
Interworking Between CORBA and
TMN Systems Specification

New Edition: August 2000
Version 1.0

ee, paid
e mod-

nged the
 herein

y
ch a
 of
e users

tails an
ocument

ted
ages,

 above
 the sole
arks or
 is pro-

used in
ation
Copyright 1999, Alcatel Alshtom Recherche
Copyright 1999, DSET Corporation
Copyright 1999, Expersoft Corporation
Copyright 1999, Hewlett-Packard Company
Copyright 1999, Highlander Communications, L.C.
Copyright 1999, Inprise Corporation
Copyright 1999, International Business Machines Corp.
Copyright 1999, IONA Technologies, Plc
Copyright 1999, ISR Global Telecom, Inc.
Copyright 1999, Lucent Technologies, Inc.
Copyright 1999, Nortel Technology
Copyright 1999, Sun Microsystems
Copyright 1999, Telefónica Investigación y Desarrollo S.A. Unipersonal
Copyright 1999, TCSI Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-fr
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of th
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infri
copyright in the included material of any such copyright holder by reason of having used the specification set forth
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications ma
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for whi
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospectiv
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document de
Object Management Group specification in accordance with the license and notices set forth on this page. This d
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies lis
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover dam
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, tradem
other special designations to indicate compliance with these materials. This document contains information which
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or inform
storage and retrieval systems--without permission of the copyright owner.

orth in

G IDL,
Inc.

readers
t
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set f
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OM
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group,
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form a
http://www.omg.org/library/issuerpt.htm.

Contents
1

1

1

2

2

-1

1-1

1-2
1-2

-2
3

1-4

1-5

-5
-6

1-7

-7
8

-9

1

2-1

-3
-4
Preface .

About the Object Management Group .

What is CORBA? .

Associated OMG Documents .

Acknowledgments .

1. Specification Description . 1

1.1 JIDM Overview .

1.2 Definitions and Design Principles
1.2.1 Reference Model .

1.2.2 Specification Translation 1
1.2.3 Interaction Translation 1-

1.3 Basic Concepts .

1.4 Problem Statement .

1.4.1 Invoking Operations on Managed Objects 1
1.4.2 Event Reporting . 1

1.5 General Design Principles .

1.5.1 Key Design Principles 1
1.5.2 Alignment with CORBA Design Principles . . . 1-

1.5.3 Alignment with OSI Systems Management and
Internet Management Design Principles 1

2. JIDM CORBA Facilities . 2-

2.1 The JIDM Module .

2.1.1 JIDM Managed Objects 2
2.1.2 The JIDM::ProxyAgent Interface 2
CORBA/TMN Interworking v1.0 August 2000 i

Contents

9
1

3
4

15
15

16

-18
-18

-18
22

25

9

32

-34
-34

-42

-1

3-1

10
7

5
26

32
33

38

3-

5

6

-48
-48

-48
51

4
-56
2.1.3 The JIDM::ProxyAgentController Interface . . . 2-
2.1.4 The JIDM::ProxyAgentFinder Interface 2-1

2.1.5 The JIDM::DomainPort Interface 2-1
2.1.6 The JIDM::DomainPortFactory Interface 2-1

2.1.7 The JIDM::EventPort Interface 2-
2.1.8 The JIDM::EventPortFactory Interface. 2-

2.1.9 The JIDM::EventPortFinder Interface 2-

2.2 Programming Model . 2
2.2.1 Programming Semantics. 2

2.2.2 Creating Managed Objects 2
2.2.3 Invoking operations on Managed Objects. 2-

2.2.4 Reception of Events at CORBA Managers 2-
2.2.5 Federation of JIDM::ProxyAgentFinders

and JIDM::DomainPorts. 2-2

2.2.6 Federation of JIDM::EventPortFinders
and JIDM::EventPorts 2-

2.3 JIDM Gateways . 2
2.3.1 Manager Side Gateways 2

2.3.2 Agent Side Gateways . 2

3. OSI CORBA Facilities . 3

3.1 The OSIMgmt Module .

3.1.1 The OSIMgmt::LName Interface 3-
3.1.2 The OSIMgmt::ProxyAgent Interface. 3-1

3.1.3 The OSIMgmt::NamingContext Interface 3-2
3.1.4 The OSIMgmt::ManagedObject interface. 3-

3.1.5 The OSIMgmt::ManagedObjectFactory Interface3-
3.1.6 Description of CMIS Operations 3-

3.1.7 The OSIMgmt::LinkedReplyHandler,
EndOfRepliesHandler, and MultipleRepliesHandler
Interfaces . 3-

3.1.8 The OSIMgmt::BufferedRepliesHandler Interface
43

3.1.9 Handling ACTIONs with multiple replies 3-4

3.1.10 The OSIMgmt::LocalRoot interface 3-4

3.2 Programming Model . 3
3.2.1 Programming Semantics. 3

3.2.2 Creating Managed Objects 3
3.2.3 Invoking Operations on Single Managed Objects 3-

3.2.4 Invoking Operations with Scope and Filtering . 3-5
3.2.5 Iterator Interfaces for Scoped Operations 3
ii CORBA/TMN Interworking v1.0 August 2000

Contents

56

57

-57
-57

-72

4-1

4-1

-2
10

-12

-14

14
14

19

19
20

-28

-29
29

-1

5-1

-2
-8

7
8

1

26

27

-30

5
36

39
39
3.2.6 Reception of Events at CORBA Managers 3-

3.2.7 Forwarding Events from CORBA Managed
Object Domains . 3-

3.3 CORBA/CMIP Gateways . 3
3.3.1 Manager Side Gateways 3

3.3.2 Agent Side Gateways . 3

4. OSI Support Services .

4.1 OSI Caching and Tracking Services.

4.1.1 The OSICaching Module 4
4.1.2 The OSITracking module 4-

4.1.3 Mechanism to obtain Cached/Tracked services 4

4.2 Collection Service . 4

4.2.1 Overview . 4-
4.2.2 The OSICollection Module. 4-

4.3 Dynamic Management of ASN.1 Any Values 4-

4.3.1 Overview . 4-
4.3.2 The ASN1 Module . 4-

4.4 The OSI Management Information Repository 4

4.5 SNMP Management Facilities Specification 4
4.5.1 Overview . 4-

5. SNMP CORBA Facilities . 5

5.1 Overview .

5.2 The SNMPMgmt Module. 5
5.2.1 The SNMPMgmt::ProxyAgent Interface 5

5.2.2 The SNMPMgmt::SmiEntry interface 5-1
5.2.3 The SNMPMgmt::SmiTableIterator Interface. . 5-1

5.2.4 The SNMPMgmt::GenericFactory Interface. . . 5-19
5.2.5 The SNMPMgmt::NamingContext Interface . . 5-21

5.2.6 Naming MIB Entries Using SNMP Names in
CORBA Domain. 5-2

5.2.7 The SNMPMgmt::NamingDirectory Interface . 5-25

5.2.8 The SNMPMgmt::GetNextEntryIterator
Interface . 5-

5.2.9 Event Communication 5-

5.3 SNMP Management Information Repository 5

5.3.1 The SNMPMIR Module 5-3
5.3.2 The OIDRepository Interface 5-

5.3.3 The VariableDef Interface. 5-
5.3.4 The SmiEntryDef Interface. 5-
CORBA/TMN Interworking v1.0 August 2000 iii

Contents

41
41

42

-1

1

5.3.5 The SmiGroupDef Interface 5-
5.3.6 The SmiModuleDef Interface 5-

5.3.7 The Repository Interface 5-

Appendix A - References . A

Appendix B - Complete IDL Specification B-1

Appendix C - Conformance Statement C-
iv CORBA/TMN Interworking v1.0 August 2000

Preface
d by
sers.

nol-
of
e-

 Con-
plica-

tion

ent
r of

ca-

c
ber
can
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supporte
over 800 members, including information system vendors, software developers and u
Founded in 1989, the OMG promotes the theory and practice of object-oriented tech
ogy in software development. The organization's charter includes the establishment
industry guidelines and object management specifications to provide a common fram
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments.
formance to these specifications will make it possible to develop a heterogeneous ap
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direc
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Managem
Group's answer to the need for interoperability among the rapidly proliferating numbe
hardware and software products available today. Simply stated, CORBA allows appli
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specifi
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in Decem
of 1994, defines true interoperability by specifying how ORBs from different vendors
interoperate.
CORBA/TMN Interworking V1.0 August 2000 1

ards
o

ion,
ating
f the

 OMG

t. To
con-
Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG stand
are based. It defines the umbrella architecture for the OMG standards. It als
provides information about the policies and procedures of OMG, such as how
standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for OMG’s Object Services.

The OMG collects information for each specification by issuing Requests for Informat
Requests for Proposals, and Requests for Comment and, with its membership, evalu
the responses. Specifications are adopted as standards only when representatives o
OMG membership accept them as such by vote. (The policies and procedures of the
are described in detail in the Object Management Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF forma
obtain print-on-demand books in the documentation set or other OMG publications,
tact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted parts of this specification:

• Alcatel Alshtom Recherche

• DSET Corporation

• Expersoft Corporation

• Hewlett-Packard Company

• Highlander Communications, L.C.

• Inprise Corporation

• International Business Machines Corp.

• IONA Technologies, Plc

• ISR Global Telecom, Inc.

• Lucent Technologies, Inc.
2 CORBA/TMN Interworking V1.0 August 2000

• Nortel Technology

• Sun Microsystems

• Telefónica Investigación y Desarrollo S.A. Unipersonal

• TCSI Corporation
CORBA/TMN Interworking V1.0 Acknowledgments August 2000 3

4 CORBA/TMN Interworking V1.0 August 2000

Specification Description 1
ith

SI
there
ample,
odel
ms
 will

Contents

This chapter contains the following sections.

1.1 JIDM Overview

Note – JIDM (Joint Inter-Domain Management)

Ideally, all the CORBA Facilities and interfaces required to support interworking w
different management environments would be defined in a generic way (i.e.,
independent of the Systems Management Reference Model being considered - O
Systems Management Reference Model, SNMP Reference Model, etc). However,
are aspects related to each specific model that cannot be abstracted away. For ex
the naming schema used to name managed objects will depend on the specific m
being considered (e.g., a specific naming schema has been defined for OSI Syste
Management). Also, interfaces used to operate on collections of managed objects
depend on the model being considered since expressions used to designate such

Section Title Page

“JIDM Overview” 1-1

“Definitions and Design Principles” 1-2

“Basic Concepts” 1-4

“Problem Statement” 1-5

“General Design Principles” 1-7
CORBA/TMN Interworking V1.0 August 2000 1-1

1

en

d to
l.

nt
when
will

 to

gies,
 on
main

e

t

 both

in
er

BA
ment

 and
 with
collections will vary depending on the model (e.g., use of scoping and filtering
expressions to designate subset of members of a managed object domain has be
specifically defined for OSI Systems Management).

The adopted approach consists of defining a basic set of CORBA Facilities, referre
as JIDM Facilities, that will work for every Systems Management Reference Mode
JIDM Facilities can be extended or put together with additional complementary
facilities to build up the set of CORBA Facilities that will be finally used to impleme
each of the specific Systems Management Reference Models. Thus, for example,
defining OSI Systems Management Facilities, specific OSI Management Facilities
be defined (facilities that allow translation between OSI names and
CosNaming::Names , handling operations with scoping and filtering, etc.) in
addition to those defined within JIDM Facilities (facilities defined to get references
single managed objects given their names, etc).

1.2 Definitions and Design Principles

1.2.1 Reference Model

To enable interworking between management systems based on different technolo
it is necessary to be able to map between the relevant object models and to build
this to provide mechanisms to handle protocol and behavior conversions on the do
boundaries.

In order to be able to interwork between a particular pair of management referenc
models, there are two aspects that need to be defined:

• A translation scheme between the different object models of both managemen
reference models, referred to as Specification Translation

• A dynamic conversion mechanism between the protocols and behaviors used in
domains, referred to as Interaction Translation

This allows objects in one domain to be represented in the other domain and the
interactions can be governed by the domain of choice rather than by the domain
which the target object is implemented. Besides, this should be done without eith
party being aware of the conversion.

This document presents a set of facilities to provide interoperability between COR
and alternative telecommunication management models, specifically OSI manage
and Internet management. As described above, two aspects need to be defined:
Specification Translation and Interaction Translation.

1.2.2 Specification Translation

The translation scheme is not part of this document, it has already been adopted
published by other standardization organisms, namely NMF and The OpenGroup,
the following reference “[XoJIDM] Inter Domain Management: Specification
Translation” mentioned in Appendix A.
1-2 CORBA/TMN Interworking V1.0 August 2000

1

ion
ent,

e

g

ment

d
l.”]

ific

f
d the

t
d
ce

ign

ain
Inter-domain Management: Specification Translation

X/Open Document Number: P509

ISBN: 1-85912-150-0

This specification fully supports the above mentioned JIDM Specification Translat
specification, amended with the current list of errata and corrigenda to the docum
as expressed in the “JIDM Specification Translation Issues List” (available from The
OpenGroup and NMF web sites, and also from the OMG as document number
telecom/98-05-05). The justification for these changes is also available through th
aforementioned amending documentation.

1.2.3 Interaction Translation

This document presents a set of CORBA facilities required to support interworkin
with different management environments, globally referred to as “JIDM Interaction
Translation.”

There are three levels of interfaces being defined:

1. Generic interfaces, management model independent - these facilities provide a
generic framework to access a managed domain, independently of the manage
reference model being used. These generic facilities are referred to as JIDM
Facilities, and are presented in Chapter 3.

2. Generic interfaces, management model dependent - two management reference
models are considered, OSI Management and Internet Management (SNMP).

• OSI Management Facilities, presented in Chapter 4, provide a CORBA view of
the OSI Management reference model, as described in the relevant ITU-T an
ISO documents (see, among others, [“[X720] Management Information Mode
and [“[M3010] Principles for a Telecommunications Management Network.”
mentioned in Appendix A]). This set of facilities extends the generic JIDM
Facilities to support all CMIS interactions in CORBA, and to support OSI spec
concepts such us scoping, filtering and multiple replies both in pure CORBA
environments and in interworking environments (gateways).

• SNMP Management Facilities, presented in Chapter 5, provide a CORBA view o
the Internet Management reference model. These sets of facilities also exten
generic JIDM Facilities to support all SNMP interactions in CORBA, and to
support Internet specific concepts.

3. Specific interfaces, information model, and management model dependent - these
interfaces provide functionality that is specific to a given information model, tha
conforms to a certain management reference model; these interfaces reuse an
extend the generic CORBA facilities of the corresponding management referen
model (OSI Management or SNMP Management facilities) in an information
model-specific way. In case the specific information model is specified in a fore
specification language (GDMO/ASN.1 for OSI management, SNMP SMI for
Internet management), the equivalent CORBA IDL model may be automatically
generated by following the translation algorithms defined in "Inter-domain
Management: Specification Translation" (see reference to “[XoJIDM] Inter Dom
CORBA/TMN V1.0 Definitions and Design Principles August 2000 1-3

1

 is
se

fic
ric set

e 1-1.

 even
tain
o

t
 the

 the
s

Management: Specification Translation, mentioned in Appendix A). Note that it
possible to specify an information model directly using CORBA IDL, and yet reu
the OSI management or SNMP management facilities.

It is beyond the scope of this specification to specify any information model speci
interfaces. However, the mechanisms to specify such interfaces, as well as a gene
of algorithms to translate existing information models, are specified.

There is a dependency among these three types of interfaces, as shown in Figur

Figure 1-1 JIDM Facilities

1.3 Basic Concepts

Throughout this document, a number of well-known concepts are used and maybe
overused. However, there are certain concepts where the intent when using a cer
word is very specific. This section tries to clarify the special meanings attributed t
certain words/concepts within this document.

A distributed management system is composed of two kinds of entities: manager
entities and managed entities.

“Manager entities” are those that have responsibility for one or more managemen
activities, by issuing management operations and receiving notifications. They are
components exploiting the behavior provided by implementations of a given
information model.

“Managed entities” are those that have responsibility for certain underlying
resource(s). They perform management operations issued by manager entities on
underlying resources, and emit notifications whenever some specific circumstance
occur. They are the components implementing the behavior of a given information
model.

In object oriented systems, these abstract entities are materialized in the form of
specific objects. Therefore the terms “manager object” and “managed object” can be
considered synonymous of the above in object oriented systems.

Manager objects (entities) are said to act in the “manager role,” while managed objects
(entities) are said to act in the “agent role.”

JIDM Facilities

OSI Management
Facilities

SNMP Management
Facilities

X.721 SDH MIB2
1-4 CORBA/TMN Interworking V1.0 August 2000

1

 the
(both

f

e

tions

main),

s been

 time.

ct to
e

in of

me to

iven

ria
c.).

ith
se
These objects (entities) are grouped into “domains” according to some specific
grouping criteria. Domains are considered the unit of accessibility, therefore being
independently addressable components within a distributed system; each domain
manager and managed) may have any number of objects within it.

Managed domains are sometimes referred to as “agents” and “managed object
domains,” while manager domains are sometimes referred to as “manager
applications” or simply “managers.”

Domains are identified by using “titles.” Each domain may have an arbitrary number o
titles associated with it, but a title uniquely identifies one domain.

Whenever a manager or an agent needs to interact with an agent or manager
(respectively), it must first “gain access” to the other domain. This access is always
granted through a specific“port” to the domain. Each port is uniquely identified by on
of the titles associated to the domain being accessed.

Specifically, two types of ports are identified:

1. When access to a domain is required to be able to create and/or invoke opera
on managed objects within the domain, the port is called “domain port.”

2. When access to a domain is required to be able to forward events to manager
objects within the domain, the port is called “event port.”

When a manager (agent) gains access to a managed object domain (manager do
it is said that a “session” has been established. That session may be “released,”
meaning that no further exchange of information may happen, because access ha
“ revoked.”

Any number of sessions may exist between a manager and an agent at any given

1.4 Problem Statement

1.4.1 Invoking Operations on Managed Objects

CORBA Facilities need to be defined that allow CORBA manager objects to conne
Managed Object Domains given their titles. Additional CORBA Facilities need to b
defined to allow a CORBA manager object (that is connected to some given doma
managed objects) to:

• Create a new member of the domain (a new managed object) and assign a na
it.

• Obtain a reference to a member of the domain (an existing managed object) g
its name.

• Operate on collections of those members of the domain which meet some crite
(e.g., descendants of some managed object which pass some specific filter, et

A complete solution requires explaining how these CORBA Facilities will interact w
Naming and LifeCycle Object Services at CORBA Managed Object Domains. The
questions are represented in Figure 1-2 on page 1-6.
CORBA/TMN V1.0 Problem Statement August 2000 1-5

1

ific
 to a
 be

 it

ific
vent
jects.
Figure 1-2 Invocation of management operations

A fundamental requirement for definition of such CORBA Facilities is that the spec
management protocol (CMIP, SNMP, CORBA IIOP, etc.) being used to get access
Managed Object Domain and operate upon managed objects located there, must
totally transparent to CORBA manager objects and CORBA managed objects.

1.4.2 Event Reporting

A CORBA Manager will have at least one title associated with it. This title permits
to be identified as a destination for event reporting. CORBA Facilities need to be
defined that allow:

• Event reports emitted by CORBA managed objects to be reported to specific
CORBA Managers that have been designated by their titles.

• CORBA Manager objects to be notified about events reported from remote
Managed Object Domains.

A fundamental requirement for definition of such CORBA Facilities is that the spec
management protocol (CMIP, SNMP, CORBA IIOP, etc.) being used to report an e
must be totally transparent to CORBA manager objects and CORBA managed ob

CORBA Management Application C (agent role)

title4

Naming
Service

LifeCycle
Services

Managed
Object

?

?

CORBA Manager A
1-6 CORBA/TMN Interworking V1.0 August 2000

1

) to
are

the

 a
er

s

h
et

model.
Figure 1-3 Event reporting

When solving the problem of event reporting, the following scenarios must be
considered:

• One manager application must be able to change the list of destinations (titles
which event reports emitted by managed objects in a managed object domain
being reported. In the OSI environment, this will be accomplished by means of
changing the destination attribute value of an EFD object that is a member of
managed object domain being considered.

• One manager application may spontaneously start receiving event reports from
remote managed object domain due to a decision taken by a third party (anoth
manager application) who has changed the list of destinations for event report
associated to the managed object domain.

1.5 General Design Principles

1.5.1 Key Design Principles

CORBA/TMN interworking is provided through a common framework (JIDM), whic
provides interfaces and facilities common to OSI systems management and Intern
management. This common framework is then specialized to provide additional
interfaces and facilities that are specific to each systems management reference

Event reporting object

title3

title1

title2

Manager A

Manager B Agent C

Manager D

destination =
{ title2, title3 }

title5

?

?

CORBA/TMN V1.0 General Design Principles August 2000 1-7

1

 to

cy.

an
r, the
nse of
 80-

cts

y is

g a

ss it
gn
ent
The proposal maximizes the commonality of services (e.g., creation of objects,
invocation of operations, event reporting, and distribution) used for interworking
scenarios and for pure CORBA environment scenarios.

Also, some specific guiding principles have been consistently applied when trying
resolve the issues encountered:

• Completeness - The aim is to provide as complete a set of services as possible,
covering all possible cases and specific functionality, regardless of the frequen

• Simplicity - There are certain scenarios and services that are more common th
others. Given the completeness principle, all cases should be covered. Howeve
most common cases should be covered with the simplest approach, at the expe
potentially complicating the less common situations. This is also known as the
20 rule.

• Familiarity - The design must use concepts and patterns that are familiar to the
CORBA programmer. In this way, managed objects must be plain CORBA obje
that implement a certain interface and on which the operations exported by the
supported interface may be invoked. Also, events and notifications sent from
managed objects are plain CORBA events.

• Transparency - It should be transparent to the applications the fact that a gatewa
being used or not. That is, an application should not be aware, or do anything
differently, in case it interacts with another application that uses the same
technology, or it does with an application that uses a different technology, usin
gateway as an intermediary.

• Reuse of OMG specifications and services - Rather than inventing new approaches
to do the same thing, already existing OMG specifications have been reused
whenever possible.

• Freedom of implementation - This document does not impose any particular
implementation policy, and does not constrain implementations in any way unle
is absolutely necessary. Although the discussions to arrive to any specific desi
solution always take into account the feasibility of implementations, the docum
tries not to provide any implementation bias.

1.5.2 Alignment with CORBA Design Principles

The design of CORBA/TMN interworking facilities:

• Uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

• Finding a service is orthogonal to using it

• Factories, factory finders and use of federation of services or traders

• Assumes good ORB and Object Services implementations:
1-8 CORBA/TMN Interworking V1.0 August 2000

1

r of
 the

l

ent

l

ner,

ties
e
 and

. For
 as

at
orms

ns
• Specifically, it is assumed that CORBA-compliant ORB implementations are
being built that support efficient local and remote access to a very high numbe
objects and have performance characteristics that place no major barriers to
pervasive use of distributed objects for virtually all service and application
elements.

• Allows Local and Remote Implementations:

• In general the services are structured as CORBA objects with OMG IDL
interfaces that can be accessed locally or remotely and which can have loca
library or remote server styles of implementations. This allows considerable
flexibility with regards to the location of participating objects.

• Enforces interface style consistency:

• Use of exceptions and return codes

• Use of explicit operations

• Use of interface inheritance

1.5.3 Alignment with OSI Systems Management and Internet Managem
Design Principles

Management of a communications environment is an information processing
application. Because the environment being managed is distributed, the individua
components of the management activities are themselves distributed.

Management applications perform the management activities in a distributed man
by establishing associations between systems management application entities.

The interactions which take place between systems management application enti
are abstracted in terms of management operations and notifications issued by on
entity to the other; these are communicated using systems management services
protocols.

Management activities are effected through the manipulation of managed objects
the purposes of systems management, management applications are categorized
MIS-Users. Each interaction takes place between two MIS-Users, one taking the
manager role, the other the agent role.

An MIS-User taking the role of an agent is that part of a distributed application th
manages the managed objects within its local system environment. An agent perf
management operations on managed objects as a consequence of management
operations communicated from a manager. An agent may also forward notificatio
emitted by managed objects to a manager.

An MIS-User taking the role of a manager is that part of a distributed application
which has responsibility for one or more management activities, by issuing
management operations and receiving notifications.
CORBA/TMN V1.0 General Design Principles August 2000 1-9

1

1-10 CORBA/TMN Interworking V1.0 August 2000

 JIDM CORBA Facilities 2
l
ks, or

d:
Contents

This chapter contains the following sections.

2.1 The JIDM Module

The Joint Inter-Domain Management (JIDM) module comprises a collection of
interfaces that together define a basic set of services for developing Systems
Management Applications based on CORBA. Following the JIDM reference mode
these interfaces may be used between Manager applications and JIDM Framewor
between JIDM Frameworks and Agent applications.

From the Manager application perspective, the following interfaces are used:

• The ProxyAgent interface

• The ProxyAgentController interface

• The ProxyAgentFinder interface

• The EventPort interface

• The EventPortFactory interface

From the Agent application perspective, the following additional interfaces are use

• The DomainPort interface

Section Title Page

“The JIDM Module” 2-1

“Programming Model” 2-18

“JIDM Gateways” 2-34
 CORBA/TMN Interworking V1.0 August 2000 2-1

2

• The DomainPortFactory interface

• The EventPortFinder interface

This section describes these interfaces and their operations in detail.

#ifndef _JIDM_IDL_
#define _JIDM_IDL_

#include <CosNaming.idl>
#include <CosLifeCycle.idl>
#include <CosEventChannelAdmin.idl>

#pragma prefix “jidm.org”

module JIDM
{

typedef CosNaming::Name Key;
typedef CosLifeCycle::Criteria Criteria;

exception InvalidKey {};
exception InvalidCriteria {};
exception CannotMeetCriteria { Criteria reason; };
exception CannotAccess {};
exception AlreadyExists {};

interface ProxyAgent {
enum DestructionMode {gracefully, non_gracefully};
readonly attribute Criteria access_criteria;

CosLifeCycle::FactoryFinder get_domain_factory_finder ();
CosNaming::NamingContext get_domain_naming_context ();
Criteria destroy (in DestructionMode mode, in Criteria the_criteria)

raises (InvalidCriteria, CannotMeetCriteria);
};

interface ProxyAgentController {
Criteria destruction_is_allowed (in Criteria the_criteria)

raises (InvalidCriteria,CannotMeetCriteria);

void destroyed (in Criteria the_criteria);
};

interface ProxyAgentFinder {
ProxyAgent access_domain (in Key k, in Criteria the_criteria)

raises (InvalidKey, CannotAccess, InvalidCriteria, CannotMeetCriteria);
};

interface DomainPort {
readonly attribute Criteria associated_criteria;

 void destroy ();
};

interface DomainPortFactory {
DomainPort create_domain_port (in Key k, in Criteria creation_criteria)

raises (InvalidKey, InvalidCriteria, CannotMeetCriteria);
2-2 CORBA/TMN Interworking V1.0 August 2000

2

uld
at

ject,
SI

P
ithin

e
ct

n

n

ssary

n
};

interface EventPort {
readonly attribute CosEventChannelAdmin::SupplierAdmin supplier_admin;
readonly attribute Criteria associated_criteria;
void destroy ();

};

interface EventPortFactory {
EventPort

create_event_port (in Key k, in Criteria creation_criteria,
in CosEventChannelAdmin::SupplierAdmin the_supplier_admin)

raises (InvalidKey, InvalidCriteria, CannotMeetCriteria, AlreadyExists);
};

interface EventPortFinder {
CosEventChannelAdmin::SupplierAdmin

find_event_port (in Key k, in Criteria the_criteria)
raises (InvalidKey, InvalidCriteria, CannotMeetCriteria, NoEventPort);

};
};

#endif /* _JIDM_IDL_ */

2.1.1 JIDM Managed Objects

The JIDM module does not define an interface for generic JIDM objects, as it wo
be an empty interface, because there are no truly generic, common operations th
could be attributed to all kinds of managed objects.

However, every management environment must define some kind of managed ob
that is the entity being managed in the respective environment. For example, in O
systems management, there is the concept of a managed object directly; in SNM
management, there is no concept of a managed object, but a concept of entries w
the SNMP MIB that is equivalent to a managed object.

The definition of these managed objects, in all management environments, must
support the design principles as outlined in the RFP. In particular, in support of th
transparency principle, the following semantics are required of any managed obje
interface:

• If a CORBA object reference is used to request a managed object to perform a
operation and the managed object does not exist, an OBJECT_NOT_EXIST
exception should result.

• If a CORBA object reference is used to request a managed object to perform a
operation and the request causes an OBJECT_NOT_EXIST exception, the
managed object was actually deleted. (This property helps users avoid unnece
failures while attempting to recreate an object that already exists.)

• If a CORBA object reference is used to request a managed object to perform a
operation and the managed object exists, the operation shall not result in an
OBJECT_NOT_EXIST exception.
CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-3

2

at are
ins

2.1.2 The JIDM::ProxyAgent Interface

Managers that require creating and/or invoking operations on managed objects th
members of a domain must first gain access to that domain. When a manager ga
access to a managed object domain, a JIDM::ProxyAgent object (an object that
exports the JIDM::ProxyAgent interface) is created. Several JIDM::ProxyAgents
may co-exist, giving parallel access to the same managed object domain.

interface ProxyAgent {
enum DestructionMode {gracefully, non_gracefully};
readonly attribute Criteria access_criteria;

interface ProxyAgent {
enum DestructionMode {gracefully, non_gracefully};
readonly attribute Criteria access_criteria;

CosLifeCycle::FactoryFinder get_domain_factory_finder ();
CosNaming::NamingContext get_domain_naming_context ();

Criteria destroy (in DestructionMode mode, in Criteria the_criteria)
raises (InvalidCriteria, CannotMeetCriteria);

};

interface ProxyAgent {
enum DestructionMode {gracefully, non_gracefully};
readonly attribute Criteria access_criteria;

CosLifeCycle::FactoryFinder get_domain_factory_finder ();
CosNaming::NamingContext get_domain_naming_context ();

Criteria destroy (in DestructionMode mode, in Criteria the_criteria)
raises (InvalidCriteria, CannotMeetCriteria);

};

Invoking operations exposed by the JIDM::ProxyAgent object, CORBA manager
objects are able to obtain references to an initial:

• CosLifeCycle::FactoryFinder object in the managed object domain being
accessed.

• CosNaming::NamingContext object in the managed object domain being
accessed.

Invoking the find_factories operation exposed by the initial
CosLifeCycle::FactoryFinder object, CORBA manager objects may find factories
that enable creation of new members of the managed object domain.

Invoking the resolve operation exposed by the initial CosNaming::NamingContext
object, CORBA manager objects may obtain CORBA object references to existing
members of the managed object domain.
2-4 CORBA/TMN Interworking V1.0 August 2000

2

ce to

en
Figure 2-1 JIDM::ProxyAgents in a CORBA Environment

2.1.2.1 The get_domain_factory_finder Operation

To create a managed object, CORBA manager objects first need to find a referen
a suitable factory. They do so by means of invoking the find_factories operation
exposed by the initial CosLifeCycle::FactoryFinder object in the managed object
domain where the new managed object is going to be created.

The get_domain_factory_finder operation obtains a reference to this initial
CosLifeCycle::FactoryFinder object in the domain being accessed through a giv
JIDM::ProxyAgent object.

module CosLifeCycle {
....

typedef CosNaming::Name Key;
typedef Object Factory;
typedef sequence <factory> Factories;

exception NoFactory {
Key search_key;

};

interface FactoryFinder {

specific
management

interface

Managed Object Domain
(Agent Application)

title4

CosNaming::
NamingContext

CosLifeCycle::
FactoryFinder

manager object

JIDM::
ProxyAgent
CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-5

2

me
ts as

ent
r

e

aged
h this
 the

ked

ject
ger

Factories find_factories (in Key factory_key)
raises (NoFactory);

};
....

};

As shown above, the find_factories operation supported by
CosLifeCycle::FactoryFinders returns a sequence of factories, which matches so
given key. The space of keys is established by convention in particular environmen
explicitly declared in CORBA (see the Common Object Request Broker: Architecture
and Specification, Interface Repository chapter).

Conventions adopted for JIDM facilities (i.e., common to every Systems Managem
Reference Model) are described in Table 2-1. Additional conventions may exist fo
each specific Systems Management Reference Model being considered.

Table 2-1 : JIDM Conventions for Factory Finder Keys

Several alternatives can be followed when assigning values to the keys that will b
passed to the find_factories operation.

Only the name of the object interface is specified

Here, it is implicitly assumed that there is a factory interface associated to the man
object interface. CORBA managers know the name and operations associated wit
factory in advance so they can properly narrow and use the reference returned by
find_factories operation.

Only the name of the object factory interface is specified

Here, references returned by the find_factories operation can be narrowed to the IDL
interface whose name has been specified. The CORBA manager object who invo
the operation knows the signature and semantics of operations supported by the
designated object factory interface. This option will be the one used to obtain
references to generic factories exporting the CosLifeCycle::GenericFactory
interface or any of the generic factory interfaces defined in SYSMANfacilities (see
Appendix A, “References”).

Both the name of the object and factory interfaces are specified

This will be useful in environments where there are more than just one factory ob
interface associated with each managed object interface. Thus, the CORBA mana
object specifies

id field kind field meaning

fully scoped name of object
interface

“object interface” Find factories that create objects supporting
the named interface.

fully scoped name of factory
interface

“factory interface” Find factories supporting the named factory
interface.
2-6 CORBA/TMN Interworking V1.0 August 2000

2

ct

ogical

tems

ment

e-

en

ause

 up to

e in
• the interface that will be exported by the object to be created, and

• the actual interface of the factory that it wants to use for creating the new obje
(among the possible types of factories that can create objects exporting such
interface).

In any case, the result of passing several key values should be interpreted as the l
‘and’ of the conditions associated to each of the keys.

In respect to creation of managed objects, it is worth noticing that JIDM facilities
provide a generic framework that requires it to be specialized for each specific Sys
Management Reference Model. Such specialization implies precise definition of:

• The whole space of keys that are valid for finding factories.

• The space for keys and criteria that can be passed as arguments to the
create_object operation exposed by CosLifeCycle::GenericFactory objects.

• Other types of interfaces that are better suited to the specific Systems Manage
Reference Model that is being considered (for example, the
OSIMgmt::ManagedObjectFactory interface or interfaces generated from nam
binding GDMO templates in the OSI Systems Management Reference Model).

2.1.2.2 The get_domain_naming_context operation

A CORBA manager object may obtain CORBA object references to members of a
managed object domain as a result of invoking the resolve operation exposed by the
initial CosNaming::NamingContext object in the domain. The resolve operation
may also be used to obtain references to CosNaming::NamingContext objects other
than the initial CosNaming::NamingContext object.

The get_domain_naming_context operation obtains a reference from the initial
CosNaming::NamingContext object in the domain being accessed through a giv
JIDM::ProxyAgent object.

The design imparts no semantics or interpretation of the names themselves. Bec
the structure of names must be common to all Systems Management Reference
Models, the structure of names defined in the standard CosNaming Service
specification has been adopted. The actual semantics or interpretation of names is
the specific Systems Management Reference Model being used. CORBA facilities
defined for a given reference model will typically include definition of library
interfaces enabling construction of names in CORBA Naming Service form
(CosNaming::Names).

Table 2-2 describes the exceptions raised by the resolve operation. Note that this
description complies with the description given for the standard CosNaming servic
the Naming Service specification.
CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-7

2

ed to

n

,
Table 2-2 Exceptions Raised by the Resolve Operation

Only the resolve operation is guaranteed to be available in any management
environment.

CORBA manager objects may not have access to the rest of operations (bind , unbind ,
etc.) exposed by the initial CosNaming::NamingContext object or any of its
subordinate CosNaming::NamingContext objects. If a CORBA manager object
invokes an operation it cannot access, a NO_PERMISSION exception is raised.

2.1.2.3 The access_criteria attribute

Any JIDM::ProxyAgent object exposes the access_criteria attribute, which checks
the terms and conditions under which access through the JIDM::ProxyAgent object
was accepted.

This attribute is represented as a Criteria , and its contents depend on the specific
System Management Reference model being used.

2.1.2.4 The destroy operation

Any JIDM::ProxyAgent object exposes the destroy operation, which destroys the
object.

Destroying a JIDM::ProxyAgent object means closing the session established with
the associated managed object domain. If the JIDM::ProxyAgent object was running
in a JIDM gateway server, destruction of the object implies disposing resources us
maintain the associated connection (closing an XMP descriptor, for example).

Destruction of a JIDM::ProxyAgent object can take place in one of the following
modes:

• gracefully , meaning that resources associated to the session are going to be
disposed of in a graceful manner. If this is not possible, a CannotDestroy
exception is raised.

Exception Raised Description

NotFound Indicates the name does not identify a binding (there is no
object reference bound to the name passed as argument).

CannotProceed Indicates that implementation of the resolve operation has give
up for some reason. The client, however, may be able to
continue the operation using the returned name and reference
which points to a CosNaming::NamingContext .

InvalidName Indicates the name is invalid (a name of length 0 is invalid;
additional restrictions apply depending on the specific
management support environment).
2-8 CORBA/TMN Interworking V1.0 August 2000

2

 to
e.

e
ul

.1.3,

the

.

ory

• non_gracefully , meaning that resources associated with the session are going
be disposed of in an abrupt manner. No user exception is expected in this cas

Graceful destruction of JIDM::ProxyAgent objects should always be requested in th
first place. If graceful destruction is not possible, a client may request non-gracef
destruction to destroy the object.

Invokers of the destroy operation may pass a criteria that will be analyzed to
determine whether the destruction request can be accepted or not (see Section 2
“The JIDM::ProxyAgentController Interface,” on page 2-9 for more details).

• If any of the destruction criteria are not understood, the InvalidCriteria exception
is raised.

• If the destruction request is not accepted, the CannotMeetCriteria exception is
raised. The criteria describing reasons for the rejection is provided with the
exception.

• If destruction is accepted, the destroy operation returns a Criteria value that
typically describes the terms and conditions under which destruction has been
accepted. This criteria is initialized with values provided by controller objects in
manager and managed object domains (see Section 2.1.3, “The
JIDM::ProxyAgentController Interface,” on page 2-9 for more details).

Once a JIDM::ProxyAgent object is destroyed, references to it are no longer valid
Therefore, invoking an operation on a JIDM::ProxyAgent object that has been
destroyed causes the standard OBJECT_NOT_EXIST exception to be raised. In
addition, invoking operations using references to managed objects, factories, fact
finders, and naming contexts that were obtained through the destroyed
JIDM::ProxyAgent object causes the standard INV_OBJREF exception to be
raised.

2.1.3 The JIDM::ProxyAgentController Interface

Destruction of JIDM::ProxyAgent objects in a distributed environment requires
definition of mechanisms that validate whether destruction is allowed or not. This
specification introduces validation through JIDM::ProxyAgentController objects.

interface ProxyAgentController {
Criteria destruction_is_allowed (in Criteria the_criteria)

raises (InvalidCriteria, CannotMeetCriteria);
void destroyed (in Criteria the_criteria);

};

A JIDM::ProxyAgentController object may be associated with a
JIDM::ProxyAgent object, by passing its reference in the criteria parameter when
invoking the access_domain operation of the JIDM::ProxyAgentFinder . In this
case, the JIDM::ProxyAgentController plays the role “associated at the manager
side.” Following the exact matching rule of key and criteria, a maximum of one
JIDM::ProxyAgentController object may be associated with a given
JIDM::ProxyAgent object at the manager side.
CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-9

2

ed.

f the

nce)
 also

ia
One or more JIDM::ProxyAgentController objects may be associated with a
JIDM:ProxyAgent , at the managed object domain. This can be done if a
JIDM::DomainPort object is initialized with a list of JIDM::ProxyAgentController
objects (see Section 2.1.5, “The JIDM::DomainPort Interface,” on page 2-13).

A destroy operation invoked in a JIDM::ProxyAgent object will invoke operation(s),
depending on the destruction mode, in all JIDM::ProxyAgentController objects
associated with such JIDM::ProxyAgent s.

2.1.3.1 The destruction_is_allowed Operation

The destruction_is_allowed operation is invoked to validate whether a graceful
destruction of a JIDM::ProxyAgent object may occur. Therefore, this operation is
only invoked by the ProxyAgent when destroy has been called, with a
DestructionMode of ”gracefully .” If there are more than one
JIDM::ProxyAgentController objects associated to a JIDM::ProxyAgent , they
should all be consulted. Destruction of the JIDM::ProxyAgent object is only
permitted if all JIDM::ProxyAgentController objects accept destruction of the
object.

The criteria passed as argument to the destroy operation is passed to the
JIDM::ProxyAgentController objects as a parameter of the
destruction_is_allowed operation.

• If destruction is allowed, the destruction_is_allowed call returns a Criteria
potentially specifying the terms and conditions under which destruction is allow
If the Criteria is empty, destruction is allowed unconditionally.

• If destruction is prohibited, the CannotMeetCriteria exception should be raised.
This exception carries the reason why permission to destroy was not granted.

When an exception is raised by any JIDM::ProxyAgentController object in
response to this call, this exception is automatically propagated as the result o
destroy call that triggered this process.

• If all JIDM::ProxyAgentController objects associated with the
JIDM::ProxyAgent being destroyed allow the destruction, then the
JIDM::ProxyAgent object is effectively destroyed. The Criteria returned by the
destroy call is the result of combining all Criteria returned by all involved
JIDM::ProxyAgentController objects.

When combining several criteria into one, the shared components are copied (o
into the combined criteria, and those that are present in one but not another are
copied into the combined criteria. That is, the combination is a “union” of criter
components. The actual number and type of values in the criteria will typically
depend on the reference model being considered.
2-10 CORBA/TMN Interworking V1.0 August 2000

2

 non-

bject

ject

ing

ed
2.1.3.2 The destroyed operation

The JIDM::ProxyAgentController destroyed operation is invoked after the
JIDM::ProxyAgent has been effectively destroyed (at this point, the
JIDM::ProxyAgent object no longer exists). This may occur as a result of a
successful graceful destruction interaction, as described above, or as a result of a
graceful destruction request.

This call carries the Criteria passed to the destroy call in case of ungraceful
destruction, or the combined results of the corresponding destruction_is_allowed
calls, as described above.

If there is more than one JIDM::ProxyAgentController object associated with a
JIDM::ProxyAgent , all will be notified.

2.1.4 The JIDM::ProxyAgentFinder Interface

Objects exporting the JIDM::ProxyAgentFinder interface provides an access to
managed object domains. CORBA managers that require access to a managed o
domain invoke the access_domain operation exposed by a
JIDM::ProxyAgentFinder object.

interface ProxyAgentFinder {
ProxyAgent access_domain (in Key k, in Criteria the_criteria)

raises (InvalidKey, CannotAccess, InvalidCriteria, CannotMeetCriteria);
};

A JIDM::ProxyAgent object represents a session established with a managed ob
domain. Each session is unequivocally characterized by:

• a key that typically identifies the specific Systems Management Environment be
considered (e.g., OSI environment, SNMP environment). This key enables
adequately interpreting the criteria value passed as second argument to the
operation, and

• a criteria value that contains, among other things, the title associated with the
domain being accessed (an AE-title in OSI environments, an IP-address, or
hostname in SNMP environments).

This means that invoking the access_domain operation with two different <key ,
criteria> pairs will create two different JIDM::ProxyAgent objects.

2.1.4.1 The access_domain operation

Two scenarios may occur when invoking the access_domain operation:

1. No JIDM::ProxyAgent object exists with the same key and criteria values pass
in the invocation. In this case, a new JIDM::ProxyAgent object is created with the
key and criteria values associated with it. Finally, a reference to the new
JIDM::ProxyAgent object is returned.
CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-11

2

2. A JIDM::ProxyA gent object exists with the same key and criteria values passed in
the invocation. In this case, a reference to the already existing JIDM::ProxyAgent
object is returned.

It is worth noticing that there can be multiple sessions establi shed with a managed
object domain. This means that any managed object may be accessed through multiple
JIDM::ProxyA gents .

Conventions adopted for keys in JIDM are described in Table 2-3. Standard key values
include “OSI Management” and “Internet Management” denoting the OSI and SNMP-
based Systems Management Environments.

Table 2-3 JIDM Conventions for Proxy Agent Finding Keys

The criteria passed as second argument to the access_d omain operation will contain
information needed to set up the requested session. Only the title assigned to the
domain being accessed has been identified as required for all Systems Management
Reference Models. Wildcard titles are supported in some specific management
environments, enabling designation of the whole space (domain) of managed objects.

If the manager requires exercising control upon destruction of the ProxyAgent, a
reference to a JIDM::ProxyA gentControl ler object must also be specified in the
Criteria (see section Section 2.1.3, “The JIDM::ProxyAgentController Interface,” on
page 2-9).

Table 2-4 summarizes the name and meaning of criteria that may be passed as input
argument to the access_d omain operation exposed by JIDM::ProxyA gent objects.

Table 2-4 JIDM Conventions for Proxy Agent Finding Criteria

The actual number and type of values in the criteria will depend typically on the
reference model being considered.

id field ki nd field meaning

“OSI Management”
“Internet Management”

“XSM environment” Find proxy agents for the
specific Systems Management
Environment.

cr iterion name type meaning

“domain title” domain specific type Title associated to the managed
object domain for which access
is required.

“controll er object” JIDM::ProxyAgentController reference associated to a
JIDM::ProxyAgentController
object in the manager
(OPTIONAL).
2-12 CORBA/TMN Interworking V1.0 August 2000

2

at are
ess to

es to
A reference to a root JIDM::ProxyAgentFinder object at the manager may be
obtained by invoking the resolve_initial_references operation exposed through the
standard CORBA::ORB interface. The standard CORBA::ObjectId assigned to the
root JIDM::ProxyAgentFinder object would be “JIDM::ProxyAgentFinder .”

Following is a fragment of code in a CORBA Manager program:

CORBA::ORB_ptr my_orb;
Object_ptr obj;
JIDM::ProxyAgentFinder_ptr agent_finder;
JIDM::ProxyAgent_ptr agent;
JIDM::Key a_key;
JIDM::Criteria a_criteria;

// A reference to a local JIDM::ProxyAgentFinder object is
// obtained using standard ORB initialization services:

my_orb = ORB_init (argv, my_ORB_id);
obj = my_orb->resolve_initial_references (“JIDM::ProxyAgentFinder”);
agent_finder = ProxyAgentFinder::_narrow (obj);
..................

// After assigning proper values to key and criteria arguments ...
a_key = ...;
a_criteria = ...;

// an association to the managed object domain can be established:
agent = agent_finder -> access_domain (a_key, a_criteria);

Other possibilities include (but are not limited to) registration of the root
JIDM::ProxyAgentFinder object in the local initial CosNaming::NamingContext
or a local Trader.

2.1.5 The JIDM::DomainPort Interface

Managers that require creating and/or invoking operations on managed objects th
members of a managed object domain must first gain access to that domain. Acc
a managed object domain is controlled by JIDM::DomainPort objects. Each
JIDM::DomainPort object has a title associated with it.

interface DomainPort {
readonly attribute Criteria associated_criteria;

 void destroy ();
};

All JIDM::DomainPort objects associated with a managed object domain (i.e.,
associated with titles used to refer to that managed object domain) hold referenc
initial CosNaming::NamingContext and CosLifeCycle::FactoryFinder objects
in the domain.
CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-13

2

In pure CORBA environments, when a manager object invokes the operation
access_domain on a ProxyA gentFin der object, the request will finally arrive at
the JIDM::DomainPort object associated with the title passed as one of the
parameters in the criteria.

Two scenarios may occur.

1. A JIDM::ProxyAgent object exists that exactly matches the key and criteria values
passed as arguments to the access_domain operation. In this case, the
JIDM::DomainPort object finds a reference to the JIDM::ProxyA gent object and
returns it to the invoker.

2. There is no JIDM::ProxyAgent object matching the key and criteria values passed
as arguments to the access _domain operation. In this case, the
JIDM::DomainPort object creates a new JIDM::ProxyA gent object and returns
the reference to the invoker. References to the initial
CosNamin g::NamingContext and CosLifeCycle:: FactoryFin der objects in
the domain will be passed to the new JIDM::ProxyA gent object by the
JIDM::DomainPort object.

During its lifetime, a JIDM::DomainPort object will keep the references to all
JIDM::ProxyA gent objects it creates. This is necessary to resolve the first scenario.

2.1.6 The JIDM::DomainPortFactory Interface

The JIDM::DomainPor t objects can be created dynamically by means of invoking the
create _domain_port operation exposed by JIDM::Domain PortFactory objects.

interface Domain Port Factor y {
DomainPort create_domain_port (in Key k, in Cr iteria creation_c riteria)

raises (InvalidKey, InvalidCriteria, Canno tMeetCriteria);
};

The key passed as first parameter to this call follows the same conventions that were
specified in Table 2-3 on page 2-12.

The criteria passed as second argument to the create_domain_ port operation will
contain information needed to create the JIDM::Domain Port object. Only the title
assigned to the domain being accessed has been identified as required for all Systems
Management Reference Models. Other criteria values may be considered as default
values for all the JIDM::ProxyAgent objects that are created by a domain port.

If the managed domain requires exercising control upon destruction of the
JIDM::ProxyA gent objects, a reference to one or more
JIDM::ProxyAgentController objects must also be specified in the Criteria.

Table 2-5 JIDM Conventions for create_domain_port Criteria

cr iterion name meaning

“domain title” Title associated to the managed object domain for which
access is required.
2-14 CORBA/TMN Interworking V1.0 August 2000

2

ss to

eria
ee

nection

t

th the
2.1.7 The JIDM::EventPort Interface

Managed objects that require forwarding events to managers must first gain acce
the manager. Access to a manager is gained through JIDM::EventPort objects. Each
JIDM::EventPort object has a title associated with it.

interface EventPort {
readonly attribute CosEventChannelAdmin::SupplierAdmin supplier_admin;

 readonly attribute Criteria associated_criteria;
 void destroy ();

};

A JIDM::EventPort object models the port through which events are going to be
received by a manager application. This port is created according to a certain crit
which, among other things, contain the title that identifies the manager domain (s
Section 2.1.8, “The JIDM::EventPortFactory Interface,” on page 2-15). Any
agent/managed object that wants to send events to a manager must set up a con
with the CosEventChannelAdmin::SupplierAdmin object associated with the
JIDM::EventPort object with the appropriate title.

Therefore, a JIDM::EventPort provides and handles access to a specific
CosEventChannelAdmin::SupplierAdmin object in a channel (the
SupplierAdmin object associated with the EventPort). The same
CosEventChannelAdmin::SupplierAdmin object may be associated with differen
JIDM::EventPorts and accessed through several JIDM::EventPorts .

Also note that any number of agents/managed objects may establish sessions wi
same CosEventChannelAdmin::SupplierAdmin associated with a given
JIDM::EventPort .

The JIDM::EventPorts may be destroyed by invoking the destroy operation they
expose.

2.1.8 The JIDM::EventPortFactory Interface

The JIDM::EventPort objects can be created dynamically by invoking the
create_event_port operation exposed by JIDM::EventPortFactory objects.

interface EventPortFactory {
EventPort create_event_port (in Key k, in Criteria creation_criteria,

in CosEventChannelAdmin::SupplierAdmin the_supplier_admin)
raises (InvalidKey, InvalidCriteria, CannotMeetCriteria, AlreadyExists);

};

“controller object” Reference associated to JIDM::ProxyAgentController
object(s) in the managed domain. (OPTIONAL).

criterion name meaning
CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-15

2

 the

stem
with

ce to

re
t

rs
Any manager wanting to receive events should obtain an object reference to a
CosEventChannelAdmin::SupplierAdmin of the channel that is to receive the
events, and create a JIDM::EventPort object with the desired criteria. The
JIDM::EventPort object receives

• a key, identifying the Systems Management Reference model to be used (with
same values specified in Table 2-3 on page 2-12),

• a criteria containing at least the title of the manager, and

• a reference to the CosEventChannelAdmin::SupplierAdmin object.

Only the title of the manager application has been identified as required by all Sy
Management Reference models. The criteria may contain other fields associated
the specific management environment being used.

Table 2-6 JIDM Conventions for create_event_port Criteria

Note – The manager may create a new channel (or admin) or use an object referen
an existing one.

A manager needs to create an EventPort just once (independent of the agents that a
or will be interested in receiving events). This enables a manager to receive even
reports from one or more agents through a specific title.

In addition, several manager objects could share the same SupplierAdmin or
EventChannel (NotificationChannel) object, and connect themselves as consume
interested in receiving just some kind of events.

If the creation is successful, a reference to the newly created JIDM::EventPort object
is returned.

In case of problems, the appropriate exception is raised:

• InvalidKey in case the Key is not recognized.

• InvalidCriteria if any of the components of the Criteria is not understood.

• CannotMeetCriteria if the conditions for creating the EventPort cannot be met.

• AlreadyExists in case there is already an existing EventPort registered with
matching Key/Criteria.

criterion name meaning

“domain title” Title associated to the manager domain that wants to
receive events.
2-16 CORBA/TMN Interworking V1.0 August 2000

2

ay

can
2.1.9 The JIDM::EventPortFinder Interface

CORBA Managed objects that are members of a CORBA-based managed object
domain can obtain references to JIDM::EventPort objects by invoking operations
exposed by a JIDM::EventPortFinder object..

interface EventPortFinder {
exception NoEventPort {};

CosEventChannelAdmin::SupplierAdmin
find_event_port (in Key k, in Criteria the_criteria)

raises (InvalidKey, InvalidCriteria, CannotMeetCriteria, NoEventPort);
};

Connection to the CosEventChannelAdmin::SupplierAdmin object associated
with a JIDM::EventPort is gained by invoking the operation find_event_port
exposed by a JIDM::EventPortFinder object in the agent. As a result of that
invocation, a reference to the CosEventChannelAdmin::SupplierAdmin object
that matches the corresponding Key and Criteria is returned. Managed objects m
establish specific connections to this CosEventChannelAdmin::SupplierAdmin
object by using operations exposed by the SupplierAdmin interface.

It is worth noticing that the JIDM::EventPortFinder object returns a reference to the
CosEventChannelAdmin::SupplierAdmin objects associated with the
JIDM::EventPort object, and not a reference to the JIDM::EventPort itself.

Essentially, invoking the find_event_port operation exposed by a
JIDM::EventPortFinder object implies that the following steps are followed:

1. The JIDM::EventPortFinder object finds a reference to the JIDM::EventPort
object associated with a key and criteria.

2. The JIDM::EventPortFinder finds the
CosEventChannelAdmin::SupplierAdmin object associated with this
JIDM::EventPort , and a reference to this object is returned to the CORBA
managed object that invoked the find_event_port operation.

In case the request fails, the appropriate exception is raised:

• InvalidKey in case the Key is not recognized.

• InvalidCriteria if any of the components of the Criteria are not understood.

• CannotMeetCriteria if the conditions for finding the EventPort cannot be met.

• NoEventPort in case there is no EventPort registered with the appropriate
Key/Criteria.

Different strategies to resolve how CORBA managed objects finally report events
be implemented, including but not limited to:

1. CORBA managed objects directly register themselves as PushSuppliers or
PullSuppliers through the SupplierAdmin associated to the JIDM::EventPort .
CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-17

2

e
 to

art of
tion

tial
ed.

the
n the
jects
ated

2. CORBA managed objects register themselves as PushSuppliers or
PullSuppliers in a single object that acts as some kind of EventChannel (or
NotificationChannel), which in turn is registered as a PushSupplier or
PullSupplier as described above. This is particularly useful when there is mor
than one JIDM::EventPort object and the CORBA managed objects do not need
be aware of the specific port to which events must be sent.

Figure 2-2 Finding References to JIDM::EventPort Objects

2.2 Programming Model

This section is provided as information only, and does not represent a normative p
the specification. Different scenarios are described where the use of this specifica
will be clarified. This should be considered as a high-level tutorial on some poten
uses of the JIDM model. Also, some potential implementation options are discuss

2.2.1 Programming Semantics

CORBA manager programs create and invoke operations on managed objects in
same way they create and invoke operations on ordinary CORBA objects located i
same CORBA domain. Analogously, they receive events supplied by managed ob
as if they were ordinary CORBA objects supplying events to an event channel loc
in the CORBA domain. Whether this actually happens or not is transparent to the
CORBA manager program.

Application A (manager role)

title1

JIDM::
EventPort

incoming events
(from other managers)

CosEventChannelAdmin::
SupplierAdmin

JIDM::
EventPortFinder

Event Reporter

1.
2.
2-18 CORBA/TMN Interworking V1.0 August 2000

2

.

ding

face.

This concept of transparency is specifically supported by the fulfillment of the
semantic rules presented in Section 2.1.1, “JIDM Managed Objects,” on page 2-3

2.2.2 Creating Managed Objects

Creating a managed object implies performing the following actions:

1. Obtain a reference to a JIDM::ProxyAgent object that enables access to the
domain where the managed object is going to be created.

2. Obtain a reference to the initial CosLifeCycle::FactoryFinder in the domain.

3. Invoke the find_factories operation exposed by the initial
CosLifeCycle::FactoryFinder object to find a factory for the new managed
object.

4. Select a factory from the several factory objects that may meet the keys for fin
factories passed to the find_factories operation.

5. Invoke an appropriate operation, exposed by the selected factory, to create the
managed object.

The CORBA manager will narrow references returned by the find_factories
operation to get visibility of the specific interface exported by each factory. These
scenarios are possible:

• There is a specific factory interface associated with each managed object inter

• Factories export a well-know generic interface like the
CosLifeCycle::GenericFactory interface.

CORBA Managers should know which of these two scenarios is implied when the
name of factory object interface is not passed as key to the find_factories operation..

module CosLifeCycle {
...

typedef struct NVP {
CosNaming::Istring name;
any value;

} NameValuePair;

typedef sequence <NameValuePair> Criteria;
typedef CosNaming::Name Key;

interface GenericFactory {
boolean supports (in Key k);
Object create_object (in Key k, in Criteria the_criteria)

raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

};
};
CORBA/TMN V1.0 Programming Model Aug. 2000 2-19

2

y

 is

ment
e the
 the
s,
Typically, a name for the managed object is passed as argument to the create
operation. This name would unequivocally identify the managed object within the
domain where it will be created. The identifier of the principal interface exported b
the managed object should also be passed to the create operation in case it was not
passed as a key to the find_factories operation.

As already mentioned in Section 2.1.2, “The JIDM::ProxyAgent Interface,” on
page 2-4, valid key values for finding factories depend on the specific Systems
Management Reference Model being considered. However, the overall philosophy
common to all models.

The following example shows the code used to create a managed printer. This frag
of code would be the same for all reference models you consider (e.g., it would b
same for OSI management or SNMP-based management). Only the way in which
reference to the JIDM::ProxyAgent object is obtained, the keys used to find factorie
or semantics of arguments passed to the create_object operation may vary.

JIDM::ProxyAgent_ptr agent;
CORBA::Object_ptr obj;
Printing::ManagedPrinter_ptr my_printer;
JIDM::Key finding_key (1);
CosLifeCycle::FactoryFinder_ptr ff;
CosLifeCycle::Factories mo_factories;
CosLifeCycle::GenericFactory_ptr my_factory;
....................................

// a reference to a JIDM::ProxyAgent is obtained as a result of
// establishing a session with the managed object domain where
// the printer is going to be created:

agent = ...;
....................................

// a reference to the initial CosLifeCycle::FactoryFinder object
// is obtained:

ff = agent -> get_domain_factory_finder ();

// a key to find a factory for the managed object is constructed:

finding_key [0].id = “CosLifeCycle::GenericFactory”;
finding_key [0].kind = “factory interface”;
....................................

// factories for the managed object are found through the initial
// factory finder:

mo_factories = ff -> find_factories (finding_key);

// a reference is selected and narrowed to the expected interface:

my_factory = CosLifeCycle::GenericFactory::_narrow (mo_factories [0])

// a managed printer is created and a reference to it is returned
2-20 CORBA/TMN Interworking V1.0 August 2000

2

aged
RB

omain

ject

A
// which will typically be narrowed to a specific interface

obj = my_factory -> create_object (...);
my_printer = Printing::ManagedPrinter::_narrow (obj);

As shown in the example, CORBA managers will create managed objects (a man
printer in the example) in the same way they create CORBA objects in the local O
domain. That is to say, by means of using standard CosLifeCycle services. Whether
this actually happens or not depends on how the corresponding managed object d
is being accessed:

• through one or several interconnected ORBs (i.e., directly through CORBA), or

• through a JIDM gateway (a CORBA/CMIP gateway, for example).

Figure 2-3 illustrates how CORBA manager objects will create a new managed ob
in a pure CORBA environment.

Figure 2-3 Invoking operations on a managed object directly through CORBA

The JIDM::ProxyAgent created as a result of establishing a session with a CORB
managed object domain would typically hold references to the root
CosNaming::NamingContext object and CosLifeCycle::FactoryFinder object in
the domain. These steps are followed:

1. The CORBA manager invokes the get_domain_factory_finder operation
exposed by the JIDM::ProxyAgent object. As a result, a reference to the initial
CosLifeCycle::FactoryFinder in the domain being accessed is returned.

JIDM::
ProxyAgent

specific
managed object
factory interface

Managed Object Domain
(Agent Application)

title4

Managed Object
Factory

CosLifeCycle::
FactoryFinder

manager object

1.

2.

3.

4.

CosNaming::
NamingContext
CORBA/TMN V1.0 Programming Model Aug. 2000 2-21

2

t that

ect

s any
ith a

ain).
ent

 to

ns:

ject

her

aged
ject

ng an
e
2. The CORBA manager object invokes the find_factories operation exposed by the
initial CosLifeCycle::FactoryFinder object. As a result, a reference to a
managed object factory is obtained and returned to the CORBA manager objec
requested it.

3. The CORBA manager object invokes a suitable operation on the managed obj
factory using the CORBA object reference previously obtained. Typically, the
CORBA manager will narrow this reference to a well-known managed object
factory interface (the CosLifeCycle::GenericFactory interface, for example).

4. The managed object factory creates the CORBA managed object and perform
other required action (such as registering a reference to the managed object w
name in the local CosNaming::NamingContext and/or notifying that a new
managed object has been created to other objects at the managed object dom
This kind of side-effect actions may vary depending on the Systems Managem
Reference Model being considered.

5. Finally, if everything is all right, the managed object factory returns a reference
the CORBA manager object; otherwise, it returns an exception.

2.2.3 Invoking Operations on Managed Objects

Invoking an operation on a managed object implies performing the following actio

1. Obtain a reference to a JIDM::ProxyAgent object that enables access to some
domain of which the managed object is a member.

2. Obtain a reference to the initial CosNaming::NamingContext in the domain, by
means of invoking the get_domain_naming_context operation exposed by the
JIDM::ProxyAgent object.

3. Construct the name that unequivocally identifies the managed object within the
domain.

4. Invoke the resolve operation exposed by the initial
CosNaming::NamingContext object in the domain, thus obtaining a CORBA
object reference pointing to the managed object.

5. Invoke the operation on the managed object.

Of course, steps 1 through 4 are only strictly required the first time a managed ob
is accessed. Actually, the CORBA manager object that obtains a reference to a
managed object can register the reference in some local object service so that ot
CORBA manager objects can find the reference and do not need to interact with
JIDM::ProxyAgent or CosNaming::NamingContext objects.

Once a reference is obtained for a managed object, it is valid as long as the man
object exists and the associated managed object domain is accessible. A valid ob
reference can be used as many times as required. Two alternatives exist for invoki
operation on a managed object once a CORBA object reference is obtained for th
object:

• Use the Dynamic Invocation Interface (DII); or
2-22 CORBA/TMN Interworking V1.0 August 2000

2

y

e
A

ed

ms
e for
ence

d as

d
• Use IDL stubs generated from definition, in OMG IDL, of interfaces exported b
the managed object.

In the first case, the CORBA object reference obtained as a result of resolving th
name of the managed object can be used directly. In the second case, the CORB
object reference must be narrowed to a specific interface exported by the manag
object.

The following example shows the code used to invoke the reset operation exposed by
a managed printer (i.e., objects exporting the Printing::ManagedPrinter interface)
using IDL stubs generated in C++.

JIDM::ProxyAgent_ptr agent;
CosNaming::Name printer_name;
....................................

// a reference to a JIDM::ProxyAgent is obtained as a result of
// establishing a session with the managed object domain where
// the printer is located:

agent = ...;
....................................

// a reference to the initial CosNaming::NamingContext object
// is obtained:

CosNaming::NamingContext_ptr ctx = agent -> get_domain_naming_context ();
....................................

// the name of the printer is constructed:

printer_name = ...;

// a reference to the managed printer is obtained and
// narrowed to the ManagedPrinter interface:

CORBA::Object_ptr obj = ctx -> resolve (printer_name);
Printing::ManagedPrinter_ptr my_printer =

Printing::ManagedPrinter::_narrow (obj);

// Finally, the reset operation is invoked on the managed object:

my_printer -> reset ();

It must be pointed out that this fragment of code would be the same for all Syste
Management Reference Models that can be considered (e.g., it would be the sam
OSI management or SNMP-based management). Only the way in which the refer
to the JIDM::ProxyAgent object is obtained or the way in which the name of the
managed object is constructed may vary. Thus, CORBA managers will have the
illusion that managed objects (a managed printer in the example) are implemente
CORBA objects directly accessible via CORBA.

Whether this actually happens or not depends on how the corresponding manage
object domain is being accessed:
CORBA/TMN V1.0 Programming Model Aug. 2000 2-23

2

ed

a
 the

t
• through one or several interconnected ORBs (i.e., directly through CORBA), or

• through a JIDM gateway (a CORBA/CMIP gateway, for example).

Figure 2-4 illustrates how CORBA manager objects invoke operations on a manag
object in a pure CORBA environment.

Figure 2-4 Invoking Operations on a Managed Object Directly through CORBA

As previously explained, the JIDM::ProxyAgent created as a result of establishing
session with a CORBA managed object domain would typically hold references to
initial CosNaming::NamingContext object and CosLifeCycle::FactoryFinder
objects in the domain. Thus, the following steps will be followed:

1. The CORBA manager object invokes the get_domain_naming_context
operation exposed by the JIDM::ProxyAgent object, in order to obtain a reference
to the initial CosNaming::NamingContext object.

2. The CORBA manager object invokes the resolve operation exposed by the initial
CosNaming::NamingContext object, passing the name of the managed objec
upon which it wants to operate. As a result, a CORBA object reference to the
managed object is obtained and returned to the CORBA manager object that
requested it.

JIDM::
ProxyAgent

specific
management

interface
Application C (agent role)

title4

CosNaming::
NamingContext

manager object

1.

2.

3.
2-24 CORBA/TMN Interworking V1.0 August 2000

2

g the
 be

rrow

ts

ctly

ister

ed
3. The CORBA manager object invokes an operation on the managed object usin
CORBA object reference previously obtained. IDL stubs or the standard DII can
used for doing this. If IDL stubs are used, the CORBA manager object must na
the reference to a specific OMG IDL interface.

2.2.4 Reception of Events at CORBA Managers

Different strategies to resolve how CORBA manager objects finally consume even
can be implemented, including but not limited to:

• CORBA manager objects responsible for performing management functions dire
register themselves as PushConsumers or PullConsumers at every local
JIDM::EventPort .

• CORBA manager objects responsible for performing management functions reg
themselves as PushConsumers or PullConsumers in a single EventChannel .
The event channel registers itself as a PushConsumer or PullConsumer in
every local JIDM::EventPort . This is particularly useful when there is more than
one JIDM::EventPort object and the CORBA manager objects do not need to
distinguish through which specific port events were received.

Figure 2-5 Event Reception at CORBA Managers

It is worth noticing that several advantages are derived from defining
JIDM::EventPort objects as having CosEventChannelAdmin::SupplierAdmin
objects, some of which are:

• Any EventChannel implementation supplied by any software provider can be us
to receive events from an agent.

Application A (manager role)

title1

JIDM::
EventPort

incoming events
(from other managers)

incoming events
(from agents)
CORBA/TMN V1.0 Programming Model Aug. 2000 2-25

2

an

an

lf,

s per

t a

).

cts in
nager

vent

ers.
n
ll
• Managers wanting to filter events can register a NotificationChannel instead of an
EventChannel to filter events. A manager who does not want to filter events c
use a simple EventChannel . This can be achieved transparently for
gateway/managed domains.

• The same EventChannel can be shared by several managers and a manager c
reuse the EventChannel whenever he wants, independently of it being used by
other managers.

• Given the new NotificationChannel structure, multiple Admins per channel are
possible (even frequent). By registering the Admin rather than the Channel itse
the user has better configuration possibilities.

• Ability to globally filter on reception.

• Easier grouping capabilities into a single channel, but keeping separate Admin
title (with potentially different filters).

• Potentially support delegation facilities (an agent/manager application could ge
SupplierAdmin from a higher level manager and register it with another title,
effectively saving a forwarding step).

• An EventChannel can be created in the gateway process (there is an
EventChannelFactory facility being provided) or it can be created in any other
distributed process and registered in the gateway (i.e., EventChannel can be
distributed and the load of managing the final CORBA events can be balanced

• CORBA manager objects consume events generated by remote managed obje
the same way they receive other events (events generated by other CORBA ma
objects at the same CORBA Manager, for example).

• CORBA manager objects residing in different CORBA Managers can use
JIDM::EventPorts to exchange events between them since they are ordinary e
channels.

• Multiple scenarios for handling incoming events are possible at CORBA manag
One or several JIDM::EventPort objects can be installed, reception of events ca
be handled by means of applying different cascading techniques, push and pu
styles of event communication can be combined, etc.
2-26 CORBA/TMN Interworking V1.0 August 2000

2

g
 turn,

 as

e

n

Figure 2-6 Handling Event Reports with Event Channels (push model)

Figure 2-6 represents one possible scenario - CORBA manager objects performin
management functions are registered as consumers at an event channel which, in
has been registered as a PushConsumer at two local JIDM::EventPort objects. The
basic algorithm being used is defined as follows:

1. During the start up phase of the CORBA Manager Application, a
CosEventChannelAdmin::EventChannel object is registered as a
CosEventComm::PushConsumer in every local JIDM::EventPort . CORBA
manager objects actually performing the management functions are registered
consumers in this channel.

2. A JIDM::EventPort object receives data associated with an event.

3. The JIDM::EventPort invokes the push operation exposed by all objects that hav
been registered as CosEventComm::PushConsumers . This includes the
CosEventChannelAdmin::EventChannel object. Data of the event is passed i
the invocation as an any.

4. When the CosEventChannelAdmin::EventChannel object receives an event, it
invokes the push operation exposed by all CORBA manager objects that were
registered as CosEventComm::PushConsumers in the channel.

CosEventChannelAdmin::
ConsumerAdmin

2.

1.

3.

CosEventComm::
PushConsumer

EventChannel

JIDM::
EventPort

4.

5.

incoming
event

Manager
objects

JIDM::
EventPort
CORBA/TMN V1.0 Programming Model Aug. 2000 2-27

2

a

nnel
5. The CosEventChannelAdmin::EventChannel object keeps every event it
receives until all CORBA manager objects that were registered as
CosEventComm::PullConsumers invoke the pull operation on the channel or
time-out expires.

Figure 2-7 Handling Event Reports with Event Channels (pull model)

Figure 2-7 represents another possible scenario, where CORBA manager objects
performing management functions are registered as consumers at one event cha
that, in turn, has been registered as a PullConsumer at two local JIDM::EventPort
objects. The basic algorithm being followed is:

1. During the start up phase of the CORBA Manager Application, the
CosEventChannelAdmin::EventChannel object is registered as a
CosEventComm::PullConsumer in every local JIDM::EventPort .

2. A JIDM::EventPort object receives data associated with an event report.

3. The JIDM::EventPort object holds the event so that all objects registered as
CosEventComm::PullConsumers can consume the event. They will do it by
invoking the pull operation exposed by the JIDM::EventPort object.

4. When the CosEventChannelAdmin::EventChannel pulls the event, it invokes
the push operation exposed by all CORBA manager objects that have been
registered as CosEventComm::PushConsumers in the channel.

CosEventChannelAdmin::
ConsumerAdmin

2.

1.

3.

CosEventComm::
PullConsumer

EventChannel

JIDM::
EventPort

4.

5.

incoming
event

Manager
objects

JIDM::
EventPort
2-28 CORBA/TMN Interworking V1.0 August 2000

2

t be

his

t
ution.

zing
and,

e

n a

bject

d). As

e
s in
5. The CosEventChannelAdmin::EventChannel object also keeps every event it
pulls until all CORBA manager objects that have been registered as
CosEventComm::PullConsumers invoke the pull operation on it or a time-out
has expired.

2.2.5 Federation of JIDM::ProxyAgentFinders and JIDM::DomainPorts

To ensure that the service for finding JIDM::ProxyAgent objects is scalable, the
principle of federation needs to be adopted. Federation is essential in large-scale
distributed systems where the existence of a centralized ownership control canno
assumed.

The specific service used to federate JIDM::DomainPort objects in a pure CORBA
environment is transparent to CORBA manager clients and beyond the scope of t
specification. Use of Traders or intermediate JIDM::ProxyAgentFinder objects
connected in a graph are some examples of valid solutions. Furthermore, differen
federation services can be supported and combined to implement a complete sol

Note that in this respect, the root JIDM::ProxyAgentFinder object that is accessible
to CORBA managers simply represents a simple bootstrapping mechanism that
encapsulates access to whatever Federation Service is finally used. By standardi
this interface, portability of CORBA manager clients is guaranteed. On the other h
the JIDM::ProxyAgentFinder interface allows easier implementation of gateways
between CORBA managers and managed object domains that are only accessibl
through standard management protocols (CMIP, SNMP, etc).

In a pure CORBA environment, a complete solution may be implemented based o
graph of inter-connected JIDM::ProxyAgentFinder objects. In such solution, there
would be at least two styles of JIDM::ProxyAgentFinder objects:

1. The JIDM::DomainPort objects that actually work as factories of
JIDM::ProxyAgent objects.

2. Intermediary JIDM::ProxyAgentFinder objects that pass requests on to either
JIDM::DomainPorts or other intermediary JIDM::ProxyAgentFinder objects.

By configuring intermediary JIDM::ProxyAgentFinder objects and
JIDM::DomainPort objects into a graph, the service for finding JIDM::ProxyAgent
objects can be built so that it administers access to a large number of managed o
domains.

Whenever a manager object invokes the access_domain operation, the request
would traverse the graph until it reaches a JIDM::DomainPort object, which can
satisfy the request (one that resides in the managed object domain being accesse
the request traverses the graph, each intermediary (non-terminal)
JIDM::ProxyAgentFinder object would decide which link the request would travers
next. Decisions are based upon information about each available link, any policie
force at that node, and value of parameters in the request.
CORBA/TMN V1.0 Programming Model Aug. 2000 2-29

2

ycle

e
tive
Clearly, configuration of JIDM::ProxyAgentFinder graphs and definition of policies
to traverse these graphs requires definition of Federating interfaces (see the Life C
Service under the CORBAservices heading for definition of interfaces to federate
CosLifeCycle::GenericFactory objects). Again, different federation policies can b
supported and combined to implement a complete solution. One possible alterna
may be that intermediate JIDM::ProxyAgentFinder objects export an interface that
enables them to bind a reference to a JIDM::ProxyAgentFinder object together with
a specific filter that can be applicable to key and criteria values passed to the
access_domain operation. This would allow registering one
JIDM::ProxyAgentFinder object that is able to find references to
JIDM::ProxyAgent associated with some range of title values.

Figure 2-8 Implementing Federation with Graphs of ProxyAgentFinders

Figure 2-8 illustrates how federation of JIDM::DomainPorts would work if a graph
of intermediate JIDM::ProxyAgentFinder objects is implemented. The following
steps would be followed:

1. A manager object invokes the access_domain operation exposed by the root
JIDM::ProxyAgentFinder object. The manager object typically obtains a
reference to this JIDM::ProxyAgentFinder object using local initialization
services.

JIDM::
DomainPort

JIDM::
ProxyAgentFinder

JIDM::
ProxyAgentFinder

JIDM::
ProxyAgentFinder

title4

JIDM::
ProxyAgent

manager object
2-30 CORBA/TMN Interworking V1.0 August 2000

2

 to

reate

this
ed

 how

n
2. The JIDM::ProxyAgentFinder object that first receives the access_domain
request will typically act as an intermediary JIDM::ProxyAgentFinder object.
Based on information available to that object, it will decide to pass requests on
other JIDM::ProxyAgentFinder objects.

3. The request will traverse the graph until it reaches a JIDM::DomainPort object,
which resides at the managed object domain being accessed. That object will c
or return an already existing reference to a JIDM::ProxyAgent object, which
matches the key and criteria value passed in the request.

4. As a result of this process, a valid reference to a JIDM::ProxyAgent object would
be passed to the manager object that requested to establish a session. Using
reference, the manager object is able to operate upon members of the manag
object domain or create new members of the managed object domain.

Figure 2-9 Implementing Federation with Traders

An alternative solution may be based on the use of Traders. Figure 2-9 illustrates
federation of JIDM::DomainPorts would work in such a case. The following steps
would be followed:

1. A manager object would invoke the access_domain operation exposed by the
root JIDM::ProxyAgentFinder object. The manager object would typically obtai
a reference to the root JIDM::ProxyAgentFinder object using local initialization
services.

JIDM::
DomainPort

Trader

JIDM::
ProxyAgentFinder

Trader

title4

JIDM::
ProxyAgent

manager object
CORBA/TMN V1.0 Programming Model Aug. 2000 2-31

2

ested
rate

scale
t be

f this

t
ution.

hat

s is

ains

n a

ber

 of
2. The root JIDM::ProxyAgentFinder object would convert the request into an
invocation of the lookup operation exposed by a Trader object. This Trader object
may be federated with other Trader objects.

3. The request would traverse the graph of Traders until some of them find a
JIDM::DomainPort object, which resides at the managed object domain being
accessed. A reference to this JIDM::DomainPort object is passed to the root
JIDM::ProxyAgentFinder object, which initiated the process.

4. The root JIDM::ProxyAgentFinder object would invoke access_domain on the
JIDM::DomainPort object. As a result, a reference to a JIDM::ProxyAgent
object is returned.

5. The returned reference would finally be passed to the manager object that requ
to establish a session. Using this reference, the manager object is able to ope
upon members of the managed object domain or create new members of the
managed object domain.

2.2.6 Federation of JIDM::EventPortFinders and JIDM::EventPorts

To ensure that the service for finding JIDM::EventPort objects is scalable, the
principle of federation also needs to be adopted. Federation is essential in large-
distributed systems where the existence of a centralized ownership control canno
assumed.

The specific service used to federate JIDM::EventPort objects in a pure CORBA
environment is transparent to CORBA manager clients and is beyond the scope o
specification. Use of Traders or intermediate JIDM::EventPortFinder objects
connected in a graph are some examples of valid solutions. Furthermore, differen
federation services can be supported and combined to implement a complete sol

Note that in this respect, the root JIDM::EventPortFinder object that is accessible to
CORBA managed objects simply represents a simple bootstrapping mechanism t
encapsulates access to whatever Federation Service is finally used. By means of
standardizing this interface, portability of CORBA managed object implementation
guaranteed. On the other hand, the JIDM::EventPortFinder interface allows easier
implementation of gateways between CORBA managers and managed object dom
that are only accessible through standard management protocols (CMIP, SNMP).

In a pure CORBA environment, a complete solution may be implemented based o
graph of inter-connected JIDM::EventPortFinder objects. By configuring
intermediary JIDM::EventPortFinder objects into a graph, the service for finding
JIDM::EventPort objects can be built so that it administers access to a large num
of managed object domains.

Whenever a managed object invokes the find_event_port operation, the request
would traverse the graph until it reaches the target JIDM::EventPort object. As the
request traverses the graph, each intermediary JIDM::EventPortFinder object would
decide which link the request would traverse next. Decisions will be based upon
information about each available link, any policies in force at that node, and value
parameters in the request.
2-32 CORBA/TMN Interworking V1.0 August 2000

2

cle

to

ssed

.

on to

ject is
Clearly, configuration of JIDM::EventPortFinder graphs and definition of policies to
traverse these graphs requires definition of Federating interfaces, see the Life Cy
Service under the CORBAservices heading for definition of interfaces to federate
CosLifeCycle::GenericFactory objects). However definition of such interfaces is
beyond the scope of this specification since they are transparent to the clients
(managed objects). Different federation policies can be supported and combined
implement a complete solution.

One possible alternative may consist of intermediate JIDM::EventPortFinder objects
exporting an interface that enables binding a reference to a JIDM::EventPortFinder
object together with a specific filter that is applicable to key and criteria values pa
to the find_event_port operation. This would allow, as an example, to register one
JIDM::EventPortFinder object as being able to find references to JIDM::EventPort
objects associated with titles that fall within some specific range of title values.

Figure 2-10 on page 2-34 illustrates how federation of JIDM::EventPorts would work
if a graph of intermediate JIDM::EventPortFinder objects is implemented. The
following steps would be followed:

1. A managed object would invoke the find_event_port operation exposed by a
JIDM::EventPortFinder object. The managed object typically would obtain a
reference to this JIDM::EventPortFinder object using local initialization services

2. The JIDM::EventPortFinder object that first receives the access_domain
request would typically act as an intermediary JIDM::EventPortFinder object.
Based on information available to that object, it would decide to pass requests
another JIDM::EventPortFinder object.

3. The request would traverse the graph until it reaches the target JIDM::EventPort
object. The last JIDM::EventPortFinder object in the graph would obtain a
reference to the CosEventChannelAdmin::SupplierAdmin object in the
channel and would return that reference.

4. As a result of this process, a valid reference to a
CosEventChannelAdmin::SupplierAdmin object would be passed to the
managed object that issued the request. Using this reference, the managed ob
able to register as a push or pull supplier.
CORBA/TMN V1.0 Programming Model Aug. 2000 2-33

2

art of

ions

RBA
, a
an
o
IDM
Figure 2-10 Finding JIDM::EventPort Objects

2.3 JIDM Gateways

This section is provided as information only, and does not represent a normative p
the specification. Different gateway scenarios are described where the use of this
specification will be clarified. This should be considered as a high-level tutorial on
some potential uses of the JIDM model. Also, some potential implementation opt
are discussed.

2.3.1 Manager Side Gateways

2.3.1.1 Overview

JIDM gateways must be used by any CORBA Manager Application needing to
interoperate with managed object domains that are not directly accessible via CO
but via other management-specific protocol such as CMIP or SNMP. By definition
JIDM gateway is associated with only one management protocol. Therefore, we c
refer to CORBA/CMIP gateways or CORBA/SNMP gateways whenever we want t
designate explicitly which is the specific management protocol associated with a J
gateway at some CORBA Manager Application.

JIDM::
EventPort

JIDM::
EventPortFinder

JIDM::
EventPortFinder

JIDM::
EventPortFinder

Manager Application

title4

CosEventChannelAdmin::
SupplierAdmin

managed object

manager objects
2-34 CORBA/TMN Interworking V1.0 August 2000

2

ays
ss to
tocols

er

.

A JIDM gateway runs in one CORBA server; however, one or several JIDM gatew
can coexist in the same CORBA server. Programs of the CORBA server have acce
both ORB services and services encapsulating access to management-specific pro
provided by JIDM gateways at the server. Besides, there can be several CORBA
servers containing JIDM gateways in the same CORBA Manager Application.

Any JIDM gateway typically has several CORBA objects associated with it.

• A JIDM::ProxyAgentFinder object for establishing connections to managed
object domains being accessed through the gateway.

• One or several JIDM::EventPort objects for receiving notification of events from
members of managed object domains being accessed through the gateway.

The JIDM::ProxyAgentFinder object is created during start-up of the CORBA serv
where the JIDM gateway is going to run. JIDM::EventPort objects at the gateway
may be created during or after start-up of that server. Typically, this requires the
existence of an EventPortFactory object at the gateway.

Several JIDM gateways can exist in a CORBA manager and one
JIDM::ProxyAgentFinder object is typically associated with each of them. All the
gateways would be registered in a root JIDM::ProxyAgentFinder object at the
CORBA manager. CORBA managers can obtain a reference to this local root
JIDM::ProxyAgentFinder object by using standard CORBA Initialization Services
CORBA/TMN V1.0 JIDM Gateways Aug. 2000 2-35

2

Figure 2-11 Structure of JIDM Gateways (manager side)

As a result of establishing a connection through a JIDM gateway, a
JIDM::ProxyAgent object is created at the gateway. The JIDM::ProxyAgent objects
created this way are responsible for:

• Creating a CosLifeCycle::FactoryFinder object that in turn enables creation of
CORBA factories that handle creation of managed objects at the domain.

• Creating a CosNaming::NamingContext object that in turn enables creation of
CORBA proxy managed objects for each member of the domain.

management
protocol

JIDM::
ProxyAgentFinder

JIDM gateway

JIDM::
EventPorts

JIDM::
ProxyAgentFinder

JIDM gateway

JIDM::
EventPorts

management
service access

endpoint

management
protocol

local root
JIDM::ProxyAgentFinder

management
service library

EventPort
factories
2-36 CORBA/TMN Interworking V1.0 August 2000

2

n

in the

e

Figure 2-12 JIDM::ProxyAgents in a gateway

2.3.1.2 Getting access to managed object domains

The following steps are followed when a CORBA manager tries to get access to a
external managed object domain using a JIDM gateway (see Figure 2-13 on
page 2-38):

1. The CORBA manager invokes the access_domain operation exported by the
JIDM::ProxyAgentFinder object located at the gateway. Information that
unequivocally identifies the managed object domain to be accessed is passed
invocation.

2. As a result of invoking the access_domain operation, a CORBA
JIDM::ProxyAgent object is created at the gateway. The new JIDM::ProxyAgent
object is bound to a management protocol communication endpoint (a service
access point in OSI environments). If a specific domain title was specified in th
criteria passed as argument to the access_domain operation, then a connection is
established with the managed object domain. In such a case, the
JIDM::ProxyAgent is responsible for managing resources associated with the
connection.

3. A reference to the JIDM::ProxyAgent object is returned to the CORBA manager
that requested access to the managed object domain being considered.

JIDM::
ProxyAgent

specific
management

interface
Application C (agent role)

title4

manager object

proxy
managed object

gateway
management

protocol

protocol stack protocol stack
CORBA/TMN V1.0 JIDM Gateways Aug. 2000 2-37

2

some
):

ctory

g the
his
e

t
Figure 2-13 Finding References to JIDM::ProxyAgents in a JIDM Gateway

2.3.1.3 Creation of managed objects

These steps are followed when a CORBA manager creates a managed object at
domain that is accessible through a JIDM gateway (see Figure 2-14 on page 2-39

1. The CORBA manager invokes the get_domain_factory_finder operation
exported by the JIDM::ProxyAgent object.

2. The CORBA manager invokes the find_factories operation exported by the
returned CosLifeCycle::FactoryFinder object, passing a valid key value.

3. The CosLifeCycle::FactoryFinder object finds references for appropriate
managed object factories at the JIDM gateway. If there is no managed object fa
matching the key, the CosLifeCycle::FactoryFinder object creates one.
References to managed object factories are returned to the CORBA manager.

4. The CORBA manager invokes an operation on the managed object factory usin
CORBA object reference it obtained. Typically, the CORBA manager narrows t
object reference to a specific managed object factory interface supported by th
factory (the CosLifeCycle::GenericFactory interface, for example).

5. The CORBA request is received by the JIDM gateway and is translated into an
appropriate management create request PDU. This create request PDU is sen
through the management protocol communication endpoint held by the
JIDM::ProxyAgent .

request
PDUs

gateway

1.
2.

3.

JIDM::
ProxyAgentFinder

JIDM::
ProxyAgent
2-38 CORBA/TMN Interworking V1.0 August 2000

2

rns

naged
:

t

t
er
ay.

6. When the response to the request PDU is received, the invoked operation retu
with the appropriate result values.

7. If the create operation must return an object reference, then a CORBA proxy
managed object is also created at the gateway.

Figure 2-14 Creating Managed Objects through a JIDM Gateway

2.3.1.4 Invocation of operations on managed objects

These steps are followed when a CORBA manager invokes an operation on a ma
object that is accessible through a JIDM gateway (see Figure 2-15 on page 2-40)

1. The CORBA manager invokes the get_domain_naming_context operation
exported by the JIDM::ProxyAgent object.

2. A CORBA manager invokes the resolve operation exported by the returned
CosNaming::NamingContext object, passing the name of the managed objec
upon which it wants to operate.

3. The CosNaming::NamingContext object finds a reference to the CORBA objec
acting as the proxy of the managed object and returns it to the CORBA manag
that requested it. The CORBA proxy managed object resides in the JIDM gatew
The CosNaming::NamingContext object is responsible for creating the CORBA
proxy managed object if it didn’t exist at the gateway, the first time an existing
managed object is accessed.

 request
PDU

gateway

2.
3.

4.

5.

CosLifeCycle::
FactoryFinder

impl.

CosLifeCycle::
FactoryFinder

6.

proxy
managed

object factory

specific managed
object factory

interface

7.

JIDM::
ProxyAgent

1.
CORBA/TMN V1.0 JIDM Gateways Aug. 2000 2-39

2

 DII

rns

ny
int to
4. The CORBA manager invokes an operation on the managed object using the
CORBA object reference to the corresponding proxy. IDL stubs or the standard
can be used to perform this action. Whenever IDL stubs are used, the CORBA
manager must narrow the reference, obtained from the
CosNaming::NamingContext , to a specific OMG IDL interface (the
Printing::ManagedPrinter interface, for example).

5. The CORBA request is received by the JIDM gateway and is translated into an
appropriate management request PDU. This request PDU is sent through the
management protocol communication endpoint held by the JIDM::ProxyAgent .

6. When the response to the request PDU is received, the invoked operation retu
with the appropriate result values.

Figure 2-15 Invoking Operations on a Managed Object through a JIDM Gateway

2.3.1.5 Event reception

Events originated at managed object domains are always received through

JIDM::EventPort objects at CORBA Managers. A mechanism is implemented at a
JIDM gateway that allows event data received at a management connection endpo
be forwarded to the appropriate JIDM::EventPort object.

 request
PDU

gateway

2.
3.

4.

5.

CosNaming::
NamingContext

impl.

CosNaming::
NamingContext

6.

proxy
managed

object factory

specific managed
object factory

interface

JIDM::
ProxyAgent

1.
2-40 CORBA/TMN Interworking V1.0 August 2000

2

s,”

 by

the
e
As already mentioned in Section 2.2.4, “Reception of Events at CORBA Manager
on page 2-25, different strategies to resolve how CORBA manager objects finally
consume events can be implemented. Just to give an example, CORBA manager
objects can register themselves directly to JIDM::EventPorts or via some additional
event channel.

Figure 2-16 Event Reporting at JIDM Gateways (manager side)

These steps are followed when a CORBA manager receives an event through a
JIDM::EventPort located at a gateway (see Figure 2-16):

1. During the start up phase of the CORBA Manager Application, one or more
application objects register themselves as either
CosEventComm::PushConsumers or CosEventComm::PullConsumers in
each of the existing JIDM::EventPorts .

2. A PDU containing a notification of an event from a managed object is received
the JIDM gateway through some management connection endpoint. This
management connection endpoint is bound to a specific title and has a
JIDM::EventPort object associated with it, which finally receives the event data
carried in the PDU.

3. The appropriate response (if applicable) is sent by the JIDM gateway back to
application that reported the event, confirming that the event was received at th
Manager Application.

event-report
indication

gateway

CosEventChannelAdmin::
ConsumerAdmin

2.

1.

4.

CosEventComm::
PushConsumer

3.

EventChannel

JIDM::
EventPort

6.

manager
objects

CosEventComm::
PullSupplier

5.
CORBA/TMN V1.0 JIDM Gateways Aug. 2000 2-41

2

s

.

the

a
IP or

gle

ays
oth

ols

with

ts

bject
4. The JIDM::EventPort invokes the push operation exported by all
CosEventComm::PushConsumers objects connected to it. Data of the event i
passed in the invocation as an any.

5. The JIDM::EventPort maintains the event until all
CosEventComm::PullConsumers objects connected to the port pull the event
Data of the event is obtained by consumers as an any.

6. CosEventChannelAdmin::EventChannel objects can be connected as
consumers to the event port. In such a case, manager objects performing
management functions can be connected to the channel instead of directly to
event ports.

2.3.2 Agent Side Gateways

2.3.2.1 Overview

JIDM gateways must be used by any CORBA Agent Application needing to offer
management interface based on some management-specific protocol such as CM
SNMP but not CORBA. By definition, a JIDM gateway is associated with one sin
management protocol. Therefore, we can refer to CORBA/CMIP gateways or
CORBA/SNMP gateways whenever we want to designate explicitly which is the
specific management protocol associated with a JIDM gateway for some given
CORBA Agent Application.

A JIDM gateway runs in one CORBA server; however, one or several JIDM gatew
can coexist in the same CORBA server. Programs in this server have access to b
ORB services and services encapsulating access to management-specific protoc
provided by JIDM gateways at the server. Besides, there can be several CORBA
servers containing JIDM gateways in the same CORBA Agent Application.

Any JIDM gateway at a CORBA Agent Application has several objects associated
it (see Figure 2-17 on page 2-43):

• A JIDM::EventPortFinder CORBA object that enables CORBA managed objec
at the agent application to establish connections to JIDM::EventPort objects at
remote Manager Applications that are accessible through the gateway.

• A JIDM::DomainPort object that serves requests issued from remote Manager
Applications that want to get access to managed objects at the local managed o
domain.

These objects are created during start-up of the CORBA server where the JIDM
gateway is located.

Several JIDM gateways can exist in a CORBA Agent and a JIDM::EventPortFinder
object typically is associated with each of them. All the JIDM::EventPortFinders
would be registered in a root JIDM::EventPortFinder object at the CORBA Agent.
2-42 CORBA/TMN Interworking V1.0 August 2000

2

.
t

 can
 are

ger

ith

d
An initial CosLifeCycle::FactoryFinder object and
CosNaming::NamingContext object exist at any CORBA managed object domain
Whether these two interfaces are exported by the same CORBA object or differen
CORBA objects is an implementation issue. References to these CORBA objects
be obtained from a JIDM gateway by using the standard Initialization Services and
passed to the JIDM::DomainPort object at creation time.

Figure 2-17 Structure of JIDM Gateways (agent side)

2.3.2.2 Handling access to managed objects

A JIDM::DomainPort object resides in the JIDM gateway to handle access to the
managed object domain and serve association request issued from remote Mana
Applications.

Every JIDM::DomainPort object has a title associated with it. This title is used by
remote Manager Applications to identify the managed object domain associated w
the JIDM::DomainPort object.

When a new association request is received by the JIDM::DomainPort object that is
in a gateway, the JIDM::DomainPort object creates a new JIDM::ProxyAgent
object. This object handles CMIS requests received through the newly establishe
association.

management
protocol

JIDM::
EventPortFinder

JIDM gateway

JIDM::
DomainPort

JIDM::
EventPortFinder

JIDM gateway

JIDM::
DomainPort

management
service access

endpoint

management
protocol

local root
JIDM::

EventPortFinder

management
service library
CORBA/TMN V1.0 JIDM Gateways Aug. 2000 2-43

2

hese
ay:

 a
es
A JIDM::DomainPort object in a JIDM gateway holds references to initial
CosNaming::NamingContext and CosLifeCycle::FactoryFinder objects located
at the managed object domain where the JIDM gateway is located. The
JIDM::DomainPort object passes copies of these references to each
JIDM::ProxyAgent object it creates.

Figure 2-18 Handling Access to Local Managed Objects from a JIDM Gateway

2.3.2.3 Creation of managed objects

In CORBA Agent Applications, JIDM::ProxyAgent objects receive PDU indications,
perform the appropriate operations, and return the appropriate PDU responses. T
steps are followed each time a create PDU indication is received by a JIDM gatew

1. A JIDM::ProxyAgent object receives a management create PDU indication
through the management connection endpoint it holds.

2. The JIDM::ProxyAgent object finds an appropriate factory by invoking the
find_factories operation provided by a CosLifeCycle::FactoryFinder object.

3. The JIDM::ProxyAgent object narrows the obtained Factory object reference to
new object reference associated with a specific factory interface. Next, it invok
the operation for creating managed objects exported by the factory being
referenced.

request
PDUs

gateway

2.

management
service access

endpoint

JIDM::
DomainPort

1.
3.

4.

managed
object

CosNaming::
NamingContext

CosLifeCycle::
FactoryFinder

peer
JIDM::

ProxyAgent
2-44 CORBA/TMN Interworking V1.0 August 2000

2

aged

e

 The

o a
 A
e
4. The Factory object creates a new CORBA managed object, instance of the man
object type specified in the management create PDU indication.

5. The Factory object may bind a name (the one passed as the Managed object
instance field in the management create PDU indication, but in IDL form) to th
new CORBA managed object.

6. The Factory object may inform other CORBA managed objects, in the same
managed object domain, that the new managed object has been created.

7. When the operation invoked by the JIDM::ProxyAgent object returns (or when an
exception is raised), the JIDM::ProxyAgent object constructs and sends an
appropriate create PDU response to the remote Manager Application.

Figure 2-19 Handling Management Create PDU Indications

2.3.2.4 Invocation of operations on managed objects

The JIDM::ProxyAgent objects receive indications on single objects, perform the
appropriate operations, and return the appropriate management PDU responses.
following steps are followed each time a PDU indication, corresponding to a
management operation, is received by a JIDM gateway:

1. A JIDM::ProxyAgent object receives a management PDU indication, referred t
single managed object, through the management connection endpoint it holds.
name that unequivocally identifies the managed object is typically passed in th
indication.

CMIP
indication

gateway

CosLifeCycle::
FactoryFinder

1.

2.

3.

7.

creation

Managed Object

CosNaming::
NamingContext4.

5.

JIDM::
ProxyAgent

6.

ManagedObject
(parent)

CosLifeCycle::
Factory

(narrowed to a specific
factory interface
CORBA/TMN V1.0 JIDM Gateways Aug. 2000 2-45

2

he

ed

plier
2. The JIDM::ProxyAgent object finds a CORBA object reference to the target
managed object by invoking the resolve operation exported by a local
NamingContext object. The name of the target managed object is passed in t
invocation, once it is translated to IDL form.

3. The JIDM::ProxyAgent object invokes the appropriate operation on the manag
object. In a Dynamic JIDM gateway, this may be accomplished by using the
Dynamic Invocation API provided by the local ORB.

4. When the management operation invoked by the JIDM::ProxyAgent object returns
(or when an exception is raised), the JIDM::ProxyAgent object constructs and
sends an appropriate PDU response to the remote Manager Application.

Figure 2-20 Invocation of Operations on Single Managed Objects

2.3.2.5 Event reporting

Using operations exported by JIDM::EventPortFinder objects located at a JIDM
gateway, CORBA managed objects are able to find references to several
CosEventChannelAdmin::SupplierAdmin objects, each of which points to a
JIDM::EventPort associated with remote managers.

A managed object reports events to a destination (AE-title) by registering as a sup
in the corresponding JIDM::EventPort (via the standard
CosEventChannelAdmin::SupplierAdmin interface returned by a
JIDM::EventPortFinder object) and, then, supplying events to that channel.

CMIP
indication

JIDM::
ProxyAgent

gateway

CosNaming::
NamingContext

1.

2.

3.

CORBA::Object

4.
2-46 CORBA/TMN Interworking V1.0 August 2000

2

7,
can
aged

e

e

n

nel,

t
Note that any managed object may register itself as a
CosEventComm::PushConsumer or a CosEventComm::PullConsumer in a
remote JIDM::EventPort .

As explained in Section 2.1.9, “The JIDM::EventPortFinder Interface,” on page 2-1
different strategies to resolve how CORBA managed objects finally report events
be implemented. Figure 2-21 illustrates one possible scenario where CORBA man
objects register themselves as PushSuppliers or PullSuppliers in a single object
(called EventReporter), which in turn is registered as a PushSupplier in one or
more remote JIDM::EventPorts . Basic steps are summarized as follows:

1. At creation time, the EventReporter object invokes the find_event_port
operation exported by a JIDM::EventPortFinder object to find references
associated with CosEventChannel::SupplierAdmin interfaces supported by a
remote JIDM::EventPort object. It can try to find references for:

• various JIDM::EventPorts , each of which is bound to one title contained in th
list of destinations defined for the EventReporter object.

• a single JIDM::EventPort bound to a wildcard address (only valid if automatic
event forwarding - recipient manager resolution is supported).

2. The JIDM::EventPortFinder object creates a proxy JIDM::EventPort object if it
doesn’t exist in the gateway. At the time it creates a proxy JIDM::EventPort
object, it performs the necessary initial operations to obtain the reference to th
CosEventChannelAdmin::SupplierAdmin object associated with the new
JIDM::EventPort object.

The EventReporter object registers itself as a CosEventComm::PushSupplier
for each destination.

3. The EventReporter registers itself as a CosEventComm::PushConsumer in
every local event channel that is necessary.

4. CORBA managed objects report events by using the standard event notificatio
services.

5. Each event notification being generated is finally received by some event chan
connected to the EventReporter object.

6. The EventReporter object supplies the event to JIDM::EventPort objects
corresponding to the different destinations.

7. The proxy associated with each JIDM::EventPort in the JIDM gateway constructs
an appropriate event-report request PDU and sends it through the managemen
communication endpoint it holds.
CORBA/TMN V1.0 JIDM Gateways Aug. 2000 2-47

2

Figure 2-21 Sending Event Reports

event-report
request

gateway

5.

1.

6.

JIDM::
EventPortFinder

CosEventComm::
PushConsumer

7.

Event
Channel

4.

Managed
Objects

CosEventComm::
PushConsumer

Event
Reporter

CosEventChannelAdmin::
ConsumerAdmin

3.

2.
2-48 CORBA/TMN Interworking V1.0 August 2000

 OSI CORBA Facilities 3
asic
A.
Contents

This chapter contains the following sections.

3.1 The OSIMgmt Module

The OSIMgmt module comprises a collection of interfaces that together define a b
set of services for developing Systems Management Applications based on CORB
This module contains the following interfaces:

• The ProxyAgent interface

• The ManagedObject interface

• The ManagedObjectFactory interface

• The LocalRoot interface

• The LinkedReplyHandler , EndOfRepliesHandler , and
MultipleRepliesHandler interfaces

• The RepliesIterator and BufferedRepliesHandler interfaces

• The LName interface

• The NamingContext interface

This section describes these interfaces and their operations in detail.

Section Title Page

“The OSIMgmt Module” 3-1

“Programming Model” 3-47

“CORBA/CMIP Gateways” 3-56
CORBA/TMN Interworking V1.0 August 2000 3-1

3

#ifndef _OSIMGMT_IDL_
#define _OSIMGMT_IDL_

#include <JIDM.idl>
#include “X501Inf.idl”
#include “X711CMI.idl”

#pragma prefix “jidm.org”

// Macros used in the ‘raises’ clauses

#define ROSE_ERRORS\
OSIMgmt::ROSEDuplicateInvocation,\
OSIMgmt::ROSEMistypedArgument,\
OSIMgmt::ROSEResourceLimitation, \
OSIMgmt::ROSEUnrecognizedOperation

#define CREATE_ERRORS\
ROSE_ERRORS, \
OSIMgmt::AccessDenied,\
OSIMgmt::ClassInstanceConflict,\
OSIMgmt::DuplicateManagedObjectInstance,\
OSIMgmt::InvalidAttributeValue,\
OSIMgmt::InvalidObjectInstance,\
OSIMgmt::MissingAttributeValue,\
OSIMgmt::NoSuchAttribute,\
OSIMgmt::NoSuchObjectClass,\
OSIMgmt::NoSuchObjectInstance,\
OSIMgmt::NoSuchReferenceObject,\
OSIMgmt::ProcessingFailure,\
OSIMgmt::ProcessingFailureEmpty

#define COMMON_ERRORS \
ROSE_ERRORS, \
OSIMgmt::AccessDenied, \
OSIMgmt::ClassInstanceConflict, \
OSIMgmt::ComplexityLimitation, \
OSIMgmt::ComplexityLimitationEmpty, \
OSIMgmt::InvalidScope, \
OSIMgmt::InvalidFilter, \
OSIMgmt::NoSuchObjectClass, \
OSIMgmt::NoSuchObjectInstance, \
OSIMgmt::ProcessingFailure, \
OSIMgmt::ProcessingFailureEmpty, \
OSIMgmt::SyncNotSupported

#define GET_ERRORS \
COMMON_ERRORS, \
OSIMgmt::GetListError, \
OSIMgmt::OperationCancelled

#define SET_ERRORS \
COMMON_ERRORS, \
OSIMgmt::SetListError
3-2 CORBA/TMN Interworking V1.0 August 2000

3

#define ATTRIBUTE_ERRORS \
COMMON_ERRORS, \
OSIMgmt::GetListError, \
OSIMgmt::SetListError

#define ACTION_ERRORS \
COMMON_ERRORS, \
OSIMgmt::InvalidArgumentValue, \
OSIMgmt::NoSuchAction, \
OSIMgmt::NoSuchArgument

#define DELETE_ERRORS \
COMMON_ERRORS

module OSIMgmt
{

// Definitions of ROSE and CMIS exceptions
exception ROSEDuplicateInvocation { };
exception ROSEMistypedArgument { };
exception ROSEResourceLimitation { };
exception ROSEUnrecognizedOperation { };

exception AccessDenied { };
exception ClassInstanceConflict

{ X711CMI::BaseManagedObjectIdType error_info; };
exception ComplexityLimitation

{ X711CMI::ComplexityLimitationType error_info; };
exception ComplexityLimitationEmpty { };
exception DuplicateManagedObjectInstance

{ X711CMI::ObjectInstanceType error_info; };
exception GetListError

{ X711CMI::GetListErrorType error_info; };
exception InvalidArgumentValue

{ X711CMI::InvalidArgumentValueType error_info; };
exception InvalidAttributeValue

{ X711CMI::AttributeType error_info; };
exception InvalidFilter

{ X711CMI::CMISFilterType error_info; };
exception InvalidScope

{ X711CMI::ScopeType error_info; };
exception InvalidObjectInstance

{ X711CMI::ObjectInstanceType error_info; };
exception MissingAttributeValue

{ X711CMI::MissingAttributeValueType error_info; };
exception MistypedOperation { };
exception NoSuchAction

{ X711CMI::NoSuchActionType error_info; };
exception NoSuchArgument

{ X711CMI::NoSuchArgumentType error_info; };
exception NoSuchAttribute

{ X711CMI::AttributeIdType error_info; };
exception NoSuchObjectClass

{ X711CMI::ObjectClassType error_info; };
exception NoSuchObjectInstance
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-3

3

{ X711CMI::ObjectInstanceType error_info; };
exception NoSuchReferenceObject

{ X711CMI::ObjectInstanceType error_info; };
exception OperationCancelled { };
exception ProcessingFailure

{ X711CMI::ProcessingFailureType error_info; };
exception ProcessingFailureEmpty { };
exception SetListError

{ X711CMI::SetListErrorType error_info; };
exception SyncNotSupported

{ X711CMI::CMISSyncType error_info; };
exception NoSuchEventType

{ X711CMI::NoSuchEventTypeType error_info; };
exception NoSuchInvokeId

{ X711CMI::InvokeIdTypeType error_info; };

// Using Multiple Replies exception for Actions
interface RepliesIterator; // forward declaration
exception UsingMR

{ RepliesIterator replies_iterator; };

// Definition of specific types used within this module
typedef string NameString;
typedef sequence<ASN1_ObjectIdentifier>

ASN1_ObjectIdentifierSeq;
struct AttributeValue {

ASN1_ObjectIdentifier attribute_id;
ASN1_DefinedAny value;

};
typedef sequence<AttributeValue> AttributeValueSeq;

// Type to be used in cmis_create operations
enum CreationKind

{simple, autonaming, subordinate};

// Type to be used in scoped set operations
enum ModifyOperator

{replace, add_member, remove_member,
replace_with_default};

struct AttributeSetOperator {
ModifyOperator modify_operator;
ASN1_ObjectIdentifier attribute_id;
ASN1_DefinedAny attribute_value;

};
typedef sequence <AttributeSetOperator>

SetOperationArgument;

// Forward declaration for ReplyHandler interfaces
interface LinkedReplyHandler;
interface EndOfRepliesHandler;

// ProxyAgent
interface ProxyAgent : JIDM::ProxyAgent {
3-4 CORBA/TMN Interworking V1.0 August 2000

3

void cmis_create (
in CORBA::ScopedName interface_name,
in CreationKind creation_kind,
in CosNaming::Name object_name,
in X711CMI::AccessControlTypeOpt access_control,
in CosNaming::Name reference_object,
in AttributeValueSeq req_attribute_values,
in LinkedReplyHandler reply_handler

);

void cmis_create_sync (
in CORBA::ScopedName interface_name,
in CreationKind creation_kind,
in CosNaming::Name object_name,
in X711CMI::AccessControlTypeOpt access_control,
in CosNaming::Name reference_object,
in AttributeValueSeq req_attribute_values,
out CORBA::ScopedName created_interface_name,
out CosNaming::Name created_object_name,
out X711CMI::ASN1_GeneralizedTimeOpt creation_time,
out AttributeValueSeq created_attribute_values

) raises (CREATE_ERRORS);

void cmis_get (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObjectIdentifierSeq attribute_id_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void cmis_set (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in SetOperationArgument modification_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void cmis_action (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-5

3

in ASN1_ObjectIdentifier action_name,
in ASN1_DefinedAny action_info,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void cmis_delete (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);
};

const ASN1_ObjectIdentifier ACTUAL_CLASS = “2.9.3.4.3.42“;

interface ManagedObject; // forward declaration

interface NamingContext : CosNaming::NamingContext {
// NOTE: These operations are optional
ManagedObject resolve_with_intf (

in CORBA::ScopedName interface_name,
in CosNaming::Name object_name

) raises (NotFound, CannotProceed, InvalidName);

ManagedObject resolve_osi_name(
in ANSI_ObjectIdentifier managed_object_class,
in X711CMI::ObjectInstanceType object_instance

) raises (NotFound, CannotProceed, InvalidName);

CosNaming::Name translate_osi_name (
in X711CMI::ObjectInstanceType object_instance

) raises (InvalidName);

X711CMI::ObjectInstanceType translate_idl_name (
in CosNaming::Name idl_name

) raises (InvalidName);
};

// ManagedObject
interface ManagedObject : NamingContext,

CosLifeCycle::LifeCycleObject {
readonly attribute CosNaming::Name object_name;

void scoped_get (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObjectIdentifierSeq attribute_id_list,
in LinkedReplyHandler reply_handler,
3-6 CORBA/TMN Interworking V1.0 August 2000

3

in EndOfRepliesHandler end_of_replies_handler
);

void scoped_set (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in SetOperationArgument modification_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void scoped_action (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObjectIdentifier action_name,
in ASN1_DefinedAny action_info,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void scoped_delete (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

AttributeValueSeq get_attributes (
in ASN1_ObjectIdentifierSeq attribute_id_list

) raises (GET_ERRORS);

AttributeValueSeq set_attributes (
in SetOperationArgument modification_list

) raises (SET_ERRORS);

ASN1_DefinedAny perform_action (
in ASN1_ObjectIdentifier action_name,
in ASN1_DefinedAny action_info

) raises (ACTION_ERRORS, UsingMR);

void delete_mo () raises (DELETE_ERRORS);
};

// ManagedObjectFactory
interface ManagedObjectFactory {

ManagedObject create (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in ManagedObject reference_object,
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-7

3

in AttributeValueSeq requested_attribute_values
) raises (CREATE_ERRORS);

ManagedObject create_with_auto_naming (
in CORBA::ScopedName interface_name,
in ManagedObject reference_object,
in AttributeValueSeq requested_attribute_values

) raises (CREATE_ERRORS);

ManagedObject create_subordinate (
in CORBA::ScopedName interface_name,
in CosNaming::Name superior_name,
in ManagedObject reference_object,
in AttributeValueSeq requested_attribute_values

) raises (CREATE_ERRORS);
};

// LocalRoot
typedef sequence<ManagedObject> ManagedObjectSeq;

interface LocalRoot : ManagedObject {
exception NoDescendants {};
ManagedObjectSeq list_orphans ();

ManagedObjectSeq
list_orphan_descendants (in CosNaming::Name object_name)

raises (NoDescendants);
};

// LName
interface LName {

exception InvalidName {};

readonly attribute boolean is_distinguished_name;
readonly attribute unsigned long num_components;

void from_osi_form (in X711CMI::ObjectInstanceType osi_name);
X711CMI::ObjectInstanceType to_osi_form ()

raises(InvalidName);
void from_idl_form (in CosNaming::Name idl_name);
CosNaming::Name to_idl_form ()

raises(InvalidName);

LName to_ancestor_name (in unsigned long levels_up)
raises(InvalidName);

LName to_relative_name (in unsigned long levels_up)
raises(InvalidName);

LName append (in LName name);
LName append_ava (in X501Inf::AttributeValueAssertionType ava)

raises(InvalidName);
X501Inf::AttributeValueAssertionType get_ ava (in unsigned l ong index)

raises(InvalidName);

boolean equals (in LName name);
LName copy ();
3-8 CORBA/TMN Interworking V1.0 August 2000

3

void from_string_form (in NameString name_string);
NameString to_string_form ()

raises(InvalidName);

void destroy ();
};

// ReplyHandler interfaces
interface LinkedReplyHandler {

void send_reply (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in any reply_info

);

void send_mo_error (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in short error_code,
in any error_info

);

void send_subtree_error (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in short error_code,
in any error_info

);
};
interface EndOfRepliesHandler {

void end_of_replies ();
};

interface MultipleRepliesHandler : LinkedReplyHandler, EndOfRepliesHandler {};

// BufferedRepliesHandler
struct Reply {

CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
any reply_info;

};
typedef sequence<Reply> ReplyList;

interface RepliesIterator {
exception MoError {

CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
short error_code;
any error_info;
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-9

3

ined
 is

 that

in two

s

the
ment,
tem
};

exception SubtreeError {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
short error_code;
any error_info;

};

boolean get_reply (out Reply r) raises
(MoError, SubtreeError);

boolean get_n_replies (in unsigned long how_many, out ReplyList r_list)
raises (MoError, SubtreeError);

boolean finished (out unsigned long num_pending);
void destroy ();

};

interface BufferedRepliesHandler : MultipleRepliesHandler, RepliesIterator {};

};

#define UsingMR OSIMgmt::UsingMR

#endif /* _OSIMGMT_IDL_ */

3.1.1 The OSIMgmt::LName Interface

In the OSI Systems Management Reference Model, any managed object is conta
within one and only one containing managed object. The containment relationship
used for naming managed objects. Actually, any managed object is named by the
combination of:

• The name of its containing object (superior object).
• Information uniquely identifying this object within the scope of its containing

object.

Each managed object must be unambiguously identified within the scope of its
superior (container) object by means of an attribute value assertion (AVA) denoting
a specified attribute has a specified value. When used for naming, an AVA is also
called a relative distinguished name (RDN).

In OSI Systems Management, the name of a managed object can be expressed
forms:

1. Global form : This form specifies an RDN sequence that unequivocally identifie
the managed object with respect to the global root.

2. Local form : This form specifies an RDN sequence that unequivocally identifies
managed object with respect to a predefined context. For OSI systems manage
this context is the system managed object and the local form name for the sys
managed object is the empty sequence.
3-10 CORBA/TMN Interworking V1.0 August 2000

3

me to
 where

rm

at
The global name of a managed object is constructed by concatenating its local na
the global name of the system managed object representing the managed system
the managed object is located.

The local name of a managed object is constructed by appending the RDN that
identifies the managed object within the scope of its superior object to the local fo
name of its superior object.

Through the use of the OSIMgmt::LName library, OSI names can be translated into
CosNaming::Names and vice versa. Note that, using this library, code of a client
doesn’t have to use the ‘Names Library’ defined for the CosNaming Service.

typedef string NameString;

interface LName {
exception InvalidName {};

readonly attribute boolean is_distinguished_name;
readonly attribute unsigned long num_components;

void from_osi_form (in X711CMI::ObjectInstanceType osi_name);
X711CMI::ObjectInstanceType to_osi_form ()

raises(InvalidName);
void from_idl_form (in CosNaming::Name idl_name);
CosNaming::Name to_idl_form ()

raises(InvalidName);

LName to_ancestor_name (in unsigned long levels_up)
raises(InvalidName);

LName to_relative_name (in unsigned long levels_up)
raises(InvalidName);

LName append (in LName name);
LName append_ava (in X501Inf::AttributeValueAssertionType ava)

raises(InvalidName);
X501Inf::AttributeValueAssertionType get_ ava (in unsigned l ong index)

raises(InvalidName);
boolean equals (in LName name);
LName copy ();

void from_string_form (in NameString name_string);
NameString to_string_form ()

raises(InvalidName);

void destroy ();
};

Although nothing prevents the use of OSIMgmt::LNames as regular CORBA objects
that can be remotely accessed, they will be typically provided as library objects th
will be locally accessed by clients of managed objects (CORBA managers).
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-11

3

case,

ted

f

y

ce
3.1.1.1 Description of the LName operations

Besides the operations used to translate between different name formats (in this
OSI name format, IDL naming format, and string format), the OSIMgmt::Lname
interface defines several additional operations designed to ease the task of
programming with an OSIMgmt::LName object:

• to_ancestor_name creates a new OSIMgmt::LName object that corresponds to
the name of the ancestor managed object situated some number n of levels up (it
deletes the last n AVAs of the name in OSI form).

• to_relative_name creates a new OSIMgmt::LName object that refer to the same
managed object through a name relative to the ancestor managed object situa
some number n of levels up (it deletes the first m-n AVAs of the name in OSI form,
where m was the length of the name in OSI form).

• append creates a new OSIMgmt::LName object by appending the components o
the name represented by the OSIMgmt::LName object passed as argument to the
components of the current OSIMgmt::Lname .

• append_ava creates a new OSIMgmt::LName object by appending the provided
AVA to the current name in OSI form.

• get_ava returns the AVA situated in a given position of the name represented b
the OSIMgmt::LName object in OSI form.

• equals returns TRUE if the OSIMgmt::LName object represents the same name
as the OSIMgmt::LName object passed as argument; note that this is name
equality, not object equality (two names might refer to the same object, but be
completely different).

• copy returns a reference to a new OSIMgmt::LName object whose state is copied
from the current OSIMgmt::LName object.

Any attempt to invoke to_ancestor_name , to_relative_name , and get_ava
passing a value bigger than the actual length of the name represented by the LName
object will cause the BAD_PARAM exception to be raised.

Any attempt to extract or copy a value from an unitialized LName object will cause
the InvalidName exception to be raised. LNames are initialized when they have been
created from an already initialized LName object, or after a call to one of the from_*
operations is successful.

3.1.1.2 Translation between CosNaming::Names and OSI ObjectInstan
Names

Translation of OSI ObjectInstance names into CosNaming::Names implies
performing the following steps:

1. To create an object of type OSIMgmt::LName .

2. To initialize the internal state of the OSIMgmt::LName object with a
X711CMI::ObjectInstanceType value, by invoking the from_osi_form
operation.
3-12 CORBA/TMN Interworking V1.0 August 2000

3

3. To produce a CosNaming::Name value by invoking the to_idl_form operation.

The reverse operation implies performing the following steps:

1. To create an object of type OSIMgmt::LName .

2. Initializes the internal state of the OSIMgmt::LName object with a
CosNaming::Name value, by invoking the from_idl_form operation.

3. To produce a X711CMI::ObjectInstanceType value by invoking the
to_osi_form operation.

The OSIMgmt::LName objects must be destroyed if not further used. They can be
destroyed by invoking the destroy operation they expose.

The following example shows the code used to bind a name to a CORBA object
reference that is pointing to an EFD managed object.

CosNaming::NamingContext_ptr ctx;
X721::eventForwardingDiscriminator_ptr efd;
X711CMI::ObjectInstanceType local_name;

// The OSI name of the EFD object was initialized some way:

local_name = ...;

// An OSIMgmt::LName variable is initialized:

OSIMgmt::LName_ptr efd_name = new OSIMgmt::LName ();
efd_name->from_osi_form (local_name);

// A name, in idl form, is bound with the reference to the EFD object:

ctx->bind (efd, efd_name->to_idl_form());

// free the space associated to the name of the managed object:

efd_name->destroy ();

3.1.1.3 Representation of CosNaming::Names

The internal representation of CosNaming::Names derived from OSI names is
transparent to clients of managed objects. To develop portable applications, a
programmer does not need to know how OSI names
(X711CMI::ObjectInstanceType values) are translated into CosNaming::Name
values. However, to ensure interworking between applications that are linked to
different implementations of the OSIMgmt::LName library, a standard representation
of CosNaming::Names is specified.

This section describes how X711CMI::ObjectInstanceType names are mapped into

CosNaming::Names .
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-13

3

s
h

ingle

Each AVA in the OSI ObjectInstance Name will correspond to a
CosNaming::NameComponent in the IDL form. The kind field in the
CosNaming::NameComponent will always be an empty string. The id field in the
CosNaming::NameComponent will correspond to a string with the format:

“<OID>=<value>”

where <OID> corresponds to the value of the registration OID of the Attribute
template, in dot notation, and <value> denotes the value of such Attribute, in string
format. Blank spaces are not allowed before or after the character ‘=’.

Simple values are mapped according to the following rules:

Complex values are represented according to the following rules:

If <value> is... then it...

an integer is the decimal string representation of the integer itself, possibly
preceded by a type indicator. All signed integer types are
represented with an explicit sign (zero is considered positive for
this matter), while all unsigned integer types do not have an
explicit sign. If the value is of type “long”, a ‘0’ precedes the
actual value. If it is of type “long long”, it is preceded by “00”.
For example, the value 3 is represented by “+003” if its type is
“long long”, and by “3” if its type is “unsigned short.”

a string is the string embedded in double quotes (“). If the string contain
a double quote (“) or backslash (\), it is preceded by the backslas
character (as in \” or \\).

a boolean is the string TRUE or FALSE.

a NULL is the NULL string.

a sequence<octet> is the sequence of octets printed as characters embedded in s
quotes (‘). If a given octet is not printable, it is printed in octal
representation (character \000 in octal, for example). If the single
quote (‘) or backslash (\) character has to be included, it is
preceded by the backslash character (as in \’ or \\).

a BIT STRING will be received as a sequence<octet> and will be mapped the
same way (because it cannot be distinguished from real
sequence<octet>).

an ENUMERATED type is the string corresponding to the value without quoting.
3-14 CORBA/TMN Interworking V1.0 August 2000

3

s

ent

 by
d
.

Mapping of ObjectInstance names in nonSpecificForm is not supported.
Therefore, a CosNaming::Name will correspond to the mapping of either an OSI
Distinguished Name or an OSI RDNSequence. If it corresponds to an OSI
Distinguished Name, then the first CosNaming::NameComponent will denote the
Root object. The id field will be equal to the string “ root ” and the kind field will be
equal to the empty string. This will help clients using OSIMgmt Facilities as well a
implementations of interfaces defined as part of OSIMgmt Facilities (cmis_get ,
cmis_set , etc.) to distinguish whether a CosNaming::Name is local or global.

Figure 3-1 illustrates how the OSI ObjectInstance name in global form
corresponding to an X721::logRecord object is mapped to a CosNaming::Name .

Figure 3-1 CosNaming::Name Associated with an X721::log Object

If <value> is of a... then it is represented as a string that starts with...

SEQUENCE type character “{“, and contains the string representation of each
component of the value separated by commas and ends with
character “}.” Blank spaces are not allowed before and after “,”,
after “{“ and before “}.”

SEQUENCE OF type character “[“, contains the string representation of each compon
of the value separated by commas and ends with character “]”.
Blank spaces are not allowed before and after “,”, after “[“ and
before “].”

CHOICE type the name of the selected field enclosed in parentheses, followed
the string representation of its value. Blank spaces are not allowe
after and before parentheses around identifiers of selected fields

“root” ““

“2.9.3.2.7=(name)”MyComputer”” ““

“2.9.3.2.2=(string)”PrimaryLog”” ““

“2.9.3.2.3=+0101” ““

id kind

systemId

logId

logRecordId

Attribute
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-15

3

es.

].

bject

he

 that
3.1.1.4 Representation of CosNaming::Names in string format

This specification defines a simple string format to represent managed object nam
Names represented in this format (values of type OSIMgmt::NameString) can be
converted (obtained) into (from) OSI Object Instance names or CosNaming::Names
using OSIMgmt::LName objects.

The defined string format is aligned with the proposal presented in [interopNames
The single character ‘/’ is used to separate the id field values associated with each
component of the managed object name in IDL form (which in turn correspond to
AVAs in the OSI form). The value of kind fields is not represented since they
correspond to empty strings. Therefore, the string used to represent a managed o
name in local form matches the following format:

“<oid-1>=<value-1>/<oid-2>=<value-2>/.../<oid-n>=<value-n>”

while the string used to represent a managed object name global form matches t
following format:

“root/<oid-1>=<value-1>/<oid-2>=<value-2>/.../<oid-n>=<value-n>”

The following example shows the code used to obtain a CORBA object reference
points to a given logRecord managed object, given its name.

CosNaming::NamingContext_ptr ctx;
OSIMgmt::NameString log_record_name;

// An OSIMgmt::LName variable is initialized with the name
// of the managed object in string format:

local_name = “2.9.3.2.2=(string)\”PrimaryLog\”/2.9.3.2.3=+0101”;
OSIMgmt::LName_ptr log_record_name = new OSIMgmt::LName ();
log_record_name->from_string_form (local_name);

// A reference to the logRecord managed object is found by means of
// invoking resolve on the initial CosNaming::NamingContext
// located at the managed object domain:

CORBA::Object_ptr obj = ctx->resolve (log_record_name->to_idl_form());

// The reference obtained from resolve is narrowed, in order
// to invoke operations on the logRecord object:

X721::logRecord_ptr log_record = X721::logRecord::_narrow (obj);
ASN1_GeneralizedTime logging_time = log_record->loggingTimeGet ();

// free the space associated to the name of the managed object:

log_record_name->destroy ();
3-16 CORBA/TMN Interworking V1.0 August 2000

3

ers of
main.
3.1.2 The OSIMgmt::ProxyAgent Interface

CORBA manager objects that require access to managed objects that are memb
some given OSI managed object domain must establish a connection with that do

As a result of establishing the connection, an OSIMgmt::ProxyAgent object (an
object that exports the OSIMgmt::ProxyAgent interface) is created. The
OSIMgmt::ProxyAgent objects export the JIDM::ProxyAgent interface and
support additional operations that are specific to OSI Management.

enum CreationKind
{simple, autonaming, subordinate};

interface ProxyAgent : JIDM::ProxyAgent {

void cmis_create (
in CORBA::ScopedName interface_name,
in CreationKind creation_kind,
in CosNaming::Name object_name,
in X711CMI::AccessControlTypeOpt access_control,
in CosNaming::Name reference_object,
in AttributeValueSeq req_attribute_values,
in LinkedReplyHandler reply_handler

);

 void cmis_create_sync (
in CORBA::ScopedName interface_name,
in CreationKind creation_kind,
in CosNaming::Name object_name,
in X711CMI::AccessControlTypeOpt access_control,
in CosNaming::Name reference_object,
in AttributeValueSeq req_attribute_values,
out CORBA::ScopedName created_interface_name,
out CosNaming::Name created_object_name,
out X711CMI::ASN1_GeneralizedTimeOpt creation_time,
out AttributeValueSeq created_attribute_values

) raises (CREATE_ERRORS);

void cmis_get (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObjectIdentifierSeq attribute_id_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

.
void cmis_set (

in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-17

3

d
nts

t
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in SetOperationArgument modification_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void cmis_action (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObjectIdentifier action_name,
in ASN1_DefinedAny action_info,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void cmis_delete (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);
};

Connections are established by invoking the access_domain operation exposed by a
root JIDM::ProxyAgentFinder object as explained in Section 2.1.4, “The
JIDM::ProxyAgentFinder Interface,” on page 2-11. The value associated with the
“XSM environment” Key parameter passed to the access_domain operation is “OSI
Management.” Note that the access_domain operation returns a reference to a
JIDM::ProxyAgent interface. If the client wants to get visibility of the specific
operations defined for the OSIMgmt::ProxyAgent interface, this reference must be
narrowed.

Table 3-1 presents the names and meaning for criteria that can be passed in the
invocation to the access_domain operation when trying to access an OSI manage
domain. While the domain title criterion is mandatory, the rest of criteria compone
are optional.

Table 3-1 OSIMgmt Conventions for Proxy Agent Finding Criteria

criterion name type of value meaning

“domain title” X227ACS::AE_titleType AE-title associated with the managed objec
domain for which access is requested. The
wildcard address is allowed.
3-18 CORBA/TMN Interworking V1.0 August 2000

3

, in

t up

hat

d

 to
ination
g

ay

t
Semantics of the domain title and controller object parameters were specified in
Section 2.1.4, “The JIDM::ProxyAgentFinder Interface,” on page 2-11. The criteria
the case of OSI Systems Management Reference model, may include additional
parameters, namely:

• An access control parameter, carrying access control information required to se
the connection and to be used as default access privileges.

• A requestor title parameter, used to identify the CORBA manager application t
requests the connection.

It must be pointed out that invoking the access_domain operation with two different
<key, criteria> pairs will result in creation of two different connections and,
consequently, two different OSIMgmt::ProxyAgent objects. As an example, passing
the same AE-title value but two different access control parameter values or two
different controller objects to get access to an OSI managed object domain, woul
imply creation of two different OSIMgmt::ProxyAgents .

The requestor title is mainly required in those scenarios where a requestor needs
create a new connection, not shared with other requestors who use the same dest
AE-title and access control parameter values. Note that sharing an already existin
OSIMgmt::ProxyAgent object would mean to accept that other OSI Managers m
destroy that object.

Since OSIMgmt::ProxyAgent objects are JIDM::ProxyAgent objects, they provide
the means by which CORBA manager objects are able to obtain references to:

• An initial CosLifeCycle::FactoryFinder object located at the OSI managed
object domain.

• An initial CosNaming::NamingContext object located at the OSI managed
object domain.

Invoking the find_factories operation exposed by the initial
CosLifeCycle::FactoryFinder object, CORBA manager objects may find factories
that enable creation of new members of the OSI managed object domain.

“controller object” JIDM::ProxyAgentController reference associated with a
JIDM::ProxyAgentController object
registered by the manager (OPTIONAL).

“access control” X711CMI::AccessControlType Information to be used as input to access
control functions in establishing default
access privileges for all exchanges on the
association (OPTIONAL).

“requestor title” X227ACS::AE_titleType Title used to denote the Manager that
requested access to the OSI managed objec
domain (OPTIONAL).

criterion name type of value meaning
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-19

3

are

e two
t the

th an
 by

Invoking the resolve operation exposed by the initial CosNaming::NamingContext
object, CORBA manager objects may obtain CORBA object references to existing
members of the OSI managed object domain.

In a pure CORBA environment (i.e., both manager and managed object domains
based on CORBA), the OSIMgmt::ProxyAgent would typically hold references to
the initial CosLifeCycle::FactoryFinder and CosNaming::NamingContext
objects located at the OSI domain being accessed (see Figure 3-2). Whether thes
interfaces are exported by the same CORBA object or different CORBA objects a
domain is an implementation issue.

Figure 3-2 OSIMgmt::ProxyAgents in a CORBA Environment

Once a CORBA manager object obtains a CORBA object reference associated wi
OSI managed object, it can invoke operations exposed by the object. It will do so
using the standard ORB services defined in CORBA The Common Object Request
Broker: Architecture and Specification:

• the Dynamic Invocation Interface (DII), or

• IDL stubs generated from definitions in OMG IDL of interfaces exported by the
object, which might have been generated from GDMO definitions according to
XoJIDM (see Appendix A, “References”).

specific
management

interface

Managed Object Domain
(Agent Application)

title4

CosNaming::
NamingContext

CosLifeCycle::
FactoryFinder

manager object

OSIMgmt::
ProxyAgent
3-20 CORBA/TMN Interworking V1.0 August 2000

3

gh

ecific

y be

dix

for
3.1.2.1 Description of the ProxyAgent operations

The get_domain_factory_finder operation

The get_domain_factory_finder operation obtains a reference to the initial
CosLifeCycle::FactoryFinder object located at the domain being accessed throu
an OSIMgmt::ProxyAgent object. As already explained in Section 2.1.2, “The
JIDM::ProxyAgent Interface,” on page 2-4, CORBA manager objects can locate
appropriate managed object factories by invoking the find_factories operation
exposed by this initial CosLifeCycle::FactoryFinder object.

The space of keys established for OSI Management environments is described in
Table 3-2.

Table 3-2 OSIMgmt Conventions for Factory Finder Keys

CORBA Managers can create managed objects by using operations exposed by sp
factories whose interfaces are derived from name-binding GDMO templates or
operations exposed by generic factories.

For specific factories, one of the two following scenarios may be supported:

1. A specific factory interface is defined for each managed object interface that
supports a different operation for each GDMO name-binding template.

2. A specific factory interface is defined for each GDMO name-binding template.

In respect to generic factories, one (or several) of the three following scenarios ma
supported:

1. The standard CosLifeCycle::GenericFactory interface is used.

2. The OSIMgmt::ManagedObjectFactory interface is used.

3. One of the standard factory interfaces defined in SYSMAN facilities (see Appen
A, “References”) is used.

In any case, the factory object would be responsible to check if the new managed
object can be contained in the designated superior object. This implies checking
some name-binding template declaring that this relationship is valid.

id field kind field meaning

fully scoped name of
object interface

“superior object
interface”

Find factories that create objects whose superior
object supports the named interface.

fully scoped name of
object interface

“object interface” Find factories that create objects supporting the
named interface.

fully scoped name of
factory interface

“factory interface” Find factories supporting the named factory
interface.
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-21

3

ems

ith
ch

ce.

ked

es to

c

ion of
 of

e

it

it
With these considerations in mind, the alternatives for finding factories in OSI Syst
Management environments are more precisely described as follows.

Only the name of the object interface is specified

Here, it is implicitly assumed that there is a specific factory interface associated w
the managed object interface. Such interface includes a separate operation for ea
GDMO name-binding template that is associated with the managed object interfa
CORBA managers know the name and operations associated with the factory in
advance so they can properly narrow and use the reference returned by the
find_factories operation.

Only the name of the object factory interface is specified

Here, references returned by the find_factories operation can be narrowed to the IDL
interface whose name has been specified. The CORBA manager object who invo
the operation knows the signature and semantics of operations supported by the
designated object factory interface. This option is the one used to obtain referenc
factories derived from GDMO name-binding templates or to obtain references to
generic factories exporting the CosLifeCycle::GenericFactory interface, the
OSIMgmt::ManagedObjectFactory interface, or any of the generic factory
interfaces defined in SYSMAN facilities (see Appendix A, “References”).

Both the name of the object interface and the superior object interface are
specified

Here, the CORBA manager object provides the necessary information to find the
factory associated to a specific GDMO name-binding template for which a specifi
factory interface is defined.

In cases where objects are created through CosLifeCycle::GenericFactory objects,
the Key value passed in the invocation to the create_object operation is the name of
the interface exported by the new managed object. The Criteria value is a sequence of
<name, value> pairs that correspond to the rest of the arguments needed for creat
the managed object as specified in Table 3-3 (name of the managed object, name
superior object, reference object, attribute list, etc).

Table 3-3 OSIMgmt Conventions for Managed Object Creation Criteria

criterion name type of value interpretation

“managed object interface” CORBA::ScopedName Name of interface exported by th
new managed object.

“managed object name” CosNaming::Name When this parameter is supplied,
contains the name of the new
managed object.

“superior object name” CosNaming::Name When this parameter is supplied,
contains the name of the managed
object which is to be the superior
of the new managed object.
3-22 CORBA/TMN Interworking V1.0 August 2000

3

gh

-4,

720
e

d.

t
The get_domain_naming_context operation

The get_domain_naming_context operation obtains a reference to the initial
CosNaming::NamingContext object located at the domain being accessed throu
an OSIMgmt::ProxyAgent object.

As already explained in Section 2.1.2, “The JIDM::ProxyAgent Interface,” on page 2
CORBA manager objects can obtain CORBA object references to members of a
managed object domain as a result of invoking the resolve operation exposed by the
initial CosNaming::NamingContext object located at the domain. The resolve
operation may also be used to obtain reference to CosNaming::NamingContext
objects subordinated to the initial CosNaming::NamingContext object.

Managed objects will be named according to OSI Naming Principles defined in X
(see Appendix A, “References”). CORBA manager objects will typically perform th
following steps to obtain a reference to an OSI managed object:

1. Construct the name of the managed object in OSI form.

2. Translate the name from OSI to idl form (see Section 3.1.1, “The
OSIMgmt::LName Interface,” on page 3-10).

3. Invoke the resolve operation exposed by the initial
CosNaming::NamingContext located at the domain where the object is locate

The following example shows how the fragment of code used to find a LogRecord
object by name should look..

OSIMgmt::ProxyAgent_ptr agent;

// a reference to a JIDM::ProxyAgent is obtained as a result of
// establishing a connection to the managed object domain where
// the printer is located:
agent = ...;
....................................

// a reference to the initial CosNaming::NamingContext object
// is obtained:

“reference object” OSIMgmt::ManagedObject When this parameter is supplied, i
contains the value of a reference to
an existing managed object to be
considered as reference for
initialization.

“attribute list” OSIMgmt::AttributeValueSeq When this parameter is supplied, it
contains a set of attribute
identifiers and values to be
assigned to the new managed
object.

criterion name type of value interpretation
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-23

3

 to
anaged

of

n

d
ext.

all
em
CosNaming::NamingContext_ptr ctx = agent -> get_domain_naming_context ();
....................................

// the name of the log record is constructed:
OSIMgmt::LName_ptr log_name = new OSIMgmt::LName ();
log_name->from_string_form (“2.9.3.2.2=(string)\”PrimaryLog\”

/2.9.3.2.3=0101”);

// find a reference to the object with the log_name value in IDL form:
CORBA::Object_ptr obj = ctx->resolve (log_name->to_idl_form());
log_name->destroy ();

// narrows the value returned by the resolve operation:
X721::logRecord_ptr a_log_rec = X711::logRecord::_narrow (obj);

// operations on the log can now be invoked:
ASN1_GeneralizedTime logging_time = a_log_rec->loggingTimeGet ();

CMIS operations

OSIMgmt::ProxyAgent objects support operations that enable CORBA Managers
operate upon selected descendants of managed objects that are members of a m
object domain. These operations are referred to as scoped operations.

A detailed description about CMIS operations is presented in the Section 3.1.6,
“Description of CMIS Operations,” on page 3-33.

The destroy operation

Any OSIMgmt::ProxyAgent object exposes the destroy operation, which disposes
the object. Disposing an OSIMgmt::ProxyAgent object means closing the connection
established to the corresponding managed object domain. If the
OSIMgmt::ProxyAgent object was running in a JIDM gateway server, destruction
the object implies freeing resources used to maintain the associated connection
(closing a XMP descriptor, for example).

Destruction of an OSIMgmt::ProxyAgent object can take place either gracefully or
non-gracefully, as described in Section 2.1.2, “The JIDM::ProxyAgent Interface,” o
page 2-4. A reference to a JIDM::ProxyAgentController object may be passed at the
manager side, as described in Section 2.1.3, “The JIDM::ProxyAgentController
Interface,” on page 2-9.

3.1.3 The OSIMgmt::NamingContext Interface

The OSIMgmt::NamingContext interface provides a placeholder for specialized an
extended naming operations that may be performed in an OSI management cont
This interface extends the basic CosNaming::NamingContext .

In this section, a basic set of such specialized operations is described. Note that
operations are OPTIONAL, and no implementation is required to support any of th
to be considered fully compliant with this specification.
3-24 CORBA/TMN Interworking V1.0 August 2000

3

ject
ss

tics, as

s

d.

S
ts this

tics, as
const ASN1_ObjectIdentifier ACTUAL_CLASS = “2.9.3.4.3.42“;

interface NamingContext : CosNaming::NamingContext {
// NOTE: These operations are optional
ManagedObject resolve_with_intf (

in CORBA::ScopedName interface_name,
in CosNaming::Name object_name

) raises (NotFound, CannotProceed, InvalidName);

ManagedObject resolve_osi_name (
in ASN1_ObjectIdentifier managed_object_class,
in X711CMI::ObjectInstanceType object_instance

) raises (NotFound, CannotProceed, InvalidName);

CosNaming::Name translate_osi_name (
in X711CMI::ObjectInstanceType object_instance

) raises (InvalidName);

X711CMI::ObjectInstanceType translate_idl_name (
in CosNaming::Name idl_name

) raises (InvalidName);
};

The resolve_with_intf operation

This operation is equivalent to the CosNaming::NamingContext::resolve
operation, but takes an extra parameter that indicates the managed object class
supported by the object being located. This operation is useful when accessing a
managed domain that is unable to perform location operations based solely on ob
instance names, that is, when accessing agents that do not support the ActualCla
functionality, as specified in [X720].

The exceptions raised by this operation are the same, and have the same seman
those raised by the CosNaming::NamingContext::resolve operation.

The resolve_osi_name operation

This operation obtains a reference to a managed object given its OSI name (and,
potentially, the managed object class to which it belongs). The OSI name include
information such as whether the name is in global form or in local form, and the
sequence of attribute value assertions forming the path to the object being locate

If the class of the object being located is not known, the constant ACTUAL_CLAS
may be used instead (provided that the managed domain being accessed suppor
functionality). Additionally, the empty string is considered equivalent to
ACTUAL_CLASS when passed to this operation as the value of the object_class
parameter.

The exceptions raised by this operation are the same, and have the same seman
those raised by the CosNaming::NamingContext::resolve operation.
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-25

3

ful

n
ot

n
ot

 IDL
The translate_osi_name operation

This operation returns the CosNaming::Name corresponding to the
X711CMI::ObjectInstanceType passed as input parameter. This operation is use
if the OSIMgmt::LName functionality is not available.

This operation may raise the InvalidName exception if the input name has not bee
properly intialized (contains a valid name). Note that translating the name does n
require an object with that name to exist.

The translate_idl_name operation

This operation returns the X711CMI::ObjectInstanceType corresponding to the
CosNaming::Name passed as input parameter. This operation is useful if the
OSIMgmt::LName functionality is not available.

This operation may raise the InvalidName exception if the input name has not bee
properly intialized (contains a valid name). Note that translating the name does n
require an object with that name to exist.

3.1.4 The OSIMgmt::ManagedObject interface

The standard X721::top interface inherits from OSIMgmt::ManagedObject
interface. As a consequence, all management interfaces generated by a GDMO to
compiler inherit (indirectly) from the OSIMgmt::ManagedObject interface. This
inheritance tree is shown in Figure 3-3.

Figure 3-3 Inheritance Tree

OSIMgmt::ManagedObject

X721::top

X721::system Devices::Printer

OSIMgmt::NamingContext

CORBA::Object

CosNaming::NamingContext

CosLifeCycle::LifeCycleObject
3-26 CORBA/TMN Interworking V1.0 August 2000

3

object.
Operations exposed through the OSIMgmt::ManagedObject interface enable clients
of an OSI managed object to obtain the name of the managed object and invoke
operations either on the object itself or on selected descendants of the managed

Every OSIMgmt::ManagedObject CORBA object supports the principles on
transparency specified in Section 2.1.1, “JIDM Managed Objects,” on page 2-3..

interface ManagedObject : NamingContext, CosLifeCycle::LifeCycleObject {
readonly attribute CosNaming::Name object_name;

void scoped_get (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObjectIdentifierSeq attribute_id_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handle);

void scoped_set (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in SetOperationArgument modification_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void scoped_action (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObjectIdentifier action_name,
in ASN1_DefinedAny action_info,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void scoped_delete (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,

.
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

AttributeValueSeq get_attributes (
in ASN1_ObjectIdentifierSeq attribute_id_list

) raises (GET_ERRORS);
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-27

3

he

any

ve to
ame.
ment,

t

ee
ard in
bject

AttributeValueSeq set_attributes (
in SetOperationArgument modification_list

) raises (SET_ERRORS);

ASN1_DefinedAny perform_action (
in ASN1_ObjectIdentifier action_name,
in ASN1_DefinedAny action_info

) raises (ACTION_ERRORS, UsingMR);

void delete_mo () raises (DELETE_ERRORS);
};

3.1.4.1 Naming

The OSIMgmt::ManagedObject interface inherits indirectly from the standard
CosNaming::NamingContext interface, via OSIMgmt::NamingContext
interface. This means that every managed object exposes operations defined in t
CosNaming::NamingContext interface. However, only the resolve and list
operations may be invoked by CORBA managers. CORBA managers that invoke
of the other operations in the CosNaming::NamingContext interface should receive
the NO_PERMISSION exception. Note that this restriction does not apply to
CORBA agents that may use the other CosNaming::NamingContext operations to
register new CORBA managed objects.

The CORBA Naming Service under the CORBAservices heading specifies a transitive
rule for naming resolution:

ctx->resolve (C1;C2;...;Cn-1;Cn) =
(ctx->resolve (C1;C2;...;Cn-1))->resolve (Cn)

Being able to resolve to a leaf in an agent naming tree implies being able to resol
the same object from any intermediate object in the naming tree, using a relative n
Given that the naming tree and the containment tree are the same in OSI manage
this transitive rule mandates inheritance of CosNaming::NamingContext by every
non-terminal element of the naming (i.e., containment) tree.

The inheritance of the NamingContext interface only implies interface inheritance, i
does not imply inheritance from any standard off-the-shelf implementation of the
CORBA Naming Service. In particular, all operations except “resolve” and “list”
should raise the standard NO_PERMISSION exception when invoked by CORBA
managers, and the “resolve” and “list” operations may have specialized
implementations optimized for the lookup of OSI names.

Typically, the resolution of a name consists of forwarding the request down the tr
through each context, the last one setting the response, and sending it back upw
the tree, to the client. This process can be long in the case of deep, distributed o
trees. But the implementation is free to use any efficient algorithm given that it
provides the same functionality, such as hash tables or delegation. Therefore, this
specification does not limit the scalability or performance of applications
implementing it.
3-28 CORBA/TMN Interworking V1.0 August 2000

3

 an

e
en

 is

r

to

ode.
Although the resolution of names is governed according to the CORBA naming
transitive rule, the NamingContext tree doesn’t have to match the OSI naming tree
structure.

This implies that a managed object may raise the CannotProceed exception
whenever the resolve operation is invoked on it, thus delegating name resolution to
alternative CosNaming::NamingContext object.

If we consider the previous rule, invoking

ctx->resolve (C1;C2;...;Cn-1)

may raise the CannotProceed exception and return ctx’ and C1;C2;...;Cn-1 with it.
The rule is then formulated as follows:

ctx->resolve (C1;C2;...;Cn-1;Cn) =
(ctx’->resolve (C1;C2;...;Cn-1))->resolve (Cn).

Table 3-4 describes the exceptions raised by the resolve operation(s) as they apply in
OSI contexts. Note that this description complies with the description given for th
standard CosNaming service in the Naming Service specification, and the one giv
generically in Section 2.1.2, “The JIDM::ProxyAgent Interface,” on page 2-4.

Table 3-4 Exceptions Raised by the OSI Resolve Operations

Exception Raised Description

NotFound Indicates the name does not identify an existing managed object; this
equivalent to the OSI NoSuchObjectInstance error code.

CannotProceed Indicates that implementation of the resolve operation has given up fo
some reason. However, if the CosNaming::NamingContext
reference contained in the exception is not nil, the client may be able
continue the operation using the returned name. If the exception
contains a nil CosNaming::NamingContext reference, then the
situation is not recoverable, which may happen, for example, in
situations such as those that cause the OSI ProcessingFailure error c
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-29

3

be
f, for

rm.

is
3.1.4.2 Description of the ManagedObject attributes and operations

Inherited operations from CosLifeCycle::LifeCycleObject

The OSIMgmt::ManagedObject interface inherits from the standard
CosLifeCycle::LifeCycleObject interface. This means that every managed object
exposes the operations defined in the CosLifeCycle::LifeCycleObject interface.
Specifically, the following semantics for the operations are specified:

• The copy operation performs similarly to a
CosLifeCycle::GenericFactory::create_object operation. The object in which
the operation is invoked acts as the “reference object” for the create_object
operation (it is automatically inserted into the creation criteria parameter).

• The move operation is not appropriate in OSI management environments, so if
invoked it should raise the NotMovable exception.

• The remove operation deletes the object from the managed domain. Note that
deletion of a managed object may cause deletion of its descendants, or might
forbidden if the object has descendants, if such behaviors have been defined. I
whatever reason, the object could not be destroyed, the NotRemovable exception
will be raised.

The object_name attribute

This read-only attribute gives access to the name of the managed object in IDL fo

InvalidName Indicates the name is invalid. In OSI management it can occur in at
least the following cases:
• A name, in its OSI form (X711CMI::ObjectInstance), does not

contain a valid value as defined in X.720; this is equivalent to the
OSI InvalidObjectInstance error code.

• A name, in its IDL form (CosNaming::Name), does not contain a
valid value as defined in Section 3.1.1, “The OSIMgmt::LName
Interface,” on page 3-10.

• An object class, provided in either resolve_with_intf or
resolve_osi_name, does not exist; this is equivalent to the OSI
NoSuchObjectClass error code.

• The managed object named in either resolve_with_intf or
resolve_osi_name does not support the object class provided; this
equivalent to the OSI ClassInstanceConflict error code.

• The name has a 0 length.

Exception Raised Description
3-30 CORBA/TMN Interworking V1.0 August 2000

3

 to

, the
al
the

s

d
ht be

oked

h

object
all is
ed
CMIS operations

OSIMgmt::ManagedObject objects support operations that enable CORBA
Managers to operate upon selected descendants of the managed object. These
operations are referred to as scoped operations, and provide a similar mechanism
that provided by OSIMgmt::ProxyAgent objects.

A detailed description about CMIS operations is presented in the Section 3.1.6,
“Description of CMIS Operations,” on page 3-33.

Generic multi-attribute operations

Besides providing scoped operations (that might affect several managed objects)
OSIMgmt::ManagedObject interface also exports operations to manipulate sever
attributes of the managed object at the same time. Specifically, operations to get
values associated to multiple attributes (get_attributes) and to set the values of
multiple attributes (set_attributes) are provided. These operations are synchronou
(i.e., they block until the response is available).

The arguments of these two operations have the same meanings as described in
Section 3.1.6, “Description of CMIS Operations,” on page 3-33. The return values
represent the attribute values obtained from the managed object.

The perform_action operation

This operation provides a generic mechanism to invoke an action on the manage
object. Any action supported by the specific managed object being accessed mig
invoked in this way. The action invocation takes two arguments, with the same
meanings as described in Section 3.1.6, “Description of CMIS Operations,” on
page 3-33. The return value corresponds to the return type appropriate for the inv
action.

In cases where the managed object returned multiple replies to a single action
invocation, the UsingMR exception will be raised. See Section 3.1.9, “Handling
ACTIONs with multiple replies,” on page 3-45 for more information on actions wit
multiple replies.

The delete_mo operation

The OSIMgmt::ManagedObject includes a delete_mo operation that enables the
deletion of a managed object, without the need to specify any scoping, filtering,
synchronization, and access control arguments. Note that deletion of a managed
may cause deletion of its descendants, if such behavior has been defined. This c
synchronous (i.e., it blocks until the corresponding managed object in the manag
domain has effectively been deleted).
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-31

3

f

”

3.1.5 The OSIMgmt::ManagedObjectFactory Interface

An OSIMgmt::ManagedObjectFactory can be used to create managed objects o
more than one type. As a consequence of this, operations exposed through the
OSIMgmt::ManagedObjectFactory interface always receive the name of the
interface as an input argument.

References to objects exporting the OSIMgmt::ManagedObjectFactory interface
are typically located by specifying the name of this interface in a “factory interface
component in the criteria used to find factories.

struct AttributeValue {
ASN1_ObjectIdentifier attribute_id;
ASN1_DefinedAny value;

};
typedef sequence<AttributeValue> AttributeValueSeq;

interface ManagedObjectFactory {

ManagedObject create (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in ManagedObject reference_object,
in AttributeValueSeq requested_attribute_values

) raises (CREATE_ERRORS);

ManagedObject create_with_auto_naming (
in CORBA::ScopedName interface_name,
in ManagedObject reference_object,
in AttributeValueSeq requested_attribute_values

) raises (CREATE_ERRORS);

ManagedObject create_subordinate (
in CORBA::ScopedName interface_name,
in CosNaming::Name superior_name,
in ManagedObject reference_object,
in AttributeValueSeq requested_attribute_values

) raises (CREATE_ERRORS);
};

Three operations are exposed trough the OSIMgmt::ManagedObjectFactory
interface.

1. The create operation, which basically comprises all the parameters required to
create a managed object using OSI Management principles.

2. The create_with_autonaming operation, which leaves to the
OSIMgmt::ManagedObjectFactory the responsibility to assign a valid name to
the new managed object.

3. The create_subordinate operation that creates a new managed object as
subordinate of an existing object.
3-32 CORBA/TMN Interworking V1.0 August 2000

3

 state
hich

ase
naged

ect to
ach
e

ay
ck
ation

r
rs,”

s

nt

the

ed

re not

e
nd to
All three operations may receive a reference to an existing managed object whose
is copied into the state of the new managed object. That reference may be nil, in w
case no reference object is considered.

3.1.6 Description of CMIS Operations

Application of scoped operations involves two phases: scoping and filtering. The b
managed object of a scoped operation is defined as the root of the subtree of ma
objects to which scoping and filtering is going to be applied.

Scoping entails the identification of those descendant(s) of the base managed obj
which a filter is to be applied. Filtering entails the application of a set of tests to e
member of the set of previously scoped descendants to extract the subset of thos
objects that satisfy the filter. The operation is then applied to all the objects in the
subset of scoped descendants that satisfy the filter.

As a result of these scoped operations, multiple responses to a single request m
happen. This type of interaction is not possible in CORBA, and therefore a callba
mechanism is used by means of registering callback objects in the manager applic
that are the ones responsible to receive the responses (in either asynchronous o
deferred synchronous modes). These callback objects are referred to as “Handle
and are described in Section 3.1.7, “The OSIMgmt::LinkedReplyHandler,
EndOfRepliesHandler, and MultipleRepliesHandler Interfaces,” on page 3-38
(asynchronous handlers) and in Section 3.1.8, “The
OSIMgmt::BufferedRepliesHandler Interface,” on page 3-42 (deferred synchronou
handlers).

3.1.6.1 Behavior common to all scoped operations

To determine the base managed object applicable to scoped operations, a differe
mechanism is used by OSIMgmt::ProxyAgent objects and by
OSIMgmt::ManagedObject objects.

In cases of OSIMgmt::ProxyAgent objects, the following parameters are used to
determine the base managed object:

• interface_name : Specifies the fully scoped name of the interface exported by
base managed object of the scoped operation.

• object_name : Specifies the IDL name of the base managed object of the scop
operation.

In cases of OSIMgmt::ManagedObject objects, the base managed object for the
scoped operation is the managed object itself; therefore, these two parameters a
needed.

The following parameters are passed both to OSIMgmt::ProxyAgent objects and to
OSIMgmt::ManagedObject objects when invoking scoped operations to control th
set of managed objects to which the operation is to be applied (scope and filter), a
specify interacion characteristics (synchronization and access control).
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-33

3

el

 the
ns
n
bout
ted
nd
e test
) for

e

are
 one
m it;

his

on.

nses

details
d
• scope : Indicates the subtree, rooted at the base managed object that is to be
searched. The different types of scoping that may be performed are:

• the base object alone

• the n-th level subordinates of the base object

• the base object and all of its subordinates down to and including the n-th lev

• the base object and all of its subordinates (whole subtree)

• filter : Specifies the set of assertions that defines the filter test to be applied to
set of managed object(s) that result from applying the scope. Multiple assertio
may be grouped using the logical operators AND, OR, and NOT. Each assertio
may be a test for equality, ordering, presence, or set comparison. Assertions a
the value of an attribute are evaluated according to the matching rules associa
with the attribute syntax. If an attribute value assertion is present in the filter a
that attribute is not present in the scoped managed object, then the result of th
for that attribute value assertion is evaluated as FALSE. The managed object(s
which the filter test evaluates to TRUE is selected for the application of the
operation. If the filter is not specified, all of the managed objects included by th
scope are selected.

• synchronization : Indicates how the invoking operation should be synchronized
across the selected object instances. Two ways of synchronizing a series of
operations are defined, as specified in [X710]:

• Best effort (X711CMI::CMISSyncType(bestEffort)): this synchronization only
requires that all managed objects selected for the operation are requested to
perform it, without any guarantee regarding the success of such request.

• Atomic (X711CMI::CMISSyncType(atomic)): If the base managed object
alone is selected for the operation, this parameter is ignored. Atomic
synchronization requires that all managed objects selected for the operation
checked to ascertain if they are able to successfully perform the operation. If
or more are not able to successfully perform the operation, then none perfor
otherwise, all perform it.

• access_control : Information to be used as input to access control functions. T
parameter is optional, and its type is X711CMI::AccessControlTypeOpt .

• If present, this access control parameter is to be used in the current invocati

• If absent, the default access control parameter specified at
OSIMgmt::ProxyAgent creation time (if any) should be used.

• If neither was specified, then no access control information should be used.

The reply_handler and end_of_replies_handler parameters are passed both to
OSIMgmt::ProxyAgent objects and to OSIMgmt::ManagedObject objects when
invoking scoped operations to specify the callback objects to use to receive respo
to the scoped operation:

The reply_handler and end_of_replies_handler parameters specify the object
references where the replies to the scoped operation are to be returned (for more
see Section 3.1.7, “The OSIMgmt::LinkedReplyHandler, EndOfRepliesHandler, an
MultipleRepliesHandler Interfaces,” on page 3-38).
3-34 CORBA/TMN Interworking V1.0 August 2000

3

the
g of

at

ions

ur

r

ents,
e
ve
If these callback objects become unreachable during the process of performing a
scoped operation (due to communications problems, or to the explicit deletion of
callback objects), the managed domain implementation should interrupt processin
the scoped operation, if possible. Specifically, in the case of cmis_get or
scoped_get operations this situation is the way to inform the managed domain th
an on-going Get operation must be canceled.

In cases where unconfirmed operations are being requested (for example, an
unconfirmed scoped set operation), both parameters should be specified as nil object
references; in these cases, no responses will be received.

If the reply_handler parameter is specified, but the end_of_replies_handler is
specified as a nil object reference, then the behavior of the invoked operation is
slightly different. The operation invocation blocks until all responses have been
received through the reply_handler object passed in the call, that is, the operation
itself becomes the end of replies indication. This allows sequential scoped operat
to be invoked without extra coding.

Note – The ORB might timeout such invocations if they take too long. Configure yo
ORB timeout appropriately.

• If the reply_handler parameter is specified as a nil object reference, but the

• end_of_replies_handler is not, or

• if both are nil , but the

• operation does not accept unconfirmed operation,

then the CORBA standard exception BAD_PARAM is raised.

The results of invoking a scoped operation are returned through the
OSIMgmt::LinkedReplyHandler object specified when the scoped operation was
invoked. Information associated with each reply is passed by invoking the send_reply
operation. If an error occurs during the process, the send_mo_error or
send_subtree_error operations are called instead, depending on the type of erro
that occurred.

For more details, see Section 3.1.7, “The OSIMgmt::LinkedReplyHandler,
EndOfRepliesHandler, and MultipleRepliesHandler Interfaces,” on page 3-38.

The GET operations

Besides the parameters specified above, the scoped GET operations (cmis_get ,
scoped_get) carry an extra parameter attribute_id_list . This parameter is a
sequence of ASN1_ObjectIdentifiers corresponding to the Attributes (or Attribute
Groups) to be retrieved by the operation. Note that to fill this parameter the JIDM
Specification Translation process defines IDL constants of the right type and cont
to facilitate this process (see XoJIDM, Appendix A, “References” for details). If th
sequence is empty, this is interpreted as if the complete list of attributes would ha
been requested.
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-35

3

nt is

 be

he
nal

d

 and
s

ged

f
ion
itate

the
is
The SET operations

The set operation may perform one of the following modifications to attributes.

• Replace the values of specified attributes with supplied values. The replaceme
exact, unless the attribute definition explicitly states otherwise.

• Replace the values of specified attributes with default values.

• Add or remove members to set-valued attributes that are defined to allow the
addition or removal of members.

To be able to specify the above modifications, the scoped SET operations (cmis_set ,
scoped_set) carry the following extra parameter:

• modification_list - this parameter contains a set of attribute modification
specifications, each of which contains:

• attribute_id : the registration ASN1_ObjectIdentifer of the attribute or attribute
group whose value(s) is to be modified; an attribute group identifier shall only
specified when the set to default modify operator is specified.

• attribute_value : the value(s) to be used in the modification of the attribute; t
use of this attribute is defined by the modify operator. This parameter is optio
when the set to default modify operator is specified and if supplied, shall be
ignored. If no value is to be passed, then a CORBA any with tc_kind equal to
tk_null should be passed.

• modify_operator : the way in which the attribute value(s) (if supplied) is applie
to modify the attribute.

If the set of attribute modifications is empty, then no modification is requested.

The ACTION operations

The action operation requests the managed objects to perform the specified action
to indicate the result of that action. With respect to confirmations, action operation
may be defined to always require confirmation or to allow the invoker to request a
confirmation or not.

Action operations may be defined to generate more than one response per mana
object that performs the operation.

As actions are generic by definition, the scoped ACTION operations (cmis_action ,
scoped_action) carry the following extra parameters:

• action_name : This argument specifies the registration ASN1_ObjectIdentifier o
the action to be performed. Note that to fill this parameter, the JIDM Specificat
Translation process defines IDL constants of the right type and contents to facil
this process (see XoJIDM, Appendix A, “References” for details).

• action_info : This argument carries the specific parameters that correspond to
action, that is, the IDL type that is the mapping of the information syntax for th
action. If the action has no information syntax, a CORBA any with tc_kind equal
to tk_null will be passed in this argument.
3-36 CORBA/TMN Interworking V1.0 August 2000

3

rs

ng

d

ifies

lly

cess

ould

d as

ct
The DELETE operations

The scoped DELETE operations (cmis_delete , scoped_delete) are used to request
the managed objects selected as a result of applying the scoping and filtering
arguments to delete themselves. These operations do not require extra paramete
except the common ones.

The CREATE operations

These operations are only available through the OSIMgmt::ProxyAgent interface
(that is, they are not available from the OSIMgmt::ManagedObject interface) and
provide another mechanism to create objects in the managed domain.

These operations are not scoped, that is, they only affect one object (the one bei
created), and therefore do not follow the common behavior outlined above.

Two flavors of the same operation are provided, one synchronous
(cmis_create_sync) and another asynchronous (cmis_create).

Both flavors of the cmis_create operation use the same input parameters:

• interface_name : Specifies the fully scoped name of the interface to be exporte
by the newly created object.

• creation_kind : Specifies the type of creation mechanism to be used, and ident
the use of the next parameter. The possible values are:

• simple : Create the object named in the following parameter.

• autonaming : Ignore the contents of the following parameter, and automatica
assign a name for the newly created object.

• subordinate : The name specified in the next parameter is the name of the
superior object from the one to be created.

• object_name : Specifies the IDL name of the managed object to be created (if
creation_kind is simple) or the name of the superior object (if creation_kind is
subordinate). If case creation_kind is autonaming , the contents of this
parameter are ignored.

• access_control : This parameter is information to be used as input to access
control functions, it is optional, and its type is
X711CMI::AccessControlTypeOpt . If present, then this access control
parameter is to be used in the current invocation. If absent, then the default ac
control parameter specified at OSIMgmt::ProxyAgent creation time (if any)
should be used. If neither was specified, then no access control information sh
be used.

• reference_object : Indicates the name of a managed object that should be use
a reference when creating the new object.

• req_attribute_values : Specifies a set of attribute values to be assigned at obje
creation time.

Both operations differ in the way they receive responses:
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-37

3

e

.1.7,

y

e

ous
utput

t.

g the

• cmis_create : Performs the operation in an asynchronous way, returning the on
and only result into the OSIMgmt::LinkedReplyHandler object passed as input
parameter. Note that this is an exception to the process described in Section 3
“The OSIMgmt::LinkedReplyHandler, EndOfRepliesHandler, and
MultipleRepliesHandler Interfaces,” on page 3-38. There is always one and onl
one response sent to the input LinkedReplyHandler object, and there is no call to
the end_of_replies method. The rest of the processing, including the use of th
different methods in the LinkedReplyHandler interface, follows exactly what is
explained in Section 3.1.7, “The OSIMgmt::LinkedReplyHandler,
EndOfRepliesHandler, and MultipleRepliesHandler Interfaces,” on page 3-38.

• cmis_create_sync : Given that there is only one response possible, a synchron
mechanism is also provided for this operation. In this case, there are several o
parameters carrying the result of the operation:

• created_interface_name : Interface supported by the newly created object.

• created_object_name : Name of the created object.

• creation_time : Time when the new object was created (optional).

• created_attribute_values : Values assigned to the attributes of the new objec

Error responses are returned as exceptions in this case.

3.1.7 The OSIMgmt::LinkedReplyHandler, EndOfRepliesHandler, and
MultipleRepliesHandler Interfaces

The LinkerReplyHandler/EndOfRepliesHandler are facilities that allow managed
object(s)/proxy agent(s) to send multiple replies to a single scoped operation, usin
asynchronous model. The deferred synchronous model is implemented using the
BufferedRepliesHandler (see Section 3.1.8, “The
OSIMgmt::BufferedRepliesHandler Interface,” on page 3-42)..

interface LinkedReplyHandler {
void send_reply (

in CORBA::ScopedName object_interface;
in CosNaming::Name object_name;
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in any reply_info

);

void send_mo_error (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in short error_code,
in any error_info

);

void send_subtree_error (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in short error_code,
3-38 CORBA/TMN Interworking V1.0 August 2000

3

ed

d.

ORBA
s

ce

hat

 If
in any error_info
);

};

interface EndOfRepliesHandler {
void end_of_replies ();

};

interface MultipleRepliesHandler : LinkedReplyHandler,
EndOfRepliesHandler {};

These interfaces are used as arguments for all scoped operations in
OSIMgmt::ProxyAgent and OSIMgmt::ManagedObject interfaces.

The scoped operations will be invoked on each managed object within the specifi
scope, which passes the filter condition. The corresponding reply will be sent
separately to the OSIMgmt::LinkedReplyHandler object whose reference was
passed when the scoped operation was invoked.

After all invocations to send_reply , send_mo_error and send_subtree_error
have returned, the end_of_replies operation is invoked, indicating the complete
finalization of the process. Note that with this behavior race conditions are avoide

LinkedReplyHandler/MultipleRepliesHandler objects may be implemented both
as local objects (in the client address space) or as remote objects (accessed via C
invocations) either in the gateway/CORBA agent/CORBA managed object addres
space or in a separate CORBA service process.

3.1.7.1 Descriptions of the LinkedReplyHandler operations

Common arguments to the LinkedReplyHandler operations

The following arguments are common to all OSIMgmt::LinkedReplyHandler
operations:

• object_interface : This parameter specifies the fully scoped name of the interfa
exported by the managed object that generated the current reply.

• object_name: This parameter specifies the IDL name of the managed object t
generated the current reply.

Using an empty string in the object_interface and a 0 length sequence in the
object_ name arguments refers to the base object of the corresponding scoped
operation.

• current_time : Specifies the time at which the response was generated. This
parameter is optional and might not be specified.

• reply_info/error_info : Carries the information associated with the current reply.
no value is to be passed, then a CORBA any with tc_kind equal to tk_null will be
passed.
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-39

3

rom

ged
he

The send_reply operation

The send_reply operation is used to pass information associated with each reply f
managed objects involved in a scoped operation.

The reply_info argument is a CORBA any, and its contents are different depending
on the scoped operation that was performed, as follows:

Table 3-5 Contents of reply_info parameter to send_reply

The send_mo_error operation

The send_mo_error operation indicates that an error has been found for a mana
object. The error_code argument indicates the type of error that has happened. T
error_info argument is a CORBA any whose contents might be different depending
on the scoped operation that was performed and the error that occurred.

Also, there are certain cases where the send_mo_error operation does not provide
any additional information, in which case an any with tc_kind equal to the tk_null is
passed as value of the error_info parameter.

Table 3-6 Contents of error_code and error_info parameters to send_mo_error

scoped operation Type carried in the reply_info parameter

ProxyAgent::cmis_create X711CMI::CreateResultAttributeListType

ProxyAgent::cmis_get
ManagedObject::scoped_get

X711CMI::GetResultAttributeListType

ProxyAgent::cmis_set
ManagedObject::scoped_set

X711CMI::SetResultAttributeListType

ProxyAgent::cmis_action
ManagedObject::scoped_action

IDL mapped type corresponding to the ACTION
REPLY SYNTAX; if the action has no reply
syntax, CORBA any with tc_kind equal to tk_null

ProxyAgent::cmis_delete
ManagedObject::scoped_delete

CORBA any with tc_kind equal to tk_null

scoped operation error_code Type in the error_info parameter

ProxyAgent::cmis_get
ManagedObject::scoped_get

4 X711CMI::GetListErrorGetInfoListType

ProxyAgent::cmis_set
ManagedObject::scoped_set

5 X711CMI::SetListErrorSetInfoListType

ProxyAgent::cmis_action
ManagedObject::scoped_action

16 X711CMI::ActionErrorInfoType

ProxyAgent::cmis_delete
ManagedObject::scoped_delete

17 X711CMI::DeleteErrorDeleteErrorInfoType
3-40 CORBA/TMN Interworking V1.0 August 2000

3

ect
ted
 the
n.

ich
The send_subtree_error operation

The send_subtree_error operation indicates a fatal error in a certain managed obj
subtree. The client should not expect any further replies from objects in the affec
managed object subtree. The interface and name of the base managed object of
subtree that experienced the fatal error are passed as arguments to this operatio

The error_code argument indicates the type of error that has happened, and the
error_info argument is a CORBA any, whose contents might be different depending
on the error that occurred.

Also, there are certain error cases where there is no additional information, in wh
case an any with tc_kind equal to the tk_null is passed as value of the error_info
parameter on the send_subtree_error operation.

Table 3-7 Contents of error_code and error_info parameters to send_subtree_error

all in case of ProcessingFailure 8 X711CMI::SpecificErrorInfoType, or
CORBA any with tc_kind equal to tk_null

Error condition error_code Type in the error_info parameter

AccessDenied 1 empty

ClassInstanceConflict 2 empty

ComplexityLimitation 3 X711CMI::ComplexityLimitationType, or
empty

GetListError 4 X711CMI::GetListErrorGetInfoListType

SetListError 5 X711CMI::SetListErrorGetInfoListType

InvalidArgumentValue 6 X711CMI::InvalidArgumentValueType

OperationCancelled 7 empty

ProcessingFailure 8 X711CMI::SpecificErrorInfoType, or empty

InvalidFilter 9 X711CMI::CMISFilterType

InvalidScope 10 X711CMI::ScopeType

SyncNotSupported 11 X711CMI::CMISSyncType

NoSuchAction 12 X711CMI::NoSuchActionType

NoSuchArgument 13 X711CMI::NoSuchArgumentType

NoSuchObjectClass 14 X711CMI::ObjectClassType

NoSuchObjectInstance 15 X711CMI::ObjectInstanceType

scoped operation error_code Type in the error_info parameter
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-41

3

ved

 to

t with

tiple
3.1.7.2 Descriptions of the EndOfRepliesHandler operations

The end_of_replies operation

The end_of_replies operation indicates that no more replies are going to be recei
from the managed objects involved in a scoped operation; therefore, signaling the
complete finalization of the process. This operation is invoked after all invocations
send_reply , send_mo_error , and send_subtree_error from objects within the
scope/filter parameters specified in the scoped operation have returned. Note tha
this behavior race conditions are avoided.

3.1.8 The OSIMgmt::BufferedRepliesHandler Interface

The OSIMgmt::BufferedRepliesHandler is a facility that allows client
programmers to use a deferred synchronous model to retrieve responses for mul
replies in an on-demand basis. This complements the fully asynchronous model
provided by the OSIMgmt::LinkedReplyHandler and
OSIMgmt::EndOfRepliesHandler interfaces.

struct Reply {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
any reply_info;

};
typedef sequence<Reply> ReplyList;

interface RepliesIterator {

DuplicateManagedObjectInstance 18 X711CMI::ObjectInstanceType

InvalidAttributeValue 19 X711CMI::AttributeType

InvalidObjectInstance 20 X711CMI::ObjectInstanceType

MissingAttributeValue 21 X711CMI::MissingAttributeValueType

NoSuchAttribute 22 X711CMI::AttributeIdType

NoSuchReferenceObject 23 X711CMI::ObjectInstanceType

MistypedOperation
NoSuchEventType
NoSuchInvokeId

-1 empty (these errors cannot happen in any
scoped operation)

communication failure -2 empty

ROSE rejection -3 implementation specific

others unknowns -4 implementation specific

Error condition error_code Type in the error_info parameter
3-42 CORBA/TMN Interworking V1.0 August 2000

3

ns

That

s a

re

exception MoError {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
short error_code;
any error_info;

};

exception SubtreeError {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
short error_code;
any error_info;

};

boolean get_reply (out Reply r) raises (MoError, SubtreeError);
boolean get_n_replies (in unsigned long how_many, out ReplyList r_list)

raises (MoError, SubtreeError);

boolean finished (out unsigned long num_pending);
void destroy ();

};

interface BufferedRepliesHandler : MultipleRepliesHandler, RepliesIterator {};

Note that the OSIMgmt::BufferedRepliesHandler interface is a pure extension of
the OSIMgmt::LinkedReplyHandler and OSIMgmt::EndOfRepliesHandler
interfaces. Therefore, objects exporting this interface can be passed in to operatio
that take OSIMgmt::LinkedReplyHandler and OSIMgmt::EndOfRepliesHandler
as parameters.

The use model for this interface is that of an Iterator, from the client's perspective.
is, the only operations a client should use are those defined in the RepliesIterator
interface. The other operations are directly invoked from the Managed Domain, a
result of a scoped operation or action with multiple replies.

These objects can be implemented either in the manager side or in the managed
domain side of an interaction, or even provided by an external service.

3.1.8.1 Descriptions of BufferedReplyHandler types and operations

The Reply type

The Reply type is the structure to hold one reply; the different fields in the structu
match those in the signature of the send_reply operation of the
LinkedReplyHandler interface.

The MoError exception

The MoError exception corresponds to the send_mo_error operation of the
LinkedReplyHandler interface, and the types and values carried by the exception
match exactly the parameters of the operation.
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-43

3

ion

re
s are
 The

ltiple
ce, so

rns

is
ent

e

ing
tion

r as

nd of

the

are
The SubtreeError exception

The SubtreeError exception corresponds to the send_subtree_error operation of
the LinkedReplyHandler interface, and the types and values carried by the except
match exactly the parameters of the operation.

The RepliesIterator interface

The RepliesIterator is, as its name indicates, an Iterator type interface, where the
are operations to access a list of items in the iterator in an ordered manner. Item
accessed once, and only once, regardless of the operation used to access them.
Iterator cannot be backed (re-access) or re-initiated.

Note that, in multi-threaded environments, where responses are retrieved from mu
threads (or even from multiple processes), each response will only be received on
care must be taken in these circumstances.

The get_reply operation

The get_reply operation blocks until the next reply is available, returning it when
ready. It returns true when the operation has actually retrieved a response, it retu
false when there are no more responses pending to be received (i.e., the
end_of_replies has been received). In this case, the value returned in the Reply
undefined (must be ignored). Once this operation has returned false, all subsequ
invocation to it will also return false. In case an error response is the first to be
returned (because it was buffered or received while blocked), the corresponding
exception is raised.

The get_n_replies operation

The get_n_replies call blocks until how_many replies are available, an error is
received or the iterator reaches its end, whatever happens first. The ReplyList will
contain at most how_many non-error replies. Specific implementations may impos
an appropriate maximum number for the how_many parameter to prevent excessive
consumption of resources.

If an error is received, the operation will return all valid replies up to but not includ
the error, unless the error is the first reply, in which case the corresponding excep
is raised. When the error is not returned by this operation, it remains in the buffe
the first response to be retrieved, and therefore the next call to get_reply or
get_n_replies will raise the exception corresponding to the error.

The operation returns false if there are no more replies to be pulled out and the e
the iterator has been reached, true; otherwise, this means that if this operation is
invoked after the Iterator has reached its end, then an empty list is returned and
return value is false.

Note that the semantic of the iterator is orthogonal to the way replies and errors
received through the LinkedReplyHandler interface and it allows a programming
model where errors are handled separately from normal replies.
3-44 CORBA/TMN Interworking V1.0 August 2000

3

ork
 way
oth
ing

, as
ssed.

this

ies

es

as

gh

.

L

m the

 the

e

anism,

The finished operation

The finished operation returns true if the Iterator has completed its background w
(and therefore knows about ALL responses) and false if the operation is still under
(that is, there might be more responses unknown to the iterator at this time). In b
cases, the number of replies immediately available for retrieval is returned (includ
pending error responses). This operation does not block.

This operation can be used to work in polling (non blocking) mode with the Iterator
the client can always ask for what it knows the Iterator already has received/proce
This polling mechanism should only be used from a single thread.

The destroy operation

The destroy operation destroys the iterator; any calls to the iterator invoked after
would return the OBJECT_DOES_NOT_EXIST standard exception.

3.1.9 Handling ACTIONs with multiple replies

Where actions have a reply syntax, objects have the option of using multiple repl
(i.e., returning a sequence of PDUs, each of the type given in the reply syntax,
containing part of the reply). Multiple replies allow data to be returned as it becom
available and have been used for monitoring progress.

While these are not widely used and could easily be replaced by notifications, it w
necessary to provide this capability with the same functionality as for generic
interfaces.

When actions that generate multiple replies from a single object are invoked throu
the scoped operations interfaces (cmis_action or scoped_action) no special action
has to be taken, as the mechanism to process multiple replies is already in place

Actions may also be invoked using IDL operations generated by the GDMO to ID
translation process or using the OSIMgmt::ManagedObject::perform_action
operation. These interfaces are synchronous (the response is the return value fro
operation); therefore, not allowing the reception of multiple replies.

For these cases, an additional user exception may be raised by the action call, in
event that multiple replies to the same request are generated. This is the UsingMR
exception.

The UsingMR exception carries one parameter, a reference to an
OSIMgmt::RepliesIterator object described in Section 3.1.8, “The
OSIMgmt::BufferedRepliesHandler Interface,” on page 3-42, that is provided by th
managed domain and should be used by the manager application to retrieve all
responses to the action. In case the managed domain does not provide this mech
and yet the multiple replies are generated, then a nil object reference might be passed
in the exception, and the manager should invoke the operation using the scoped
operations.

exception UsingMR
{ RepliesIterator replies_iterator; };
CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-45

3

t
ts are

ject
 all
al

 local
ted.
3.1.10 The OSIMgmt::LocalRoot interface

The term ‘local orphan managed objects,’ associated with an OSI managed objec
domain, is used to designate those managed objects of which the superior objec
located in a different OSI managed object domain.

In every CORBA-based OSI managed object domain there will exist a CORBA ob
that plays the role of a ‘local root.’ This local root object will act as the superior of
local orphan managed objects in the application (i.e., it will hold references to loc
orphan managed objects), and exports the OSIMgmt::LocalRoot interface.

In the case that a local orphan object is created in a certain managed domain, the
root object for that domain must be notified that a new subordinate has been crea

Figure 3-4 Dealing with Local Orphan Managed Objects

A reference to the local root object is maintained by the JIDM::DomainPort object
associated to the managed object domain. The JIDM::DomainPort object passes this
reference to every OSIMgmt::ProxyAgent object it creates.

The local root object is a managed object that exports the OSIMgmt::LocalRoot
interface.

typedef sequence<ManagedObject> ManagedObjectSeq;

interface LocalRoot : ManagedObject {
exception NoDescendants {};

OSIMgmt::ProxyAgent

Local root object

Local orphan object

AE-title4

OSIMgmt::
LocalRoot
3-46 CORBA/TMN Interworking V1.0 August 2000

3

g

art of
f this

the
n the
jects
ated

.

e
// list all local orphan managed objects:
ManagedObjectSeq list_orphans ();

// list of local orphans that are descendants of the object
// whose name is specified:
ManagedObjectSeq
list_orphan_descendants (in CosNaming::Name object_name)

raises (NoDescendants);
};

Note that the reference returned by the get_domain_naming_context operation
points to the system managed object. A reference to the root managed object
supporting the NamingContext interface will be bound under the initial
CosNaming::NamingContext of a managed object domain (typically correspondin
to the system managed object). Other NamingContexts that exist in the domain may
contain that binding as well, thus, allowing resolution of DistinguishedNames in
their context.

3.2 Programming Model

This section is provided as information only, and does not represent a normative p
this specification. In this section, different scenarios are described where the use o
specification will be clarified. This should be considered as a high level tutorial on
some potential uses of the JIDM model for OSI management.

3.2.1 Programming Semantics

CORBA manager programs create and invoke operations on managed objects in
same way they create and invoke operations on ordinary CORBA objects located i
same CORBA domain. Analogously, they receive events supplied by managed ob
as if they were ordinary CORBA objects supplying events to an event channel loc
in the CORBA domain. Whether this actually happens or not is transparent to the
CORBA manager program.

This concept of transparency is specifically supported by the fulfillment of the
semantic rules presented in Section 2.1.1, “JIDM Managed Objects,” on page 2-3

3.2.2 Creating Managed Objects

Creating a managed object implies to perform the list of actions described in
Section 2.1.2, “The JIDM::ProxyAgent Interface,” on page 2-4:

1. Obtain a reference to an OSIMgmt::ProxyAgent object that enables access to th
domain where the managed object is going to be created.

2. Obtain a reference to the initial CosLifeCycle::FactoryFinder located at the
domain.
CORBA/TMN v1.0 Programming Model Aug. 2000 3-47

3

or

ere
.

ate

ld
3. Invoke the find_factories operation exposed by the initial
CosLifeCycle::FactoryFinder object to find a factory for the new managed
object.

4. Select a factory among the several factory objects that may meet the criteria f
finding factories passed to the find_factories operation.

5. Invoke an appropriate operation, exposed by the selected factory, to create the
managed object.

Valid key values for finding factories in OSI Systems Management environments w
described in section Section 2.1.2, “The JIDM::ProxyAgent Interface,” on page 2-4

Figure 3-5 illustrates how, in a pure CORBA environment, manager objects will cre
a new OSI managed object.

Figure 3-5 Creating an OSI managed object directly through CORBA

As with JIDM facilities, the OSIMgmt::ProxyAgent created as a result of
establishing a connection to a CORBA managed object domain would typically ho
references to the root CosNaming::NamingContext object and
CosLifeCycle::FactoryFinder objects located at the domain. These steps are
followed:

1. The CORBA manager invokes the get_domain_factory_finder operation
exposed by the OSIMgmt::ProxyAgent object. As a result, a reference to the
initial CosLifeCycle::FactoryFinder located at the domain being accessed is
returned.

OSIMgmt::
ProxyAgent

specific
managed object
factory interface

Managed Object Domain
(Agent Application)

title4

Managed Object
Factory

CosLifeCycle::
FactoryFinder

manager object

1.

2.

3.

5.

CosNaming::
NamingContext

4.
6.
3-48 CORBA/TMN Interworking V1.0 August 2000

3

t that

ect

a

ocal

 to

 is a

g as

f

 be

 that
g

I
is

note
2. The CORBA manager object invokes the find_factories operation exposed by the
initial CosLifeCycle::FactoryFinder object. As a result, a reference to a
managed object factory is obtained and returned to the CORBA manager objec
requested it.

3. The CORBA manager object invokes a suitable operation on the managed obj
factory using the CORBA object reference previously obtained. Typically, the
CORBA manager will narrow this reference to a well-known managed object
factory interface (see Section 3.1.2, “The OSIMgmt::ProxyAgent Interface,” on
page 3-17).

4. The managed object factory creates the CORBA managed object and obtains
reference as a result.

5. The managed object factory binds the obtained reference with a name in the l
root CosNaming::NamingContext object.

6. The managed object factory notifies the superior managed object that a new
subordinate has been created.

7. Finally, if everything is all right, the managed object factory returns a reference
the CORBA manager object. Otherwise, it returns an exception.

Any superior managed object will hold a reference to every managed object which
subordinate of it. That is why a superior managed object must be notified about
creation of subordinate managed objects. Superior managed objects must hold
references to subordinate managed objects in order to handle scoping and filterin
well as to handle deletions.

Different implementation approaches are possible for step 5:

• The CosLifeCycle::Factory perform the required actions to allow initialization o
the object when it is first activated.

• The CosLifeCycle::Factory invokes an initialization operation exposed by the
object. (The XoJIDM Working Group should discuss if this operation requires to
specified in the standard OSIMgmt::ManagedObject interface.)

Different implementation approaches are also possible for step 6:

• Every managed object exports the CosNaming::NamingContext interface and
keeps name bindings associated to its subordinates (note that this would imply
the structure of the CORBA naming tree would be equivalent to the OSI namin
tree (i.e., managed objects support the resolve operation and don’t raise the
CannotProceed exception).

• The structure of the CORBA naming tree doesn’t match the structure of the OS
naming tree. For example, it is more plain and avoid deep nesting (note that th
approach implies that managed objects support the resolve operation but may raise
the CannotProceed exception).

and, finally, for step 7 the following implementation approaches are also valid:

• Make the factory object coincide with the superior of the new managed object (
that this implies a clear optimization).
CORBA/TMN v1.0 Programming Model Aug. 2000 3-49

3

n by
se.

e

y
e

• Make the factory object notify the superior object that a new child has been bor
means of invoking an operation that the superior object exposes for this purpo
(The XoJIDM Working Group should discuss if this operation is going to be
specified in the OSIMgmt::ManagedObject interface.)

In a CORBA managed object domain, propagation of operations is handled by th
objects themselves: each object is responsible to forward the operation to its
descendants. However, the way in which they perform the propagation is an
implementation matter. Analogously, the mechanisms used to notify to the base
managed object that all the replies have been sent is an implementation matter.

A simple way of implementing propagation of operations would consist in using
recursion as illustrated in the pseudo-code listed below.

Recursive propagation of scoped actions

obj->scoped_action (scope, filter, sync, act, arg,
replies_handler, end_handler)

::=
if <obj satisfies the filter> {

// perform the action on the object and return the result:
result = obj->act (...);
replies_handler->send_reply (obj_intf, obj_name, result);

};

// create an OSIMgmt::EndOfRepliesHandler (end_subs) which will
// wait until all descentants notify they have finished propagation:
end_subs = ...;

// propagate action through descendants:
sub1->scoped_action (scope1, filter, sync, act, arg, replies, end_subs);
..
subn->scoped_action (scopen, filter, sync, act, arg, replies, end_subs);

In the above example, the base managed object passes a reference to an object
(end_subs) that will be responsible for:

1. Waiting until all subordinates of ‘obj ’ invoke the end_of_replies operation
exposed by the ‘end_subs ’ object.

2. Trigger invocation of the end_of_replies operation exposed by the ‘end ’
object.

In the algorithm we have presented, invocation of a scoped operation returns
immediately. The OSIMgmt::ProxyAgent object doesn’t handle the end of replies
but passes a reference to the object that will handle it. There is another possibilit
which consists in that invocation of a scoped operation blocks until all replies hav
been sent. In this case, the OSIMgmt::ProxyAgent object will be responsible for
sending the last CMIP response, indicating the end of replies. By convention, this
behavior is experimented whenever a nil object reference is passed as the
OSIMgmt::EndOfRepliesHandler argument.
3-50 CORBA/TMN Interworking V1.0 August 2000

3

ns

ed by
Note that synchronous invocations imply support for multi-threading in the
CORBA/CMIP gateway process. (The OSIMgmt::ProxyAgent and the
OSIMgmt::LinkedReplyHandler objects must concurrently execute.)

3.2.3 Invoking Operations on Single Managed Objects

Invoking an operation on a single managed object implies that the following actio
are performed:

1. Obtain a reference to an OSIMgmt::ProxyAgent object that enables access to
some domain of which the managed object is member.

2. Obtain a reference to the initial CosNaming::NamingContext located at the
domain, by means of invoking the get_domain_naming_context operation
exposed by the OSIMgmt::ProxyAgent object.

3. Construct the name that unequivocally identifies the managed object within the
domain.

4. Invoke the resolve operation exposed by the initial
CosNaming::NamingContext object located at the domain, thus obtaining a
CORBA object reference pointing to the managed object.

5. Invoke the operation on the managed object.

Example code for invoking an operation on a managed object

The following example shows the code used to set the destination attribute expos
an Event Forwarding Discriminator.

OSIMgmt::ProxyAgent_ptr agent;
OSIMgmt::LName local_name;
X721Att::DestinationType new_destinations;
....................................

// a reference to a OSIMgmt::ProxyAgent is obtained as a result of
// establishing a connection to the managed object domain where
// the EFD is located:

agent = ...;
....................................

// a reference to the initial CosNaming::NamingContext object
// is obtained:

CosNaming::NamingContext_ptr ctx = agent->get_domain_naming_context ();

// the name of the EFD object is constructed:

local_name -> for_string_form (“2.9.3.2.1=(string)’MyEFD’”);
....................................

// a reference to the EFD object is obtained and narrowed
CORBA/TMN v1.0 Programming Model Aug. 2000 3-51

3

ed by

ld
// to the X711::eventForwardingDiscriminator interface:

CORBA::Object_ptr obj = ctx->resolve (local_name -> to_idl_form ());

X721::eventForwardingDiscriminator_ptr efd =
X711::eventForwardingDiscriminator::_narrow (obj);

// Finally, the destinationSet operation is invoked on
// the managed object:

efd -> destinationSet (new_destinations);

Note that the same result can be obtained without narrowing the reference return
a JIDM::ProxyAgentFinder object to an OSIMgmt::ProxyAgent interface, when
the access_domain operation was invoked.

Figure 3-6 illustrates how CORBA manager objects invoke operations on a single
managed object in a pure CORBA environment.

Figure 3-6 Invoking operations on a managed object directly through CORBA

As previously explained, the OSIMgmt::ProxyAgent created as a result of
establishing a connection to a CORBA managed object domain would typically ho
references to the root CosNaming::NamingContext object and
CosLifeCycle::FactoryFinder object located at the domain. Thus, the following
steps will be followed:

JIDM::
ProxyAgent

specific
management

interface
Application C (agent role)

title4

CosNaming::
NamingContext

manager object

1.

2.

3.
3-52 CORBA/TMN Interworking V1.0 August 2000

3

t
 the

g the
 be
ed,
IDL

a
1. The CORBA manager object invokes the get_domain_naming_context
operation exposed by the OSIMgmt::ProxyAgent object, in order to obtain a
reference to the initial CosNaming::NamingContext object.

2. The CORBA manager object invokes the resolve operation exposed by the initial
CosNaming::NamingContext object, passing the name of the managed objec
upon which it wants to operate. As a result of this, a CORBA object reference to
managed object is obtained and returned to the CORBA manager object that
requested it.

3. The CORBA manager object invokes an operation on the managed object usin
CORBA object reference previously obtained. IDL stubs or the standard DII can
used when invoking operations on single managed objects. If IDL stubs are us
the CORBA manager object must first narrow the reference to a specific OMG
interface.

3.2.4 Invoking Operations with Scope and Filtering

Scoped operations can be invoked either through OSIMgmt::ProxyAgent or
OSIMgmt::ManagedObjects . In the last case, the base managed object in the
selection is the one being referred.

Figure 3-7 illustrates how CORBA manager objects invoke a scoped operation in
pure CORBA environment.
CORBA/TMN v1.0 Programming Model Aug. 2000 3-53

3

ugh

t
nce to

 a

A
Figure 3-7 Invoking operation with scope and filtering

The following steps will be followed in case the scoped operations are invoked thro
operations exposed by the base managed object:

1. A CORBA manager object invokes the resolve operation exposed by the initial
CosNaming::NamingContext object, passing the name of the managed objec
used as the base managed object in the scoped operation. As a result, a refere
the managed object is returned.

2. The CORBA manager object narrows the obtained CORBA object reference to
new object reference, bound to the OSIMgmt::ManagedObject interface, and
invokes the appropriate scoped operation (scoped_get , scoped_set ,
scoped_action , or scoped_delete).

3. The CORBA manager objects select an object that exports the
OSIMgmt::MultipleRepliesHandler interface (can create it). When invoking, the
CORBA manager object passes a reference to this object (note that the CORB
manager object may be the one exporting the
OSIMgmt::MultipleRepliesHandler interface).

Application C (agent role)

manager object

3.

5.

2.

OSIMgmt::
EndOfRepliesHandler

OSIMgmt::
LinkedReplyHandler

7.

6.

Managed objects
satisfying the filter

4.

OSIMgmt::
ManagedObject

CosNaming::
NamingContext

1.
3-54 CORBA/TMN Interworking V1.0 August 2000

3

d

filter

ssed

 by

t
ified

ntly
4. The base managed object propagates the requests to its descendants.

5. Replies from each of the managed objects satisfying the filter, within the define
scope, are received by the OSIMgmt::MultipleRepliesHandler object.
Information associated to each of the replies is passed when invoking the
send_reply operation exposed by the OSIMgmt::MultipleRepliesHandler
object.

6. The base managed object is notified when scoped descendants that pass the
have sent their replies to the OSIMgmt::MultipleRepliesHandler object.

7. The base managed object invokes the end_of_replies operation exposed by the
OSIMgmt::MultipleRepliesHandler object. If an error occurs during the whole
process, an exception is generated, converted into a CORBA any value and pa
to the OSIMgmt::LinkedRepliesHandler object by invoking either the
send_mo_error or send_subtree_error operations.

Code for invoking scoped operations

The following example shows how the fragment of code used to find a Log object
name should look.

OSIMgmt::ManagedObject_ptr managed_object;
X711Inf::DistinguishedNameType object_name;
OSIMgmt::LName_ptr local_name;
OSIMgmt::MultipleRepliesHandler_ptr handler;
................
local_name -> for_osi_form (object_name);
CORBA::Object_ptr obj = ctx -> resolve (local_name -> to_idl_form ());
managed_object = OSIMgmt::ManagedObject::_narrow (obj);

managed_object -> scoped_action (scope, filter, sync, access_control,
“reset”, arg, handler, handler);

3.2.5 Iterator Interfaces for Scoped Operations

In other OMG specifications, the iterator pattern is used heavily for operations tha
return an unbounded list of responses. This is how it could be done, with the spec
interfaces, as follows. The scoped operations both in ProxyAgent and
ManagedObject share the last parameters in the list as in:

 cmis_get(..., in LinkedReplyHandler lrh, in EndOfRepliesHandler eorh)

The iterator interfaces for other services look like:

 iter_get(..., in unsigned long how_many, out ReplyList rlist,
 out ReplyIterator riter)

This operation can be implemented by the following pseudocode, using our curre
proposed interfaces.
CORBA/TMN v1.0 Programming Model Aug. 2000 3-55

3

nded
ingle

ler
e

 the

ts

can
e of

art of

al
Using ReplyIterator

iter_get(..., in unsigned long how_many,
 out ReplyList rlist,
 out ReplyIterator riter)

 {
 BufferedRepliesHandler brh = create_brh(...) // or other creation

 // call
 cmis_get(..., brh, brh)
 brh -> get_n_replies(how_many, rlist)

 riter = brh // widening does not require narrow()
 }

Note that, although this code is simple, implementing this in either a pure CORBA
Agent, pure CORBA Managed object or a gateway may impose unacceptable
performance and scalability constraints in the implementation as potentially unbou
buffering must occur in a single point, and concentration of responses through a s
CORBA object will also happen.

Other more flexible implementations are allowed by means of combining the simp
pieces together, as done above, therefore avoiding the scalability and performanc
problems (at least, reducing them).

Besides, the BRH objects can be implemented both as local objects (in the client
address space) or as remote objects (accessed via CORBA invocations) either in
gateway/CORBA agent/CORBA managed object address space or in a separate
CORBA service process.

3.2.6 Reception of Events at CORBA Managers

Different strategies to resolve how CORBA manager objects finally consume even
(see Chapter 2 for details).

3.2.7 Forwarding Events from CORBA Managed Object Domains

Different strategies to resolve how CORBA managed objects finally report events
be implemented (see Chapter 2 for details). The only distinction is that the interfac
the EventReporter object is well-known and correspond to the standard Event
Forwarding Discriminator interface.

3.3 CORBA/CMIP Gateways

This section is provided as information only, and does not represent a normative p
this specification.

In this section, different gateway scenarios are described where the use of this
specification will be clarified. This should be considered as a high level tutorial on
some potential uses of the JIDM model for OSI management. Also, some potenti
implementation options are discussed.
3-56 CORBA/TMN Interworking V1.0 August 2000

3

ing

ver.

ys at

d

eway.

er

nd a
ld

.

er
3.3.1 Manager Side Gateways

3.3.1.1 Overview

CORBA/CMIP gateways must be used by any CORBA Manager Application need
to interoperate with managed object domains that are not directly accessible via
CORBA but are accessible via CMIP.

A CORBA/CMIP gateway runs in one CORBA server. However, a CORBA/CMIP
gateway can coexist with one or several JIDM gateways in the same CORBA ser
Programs of the CORBA server have access to both; ORB services and services
encapsulating access to management-specific protocols provided by JIDM gatewa
the server.

Any CORBA/CMIP gateway has several CORBA objects associated with it:

• A JIDM::ProxyAgentFinder object for establishing connections to OSI manage
object domains accessible via CMIP through the gateway.

• One or several JIDM::EventPort objects for receiving notification of events from
members of OSI managed object domains accessible via CMIP through the gat

The JIDM::ProxyAgentFinder object is created during start-up of the CORBA serv
where the JIDM gateway is going to run. JIDM::EventPort objects at the gateway
may be created during or after start-up of that server. This typically requires the
existence of an EventPortFactory object at the gateway.

As previously explained, several JIDM gateways can exist in a CORBA manager a
JIDM::ProxyAgentFinder object is associated with each of them. All of them wou
be registered in a root JIDM::ProxyAgentFinder object at the CORBA manager.
CORBA managers typically obtain a reference to this local root
JIDM::ProxyAgentFinder object by using standard CORBA Initialization Services

The JIDM::ProxyAgentFinder object is created during start-up of the CORBA serv
where the JIDM gateway is going to run. JIDM::EventPort objects at the gateway
may be created during or after start-up of that server.
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-57

3

Figure 3-8 Structure of CORBA/CMIP gateways (manager side)

As a result of establishing a connection through a CORBA/CMIP gateway, an

OSIMgmt::ProxyAgent object is created at the gateway. OSIMgmt::ProxyAgent
objects created this way are responsible for:

• Creating a CosLifeCycle::FactoryFinder object that in turn enables creation of
CORBA factories that handle creation of managed objects at the domain.

• Creating a CosNaming::NamingContext object that in turn enables creation of
CORBA proxy managed objects for each member of the domain.

• Sending scoped operation requests.

CMIP
protocol

JIDM::
ProxyAgentFinder

JIDM gateway

JIDM::
EventPorts

JIDM::
ProxyAgentFinder

JIDM gateway

JIDM::
EventPorts

management
service access

endpoint

CMIP
protocol

local root
JIDM::ProxyAgentFinder

management
service library

EventPort
factories
3-58 CORBA/TMN Interworking V1.0 August 2000

3

 to a
:

in the

d as
h
Figure 3-9 OSIMgmt::ProxyAgents in a gateway

3.3.1.2 Getting access to managed object domains

The following steps are used when a CORBA manager object tries to get access
external managed object domain using a CORBA/CMIP gateway (see Figure 3-9)

1. The CORBA manager object invokes the access_domain operation exported by
the JIDM::ProxyAgentFinder object located at the gateway. Information that
unequivocally identifies the managed object domain to be accessed is passed
invocation.

2. As a result of invoking the access_domain operation, a CORBA
OSIMgmt::ProxyAgent object is created at the gateway. The new
OSIMgmt::ProxyAgent object is bound to a CMIP communication endpoint (a
CMIS access point). If a specific domain title was specified in the criteria passe
argument to the access_domain operation, then a connection is established wit
the managed object domain. In such a case, the OSIMgmt::ProxyAgent is
responsible to manage resources associated with the connection.

3. A reference to the OSIMgmt::ProxyAgent object is returned to the CORBA
manager object that requested access to the managed object domain being
considered. This reference is returned as a reference to a JIDM::ProxyAgent
object. To use specific operations in the OSIMgmt::ProxyAgent interface,
manager objects must narrow the reference they receive.

OSIMgmt::
ProxyAgent

specific
management

interface
Application C (agent role)

AE-title4

manager object

proxy
managed object

gateway
CMIP

protocol

OSI stack OSI stack
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-59

3

ing

y
t.

re
rning

tion
Figure 3-10 Finding references to OSIMgmt::ProxyAgents in a JIDM gateway

Each OSIMgmt::ProxyAgent object encapsulates access to a domain by establish
a session with that domain.

Different solutions can be implemented:

• OSIMgmt::ProxyAgent objects located in the same CORBA/CMIP gateway ma
share the same session, but each of them is associated with a different contex

• Each OSIMgmt::ProxyAgent object has a different session associated with it.

3.3.1.3 Creation of managed objects

Implementors of create operations exported by proxy managed object factories a
responsible for constructing the appropriate CMIP m-create requests and for retu
the appropriate results.

Different types of factories can be found according to criteria passed in the invoca
of the find_factories operation exported by the initial
CosLifeCycle::FactoryFinder visible through the CORBA/CMIP gateway:

• OSIMgmt::ManagedObjectFactory

• CosLifeCycle::GenericFactory

CMIP
PDUs

gateway

1.
2.

3.

JIDM::
ProxyAgentFinder

OSIMgmt::
ProxyAgent
3-60 CORBA/TMN Interworking V1.0 August 2000

3

ect at
1 on

ctory

ory

ace

d

ation
The following steps are followed when a CORBA manager creates a managed obj
some domain that is accessible through a CORBA/CMIP gateway (see Figure 3-1
page 3-62):

1. The CORBA manager invokes the get_domain_factory_finder operation
exported by the OSIMgmt::ProxyAgent object.

2. The CORBA manager invokes the find_factories operation exported by the
returned CosLifeCycle::FactoryFinder object, passing a valid key value.

3. The CosLifeCycle::FactoryFinder object finds references for appropriate
managed object factories at the JIDM gateway. If there is no managed object fa
matching the key, the CosLifeCycle::FactoryFinder object creates one.
References to managed object factories are returned to the CORBA manager.

4. The CORBA manager object invokes an operation on the managed object fact
using the CORBA object reference it obtained. Typically, the CORBA manager
object narrows this object reference to a specific managed object factory interf
supported by the factory (the CosLifeCycle::GenericFactory or the
OSIMgmt::ManagedObjectFactory interface, for example).

5. The CORBA request is received by the CORBA/CMIP gateway and is translate
into an appropriate m-create request PDU. This m-create request PDU is sent
through the association handled by the OSIMgmt::ProxyAgent .

6. When the response to the m-create request PDU is received, the invoked oper
returns with the appropriate result values.

7. If the create operation must return an object reference then a CORBA proxy
managed object is also created at the gateway.
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-61

3

n a
3-12

t

t
er

way.

Figure 3-11 Creating managed objects through a CORBA/CMIP gateway

3.3.1.4 Invocation of operations on single managed objects

The following steps are followed when a CORBA manager invokes an operation o
managed object that is accessible through a CORBA/CMIP gateway (see Figure
on page 3-63):

1. The CORBA manager invokes the get_domain_naming_context operation
exported by the OSIMgmt::ProxyAgent object.

2. A CORBA manager object invokes the resolve operation exported by the returned
CosNaming::NamingContext object, passing the name of the managed objec
upon which it wants to operate.

3. The CosNaming::NamingContext object finds a reference to the CORBA objec
acting as the proxy of the managed object and returns it to the CORBA manag
that requested it. The CORBA proxy managed object resides in the JIDM gate
The CosNaming::NamingContext object is responsible for creating the CORBA
proxy managed object if it didn’t exist at the gateway, the first time an existing
managed object is accessed.

 request
PDU

gateway

2.

3.

4.

5.

CosLifeCycle::
FactoryFinder

impl.

CosLifeCycle::
FactoryFinder

6.

proxy
managed

object factory

specific managed
object factory

interface

7.

OSIMgmt::
ProxyAgent

1.
3-62 CORBA/TMN Interworking V1.0 August 2000

3

g the
 DII

into
he

rns

n a
3-13

n.
4. The CORBA manager object invokes an operation on the managed object usin
CORBA object reference to the corresponding proxy. IDL stubs or the standard
can be used to perform this action. Whenever IDL stubs are used, the CORBA
manager must narrow the reference, obtained from the
CosNaming::NamingContext , to a specific OMG IDL interface.

5. The CORBA request is received by the CORBA/CMIP gateway and translated
an appropriate management request PDU. This request PDU is sent through t
association handled by the OSIMgmt::ProxyAgent .

6. When the response to the request PDU is received, the invoked operation retu
with the appropriate result values.

Figure 3-12 Invoking operations on a managed object through a CORBA/CMIP gateway

3.3.1.5 Invoking operations with scope and filtering

The following steps are followed when a CORBA manager invokes an operation o
managed object that is accessible through a CORBA/CMIP gateway (see Figure
on page 3-65):

1. A CORBA manager object invokes the resolve operation exported by the initial
CosNaming::NamingContext object located at the managed object domain,
passing the name of the managed object used as base of the scoped operatio

 request
PDU

gateway

2.

3.

4.

5.

CosNaming::
NamingContext

impl.

CosNaming::
NamingContext

6.

proxy
managed

object factory

specific managed
object factory

interface

OSIMgmt::
ProxyAgent

1.
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-63

3

t

 a

d
 the

ject

d

 the
2. The CosNaming::NamingContext object finds a reference to the CORBA objec
acting as the proxy of the managed object, in the CORBA/CMIP gateway, and
returns it to the CORBA manager object requesting it.

3. The CORBA manager object narrows the obtained CORBA object reference to
new object reference, bound to the OSIMgmt::ManagedObject interface, and
invokes the appropriate scoped operation (scoped_get , scoped_set ,
scoped_action , or scoped_delete).

4. In the invocation, the CORBA manager object passes a reference to an
OSIMgmt::MultipleRepliesHandler object (this may be a reference itself if the
manager exports this interface).

5. The CORBA request is received by the CORBA/CMIP gateway and is translate
into an appropriate CMIP request PDU. This CMIP request PDU is sent through
CMIP communication endpoint associated with the OSIMgmt::ProxyAgent
through which the reference to proxy managed object was obtained. If a nil ob
reference was passed as the OSIMgmt::EndOfRepliesHandler , the CMIP request
PDU is sent unconfirmed.

6. Replies from each of the managed objects satisfying the filter, within the define
scope, are received by the CORBA/CMIP gateway.

7. Information associated with each of the replies is passed by invoking the
send_reply operation exported by the OSIMgmt::MultipleRepliesHandler
object. Once all replies have been received, the CORBA/CMIP gateway invokes
end_of_replies operation exported by the OSIMgmt::MultipleRepliesHandler
object.
3-64 CORBA/TMN Interworking V1.0 August 2000

3

ocal
only

ward

 an
IS
ary in
ments).
Figure 3-13 Invoking operation with scope and filtering

The gateway is much simpler to program. Actually, it neither needs to maintain a l
copy of the naming tree nor to test which managed objects satisfy the filtering. It
needs to:

• create an object in the CORBA/CMIP gateway that exports the
LinkedReplyHandler and the EndOfRepliesHandler interfaces.

• invoke the scoped operation exported by the base managed object through the
OSIMgmt::ManagedObject interface.

Different strategies can be implemented to resolve how each object is going to for
operations to its descendants and detect that there aren’t pending replies to its
descendants, but they are transparent to the gateway.

CORBA manager objects can also invoke operations that are directly exported by
OSIMgmt::ProxyAgent and which basically correspond to an encapsulation of CM
primitives. Note that references to CORBA proxy managed objects are not necess
that case (the name of the interface and the managed object are passed as argu
This may be a way to solve scalability problems.

proxy
managed

object

CMIP
request

gateway

1.
2.

3.

5.

OSIMgmt::
ProxyAgent

CosNaming::
NamingContext

OSIMgmt::
ManagedObject

6.

4.

7.

OSIMgmt::
MultipleRepliesHandler
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-65

3

ny
tion

s,”

gh a

e

s

.

the
3.3.1.6 Event reception

Events originated at managed object domains are always received through

JIDM::EventPort objects at CORBA Managers. A mechanism is implemented at a
CORBA/CMIP gateway that allows event data received at a management connec
endpoint to be forwarded to the appropriate JIDM::EventPort object.

As already mentioned in Section 2.2.4, “Reception of Events at CORBA Manager
on page 2-25, different strategies to resolve how CORBA manager objects finally
consume events can be implemented. For example, CORBA manager objects can
register themselves directly to OSIMgmt::EventPorts or via some additional event
channel.

The following steps are followed when a CORBA manager receives an event throu
JIDM::EventPort at a CORBA/CMIP gateway:

1. During the start up phase of the CORBA Manager Application, one or more
application objects register themselves either as
CosEventComm::PushConsumers or CosEventComm::PullConsumers in
each of the existing OSIMgmt::EventPorts .

2. An m-event-report indication PDU containing notification of an event from a
managed object is received by the CORBA/CMIP gateway through some
association. This association is bound to a specific title and has a
JIDM::EventPort object associated with it, which finally receives the event data
carried in the PDU.

3. The appropriate response is sent by the CORBA/CMIP gateway back to the
application that reported the event, confirming that the event was received at th
Manager Application.

4. The JIDM::EventPort invokes the push operation exported by all
CosEventComm::PushConsumers objects connected to it. Data of the event i
passed in the invocation as an any.

5. The JIDM::EventPort maintains the event until all
CosEventComm::PullConsumers objects connected to the port pull the event
Data of the event is obtained by consumers as an any.

6. CosEventChannelAdmin::EventChannel objects can be connected as
consumers to the event port. In such a case, manager objects performing
management functions can be connected to the channel instead of directly to
event ports.
3-66 CORBA/TMN Interworking V1.0 August 2000

3

ut
BA

 OSI
Figure 3-14 Event reporting at CORBA/CMIP gateways (manager side)

3.3.1.7 CMISE service level scenarios

The OSIMgmt::ProxyAgent objects provide CMIS service level IDL methods, that
would allow any CORBA manager application to perform all CMIS operations witho
the need to have any further CORBA object references to the corresponding COR
objects. This type of interaction is most useful in gateway situations, although it is
applicable to pure CORBA environments as well.

This section presents some scenarios as they would apply to CORBA manager to
agent gateway environments. These scenarios also assume that the ProxyAgent object
has been previously located or created by the manager object by invoking the
access_domain operation on the JIDM::ProxyAgentFinder object.

m-event-report
indication

gateway

CosEventChannelAdmin::
ConsumerAdmin

2.

1.

4.

CosEventComm::
PushConsumer

3.

EventChannel

OSIMgmt::
EventPort

6.

manager
objects

CosEventComm::
PullSupplier

5.
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-67

3

sent

a
as

ent
se to
Scenario 1 - Creating managed objects

Asynchronous create operation

Figure 3-15 Asynchronous creation of a managed object through a CORBA/CMIP gateway

The following steps are taken each time an asynchronous M-CREATE request is
through the CORBA/CMIP Gateway.

1. The CORBA manager object invokes the cmis_create operation against the
OSIMgmt::ProxyAgent object. The asynchronous cmis_create method takes the
additional OSIMgmt::LinkedReplyHandler object reference against which the
response method will be invoked. The other input arguments are the X711CMI
CMIS data arguments, the creation method (creation_kind), the object_name
(distinguished name), and the interface_name of the object being created.

2. The OSIMgmt::ProxyAgent object implementation transforms the IDL data into
CMIP PDU and sends it over the OSI stack to the OSI agent. Once the PDU h
been sent, the asynchronous cmis_create call returns.

3. At some later point, the response comes back to the gateway from the OSI ag
over the OSI stack. The gateway implementation internally converts the respon
its IDL equivalent.

CORBA-Based Manager Application

OSIMgmt::
LinkedReplyHandeler

CMIP
protocol

OSI stack

OSIMgmt::
ProxyAgent

1.

2,3.4.

OSI stack

2,3.

OSI-Based Agent Application

gateway

manager-side
object
3-68 CORBA/TMN Interworking V1.0 August 2000

3

n

nt

ta

a
he

ent
se to
4. The gateway invokes the send_reply (or send_mo_error , send_subtree_error
if an error occurred) method against the OSIMgmt::LinkedReplyHandler object
that was passed to the original cmis_create call, passing the response data as a
argument.

Synchronous create operation

Figure 3-16 Synchronous creation of a managed object through a CORBA/CMIP gateway

The following steps are taken each time a synchronous M-CREATE request is se
through the CORBA/CMIP Gateway.

1. The CORBA manager object invokes the cmis_create_sync operation against the
OSIMgmt::ProxyAgent object. The input arguments are the X711CMI CMIS da
arguments, the creation method (creation_kind), the object_name (distinguished
name), and the interface_name of the object being created.

2. The OSIMgmt::ProxyAgent object implementation transforms the IDL data into
CMIP PDU and sends it over the OSI stack interface to the OSI agent. Once t
PDU has been sent, the cmis_create_sync call blocks, waiting for the response.

3. At some later point, the response comes back to the gateway from the OSI ag
over the OSI stack. The gateway implementation internally converts the respon
its IDL equivalent.

CORBA-Based Manager Application

CMIP
protocol

OSI stack

OSIMgmt::
ProxyAgent

1,4.

2,3.

OSI stack

2,3.

OSI-Based Agent Application

gateway

manager-side
object
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-69

3

gh

s

te
ct
ope,

a
as
4. The cmis_create_sync method returns the results of the create operation throu
the out-arguments of the cmis_create_sync call. These include the
created_interface_name , the created_object_name (distinguished name of
the object actually created), the creation_time (time when the managed object wa
created), and the created_attribute_values (values of attributes of the new
object).

Scenario 2 - Generic operations on managed objects

Figure 3-17 Operations against a managed object through a CORBA/CMIP gateway

The following steps are taken each time an M-GET, M-SET, M-ACTION or M-
DELETE request is sent through the CORBA/CMIP Gateway.

1. The CORBA manager object invokes the desired operation against the
OSIMgmt::ProxyAgent object. All method invocations that will result in one or
more responses take the OSIMgmt::LinkedReplyHandler and
OSIMgmt::EndOfRepliesHandler object references - against which the separa
response methods will be later invoked. For unconfirmed operations, both obje
references should be nil. The other input arguments are the X711CMI CMIS sc
filter, synchronization and access control arguments, the object_name
(distinguished name), and the interface_name .

2. The OSIMgmt::ProxyAgent object implementation transforms the IDL data into
CMIP PDU and sends it over the OSI stack to the OSI agent. Once the PDU h
been sent, operation invocation returns.

CORBA-Based Manager Application

OSIMgmt::
LinkedReplyHandeler

CMIP
protocol

OSI stack

OSIMgmt::
ProxyAgent

1.

2,3.4.

OSI stack

2,3.

OSI-Based Agent Application

gateway

manager-side
object
3-70 CORBA/TMN Interworking V1.0 August 2000

3

t over
 its

ta as
ed

ng.

end

s

l
3. At some later point, a response comes back to the gateway from the OSI agen
the OSI stack. The gateway implementation internally converts the response to
IDL equivalent.

4. The gateway invokes the send_reply (or send_mo_error , send_subtree_error
if an error occurred) method against the OSIMgmt::LinkedReplyHandler object
which was passed to the original operation invocation, passing the response da
an argument. If the current reply is the last one, this will be immediately follow
by an invocation of the end_of_replies method against the
OSIMgmt::EndOfRepliesHandler object reference which was passed in to the
initial request operation.

Scenario 3 - Cancelling a get operation

This scenario describes how the M-CANCEL-GET operation may be sent from a
CORBA manager to an OSI agent, assuming that an M-GET request is outstandi

Figure 3-18 Cancelling an outstanding M-GET operation

The following steps must be taken in order to get the CORBA/CMIP gateway to s
an M-CANCEL-GET request to a pending M-GET.

1. At some point after the initial M-GET request is issued, but before all response
have been received, the CORBA manager deletes the
OSIMgmt::LinkedReplyHandler object, which was associated with the origina
request.

CORBA-Based Manager Application

OSIMgmt::
LinkedReplyHandeler

CMIP
protocol

OSI stack

3. 2,4.

OSI stack

1,4.

OSI-Based Agent Application

gateway

1.

manager-side
object
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-71

3

. The

n
nger

-

 to
one

rvices
ys at
ys in

ts

bject
2. A response comes back to the gateway from the OSI agent over the OSI stack
gateway implementation internally converts the response to its IDL equivalent.

3. The gateway attempts to invoke the send_reply (or send_mo_error ,
send_subtree_error if an error occurred) method against the
OSIMgmt::LinkedReplyHandler object that was passed to the original operatio
invocation, passing the response data as an argument. Since this object no lo
exists, a standard CORBA exception OBJECT_NOT_EXIST will be thrown.

4. The gateway catches this exception, which tells it to synthesize an M-CANCEL
GET PDU and send it down the OSI stack to the OSI agent.

3.3.2 Agent Side Gateways

3.3.2.1 Overview

CORBA/CMIP gateways must be used by any CORBA Agent Application needing
offer a management interface based on CMIP. A CORBA/CMIP gateway runs in
CORBA server. However, one or several JIDM gateways can coexist in the same
CORBA server. Programs in this server have access to both ORB services and se
encapsulating access to management-specific protocols provided by JIDM gatewa
the server. Besides, there can be several CORBA servers containing JIDM gatewa
the same CORBA Agent Application.

Any CORBA/CMIP gateway at a CORBA Agent Application has several objects
associated with it (see Figure 3-19 on page 3-73):

• A JIDM::EventPortFinder CORBA object that enables CORBA managed objec
at the agent application to establish connections to JIDM::EventPort objects at
remote Manager Applications that are accessible through the gateway.

• A JIDM::DomainPort object that serves requests issued from remote Manager
Applications that want to get access to managed objects at the local managed o
domain.

These objects are created during start-up of the CORBA server where the
CORBA/CMIP gateway is going to run.

Several JIDM gateways can exist in a CORBA Agent and a JIDM::EventPortFinder
object is associated with each of them. All of them would be registered in a root
JIDM::EventPortFinder object at the CORBA Agent (see Figure 3-19).
3-72 CORBA/TMN Interworking V1.0 August 2000

3

n.
t

ese
dard

le

Figure 3-19 Structure of CORBA/CMIP gateways (agent side)

A root CosNaming::NamingContext object and a root
CosLifeCycle::FactoryFinder object exist at any CORBA managed object domai
Whether these two interfaces are exported by the same CORBA object or differen
CORBA objects is an implementation issue. In addition, an OSIMgmt::LocalRoot
object exists in order to deal with local orphan managed objects. References to th
CORBA objects can be obtained from a CORBA/CMIP gateway by using the stan
Initialization Services and are passed to the JIDM::DomainPort object at creation
time.

3.3.2.2 Handling access to managed objects

A JIDM::DomainPort object resides in the CORBA/CMIP gateway in order to hand
access to the managed object domain and serve association requests issued from
remote Manager Applications.

Every JIDM::DomainPort object has an AE-title associated with it. This AE-title is
used by remote Manager Applications to identify the OSI managed object domain
accessible through the JIDM::DomainPort object.

CMIP
protocol

JIDM::
EventPortFinder

CORBA/CMIP gateway

JIDM::
DomainPort

JIDM::
EventPortFinder

CORBA/CMIP gateway

JIDM::
DomainPort

management
service access

endpoint

CMIP
protocol

local root
JIDM::

EventPortFinder

management
service library
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-73

3

d

s
When a new association request is received by the JIDM::DomainPort object that is
in a gateway, the JIDM::DomainPort object creates a new OSIMgmt::ProxyAgent
object. This object handles CMIS requests received through the newly establishe
association.

Figure 3-20 Handling access to local managed objects from a JIDM gateway

A JIDM::DomainPort object in a JIDM gateway holds references to the initial
CosNaming::NamingContext and CosLifeCycle::FactoryFinder and
OSIMgmt::LocalRoot objects in the managed object domain where the JIDM
gateway is located. The JIDM::DomainPort object passes copies of these reference
to each OSIMgmt::ProxyAgent object it creates.

3.3.2.3 Creation of managed objects

In CORBA managed object domains, OSIMgmt::ProxyAgent objects receive PDU
indications, perform the appropriate operations, and return the appropriate PDU
responses.

request
PDUs

gateway

2.

CMIS
access

endpoint

JIDM::
DomainPort

1.
3.

4.

managed
object

CosNaming::
NamingContext

CosLifeCycle::
FactoryFinder

peer
OSIMgmt::
ProxyAgent
3-74 CORBA/TMN Interworking V1.0 August 2000

3

 a

ce

ing

f the

ject

Figure 3-21 Handling management create PDU indications

The following steps are followed each time a create PDU indication is received by
CORBA/CMIP gateway:

1. An OSIMgmt::ProxyAgent object receives an m-create indication through the
CMIS connection endpoint it holds.

2. The OSIMgmt::ProxyAgent object finds an appropriate factory by invoking the
find_factories operation provided by the initial CosLifeCycle::FactoryFinder
object at the managed object domain.

3. The OSIMgmt::ProxyAgent object narrows the obtained Factory object referen
to a new object reference associated with a specific factory interface. Next, it
invokes the operation for creating managed objects exported by the factory be
referenced.

4. The Factory object creates a new CORBA managed object, an instance of the
managed object type specified in the CMIP create indication (using the value o
Managed object class field in the CMIP PDU).

5. The Factory object binds an OSI name (the one passed as of the Managed ob
instance field in the CMIP PDU, but in IDL form) to the new CORBA managed
object.

6. The Factory object informs the container (the naming context) of the CORBA
managed object that a new subordinate object has been created.

CMIP
indication

gateway

CosLifeCycle::
FactoryFinder

1.

2.

3.

7.

creation

Managed Object

CosNaming::
NamingContext4.

5.

OSIMgmt::
ProxyAgent

6.

ManagedObject
(parent)

CosLifeCycle::
Factory

(narrowed to a specific
factory interface
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-75

3

IP

on a

ct

SI
7. When the operation invoked by the OSIMgmt::ProxyAgent object returns (or
when an exception is raised), the OSIMgmt::ProxyAgent object constructs and
sends an appropriate CMIP response to the remote OSI Manager Application.

3.3.2.4 Invocation of operations on single managed objects

OSIMgmt::ProxyAgent objects receive CMIP m-set/m-get/m-action indications on
single objects, perform the appropriate operations and return the appropriate CM
responses.

Figure 3-22 Invocation of operations on single managed objects

The following steps are used each time an m-set/m-get/m-action PDU indication
single object is received by a CORBA/CMIP gateway:

1. An OSIMgmt::ProxyAgent object receives an m-set, m-get, or m-action
indication, referred to a single object, through the CMIS connection endpoint it
holds.

2. The OSIMgmt::ProxyAgent object finds a reference to the target managed obje
by invoking the resolve operation exported by the initial NamingContext object.
The name of the target managed object (base object instance field in the CMIP
indication) is passed in the invocation, once it is translated to IDL form (see O
naming facilities).

CMIP
indication

OSIMgmt::
ProxyAgent

gateway

CosNaming::
NamingContext

1.

2.

3.

CORBA::Object

4.
3-76 CORBA/TMN Interworking V1.0 August 2000

3

d by

er

 with

ation

lds.

ct

I

g
iated

3. The OSIMgmt::ProxyAgent object invokes the appropriate operation on the
managed object. In a generic CORBA/CMIP gateway, this may be accomplishe
using the Dynamic Invocation API provided by the local ORB.

4. When the management operation invoked by the OSIMgmt::ProxyAgent object
returns (or when an exception is raised), the OSIMgmt::ProxyAgent object
constructs and sends an appropriate CMIP response to the remote OSI Manag
Application.

A reference to the CosNaming::NamingContext acting as the local naming root in
the OSI Agent Application is passed to the OSIMgmt::ProxyAgent object at creation
time. If the target managed object is going to send multiple replies as a result of
invoking an action, an exception is triggered (see Specification Translation).

3.3.2.5 Handling CMIP indications with scope and filtering

In CORBA-based OSI Agent Applications, OSIMgmt::ProxyAgent objects receive
CMIP m-set/m-get/m-action indications with scope and filtering, perform the
appropriate operations and return all the appropriate CMIP responses associated
the generated replies.

The following steps are used each time a scoped m-set/m-get/m-action PDU indic
is received by a CORBA/CMIP gateway:

1. An OSIMgmt::ProxyAgent object receives a CMIP m-set, m-get or m-action
indication with scope and filtering, through the CMIS connection endpoint it ho

2. The OSIMgmt::ProxyAgent object finds a reference to the base managed obje
by means of invoking the resolve operation exported by a NamingContext object.
The name of the base managed object (base object instance field in the CMIP
indication) is passed in the invocation, once it is translated to idl form (see OS
naming facilities).

3. The OSIMgmt::ProxyAgent object locally creates a CORBA object which is
responsible for handling the different replies and which holds the same CMIS
connection endpoint. This object exports two interfaces:

• OSIMgmt::LinkedReplyHandler , for receiving individual linked replies.

• OSIMgmt::EndOfRepliesHandler , for detecting the end of replies.

4. The OSIMgmt::ProxyAgent object narrows the CORBA object reference pointin
to the base managed object instance to a new CORBA object reference assoc
with the OSIMgmt::ManagedObject interface. Next, it invokes the corresponding
scoped operation, now visible through that narrowed reference.
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-77

3

oing
 the

nding

 the

e
Figure 3-23 Handling CMIP indications with scope and filtering

Next, the following steps take place:

1. The base managed object (root of the subtree to which scope and filtering is g
to be applied) propagates the operation to all descendants within the scope of
operation and waits until all descendants satisfying the filter have replied.

2. Every object within the scope that satisfies the filter invokes the send_reply
operation exported by the OSIMgmt::LinkedReplyHandler object, in the
gateway, is invoked.

3. The OSIMgmt::LinkedReplyHandler object constructs an appropriate CMIP
response and sends it back through the CMIS endpoint connection it holds.

4. The base managed object is informed by its subordinates that there are no pe
replies.

5. The base managed object informs the gateway that it has finished by invoking
end_of_replies operation exported by the OSIMgmt::EndOfRepliesHandler
object in the gateway.

6. The OSIMgmt::EndOfRepliesHandler object constructs the final CMIP respons
and sends it to the remote OSI Manager Application.

CMIP
indication

OSIMgmt::
ProxyAgent

gateway

CosNaming::
NamingContext

1.

2.

3. OSIMgmt::
ManagedObject

4.
3-78 CORBA/TMN Interworking V1.0 August 2000

3

cal
 list is

e no

ocal
only

he
Figure 3-24 Handling CMIP indications with scope and filtering (cont.)

If the base managed object is not part of the OSI Management Application that
received the CMIP indication, then the operation is propagated to the list of all lo
orphan managed objects that are descendants of the base managed object. This
obtained by invoking the list_orphan_descendants operation exported by the local
root object.

It is important to point out that the base managed object is informed that there ar
pending replies after all descendants satisfying the filter have invoked the send_reply
operation. This way, race conditions are avoided.

Returning from the send_reply operation doesn’t imply that a CMIP response has
already been sent. All responses may be sent together just before the last CMIP
response.

The gateway is much simpler to program. Actually, it neither needs to maintain a l
copy of the naming tree nor to test which managed objects satisfy the filtering. It
needs to:

• create an object in the CORBA/CMIP gateway process that exports the
LinkedReplyHandler and the EndOfRepliesHandler interfaces.

• invoke the scoped operation exported by the base managed object through t
OSIMgmt::ManagedObject interface.

CMIP
indication

OSIMgmt::
ProxyAgent

gateway

7.

OSIMgmt::
EndOfRepliesHandler

OSIMgmt::
LinkedReplyHandler10

6.
8.

9.

Managed objects
satisfying the filter

5.

OSIMgmt::
ManagedObject
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-79

3

replies,

ized.

the

ied.

ct

SI

Different strategies can be implemented to resolve how each object forwards
operations to its descendants and detects when its descendants have no pending
but these strategies are transparent to the gateway.

Interactions between managed objects and the CORBA/CMIP gateway are minim

3.3.2.6 Handling m-delete indications

In CORBA-based OSI managed object domains, OSIMgmt::ProxyAgent objects
receive CMIP m-delete indications, perform the appropriate operations, and return
appropriate CMIP responses.

CMIP m-delete indications are handled in a similar way as CMIP m-set /m-get /

m-action indications with scoping and filtering. We must take into account that
deletion of a single managed object may cause deletion of several objects (all its
descendants). Every time a managed object is deleted, its superior object is notif

Basic algorithm:

1. An OSIMgmt::ProxyAgent object receives a CMIP m-delete indication through
the CMIS connection endpoint it holds.

2. The OSIMgmt::ProxyAgent object finds a reference to the base managed obje
by invoking the resolve operation exported by a NamingContext object. The
name of the target managed object (base object instance field in the CMIP
indication) is passed in the invocation, once it is translated to IDL form (see O
naming facilities).

3. The OSIMgmt::ProxyAgent object locally creates a CORBA object which is
responsible for handling the different replies. This object holds the same CMIS
connection endpoint as the OSIMgmt::ProxyAgent and exports two interfaces:

• OSIMgmt::LinkedDeletionHandler , for handling each deletion.

• OSIMgmt::EndOfDeletionsHandler , for detecting the completion of the
deletion.

4. The OSIMgmt::ProxyAgent object narrows the CORBA managed object
reference to a reference associated with the OSIMgmt::ManagedObject interface.
Next, it invokes the scoped_delete operation visible through that reference.
3-80 CORBA/TMN Interworking V1.0 August 2000

3

to

ts

n of
ion is

y
Figure 3-25 Handling CMIP deletion indications

Next, the following steps take place:

1. In some situations, the base managed object propagates the delete operation
part/all of its descendants (the delete operation was requested with scope and
filtering or deletion of the base managed object implies deletion of all its
descendants).

2. For every descendant that is deleted, the confirm_deletion operation exported by
the OSIMgmt::LinkedDeletionHandler object, in the gateway, is invoked. As it
was already mentioned before, every managed object is notified when one of i
subordinates has been deleted.

3. The OSIMgmt::LinkedDeletionHandler object constructs an appropriate CMIP
response and sends it back through the CMIS endpoint connection it holds.

4. The base managed object is informed by its subordinates about the completio
the deletion. If appropriate, the base managed object is deleted and a confirmat
sent to the OSIMgmt::LinkedDeletionHandler object.

5. The base managed object informs the gateway that the deletion has finished b
invoking the end_of_deletions operation exported by the
OSIMgmt::EndOfDeletionsHandler object in the gateway.

CMIP
indication

OSIMgmt::
ProxyAgent

gateway

CosNaming::
NamingContext

1.

2.

3.
OSIMgmt::

ManagedObject

4.
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-81

3

lied

 list is

or
ument
6. The OSIMgmt::EndOfDeletionsHandler object constructs the final CMIP
response and sends it to the remote OSI Manager Application.

Figure 3-26 Handling CMIP deletion indications (cont.)

In some situations, the base managed object is not part of the OSI Management
Application, which received the CMIP m-delete indication but deletion must be app
to some descendants that are part of the application.

This situation is resolved by propagating the delete operation to the list of all local
orphan managed objects that are descendants of the base managed object. This
obtained by invoking the list_orphan_descendants operation exported by the local
root object.

The scoped_delete operation may be invoked in either a non-blocking
(asynchronous) or blocking (synchronous) mode. A reference to an
OSIMgmt::EndOfDeletionsHandler object reference (for asynchronous request)
a nil object reference (for synchronous request) should be passed as the last arg
in the invocation.

CMIP
indication

OSIMgmt::
ProxyAgent

gateway

7.

OSIMgmt::
EndOfDeletionsHandler

10

6.
8.

9.

Managed objects that
has been deletedr

5.

OSIMgmt::
LinkedDeletionHandler

OSIMgmt::
ManagedObject
3-82 CORBA/TMN Interworking V1.0 August 2000

3

ent
ject

t-

ents

ote

st
3.3.2.7 Sending m-event-report requests

Event Forwarding Discriminators (EFDs) are the managed objects that receive ev
notifications, emitted by other managed objects within the same OSI managed ob
domains, and determine which ones are going to be forwarded, as CMIP m-even
reports requests, to specific OSI Manager.

At creation time, an EFD tries to find references to
CosEventChannel::SupplierAdmin interfaces associated with remote
OSIMgmt::EventPort objects. It obtains these references by invoking the
find_event_port operation exported by a JIDM::EventPortFinder object, located in
a CORBA/CMIP gateway. It can try to find references for:

• various JIDM::EventPorts , each of which is bound to one AE_title contained in
the list of destinations defined for the PushEFD .

• a single JIDM::EventPort bound to a wildcard address (only valid if automatic
event forwarding - recipient manager resolution is supported).

Note that an EFD may register itself as a CosEventComm::PushConsumer or a
CosEventComm::PullConsumer in the JIDM::EventPort associated with each of
its assigned destinations.

Different alternatives for EFDs

Definition C-1

module X734 {
.........

interface PushEFD : CosEventComm::PushConsumer,
X711::eventForwardingDiscriminator ...

{};
interface PullEFD : CosEventComm::PullConsumer,

 X711::eventForwardingDiscriminator ...
{};

};

Different implementations are possible but, in general, managed objects report ev
by pushing them into local CosEventChannelAdmin::EventChannels . EFDs
register themselves as event consumers in these event channels.

Multiple implementation strategies can be adopted but they are transparent to rem
OSI Manager Applications:

• EFDs may register themselves as CosEventComm::PushConsumers or as
CosEventComm::PullConsumers in
CosEventChannelAdmin::EventChannels .

• Several CosEventChannelAdmin::EventChannels may be employed
(connected in cascades, etc). EFDs must know which event channels they mu
connect to.
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-83

3

n
vent

tion
Note that only part of the interfaces exported by an EFD are visible across OSI
Management boundaries. From external OSI Manager Applications a PushEFD and
PullEFD is just an X711::eventForwardingDiscriminator .

3.3.2.8 Sending m-event-report requests (push model)

Basic algorithm:

1. A PushEFD registers itself as a CosEventComm::PushConsumer in every
local event channel that is necessary.

2. CORBA managed objects report events by using the standard event notificatio
services. Each event notification being generated is finally received by some e
channel, connected to the PushEFD object.

3. The event channel forwards event notifications to the PushEFD object by invoking
the push operation exported by it, through the standard
CosEventComm::PushConsumer interface.

4. The PushEFD object supplies the event to JIDM::EventPort objects
corresponding to the different destinations.

5. The proxy of an OSIMgmt::EventPort in the CORBA/CMIP gateway constructs a
CMIP m-event-report request PDU and sends it through the CMIS communica
endpoint it holds.

Figure 3-27 Sending m-event-reports (push model)

CMIP
request

gateway

4.

1.

5.

JIDM::
EventPortFinder

CosEventComm::
PushConsumer

6.

Event
Channel

3.

Managed
Objects

CosEventComm::
PushConsumer

PushEFD

CosEventChannelAdmin::
ConsumerAdmin

2.
3-84 CORBA/TMN Interworking V1.0 August 2000

3

n
vent

e it

tion
3.3.2.9 Sending m-event-report requests (pull model)

At creation time, each PullEFD tries to find references to
CosEventChannel::SupplierAdmin interfaces associated with remote
JIDM::EventPort objects. It obtains these references by invoking the
find_event_port operation exported by a JIDM::EventPortFinder object, located in
a CORBA/CMIP gateway. It can try to find references for:

• various JIDM::EventPorts , each of which is bound to one AE_title contained in
the list of destinations defined for the PushEFD .

• a single JIDM::EventPort bound to a wildcard address (only valid if automatic
event forwarding - recipient manager resolution is supported).

A PushEFD registers itself as a Push or Pull Supplier for each destination.

Basic algorithm:

1. A PullEFD registers itself as a CosEventComm::PullConsumer in every event
channel that is necessary.

2. CORBA managed objects report events by using the standard event notificatio
services. Each event notification being generated is finally received by some e
channel, connected to the PullEFD object.

3. The PullEFD object pulls event notifications received by all event channels wher
is registered by means of invoking the pull operation exported by them, through the
standard CosEventComm::PullSupplier interface.

4. The PushEFD object supplies the event to OSIMgmt::EventPort objects
corresponding to the different destinations.

5. The proxy of an OSIMgmt::EventPort in the CORBA/CMIP gateway constructs a
CMIP m-event-report request PDU and sends it through the CMIS communica
endpoint it holds.
CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-85

3

Figure 3-28 Sending m-event-reports (pull model)

CMIP
request

gateway

4.

1.

5.

JIDM::
EventPortFinder

CosEventComm::
PullConsumer

6.

Event
Channel

3.

Managed
Objects

CosEventComm::
PushConsumer

PullEFD

CosEventChannelAdmin::
ConsumerAdmin

2.
3-86 CORBA/TMN Interworking V1.0 August 2000

 OSI Support Services 4
bute
RBA

s

d on
ged

be
es

 This
s
Contents

This chapter contains the following sections.

4.1 OSI Caching and Tracking Services

To provide client applications with fast and efficient access to the values of an attri
of a managed object, it is desirable under certain circumstances to configure a CO
ManagedObject object with the ability to cache information. If so configured, the
CORBA ManagedObject object can maintain a local store of attribute values, thu
eliminating the need to contact the real underlying managed object when this
information is requested. This mechanism is referred to in this specification as caching.
Caching is an optional mechanism that permits applications to avail of improved
performance, at the cost of additional resource usage. Caching may be configure
individual managed objects, or on all managed objects of a class, or on all mana
objects within a proxy agent.

Any managed object that has been configured with the ability to cache may also
optionally configured with the ability to dynamically update its cached attribute valu
in response to change notifications received from the underlying managed object.
ability is known as tracking. If a managed object is a tracking object, it will update it

Section Title Page

“OSI Caching and Tracking Services” 4-1

“Collection Service” 4-13

“Dynamic Management of ASN.1 Any Values” 4-19

“The OSI Management Information Repository” 4-27
CORBA/TMN Interworking V1.0 August 2000 4-1

4

ment
nd

ce.

 a
r than
ular)
aged

y
), and
cached values in response to the notifications defined by the OSI Systems Manage
Functions (ObjectCreation, ObjectDeletion, AttributeValueChange, StateChange, a
RelationshipChange).

The caching and tracking functionality is intended to provide improved performan
The goals of providing this functionality are:

• transparency: a client application executing normal management operations on
managed object (get, set, action, etc.) must see no difference in behavior (othe
performance) whether the operations are executed against a non-caching (reg
managed object, a caching but non-tracking managed object, or a tracking man
object.

• flexibility of configuration: configuration of caching and tracking is available at
multiple levels: per proxy agent (all managed objects managed by a given prox
agent), per managed object class (all managed objects of a given object class
per specific managed object.

4.1.1 The OSICaching Module

#ifndef _OSICACHING_IDL_
#define _OSICACHING_IDL_

#include <OSIMgmt.idl>

#pragma prefix “jidm.org”

module OSICaching {
typedef unsigned long ExpirationInterval; // in seconds
typedef ASN1_ObjectIdentifier ManagedObjectClass;
typedef sequence <ManagedObjectClass> ManagedObjectClassSeq;
typedef ASN1_ObjectIdentifier AttrId;
typedef sequence < ASN1_ObjectIdentifier > AttrIdSeq;

// NoSuchAttributes is raised when any specified attribute identifiers
// are either unknown or invalid.
exception NoSuchAttributes {

AttrIdSeq unknown_attributes;
};

// AttributesNotCached is raised when any specified attribute identifiers
// to relevant caching operations are not being cached.
exception AttributesNotCached {

AttrIdSeq attr_id_list;
};

// NoSuchObjectClasses is raised when any specified object classes are
// either unknown or invalid.
exception NoSuchObjectClasses {

ManagedObjectClassSeq unknown_mocs;
};

// ObjectClassesNotCached is raised when any specified object classes
4-2 CORBA/TMN Interworking V1.0 August 2000

4

// to relevant caching operations are not being cached.
exception ObjectClassesNotCached {

ManagedObjectClassSeq moc_list;
};

// InvalidObjectClassAttributesPairs is raised when any specified attribute
// identifiers do not belong to the specified managed object class.
struct ObjectClassAttributesPair {

ManagedObjectClass moc;
AttrIdSeq attr_id_list;

};
typedef sequence<ObjectClassAttributesPair> ObjectClass AttributesPairSeq;
exception InvalidObjectClassAttributesPairs {

ObjectClassAttributesPairSeq invalid_pairs;
};

/* There may be situations when more than one type of error may occur
* because of a single invocation of an operation. To accurately convey
* the different types of error information, CacheConfigException is used
* by some operations. If any of the members of the following exception
* are not relevant, then such members shall be empty sequences, i.e.,
* sequences of zero length. For example, when passing an argument of
* AttrIdSeq to remove cached attributes , the client may pass some invalid
* or unknown attribute identifiers, and some valid attribute identifiers
* that are not cached. In such situations, CacheConfigException is raised
* with the invalid or unknown attribute identifiers specified in the
* no_such_attributes member, the valid but not cached attribute
* identifiers specified in the attrs_not_cached member, and the rest of
* the members set to zero length sequences.
*/

exception CacheConfigException {
AttrIdSeq no_such_attributes;
ManagedObjectClassSeq no_such_classes;
AttrIdSeq attrs_not_cached;
ManagedObjectClassSeq mocs_not_cached;
ObjectClassAttributesPairSeq invalid_moc_attrs_pairs;

};

// abstract interface for configuring all caches
interface CacheConfigurator {

void set_default_expiration_interval (
in ExpirationInterval expiration_interval,
in boolean override_specific_settings

);
ExpirationInterval get_default_expiration_interval ();

void set_caching_enabled (
in boolean enabled,
in boolean override_specific_settings

);
boolean is_caching_enabled ();

};
CORBA/TMN V1.0 OSI Caching and Tracking Services Aug. 2000 4-3

4

// cached attribute information
struct CachedAttribute {

AttrId attr_id;
ExpirationInterval expiration_interval;

};
typedef sequence < CachedAttribute > CachedAttributeSeq;

// abstract interface to configure per-attribute cache
interface PerAttributeCacheConfigurator {

void add_cached_attributes (
in CachedAttributeSeq attr_list,
in boolean override_specific_settings

) raises (NoSuchAttributes);

void remove_cached_attributes (
in AttrIdSeq attr_id_list,
in boolean override_specific_settings

) raises (CacheConfigException);

CachedAttributeSeq get_cached_attributes ();

ExpirationInterval get_expiration_interval (
in AttrId attr_id

) raises (CacheConfigException);

void set_expiration_interval(
in AttrIdSeq attr_id_list,
in ExpirationInterval interval

) raises (CacheConfigException);
};

// managed object class with indicated attributes cached
struct CachedObjectClass {

ManagedObjectClass moc;
CachedAttributeSeq cached_attributes_list;

};
typedef sequence < CachedObjectClass > CachedObjectClassSeq;

// abstract interface to configure per-class cache
interface PerClassCacheConfigurator {

void add_cached_classes (
in CachedObjectClassSeq class_list,
in boolean override_specific_settings

) raises (CacheConfigException);

void remove_cached_classes (
in ManagedObjectClassSeq moc_list,
in boolean override_specific_settings

) raises (CacheConfigException);

void remove_cached_attributes_from_class_cache(
in ManagedObjectClass moc,
in AttrIdSeq attr_id_list,
in boolean override_specific_settings

) raises (CacheConfigException);
4-4 CORBA/TMN Interworking V1.0 August 2000

4

also
lled

.

when
sful

given
CachedObjectClassSeq get_cached_classes ();

CachedAttributeSeq get_cached_attributes_for_class (
in ManagedObjectClass moc

) raises (OSIMgmt::NoSuchObjectClass);

void set_expiration_interval_for_class (
in ManagedObjectClass moc,
in AttrIdSeq attr_list,
in ExpirationInterval extension_duration

) raises (CacheConfigException);
};

interface ProxyAgent : OSIMgmt::ProxyAgent,
 CacheConfigurator,
 PerAttributeCacheConfigurator,
 PerClassCacheConfigurator {};

interface ManagedObject : OSIMgmt::ManagedObject,
CacheConfigurator,
PerAttributeCacheConfigurator {

void refresh_cached_values (
in AttrIdSeq attr_list

) raises (CacheConfigException);

void invalidate_cached_values (
in AttrIdSeq attr_list

) raises (CacheConfigException);
};

};

#endif /* _OSICACHING_IDL_ */

4.1.1.1 Description of OSICaching module

The interfaces and methods of the OSICaching module permit the configuration of
attribute caching at multiple levels. The validity of the cached attribute values may
be controlled by setting appropriate expiration intervals, which can also be contro
at multiple levels.

The OSICaching::CacheConfigurator ,
OSICaching::PerAttributeCacheConfigurator , and
OSICaching::PerClassCacheConfigurator interfaces are all abstract and should
not be instantiated directly. Only the OSICaching::ProxyAgent and
OSICaching::ManagedObject interfaces may be instantiated as concrete objects

The attribute cache of any caching managed object is loaded with attribute values
the cache is initialized. This might happen at different times, such as after succes
creation or before first access to the real managed object. Not all attributes of a
managed object need to be cached. The list of attributes that are cached for any
CORBA/TMN V1.0 OSI Caching and Tracking Services Aug. 2000 4-5

4

vel,
ctual

he
he
t
 as

ess to

 in a
ding
ibute
), any

 from
BA

 when
ame
ibutes
ill

set,
e
ed

or a

ame

 is

ute

ently
alue
d
managed object may be configured at multiple levels, including the proxy agent le
the managed object class level, and on the individual managed object itself. The a
list of attributes that are in any given managed object’s cache is the union of all t
attributes requested to be cached at all these levels. The ability to selectively cac
only certain attributes of interest affords the flexibility of not caching attributes tha
may be changing rapidly and dynamically in the underlying managed object, such
PDU counters, gauges, and clocks.

It is important to note that the cache is a read-only cache, and that there is no acc
directly writing the cached attribute value. The managed object implementation
automatically updates the cached attribute value when the appropriate attribute-
changing or attribute-retrieving operations occur.

If the cached value of an attribute is valid, any request to read the value (such as
get operation) will result in the request being serviced from the cache, thus preclu
the need to contact the underlying managed object. If the cached value of an attr
is no longer valid (because its expiration interval has passed since the last update
request to read the value will trigger an attribute fault, and will result in the request
being serviced from the actual attribute value in the underlying managed object. A
request to read the value of an attribute that is not in the cache is always serviced
the underlying managed object, as is the case for any regular (non-caching) COR
managed object.

The attribute cache of a managed object is updated with the latest attribute values
a CMIS operation is successfully performed. At this time, the cache reflects the s
attribute values that are reported back to the manager in the response, if those attr
are in the cache. Other cached attributes that are not affected by the operation w
continue to retain their prior values. As soon as an attribute value in the cache is
updated as a result of a CMIS operation, the expiration clock for this attribute is re
and the duration of validity of this updated value will now be the full duration of th
applicable expiration interval; this applies regardless of whether the previous cach
value of the attribute had already expired or not. Specifically, the expiration timer f
cached attribute value is reset back to its full applicable duration when any of the
following occurs:

• A get operation has triggered an attribute fault and has been serviced from the
underlying managed object, and the cached attribute value is updated to the s
value reported back in the get response.

• A set operation has been successfully serviced, and the cached attribute value
updated to the same value reported back in the set response.

• An explicit request is made to the managed object to refresh the cached attrib
value from the underlying managed object.

The duration of validity of any cached attribute value may be configured by the
application. An application may cause a cached attribute value to remain perman
valid by setting an expiration interval of 0. This means that the cached attribute v
never expires and an attribute fault to read the value from the underlying manage
object is never necessary.
4-6 CORBA/TMN Interworking V1.0 August 2000

4

ing

has

 fault.

se

d

t of
 the
The

 to

 class.

he

 list

oxy
 level
The cached value of an attribute is considered to be invalid when any of the follow
occurs:

• The applicable time interval for the duration of the validity of the cached value
expired.

• An explicit method call is made to invalidate cached attribute values.

In these cases, any attempt to read an attribute value always triggers an attribute

An application may explicitly invalidate the cached values of an
OSICaching::ManagedObject by invoking the method
invalidate_cached_values() . This invalidates all its cached values immediately,
even if their expiration intervals haven’t expired. An application may explicitly cau
the cached values of an OSICaching::ManagedObject to be refreshed using the
current values from the underlying GDMO managed object by invoking the metho
refresh_cached_values() . This also resets the expiration interval of the cached
values back to their full duration.

A managed object’s cache may be configured at multiple levels. In general, the lis
attributes to be cached, and the expiration intervals for each, may be provided at
level of a proxy agent, a managed object class, or an individual managed object.
methods to apply these cache configuration policies are available on
OSICaching::ProxyAgent and OSICaching::ManagedObject . Note that the
cache configuration interfaces on OSICaching::ProxyAgent imply that the caching
policies apply to managed objects controlled by that ProxyAgent ; they do not imply
that the ProxyAgent object itself has any caching capabilities.

The levels of cache configuration available are prioritized. From the most general
the most specific, the levels are:

• Proxy Agent: applies to all managed objects controlled by the proxy agent.

• Managed Object Class: applies to all managed objects of that managed object

• Managed Object: applies to that individual managed object.

The cache configuration policy specified at a more specific level overrides the cac
configuration policy specified at the less specific level. In particular, the following
should be noted:

• The list of attributes to be cached for a given managed object is the union of the
of attributes requested to be cached at all applicable levels without the list of
attributes that have been specifically removed either using the
override_specific_settings parameter or using the operations at the managed
object level.

• If the same attribute is requested to be cached at multiple levels, the expiration
interval for an attribute that is specified at the most specific level applies.

The caching policy in OSICaching::ProxyAgent established by the methods
inherited from PerAttributeCacheConfigurator applies to all indicated attributes
wherever they occur in any managed object, regardless of class. This permits the
establishment of a caching policy for all occurrences of the same attribute in a pr
agent, even if there is no caching policy established at the managed object class
CORBA/TMN V1.0 OSI Caching and Tracking Services Aug. 2000 4-7

4

e

che,
lues.

),

ed to

es).

 the
have

hile
 a
nd

or managed object level, in that proxy agent. The caching policy established by th
methods in OSICaching::ProxyAgent that are inherited from the
PerClassCacheConfigurator interface apply to all indicated attributes only if they
occur in the managed objects of the indicated managed object class.

The methods on OSICaching::ManagedObject , including those inherited from
PerAttributeCacheConfigurator , apply to the actual attributes in the managed
object itself. These methods permit the addition or removal of attributes in the ca
changing expiration timeouts, refreshing cached values, or invalidating cached va

While configuring the caching policy on a ProxyAgent or ManagedObject , a list of
CachedAttribute structs (an attribute identifier coupled with an expiration interval
may be supplied. While configuring the caching policy on a ProxyAgent , a list of
CachedObjectClass structs (a class name coupled with a list of CachedAttribute
structs) may be supplied. If any of these lists is an empty sequence, it is interpret
mean “all.” In addition, when empty lists are used, default expiration intervals are
associated with all relevant attributes. Thus, a caching policy that applies to all
attributes in a ProxyAgent , a ManagedObjectClass or a ManagedObject , or a
caching policy that applies to all attributes of all managed object classes in a
ProxyAgent , can be easily enforced by invoking the appropriate methods with an
empty list argument.

The methods CacheConfigurator::set_default_expiration_interval() and
CacheConfigurator::set_caching_enabled() permit the caching policy to be
changed on a level-wide basis, at either the ProxyAgent level or the
ManagedObject level. If set_default_expiration_interval() has never been called,
the default expiration interval is considered to be zero (i.e., the cache never expir

The methods CacheConfigurator::get_default_expiration_interval() and
CacheConfigurator::is_caching_enabled() indicate the state of the level-wide
caching policy, at either the ProxyAgent level or the ManagedObject level.

The set_default_expiration_interval() will affect only those attributes that are
cache-enabled. The override_specific_settings parameter allows the flexibility to
either retain any existing custom expiration intervals for some attributes or change
interval to the specified value for all cache-enabled attributes including those that
custom expiration intervals.

This specification permits multiple ProxyAgent objects to represent the same
underlying TMN agent. It also permits these multiple ProxyAgent objects to have
different caching and tracking characteristics. For example, one ProxyAgent
representing a particular TMN agent may have caching and tracking capabilities, w
another ProxyAgent representing the same TMN agent may not. This implies that
ManagedObject accessed via the first ProxyAgent may be configured for caching a
tracking, whereas a ManagedObject accessed via the second cannot be so
configured.

The caching and tracking configuration applied to a ProxyAgent object applies to all
managed object references obtained from it. It should be noted that an IOR for a
ManagedObject may be obtained from a ProxyAgent in several different ways:

• by doing a resolve() on the NamingService in that ProxyAgent
4-8 CORBA/TMN Interworking V1.0 August 2000

4

 a
f
f the

ter

 in

uch

d in
• by invoking a create() operation on the ManagedObjectFactory in that
ProxyAgent

A client application that obtains a ManagedObject IOR for a particular underlying
GDMO managed object from a caching and tracking ProxyAgent will be able to take
advantage of caching and tracking, whereas the same client application obtaining
another ManagedObject IOR for the same underlying GDMO managed object from
non-caching and non-tracking ProxyAgent will not be able to take any advantage o
caching and tracking. Therefore, caching and tracking capabilities are properties o
IOR of a ManagedObject and not necessarily of the underlying managed object
itself.

The following rules apply when changes are made to the caching policy after an
existing caching policy has already been applied to various attributes.

• Any change to the caching policy (list of cached attributes, attribute expiration
intervals, etc.) made on a ProxyAgent applies only to ManagedObject references
subsequently obtained from that ProxyAgent , unless the parameter
override_specific_settings is set to TRUE. That is, existing ManagedObject
object references are not affected. If the parameter override_specific_settings is
set to TRUE, then the caching policy for all existing ManagedObject object
references affected by this change in the ProxyAgent is updated to the one
specified.

• Any change to the caching policy (list of cached attributes, attribute expiration
intervals, etc.) made on a ManagedObjectClass applies only to future
ManagedObject object references of that class obtained from that ProxyAgent ,
unless the parameter override_specific_settings is set to TRUE. That is, existing
ManagedObject object references of that class are not affected. If the parame
override_specific_settings is set to TRUE, then the caching policy for all
existing ManagedObject object references of that class affected by this change
the ProxyAgent is updated to the one specified.

• Any change to the caching policy made on an individual ManagedObject object
reference is applied immediately to the ManagedObject object reference. The
parameter override_specific_settings is ignored.

Any method that changes the caching and tracking policy may throw exceptions s
as NoSuchAttributes , NoSuchClasses , etc. The semantics of the exception are
that all known OIDs are treated as requested, and the unknown OIDs are returne
the exception.

4.1.2 The OSITracking module

#ifndef _OSITRACKING_IDL_
#define _OSITRACKING_IDL_

#include <OSICaching.idl>

#pragma prefix “jidm.org”

module OSITracking {
CORBA/TMN V1.0 OSI Caching and Tracking Services Aug. 2000 4-9

4

typedef OSICaching::ManagedObjectClassSeq ManagedObjectClassSeq;
typedef OSICaching::AttrIdSeq AttrIdSeq;
// abstract interface to configure all tracking
interface TrackConfigurator {

void set_tracking_enabled (

in boolean enabled,
in boolean override_specific_settings

);

boolean is_tracking_enabled ();
};

// abstract interface to configure per-attribute tracking
interface PerAttributeTrackConfigurator {

void add_tracked_attributes (
in AttrIdSeq attr_list,
in boolean override_specific_settings

) raises (OSICaching::NoSuchAttributes);

// If the attr_id_list contains an attribute identifier that is not
// being tracked, then that attribute identifier is ignored
// by remove_tracked_attributes.
void remove_tracked_attributes (

in AttrIdSeq attr_id_list,
in boolean override_specific_settings

) raises (OSICaching::NoSuchAttributes);

AttrIdSeq get_tracked_attributes ();
};

// managed object class with indicated attributes tracked
struct TrackedObjectClass {

OSICaching::ManagedObjectClass moc;
AttrIdSeq list_of_tracked_attributes;

};

typedef sequence < TrackedObjectClass > TrackedObjectClassSeq;

// TrackConfigException is similar in purpose to
// OSICaching::CacheConfigException
exception TrackConfigException {

ManagedObjectClassSeq no_such_mocs;
AttrIdSeq no_such_attr_ids;
OSICaching::ObjectClassAttributesPairSeq invalid_moc_attrs_pairs;

};

// abstract interface to configure per-class tracking
interface PerClassTrackConfigurator {

void add_tracked_classes (
in TrackedObjectClassSeq class_list,
in boolean override_specific_settings

) raises (TrackConfigException);
4-10 CORBA/TMN Interworking V1.0 August 2000

4

ve to
ion

is
d
ny
d
t
ange.

ll
till

aged
e

d to
d at
void remove_tracked_classes (
in ManagedObjectClassSeq moc_list,
in boolean override_specific_settings

) raises (OSICaching::NoSuchObjectClasses);

TrackedObjectClassSeq get_tracked_classes ();

AttrIdSeq get_tracked_attributes_for_class (
in OSICaching::ManagedObjectClass class_name

) raises (OSIMgmt::NoSuchObjectClass);
};

interface ProxyAgent : OSICaching::ProxyAgent,
 TrackConfigurator,
 PerAttributeTrackConfigurator,
 PerClassTrackConfigurator {};

interface ManagedObject : OSICaching::ManagedObject,
TrackConfigurator,
PerAttributeTrackConfigurator {};

};

#endif /* _OSITRACKING_IDL_ */

4.1.2.1 Description of the OSITracking module

The tracking mechanism is an extension to the caching mechanism specified abo
permit the dynamic update of critical information, without the need for any applicat
intervention.

A tracked attribute in a managed object is an attribute whose value in the cache
dynamically updated by way of notifications received from the underlying manage
object. The ProxyAgent implementation dynamically updates its cache based on a
information made available to it in notifications emitted by the underlying manage
object, including at least the standard Systems Management notifications of objec
creation, object deletion, attribute value change, state change, and relationship ch

When a cached attribute value is dynamically updated as a result of notification
tracking, the expiration timer for that cached attribute value is reset back to its fu
applicable duration of validity, regardless of whether the prior cached value was s
valid or had expired.

As with caching, tracking may be configured on a per proxy agent basis, per man
object class basis, and per individual managed object basis. These have the sam
meaning and same levels of overriding as caching.

An attribute value in a managed object may only be tracked if it is also cached. In
particular, the list of attributes configured to be tracked must have been configure
also be in the cache at a prior time. Any attributes that are requested to be tracke
any given level, but are not in the cache configuration at that particular level, are
ignored.
CORBA/TMN V1.0 OSI Caching and Tracking Services Aug. 2000 4-11

4

d to

vices,
the

may

inal

4.1.3 Mechanism to obtain Cached/Tracked services

The mechanism to obtain cached/tracked services is an extension to the one use
obtain access to any managed domain. That is, using the
ProxyAgentFinder::access_domain operation.

An additional set of criteria are specified to gain access to these value added ser
if available. These criteria are specified in the following tables. Table 4-1 repeats
basic OSIMgmt criteria needed to create an OSIMgmt::ProxyAgent .

For use with caching and tracking, the criteria specified in Table 4-2 on page 4-13
replace these, by specifying an already existing OSIMgmt::ProxyAgent , that
represents the domain to be cached (and maybe tracked). Destruction of the orig
OSIMgmt::ProxyAgent is the responsibility of the application that created it.

Table 4-1 Basic OSIMgmt ProxyAgentFinder Criteria

Table 4-2 Alternative for caching/tracking OSIMgmt ProxyAgentFinder Criteria

criterion name type of value meaning

“domain title” X227ACS::AE_titleType AE-title associated to the managed object
domain for which access is requested. The
wildcard address is allowed.

“controller object” JIDM::ProxyAgentController reference associated to a
JIDM::ProxyAgentController object
registered by the manager (OPTIONAL)

“access control” X711CMI::AccessControlType Information to be used as input to access
control functions in establishing default
access privileges for all exchanges on the
association (OPTIONAL)

“requestor title” X227ACS::AE_titleType Title used to denote the Manager which
requested access to the OSI managed object
domain (OPTIONAL)

criterion name type of value meaning

“proxy agent” OSIMgmt::ProxyAgent Already existing ProxyAgent to which
caching is to be applied.
4-12 CORBA/TMN Interworking V1.0 August 2000

4

ets

uses
ted to
nts,

lated.

d

tion,
In addition to one of the above, the criteria specified in Table 4-3 must also be
provided for caching (and tracking) to be activated.

The values passed with the criteria names (“caching” and “tracking”) are
implementation-defined. Each implementation should specify what the appropriate
values for these criteria should be.

If caching is specified for a ProxyAgent using the criteria specified in Table 4-3, then
it is an implementation issue whether there are really two separate ProxyAgent s, one
that does not support caching and another that does.

Table 4-3 Additional criteria needed for caching/tracking OSIMgmt ProxyAgentFinder

4.2 Collection Service

4.2.1 Overview

The OSI Collection service specification provides facilities to manipulate arbitrary s
of OSIMgmt::ManagedObjects .

This service is patterned after the CORBA Collection Service specification and re-
some of the concepts defined there. However, no direct interface re-use is attemp
be able to provide highly typed interfaces, specific to OSI management environme
and that takes into account the distributed nature of the collections being manipu

It defines an OSICollection::Iterator interface, to be able to navigate, traverse, an
manipulate the collections, and two different types of OSI collections:

• Enumerated collection, in which the collection membership is explicitly controlled
by the client; any arbitrary set of managed objects may be added to the collec
according to any grouping criterion convenient to the application.

“controller object” JIDM::ProxyAgentController Reference associated to a
JIDM::ProxyAgentController object
registered by the manager, that controls
destruction of the cached/tracked
ProxyAgent (OPTIONAL).

criterion name type of value meaning

“caching” any Caching is enabled; the value is
implementation dependent.

“tracking” any Tracking is enabled; the value is
implementation dependent (OPTIONAL).

criterion name type of value meaning
CORBA/TMN V1.0 Collection Service Aug. 2000 4-13

4

 rule
• Rule collections, in which the collection membership is defined by some rule (in
this case, a scope and filter specification). All managed objects that satisfy the
are the members of the rule collection.

4.2.2 The OSICollection Module

#ifndef _OSICOLLECTION_IDL_
#define _OSICOLLECTION_IDL_

#include <OSIMgmt.idl>

#pragma prefix “jidm.org”

module OSICollection {
typedef OSIMgmt::ManagedObject ManagedObject;
typedef sequence < ManagedObject > ManagedObjectSeq;
exception IteratorInvalid { };
exception IteratorInBetween { };
exception CollectionInvalid { };
exception NotFound { };
exception InvalidName { };

interface Iterator {
// retrieving elements
boolean get_element (

out ManagedObject mo
) raises (IteratorInvalid, IteratorInBetween);
boolean get_n_elements (

in unsigned long how_many,
out ManagedObjectSeq mo_list

) raises (IteratorInvalid);

// moving iterator
void restart () raises (IteratorInvalid);
void set_to_next_element () raises (IteratorInvalid);
void set_to_next_nth_element (

in unsigned long how_many
) raises (IteratorInvalid);

// iterator state
void invalidate ();
boolean is_valid ();
boolean is_in_between ();
boolean is_equal (in Iterator other) raises (IteratorInvalid);
// cloning, assigning and destroying
Iterator clone ();
void assign (in Iterator from_where) raises (IteratorInvalid);
void destroy ();

};

typedef OSIMgmt::LinkedReplyHandler LinkedReplyHandler;
typedef OSIMgmt::EndOfRepliesHandler EndOfRepliesHandler;

// abstract base interface
4-14 CORBA/TMN Interworking V1.0 August 2000

4

interface BaseCollection {
// operations to perform on all elements in the collection
void perform_get (

in OSIMgmt::ASN1_ObjectIdentifierSeq attr_id_list,
in LinkedReplyHandler lrh,
in EndOfRepliesHandler eorh

);
void perform_set (

in OSIMgmt::SetOperationArgument modif_list,
in LinkedReplyHandler lrh,
in EndOfRepliesHandler eorh

);
void perform_action (

in ASN1_ObjectIdentifier action_id,
in ASN1_DefinedAny action_info,
in LinkedReplyHandler lrh,
in EndOfRepliesHandler eorh

);
void perform_delete (

in LinkedReplyHandler lrh,
in EndOfRepliesHandler eorh

);

// statistics
boolean is_empty ();

// creating iterators
Iterator create_iterator (

in boolean read_only
) raises (CollectionInvalid);

// destruction
void destroy ();

};

interface EnumCollection : BaseCollection {
// adding elements
void add_element (in ManagedObject element);
void add_elements (in ManagedObjectSeq elem_list);
void add_all_from (in BaseCollection collection);

// removing elements
void remove_element_at (

in Iterator where
) raises (IteratorInvalid, IteratorInBetween);
void remove_all ();

};

interface RuleCollection : BaseCollection {
ManagedObject get_base_object () raises (CollectionInvalid);
X711CMI::ScopeType get_scope () raises (CollectionInvalid);
X711CMI::CMISFilterType get_filter () raises (CollectionInvalid);
X711CMI::CMISSyncType get_synchronization () raises (CollectionInvalid);

};
CORBA/TMN V1.0 Collection Service Aug. 2000 4-15

4

tions

n.

the
interface CollectionFactory {
EnumCollection create_enum_collection ();

EnumCollection create_enum_collection_from_collection (
 in BaseCollection collection
);

RuleCollection create_rule_collection (
in OSIMgmt::ManagedObject base_managed_object,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType sync

);

RuleCollection create_rule_collection_by_name (
in OSIMgmt::ProxyAgent proxy_agent,
in CORBA::ScopedName base_mo_interface,
in CosNaming::Name base_mo_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType sync

);
};

};

#endif /* _OSICOLLECTION_IDL_ */

4.2.2.1 Descriptions of OSICollection types and operations

The Iterator interface

The OSICollection::Iterator interface is similar to OSIMgmt::RepliesIterator (see
Chapter 3) in terms of navigation operations (get_element , get_n_elements). The
semantics and behavior of these operations are the same as the equivalent opera
specified in the OSIMgmt::RepliesIterator interface (get_reply , get_n_replies).

This interface also adds a number of operations for different purposes:

• to manipulate the iterator position:

• restart , resets the iterator to point to the first element in the collection.

• set_to_next_element , moves the iterator to the next element in the collectio

• set_to_next_nth_element , moves the iterator n times.

• to control and monitor the state of the iterator:

• invalidate , sets the state of the iterator to invalid.

• is_valid , checks validity of the iterator.

• is_in_between , checks whether the iterator points to an element, or is in
between elements.

• is_equal , checks if both iterators belong to the same collection and point to
same element.
4-16 CORBA/TMN Interworking V1.0 August 2000

4

r is

rtain

ved

t
 all

ects
rule
.

andler
• to manipulate the lifecycle of iterators:

• clone , makes an exact copy of the iterator.

• assign , changes the state of the iterator to match the one assigned to it.

• destroy , destroys the iterator.

Note that OSICollection::Iterators are “managed iterators,” as explained in the
CORBA Collection Service specification. This means that the status of the iterato
always known, never undefined, specifically in the event the collection contents
change.

The possible iterator states are:

• valid , pointing to an element of the collection.

• invalid , pointing to nothing (for example, past the end of the collection).

• in-between , not pointing to an element but knowing what its position in the
collection is.

A valid iterator remains valid as long as the element it points to remains in the
collection. If the element is removed, the iterator goes to the in-between state. Ce
operations require the iterator to be in a valid state (like all the *_at operations), while
others work even when the iterator is in an in-between state (like get_n_elements).
An iterator becomes invalid when it points to nothing (for example, it has been mo
past the last element).

The BaseCollection interface

The OSICollection::BaseCollection is an abstract interface specification (i.e., tha
may not be instantiated by itself) that provides the functionality that is common to
collections (enumerated or rule-based).

Specifically, it provides operations to allow:

• manipulation of the collection and its elements

• is_empty , identifies whether the collection has any elements

• create_iterator , creates an iterator on the collection

• destroy , destroys of the collection

• specific operations to be performed on all objects in the collection

• perform_get , perform_set , perform_action , perform_delete

All these operations perform the corresponding CMIS operations on all the obj
in the collection (one per object in enumerated collections, or one for a whole
collection), returning the results via the RepliesHandlers passed in as parameters
For a more detailed discussion of both the different CMIS operations and the
handler callback objects, see the corresponding OSI Mgmt sections in this
specification. Also, the semantics assigned to the presence or absence of the h
object references are those specified in the OSIMgmt sections, as well.

If an object in a collection returns the standard CORBA exception
OBJECT_NOT_EXIST when performing one of these global operations, the
collection will immediately remove the object from the collection.
CORBA/TMN V1.0 Collection Service Aug. 2000 4-17

4

d

ed

r, as

same

 the
rule

ction,

 doing

 that

ent to

rator.
that
The EnumCollection interface

The OSICollection::EnumCollection interface provides a general mechanism to
group (otherwise not necessarily related) managed objects. Specifically, all the
managed objects in a single collection are not required to belong to the same manage
object domain (i.e., their references might have been obtained through different
OSIMgmt::ProxyAgents).

The member managed objects of an enumerated collection are added and remov
from the collection on an individual basis (add_element , remove_element_at), or
in batch mode (add_elements , add_all_from , remove_all). It is important to note
that an OSICollection::Collection object does not maintain any specified order
among its members. No assumption should be made regarding the retrieval orde
compared to the insertion order. However, ordering within the collection is
implementation-defined; this means that any two traversals of an iterator over the
collection will return managed objects in exactly the same order if no membership
manipulation has occurred in between the traversals.

The RuleCollection interface

The OSICollection::RuleCollection interface has its membership defined by its
governing rule. Specifically, the rule is a scope and filter specification, specified to
collection factory at the time the rule collection is created. The governing rule of a
collection is defined by:

• a base object, that specifies the base of the scoping specification for this colle

• a scope specification, as defined in [X720] and in Chapter 4 OSIMgmt, and

• a filter specification, as defined in [X720] and in Chapter 4 OSIMgmt.

Once created, the governing rule of a rule collection cannot be changed, because
so may invalidate the existing collection membership. When a CMIS operation is
invoked on a rule collection, the indicated base managed object, scope, and filter
form the collection’s governing rule are the parameters used to invoke the scoped
operation on the actual agent or agents that are spanned by that rule.

A CMIS synchronization (atomic or best effort) may also be specified for a rule
collection. This synchronization parameter is used in the scoped request that is s
the agent(s) when a CMIS operation is invoked on the rule collection.

When an iterator is requested from a rule collection (via the create_iterator()
method), then a snapshot of the collection’s membership is taken to serve the ite
This snapshot must reflect the best available knowledge of the managed objects
meet the collection’s defining rule at that time.

The CollectionFactory Interface

The OSICollection::CollectionFactory interface provides methods to create
EnumCollection and RuleCollection objects.

In particular, the CollectionFactory interface allows:

• Creation of an empty EnumCollection (create_enum_collection()).
4-18 CORBA/TMN Interworking V1.0 August 2000

4

 of

o
ct,

pe

,

lated
ts

cient

ation
4.4,
er,
sms

an

• Creation of an EnumCollection as a copy of another Collection . If the copied
collection is a RuleCollection , a snapshot of its membership is taken at the time
creation of the EnumCollection
(create_enum_collection_from_collection()).

• Creation of a RuleCollection specifying its base managed object and
scoping/filtering rule (create_rule_collection()).

• Creation of a RuleCollection specifying its base managed object by reference t
an OSIMgmt::ProxyAgent and the class and instance names of the base obje
plus the scoping/filtering rule (create_rule_collection_by_name()).

4.3 Dynamic Management of ASN.1 Any Values

4.3.1 Overview

The Dynamic Management of CORBA::Any values facility, introduced in the CORBA
2.2 specification, enables the manipulation of CORBA::Any values at runtime,
without having any static information (generated by an IDL compiler) about the ty
being carried inside the Any .

This facility extends the one above to support CORBA::Any values that originate from
an ASN.1 specification that has been translated into IDL via the JIDM Specification
Translation algorithm (see [XOJIDM]) in a way that is closer to the original ASN.1
type.

Note that all operations that may be performed through this interface may also be
performed directly using the basic CORBA::DynAny interface. Additional
functionality provided by this interface is the access to ASN.1 specific information
that might have been lost in the translation from ASN.1 to IDL (specifically, type
constraints), and the ability to use the original ASN.1 names, instead of the trans
IDL names. Also, mechanisms are provided to deal with common ASN.1 construc
such as OPTIONAL, DEFAULT, and anonymous elements in an easier manner.

The behavior of DynAny objects has been defined in such a way as to enable effi
implementations in terms of allocated memory space and speed of access.

In order for this interface to be fully operational and provide the above mentioned
advantages, some mechanism (not specified here) to access cross-domain inform
is needed. The most likely scenario for this is the use of an OSI MIR (see Section
“The OSI Management Information Repository,” on page 4-27), if available. Howev
this facility does not require the use of an OSI MIR (other implementation mechani
are possible alternatives).

The ASN1::DynAny IDL is patterned after the CORBA::DynAny IDL, with the
following differences:

• Defined within an ASN1 IDL module, rather than within the CORBA module.

• The factory for these objects is explicitly defined as a CORBA object, rather th
using the ORB pseudo interface. The way to get a reference to such factory is
implementation specific.
CORBA/TMN V1.0 Dynamic Management of ASN.1 Any Values Aug. 2000 4-19

4

t,
• Names of ASN1::DynAny subtypes resemble the names of the ASN.1 construc
not those of IDL.

• It inherits from the CORBA::DynAny interface, and redefines some of the
behaviors.

• While the CORBA::DynAny interface relies on the CORBA::TypeCode of the
value being processed, the ASN1::DynAny reuses that information, plus that
provided by a simpler ASN1::Kind type.

4.3.2 The ASN1 Module

#ifndef _ASN1_IDL_
#define _ASN1_IDL_

#include <orb.idl>
#include <ASN1Types.idl>

#pragma prefix “jidm.org”
module ASN1 {

 typedef CORBA::Identifier Identifier;

 enum Kind {
 ak_none, // used when value is not ASN.1 based
 ak_null, ak_boolean,
 ak_integer, ak_real,
 ak_numericstring, ak_printablestring,
 ak_visiblestring, ak_iso646string,
 ak_graphicstring, ak_objectdescriptor,
 ak_teletexstring, ak_t61string,
 ak_generalizedtime, ak_utctime,
 ak_octetstring, ak_generalstring,
 ak_ia5string, ak_videotexstring,
 ak_bmpstring, ak_universalstring,
 ak_objectidentifier,
 ak_bitstring,
 ak_any, ak_definedany,
 ak_external,
 ak_enum,
 ak_sequence, ak_set,
 ak_sequenceof, ak_setof,
 ak_choice
 };

 interface DynAny : CORBA::DynAny {
 Kind asn1_kind() raises (Invalid);
 Identifier asn1_type_name () raises (Invalid);
 Identifier asn1_module_name() raises (Invalid);
 Identifier asn1_module_nickname() raises (Invalid);
 ASN1_ObjectIdentifier asn1_module_oid() raises (Invalid);

 void asn1_assign (in DynAny asn1_dyn_any) raises (Invalid);
4-20 CORBA/TMN Interworking V1.0 August 2000

4

 void from_dyn_any (in CORBA::DynAny dyn_any) raises (Invalid);
 CORBA::DynAny to_dyn_any() raises (Invalid);
 DynAny asn1_copy();

 interface DynAny : CORBA::DynAny {
 Kind asn1_kind() raises (Invalid);
 Identifier asn1_type_name () raises (Invalid);
 Identifier asn1_module_name() raises (Invalid);
 Identifier asn1_module_nickname() raises (Invalid);
 ASN1_ObjectIdentifier asn1_module_oid() raises (Invalid);

 void asn1_assign (in DynAny asn1_dyn_any) raises (Invalid);
 void from_dyn_any (in CORBA::DynAny dyn_any) raises (Invalid);

CORBA::DynAny to_dyn_any() raises (Invalid);
DynAny asn1_copy();

void insert_asn1_null(in ASN1_Null value) raises(InvalidValue);
void insert_asn1_boolean(in ASN1_Boolean value)

raises(InvalidValue);
void insert_asn1_unsigned16(in ASN1_Unsigned16 value)

raises(InvalidValue);
 void insert_asn1_unsigned(in ASN1_Unsigned value)

raises(InvalidValue);
 void insert_asn1_unsigned64(in ASN1_Unsigned64 value)

raises(InvalidValue);
 void insert_asn1_integer16(in ASN1_Integer16 value)

raises(InvalidValue);
 void insert_asn1_integer(in ASN1_Integer value)

raises(InvalidValue);
 void insert_asn1_integer64(in ASN1_Integer64 value)

raises(InvalidValue);
void insert_asn1_real(in ASN1_Real value) raises(InvalidValue);
void insert_asn1_numericstring(in ASN1_NumericString value)

raises(InvalidValue);

 void insert_asn1_printablestring(in ASN1_PrintableString value)
raises(InvalidValue);

 void insert_asn1_visiblestring(in ASN1_VisibleString value)
raises(InvalidValue);

 void insert_asn1_iso646string(in ASN1_ISO646String value)
raises(InvalidValue);

 void insert_asn1_graphicstring(in ASN1_GraphicString value)
raises(InvalidValue);

 void insert_asn1_objectdescriptor(in ASN1_ObjectDescriptor value)
raises(InvalidValue);

 void insert_asn1_teletexstring(in ASN1_TeletexString value)
raises(InvalidValue);

 void insert_asn1_t61string(in ASN1_T61String value)
raises(InvalidValue);

 void insert_asn1_generalizedtime(in ASN1_GeneralizedTime value)
raises(InvalidValue);

 void insert_asn1_utctime(in ASN1_UTCTime value)
raises(InvalidValue);
CORBA/TMN V1.0 Dynamic Management of ASN.1 Any Values Aug. 2000 4-21

4

 void insert_asn1_octetstring(in ASN1_OctetString value)
raises(InvalidValue);

 void insert_asn1_generalstring(in ASN1_GeneralString value)
raises(InvalidValue);

 void insert_asn1_ia5string(in ASN1_IA5String value)
raises(InvalidValue);

 void insert_asn1_videotexstring(in ASN1_VideotexString value)
raises(InvalidValue);

 void insert_asn1_bmpstring(in ASN1_BMPString value)
raises(InvalidValue);

 void insert_asn1_universalstring(in ASN1_UniversalString value)
raises(InvalidValue);

 void insert_asn1_objectidentifier(in ASN1_ObjectIdentifier value)
raises(InvalidValue);

 void insert_asn1_bitstring(in ASN1_BitString value)
raises(InvalidValue);

void insert_asn1_any(in ASN1_Any value) raises(InvalidValue);
void insert_asn1_definedany(in ASN1_DefinedAny value)

raises(InvalidValue);

void insert_asn1_external(in ASN1_External value)
raises(InvalidValue);

ASN1_Null get_asn1_null() raises(TypeMismatch);
ASN1_Boolean get_asn1_boolean() raises(TypeMismatch);

ASN1_Unsigned16 get_asn1_unsigned16() raises(TypeMismatch);
ASN1_Unsigned get_asn1_unsigned() raises(TypeMismatch);
ASN1_Unsigned64 get_asn1_unsigned64() raises(TypeMismatch);
ASN1_Integer16 get_asn1_integer16() raises(TypeMismatch);
ASN1_Integer get_asn1_integer() raises(TypeMismatch);
ASN1_Integer64 get_asn1_integer64() raises(TypeMismatch);

ASN1_Real get_asn1_real() raises(TypeMismatch);

ASN1_NumericString get_asn1_numericstring()

raises(TypeMismatch);
ASN1_PrintableString get_asn1_printablestring()

raises(TypeMismatch);
ASN1_VisibleString get_asn1_visiblestring() raises(TypeMismatch);
ASN1_ISO646String get_asn1_iso646string() raises(TypeMismatch);
ASN1_GraphicString get_asn1_graphicstring()

raises(TypeMismatch);
ASN1_ObjectDescriptor get_asn1_objectdescriptor()

raises(TypeMismatch);
ASN1_TeletexString get_asn1_teletexstring() raises(TypeMismatch);
ASN1_T61String get_asn1_t61string() raises(TypeMismatch);
ASN1_GeneralizedTime get_asn1_generalizedtime()

raises(TypeMismatch);
4-22 CORBA/TMN Interworking V1.0 August 2000

4

ASN1_UTCTime get_asn1_utctime() raises(TypeMismatch);

ASN1_OctetString get_asn1_octetstring() raises(TypeMismatch);
ASN1_GeneralString get_asn1_generalstring()

raises(TypeMismatch);
ASN1_IA5String get_asn1_ia5string() raises(TypeMismatch);
ASN1_VideotexString get_asn1_videotexstring()

raises(TypeMismatch);

ASN1_BMPString get_asn1_bmpstring() raises(TypeMismatch);
ASN1_UniversalString get_asn1_universalstring()

raises(TypeMismatch);

ASN1_ObjectIdentifier get_asn1_objectidentifier()
raises(TypeMismatch);

ASN1_BitString get_asn1_bitstring() raises(TypeMismatch);

ASN1_Any get_asn1_any() raises(TypeMismatch);
ASN1_DefinedAny get_asn1_definedany() raises(TypeMismatch);

ASN1_External get_asn1_external() raises(TypeMismatch);

ASN1_Any current_asn1_component () raises(Invalid);
};

interface DynEnum: DynAny, CORBA::DynEnum {
attribute string value_as_asn1_identifier;
attribute long value_as_asn1_value;

};

interface DynNamedNumber: DynAny {
attribute string value_as_asn1_identifier;

};

typedef CORBA::FieldName FieldName;
typedef CORBA::NameValuePairSeq NameValuePairSeq;

interface DynSetSeq: DynAny, CORBA::DynStruct {
FieldName current_asn1_elem_name ();
Kind current_asn1_elem_kind ();
NameValuePairSeq get_asn1_elems() raises(Invalid);
void set_asn1_elems(in NameValuePairSeq value)

raises (InvalidSeq);
void insert_optional_absent() raises (InvalidValue);

 DynAny insert_optional_present() raises (InvalidValue);
void insert_default_absent() raises (InvalidValue);
DynAny insert_default_present() raises (InvalidValue);
boolean get_optional_presence() raises (TypeMismatch);
DynAny get_optional_present() raises (TypeMismatch);
boolean get_default_presence() raises (TypeMismatch);
DynAny get_default_present() raises (TypeMismatch);

};
CORBA/TMN V1.0 Dynamic Management of ASN.1 Any Values Aug. 2000 4-23

4

ilable
interface DynChoice: DynAny, CORBA::DynUnion {
DynAny asn1_elem ();
attribute FieldName asn1_elem_name;
Kind asn1_elem_kind ();

};

interface DynAnyFactory {
exception InconsistentKind {};
exception InconsistentTypeCode {};

 typedef CORBA::Identifier Identifier;

DynAny create_asn1_dyn_any(in any value);

DynAny create_basic_dyn_any(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

CORBA::DynStruct create_dyn_struct(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

CORBA::DynSequence create_dyn_sequence
(in CORBA::TypeCode type)

 raises(InconsistentTypeCode);
 CORBA::DynUnion create_dyn_union(in CORBA::TypeCode type)
 raises(InconsistentTypeCode);
 CORBA::DynEnum create_dyn_enum(in CORBA::TypeCode type)
 raises(InconsistentTypeCode);
 CORBA::DynArray create_dyn_array(in CORBA::TypeCode type)
 raises(InconsistentTypeCode);
 CORBA::DynFixed create_dyn_fixed(in CORBA::TypeCode type)
 raises(InconsistentTypeCode);

 DynAny create_asn1_dyn_primitive(in Identifier asn1_nickname,
 in Identifier asn1_name)
 raises(InconsistentKind);
 DynEnum create_asn1_dyn_enum(in Identifier asn1_nickname,
 in Identifier asn1_name)
 raises(InconsistentKind);
 DynSetSeq create_asn1_dyn_setseq(in Identifier asn1_nickname,
 in Identifier asn1_name)
 raises(InconsistentKind);
 DynSetSeqOf create_asn1_dyn_setseqof(in Identifier

asn1_nickname,
 in Identifier asn1_name)
 raises(InconsistentKind);
 DynChoice create_asn1_dyn_choice(in Identifier asn1_nickname,
 in Identifier asn1_name)
 raises(InconsistentKind);
 };

};

#endif /* _ASN1_IDL_ */

Note that all types, derived from ASN.1 or not, can be manipulated through this
interface. In case the type comes from ASN.1, then extra operations might be ava
(if needed), that could help to manipulate the value.
4-24 CORBA/TMN Interworking V1.0 August 2000

4

n, if
f

level.

l
ed

d
lue.

 or

ame.

p to
se).
However, note that ALL operations are possible through the unextended
CORBA::DynAny interface. The added value provided by the ASN1::DynAny
extension is the fact that ASN.1 constraints might be checked by the implementatio
possible (this is not a mandatory conformance point for this facility, but a quality o
implementation issue).

4.3.2.1 Description of ASN1 types and operations

The Kind type

The ASN1::Kind type identifies the ASN.1 type, which is held by a DynAny object.
The specification provides functions in all modules to access the kind(s) at each

If the CORBA::TypeCode does not correspond to an ASN.1 type, then the specia
kind of ak_none is used. In this case, none of the extended interfaces may be us
(they will all return an appropriate exception: Invalid, InvalidValue of
TypeMismatch).

The Exceptions

The following inherited exceptions are used:

• Invalid means either the ASN1::DynAny is not initialized (for read operations) or
it is incompatible with the operation being performed.

• InvalidValue means trying to insert the wrong type/value. This exception woul
also be raised in case an ASN.1 constraint is not satisfied when inserting a va

• TypeMismatch means trying to extract the wrong type.

• InvalidSeq means the sequence used does not have the appropriate structure
types.

The Type identification

Besides getting the CORBA TypeCode, the ASN.1::DynAny interfaces provide
methods to get the ASN.1 kind, type name, module name, OID, and module nickn
If this is not an ASN.1 type, these would raise Invalid (except the ASN1::Kind would
be ak_none); if unknown, they would be empty.

The Lifecycle

Equivalent functions to the ones provided in CORBA::DynAny , with the same
semantics.

The Insertion operations

The inherited operations will work based on the CORBA::TypeCode and for all types
(ASN.1 or otherwise).

There are different insertion operations per primitive ASN.1 type, even if they ma
the same IDL type. In this way, the interface is more type safe (in the ASN.1 sen
CORBA/TMN V1.0 Dynamic Management of ASN.1 Any Values Aug. 2000 4-25

4

p to
se).

d

ations

ons

IDL
For example, if we have MyType::=INTEGER(1..500) , then either insert_ushort or
insert_asn1_unsigned16 would work. And both could check for the bounds, and
return InvalidValue if the constraint is violated.

Note that there is nothing to insert an ASN1_Recursive . The appropriate type to be
inserted (whatever would go in the any) must be used if using the ASN1::DynAny
interface, and insert_any if using the CORBA::DynAny interface. Again, if the
wrong type is to be inserted in the any, then the exception could be raised.

The Extraction operations

The inherited operations will work based on the CORBA::TypeCode and for all types
(ASN.1 or otherwise).

There are different extraction operations per primitive ASN.1 type, even if they ma
the same IDL type. In this way, the interface is more type safe (in the ASN.1 sen

For example, in the case introduced above, either get_ushort or
get_asn1_unsigned16 would work.

Note that there is nothing to extract an ASN1_Recursive: you have to extract the
appropriate type (whatever is in the any) if using the ASN1::DynAny interface, and
get_any if using the CORBA::DynAny interface. If the wrong type is to be extracte
from the any, then the TypeMismatch exception should be raised.

The Navigation operations

In addition to the methods inherited from CORBA::DynAny , there is an extra method
to get the current component as an ASN1::DynAny , rather than as a
CORBA::DynAny (that would require narrowing for some operations).

The Enumerated interface

Provides operations to access names/values as specified in ASN.1. If these oper
are not going to be available (because the type does not correspond to an ASN.1
enumerated value), then narrowing to this interface should fail.

The NamedNumber interface

This is a special case, as it is a primitive type, but has a subtype specification. It
provides the ability to read or write values by their ASN.1 names. If these operati
are not going to be available, then narrowing to this interface should fail.

The SetSeq interface

Instead of providing two exact interfaces, just one is provided for both SET and
SEQUENCE types.

In addition to the operations to navigate the components, getting names, and
inserting/extracting sequences (inherited from the CORBA::DynStruct interface);
equivalent operations are provided with the ASN.1 counterparts. Specifically, field
names and insert/extract sequence would use ASN.1 type names, instead of the
4-26 CORBA/TMN Interworking V1.0 August 2000

4

s
 (and

ates

ed by

e are
urned
s not

ore
ng

pes,
ated
d
equivalents inherited from the CORBA::DynStruct interface. Another difference is
that in the ASN.1 sequences, fields that have the OPTIONAL or DEFAULT clause
might be omitted. Additionally, there are methods to insert absent/present optional
defaulted) and also to check for the presence and value of such fields.

The Choice interface

As the inherited interface was almost complete, this interface only specifies duplic
of some operations to provide ASN.1 names/types.

The SetSeqOf interface

The same as with SetSeq, only one interface is specified for both SET OF and
SEQUENCE OF types. The only added operation is the one to get the ASN.1 item
kind.

The DynAnyFactory

This factory is capable of creating DynAny s for both normal IDL types and for ASN.1
types. Also, the creation methods are compatible and consistent with those provid
the ORB interface for IDL types.

• The IDL Factory methods

Create the CORBA::DynAny subclasses appropriate for the provided typecode.
The returned objects might be narrowable to one of the ASN1::DynAny interfaces,
if the IDL type was indeed coming from an ASN.1 type.

• The ASN1 Factory methods

In the absence of ASN.1 typecodes, the ASN.1 module nickname and type nam
used as the mechanism to identify the type being created. In this case, the ret
object already exports the appropriate interface. In case the specified type doe
match the factory operation being used, the InconsistentKind exception is raised.

4.4 The OSI Management Information Repository

An OSI Management Information Repository (OSI MIR) contains the description and
structure of the information models used within the TMN Management model.

This specification does not provide any standard interface for an OSI MIR, theref
allowing implementations of CORBA/TMN systems to provide this functionality usi
any appropriate mechanism.

An OSI MIR provides two services:

• Model description: The translation from GDMO and ASN.1 to IDL leaves some
information elements untranslated. For example, some constraints on ASN.1 ty
or some inheritance relationships in GDMO class hierarchies, cannot be transl
into IDL. An OSI MIR can fill in the missing information for applications that nee
it, by providing a full description of the original GDMO and ASN.1 syntax.
CORBA/TMN V1.0 The OSI Management Information Repository Aug. 20004-27

4

en

e

n a

ment

were
n

.

t to

its

BA

o

f
and

P-
s

• Translation description: Some implementations, in particular those dealing with
both OSI and CORBA domains, may need to know the correspondence betwe
GDMO/ASN.1 and the IDL representations of a model. For example, an
implementation might need to know that the IDL enumerated value selecting th
globalForm choice of X.711 ASN.1 AttributeId syntax is named
globalFormChoice_1 . An OSI MIR can provide information on this mapping.

An OSI MIR allows managers and agents to dynamically access all information o
certain model, both as an original GDMO/ASN.1 model and as the equivalent IDL
model. Among other things, this makes it feasible to dynamically process manage
requests without necessarily having any compile-time knowledge of which
GDMO/ASN.1 documents and modules were processed and what mapping rules
applied for translation into IDL. With the assistance of an OSI MIR available at ru
time, an application may:

• Check the validity of values with the constraints applied to their syntax.

• Translate management requests from one domain (CORBA or OSI) to another

This specification allows implementations of CORBA/TMN systems to choose any
approach to building an OSI MIR for providing dynamic, run-time metadata suppor
their applications, including, but not limited to, the following:

• An OSI MIR may be provided as a stand-alone proprietary CORBA facility with
own exposed IDL interface.

• An OSI MIR may be provided as a repository, which is an extension of the COR
Interface Repository.

• An OSI MIR may be an internal repository within a CORBA/TMN system, with n
exposed interface and hence no CORBA visibility to applications. It may be
reserved only for internal use by the CORBA/TMN system implementation.

4.5 SNMP Management Facilities Specification

4.5.1 Overview

The SNMP Management Facilities section addresses the bidirectional mapping o
names, messages, and events in SNMP domain to names, operation invocation,
events in CORBA domain by providing a set of SNMP-specific CORBA object
services and extensions.

This is done by extending the JIDM Facilities specification and by providing SNM
specific extensions to the generic JIDM manager-agent framework. Those facilitie
support functionality that is specific to SNMP Management, as follows:

• The ability to name MIB entries according to SNMP Management principles.

• The ability to create and delete MIB entries (or table rows) according to SNMP
Management principles.

• The ability to communicate traps and notifications.
4-28 CORBA/TMN Interworking V1.0 August 2000

4

nsion
e of

and

ject

ereas
ardize

cies
ies.
or.
 to
DL
e

ave
oups
eed to

) in
cific

 an
To support the interoperability between CORBA and SNMP domains, we have to
develop a set of service interfaces, called SNMP Management facilities as an exte
of some of the CORBA Object services specification. In addition, we take advantag
the generic manager-agent framework provided by the JIDM facilities, to initialize
find the services defined for the SNMP Management facilities.

The main purpose of the SNMP management facilities is to extend the CORBA ob
services to support SNMP protocol-specific behavior of MIB entries/objects. For
example, the SNMP MIB entries have to be named whenever they are created, wh
CORBA objects need not be named when they are created. So, we have to stand
the way objects are created and named.

The goal of the service interfaces is to provide a uniform way to find MIB entries,
retrieve information from MIB entries, and handle events from CORBA and SNMP
domains.

In SNMP domains the MIB entries are named based on a set of well-defined poli
about the order and the types of the index variables associated with the MIB entr
The SNMP Naming service interface encapsulates SNMP-specific naming behavi
The SNMP-specific Lifecycle services interface extends the COSS generic factory
support the behavior of the MIB module specific factories generated during SMI->I
translation. The SNMP specific Lifecycle would also take care of the naming of th
MIB entries when an MIB entry is created.

There is some information loss during the mapping of SNMP MIB to IDL and we h
to retrieve it through some mechanism. For example, OIDs of the table-entries/gr
and variables are not mapped to IDL but they are needed at the gateway. So we n
extend the CORBA interface repository to provide OID information.

The SNMP Management Information Repository (also known as SMI repository
service) [OPTIONAL Service] defines a set of interfaces that provide information
about the SNMP specific IDL modules and interfaces in the InterfaceRepository (IR
an SNMP specific way. For example, one can obtain information about SNMP spe
IDL module names, SNMP specific IDL interfaces, and SNMP specific variables
among all IDL interfaces in the IFR. The view one gets from the SMI repository is
SNMP specific view based on the information in the IFR. One can use the SMI
repository to query about OID of a variable.
CORBA/TMN V1.0 SNMP Management Facilities Specification Aug. 2000 4-29

4

4-30 CORBA/TMN Interworking V1.0 August 2000

 SNMP CORBA Facilities 5
ts in

P-
s

nsion
e of
nd
Contents

This chapter contains the following sections.

5.1 Overview

This chapter addresses the bidirectional mapping of names, messages, and even
SNMP domain to names, operation invocation, and events in CORBA domain by
providing a set of SNMP-specific CORBA object services and extensions.

This is done by extending the JIDM Facilities specification and by providing SNM
specific extensions to the generic JIDM manager-agent framework. Those facilitie
support functionality that is specific to SNMP Management, as follows:

• the ability to name MIB entries according to SNMP Management principles.

• the ability to create and delete MIB entries (or table rows) according to SNMP
Management principles.

• the ability to communicate traps and notifications.

To support the interoperability between CORBA and SNMP domains, we have to
develop a set of service interfaces, called SNMP Management facilities as an exte
of some of the CORBA Object services specification. In addition, we take advantag
the generic manager-agent framework provided by the JIDM facilities, to initialize a
find the services defined for the SNMP Management facilities.

Section Title Page

“The SNMPMgmt Module” 5-2

“SNMP Management Information Repository” 5-30
CORBA/TMN Interworking V1.0 August 2000 5-1

5

ject

ereas
ardize

cies
ies.
or.
 to
DL
e

ave
oups
eed to

) in
ific

 an

 a
The main purpose of the SNMP management facilities is to extend the CORBA ob
services to support SNMP protocol-specific behavior of MIB entries/objects. For
example, the SNMP MIB entries have to be named whenever they are created, wh
CORBA objects need not be named when they are created. So, we have to stand
the way objects are created and named.

The goal of the service interfaces is to provide a uniform way to find MIB entries,
retrieve information from MIB entries, and handle events from CORBA and SNMP
domains.

In SNMP domains the MIB entries are named based on a set of well-defined poli
about the order and the types of the index variables associated with the MIB entr
The SNMP Naming service interface encapsulates SNMP-specific naming behavi
The SNMP-specific Lifecycle services interface extends the COSS generic factory
support the behavior of the MIB module specific factories generated during SMI->I
translation. The SNMP specific Lifecycle would also take care of the naming of th
MIB entries when an MIB entry is created.

There is some information loss during the mapping of SNMP MIB to IDL and we h
to retrieve it through some mechanism. For example, OIDs of the table-entries/gr
and variables are not mapped to IDL but they are needed at the gateway. So we n
extend the CORBA interface repository to provide OID information.

The SNMP Management Information Repository (also known as SMI repository
service) [OPTIONAL Service] defines a set of interfaces that provide information
about the SNMP specific IDL modules and interfaces in the InterfaceRepository (IR
a SNMP specific way. For example, one can obtain information about SNMP spec
IDL module names, SNMP specific IDL interfaces and SNMP specific variables
among all IDL interfaces in the IFR. The view one gets from the SMI repository is
SNMP specific view based on the information in the IFR. One can use the SMI
repository to query about OID of a variable.

5.2 The SNMPMgmt Module

The SNMPMgmt module comprises a collection of interfaces that together define
basic set of services for developing SNMP Management Applications based on
CORBA. This module contains the following interfaces:

• The ProxyAgent interface

• The SmiEntry interface

• The GenericFactory interfaces

• The NamingContext interface

• The SmiTableIterator and GetNextEntryIterator interfaces

#ifndef _SNMPMGMT_IDL_
#define _SNMPMGMT_IDL_

#include <orb.idl>
#include <CosPropertyService.idl>
5-2 CORBA/TMN Interworking V1.0 August 2000

5

#include <ASN1Types.idl>
#include <JIDM.idl>

#pragma prefix “jidm.org”

module SNMPMgmt {
const string ManagementDomainKeyId = “Internet Management”;
const string ManagementDomainKeyKind = “XSM environment”;
const string ProtocolVer = “Protocol Version”;
const string TransportProtocol = “Transport Protocol”;
const string DomainTitle = “Domain Title”;
const string TransportAddress = “Transport Address”;
const string TransportPort = “Transport Port”;
const string CommunityName = “Community Name”;
const string ContextEngineID = “Context EngineID”;
const string ContextName = “Context Name”;

// Redefinition of types
typedef CORBA::ScopedName ScopedName;
typedef CosLifeCycle::Criteria Criteria;
typedef CosPropertyService::PropertyName VarName;
typedef CosPropertyService::PropertyNames VarNameList;
typedef CosPropertyService::Property NameValuePair;
typedef CosPropertyService::Properties NVPairList;

typedef ASN1_ObjectIdentifier EntryIndex;
typedef sequence < EntryIndex > EntryIndexList;

typedef string TAddress; // Transport address of an agent

enum ProtocolVersion { snmpV1, snmpV2c, snmpV3 };

// SNMP Protocol specific exceptions
exception ProtocolError {

ASN1_Integer error_status;
ASN1_Integer error_index;

};
exception MultVarProtocolError {

ASN1_Integer error_status;
VarNameList error_var_list;
NVPairList result_var_list;

};

// SMI information module specific exceptions.
exception NoSuchSmiModule { };
exception NoSuchSmiEntry { };
exception NoSuchVariable { };

// MIB entry specific exceptions
exception NoSuchHost { };
exception NoSuchObject { };
exception EndOfMibView { };
exception AlreadyExists { };
CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-3

5

interface SmiEntry : CosLifeCycle::LifeCycleObject,
CosPropertyService::PropertySet {

// the value of entry_name is always “0” for the groups.
readonly attribute ASN1_ObjectIdentifier entry_name;

};
typedef sequence < SmiEntry > SmiEntryList;

interface SmiTableIterator {
boolean next_one_entry(out SmiEntry smi_entry);
boolean next_n_entries (

in unsigned long how_many,
out SmiEntryList smi_entry_list

);
void destroy();

};

 interface GenericFactory : CosLifeCycle::GenericFactory {
SmiEntry create_mib_entry (
 in ScopedName t_entry_type,
 in ASN1_ObjectIdentifier entry_index,
 in Criteria create_criteria
) raises (NoSuchSmiEntry, AlreadyExists);

SmiEntry create_mib_entry_with_auto_name (
 in ScopedName t_entry_type,
 in Criteria create_criteria
) raises (NoSuchSmiEntry, AlreadyExists);

};

interface GetNextEntryIterator {
// Get the next entry index according to lexical ordering rule
// of SNMP OIDs -- follows SNMP get-next traversal rule
boolean next_one_entry (out EntryIndex entry_index);
boolean next_n_entries (

in unsigned long how_many,
out EntryIndexList entry_index_list

);
void destroy();

};

// NamingContext extends CosNaming::NamingContext to provide
// navigating the SNMP name space in the lexicographic order
// and SNMP specific name and context resolution
interface NamingContext : CosNaming::NamingContext {

string get_next_entry(
in string entry_name

) raises (InvalidName, NotFound, CannotProceed);

GetNextEntryIterator get_next_entry_iterator(
in string initial_entry_name

) raises (InvalidName, NotFound);
};

interface NamingDirectory : NamingContext {
NamingContext resolve_domain_context(
5-4 CORBA/TMN Interworking V1.0 August 2000

5

in TAddress p_host_name
) raises (NoSuchHost, CannotProceed, InvalidName,

NotFound);

NamingContext resolve_smi_module(
 in TAddress p_host_name,

in string p_smi_module_name
) raises (NoSuchHost, NoSuchSmiModule, InvalidName,

NotFound);

NamingContext resolve_smi_entry(
in TAddress p_host_name,
in ScopedName p_entry_type

) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed,
InvalidName, NotFound);

SmiEntry resolve_mib_entry(
in TAddress p_host_name,
in ScopedName p_entry_type,
in string p_entry_index

) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed,
InvalidName, NotFound);

void list_smi_entries(
in TAddress p_host_name,
in ScopedName p_entry_type,
in unsigned long how_many,
out SmiEntryList out_list,
out SmiTableIterator table_iterator

) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed,
InvalidName, NotFound);

};

// ProxyAgent

interface ProxyAgent : JIDM::ProxyAgent {

readonly attribute TAddress host_name;

ASN1_Any get_a_variable (
in TAddress p_host_name,
in ScopedName p_var_scoped_name,

 in EntryIndex p_var_index
) raises (NoSuchHost, NoSuchVariable, NoSuchObject,

ProtocolError);

NVPairList get_variables (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in VarNameList p_var_name_list,
in EntryIndex p_var_index

) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
MultVarProtocolError);

void set_a_variable (
CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-5

5

in TAddress p_host_name,
in ScopedName p_var_scoped_name,
in EntryIndex p_var_index,
in ASN1_Any p_var_new_value

) raises (NoSuchHost, NoSuchVariable, NoSuchObject,
ProtocolError);

void set_variables (
in TAddress p_host_name,

in ScopedName p_entry_scoped_name,
in NVPairList p_var_nvp_list,

in EntryIndex p_var_index
) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,

MultVarProtocolError);

void list_mib_entries(
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in long p_how_many,
out EntryIndexList p_entry_index_list,
out GetNextEntryIterator p_entry_name_list_itr

) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
ProtocolError);

boolean mib_entry_exists (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name

) raises (NoSuchHost, NoSuchSmiEntry, ProtocolError);

boolean is_mib_module_supported (
in TAddress p_host_name,
in string p_smi_module_name

) raises (NoSuchHost, NoSuchSmiModule, ProtocolError);

};

struct EntryVarBind {
ScopedName entry_name; // IDL scoped name of the interface

for table-entry
string entry_index; // row index of an entry in the form of

ObjectId string
CosPropertyService::Properties nvp_list;

};
typedef sequence<EntryVarBind> EntryVarBindList;
typedef EntryVarBindList NotificationVariableList;
typedef EntryVarBindList InformVariableList;

struct NotificationInfo { // to be sent when using untyped event
channel

CosNaming::Name src_entry_name;
ScopedName event_type;
ASN1_GeneralizedTime event_time;
any notification_info;

};
struct InformInfo { // to be sent when using untyped event channel

CosNaming::Name src_obj_name;
5-6 CORBA/TMN Interworking V1.0 August 2000

5

InformVariableList inform_info;
};

interface Notifications {
void snmp_notification (

in CosNaming::Name src_entry_name,
in ScopedName event_type,
in ASN1_GeneralizedTime event_time,
in any notification_info

);
void snmp_inform (

in CosNaming::Name src_entry_name,
in InformVariableList inform_variables

);

void snmp_report (
in CosNaming::Name src_entry_name,

in InformVariableList report_variables
);

};

interface PullNotifications {
boolean try_snmp_notification (

out CosNaming::Name src_entry_name,
out ScopedName event_type,
out ASN1_GeneralizedTime event_time,
out any notification_info

);

void pull_snmp_notification (
out CosNaming::Name src_entry_name,
out ScopedName event_type,
out ASN1_GeneralizedTime event_time,
out any notification_info

);

boolean try_snmp_inform (
out CosNaming::Name src_entry_name,
out InformVariableList inform_variables

);

void pull_snmp_inform (
out CosNaming::Name src_entry_name,
out InformVariableList inform_variables

);

boolean try_snmp_report (
out CosNaming::Name src_entry_name,
out InformVariableList report_variables

);

void pull_snmp_report (
out CosNaming::Name src_entry_name,
out InformVariableList report_variables

);
CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-7

5

ers of
in.

r.
};

};

#endif /* _SNMPMGMT_IDL_ */

5.2.1 The SNMPMgmt::ProxyAgent Interface

CORBA manager objects that require access to managed objects that are memb
some SNMP managed object domain must establish a connection with that doma

As a result of establishing the connection, an SNMPMgmt::ProxyAgent object is
created. SNMP::ProxyAgent objects export the JIDM::ProxyAgent interface and
support additional operations that are specific to SNMP Management.

The SNMPMgmt::ProxyAgent provides a generic and version independent SNMP
MIB based query interface, that encapsulates the SNMP protocol specific behavio

// ProxyAgent

interface ProxyAgent : JIDM::ProxyAgent {
readonly attribute TAddress host_name;

ASN1_Any get_a_variable (
in TAddress p_host_name,
in ScopedName p_var_scoped_name,

 in EntryIndex p_var_index
) raises (NoSuchHost, NoSuchVariable, NoSuchObject,

ProtocolError);

NVPairList get_variables (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in VarNameList p_var_name_list,
in EntryIndex p_var_index

) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
MultVarProtocolError);

void set_a_variable (
in TAddress p_host_name,
in ScopedName p_var_scoped_name,
in EntryIndex p_var_index,
in ASN1_Any p_var_new_value

) raises (NoSuchHost, NoSuchVariable, NoSuchObject,
ProtocolError);

void set_variables (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in NVPairList p_var_nvp_list,
in EntryIndex p_var_index

) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
MultVarProtocolError);
5-8 CORBA/TMN Interworking V1.0 August 2000

5

 the

. void set_variables (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in NVPairList p_var_nvp_list,
in EntryIndex p_var_index

) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
MultVarProtocolError);

void list_mib_entries(
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in long p_how_many,
out EntryIndexList p_entry_index_list,
out GetNextEntryIterator p_entry_name_list_itr

) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
ProtocolError);

boolean is_mib_entry_exist (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name

) raises (NoSuchHost, NoSuchSmiEntry, ProtocolError);

boolean is_mib_module_supported (
in TAddress p_host_name,
in string p_smi_module_name

) raises (NoSuchHost, NoSuchSmiModule, ProtocolError);

};

Connections are established by means of invoking the access_domain operation
exposed by a root JIDM::ProxyAgentFinder object as explained in Section 2.1.4,
“The JIDM::ProxyAgentFinder Interface,” on page 2-11. The value associated with
“XSM environment” Key parameter passed to the access_domain operation is
Internet Management . Note that the access_domain operation returns a reference
to a JIDM::ProxyAgent interface. If the client wants to get visibility of the specific
operations defined for the SNMPMgmt::ProxyAgent interface, this reference must
be narrowed.

Table 5-1 presents the names and meaning for criteria that can be passed in the
invocation to the access_domain operation when trying to access an SNMP
managed domain. While the domain title criterion is mandatory, the rest of criteria
components are optional.

Table 5-1 SNMPMgmt conventions for proxy agent finding criteria

criterion name type of value meaning

“domain title” TAddress Transport Address associated to the
managed object domain for which access
is requested. The wildcard address (“*”) is
allowed.
CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-9

5

ed

in

clude

The TAddress type used as domain title follows the TAddress Textual-Convention
for transport service addresses defined in the SNMPv2-TC module. For the UDP
domain (default case), the TAddress follows the 4+2 octets format. The format of the
TAddress string for UDP domain is as follows: <IP-Address>[:<Udp-port>] . The
<IP-Address> represent the stringified value of first 4 octets in DNS format or dott
number format. The <Udp-port> represents the integer value of last 2 bytes.

Semantics of the domain title and controller object parameters were specified in
Section 2.1.4, “The JIDM::ProxyAgentFinder Interface,” on page 2-11. If the doma
title specified is the wildcard (“*”), then a generic SNMPMgmt::ProxyAgent object
is returned, that would be able to interact with multiple SNMP agents.

The criteria, in the case of SNMP Systems Management Reference model, may in
additional parameters, namely:

“transport protocol” string Transport protocol used to access the
managed domain. Possible values are
“UDP”, “IPX”, etc. If not present, “UDP”
is used as default. The value of this
criterion determines the format of the
TAddress used for the “domain title”
criterion.

“transport port” any Transport protocol dependent access
point. If not present, (unsigned short)161
is used as default (corresponding to the
default UDP port for SNMP).

“protocol version” SNMPMgmt::ProtocolVersion SNMP protocol version to be used to
access the managed domain. If not
specified, snmpV1 is used as default.

“controller object” JIDM::ProxyAgentController reference associated to a
JIDM::ProxyAgentController object
registered by the manager (OPTIONAL).

“community name” string Information to be used as the community
name to be sent in the SNMP PDUs. Only
valid for snmpV1 and snmpV2c. If not
present, “public” is used (OPTIONAL).

“context engine id” string Only valid for snmpV3. Consult SNMP
v3 documentation for more information
(OPTIONAL).

“context name” string Only valid for snmpV3. Consult SNMP
v3 documentation for more information
(OPTIONAL).

criterion name type of value meaning
5-10 CORBA/TMN Interworking V1.0 August 2000

5

ort

es to:

 an
o by

gh

 in
• Transport and protocol specifications, carrying information on the type of transp
protocol, the protocol access point (port), and the version of SNMP required to
communicate with the managed domain.

• Protocol dependent security related criteria.

Since SNMPMgmt::ProxyAgent objects are JIDM::ProxyAgent objects, they
provide the means by which CORBA manager objects are able to obtain referenc

• An initial CosLifeCycle::FactoryFinder object located at the OSI managed
object domain.

• An initial CosNaming::NamingContext object located at the OSI managed
object domain.

Invoking the find_factories operation exposed by the initial
CosLifeCycle::FactoryFinder object, CORBA manager objects may find factories
that enable creation of new table entries in the SNMP managed object domain.

Invoking the resolve operation exposed by the initial CosNaming::NamingContext
object, CORBA manager objects may obtain CORBA object references to existing
members of the SNMPI managed object domain.

Once a CORBA manager object obtains a CORBA object reference associated to
SNMP managed object, it can invoke operations exposed by the object. It will do s
means of using the standard ORB services defined in CORBA The Common Object
Request Broker: Architecture and Specification:

• the Dynamic Invocation Interface (DII); or

• IDL stubs generated from definitions in OMG IDL of interfaces exported by the
object (which might have been generated from SNMP definitions according to
XoJIDM (see “[XoJIDM] Inter Domain Management: Specification Translation”
mentioned in Appendix A).

5.2.1.1 Description of the ProxyAgent operations

The get_domain_factory_finder operation

The get_domain_factory_finder operation obtains a reference to the initial
CosLifeCycle::FactoryFinder object located at the domain being accessed throu
an SNMPMgmt::ProxyAgent object. As already explained in Section 2.1.2, “The
JIDM::ProxyAgent Interface,” on page 2-4, CORBA manager objects can locate
appropriate managed object factories by means of invoking the find_factories
operation exposed by this initial CosLifeCycle::FactoryFinder object.

The space of keys established for SNMP Management environments is described
Table 5-2.
CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-11

5

by
sing

y be

ged

d

rrow

ho
ed by

ents
ntry
Table 5-2 SNMPMgmt conventions for factory finder keys

CORBA Managers can create managed objects either using operations exposed
specific factories whose interfaces are derived from specific SMI modules or by u
operations exposed by generic factories.

In respect to generic factories, one (or several) of the three following scenarios ma
supported:

1. The standard CosLifeCycle::GenericFactory interface is used.

2. The SNMPMgmt::GenericFactory interface is used.

3. One of the standard factory interfaces defined in SYSMANfacilties (see
“[SYSMANfacilities] Systems Management: Common Management Facilities,
Volume I.” mentioned in Appendix A) is used.

In any case, the factory object would be responsible for checking if the new mana
object can be contained in the designated domain.

With these considerations in mind, the alternatives for finding factories in SNMP
Systems Management environments are more precisely described as follows:

• Only the name of the object interface is specified.

Here, it is implicitly assumed that there is a specific factory interface associate
with the managed object interface. CORBA managers know the name and
operations associated with the factory in advance so that they can properly na
and use the reference returned by the find_factories operation.

• Only the name of the object factory interface is specified.

Here, references returned by the find_factories operation can be narrowed to the
IDL interface whose name has been specified. The CORBA manager object w
invoked the operation knows the signature and semantics of operations support
the designated object factory interface.

In case objects are created through CosLifeCycle::GenericFactory objects, the Key
value passed in the invocation to the create_object operation would be the name of
the interface exported by the new MIB table entry. The Criteria value would be a
sequence of <name, value> pairs, which would correspond to the rest of the argum
needed for creation of the SMI entry as specified in Table 5-3 (name of the SMI e
in string or name-value-pair list format, initial attribute list, etc).

id field kind field meaning

fully scoped name of
object interface

“object interface” Find factories that create objects supporting the
named interface.

fully scoped name of
factory interface

“factory interface” Find factories supporting the named factory
interface.
5-12 CORBA/TMN Interworking V1.0 August 2000

5

gh

-4,

ent

he

x

ex

 it
Table 5-3 SNMPMgmt conventions for managed object creation criteria

The get_domain_naming_context operation

The get_domain_naming_context operation obtains a reference to the initial
CosNaming::NamingContext object located at the domain being accessed throu
an SNMPMgmt::ProxyAgent object. The returned CosNaming::NamingContext
reference can be narrowed to the SNMPMgmt::NamingContext interface, or even to
the SNMPMgmt::NamingDirectory interface for wildcard
SNMPMgmt::ProxyAgent objects.

As already explained in Section 2.1.2, “The JIDM::ProxyAgent Interface,” on page 2
CORBA manager objects can obtain CORBA object references to members of a
managed object domain as a result of invoking the resolve operation exposed by the
initial CosNaming::NamingContext object located at the domain. The resolve
operation may also be used to obtain reference to CosNaming::NamingContext
objects subordinated to the initial CosNaming::NamingContext object.

Managed objects will be named according to the SNMP Naming Principles.

The type of SNMPMgmt::ProxyAgent created depends on the criteria used when
access to the domain was solicited. In particular, if access to a “wildcard” ProxyAg
was granted, then the initial CosNaming::NamingContext object in the managed
domain must support resolution using the TAddress host_name parameters.
However, if the ProxyAgent was not generic, then the use of this parameter with a
value other than the empty string (““) will raise the standard NO_PERMISSION
exception.

criterion name type of value interpretation

“managed object interface” CORBA::ScopedName Name of interface exported by t
new SMI entry.

“managed object name” string Naming parameter based on inde
part of objectID of a variable,
given as a string. Concatenated
index values in dotted number
form. The information in “name”
and “index variables” are
interchangeable.

“index variables” CosPropertyService::Properties Naming parameter based on ind
variables, given as a sequence of
name-value pairs. Alternative to
“managed object name” criterion.

“initialization” CosPropertyService::Properties When this parameter is supplied,
contains a set of attribute
identifiers and values to be
assigned to the new SMI entry.
CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-13

5

 on

ment

f a

l
The destroy operation

Any SNMPMgmt::ProxyAgent object exposes the destroy operation, which
disposes of the object. Disposing an SNMPMgmt::ProxyAgent object means freeing
resources used to maintain the associated connection.

Destruction of an SNMPMgmt::ProxyAgent object can take place either gracefully
or non-gracefully, as described in Section 2.1.2, “The JIDM::ProxyAgent Interface,”
page 2-4. A reference to a JIDM::ProxyAgentController object may be passed at the
manager side, as described in Section 2.1.3, “The JIDM::ProxyAgentController
Interface,” on page 2-9.

SNMP operations

The SNMP protocol version independent SNMPMgmt::ProxyAgent provides a set of
operations that are convenient to use in CORBA domain to browse SNMP MIB in
variable-specific as well as table-oriented ways. Besides, it extends the
JIDM::ProxyAgent interface to support SNMP-specific management operations.

All SNMP operations carry a p_host_name parameter of type TAddress . This
parameter may only be used in “wildcard” ProxyAgent s, and will contain the
transport specific address of the agent to be contacted for this particular manage
operation. In case of “non-wildcard” ProxyAgent s, the agent is specified at the time
of creation of the ProxyAgent object (specified in the criteria passed to the
access_domain call), and therefore this parameter must be the empty string (““); i
different value is used, then the standard NO_PERMISSION exception is raised.

Type definitions and Exceptions

The VarNameList and NameValuePair types redefine the
CosPropertyService::PropertyNames and CosPropertyService::Property
respectively such that type name reflects variable centric approach of SNMP.

The EntryIndex type represents the string for instance information of a conceptua
row of a table. The EntryIndex string represents the stringfied (in dotted number
form) version of sequence of oids that represents the instance information.
EntryIndexList type represent a set of entry indexes.

The ProtocolError exception is raised to inform the client application about the
SNMP protocol related errors. SNMP errors are indicated by the
ProtocolError.error_status field. An application will map the SNMP related error
to the corresponding CORBA Exception as shown in Table 5-4.

Table 5-4 Mapping of SNMP Errors to IDL Exceptions

SNMP ERROR IDL Exception

noError NO_EXCEPTION

tooBig IMP_LIMIT

noSuchName NO_IMPLEMENT

badValue BAD_PARAM
5-14 CORBA/TMN Interworking V1.0 August 2000

5

d.

the

 The
 The

e
The MultVarProtocolError exception is raised during multiple value get-set metho
The error_status field follows the same mapping used for ProtocolError . The
result_var_list field contains the returned variable list. The error_var_list field
contains the names of the variables that are not part of the result_var_list .

The NoSuchSmiModule exception is raised if an SNMP agent does not support
associated MIB module. The NoSuchSmiEntry exception is raised if an SNMP
agent does not support a specific MIB table or a group. The NoSuchVariable
exception is raised if the SNMP agent does not support the specific SMI variable.
NoSuchHost exception is raised if the host cannot be found in the host database.
NoSuchObject exception is raised if the noSuchObject element is selected in the
value part of the VarBind returned result. The NoSuchInstance exception is raised
if the noSuchInstance element is selected in the value part of the VarBind returned
result.

The get_a_variable operation

The ProxyAgent::get_a_variable() operation returns the value of an SNMP variabl
(tabular or non-tabular) given the name of the variable in IDL scoped format (M::I::A ,
where M is the SMI information module, I is the interface identifier of the table-
entry/group for the variable, and A is the identifier of the attribute for the variable),
and the index information in ASN.1 ObjectIdentifier format.

The p_var_scoped_name is the IDL scoped name of the variable in the form of
M::I::A , where M is the SMI information module, I is the interface identifier of the
table-entry/group for the variable, and A is the identifier of the attribute for the
variable.

readonly BAD_OPERATION

genErr INTERNAL

noAccess NO_PERMISSION

wrongType BAD_TYPECODE

wrongLength MARSHAL

wrongEncoding MARSHAL

wrongValue BAD_PARAM

noCreation CosLifeCycle::InvalidCriteria

inconsistentValue BAD_PARAM

resourceUnavilable NO_RESOURCE

commitFailed INTERNAL

undoFailed INTERNAL

SNMP ERROR IDL Exception
CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-15

5

ote

utes.

es

are
ed

es
bles

es
The p_var_index is the row index of the variable in the string form.

The returned value is of type ASN1_Any (typedef of CORBA::Any) and the
TypeCode of the returned value is set according to the Specification Translation
mapped IDL type of the attribute. In other words, the TypeCode of the returned value
is equal to the value returned by the type() operation of the AttributeDef for M::I::A .

The operation raises NoSuchVariable exception if the variable name in
p_var_scoped_name does not exist. The operation raises NoSuchObject
exception if the variable with given instance information does not exist at the rem
host. For all other cases the operation raises SNMP-specific protocol error using
ProtocolError exception.

The get_variables operation

The ProxyAgent::get_variables() operation returns a list of values of an SNMP
variable (tabular or non-tabular) given the IDL scoped name of the SMI table-
entry/group (in the form of M::I , where M is the SMI information module, I is the
interface identifier of the table-entry/group), IDL identifier of the variables, and the
index information of a specific entry in ASN.1 ObjectIdentifier format.

The returned value is in the form of Name-Value pair list where names are the
identifiers of the variables and values are of type any. The TypeCode of the values of
the variables are set according to the mapped IDL type of the corresponding attrib

The operation raises NoSuchSmiEntry exception if the interface name in
p_entry_scoped_name does not exist in the interface repository. For all other cas
the operation raises MultVarProtocolError exception by assigning the SNMP-
specific protocol error to the error_status field.

The set_a_variable and set_variables operations

The ProxyAgent::set_a_variable() and ProxyAgent::set_variables() operations
are defined to modify the values of variables within MIB entries. The parameters
similar to the corresponding get operations except that the new value is also provid
as a parameter.

The list_mib_entries operation

The ProxyAgent::list_mib_entries interface provides access to the instance nam
of the entries of a certain table. This operation is designed to handle very large ta
through the use of an iterator interface, called GetNextEntryIterator (see
Section 5.2.8, “The SNMPMgmt::GetNextEntryIterator Interface,” on page 5-26).

The GetNextEntryIterator interface is defined to provide information about the
indexes (names) of each row of a table. The ProxyAgentt::list_mib_entries()
operation may be implemented using GET-BULK (GET-NEXT for SNMPv1). The
GetNextEntryIterator interface provides the indexes of the entries of the MIB tabl
in lexicographical order.
5-16 CORBA/TMN Interworking V1.0 August 2000

5

f

he

 is

s

 the

es
The p_entry_scoped_name is the IDL scoped name of the variable in the form o
M::I , where M is the SMI information module, and I is the interface identifier of the
table-entry/group. p_how_many specifies the maximum number of entry indexes to
be returned in p_entry_index_list .

If there are more entry indexes to be returned, then a reference to a
GetNextEntryIterator object is returned; otherwise, a null reference is returned. T
operation raises NoSuchSmiEntry exception if the interface name in
p_entry_scoped_name does not exist. For all other cases the operation raises
ProtocolError exception.

The mib_entry_exists operation

The mib_entry_exists() operation checks if there exists any entry for a specific
(p_entry_scoped_name) group/table at the remote agent. It returns TRUE if there
at least one entry of p_entry_scoped_name table-entry/group and returns FALSE if
there is none. The p_entry_scoped_name is the IDL scoped name of the table-
entry/group in the form M::I .

The is_mib_module_supported operation

The is_mib_module_supported() operation returns TRUE if any group or table in
the module specified by p_smi_module_name exists in the remote host. The
p_smi_module_name provides the identifier of the SMI module in IDL.

5.2.2 The SNMPMgmt::SmiEntry interface

The SNMPMgmt::SmiEntry interface is the base IDL interface for all IDL interface
of SMI groups and table-entries (possibly generated via the XoJIDM Specification
Translation algorithm for SNMP to IDL translation)..

interface SmiEntry : CosLifeCycle::LifeCycleObject, CosPropertyService::PropertySet {
// the value of entry_name is always “0” for the groups.
readonly attribute ASN1_ObjectIdentifier entry_name;

};
typedef sequence < SmiEntry > SmiEntryList;

The SmiEntry interface inherits from CosLifeCycle::LifeCycleObject and
CosPropertyService::PropertySet interfaces. The SNMPMgmt::SmiEntry
interface has a read-only attribute called entry_name that contains the value of the
index(es) (instance information part of the object-id of the group or table entry) of
corresponding variable or table entry. The entry_name attribute always contains “0”
for SMI entries related to groups. The entry_name of a table-entry is known during
the create time and set by the factory objects.

LifeCycle operations

The SNMPMgmt::SmiEntry interface inherits from the standard
CosLifeCycle::LifeCycleObject interface. This means that every SMI entry expos
the operations defined in the CosLifeCycle::LifeCycleObject interface. Specifically,
the following semantics for the operations is specified:
CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-17

5

o if

o if

 be

ays
, the

r

rations

le

y by

up
h a

• The copy operation is not appropriate for SNMP management environments, s
invoked it should raise the NotCopyable exception.

• The move operation is not appropriate for SNMP management environments, s
invoked it should raise the NotMovable exception.

• The remove operation deletes the SmiEntry from the SNMP managed domain.
Note that deletion of an SMI entry might be forbidden (as is the case for SNMP
groups, and certain table entries). If, for whatever reason, the object could not
destroyed, the NotRemovable exception will be raised.

PropertySet operations

For SNMP management, each SNMP variable within a group or a table entry is alw
represented as an IDL attribute. In order to manipulate these attributes in groups
CORBA Property Service is used.

The CosPropertyService::PropertySet interface is used to get the values of one o
more variables in a group or in a row of a table with a single method invocation.

The property names to be used when invoking PropertySet operations are the simple
unscoped names of the attributes that are to be accessed. The behavior of all ope
is the same as specified in the Property Service Specification.

Specifically, it is possible to:

• Get the value of one, several, or all SNMP variables in an SNMP group or tab
entry by using the get_property_value() , get_properties() , and
get_all_properties() operations, respectively.

• Set the value of one or several SNMP variables in an SNMP group or table entr
using the define_property() and define_properties() operations, respectively.

Note that this allows manipulation of multiple properties within a single SNMP gro
or table entry. It is not possible to access multiple table entries and/or groups wit
single method invocation.

Since the properties based on SNMP variables are statically defined, the dynamic
deletion of property is not allowed, so all the delete operations of the PropertySet
interface (delete_property() , delete_properties() , and delete_all_properties())
should return the standard NO_PERMISSION exception.

5.2.3 The SNMPMgmt::SmiTableIterator Interface

For each SMI table within an SMI group, there is an operation to retrieve the
information contained in the table. These operations return an
SNMPMgmt::SmiTableIterator object reference, to allow the traversal of the
information within the table.

interface SmiTableIterator {
boolean next_one_entry(out SmiEntry smi_entry);
boolean next_n_entries (

in unsigned long how_many,
5-18 CORBA/TMN Interworking V1.0 August 2000

5

in
ies

f a
 is
tion

o be
ed

.

able

e
n

A

-

out SmiEntryList smi_entry_list
);
void destroy();

};

The SmiTableIterator interface allows a client application to traverse a MIB table
the lexicographic order of the names (as defined in SNMP GET-NEXT) of its entr
and returns the reference to each table entry. A reference to an SmiTableIterator is
obtained as a result of the invocation of the <M>::<G>::get_<T>() operation, where
<M>::<G> represents the IDL scoped name of a group and <T> represents the
identifier of the table.

The next_one_entry() operation retrieves the object reference to the next entry o
specific table following the SNMP get-next traversal order. The returned reference
put in the smi_entry output parameter. If there are no more entries, then the opera
returns FALSE; otherwise, it returns TRUE.

The next_n_entries() operation retrieves the references to a set of entries of a
specific table following the SNMP get-next traversal order. The number of entries t
retrieved is specified by the how_many parameter and the returned entries are plac
in the smi_entry_list output parameter. If there are no more entries, then the
operation returns FALSE; otherwise, it returns TRUE.

The destroy() operation destroys the iterator object associated with the reference

5.2.4 The SNMPMgmt::GenericFactory Interface

In SNMPv2, there is a data type (Textual Convention) called RowStatus , for creation
of a row whose value defines various stages of life-cycle of an entry in a table. A t
that supports entry creation by managers must include a variable of type RowStatus .
When a manager wants to create a table entry, it must pass the proper value of
RowStatus variable in addition to all the variables with read-create access and th
index variables in the SNMPv2 SET message. (Please see the section 7.1.12.1. i
RFC1902).

These operations are mapped to create operations in a factory interface in CORB
domain. A factory interface can be defined for each module and there will be one
create_<smi_entry_type>() operation per IDL interface generated for group/table
entry from the SNMP MIB module.

interface GenericFactory : CosLifeCycle::GenericFactory {
SmiEntry create_mib_entry (
 in ScopedName t_entry_type,
 in ASN1_ObjectIdentifier entry_index,
 in Criteria create_criteria
) raises (NoSuchSmiEntry, AlreadyExists);

SmiEntry create_mib_entry_with_auto_name (
 in ScopedName t_entry_type,
 in Criteria create_criteria
) raises (NoSuchSmiEntry, AlreadyExists);

};
CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-19

5

P

he

r

IB
e

as
n.

g-

ins

The GenericFactory is an extension of the CosLifeCycle::GenericFactory
interface defined in the CORBA Life Cycle Service specification that provides SNM
SMI specific generic life-cycle operations.

The create_mib_entry() operation creates a MIB entry that supports the interface
specified in the t_entry_type parameter and binds the name (given by the
entry_ins_name parameter) with the reference to the object within the scope of t
naming-context for the given interface type (t_entry_type). The operation returns the
object reference of the newly created object. The t_entry_type parameter specifies
the scoped name (in the form of M::I) of the IDL interface for an SMI based group o
table-entry.

The entry_ins_name parameter specifies the instance information of the given M
entry. The instance information is the stringified form of concatenated values of th
index variables of the given entry. The create_criteria parameter specifies the values
of a set of criterion in the form of a name-value-pair list. The allowed criteria are
defined in Table 5-5 and only the “initialization” criterion is used with this operatio

Table 5-5 Criteria for SNMP Specific Life Cycle Service

The create_mib_entry() operation raises the NoFactory exception if a type-specific
factory cannot be found. The operation raises InvalidCriteria if the any of the
criterion in create_criteria parameter is not a valid one. The operation raises the
CannotMeetCriteria exception if any one of the criteria cannot be met. The
operation raises the CosNaming::NamingContext::AlreadyBound exception if
the given name in entry_ins_name is already bound within the scope of the namin
context for interface type in t_entry_type .

The create_mib_entry_with_auto_name () is similar to create_mib_entry() but
the name of the newly created object is assigned by the factory object.

criterion name type of value meaning

“entry name” string Naming parameter based on index part of
objectID of a variable, given as a string.
Concatenated index values in dotted
number form. Alternative to “index
variables” criterion.

“index variables” CosPropertyService::Properties Naming parameter based on index
variables, given as a sequence of name-
value pairs. Alternative to “entry name”
criterion.

“initialization” CosPropertyService::Properties When this parameter is supplied, it conta
a set of attribute identifiers and values to be
assigned to the new SMI entry.

“domain title” SNMPMgmt::TAddress Agent location where new entry is to be
created (cannot be wildcard).
5-20 CORBA/TMN Interworking V1.0 August 2000

5

is to

n

s.

der,

g
MP

he
pe of
 same

5.2.5 The SNMPMgmt::NamingContext Interface

The main goal of mapping names in SNMP domain to names in CORBA domain
standardize the SNMP naming hierarchy (host, variable, index) based on the
NamingContext interfaces of the CORBA naming service. This goal is achieved i
two ways: by standardizing the MIB tree hierarchy and by extending the
NamingContext interface to list its entries in the lexicographic order of the name

// NamingContext extends CosNaming::NamingContext to provide
// navigating the SNMP name space in the lexicographic order
// and SNMP specific name and context resolution

interface NamingContext : CosNaming::NamingContext {
string get_next_entry(

in string entry_name
) raises (InvalidName, NotFound, CannotProceed);

GetNextEntryIterator get_next_entry_iterator(
in string initial_entry_name

) raises (InvalidName, NotFound);
};

The SNMPMgmt::NamingContext extends CosNaming::NamingContext to
provide the navigation capability of the SNMP name space in the lexicographic or
as expected by the GET-NEXT command.

The get_next_entry() returns the name of the lexicographically next entry of that
given by entry_name . If entry_name is a zero-length string, then the first entry is
returned. If there are no more entries after the entry_name , then the
CannotProceed exception is raised. The InvalidName and NotFound exceptions
are raised based on the response from the resolve() operation using entry_name .

The get_next_entry_iterator() returns an Iterator (of type
SNMPMgmt::GetNextEntryIterator) that conforms to the SNMP get-next
lexicographic ordering. The returned iterator is set to point to the entry given by
initial_entry_name . A zero-length string (““) for initial_entry_name will set the
returned iterator at the beginning of list of entries in the naming context.

5.2.6 Naming MIB Entries Using SNMP Names in CORBA Domain

This section describes how to name entries of SNMP MIB in CORBA domain usin
the INDEX variables and access the MIB entries based on their corresponding SN
names and finally retrieve the values of SNMP variables.

5.2.6.1 Overview of Naming of Variables in SNMP Domains

In SNMP domain the names are associated with the instances of variables; and t
instances of tabular/non-tabular variables are uniquely addressable within the sco
a host IP address. The notion of table-entries are conceptualized by assigning the
index information to all the instances of variables of the same table entry. From a
manager’s perspective, entries of the SNMP MIBs are implicitly arranged in the
CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-21

5

 non-

ding

ing

t to

bal

B-

ntext
an
e), we
or the
me.

) can

ng by
ince
 by
following naming hierarchy: Host, variable OID, and row index. Since SNMP MIBs
are agent location dependent the SNMP names are also location dependent. For
tabular variables of group, the name is always zero (“0”) and for rows of tabular
variable, the instance information depends on the INDEX clause of the correspon
table.

5.2.6.2 Building of Global Name Tree of SNMP MIBs using CORBA Nam
Service

To map names of variable instances in SNMP domain to attributes of MIB entries
CORBA domain, we need to map the names of variable within the scope of a hos
hierarchical name tree based on CORBA Naming Service specification.

The hierarchy of the nodes of the name tree is as follows: SNMP-MIB-ROOT (glo
root of all SNMP MIBs), host name, MIB information module name, IDL interface
names for table-entries/group, and finally the row indices (leaf nodes).

The nodes for root, host, module, and the table support the
SNMPMgmt::NamingContext interface. The references to MIB entries are bound
with the nodes for table-entries/groups using their names (row indices).

The SNMP names in string form are always mapped to the id part of a
CosNaming::NameComponent . The kind part of a NameComponent is always
initialized with a zero-length string.

The root of the global MIB tree is registered with a well-defined name, “SNMP-MI
ROOT,” within the scope of some naming-context in the CORBA name space.

The nodes for the hosts (domains) of SNMP MIBs are represented by a naming-co
(within the scope of the root MIB node, “SNMP-MIB-ROOT”). Since a host name c
be represented in many ways (ip-address, DNS name, many aliases of host nam
need to define one name that can be used to unambiguously identify the nodes f
host under MIB. The default scheme for naming a node for host is DNS based na

If the DNS based naming is not supported, then IP address (e.g., 135.180.160.16
be used. Since the CORBA naming service allows name aliasing, a compliant
implementation can support both DNS based naming and Ip-address based nami
registering the reference of nodes for a host naming-context using both names. S
the CORBA name-component has two parts: id and kind, the id of part is initialized
the host name and the kind part is initialized with zero-length string.
5-22 CORBA/TMN Interworking V1.0 August 2000

5

n the
r IP
 the

f the

 the

face.

nce

Figure 5-1 SNMP Naming hierarchy

A compliant implementation of the SNMP Name-Tree can add more nodes betwee
root (“SNMP-MIB-ROOT”) node and hosts based on the DNS domain hierarchy o
subnet as long as name resolution based on full DNS name or IP address returns
reference to the same naming-context node.

The JIDM::ProxyAgent::get_domain_naming_context() operation will return a
reference to the naming-context at the host-name level for “non-wildcard”
ProxyAgent s, while it will return a reference to the root NamingContext for
“wildcard” ProxyAgent s.

Within the scope of each host (domain), there will be a naming-context for each o
MIB information modules that are implemented at the host. The naming context
associated with the node for the MIB module is named using the IDL SMI module
identifier.

Within the scope of each MIB information module, there will be a naming-context
based node for each of the IDL interfaces for group, and table entry defined within
scope of the IDL module. The naming context associated with the nodes for
groups/table-entries are named using the identifier of the corresponding IDL inter

The entries (instances that support the IDL interfaces obtained by mapping SNMP
MIB) of the MIB implementation are bound within the naming-context for the
corresponding IDL interface. The names of the bounded MIB entries are the insta
information needed to identify all the variables of the row of the conceptual table.

eval

“0”

����������
����������

Node for SMI Group Node for SMI Table Entry

Node for Host Name Node for SMI Modules

Bounded MIB entries

FIZ_MIB ������
������

RFC1213_MIB RMON_MIB

host-2.com129.180.160.16 host-n.com

SNMP-MIB-ROOT

�������������������� ���������
���������
��
��
��������
��������

�� ���������������135.180.160.15

������������
������������
�����
�����
�����������
�����������

���� ������������������������
Name Aliasing

��

�����

�������������������������
�������������������������
�������������������������
������������������������������

�����

system

“0” “1” “3” “99”

ifEntryinterfaces

“0”

���������
���������

“1” “3” “99”

evalEntry
CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-23

5

 tree.
trieve

on-
ute

OID
y

 use
 to
ing
e
ot

ation
For non-tabular variables of group, the name is always zero(“0”) and for rows of
tabular variable, the instance information depends on the INDEX clause of the
corresponding table. The bounded objects are the leaf-object of the SNMP name
To support get-next traversal, the naming-contexts SNMP name is extended to re
the objects in the SNMP lexicography order.

5.2.6.3 Resolving SNMP names to obtain Object References to Table-
entries/Groups and Support for SNMP GET-NEXT message

The following example describes how to map the SNMP name of an instance of n
tabular variable of a group to name of the corresponding MIB entry and IDL attrib
in the CORBA domain. Given a non-tabular name in OID form, first we have to
separate the instance information from the variable OID using the largest variable
prefix match, as shown in the second line. Next, we derive the OID of the group b
dropping the right-most identifier for the variable (as shown in third line).

evalSlot.0 (=> 1.3.6.1.3.555.2.1.0)
=> 1.3.6.1.3.555.2.1, 0
=> 1.3.6.1.3.555.2, 0, 1.3.6.1.3.555.2.1
=> FIZ_MIB::eval, 0, FIZ_MIB::eval::evalSlot
=> FIZ_MIB, eval, 0, FIZ_MIB::eval::evalSlot
=> <FIZ_MIB, eval, 0> , evalSlot
=> host_nc->resolve(<FIZ_MIB, eval, 0>)->get_property(“evalSlot”)

The OIDs of the group and the variable are then converted to corresponding IDL
scoped names (possibly using the SNMPMIR::Repository interface). Then the IDL
scoped name for the group is split into its module and interface name. Finally, we
the ordered sequence of module name, interface name, and instance information
derive a compound name of the MIB entry for the group within the scope of a nam
context for a host. If we know the name of the host in DNS or IP address form, w
know the complete path name of the group within the scope of the well defined ro
node, called MIB.

In the following example, we show how to access the value an instance of evalSlot.0
(actually represented by 1.3.6.1.3.555.2.1.0) to the IDL scoped name of the
corresponding group interface (FIZ_MIB::eval) and attribute
(FIZ_MIB::eval::evalSlot) of the interface.

evalStatus.2 (=> 1.3.6.1.3.555.2.2.1.4.2)
=> 1.3.6.1.3.555.2.2.1.4, 2
=> 1.3.6.1.3.555.2.2.1, 2, 1.3.6.1.3.555.2.2.1.4
=> FIZ_MIB::evalEntry, 2, FIZ_MIB::evalEntry::evalStatus
=> <FIZ_MIB, evalEntry, 2>, evalStatus
=> host_nc->resolve(<FIZ_MIB, evalEntry, 2>)->get_property(“evalStatus”)

The compound name of the object (within the scope of a host) that supports eval is
derived by mapping the fully scoped name of the interface and the instance inform
(“0”) to the id part of name-components of the compound name.
5-24 CORBA/TMN Interworking V1.0 August 2000

5

ents
e
king

riable
ibute

t

le

me
erface

t the

e
Given the compound name, we can get the reference to the MIB entry that repres
the eval group by using the resolve() operation of the host naming context. Then w
can use the resolved object reference to retrieve the value of the variable by invo
the get operation associated with the attribute, evalSlot .

The example describes how to map the SNMP name of an instance of tabular va
of a conceptual table to naming service based names of an MIB entry and the attr
of the corresponding interface. The example splits the object-id
(1.3.6.1.3.555.2.2.1.4.2) into the OID of the variable
(1.3.6.1.3.555.2.2.1.4) and its instance information (2) by using the larges
prefix match.

Then we derive the OID (1.3.6.1.3.555.2.2.1) of the corresponding table-entry
by dropping the last number of the variable OID. Then we obtain the OIDs of tab
entry and the variable to corresponding IDL Scoped name of the interface
(FIZ_MIB::evalEntry) and attribute (FIZ_MIB::evalEntry::evalStatus),
respectively. Then we split the IDL scoped name of the table-entry into module na
and interface name. Then we use the ordered sequence of the module name, int
name and the instance information to derive the compound name (<FIZ_MIB,
evalEntry, 2>), within the scope of a host context. This compound name represen
name of the MIB entry representing the row in the table.

Given the compound name, we can get the reference to the MIB entry by using th
resolve() operation of the host naming context. Then we use the resolved object
reference to retrieve the value of the variable by invoking the get operation associated
with the attribute, evalStatus .

5.2.7 The SNMPMgmt::NamingDirectory Interface

The SNMPMgmt::NamingDirectory interface extends
SNMPMgmt::NamingContext to provide the global navigating capability of the
SNMP name space.

interface NamingDirectory : NamingContext {
NamingContext resolve_domain_context(

in TAddress p_host_name
) raises (NoSuchHost, CannotProceed, InvalidName, NotFound);

NamingContext resolve_smi_module(
in TAddress p_host_name,
in string p_smi_module_name

) raises (NoSuchHost, NoSuchSmiModule, InvalidName, NotFound);

NamingContext resolve_smi_entry(
in TAddress p_host_name,
in ScopedName p_entry_type

) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed, InvalidName,
NotFound);

SmiEntry resolve_mib_entry(
in TAddress p_host_name,
in ScopedName p_entry_type,
CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-25

5

e

d

For

f

in

 in string p_entry_index
) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed, InvalidName,

NotFound);

void list_smi_entries(
in TAddress p_host_name,
in ScopedName p_entry_type,
in unsigned long how_many,
out SmiEntryList out_list,
out SmiTableIterator table_iterator

) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed, InvalidName,
NotFound);

};

The resolve_domain_context() returns the reference to the naming context for th
domain specified by the p_host_name .

The resolve_smi_module() returns the reference to the naming context for
p_smi_module_name within the scope of naming-context for the domain specifie
by p_host_name . The p_host_name follows the format defined in the TAddress
type. The p_smi_module_name is the MIB module name.

The resolve_smi_entry_context() returns the reference to the naming context for
p_entry_type (which has to be in scoped-name format) within the scope of the
naming-context for p_host_name . p_host_name follows the format defined in the
TAddress type. p_entry_type is in the form of M::I scoped name.

The resolve_mib_entry() operation returns the reference to the MIB entry for the
row with index specified by p_entry_name with the scope of naming contexts for
p_host_name and p_entry_type . p_host_name follows the format defined in the
TAddress type. The p_entry_type parameter is in the form of M::I scoped name;
p_entry_index is the instance part of the variables of a conceptual row of a table.
groups, p_entry_index is always “0.” The returned reference is a reference to the
base SNMP interface, SNMPMgmt::SmiEntry , and may be narrow casted to the
specific IDL interface for the table entry.

The list_mib_entries() operation returns the reference to a list of MIB entries of a
table specified by p_entry_name with the scope of naming contexts for
p_host_name . The p_host_name follows the format defined in the TAddress
type. The p_entry_type parameter is in the form of M::I scoped name. The number o
entries to be retrieved is specified by the how_many parameter and the returned
entries are placed in the ol . If there are more entries in the table than specified by
how_many parameter, then an SNMPMgmt::SmiTableIterator reference is placed
in the table_iterator parameter.

5.2.8 The SNMPMgmt::GetNextEntryIterator Interface

The GetNextEntryIterator interface lets a client application traverse an MIB table
the lexicographic order followed by SNMP GET-NEXT message requirements and
returns the index information of each entry. A reference to GetNextEntryIterator is
5-26 CORBA/TMN Interworking V1.0 August 2000

5

ry

es
ies

.

n
obtained as a result of the invocation of the
SNMPMgmt::ProxyAgent::list_mib_entries() and
SNMPMgmt::NamingContext::get_next_entry_iterator() operations.

interface GetNextEntryIterator {
// Get the next entry index according to lexical ordering rule
// of SNMP OIDs -- follows SNMP get-next traversal rule

boolean next_one_entry (out EntryIndex entry_index);
boolean next_n_entries (

in unsigned long how_many,
out EntryIndexList entry_index_list

);
void destroy();

};

The next_one_entry() operation retrieves the instance information of the next ent
of a specific table following the SNMP get-next traversal rule. If there are no more
entries, then the operation returns FALSE; otherwise, it returns TRUE.

The next_n_entries() operation retrieves the instance information of a set of entri
of a specific table following the SNMP get-next traversal rule. The number of entr
to be retrieved is specified by the how_many parameter and the returned entries are
placed in the entry_index_list . If there are no more entries, the operation returns
FALSE; otherwise, it returns TRUE.

The destroy() operation destroys the object associated with the iterator reference

5.2.9 Event Communication

5.2.9.1 Data Types for Untyped Event Communication

The following describes the data types for untyped event communications betwee
MIB objects and the manager objects.

struct EntryVarBind {
ScopedName entry_name; // IDL scoped name of the interface for table-entry
string entry_index; // row index of an entry in the form of ObjectId string
CosPropertyService::Properties nvp_list;
};
typedef sequence<EntryVarBind> EntryVarBindList;
typedef EntryVarBindList NotificationVariableList;
typedef EntryVarBindList InformVariableList;

struct NotificationInfo { // to be sent when using untyped event channel
CosNaming::Name src_entry_name;
ScopedName event_type;
ASN1_GeneralizedTime event_time;
any notification_info;
};
struct InformInfo { // to be sent when using untyped event channel
CosNaming::Name src_obj_name;
InformV
CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-27

5

les
d to

le

the

e of

use
n put

form-

d
The SNMPMgmt::EntryVarBind type is defined to map variables in VarBindList of
SNMP PDU to IDL in a convenient form for objects in CORBA domain. The variab
of each row of same table are grouped together by their index values and mappe
EntryVarBind . The name of the table-entry is mapped to entry_name , the common
row index is mapped to entry_index . The textual names and the values of the variab
in each VarBind are mapped to CosPropertyService::PropertyType based
nvp_list field. Since the variables in VarBindList may span multiple rows of different
tables, a single VarBindList may result in multiple EntryVarBind instances. The
EntryVarBindList type is defined to handle such cases.

The NotificationVariableList and the InformVariableList types redefines the
EntryVarBindList for SNMP message specific information.

The NotificationInfo type is defined as the data type to be sent as event data for
untyped event communication. The NotificationInfo type has two parts: header and
body. The header part consists of three elements: name of the object generating
event (src_entry_name), the type of the event (event_type) and the time of the
event generation (event_time).

The body part is in the form any and the structure of the data depends on the typ
the event being sent. The IDL type of the event body is generated based on the
OBJECTS clause in the associated SNMP SMI based TRAP-TYPE or
NOTIFICATION-TYPE macros. The actual event data based on the OBJECTS cla
is to be mapped to data of type generated for typed event communication and the
into notification_info field as “any.”

The InformInfo type is defined to support the InformRequest and Report PDU based
messages in SNMPv2. It consists of two parts: name of the object sending the in
request or report message and the body of the inform or report data.

5.2.9.2 The SNMPMgmt::Notifications Interface

The SNMPMgmt::Notifications interface is defined to support push model of type
event communication described in the Typed Event Service specification.

interface Notifications {
void snmp_notification (

in CosNaming::Name src_entry_name,
in ScopedName event_type,
in ASN1_GeneralizedTime event_time,
in any notification_info

);
void snmp_inform (

in CosNaming::Name src_entry_name,
in InformVariableList inform_variables

);
void snmp_report (

in CosNaming::Name src_entry_name,
in InformVariableList report_variables

);
};
5-28 CORBA/TMN Interworking V1.0 August 2000

5

ent

a

vent

is
l.

e of
The snmp_notification() operation is invoked to send event data using a typed ev
channel. The parameters of the snmp_notification() operation are defined based on
the fields of the NotificationInfo data type for untyped event communication.

The snmp_inform() operation is invoked to send inform-request messages using
typed event channel. The parameters of the snmp_inform() operation is defined based
on the fields of the InformInfo data type.

The snmp_report() operation is invoked to send report messages using a typed e
channel. The parameters of the snmp_inform() operation is defined based on the
fields of the InformInfo data type.

5.2.9.3 The SNMPMgmt::PullNotifications Interface

The SNMPMgmt::PullNotifications interface is derived from the
SNMPMgmt::Notifications interface based on the design pattern defined for pull-
style typed interface in the typed event service specification. The interface name
defined as Pull<I> , where <I> is the name of the typed interface for the push mode
For each operation (<op>) in <I> interface, a try_<op>() operation and a
pull_<op>() operation are defined. The “in” parameters of the corresponding push
operation in Notifications interface is converted to “out” parameter. The return valu
try_<op> and pull_<op> are boolean and void, respectively.

interface PullNotifications {
boolean try_snmp_notification (

out CosNaming::Name src_entry_name,
out ScopedName event_type,
out ASN1_GeneralizedTime event_time,
out any notification_info

);

void pull_snmp_notification (
out CosNaming::Name src_entry_name,
out ScopedName event_type,
out ASN1_GeneralizedTime event_time,
out any notification_info

);

boolean try_snmp_inform (
out CosNaming::Name src_entry_name,
out InformVariableList inform_variables

);

void pull_snmp_inform (
out CosNaming::Name src_entry_name,
out InformVariableList inform_variables

);

boolean try_snmp_report (
out CosNaming::Name src_entry_name,
out InformVariableList report_variables

);
CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-29

5

lso

L

dex
les.
have

I
y
The
 for
void pull_snmp_report (
out CosNaming::Name src_entry_name,
out InformVariableList report_variables

);
};

Note – All descriptions are exactly as described in Section 5.2.9.2, “The
SNMPMgmt::Notifications Interface,” on page 5-28.

5.3 SNMP Management Information Repository

This section describes the SNMP Management Information Repository service, a
known as the SNMP SMI repository service. This service is OPTIONAL-it is not
required to provide the full functionality of the model.

During the specification translation of SMI based information module to CORBA ID
not all of the information is mapped to IDL. Some of the information got lost, for
example OID information. Also the way SMI related meta information is available
through CORBA Interface Repository (IFR) is not very convenient. For example, in
variables of table entries are available as string in contrast to sequence of variab
Also the usage of the IDL interface repository interfaces are quite tedious. So we
defined SMI specific repository interface on top of CORBA IFR.

The SMI Repository service consists of two components: OID Repository and SM
macro repository. The OID repository provides the information about OID hierarch
and the textual names associated with each OID node in the OID hierarchy tree.
SMI macro repository provides meta-information about SMI modules and macros
groups, table-entry and variables.

#ifndef _SNMPMIR_IDL_
#define _SNMPMIR_IDL_

#include <orb.idl>
#include <ASN1Types.idl>

#pragma prefix “jidm.org”

module SNMPMIR {

// Snmpv1GenericTrapId defines the identifiers for generic trap
// types in SNMPv1.

enum Snmpv1GenericTrapId {
TRAP_COLDSTART, TRAP_WARMSTART, TRAP_LINKDOWN, TRAP_LINKUP,
TRAP_AUTHFAIL, TRAP_EGPNEIGHBORLOSS,
TRAP_ENTERPRISESPECIFIC

};

// GENERIC_TRAP_ENTERPRISE_OID defines the enterprise OID for
// generic traps.
5-30 CORBA/TMN Interworking V1.0 August 2000

5

const ASN1_ObjectIdentifier GENERIC_TRAP_ENTERPRISE_OID =
“1.3.6.1.4.1.3.1.1”;

// SmiAccessMode defines the enumerated values of the SMI based
// access - mode defined for a specific variables.

enum SmiAccessMode {
read_only, read_write, read_create, write_only, inaccessible

};

. // Basic and Application specific SMI types.
enum SmiValueType {

smi_null_value, smi_integer_value, smi_string_value, smi_objectID_value,
smi_bit_value, smi_ipAddress_value, smi_counter_value, smi_gauge_value,
smi_timeticks_value, smi_arbitary_value, smi_nsapAddress_value,
smi_big_counter_value, smi_unsigned_integer_value, smi_unknown_type

};

typedef CORBA::ScopedName ScopedName;
typedef sequence < ScopedName > ScopedNameList;
typedef sequence < string > VarNameList;

typedef sequence < string > ModuleNameList;
typedef sequence < ASN1_ObjectIdentifier > OIDList;

interface OidRepository {

ScopedName get_scoped_name (in ASN1_ObjectIdentifier in_oid);

string get_name (in ASN1_ObjectIdentifier in_oid);
ASN1_ObjectIdentifier get_oid (in ScopedName in_scoped_name);
ASN1_ObjectIdentifier get_var_oid (

in ScopedName iface_scoped_name,
in string var_name

);

string get_textual_obj_id (in ASN1_ObjectIdentifier obj_id);

void split_var_object_id (
in ASN1_ObjectIdentifier var_obj_id,
out ASN1_ObjectIdentifier var_oid,
out ASN1_ObjectIdentifier obj_index

);

ASN1_ObjectIdentifier get_next_oid (in ASN1_ObjectIdentifier oid);

ScopedName get_next_scoped_name (in ScopedName scoped_name);
ScopedName get_next_entry_type (in ScopedName scoped_name);

};

interface VariableDef : CORBA::AttributeDef {
readonly attribute ASN1_ObjectIdentifier oid;
readonly attribute SmiValueType smi_type;
readonly attribute SmiAccessMode smi_access_mode;
CORBA/TMN V1.0 SNMP Management Information Repository Aug. 20005-31

5

ation
can
I
readonly attribute any default_value;
};
typedef sequence < VariableDef > VariableDefList;

interface SmiEntryDef : CORBA::InterfaceDef {
readonly attribute ASN1_ObjectIdentifier oid;
readonly attribute unsigned long total_no_of_variables;
readonly attribute VariableDefList var_def_list;
readonly attribute VarNameList var_name_list;
readonly attribute ScopedNameList var_scoped_name_list;
readonly attribute OIDList var_oid_list;
readonly attribute VarNameList index_var_names;

readonly attribute ScopedName next_group_or_table;
VariableDef lookup_variable(in string var_name);

};
typedef sequence < SmiEntryDef > SmiEntryDefList;

interface GroupDef : SmiEntryDef {
readonly attribute SmiEntryDefList table_entry_list;

};
typedef sequence < GroupDef > GroupDefList;

interface ModuleDef : CORBA::ModuleDef {
readonly attribute GroupDefList smi_group_def_list;
readonly attribute SmiEntryDefList smi_entry_def_list;
readonly attribute CORBA::InterfaceDef push_notification_def;
readonly attribute CORBA::InterfaceDef pull_notification_def;

readonly attribute CORBA::InterfaceDef default_value_def;
SmiEntryDef lookup_smi_entry(in string smi_entry_name);

};
typedef sequence < ModuleDef > ModuleDefList;

interface Repository : CORBA::Repository, OidRepository {
readonly attribute ModuleNameList module_name_list;
readonly attribute ModuleDefList module_def_list;
boolean is_smi_module(in CORBA::Identifier module_name);
ModuleDef lookup_smi_module(in string a_module_name);
SmiEntryDef lookup_smi_entry(in ScopedName entry_scoped_name);
ScopedNameList get_entry_var_list(in ScopedName entry_scoped_name);
ScopedNameList get_entry_index_var_list(in ScopedName

entry_scoped_name);
any get_var_default_value(in ScopedName var_scoped_name);

string get_generic_trap_desc(in ASN1_Integer trap_type);
};

};

#endif /* _SNMPMIR_IDL_ */

The SMI Repository provides information in an SMI specific way. One can get the
names of only those modules in IFR that are generated according to the Specific
Translation rules, one can also get the names of SMI specific IDL interfaces. We
also get the default value of a variable (if defined) given its IDL scoped name. SM
5-32 CORBA/TMN Interworking V1.0 August 2000

5

to
the

SMI

MI to

e.

es

ic

try.
Macro Repository is built on top of the CORBA interface repository (IFR). Similar
CORBA IFR, the SMI Macro Repository follows the SMI containment and extends
corresponding IDL interfaces defined for CORBA IFR.

Table 5-6 Containment Hierarchy of the IDL interfaces in SMI Repository

Table 5-6 describes the IDL interfaces defined to capture the meta information of
macros and their relationship with the interfaces defined in the CORBA IFR. The
relationship between interfaces for the SMI repository and IFR are based on the S
IDL Specification Translation mapping rules.

The SMI related information about the variables are obtained using VariableDef
interface. VariableDef extends the CORBA::AttributeDef interface because
according to the Specification Translation we have mapped SMI variables as IDL
attributes. The attributes, OID, smi_type , and default_value , of VariableDef
interface can be used to obtain the SMI information. The name, IDL scoped nam
access-mode and syntax information of the variable can be obtained from the name ,
id , mode , and TypeCode information of the CORBA::AttributeDef interface.

The SMI related information about the table entries are obtained using the
SmiEntryDef interface. The SmiEntryDef interface extends the
CORBA::InterfaceDef because during the specification translation SMI table entri
are mapped as IDL interface. In addition to information provided by
CORBA::InterfaceDef , SmiEntryDef interface provides a set of convenience
operation optimized for SMI related operation. var_name_list and
var_scoped_name_list attributes of SmiEntryDef interface can be used to get the
names and IDL scoped names of the variables of a table/group in the lexicograph
order of their OID. The oid attribute can be used to obtained the OID of a table-en

SNMPMIR::Repository CORBA::Repository

ModuleDef ModuleDef

GroupDef InterfaceDef

SmiEntryDef InterfaceDef

VariableDef AttributeDef
CORBA/TMN V1.0 SNMP Management Information Repository Aug. 20005-33

5

le

o

e

n to

e

 to
Figure 5-2 Interface Inheritance Hierarchy for the SMI Repository Service

The SMI related information about the groups are obtained using the GroupDef
interface. The GroupDef interface extends the SNMPMIR::SmiEntryDef because
during the specification translation SMI groups are mapped as if they are SMI tab
entry with single entry. In addition to information provided by
SNMPMIR::SmiEntryDef , GroupDef interface provides a convenience operation t
obtain the list of table-entries in the group. The inherited
SNMPMIR::SmiEntryDef::names attribute can be used to obtain the names of th
non-tabular variables of the group.

The SMI related information about the modules are obtained using the ModuleDef
interface. The ModuleDef interface extends the CORBA::ModuleDef because during
the specification translation SMI modules are mapped as IDL modules. In additio
information provided by CORBA::ModuleDef , SNMPMIR::ModuleDef interface
provides a set of convenience operation optimized for SMI related operation.
smi_group_def_list attribute of SNMPMIR::ModuleDef interface can be used to
get the lists of references of the groups within the scope of the module.
smi_entry_def_list attributes can be used get the references of both the
SmiEntryDef and GroupDef interface within the scope of the module.
push_notif_interface and pull_notif_interface attributes can be used to obtain th
information about the Notification type macros.

Finally, SMI Macro Repository interface (SNMPMIR::Repository) is a specialization
of the CORBA information repository (CORBA::Repository). The
SNMPMIR::Repository also inherits the OidRepository interface so that an
application need not keep track of references to two repositories.
SNMPMIR::Repository interface is used to define a set of convenience operations
get the SMI related information from the repository.

CORBA::AttributeDef

SNMPMIR::OidRepository

SNMPMIR::VariableDef

CORBA::InterfaceDef

SNMPMIR::SmiEntryDef

SNMPMIR::GroupDef

CORBA::ModuleDef

SNMPMIR::ModuleDef

CORBA::Repository

SNMPMIR::Repository
5-34 CORBA/TMN Interworking V1.0 August 2000

5

re
the
I

ss-
The SNMPMIR::Repository is the container for all the SMI related modules that a
registered with the CORBA IFR. According to the Specification Translation rules,
SMI related IDL module would not contain nested modules. So the name of a SM
based IDL module is sufficient to uniquely identify it in the repository.
SNMPMIR::Repository interface can be used to obtain the SmiEntryDef reference
for a table-entry/group by providing the fully scoped name.

5.3.1 The SNMPMIR Module

The SNMPMIR module contains the IDL types and interfaces needed to build the
SNMP SMI repository extension of the CORBA interface repository.

module SNMPMIR {
// Snmpv1GenericTrapId defines the identifiers for generic trap types in SNMPv1.
enum Snmpv1GenericTrapId {

TRAP_COLDSTART, TRAP_WARMSTART, TRAP_LINKDOWN, TRAP_LINKUP,
TRAP_AUTHFAIL,
TRAP_EGPNEIGHBORLOSS, TRAP_ENTERPRISESPECIFIC

};
// GENERIC_TRAP_ENTERPRISE_OID defines the enterprise OID for generic traps.
const ASN1_ObjectIdentifier GENERIC_TRAP_ENTERPRISE_OID =

“1.3.6.1.4.1.3.1.1”;

enum SmiAccessMode {
read_only, read_write, read_create, write_only, inaccessible };

enum SmiValueType {
smi_null_value, smi_integer_value, smi_string_value, smi_objectID_value,
smi_bit_value, smi_ipAddress_value, smi_counter_value, smi_gauge_value,
smi_timeticks_value, smi_arbitary_value, smi_nsapAddress_value,
smi_big_counter_value, smi_unsigned_integer_value, smi_unknown_type

};

typedef string FileName;
typedef CORBA::ScopedName ScopedName;
typedef sequence<ScopedName> ScopedNameList;
typedef sequence<string> VarNameList;
typedef sequence<string> ModuleNameList;
typedef sequence<ASN1_ObjectIdentifier> OIDList;
....

};

The SmiAccessMode type defines the enumerated values of the SMI based acce
mode defined for specific variables. The SmiValueType defines the enumerated
values of the basic and application specific SMI types. The FileName type is used to
specify the name of a file and it is defined for readability purposes. The OIDList type
is a list of OID in dotted number form.
CORBA/TMN V1.0 SNMP Management Information Repository Aug. 20005-35

5

 (in

es to
he

n,
e
ng
 and
ing

-entry

.

P
OID
5.3.2 The OIDRepository Interface

The IDL files generated for each SMI modules do not contain any OID information
dotted number form) of variables, table-entried groups and object identifiers.
OidRepository interface (as shown in the example below) is defined to support
operations for mapping OIDs in dotted number to textual names and textual nam
OIDs. The OidRepository interface, can also be used to query information about t
OID tree hierarchy.

module SNMPMIR {
....

interface OidRepository {
ScopedName get_scoped_name(in ASN1_ObjectIdentifier in_oid);
string get_name(in ASN1_ObjectIdentifier in_oid);

ASN1_ObjectIdentifier get_oid(in ScopedName in_scoped_name);
ASN1_ObjectIdentifier get_var_oid(

in ScopedName iface_scoped_name, in string var_name);

string get_textual_obj_id(in ASN1_ObjectIdentifier obj_id);
void split_var_object_id(

in ASN1_ObjectIdentifier var_obj_id,
out ASN1_ObjectIdentifier var_oid, out ASN1_ObjectIdentifier
obj_index

);
ASN1_ObjectIdentifier get_next_oid(in ASN1_ObjectIdentifier oid);

ScopedName get_next_scoped_name(in ScopedName scoped_name);
ScopedName get_next_entry_type(in ScopedName scoped_name);

boolean read_oid_file(in FileName file_name);
};

....
};

The OID Repository is initialized by reading in the OID files generated during
specification translation of SNMP MIB information modules. During the initializatio
SNMP module names are identified in the IFR and the corresponding OID files ar
read in. The OID files generated according to the Specification Translation mappi
rules provide mapping between IDL scoped name and OID in dotted number form
SMI type information for variables. This interface also supports operations for load
an OID file for a specific MIB module. The read_oid() operation is defined to load
OID information related to a new SNMP information module.

The get_name() and get_scoped_name() of SNMPMIR::OidRepository can be
used to obtain the name and scoped-name respectively of a variable, group, table
or an ObjectIdentifier constants given its OID in dotted number form. The
SNMPMIR::OidRepository can also be used to get the oid given a scoped name

The SNMPMIR::OidRepository interface also provides operation to support SNM
GET-NEXT message. OID Repository can be used to get the next OID for a given
using the get_next_oid() operation. get_next_scoped_name() returns IDL scoped
name given a IDL scoped name.
5-36 CORBA/TMN Interworking V1.0 August 2000

5

t

m
m.

n

d

 of

 the

f

t
Note – The OID Repository is only useful at the CORBA/SNMP gateway - in mos
MIB implementation and management applications it would not be needed.

The get_scoped_name_by_oid() operation returns the IDL scoped name of an ite
in Interface Repository (IFR) given the OID (in the dotted number form) of the ite
For example, oidRepoRef->get_scoped_name(“1.3.6.1.2.1.1”) would return
“RFC1213_MIB::system” and oidRepoRef-
>get_scoped_name(“1.3.6.1.2.1.2.2.1.3”) would return
“RFC1213_MIB::ifEntry:: ifType.” If the OID does not exist in the repository then
the CORBA::OBJECT_NOT_EXIST exception is raised.

The get_name() operation returns the identifier of an item in IFR given the OID (i
the dotted number form) of the item. For example, oidRepoRef-
>get_name(“1.3.6.1.2.1.1”) would return “system” and oidRepoRef-
>get_name(“1.3.6.1.2.1.2.2.1.3”) would return “ifType.” If the OID does not exist
in the repository then the CORBA::OBJECT_NOT_EXIST exception is raised.

The get_oid() operation returns the OID of an item in the IFR given the IDL scope
name of the corresponding item. For example, oidRepoRef-
>get_oid(“RFC1213_MIB::system”) would return “1.3.6.1.2.1.1” and
oidRepoRef->get_oid (“RFC1213_MIB::ifEntry::ifType”) would return
“1.3.6.1.2.1.2.2.1.3”. If the OID does not exist in the repository then the
CORBA::OBJECT_NOT_EXIST exception is raised.

The get_var_oid() operation returns the OID of a variable given the scoped name
the table-entry/group and textual name of the variable. For example, oidRepoRef-
>get_oid(“RFC1213_MIB::system”, “sysDescr”) would return “1.3.6.1.2.1.1.”
and oidRepoRef->get_oid(“RFC1213_MIB::ifEntry ”, “ ifType ”) would return
“1.3.6.1.2.1.2.2.1.3”. If the var_name does not exist in the repository then
CORBA::OBJECT_NOT_EXIST exception is raised.

The get_textual_obj_id() operation converts an obj_id in dotted number form into a
scoped name using the largest prefix match and returns a string by concatenating
scoped name for the matched obj_id and the unmatched part of the obj_id . For
example, oidRepoRef->get_scoped_name(“1.3.6.1.2.1.1.1.0”) would return
“RFC1213_MIB::system::sysDescr.0 ” and oidRepoRef-
>get_scoped_name(“1.3.6.1.2.1.2.2.1.3.1”) would return
“RFC1213_MIB::ifEntry::ifType.1 .” If there is no such prefix match, then a copy o
the input OID is returned.

The split_var_object_id() operation splits an ObjectId into OID form using longes
prefix match into two parts: var_oid and index-values.

For example,

oidRepoRef->get_scoped_name(“1.3.6.1.2.1.1.1.0”)

would return “RFC1213_MIB::system::sysDescr ” in var_oid and “0” in
obj_index ; and
CORBA/TMN V1.0 SNMP Management Information Repository Aug. 20005-37

5

sed
o

L

ion.
oidRepoRef->get_scoped_name(“1.3.6.1.2.1.2.2.1.3.1”)

would return “RFC1213_MIB::ifEntry::ifType ” in var_oid and “1” in obj_index .
If there is no index information in the var_obj_id then a zero-length string is returned
in obj_index . For example,

oidRepoRef->get_scoped_name(“1.3.6.1.2.1.1.1”)

would return “RFC1213_MIB::system:: sysDescr” in var_oid and “in
obj_index .”

The get_next_oid() operation returns the next OID in the OID hierarchy given the
input OID. Both input and returned OIDs are in dotted number form. The “next” ba
on the lexicographic ordering of the OID as per GET-NEXT message. If there is n
such OID in the OID hierarchy then OBJECT_NOT_EXIST exception is raised.
For example, oidRepoRef->get_next_oid (“1.3.6.1.2.1.1.1”) would return
“1.3.6.1.2.1.1.2” and oidRepoRef->get_next_oid (“1.3.6.1.2.1.2.1”) would return
“1.3.6.1.2.1.2.2.”

The get_next_scoped_name() operation is similar to get_next_oid() but the input
and output parameters in the corresponding IDL scoped name form.

For example, oidRepoRef->
get_next_scoped_name(“RFC1213_MIB::system::sysDescr”) would return
“RFC1213_MIB::system::sysObjectID ” and oidRepoRef-
>get_next_scoped_name(“RFC1213_MIB::interfaces:: ifNumber”) would
return “RFC1213_MIB::ifTable .”

oidRepoRef->get_next_scoped_name(s) is equivalent to oidRepoRef-
>get_scoped_name(oidRepoRef->get_next_oid(oidRepoRef->get_oid(s)));

The get_next_entry_type() operation returns the IDL scoped name of the next ID
interface for a group/table-entry. get_next_entry_type() will always return IDL
scoped name for a SMI group/table-entry that correspond to an Specification
Translation generated IDL interface name.

For example, oidRepoRef->get_next_entry_type(“RFC1213_MIB::mib_2”)
would return “RFC1213_MIB::system ” ; oidRepoRef-
>get_next_entry_type(“RFC1213_MIB::interfaces::ifNumber”) would return
“RFC1213_MIB::ifEntry ” and oidRepoRef-
>get_next_entry_type(“RFC1213_MIB::ifEntry::ifIndex”) would return
“RFC1213_MIB::ip” (RFC1213_MIB::at is inaccessible) . If there is no such next
entry in the repository, then CORBA::OBJECT_NOT_EXIST exception is raised.

For each SNMP SMI module, an OID file is generated during specification translat
The name of the OID file for SMI information module is <smi-module-name>.oid
where <smi-module-name> is the IDL identifier of the SMI module in ASN.1.
read_oid_file() reads the ScopedName/OID mapping table from the given input
file. The file_name could be name of the file, or complete path name of the file.
5-38 CORBA/TMN Interworking V1.0 August 2000

5

ed

e

5.3.3 The VariableDef Interface

VariableDef interface is defined to retrieve SMI specific information of a SMI
variable. VariableDef interface extends the CORBA::AttributeDef interface to
provide information that is not available through CORBA::AttributeDef .

module SNMPMIR {
....
interface VariableDef : CORBA::AttributeDef {

readonly attribute ASN1_ObjectIdentifier oid;
readonly attribute SmiValueType smi_type;
readonly attribute SmiAccessMode smi_access_mode;
readonly attribute any default_value;
};

typedef sequence<VariableDef> VariableDefList;
....
};

The attribute oid represents the ObjectIdentifier of the SMI variable. During
specification translation, the OID of a variable with scoped name M::I::V is mapped in
M.oid file and this value is obtained using the repository interface.

The smi_type attribute represent the basic and application specific SMI type defin
for the variable. During specification translation, smi_type of a variable with scoped
name M::I::V is mapped in M.oid file.

The smi_access_mode attribute represents the value of the MAX-ACCESS claus
in the OBJECT-TYPE macro for the variable. According to the Specification
Translation rules, the, smi_access_mode of a variable with scoped name M::I::V is
mapped in M.oid file.

During specification translation, DEFVAL clause (if present) is mapped as
<M>::DefaultValues::<V>() operation for a variable with <M>::I::<V> scoped name.
The default_value attribute can be obtained by invoking the
<M>::DefaultValues::<V>() operation where the scoped name of the variable is
<M>::I::<V> . If the default value is not defined, then
CORBA::OBJECT_NOT_EXIST exception is returned.

VariableDefList type represent a list of VariableDef interfaces.

5.3.4 The SmiEntryDef Interface

The SmiEntryDef interface represents SMI specific information associated with an
IDL interface generated from an SMI module. SmiEntryDef interface extends
CORBA::InterfaceDef and provides in information in SMI centric way.

module SNMPMIR {
....
interface SmiEntryDef : CORBA::InterfaceDef {

readonly attribute ASN1_ObjectIdentifier oid;

readonly attribute unsigned long total_no_of_variables;
CORBA/TMN V1.0 SNMP Management Information Repository Aug. 20005-39

5

on

e
he

s
 list

of

y is

e of

readonly attribute VariableDefList var_def_list;

readonly attribute VarNameList var_name_list;

readonly attribute ScopedNameList var_scoped_name_list;
readonly attribute OIDList var_oid_list;

readonly attribute VarNameList index_var_names;

readonly attribute ScopedName next_group_or_table;

VariableDef lookup_variable(in string var_name);
};

typedef sequence<SmiEntryDef> SmiEntryDefList;
....
};

The oid attribute represents the OID of this interface. According to the Specificati
Translation rules, the, OID of a table-entry/group with scoped name M::I is mapped in
the M.oid file.

The total_no_of_variables attribute represents the total number of SMI based
variables in this interface.

The var_def_list attribute maintains the list of the VariableDef interfaces of the
variables of this table-entry/group. It can be derived from the list of attributes of th
interface. The list is ordered according to the lexicographic order of the OIDs of t
variables.

The var_name_list attribute maintains the list of the names of the variables of thi
table-entry/group. It can be derived from the list of attributes of the interface. The
is ordered according to the lexicographic order of the OIDs of the variables.

The var_scoped_name_list attribute maintains the list of the IDL scoped names
the variables of this interface. The IDL scoped name of the variable V is M::I::V where
M::I is the scoped name of the interface for table-entry/group. The list is ordered
according to the lexicographic order of the OIDs of the variables.

The var_oid_list attribute maintains the list of the OID of the variables of this
interface. The list is ordered according to the lexicographic order of the OIDs.

The index_var_names attributes maintains the index variables of this interface.
According to the Specification Translation rules, the INDEX clause of a table-entr
mapped as IDL string constant, called IndexVarList , within the scope of the IDL
interface for the table-entry. Index var names are obtained by converting the valu
M::I::IndexVarList of a table entry with scoped name M::I , into a sequence of strings
(of individual index variables). If there is no IndexVarList (e.g., for IDL interface for
groups) a zero-length sequence is returned.

The next_group_or_table attribute represents the information about the next IDL
interface for a group/table-entry according to the lexicographic OID order.
5-40 CORBA/TMN Interworking V1.0 August 2000

5

 to

d

rom

I
The lookup_variable() operation is a convenience operation that return reference
VariableDef of a variable of this interface.

The SmiEntryDefList type represent a list of SmiEntryDef interfaces.

5.3.5 The SmiGroupDef Interface

A group in SNMP SMI is a collection of tables and non-tabular variables. GroupDef
interface represents those IDL SmiEntry interfaces that are generated from SMI base
groups. The SmiGroupDef interface extends SmiEntryDef and acts as a collection
entity of table-entry interfaces. The list of non-tabular variables can be obtained f
the inherited var_def_list attribute.

module SNMPMIR {
....
interface GroupDef : SmiEntryDef {

readonly attribute SmiEntryDefList table_entry_list;
};
typedef sequence<GroupDef> GroupDefList;

....
};

The table_entry_list attribute maintains the list of the SmiEntryDef for the table-
entries of this group.

5.3.6 The SmiModuleDef Interface

The SnmpModuleDef extends the CORBA::ModuleDef interface and provides
SNMP SMI specific attributes and functions. An SNMPModuleDef contains a list of
SNMP interfaces and an interface object for push and pull notification interfaces.

module SNMPMIR {
....
interface ModuleDef : CORBA::ModuleDef {

readonly attribute GroupDefList smi_group_def_list;

readonly attribute SmiEntryDefList smi_entry_def_list;
readonly attribute CORBA::InterfaceDef push_notification_def;

readonly attribute CORBA::InterfaceDef pull_notification_def;

readonly attribute CORBA::InterfaceDef default_value_def;
SmiEntryDef lookup_smi_entry(in string smi_entry_name);
};
typedef sequence<ModuleDef> ModuleDefList;

....
};

The smi_group_def_list attribute maintains the list of SMI specific groups in a SM
information module.
CORBA/TMN V1.0 SNMP Management Information Repository Aug. 20005-41

5

pe
s

ce

ed

d

ce

The entry_interface_list attribute maintains the list of interfaces which are a subty
of SNMPMgmt::SmiEntry defined within the scope of this module. This list include
SmiEntryDef interfaces for all the groups and table-entries of this module.

According to the Specification Translation rules, a push notification interface is
defined with the IDL scoped name M::Notifications for SMI MIB module with name
M. The push_notification_def attribute maintains the reference to InterfaceDef for
M::Notifications interface. If no such interface is defined then a nil object-referen
is returned.

According to the Specification Translation rules, a pull notification interface is defin
with IDL scoped name M::PullNotifications for SMI MIB module with name M. The
pull_notification_def attribute maintains the reference to InterfaceDef for
M::PullNotifications interface. If no such interface is defined, then a nil object-
reference is returned.

According to the Specification Translation rules, a Default value interface is define
with IDL scoped name M::DefaultValues for SMI MIB module with name M. The
default_value_def attribute maintains the reference to InterfaceDef for
M::DefaultValues interface. If no such interface is defined, then a nil object-referen
is returned.

The lookup_smi_entry() operation returns the SmiEntryDef for the specified
group/table-entry interface within the scope this SMI module.

The ModuleDefList type represents a list of ModuleDef interfaces.

5.3.7 The Repository Interface

The SNMPMIR::Repository interface extends the CORBA::Repository interface
and it provides SNMP SMI specific specialization of CORBA Interface Repository
(IFR) interface. The SNMPMIR::Repository interface inherits the
CORBA::Repository and the SNMPMIR::OidRepository interfaces.

module SNMPMIR {
....

interface Repository : CORBA::Repository, OidRepository {
readonly attribute ModuleNameList module_name_list;
readonly attribute ModuleDefList module_def_list;
boolean is_smi_module(in CORBA::Identifier module_name);
ModuleDef lookup_smi_module(in string a_module_name);

SmiEntryDef lookup_smi_entry(in ScopedName entry_scoped_name);
ScopedNameList get_entry_var_list(in ScopedName entry_scoped_name);
ScopedNameList get_entry_index_var_list(in ScopedName

entry_scoped_name);
any get_var_default_value(in ScopedName var_scoped_name);

string get_generic_trap_desc(in ASN1_Integer trap_type);
};

....
};
5-42 CORBA/TMN Interworking V1.0 August 2000

5

The module_name_list attribute maintains the list SNMP SMI specific IDL module
names in the IFR.

The module_def_list attribute maintains the list SNMPMIR::ModuleDef interfaces
for the SNMP SMI specific IDL module names in the IFR.

The lookup_smi_entry() operation returns the interface def of a specific SNMP
table-entry/group. entry_scoped_name is specified as M::I .
CORBA/TMN V1.0 SNMP Management Information Repository Aug. 20005-43

5

5-44 CORBA/TMN Interworking V1.0 August 2000

 References A
A.1 List of References

[Telefonica I+D]
Common Facilities for Systems Management

Juan J. Hierro, Jesús A. Gonzalez, José M. Lorenzo
Telefónica Investigación y Desarrollo.
June 1997

[Lucent]
Mapping of Common Management Information Service to CORBA Object
Services

Subrata Mazumdar
Lucent Technologies
February 1996

[Alcatel]
Alternative proposal to map OSI naming in CORBA

Olivier Potonniée
Alcatel Corporate Research Centre
July 1997

[XSMG]
Systems Management: Reference Model.

X/Open guide number G207.
August 1993.

[OMAG]
Object Management Architecture Guide.

Richard Mark Soley (ed.), OMG document number 92.11.1.
Revision 2.0, September 1992.
 CORBA/TMN Interworking V1.0 August 2000 A-1

A

[CORBA]
The Common Object Request Broker: Architecture & Specification.

Revision 2.0, July 1995.

[CORBAservices]
CORBAservices: Common Object Services Specification.
(note: see individual CORBA Service documents)

[SYSMANfacilities]
Systems Management: Common Management Facilities, Volume I.

X/Open Preliminary Specification number P421.
June 1995.

[X700]
OSI Management Framework.

ITU-T (CCITT) Recommendation X.701, ISO/IEC 7498-4.
September 1992.

[X701]
Systems Management Overview.

ITU-T (CCITT) Recommendation X.701, ISO/IEC 10040.
January 1992.

[X710]
Common Management Information Service Definition.

ITU-T (CCITT) Recommendation X.710, ISO/IEC 9595.
March 1991.

[X720]
Management Information Model.

ITU-T (CCITT) Recommendation X.720, ISO/IEC 10165-1.
January 1992.

[X721]
Definition of Management Information.

ITU-T (CCITT) Recommendation X.721, ISO/IEC 10165-2.
February 1992.

[X722]
Guidelines for the definition of Managed Objects.

ITU-T (CCITT) Recommendation X.722, ISO/IEC 10165-4.
January 1992.

[X734]
Event Management Function.
A-2 CORBA/TMN Interworking V1.0 August 2000

A

ITU-T (CCITT) Recommendation X.734, ISO/IEC 10164-5.
September 1992.

[X735]
Log Control Function.

ITU-T (CCITT) Recommendation X.735, ISO/IEC 10164-6.
September 1992.

[ASN1]
Abstract Syntax Notation One (ASN.1).

ITU-T (CCITT) Recommendation X.208, ISO/IEC 8824-1.
April 1993.

[M3010]
Principles for a Telecommunications Management Network.

ITU-T (CCITT) Recommendation M.3010.
June 1992.

[OMNI]
OMNIPoint Architecture Integration.

Network Management Forum (NMF) document.
October 1994.

[XoJIDM]
Inter Domain Management: Specification Translation

Joint X/Open-NMF Inter-Domain Management (XoJIDM) Task Force.
X/Open Preliminary Specification
May 1997.
CORBA/TMN V1.0 List of References Aug. 2000 A-3

A

A-4 CORBA/TMN Interworking V1.0 August 2000

 Complete OMG IDL B
d in
B.1 Normative IDL

IDL listed in this section is specified in this document. These files can also be foun
electronic format, as a ZIP archive file, from the OMG document server, with
document number telecom/98-10-11.

B.1.1 JIDM.idl

// File: JIDM.idl
#ifndef _JIDM_IDL_
#define _JIDM_IDL_

#include <CosNaming.idl>
#include <CosLifeCycle.idl>
#include <CosEventChannelAdmin.idl>

#pragma prefix “jidm.org”

module JIDM
{

typedef CosNaming::Name Key;
typedef CosLifeCycle::Criteria Criteria;

exception InvalidKey {};
exception InvalidCriteria {};
exception CannotMeetCriteria { Criteria reason; };
exception CannotAccess {};
exception AlreadyExists {};
exception NoEventPort {};

interface ProxyAgent {
enum DestructionMode {gracefully, non_gracefully};
readonly attribute Criteria access_criteria;
 CORBA/TMN Interworking V1.0 August 2000 B-1

B

CosLifeCycle::FactoryFinder get_domain_factory_finder ();
CosNaming::NamingContext get_domain_naming_context ();

Criteria destroy (in DestructionMode mode, in Criteria the_criteria)
raises (InvalidCriteria, CannotMeetCriteria);

};

interface ProxyAgentController {
Criteria destruction_is_allowed (in Criteria the_criteria)

raises (InvalidCriteria,CannotMeetCriteria);
void destroyed (in Criteria the_criteria);

};

interface ProxyAgentFinder {
ProxyAgent access_domain (in Key k, in Criteria the_criteria)

raises (InvalidKey, CannotAccess, InvalidCriteria, CannotMeetCriteria);
};

interface DomainPort {
readonly attribute Criteria associated_criteria;

 void destroy ();
};

interface DomainPortFactory {
DomainPort create_domain_port (in Key k, in Criteria creation_criteria)

raises (InvalidKey, InvalidCriteria, CannotMeetCriteria);
};

interface EventPort {
readonly attribute CosEventChannelAdmin::SupplierAdmin supplier_admin;
readonly attribute Criteria associated_criteria;
void destroy ();

};

interface EventPortFactory {
EventPort

create_event_port (in Key k, in Criteria creation_criteria,
in CosEventChannelAdmin::SupplierAdmin the_supplier_admin)
raises (InvalidKey, InvalidCriteria, CannotMeetCriteria,

AlreadyExists);
};

interface EventPortFinder {
CosEventChannelAdmin::SupplierAdmin

find_event_port (in Key k, in Criteria the_criteria)
raises (InvalidKey, InvalidCriteria, CannotMeetCriteria, NoEventPort);

};
};

#endif /* _JIDM_IDL_ */
B-2 CORBA/TMN Interworking V1.0 August 2000

B

B.1.2 OSIMgmt.idl

// File: OSIMgmt.idl
#ifndef _OSIMGMT_IDL_
#define _OSIMGMT_IDL_

#include <orb.idl>
#include <JIDM.idl>
#include “X501Inf.idl”
#include “X711CMI.idl”

#pragma prefix “jidm.org”

// Macros used in the `raises’ clauses

#define ROSE_ERRORS\
OSIMgmt::ROSEDuplicateInvocation,\
OSIMgmt::ROSEMistypedArgument,\
OSIMgmt::ROSEResourceLimitation, \
OSIMgmt::ROSEUnrecognizedOperation

#define CREATE_ERRORS\
ROSE_ERRORS, \
OSIMgmt::AccessDenied,\
OSIMgmt::ClassInstanceConflict,\
OSIMgmt::DuplicateManagedObjectInstance,\
OSIMgmt::InvalidAttributeValue,\
OSIMgmt::InvalidObjectInstance,\
OSIMgmt::MissingAttributeValue,\
OSIMgmt::NoSuchAttribute,\
OSIMgmt::NoSuchObjectClass,\
OSIMgmt::NoSuchObjectInstance,\
OSIMgmt::NoSuchReferenceObject,\
OSIMgmt::ProcessingFailure,\
OSIMgmt::ProcessingFailureEmpty

#define COMMON_ERRORS \
ROSE_ERRORS, \
OSIMgmt::AccessDenied, \
OSIMgmt::ClassInstanceConflict, \
OSIMgmt::ComplexityLimitation, \
OSIMgmt::ComplexityLimitationEmpty, \
OSIMgmt::InvalidScope, \
OSIMgmt::InvalidFilter, \
OSIMgmt::NoSuchObjectClass, \
OSIMgmt::NoSuchObjectInstance, \
OSIMgmt::ProcessingFailure, \
OSIMgmt::ProcessingFailureEmpty, \
OSIMgmt::SyncNotSupported

#define GET_ERRORS \
COMMON_ERRORS, \
OSIMgmt::GetListError, \
OSIMgmt::OperationCancelled
CORBA/TMN V1.0 Normative IDL Aug. 2000 B-3

B

#define SET_ERRORS \
COMMON_ERRORS, \
OSIMgmt::SetListError

#define ATTRIBUTE_ERRORS \
COMMON_ERRORS, \
OSIMgmt::GetListError, \
OSIMgmt::SetListError

#define ACTION_ERRORS \
COMMON_ERRORS, \
OSIMgmt::InvalidArgumentValue, \
OSIMgmt::NoSuchAction, \
OSIMgmt::NoSuchArgument

#define DELETE_ERRORS \
 COMMON_ERRORS

module OSIMgmt
{

// Definitions of ROSE and CMIS exceptions
exception ROSEDuplicateInvocation { };
exception ROSEMistypedArgument { };
exception ROSEResourceLimitation { };
exception ROSEUnrecognizedOperation { };
exception AccessDenied { };
exception ClassInstanceConflict

{ X711CMI::BaseManagedObjectIdType error_info; };
exception ComplexityLimitation

{ X711CMI::ComplexityLimitationType error_info; };
exception ComplexityLimitationEmpty { };
exception DuplicateManagedObjectInstance

{ X711CMI::ObjectInstanceType error_info; };
exception GetListError

{ X711CMI::GetListErrorType error_info; };
exception InvalidArgumentValue

{ X711CMI::InvalidArgumentValueType error_info; };
exception InvalidAttributeValue

{ X711CMI::AttributeType error_info; };
exception InvalidFilter

{ X711CMI::CMISFilterType error_info; };
exception InvalidScope

{ X711CMI::ScopeType error_info; };
exception InvalidObjectInstance

{ X711CMI::ObjectInstanceType error_info; };
exception MissingAttributeValue

{ X711CMI::MissingAttributeValueType error_info; };
exception MistypedOperation { };
exception NoSuchAction

{ X711CMI::NoSuchActionType error_info; };
exception NoSuchArgument

{ X711CMI::NoSuchArgumentType error_info; };
exception NoSuchAttribute

{ X711CMI::AttributeIdType error_info; };
B-4 CORBA/TMN Interworking V1.0 August 2000

B

exception NoSuchObjectClass
{ X711CMI::ObjectClassType error_info; };

exception NoSuchObjectInstance
{ X711CMI::ObjectInstanceType error_info; };

exception NoSuchReferenceObject
{ X711CMI::ObjectInstanceType error_info; };

exception OperationCancelled { };
exception ProcessingFailure

{ X711CMI::ProcessingFailureType error_info; };
exception ProcessingFailureEmpty { };
exception SetListError

{ X711CMI::SetListErrorType error_info; };
exception SyncNotSupported

{ X711CMI::CMISSyncType error_info; };
exception NoSuchEventType

{ X711CMI::NoSuchEventTypeType error_info; };
exception NoSuchInvokeId

{ X711CMI::InvokeIdTypeType error_info; };

// Using Multiple Replies exception for Actions
interface RepliesIterator; // forward declaration
exception UsingMR

{ RepliesIterator replies_iterator; };

// Definition of specific types used within this module
typedef string NameString;
typedef sequence<ASN1_ObjectIdentifier> ASN1_ObjectIdentifierSeq;
struct AttributeValue {

ASN1_ObjectIdentifier attribute_id;
ASN1_DefinedAny value;

};
typedef sequence<AttributeValue> AttributeValueSeq;

// Type to be used in cmis_create operations
enum CreationKind

{simple, autonaming, subordinate};

// Type to be used in scoped set operations
enum ModifyOperator

{replace, add_member, remove_member, replace_with_default};

struct AttributeSetOperator {
ModifyOperator modify_operator;
ASN1_ObjectIdentifier attribute_id;
ASN1_DefinedAny attribute_value;

};
typedef sequence <AttributeSetOperator> SetOperationArgument;

// Forward declaration for ReplyHandler interfaces
interface LinkedReplyHandler;
interface EndOfRepliesHandler;
CORBA/TMN V1.0 Normative IDL Aug. 2000 B-5

B

// ProxyAgent
interface ProxyAgent : JIDM::ProxyAgent {

void cmis_create (
in CORBA::ScopedName interface_name,
in CreationKind creation_kind,
in CosNaming::Name object_name,
in X711CMI::AccessControlTypeOpt access_control,
in CosNaming::Name reference_object,
in AttributeValueSeq req_attribute_values,
in LinkedReplyHandler reply_handler

);

void cmis_create_sync (
in CORBA::ScopedName interface_name,
in CreationKind creation_kind,
in CosNaming::Name object_name,
in X711CMI::AccessControlTypeOpt access_control,
in CosNaming::Name reference_object,
in AttributeValueSeq req_attribute_values,
out CORBA::ScopedName created_interface_name,
out CosNaming::Name created_object_name,
out X711CMI::ASN1_GeneralizedTimeOpt creation_time,
out AttributeValueSeq created_attribute_values

) raises (CREATE_ERRORS);

void cmis_get (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObjectIdentifierSeq attribute_id_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void cmis_set (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in SetOperationArgument modification_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void cmis_action (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
B-6 CORBA/TMN Interworking V1.0 August 2000

B

in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObjectIdentifier action_name,
in ASN1_DefinedAny action_info,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void cmis_delete (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);
};

const ASN1_ObjectIdentifier ACTUAL_CLASS = “2.9.3.4.3.42”;

interface ManagedObject; // forward declaration

interface NamingContext : CosNaming::NamingContext {
// NOTE: These operations are optional
ManagedObject resolve_with_intf (

in CORBA::ScopedName interface_name,
in CosNaming::Name object_name

) raises (NotFound, CannotProceed, InvalidName);

ManagedObject resolve_osi_name (
in ASN1_ObjectIdentifier managed_object_class,
in X711CMI::ObjectInstanceType object_instance

) raises (NotFound, CannotProceed, InvalidName);

CosNaming::Name translate_osi_name (
in X711CMI::ObjectInstanceType object_instance

) raises (InvalidName);

X711CMI::ObjectInstanceType translate_idl_name (
in CosNaming::Name idl_name

) raises (InvalidName);
};

// ManagedObject
interface ManagedObject : NamingContext, CosLifeCycle::LifeCycleObject {

readonly attribute CosNaming::Name object_name;

void scoped_get (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObjectIdentifierSeq attribute_id_list,
CORBA/TMN V1.0 Normative IDL Aug. 2000 B-7

B

in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void scoped_set (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in SetOperationArgument modification_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void scoped_action (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObjectIdentifier action_name,
in ASN1_DefinedAny action_info,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void scoped_delete (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

AttributeValueSeq get_attributes (
in ASN1_ObjectIdentifierSeq attribute_id_list

) raises (GET_ERRORS);

AttributeValueSeq set_attributes (
in SetOperationArgument modification_list

) raises (SET_ERRORS);

ASN1_DefinedAny perform_action (
in ASN1_ObjectIdentifier action_name,
in ASN1_DefinedAny action_info

) raises (ACTION_ERRORS, UsingMR);

void delete_mo () raises (DELETE_ERRORS);
};

// ManagedObjectFactory
interface ManagedObjectFactory {

ManagedObject create (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
B-8 CORBA/TMN Interworking V1.0 August 2000

B

in ManagedObject reference_object,
in AttributeValueSeq requested_attribute_values

) raises (CREATE_ERRORS);

ManagedObject create_with_auto_naming (
in CORBA::ScopedName interface_name,
in ManagedObject reference_object,
in AttributeValueSeq requested_attribute_values

) raises (CREATE_ERRORS);

ManagedObject create_subordinate (
in CORBA::ScopedName interface_name,
in CosNaming::Name superior_name,
in ManagedObject reference_object,
in AttributeValueSeq requested_attribute_values

) raises (CREATE_ERRORS);
};

// LocalRoot
typedef sequence<ManagedObject> ManagedObjectSeq;

interface LocalRoot : ManagedObject {
exception NoDescendants {};
ManagedObjectSeq list_orphans ();

ManagedObjectSeq
list_orphan_descendants (in CosNaming::Name object_name)
raises (NoDescendants);

};

// LName
interface LName {

exception InvalidName {};

readonly attribute boolean is_distinguished_name;
readonly attribute unsigned long num_components;

void from_osi_form (in X711CMI::ObjectInstanceType osi_name);
X711CMI::ObjectInstanceType to_osi_form ()

raises(InvalidName);
void from_idl_form (in CosNaming::Name idl_name);
CosNaming::Name to_idl_form ()

raises(InvalidName);

LName to_ancestor_name (in unsigned long levels_up)
raises(InvalidName);

LName to_relative_name (in unsigned long levels_up)
raises(InvalidName);

LName append (in LName name);
LName append_ava (in X501Inf::AttributeValueAssertionType ava)

raises(InvalidName);
X501Inf::AttributeValueAssertionType get_ ava (in unsigned l ong index)

raises(InvalidName);

boolean equals (in LName name);
CORBA/TMN V1.0 Normative IDL Aug. 2000 B-9

B

LName copy ();

void from_string_form (in NameString name_string);
NameString to_string_form ()

raises(InvalidName);
void destroy ();

};

// ReplyHandler interfaces
interface LinkedReplyHandler {

void send_reply (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in any reply_info

);

void send_mo_error (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in short error_code,
in any error_info

);

void send_subtree_error (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in short error_code,
in any error_info

);
};

interface EndOfRepliesHandler {
void end_of_replies ();

};

interface MultipleRepliesHandler : LinkedReplyHandler, EndOfRepliesHandler {};

// BufferedRepliesHandler
struct Reply {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
any reply_info;

};
typedef sequence<Reply> ReplyList;

interface RepliesIterator {
exception MoError {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
short error_code;
B-10 CORBA/TMN Interworking V1.0 August 2000

B

any error_info;
};

exception SubtreeError {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
short error_code;
any error_info;

};

boolean get_reply (out Reply r) raises (MoError, SubtreeError);

boolean get_n_replies (in unsigned long how_many, out ReplyList r_list)
raises (MoError, SubtreeError);

boolean finished (out unsigned long num_pending);
void destroy ();
};

interface BufferedRepliesHandler : MultipleRepliesHandler, RepliesIterator {};

};

#define UsingMR OSIMgmt::UsingMR

#endif /* _OSIMGMT_IDL_ */

B.1.3 SNMPMgmt.idl

// File: SNMPMgmt.idl
#ifndef _SNMPMGMT_IDL_
#define _SNMPMGMT_IDL_

#include <orb.idl>
#include <CosPropertyService.idl>
#include <ASN1Types.idl>
#include <JIDM.idl>

#pragma prefix “jidm.org”

module SNMPMgmt {
const string ManagementDomainKeyId = “Internet Management”;
const string ManagementDomainKeyKind = “XSM environment”;
const string ProtocolVer = “Protocol Version”;
const string TransportProtocol = “Transport Protocol”;
const string DomainTitle = “Domain Title”;
const string TransportAddress = “Transport Address”;
const string TransportPort = “Transport Port”;
const string CommunityName = “Community Name”;
const string ContextEngineID = “Context EngineID”;
const string ContextName = “Context Name”;

// Redefinition of types
CORBA/TMN V1.0 Normative IDL Aug. 2000 B-11

B

typedef CORBA::ScopedName ScopedName;
typedef CosLifeCycle::Criteria Criteria;
typedef CosPropertyService::PropertyName VarName;
typedef CosPropertyService::PropertyNames VarNameList;
typedef CosPropertyService::Property NameValuePair;
typedef CosPropertyService::Properties NVPairList;

typedef ASN1_ObjectIdentifier EntryIndex;
typedef sequence < EntryIndex > EntryIndexList;

typedef string TAddress; // Transport address of an agent

enum ProtocolVersion { snmpV1, snmpV2c, snmpV3 };

// SNMP Protocol specific exceptions
exception ProtocolError {

ASN1_Integer error_status;
ASN1_Integer error_index;

};
exception MultVarProtocolError {

ASN1_Integer error_status;
VarNameList error_var_list;
NVPairList result_var_list;

};

// SMI information module specific exceptions.
exception NoSuchSmiModule { };
exception NoSuchSmiEntry { };
exception NoSuchVariable { };

// MIB entry specific exceptions
exception NoSuchHost { };
exception NoSuchObject { };
exception EndOfMibView { };

exception AlreadyExists { };

interface SmiEntry : CosLifeCycle::LifeCycleObject,
CosPropertyService::PropertySet {

// the value of entry_name is always “0” for the groups.
readonly attribute ASN1_ObjectIdentifier entry_name;

};
typedef sequence < SmiEntry > SmiEntryList;

interface SmiTableIterator {
boolean next_one_entry(out SmiEntry smi_entry);
boolean next_n_entries (

in unsigned long how_many,
out SmiEntryList smi_entry_list

);
void destroy();

};

 interface GenericFactory : CosLifeCycle::GenericFactory {
SmiEntry create_mib_entry (
B-12 CORBA/TMN Interworking V1.0 August 2000

B

 in ScopedName t_entry_type,
 in ASN1_ObjectIdentifier entry_index,
 in Criteria create_criteria
) raises (NoSuchSmiEntry, AlreadyExists);

SmiEntry create_mib_entry_with_auto_name (
 in ScopedName t_entry_type,
 in Criteria create_criteria
) raises (NoSuchSmiEntry, AlreadyExists);

};

interface GetNextEntryIterator {
// Get the next entry index according to lexical ordering rule
// of SNMP OIDs -- follows SNMP get-next traversal rule
boolean next_one_entry (out EntryIndex entry_index);
boolean next_n_entries (

in unsigned long how_many,
out EntryIndexList entry_index_list

);
void destroy();

};

// NamingContext extends CosNaming::NamingContext to provide
// navigating the SNMP name space in the lexicographic order
// and SNMP specific name and context resolution

interface NamingContext : CosNaming::NamingContext {
string get_next_entry(

in string entry_name
) raises (InvalidName, NotFound, CannotProceed);

GetNextEntryIterator get_next_entry_iterator(
in string initial_entry_name

) raises (InvalidName, NotFound);
};

interface NamingDirectory : NamingContext {
NamingContext resolve_domain_context(

in TAddress p_host_name
) raises (NoSuchHost, CannotProceed, InvalidName, NotFound);

NamingContext resolve_smi_module(
in TAddress p_host_name,
in string p_smi_module_name

) raises (NoSuchHost, NoSuchSmiModule, InvalidName, NotFound);

NamingContext resolve_smi_entry(
in TAddress p_host_name,
in ScopedName p_entry_type

) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed, InvalidName,
NotFound);

SmiEntry resolve_mib_entry(
in TAddress p_host_name,
in ScopedName p_entry_type,
CORBA/TMN V1.0 Normative IDL Aug. 2000 B-13

B

in string p_entry_index
) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed, InvalidName,

NotFound);

void list_smi_entries(
in TAddress p_host_name,
in ScopedName p_entry_type,
in unsigned long how_many,
out SmiEntryList out_list,
out SmiTableIterator table_iterator

) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed, InvalidName,
NotFound);

};

// ProxyAgent

interface ProxyAgent : JIDM::ProxyAgent {

readonly attribute TAddress host_name;

ASN1_Any get_a_variable (
in TAddress p_host_name,
in ScopedName p_var_scoped_name,

 in EntryIndex p_var_index
) raises (NoSuchHost, NoSuchVariable, NoSuchObject, ProtocolError);

NVPairList get_variables (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in VarNameList p_var_name_list,
in EntryIndex p_var_index

) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
MultVarProtocolError);

void set_a_variable (
in TAddress p_host_name,
in ScopedName p_var_scoped_name,
in EntryIndex p_var_index,
in ASN1_Any p_var_new_value

) raises (NoSuchHost, NoSuchVariable, NoSuchObject, ProtocolError);

void set_variables (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in NVPairList p_var_nvp_list,
in EntryIndex p_var_index

) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
MultVarProtocolError);

void list_mib_entries(
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in long p_how_many,
out EntryIndexList p_entry_index_list,
out GetNextEntryIterator p_entry_name_list_itr
B-14 CORBA/TMN Interworking V1.0 August 2000

B

) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject, ProtocolError);

boolean mib_entry_exists (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name

) raises (NoSuchHost, NoSuchSmiEntry, ProtocolError);

boolean is_mib_module_supported (
in TAddress p_host_name,
in string p_smi_module_name

) raises (NoSuchHost, NoSuchSmiModule, ProtocolError);

};
struct EntryVarBind {

ScopedName entry_name; // IDL scoped name of the interface for table-entry
string entry_index; // row index of an entry in the form of ObjectId string
CosPropertyService::Properties nvp_list;

};

typedef sequence<EntryVarBind> EntryVarBindList;
typedef EntryVarBindList NotificationVariableList;
typedef EntryVarBindList InformVariableList;

struct NotificationInfo { // to be sent when using untyped event channel
CosNaming::Name src_entry_name;
ScopedName event_type;
ASN1_GeneralizedTime event_time;
any notification_info;

};
struct InformInfo { // to be sent when using untyped event channel

CosNaming::Name src_obj_name;
InformVariableList inform_info;

};

interface Notifications {
void snmp_notification (

in CosNaming::Name src_entry_name,
in ScopedName event_type,
in ASN1_GeneralizedTime event_time,
in any notification_info

);
void snmp_inform (

in CosNaming::Name src_entry_name,
in InformVariableList inform_variables

);
void snmp_report (

in CosNaming::Name src_entry_name,
in InformVariableList report_variables

);
};

interface PullNotifications {
boolean try_snmp_notification (

out CosNaming::Name src_entry_name,
out ScopedName event_type,
CORBA/TMN V1.0 Normative IDL Aug. 2000 B-15

B

ence
urce
out ASN1_GeneralizedTime event_time,
out any notification_info

);
void pull_snmp_notification (

out CosNaming::Name src_entry_name,
out ScopedName event_type,
out ASN1_GeneralizedTime event_time,
out any notification_info

);

boolean try_snmp_inform (
out CosNaming::Name src_entry_name,
out InformVariableList inform_variables

);

void pull_snmp_inform (
out CosNaming::Name src_entry_name,
out InformVariableList inform_variables

);

boolean try_snmp_report (
out CosNaming::Name src_entry_name,
out InformVariableList report_variables

);

void pull_snmp_report (
out CosNaming::Name src_entry_name,
out InformVariableList report_variables

);
};

};

#endif /* _SNMPMGMT_IDL_ */

B.2 Imported IDL

IDL listed in this section is specified elsewhere, but is listed here for ease of refer
and completeness. The ultimate authority for these IDLs should be the original so
of the IDL specifications.

B.2.1 ASN1Types.idl

Specified in the JIDM Specification Translation document XoJIDM (see “#endif /*
_SNMPMIR_IDL_ */” on page B-54), and amended by the JIDM Specification
Translation Issues List resolutions.

// File: ASN1Types.idl
#ifndef _ASN1TYPES_IDL_
#define _ASN1TYPES_IDL_

#pragma prefix “jidm.org”
B-16 CORBA/TMN Interworking V1.0 August 2000

B

// ASN.1 base types

// Null type
typedef char ASN1_Null;
const ASN1_Null ASN1_NullValue = ‘\000’;

// Boolean
typedef boolean ASN1_Boolean;

// Integers
typedef unsigned short ASN1_Unsigned16;
typedef unsigned long ASN1_Unsigned;
typedef unsigned long long ASN1_Unsigned64;
typedef short ASN1_Integer16;
typedef long ASN1_Integer;
typedef long long ASN1_Integer64;

// Real
typedef double ASN1_Real;

// ASN.1 strings which may not contain binary zeros
typedef string ASN1_NumericString;
typedef string ASN1_PrintableString;
typedef string ASN1_VisibleString;
typedef ASN1_VisibleString ASN1_ISO646String;
typedef string ASN1_GraphicString;
typedef ASN1_GraphicString ASN1_ObjectDescriptor;
typedef string ASN1_TeletexString;
typedef ASN1_TeletexString ASN1_T61String;

// Times
typedef ASN1_VisibleString ASN1_GeneralizedTime; // PIDL defined
typedef ASN1_VisibleString ASN1_UTCTime;

// ASN.1 strings which may contain binary zeros
typedef sequence<octet> ASN1_OctetString;
typedef sequence<octet> ASN1_GeneralString;
typedef sequence<octet> ASN1_IA5String;
typedef sequence<octet> ASN1_VideotexString;

// ASN.1 strings of wide characters (which may contain binary zeros)
typedef sequence<unsigned short> ASN1_BMPString;
typedef sequence<unsigned long> ASN1_UniversalString;

// Object Identifier
typedef string ASN1_ObjectIdentifier;

// Bit String
typedef sequence<octet> ASN1_BitString; // PIDL defined

// Any
typedef any ASN1_Any;
typedef any ASN1_DefinedAny;
CORBA/TMN V1.0 Imported IDL Aug. 2000 B-17

B

// ASN.1 recursive references
typedef any ASN1_Recursive;

// External

module X208Ext {

 union ASN1_ObjectIdentifierOpt
 switch (boolean) {
 case TRUE: ASN1_ObjectIdentifier value;
 };

 union ASN1_IntegerOpt
 switch (boolean) {
 case TRUE: ASN1_Integer value;
 };

 union ASN1_ObjectDescriptorOpt
 switch (boolean) {
 case TRUE: ASN1_ObjectDescriptor value;
 };

 enum ExternalEncodingTypeChoice { single_ASN1_typeChoice,
 octet_alignedChoice, arbitraryChoice };

 union ExternalEncodingType
 switch(ExternalEncodingTypeChoice) {
 case single_ASN1_typeChoice:
 ASN1_Any single_ASN1_type;
 case octet_alignedChoice:
 ASN1_OctetString octet_aligned;
 case arbitraryChoice:
 ASN1_BitString arbitrary;
 };

struct ExternalType {
ASN1_ObjectIdentifierOpt direct_reference;
ASN1_IntegerOpt indirect_reference;
ASN1_ObjectDescriptorOpt data_value_descriptor;
ExternalEncodingType encoding;

};

};

typedef X208Ext::ExternalType ASN1_External;

// define constants for ASN.1 Real infinity values
#include <ASN1Limits.idl>
const ASN1_Real plus_infinity = MAX_FLT;
const ASN1_Real minus_infinity = MIN_FLT;

#endif /* _ASN1TYPES_IDL_ */
B-18 CORBA/TMN Interworking V1.0 August 2000

B

by

on
tion

nally

].
B.2.2 ASN1Limits.idl

Specified in the JIDM Specification Translation document XoJIDM and amended
the JIDM Specification Translation Issues List resolutions.

// File: ASN1Limits.idl
#ifndef _ASN1LIMITS_IDL_
#define _ASN1LIMITS_IDL_

// Substitute <MAX> and <MIN> by the max and min (biggest negative)
// double values your machine can hold for IDL interfaces.
// Conditional compilation can be used to support multiple architectures.

#define MIN_FLT <MIN>
#define MAX_FLT <MAX>

#endif /* _ASN1LIMITS_IDL_ */

B.3 Generated IDL

IDL listed in this section is automatically generated, following the JIDM Specificati
Translation process, as specified in XoJIDM and amended by the JIDM Specifica
Translation Issues List resolutions. It is listed here for ease of reference and
completeness. The ultimate authority for these IDLs should be the use of the origi
published document and a compliant JIDM Specification Translation compiler.

B.3.1 X501Inf.idl

The original source for the ASN.1 document that translates into this IDL is [X501

// File: X501Inf.idl
#ifndef _X501INF_IDL_
#define _X501INF_IDL_

//
// ASN.1 Module name: InformationFramework
// ASN.1 Module OID: 2.5.1.1
// ASN.1 Module nickname: X501Inf
//

#include <ASN1Types.idl>

module X501Inf {

// Assignments mapping

typedef ASN1_ObjectIdentifier AttributeTypeType;

typedef ASN1_Any AttributeValueType;

typedef sequence <AttributeValueType>
AttributeValuesType;
CORBA/TMN V1.0 Generated IDL Aug. 2000 B-19

B

].
struct AttributeType {
AttributeTypeType type;
AttributeValuesType values;

};

struct AttributeValueAssertionType {
AttributeTypeType attributeType;
ASN1_DefinedAny attributeValue; // defined by:attributeType

};

typedef sequence <AttributeValueAssertionType>
RelativeDistinguishedNameType;

typedef sequence <RelativeDistinguishedNameType>
RDNSequenceType;

enum NameTypeChoice { rDNSequenceChoice };

union NameType
switch(NameTypeChoice) {
case rDNSequenceChoice:
RDNSequenceType rDNSequence;

};

typedef RDNSequenceType DistinguishedNameType;

//NO complex constant declarations
//interface ConstValues empty

};

#endif /* _X501INF_IDL_ */

B.3.2 X227ACS.idl

The original source for the ASN.1 document that translates into this IDL is [X227

// File: X227ACS.idl
#ifndef _X227ACS_IDL_
#define _X227ACS_IDL_

//
// ASN.1 Module name: ACSE-1
// ASN.1 Module OID: 2.2.0.0.1
// ASN.1 Module nickname: X227ACS
//

#include <ASN1Types.idl>

#include “X501Inf.idl”

module X227ACS {

// definitions imported from: X501Inf
B-20 CORBA/TMN Interworking V1.0 August 2000

B

typedef X501Inf::NameType
NameType;

typedef X501Inf::RelativeDistinguishedNameType
RelativeDistinguishedNameType;

// Assignments mapping

const ASN1_ObjectIdentifier acse_as_id =
“2.2.1.0.1”;

const ASN1_ObjectIdentifier aCSE_id =
“2.2.3.1.1”;

typedef ASN1_BitString AARQ_apduProtocol_versionType;

union AARQ_apduProtocol_versionTypeOpt
switch (boolean) {

case TRUE: AARQ_apduProtocol_versionType value;
};

typedef AARQ_apduProtocol_versionTypeOpt AARQ_apduProtocol_versionTypeDef;

typedef ASN1_ObjectIdentifier Application_context_nameType;

typedef NameType AP_title_form1Type;

typedef ASN1_ObjectIdentifier AP_title_form2Type;

enum AP_titleTypeChoice { form1Choice, form2Choice };

union AP_titleType
switch(AP_titleTypeChoice) {

case form1Choice:
AP_title_form1Type form1;

case form2Choice:
AP_title_form2Type form2;

};

union AP_titleTypeOpt
switch (boolean) {

case TRUE: AP_titleType value;
};

typedef RelativeDistinguishedNameType AE_qualifier_form1Type;

typedef ASN1_Integer AE_qualifier_form2Type;

enum AE_qualifierTypeChoice { form1Choice_1, form2Choice_1 };

union AE_qualifierType
switch(AE_qualifierTypeChoice) {

case form1Choice_1:
AE_qualifier_form1Type form1;
CORBA/TMN V1.0 Generated IDL Aug. 2000 B-21

B

case form2Choice_1:
AE_qualifier_form2Type form2;

};

union AE_qualifierTypeOpt
switch (boolean) {

case TRUE: AE_qualifierType value;
};

typedef ASN1_Integer AP_invocation_identifierType;

union AP_invocation_identifierTypeOpt
switch (boolean) {

case TRUE: AP_invocation_identifierType value;
};

typedef ASN1_Integer AE_invocation_identifierType;

union AE_invocation_identifierTypeOpt
switch (boolean) {

case TRUE: AE_invocation_identifierType value;
};

typedef ASN1_BitString ACSE_requirementsType;

 union ACSE_requirementsTypeOpt
 switch (boolean) {
 case TRUE: ACSE_requirementsType value;
 };

 typedef ASN1_ObjectIdentifier Mechanism_nameType;

 union Mechanism_nameTypeOpt
 switch (boolean) {
 case TRUE: Mechanism_nameType value;
 };

 struct Authentication_valueOtherType {
 Mechanism_nameType other_mechanism_name;
 ASN1_DefinedAny other_mechanism_value; // defined

by:other_mechanism_name
 };

 enum Authentication_valueTypeChoice { charstringChoice,
 bitstringChoice, externalChoice, otherChoice };

 union Authentication_valueType
 switch(Authentication_valueTypeChoice) {
 case charstringChoice:
 ASN1_GraphicString charstring;
 case bitstringChoice:
 ASN1_BitString bitstring;
 case externalChoice:
 ASN1_External external;
 case otherChoice:
B-22 CORBA/TMN Interworking V1.0 August 2000

B

 Authentication_valueOtherType other;
 };

 union Authentication_valueTypeOpt
 switch (boolean) {
 case TRUE: Authentication_valueType value;
 };

 typedef ASN1_GraphicString Implementation_dataType;

 union Implementation_dataTypeOpt
 switch (boolean) {
 case TRUE: Implementation_dataType value;
 };

typedef sequence <ASN1_External>
Association_informationType;

union Association_informationTypeOpt
switch (boolean) {

case TRUE: Association_informationType value;
};

 struct AARQ_apduType {
 AARQ_apduProtocol_versionTypeDef protocol_version;
 Application_context_nameType application_context_name;
 AP_titleTypeOpt called_AP_title;
 AE_qualifierTypeOpt called_AE_qualifier;
 AP_invocation_identifierTypeOpt called_AP_invocation_identifier;
 AE_invocation_identifierTypeOpt called_AE_invocation_identifier;
 AP_titleTypeOpt calling_AP_title;
 AE_qualifierTypeOpt calling_AE_qualifier;
 AP_invocation_identifierTypeOpt calling_AP_invocation_identifier;
 AE_invocation_identifierTypeOpt calling_AE_invocation_identifier;
 ACSE_requirementsTypeOpt sender_acse_requirements;
 Mechanism_nameTypeOpt mechanism_name;
 Authentication_valueTypeOpt calling_authentication_value;
 Implementation_dataTypeOpt implementation_information;
 Association_informationTypeOpt user_information;
 };

 typedef ASN1_BitString AARE_apduProtocol_versionType;

 union AARE_apduProtocol_versionTypeOpt
 switch (boolean) {
 case TRUE: AARE_apduProtocol_versionType value;
 };

 typedef AARE_apduProtocol_versionTypeOpt AARE_apduProtocol_versionTypeDef;

 typedef ASN1_Integer Associate_resultType;

 typedef ASN1_Integer Associate_source_diagnosticAcse_service_userType;

 typedef ASN1_Integer Associate_source_diagnosticAcse_service_providerType;
CORBA/TMN V1.0 Generated IDL Aug. 2000 B-23

B

 enum Associate_source_diagnosticTypeChoice {
 acse_service_userChoice, acse_service_providerChoice };

 union Associate_source_diagnosticType
 switch(Associate_source_diagnosticTypeChoice) {
 case acse_service_userChoice:
 Associate_source_diagnosticAcse_service_userType acse_service_user;
 case acse_service_providerChoice:
 Associate_source_diagnosticAcse_service_providerType

acse_service_provider;
 };

 struct AARE_apduType {
 AARE_apduProtocol_versionTypeDef protocol_version;
 Application_context_nameType application_context_name;
 Associate_resultType result;
 Associate_source_diagnosticType result_source_diagnostic;
 AP_titleTypeOpt responding_AP_title;
 AE_qualifierTypeOpt responding_AE_qualifier;
 AP_invocation_identifierTypeOpt responding_AP_invocation_identifier;
 AE_invocation_identifierTypeOpt responding_AE_invocation_identifier;
 ACSE_requirementsTypeOpt responder_acse_requirements;
 Mechanism_nameTypeOpt mechanism_name;
 Authentication_valueTypeOpt responding_authentication_value;
 Implementation_dataTypeOpt implementation_information;
 Association_informationTypeOpt user_information;
 };

 typedef ASN1_Integer Release_request_reasonType;

 union Release_request_reasonTypeOpt
 switch (boolean) {
 case TRUE: Release_request_reasonType value;
 };

 struct RLRQ_apduType {
 Release_request_reasonTypeOpt reason;
 Association_informationTypeOpt user_information;
 };

 typedef ASN1_Integer Release_response_reasonType;

 union Release_response_reasonTypeOpt
 switch (boolean) {
 case TRUE: Release_response_reasonType value;
 };

 struct RLRE_apduType {
 Release_response_reasonTypeOpt reason;
 Association_informationTypeOpt user_information;
 };

 typedef ASN1_Integer ABRT_sourceType;
B-24 CORBA/TMN Interworking V1.0 August 2000

B

 enum ABRT_diagnosticType { no_reason_given, protocol_error,
 authentication_mechanism_name_not_recognized,
 authentication_mechanism_name_required,
 authentication_failure, authentication_required };

 union ABRT_diagnosticTypeOpt
 switch (boolean) {
 case TRUE: ABRT_diagnosticType value;
 };

 struct ABRT_apduType {
 ABRT_sourceType abort_source;
 ABRT_diagnosticTypeOpt abort_diagnostic;
 Association_informationTypeOpt user_information;
 };

 enum ACSE_apduTypeChoice { aarqChoice, aareChoice, rlrqChoice,
 rlreChoice, abrtChoice };

 union ACSE_apduType
 switch(ACSE_apduTypeChoice) {
 case aarqChoice:
 AARQ_apduType aarq;
 case aareChoice:
 AARE_apduType aare;
 case rlrqChoice:
 RLRQ_apduType rlrq;
 case rlreChoice:
 RLRE_apduType rlre;
 case abrtChoice:
 ABRT_apduType abrt;
 };

 const unsigned long version1 =
 0;

 const unsigned long version1_1 =
 0;

 const ABRT_sourceType acse_service_user =
 0;

 const ABRT_sourceType acse_service_provider =
 1;

const unsigned long authentication =
 0;

typedef NameType AE_title_form1Type;

typedef ASN1_ObjectIdentifier AE_title_form2Type;

enum AE_titleTypeChoice { form1Choice_2, form2Choice_2 };
union AE_titleType

 switch(AE_titleTypeChoice) {
CORBA/TMN V1.0 Generated IDL Aug. 2000 B-25

B

 case form1Choice_2:
 AE_title_form1Type form1;
 case form2Choice_2:
 AE_title_form2Type form2;
 };

 const Associate_resultType accepted =
 0;

 const Associate_resultType rejected_permanent =
 1;

 const Associate_resultType rejected_transient =
 2;

 const Associate_source_diagnosticAcse_service_userType null =
 0;

 const Associate_source_diagnosticAcse_service_userType no_reason_given_1 =
 1;

 const Associate_source_diagnosticAcse_service_userType
application_context_name_not_supported =

 2;

 const Associate_source_diagnosticAcse_service_userType
calling_AP_title_not_recognized =

 3;

 const Associate_source_diagnosticAcse_service_userType
calling_AP_invocation_identifier_not_recognized =

 4;

 const Associate_source_diagnosticAcse_service_userType
calling_AE_qualifier_not_recognized =

 5;

 const Associate_source_diagnosticAcse_service_userType
calling_AE_invocation_identifier_not_recognized =

 6;

const Associate_source_diagnosticAcse_service_userType
called_AP_title_not_recognized =

 7;

 const Associate_source_diagnosticAcse_service_userType
called_AP_invocation_identifier_not_recognized =

 8;

 const Associate_source_diagnosticAcse_service_userType
called_AE_qualifier_not_recognized =

 9;

 const Associate_source_diagnosticAcse_service_userType
called_AE_invocation_identifier_not_recognized =
B-26 CORBA/TMN Interworking V1.0 August 2000

B

 10;

 const Associate_source_diagnosticAcse_service_userType
authentication_mechanism_name_not_recognized_1 =

 11;

 const Associate_source_diagnosticAcse_service_userType
authentication_mechanism_name_required_1 =

 12;

 const Associate_source_diagnosticAcse_service_userType authentication_failure_1 =
 13;

 const Associate_source_diagnosticAcse_service_userType
authentication_required_1 =

 14;

 const Associate_source_diagnosticAcse_service_providerType null_1 =
 0;

 const Associate_source_diagnosticAcse_service_providerType no_reason_given_2 =
 1;

 const Associate_source_diagnosticAcse_service_providerType
no_common_acse_version =

 2;

 const Release_request_reasonType normal =
 0;

 const Release_request_reasonType urgent =
 1;

 const Release_request_reasonType user_defined =
 30;

 const Release_response_reasonType normal_1 =
 0;

 const Release_response_reasonType not_finished =
 1;

 const Release_response_reasonType user_defined_1 =
 30;

 // Complex constants declaration.

 interface ConstValues {

 // ** Generated values for <AARQ_apduType::protocol_version>:

 AARQ_apduProtocol_versionType protocol_versionDefault();
 // returns: {(ASN.1: version1)}

 // ** Generated values for <AARE_apduType::protocol_version>:
CORBA/TMN V1.0 Generated IDL Aug. 2000 B-27

B

].
 AARE_apduProtocol_versionType protocol_versionDefault_1();
 // returns: {(ASN.1: version1)}
 };

};

#endif /* _X227ACS_IDL_ */

B.3.3 X711CMI.idl

The original source for the ASN.1 document that translates into this IDL is [X711

// File: X711CMI.idl
#ifndef _X711CMI_IDL_
#define _X711CMI_IDL_

//
// ASN.1 Module name: CMIP-1
// ASN.1 Module OID: 2.9.1.0.3
// ASN.1 Module nickname: X711CMI
//

#include <ASN1Types.idl>

#include “X501Inf.idl”

module X711CMI {

 // definitions imported from: X501Inf

 typedef X501Inf::DistinguishedNameType
 DistinguishedNameType;

 typedef X501Inf::RDNSequenceType
 RDNSequenceType;

 // Assignments mapping

 typedef ASN1_Integer InvokeIdTypeType;

 typedef ASN1_External AccessControlType;

 enum ObjectClassTypeChoice { globalFormChoice_3, localFormChoice_3 };

 union ObjectClassType
 switch(ObjectClassTypeChoice) {
 case globalFormChoice_3:
 ASN1_ObjectIdentifier globalForm;
 case localFormChoice_3:
 ASN1_Integer localForm;
 };
B-28 CORBA/TMN Interworking V1.0 August 2000

B

 enum ObjectInstanceTypeChoice { distinguishedNameChoice,
 nonSpecificFormChoice, localDistinguishedNameChoice };

 union ObjectInstanceType
 switch(ObjectInstanceTypeChoice) {
 case distinguishedNameChoice:
 DistinguishedNameType distinguishedName;
 case nonSpecificFormChoice:
 ASN1_OctetString nonSpecificForm;
 case localDistinguishedNameChoice:
 RDNSequenceType localDistinguishedName;
 };

union AccessControlTypeOpt
 switch (boolean) {
 case TRUE: AccessControlType value;
 };

 enum CMISSyncType { bestEffort, atomic };

 union CMISSyncTypeOpt
 switch (boolean) {
 case TRUE: CMISSyncType value;
 };

 typedef CMISSyncTypeOpt CMISSyncTypeDef;

 typedef ASN1_Integer ScopeLevelType;

 enum ScopeTypeChoice { levelChoice, individualLevelsChoice,
 baseToNthLevelChoice };

 union ScopeType
 switch(ScopeTypeChoice) {
 case levelChoice:
 ScopeLevelType level;
 case individualLevelsChoice:
 ASN1_Integer individualLevels;
 case baseToNthLevelChoice:
 ASN1_Integer baseToNthLevel;
 };

 union ScopeTypeOpt
 switch (boolean) {
 case TRUE: ScopeType value;
 };

 typedef ScopeTypeOpt ScopeTypeDef;

 enum AttributeIdTypeChoice { globalFormChoice_1, localFormChoice_1 };

 union AttributeIdType
 switch(AttributeIdTypeChoice) {
 case globalFormChoice_1:
 ASN1_ObjectIdentifier globalForm;
CORBA/TMN V1.0 Generated IDL Aug. 2000 B-29

B

 case localFormChoice_1:
 ASN1_Integer localForm;
 };

struct FilterItemSubstringsItemInitialStringType {
 AttributeIdType attributeId;
 ASN1_DefinedAny string_1; // defined by:attributeId
 };

 struct FilterItemSubstringsItemAnyStringType {
 AttributeIdType attributeId;
 ASN1_DefinedAny string_1; // defined by:attributeId
 };

 struct FilterItemSubstringsItemFinalStringType {
 AttributeIdType attributeId;
 ASN1_DefinedAny string_1; // defined by:attributeId
 };

 enum FilterItemSubstringsItemTypeChoice { initialStringChoice,
 anyStringChoice, finalStringChoice };

 union FilterItemSubstringsItemType
 switch(FilterItemSubstringsItemTypeChoice) {
 case initialStringChoice:
 FilterItemSubstringsItemInitialStringType initialString;
 case anyStringChoice:
 FilterItemSubstringsItemAnyStringType anyString;
 case finalStringChoice:
 FilterItemSubstringsItemFinalStringType finalString;
 };

 typedef sequence <FilterItemSubstringsItemType>
 FilterItemSubstringsType;

 enum FilterItemTypeChoice { equalityChoice, substringsChoice,
 greaterOrEqualChoice, lessOrEqualChoice, presentChoice,
 subsetOfChoice, supersetOfChoice,
 nonNullSetIntersectionChoice };

 union FilterItemType
 switch(FilterItemTypeChoice) {
 case equalityChoice:
 AttributeType equality;
 case substringsChoice:
 FilterItemSubstringsType substrings;
 case greaterOrEqualChoice:
 AttributeType greaterOrEqual;
 case lessOrEqualChoice:
 AttributeType lessOrEqual;

case presentChoice:
 AttributeIdType present;
 case subsetOfChoice:
 AttributeType subsetOf;
 case supersetOfChoice:
B-30 CORBA/TMN Interworking V1.0 August 2000

B

 AttributeType supersetOf;
 case nonNullSetIntersectionChoice:
 AttributeType nonNullSetIntersection;
 };

 enum CMISFilterTypeChoice { itemChoice, andChoice, orChoice,
 notChoice };

 union CMISFilterType
 switch(CMISFilterTypeChoice) {
 case itemChoice:
 FilterItemType item;
 case andChoice:
 sequence<CMISFilterType> and;
 case orChoice:
 sequence<CMISFilterType> or;
 case notChoice:
 sequence<CMISFilterType, 1> not;
 };

 union CMISFilterTypeOpt
 switch (boolean) {
 case TRUE: CMISFilterType value;
 };

 typedef CMISFilterTypeOpt CMISFilterTypeDef;

 enum ActionTypeIdTypeChoice { globalFormChoice, localFormChoice };

 union ActionTypeIdType
 switch(ActionTypeIdTypeChoice) {
 case globalFormChoice:
 ASN1_ObjectIdentifier globalForm;
 case localFormChoice:
 ASN1_Integer localForm;
 };

union ASN1_DefinedAnyOpt
 switch (boolean) {
 case TRUE: ASN1_DefinedAny value;
 };

struct ActionInfoType {
 ActionTypeIdType actionType;
 ASN1_DefinedAnyOpt actionInfoArg; // defined by:actionType
 };

 struct ActionArgumentType {
 ObjectClassType baseManagedObjectClass;
 ObjectInstanceType baseManagedObjectInstance;
 AccessControlTypeOpt accessControl;
 CMISSyncTypeDef synchronization;
 ScopeTypeDef scope;
 CMISFilterTypeDef filter;
 ActionInfoType actionInfo;
CORBA/TMN V1.0 Generated IDL Aug. 2000 B-31

B

 };

 const ScopeLevelType baseObject =
 0;

 union ObjectClassTypeOpt
 switch (boolean) {
 case TRUE: ObjectClassType value;
 };

 union ObjectInstanceTypeOpt
 switch (boolean) {
 case TRUE: ObjectInstanceType value;
 };

 union ASN1_GeneralizedTimeOpt
 switch (boolean) {
 case TRUE: ASN1_GeneralizedTime value;
 };

 enum ActionErrorInfoErrorStatusType { accessDenied, noSuchAction,
 noSuchArgument, invalidArgumentValue };

 struct NoSuchArgumentActionIdType {
 ObjectClassTypeOpt managedObjectClass;
 ActionTypeIdType actionType;
 };

 enum EventTypeIdTypeChoice { globalFormChoice_2, localFormChoice_2 };

 union EventTypeIdType
 switch(EventTypeIdTypeChoice) {

case globalFormChoice_2:
 ASN1_ObjectIdentifier globalForm;

case localFormChoice_2:
 ASN1_Integer localForm;
 };

 struct NoSuchArgumentEventIdType {
 ObjectClassTypeOpt managedObjectClass;
 EventTypeIdType eventType;
 };

 enum NoSuchArgumentTypeChoice { actionIdChoice, eventIdChoice };

 union NoSuchArgumentType
 switch(NoSuchArgumentTypeChoice) {
 case actionIdChoice:
 NoSuchArgumentActionIdType actionId;
 case eventIdChoice:
 NoSuchArgumentEventIdType eventId;
 };

 struct InvalidArgumentValueEventValueType {
B-32 CORBA/TMN Interworking V1.0 August 2000

B

 EventTypeIdType eventType;
 ASN1_DefinedAnyOpt eventInfo; // defined by:eventType
 };

 enum InvalidArgumentValueTypeChoice { actionValueChoice,
 eventValueChoice };

 union InvalidArgumentValueType
 switch(InvalidArgumentValueTypeChoice) {
 case actionValueChoice:
 ActionInfoType actionValue;
 case eventValueChoice:
 InvalidArgumentValueEventValueType eventValue;
 };

 enum ActionErrorInfoErrorInfoTypeChoice { actionTypeChoice,
 actionArgumentChoice, argumentValueChoice };

 union ActionErrorInfoErrorInfoType
 switch(ActionErrorInfoErrorInfoTypeChoice) {
 case actionTypeChoice:

ActionTypeIdType actionType;
 case actionArgumentChoice:
 NoSuchArgumentType actionArgument;

case argumentValueChoice:
 InvalidArgumentValueType argumentValue;
 };

 struct ActionErrorInfoType {
 ActionErrorInfoErrorStatusType errorStatus;
 ActionErrorInfoErrorInfoType errorInfo;
 };

 struct ActionErrorType {
 ObjectClassTypeOpt managedObjectClass;
 ObjectInstanceTypeOpt managedObjectInstance;
 ASN1_GeneralizedTimeOpt currentTime;
 ActionErrorInfoType actionErrorInfo;
 };

 struct ActionReplyType {
 ActionTypeIdType actionType;
 ASN1_DefinedAny actionReplyInfo; // defined by:actionType
 };

 union ActionReplyTypeOpt
 switch (boolean) {
 case TRUE: ActionReplyType value;
 };

 struct ActionResultType {
 ObjectClassTypeOpt managedObjectClass;
 ObjectInstanceTypeOpt managedObjectInstance;
 ASN1_GeneralizedTimeOpt currentTime;
 ActionReplyTypeOpt actionReply;
CORBA/TMN V1.0 Generated IDL Aug. 2000 B-33

B

 };

 enum AttributeErrorErrorStatusType { accessDenied_1,
 noSuchAttribute, invalidAttributeValue, invalidOperation,
 invalidOperator };

 typedef ASN1_Integer ModifyOperatorType;

union ModifyOperatorTypeOpt
 switch (boolean) {
 case TRUE: ModifyOperatorType value;
 };

struct AttributeErrorType {
 AttributeErrorErrorStatusType errorStatus;
 ModifyOperatorTypeOpt modifyOperator;

AttributeIdType attributeId;
 ASN1_DefinedAnyOpt attributeValue; // defined by:attributeId
 };

 enum AttributeIdErrorErrorStatusType { accessDenied_2,
 noSuchAttribute_1 };

 struct AttributeIdErrorType {
 AttributeIdErrorErrorStatusType errorStatus;
 AttributeIdType attributeId;
 };

 struct BaseManagedObjectIdType {
 ObjectClassType baseManagedObjectClass;
 ObjectInstanceType baseManagedObjectInstance;
 };

 struct ComplexityLimitationType {
 ScopeTypeOpt scope;
 CMISFilterTypeOpt filter;
 CMISSyncTypeOpt sync;
 };

 enum CreateArgumentObjectInstanceTypeChoice {
 managedObjectInstanceChoice, superiorObjectInstanceChoice };

 union CreateArgumentObjectInstanceType
 switch(CreateArgumentObjectInstanceTypeChoice) {
 case managedObjectInstanceChoice:
 ObjectInstanceType managedObjectInstance;
 case superiorObjectInstanceChoice:
 ObjectInstanceType superiorObjectInstance;
 };

 union CreateArgumentObjectInstanceTypeOpt
 switch (boolean) {
 case TRUE: CreateArgumentObjectInstanceType value;
 };
B-34 CORBA/TMN Interworking V1.0 August 2000

B

 typedef sequence <AttributeType>
 CreateArgumentAttributeListType;

 union CreateArgumentAttributeListTypeOpt
 switch (boolean) {
 case TRUE: CreateArgumentAttributeListType value;
 };

struct CreateArgumentType {
 ObjectClassType managedObjectClass;
 CreateArgumentObjectInstanceTypeOpt objectInstance;
 AccessControlTypeOpt accessControl;
 ObjectInstanceTypeOpt referenceObjectInstance;
 CreateArgumentAttributeListTypeOpt attributeList;
 };

 typedef sequence <AttributeType>
 CreateResultAttributeListType;

 union CreateResultAttributeListTypeOpt
 switch (boolean) {
 case TRUE: CreateResultAttributeListType value;
 };

 struct CreateResultType {
 ObjectClassTypeOpt managedObjectClass;
 ObjectInstanceTypeOpt managedObjectInstance;
 ASN1_GeneralizedTimeOpt currentTime;
 CreateResultAttributeListTypeOpt attributeList;
 };

 struct DeleteArgumentType {
 ObjectClassType baseManagedObjectClass;
 ObjectInstanceType baseManagedObjectInstance;
 AccessControlTypeOpt accessControl;
 CMISSyncTypeDef synchronization;
 ScopeTypeDef scope;
 CMISFilterTypeDef filter;
 };

 enum DeleteErrorDeleteErrorInfoType { accessDenied_3 };

 struct DeleteErrorType {
 ObjectClassTypeOpt managedObjectClass;
 ObjectInstanceTypeOpt managedObjectInstance;
 ASN1_GeneralizedTimeOpt currentTime;
 DeleteErrorDeleteErrorInfoType deleteErrorInfo;
 };

struct DeleteResultType {
 ObjectClassTypeOpt managedObjectClass;
 ObjectInstanceTypeOpt managedObjectInstance;
 ASN1_GeneralizedTimeOpt currentTime;
 };
CORBA/TMN V1.0 Generated IDL Aug. 2000 B-35

B

struct EventReplyType {
 EventTypeIdType eventType;
 ASN1_DefinedAnyOpt eventReplyInfo; // defined by:eventType
 };

 struct EventReportArgumentType {
 ObjectClassType managedObjectClass;
 ObjectInstanceType managedObjectInstance;
 ASN1_GeneralizedTimeOpt eventTime;
 EventTypeIdType eventType;
 ASN1_DefinedAnyOpt eventInfo; // defined by:eventType
 };

 union EventReplyTypeOpt
 switch (boolean) {
 case TRUE: EventReplyType value;
 };

 struct EventReportResultType {
 ObjectClassTypeOpt managedObjectClass;
 ObjectInstanceTypeOpt managedObjectInstance;
 ASN1_GeneralizedTimeOpt currentTime;
 EventReplyTypeOpt eventReply;
 };

 typedef sequence <AttributeIdType>
 GetArgumentAttributeIdListType;

 union GetArgumentAttributeIdListTypeOpt
 switch (boolean) {
 case TRUE: GetArgumentAttributeIdListType value;
 };

 struct GetArgumentType {
 ObjectClassType baseManagedObjectClass;
 ObjectInstanceType baseManagedObjectInstance;
 AccessControlTypeOpt accessControl;
 CMISSyncTypeDef synchronization;
 ScopeTypeDef scope;
 CMISFilterTypeDef filter;
 GetArgumentAttributeIdListTypeOpt attributeIdList;
 };

 enum GetInfoStatusTypeChoice { attributeIdErrorChoice,
 attribute_1Choice };

 union GetInfoStatusType
 switch(GetInfoStatusTypeChoice) {
 case attributeIdErrorChoice:
 AttributeIdErrorType attributeIdError;
 case attribute_1Choice:
 AttributeType attribute_1;
 };

 typedef sequence <GetInfoStatusType>
B-36 CORBA/TMN Interworking V1.0 August 2000

B

 GetListErrorGetInfoListType;

 struct GetListErrorType {
 ObjectClassTypeOpt managedObjectClass;
 ObjectInstanceTypeOpt managedObjectInstance;
 ASN1_GeneralizedTimeOpt currentTime;
 GetListErrorGetInfoListType getInfoList;
 };

 typedef sequence <AttributeType>
 GetResultAttributeListType;

 union GetResultAttributeListTypeOpt
 switch (boolean) {
 case TRUE: GetResultAttributeListType value;
 };

 struct GetResultType {
 ObjectClassTypeOpt managedObjectClass;
 ObjectInstanceTypeOpt managedObjectInstance;
 ASN1_GeneralizedTimeOpt currentTime;
 GetResultAttributeListTypeOpt attributeList;
 };

 typedef sequence <AttributeType>
 SetResultAttributeListType;

 union SetResultAttributeListTypeOpt
 switch (boolean) {
 case TRUE: SetResultAttributeListType value;
 };

 struct SetResultType {
 ObjectClassTypeOpt managedObjectClass;
 ObjectInstanceTypeOpt managedObjectInstance;
 ASN1_GeneralizedTimeOpt currentTime;
 SetResultAttributeListTypeOpt attributeList;
 };

 enum SetInfoStatusTypeChoice { attributeErrorChoice,
 attribute_1Choice_1 };

 union SetInfoStatusType
 switch(SetInfoStatusTypeChoice) {
 case attributeErrorChoice:
 AttributeErrorType attributeError;
 case attribute_1Choice_1:
 AttributeType attribute_1;
 };

 typedef sequence <SetInfoStatusType>
 SetListErrorSetInfoListType;

 struct SetListErrorType {
 ObjectClassTypeOpt managedObjectClass;
CORBA/TMN V1.0 Generated IDL Aug. 2000 B-37

B

 ObjectInstanceTypeOpt managedObjectInstance;
 ASN1_GeneralizedTimeOpt currentTime;
 SetListErrorSetInfoListType setInfoList;
 };

 struct SpecificErrorInfoType {
 ASN1_ObjectIdentifier errorId;
 ASN1_DefinedAny errorInfo; // defined by:errorId
 };

 struct ProcessingFailureType {
 ObjectClassType managedObjectClass;
 ObjectInstanceTypeOpt managedObjectInstance;
 SpecificErrorInfoType specificErrorInfo;
 };

 enum LinkedReplyArgumentTypeChoice { getResultChoice,
 getListErrorChoice, setResultChoice, setListErrorChoice,
 actionResultChoice, processingFailureChoice,
 deleteResultChoice, actionErrorChoice, deleteErrorChoice };

 union LinkedReplyArgumentType
 switch(LinkedReplyArgumentTypeChoice) {
 case getResultChoice:
 GetResultType getResult;
 case getListErrorChoice:
 GetListErrorType getListError;
 case setResultChoice:
 SetResultType setResult;
 case setListErrorChoice:
 SetListErrorType setListError;
 case actionResultChoice:
 ActionResultType actionResult;
 case processingFailureChoice:
 ProcessingFailureType processingFailure;
 case deleteResultChoice:
 DeleteResultType deleteResult;
 case actionErrorChoice:
 ActionErrorType actionError;
 case deleteErrorChoice:
 DeleteErrorType deleteError;
 };

 const ModifyOperatorType replace =
 0;

 const ModifyOperatorType addValues =
 1;

 const ModifyOperatorType removeValues =
 2;

 const ModifyOperatorType setToDefault =
 3;
B-38 CORBA/TMN Interworking V1.0 August 2000

B

 struct NoSuchActionType {
 ObjectClassType managedObjectClass;
 ActionTypeIdType actionType;
 };

 struct NoSuchEventTypeType {
 ObjectClassType managedObjectClass;
 EventTypeIdType eventType;
 };

 const ScopeLevelType firstLevelOnly =
 1;

 const ScopeLevelType wholeSubtree =
 2;

 typedef ModifyOperatorTypeOpt ModifyOperatorTypeDef;

 struct SetArgumentModificationListItemType {
 ModifyOperatorTypeDef modifyOperator;
 AttributeIdType attributeId;
 ASN1_DefinedAnyOpt attributeValue; // defined by:attributeId
 };

 typedef sequence <SetArgumentModificationListItemType>
 SetArgumentModificationListType;

 struct SetArgumentType {
 ObjectClassType baseManagedObjectClass;
 ObjectInstanceType baseManagedObjectInstance;
 AccessControlTypeOpt accessControl;
 CMISSyncTypeDef synchronization;
 ScopeTypeDef scope;
 CMISFilterTypeDef filter;
 SetArgumentModificationListType modificationList;
 };

 const ModifyOperatorType modifyOperatorDefault =
 replace;

 typedef sequence <AttributeIdType>
 MissingAttributeValueType;

 // Complex constants declaration.

 interface ConstValues {

 // ** Generated values for <ActionArgumentType::synchronization>:

 CMISSyncType synchronizationDefault();
 // returns: bestEffort

 // ** Generated values for <ActionArgumentType::scope>:

 ScopeType scopeDefault();
CORBA/TMN V1.0 Generated IDL Aug. 2000 B-39

B

 // returns: baseObject

 // ** Generated values for <ActionArgumentType::filter>:

 CMISFilterType filterDefault();
 // returns: {}

 // ** Generated values for <DeleteArgumentType::synchronization>:

 CMISSyncType synchronizationDefault_1();
 // returns: bestEffort

 // ** Generated values for <DeleteArgumentType::scope>:

 ScopeType scopeDefault_1();
 // returns: baseObject

 // ** Generated values for <DeleteArgumentType::filter>:

 CMISFilterType filterDefault_1();
 // returns: {}

 // ** Generated values for <GetArgumentType::synchronization>:

 CMISSyncType synchronizationDefault_2();
 // returns: bestEffort

 // ** Generated values for <GetArgumentType::scope>:

 ScopeType scopeDefault_2();
 // returns: baseObject

 // ** Generated values for <GetArgumentType::filter>:

 CMISFilterType filterDefault_2();
 // returns: {}

 // ** Generated values for <SetArgumentType::synchronization>:

 CMISSyncType synchronizationDefault_3();
 // returns: bestEffort

 // ** Generated values for <SetArgumentType::scope>:

 ScopeType scopeDefault_3();
 // returns: baseObject

 // ** Generated values for <SetArgumentType::filter>:

 CMISFilterType filterDefault_3();
 // returns: {}
 };

};
B-40 CORBA/TMN Interworking V1.0 August 2000

B

#endif /* _X711CMI_IDL_ */

B.4 Optional IDL

IDL listed in this section is part of this specification, however, it is part of some
optional facility, and therefore not required from any implementation.

B.4.1 ASN1.idl

Specification of the Dynamic ASN1 Any API.

// File: ASN1.idl
#ifndef _ASN1_IDL_
#define _ASN1_IDL_

#include <orb.idl>
#include <ASN1Types.idl>

#pragma prefix “jidm.org”

module ASN1 {

 typedef CORBA::Identifier Identifier;

 enum Kind {
 ak_none, // used when value is not ASN.1 based
 ak_null, ak_boolean,
 ak_integer, ak_real,
 ak_numericstring, ak_printablestring,
 ak_visiblestring, ak_iso646string,
 ak_graphicstring, ak_objectdescriptor,
 ak_teletexstring, ak_t61string,
 ak_generalizedtime, ak_utctime,
 ak_octetstring, ak_generalstring,
 ak_ia5string, ak_videotexstring,
 ak_bmpstring, ak_universalstring,
 ak_objectidentifier,
 ak_bitstring,
 ak_any, ak_definedany,
 ak_external,
 ak_enum,
 ak_sequence, ak_set,
 ak_sequenceof, ak_setof,
 ak_choice
 };

 interface DynAny : CORBA::DynAny {
 Kind asn1_kind() raises (Invalid);
 Identifier asn1_type_name () raises (Invalid);
 Identifier asn1_module_name() raises (Invalid);
 Identifier asn1_module_nickname() raises (Invalid);
 ASN1_ObjectIdentifier asn1_module_oid() raises (Invalid);
CORBA/TMN V1.0 Optional IDL Aug. 2000 B-41

B

 void asn1_assign (in DynAny asn1_dyn_any) raises (Invalid);
 void from_dyn_any (in CORBA::DynAny dyn_any) raises (Invalid);
 CORBA::DynAny to_dyn_any() raises (Invalid);
 DynAny asn1_copy();

 void insert_asn1_null(in ASN1_Null value) raises(InvalidValue);
 void insert_asn1_boolean(in ASN1_Boolean value) raises(InvalidValue);
 void insert_asn1_unsigned16(in ASN1_Unsigned16 value) raises(InvalidValue);
 void insert_asn1_unsigned(in ASN1_Unsigned value) raises(InvalidValue);
 void insert_asn1_unsigned64(in ASN1_Unsigned64 value) raises(InvalidValue);
 void insert_asn1_integer16(in ASN1_Integer16 value) raises(InvalidValue);
 void insert_asn1_integer(in ASN1_Integer value) raises(InvalidValue);
 void insert_asn1_integer64(in ASN1_Integer64 value) raises(InvalidValue);
 void insert_asn1_real(in ASN1_Real value) raises(InvalidValue);
 void insert_asn1_numericstring(in ASN1_NumericString value) raises(InvalidValue);
 void insert_asn1_printablestring(in ASN1_PrintableString value) raises(InvalidValue);
 void insert_asn1_visiblestring(in ASN1_VisibleString value) raises(InvalidValue);
 void insert_asn1_iso646string(in ASN1_ISO646String value) raises(InvalidValue);
 void insert_asn1_graphicstring(in ASN1_GraphicString value) raises(InvalidValue);
 void insert_asn1_objectdescriptor(in ASN1_ObjectDescriptor value) raises(InvalidValue);
 void insert_asn1_teletexstring(in ASN1_TeletexString value) raises(InvalidValue);
 void insert_asn1_t61string(in ASN1_T61String value) raises(InvalidValue);

void insert_asn1_generalizedtime(in ASN1_GeneralizedTime value) raises(InvalidValue);
 void insert_asn1_utctime(in ASN1_UTCTime value) raises(InvalidValue);

 void insert_asn1_octetstring(in ASN1_OctetString value) raises(InvalidValue);
 void insert_asn1_generalstring(in ASN1_GeneralString value) raises(InvalidValue);
 void insert_asn1_ia5string(in ASN1_IA5String value) raises(InvalidValue);
 void insert_asn1_videotexstring(in ASN1_VideotexString value) raises(InvalidValue);

 void insert_asn1_bmpstring(in ASN1_BMPString value) raises(InvalidValue);
 void insert_asn1_universalstring(in ASN1_UniversalString value) raises(InvalidValue);

 void insert_asn1_objectidentifier(in ASN1_ObjectIdentifier value) raises(InvalidValue);

 void insert_asn1_bitstring(in ASN1_BitString value) raises(InvalidValue);

 void insert_asn1_any(in ASN1_Any value) raises(InvalidValue);
 void insert_asn1_definedany(in ASN1_DefinedAny value) raises(InvalidValue);

 void insert_asn1_external(in ASN1_External value) raises(InvalidValue);

 ASN1_Null get_asn1_null() raises(TypeMismatch);
 ASN1_Boolean get_asn1_boolean() raises(TypeMismatch);

 ASN1_Unsigned16 get_asn1_unsigned16() raises(TypeMismatch);
 ASN1_Unsigned get_asn1_unsigned() raises(TypeMismatch);
 ASN1_Unsigned64 get_asn1_unsigned64() raises(TypeMismatch);
 ASN1_Integer16 get_asn1_integer16() raises(TypeMismatch);
 ASN1_Integer get_asn1_integer() raises(TypeMismatch);
 ASN1_Integer64 get_asn1_integer64() raises(TypeMismatch);

 ASN1_Real get_asn1_real() raises(TypeMismatch);

B-42 CORBA/TMN Interworking V1.0 August 2000

B

 ASN1_NumericString get_asn1_numericstring() raises(TypeMismatch);
 ASN1_PrintableString get_asn1_printablestring() raises(TypeMismatch);
 ASN1_VisibleString get_asn1_visiblestring() raises(TypeMismatch);
 ASN1_ISO646String get_asn1_iso646string() raises(TypeMismatch);
 ASN1_GraphicString get_asn1_graphicstring() raises(TypeMismatch);
 ASN1_ObjectDescriptor get_asn1_objectdescriptor() raises(TypeMismatch);
 ASN1_TeletexString get_asn1_teletexstring() raises(TypeMismatch);
 ASN1_T61String get_asn1_t61string() raises(TypeMismatch);

 ASN1_GeneralizedTime get_asn1_generalizedtime() raises(TypeMismatch);
 ASN1_UTCTime get_asn1_utctime() raises(TypeMismatch);

 ASN1_OctetString get_asn1_octetstring() raises(TypeMismatch);
 ASN1_GeneralString get_asn1_generalstring() raises(TypeMismatch);
 ASN1_IA5String get_asn1_ia5string() raises(TypeMismatch);
 ASN1_VideotexString get_asn1_videotexstring() raises(TypeMismatch);

 ASN1_BMPString get_asn1_bmpstring() raises(TypeMismatch);
 ASN1_UniversalString get_asn1_universalstring() raises(TypeMismatch);

 ASN1_ObjectIdentifier get_asn1_objectidentifier() raises(TypeMismatch);

 ASN1_BitString get_asn1_bitstring() raises(TypeMismatch);

 ASN1_Any get_asn1_any() raises(TypeMismatch);
 ASN1_DefinedAny get_asn1_definedany() raises(TypeMismatch);

 ASN1_External get_asn1_external() raises(TypeMismatch);

 DynAny current_asn1_component () raises(Invalid);
 };

 interface DynEnum: DynAny, CORBA::DynEnum {
 attribute string value_as_asn1_identifier;
 attribute long value_as_asn1_value;
 };

 interface DynNamedNumber: DynAny {
 attribute string value_as_asn1_identifier;
 };

 typedef CORBA::FieldName FieldName;
 typedef CORBA::NameValuePairSeq NameValuePairSeq;

 interface DynSetSeq: DynAny, CORBA::DynStruct {
 FieldName current_asn1_elem_name ();
 Kind current_asn1_elem_kind ();
 NameValuePairSeq get_asn1_elems() raises(Invalid);
 void set_asn1_elems(in NameValuePairSeq value) raises (InvalidSeq);
 void insert_optional_absent() raises (InvalidValue);
 DynAny insert_optional_present() raises (InvalidValue);
 void insert_default_absent() raises (InvalidValue);
 DynAny insert_default_present() raises (InvalidValue);
 boolean get_optional_presence() raises (TypeMismatch);
 DynAny get_optional_present() raises (TypeMismatch);
CORBA/TMN V1.0 Optional IDL Aug. 2000 B-43

B

 boolean get_default_presence() raises (TypeMismatch);
 DynAny get_default_present() raises (TypeMismatch);
 };

 interface DynChoice: DynAny, CORBA::DynUnion {
 DynAny asn1_elem ();
 attribute FieldName asn1_elem_name;
 Kind asn1_elem_kind ();
 };

 interface DynSetSeqOf : DynAny, CORBA::DynSequence {
 Kind asn1_item_kind ();
 };

 interface DynAnyFactory {
 exception InconsistentKind {};
 exception InconsistentTypeCode {};

typedef CORBA::Identifier Identifier;

 DynAny create_asn1_dyn_any(in any value);

 DynAny create_basic_dyn_any(in CORBA::TypeCode type)
 raises(InconsistentTypeCode);
 CORBA::DynStruct create_dyn_struct(in CORBA::TypeCode type)
 raises(InconsistentTypeCode);
 CORBA::DynSequence create_dyn_sequence(in CORBA::TypeCode type)
 raises(InconsistentTypeCode);
 CORBA::DynUnion create_dyn_union(in CORBA::TypeCode type)
 raises(InconsistentTypeCode);
 CORBA::DynEnum create_dyn_enum(in CORBA::TypeCode type)
 raises(InconsistentTypeCode);
 CORBA::DynArray create_dyn_array(in CORBA::TypeCode type)
 raises(InconsistentTypeCode);
 CORBA::DynFixed create_dyn_fixed(in CORBA::TypeCode type)
 raises(InconsistentTypeCode);

 DynAny create_asn1_dyn_primitive(in Identifier asn1_nickname,
 in Identifier asn1_name)
 raises(InconsistentKind);
 DynEnum create_asn1_dyn_enum(in Identifier asn1_nickname,
 in Identifier asn1_name)
 raises(InconsistentKind);
 DynSetSeq create_asn1_dyn_setseq(in Identifier asn1_nickname,
 in Identifier asn1_name)
 raises(InconsistentKind);
 DynSetSeqOf create_asn1_dyn_setseqof(in Identifier asn1_nickname,
 in Identifier asn1_name)
 raises(InconsistentKind);
 DynChoice create_asn1_dyn_choice(in Identifier asn1_nickname,
 in Identifier asn1_name)
 raises(InconsistentKind);
 };
B-44 CORBA/TMN Interworking V1.0 August 2000

B

};

#endif /* _ASN1_IDL_ */

B.4.2 OSICaching.idl

Specification of the OSI Caching facility.

// File: OSICaching.idl
#ifndef _OSICACHING_IDL_
#define _OSICACHING_IDL_

#include <OSIMgmt.idl>

#pragma prefix “jidm.org”

module OSICaching {
typedef unsigned long ExpirationInterval; // in seconds
typedef ASN1_ObjectIdentifier ManagedObjectClass;
typedef sequence <ManagedObjectClass> ManagedObjectClassSeq;
typedef ASN1_ObjectIdentifier AttrId;
typedef sequence < ASN1_ObjectIdentifier > AttrIdSeq;

// NoSuchAttributes is raised when any specified attribute identifiers
// are either unknown or invalid.
exception NoSuchAttributes {

AttrIdSeq unknown_attributes;
};

// AttributesNotCached is raised when any specified attribute identifiers
// to relevant caching operations are not being cached.
exception AttributesNotCached {

AttrIdSeq attr_id_list;
};

// NoSuchObjectClasses is raised when any specified object classes are
// either unknown or invalid.
exception NoSuchObjectClasses {

ManagedObjectClassSeq unknown_mocs;
};

// ObjectClassesNotCached is raised when any specified object classes
// to relevant caching operations are not being cached.
exception ObjectClassesNotCached {

ManagedObjectClassSeq moc_list;
};

// InvalidObjectClassAttributesPairs is raised when any specified attribute
// identifiers do not belong to the specified managed object class.
struct ObjectClassAttributesPair {

ManagedObjectClass moc;
AttrIdSeq attr_id_list;

};
typedef sequence<ObjectClassAttributesPair> ObjectClassAttributesPairSeq;
CORBA/TMN V1.0 Optional IDL Aug. 2000 B-45

B

exception InvalidObjectClassAttributesPairs {
ObjectClassAttributesPairSeq invalid_pairs;

};

/* There may be situations when more than one type of error may occur
 * because of a single invocation of an operation. To accurately convey
 * the different types of error information, CacheConfigException is used
 * by some operations. If any of the members of the following exception
 * are not relevant, then such members shall be empty sequences, i.e.,
 * sequences of zero length. For example, when passing an argument of
 * AttrIdSeq to remove cached attributes , the client may pass some invalid
 * or unkown attribute identifiers, and some valid attribute identifiers
 * that are not cached. In such situations, CacheConfigException is raised
 * with the invalid or unknown attribute identifiers specified in the
 * no_such_attributes member, the valid but not cached attribute
 * identifiers specified in the attrs_not_cached member, and the rest of
 * the members set to zero length sequences.
 */
exception CacheConfigException {

AttrIdSeq no_such_attributes;
ManagedObjectClassSeq no_such_classes;
AttrIdSeq attrs_not_cached;
ManagedObjectClassSeq mocs_not_cached;
ObjectClassAttributesPairSeq invalid_moc_attrs_pairs;

};

// abstract interface for configuring all caches
interface CacheConfigurator {

void set_default_expiration_interval (
in ExpirationInterval expiration_interval,
in boolean override_specific_settings

);
ExpirationInterval get_default_expiration_interval ();

void set_caching_enabled (
in boolean enabled,
in boolean override_specific_settings

);
boolean is_caching_enabled ();

};

// cached attribute information
struct CachedAttribute {

AttrId attr_id;
ExpirationInterval expiration_interval;

};
typedef sequence < CachedAttribute > CachedAttributeSeq;

// abstract interface to configure per-attribute cache
interface PerAttributeCacheConfigurator {

void add_cached_attributes (
in CachedAttributeSeq attr_list,
in boolean override_specific_settings

) raises (NoSuchAttributes);
B-46 CORBA/TMN Interworking V1.0 August 2000

B

void remove_cached_attributes (
in AttrIdSeq attr_id_list,
in boolean override_specific_settings

) raises (CacheConfigException);

CachedAttributeSeq get_cached_attributes ();

ExpirationInterval get_expiration_interval (
in AttrId attr_id

) raises (CacheConfigException);

void set_expiration_interval(
in AttrIdSeq attr_id_list,
in ExpirationInterval interval

) raises (CacheConfigException);
};

// managed object class with indicated attributes cached
struct CachedObjectClass {

ManagedObjectClass moc;
CachedAttributeSeq cached_attributes_list;

};
typedef sequence < CachedObjectClass > CachedObjectClassSeq;

// abstract interface to configure per-class cache
interface PerClassCacheConfigurator {

void add_cached_classes (
in CachedObjectClassSeq class_list,
in boolean override_specific_settings

) raises (CacheConfigException);

void remove_cached_classes (
in ManagedObjectClassSeq moc_list,
in boolean override_specific_settings

) raises (CacheConfigException);

void remove_cached_attributes_from_class_cache(
in ManagedObjectClass moc,
in AttrIdSeq attr_id_list,
in boolean override_specific_settings

) raises (CacheConfigException);

CachedObjectClassSeq get_cached_classes ();

CachedAttributeSeq get_cached_attributes_for_class (
in ManagedObjectClass moc

) raises (OSIMgmt::NoSuchObjectClass);

void set_expiration_interval_for_class (
in ManagedObjectClass moc,
in AttrIdSeq attr_list,
in ExpirationInterval extension_duration

) raises (CacheConfigException);
};
CORBA/TMN V1.0 Optional IDL Aug. 2000 B-47

B

interface ProxyAgent : OSIMgmt::ProxyAgent,
 CacheConfigurator,
 PerAttributeCacheConfigurator,
 PerClassCacheConfigurator {};

interface ManagedObject : OSIMgmt::ManagedObject,
CacheConfigurator,
PerAttributeCacheConfigurator {

void refresh_cached_values (
in AttrIdSeq attr_list

) raises (CacheConfigException);

void invalidate_cached_values (
in AttrIdSeq attr_list

) raises (CacheConfigException);
};

};

#endif /* _OSICACHING_IDL_ */

B.4.3 OSITracking.idl

Specification of the OSI Tracking facility.

// File: OSITracking.idl
#ifndef _OSITRACKING_IDL_
#define _OSITRACKING_IDL_

#include <OSICaching.idl>

#pragma prefix “jidm.org”

module OSITracking {

typedef OSICaching::ManagedObjectClassSeq ManagedObjectClassSeq;
typedef OSICaching::AttrIdSeq AttrIdSeq;

// abstract interface to configure all tracking
interface TrackConfigurator {

void set_tracking_enabled (
in boolean enabled,
in boolean override_specific_settings

);

boolean is_tracking_enabled ();
};

// abstract interface to configure per-attribute tracking
interface PerAttributeTrackConfigurator {

void add_tracked_attributes (
in AttrIdSeq attr_list,
in boolean override_specific_settings
B-48 CORBA/TMN Interworking V1.0 August 2000

B

) raises (OSICaching::NoSuchAttributes);

// If the attr_id_list contains an attribute identifier that is not
// being tracked, then that attribute identifier is ignored
// by remove_tracked_attributes.
void remove_tracked_attributes (

in AttrIdSeq attr_id_list,
in boolean override_specific_settings

) raises (OSICaching::NoSuchAttributes);

AttrIdSeq get_tracked_attributes ();
};

// managed object class with indicated attributes tracked
struct TrackedObjectClass {

OSICaching::ManagedObjectClass moc;
AttrIdSeq list_of_tracked_attributes;

};

typedef sequence < TrackedObjectClass > TrackedObjectClassSeq;

// TrackConfigException is similar in purpose to
// OSICaching::CacheConfigException
exception TrackConfigException {

ManagedObjectClassSeq no_such_mocs;
AttrIdSeq no_such_attr_ids;
OSICaching::ObjectClassAttributesPairSeq invalid_moc_attrs_pairs;

};

// abstract interface to configure per-class tracking
interface PerClassTrackConfigurator {

void add_tracked_classes (
in TrackedObjectClassSeq class_list,
in boolean override_specific_settings

) raises (TrackConfigException);

void remove_tracked_classes (
in ManagedObjectClassSeq moc_list,
in boolean override_specific_settings

) raises (OSICaching::NoSuchObjectClasses);

TrackedObjectClassSeq get_tracked_classes ();

AttrIdSeq get_tracked_attributes_for_class (
in OSICaching::ManagedObjectClass class_name

) raises (OSIMgmt::NoSuchObjectClass);
};

interface ProxyAgent : OSICaching::ProxyAgent,
 TrackConfigurator,
 PerAttributeTrackConfigurator,
 PerClassTrackConfigurator {};

interface ManagedObject : OSICaching::ManagedObject,
TrackConfigurator,
CORBA/TMN V1.0 Optional IDL Aug. 2000 B-49

B

PerAttributeTrackConfigurator {};

};

#endif /* _OSITRACKING_IDL_ */

B.4.4 OSICollection.idl

Specification of the OSI Collection facility.

// File: OSICollection.idl
#ifndef _OSICOLLECTION_IDL_
#define _OSICOLLECTION_IDL_

#include <OSIMgmt.idl>

#pragma prefix “jidm.org”

module OSICollection {
typedef OSIMgmt::ManagedObject ManagedObject;
typedef sequence < ManagedObject > ManagedObjectSeq;
exception IteratorInvalid { };
exception IteratorInBetween { };
exception CollectionInvalid { };
exception NotFound { };
exception InvalidName { };

interface Iterator {
// retrieving elements
boolean get_element (

out ManagedObject mo
) raises (IteratorInvalid, IteratorInBetween);
boolean get_n_elements (

in unsigned long how_many,
 out ManagedObjectSeq mo_list
) raises (IteratorInvalid);

// moving iterator
void restart () raises (IteratorInvalid);
void set_to_next_element () raises (IteratorInvalid);
void set_to_next_nth_element (

in unsigned long how_many
) raises (IteratorInvalid);

// iterator state
void invalidate ();
boolean is_valid ();
boolean is_in_between ();
boolean is_equal (in Iterator other) raises (IteratorInvalid);

// cloning, assigning and destroying
Iterator clone ();
void assign (in Iterator from_where) raises (IteratorInvalid);
void destroy ();
B-50 CORBA/TMN Interworking V1.0 August 2000

B

};

typedef OSIMgmt::LinkedReplyHandler LinkedReplyHandler;
typedef OSIMgmt::EndOfRepliesHandler EndOfRepliesHandler;

// abstract base interface
interface BaseCollection {

// operations to perform on all elements in the collection
void perform_get (

in OSIMgmt::ASN1_ObjectIdentifierSeq attr_id_list,
 in LinkedReplyHandler lrh,
 in EndOfRepliesHandler eorh
);
void perform_set (

in OSIMgmt::SetOperationArgument modif_list,
in LinkedReplyHandler lrh,
in EndOfRepliesHandler eorh

);
void perform_action (

in ASN1_ObjectIdentifier action_id,
in ASN1_DefinedAny action_info,
in LinkedReplyHandler lrh,
in EndOfRepliesHandler eorh

);
void perform_delete (

in LinkedReplyHandler lrh,
in EndOfRepliesHandler eorh

);

// statistics
boolean is_empty ();

// creating iterators
Iterator create_iterator (

in boolean read_only
) raises (CollectionInvalid);

// destruction
void destroy ();

};

interface EnumCollection : BaseCollection {
// adding elements
void add_element (in ManagedObject element);
void add_elements (in ManagedObjectSeq elem_list);
void add_all_from (in BaseCollection collection);

// removing elements
void remove_element_at (

in Iterator where
) raises (IteratorInvalid, IteratorInBetween);
void remove_all ();

};

interface RuleCollection : BaseCollection {
CORBA/TMN V1.0 Optional IDL Aug. 2000 B-51

B

ManagedObject get_base_object () raises (CollectionInvalid);
X711CMI::ScopeType get_scope () raises (CollectionInvalid);
X711CMI::CMISFilterType get_filter () raises (CollectionInvalid);
X711CMI::CMISSyncType get_synchronization () raises (CollectionInvalid);

};

interface CollectionFactory {
EnumCollection create_enum_collection ();

EnumCollection create_enum_collection_from_collection (
 in BaseCollection collection
);

RuleCollection create_rule_collection (
in OSIMgmt::ManagedObject base_managed_object,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType sync

);

RuleCollection create_rule_collection_by_name (
in OSIMgmt::ProxyAgent proxy_agent,
in CORBA::ScopedName base_mo_interface,
in CosNaming::Name base_mo_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType sync

);
};

};

#endif /* _OSICOLLECTION_IDL_ */

B.4.5 SNMPMIR.idl

Specification of the SNMP Management Information Repository facility.

// File: SNMPMIR.idl
#ifndef _SNMPMIR_IDL_
#define _SNMPMIR_IDL_

#include <orb.idl>
#include <ASN1Types.idl>

#pragma prefix “jidm.org”

module SNMPMIR {

// Snmpv1GenericTrapId defines the identfiers for generic trap
// types in SNMPv1.

enum Snmpv1GenericTrapId {
TRAP_COLDSTART, TRAP_WARMSTART, TRAP_LINKDOWN, TRAP_LINKUP,
TRAP_AUTHFAIL, TRAP_EGPNEIGHBORLOSS, TRAP_ENTERPRISESPECIFIC
B-52 CORBA/TMN Interworking V1.0 August 2000

B

};

// GENERIC_TRAP_ENTERPRISE_OID defines the enterprise OID for
// generic traps.

const ASN1_ObjectIdentifier GENERIC_TRAP_ENTERPRISE_OID = “1.3.6.1.4.1.3.1.1”;

// SmiAccessMode defines the enumerated values of the SMI based
// acces - mode defined for a specific variables.

enum SmiAccessMode {
read_only, read_write, read_create, write_only, inaccessible

};

// Basic and Application specific SMI types.
enum SmiValueType {

smi_null_value, smi_integer_value, smi_string_value, smi_objectID_value,
smi_bit_value, smi_ipAddress_value, smi_counter_value, smi_gauge_value,
smi_timeticks_value, smi_arbitary_value, smi_nsapAddress_value,
smi_big_counter_value, smi_unsigned_integer_value, smi_unknown_type

};

typedef CORBA::ScopedName ScopedName;
typedef sequence < ScopedName > ScopedNameList;
typedef sequence < string > VarNameList;

typedef sequence < string > ModuleNameList;
typedef sequence < ASN1_ObjectIdentifier > OIDList;

interface OidRepository {

ScopedName get_scoped_name (in ASN1_ObjectIdentifier in_oid);

string get_name (in ASN1_ObjectIdentifier in_oid);
ASN1_ObjectIdentifier get_oid (in ScopedName in_scoped_name);
ASN1_ObjectIdentifier get_var_oid (
 in ScopedName iface_scoped_name,

in string var_name
);

string get_textual_obj_id (in ASN1_ObjectIdentifier obj_id);

void split_var_object_id (
in ASN1_ObjectIdentifier var_obj_id,
out ASN1_ObjectIdentifier var_oid,
out ASN1_ObjectIdentifier obj_index

);

ASN1_ObjectIdentifier get_next_oid (in ASN1_ObjectIdentifier oid);

ScopedName get_next_scoped_name (in ScopedName scoped_name);
ScopedName get_next_entry_type (in ScopedName scoped_name);

};
CORBA/TMN V1.0 Optional IDL Aug. 2000 B-53

B

interface VariableDef : CORBA::AttributeDef {
readonly attribute ASN1_ObjectIdentifier oid;
readonly attribute SmiValueType smi_type;
readonly attribute SmiAccessMode smi_access_mode;

readonly attribute any default_value;
};
typedef sequence < VariableDef > VariableDefList;

interface SmiEntryDef : CORBA::InterfaceDef {
readonly attribute ASN1_ObjectIdentifier oid;
readonly attribute unsigned long total_no_of_variables;
readonly attribute VariableDefList var_def_list;
readonly attribute VarNameList var_name_list;
readonly attribute ScopedNameList var_scoped_name_list;
readonly attribute OIDList var_oid_list;
readonly attribute VarNameList index_var_names;

readonly attribute ScopedName next_group_or_table;
VariableDef lookup_variable(in string var_name);

};
typedef sequence < SmiEntryDef > SmiEntryDefList;

interface GroupDef : SmiEntryDef {
readonly attribute SmiEntryDefList table_entry_list;

};
typedef sequence < GroupDef > GroupDefList;

interface ModuleDef : CORBA::ModuleDef {
readonly attribute GroupDefList smi_group_def_list;
readonly attribute SmiEntryDefList smi_entry_def_list;
readonly attribute CORBA::InterfaceDef push_notification_def;
readonly attribute CORBA::InterfaceDef pull_notification_def;

readonly attribute CORBA::InterfaceDef default_value_def;
SmiEntryDef lookup_smi_entry(in string smi_entry_name);

};
typedef sequence < ModuleDef > ModuleDefList;

interface Repository : CORBA::Repository, OidRepository {
readonly attribute ModuleNameList module_name_list;
readonly attribute ModuleDefList module_def_list;
boolean is_smi_module(in CORBA::Identifier module_name);
ModuleDef lookup_smi_module(in string a_module_name);
SmiEntryDef lookup_smi_entry(in ScopedName entry_scoped_name);
ScopedNameList get_entry_var_list(in ScopedName entry_scoped_name);
ScopedNameList get_entry_index_var_list(in ScopedName entry_scoped_name);
any get_var_default_value(in ScopedName var_scoped_name);
string get_generic_trap_desc(in ASN1_Integer trap_type);

};

};

#endif /* _SNMPMIR_IDL_ */
B-54 CORBA/TMN Interworking V1.0 August 2000

 Conformance Statement C
ion.

ed
n
ists
 or
C.1 Conformance Statement

This section presents the different conformance points available for this specificat

C.1.1 General Conformance Requirements

All implementations claiming conformance to this specification will

• provide a complete implementation of an interface specification (mandatory or
otherwise) for which conformance is claimed unless some part of the interface
specification is identified as optional, and

• conform to the mappings of GDMO, ASN.1 and/or SNMP SMI to IDL as specifi
in XoJIDM ST XoJIDM (see “[XoJIDM] Inter Domain Management: Specificatio
Translation” mentioned in Appendix A), and amended by the JIDM ST Issues l
resolutions where support of an information model specified in GDMO, ASN.1,
SNMP SMI respectively is also claimed.

C.1.2 Specific Conformance Requirements

An implementation can claim conformance to this specification at four conformance
points named, respectively:

• JIDM Facilities

• CMISE Access Facilities

• OSI Management Facilities

• SNMP Management Facilities

in either the manager role, the agent role, or both.
 CORBA/TMN Interworking V1.0 August 2000 C-1

C

 its

ct
lity;

ct

n
C.1.3 JIDM Conformance Point

Manager Role

Implementations claiming conformance to JIDM Facilities in the manager role:

• Use those interfaces specified in the JIDM module that are required to perform
management functionality, namely:

• JIDM::ProxyAgentFinder
• JIDM::ProxyAgent

• If the management model being supported defines one or more managed obje
interfaces, use those interfaces required to perform the management functiona
additionally, use the following interfaces, if needed to perform its management
function:

• CosNaming::NamingContext
• CosLifeCycle::FactoryFinder
• CosLifeCycle::GenericFactory

• Implement the interface and behaviors specified for the
JIDM::ProxyAgentController object, if required.

• Implement the JIDM::EventPortFinder interface, providing access to
CosEventChannelAdmin::SupplierAdmin objects in the manager domain, if
events are to be received by the manager.

Agent Role

Implementations claiming conformance to JIDM Facilities in the agent role:

• Provide implementations of the following interfaces:

• JIDM::ProxyAgentFinder
• JIDM::ProxyAgent

• If the management model being supported defines one or more managed obje
interfaces, implement those interfaces being supported by the agent. Name
resolution of objects exposing those interfaces will be supported by providing a
implementation of the CosNaming::NamingContext interface. If creation of
managed objects is supported by the agent, then implementations of the
CosLifeCycle::FactoryFinder and CosLifeCycle::GenericFactory interfaces
are provided.

• Execute the client behavior of the JIDM::ProxyAgentController interface, if
requested by a manager.

• Execute the client behavior of the JIDM::EventPortFinder and supply events to
the corresponding CosEventChannelAdmin::SupplierAdmin interface, if the
agent implementation is capable of emitting event reports.
C-2 CORBA/TMN Interworking V1.0 August 2000

C

r

ired

le:

ole

ger
C.1.4 CMISE Access Conformance Point

Manager Role

Implementations claiming conformance to CMISE Access Facilities in the manage
role:

• Use those interfaces specified in the JIDM and OSIMgmt modules that are requ
to perform its management function:

• JIDM::ProxyAgentFinder
• OSIMgmt::ProxyAgent

• Implement the interface and behavior specified for the
JIDM::ProxyAgentController object, if required.

• Implement the interface and behavior specified for the
OSIMgmt::LinkedReplyHandler and OSIMgmt::EndOfRepliesHandler
objects.

• Implement the JIDM::EventPortFinder interface, providing access to
CosEventChannelAdmin::SupplierAdmin objects in the manager domain, if
events are to be received by the manager.

Agent Role

Implementations claiming conformance to CMISE Access Facilities in the agent ro

• Provide implementations of the following interfaces:

• JIDM::ProxyAgentFinder
• OSIMgmt::ProxyAgent

• Execute the client behavior of the JIDM::ProxyAgentController interface, if
requested by a manager.

• Execute the client behavior of the OSIMgmt::LinkedReplyHandler and
OSIMgmt::EndOfRepliesHandler interfaces.

• Execute the client behavior of the JIDM::EventPortFinder and supply events to
the corresponding CosEventChannelAdmin::SupplierAdmin interface, if the
agent implementation is capable of emitting event reports.

C.1.5 OSI Management Conformance Point

It is the intent of the OSI Management Conformance Points to ensure that a
conformant manager role implementation interoperates with a conformant agent r
implementation.

Manager Role

Implementations claiming conformance to OSI Management Facilities in the mana
role:
CORBA/TMN V1.0 Conformance Statement Aug. 2000 C-3

C

ired

 role:

ing
• Use those interfaces specified in the JIDM and OSIMgmt modules that are requ
to perform its management function, namely:

• JIDM::ProxyAgentFinder
• OSIMgmt::ProxyAgent
• OSIMgmt::NamingContext
• CosLifeCycle::FactoryFinder
• CosLifeCycle::GenericFactory
• OSIMgmt::ManagedObjectFactory
• OSIMgmt::ManagedObject

• Use whatever managed object interface(s) specific to an information model are
required to perform its management function.

• Implement the interface and behavior specified for the
JIDM::ProxyAgentController object, if required.

• Implement the interface and behavior specified for the
OSIMgmt::LinkedReplyHandler and OSIMgmt::EndOfRepliesHandler
objects, if required.

• Implement the JIDM::EventPortFinder interface, providing access to
CosEventChannelAdmin::SupplierAdmin objects in the manager domain, if
events are to be received by the manager.

Agent Role

Implementations claiming conformance to OSI Management Facilities in the agent

• Provide implementations of the following interfaces:

• JIDM::ProxyAgentFinder
• OSIMgmt::ProxyAgent
• OSIMgmt::NamingContext
• CosLifeCycle::FactoryFinder
• OSIMgmt::ManagedObject

• Implement the managed object interface(s) specific to the information model be
supported by the agent.

• Provide implementations of the following additional interfaces, if the agent is
capable of creating objects as a result of management operations:

• CosLifeCycle::GenericFactory
• OSIMgmt::ManagedObjectFactory

• Execute the client behavior of the JIDM::ProxyAgentController interface, if
requested by a manager.

• Execute the client behavior of the OSIMgmt::LinkedReplyHandler and
OSIMgmt::EndOfRepliesHandler interfaces, if requested by a manager.

• Execute the client behavior of the JIDM::EventPortFinder and supply events to
the corresponding CosEventChannelAdmin::SupplierAdmin interface, if the
agent implementation is capable of emitting event reports.
C-4 CORBA/TMN Interworking V1.0 August 2000

C

ole

ent

ing
C.1.6 SNMP Management Conformance Point

It is the intent of the SNMP Management Conformance Points to ensure that a
conformant manager role implementation interoperates with a conformant agent r
implementation.

Manager Role

Implementations claiming conformance to SNMP Management Facilities in the
manager role:

• Use those interfaces specified in the JIDM and SNMPMgmt modules that are
required to perform its management function, namely:

• JIDM::ProxyAgentFinder
• SNMPMgmt::ProxyAgent
• SNMPMgmt::NamingContext
• CosLifeCycle::FactoryFinder
• SNMPMgmt::GenericFactory
• SNMPMgmt::SMIEntry

• Use whatever managed object interface(s) specific to an information model are
required to perform its management function.

• Implement the interface and behavior specified for the
JIDM::ProxyAgentController object, if required.

• Implement the JIDM::EventPortFinder interface, providing access to
CosEventChannelAdmin::SupplierAdmin objects in the manager domain, if
events are to be received by the manager.

Agent Role

Implementations claiming conformance to SNMP Management Facilities in the ag
role:

• Provide implementations of the following interfaces:

• JIDM::ProxyAgentFinder
• SNMPMgmt::ProxyAgent
• SNMPMgmt::NamingContext
• CosLifeCycle::FactoryFinder
• SNMPMgmt::SMIEntry

• Implement the managed object interface(s) specific to the information model be
supported by the agent.

• Provide implementations of the following additional interfaces, if the agent is
capable of creating objects as a result of management operations:

• SNMPMgmt::GenericFactory

• Execute the client behavior of the JIDM::ProxyAgentController interface, if
requested by a manager.
CORBA/TMN V1.0 Conformance Statement Aug. 2000 C-5

C

• Execute the client behavior of the JIDM::EventPortFinder and supply events to
the corresponding CosEventChannelAdmin::SupplierAdmin interface, if the
agent implementation is capable of emitting event reports.
C-6 CORBA/TMN Interworking V1.0 August 2000

Index

0

4

A
access_control 3-34, 3-37
access_criteria attribute 2-8
access_domain operation 2-11
action_info 3-37
action_name 3-37
Agent Side Gateways 2-42, 3-72
append 3-12
append_ava 3-12
ASN1 Factory methods 4-28
ASN1 Module 4-20
ASN1 types and operations 4-25
ASN1.idl B-41
ASN1Limits.idl B-19
ASN1Types.idl B-16
attribute_id 3-36
attribute_value 3-36

B
BaseCollection interface 4-18
Basic Concepts 1-4
Behavior common to all scoped operations 3-33
Both the name of the object interface and the superior object inter-

face are specified 3-22
Building of Global Name Tree of SNMP MIBs using CORBA

Naming Service 5-22

C
Cached/Tracked services 4-12
caching and tracking functionality 4-2
Choice interface 4-27
CMIS Operations 3-33
CMIS operations 3-24, 3-31
cmis_create 3-38
cmis_create_sync 3-38
CMISE Access Conformance Point C-3

Agent Role C-3
Manager Role C-3

Collection Service 4-14
CollectionFactory Interface 4-19
Common arguments to the LinkedReplyHandler operations 3-39
Conformance Statement C-1
copy 3-12
CORBA

contributors 2
documentation set 2

CORBA/CMIP Gateways
CMISE service level scenarios 3-67
Creation of managed objects 3-60
Event reception 3-66
Getting access to managed object domains 3-59
Invocation of operations on single managed objects 3-62
Invoking operations with scope and filtering 3-63
Manager Side Gateways 3-57

CosNaming
Names 3-12
Names in string format 3-16

CREATE operations 3-37
create_mib_entry() operation 5-20
create_mib_entry_with_auto_name () 5-20
Creating Managed Objects 2-18, 3-48

Creation of managed objects 2-38, 2-44
creation_kind 3-37
current_time 3-40

D
Data Types for Untyped Event Communication 5-27
default_value attribute 5-39
default_value_def attribute 5-42
DELETE operations 3-37
delete_mo operation 3-32
Description of CMIS Operations 3-33
Description of OSICaching module 4-6
Description of the LName operations 3-12
Description of the ManagedObject attributes and operations 3-3
Description of the OSITracking module 4-11
Description of the ProxyAgent operations 3-21, 5-11
Descriptions of BufferedReplyHandler types and operations 3-4
Descriptions of the EndOfRepliesHandler operations 3-42
Descriptions of the LinkedReplyHandler operations 3-39
destroy operation 2-8, 3-24, 3-45, 5-14
destroy() operation 5-19, 5-27
destroyed operation 2-11
destruction_is_allowed Operation 2-10
destruction_is_allowed operation 2-10
Dynamic Management of ASN.1 Any Values 4-19
DynAnyFactory 4-28

E
end_of_replies operation 3-42
end_of_replies_handler 3-35
entry_ins_name parameter 5-20
entry_interface_list attribute 5-42
EnumCollection interface 4-18
Enumerated collection 4-14
Enumerated interface 4-27
equals 3-12
Event Communication 5-27
Event reception 2-40
Event Reporting 1-6
Event reporting 2-46
Exceptions 4-26
Extraction operations 4-26

F
Federation of JIDM

EventPortFinders and JIDM
EventPorts 2-32
ProxyAgentFinders and JIDM
DomainPorts 2-29

filter 3-34
Filtering 3-33
finished operation 3-45
flexibility of configuration 4-2

G
General Conformance Requirements C-1
Generated IDL B-19
Generic multi-attribute operations 3-31
GET operations 3-36
get_a_variable operation 5-15
get_ava 3-12
get_domain_factory_finder Operation 2-5
CORBA/TMN Interworking V1.0 August 2000 Index-1

Index
get_domain_factory_finder operation 2-5, 5-11
get_domain_naming_context operation 2-7, 3-23, 5-13
get_n_replies operation 3-45
get_name() 5-36
get_next_entry() 5-21
get_next_entry_iterator() 5-21
get_next_oid() 5-38
get_next_scoped_name() 5-38
get_oid() 5-37
get_reply operation 3-44
get_scoped_name() 5-36
get_scoped_name_by_oid() 5-37
get_textual_obj_id() 5-37
get_var_oid() 5-37
get_variables operation 5-16
Getting access to managed object domains 2-37
Global form 3-10
global name 3-11

H
Handling access to managed objects 2-43
Handling ACTIONs with multiple replies 3-45

I
IDL Factory methods 4-28
Imported IDL B-16
index_var_names attributes 5-40
Inherited operations from CosLifeCycle

LifeCycleObject 3-30
Insertion operations 4-26
Interaction Translation 1-3
interface EventPortFactory { 2-15
interface_name 3-33, 3-37
Invocation of operations on managed objects 2-39, 2-45
Invoking operations on managed objects 2-22
is_mib_module_supported operation 5-17
Iterator interface 4-17

J
JIDM

DomainPort Interface 2-13
DomainPort objects 2-13
DomainPortFactory Interface 2-14
DomainPortFactory objects. 2-14
EventPort Interface 2-15
EventPortFactory Interface 2-15
EventPortFinder Interface 2-16
ProxyAgent Interface 2-4
ProxyAgentController Interface 2-9
ProxyAgentFinder Interface 2-11

JIDM Conformance Point C-2
Agent Role C-2
Manager Role C-2

JIDM Gateways 2-34
Creation of managed objects 2-38
Getting access to managed object domains 2-37
Invocation of operations on managed objects 2-39
Manager Side Gateways 2-34

JIDM gateways 2-34, 2-42
JIDM Managed Objects 2-3
JIDM Module 2-1

JIDM module 2-1
JIDM objects 2-3
JIDM.idl B-1

K
Key Design Principles 1-7
Kind type 4-25

L
Lifecycle 4-26
LifeCycle operations 5-17
LinkedReplyHandler/MultipleRepliesHandler 3-39
LinkerReplyHandler/EndOfRepliesHandler 3-38
list_mib_entries operation 5-16
LName operations 3-12
Local form 3-10
local name 3-11
local orphan managed objects 3-46
lookup_smi_entry() operation 5-42
lookup_variable() operation 5-41

M
managed object 3-10
ManagedObject attributes and operations 3-30
Manager Side Gateways 2-34
Mechanism to obtain Cached/Tracked services 4-12
mib_entry_exists operation 5-17
Model description 4-28
modification_list 3-36
modify_operator 3-36
ModuleDefList type 5-42
MoError exception 3-44
MultVarProtocolError exception 5-15

N
NamedNumber interface 4-27
Naming 3-28
Naming MIB Entries Using SNMP Names in CORBA

Domain 5-21
Naming of Variables in SNMP Domains 5-21
Navigation operations 4-27
next_group_or_table attribute 5-40
next_n_entries() operation 5-19, 5-27
next_one_entry() operation 5-19, 5-27
Normative IDL B-1
NoSuchSmiModule exception 5-15

O
Object Management Group 1

address of 2
object_interface 3-39
object_name 3-33, 3-37, 3-39
object_name attribute 3-31
oid attribute 5-40
OIDRepository Interface 5-36
Only the name of the object factory interface is specified 3-22
Only the name of the object interface is specified 3-22
Optional IDL B-41
OSI Caching and Tracking Services 4-1
OSI Management Conformance Point C-3

Agent Role C-4
Manager Role C-3
Index-2 CORBA/TMN Interworking V1.0 August 2000

Index
OSI Management Information Repository 4-28
OSI ObjectInstance Names 3-12
OSICaching Module 4-2
OSICaching module 4-6
OSICaching.idl B-45
OSICollection Module 4-14
OSICollection types and operations 4-17
OSICollection.idl B-50
OSIMgmt

BufferedRepliesHandler Interface 3-43
EndofRepliesHandler 3-38
LinkedReplyHandler 3-38
LinkedReplyHandler, EndOfRepliesHandler, and

MultipleRepliesHandler Interfaces 3-38
LName Interface 3-10
LocalRoot interface 3-46
ManagedObject interface 3-26
ManagedObjectFactory Interface 3-32
ManagedObjectFactory interface 3-32
MultipleRepliesHandler 3-38
NamingContext Interface 3-25
ProxyAgent interface 3-17

OSIMgmt Module 3-1
OSIMgmt.idl B-3
OSITracking module 4-10, 4-11
OSITracking.idl B-48

P
perform_action operation 3-31
Problem Statement

Invoking Operations on Managed Objects 1-5
Programming Model

Creating Managed Objects 2-18
Invoking operations on Managed Objects 2-22
Programming Semantics 2-18
Reception of Events at CORBA Managers 2-25

Programming Semantics 2-18, 3-48
PropertySet operations 5-18
ProxyAgent operations 3-21, 5-11
pull_notification_def attribute 5-42
PullConsumer 2-28
push_notification_def attribute 5-42
PushConsumer 2-27

R
Reception of Events at CORBA Managers 2-25
reference_object 3-38
RepliesIterator interface 3-44
Reply type 3-44
reply_handler 3-35
reply_info argument 3-40
reply_info/error_info 3-40
Repository Interface 5-42
Representation of CosNaming

Names 3-13
Names in string format 3-16

req_attribute_values 3-38
resolve_osi_name operation 3-25
resolve_with_intf operation 3-25
Resolving SNMP names to obtain Object References to

Table-entries/Groups and Support for SNMP GET-NEXT
message 5-24

Rule collections 4-14
RuleCollection interface 4-18

S
scope 3-34
Scoping 3-33
send_mo_error operation 3-40
send_reply operation 3-40
send_subtree_error operation 3-41
Sending m-event-report requests 3-83
Sending m-event-report requests (pull model) 3-85
Sending m-event-report requests (push model) 3-84
SET operations 3-36
set_a_variable and set_variables operations 5-16
SetSeq interface 4-27
SetSeqOf interface 4-27
smi_access_mode attribute 5-39
smi_group_def_list attribute 5-41
smi_type attribute 5-39
SmiEntry interface 5-17
SmiEntryDef Interface 5-39
SmiGroupDef Interface 5-41
SmiModuleDef Interface 5-41
SmiTableIterator interface 5-19
SNMP Management Conformance Point C-5

Agent Role C-5
Manager Role C-5

SNMP Management Facilities Specification 4-29
SNMP Management Information Repository 4-30, 5-2, 5-30
SNMP operations 5-14
SNMPMgmt

GenericFactory Interface 5-19
GetNextEntryIterator Interface 5-26
NamingContext Interface 5-21
NamingDirectory Interface 5-25
Notifications Interface 5-28
ProxyAgent Interface 5-8
PullNotifications Interface 5-29
SmiEntry interface 5-17
SmiTableIterator Interface 5-18

SNMPMgmt Module 5-2
SNMPMIR Module 5-35
SNMPMIR.idl B-52
Specific Conformance Requirements C-1
Specification Translation 1-2
split_var_object_id() 5-37
SubtreeError exception 3-44
synchronization 3-34

T
The get_domain_factory_finder operation 3-21
The OSICaching Module 4-2
The OSIMgmt

BufferedRepliesHandler Interface 3-43
LName Interface 3-10
NamingContext Interface 3-25
ProxyAgent interface 3-17

The OSIMgmt Module 3-1
to_ancestor_name 3-12
CORBA/TMN Interworking V1.0 August 2000 Index-3

Index
to_relative_name 3-12
total_no_of_variables attribute 5-40
translate_idl_name operation 3-26
translate_osi_name operation 3-26
Translation between CosNaming

Names and OSI ObjectInstance Names 3-12
Translation description 4-28
transparency 4-2
Type definitions and Exceptions 5-14
Type identification 4-26

V
var_def_list attribute 5-40
var_name_list attribute 5-40
var_oid_list attribute 5-40
var_scoped_name_list attribute 5-40
VariableDef Interface 5-39

X
X227ACS.idl B-20
X501Inf.idl B-19
X711CMI.idl B-28
Index-4 CORBA/TMN Interworking V1.0 August 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Specification Description
	1.1 JIDM Overview
	1.2 Definitions and Design Principles
	1.2.1 Reference Model
	1.2.2 Specification Translation
	1.2.3 Interaction Translation

	1.3 Basic Concepts
	1.4 Problem Statement
	1.4.1 Invoking Operations on Managed Objects
	1.4.2 Event Reporting

	1.5 General Design Principles
	1.5.1 Key Design Principles
	1.5.2 Alignment with CORBA Design Principles
	1.5.3 Alignment with OSI Systems Management and Internet Management Design Principles

	2. JIDM CORBA Facilities
	2.1 The JIDM Module
	2.1.1 JIDM Managed Objects
	2.1.2 The JIDM::ProxyAgent Interface
	2.1.3 The JIDM::ProxyAgentController Interface
	2.1.4 The JIDM::ProxyAgentFinder Interface
	2.1.5 The JIDM::DomainPort Interface
	2.1.6 The JIDM::DomainPortFactory Interface
	2.1.7 The JIDM::EventPort Interface
	2.1.8 The JIDM::EventPortFactory Interface
	2.1.9 The JIDM::EventPortFinder Interface

	2.2 Programming Model
	2.2.1 Programming Semantics
	2.2.2 Creating Managed Objects
	2.2.3 Invoking Operations on Managed Objects
	2.2.4 Reception of Events at CORBA Managers
	2.2.5 Federation of JIDM::ProxyAgentFinders and JIDM::DomainPorts
	2.2.6 Federation of JIDM::EventPortFinders and JIDM::EventPorts

	2.3 JIDM Gateways
	2.3.1 Manager Side Gateways
	2.3.2 Agent Side Gateways

	3. OSI CORBA Facilities
	3.1 The OSIMgmt Module
	3.1.1 The OSIMgmt::LName Interface
	3.1.2 The OSIMgmt::ProxyAgent Interface
	3.1.3 The OSIMgmt::NamingContext Interface
	3.1.4 The OSIMgmt::ManagedObject interface
	3.1.5 The OSIMgmt::ManagedObjectFactory Interface
	3.1.6 Description of CMIS Operations
	3.1.7 The OSIMgmt::LinkedReplyHandler, EndOfRepliesHandler, and MultipleRepliesHandler Interfaces
	3.1.8 The OSIMgmt::BufferedRepliesHandler Interface
	3.1.9 Handling ACTIONs with multiple replies
	3.1.10 The OSIMgmt::LocalRoot interface

	3.2 Programming Model
	3.2.1 Programming Semantics
	3.2.2 Creating Managed Objects
	3.2.3 Invoking Operations on Single Managed Objects
	3.2.4 Invoking Operations with Scope and Filtering
	3.2.5 Iterator Interfaces for Scoped Operations
	3.2.6 Reception of Events at CORBA Managers
	3.2.7 Forwarding Events from CORBA Managed Object Domains

	3.3 CORBA/CMIP Gateways
	3.3.1 Manager Side Gateways
	3.3.2 Agent Side Gateways

	4. OSI Support Services
	4.1 OSI Caching and Tracking Services
	4.1.1 The OSICaching Module
	4.1.2 The OSITracking module
	4.1.3 Mechanism to obtain Cached/Tracked services

	4.2 Collection Service
	4.2.1 Overview
	4.2.2 The OSICollection Module

	4.3 Dynamic Management of ASN.1 Any Values
	4.3.1 Overview
	4.3.2 The ASN1 Module

	4.4 The OSI Management Information Repository
	4.5 SNMP Management Facilities Specification
	4.5.1 Overview

	5. SNMP CORBA Facilities
	5.1 Overview
	5.2 The SNMPMgmt Module
	5.2.1 The SNMPMgmt::ProxyAgent Interface
	5.2.2 The SNMPMgmt::SmiEntry interface
	5.2.3 The SNMPMgmt::SmiTableIterator Interface
	5.2.4 The SNMPMgmt::GenericFactory Interface
	5.2.5 The SNMPMgmt::NamingContext Interface
	5.2.6 Naming MIB Entries Using SNMP Names in CORBA Domain
	5.2.7 The SNMPMgmt::NamingDirectory Interface
	5.2.8 The SNMPMgmt::GetNextEntryIterator Interface
	5.2.9 Event Communication

	5.3 SNMP Management Information Repository
	5.3.1 The SNMPMIR Module
	5.3.2 The OIDRepository Interface
	5.3.3 The VariableDef Interface
	5.3.4 The SmiEntryDef Interface
	5.3.5 The SmiGroupDef Interface
	5.3.6 The SmiModuleDef Interface
	5.3.7 The Repository Interface

	Appendix A - References
	Appendix B - Complete OMG IDL
	Appendix C - Conformance Statement
	Index

