that supports
concurrent accessing of log records.

1.2.5.1 Log Record Writing

Log Records are written to the Log as follows:
1-18 Telecom Log Service, v1.1.2 July 2003

1

1. Via the push/pull operations defined in the CosEventService and
CosNotificationService.

Since a log “is-a” EventChannel, NotificationChannel, TypedEventChannel, or
TypedNotificationChannel log records are written to the log by event suppliers
using either the push or pull model. The event suppliers connect themselves to a
proxy consumer located within the log.

A log may not be able to create any new log records because it is full, locked, or
disabled. If a log cannot create new log records when a push operation is invoked,
then the push operation should fail and a SystemException should be raised. The
Telecom Log Service proposes to define the following OMG Standard Minor
exception codes for use with the CosEventService and CosNotificationService push
operations:

• LOGFULL minor code

When a push operation is invoked and a log is full, then a NO_RESOURCE
SystemException is raised with a LOGFULL minor code.

• LOGOFFDUTY minor code

When a push operation is invoked on a log that is off-duty, then a
NO_RESOURCE SystemException is raised with a LOGOFFDUTY minor code.

• LOGLOCKED minor code

When a push operation is invoked on a log that is locked, then a
NO_PERMISSIONS SystemException is raised with a LOGLOCKED minor
code.

• LOGDISABLED minor code

When a push operation is invoked on a log that is disabled, then a TRANSIENT
SystemException is raised with a LOGDISABLED minor code.

2. Via the write_records() and write_recordlist() operations.

exception LogFull {short n_records_written;};
exception LogLocked {};
void write_records(in Anys records)

raises(LogFull, LogLocked, LogDisabled);
void write_recordlist(in RecordList list)

raises(LogFull, LogLocked, LogDisabled);

Lightweight log clients or legacy applications that are “event unaware” can use the
Log interface to write to the log using the write_records() operation. The log
record is written directly to the log and is not subject to the log filter and also will
not be forwarded.

The write_records() operation takes a sequence of Anys as a parameter, each Any
contains the event to be logged.

The write_recordlist() operation is provided as a convenience operation to allow
the output of a query of one log to be written to another log. In this case, only the
“info” field (event content) of the RecordData struct is written to the log, the
LogRecord id and logging time will be assigned by the log.

Both the write_records() and write_recordlist() operations have the following
behavior:
July 2003 Telecom Log Service: The Log Interfaces 1-19

1

• If the log’s availability status is “log_full” and its LogFullAction is “halt,” then a
LogFull exception is raised and the number of log records written will be
returned in the exception.

• If the log’s availability status is “off_duty,” then a LogOffDuty exception is
raised and no log records are written.

• If the log’s administrative state is “locked,” then a LogLocked exception is
raised and no log records are written.

• If the log’s operational state is “disabled,” then a LogDisabled exception is
raised and no log records are written.

1.2.5.2 Log Record Querying

Log record querying is supported based on a grammar and constraint language. The
default constraint language is the one specified in Notification Service. Other query
languages such as SQL and OQL could also be supported; however, they are not
conformance requirements and are currently not specified.

Each log record contains the logging time, log record id (a unique number assigned by
log), attributes, and the event being logged. Queries can be constructed to retrieve log
records based on log time, log record id, attributes, and event contents.

RecordList query(in string grammar, in Constraint c, out Iterator i)
raises(InvalidGrammar, InvalidConstraint);

The query() operation searches the log for all log records that match the given
constraint. The constraint parameter specifies which log records the client wishes to
receive. The grammar parameter indicates how to interpret the constraint string. The
default grammar is “EXTENDED_TCL” specified in the Notification Service. The log
records are returned as a sequence and an iterator may be provided as an out parameter
to deal with large query results. If the iterator is not needed, then the iterator will hold
a nil object reference.

• An InvalidGrammar exception is raised if the implementation does not support the
grammar specified.

• An InvalidConstraint exception is raised if the constraint string is invalid.

TypedRecordList typed_query(in string grammar, in Constraint c,
 out TypedRecordIterator i)

raises(InvalidGrammar, InvalidConstraint);

The typed_query() operation searches the typed log for all log records that match the
given constraint. It is similar to the query() operation except that the results returned
are TypedRecordList and TypedRecordIterator. This allows clients to obtain
TypedLogRecords that contain the typed information about an event (interface
name, operation, argument list used for typed event communication). Exceptions are as
follows:

• An InvalidGrammar exception is raised if the implementation does not support the
grammar specified.

• An InvalidConstraint exception is raised if the constraint string is invalid.
1-20 Telecom Log Service, v1.1.2 July 2003

1

unsigned long match(in string grammar, in Constraint c)
raises(InvalidGrammar, InvalidConstraint);

The match() operation works just like the query() operation except that only the
number of log records that match the constraint is returned. The log records themselves
are not returned.

1.2.5.3 Log Record Retrieval

RecordList retrieve(in TimeT from_time, in long how_many, out Iterator i);

The retrieve() operation reads the log records in the log sequentially starting from any
given time. The from_time parameter indicates which time to start from. The
how_many parameter indicates how many log records to retrieve, and the sign of the
how_many parameter indicates the direction (positive for forward retrieval or
negative for backward retrieval). The log records are returned as a sequence and an
iterator may be provided as an out parameter to deal with large retrievals. If the iterator
is not needed, then the iterator will hold a nil object reference.

TypedRecordList typed_retrieve(in TimeT from_time, in long how_many,
 out TypedRecordIterator i);

The typed_retrieve() operation reads the typed log records in the log sequentially
starting from any given time. It is similar to the retrieve operation except that the
results returned are TypedRecordList and TypedRecordIterator. This allows
clients to retrieve TypedLogRecord that contains typed information about an event.

If a client invokes either the query() or retrieve() operations (defined in Log
interface), then the typed log implementation returns the log records as LogRecord
structures.

If a client invokes either the typed_query() or typed_retrieve() operations, then the
typed log implementation returns the log records as TypedLogRecord structures. The
query() and retrieve() operations allow a client to get untyped and typed events in a
uniform record format.

1.2.5.4 Log Record Deletion

unsigned long delete_records(in string grammar, in Constraint c)
 raises(InvalidGrammar, InvalidConstraint);

The delete_records() operation deletes log records from the log. The constraint
parameter specifies which log records the client wishes to delete. The grammar
parameter indicates how to interpret the constraint string. The default grammar is
“EXTENDED_TCL”as specified in the Notification Service. The return value is the
number of records deleted. Exceptions are as follows:

• An InvalidGrammar exception is raised if the implementation does not support the
grammar specified.

• An InvalidConstraint exception is raised if the constraint string is invalid.
July 2003 Telecom Log Service: The Log Interfaces 1-21

1

• An InvalidAttribute exception is raised if one of the attributes is invalid.

unsigned long delete_records_by_id(in RecordIdList ids);

The delete_records_by_id() operation deletes specific log records from the log.
This operation takes a sequence of log record ids as a parameter, and returns the
number of records deleted. If an empty sequence of records is specified, then no
records are deleted and the operation returns a value of 0.

1.2.5.5 Log Record Attribute Query/Modification

Log records can have attributes (see Sect i on1.2.2, “LogRecord and TypedLogRecord,”
on page 1-6 for more details). These attributes are readable and writable. A log record
attribute is a name/value pair. It is up to clients to define name/value pairs that are
meaningful to their applications. For example, a (“trouble ticket id,” id) attribute
associates a log record with trouble ticket information and a (“comment,” text) attribute
allows clients to annotate a log record.

NVList get_record_attribute(in RecordId id) raises(InvalidRecordId);

The get_record_attribute() operation returns the attributes of a given log record
indicated by the id parameter. If the log record does not exist, then an
InvalidRecordId exception is raised.

void set_record_attribute(in RecordId id, in NVList attr_list)
 raises(InvalidRecordId, InvalidAttribute);
unsigned long set_records_attribute(in string grammar, in Constraint c,

 in NVList)
 raises(InvalidGrammar, InvalidConstraint, InvalidAttribute);

The set_record_attribute() operation sets the log record indicated by the id
parameter to the attributes specified by the attr_list parameter. Exceptions are as
follows:

• If the log record does not exist, then an InvalidRecordId exception is raised.

• If one of the attributes is not valid, then an InvalidAttribute exception is raised.
The InvalidAttribute exception is raised only when an implementation supports
some predefined attributes. The log implementation will not be able to validate
client defined attributes at run time, therefore it is the client’s responsibility to make
sure the attributes specified are valid.

• An InvalidGrammar exception is raised if the implementation does not support the
grammar specified.

• An InvalidConstraint exception is raised if the constraint string is invalid.

The set_records_attribute() operation sets the attributes of all the log records that
match the given constraint. The constraint parameter will specify which log records the
client wishes to set attributes. The grammar parameter indicates how to interpret the
1-22 Telecom Log Service, v1.1.2 July 2003

1

constraint string. The default grammar is “EXTENDED_TCL” specified in the
Notification Service. If successful, then the number of records whose attributes are set
is returned. Exceptions are as follows:

• An InvalidGrammar exception is raised if the implementation does not support the
grammar specified.

• An InvalidConstraint exception is raised if the constraint string is invalid.

• An InvalidAttribute exception is raised if one of the attributes is invalid.

1.2.5.6 The Iterator and TypedRecordIterator Interfaces

The Iterator interface allows clients to a log to iterate over a list of LogRecords
returned from a query() or retrieve() operation. The elements are accessed in order.

interface Iterator {
RecordList get(in unsigned long position, in unsigned long how_many)

raises (InvalidParam);
void destroy();

};

The iterator is returned in case the results of a query() or retrieve() operation are too
long to fit in the synchronous response to the operation.

When invoking the get() operation on the iterator it returns at most how_many
records, starting at the position indicated by the position argument. A value of zero for
position indicates the first value in the complete iterator sequence.

The get() operation raises the InvalidParam exception when the position parameter is
past the end of the iterator or the requested position is lower than the largest position
already requested (i.e., you cannot request values before the position of the last
request, so that the iterator cannot be backed up).

If the get() operation returns a zero length sequence, then the end of the iterator has
been reached and there are no more values to be processed. Any calls to get() before
the iterator has reached its end must return at least one LogRecord and at most
how_many LogRecords. If how_many is supplied as 0, then the Iterator might
return an arbitrary number of records (but at least one).

If a client receives a system exception (such as IMPL_LIMIT) when invoking the get()
operation, then the client may reinvoke the get() operation providing the same
position, but requesting a lower number of records. This means that the iterator must
keep track of records from the last position that was retrieved (that is, records might be
re-accessed, but only from the last set of returned records).

If the user wants to discard the results of an operation without exhausting the iterator,
then the destroy() operation of the iterator should be called. Any subsequent calls
using a reference to the destroyed iterator will raise the OBJECT_NOT_EXIST
system exception.
July 2003 Telecom Log Service: The Log Interfaces 1-23

1

Once the iterator has been exhausted, the implementation may dispose of the iterator
object at will. It is not required to invoke the destroy() operation on an exhausted
iterator (an iterator is exhausted once it has returned an empty sequence, that is, there
are no more records to access through the iterator).

interface TypedRecordIterator {
TypedRecordList get(in unsigned long position,

in unsigned long how_many)
raises (InvalidParam);

void destroy();
};

The TypedRecordIterator is similar to the Iterator interface except that it is used to
retrieve results of TypedRecordList.

1.2.6 Log Network

Logs can form networks of various topology, by connecting them as event channels. A
topology of DAG is normally recommended. Each log stores events it receives on the
consumer end (ConsumerAdmin interface), and forwards events to the logs
connected to it via the supplier end (the SupplierAdmin interface).

1.2.7 Log Lifecycle Management

Log supports the following Lifecycle related operations:

• copy

• destroy

1.2.7.1 copy operations

Log copy(out LogId id) raises (NoResources);
Log copy_with_id (in LogId id) raises (NoResources, LogIdAlreadyExists);

The copy() operation creates an empty log with its attributes initialized to the same
values as the log on which the operation was invoked. The log id of the created log is
generated and returned as an out parameter. The log object reference is the return
value. The log factory will be notified of the existence of this new log. A
NoResources exception is raised if the log server does not have enough resources to
create the log.

The copy_with_id() operation creates an empty log with its attributes initialized to
the same values as the log on which the operation was invoked. The log id is specified
as an in parameter. The log object reference is the return value. The log factory will be
notified of the existence of this new log. Exceptions are as follows:

• A LogIdAlreadyExists exception will be raised if the log id already exists within
the scope of the log factory.
1-24 Telecom Log Service, v1.1.2 July 2003

1

• A NoResources exception is raised if the log server does not have enough
resources to create this log.

An ObjectCreation event is generated whenever a log is copied.

1.2.7.2 destroy operation

The destroy() operation is inherited from
CosEventChannelAdmin::EventChannel and disconnects any consumers or
suppliers connected via its event or notification channel interface, destroys the log
object and all its contained log records, and frees the associated persistent storage.

An ObjectDeletion event is generated whenever a log is destroyed.

1.3 The Log Factory Interfaces

Log factories create log instances and serve as collection managers for logs. Log
factories provide operations such as find log by id and list logs. For convenience, each
log has a reference to the log factory that created it. Log factories are also event or
notification ConsumerAdmin objects, which allows clients to subscribe to log
generated events emitted by logs created by the log factory. Examples of log generated
events are alarm threshold, log state, attribute change events, and are not to be
confused with events that are forwarded through the event or notification channel of
the log.

Figure 1-4 gives a graphical representation of log factory.

Figure 1-4 The Log Factory

Figure key:

• PS: proxy supplier

• C: event/notification consumer

Log

Log

Log

PS

PS

PS

C

C

C

Log Emitted Events
Log Emitted Events

Event/Notification
ConsumerAdmin

(received via

Factory

ConsumerAdmin)(forwarded by log)
July 2003 Telecom Log Service: The Log Factory Interfaces 1-25

1

1.3.1 Log Factory Inheritance

There are five different log interfaces: BasicLog, EventLog, NotifyLog,
TypedEventLog, and TypedNotifyLog. Each log interface has its own
corresponding log factory. The log factory inheritance hierarchy is represented
graphically in the following figure. All of the factories will inherit from the abstract
interface LogMgr.

Figure 1-5 Factory Inheritance

The LogMgr interface serves as a collection manager for logs. LogMgr provides the
following functions:

• list logs

• list logs by id

• look up log by id

The BasicLogFactory interface inherits from LogMgr. BasicLogFactory provides
the following additional functions:

• create Log

• create Log with id

The EventLogFactory interface inherits from LogMgr and
CosEventChannelAdmin::ConsumerAdmin. EventLogFactory provides the
following additional functions:

• Create EventLog.

• Create EventLog with id.

• Emit log creation events and forward log generated events as untyped events.

The NotifyLogFactory interface inherits from LogMgr and
CosNotifyChannelAdmin::ConsumerAdmin. NotifyLogFactory provides the
following additional functions:

LogMgr

BasicLog
Factory

Consumer
Admin

Event
LogFactory

Notify
Consumer

Notify
LogFactory

TypedNotify
LogFactory

TypedEvent
LogFactory

Admin

Consumer
Admin

Notify
Consumer
Admin
1-26 Telecom Log Service, v1.1.2 July 2003

1

• Create NotifyLog.

• Create NotifyLog with id.

• Emit log creation events and forward log generated events as untyped events.

• Clients can specify filters via the NotifyConsumerAdmin interface to receive
filtered events.

The TypedEventLogFactory interface inherits from LogMgr and
CosEventChannelAdmin::ConsumerAdmin. TypedEventLogFactory provides
the following additional functions:

• Create TypedEventLog.

• Create TypedEventLog with id.

• Emit log creation events and forward log generated events as untyped events.

The TypedNotifyLogFactory interface inherits from LogMgr and
CosNotifyChannelAdmin::ConsumerAdmin. TypedNotifyLogFactory provides
the following additional functions:

• Create TypedNotifyLog.

• Create TypedNotifyLog with id.

• Emit log creation events and forward log generated events as untyped events.

• Clients can specify filters via the TypedNotifyConsumerAdmin interface to
receive filtered events.

1.3.2 Log Lookup

LogList list_logs();
Log find_log(in LogId id);
LogIdList list_logs_by_id();

The list_logs() lists all existing logs that have either been created through the LogMgr
or are copies of those logs created through the LogMgr.

The find_log() operation returns a reference to the log that has the supplied log id. If
the log id is not found, then a nil object reference is returned.

The list_logs_by_id() operation is similar to the list_logs() operation except that it
returns a list of log ids instead of logs.

1.3.3 Log Creation

BasicLog create (
in LogFullActionType full_action,
in unsigned long max_size,

 out LogId id
) raises (InvalidLogFullAction);
July 2003 Telecom Log Service: The Log Factory Interfaces 1-27

1

The create() operation in the BasicLogFactory interface allows clients to create
new BasicLog objects. The log full action, maximum size, and threshold list must be
specified at creation time, but can be changed later. The log id will be generated and
returned as an out parameter. Exceptions are as follows:

• An InvalidLogFullAction exception is raised if the full_action specified is not
valid.

The create() operation in the EventLogFactory, NotifyLogFactory,
TypedEventLogFactory, and TypedNotifyLogFactory interfaces creates new
EventLog, NotifyLog, TypedEventLog, and TypedNotifyLog objects
respectively. Each create() operation for the log factories takes arguments and raises
exceptions that are appropriate for the type of log being created.

BasicLog create_with_id (
in LogId id,
in LogFullAction full_action,
in unsigned long max_size

)
raises (LogIdAlreadyExists, InvalidLogFullAction, InvalidThreshold);

The create_with_id() operation in the BasicLogFactory interface allows clients to
create new Log objects. The log full action, maximum size, and threshold list must be
specified at creation time, but can be changed later. The log id is specified as an in
parameter. Exceptions are as follows:

• An InvalidLogFullAction exception is raised if the full_action specified is not
valid.

• A LogIdAlreadyExists exception will be raised if this log id exists within the
scope of the log factory.

The create_with_id() operation in the EventLogFactory, NotifyLogFactory,
TypedEventLogFactory, and TypedNotifyLogFactory interfaces create new
EventLog, NotifyLog, TypedEventLog, and TypedNotifyLog objects
respectively. Each create_with_id() operation for the log factories takes arguments
and raises exceptions that are appropriate for the type of log being created.

An ObjectCreation event is generated whenever a log is created.

1.3.4 Log Events

Log factories generate log creation events when a log is successfully created. Each log
also generates events and forwards them to its log factory so event consumers can
receive all or filtered events from the log factory.

The following lists how event consumers can subscribe to receive log generated events
from each of the log factories:

• BasicLogFactory is a log factory for the “event unaware” BasicLog and does
not generate any events.
1-28 Telecom Log Service, v1.1.2 July 2003

1

• EventLogFactory inherits from CosEventChannelAdmin::ConsumerAdmin.
Event consumers can subscribe to receive events via the ConsumerAdmin
interface. Events are untyped and unfiltered.

• NotifyLogFactory inherits from
CosNotifyChannelAdmin::ConsumerAdmin. Event consumers can subscribe
to receive events via the ConsumerAdmin interface. Events are untyped and may
be filtered.

• TypedEventLogFactory inherits from
CosEventChannelAdmin::ConsumerAdmin. Event consumers can subscribe
to receive events via the ConsumerAdmin interface. Events are untyped and
unfiltered.

• TypedNotifyLogFactory inherits from
CosNotifyChannelAdmin::ConsumerAdmin. Event consumers can subscribe
to receive events via the NotifyConsumerAdmin interface. Events are untyped
and may be filtered.

1.4 Log Generated Events

The log factories (and their logs) generate the following types of events:

• ObjectCreation: Generated when a log is created.

• ObjectDeletion: Generated when a log is deleted.

• ThresholdAlarm: Generated when a log has reached its capacity alarm threshold.

• AttributeValueChange: Generated when a log’s attribute (capacity alarm
threshold, log full action, max log size, start time, stop time, week mask, filter, max
record life, or quality of service) is changed.

• StateChange: Generated when a log’s administrative or operational state is
changed.

Note – Log factories are responsible for the creation, deletion, management of logs,
and the generation of log events. A Log factory is not intended to be a consumer of
events and therefore does not expose a SupplierAdmin interface. It is left up to an
implementation detail as to how log generated events are passed from a log to its log
factory.

1.4.1 ObjectCreation Event

The ObjectCreation event is generated by a log factory after it creates a log one of its
logs is copied.
July 2003 Telecom Log Service: Log Generated Events 1-29

1

 struct ObjectCreation {
 Log logref;
 LogId id;
 TimeT time;
 };

The ObjectCreation struct defines the log creation event. The log field indicates the
object reference of the newly created log. The id field indicates the log identifier. The
time field indicates the time when the log is created.

1.4.2 ObjectDeletion Event

The ObjectDeletion event is generated by a log factory when one of its logs is
deleted.

struct ObjectDeletion {
LogId id;
TimeT time;

};

The ObjectDeletion struct defines the log deletion event. The id field indicates the
log identifier. The time field indicates the time when the log is deleted.

1.4.3 ThresholdAlarm Event

The ThresholdAlarm event is generated by a log factory when one of its logs reaches
its capacity alarm threshold to indicate that a log full or wrapping condition is
approaching. If a log wraps when full, then the capacity threshold events are triggered
as if coupled to a gauge that counts from zero to the highest capacity threshold value
defined and then resets to zero.

typedef unsigned short PerceivedSeverityType;

const PerceivedSeverityType critical = 0;
const PerceivedSeverityType minor = 1;
const PerceivedSeverityType cleared = 2;

struct ThresholdAlarm {
Log logref;
LogId id;
TimeT time;
Threshold crossed_value;
Threshold observed_value;

 PerceivedSeverityType perceived_severity;
};

The ThresholdAlarm struct defines the log capacity threshold alarm. The log field
indicates the object reference of the log. The id field indicates the log identifier. The
time field indicates the time when the log has reached its capacity alarm threshold.
The observed_value field indicates the current log size, as a percentage of the
1-30 Telecom Log Service, v1.1.2 July 2003

1

maximum log size. The crossed_value field indicates the threshold level just being
crossed. The perceived_severity field is minor if log is not full, and critical
otherwise.

1.4.4 AttributeValueChange Event

The AttributeValueChange event is generated by a log factory when one of its logs
changes one of the following log attributes:

• capacity alarm threshold

• log full action

• maximum log size

• start time

• stop time

• week mask

• adding/removing/changing a constraint expression on the log’s filter object

• max record life

• quality of service

typedef unsigned long AttributeType;
const AttributeType capacityAlarmThreshold = 0;
const AttributeType logFullAction = 1;
const AttributeType maxLogSize = 2;
const AttributeType startTime = 3;
const AttributeType stopTime = 4;
const AttributeType weekMask = 5;
const AttributeType filter = 6;
const AttributeType maxRecordLife = 7;
const AttributeType qualityOfService = 8;

struct AttributeValueChange {
 Log logref;
 LogId id;
 TimeT time;
 AttributeType type;
 any old_value;
 any new_value;
 };

The AttributeValueChange struct defines the log attribute value change event. The
log field indicates the object reference of the log. The id field indicates the log
identifier. The time field indicates the time when the log’s attribute is changed. The
type field indicates the type of attribute being changed. The old_value field contains
the old attribute value. The new_value field contains the new attribute value.

1.4.5 StateChange Event

The StateChange event is generated by a log factory if one of its log’s administrative
state is set or the operational state has changed.
July 2003 Telecom Log Service: Log Generated Events 1-31

1

typedef unsigned long StateType;
const StateType administrativeState = 0;
const StateType operationalState = 1;
const StateType forwardingState = 2;

struct StateChange {
Log logref;
LogId id;
TimeT time;

 StateType type;
any new_value;

};

The StateChange struct defines the log state value change event. The log field
indicates the object reference of the log. The id field indicates the log identifier. The
time field indicates the time when the log’s state is changed. The type field indicates
the type of attribute being changed. The new_value field contains the new state value.

1.4.6 ProcessingErrorAlarm Event

The ProcessingErrorAlarm event is generated by a log factory if one of its logs has
generated an error.

struct ProcessingErrorAlarm {
long error_num;
string error_string;

};

The ProcessingErrorAlarm struct defines the error generated by the log. The
error_num field indicates the error number associated with the error. The high order
20 bits of error_num contain a 20-bit vendor specific error id (VSEID); the low order
12 bits contain the rest of the error number. A vendor (or group of vendors) who wish
to define a specific set of error numbers should obtain a unique VSEID from the OMG,
and then define a specific set of error numbers using the VSEID for the high order bits.
The error_string field contains a textual description of the error.

1.5 Conformance Criteria

This section specifies the compliance points for this specification. In order to be in
conformance with this specification a conforming implementation:

• Must support all the interfaces in the DsLogAdmin, DsEventLogAdmin, and
DsNotifyLogAdmin modules:

• Log
• BasicLog
• EventLog
• NotifyLog
• Iterator
• LogMgr
1-32 Telecom Log Service, v1.1.2 July 2003

1

• BasicLogFactory
• EventLogFactory
• NotifyLogFactory

• May also support, in addition to the interfaces enumerated above, interfaces in the
DsTypedEventLogAdmin and DsTypedNotifyLogAdmin modules:

• TypedEventLog
• TypedNotifyLog
• TypedEventLogFactory
• TypedNotifyLogFactory

• May also support log generated notifications defined in the DsLogNotification
module:

• ThresholdAlarm
• ObjectCreation
• ObjectDeletion
• AttributeValueChange
• StateChange

• Will provide implementations of the CosNotifyFilter::Filter interface that
supports the constraints expressed in the default constraint grammar specified in the
OMG Notification Service.

• Will provide implementations of the query(), match(), delete_records()
operations of the Log interface that support the constraints expressed in the default
constraint grammar specified in the OMG Notification Service.

• All QoS properties defined in this specification must at least be understood by any
conforming implementation. However, a conforming implementation may choose
not to implement all standard QoS properties and/or QoS property settings. In cases
where a client requests a standard QoS property with a setting that is not supported
by a conforming implementation, the implementation should raise the
UnsupportedQoS exception.
July 2003 Telecom Log Service: Conformance Criteria 1-33

1

1-34 Telecom Log Service, v1.1.2 July 2003

Complete OMG IDL A
Note – Editorial changes are in this color.

A.1 DsLogAdmin Module

This module defines the Log, LogMgr, BasicLog, BasicLogFactory, and Iterator.

#include <TimeBase.idl> // CORBA Time Service
#pragma prefix “omg.org”

module DsLogAdmin
{

exception InvalidParam {string details;};
exception InvalidThreshold {};
exception InvalidTime {};
exception InvalidTimeInterval {};
exception InvalidMask {};
exception LogIdAlreadyExists {};
exception InvalidGrammar{};
exception InvalidConstraint{};
exception LogFull {short n_records_written;};
exception LogOffDuty {};
exception LogLocked {};
exception LogDisabled {};
exception InvalidRecordId {};
exception InvalidAttribute {string attr_name; any value;};
exception InvalidLogFullAction {};

typedef unsigned long LogId;
typedef unsigned long long RecordId;
typedef sequence<RecordId> RecordIdList;
July 2003 Telecom Log Service, v1.1.2 A-1

A

const string default_grammar = “EXTENDED_TCL”;
typedef string Constraint;

typedef TimeBase::TimeT TimeT;

struct NVPair {
string name;
any value;

};
typedef sequence<NVPair> NVList;

struct TimeInterval {
TimeT start;
TimeT stop;

};

struct LogRecord {
RecordId id;
TimeT time;
NVList attr_list; // attributes, optional

 any info;
 };
 typedef sequence<LogRecord> RecordList;
 typedef sequence<any> Anys;

 // Iterator with bulk operation support; returned as a
 // result of querying the Log

interface Iterator {
 RecordList get(in unsigned long position,
 in unsigned long how_many) raises(InvalidParam);
 void destroy();

 };

struct AvailabilityStatus {
 boolean off_duty;

 boolean log_full;
};

typedef unsigned short LogFullActionType;

const LogFullActionType wrap = 0;
const LogFullActionType halt = 1;

struct Time24 {
unsigned short hour;// 0-23
unsigned short minute;// 0-59

};

struct Time24Interval {
A-2 Telecom Log Service, v1.1.2 July 2003

A

Time24 start;
Time24 stop;

};
typedef sequence<Time24Interval> IntervalsOfDay;

const unsigned short Sunday = 1;
const unsigned short Monday = 2;
const unsigned short Tuesday = 4;
const unsigned short Wednesday = 8;
const unsigned short Thursday = 16;
const unsigned short Friday = 32;
const unsigned short Saturday = 64;

typedef unsigned short DaysOfWeek;// Bit mask of week days

struct WeekMaskItem {
DaysOfWeek days;
IntervalsOfDay intervals;

};
typedef sequence<WeekMaskItem> WeekMask;

typedef unsigned short Threshold; // 0-100 %
typedef sequence<Threshold> CapacityAlarmThresholdList;

interface LogMgr;

enum OperationalState { disabled, enabled };
enum AdministrativeState { locked, unlocked }; // logging on/off
enum ForwardingState { on, off };

typedef unsigned short QoSType;
typedef sequence<QoSType> QoSList;
exception UnsupportedQoS { QoSList denied; };

const QoSType QoSNone = 0;
const QoSType QoSFlush = 1;
const QoSType QoSReliability = 2;

interface Log
{

LogMgr my_factory();

LogId id();

QoSList get_log_qos();
void set_log_qos(in QoSList qos) raises(UnsupportedQoS);

// life in seconds (0 infinite)
unsigned long get_max_record_life();
void set_max_record_life(in unsigned long life);
July 2003 Telecom Log Service, v1.1.2 A-3

A

// size in octets
unsigned long long get_max_size();
void set_max_size(in unsigned long long size) raises (InvalidParam);

unsigned long long get_current_size(); // size in octets
unsigned long long get_n_records(); // number of records

LogFullActionType get_log_full_action();
void set_log_full_action(in LogFullActionType action)

raises(InvalidLogFullAction);

AdministrativeState get_administrative_state();
void set_administrative_state(in AdministrativeState state);

ForwardingState get_forwarding_state();
void set_forwarding_state(in ForwardingState state);

OperationalState get_operational_state();

// log duration
TimeInterval get_interval();
void set_interval(in TimeInterval interval)

raises (InvalidTime, InvalidTimeInterval);

// availability status
AvailabilityStatus get_availability_status();

 // capacity alarm threshold
CapacityAlarmThresholdList get_capacity_alarm_thresholds();
void set_capacity_alarm_thresholds(in CapacityAlarmThreshold

List threshs)
raises (InvalidThreshold);

// weekly scheduling
WeekMask get_week_mask();
void set_week_mask(in WeekMask masks)

raises (InvalidTime, InvalidTimeInterval, InvalidMask);

RecordList query(in string grammar,
in Constraint c,
out Iterator i)

raises(InvalidGrammar, InvalidConstraint);

// negative how_many indicates backwards retrieval
RecordList retrieve(in TimeT from_time,

in long how_many,
out Iterator i);

// returns number of records matching constraint
unsigned long match(in string grammar,

in Constraint c)
A-4 Telecom Log Service, v1.1.2 July 2003

A

raises(InvalidGrammar, InvalidConstraint);

// returns number of records deleted
unsigned long delete_records(in string grammar,

in Constraint c)
raises(InvalidGrammar, InvalidConstraint);

unsigned long delete_records_by_id(in RecordIdList ids);

void write_records(in Anys records)
raises(LogFull, LogOffDuty, LogLocked, LogDisabled);

void write_records(in Anys records)
raises(LogFull, LogOffDuty, LogLocked, LogDisabled);

// set single record attributes
void set_record_attribute(in RecordId id,

 in NVList attr_list)
raises(InvalidRecordId, InvalidAttribute);

// set all records that matches the constraints with same attr_list
// returns number of records whose attributes have been set
unsigned long set_records_attribute(in string grammar,

 in Constraint c,
 in NVList attr_list)

raises(InvalidGrammar, InvalidConstraint, InvalidAttribute);

// get record attributes
NVList get_record_attribute(in RecordId id)

raises(InvalidRecordId);

Log copy(out LogId id);
Log copy_with_id (in LogId id) raises (LogIdAlreadyExists);

void flush() raises (UnsupportedQoS);

};

interface BasicLog : Log {
void destroy();

};

typedef sequence<Log> LogList;
typedef sequence<LogId> LogIdList;

interface LogMgr
{

LogList list_logs();
Log find_log(in LogId id);
LogIdList list_logs_by_id();

};

interface BasicLogFactory : LogMgr
July 2003 Telecom Log Service, v1.1.2 A-5

A

{
BasicLog create (

in LogFullActionType full_action,
in unsigned long long max_size,
out LogId id)
raises (InvalidLogFullAction);

BasicLog create_with_id

 (
in LogId id,
in LogFullActionType full_action,
in unsigned long long max_size,

)
raises (LogIdAlreadyExists, InvalidLogFullAction);

};

};

A.2 DsLogNotification Module

This module defines log generated notifications.

#include <DsLogAdmin.idl>
#pragma prefix “omg.org”

module DsLogNotification {

typedef DsLogAdmin::Log Log;
typedef DsLogAdmin::LogId LogId;
typedef DsLogAdmin::Threshold Threshold;
typedef TimeBase::TimeT TimeT;

// definition of ThresholdAlarm, the event generated by Log when
// Log reaches its capacity alarm threshold

typedef unsigned short PerceivedSeverityType;

const PerceivedSeverityType critical = 0;
const PerceivedSeverityType minor = 1;
const PerceivedSeverityType cleared = 2;

struct ThresholdAlarm {
 Log logref;
 LogId id;

TimeT time;
Threshold crossed_value; // the threshold level just being crossed

 Threshold observed_value; // the current percentage
PerceivedSeverityType perceived_severity;

};
A-6 Telecom Log Service, v1.1.2 July 2003

A

// the events generated by
// Log when a Log object is created or deleted

struct ObjectCreation {
LogId id;

 TimeT time;
};

// NOTE: cannot say “typedef ObjectCreation ObjectDeletion because
// type would be lost in current C++ mapping for Anys.

struct ObjectDeletion {
 LogId id;
 TimeT time;

};

// definition of AttributeValueChange notification, the event generated by
// Log when a Log’s attribute has changed

typedef unsigned short AttributeType;
const AttributeType capacityAlarmThreshold = 0;
const AttributeType logFullAction = 1;
const AttributeType maxLogSize = 2;
const AttributeType startTime = 3;
const AttributeType stopTime = 4;
const AttributeType weekMask = 5;
const AttributeType filter = 6;
const AttributeType maxRecordLife = 7;
const AttributeType qualityOfService = 8;

struct AttributeValueChange {
 Log logref;
 LogId id;
 TimeT time;

AttributeType type;
any old_value;
any new_value;

};

// definition of StateChange notification, the event generated by
// Log when a Log’s state has changed

typedef unsigned short StateType;
const StateType administrativeState = 0;
const StateType operationalState = 1;
const StateType forwardingState = 2;

struct StateChange {
 Log logref;
 LogId id;
 TimeT time;
July 2003 Telecom Log Service, v1.1.2 A-7

A

StateType type;
any new_value;

};

struct ProcessingErrorAlarm {
 // Event generated by a log when a problem occurs within the log.
 // The highest 20 bits of error_num are reserved for vender
 // specific Ids.

long error_num;
string error_string;

};
};

A.3 DsEventLogAdmin Module

This module defines the EventLog and EventLogFactory interfaces.

#include <CosEventChannelAdmin.idl>// CORBA Event Service
#include <DsLogAdmin.idl>
#pragma prefix “omg.org”

module DsEventLogAdmin
{

interface EventLog : DsLogAdmin::Log,
CosEventChannelAdmin::EventChannel {};

interface EventLogFactory : DsLogAdmin::LogMgr,
CosEventChannelAdmin::ConsumerAdmin

{
EventLog create (

in DsLogAdmin::LogFullActionType full_action,
in unsigned long long max_size,
in DsLogAdmin::CapacityAlarmThresholdList thresholds,

 out DsLogAdmin::LogId id
) raises (DsLogAdmin::InvalidLogFullAction,

DsLogAdmin::InvalidThreshold);

EventLog create_with_id (
in DsLogAdmin::LogId id,
in DsLogAdmin::LogFullActionType full_action,
in unsigned long long max_size,
in DsLogAdmin::CapacityAlarmThresholdList thresholds

) raises (DsLogAdmin::LogIdAlreadyExists,
DsLogAdmin::InvalidLogFullAction,
DsLogAdmin::InvalidThreshold);

};

};
A-8 Telecom Log Service, v1.1.2 July 2003

A

A.4 DsNotifyLogAdmin Module

This module defines the NotifyLog and NotifyLogFactory interfaces.

#include <DsEventLogAdmin.idl>
#include <CosNotifyChannelAdmin.idl>
#include <CosNotifyFilter.idl>
#include <CosNotification.idl>
#pragma prefix “omg.org”

module DsNotifyLogAdmin
{

interface NotifyLog :
DsEventLogAdmin::EventLog,
CosNotifyChannelAdmin::EventChannel

{
CosNotifyFilter::Filter get_filter();
void set_filter(in CosNotifyFilter::Filter filter);

};

interface NotifyLogFactory : DsLogAdmin::LogMgr,
CosNotifyChannelAdmin::ConsumerAdmin

{
NotifyLog create (

in DsLogAdmin::LogFullActionType full_action,
in unsigned long long max_size,
in DsLogAdmin::CapacityAlarmThresholdList thresholds,
in CosNotification::QoSProperties initial_qos,
in CosNotification::AdminProperties initial_admin,

 out DsLogAdmin::LogId id
) raises (DsLogAdmin::InvalidLogFullAction,

DsLogAdmin::InvalidThreshold,
CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

NotifyLog create_with_id (
in DsLogAdmin::LogId id,
in DsLogAdmin::LogFullActionType full_action,
in unsigned long long max_size,
in DsLogAdmin::CapacityAlarmThresholdList thresholds,
in CosNotification::QoSProperties initial_qos,
in CosNotification::AdminProperties initial_admin

) raises (DsLogAdmin::LogIdAlreadyExists,
DsLogAdmin::InvalidLogFullAction,
DsLogAdmin::InvalidThreshold,
CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

};
};
July 2003 Telecom Log Service, v1.1.2 A-9

A

A.5 DsTypedEventLogAdmin Module

This module defines the TypedEventLog and TypedEventLogFactory interfaces.

#include <orb.idl>
#include <CosEventChannelAdmin.idl>
#include <CosTypedEventChannelAdmin.idl>
#include <DsLogAdmin.idl>
#pragma prefix “omg.org”

module DsTypedEventLogAdmin
{

typedef sequence<any> ArgumentList;
struct TypedLogRecord {

DsLogAdmin::RecordId id;
DsLogAdmin::TimeT time;
DsLogAdmin::NVList attr_list;
CORBA::RepositoryId interface_id; // repository id of the

 interface for
 // sending typed event

CORBA::Identifier operation_name; // operation name
ArgumentList arg_list; // argument list, contains

 event data
};
typedef sequence<TypedLogRecord> TypedRecordList;

interface TypedRecordIterator {
TypedRecordList get(in unsigned long position,

in unsigned long how_many)
 raises(DsLogAdmin::InvalidParam);

void destroy();
};

interface TypedEventLog : DsLogAdmin::Log,
CosTypedEventChannelAdmin::TypedEventChannel

{
// typed record query
TypedRecordList typed_query(in string grammar,

in DsLogAdmin::Constraint c,
out TypedRecordIterator i)

raises(DsLogAdmin::InvalidGrammar,
DsLogAdmin::InvalidConstraint);

// typed record retrieval
TypedRecordList typed_retrieve(in DsLogAdmin::TimeT from_time,

 in long how_many,
out TypedRecordIterator i);

};

interface TypedEventLogFactory : DsLogAdmin::LogMgr,
A-10 Telecom Log Service, v1.1.2 July 2003

A

CosEventChannelAdmin::ConsumerAdmin
{
TypedEventLog create (

in DsLogAdmin::LogFullActionType full_action,
in unsigned long long max_size,
in DsLogAdmin::CapacityAlarmThresholdList thresholds,

 out DsLogAdmin::LogId id
) raises (DsLogAdmin::InvalidLogFullAction,
 DsLogAdmin::InvalidThreshold);

TypedEventLog create_with_id (
in DsLogAdmin::LogId id,
in DsLogAdmin::LogFullActionType full_action,
in unsigned long long max_size,
in DsLogAdmin::CapacityAlarmThresholdList thresholds

) raises (DsLogAdmin::LogIdAlreadyExists,
 DsLogAdmin::InvalidLogFullAction,

 DsLogAdmin::InvalidThreshold);
};

};

A.6 DsTypedNotifyLogAdmin Module

This module defines the TypedNotifyLog and TypedNotifyLogFactory interfaces.

#include <CosTypedNotifyChannelAdmin.idl>
#include <DsTypedEventLogAdmin.idl>
#include <CosNotifyFilter.idl>
#include <CosNotification.idl>
#pragma prefix “omg.org”

module DsTypedNotifyLogAdmin
{

interface TypedNotifyLog : DsTypedEventLogAdmin::TypedEventLog,
CosTypedNotifyChannelAdmin::TypedEventChannel

{
CosNotifyFilter::Filter get_Ty filter();
void set_filter(in CosNotifyFilter::Filter filter);

};

interface TypedNotifyLogFactory : DsLogAdmin::LogMgr,
CosNotifyChannelAdmin::ConsumerAdmin

{
TypedNotifyLog create (

in DsLogAdmin::LogFullActionType full_action,
in unsigned long long max_size,
in DsLogAdmin::CapacityAlarmThresholdList thresholds,
in CosNotification::QoSProperties initial_qos,
in CosNotification::AdminProperties initial_admin,

 out DsLogAdmin::LogId id
July 2003 Telecom Log Service, v1.1.2 A-11

A

) raises (DsLogAdmin::InvalidLogFullAction,
 DsLogAdmin::InvalidThreshold,

CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);

TypedNotifyLog create_with_id (
in DsLogAdmin::LogId id,
in DsLogAdmin::LogFullActionType full_action,
in unsigned long long max_size,
in DsLogAdmin::CapacityAlarmThresholdList thresholds,
in CosNotification::QoSProperties initial_qos,
in CosNotification::AdminProperties initial_admin

) raises (DsLogAdmin::LogIdAlreadyExists,
DsLogAdmin::InvalidLogFullAction,
DsLogAdmin::InvalidThreshold,
CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

};
};
A-12 Telecom Log Service, v1.1.2 July 2003

Common Mistakes B
The Telecom Log Service has some very powerful and flexible features. Please note
that it is very easy to get into trouble if you are not careful. Here are some common
mistakes that should be kept in mind when using this service.

release vs. destroy

Log clients will have object references to log objects. When the clients are done using
the log they should release this object reference using the language mapping release
mechanism.

Note – Do not invoke the destroy() operation to destroy the object reference. This
will destroy the actual object implementation on the server, as well as all the records
that were stored in that log.

delete_records() constraint

Constraints should be specified carefully since there is no way to undo this operation.
A malformed constraint could end up deleting far more records than intended. To be
certain of the constraint, it would be wise to first do either a query() or a match() to
give an indication of how the constraint will be executed. Alternatively, if the IDs for
the records are known the delete_records_by_id() operation should be used.

max record lifetime

This feature was intended to automatically trim the log as the records age. Keep in
mind that records are deleted unilaterally as they age past the maximum lifetime. If
the maximum lifetime is set to one second, then the entire log will be deleted after only
one second.
July 2003 Telecom Log Service, v1.1.2 B-1

B

max size

If the maximum size of the log is set too small, the log will fill up quickly and
incoming log records will be lost.

bad filter

If a filter is specified incorrectly (either on an incoming proxy consumer or on the log
filter itself), then events may be dropped inappropriately.

scheduling

This feature is designed to allow the execution of very elaborate scheduling
mechanisms. If not careful, the log may end up being scheduled “off” for more time
than anticipated.

lock and forget

Logging can be turned off using the administrative state. Just remember to turn it back
on again when appropriate.

off forwarding and forget

Event forwarding can be turned off using the forwarding state. Just remember to turn it
back on again when appropriate.

factory object the only “private” object

Note that once the factory object (or any of the log objects) is published, a misguided
client may traverse the entire log hierarchy and perform the above deeds either
maliciously or by accident. Since the very nature of the event service is to decouple
communication between applications, it is unlikely that each application will
understand just how the other applications are using the log service. The CORBA
security service may be necessary to enforce some restrictions on operations.
B-2 Telecom Log Service, v1.1.2 July 2003

Index
A
Administrative State 1-10
attr_list 1-6
AttributeValueChange even t1-31
AttributeValueChange struct 1-31
Availability Status 1-14

B
BasicLog interface 1-4
BasicLogFactory 1-28
BasicLogFactory interface 1-26

C
Capacity threshold alarms 1-17
Conformance criteri a1-32
Conforming implementation 1-32
copy() operation 1-24
copy_with_id() operation 1-24
CosNotifyChannelAdmin

EventChannel interfac e1-10
CosNotifyFilter

Filter object 1-18

D
delete_records() operation 1-21
delete_records_by_id() operation 1-22
destroy operatio n1-25

E
event channel 1-2
EventLog interface 1-4
EventLogFactory 1-29
EventLogFactory interface 1-26

F
find_log() operation 1-27
flush() operation 1-16
Forwarding State 1-17

G
get_availability_status() operation 1-15
get_capacity_alarm_thresholds() operation 1-16
get_current_size() operation 1-11
get_filter() operation 1-18
get_forwarding_state() operation 1-17
get_interval() operation 1-12
get_log_full_action() operation 1-12
get_max_record_life() operation 1-15
get_max_size() operation 1-11
get_n_records() operation 1-11
get_operational_state() operation 1-10
get_qos() operations 1-16
get_record_attribute() operation 1-22
get_week_mask() operation 1-14

I
id 1-6
id() operation 1-10
info 1-7

L
list_logs() operation 1-27

list_logs_by_id() operation 1-27
Log Capacity Alarm Threshold 1-16
Log Creation 1-27
Log Duration 1-12
Log event forwarding 1-9
Log Events 1-28
Log filters 1-18
Log Full Action 1-12
Log inheritance 1-4
Log interface 1-4, 1-9, 1-16, 1-18
Log Lifecycle Management 1-24
Log Lookup 1-27
Log Network 1-24
Log objects 1-2, 1-17
Log Record Attribute Query/Modification 1-22
Log record compaction 1-15
Log record deletion 1-21
Log record manipulation 1-18
Log record querying 1-20
Log record retrieval 1-21
Log record writing 1-18
Log records 1-6
Log repository 1-2
Log Scheduling 1-13
Log Size 1-11
log_full field 1-15
Logging 1-8
Logging Scenarios 1-7
LogMgr interface 1-26

M
match() operation 1-21
my_factory() operation 1-10

N
Notification Service 1-16
NotifyLog interface 1-4
NotifyLogFactory 1-29
NotifyLogFactory interface 1-26

O
off_duty field 1-15
Operational State 1-10

Q
QoSFlush 1-16
QoSNone 1-16
QoSReliability 1-16
Quality of Service 1-15
query() operation 1-20

R
race condition 1-13
retrieve() operation 1-21

S
set_capacity_alarm_threshold() operation 1-16
set_filter() operation 1-18
set_forwarding_state() operation 1-17
set_interval() operation 1-12
set_log_full_action() operation 1-12
set_max_record_life() operation 1-15
July 2003 Telecom Log Service, v1.1.2 Index-1

Index
set_max_size() operation 1-11
set_qos() operation 1-16
set_record_attribute() operation 1-22
set_week_mask() operation 1-14
start field 1-13
StateChange even t1-31
StateChange struct 1-32
stop field 1-13

T
Telecom Log Service 1-16
The Iterator and TypedRecordIterator Interface s1-23
The Log Factory Interfaces 1-25
The Log Interfaces 1-1
ThresholdAlarm event 1-30
ThresholdAlarm struct 1-30

time 1-6
Typed events 1-7
typed_query() operation 1-20
typed_retrieve() operation 1-21
TypedEventLog 1-5
TypedEventLogFactory 1-29
TypedEventLogFactory interface 1-27
TypedNotifyLog interface 1-5
TypedNotifyLogFactory 1-29
TypedRecordIterator 1-24

W
weekly scheduling onl y1-14
write_recordlist() operation 1-19
write_records() operation 1-19
Index-2 Telecom Log Service, v1.1.1 July 2003

Telecom Log Service, v1.1.2
Reference Sheet

This is an editorial update to the Telecom Log Service, v1.1.1 specification. See Chapter 1 and Appendix A
for the editorial changes.
July 8, 2003 1

2 July 8, 2003

	1. Telecom Log Service
	1.1 Introduction
	1.2 The Log Interfaces
	1.2.1 Log Inheritance
	1.2.2 LogRecord and TypedLogRecord
	1.2.3 Logging Scenarios
	1.2.4 Log Control and Management
	1.2.5 Log Record Manipulation
	1.2.6 Log Network
	1.2.7 Log Lifecycle Management

	1.3 The Log Factory Interfaces
	1.3.1 Log Factory Inheritance
	1.3.2 Log Lookup
	1.3.3 Log Creation
	1.3.4 Log Events

	1.4 Log Generated Events
	1.4.1 ObjectCreation Event
	1.4.2 ObjectDeletion Event
	1.4.3 ThresholdAlarm Event
	1.4.4 AttributeValueChange Event
	1.4.5 StateChange Event
	1.4.6 ProcessingErrorAlarm Event

	1.5 Conformance Criteria

	A. Complete OMG IDL
	B. Common Mistakes

