Interworking Between CORBA and
TMN Systems Specification

New Edition: August2000
Version 1.0

Copyright 1999, Alcatel Alshtom Recherche

Copyright 1999, DSET Corporation

Copyright 1999, Expersoft Corporation

Copyright 1999, Hewlett-Packard Company

Copyright 1999, Highlander Communications, L.C.
Copyright 1999, Inprise Corporation

Copyright 1999, International Business Machines Corp.
Copyright 1999, IONA Technologies, Plc

Copyright 1999, ISR Global Telecom, Inc.

Copyright 1999, Lucent Technologies, Inc.

Copyright 1999, Nortel Technology

Copyright 1999, Sun Microsystems

Copyright 1999, Telefénica Investigacion y Desarrollo S.A. Unipersonal
Copyright 1999, TCSI Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF

TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7028r@dMG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface 1
About the Object Management Group. 1
Whatis CORBA?. e 1
Associated OMG Documents 2
Acknowledgments. 2
1. Specification Description 1-1
1.1 JIDMOVEIVIEW . . .ottt e 1-1
1.2 Definitions and Design Principles 1-2
1.2.1 Reference Model 1-2
1.2.2 Specification Translation 1-2
1.2.3 Interadbn Translation 1-3
1.3 BasicConCepts.t 1-4
1.4 Problem Statement............ 1-5
1.4.1 Invoking Operations on Managed Objects 1-5
142 EventReporting 1-6
1.5 General Design Principles 1-7
1.5.1 Key Design Principles 1-7
1.5.2 Alignment with CORBA Design Principles ... 1-8
1.5.3 Alignment with OSI Systems Management and
Internet Management Design Principles. 1-9
2. JIDM CORBAFacilities 2-1
21 ThelJIDMModule 2-1
2.1.1 JIDM Managed Objects 2-3
2.1.2 The JIDM::ProxyAgent Interface 2-4

CORBA/TMN Interworking v1.0 August 2000 i

Contents

2.1.3 The JIDM::ProxyAgentController Interface ... 2-9
2.1.4 The JIDM::ProxyAgentFinder Interface. 2-11
2.1.5 The JIDM::DomainPort Interface........... 2-13
2.1.6 The JIDM::.DomainPortFactory Interface. 2-14
2.1.7 The JIDM::EventPort Interface 2-15
2.1.8 The JIDM::EventPortFactory Interface. 2-15
2.1.9 The JIDM::EventPortFinder Interface 2-16
2.2 Programming Model 2-18
2.2.1 Programming Semantics. 2-18
2.2.2 Creating Managed Objects 2-18
2.2.3 Invoking operations on Managed Objects. 2-22
2.2.4 Reception of Events at CORBA Managers. ... 2-25
2.2.5 Federation of JIDM::ProxyAgentFinders
and JIDM::DomainPorts. 2-29
2.2.6 Federation of JIDM::EventPortFinders
and JIDM::EventPorts 2-32
2.3 JIDM Gateways e 2-34
2.3.1 Manager Side Gateways.................. 2-34
2.3.2 AgentSide Gateways 2-42
3. OSICORBAFacilities 3-1
3.1 TheOSIMgmtModule............., 3-1
3.1.1 The OSIMgmt::.LName Interface 3-10
3.1.2 The OSIMgmt::ProxyAgent Interface. 3-17
3.1.3 The OSIMgmt::NamingContext Interface 3-25
3.1.4 The OSIMgmt::ManagedObject interface. 3-26
3.1.5 The OSIMgmt::ManagedObjectFactory Interface3-32
3.1.6 Description of CMIS Operations 3-33
3.1.7 The OSIMgmt::LinkedReplyHandler,
EndOfRepliesHandler, and MultipleRepliesHandler
Interfaces i 3-38
3.1.8 The OSIMgmt::BufferedRepliesHandler Interface 3-
43
3.1.9 Handling ACTIONs with multiple replies 3-45
3.1.10 The OSIMgmt::LocalRoot interface......... 3-46
3.2 Programming Model 3-48
3.2.1 Programming Semantics. 3-48
3.2.2 Creating Managed Objects 3-48
3.2.3 Invoking Operations on Single Managed Objects 3-51
3.2.4 Invoking Operations with Scope and Filtering . 3-54
3.2.5 lterator Interfaces for Scoped Operations. 3-56

ii CORBA/TMN Interworking v1.0

August 2000

Contents

3.2.6 Reception of Events at CORBA Managers.... 3-56
3.2.7 Forwarding Events from CORBA Managed

ObjectDomains oo, 3-57
3.3 CORBA/CMIP Gateways.ouuuiinnnennnnn 3-57
3.3.1 Manager Side Gateways.................. 3-57
3.3.2 AgentSide Gateways 3-72
4. OSI SUPPOIt ServiCeS. oo 4-1
4.1 OSI Caching and Tracking Services. 4-1
4.1.1 The OSICachingModule 4-2
4.1.2 The OSITrackingmodule................. 4-10

4.1.3 Mechanism to obtain Cached/Tracked services 4-12

4.2 Collection Service i 4-14
4.2.1 OVEIVIEW . ..ttt 4-14
4.2.2 The OSICollection Module. 4-14
4.3 Dynamic Management of ASN.1 Any Values 4-19
4.3 1 OVEIVIEW . .. v ittt 4-19
432 TheASN1Module...................... 4-20
4.4 The OSI Management Information Repository 4-28
4.5 SNMP Management Facilities Specification 4-29
451 OVEIVIEW . ..ottt 4-29
5. SNMP CORBA Facilities. 5-1
5.1 OVEIVIEW . . oo 5-1
5.2 The SNMPMgmtModule. 5-2
5.2.1 The SNMPMgmt::ProxyAgent Interface 5-8
5.2.2 The SNMPMgmt::SmiEntry interface 5-17

5.2.3 The SNMPMgmt::SmiTablelterator Interface.. 5-18
5.2.4 The SNMPMgmtGenericFactory Interface. .. 5-19
5.2.5 The SNMPMgmtNamingContext Interface .. 5-21

5.2.6 Naming MIB Entries Using SNMP Names in
CORBADOmMaIN. 5-21

5.2.7 The SNMPMgmtNamingDirectory Interface . 5-25

5.2.8 The SNMPMgmtGetNextEntrylerator
Interface 5-26

5.2.9 Event Communication 5-27
5.3 SNMP Management Information Repository........... 5-30
5.3.1 The SNMPMIRModule.................. 5-35
5.3.2 The OIDRepository Interface. 5-36
5.3.3 The VariableDef Interface. 5-39
5.3.4 The SmiEntryDef Interface. 5-39

CORBA/TMN Interworking v1.0 August 2000 iii

Contents

5.3.5 The SmiGroupDef Interface............... 5-41

5.3.6 The SmiModuleDef Interface. 5-41

5.3.7 The Repository Interface 5-42
Appendix A- References A-1
Appendix B - Complete IDL Specification B-1
Appendix C - Conformance Statement................ C-1

CORBA/TMN Interworking v1.0 August 2000

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 800 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to develop a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.

CORBA/TMN Interworking V1.0 August 2000 1

Associated OMG Documents

The CORBA documentation is organized as follows:

Object Management Architecture Guidefines the OMG'’s technical objectives

and terminology and describes the conceptual models upon which OMG standards
are based. It defines the umbrella architecture for the OMG standards. It also
provides information about the policies and procedures of OMG, such as how
standards are proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and Specificaiidains
the architecture and specifications for the Object Request Broker.

CORBAservices: Common Object Services Specificatomains specifications
for OMG’s Object Services.

The OMG collects information for each specification by issuing Requests for Information,
Requests for Proposals, and Requests for Comment and, with its membership, evaluating
the responses. Specifications are adopted as standards only when representatives of the
OMG membership accept them as such by vote. (The policies and procedures of the OMG
are described in detail in tii@bject Management Architecture Guigle

OMG formal documents are available from our web site in PostScript and PDF format. To
obtain print-on-demand books in the documentation set or other OMG publications, con-
tact the Object Management Group, Inc. at:

Acknowledgments

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

The following companies submitted parts of this specification:

Alcatel Alshtom Recherche

DSET Corporation

Expersoft Corporation
Hewlett-Packard Company

Highlander Communications, L.C.
Inprise Corporation

International Business Machines Corp.
IONA Technologies, Plc

ISR Global Telecom, Inc.

Lucent Technologies, Inc.

2 CORBA/TMN Interworking V1.0 August 2000

Nortel Technology
* Sun Microsystems
Telefénica Investigacion y Desarrollo S.A. Unipersonal
TCSI Corporation

CORBA/TMN Interworking V1.0 Acknowledgments August 2000

CORBA/TMN Interworking V1.0 August 2000

Specification Description 1

Contents

This chapter contains the following sections.

Section Title Page
“JIDM Overview” 1-1
“Definitions and Design Principles” 1-2
“Basic Concepts” 1-4
“Problem Statement” 1-5
“General Design Principles” 1-7

1.1 JIDM Overview

Note —JIDM (Joint Inter-Domain Management)

Ideally, all the CORBA Facilities and interfaces required to support interworking with
different management environments would be defined in a generic way (i.e.,
independent of the Systems Management Reference Model being considered - OSI
Systems Management Reference Model, SNMP Reference Model, etc). However, there
are aspects related to each specific model that cannot be abstracted away. For example
the naming schema used to name managed objects will depend on the specific model
being considered (e.g., a specific naming schema has been defined for OSI Systems
Management). Also, interfaces used to operate on collections of managed objects will
depend on the model being considered since expressions used to designate such

CORBA/TMN Interworking V1.0 August 2000 1-1

collections will vary depending on the model (e.g., use of scoping and filtering
expressions to designate subset of members of a managed object domain has been
specifically defined for OSI Systems Management).

The adopted approach consists of defining a basic set of CORBA Facilities, referred to
as JIDM Facilities, that will work for every Systems Management Reference Model.
JIDM Facilities can be extended or put together with additional complementary
facilities to build up the set of CORBA Facilities that will be finally used to implement
each of the specific Systems Management Reference Models. Thus, for example, when
defining OSI Systems Management Facilities, specific OSI Management Facilities will
be defined (facilities that allow translation between OSI names and
CosNaming::Names , handling operations with scoping and filtering, etc.) in

addition to those defined within JIDM Facilities (facilities defined to get references to
single managed objects given their names, etc).

1.2 Definitions and Design Principles

1.2.1 Reference Model

To enable interworking between management systems based on different technologies,
it is necessary to be able to map between the relevant object models and to build on
this to provide mechanisms to handle protocol and behavior conversions on the domain
boundaries.

In order to be able to interwork between a particular pair of management reference
models, there are two aspects that need to be defined:

® A translation scheme between the different object models of both management
reference models, referred to @pecification Translation

® A dynamic conversion mechanism between the protocols and behaviors used in both
domains, referred to dateraction Translation

This allows objects in one domain to be represented in the other domain and the
interactions can be governed by the domain of choice rather than by the domain in
which the target object is implemented. Besides, this should be done without either
party being aware of the conversion.

This document presents a set of facilities to provide interoperability between CORBA
and alternative telecommunication management models, specifically OSI management
and Internet management. As described above, two aspects need to be defined:
Specification Translation and Interaction Translation.

1.2.2 Specification Translation

The translation scheme is not part of this document, it has already been adopted and
published by other standardization organisms, namely NMF and The OpenGroup, with
the following reference “[XoJIDM] Inter Domain Management: Specification
Translation” mentioned in Appendix A.

CORBA/TMN Interworking V1.0 August 2000

Inter-domain Management: Specification Translation
X/Open Document Number: P509
ISBN: 1-85912-150-0

This specification fully supports the above mentioned JIDM Specification Translation
specification, amended with the current list of errata and corrigenda to the document,
as expressed in tHdIDM Specification Translation Issues Lis{(available from The
OpenGroup and NMF web sites, and also from the OMG as document number
telecom/98-05-05). The justification for these changes is also available through the
aforementioned amending documentation.

1.2.3 Interaction Translation

This document presents a set of CORBA facilities required to support interworking
with different management environments, globally referred t&Ji&3M Interaction
Translation.”

There are three levels of interfaces being defined:

1. Generic interfaces, management model independémase facilities provide a
generic framework to access a managed domain, independently of the management
reference model being used. These generic facilities are referredtoMs
Facilities, and are presented in Chapter 3.

2. Generic interfaces, management model dependémb management reference

models are considered, OSI Management and Internet Management (SNMP).

* OSI Management Facilitiepresented in Chapter 4, provide a CORBA view of
the OSI Management reference model, as described in the relevant ITU-T and
ISO documents (see, among others, [“[X720] Management Information Model.”]
and [“[M3010] Principles for a Telecommunications Management Network.”
mentioned in Appendix A]). This set of facilities extends the generic JIDM
Facilities to support all CMIS interactions in CORBA, and to support OSI specific
concepts such us scoping, filtering and multiple replies both in pure CORBA
environments and in interworking environments (gateways).

« SNMP Management Facilitiepresented in Chapter 5, provide a CORBA view of
the Internet Management reference model. These sets of facilities also extend the
generic JIDM Facilities to support all SNMP interactions in CORBA, and to
support Internet specific concepts.

3. Specific interfaces, information model, and management model deperttiest
interfaces provide functionality that is specific to a given information model, that
conforms to a certain management reference model; these interfaces reuse and
extend the generic CORBA facilities of the corresponding management reference
model (OSI Management or SNMP Management facilities) in an information
model-specific way. In case the specific information model is specified in a foreign
specification language (GDMO/ASN.1 for OSI management, SNMP SMI for
Internet management), the equivalent CORBA IDL model may be automatically
generated by following the translation algorithms defined in "Inter-domain
Management: Specification Translation" (see reference to “[XoJIDM] Inter Domain

CORBA/TMN V1.0 Definitions and Design Principles August 2000 1-3

Management: Specification Translation, mentioned in Appendix A). Note that it is
possible to specify an information model directly using CORBA IDL, and yet reuse
the OSI management or SNMP management facilities.

It is beyond the scope of this specification to specify any information model specific
interfaces. However, the mechanisms to specify such interfaces, as well as a generic sef
of algorithms to translate existing information models, are specified.

There is a dependency among these three types of interfaces, as shown in Figure 1-1.

JIDM Facilities
OSI Management SNMP Management|
inili}ies \ F/aﬁties
X.721 SDH MIB2

Figure 1-1 JIDM Facilities

1.3 Basic Concepts

Throughout this document, a number of well-known concepts are used and maybe even
overused. However, there are certain concepts where the intent when using a certain
word is very specific. This section tries to clarify the special meanings attributed to
certain words/concepts within this document.

A distributed management system is composed of two kinds of entities: manager
entities and managed entities.

“Manager entities” are those that have responsibility for one or more management
activities, by issuing management operations and receiving notifications. They are the
components exploiting the behavior provided by implementations of a given
information model.

“Managed entities”are those that have responsibility for certain underlying
resource(s). They perform management operations issued by manager entities on the
underlying resources, and emit notifications whenever some specific circumstances
occur. They are the components implementing the behavior of a given information
model.

In object oriented systems, these abstract entities are materialized in the form of
specific objects. Therefore the tertfi)sanager object”and“managed object’can be
considered synonymous of the above in object oriented systems.

Manager objects (entities) are said to act in thariager rolg¢’ while managed objects
(entities) are said to act in thadent role”

CORBA/TMN Interworking V1.0 August 2000

These objects (entities) are grouped indorhain$ according to some specific

grouping criteria. Domains are considered the unit of accessibility, therefore being the
independently addressable components within a distributed system; each domain (both
manager and managed) may have any number of objects within it.

Managed domains are sometimes referred toagerit§ and “managed object
domains” while manager domains are sometimes referred taresager
application$ or simply “managers’

Domains are identified by usingitles.” Each domain may have an arbitrary number of
titles associated with it, but a title uniquely identifies one domain.

Whenever a manager or an agent needs to interact with an agent or manager
(respectively), it must firstdain accessto the other domain. This access is always
granted through a specifigbrt’ to the domain. Each port is uniquely identified by one
of the titles associated to the domain being accessed.

Specifically, two types of ports are identified:

1. When access to a domain is required to be able to create and/or invoke operations
on managed objects within the domain, the port is calikafain port”

2. When access to a domain is required to be able to forward events to manager
objects within the domain, the port is callezvent port’

When a manager (agent) gains access to a managed object domain (manager domain)
it is said that a sessiof has been established. That session mayréledsed’

meaning that no further exchange of information may happen, because access has beel
“revoked”

Any number of sessions may exist between a manager and an agent at any given time

1.4 Problem Statement

1.4.1 Invoking Operations on Managed Objects

CORBA Facilities need to be defined that allow CORBA manager objects to connect to
Managed Object Domains given their titles. Additional CORBA Facilities need to be
defined to allow a CORBA manager object (that is connected to some given domain of
managed objects) to:

® Create a new member of the domain (a new managed object) and assign a name to
it.

® Obtain a reference to a member of the domain (an existing managed object) given
its name.

® Operate on collections of those members of the domain which meet some criteria
(e.g., descendants of some managed object which pass some specific filter, etc.).

A complete solution requires explaining how these CORBA Facilities will interact with
Naming and LifeCycle Object Services at CORBA Managed Object Domains. These
guestions are represented in Figure 1-2 on page 1-6.

CORBA/TMN V1.0 Problem Statement August 2000 1-5

CORBA Manager A

Managed
Object

- ()

Naming
Service

LifeCycle
Services

CORBA Management Application C (agent role)
Figure 1-2 Invocation of management operations

A fundamental requirement for definition of such CORBA Facilities is that the specific
management protocol (CMIP, SNMP, CORBA IIOP, etc.) being used to get access to a
Managed Object Domain and operate upon managed objects located there, must be
totally transparent to CORBA manager objects and CORBA managed objects.

1.4.2 Event Reporting

A CORBA Manager will have at least one title associated with it. This title permits it
to be identified as a destination for event reporting. CORBA Facilities need to be
defined that allow:

®* Event reports emitted by CORBA managed objects to be reported to specific
CORBA Managers that have been designated by their titles.

®* CORBA Manager objects to be notified about events reported from remote
Managed Object Domains.

A fundamental requirement for definition of such CORBA Facilities is that the specific
management protocol (CMIP, SNMP, CORBA IIOP, etc.) being used to report an event
must be totally transparent to CORBA manager objects and CORBA managed objects.

CORBA/TMN Interworking V1.0 August 2000

Manager A

title3

Manager D

Event reporting object

destination =
{ title2, title3 }

Manager B Agent C
Figure 1-3 Event reporting

When solving the problem of event reporting, the following scenarios must be
considered:

® One manager application must be able to change the list of destinations (titles) to
which event reports emitted by managed objects in a managed object domain are
being reported. In the OSI environment, this will be accomplished by means of
changing the destination attribute value of an EFD object that is a member of the
managed object domain being considered.

® One manager application may spontaneously start receiving event reports from a
remote managed object domain due to a decision taken by a third party (another
manager application) who has changed the list of destinations for event reports
associated to the managed object domain.

1.5 General Design Principles

1.5.1 Key Design Principles

CORBA/TMN interworking is provided through a common framework (JIDM), which
provides interfaces and facilities common to OSI systems management and Internet
management. This common framework is then specialized to provide additional
interfaces and facilities that are specific to each systems management reference model

CORBA/TMN V1.0 General Design Principles August 2000 1-7

The proposal maximizes the commonality of services (e.g., creation of objects,
invocation of operations, event reporting, and distribution) used for interworking
scenarios and for pure CORBA environment scenarios.

Also, some specific guiding principles have been consistently applied when trying to
resolve the issues encountered:

Completeness Fhe aim is to provide as complete a set of services as possible,
covering all possible cases and specific functionality, regardless of the frequency.

Simplicity -There are certain scenarios and services that are more common than
others. Given the completeness principle, all cases should be covered. However, the
most common cases should be covered with the simplest approach, at the expense o
potentially complicating the less common situations. This is also known as the 80-
20 rule.

Familiarity - The design must use concepts and patterns that are familiar to the
CORBA programmer. In this way, managed objects must be plain CORBA objects
that implement a certain interface and on which the operations exported by the
supported interface may be invoked. Also, events and notifications sent from
managed objects are plain CORBA events.

Transparency it should be transparent to the applications the fact that a gateway is
being used or not. That is, an application should not be aware, or do anything
differently, in case it interacts with another application that uses the same
technology, or it does with an application that uses a different technology, using a
gateway as an intermediary.

Reuse of OMG specifications and servicé&ather than inventing new approaches
to do the same thing, already existing OMG specifications have been reused
whenever possible.

Freedom of implementationThis document does not impose any particular
implementation policy, and does not constrain implementations in any way unless it
is absolutely necessary. Although the discussions to arrive to any specific design
solution always take into account the feasibility of implementations, the document
tries not to provide any implementation bias.

1.5.2 Alignment with CORBA Design Principles

The design of CORBA/TMN interworking facilities:

Uses and builds on CORBA concepts:

» Separation of interface and implementation

» Object references are typed by interfaces

» Clients depend on interfaces, not implementations

» Use of multiple inheritance of interfaces

» Use of subtyping to extend, evolve and specialize functionality

» Finding a service is orthogonal to using it

» Factories, factory finders and use of federation of services or traders

Assumes good ORB and Object Services implementations:

1-8 CORBA/TMN Interworking V1.0 August 2000

1

» Specifically, it is assumed that CORBA-compliant ORB implementations are
being built that support efficient local and remote access to a very high number of
objects and have performance characteristics that place no major barriers to the
pervasive use of distributed objects for virtually all service and application
elements.

* Allows Local and Remote Implementations:

» In general the services are structured as CORBA objects with OMG IDL
interfaces that can be accessed locally or remotely and which can have local
library or remote server styles of implementations. This allows considerable
flexibility with regards to the location of participating objects.

* Enforces interface style consistency:
» Use of exceptions and return codes
» Use of explicit operations
» Use of interface inheritance

1.5.3 Alignment with OSI Systems Management and Internet Management
Design Principles

Management of a communications environment is an information processing
application. Because the environment being managed is distributed, the individual
components of the management activities are themselves distributed.

Management applications perform the management activities in a distributed manner,
by establishing associations between systems management application entities.

The interactions which take place between systems management application entities
are abstracted in terms of management operations and notifications issued by one
entity to the other; these are communicated using systems management services and
protocols.

Management activities are effected through the manipulation of managed objects. For
the purposes of systems management, management applications are categorized as
MIS-Users. Each interaction takes place between two MIS-Users, one taking the
manager role, the other the agent role.

An MIS-User taking the role of an agent is that part of a distributed application that
manages the managed objects within its local system environment. An agent performs
management operations on managed objects as a consequence of management
operations communicated from a manager. An agent may also forward notifications
emitted by managed objects to a manager.

An MIS-User taking the role of a manager is that part of a distributed application
which has responsibility for one or more management activities, by issuing
management operations and receiving notifications.

CORBA/TMN V1.0 General Design Principles August 2000 1-9

1-10 CORBA/TMN Interworking V1.0 August 2000

JIDM CORBA Facilities 2

Contents

This chapter contains the following sections.

Section Title Page
“The JIDM Module” 2-1

“Programming Model” 2-18
“JIDM Gateways” 2-34

2.1 The JIDM Module

The Joint Inter-Domain Management (JIDM) module comprises a collection of
interfaces that together define a basic set of services for developing Systems
Management Applications based on CORBA. Following the JIDM reference model
these interfaces may be used between Manager applications and JIDM Frameworks, or
between JIDM Frameworks and Agent applications.

From the Manager application perspective, the following interfaces are used:

®* TheProxyAgent interface

®* The ProxyAgentController interface

®* The ProxyAgentFinder interface

® TheEventPort interface

®* The EventPortFactory interface

From the Agent application perspective, the following additional interfaces are used:

® The DomainPort interface

CORBA/TMN Interworking V1.0 August 2000 2-1

2-2

¢ The DomainPortFactory interface

®* The EventPortFinder interface

This section describes these interfaces and their operations in detail.

#ifndef _JIDM_IDL_
#define _JIDM_IDL_

#include <CosNaming.idI>
#include <CosLifeCycle.idl>
#include <CosEventChannelAdmin.idI>

#pragma prefix “jidm.org”

module JIDM

{
typedef CosNaming::Name Key;
typedef CosLifeCycle::Criteria Criteria;

exception InvalidKey {};

exception InvalidCriteria {};

exception CannotMeetCriteria { Criteria reason; };
exception CannotAccess {};

exception AlreadyExists {};

interface ProxyAgent {
enum DestructionMode {gracefully, non_gracefully};
readonly attribute Criteria access_criteria;

CosLifeCycle::FactoryFinder get_domain_factory_finder ();

CosNaming::NamingContext get_domain_naming_context ();

Criteria destroy (in DestructionMode mode, in Criteria the_criteria)
raises (InvalidCriteria, CannotMeetCriteria);

J

interface ProxyAgentController {
Criteria destruction_is_allowed (in Criteria the_criteria)
raises (InvalidCriteria,CannotMeetCriteria);

void destroyed (in Criteria the_criteria);

J

interface ProxyAgentFinder {
ProxyAgent access_domain (in Key k, in Criteria the_criteria)
raises (InvalidKey, CannotAccess, InvalidCriteria, CannotMeetCriteria);

J

interface DomainPort {
readonly attribute Criteria associated_criteria;
void destroy ();

h
interface DomainPortFactory {

DomainPort create_domain_port (in Key k, in Criteria creation_criteria)
raises (InvalidKey, InvalidCriteria, CannotMeetCriteria);

CORBA/TMN Interworking V1.0 August 2000

J

interface EventPort {
readonly attribute CosEventChannelAdmin::SupplierAdmin supplier_admin;
readonly attribute Criteria associated_criteria;
void destroy ();

J

interface EventPortFactory {
EventPort
create_event_port (in Key k, in Criteria creation_criteria,
in CosEventChannelAdmin::SupplierAdmin the_supplier_admin)
raises (InvalidKey, InvalidCriteria, CannotMeetCriteria, AlreadyEXxists);

J

interface EventPortFinder {
CosEventChannelAdmin::SupplierAdmin
find_event_port (in Key k, in Criteria the_criteria)
raises (InvalidKey, InvalidCriteria, CannotMeetCriteria, NoEventPort);

h

#endif /* _JIDM_IDL_ */

2.1.1 JIDM Managed Obijects

The JIDM module does not define an interface for generic JIDM objects, as it would
be an empty interface, because there are no truly generic, common operations that
could be attributed to all kinds of managed obijects.

However, every management environment must define some kind of managed obiject,
that is the entity being managed in the respective environment. For example, in OSI
systems management, there is the concept of a managed object directly; in SNMP
management, there is no concept of a managed object, but a concept of entries within
the SNMP MIB that is equivalent to a managed object.

The definition of these managed objects, in all management environments, must
support the design principles as outlined in the RFP. In particular, in support of the
transparency principle, the following semantics are required of any managed object
interface:

* |f a CORBA object reference is used to request a managed object to perform an
operation and the managed object does not exisQBIECT_NOT_EXIST
exception should result.

* |f a CORBA object reference is used to request a managed object to perform an
operation and the request cause€<HJECT_NOT_EXIST exception, the
managed object was actually deleted. (This property helps users avoid unnecessary
failures while attempting to recreate an object that already exists.)

* |f a CORBA object reference is used to request a managed object to perform an
operation and the managed object exists, the operation shall not result in an
OBJECT_NOT_EXIST exception.

CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-3

2-4

2.1.2 The JIDM::ProxyAgent Interface

Managers that require creating and/or invoking operations on managed objects that are
members of a domain must first gain access to that domain. When a manager gains

access to a managed object domaidlCaM::ProxyAgent object (an object that
exports theJIDM::ProxyAgent interface) is created. SevetHDM::ProxyAgents
may co-exist, giving parallel access to the same managed object domain.

interface ProxyAgent {

enum DestructionMode {gracefully, non_gracefully};
readonly attribute Criteria access_criteria;

interface ProxyAgent {

J

enum DestructionMode {gracefully, non_gracefully};
readonly attribute Criteria access_criteria;

CosLifeCycle::FactoryFinder get_domain_factory_finder ();
CosNaming::NamingContext get_domain_naming_context ();

Criteria destroy (in DestructionMode mode, in Criteria the_criteria)
raises (InvalidCriteria, CannotMeetCriteria);

interface ProxyAgent {

enum DestructionMode {gracefully, non_gracefully};
readonly attribute Criteria access_criteria;

CosLifeCycle::FactoryFinder get_domain_factory_finder ();
CosNaming::NamingContext get_domain_naming_context ();

Criteria destroy (in DestructionMode mode, in Criteria the_criteria)
raises (InvalidCriteria, CannotMeetCriteria);

Invoking operations exposed by tiEDM::ProxyAgent object, CORBA manager
objects are able to obtain references to an initial:

® CosLifeCycle::FactoryFinder object in the managed object domain being
accessed.

® CosNaming::NamingContext object in the managed object domain being
accessed.

Invoking thefind_factories operation exposed by the initial
CoslLifeCycle::FactoryFinder object, CORBA manager objects may find factories
that enable creation of new members of the managed object domain.

Invoking theresolve operation exposed by the initl@bsNaming::NamingContext
object, CORBA manager objects may obtain CORBA object references to existing
members of the managed object domain.

CORBA/TMN Interworking V1.0 August 2000

manager object /
|
I

specific
management
interface

CosNamlng

JIDM:: NamingContext

ProxyAgent

CosLifeCycle::
FactoryFinder

Managed Object Domain
(Agent Application)

Figure 2-1 JIDM::ProxyAgents in a CORBA Environment

2.1.2.1 The get_domain_factory finder Operation

To create a managed object, CORBA manager objects first need to find a reference to
a suitable factory. They do so by means of invokindfitte factories operation

exposed by the initiaCosLifeCycle::FactoryFinder object in the managed object
domain where the new managed object is going to be created.

The get_domain_factory finder operation obtains a reference to this initial
CoslLifeCycle::FactoryFinder object in the domain being accessed through a given
JIDM::ProxyAgent object.

module CosLifeCycle {
typedef CosNaming::Name Key;
typedef Object Factory;

typedef sequence <factory> Factories;

exception NoFactory {
Key search_key;

J

interface FactoryFinder {

CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-5

2-6

Factories find_factories (in Key factory_key)

raises (NoFactory);

h

As shown above, thiind_factories operation supported by
CosLifeCycle::FactoryFinders returns a sequence of factories, which matches some
given key. The space of keys is established by convention in particular environments as
explicitly declared in CORBA (see tt@ommon Object Request Broker: Architecture
and Specificationlnterface Repositorghapter).
Conventions adopted for JIDM facilities (i.e., common to every Systems Management
Reference Model) are described in Table 2-1. Additional conventions may exist for
each specific Systems Management Reference Model being considered.
Table 2-1 : JIDM Conventions for Factory Finder Keys

id field kind field meaning

fully scoped name of object| “object interface” Find factories that create objects supporting

interface the named interface.

fully scoped name of factory “factory interface” Find factories supporting the named factary

interface interface.

Several alternatives can be followed when assigning values to the keys that will be
passed to théind_factories operation.

Only the name of the object interface is specified

Here, it is implicitly assumed that there is a factory interface associated to the managed
object interface. CORBA managers know the name and operations associated with this
factory in advance so they can properly narrow and use the reference returned by the
find_factories operation.

Only the name of the object factory interface is specified

Here, references returned by tived_factories operation can be narrowed to the IDL
interface whose name has been specified. The CORBA manager object who invoked
the operation knows the signature and semantics of operations supported by the
designated object factory interface. This option will be the one used to obtain
references to generic factories exporting @esLifeCycle::GenericFactory

interface or any of the generic factory interfaces defined in SYSMANfacilities (see
Appendix A, “References”).

Both the name of the object and factory interfaces are specified

This will be useful in environments where there are more than just one factory object
interface associated with each managed object interface. Thus, the CORBA manager
object specifies

CORBA/TMN Interworking V1.0 August 2000

2.1.2.2

* the interface that will be exported by the object to be created, and

® the actual interface of the factory that it wants to use for creating the new object
(among the possible types of factories that can create objects exporting such
interface).

In any case, the result of passing several key values should be interpreted as the logical
‘and’ of the conditions associated to each of the keys.

In respect to creation of managed objects, it is worth noticing that JIDM facilities
provide a generic framework that requires it to be specialized for each specific Systems
Management Reference Model. Such specialization implies precise definition of:

® The whole space of keys that are valid for finding factories.

® The space for keys and criteria that can be passed as arguments to the
create_object operation exposed b@osLifeCycle::GenericFactory objects.

® Other types of interfaces that are better suited to the specific Systems Management
Reference Model that is being considered (for example, the
OSIMgmt::ManagedObjectFactory interface or interfaces generated from name-
binding GDMO templates in the OSI Systems Management Reference Model).

The get_domain_naming_context operation

A CORBA manager object may obtain CORBA object references to members of a
managed object domain as a result of invokingrésslve operation exposed by the
initial CosNaming::NamingContext object in the domain. Theesolve operation
may also be used to obtain reference€dsNaming::NamingContext objects other
than the initialCosNaming::NamingContext object.

The get_domain_naming_context operation obtains a reference from the initial
CosNaming::NamingContext object in the domain being accessed through a given
JIDM::ProxyAgent object.

The design imparts no semantics or interpretation of the names themselves. Because
the structure of names must be common to all Systems Management Reference
Models, the structure of names defined in the standard CosNaming Service
specification has been adopted. The actual semantics or interpretation of names is up to
the specific Systems Management Reference Model being used. CORBA facilities
defined for a given reference model will typically include definition of library

interfaces enabling construction of names in CORBA Naming Service form
(CosNaming::Names).

Table 2-2 describes the exceptions raised byréselve operation. Note that this
description complies with the description given for the standard CosNaming service in
the Naming Servicepecification.

CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-7

2-8

Table 2-2 Exceptions Raised by the Resolve Operation

Exception Raised Description

NotFound Indicates the name does not identify a binding (there is no

object reference bound to the name passed as argument).

CannotProceed Indicates that implementation of the resolve operation has gjven

up for some reason. The client, however, may be able to
continue the operation using the returned name and reference,
which points to &osNaming::NamingContext

InvalidName Indicates the name is invalid (a name of length 0 is invalid;

additional restrictions apply depending on the specific
management support environment).

2.1.2.3

21.2.4

Only theresolve operation is guaranteed to be available in any management
environment.

CORBA manager objects may not have access to the rest of operatimhsunbind ,
etc.) exposed by the initi@@osNaming::NamingContext object or any of its
subordinateCosNaming::NamingContext objects. If a CORBA manager object
invokes an operation it cannot acces®y@_PERMISSION exception is raised.

The access_ criteria attribute

Any JIDM::ProxyAgent object exposes thaccess_criteria attribute, which checks
the terms and conditions under which access throughlDd::ProxyAgent object
was accepted.

This attribute is represented agateria , and its contents depend on the specific
System Management Reference model being used.

The destroy operation

Any JIDM::ProxyAgent object exposes theestroy operation, which destroys the
object.

Destroying alIDM::ProxyAgent object means closing the session established with
the associated managed object domain. IfJtBM::ProxyAgent object was running

in a JIDM gateway server, destruction of the object implies disposing resources used to

maintain the associated connection (closing an XMP descriptor, for example).

Destruction of aJIDM::ProxyAgent object can take place in one of the following
modes:

® gracefully , meaning that resources associated to the session are going to be
disposed of in a graceful manner. If this is not possibléaanotDestroy
exception is raised.

CORBA/TMN Interworking V1.0 August 2000

2

®* non_gracefully , meaning that resources associated with the session are going to
be disposed of in an abrupt manner. No user exception is expected in this case.

Graceful destruction afIDM::ProxyAgent objects should always be requested in the
first place. If graceful destruction is not possible, a client may request non-graceful
destruction to destroy the object.

Invokers of thedestroy operation may pass a criteria that will be analyzed to
determine whether the destruction request can be accepted or not (see Section 2.1.3,
“The JIDM::ProxyAgentController Interface,” on page 2-9 for more details).

* |f any of the destruction criteria are not understood,ltivalidCriteria exception
is raised.

* |f the destruction request is not accepted, @@ notMeetCriteria exception is
raised. The criteria describing reasons for the rejection is provided with the
exception.

® |f destruction is accepted, tliestroy operation returns Eriteria value that
typically describes the terms and conditions under which destruction has been
accepted. This criteria is initialized with values provided by controller objects in the
manager and managed object domains (see Section 2.1.3, “The
JIDM::ProxyAgentController Interface,” on page 2-9 for more details).

Once aJIDM::ProxyAgent object is destroyed, references to it are no longer valid.
Therefore, invoking an operation onJlbDM::ProxyAgent object that has been
destroyed causes the stand@BJECT_NOT_EXIST exception to be raised. In
addition, invoking operations using references to managed objects, factories, factory
finders, and naming contexts that were obtained through the destroyed
JIDM::ProxyAgent object causes the standdMV_OBJREF exception to be

raised.

2.1.3 The JIDM::ProxyAgentController Interface

Destruction ofJIDM::ProxyAgent objects in a distributed environment requires
definition of mechanisms that validate whether destruction is allowed or not. This
specification introduces validation throughDM::ProxyAgentController objects.

interface ProxyAgentController {
Criteria destruction_is_allowed (in Criteria the_criteria)
raises (InvalidCriteria, CannotMeetCriteria);
void destroyed (in Criteria the_criteria);

J

A JIDM::ProxyAgentController object may be associated with a
JIDM::ProxyAgent object, by passing its reference in the criteria parameter when
invoking theaccess_domain operation of the]IDM::ProxyAgentFinder . In this
case, thelIDM::ProxyAgentController plays the role “associated at the manager
side.” Following the exact matching rule of key and criteria, a maximum of one
JIDM::ProxyAgentController object may be associated with a given
JIDM::ProxyAgent object at the manager side.

CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-9

One or moreJIDM::ProxyAgentController objects may be associated with a
JIDM:ProxyAgent , at the managed object domain. This can be done if a
JIDM::DomainPort object is initialized with a list a¥IDM::ProxyAgentController
objects (see Section 2.1.5, “The JIDM::DomainPort Interface,” on page 2-13).

A destroy operation invoked in aIDM::ProxyAgent object will invoke operation(s),
depending on the destruction mode, inJDM::ProxyAgentController objects
associated with suchliDM::ProxyAgent s.

2.1.3.1 The destruction_is_allowed Operation

The destruction_is_allowed operation is invoked to validate whether a graceful
destruction of alIDM::ProxyAgent object may occur. Therefore, this operation is
only invoked by théProxyAgent whendestroy has been called, with a
DestructionMode of "gracefully .” If there are more than one
JIDM::ProxyAgentController ~ objects associated toJdDM::ProxyAgent , they
should all be consulted. Destruction of thHOM::ProxyAgent object is only
permitted if allJIDM::ProxyAgentController objects accept destruction of the
object.

The criteria passed as argument todlestroy operation is passed to the
JIDM::ProxyAgentController objects as a parameter of the
destruction_is_allowed operation.

® |f destruction is allowed, thdestruction_is_allowed call returns a Criteria
potentially specifying the terms and conditions under which destruction is allowed.
If the Criteria is empty, destruction is allowed unconditionally.

* |f destruction is prohibited, thEannotMeetCriteria exception should be raised.
This exception carries the reason why permission to destroy was not granted.

When an exception is raised by alpM::ProxyAgentController object in
response to this call, this exception is automatically propagated as the result of the
destroy call that triggered this process.

® If all JIDM::ProxyAgentController objects associated with the
JIDM::ProxyAgent being destroyed allow the destruction, then the
JIDM::ProxyAgent object is effectively destroyed. The Criteria returned by the
destroy call is the result of combining all Criteria returned by all involved
JIDM::ProxyAgentController objects.

When combining several criteria into one, the shared components are copied (once)
into the combined criteria, and those that are present in one but not another are also
copied into the combined criteria. That is, the combination is a “union” of criteria
components. The actual number and type of values in the criteria will typically
depend on the reference model being considered.

2-10 CORBA/TMN Interworking V1.0 August 2000

2.1.3.2 The destroyed operation

The JIDM::ProxyAgentController ~ destroyed operation is invoked after the
JIDM::ProxyAgent has been effectively destroyed (at this point, the

JIDM::ProxyAgent object no longer exists). This may occur as a result of a

successful graceful destruction interaction, as described above, or as a result of a non-
graceful destruction request.

This call carries the Criteria passed to tlestroy call in case of ungraceful
destruction, or the combined results of the correspondié@sgruction_is_allowed
calls, as described above.

If there is more than on#DM::ProxyAgentController object associated with a
JIDM::ProxyAgent , all will be notified.

2.1.4 The JIDM::ProxyAgentFinder Interface

Objects exporting th8IDM::ProxyAgentFinder interface provides an access to
managed object domains. CORBA managers that require access to a managed object
domain invoke theaccess_domain operation exposed by a

JIDM::ProxyAgentFinder object.

interface ProxyAgentFinder {
ProxyAgent access_domain (in Key k, in Criteria the_criteria)
raises (InvalidKey, CannotAccess, InvalidCriteria, CannotMeetCriteria);

J

A JIDM::ProxyAgent object represents a session established with a managed object
domain. Each session is unequivocally characterized by:

® a key that typically identifies the specific Systems Management Environment being
considered (e.g., OSI environment, SNMP environment). This key enables
adequately interpreting the criteria value passed as second argument to the
operation, and

® a criteria value that contains, among other things, the title associated with the
domain being accessed (an AE-title in OSI environments, an IP-address, or
hosthname in SNMP environments).

This means that invoking theccess_domain operation with two different <key ,
criteria> pairs will create two differe@iDM::ProxyAgent objects.

2.1.4.1 The access_domain operation
Two scenarios may occur when invoking tiecess_domain operation:

1. NoJIDM::ProxyAgent object exists with the same key and criteria values passed
in the invocation. In this case, a néWDM::ProxyAgent object is created with the
key and criteria values associated with it. Finally, a reference to the new
JIDM::ProxyAgent object is returned.

CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-11

2. A JIDM::ProxyAgent object exéts with the sane key ard criteriavalues pased in
the invocatian. In thiscase,areference to the alrdg existing JIDM::ProxyAgent
object is returned.

It is worth noticing that there can benultiple sessions establishedwith a managed
object danain. Thismeans that sy manayed objectmay be acessed through multiple
JIDM::ProxyAgents.

Conventions adopted forkeys in JIDM are described inTable 2-3. Standard ley values
include ‘OSI Managenent” and ‘1nternetManagenent” denotng the G5l and SNMP-
based Systems Managenent Ewironmens.

Table 2-3 JIDM Conventionsfor Proxy Agert Finding Keys

id field kind field meaning

“OS| Management” “XSM ewironment” | Find proxy agent for the

“Internet Manageent” specfic Systans Management
Environment.

The criteria pased & second argument tahe access_d omain operationwill contain
information needed tget up the requsted session. Only the title asigned to the
domain bemg acessed has been identified mquiredfor all Systems Mangement
Referance Models.Wildcard titles are supported insome spedic managenent
environments enabling designain of the whole space (@main) of manaed objects.

If the manayer requres exercising cantrol upon destruction of the ProxyAgent, a
reference to aJIDM::ProxyA gentControl ler object mwst also be spetied in the
Criteria (see setion Section 2.1.3, “TheJIDM::ProxyAgent@ntroller Interface,” on

pace 2-9).

Table 2-4 summarizes the name and meandafgriteria that may beassed & input
argument to theaccess_d omain operation exposed by JIDM::ProxyA gent objecs.

Table 2-4 JIDM Conventionsfor Proxy Agert Finding Critera

criterion name | type meaning

“domain title” domain specific type Title associated tohe managed

object dmain forwhich accss
isrequired.

“controller object” | JIDM::ProxyAgentContoller | referece associated to a

JDM::ProxyAgentControll er
object in he manager
(OPTIONAL).

The actual nmber and type ofvalues in the criteriawill depend ypically on the
reference model being casidered.

CORBA/TMN Interworking V1.0 Augug 2000

A reference to a roallDM::ProxyAgentFinder object at the manager may be
obtained by invoking theesolve_initial_references operation exposed through the
standardCORBA::ORB interface. The standatdORBA::Objectld assigned to the
root JIDM::ProxyAgentFinder object would be JIDM::ProxyAgentFinder

Following is a fragment of code in a CORBA Manager program:

CORBA::ORB_ptr my_orb;

Object_ptr obj;
JIDM::ProxyAgentFinder_ptr agent_finder;
JIDM::ProxyAgent_ptr agent;

JIDM::Key a_key;

JIDM::Criteria a_criteria;

/I A reference to a local JIDM::ProxyAgentFinder object is
/I obtained using standard ORB initialization services:

my_orb = ORB_init (argv, my_ORB_id);
obj = my_orb->resolve_initial_references (“JIDM::ProxyAgentFinder”);
agent_finder = ProxyAgentFinder::_narrow (obj);

/I After assigning proper values to key and criteria arguments ...
a_key =...;
a_criteria = ..,;

/I an association to the managed object domain can be established:
agent = agent_finder -> access_domain (a_key, a_criteria);

Other possibilities include (but are not limited to) registration of the root
JIDM::ProxyAgentFinder object in the local initiaCosNaming::NamingContext
or a local Trader.

2.1.5 The JIDM::DomainPort Interface

Managers that require creating and/or invoking operations on managed objects that are
members of a managed object domain must first gain access to that domain. Access to
a managed object domain is controlled®®M::DomainPort objects. Each
JIDM::DomainPort object has a title associated with it.

interface DomainPort {
readonly attribute Criteria associated_criteria;
void destroy ();
h

All JIDM::DomainPort objects associated with a managed object domain (i.e.,
associated with titles used to refer to that managed object domain) hold references to
initial CosNaming::NamingContext andCosLifeCycle::FactoryFinder objects

in the domain.

CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-13

In pure GORBA environments, when amanager objectnvokes the geration
access_domain on aProxyAgentFinder object, the rquest will finally arrive at
the JIDM::DomainPort object associated withhe title passed & one of he
parameters in the criteria.

Two scenarios may occu

1. A JIDM::ProxyAgent object exists that exactlymatcheshe key and citeriavalues
passed a arguments to thaccess_domain operation. In ths case, the
JIDM::DomainPort objectfinds a referace to the JIDM::ProxyA gent objectand
returns it to the mvoker.

2. Thereis no JIDM::Proxy Agent objectmatching thekey and criteria values passed
as aguments to the access _domain operaton. In this cae, the
JIDM::DomainPort object createa rew JIDM::ProxyA gent object andeturns
the reference to thenvoker. References to the initial
CosNamin g::NamingContext and CosLifeCycle:: FactoryFinder objects in
the domain will be passed to thenew JIDM::ProxyA gent objectby the
JIDM::DomainPort object.

During its lifetime, a JIDM::DomainPort object will keep theeferences to all
JIDM::ProxyAgent objects itcreates. This & necesary to resolve thdirst scenario.

2.1.6 The JDM::DomainPortFactory Interface

The JIDM::DomainPort objects can be createlgnamically by means of invoking the
create _domain_port operaton exposed by JIDM::Domain PortFactory objecs.

interface Domain Port Factory {
DomainPort create_domain_port (in Key k, in Criteria creation_criteria)
raises (InvalidKey, InvalidCriteria, Canno tMeetCriteria);

h

The key passed as first parameter to thiscall follows thesame conventions that wee
specified in Table 2-3 on page 2-12.

The criteria pased as second argment to thecreate_domain_ port operationwill
contain nformation needed to createetBIDM::Domain Port object. Only he title
assigned to the domaibeing accesed has been identified eequiredfor all Systems
Management Reference Mbdels. Other criteriavalues may be casidered as default
values for all the]IDM:: ProxyAgent objects that are oeatedby a domain port.

If the manayed domain reguires exercising control upon destruction of the
JIDM::ProxyAgent objects areference to we or more
JIDM:: Proxy AgentController objectsmust also be spefied in the Criteria.

Table 2-5 JIDM Conventionsfor create_dmain_port Criteria

criterion name meaning

“domain title” Title associated to themanaged bject damnain for which
acces is requied.

2-14 CORBA/TMN Interworking V1.0 Augug 2000

criterion name meaning

“controller object” Reference associated to JIDM::ProxyAgentController
object(s) in the managed domain. (OPTIONAL).

2.1.7 The JIDM::EventPort Interface

Managed objects that require forwarding events to managers must first gain access to
the manager. Access to a manager is gained thrdl¥i::EventPort objects. Each
JIDM::EventPort object has a title associated with it.

interface EventPort {
readonly attribute CosEventChannelAdmin::SupplierAdmin supplier_admin;
readonly attribute Criteria associated_criteria;
void destroy ();
h

A JIDM::EventPort object models the port through which events are going to be
received by a manager application. This port is created according to a certain criteria
which, among other things, contain the title that identifies the manager domain (see
Section 2.1.8, “The JIDM::EventPortFactory Interface,” on page 2-15). Any
agent/managed object that wants to send events to a manager must set up a connectio
with the CosEventChannelAdmin::SupplierAdmin object associated with the
JIDM::EventPort object with the appropriate title.

Therefore, alIDM::EventPort provides and handles access to a specific
CosEventChannelAdmin::SupplierAdmin object in a channel (the
SupplierAdmin object associated with tHeventPort). The same
CosEventChannelAdmin::SupplierAdmin object may be associated with different
JIDM::EventPorts and accessed through severfdM::EventPorts .

Also note that any number of agents/managed objects may establish sessions with the
sameCosEventChannelAdmin::SupplierAdmin associated with a given
JIDM::EventPort .

The JIDM::EventPorts may be destroyed by invoking tldestroy operation they
expose.

2.1.8 The JIDM::EventPortFactory Interface

The JIDM::EventPort objects can be created dynamically by invoking the
create_event_port operation exposed hjlDM::EventPortFactory objects.

interface EventPortFactory {
EventPort create_event_port (in Key k, in Criteria creation_criteria,
in CosEventChannelAdmin::SupplierAdmin the_supplier_admin)
raises (InvalidKey, InvalidCriteria, CannotMeetCriteria, AlreadyEXxists);

CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-15

Any manager wanting to receive events should obtain an object reference to a
CosEventChannelAdmin::SupplierAdmin of the channel that is to receive the
events, and createADM::EventPort object with the desired criteria. The
JIDM::EventPort object receives

® a key, identifying the Systems Management Reference model to be used (with the
same values specified in Table 2-3 on page 2-12),

® a criteria containing at least the title of the manager, and

® a reference to th€osEventChannelAdmin::SupplierAdmin object.

Only the title of the manager application has been identified as required by all System
Management Reference models. The criteria may contain other fields associated with
the specific management environment being used.

Table 2-6 JIDM Conventions for create_event_port Criteria

criterion name meaning

“domain title” Title associated to the manager domain that wants to
receive events.

Note —The manager may create a new channel (or admin) or use an object reference to
an existing one.

A manager needs to create BventPort just once (independent of the agents that are
or will be interested in receiving events). This enables a manager to receive event
reports from one or more agents through a specific title.

In addition, several manager objects could share the SampglierAdmin or
EventChannel (NotificationChannel) object, and connect themselves as consumers
interested in receiving just some kind of events.

If the creation is successful, a reference to the newly crd#dd::EventPort object
is returned.

In case of problems, the appropriate exception is raised:

¢ |nvalidKey in case the Key is not recognized.

* InvalidCriteria if any of the components of the Criteria is not understood.

* CannotMeetCriteria if the conditions for creating tHéventPort cannot be met.

* AlreadyEXxists in case there is already an existiigentPort registered with
matching Key/Criteria.

2-16 CORBA/TMN Interworking V1.0 August 2000

2.1.9 The JIDM::EventPortFinder Interface

CORBA Managed objects that are members of a CORBA-based managed object
domain can obtain referencesd®M::EventPort objects by invoking operations
exposed by dIDM::EventPortFinder object..

interface EventPortFinder {
exception NoEventPort {};

CosEventChannelAdmin::SupplierAdmin

find_event_port (in Key k, in Criteria the_criteria)

raises (InvalidKey, InvalidCriteria, CannotMeetCriteria, NoEventPort);

h
Connection to th&€osEventChannelAdmin::SupplierAdmin object associated
with a JIDM::EventPort is gained by invoking the operatidind_event_port
exposed by dIDM::EventPortFinder object in the agent. As a result of that
invocation, a reference to tl@osEventChannelAdmin::SupplierAdmin object
that matches the corresponding Key and Criteria is returned. Managed objects may
establish specific connections to tl@esEventChannelAdmin::SupplierAdmin
object by using operations exposed by $upplierAdmin interface.

It is worth noticing that thdIDM::EventPortFinder object returns a reference to the
CosEventChannelAdmin::SupplierAdmin objects associated with the
JIDM::EventPort object, and not a reference to th®M::EventPort itself.

Essentially, invoking théind_event_port operation exposed by a
JIDM::EventPortFinder object implies that the following steps are followed:

1. TheJIDM::EventPortFinder object finds a reference to tB&DM::EventPort
object associated with a key and criteria.

2. TheJIDM::EventPortFinder finds the
CosEventChannelAdmin::SupplierAdmin object associated with this
JIDM::EventPort , and a reference to this object is returned to the CORBA
managed object that invoked tfied_event _port operation.

In case the request fails, the appropriate exception is raised:

¢ |nvalidKey in case the Key is not recognized.

¢ InvalidCriteria if any of the components of the Criteria are not understood.

* CannotMeetCriteria if the conditions for finding th&ventPort cannot be met.

* NoEventPort in case there is nRventPort registered with the appropriate
Key/Criteria.

Different strategies to resolve how CORBA managed objects finally report events can
be implemented, including but not limited to:

1. CORBA managed objects directly register themselveduahSuppliers or
PullSuppliers through theSupplierAdmin associated to th&DM::EventPort .

CORBA/TMN V1.0 The JIDM Module Aug. 2000 2-17

2. CORBA managed objects register themselveBushSuppliers or
PullSuppliers in a single object that acts as some kindeeéntChannel (or
NotificationChannel), which in turn is registered asPushSupplier or
PullSupplier as described above. This is particularly useful when there is more
than onelJIDM::EventPort object and the CORBA managed objects do not need to
be aware of the specific port to which events must be sent.

- . L4
Application A (manager role) 7 incoming events

(from other managers)

JIDM::
EventPort

CosEventChannelAdmin::
SupplierAdmin

Event Reporter

JIDM::
EventPortFinder

Figure 2-2 Finding References to JIDM::EventPort Objects

2.2 Programming Model

This section is provided as information only, and does not represent a normative part of
the specification. Different scenarios are described where the use of this specification
will be clarified. This should be considered as a high-level tutorial on some potential
uses of the JIDM model. Also, some potential implementation options are discussed.

2.2.1 Programming Semantics

CORBA manager programs create and invoke operations on managed objects in the
same way they create and invoke operations on ordinary CORBA objects located in the
same CORBA domain. Analogously, they receive events supplied by managed objects
as if they were ordinary CORBA objects supplying events to an event channel located
in the CORBA domain. Whether this actually happens or not is transparent to the
CORBA manager program.

2-18 CORBA/TMN Interworking V1.0 August 2000

2

This concept of transparency is specifically supported by the fulfillment of the
semantic rules presented in Section 2.1.1, “JIDM Managed Objects,” on page 2-3.

2.2.2 Creating Managed Obijects
Creating a managed object implies performing the following actions:

1. Obtain a reference toADM::ProxyAgent object that enables access to the
domain where the managed object is going to be created.

2. Obtain a reference to the initi@bsLifeCycle::FactoryFinder in the domain.

3. Invoke thefind_factories operation exposed by the initial
CoslLifeCycle::FactoryFinder object to find a factory for the new managed
object.

4. Select a factory from the several factory objects that may meet the keys for finding
factories passed to tHmd_factories operation.

5. Invoke an appropriate operation, exposed by the selected factory, to create the
managed object.

The CORBA manager will narrow references returned byfittte factories
operation to get visibility of the specific interface exported by each factory. These
scenarios are possible:

® There is a specific factory interface associated with each managed object interface.

® Factories export a well-know generic interface like the
CosLifeCycle::GenericFactory interface.

CORBA Managers should know which of these two scenarios is implied when the
name of factory object interface is not passed as key térithefactories operation..

module CosLifeCycle {

typedef struct NVP {
CosNaming::Istring name;
any value;

} NameValuePair;

typedef sequence <NameValuePair> Criteria,;
typedef CosNaming::Name Key;

interface GenericFactory {
boolean supports (in Key k);
Object create_object (in Key k, in Criteria the_criteria)
raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

CORBA/TMN V1.0 Programming Model Aug. 2000 2-19

2-20

Typically, a name for the managed object is passed as argumentdedbe

operation. This name would unequivocally identify the managed object within the
domain where it will be created. The identifier of the principal interface exported by
the managed object should also be passed tordate operation in case it was not
passed as a key to tfiad_factories operation.

As already mentioned in Section 2.1.2, “The JIDM::ProxyAgent Interface,” on

page 2-4, valid key values for finding factories depend on the specific Systems
Management Reference Model being considered. However, the overall philosophy is
common to all models.

The following example shows the code used to create a managed printer. This fragment
of code would be the same for all reference models you consider (e.g., it would be the
same for OSI management or SNMP-based management). Only the way in which the

reference to thdIDM::ProxyAgent object is obtained, the keys used to find factories,
or semantics of arguments passed todfeate_object operation may vary.

JIDM::ProxyAgent_ptr agent;
CORBA::Object_ptr obj;
Printing::ManagedPrinter_ptr my_printer;
JIDM::Key finding_key (1);
CosLifeCycle::FactoryFinder_ptr ff;
CosLifeCycle::Factories mo_factories;
CosLifeCycle::GenericFactory_ptr my_factory;

/I a reference to a JIDM::ProxyAgent is obtained as a result of
Il establishing a session with the managed object domain where
/I the printer is going to be created:

/I a reference to the initial CosLifeCycle::FactoryFinder object
/I is obtained:

ff = agent -> get_domain_factory_finder ();
/I a key to find a factory for the managed object is constructed:

finding_key [0].id = “CosLifeCycle::GenericFactory”;
finding_key [0].kind = “factory interface”;

/I factories for the managed object are found through the initial
/I factory finder:

mo_factories = ff -> find_factories (finding_key);
/I a reference is selected and narrowed to the expected interface:
my_factory = CosLifeCycle::GenericFactory::_narrow (mo_factories [0])

/I a managed printer is created and a reference to it is returned

CORBA/TMN Interworking V1.0 August 2000

/I which will typically be narrowed to a specific interface

obj = my_factory -> create_object (...);
my_printer = Printing::ManagedPrinter::_narrow (obj);

As shown in the example, CORBA managers will create managed objects (a managed
printer in the example) in the same way they create CORBA objects in the local ORB
domain. That is to say, by means of using stan@asl ifeCycle services. Whether

this actually happens or not depends on how the corresponding managed object domain
is being accessed:

® through one or several interconnected ORBs (i.e., directly through CORBA), or

® through a JIDM gateway (a CORBA/CMIP gateway, for example).

Figure 2-3 illustrates how CORBA manager objects will create a new managed object
in a pure CORBA environment.

manager object

3. specific Managed Objept D_omain
1. managed object (Agent Application)
1 factory interface
CosNaming::
JIDM:: Managed Object NamingContext
ProxyAgent

Factory
- - - '
()

VRAN

CosLifeCycle::

FactoryFinder title4

Figure 2-3 Invoking operations on a managed object directly through CORBA

The JIDM::ProxyAgent created as a result of establishing a session with a CORBA
managed object domain would typically hold references to the root
CosNaming::NamingContext object andCosLifeCycle::FactoryFinder object in

the domain. These steps are followed:

1. The CORBA manager invokes tget _domain_factory finder operation
exposed by thdIDM::ProxyAgent object. As a result, a reference to the initial
CosLifeCycle::FactoryFinder in the domain being accessed is returned.

CORBA/TMN V1.0 Programming Model Aug. 2000 2-21

2-22

2. The CORBA manager object invokes firel_factories operation exposed by the
initial CosLifeCycle::FactoryFinder object. As a result, a reference to a
managed object factory is obtained and returned to the CORBA manager object that
requested it.

3. The CORBA manager object invokes a suitable operation on the managed object
factory using the CORBA object reference previously obtained. Typically, the
CORBA manager will narrow this reference to a well-known managed object
factory interface (th&€osLifeCycle::GenericFactory interface, for example).

4. The managed object factory creates the CORBA managed object and performs any
other required action (such as registering a reference to the managed object with a
name in the locaCosNaming::NamingContext and/or notifying that a new
managed object has been created to other objects at the managed object domain).
This kind of side-effect actions may vary depending on the Systems Management
Reference Model being considered.

5. Finally, if everything is all right, the managed object factory returns a reference to
the CORBA manager object; otherwise, it returns an exception.

2.2.3 Invoking Operations on Managed Objects

Invoking an operation on a managed object implies performing the following actions:

1. Obtain a reference toADM::ProxyAgent object that enables access to some
domain of which the managed object is a member.

2. Obtain a reference to the init@bsNaming::NamingContext in the domain, by
means of invoking thget_domain_naming_context operation exposed by the
JIDM::ProxyAgent object.

3. Construct the name that unequivocally identifies the managed object within the
domain.

4. Invoke theresolve operation exposed by the initial
CosNaming::NamingContext object in the domain, thus obtaining a CORBA
object reference pointing to the managed obiject.

5. Invoke the operation on the managed object.

Of course, steps 1 through 4 are only strictly required the first time a managed object
is accessed. Actually, the CORBA manager object that obtains a reference to a
managed object can register the reference in some local object service so that other
CORBA manager objects can find the reference and do not need to interact with
JIDM::ProxyAgent or CosNaming::NamingContext objects.

Once a reference is obtained for a managed object, it is valid as long as the managed
object exists and the associated managed object domain is accessible. A valid object
reference can be used as many times as required. Two alternatives exist for invoking an
operation on a managed object once a CORBA object reference is obtained for the
object:

® Use the Dynamic Invocation Interfacel(p) or

CORBA/TMN Interworking V1.0 August 2000

2

® Use IDL stubs generated from definition, in OMG IDL, of interfaces exported by
the managed object.

In the first case, the CORBA object reference obtained as a result of resolving the

name of the managed object can be used directly. In the second case, the CORBA
object reference must be narrowed to a specific interface exported by the managed
object.

The following example shows the code used to invokeadket operation exposed by
a managed printer (i.e., objects exporting Bmting::ManagedPrinter interface)
using IDL stubs generated in C++.

JIDM::ProxyAgent_ptr agent;
CosNaming::Name printer_name;

/I a reference to a JIDM::ProxyAgent is obtained as a result of
/I establishing a session with the managed object domain where
/l the printer is located:

/I a reference to the initial CosNaming::NamingContext object
/l is obtained:

CosNaming::NamingContext_ptr ctx = agent -> get_domain_naming_context ();

/I the name of the printer is constructed:
printer_name = ...;

/I a reference to the managed printer is obtained and
/I narrowed to the ManagedPrinter interface:

CORBA::Object_ptr obj = ctx -> resolve (printer_name);
Printing::ManagedPrinter_ptr my_printer =
Printing::ManagedPrinter::_narrow (obj);

/I Finally, the reset operation is invoked on the managed object:

my_printer -> reset ();

It must be pointed out that this fragment of code would be the same for all Systems
Management Reference Models that can be considered (e.g., it would be the same for
OSI management or SNMP-based management). Only the way in which the reference
to theJIDM::ProxyAgent object is obtained or the way in which the name of the
managed object is constructed may vary. Thus, CORBA managers will have the
illusion that managed objects (a managed printer in the example) are implemented as
CORBA objects directly accessible via CORBA.

Whether this actually happens or not depends on how the corresponding managed
object domain is being accessed:

CORBA/TMN V1.0 Programming Model Aug. 2000 2-23

® through one or several interconnected ORBs (i.e., directly through CORBA), or

* through a JIDM gateway (a CORBA/CMIP gateway, for example).

Figure 2-4 illustrates how CORBA manager objects invoke operations on a managed
object in a pure CORBA environment.

manager object

Q 3. specific
management

1. interface
I Application C (agent role)
2.
JIDM:: []
ProxyAgent title4

O -)
CosNaming:: ‘ ‘
NamingContext

Figure 2-4 Invoking Operations on a Managed Object Directly through CORBA

As previously explained, th&iDM::ProxyAgent created as a result of establishing a
session with a CORBA managed object domain would typically hold references to the
initial CosNaming::NamingContext object andCosLifeCycle::FactoryFinder

objects in the domain. Thus, the following steps will be followed:

1. The CORBA manager object invokes thet_domain_naming_context
operation exposed by tll@dDM::ProxyAgent object, in order to obtain a reference
to the initial CosNaming::NamingContext object.

2. The CORBA manager object invokes tiesolve operation exposed by the initial
CosNaming::NamingContext object, passing the name of the managed object
upon which it wants to operate. As a result, a CORBA object reference to the
managed object is obtained and returned to the CORBA manager object that
requested it.

2-24 CORBA/TMN Interworking V1.0 August 2000

2

3.

The CORBA manager object invokes an operation on the managed object using the
CORBA object reference previously obtained. IDL stubs or the standard DIl can be
used for doing this. If IDL stubs are used, the CORBA manager object must narrow
the reference to a specific OMG IDL interface.

2.2.4 Reception of Events at CORBA Managers

Different strategies to resolve how CORBA manager objects finally consume events
can be implemented, including but not limited to:

incoming events
(from other managers)

CORBA manager objects responsible for performing management functions directly
register themselves &ishConsumers or PullConsumers at every local
JIDM::EventPort .

CORBA manager objects responsible for performing management functions register
themselves aBPushConsumers or PullConsumers in a singleEventChannel .

The event channel registers itself aBushConsumer or PullConsumer in

every localJIDM::EventPort . This is particularly useful when there is more than
oneJIDM::EventPort object and the CORBA manager objects do not need to
distinguish through which specific port events were received.

Application A (manager role)

incoming events

(from agents)

Figure 2-5 Event Reception at CORBA Managers

It is worth noticing that several advantages are derived from defining
JIDM::EventPort objects as havin@osEventChannelAdmin::SupplierAdmin
objects, some of which are:

®* Any EventChannel implementation supplied by any software provider can be used

to receive events from an agent.

CORBA/TMN V1.0 Programming Model Aug. 2000 2-25

2-26

Managers wanting to filter events can registdlogificationChannel instead of an
EventChannel to filter events. A manager who does not want to filter events can
use a simplé&ventChannel . This can be achieved transparently for
gateway/managed domains.

The sameEventChannel can be shared by several managers and a manager can
reuse theeventChannel whenever he wants, independently of it being used by
other managers.

Given the newNotificationChannel structure, multiple Admins per channel are
possible (even frequent). By registering the Admin rather than the Channel itself,
the user has better configuration possibilities.

Ability to globally filter on reception.

Easier grouping capabilities into a single channel, but keeping separate Admins per
title (with potentially different filters).

Potentially support delegation facilities (an agent/manager application could get a
SupplierAdmin from a higher level manager and register it with another title,
effectively saving a forwarding step).

An EventChannel can be created in the gateway process (there is an
EventChannelFactory facility being provided) or it can be created in any other
distributed process and registered in the gateway BwentChannel can be
distributed and the load of managing the final CORBA events can be balanced).

CORBA manager objects consume events generated by remote managed objects in
the same way they receive other events (events generated by other CORBA manager
objects at the same CORBA Manager, for example).

CORBA manager objects residing in different CORBA Managers can use
JIDM::EventPorts to exchange events between them since they are ordinary event
channels.

Multiple scenarios for handling incoming events are possible at CORBA managers.
One or severalIDM::EventPort objects can be installed, reception of events can
be handled by means of applying different cascading techniques, push and pull
styles of event communication can be combined, etc.

CORBA/TMN Interworking V1.0 August 2000

JIDM::

Q EventPort EventChannel

CosEventChannelAdmin::
ConsumerAdmin

JIDM::
EventPort

Manager

l CosEventComm:: objects
PushConsumer

incoming
event

Figure 2-6 Handling Event Reports with Event Channels (push model)

Figure 2-6 represents one possible scenario - CORBA manager objects performing
management functions are registered as consumers at an event channel which, in turn,
has been registered a®ashConsumer at two localJIDM::EventPort objects The

basic algorithm being used is defined as follows:

1. During the start up phase of the CORBA Manager Application, a
CosEventChannelAdmin::EventChannel object is registered as a
CosEventComm::PushConsumer in every localJIDM::EventPort . CORBA
manager objects actually performing the management functions are registered as
consumers in this channel.

2. A JIDM::EventPort object receives data associated with an event.

3. TheJIDM::EventPort invokes thepush operation exposed by all objects that have
been registered aSosEventComm::PushConsumers . This includes the
CosEventChannelAdmin::EventChannel object. Data of the event is passed in
the invocation as an any.

4. When theCosEventChannelAdmin::EventChannel object receives an event, it
invokes thepush operation exposed by all CORBA manager objects that were
registered a€osEventComm::PushConsumers in the channel.

CORBA/TMN V1.0 Programming Model Aug. 2000 2-27

2-28

5. TheCosEventChannelAdmin::EventChannel object keeps every event it
receives until all CORBA manager objects that were registered as
CosEventComm::PullConsumers invoke the pull operation on the channel or a
time-out expires.

JIDM::
EventPort

Q ‘#\EventChannel

CosEventChannelAdmin:: 1.
ConsumerAdmin

JIDM::
EventPort

Manager

l CosEventComm:: objects
PullConsumer

incoming
event

Figure 2-7 Handling Event Reports with Event Channels (pull model)

Figure 2-7 represents another possible scenario, where CORBA manager objects
performing management functions are registered as consumers at one event channel
that, in turn, has been registered &BuiConsumer at two localJIDM::EventPort
objects. The basic algorithm being followed is:

1. During the start up phase of the CORBA Manager Application, the
CosEventChannelAdmin::EventChannel object is registered as a
CosEventComm::PullConsumer in every localJIDM::EventPort .

2. A JIDM::EventPort object receives data associated with an event report.

3. TheJIDM::EventPort object holds the event so that all objects registered as
CosEventComm::PullConsumers can consume the event. They will do it by
invoking thepull operation exposed by ttiDM::EventPort object.

4. When theCosEventChannelAdmin::EventChannel pulls the event, it invokes
the push operation exposed by all CORBA manager objects that have been
registered a€osEventComm::PushConsumers in the channel.

CORBA/TMN Interworking V1.0 August 2000

2

5. TheCosEventChannelAdmin::EventChannel object also keeps every event it
pulls until all CORBA manager objects that have been registered as
CosEventComm::PullConsumers invoke thepull operation on it or a time-out
has expired.

2.2.5 Federation of JIDM::ProxyAgentFinders and JIDM::DomainPorts

To ensure that the service for findidgPM::ProxyAgent objects is scalable, the
principle of federation needs to be adopted. Federation is essential in large-scale
distributed systems where the existence of a centralized ownership control cannot be
assumed.

The specific service used to federdtBM::DomainPort objects in a pure CORBA
environment is transparent to CORBA manager clients and beyond the scope of this
specification. Use of Traders or intermedidtBM::ProxyAgentFinder objects

connected in a graph are some examples of valid solutions. Furthermore, different
federation services can be supported and combined to implement a complete solution.

Note that in this respect, the raiDM::ProxyAgentFinder object that is accessible

to CORBA managers simply represents a simple bootstrapping mechanism that
encapsulates access to whatever Federation Service is finally used. By standardizing
this interface, portability of CORBA manager clients is guaranteed. On the other hand,
the JIDM::ProxyAgentFinder interface allows easier implementation of gateways
between CORBA managers and managed object domains that are only accessible
through standard management protocols (CMIP, SNMP, etc).

In a pure CORBA environment, a complete solution may be implemented based on a
graph of inter-connectediDM::ProxyAgentFinder objects. In such solution, there
would be at least two styles dfDM::ProxyAgentFinder objects:

1. TheJIDM::DomainPort objects that actually work as factories of
JIDM::ProxyAgent objects.

2. IntermediaryJIDM::ProxyAgentFinder objects that pass requests on to either
JIDM::DomainPorts or other intermediarylDM::ProxyAgentFinder objects.

By configuring intermediaryIDM::ProxyAgentFinder objects and

JIDM::DomainPort objects into a graph, the service for findif@M::ProxyAgent

objects can be built so that it administers access to a large number of managed object
domains.

Whenever a manager object invokes dteess_domain operation, the request

would traverse the graph until it reachedlBM::DomainPort object, which can

satisfy the request (one that resides in the managed object domain being accessed). A:
the request traverses the graph, each intermediary (non-terminal)
JIDM::ProxyAgentFinder object would decide which link the request would traverse
next. Decisions are based upon information about each available link, any policies in
force at that node, and value of parameters in the request.

CORBA/TMN V1.0 Programming Model Aug. 2000 2-29

2-30

manager object

Clearly, configuration o§IDM::ProxyAgentFinder graphs and definition of policies

to traverse these graphs requires definition of Federating interfaces (see the Life Cycle
Service under the CORBAservices heading for definition of interfaces to federate
CoslLifeCycle::GenericFactory objects). Again, different federation policies can be
supported and combined to implement a complete solution. One possible alternative
may be that intermediatHDM::ProxyAgentFinder objects export an interface that
enables them to bind a reference tdiM::ProxyAgentFinder object together with

a specific filter that can be applicable to key and criteria values passed to the
access_domain operation. This would allow registering one
JIDM::ProxyAgentFinder object that is able to find references to

JIDM::ProxyAgent associated with some range of title values.

A\

JIDM::
ProxyAgentFinder ~ J/ * ====un=-
JIDM::

ProxyAgentFinder O

JIDM::
ProxyAgentFinder

JIDM::
ProxyAgent

JIDM::
Le® Q DomainPort

. ¢'-- []
title4

Figure 2-8 Implementing Federation with Graphs of ProxyAgentFinders

Figure 2-8 illustrates how federation dDM::DomainPorts would work if a graph
of intermediatelIDM::ProxyAgentFinder objects is implemented. The following
steps would be followed:

1. A manager object invokes tlagcess_domain operation exposed by the root
JIDM::ProxyAgentFinder object. The manager object typically obtains a
reference to thigIDM::ProxyAgentFinder object using local initialization
services.

CORBA/TMN Interworking V1.0 August 2000

2. TheJIDM::ProxyAgentFinder object that first receives theccess_domain
request will typically act as an intermedialpM::ProxyAgentFinder object.
Based on information available to that object, it will decide to pass requests on to
otherJIDM::ProxyAgentFinder objects.

3. The request will traverse the graph until it reachédb#l::DomainPort object,
which resides at the managed object domain being accessed. That object will create
or return an already existing reference tdl@M::ProxyAgent object, which
matches the key and criteria value passed in the request.

4. As a result of this process, a valid reference ItDé::ProxyAgent object would
be passed to the manager object that requested to establish a session. Using this
reference, the manager object is able to operate upon members of the managed
object domain or create new members of the managed object domain.

manager object

\

JIDM::
ProxyAgentFinder ~ / » =======
Trader

JIDM::
DomainPort

JIDM::
ProxyAgent

®
title4

Figure 2-9 Implementing Federation with Traders

An alternative solution may be based on the use of Traders. Figure 2-9 illustrates how
federation ofJIDM::DomainPorts would work in such a case. The following steps
would be followed:

1. A manager object would invoke tlaecess_domain operation exposed by the
root JIDM::ProxyAgentFinder object. The manager object would typically obtain
a reference to the rodtDM::ProxyAgentFinder object using local initialization
services.

CORBA/TMN V1.0 Programming Model Aug. 2000 2-31

2-32

2. The rootJIDM::ProxyAgentFinder object would convert theequestinto an
invocation of thdookup operation exposed byTaader object. ThisTrader object
may be federated with oth@rader objects.

3. The request would traverse the graph of Traders until some of them find a
JIDM::DomainPort object, which resides at the managed object domain being
accessed. A reference to tliOM::DomainPort object is passed to the root
JIDM::ProxyAgentFinder object, which initiated the process.

4. The rootlJIDM::ProxyAgentFinder object would invokeaccess_domain on the
JIDM::DomainPort object. As a result, a reference tdIBM::ProxyAgent
object is returned.

5. The returned reference would finally be passed to the manager object that requested
to establish a session. Using this reference, the manager object is able to operate
upon members of the managed object domain or create new members of the
managed object domain.

2.2.6 Federation of JIDM::EventPortFinders and JIDM::EventPorts

To ensure that the service for findidtbM::EventPort objects is scalable, the

principle of federation also needs to be adopted. Federation is essential in large-scale
distributed systems where the existence of a centralized ownership control cannot be
assumed.

The specific service used to federdtBM::EventPort objects in a pure CORBA
environment is transparent to CORBA manager clients and is beyond the scope of this
specification. Use of Traders or intermedidtBM::EventPortFinder objects

connected in a graph are some examples of valid solutions. Furthermore, different
federation services can be supported and combined to implement a complete solution.

Note that in this respect, the raDM::EventPortFinder object that is accessible to
CORBA managed objects simply represents a simple bootstrapping mechanism that
encapsulates access to whatever Federation Service is finally used. By means of
standardizing this interface, portability of CORBA managed object implementations is
guaranteed. On the other hand, #eM::EventPortFinder interface allows easier
implementation of gateways between CORBA managers and managed object domains
that are only accessible through standard management protocols (CMIP, SNMP).

In a pure CORBA environment, a complete solution may be implemented based on a
graph of inter-connectediDM::EventPortFinder objects. By configuring
intermediaryJIDM::EventPortFinder objects into a graph, the service for finding
JIDM::EventPort objects can be built so that it administers access to a large number
of managed object domains.

Whenever a managed object invokes find_event_port operation, the request

would traverse the graph until it reaches the tad¢ieM::EventPort object. As the
request traverses the graph, each intermedil¥::EventPortFinder object would
decide which link the request would traverse next. Decisions will be based upon
information about each available link, any policies in force at that node, and value of
parameters in the request.

CORBA/TMN Interworking V1.0 August 2000

2

Clearly, configuration of)IDM::EventPortFinder graphs and definition of policies to
traverse these graphs requires definition of Federating interfaces, see the Life Cycle
Service under the CORBAservices headiogdefinition of interfaces to federate
CosLifeCycle::GenericFactory objects). However definition of such interfaces is
beyond the scope of this specification since they are transparent to the clients
(managed objects). Different federation policies can be supported and combined to
implement a complete solution.

One possible alternative may consist of intermedi#dé::EventPortFinder objects
exporting an interface that enables binding a referenceJibM::EventPortFinder

object together with a specific filter that is applicable to key and criteria values passed
to thefind_event_port operation. This would allow, as an example, to register one
JIDM::EventPortFinder object as being able to find referencesiioM::EventPort

objects associated with titles that fall within some specific range of title values.

Figure 2-10 on page 2-34 illustrates how federatiodldM::EventPorts would work
if a graph of intermediat@DM::EventPortFinder objects is implemented. The
following steps would be followed:

1. A managed object would invoke thiad_event_port operation exposed by a
JIDM::EventPortFinder object. The managed object typically would obtain a
reference to thisIDM::EventPortFinder object using local initialization services.

2. TheJIDM::EventPortFinder object that first receives theccess_domain
request would typically act as an intermedidipM::EventPortFinder object.
Based on information available to that object, it would decide to pass requests on to
anotherJIDM::EventPortFinder object.

3. The request would traverse the graph until it reaches the tARjdt:EventPort
object. The lasgIDM::EventPortFinder object in the graph would obtain a
reference to th€osEventChannelAdmin::SupplierAdmin object in the
channel and would return that reference.

4. As a result of this process, a valid reference to a
CosEventChannelAdmin::SupplierAdmin object would be passed to the
managed object that issued the request. Using this reference, the managed object is
able to register as a push or pull supplier.

CORBA/TMN V1.0 Programming Model Aug. 2000 2-33

Manager Application

manager objects

() -

JIDM:: oe*”
EventPort Q
JIDM::

EventPortFinder

Oy sertinse O
EventPortFinder

....... JIDM::
EventPortFinder

O - —

CosEventChannelAdmin::
SupplierAdmin

O

managed object

Figure 2-10 Finding JIDM::EventPort Objects

2.3 JIDM Gateways

2-34

This section is provided as information only, and does not represent a normative part of
the specification. Different gateway scenarios are described where the use of this
specification will be clarified. This should be considered as a high-level tutorial on
some potential uses of the JIDM model. Also, some potential implementation options

are discussed.
2.3.1 Manager Side Gateways

2.3.1.1 Overview

JIDM gateways must be used by any CORBA Manager Application needing to
interoperate with managed object domains that are not directly accessible via CORBA
but via other management-specific protocol such as CMIP or SNMP. By definition, a
JIDM gateway is associated with only one management protocol. Therefore, we can
refer to CORBA/CMIP gateways or CORBA/SNMP gateways whenever we want to
designate explicitly which is the specific management protocol associated with a JIDM

gateway at some CORBA Manager Application.

CORBA/TMN Interworking V1.0 August 2000

2

A JIDM gateway runs in one CORBA server; however, one or several JIDM gateways
can coexist in the same CORBA server. Programs of the CORBA server have access to
both ORB services and services encapsulating access to management-specific protocols
provided by JIDM gateways at the server. Besides, there can be several CORBA
servers containing JIDM gateways in the same CORBA Manager Application.

Any JIDM gateway typically has several CORBA objects associated with it.

* A JIDM::ProxyAgentFinder object for establishing connections to managed
object domains being accessed through the gateway.

® One or severalIDM::EventPort objects for receiving notification of events from
members of managed object domains being accessed through the gateway.

The JIDM::ProxyAgentFinder object is created during start-up of the CORBA server
where the JIDM gateway is going to rudIDM::EventPort objects at the gateway
may be created during or after start-up of that server. Typically, this requires the
existence of afEventPortFactory object at the gateway.

Several JIDM gateways can exist in a CORBA manager and one
JIDM::ProxyAgentFinder object is typically associated with each of them. All the
gateways would be registered in a rgidM::ProxyAgentFinder object at the
CORBA manager. CORBA managers can obtain a reference to this local root
JIDM::ProxyAgentFinder object by using standard CORBA Initialization Services.

CORBA/TMN V1.0 JIDM Gateways Aug. 2000 2-35

local root
JIDM::ProxyAgentFinder

JIDM gateway Q JIDM gateway

/ JIDM::

~

N / JIDM::
ProxyAgentFinder Q 4__|J |_|__> Q ProxyAgentFinder
JIDM:: - | EventPort _»Q JIDM::
EventPorts Q factories EventPorts
A management A A
-

. —
tC}C}CD—‘ service access ’—<x3{37
A 4 endpoint v

\\ - ~
\ management / h
management service library management
protocol protocol

Figure 2-11 Structure of JIDM Gateways (manager side)

As a result of establishing a connection through a JIDM gateway, a
JIDM::ProxyAgent object is created at the gateway. THEM::ProxyAgent objects
created this way are responsible for:

® Creating aCosLifeCycle::FactoryFinder object that in turn enables creation of
CORBA factories that handle creation of managed objects at the domain.

® Creating aCosNaming::NamingContext object that in turn enables creation of
CORBA proxy managed objects for each member of the domain.

2-36 CORBA/TMN Interworking V1.0 August 2000

manager object

O)

specific
management Application C (agent role)
JIDM:: interface
ProxyAgent
\ title4
Q - *Q} -
proxy

managed object
_/

gateway -+ — >
management
protocol

protocol stack protocol stack

Figure 2-12 JIDM::ProxyAgents in a gateway

2.3.1.2 Getting access to managed object domains

The following steps are followed when a CORBA manager tries to get access to an
external managed object domain using a JIDM gateway (see Figure 2-13 on
page 2-38):

1. The CORBA manager invokes thecess_domain operation exported by the
JIDM::ProxyAgentFinder object located at the gateway. Information that
unequivocally identifies the managed object domain to be accessed is passed in the
invocation.

2. As a result of invoking thaccess_domain operation, a CORBA
JIDM::ProxyAgent object is created at the gateway. The J&DM::ProxyAgent
object is bound to a management protocol communication endpoint (a service
access point in OSI environments). If a specific domain title was specified in the
criteria passed as argument to #oeess_domain operation, then a connection is
established with the managed object domain. In such a case, the
JIDM::ProxyAgent is responsible for managing resources associated with the
connection.

3. A reference to th8IDM::ProxyAgent object is returned to the CORBA manager
that requested access to the managed object domain being considered.

CORBA/TMN V1.0 JIDM Gateways Aug. 2000 2-37

gateway

JIDM::
ProxyAgentFinder

JIDM::
ProxyAgent

 ——

request
PDUs

Figure 2-13 Finding References to JIDM::ProxyAgents in a JIDM Gateway

2.3.1.3 Creation of managed objects

These steps are followed when a CORBA manager creates a managed object at some
domain that is accessible through a JIDM gateway (see Figure 2-14 on page 2-39):

1. The CORBA manager invokes tget _domain_factory finder operation
exported by theJIDM::ProxyAgent obiject.

2. The CORBA manager invokes tfied_factories operation exported by the
returnedCosLifeCycle::FactoryFinder object, passing a valid key value.

3. TheCoslLifeCycle::FactoryFinder object finds references for appropriate
managed object factories at the JIDM gateway. If there is no managed object factory
matching the key, th€osLifeCycle::FactoryFinder object creates one.
References to managed object factories are returned to the CORBA manager.

4. The CORBA manager invokes an operation on the managed object factory using the
CORBA object reference it obtained. Typically, the CORBA manager narrows this
object reference to a specific managed object factory interface supported by the
factory (theCosLifeCycle::GenericFactory interface, for example).

5. The CORBA request is received by the JIDM gateway and is translated into an
appropriate management create request PDU. This create request PDU is sent
through the management protocol communication endpoint held by the
JIDM::ProxyAgent .

2-38 CORBA/TMN Interworking V1.0 August 2000

2

6. When the response to the request PDU is received, the invoked operation returns
with the appropriate result values.

7. If thecreate operation must return an object reference, then a CORBA proxy
managed object is also created at the gateway.

JIDM:: gateway
ProxyAgent

4 o)

| CoslLifeCycle::

| e . FactoryFinder

RN impl.
| -
| ()
]
CosLifeCycle:: 3. proxy
2 FactoryFinder Q 7. * managed
- object factory
O ' -
4 I

object factory
interface

specific managed K ’—(
5

6.

#
q request

PDU

Figure 2-14 Creating Managed Objects through a JIDM Gateway

2.3.1.4 Invocation of operations on managed objects

These steps are followed when a CORBA manager invokes an operation on a managed
object that is accessible through a JIDM gateway (see Figure 2-15 on page 2-40):

1. The CORBA manager invokes tget _domain_naming_context operation
exported by theJIDM::ProxyAgent object.

2. A CORBA manager invokes thresolve operation exported by the returned
CosNaming::NamingContext object, passing the name of the managed object
upon which it wants to operate.

3. TheCosNaming::NamingContext object finds a reference to the CORBA object
acting as the proxy of the managed object and returns it to the CORBA manager
that requested it. The CORBA proxy managed object resides in the JIDM gateway.
The CosNaming::NamingContext object is responsible for creating the CORBA
proxy managed object if it didn’t exist at the gateway, the first time an existing
managed object is accessed.

CORBA/TMN V1.0 JIDM Gateways Aug. 2000 2-39

4. The CORBA manager invokes an operation on the managed object using the
CORBA object reference to the corresponding proxy. IDL stubs or the standard DlII
can be used to perform this action. Whenever IDL stubs are used, the CORBA
manager must narrow the reference, obtained from the
CosNaming::NamingContext , to a specific OMG IDL interface (the
Printing::ManagedPrinter interface, for example).

5. The CORBA request is received by the JIDM gateway and is translated into an
appropriate management request PDU. This request PDU is sent through the
management protocol communication endpoint held byJtbé::ProxyAgent .

6. When the response to the request PDU is received, the invoked operation returns
with the appropriate result values.

JIDM:: gateway
ProxyAgent / \
| CosNaming::
| e . NamingContext
RN impl.
| -~
| > Q
1
CosNaming:: 3. : proxy
2 NamingContext managed
v object factory
specific managed
object factory
interface . 6.
v T
request
PDU

Figure 2-15 Invoking Operations on a Managed Object through a JIDM Gateway

2.3.1.5 Eventreception

Events originated at managed object domains are always received through
JIDM::EventPort objects at CORBA Managers. A mechanism is implemented at any
JIDM gateway that allows event data received at a management connection endpoint to
be forwarded to the approprialdDM::EventPort object.

2-40 CORBA/TMN Interworking V1.0 August 2000

2

As already mentioned in Section 2.2.4, “Reception of Events at CORBA Managers,”
on page 2-25, different strategies to resolve how CORBA manager objects finally
consume events can be implemented. Just to give an example, CORBA manager

objects can register themselves directhdidM::EventPorts or via some additional
event channel.

gateway

CosEventChannelAdmin:: 1, Q

ConsumerAdmin

EventChannel

/ JIDM::

EventPort

CosEventComm::
PushConsumer

manager
objects

event-report
indication

5.@

CosEventComm::
PullSupplier

Figure 2-16 Event Reporting at JIDM Gateways (manager side)

These steps are followed when a CORBA manager receives an event through a
JIDM::EventPort located at a gateway (see Figure 2-16):

1.

During the start up phase of the CORBA Manager Application, one or more
application objects register themselves as either
CosEventComm::PushConsumers or CosEventComm::PullConsumers in
each of the existingIDM::EventPorts .

A PDU containing a notification of an event from a managed object is received by
the JIDM gateway through some management connection endpoint. This
management connection endpoint is bound to a specific title and has a
JIDM::EventPort object associated with it, which finally receives the event data
carried in the PDU.

The appropriate response (if applicable) is sent by the JIDM gateway back to the
application that reported the event, confirming that the event was received at the
Manager Application.

CORBA/TMN V1.0 JIDM Gateways Aug. 2000 2-41

2-42

4. TheJIDM::EventPort invokes thepush operation exported by all
CosEventComm::PushConsumers objects connected to it. Data of the event is
passed in the invocation as an any.

5. TheJIDM::EventPort maintains the event until all
CosEventComm::PullConsumers objects connected to the port pull the event.
Data of the event is obtained by consumers as an any.

6. CosEventChannelAdmin::EventChannel objects can be connected as
consumers to the event port. In such a case, manager objects performing
management functions can be connected to the channel instead of directly to the
event ports.

2.3.2 Agent Side Gateways

2.3.2.1 Overview

JIDM gateways must be used by any CORBA Agent Application needing to offer a
management interface based on some management-specific protocol such as CMIP or
SNMP but not CORBA. By definition, a JIDM gateway is associated with one single
management protocol. Therefore, we can refer to CORBA/CMIP gateways or
CORBA/SNMP gateways whenever we want to designate explicitly which is the
specific management protocol associated with a JIDM gateway for some given
CORBA Agent Application.

A JIDM gateway runs in one CORBA server; however, one or several JIDM gateways
can coexist in the same CORBA server. Programs in this server have access to both
ORB services and services encapsulating access to management-specific protocols
provided by JIDM gateways at the server. Besides, there can be several CORBA
servers containing JIDM gateways in the same CORBA Agent Application.

Any JIDM gateway at a CORBA Agent Application has several objects associated with
it (see Figure 2-17 on page 2-43):

* A JIDM::EventPortFinder CORBA object that enables CORBA managed objects
at the agent application to establish connectionild/::EventPort objects at
remote Manager Applications that are accessible through the gateway.

* A JIDM::DomainPort object that serves requests issued from remote Manager
Applications that want to get access to managed objects at the local managed object
domain.

These objects are created during start-up of the CORBA server where the JIDM
gateway is located.

Several JIDM gateways can exist in a CORBA Agent adtDi::EventPortFinder
object typically is associated with each of them. All $ti@M::EventPortFinders
would be registered in a rodtDM::EventPortFinder object at the CORBA Agent.

CORBA/TMN Interworking V1.0 August 2000

An initial CosLifeCycle::FactoryFinder object and

CosNaming::NamingContext object exist at any CORBA managed object domain.
Whether these two interfaces are exported by the same CORBA object or different
CORBA objects is an implementation issue. References to these CORBA objects can
be obtained from a JIDM gateway by using the standard Initialization Services and are
passed to théIDM::DomainPort object at creation time.

local root
JIDM::
EventPortFinder

JIDM gateway Q
| ‘ |

JIDM gateway

JIDM:: \

EventPortFinder

| | >Q JIDM::

DomainPort

management
service access Q
endpoint \
management
\\ service library //
h

management management
protocol protocol

/ JIDM::

EventPortFinder

JIDM:: Q< ||

DomainPort

=)

Figure 2-17 Structure of JIDM Gateways (agent side)

2.3.2.2 Handling access to managed objects

A JIDM::DomainPort object resides in the JIDM gateway to handle access to the
managed object domain and serve association request issued from remote Manager
Applications.

Every JIDM::DomainPort object has a title associated with it. This title is used by
remote Manager Applications to identify the managed object domain associated with
the JIDM::DomainPort object.

When a new association request is received byliib#::DomainPort object that is

in a gateway, thdIDM::DomainPort object creates a nelWtDM::ProxyAgent

object. This object handles CMIS requests received through the newly established
association.

CORBA/TMN V1.0 JIDM Gateways Aug. 2000 2-43

2-44

request
PDUs

gateway

A JIDM::DomainPort object in a JIDM gateway holds references to initial
CosNaming::NamingContext andCosLifeCycle::FactoryFinder objects located

at the managed object domain where the JIDM gateway is located. The
JIDM::DomainPort object passes copies of these references to each
JIDM::ProxyAgent

object it creates.

O

CosNaming::
/JIDM“ \ NamingContext Q
DomainPort peer CosLifeCycle::
JIDM:: FactoryFinder
~o ProxyAgent
A 2. & i | e
1.1 !
' 1
3. managed
v v object

~

management
service access

endpoint

2.3.2.3

Figure 2-18 Handling Access to Local Managed Objects from a JIDM Gateway

Creation of managed objects

In CORBA Agent ApplicationsJIDM::ProxyAgent objects receive PDU indications,
perform the appropriate operations, and return the appropriate PDU responses. These
steps are followed each time a create PDU indication is received by a JIDM gateway:

1. A JIDM::ProxyAgent object receives a management create PDU indication
through the management connection endpoint it holds.

2. TheJIDM::ProxyAgent
find_factories operation provided by @osLifeCycle::FactoryFinder

object finds an appropriate factory by invoking the
object.

3. TheJIDM::ProxyAgent object narrows the obtained Factory object reference to a
new object reference associated with a specific factory interface. Next, it invokes
the operation for creating managed objects exported by the factory being
referenced.

CORBA/TMN Interworking V1.0 August 2000

2

4. The Factory object creates a new CORBA managed object, instance of the managed

object type specified in the management create PDU indication.

5. The Factory object may bind a name (the one passed as the Managed object

instance field in the management create PDU indication, but in IDL form) to the
new CORBA managed object.

6. The Factory object may inform other CORBA managed objects, in the same

managed object domain, that the new managed object has been created.

7. When the operation invoked by tA¥M::ProxyAgent object returns (or when an

exception is raised), thHDM::ProxyAgent object constructs and sends an
appropriate create PDU response to the remote Manager Application.

Managed Object

CosLifeCycle::

FactoryFinder Q Q

gateway
4
2 creation /)
JIDM:: . ’ CosNaming::
ProxyAgent NamingContext

‘—‘ /

4.
3. /B,
~() ~()
.6

CMIP
indication

' (narrowed to a specific
ﬁ\ factory interface

CosLifeCycle:: A
Factory

ManagedObject
_— (parent)

Figure 2-19 Handling Management Create PDU Indications

2.3.2.4 Invocation of operations on managed objects

The JIDM::ProxyAgent objects receive indications on single objects, perform the
appropriate operations, and return the appropriate management PDU responses. The
following steps are followed each time a PDU indication, corresponding to a
management operation, is received by a JIDM gateway:

1. AJIDM::ProxyAgent object receives a management PDU indication, referred to a
single managed object, through the management connection endpoint it holds. A
name that unequivocally identifies the managed object is typically passed in the
indication.

CORBA/TMN V1.0 JIDM Gateways Aug. 2000 2-45

2-46

2. TheJIDM::ProxyAgent object finds a CORBA object reference to the target
managed object by invoking the resolve operation exported by a local
NamingContext object. The name of the target managed object is passed in the

invocation, once it is translated to IDL form.

3. TheJIDM::ProxyAgent object invokes the appropriate operation on the managed
object. In a Dynamic JIDM gateway, this may be accomplished by using the

Dynamic Invocation API provided by the local ORB.

4. When the management operation invoked byJtb::ProxyAgent object returns
(or when an exception is raised), th®M::ProxyAgent object constructs and
sends an appropriate PDU response to the remote Manager Application.

CosNaming::
NamingContext

gateway

JIDM::
ProxyAgent

CORBA::Obiject

()

CMIP
indication

Figure 2-20 Invocation of Operations on Single Managed Objects

2.3.2.5 Eventreporting

Using operations exported ByDM::EventPortFinder objects located at a JIDM
gateway, CORBA managed objects are able to find references to several
CosEventChannelAdmin::SupplierAdmin objects, each of which points to a

JIDM::EventPort associated with remote managers.

A managed object reports events to a destination (AE-title) by registering as a supplier

in the correspondingIDM::EventPort (via the standard
CosEventChannelAdmin::SupplierAdmin interface returned by a

JIDM::EventPortFinder object) and, then, supplying events to that channel.

CORBA/TMN Interworking V1.0 August 2000

Note that any managed object may register itself as a
CosEventComm::PushConsumer or aCosEventComm::PullConsumer in a
remoteJIDM::EventPort .

As explained in Section 2.1.9, “The JIDM::EventPortFinder Interface,” on page 2-17,
different strategies to resolve how CORBA managed objects finally report events can
be implemented. Figure 2-21 illustrates one possible scenario where CORBA managed
objects register themselves RsshSuppliers or PullSuppliers in a single object
(calledEventReporter), which in turn is registered asPaishSupplier in one or

more remote]IDM::EventPorts . Basic steps are summarized as follows:

1. At creation time, th&ventReporter object invokes théind_event_port
operation exported by ADM::EventPortFinder object to find references
associated witlCosEventChannel::SupplierAdmin interfaces supported by a
remoteJIDM::EventPort object. It can try to find references for:
» variousJIDM::EventPorts , each of which is bound to one title contained in the
list of destinations defined for tHeventReporter object.

» a singleJIDM::EventPort bound to a wildcard address (only valid if automatic
event forwarding - recipient manager resolution is supported).

2. TheJIDM::EventPortFinder object creates a prox}tDM::EventPort object if it
doesn't exist in the gateway. At the time it creates a pdiky::EventPort
object, it performs the necessary initial operations to obtain the reference to the
CosEventChannelAdmin::SupplierAdmin object associated with the new
JIDM::EventPort object.

The EventReporter object registers itself as@sEventComm::PushSupplier
for each destination.

3. TheEventReporter registers itself as @osEventComm::PushConsumer in
every local event channel that is necessary.

4. CORBA managed objects report events by using the standard event notification
services.

5. Each event natification being generated is finally received by some event channel,
connected to th&ventReporter object.

6. TheEventReporter object supplies the event 8DM::EventPort objects
corresponding to the different destinations.

7. The proxy associated with eaglbM::EventPort in the JIDM gateway constructs
an appropriate event-report request PDU and sends it through the management
communication endpoint it holds.

CORBA/TMN V1.0 JIDM Gateways Aug. 2000 2-47

Managed
Objects

gateway

JIDM:: /Q \

EventPortFinder

CosEventComm:: » 2.
PushConsumer V(\
Event | :
Channel 6 |

Event ' 7
Reporter CosEventComm:: :
3.
| =

| s
. event-report
CosEventChannelAdmin::

' request
ConsumerAdmin q

Figure 2-21 Sending Event Reports

2-48 CORBA/TMN Interworking V1.0 August 2000

OSICORBA Facilities 3

Contents

This chapter contains the following sections.

Section Title Page
“The OSIMgmt Module” 3-1

“Programming Model” 3-47
“CORBA/CMIP Gateways” 3-56

3.1 The OSIMgmt Module

The OSIMgmt module comprises a collection of interfaces that together define a basic
set of services for developing Systems Management Applications based on CORBA.
This module contains the following interfaces:

®* TheProxyAgent interface

®* TheManagedObject interface

®* The ManagedObjectFactory interface
® ThelocalRoot interface

¢ TheLinkedReplyHandler , EndOfRepliesHandler , and
MultipleRepliesHandler interfaces

®* TheRepliesiterator andBufferedRepliesHandler interfaces
® ThelLName interface

¢ TheNamingContext interface

This section describes these interfaces and their operations in detail.

CORBA/TMN Interworking V1.0 August 2000 3-1

#ifndef _OSIMGMT _IDL_
#define _OSIMGMT _IDL_

#include <JIDM.idI>
#include “X501Inf.idl”
#include “X711CML.idI"

#pragma prefix “jidm.org”
/I Macros used in the ‘raises’ clauses

#define ROSE_ERRORS\
OSIMgmt::ROSEDuplicatelnvocation,\
OSIMgmt::ROSEMistypedArgument,\
OSIMgmt::ROSEResourceLimitation, \
OSIMgmt::ROSEUnrecognizedOperation

#define CREATE_ERRORS\
ROSE_ERRORS, \
OSIMgmt::AccessDenied,\
OSIMgmt::ClassinstanceConflict,\
OSIMgmt::DuplicateManagedObjectinstance,\
OSIMgmt::InvalidAttributeValue,\
OSIMgmt::InvalidObjectinstance,\
OSIMgmt::MissingAttributeValue,\
OSIMgmt::NoSuchAttribute \
OSIMgmt::NoSuchObjectClass,\
OSIMgmt::NoSuchObjectinstance,\
OSIMgmt::NoSuchReferenceObject,\
OSIMgmt::ProcessingFailure,\
OSIMgmt::ProcessingFailureEmpty

#define COMMON_ERRORS \
ROSE_ERRORS, \
OSIMgmt::AccessDenied, \
OSIMgmt::ClassinstanceConflict, \
OSIMgmt::ComplexityLimitation, \
OSIMgmt::ComplexityLimitationEmpty, \
OSIMgmt::InvalidScope, \
OSIMgmt::InvalidFilter, \
OSIMgmt::NoSuchObjectClass, \
OSIMgmt::NoSuchObjectinstance, \
OSIMgmt::ProcessingFailure, \
OSIMgmt::ProcessingFailureEmpty, \
OSIMgmt::SyncNotSupported

#define GET_ERRORS\
COMMON_ERRORS, \
OSIMgmt::GetListError, \
OSIMgmt::OperationCancelled

#define SET_ERRORS \

COMMON_ERRORS, \
OSIMgmt::SetListError

3-2 CORBA/TMN Interworking V1.0

August 2000

#define ATTRIBUTE_ERRORS \

COMMON_ERRORS, \
OSIMgmt::GetListError, \
OSIMgmt::SetListError

#define ACTION_ERRORS \

COMMON_ERRORS, \
OSIMgmt::InvalidArgumentValue, \
OSIMgmt::NoSuchAction, \
OSIMgmt::NoSuchArgument

#define DELETE_ERRORS \

COMMON_ERRORS

module OSIMgmt

{

/I Definitions of ROSE and CMIS exceptions
exception ROSEDuplicatelnvocation { };
exception ROSEMistypedArgument { };
exception ROSEResourceLimitation { };
exception ROSEUnrecognizedOperation { };

exception AccessDenied { };
exception ClasslInstanceConflict

{ X711CMI::BaseManagedObjectldType error_info; };
exception ComplexityLimitation

{ X711CMI::ComplexityLimitationType error_info; };
exception ComplexityLimitationEmpty { };
exception DuplicateManagedObjectinstance

{ X711CMI::ObjectinstanceType error_info; };
exception GetListError

{ X711CMI::GetListErrorType error_info; };
exception InvalidArgumentValue

{ X711CMl::InvalidArgumentValueType error_info; };
exception InvalidAttributeValue

{ X711CMI::AttributeType error_info; };
exception InvalidFilter

{ X711CMI::CMISFilterType error_info; };
exception InvalidScope

{ X711CMl::ScopeType error_info; };
exception InvalidObjectinstance

{ X711CMI::ObjectinstanceType error_info; };
exception MissingAttributeValue

{ X711CMI::MissingAttributeValueType error_info; };
exception MistypedOperation { };
exception NoSuchAction

{ X711CMI::NoSuchActionType error_info; };
exception NoSuchArgument

{ X711CMI::NoSuchArgumentType error_info; };
exception NoSuchAttribute

{ X711CMl::AttributeldType error_info; };
exception NoSuchObjectClass

{ X711CMI::ObjectClassType error_info; };
exception NoSuchObijectinstance

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000

{ X711CMl::ObjectinstanceType error_info; };
exception NoSuchReferenceObject

{ X711CMl::ObjectinstanceType error_info; };
exception OperationCancelled { };
exception ProcessingFailure

{ X711CMl::ProcessingFailureType error_info; };
exception ProcessingFailureEmpty { };
exception SetListError

{ X711CMIl::SetListErrorType error_info; };
exception SyncNotSupported

{ X711CMI::CMISSyncType error_info; };
exception NoSuchEventType

{ X711CMI::NoSuchEventTypeType error_info; };
exception NoSuchinvokeld

{ X711CMl::InvokeldTypeType error_info; };

/l Using Multiple Replies exception for Actions
interface Replieslterator; // forward declaration
exception UsingMR

{ Replieslterator replies_iterator; };

/I Definition of specific types used within this module

typedef string NameString;

typedef sequence<ASN1_Objectldentifier>

ASN1_ObjectldentifierSeq;

struct AttributeValue {
ASN1_Objectldentifier attribute_id;
ASN1_DefinedAny value;

h

typedef sequence<AttributeValue> AttributeValueSeq;

/I Type to be used in cmis_create operations
enum CreationKind
{simple, autonaming, subordinate};

/I Type to be used in scoped set operations
enum ModifyOperator
{replace, add_member, remove_member,
replace_with_default};

struct AttributeSetOperator {
ModifyOperator modify_operator;
ASN1_Objectldentifier attribute_id;
ASN1_DefinedAny attribute_value;
h
typedef sequence <AttributeSetOperator>
SetOperationArgument;

/I Forward declaration for ReplyHandler interfaces
interface LinkedReplyHandler;
interface EndOfRepliesHandler;

/I ProxyAgent
interface ProxyAgent : JIDM::ProxyAgent {

CORBA/TMN Interworking V1.0

August 2000

void cmis_create (
in CORBA::ScopedName interface_name,
in CreationKind creation_kind,
in CosNaming::Name object_name,
in X711CMI::AccessControlTypeOpt access_control,
in CosNaming::Name reference_object,
in AttributeValueSeq req_attribute_values,
in LinkedReplyHandler reply_handler

);

void cmis_create_sync (
in CORBA::ScopedName interface_name,
in CreationKind creation_kind,
in CosNaming::Name object_name,
in X711CMI::AccessControlTypeOpt access_control,
in CosNaming::Name reference_object,
in AttributeValueSeq req_attribute_values,
out CORBA::ScopedName created_interface_name,
out CosNaming::Name created_object_name,
out X711CMI::ASN1_GeneralizedTimeOpt creation_time,
out AttributeValueSeq created_attribute_values
) raises (CREATE_ERRORS);

void cmis_get (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObijectldentifierSeq attribute_id_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void cmis_set (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in SetOperationArgument modification_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void cmis_action (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000

3-5

in ASN1_Objectldentifier action_name,

in ASN1_DefinedAny action_info,

in LinkedReplyHandler reply_handler,

in EndOfRepliesHandler end_of_replies_handler

);

void cmis_delete (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

const ASN1_Obijectldentifier ACTUAL_CLASS = “2.9.3.4.3.42%
interface ManagedObiject; // forward declaration

interface NamingContext : CosNaming::NamingContext {
/I NOTE: These operations are optional
ManagedObiject resolve_with_intf (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name
) raises (NotFound, CannotProceed, InvalidName);

ManagedObiject resolve_osi_name(
in ANSI_Obijectldentifier managed_object_class,
in X711CMI::ObjectinstanceType object_instance
) raises (NotFound, CannotProceed, InvalidName);

CosNaming::Name translate_osi_name (
in X711CMI::ObjectinstanceType object_instance
) raises (InvalidName);

X711CMI::ObjectinstanceType translate_idl_name (
in CosNaming::Name idl_name
) raises (InvalidName);

J

/l ManagedObject
interface ManagedObject : NamingContext,
CosLifeCycle::LifeCycleObject {
readonly attribute CosNaming::Name object_name;

void scoped_get (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObijectldentifierSeq attribute_id_list,
in LinkedReplyHandler reply _handler,

CORBA/TMN Interworking V1.0 August 2000

in EndOfRepliesHandler end_of_replies_handler

);

void scoped_set (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in SetOperationArgument modification_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void scoped_action (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_Objectldentifier action_name,
in ASN1_DefinedAny action_info,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void scoped_delete (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMiI::AccessControlTypeOpt access_control,
in LinkedReplyHandler reply _handler,
in EndOfRepliesHandler end_of replies_handler

);

AttributeValueSeq get_attributes (
in ASN1_ObijectldentifierSeq attribute_id_list
) raises (GET_ERRORS);

AttributeValueSeq set_attributes (
in SetOperationArgument modification_list
) raises (SET_ERRORS);

ASN1_DefinedAny perform_action (
in ASN1_Objectldentifier action_name,
in ASN1_DefinedAny action_info

) raises (ACTION_ERRORS, UsingMR);

void delete_mo () raises (DELETE_ERRORS);

/l ManagedObjectFactory
interface ManagedObjectFactory {
ManagedObiject create (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in ManagedObiject reference_object,

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000

3-7

3-8

in AttributeValueSeq requested_attribute_values
) raises (CREATE_ERRORS);

ManagedObiject create_with_auto_naming (

in CORBA::ScopedName interface_name,

in ManagedObject reference_object,

in AttributeValueSeq requested_attribute_values
) raises (CREATE_ERRORS);

ManagedObiject create_subordinate (
in CORBA::ScopedName interface_name,
in CosNaming::Name superior_name,
in ManagedObject reference_object,
in AttributeValueSeq requested_attribute_values
) raises (CREATE_ERRORS);
h

/I LocalRoot
typedef sequence<ManagedObject> ManagedObjectSeq;

interface LocalRoot : ManagedObject {
exception NoDescendants {};
ManagedObjectSeq list_orphans ();

ManagedObjectSeq
list_orphan_descendants (in CosNaming::Name object_name)
raises (NoDescendants);

J

/l LName
interface LName {
exception InvalidName {};

readonly attribute boolean is_distinguished_name;
readonly attribute unsigned long num_components;

void from_osi_form (in X711CMI::ObjectinstanceType osi_name);
X711CMI::ObjectinstanceType to_osi_form ()
raises(InvalidName);
void from_idl_form (in CosNaming::Name idl_name);
CosNaming::Name to_idl_form ()
raises(InvalidName);

LName to_ancestor_name (in unsigned long levels_up)
raises(InvalidName);

LName to_relative_name (in unsigned long levels_up)
raises(InvalidName);

LName append (in LName name);

LName append_ava (in X501Inf::AttributeValueAssertionType ava)
raises(InvalidName);

X501Inf::AttributeValueAssertionType get_ ava (in unsigned | ong index)
raises(InvalidName);

boolean equals (in LName name);
LName copy ();

CORBA/TMN Interworking V1.0 August 2000

void from_string_form (in NameString name_string);
NamesString to_string_form ()
raises(InvalidName);

void destroy ();
h

/I ReplyHandler interfaces
interface LinkedReplyHandler {
void send_reply (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in any reply_info

void send_mo_error (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in short error_code,
in any error_info

);

void send_subtree_error (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in short error_code,
in any error_info
)
b
interface EndOfRepliesHandler {
void end_of_replies ();

h
interface MultipleRepliesHandler : LinkedReplyHandler, EndOfRepliesHandler {};

/I BufferedRepliesHandler

struct Reply {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
any reply_info;

typedef sequence<Reply> ReplyList;

interface Replieslterator {
exception MoError {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
short error_code;
any error_info;

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-9

J

exception SubtreeError {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
short error_code;
any error_info;

J

boolean get_reply (out Reply r) raises
(MoError, SubtreeError);

boolean get_n_replies (in unsigned long how_many, out ReplyList r_list)
raises (MoError, SubtreeError);

boolean finished (out unsigned long num_pending);
void destroy ();
h

interface BufferedRepliesHandler : MultipleRepliesHandler, Replieslterator {};

h
#define UsingMR OSIMgmt::UsingMR

#endif /* _OSIMGMT _IDL_ */

3.1.1 The OSIMgmt::LName Interface

In the OSI Systems Management Reference Model, any managed object is contained
within one and only one containing managed object. The containment relationship is
used for naming managed objects. Actually, any managed object is named by the
combination of:

®* The name of its containing object (superior object).
* |nformation uniquely identifying this object within the scope of its containing
object.

Each managed object must be unambiguously identified within the scope of its
superior (container) object by means of an attribute value assertion (AVA) denoting that
a specified attribute has a specified value. When used for naming, an AVA is also
called a relative distinguished name (RDN).

In OSI Systems Management, the name of a managed object can be expressed in two
forms:

1. Global form: This form specifies an RDN sequence that unequivocally identifies
the managed object with respect to the global root.

2. Local form: This form specifies an RDN sequence that unequivocally identifies the
managed object with respect to a predefined context. For OSI systems management,
this context is the system managed object and the local form name for the system
managed object is the empty sequence.

3-10 CORBA/TMN Interworking V1.0 August 2000

3

The global name of a managed object is constructed by concatenating its local name to
the global name of the system managed object representing the managed system where
the managed object is located.

The local name of a managed object is constructed by appending the RDN that
identifies the managed object within the scope of its superior object to the local form
name of its superior object.

Through the use of th@SIMgmt::LName library, OSI names can be translated into
CosNaming::Names and vice versa. Note that, using this library, code of a client
doesn’t have to use the ‘Names Library’ defined for the CosNaming Service.

typedef string NameString;

interface LName {
exception InvalidName {};

readonly attribute boolean is_distinguished_name;
readonly attribute unsigned long num_components;

void from_osi_form (in X711CMI::ObjectinstanceType osi_name);
X711CMI::ObjectinstanceType to_osi_form ()
raises(InvalidName);
void from_idl_form (in CosNaming::Name idl_name);
CosNaming::Name to_idl_form ()
raises(InvalidName);

LName to_ancestor_name (in unsigned long levels_up)
raises(InvalidName);

LName to_relative_name (in unsigned long levels_up)
raises(InvalidName);

LName append (in LName name);

LName append_ava (in X501Inf::AttributeValueAssertionType ava)
raises(InvalidName);

X501Inf::AttributeValueAssertionType get_ ava (in unsigned | ong index)
raises(InvalidName);

boolean equals (in LName name);

LName copy ();

void from_string_form (in NameString name_string);
NamesString to_string_form ()
raises(InvalidName);

void destroy ();

Although nothing prevents the use@8IMgmt::LNames as regular CORBA objects
that can be remotely accessed, they will be typically provided as library objects that
will be locally accessed by clients of managed objects (CORBA managers).

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-11

3-12

3.1.1.1 Description of the LName operations

Besides the operations used to translate between different name formats (in this case,
OSl name format, IDL naming format, and string format), @&Mgmt::Lname

interface defines several additional operations designed to ease the task of
programming with ar©OSIMgmt::LName obiject:

® to_ancestor_name creates a nedSIMgmt::LName object that corresponds to
the name of the ancestor managed object situated some normmb&vels up (it
deletes the last AVAs of the name in OSI form).

® to_relative_name creates a nedSIMgmt::LName object that refer to the same
managed object through a name relative to the ancestor managed object situated
some numben of levels up (it deletes the firat-n AVAs of the name in OSI form,
wherem was the length of the name in OSI form).

®* append creates a ne@SIMgmt::LName object by appending the components of
the name represented by tB&IMgmt::LName object passed as argument to the
components of the curre@SIMgmt::Lname .

® append_ava creates a ne®SIMgmt::LName object by appending the provided
AVA to the current name in OSI form.

® get_ava returns the AVA situated in a given position of the name represented by
the OSIMgmt::LName object in OSI form.

® equals returns TRUE if theOSIMgmt::LName object represents the same name
as theOSIMgmt::LName object passed as argument; note that this is name
equality, not object equality (two names might refer to the same object, but be
completely different).

® copy returns a reference to a n@8IMgmt::LName object whose state is copied
from the currenOSIMgmt::LName object.

Any attempt to invokdo_ancestor_name , to_relative_name , andget_ava
passing a value bigger than the actual length of the name represented_blathe
object will cause th AD_PARAM exception to be raised.

Any attempt to extract or copy a value from an unitializdthme object will cause
the InvalidName exception to be raisedNames are initialized when they have been
created from an already initializédName object, or after a call to one of tfrem_*
operations is successful.

3.1.1.2 Translation between CosNaming::Names and OSI| ObjectIinstance

Names

Translation of OSI Objectinstance names iGmsNaming::Names implies
performing the following steps:

1. To create an object of tyge@SIMgmt::LName .

2. To initialize the internal state of tl@SIMgmt::LName object with a
X711CMI::ObjectinstanceType value, by invoking thérom_osi_form
operation.

CORBA/TMN Interworking V1.0 August 2000

3

3. To produce £osNaming::Name value by invoking theéo_idl_form operation.
The reverse operation implies performing the following steps:
1. To create an object of tyg@SIMgmt::LName .

2. Initializes the internal state of tl@SIMgmt::LName object with a
CosNaming::Name value, by invoking thérom_idl_form operation.

3. To produce &711CMI::ObjectinstanceType value by invoking the
to_osi_form operation.

The OSIMgmt::LName objects must be destroyed if not further used. They can be
destroyed by invoking thdestroy operation they expose.

The following example shows the code used to bind a name to a CORBA object
reference that is pointing to an EFD managed object.

CosNaming::NamingContext_ptr ctx;
X721::eventForwardingDiscriminator_ptr efd;
X711CMI::ObjectinstanceType local_name;

/I The OSI name of the EFD object was initialized some way:
local_name = ...;

/I An OSIMgmt::LName variable is initialized:

OSIMgmt::LName_ptr efd_name = new OSIMgmt::LName ();
efd_name->from_osi_form (local_name);

/I A name, in idl form, is bound with the reference to the EFD object:
ctx->bind (efd, efd_name->to_idl_form());
/I free the space associated to the name of the managed object:

efd_name->destroy ();

3.1.1.3 Representation of CosNaming::Names

The internal representation GfosNaming::Names derived from OSI names is
transparent to clients of managed objects. To develop portable applications, a
programmer does not need to know how OSI names
(X711CMI::ObjectinstanceType values) are translated int@osNaming::Name
values. However, to ensure interworking between applications that are linked to
different implementations of th@SIMgmt::LName library, a standard representation
of CosNaming::Names is specified.

This section describes hoi711CMI::ObjectinstanceType names are mapped into
CosNaming::Names .

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-13

Each AVA in the OSI Objectinstance Name will correspond to a
CosNaming::NameComponent in the IDL form. Thekind field in the
CosNaming::NameComponent will always be an empty string. The field in the
CosNaming::NameComponent will correspond to a string with the format:

“<OID>=<value>"

where<OID> corresponds to the value of the registration OID of the Attribute
template, in dot notation, andralue> denotes the value of such Attribute, in string
format. Blank spaces are not allowed before or after the character ‘=",

Simple values are mapped according to the following rules:

If <value> is...

then it...

an integer

is the decimal string representation of the integer itself, possibly
preceded by a type indicator. All signed integer types are
represented with an explicit sign (zero is considered positive for
this matter), while all unsigned integer types do not have an
explicit sign. If the value is of type “long”, a ‘0O’ precedes the
actual value. If it is of type “long long”, it is preceded by “00".
For example, the value 3 is represented by “+003" if its type i
“long long”, and by “3” if its type is “unsigned short.”

n

a string

is the string embedded in double quotes (“). If the string contains
a double quote (*) or backslash (\), it is preceded by the backslash
character (as in \" or \\).

a boolean

is the string TRUE or FALSE.

a NULL

is the NULL string.

a sequence<octet> is the sequence of octets printed as characters embedded in single

qguotes (). If a given octet is not printable, it is printed in octa
representation (character \000 in octal, for example). If the single
qguote (‘) or backslash (\) character has to be included, it is
preceded by the backslash character (as in \' or \\).

a BIT STRING

will be received as a sequence<octet> and will be mapped the
same way (because it cannot be distinguished from real
sequence<octet>).

an ENUMERATED type is the string corresponding to the value without quoting.

Complex values are represented according to the following rules:

CORBA/TMN Interworking V1.0 August 2000

If <value> is of a... then it is represented as a string that starts with...

SEQUENCE type character “{", and contains the string representation of each

component of the value separated by commas and ends with
character “}.” Blank spaces are not allowed before and after ",
after “{* and before “}.”

SEQUENCE OF type character “[*, contains the string representation of each component

of the value separated by commas and ends with character “".

Blank spaces are not allowed before and after “,”, after “[* and
before “].”

CHOICE type

the name of the selected field enclosed in parentheses, followed by
the string representation of its value. Blank spaces are not allowed
after and before parentheses around identifiers of selected fields.

Attribute

systemid
logld

logRecordld

Mapping of Objectinstance names imonSpecificForm is not supported.

Therefore, &CosNaming::Name will correspond to the mapping of either an OSI
Distinguished Name or an OSI RDNSequence. If it corresponds to an OSI
Distinguished Name, then the fiGosNaming::NameComponent will denote the
Root object. Thad field will be equal to the stringroot " and thekind field will be
equal to the empty string. This will help clients using OSIMgmt Facilities as well as
implementations of interfaces defined as part of OSIMgmt Facilitiess(get ,
cmis_set , etc.) to distinguish whether@sNaming::Name is local or global.

Figure 3-1 illustrates how the O®lbjectinstance name in global form
corresponding to aX721::logRecord object is mapped to @osNaming::Name .

id kind

“root”

— “2.9.3.2.7=(name)”MyComputer™

—p “2.9.3.2.2=(string)"PrimaryLog™

— “2.9.3.2.3=+0101"

Figure 3-1 CosNaming::Name Associated with an X721::log Object

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-15

3-16

3.1.1.4 Representation of CosNaming::Names in string format

This specification defines a simple string format to represent managed object names.
Names represented in this format (values of @%Mgmt::NameString) can be
converted (obtained) into (from) OSI Object Instance namé&oeNaming::Names
usingOSIMgmt::LName objects.

The defined string format is aligned with the proposal presented in [interopNames].
The single character '/’ is used to separateithéeld values associated with each
component of the managed object name in IDL form (which in turn correspond to
AVAs in the OSI form). The value dind fields is not represented since they

correspond to empty strings. Therefore, the string used to represent a managed object
name in local form matches the following format:

“<oid-1>=<value-1>/<oid-2>=<value-2>/.../<oid-n>=<value-n>"

while the string used to represent a managed object name global form matches the
following format:

“root/<oid-1>=<value-1>/<oid-2>=<value-2>/.../<oid-n>=<value-n>"

The following example shows the code used to obtain a CORBA object reference that
points to a given logRecord managed object, given its name.

CosNaming::NamingContext_ptr ctx;
OSIMgmt::NameString log_record_name;

/I An OSIMgmt::LName variable is initialized with the name
/I of the managed object in string format:

local_name = “2.9.3.2.2=(string)\"PrimaryLog\"/2.9.3.2.3=+0101";
OSIMgmt::LName_ptr log_record_name = new OSIMgmt::LName ();
log_record_name->from_string_form (local_name);

/I A reference to the logRecord managed object is found by means of

// invoking resolve on the initial CosNaming::NamingContext

/' located at the managed object domain:

CORBA::Object_ptr obj = ctx->resolve (log_record_name->to_idl_form());

/I The reference obtained from resolve is narrowed, in order
/ to invoke operations on the logRecord object:

X721::logRecord_ptr log_record = X721::logRecord::_narrow (obj);
ASN1_GeneralizedTime logging_time = log_record->loggingTimeGet ();

/I free the space associated to the name of the managed object:

log_record_name->destroy ();

CORBA/TMN Interworking V1.0 August 2000

3.1.2 The OSIMgmt::ProxyAgent Interface

CORBA manager objects that require access to managed objects that are members of
some given OSI| managed object domain must establish a connection with that domain.

As a result of establishing the connection,G8IMgmt::ProxyAgent object (an
object that exports th@SIMgmt::ProxyAgent interface) is created. The
OSIMgmt::ProxyAgent objects export thdIDM::ProxyAgent interface and
support additional operations that are specific to OSI Management.

enum CreationKind
{simple, autonaming, subordinate};

interface ProxyAgent : JIDM::ProxyAgent {

void cmis_create (
in CORBA::ScopedName interface_name,
in CreationKind creation_kind,
in CosNaming::Name object_name,
in X711CMI::AccessControlTypeOpt access_control,
in CosNaming::Name reference_object,
in AttributeValueSeq req_attribute_values,
in LinkedReplyHandler reply_handler

);

void cmis_create_sync (
in CORBA::ScopedName interface_name,
in CreationKind creation_kind,
in CosNaming::Name object_name,
in X711CMI::AccessControlTypeOpt access_control,
in CosNaming::Name reference_object,
in AttributeValueSeq req_attribute_values,
out CORBA::ScopedName created_interface_name,
out CosNaming::Name created_object_name,
out X711CMI::ASN1_GeneralizedTimeOpt creation_time,
out AttributeValueSeq created_attribute_values
) raises (CREATE_ERRORS);

void cmis_get (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObijectldentifierSeq attribute_id_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void cmis_set (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-17

3-18

);

in X711CMI::CMISFilterType filter,

in X711CMI::CMISSyncType synchronization,

in X711CMI::AccessControlTypeOpt access_control,
in SetOperationArgument modification_list,

in LinkedReplyHandler reply_handler,

in EndOfRepliesHandler end_of_replies_handler

void cmis_action (

);

in CORBA::ScopedName interface_name,

in CosNaming::Name object_name,

in X711CMI::ScopeType scope,

in X711CMI::CMISFilterType filter,

in X711CMI::CMISSyncType synchronization,

in X711CMI::AccessControlTypeOpt access_control,
in ASN1_Objectldentifier action_name,

in ASN1_DefinedAny action_info,

in LinkedReplyHandler reply_handler,

in EndOfRepliesHandler end_of_replies_handler

void cmis_delete (

in CORBA::ScopedName interface_name,

in CosNaming::Name object_name,

in X711CMI::ScopeType scope,

in X711CMI::CMISFilterType filter,

in X711CMI::CMISSyncType synchronization,

in X711CMI::AccessControlTypeOpt access_control,
in LinkedReplyHandler reply_handler,

in EndOfRepliesHandler end_of_replies_handler

Connections are established by invoking élteess_domain operation exposed by a
root JIDM::ProxyAgentFinder object as explained in Section 2.1.4, “The
JIDM::ProxyAgentFinder Interface,” on page 2-11. The value associated with the
“XSM environment’Key parameter passed to taecess_domain operation is OSI
Management Note that theaccess_domain operation returns a reference to a
JIDM::ProxyAgent interface. If the client wants to get visibility of the specific
operations defined for th@SIMgmt::ProxyAgent interface, this reference must be
narrowed.

Table 3-1 presents the names and meaning for criteria that can be passed in the
invocation to theaccess_domain operation when trying to access an OSI managed
domain. While the domain title criterion is mandatory, the rest of criteria components
are optional.

Table 3-1 OSIMgmt Conventions for Proxy Agent Finding Criteria

criterion name type of value meaning

“domain title”

X227ACS::AE_titleType AE-title associated with the managed object
domain for which access is requested. The
wildcard address is allowed.

CORBA/TMN Interworking V1.0 August 2000

criterion name

type of value

meaning

“controller object”

JIDM::ProxyAgentController

reference associated with a
JIDM::ProxyAgentController object
registered by the manager (OPTIONAL).

“access control”

X711CMI::AccessControlType

Information to be used as input to acce
control functions in establishing default
access privileges for all exchanges on the
association (OPTIONAL).

“requestor title”

X227ACS::AE_titleType

Title used to denote the Manager that
requested access to the OSI managed ob
domain (OPTIONAL).

ect

Semantics of the domain title and controller object parameters were specified in
Section 2.1.4, “The JIDM::ProxyAgentFinder Interface,” on page 2-11. The criteria, in
the case of OSI Systems Management Reference model, may include additional
parameters, namely:

® An access control parameter, carrying access control information required to set up
the connection and to be used as default access privileges.

® A requestor title parameter, used to identify the CORBA manager application that

requests the connection.

It must be pointed out that invoking thecess_domain operation with two different
<key, criteria> pairs will result in creation of two different connections and,

consequently, two differer®@SIMgmt::ProxyAgent

objects. As an example, passing

the same AE-title value but two different access control parameter values or two
different controller objects to get access to an OSI managed object domain, would
imply creation of two differenOSIMgmt::ProxyAgents

The requestor title is mainly required in those scenarios where a requestor needs to
create a new connection, not shared with other requestors who use the same destinatior
AE-title and access control parameter values. Note that sharing an already existing

OSIMgmt::ProxyAgent

destroy that object.

SinceOSIMgmt::ProxyAgent

object would mean to accept that other OSI Managers may

objects arelIDM::ProxyAgent objects, they provide

the means by which CORBA manager objects are able to obtain references to:

An initial CosLifeCycle::FactoryFin
object domain.

An initial CosNaming::NamingCon
object domain.

der object located at the OSI managed

text object located at the OSI managed

Invoking thefind_factories operation exposed by the initial
sLifeCycle::FactoryFinder object, CORBA manager objects may find factories
that enable creation of new members of the OSI managed object domain.

Co

CORBA/TMN v1.0

The OSIMgmt Module Aug. 2000 3-19

Invoking theresolve operation exposed by the init@bsNaming::NamingContext
object, CORBA manager objects may obtain CORBA object references to existing
members of the OSI managed object domain.

In a pure CORBA environment (i.e., both manager and managed object domains are
based on CORBA), th@SIMgmt::ProxyAgent would typically hold references to

the initial CosLifeCycle::FactoryFinder andCosNaming::NamingContext

objects located at the OSI domain being accessed (see Figure 3-2). Whether these two
interfaces are exported by the same CORBA object or different CORBA objects at the
domain is an implementation issue.

manager object /
|
|

specific
management
interface

o
title4
O =
) CosNaming::
OSIMgmt: NamingContext

ProxyAgent

CosLifeCycle::
FactoryFinder

@

Managed Object Domain
(Agent Application)

Figure 3-2 OSIMgmt::ProxyAgents in a CORBA Environment
Once a CORBA manager object obtains a CORBA object reference associated with an
OSI| managed object, it can invoke operations exposed by the object. It will do so by

using the standard ORB services define€@RBA The Common Object Request
Broker: Architecture and Specification:

® the Dynamic Invocation Interface (Ip, or

® |DL stubs generated from definitions in OMG IDL of interfaces exported by the
object, which might have been generated from GDMO definitions according to
XoJIDM (see Appendix A, “References”).

3-20 CORBA/TMN Interworking V1.0 August 2000

3.1.2.1 Description of the ProxyAgent operations

The get_domain_factory_finder operation

The get_domain_factory finder operation obtains a reference to the initial
CoslLifeCycle::FactoryFinder object located at the domain being accessed through
an OSIMgmt::ProxyAgent object. As already explained in Section 2.1.2, “The
JIDM::ProxyAgent Interface,” on page 2-4, CORBA manager objects can locate
appropriate managed object factories by invokingfiteg factories operation

exposed by this initiaCosLifeCycle::FactoryFinder object.

The space of keys established for OSI Management environments is described in
Table 3-2.

Table 3-2 OSIMgmt Conventions for Factory Finder Keys

id field kind field meaning

fully scoped name of} “superior object Find factories that create objects whose superior
object interface interface” object supports the named interface.

fully scoped name of| “object interface” Find factories that create objects supporting the
object interface named interface.

fully scoped name of} “factory interface” Find factories supporting the named factory
factory interface interface.

CORBA Managers can create managed objects by using operations exposed by specific
factories whose interfaces are derived from name-binding GDMO templates or
operations exposed by generic factories.

For specific factories, one of the two following scenarios may be supported:

1. A specific factory interface is defined for each managed object interface that
supports a different operation for each GDMO name-binding template.

2. A specific factory interface is defined for each GDMO name-binding template.

In respect to generic factories, one (or several) of the three following scenarios may be
supported:

1. The standar€osLifeCycle::GenericFactory interface is used.
2. TheOSIMgmt::ManagedObjectFactory interface is used.

3. One of the standard factory interfaces defined in SYSMAN facilities (see Appendix
A, “References”) is used.

In any case, the factory object would be responsible to check if the new managed
object can be contained in the designated superior object. This implies checking for
some name-binding template declaring that this relationship is valid.

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-21

With these considerations in mind, the alternatives for finding factories in OSI Systems
Management environments are more precisely described as follows.

Only the name of the object interface is specified

Here, it is implicitly assumed that there is a specific factory interface associated with
the managed object interface. Such interface includes a separate operation for each
GDMO name-binding template that is associated with the managed object interface.
CORBA managers know the name and operations associated with the factory in
advance so they can properly narrow and use the reference returned by the
find_factories operation.

Only the name of the object factory interface is specified

Here, references returned by tived_factories operation can be narrowed to the IDL
interface whose name has been specified. The CORBA manager object who invoked
the operation knows the signature and semantics of operations supported by the
designated object factory interface. This option is the one used to obtain references to
factories derived from GDMO name-binding templates or to obtain references to
generic factories exporting th@osLifeCycle::GenericFactory interface, the
OSIMgmt::ManagedObjectFactory interface, or any of the generic factory

interfaces defined in SYSMAN facilities (see Appendix A, “References”).

Both the name of the object interface and the superior object interface are
specified

Here, the CORBA manager object provides the necessary information to find the
factory associated to a specific GDMO name-binding template for which a specific
factory interface is defined.

In cases where objects are created throDgsLifeCycle::GenericFactory objects,
theKey value passed in the invocation to ttreate_object operation is the name of

the interface exported by the new managed object.Crlteria value is a sequence of
<name, value> pairs that correspond to the rest of the arguments needed for creation of
the managed object as specified in Table 3-3 (name of the managed object, name of
superior object, reference object, attribute list, etc).

Table 3-3 OSIMgmt Conventions for Managed Object Creation Criteria

criterion name type of value interpretation

“managed object interface} CORBA::ScopedName Name of interface exported by the
new managed object.

“managed object name” CosNaming::Name When this parameter is supplied, it
contains the name of the new
managed object.

“superior object name” CosNaming::Name When this parameter is supplied, it
contains the name of the managed
object which is to be the superior
of the new managed object.

3-22 CORBA/TMN Interworking V1.0 August 2000

criterion name type of value interpretation

“reference object” OSIMgmt::ManagedObject When this parameter is supplied, it
contains the value of a reference to
an existing managed object to be
considered as reference for
initialization.

“attribute list” OSIMgmt::AttributeValueSeq When this parameter is supplied, it
contains a set of attribute
identifiers and values to be
assigned to the new managed
object.

The get_domain_naming_context operation

The get_domain_naming_context operation obtains a reference to the initial
CosNaming::NamingContext object located at the domain being accessed through
an OSIMgmt::ProxyAgent object.

As already explained in Section 2.1.2, “The JIDM::ProxyAgent Interface,” on page 2-4,
CORBA manager objects can obtain CORBA object references to members of a
managed object domain as a result of invokingrésslve operation exposed by the
initial CosNaming::NamingContext object located at the domain. Tresolve
operation may also be used to obtain referend@oNaming::NamingContext

objects subordinated to the initi@bsNaming::NamingContext object.

Managed objects will be named according to OSI Naming Principles defined in X720
(see Appendix A, “References”). CORBA manager objects will typically perform the
following steps to obtain a reference to an OSI managed object:

1. Construct the name of the managed object in OSI form.

2. Translate the name from OSI to idl form (see Section 3.1.1, “The
OSIMgmt::LName Interface,” on page 3-10).

3. Invoke theresolve operation exposed by the initial
CosNaming::NamingContext located at the domain where the object is located.

The following example shows how the fragment of code used to find a LogRecord
object by name should look..

OSIMgmt::ProxyAgent_ptr agent;

/I a reference to a JIDM::ProxyAgent is obtained as a result of

/I establishing a connection to the managed object domain where
/I the printer is located:

agent =...;

/I a reference to the initial CosNaming::NamingContext object
/I is obtained:

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-23

CosNaming::NamingContext_ptr ctx = agent -> get_domain_naming_context ();

/l the name of the log record is constructed:

OSIMgmt::LName_ptr log_name = new OSIMgmt::LName ();

log_name->from_string_form (“2.9.3.2.2=(string)\"PrimaryLog\"
/2.9.3.2.3=0101");

/I find a reference to the object with the log_name value in IDL form:
CORBA::Object_ptr obj = ctx->resolve (log_name->to_idl_form());
log_name->destroy ();

/I narrows the value returned by the resolve operation:
X721::logRecord_ptr a_log_rec = X711::logRecord::_narrow (obj);

// operations on the log can now be invoked:
ASN1_GeneralizedTime logging_time = a_log_rec->loggingTimeGet ();

CMIS operations

OSIMgmt::ProxyAgent objects support operations that enable CORBA Managers to
operate upon selected descendants of managed objects that are members of a manage
object domain. These operations are referred to as scoped operations.

A detailed description about CMIS operations is presented in the Section 3.1.6,
“Description of CMIS Operations,” on page 3-33.

The destroy operation

Any OSIMgmt::ProxyAgent object exposes thdestroy operation, which disposes
the object. Disposing a@SIMgmt::ProxyAgent object means closing the connection
established to the corresponding managed object domain. If the
OSIMgmt::ProxyAgent object was running in a JIDM gateway server, destruction of
the object implies freeing resources used to maintain the associated connection
(closing a XMP descriptor, for example).

Destruction of arOSIMgmt::ProxyAgent object can take place either gracefully or
non-gracefully, as described in Section 2.1.2, “The JIDM::ProxyAgent Interface,” on
page 2-4. A reference toJdDM::ProxyAgentController object may be passed at the
manager side, as described in Section 2.1.3, “The JIDM::ProxyAgentController
Interface,” on page 2-9.

3.1.3 The OSIMgmt::NamingContext Interface

The OSIMgmt::NamingContext interface provides a placeholder for specialized and
extended naming operations that may be performed in an OSI management context.
This interface extends the basiosNaming::NamingContext

In this section, a basic set of such specialized operations is described. Note that all
operations are OPTIONAL, and no implementation is required to support any of them
to be considered fully compliant with this specification.

3-24 CORBA/TMN Interworking V1.0 August 2000

const ASN1_Objectldentifier ACTUAL_CLASS = “2.9.3.4.3.42%;

interface NamingContext : CosNaming::NamingContext {
/I NOTE: These operations are optional
ManagedObiject resolve_with_intf (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name
) raises (NotFound, CannotProceed, InvalidName);

ManagedObiject resolve_osi_name (
in ASN1_Obijectldentifier managed_object_class,
in X711CMI::ObjectinstanceType object_instance
) raises (NotFound, CannotProceed, InvalidName);

CosNaming::Name translate_osi_name (
in X711CMI::ObjectinstanceType object_instance
) raises (InvalidName);

X711CMI::ObjectinstanceType translate_idl_name (
in CosNaming::Name idl_name
) raises (InvalidName);

The resolve_with_intf operation

This operation is equivalent to ti@gpsNaming::NamingContext::resolve

operation, but takes an extra parameter that indicates the managed object class
supported by the object being located. This operation is useful when accessing a
managed domain that is unable to perform location operations based solely on object
instance names, that is, when accessing agents that do not support the ActualClass
functionality, as specified in [X720].

The exceptions raised by this operation are the same, and have the same semantics, @
those raised by th€osNaming::NamingContext::resolve operation.

The resolve_osi_name operation

This operation obtains a reference to a managed object given its OSI name (and,
potentially, the managed object class to which it belongs). The OSI name includes
information such as whether the name is in global form or in local form, and the
sequence of attribute value assertions forming the path to the object being located.

If the class of the object being located is not known, the constant ACTUAL_CLASS
may be used instead (provided that the managed domain being accessed supports this
functionality). Additionally, the empty string is considered equivalent to
ACTUAL_CLASS when passed to this operation as the value obbfert class

parameter.

The exceptions raised by this operation are the same, and have the same semantics, @
those raised by th€osNaming::NamingContext::resolve operation.

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-25

The translate_osi_name operation

This operation returns theosNaming::Name corresponding to the
X711CMI::ObjectinstanceType passed as input parameter. This operation is useful
if the OSIMgmt::LName functionality is not available.

This operation may raise thavalidName exception if the input name has not been
properly intialized (contains a valid name). Note that translating the name does not
require an object with that name to exist.

The translate_idl_name operation

This operation returns thé711CMI::ObjectinstanceType corresponding to the
CosNaming::Name passed as input parameter. This operation is useful if the
OSIMgmt::LName functionality is not available.

This operation may raise thavalidName exception if the input name has not been
properly intialized (contains a valid name). Note that translating the name does not
require an object with that name to exist.

3.1.4 The OSIMgmt::ManagedObject interface

The standar721::top interface inherits fron0SIMgmt::ManagedObiject

interface. As a consequence, all management interfaces generated by a GDMO to IDL
compiler inherit (indirectly) from th€@©SIMgmt::ManagedObject interface. This
inheritance tree is shown in Figure 3-3.

CORBA::Object
CosNaming::NamingContext

OSIMgmt::NamingContext
CosLifeCycle::LifeCycleObject

\

OSIMgmt::ManagedObject

X721::top

X721::system Devices::Printer

Figure 3-3 Inheritance Tree

3-26 CORBA/TMN Interworking V1.0 August 2000

3

Operations exposed through @SIMgmt::ManagedObject interface enable clients
of an OSI managed object to obtain the name of the managed object and invoke
operations either on the object itself or on selected descendants of the managed object

Every OSIMgmt::ManagedObject CORBA object supports the principles on
transparency specified in Section 2.1.1, “JIDM Managed Obijects,” on page 2-3..

interface ManagedObject : NamingContext, CosLifeCycle::LifeCycleObject {
readonly attribute CosNaming::Name object_name;

void scoped_get (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObijectldentifierSeq attribute_id_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of _replies_handle);

void scoped_set (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in SetOperationArgument modification_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void scoped_action (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_Objectldentifier action_name,
in ASN1_DefinedAny action_info,
in LinkedReplyHandler reply _handler,
in EndOfRepliesHandler end_of _replies_handler

);

void scoped_delete (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,

in LinkedReplyHandler reply_handler,

in EndOfRepliesHandler end_of _replies_handler
)i
AttributeValueSeq get_attributes (

in ASN1_ObijectldentifierSeq attribute_id_list
) raises (GET_ERRORS);

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-27

3-28

AttributeValueSeq set_attributes (

in SetOperationArgument modification_list

) raises (SET_ERRORS);

ASN1_DefinedAny perform_action (

in ASN1_Objectldentifier action_name,
in ASN1_DefinedAny action_info

) raises (ACTION_ERRORS, UsingMR);

void delete_mo () raises (DELETE_ERRORS);

3.1.4.1 Naming

The OSIMgmt::ManagedObject interface inherits indirectly from the standard
CosNaming::NamingContext interface, viaOSIMgmt::NamingContext

interface. This means that every managed object exposes operations defined in the
CosNaming::NamingContext interface. However, only theesolve andlist

operations may be invoked by CORBA managers. CORBA managers that invoke any
of the other operations in ti@sNaming::NamingContext interface should receive

the NO_PERMISSION exception. Note that this restriction does not apply to
CORBA agents that may use the otlrsNaming::NamingContext operations to
register new CORBA managed obijects.

The CORBA Naming Service under the CORBAservices heagliegifies a transitive
rule for naming resolution:

ctx->resolve (C1;C2;...;,Cn-1;Cn) =
(ctx->resolve (C1;C2;...;Cn-1))->resolve (Cn)

Being able to resolve to a leaf in an agent naming tree implies being able to resolve to
the same object from any intermediate object in the naming tree, using a relative name.
Given that the naming tree and the containment tree are the same in OSI management
this transitive rule mandates inheritanceGafsNaming::NamingContext by every
non-terminal element of the naming (i.e., containment) tree.

The inheritance of thBlamingContext interface only implies interface inheritance, it
does not imply inheritance from any standard off-the-shelf implementation of the
CORBA Naming Service. In particular, all operations except “resolve” and “list”
should raise the standaNiO_PERMISSION exception when invoked by CORBA
managers, and the “resolve” and “list” operations may have specialized
implementations optimized for the lookup of OSI names.

Typically, the resolution of a name consists of forwarding the request down the tree
through each context, the last one setting the response, and sending it back upward in
the tree, to the client. This process can be long in the case of deep, distributed object
trees. But the implementation is free to use any efficient algorithm given that it
provides the same functionality, such as hash tables or delegation. Therefore, this
specification does not limit the scalability or performance of applications

implementing it.

CORBA/TMN Interworking V1.0 August 2000

3

Although the resolution of names is governed according to the CORBA naming
transitive rule, th&NamingContext tree doesn’t have to match the OSI naming tree
structure.

This implies that a managed object may raiseGlagnotProceed exception
whenever theesolve operation is invoked on it, thus delegating name resolution to an
alternativeCosNaming::NamingContext object.

If we consider the previous rule, invoking

ctx->resolve (C1;C2;...;Cn-1)

The rule is then formulated as follows:

ctx->resolve (C1;C2;...;Cn-1;Cn) =
(ctx’->resolve (C1;C2;...;Cn-1))->resolve (Cn).

Table 3-4 describes the exceptions raised byréselve operation(s) as they apply in
OSI contexts. Note that this description complies with the description given for the
standardCosNaming service in the Naming Service specification, and the one given
generically in Section 2.1.2, “The JIDM::ProxyAgent Interface,” on page 2-4.

Table 3-4 Exceptions Raised by the OSI Resolve Operations

Exception Raised Description

NotFound Indicates the name does not identify an existing managed object; this is
equivalent to the OSI NoSuchObijectinstance error code.

CannotProceed Indicates that implementation of the resolve operation has given up for

some reason. However, if tl@sNaming::NamingContext

reference contained in the exception is not nil, the client may be ahb
continue the operation using the returned name. If the exception
contains a nilCosNaming::NamingContext reference, then the
situation is not recoverable, which may happen, for example, in

le to

situations such as those that cause the OSI ProcessingFailure error code.

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-29

Exception Raised Description

InvalidName Indicates the name is invalid. In OSI management it can occur in at

least the following cases:

* A name, in its OSI form (X711CMI::Objectinstance), does not
contain a valid value as defined in X.720; this is equivalent to the
OSI InvalidObjectinstance error code.

* A name, in its IDL form CosNaming::Name), does not contain a
valid value as defined in Section 3.1.1, “The OSIMgmt::LName
Interface,” on page 3-10.

* An object class, provided in either resolve_with_intf or
resolve_osi_name, does not exist; this is equivalent to the OSI
NoSuchObjectClass error code.

» The managed object named in either resolve_with_intf or
resolve_osi_name does not support the object class provided; this is
equivalent to the OSI ClasslnstanceConflict error code.

* The name has a 0 length.

3.1.4.2 Description of the ManagedObiject attributes and operations

Inherited operations from CosLifeCycle::LifeCycleObject

The OSIMgmt::ManagedObject interface inherits from the standard
CosLifeCycle::LifeCycleObject interface. This means that every managed object
exposes the operations defined in @msLifeCycle::LifeCycleObject interface.
Specifically, the following semantics for the operations are specified:

®* Thecopy operation performs similarly to a
CoslLifeCycle::GenericFactory::create_object operation. The object in which
the operation is invoked acts as the “reference object” focitbate object
operation (it is automatically inserted into the creation criteria parameter).

®* Themove operation is not appropriate in OSI management environments, so if
invoked it should raise theotMovable exception.

®* Theremove operation deletes the object from the managed domain. Note that
deletion of a managed object may cause deletion of its descendants, or might be
forbidden if the object has descendants, if such behaviors have been defined. If, for
whatever reason, the object could not be destroyedJtiRemovable exception
will be raised.

The object_name attribute
This read-only attribute gives access to the name of the managed object in IDL form.

3-30 CORBA/TMN Interworking V1.0 August 2000

CMIS operations

OSIMgmt::ManagedObject objects support operations that enable CORBA
Managers to operate upon selected descendants of the managed object. These
operations are referred to as scoped operations, and provide a similar mechanism to
that provided byOSIMgmt::ProxyAgent objects.

A detailed description about CMIS operations is presented in the Section 3.1.6,
“Description of CMIS Operations,” on page 3-33.

Generic multi-attribute operations

Besides providing scoped operations (that might affect several managed objects), the
OSIMgmt::ManagedObject interface also exports operations to manipulate several
attributes of the managed object at the same time. Specifically, operations to get the
values associated to multiple attributget(attributes) and to set the values of

multiple attributesget_attributes) are provided. These operations are synchronous
(i.e., they block until the response is available).

The arguments of these two operations have the same meanings as described in
Section 3.1.6, “Description of CMIS Operations,” on page 3-33. The return values
represent the attribute values obtained from the managed object.

The perform_action operation

This operation provides a generic mechanism to invoke an action on the managed
object. Any action supported by the specific managed object being accessed might be
invoked in this way. The action invocation takes two arguments, with the same
meanings as described in Section 3.1.6, “Description of CMIS Operations,” on

page 3-33. The return value corresponds to the return type appropriate for the invoked
action.

In cases where the managed object returned multiple replies to a single action
invocation, theUsingMR exception will be raised. See Section 3.1.9, “Handling
ACTIONSs with multiple replies,” on page 3-45 for more information on actions with
multiple replies.

The delete_mo operation

The OSIMgmt::ManagedObject includes adelete_mo operation that enables the
deletion of a managed object, without the need to specify any scoping, filtering,
synchronization, and access control arguments. Note that deletion of a managed object
may cause deletion of its descendants, if such behavior has been defined. This call is
synchronous (i.e., it blocks until the corresponding managed object in the managed
domain has effectively been deleted).

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-31

3-32

3.1.5 The OSIMgmt::ManagedObjectFactory Interface

An OSIMgmt::ManagedObjectFactory can be used to create managed objects of
more than one type. As a consequence of this, operations exposed through the
OSIMgmt::ManagedObjectFactory interface always receive the name of the
interface as an input argument.

References to objects exporting @8IMgmt::ManagedObjectFactory interface
are typically located by specifying the name of this interface in a “factory interface”
component in the criteria used to find factories.

struct AttributeValue {
ASN1_Objectldentifier attribute_id;
ASN1_DefinedAny value;

h

typedef sequence<AttributeValue> AttributeValueSeq;

interface ManagedObjectFactory {

ManagedObiject create (

in CORBA::ScopedName interface_name,

in CosNaming::Name object_name,

in ManagedObject reference_object,

in AttributeValueSeq requested_attribute_values
) raises (CREATE_ERRORS);

ManagedObject create_with_auto_naming (

in CORBA::ScopedName interface_name,

in ManagedObject reference_object,

in AttributeValueSeq requested_attribute_values
) raises (CREATE_ERRORS);

ManagedObiject create_subordinate (

in CORBA::ScopedName interface_name,

in CosNaming::Name superior_name,

in ManagedObject reference_object,

in AttributeValueSeq requested_attribute_values
) raises (CREATE_ERRORS);

%

Three operations are exposed trough@&Mgmt::ManagedObjectFactory
interface.

1. Thecreate operation, which basically comprises all the parameters required to
create a managed object using OSI Management principles.

2. Thecreate_with_autonaming operation, which leaves to the
OSIMgmt::ManagedObjectFactory the responsibility to assign a valid name to
the new managed object.

3. Thecreate_subordinate operation that creates a new managed object as
subordinate of an existing object.

CORBA/TMN Interworking V1.0 August 2000

3

All three operations may receive a reference to an existing managed object whose state
is copied into the state of the new managed object. That reference may be nil, in which
case no reference object is considered.

3.1.6 Description of CMIS Operations

Application of scoped operations involves two phases: scoping and filtering. The base
managed object of a scoped operation is defined as the root of the subtree of managec
objects to which scoping and filtering is going to be applied.

Scoping entails the identification of those descendant(s) of the base managed object to
which a filter is to be applied. Filtering entails the application of a set of tests to each
member of the set of previously scoped descendants to extract the subset of those
objects that satisfy the filter. The operation is then applied to all the objects in the
subset of scoped descendants that satisfy the filter.

As a result of these scoped operations, multiple responses to a single request may
happen. This type of interaction is not possible in CORBA, and therefore a callback
mechanism is used by means of registering callback objects in the manager application
that are the ones responsible to receive the responses (in either asynchronous or
deferred synchronous modes). These callback objects are referred to as “Handlers,”
and are described in Section 3.1.7, “The OSIMgmt::LinkedReplyHandler,
EndOfRepliesHandler, and MultipleRepliesHandler Interfaces,” on page 3-38
(asynchronous handlers) and in Section 3.1.8, “The
OSIMgmt::BufferedRepliesHandler Interface,” on page 3-42 (deferred synchronous
handlers).

3.1.6.1 Behavior common to all scoped operations

To determine the base managed object applicable to scoped operations, a different
mechanism is used ®SIMgmt::ProxyAgent objects and by
OSIMgmt::ManagedObject objects.

In cases ofOSIMgmt::ProxyAgent objects, the following parameters are used to
determine the base managed object:

* interface_name : Specifies the fully scoped name of the interface exported by the
base managed object of the scoped operation.

® object_name : Specifies the IDL name of the base managed object of the scoped
operation.

In cases ofOSIMgmt::ManagedObject objects, the base managed object for the
scoped operation is the managed object itself; therefore, these two parameters are not
needed.

The following parameters are passed bot@&IMgmt::ProxyAgent objects and to
OSIMgmt::ManagedObject objects when invoking scoped operations to control the
set of managed objects to which the operation is to be applied (scope and filter), and to
specify interacion characteristics (synchronization and access control).

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-33

3-34

® scope: Indicates the subtree, rooted at the base managed object that is to be
searched. The different types of scoping that may be performed are:

» the base object alone

» the n-th level subordinates of the base object

» the base object and all of its subordinates down to and including the n-th level
» the base object and all of its subordinates (whole subtree)

* filter : Specifies the set of assertions that defines the filter test to be applied to the
set of managed object(s) that result from applying the scope. Multiple assertions
may be grouped using the logical operators AND, OR, and NOT. Each assertion
may be a test for equality, ordering, presence, or set comparison. Assertions about
the value of an attribute are evaluated according to the matching rules associated
with the attribute syntax. If an attribute value assertion is present in the filter and
that attribute is not present in the scoped managed object, then the result of the test
for that attribute value assertion is evaluated as FALSE. The managed object(s) for
which the filter test evaluates to TRUE is selected for the application of the
operation. If the filter is not specified, all of the managed objects included by the
scope are selected.

® synchronization : Indicates how the invoking operation should be synchronized
across the selected object instances. Two ways of synchronizing a series of
operations are defined, as specified in [X710]:

» Best effort K711CMI::CMISSyncType(bestEffort)): this synchronization only
requires that all managed objects selected for the operation are requested to
perform it, without any guarantee regarding the success of such request.

o Atomic (X711CMI::CMISSyncType(atomic)): If the base managed object
alone is selected for the operation, this parameter is ignored. Atomic
synchronization requires that all managed objects selected for the operation are
checked to ascertain if they are able to successfully perform the operation. If one
or more are not able to successfully perform the operation, then none perform it;
otherwise, all perform it.

® access_control : Information to be used as input to access control functions. This
parameter is optional, and its typeXg11CMI::AccessControlTypeOpt
« If present, this access control parameter is to be used in the current invocation.
« If absent, the default access control parameter specified at
OSIMgmt::ProxyAgent creation time (if any) should be used.
« If neither was specified, then no access control information should be used.

Thereply _handler andend_of replies_handler parameters are passed both to
OSIMgmt::ProxyAgent objects and t@SIMgmt::ManagedObject objects when
invoking scoped operations to specify the callback objects to use to receive responses
to the scoped operation:

Thereply_handler andend_of replies_handler parameters specify the object
references where the replies to the scoped operation are to be returned (for more details
see Section 3.1.7, “The OSIMgmt::LinkedReplyHandler, EndOfRepliesHandler, and
MultipleRepliesHandler Interfaces,” on page 3-38).

CORBA/TMN Interworking V1.0 August 2000

3

If these callback objects become unreachable during the process of performing a
scoped operation (due to communications problems, or to the explicit deletion of the
callback objects), the managed domain implementation should interrupt processing of
the scoped operation, if possible. Specifically, in the caseni$_get or

scoped_get operations this situation is the way to inform the managed domain that
an on-goingGet operation must be canceled.

In cases where unconfirmed operations are being requested (for example, an
unconfirmed scoped set operation), both parameters should be specifiécdbbgct
references; in these cases, no responses will be received.

If the reply_handler parameter is specified, but teed_of replies_handler is

specified as ail object reference, then the behavior of the invoked operation is
slightly different. The operation invocation blocks until all responses have been
received through theeply _handler object passed in the call, that is, the operation
itself becomes the end of replies indication. This allows sequential scoped operations
to be invoked without extra coding.

Note —The ORB might timeout such invocations if they take too long. Configure your
ORB timeout appropriately.

® |f the reply_handler parameter is specified asé object reference, but the
» end_of replies_handler is not, or

® if both arenil, but the
» operation does not accept unconfirmed operation,

then the CORBA standard exceptiBAD_PARAM is raised.

The results of invoking a scoped operation are returned through the
OSIMgmt::LinkedReplyHandler object specified when the scoped operation was
invoked. Information associated with each reply is passed by invokirggtite reply
operation. If an error occurs during the processstrel_mo_error or
send_subtree_error operations are called instead, depending on the type of error
that occurred.

For more details, see Section 3.1.7, “The OSIMgmt::LinkedReplyHandler,
EndOfRepliesHandler, and MultipleRepliesHandler Interfaces,” on page 3-38.

The GET operations

Besides the parameters specified above, the scoped GET operatiogaisget ,

scoped_get) carry an extra parametattribute_id_list . This parameter is a

sequence aASN1_Objectldentifiers corresponding to thattributes (or Attribute
Groups) to be retrieved by the operation. Note that to fill this parameter the JIDM
Specification Translation process defines IDL constants of the right type and contents,
to facilitate this process (see XoJIDM, Appendix A, “References” for details). If the
sequence is empty, this is interpreted as if the complete list of attributes would have
been requested.

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-35

The SET operations
The set operation may perform one of the following modifications to attributes.

®* Replace the values of specified attributes with supplied values. The replacement is
exact, unless the attribute definition explicitly states otherwise.

®* Replace the values of specified attributes with default values.

®* Add or remove members to set-valued attributes that are defined to allow the
addition or removal of members.

To be able to specify the above modifications, the scoped SET operatioiss get ,
scoped_set) carry the following extra parameter:

®* modification_list - this parameter contains a set of attribute modification
specifications, each of which contains:

« attribute_id : the registratiolASN1_Objectldentifer of the attribute or attribute
group whose value(s) is to be modified; an attribute group identifier shall only be
specified when the set to default modify operator is specified.

« attribute_value : the value(s) to be used in the modification of the attribute; the
use of this attribute is defined by the modify operator. This parameter is optional
when the set to default modify operator is specified and if supplied, shall be
ignored. If no value is to be passed, then a CORB® with tc_kind equal to
tk_null should be passed.

» modify_operator :the way in which the attribute value(s) (if supplied) is applied
to modify the attribute.

If the set of attribute modifications is empty, then no modification is requested.

The ACTION operations

Theaction operation requests the managed objects to perform the specified action and
to indicate the result of that action. With respect to confirmations, action operations
may be defined to always require confirmation or to allow the invoker to request a
confirmation or not.

Action operations may be defined to generate more than one response per managed
object that performs the operation.

As actions are generic by definition, the scoped ACTION operatimmss (action ,
scoped_action) carry the following extra parameters:

® action_name : This argument specifies the registration ASN1_Objectldentifier of
the action to be performed. Note that to fill this parameter, the JIDM Specification
Translation process defines IDL constants of the right type and contents to facilitate
this process (see XoJIDM, Appendix A, “References” for details).

® action_info : This argument carries the specific parameters that correspond to the
action, that is, the IDL type that is the mapping of the information syntax for this
action. If the action has no information syntax, a CORB¥ with tc_kind equal
to tk_null will be passed in this argument.

3-36 CORBA/TMN Interworking V1.0 August 2000

The DELETE operations

The scoped DELETE operationenfis_delete , scoped_delete) are used to request
the managed objects selected as a result of applying the scoping and filtering
arguments to delete themselves. These operations do not require extra parameters
except the common ones.

The CREATE operations

These operations are only available through@®Mgmt::ProxyAgent interface
(that is, they are not available from t®SIMgmt::ManagedObject interface) and
provide another mechanism to create objects in the managed domain.

These operations are not scoped, that is, they only affect one object (the one being
created), and therefore do not follow the common behavior outlined above.

Two flavors of the same operation are provided, one synchronous
(cmis_create_sync) and another asynchronousr(is_create).

Both flavors of thecmis_create operation use the same input parameters:

* interface_name : Specifies the fully scoped name of the interface to be exported
by the newly created object.

® creation_kind : Specifies the type of creation mechanism to be used, and identifies
the use of the next parameter. The possible values are:

» simple : Create the object named in the following parameter.

» autonaming : Ignore the contents of the following parameter, and automatically
assign a name for the newly created object.

» subordinate : The name specified in the next parameter is the name of the
superior object from the one to be created.

® object_name : Specifies the IDL name of the managed object to be created (if
creation_kind issimple) or the name of the superior objectditation_kind is
subordinate). If casecreation_kind is autonaming , the contents of this
parameter are ignored.

® access_control : This parameter is information to be used as input to access
control functions, it is optional, and its type is
X711CMI::AccessControlTypeOpt . If present, then this access control
parameter is to be used in the current invocation. If absent, then the default access
control parameter specified @SIMgmt::ProxyAgent creation time (if any)
should be used. If neither was specified, then no access control information should
be used.

* reference_object : Indicates the name of a managed object that should be used as
a reference when creating the new object.

® req_attribute_values : Specifies a set of attribute values to be assigned at object
creation time.

Both operations differ in the way they receive responses:

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-37

®* cmis_create : Performs the operation in an asynchronous way, returning the one
and only result into th©SIMgmt::LinkedReplyHandler object passed as input
parameter. Note that this is an exception to the process described in Section 3.1.7,
“The OSIMgmt::LinkedReplyHandler, EndOfRepliesHandler, and
MultipleRepliesHandler Interfaces,” on page 3-38. There is always one and only
one response sent to the injpitkedReplyHandler object, and there is no call to
theend_of replies method. The rest of the processing, including the use of the
different methods in theinkedReplyHandler interface, follows exactly what is
explained in Section 3.1.7, “The OSIMgmt::LinkedReplyHandler,
EndOfRepliesHandler, and MultipleRepliesHandler Interfaces,” on page 3-38.

® cmis_create_sync : Given that there is only one response possible, a synchronous
mechanism is also provided for this operation. In this case, there are several output
parameters carrying the result of the operation:

» created_interface_name : Interface supported by the newly created object.

» created_object_name : Name of the created object.

» creation_time : Time when the new object was created (optional).

» created_attribute_values : Values assigned to the attributes of the new object.

Error responses are returned as exceptions in this case.

3.1.7 The OSIMgmt::LinkedReplyHandler, EndOfRepliesHandler, and
MultipleRepliesHandler Interfaces

The LinkerReplyHandler/EndOfRepliesHandler are facilities that allow managed
object(s)/proxy agent(s) to send multiple replies to a single scoped operation, using the
asynchronous model. The deferred synchronous model is implemented using the
BufferedRepliesHandler (see Section 3.1.8, “The

OSIMgmt::BufferedRepliesHandler Interface,” on page 3-42)..

interface LinkedReplyHandler {
void send_reply (
in CORBA::ScopedName object_interface;
in CosNaming::Name object_name;
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in any reply_info

void send_mo_error (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in short error_code,
in any error_info

void send_subtree_error (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in short error_code,

3-38 CORBA/TMN Interworking V1.0 August 2000

in any error_info
h

interface EndOfRepliesHandler {
void end_of_replies ();

J

interface MultipleRepliesHandler : LinkedReplyHandler,
EndOfRepliesHandler {};

These interfaces are used as arguments for all scoped operations in
OSIMgmt::ProxyAgent andOSIMgmt::ManagedObject interfaces.

The scoped operations will be invoked on each managed object within the specified
scope, which passes the filter condition. The corresponding reply will be sent
separately to th©SIMgmt::LinkedReplyHandler object whose reference was
passed when the scoped operation was invoked.

After all invocations tosend_reply , send_mo_error andsend_subtree_error
have returned, thend_of _replies operation is invoked, indicating the complete
finalization of the process. Note that with this behavior race conditions are avoided.

LinkedReplyHandler/MultipleRepliesHandler ~ objects may be implemented both

as local objects (in the client address space) or as remote objects (accessed via CORBA
invocations) either in the gateway/CORBA agent/CORBA managed object address
space or in a separate CORBA service process.

3.1.7.1 Descriptions of the LinkedReplyHandler operations

Common arguments to the LinkedReplyHandler operations

The following arguments are common to @EIMgmt::LinkedReplyHandler
operations:

® object_interface : This parameter specifies the fully scoped name of the interface
exported by the managed object that generated the current reply.

® object_name: This parameter specifies the IDL name of the managed object that
generated the current reply.

Using an empty string in thebject_interface and a 0 length sequence in the
object name arguments refers to the base object of the corresponding scoped
operation.

® current_time : Specifies the time at which the response was generated. This
parameter is optional and might not be specified.

* reply_info/error_info : Carries the information associated with the current reply. If
no value is to be passed, then a CORB¥ with tc_kind equal totk_null will be
passed.

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-39

The send_reply operation

Thesend_reply operation is used to pass information associated with each reply from
managed objects involved in a scoped operation.

Thereply_info argument is a CORBAny, and its contents are different depending
on the scoped operation that was performed, as follows:

Table 3-5 Contents of reply_info parameter to send_reply

scoped operation Type carried in the reply_info parameter
ProxyAgent::cmis_create X711CMl::CreateResultAttributeListType
ProxyAgent::cmis_get X711CMI::GetResultAttributeListType

ManagedObiject::scoped_get

ProxyAgent::cmis_set X711CMI::SetResultAttributeListType
ManagedObiject::scoped_set

ProxyAgent::cmis_action IDL mapped type corresponding to the ACTION
ManagedObiject::scoped_action| REPLY SYNTAX; if the action has no reply
syntax, CORBA any with tc_kind equal to tk_null

ProxyAgent::cmis_delete CORBA any with tc_kind equal to tk_null
ManagedObiject::scoped_delete

The send_mo_error operation

The send_mo_error operation indicates that an error has been found for a managed
object. Theerror_code argument indicates the type of error that has happened. The
error_info argument is a CORBAny whose contents might be different depending
on the scoped operation that was performed and the error that occurred.

Also, there are certain cases wheresbhed_mo_error operation does not provide
any additional information, in which case amy with tc_kind equal to theék _null is
passed as value of tleeror_info parameter.

Table 3-6 Contents of error_code and error_info parameters to send_mo_error

scoped operation error_code | Type in the error_info parameter

ProxyAgent::cmis_get 4 X711CMI::GetListErrorGetinfoListType
ManagedObiject::scoped_get

ProxyAgent::cmis_set 5 X711CMI::SetListErrorSetinfoListType
ManagedObiject::scoped_set

ProxyAgent::cmis_action 16 X711CMl::ActionErrorinfoType
ManagedObiject::scoped_action

ProxyAgent::cmis_delete 17 X711CMI::DeleteErrorDeleteErrorinfoType
ManagedObiject::scoped_delete

3-40 CORBA/TMN Interworking V1.0 August 2000

scoped operation error_code | Type in the error_info parameter

all in case of ProcessingFailure 8 X711CMI::SpecificErrorinfoType, or

CORBA any with tc_kind equal to tk_null

The send_subtree_error operation

Thesend_subtree_error operation indicates a fatal error in a certain managed object
subtree. The client should not expect any further replies from objects in the affected
managed object subtree. The interface and name of the base managed object of the
subtree that experienced the fatal error are passed as arguments to this operation.

The error_code argument indicates the type of error that has happened, and the
error_info argument is a CORBAny, whose contents might be different depending
on the error that occurred.

Also, there are certain error cases where there is no additional information, in which
case arany with tc_kind equal to thek_null is passed as value of teeror_info
parameter on theend_subtree_error operation.

Table 3-7 Contents of error_code and error_info parameters to send_subtree_error

Error condition error_code | Type in the error_info parameter

AccessDenied 1 empty

ClassiInstanceConflict 2 empty

ComplexityLimitation 3 X711CMI::ComplexityLimitationType, or
empty

GetListError 4 X711CMI::GetListErrorGetinfoListType

SetListError 5 X711CMI::SetListErrorGetinfolListType

InvalidArgumentValue 6 X711CMl::InvalidArgumentValueType

OperationCancelled 7 empty

ProcessingFailure 8 X711CMI::SpecificErrorinfoType, or empty

InvalidFilter 9 X711CMI::CMISFilterType

InvalidScope 10 X711CMI::ScopeType

SyncNotSupported 11 X711CMI::CMISSyncType

NoSuchAction 12 X711CMI::NoSuchActionType

NoSuchArgument 13 X711CMI::NoSuchArgumentType

NoSuchObjectClass 14 X711CMI::ObjectClassType

NoSuchObjectinstance 15 X711CMI::ObjectinstanceType

CORBA/TMN v1.0

The OSIMgmt Module

Aug. 2000 3-41

3-42

Error condition error_code | Type in the error_info parameter
DuplicateManagedObjectinstance 18 X711CMI::ObjectinstanceType
InvalidAttributeValue 19 X711CMI::AttributeType
InvalidObjectinstance 20 X711CMI::ObjectinstanceType
MissingAttributeValue 21 X711CMI::MissingAttributeValueType
NoSuchAttribute 22 X711CMI::AttributeldType
NoSuchReferenceObject 23 X711CMI::ObjectinstanceType
MistypedOperation -1 empty (these errors cannot happen in any
NoSuchEventType scoped operation)

NoSuchlnvokeld

communication failure -2 empty

ROSE rejection -3 implementation specific

others unknowns -4 implementation specific

3.1.7.2 Descriptions of the EndOfRepliesHandler operations

The end_of_replies operation

Theend_of _replies operation indicates that no more replies are going to be received
from the managed objects involved in a scoped operation; therefore, signaling the
complete finalization of the process. This operation is invoked after all invocations to
send_reply , send_mo_error , andsend_subtree_error from objects within the
scopef/filter parameters specified in the scoped operation have returned. Note that with
this behavior race conditions are avoided.

3.1.8 The OSIMgmt::BufferedRepliesHandler Interface

The OSIMgmt::BufferedRepliesHandler is a facility that allows client

programmers to use a deferred synchronous model to retrieve responses for multiple
replies in an on-demand basis. This complements the fully asynchronous model
provided by theOSIMgmt::LinkedReplyHandler and

OSIMgmt::EndOfRepliesHandler interfaces.

struct Reply {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
any reply_info;

h

typedef sequence<Reply> ReplyList;

interface Replieslterator {

CORBA/TMN Interworking V1.0 August 2000

exception MoError {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
short error_code;
any error_info;

J

exception SubtreeError {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
short error_code;
any error_info;

J

boolean get_reply (out Reply r) raises (MoError, SubtreeError);
boolean get_n_replies (in unsigned long how_many, out ReplyList r_list)
raises (MoError, SubtreeError);

boolean finished (out unsigned long num_pending);
void destroy ();
h

interface BufferedRepliesHandler : MultipleRepliesHandler, Replieslterator {};

Note that theOSIMgmt::BufferedRepliesHandler interface is a pure extension of
the OSIMgmt::LinkedReplyHandler and OSIMgmt::EndOfRepliesHandler
interfaces. Therefore, objects exporting this interface can be passed in to operations
that takeOSIMgmt::LinkedReplyHandler andOSIMgmt::EndOfRepliesHandler

as parameters.

The use model for this interface is that of an Iterator, from the client's perspective. That
is, the only operations a client should use are those defined Rethlesiterator

interface. The other operations are directly invoked from the Managed Domain, as a
result of a scoped operation or action with multiple replies.

These objects can be implemented either in the manager side or in the managed
domain side of an interaction, or even provided by an external service.

3.1.8.1 Descriptions of BufferedReplyHandler types and operations

The Reply type

The Reply type is the structure to hold one reply; the different fields in the structure
match those in the signature of thend_reply operation of the
LinkedReplyHandler interface.

The MoError exception

The MoError exception corresponds to teend_mo_error operation of the
LinkedReplyHandler interface, and the types and values carried by the exception
match exactly the parameters of the operation.

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-43

3-44

The SubtreeError exception

The SubtreeError exception corresponds to tsend_subtree_error operation of
the LinkedReplyHandler interface, and the types and values carried by the exception
match exactly the parameters of the operation.

The Replieslterator interface

The Replieslterator is, as its name indicates, an Iterator type interface, where there
are operations to access a list of items in the iterator in an ordered manner. ltems are
accessed once, and only once, regardless of the operation used to access them. The
Iterator cannot be backed (re-access) or re-initiated.

Note that, in multi-threaded environments, where responses are retrieved from multiple
threads (or even from multiple processes), each response will only be received once, so
care must be taken in these circumstances.

The get_reply operation

The get_reply operation blocks until the next reply is available, returning it when
ready. It returns true when the operation has actually retrieved a response, it returns
false when there are no more responses pending to be received (i.e., the

end_of _replies has been received). In this case, the value returned in the Reply is
undefined (must be ignored). Once this operation has returned false, all subsequent
invocation to it will also return false. In case an error response is the first to be
returned (because it was buffered or received while blocked), the corresponding
exception is raised.

The get_n_replies operation

The get_n_replies call blocks untilhow_many replies are available, an error is
received or the iterator reaches its end, whatever happens firsRepid ist will
contain at moshow_many non-error replies. Specific implementations may impose
an appropriate maximum number for th@v_many parameter to prevent excessive
consumption of resources.

If an error is received, the operation will return all valid replies up to but not including
the error, unless the error is the first reply, in which case the corresponding exception
is raised. When the error is not returned by this operation, it remains in the buffer as
the first response to be retrieved, and therefore the next ogdittoeply or

get_n_replies will raise the exception corresponding to the error.

The operation returns false if there are no more replies to be pulled out and the end of
the iterator has been reached, true; otherwise, this means that if this operation is
invoked after the Iterator has reached its end, then an empty list is returned and the
return value is false.

Note that the semantic of the iterator is orthogonal to the way replies and errors are
received through theinkedReplyHandler interface and it allows a programming
model where errors are handled separately from normal replies.

CORBA/TMN Interworking V1.0 August 2000

The finished operation

Thefinished operation returns true if the Iterator has completed its background work
(and therefore knows about ALL responses) and false if the operation is still under way
(that is, there might be more responses unknown to the iterator at this time). In both
cases, the number of replies immediately available for retrieval is returned (including
pending error responses). This operation does not block.

This operation can be used to work in polling (non blocking) mode with the Iterator, as
the client can always ask for what it knows the lterator already has received/processed.
This polling mechanism should only be used from a single thread.

The destroy operation

Thedestroy operation destroys the iterator; any calls to the iterator invoked after this
would return thelOBJECT_DOES_NOT_EXIST standard exception.

3.1.9 Handling ACTIONs with multiple replies

Where actions have a reply syntax, objects have the option of using multiple replies
(i.e., returning a sequence of PDUs, each of the type given in the reply syntax,
containing part of the reply). Multiple replies allow data to be returned as it becomes
available and have been used for monitoring progress.

While these are not widely used and could easily be replaced by natifications, it was
necessary to provide this capability with the same functionality as for generic
interfaces.

When actions that generate multiple replies from a single object are invoked through
the scoped operations interfacem(s_action or scoped_action) no special action
has to be taken, as the mechanism to process multiple replies is already in place.

Actions may also be invoked using IDL operations generated by the GDMO to IDL
translation process or using tlSIMgmt::ManagedObiject::perform_action

operation. These interfaces are synchronous (the response is the return value from the
operation); therefore, not allowing the reception of multiple replies.

For these cases, an additional user exception may be raised by the action call, in the
event that multiple replies to the same request are generated. ThiddsitigMR
exception.

The UsingMR exception carries one parameter, a reference to an
OSIMgmt::Replieslterator object described in Section 3.1.8, “The
OSIMgmt::BufferedRepliesHandler Interface,” on page 3-42, that is provided by the
managed domain and should be used by the manager application to retrieve all
responses to the action. In case the managed domain does not provide this mechanism
and yet the multiple replies are generated, thail abject reference might be passed

in the exception, and the manager should invoke the operation using the scoped
operations.

exception UsingMR
{ Replieslterator replies_iterator; };

CORBA/TMN v1.0 The OSIMgmt Module Aug. 2000 3-45

3-46

‘ Local root object

O Local orphan object

AE-title4

OSIMgmt::ProxyAgent

3.1.10 The OSIMgmt::LocalRoot interface

The term ‘local orphan managed objects,” associated with an OSI managed object
domain, is used to designate those managed objects of which the superior objects are
located in a different OSI managed object domain.

In every CORBA-based OSI managed object domain there will exist a CORBA object
that plays the role of a ‘local root.” This local root object will act as the superior of all
local orphan managed objects in the application (i.e., it will hold references to local
orphan managed objects), and exports@&Mgmt::LocalRoot interface.

In the case that a local orphan object is created in a certain managed domain, the local
root object for that domain must be notified that a new subordinate has been created.

OSIMgmt::
LocalRoot

Figure 3-4 Dealing with Local Orphan Managed Objects

A reference to the local root object is maintained byJiieM::DomainPort object
associated to the managed object domain. JID&::DomainPort object passes this
reference to ever@SIMgmt::ProxyAgent object it creates.

The local root object is a managed object that export©8idgmt::LocalRoot
interface.

typedef sequence<ManagedObject> ManagedObjectSeq;

interface LocalRoot : ManagedObject {
exception NoDescendants {};

CORBA/TMN Interworking V1.0 August 2000

/I list all local orphan managed objects:
ManagedObjectSeq list_orphans ();

/I list of local orphans that are descendants of the object

/l whose name is specified:

ManagedObjectSeq

list_orphan_descendants (in CosNaming::Name object_name)
raises (NoDescendants);

J

Note that the reference returned by tfe¢_domain_naming_context operation
points to the system managed object. A reference to the root managed object
supporting theNamingContext interface will be bound under the initial
CosNaming::NamingContext of a managed object domain (typically corresponding
to the system managed object). OthiamingContexts that exist in the domain may
contain that binding as well, thus, allowing resolutiorDadtinguishedNames in

their context.

3.2 Programming Model

This section is provided as information only, and does not represent a normative part of
this specification. In this section, different scenarios are described where the use of this
specification will be clarified. This should be considered as a high level tutorial on
some potential uses of the JIDM model for OSI management.

3.2.1 Programming Semantics

CORBA manager programs create and invoke operations on managed objects in the
same way they create and invoke operations on ordinary CORBA objects located in the
same CORBA domain. Analogously, they receive events supplied by managed objects
as if they were ordinary CORBA objects supplying events to an event channel located
in the CORBA domain. Whether this actually happens or not is transparent to the
CORBA manager program.

This concept of transparency is specifically supported by the fulfillment of the
semantic rules presented in Section 2.1.1, “JIDM Managed Objects,” on page 2-3.

3.2.2 Creating Managed Obijects

Creating a managed object implies to perform the list of actions described in
Section 2.1.2, “The JIDM::ProxyAgent Interface,” on page 2-4:

1. Obtain a reference to @SIMgmt::ProxyAgent object that enables access to the
domain where the managed object is going to be created.

2. Obtain a reference to the initi@bsLifeCycle::FactoryFinder located at the
domain.

CORBA/TMN v1.0 Programming Model Aug. 2000 3-47

3-48

3. Invoke thefind_factories operation exposed by the initial
CoslLifeCycle::FactoryFinder object to find a factory for the new managed
object.

4. Select a factory among the several factory objects that may meet the criteria for
finding factories passed to tlied_factories operation.

5. Invoke an appropriate operation, exposed by the selected factory, to create the
managed object.

Valid key values for finding factories in OSI Systems Management environments were
described in section Section 2.1.2, “The JIDM::ProxyAgent Interface,” on page 2-4.

Figure 3-5 illustrates how, in a pure CORBA environment, manager objects will create
a new OS| managed object.

manager object

3. specific Managed Objept D_omain
1. managed object (Agent Application)
o factory interface
CosNaming::
OSIMgmt:: . NamingContext
gmt.. Managed Object
ProxyAgent

Factory
— — .
3 5.

v AN
AN
4. Q
: , (]
CosLifeCycle:: .
title4

FactoryFinder

Figure 3-5 Creating an OSI managed object directly through CORBA

As with JIDM facilities, theOSIMgmt::ProxyAgent created as a result of
establishing a connection to a CORBA managed object domain would typically hold
references to the ro@osNaming::NamingContext object and
CosLifeCycle::FactoryFinder objects located at the domain. These steps are

followed:

1. The CORBA manager invokes tget _domain_factory finder operation
exposed by th©SIMgmt::ProxyAgent object. As a result, a reference to the
initial CosLifeCycle::FactoryFinder located at the domain being accessed is

returned.

CORBA/TMN Interworking V1.0 August 2000

3

2. The CORBA manager object invokes firel_factories operation exposed by the
initial CosLifeCycle::FactoryFinder object. As a result, a reference to a
managed object factory is obtained and returned to the CORBA manager object that
requested it.

3. The CORBA manager object invokes a suitable operation on the managed object
factory using the CORBA object reference previously obtained. Typically, the
CORBA manager will narrow this reference to a well-known managed object
factory interface (see Section 3.1.2, “The OSIMgmt::ProxyAgent Interface,” on
page 3-17).

4. The managed object factory creates the CORBA managed object and obtains a
reference as a result.

5. The managed object factory binds the obtained reference with a name in the local
root CosNaming::NamingContext object.

6. The managed object factory notifies the superior managed object that a new
subordinate has been created.

7. Finally, if everything is all right, the managed object factory returns a reference to
the CORBA manager object. Otherwise, it returns an exception.

Any superior managed object will hold a reference to every managed object which is a
subordinate of it. That is why a superior managed object must be notified about
creation of subordinate managed objects. Superior managed objects must hold
references to subordinate managed objects in order to handle scoping and filtering as
well as to handle deletions.

Different implementation approaches are possible for step 5:

® TheCosLifeCycle::Factory perform the required actions to allow initialization of
the object when it is first activated.

®* The CosLifeCycle::Factory invokes an initialization operation exposed by the
object. (The XoJIDM Working Group should discuss if this operation requires to be
specified in the standail@SIMgmt::ManagedObject interface.)

Different implementation approaches are also possible for step 6:

®* Every managed object exports tBesNaming::NamingContext interface and
keeps name bindings associated to its subordinates (note that this would imply that
the structure of the CORBA naming tree would be equivalent to the OSI naming
tree (i.e., managed objects support theolve operation and don't raise the
CannotProceed exception).

® The structure of the CORBA naming tree doesn’t match the structure of the OSI
naming tree. For example, it is more plain and avoid deep nesting (note that this
approach implies that managed objects suppontebelve operation but may raise
the CannotProceed exception).

and, finally, for step 7 the following implementation approaches are also valid:

* Make the factory object coincide with the superior of the new managed object (note
that this implies a clear optimization).

CORBA/TMN v1.0 Programming Model Aug. 2000 3-49

3-50

®* Make the factory object notify the superior object that a new child has been born by
means of invoking an operation that the superior object exposes for this purpose.
(The XoJIDM Working Group should discuss if this operation is going to be
specified in theDSIMgmt::ManagedObject interface.)

In a CORBA managed object domain, propagation of operations is handled by the
objects themselves: each object is responsible to forward the operation to its
descendants. However, the way in which they perform the propagation is an
implementation matter. Analogously, the mechanisms used to notify to the base
managed object that all the replies have been sent is an implementation matter.

A simple way of implementing propagation of operations would consist in using
recursion as illustrated in the pseudo-code listed below.

Recursive propagation of scoped actions

obj->scoped_action (scope, filter, sync, act, arg,

replies_handler, end_handler)

if <obj satisfies the filter> {

/I perform the action on the object and return the result:
result = obj->act (...);
replies_handler->send_reply (obj_intf, obj_name, result);

k

/I create an OSIMgmt::EndOfRepliesHandler (end_subs) which will
/I wait until all descentants notify they have finished propagation:
end_subs = ...;

/l propagate action through descendants:
subl->scoped_action (scopel, filter, sync, act, arg, replies, end_subs);

subn->scoped_action (scopen, filter, sync, act, arg, replies, end_subs);

In the above example, the base managed object passes a reference to an object

(end_subs) that will be responsible for:

1. Waiting until all subordinates obbj ' invoke theend_of replies

exposed by theend_subs ' object.

2. Trigger invocation of thend_of replies operation exposed by therid’

object.

In the algorithm we have presented, invocation of a scoped operation returns
immediately. TheDSIMgmt::ProxyAgent object doesn’t handle the end of replies
but passes a reference to the object that will handle it. There is another possibility
which consists in that invocation of a scoped operation blocks until all replies have
been sent. In this case, tSIMgmt::ProxyAgent object will be responsible for
sending the last CMIP response, indicating the end of replies. By convention, this
behavior is experimented whenever a nil object reference is passed as the
OSIMgmt::EndOfRepliesHandler argument.

CORBA/TMN Interworking V1.0 August 2000

Note that synchronous invocations imply support for multi-threading in the
CORBA/CMIP gateway process. (Ti@SIMgmt::ProxyAgent and the
OSIMgmt::LinkedReplyHandler objects must concurrently execute.)

3.2.3 Invoking Operations on Single Managed Objects

Invoking an operation on a single managed object implies that the following actions
are performed:

1. Obtain a reference to @SIMgmt::ProxyAgent object that enables access to
some domain of which the managed object is member.

2. Obtain a reference to the initi@bsNaming::NamingContext located at the
domain, by means of invoking tlgeet_ domain_naming_context operation
exposed by th©SIMgmt::ProxyAgent object.

3. Construct the name that unequivocally identifies the managed object within the
domain.

4. Invoke theresolve operation exposed by the initial
CosNaming::NamingContext object located at the domain, thus obtaining a
CORBA object reference pointing to the managed object.

5. Invoke the operation on the managed object.

Example code for invoking an operation on a managed object

The following example shows the code used to set the destination attribute exposed by
an Event Forwarding Discriminator.

OSIMgmt::ProxyAgent_ptr agent;
OSIMgmt::LName local_name;
X721Att::DestinationType new_destinations;

/I a reference to a OSIMgmt::ProxyAgent is obtained as a result of
/I establishing a connection to the managed object domain where
/I the EFD is located:

/I a reference to the initial CosNaming::NamingContext object
/I is obtained:

CosNaming::NamingContext_ptr ctx = agent->get_domain_naming_context ();
/l the name of the EFD object is constructed:

local_name -> for_string_form (“2.9.3.2.1=(string)’ MyEFD"");

/I a reference to the EFD object is obtained and narrowed

CORBA/TMN v1.0 Programming Model Aug. 2000 3-51

3-52

/' to the X711::eventForwardingDiscriminator interface:
CORBA::Object_ptr obj = ctx->resolve (local_name -> to_idl_form ());

X721::eventForwardingDiscriminator_ptr efd =
X711::eventForwardingDiscriminator::_narrow (obj);

/Il Finally, the destinationSet operation is invoked on
/I the managed object:

efd -> destinationSet (new_destinations);

Note that the same result can be obtained without narrowing the reference returned by

a JIDM::ProxyAgentFinder object to anOSIMgmt::ProxyAgent interface, when
the access_domain operation was invoked.

Figure 3-6 illustrates how CORBA manager objects invoke operations on a single
managed object in a pure CORBA environment.

manager object

Q 3. specific
management

1. interface
o Application C (agent role)
2.
JIDM:: 1]
ProxyAgent title4

- -
O >
CosNaming:: ‘ ‘
NamingContext

Figure 3-6 Invoking operations on a managed object directly through CORBA

As previously explained, th@SIMgmt::ProxyAgent created as a result of
establishing a connection to a CORBA managed object domain would typically hold
references to the ro@osNaming::NamingContext object and
CosLifeCycle::FactoryFinder object located at the domain. Thus, the following
steps will be followed:

CORBA/TMN Interworking V1.0 August 2000

1. The CORBA manager object invokes thet_domain_naming_context
operation exposed by tf@SIMgmt::ProxyAgent object, in order to obtain a
reference to the initiaCosNaming::NamingContext object.

2. The CORBA manager object invokes tiesolve operation exposed by the initial
CosNaming::NamingContext object, passing the name of the managed object
upon which it wants to operate. As a result of this, a CORBA object reference to the
managed object is obtained and returned to the CORBA manager object that
requested it.

3. The CORBA manager object invokes an operation on the managed object using the
CORBA obiject reference previously obtained. IDL stubs or the standard DIl can be
used when invoking operations on single managed objects. If IDL stubs are used,
the CORBA manager object must first narrow the reference to a specific OMG IDL
interface.

3.2.4 Invoking Operations with Scope and Filtering

Scoped operations can be invoked either throdghMgmt::ProxyAgent or
OSIMgmt::ManagedObijects . In the last case, the base managed object in the
selection is the one being referred.

Figure 3-7 illustrates how CORBA manager objects invoke a scoped operation in a
pure CORBA environment.

CORBA/TMN v1.0 Programming Model Aug. 2000 3-53

manager object

CosNaming::
NamingContext

OSIMgmt::
ManagedObiject

1

I

I

I

I

o |
I

| OoSIMgmt::
EndOfRepliesHandler

¥
CP‘ ——

OSIMgmt::
LinkedReplyHandler

Application C (agent role)
‘ Managed objects
satisfying the filter

Figure 3-7 Invoking operation with scope and filtering

The following steps will be followed in case the scoped operations are invoked through
operations exposed by the base managed object:

1. A CORBA manager object invokes thesolve operation exposed by the initial
CosNaming::NamingContext object, passing the name of the managed object
used as the base managed object in the scoped operation. As a result, a reference ti
the managed object is returned.

2. The CORBA manager object narrows the obtained CORBA object reference to a
new object reference, bound to B&IMgmt::ManagedObject interface, and
invokes the appropriate scoped operatiscoped_get , scoped_set ,
scoped_action , orscoped_delete).

3. The CORBA manager objects select an object that exports the
OSIMgmt::MultipleRepliesHandler interface (can create it). When invoking, the
CORBA manager object passes a reference to this object (note that the CORBA
manager object may be the one exporting the
OSIMgmt::MultipleRepliesHandler interface).

3-54 CORBA/TMN Interworking V1.0 August 2000

4. The base managed object propagates the requests to its descendants.

5. Replies from each of the managed objects satisfying the filter, within the defined
scope, are received by ti@SIMgmt::MultipleRepliesHandler object.
Information associated to each of the replies is passed when invoking the
send_reply operation exposed by th@SIMgmt::MultipleRepliesHandler
object.

6. The base managed object is notified when scoped descendants that pass the filter
have sent their replies to ti@ESIMgmt::MultipleRepliesHandler object.

7. The base managed object invokeseahd_of replies operation exposed by the
OSIMgmt::MultipleRepliesHandler object. If an error occurs during the whole
process, an exception is generated, converted into a CORBA any value and passed
to theOSIMgmt::LinkedRepliesHandler object by invoking either the
send_mo_error orsend_subtree error operations.

Code for invoking scoped operations

The following example shows how the fragment of code used to find a Log object by
name should look.

OSIMgmt::ManagedObject_ptr managed_object;
X711Inf::DistinguishedNameType object_name;
OSIMgmt::LName_ptr local_name;
OSIMgmt::MultipleRepliesHandler_ptr handler;

local_name -> for_osi_form (object_name);
CORBA::Object_ptr obj = ctx -> resolve (local_name -> to_idl_form ());
managed_object = OSIMgmt::ManagedObject::_narrow (obj);

managed_object -> scoped_action (scope, filter, sync, access_control,
“reset”, arg, handler, handler);

3.2.5 lterator Interfaces for Scoped Operations

In other OMG specifications, the iterator pattern is used heavily for operations that
return an unbounded list of responses. This is how it could be done, with the specified
interfaces, as follows. The scoped operations botPrixyAgent and

ManagedObject share the last parameters in the list as in:

cmis_get(..., in LinkedReplyHandler Irh, in EndOfRepliesHandler eorh)

The iterator interfaces for other services look like:

iter_get(..., in unsigned long how_many, out ReplyList rlist,
out Replylterator riter)

This operation can be implemented by the following pseudocode, using our currently
proposed interfaces.

CORBA/TMN v1.0 Programming Model Aug. 2000 3-55

Using Replylterator

iter_get(..., in unsigned long how_many,
out ReplyList rlist,
out Replylterator riter)

{
BufferedRepliesHandler brh = create_brh(...) // or other creation
/I call
cmis_get(..., brh, brh)
brh -> get_n_replies(how_many, rlist)
riter = brh // widening does not require narrow()
}

Note that, although this code is simple, implementing this in either a pure CORBA
Agent, pure CORBA Managed object or a gateway may impose unacceptable
performance and scalability constraints in the implementation as potentially unbounded
buffering must occur in a single point, and concentration of responses through a single
CORBA object will also happen.

Other more flexible implementations are allowed by means of combining the simpler
pieces together, as done above, therefore avoiding the scalability and performance
problems (at least, reducing them).

Besides, the BRH objects can be implemented both as local objects (in the client
address space) or as remote objects (accessed via CORBA invocations) either in the
gateway/CORBA agent/CORBA managed object address space or in a separate
CORBA service process.

3.2.6 Reception of Events at CORBA Managers

Different strategies to resolve how CORBA manager objects finally consume events
(see Chapter 2 for details).

3.2.7 Forwarding Events from CORBA Managed Object Domains

Different strategies to resolve how CORBA managed objects finally report events can
be implemented (see Chapter 2 for details). The only distinction is that the interface of
the EventReporter object is well-known and correspond to the standard Event
Forwarding Discriminator interface.

3.3 CORBA/CMIP Gateways

3-56

This section is provided as information only, and does not represent a normative part of
this specification.

In this section, different gateway scenarios are described where the use of this
specification will be clarified. This should be considered as a high level tutorial on
some potential uses of the JIDM model for OSI management. Also, some potential
implementation options are discussed.

CORBA/TMN Interworking V1.0 August 2000

3.3.1 Manager Side Gateways

3.3.1.1 Overview

CORBA/CMIP gateways must be used by any CORBA Manager Application needing
to interoperate with managed object domains that are not directly accessible via
CORBA but are accessible via CMIP.

A CORBA/CMIP gateway runs in one CORBA server. However, a CORBA/CMIP
gateway can coexist with one or several JIDM gateways in the same CORBA server.
Programs of the CORBA server have access to both; ORB services and services
encapsulating access to management-specific protocols provided by JIDM gateways at
the server.

Any CORBA/CMIP gateway has several CORBA objects associated with it:

* A JIDM::ProxyAgentFinder object for establishing connections to OSI managed
object domains accessible via CMIP through the gateway.

® One or severalIDM::EventPort objects for receiving notification of events from
members of OSI managed object domains accessible via CMIP through the gateway.

The JIDM::ProxyAgentFinder object is created during start-up of the CORBA server
where the JIDM gateway is going to ruHDM::EventPort objects at the gateway
may be created during or after start-up of that server. This typically requires the
existence of afEventPortFactory object at the gateway.

As previously explained, several JIDM gateways can exist in a CORBA manager and a
JIDM::ProxyAgentFinder object is associated with each of them. All of them would

be registered in a rodiDM::ProxyAgentFinder object at the CORBA manager.
CORBA managers typically obtain a reference to this local root
JIDM::ProxyAgentFinder object by using standard CORBA Initialization Services.

The JIDM::ProxyAgentFinder object is created during start-up of the CORBA server
where the JIDM gateway is going to rudlIDM::EventPort objects at the gateway
may be created during or after start-up of that server.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-57

local root
JIDM::ProxyAgentFinder

JIDM gateway Q JIDM gateway

/ JIDM:: \ / JIDM:: \
ProxyAgentFinder | | ProxyAgentFinder
oo () el Lo () o

JIDM:: - | EventPort .Q JIDM::
EventPorts Q factories EventPorts

A < — Mmanagement A A

. —

TCD{}C)—‘ service access ’—CDC}ij
A 3 endpoint -

e \ management _/ e

CMIP service library CMIP
protocol protocol

Figure 3-8 Structure of CORBA/CMIP gateways (manager side)

As a result of establishing a connection through a CORBA/CMIP gateway, an
OSIMgmt::ProxyAgent object is created at the gatew@SIMgmt::ProxyAgent
objects created this way are responsible for:

® Creating aCosLifeCycle::FactoryFinder object that in turn enables creation of
CORBA factories that handle creation of managed objects at the domain.

® Creating aCosNaming::NamingContext object that in turn enables creation of
CORBA proxy managed objects for each member of the domain.

® Sending scoped operation requests.

3-58 CORBA/TMN Interworking V1.0 August 2000

manager object

O

OSIMgmt::
ProxyAgent

specific

management Application C (agent role
interface PP (9)

\ AE-title4
Oy fone

proxy
managed object
4

gateway

3.3.1.2

protocol

OSl stack OSl stack

Figure 3-9 OSIMgmt::ProxyAgents in a gateway

Getting access to managed object domains

The following steps are used when a CORBA manager object tries to get access to a
external managed object domain using a CORBA/CMIP gateway (see Figure 3-9):

1. The CORBA manager object invokes tecess_domain operation exported by
the JIDM::ProxyAgentFinder object located at the gateway. Information that
unequivocally identifies the managed object domain to be accessed is passed in the
invocation.

2. As a result of invoking thaccess_domain operation, a CORBA
OSIMgmt::ProxyAgent object is created at the gateway. The new
OSIMgmt::ProxyAgent object is bound to a CMIP communication endpoint (a
CMIS access point). If a specific domain title was specified in the criteria passed as
argument to tha@ccess_domain operation, then a connection is established with
the managed object domain. In such a caseQBvgmt::ProxyAgent is
responsible to manage resources associated with the connection.

3. A reference to th©SIMgmt::ProxyAgent objectis returned to the CORBA
manager object that requested access to the managed object domain being
considered. This reference is returned as a referencdlidMi:ProxyAgent
object. To use specific operations in B8IMgmt::ProxyAgent interface,
manager objects must narrow the reference they receive.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-59

3-60

ProxyAgentFinder

gateway

JIDM::

OSIMgmt::
ProxyAgent

 ——

CMIP
PDUs

Figure 3-10 Finding references to OSIMgmt::ProxyAgents in a JIDM gateway

EachOSIMgmt::ProxyAgent object encapsulates access to a domain by establishing
a session with that domain.

Different solutions can be implemented:

* OSIMgmt::ProxyAgent objects located in the same CORBA/CMIP gateway may
share the same session, but each of them is associated with a different context.

¢ EachOSIMgmt::ProxyAgent object has a different session associated with it.

3.3.1.3 Creation of managed objects

Implementors of create operations exported by proxy managed object factories are
responsible for constructing the appropriate CMIP m-create requests and for returning
the appropriate results.

Different types of factories can be found according to criteria passed in the invocation
of thefind_factories operation exported by the initial
CoslLifeCycle::FactoryFinder visible through the CORBA/CMIP gateway:

* OSIMgmt::ManagedObjectFactory

® CoslLifeCycle::GenericFactory

CORBA/TMN Interworking V1.0 August 2000

3

The following steps are followed when a CORBA manager creates a managed object at
some domain that is accessible through a CORBA/CMIP gateway (see Figure 3-11 on
page 3-62):

1.

The CORBA manager invokes tget _domain_factory finder operation
exported by the@©SIMgmt::ProxyAgent object.

. The CORBA manager invokes tfiad_factories operation exported by the

returnedCosLifeCycle::FactoryFinder object, passing a valid key value.

. TheCosLifeCycle::FactoryFinder object finds references for appropriate

managed object factories at the JIDM gateway. If there is no managed object factory
matching the key, th€osLifeCycle::FactoryFinder object creates one.
References to managed object factories are returned to the CORBA manager.

. The CORBA manager object invokes an operation on the managed object factory

using the CORBA object reference it obtained. Typically, the CORBA manager
object narrows this object reference to a specific managed object factory interface
supported by the factory (th@osLifeCycle::GenericFactory or the
OSIMgmt::ManagedObjectFactory interface, for example).

. The CORBA request is received by the CORBA/CMIP gateway and is translated

into an appropriate m-create request PDU. This m-create request PDU is sent
through the association handled by ®8IMgmt::ProxyAgent .

. When the response to the m-create request PDU is received, the invoked operation

returns with the appropriate result values.

. If the create operation must return an object reference then a CORBA proxy

managed object is also created at the gateway.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-61

OSIMgmt:: gateway

ProxyAgent
4 o)
| CoslLifeCycle::
| - . FactoryFinder
T impl.
| -
| ()
1
CosLifeCycle:: 3. proxy
2 FactoryFinder Q 7. * managed
N object factory
O | -
4 I

specific managed
object factory K
interface

r(
5

6.
 —

request
PDU

q

Figure 3-11 Creating managed objects through a CORBA/CMIP gateway

3.3.1.4 Invocation of operations on single managed objects

1. The CORBA manager invokes tget _domain_naming_context

. TheCosNaming::NamingContext

CORBA/TMN Interworking V1.0

The following steps are followed when a CORBA manager invokes an operation on a
managed object that is accessible through a CORBA/CMIP gateway (see Figure 3-12
on page 3-63):

operation
exported by the@©SIMgmt::ProxyAgent object.

. A CORBA manager object invokes thesolve operation exported by the returned

CosNaming::NamingContext object, passing the name of the managed object
upon which it wants to operate.

object finds a reference to the CORBA object
acting as the proxy of the managed object and returns it to the CORBA manager
that requested it. The CORBA proxy managed object resides in the JIDM gateway.
The CosNaming::NamingContext object is responsible for creating the CORBA
proxy managed object if it didn’t exist at the gateway, the first time an existing
managed object is accessed.

August 2000

3

4. The CORBA manager object invokes an operation on the managed object using the
CORBA object reference to the corresponding proxy. IDL stubs or the standard DlII
can be used to perform this action. Whenever IDL stubs are used, the CORBA
manager must narrow the reference, obtained from the
CosNaming::NamingContext , to a specific OMG IDL interface.

5. The CORBA request is received by the CORBA/CMIP gateway and translated into
an appropriate management request PDU. This request PDU is sent through the
association handled by tf@SIMgmt::ProxyAgent .

6. When the response to the request PDU is received, the invoked operation returns
with the appropriate result values.

OSIMgmt:: gateway
ProxyAgent
4 N
| CosNaming::
| >Q NamingContext
N impl.
| -
| ()
]
CosNaming:: 3. proxy
2. NamingContext * managed
object factory
O | ~ (1)
4 I

specific managed
object factory \ ’—(

interface

request
PDU

Figure 3-12 Invoking operations on a managed object through a CORBA/CMIP gateway

3.3.1.5 Invoking operations with scope and filtering

The following steps are followed when a CORBA manager invokes an operation on a
managed object that is accessible through a CORBA/CMIP gateway (see Figure 3-13
on page 3-65):

1. A CORBA manager object invokes thesolve operation exported by the initial
CosNaming::NamingContext object located at the managed object domain,
passing the name of the managed object used as base of the scoped operation.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-63

3-64

. TheCosNaming::NamingContext object finds a reference to the CORBA object

acting as the proxy of the managed object, in the CORBA/CMIP gateway, and
returns it to the CORBA manager object requesting it.

. The CORBA manager object narrows the obtained CORBA object reference to a

new object reference, bound to B&IMgmt::ManagedObject interface, and
invokes the appropriate scoped operatiscoped_get , scoped_set ,
scoped_action , orscoped_delete).

. In the invocation, the CORBA manager object passes a reference to an

OSIMgmt::MultipleRepliesHandler object (this may be a reference itself if the
manager exports this interface).

. The CORBA request is received by the CORBA/CMIP gateway and is translated

into an appropriate CMIP request PDU. This CMIP request PDU is sent through the
CMIP communication endpoint associated with @®IMgmt::ProxyAgent

through which the reference to proxy managed object was obtained. If a nil object
reference was passed as @8IMgmt::EndOfRepliesHandler , the CMIP request
PDU is sent unconfirmed.

. Replies from each of the managed objects satisfying the filter, within the defined

scope, are received by the CORBA/CMIP gateway.

. Information associated with each of the replies is passed by invoking the

send_reply operation exported by th@SIMgmt::MultipleRepliesHandler

object. Once all replies have been received, the CORBA/CMIP gateway invokes the
end_of _replies operation exported by th@SIMgmt::MultipleRepliesHandler

object.

CORBA/TMN Interworking V1.0 August 2000

gateway

CosNaming:: OSIMgmt:
NamingContext Q ProxyAgent
DN
N 2.

~

\ proxy
managed

|
| > object

OSIMgmt:: A

ManagedObject
N N [
<t

I // 6.
OSIMgmt:: j el
MultipleRepliesHandler - CMIP
request

Figure 3-13 Invoking operation with scope and filtering

The gateway is much simpler to program. Actually, it neither needs to maintain a local
copy of the naming tree nor to test which managed objects satisfy the filtering. It only
needs to:

® create an object in the CORBA/CMIP gateway that exports the
LinkedReplyHandler and theEndOfRepliesHandler interfaces.

® invoke the scoped operation exported by the base managed object through the
OSIMgmt::ManagedObject interface.

Different strategies can be implemented to resolve how each object is going to forward
operations to its descendants and detect that there aren’t pending replies to its
descendants, but they are transparent to the gateway.

CORBA manager objects can also invoke operations that are directly exported by an
OSIMgmt::ProxyAgent and which basically correspond to an encapsulation of CMIS
primitives. Note that references to CORBA proxy managed objects are not necessary in
that case (the name of the interface and the managed object are passed as arguments
This may be a way to solve scalability problems.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-65

3-66

3.3.1.6 Eventreception

Events originated at managed object domains are always received through
JIDM::EventPort objects at CORBA Managers. A mechanism is implemented at any
CORBA/CMIP gateway that allows event data received at a management connection
endpoint to be forwarded to the approprid®M::EventPort object.

As already mentioned in Section 2.2.4, “Reception of Events at CORBA Managers,”
on page 2-25, different strategies to resolve how CORBA manager objects finally
consume events can be implemented. For example, CORBA manager objects can
register themselves directly ®SIMgmt::EventPorts or via some additional event
channel.

The following steps are followed when a CORBA manager receives an event through a
JIDM::EventPort at a CORBA/CMIP gateway:

1. During the start up phase of the CORBA Manager Application, one or more
application objects register themselves either as
CosEventComm::PushConsumers or CosEventComm::PullConsumers in
each of the existin@SIMgmt::EventPorts .

2. An m-event-report indication PDU containing notification of an event from a
managed object is received by the CORBA/CMIP gateway through some
association. This association is bound to a specific title and has a
JIDM::EventPort object associated with it, which finally receives the event data
carried in the PDU.

3. The appropriate response is sent by the CORBA/CMIP gateway back to the
application that reported the event, confirming that the event was received at the
Manager Application.

4. TheJIDM::EventPort invokes the push operation exported by all
CosEventComm::PushConsumers objects connected to it. Data of the event is
passed in the invocation as an any.

5. TheJIDM::EventPort maintains the event until all
CosEventComm::PullConsumers objects connected to the port pull the event.
Data of the event is obtained by consumers as an any.

6. CosEventChannelAdmin::EventChannel objects can be connected as
consumers to the event port. In such a case, manager objects performing
management functions can be connected to the channel instead of directly to the
event ports.

CORBA/TMN Interworking V1.0 August 2000

gateway

CosEventChannelAdmin:: 1. Q

EventChannel

ConsumerAdmin

/OSIMgmt::

EventPort

CosEventComm::
PushConsumer

manager
objects

 ——

m-event-report
indication

3.3.1.7

- =)

CosEventComm::
PullSupplier

Figure 3-14 Event reporting at CORBA/CMIP gateways (manager side)

CMISE service level scenarios

The OSIMgmt::ProxyAgent objects provide CMIS service level IDL methods, that
would allow any CORBA manager application to perform all CMIS operations without
the need to have any further CORBA object references to the corresponding CORBA
objects. This type of interaction is most useful in gateway situations, although it is
applicable to pure CORBA environments as well.

This section presents some scenarios as they would apply to CORBA manager to OSI
agent gateway environments. These scenarios also assume thabiy¥egent object

has been previously located or created by the manager object by invoking the
access_domain operation on thdIDM::ProxyAgentFinder object.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-67

Scenario 1 - Creating managed objects

Asynchronous create operation

manager-side

CORBA-Based Manager Application
object

OSI-Based Agent Application

OoSIMgmt::
ProxyAgent

gateway

protocol

J CMIP
-

23. "

OSI stack OSI stack

Figure 3-15 Asynchronous creation of a managed object through a CORBA/CMIP gateway

The following steps are taken each time an asynchronous M-CREATE request is sent
through the CORBA/CMIP Gateway.

1. The CORBA manager object invokes tirais_create operation against the
OSIMgmt::ProxyAgent object. The asynchronoesis_create method takes the
additionalOSIMgmt::LinkedReplyHandler object reference against which the
response method will be invoked. The other input arguments are the X711CMI
CMIS data arguments, the creation methoedtion_kind), theobject_name
(distinguished name), and tlrgerface_name of the object being created.

2. TheOSIMgmt::ProxyAgent object implementation transforms the IDL data into a
CMIP PDU and sends it over the OSI stack to the OSI agent. Once the PDU has
been sent, the asynchronaemais_create call returns.

3. At some later point, the response comes back to the gateway from the OSI agent
over the OSI stack. The gateway implementation internally converts the response to
its IDL equivalent.

3-68 CORBA/TMN Interworking V1.0 August 2000

3

4. The gateway invokes tleend_reply (or send_mo_error , send_subtree_error
if an error occurred) method against th8IMgmt::LinkedReplyHandler object
that was passed to the origirahis_create call, passing the response data as an
argument.

Synchronous create operation

manager-side
object

CORBA-Based Manager Application

OSI-Based Agent Application

OSIMgmt::

ProxyAgent
1,4.
7 \
D=
CMIP
gateway protocol
-+ 5 5 >
2,3.
OSl stack OSl stack

Figure 3-16 Synchronous creation of a managed object through a CORBA/CMIP gateway

The following steps are taken each time a synchronous M-CREATE request is sent
through the CORBA/CMIP Gateway.

1. The CORBA manager object invokes tireis_create_sync operation against the
OSIMgmt::ProxyAgent object. The input arguments are the X711CMI CMIS data
arguments, the creation methade@ation_kind), theobject_name (distinguished
name), and thenterface_name of the object being created.

2. TheOSIMgmt::ProxyAgent object implementation transforms the IDL data into a
CMIP PDU and sends it over the OSI stack interface to the OSI agent. Once the
PDU has been sent, tleenis_create_sync call blocks, waiting for the response.

3. At some later point, the response comes back to the gateway from the OSI agent
over the OSI stack. The gateway implementation internally converts the response to
its IDL equivalent.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-69

4. Thecmis_create_sync method returns the results of the create operation through
the out-arguments of themis_create_sync call. These include the
created_interface_name , thecreated_object name (distinguished name of
the object actually created), tbeeation_time (time when the managed object was
created), and thereated_attribute_values (values of attributes of the new
object).

Scenario 2 - Generic operations on managed objects

manager-side
object

CORBA-Based Manager Application

OSI-Based Agent Application

oSIMgmt::
ProxyAgent

gateway

protocol

J CMIP
-

23 "

OSl stack OSl stack

Figure 3-17 Operations against a managed object through a CORBA/CMIP gateway

The following steps are taken each time an M-GET, M-SET, M-ACTION or M-
DELETE request is sent thugh the CORBA/CMIP Gateway.

1. The CORBA manager object invokes the desired operation against the
OSIMgmt::ProxyAgent object. All method invocations that will result in one or
more responses take t@ESIMgmt::LinkedReplyHandler and
OSIMgmt::EndOfRepliesHandler object references - against which the separate
response methods will be later invoked. For unconfirmed operations, both object
references should be nil. The other input arguments are the X711CMI CMIS scope,
filter, synchronization and access control argumentspbject name
(distinguished name), and tlmgerface_name .

2. TheOSIMgmt::ProxyAgent object implementation transforms the IDL data into a
CMIP PDU and sends it over the OSI stack to the OSI agent. Once the PDU has
been sent, operation invocation returns.

3-70 CORBA/TMN Interworking V1.0 August 2000

3

3. At some later point, a response comes back to the gateway from the OSI agent over
the OSI stack. The gateway implementation internally converts the response to its
IDL equivalent.

4. The gateway invokes tleend_reply (or send_mo_error , send_subtree_error
if an error occurred) method against th8IMgmt::LinkedReplyHandler object
which was passed to the original operation invocation, passing the response data as
an argument. If the current reply is the last one, this will be immediately followed
by an invocation of thend_of replies method against the
OSIMgmt::EndOfRepliesHandler object reference which was passed in to the
initial request operation.

Scenario 3 - Cancelling a get operation

This scenario describes how the M-CANCEL-GET operation may be sent from a
CORBA manager to an OSI agent, assuming that an M-GET request is outstanding.

manféger-side CORBA-Based Manager Application
object

OSI-Based Agent Application

gateway protocol

} CMIP
-

14

OSI stack OSIl stack

Figure 3-18 Cancelling an outstanding M-GET operation

The following steps must be taken in order to get the CORBA/CMIP gateway to send
an M-CANCEL-GET request to a pending M-GET.

1. At some point after the initial M-GET request is issued, but before all responses
have been received, the CORBA manager deletes the
OSIMgmt::LinkedReplyHandler object, which was associated with the original
request.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-71

2. A response comes back to the gateway from the OSI agent over the OSI stack. The
gateway implementation internally converts the response to its IDL equivalent.

3. The gateway attempts to invoke thend_reply (or send_mo_error ,
send_subtree_error if an error occurred) method against the
OSIMgmt::LinkedReplyHandler object that was passed to the original operation
invocation, passing the response data as an argument. Since this object no longer
exists, a standard CORBA excepti@BJECT_NOT_EXIST will be thrown.

4. The gateway catches this exception, which tells it to synthesize an M-CANCEL-
GET PDU and send it down the OSI stack to the OSI agent.

3.3.2 Agent Side Gateways

3.3.2.1 Overview

CORBA/CMIP gateways must be used by any CORBA Agent Application needing to
offer a management interface based on CMIP. A CORBA/CMIP gateway runs in one
CORBA server. However, one or several JIDM gateways can coexist in the same
CORBA server. Programs in this server have access to both ORB services and services
encapsulating access to management-specific protocols provided by JIDM gateways at
the server. Besides, there can be several CORBA servers containing JIDM gateways in
the same CORBA Agent Application.

Any CORBA/CMIP gateway at a CORBA Agent Application has several objects
associated with it (see Figure 3-19 on page 3-73):

* A JIDM::EventPortFinder CORBA object that enables CORBA managed objects
at the agent application to establish connectionid/::EventPort objects at
remote Manager Applications that are accessible through the gateway.

* A JIDM::DomainPort object that serves requests issued from remote Manager
Applications that want to get access to managed objects at the local managed object
domain.

These objects are created during start-up of the CORBA server where the
CORBA/CMIP gateway is going to run.

Several JIDM gateways can exist in a CORBA Agent adtDd::EventPortFinder
object is associated with each of them. All of them would be registered in a root
JIDM::EventPortFinder object at the CORBA Agent (see Figure 3-19).

3-72 CORBA/TMN Interworking V1.0 August 2000

CORBA/CMIP gateway

local root
JIDM::
EventPortFinder

CORBA/CMIP gateway

s

JIDM::

DomainPort

O

JIDM:: \

EventPortFinder

EventPortFinder
Q -4 i i | Q JIDM::
| | DomainPort

management
service access Q
endpoint i

JIDM::

==

 —

CMIP
protocol

management

\ service library /
h

CMIP

protocol

Figure 3-19 Structure of CORBA/CMIP gateways (agent side)

A root CosNaming::NamingContext object and a root

CosLifeCycle::FactoryFinder object exist at any CORBA managed object domain.
Whether these two interfaces are exported by the same CORBA object or different
CORBA objects is an implementation issue. In additionO&iMgmt::LocalRoot

object exists in order to deal with local orphan managed objects. References to these
CORBA objects can be obtained from a CORBA/CMIP gateway by using the standard
Initialization Services and are passed to 3HieM::DomainPort object at creation

time.

3.3.2.2 Handling access to managed objects

A JIDM::DomainPort object resides in the CORBA/CMIP gateway in order to handle
access to the managed object domain and serve association requests issued from
remote Manager Applications.

Every JIDM::DomainPort object has an AE-title associated with it. This AE-title is
used by remote Manager Applications to identify the OSI managed object domain
accessible through thHDM::DomainPort object.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-73

_>

request
PDUs

3.3.2.3

3-74

When a new association request is received byliib#::DomainPort object that is

in a gateway, thdIDM::DomainPort object creates a ne@SIMgmt::ProxyAgent
object. This object handles CMIS requests received through the newly established
association.

O

gateway

CosNaming::
/JIDM:: \ NamingContext Q
DomainPort peer CosLifeCycle::
OoSIMgmt:: FactoryFinder
- ProxyAgent
A 2 4 |
1 | >
1.
I 3. managed
v object

CMIS
access
endpoint

Figure 3-20 Handling access to local managed objects from a JIDM gateway

A JIDM::DomainPort object in a JIDM gateway holds references to the initial
CosNaming::NamingContext andCosLifeCycle::FactoryFinder and
OSIMgmt::LocalRoot objects in the managed object domain where the JIDM
gateway is located. ThHDM::DomainPort object passes copies of these references
to eachOSIMgmt::ProxyAgent object it creates.

Creation of managed objects

In CORBA managed object domair@SIMgmt::ProxyAgent objects receive PDU
indications, perform the appropriate operations, and return the appropriate PDU
responses.

CORBA/TMN Interworking V1.0 August 2000

CMIP
indication

Managed Object

CosLifeCycle::
FactoryFinder Q Q
gateway
A4
2 creation /)
oSIiMgmt:: : ’ CosNaming::

ProxyAgent

NamingContext

4.
3. | /B, I
T ’Q\ ()

6.
CosLifeCycle:: A
7. Factory

(narrowed to a specific

[~ factory interface ManagedObiject

_— (parent)

Figure 3-21 Handling management create PDU indications

The following steps are followed each time a create PDU indication is received by a
CORBA/CMIP gateway:

1. An OSIMgmt::ProxyAgent object receives an m-create indication through the
CMIS connection endpoint it holds.

2. TheOSIMgmt::ProxyAgent object finds an appropriate factory by invoking the
find_factories operation provided by the initi@osLifeCycle::FactoryFinder
object at the managed object domain.

3. TheOSIMgmt::ProxyAgent object narrows the obtained Factory object reference
to a new object reference associated with a specific factory interface. Next, it
invokes the operation for creating managed objects exported by the factory being
referenced.

4. The Factory object creates a new CORBA managed object, an instance of the
managed object type specified in the CMIP create indication (using the value of the
Managed object class field in the CMIP PDU).

5. The Factory object binds an OSI name (the one passed as of the Managed object
instance field in the CMIP PDU, but in IDL form) to the new CORBA managed
object.

6. The Factory object informs the container (the naming context) of the CORBA
managed object that a new subordinate object has been created.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-75

7. When the operation invoked by teSIMgmt::ProxyAgent object returns (or
when an exception is raised), tSIMgmt::ProxyAgent object constructs and
sends an appropriate CMIP response to the remote OSI Manager Application.

3.3.2.4 Invocation of operations on single managed objects

OSIMgmt::ProxyAgent objects receive CMIP m-set/m-get/m-action indications on
single objects, perform the appropriate operations and return the appropriate CMIP

responses.

CosNaming::

NamingContext Q

gateway

oSIMgmt::
ProxyAgent

CORBA::Object

()

CMIP
indication

Figure 3-22 Invocation of operations on single managed objects

The following steps are used each time an m-set/m-get/m-action PDU indication on a
single object is received by a CORBA/CMIP gateway:

1. An OSIMgmt::ProxyAgent object receives an m-set, m-get, or m-action
indication, referred to a single object, through the CMIS connection endpoint it
holds.

2. TheOSIMgmt::ProxyAgent object finds a reference to the target managed object
by invoking theresolve operation exported by the initillamingContext object.
The name of the target managed object (base object instance field in the CMIP
indication) is passed in the invocation, once it is translated to IDL form (see OSI
naming facilities).

3-76 CORBA/TMN Interworking V1.0 August 2000

3

3.3.2.5

3. TheOSIMgmt::ProxyAgent object invokes the appropriate operation on the
managed object. In a generic CORBA/CMIP gateway, this may be accomplished by
using the Dynamic Invocation API provided by the local ORB.

4. When the management operation invoked byQs#Mgmt::ProxyAgent object
returns (or when an exception is raised), @®IMgmt::ProxyAgent object
constructs and sends an appropriate CMIP response to the remote OSI Manager
Application.

A reference to th€osNaming::NamingContext acting as the local naming root in
the OSI Agent Application is passed to th8IMgmt::ProxyAgent object at creation

time. If the target managed object is going to send multiple replies as a result of
invoking an action, an exception is triggered (see Specification Translation).

Handling CMIP indications with scope and filtering

In CORBA-based OSI Agent Application®SIMgmt::ProxyAgent objects receive

CMIP m-set/m-get/m-action indications with scope and filtering, perform the
appropriate operations and return all the appropriate CMIP responses associated with
the generated replies.

The following steps are used each time a scoped m-set/m-get/m-action PDU indication
is received by a CORBA/CMIP gateway:

1. An OSIMgmt::ProxyAgent object receives a CMIP m-set, m-get or m-action
indication with scope and filtering, through the CMIS connection endpoint it holds.

2. TheOSIMgmt::ProxyAgent object finds a reference to the base managed object
by means of invoking the resolve operation exported BamingContext object.
The name of the base managed object (base object instance field in the CMIP
indication) is passed in the invocation, once it is translated to idl form (see OSI
naming facilities).

3. TheOSIMgmt::ProxyAgent object locally creates a CORBA object which is
responsible for handling the different replies and which holds the same CMIS
connection endpoint. This object exports two interfaces:

e OSIMgmt::LinkedReplyHandler , for receiving individual linked replies.
« OSIMgmt::EndOfRepliesHandler , for detecting the end of replies.

4. TheOSIMgmt::ProxyAgent object narrows the CORBA object reference pointing
to the base managed object instance to a new CORBA object reference associated
with theOSIMgmt::ManagedObject interface. Next, it invokes the corresponding
scoped operation, now visible through that narrowed reference.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-77

3-78

CMIP
indication

gateway

CosNaming::
NamingContext

/OSIMgmt::

ProxyAgent

4. |

R OSIMgmt::

| -

ManagedObject

Figure 3-23 Handling CMIP indications with scope and filtering

Next, the following steps take place:

1.

The base managed object (root of the subtree to which scope and filtering is going
to be applied) propagates the operation to all descendants within the scope of the
operation and waits until all descendants satisfying the filter have replied.

. Every object within the scope that satisfies the filter invokesé¢nd_reply

operation exported by th@SIMgmt::LinkedReplyHandler object, in the
gateway, is invoked.

. TheOSIMgmt::LinkedReplyHandler object constructs an appropriate CMIP

response and sends it back through the CMIS endpoint connection it holds.

. The base managed object is informed by its subordinates that there are no pending

replies.

. The base managed object informs the gateway that it has finished by invoking the

end_of _replies operation exported by th@SIMgmt::EndOfRepliesHandler
object in the gateway.

. TheOSIMgmt::EndOfRepliesHandler object constructs the final CMIP response

and sends it to the remote OSI Manager Application.

CORBA/TMN Interworking V1.0 August 2000

CMIP
indication

OSIMgmt:: OSIMgmt::
gateway EndOfRepliesHandler ManagedObject
| 9.
/OSIMgmt::
ProxyAgent

OSIMgmt::
LinkedReplyHandler

‘ Managed objects
satisfying the filter

Figure 3-24 Handling CMIP indications with scope and filtering (cont.)

If the base managed object is not part of the OSI Management Application that
received the CMIP indication, then the operation is propagated to the list of all local
orphan managed objects that are descendants of the base managed object. This list is
obtained by invoking thést_orphan_descendants operation exported by the local

root object.

It is important to point out that the base managed object is informed that there are no
pending repliesfter all descendants satisfying the filter have invokedstred_reply
operation. This way, race conditions are avoided.

Returning from thesend_reply operation doesn’t imply that a CMIP response has
already been sent. All responses may be sent together just before the last CMIP
response.

The gateway is much simpler to program. Actually, it neither needs to maintain a local
copy of the naming tree nor to test which managed objects satisfy the filtering. It only
needs to:
» create an object in the CORBA/CMIP gateway process that exports the
LinkedReplyHandler and theEndOfRepliesHandler interfaces.
« invoke the scoped operation exported by the base managed object through the
OSIMgmt::ManagedObject interface.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-79

Different strategies can be implemented to resolve how each object forwards
operations to its descendants and detects when its descendants have no pending replie:
but these strategies are transparent to the gateway.

Interactions between managed objects and the CORBA/CMIP gateway are minimized.

3.3.2.6 Handling m-delete indications

In CORBA-based OSI managed object doma@S]Mgmt::ProxyAgent objects
receive CMIPm-delete indications, perform the appropriate operations, and return the
appropriate CMIP responses.

CMIP m-delete indications are handled in a similar way as CMiFset/m-get/

m-action indications with scoping and filtering. We must take into account that
deletion of a single managed object may cause deletion of several objects (all its
descendants). Every time a managed object is deleted, its superior object is notified.

Basic algorithm:

1. An OSIMgmt::ProxyAgent object receives a CMIP m-delete indication through
the CMIS connection endpoint it holds.

2. TheOSIMgmt::ProxyAgent object finds a reference to the base managed object
by invoking theresolve operation exported by lIdamingContext object. The
name of the target managed object (base object instance field in the CMIP
indication) is passed in the invocation, once it is translated to IDL form (see OSI
naming facilities).

3. TheOSIMgmt::ProxyAgent object locally creates a CORBA object which is
responsible for handling the different replies. This object holds the same CMIS
connection endpoint as tl@SIMgmt::ProxyAgent and exports two interfaces:

» OSIMgmt::LinkedDeletionHandler , for handling each deletion.
* OSIMgmt::EndOfDeletionsHandler , for detecting the completion of the
deletion.

4. TheOSIMgmt::ProxyAgent object narrows the CORBA managed object
reference to a reference associated withQB&Mgmt::ManagedObject interface.
Next, it invokes thescoped_delete operation visible through that reference.

3-80 CORBA/TMN Interworking V1.0 August 2000

CosNaming::
NamingContext

gateway

/OSIMgmt::

ProxyAgent

4, |
@ >
~o 3 |
A . OSIMgmt::

ManagedObiject

CMIP
indication

Figure 3-25 Handling CMIP deletion indications

Next, the following steps take place:

1. In some situations, the base managed object propagates the delete operation to
part/all of its descendants (tdelete operation was requested with scope and
filtering or deletion of the base managed object implies deletion of all its
descendants).

2. For every descendant that is deleted,diwefirm_deletion operation exported by
the OSIMgmt::LinkedDeletionHandler object, in the gateway, is invoked. As it
was already mentioned before, every managed object is notified when one of its
subordinates has been deleted.

3. TheOSIMgmt::LinkedDeletionHandler object constructs an appropriate CMIP
response and sends it back through the CMIS endpoint connection it holds.

4. The base managed object is informed by its subordinates about the completion of
the deletion. If appropriate, the base managed object is deleted and a confirmation is
sent to theDSIMgmt::LinkedDeletionHandler object.

5. The base managed object informs the gateway that the deletion has finished by
invoking theend_of deletions operation exported by the
OSIMgmt::EndOfDeletionsHandler object in the gateway.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-81

6. TheOSIMgmt::EndOfDeletionsHandler object constructs the final CMIP
response and sends it to the remote OSI Manager Application.

OSIMgmt:: OoSIMgmt::
EndOfDeletionsHandler ManagedObject
gateway

|
/OSIMgmt:: |

ProxyAgent

CMIP
indication OSIMgmt: Managed objects that
LinkedDeletionHandler has been deletedr

Figure 3-26 Handling CMIP deletion indications (cont.)

In some situations, the base managed object is not part of the OSI Management
Application, which received the CMIP m-delete indication but deletion must be applied
to some descendants that are part of the application.

This situation is resolved by propagating ttedete operation to the list of all local

orphan managed objects that are descendants of the base managed object. This list is
obtained by invoking thést_orphan_descendants operation exported by the local

root object.

The scoped_delete operation may be invoked in either a non-blocking

(asynchronous) or blocking (synchronous) mode. A reference to an
OSIMgmt::EndOfDeletionsHandler object reference (for asynchronous request) or

a nil object reference (for synchronous request) should be passed as the last argumen
in the invocation.

3-82 CORBA/TMN Interworking V1.0 August 2000

3.3.2.7 Sending m-event-report requests

Event Forwarding Discriminators (EFDs) are the managed objects that receive event
notifications, emitted by other managed objects within the same OSI managed object
domains, and determine which ones are going to be forwarded, as CMIP m-event-
reports requests, to specific OSI Manager.

At creation time, an EFD tries to find references to
CosEventChannel::SupplierAdmin interfaces associated with remote
OSIMgmt::EventPort objects. It obtains these references by invoking the
find_event_port operation exported by ADM::EventPortFinder object, located in
a CORBA/CMIP gateway. It can try to find references for:

® variousJIDM::EventPorts , each of which is bound to one AE_title contained in
the list of destinations defined for tReiShEFD .

® a singleJIDM::EventPort bound to a wildcard address (only valid if automatic
event forwarding - recipient manager resolution is supported).

Note that an EFD may register itself a€asEventComm::PushConsumer or a
CosEventComm::PullConsumer in theJIDM::EventPort associated with each of
its assigned destinations.

Different alternatives for EFDs
Definition C-1

module X734 {

interface PushEFD : CosEventComm::PushConsumer,
X711::eventForwardingDiscriminator ...

e

interface PUllEFD : CosEventComm::PullConsumer,
X711::eventForwardingDiscriminator ...

&
J

Different implementations are possible but, in general, managed objects report events
by pushing them into localosEventChannelAdmin::EventChannels . EFDs
register themselves as event consumers in these event channels.

Multiple implementation strategies can be adopted but they are transparent to remote
OSI| Manager Applications:

®* EFDs may register themselves @gsEventComm::PushConsumers or as
CosEventComm::PullConsumers in
CosEventChannelAdmin::EventChannels

® SeveralCosEventChannelAdmin::EventChannels may be employed
(connected in cascades, etc). EFDs must know which event channels they must
connect to.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-83

Note that only part of the interfaces exported by an EFD are visible across OSI
Management boundaries. From external OS| Manager ApplicatiéhsleEFD and
PUllEFD is just anX711::eventForwardingDiscriminator

3.3.2.8 Sending m-event-report requests (push model)
Basic algorithm:

1. A PushEFD registers itself as @osEventComm::PushConsumer in every
local event channel that is necessary.

2. CORBA managed objects report events by using the standard event notification
services. Each event notification being generated is finally received by some event
channel, connected to thlRushEFD object.

3. The event channel forwards event notifications toRthehEFD object by invoking
the push operation exported by it, through the standard
CosEventComm::PushConsumer interface.

4. ThePushEFD object supplies the event 88DM::EventPort objects
corresponding to the different destinations.

5. The proxy of arDSIMgmt::EventPort in the CORBA/CMIP gateway constructs a
CMIP m-event-report request PDU and sends it through the CMIS communication
endpoint it holds.

Managed

Objects
Q gateway

JIDM::
EventPortFinder /Q

3. CosEventComm::
PushConsumer y(\

Event
Channel Q 4 | » Q 5 | >
’ PushEFD : 6
CosEventComm:: '
PushConsumer
o |
I L
I /
CosEventChannelAdmin:: q rgq'\ﬂg;t
ConsumerAdmin

Figure 3-27 Sending m-event-reports (push model)

3-84 CORBA/TMN Interworking V1.0 August 2000

3.3.2.9 Sending m-event-report requests (pull model)

At creation time, each PullEFD tries to find references to
CosEventChannel::SupplierAdmin interfaces associated with remote
JIDM::EventPort objects. It obtains these references by invoking the
find_event_port operation exported by ADM::EventPortFinder object, located in
a CORBA/CMIP gateway. It can try to find references for:

® variousJIDM::EventPorts , each of which is bound to one AE_title contained in
the list of destinations defined for tReiShEFD .

® a singleJIDM::EventPort bound to a wildcard address (only valid if automatic
event forwarding - recipient manager resolution is supported).

A PushEFD registers itself as Bush or Pull Supplier for each destination.
Basic algorithm:

1. A PUlIEFD registers itself as @osEventComm::PullConsumer in every event
channel that is necessary.

2. CORBA managed objects report events by using the standard event notification
services. Each event notification being generated is finally received by some event
channel, connected to tlRuIlIEFD object.

3. ThePullEFD object pulls event notifications received by all event channels where it
is registered by means of invoking thell operation exported by them, through the
standardCosEventComm::PullSupplier interface.

4. ThePushEFD object supplies the event @SIMgmt::EventPort objects
corresponding to the different destinations.

5. The proxy of arDSIMgmt::EventPort in the CORBA/CMIP gateway constructs a
CMIP m-event-report request PDU and sends it through the CMIS communication
endpoint it holds.

CORBA/TMN v1.0 CORBA/CMIP Gateways Aug. 2000 3-85

Managed

Objects
Q gateway

JIDM::
EventPortFinder /Q

3. CosEventComm::
PullConsumer y(\

Event

Channel Q < | _Q = I -

4. PulEFD . 5

CosEventComm:: '

O 2
I //

CosEventChannelAdmin:: CMIPt
ConsumerAdmin q reques

Figure 3-28 Sending m-event-reports (pull model)

3-86 CORBA/TMN Interworking V1.0 August 2000

OSI Support Services 4

Contents

This chapter contains the following sections.

Section Title Page
“OSI Caching and Tracking Services” 4-1
“Collection Service” 4-13
“Dynamic Management of ASN.1 Any Values” 4-19
“The OSI Management Information Repository” 4-27

4.1 OSI Caching and Tracking Services

To provide client applications with fast and efficient access to the values of an attribute
of a managed object, it is desirable under certain circumstances to configure a CORBA
ManagedObject object with the ability to cache information. If so configured, the
CORBA ManagedObject object can maintain a local store of attribute values, thus
eliminating the need to contact the real underlying managed object when this
information is requested. This mechanism is referred to in this specificatoatlaing
Caching is an optional mechanism that permits applications to avail of improved
performance, at the cost of additional resource usage. Caching may be configured on
individual managed objects, or on all managed objects of a class, or on all managed
objects within a proxy agent.

Any managed object that has been configured with the ability to cache may also be
optionally configured with the ability to dynamically update its cached attribute values
in response to change notifications received from the underlying managed object. This
ability is known agracking If a managed object is a tracking object, it will update its

CORBA/TMN Interworking V1.0 August 2000 4-1

4-2

cached values in response to the notifications defined by the OSI Systems Management
Functions (ObjectCreation, ObjectDeletion, AttributeValueChange, StateChange, and
RelationshipChange).

The caching and tracking functionality is intended to provide improved performance.
The goals of providing this functionality are:

® transparency: a client application executing normal management operations on a
managed object (get, set, action, etc.) must see no difference in behavior (other than
performance) whether the operations are executed against a non-caching (regular)
managed object, a caching but non-tracking managed object, or a tracking managed
object.

* flexibility of configuration: configuration of caching and tracking is available at
multiple levels: per proxy agent (all managed objects managed by a given proxy
agent), per managed object class (all managed objects of a given object class), and
per specific managed object.

4.1.1 The OSICaching Module

#ifndef _OSICACHING_IDL_
#define _OSICACHING_IDL_

#include <OSIMgmt.idl>
#pragma prefix “jidm.org”

module OSICaching {
typedef unsigned long Expirationinterval; // in seconds
typedef ASN1_Objectldentifier ManagedObjectClass;
typedef sequence <ManagedObjectClass> ManagedObjectClassSeq;
typedef ASN1_Objectldentifier Attrid;
typedef sequence < ASN1_Objectldentifier > AttridSeq;

/I NoSuchAttributes is raised when any specified attribute identifiers
/I are either unknown or invalid.
exception NoSuchAttributes {

AttrldSeq unknown_attributes;

J

/I AttributesNotCached is raised when any specified attribute identifiers
/I to relevant caching operations are not being cached.
exception AttributesNotCached {
AttrldSeq attr_id_list;
h

/ NoSuchObjectClasses is raised when any specified object classes are
/I either unknown or invalid.
exception NoSuchObjectClasses {

ManagedObjectClassSeq unknown_mocs;

J

I/l ObjectClassesNotCached is raised when any specified object classes

CORBA/TMN Interworking V1.0 August 2000

/I to relevant caching operations are not being cached.
exception ObjectClassesNotCached {
ManagedObjectClassSeq moc_list;

J

/I InvalidObjectClassAttributesPairs is raised when any specified attribute
/I identifiers do not belong to the specified managed object class.
struct ObjectClassAttributesPair {
ManagedObjectClass moc;
AttrldSeq attr_id_list;
h
typedef sequence<ObjectClassAttributesPair> ObjectClass AttributesPairSeq;
exception InvalidObjectClassAttributesPairs {
ObjectClassAttributesPairSeq invalid_pairs;
h

/* There may be situations when more than one type of error may occur

* because of a single invocation of an operation. To accurately convey

* the different types of error information, CacheConfigException is used

* by some operations. If any of the members of the following exception

* are not relevant, then such members shall be empty sequences, i.e.,

* sequences of zero length. For example, when passing an argument of
* AttrldSeq to remove cached attributes , the client may pass some invalid
* or unknown attribute identifiers, and some valid attribute identifiers

* that are not cached. In such situations, CacheConfigException is raised
* with the invalid or unknown attribute identifiers specified in the

* no_such_attributes member, the valid but not cached attribute

* identifiers specified in the attrs_not_cached member, and the rest of

* the members set to zero length sequences.

*/
exception CacheConfigException {
AttrldSeq no_such_attributes;
ManagedObjectClassSeq no_such_classes;
AttrldSeq attrs_not_cached;
ManagedObjectClassSeq mocs_not_cached;
ObjectClassAttributesPairSeq invalid_moc_attrs_pairs;
h

/I abstract interface for configuring all caches
interface CacheConfigurator {
void set_default_expiration_interval (
in Expirationinterval expiration_interval,
in boolean override_specific_settings
)i

Expirationinterval get_default_expiration_interval ();

void set_caching_enabled (

in boolean enabled,

in boolean override_specific_settings
)

boolean is_caching_enabled ();

CORBA/TMN V1.0 OSI Caching and Tracking Services Aug. 2000

4-3

/I cached attribute information
struct CachedAttribute {
Attrld attr_id;
Expirationinterval expiration_interval;
h
typedef sequence < CachedAttribute > CachedAttributeSeq;

/I abstract interface to configure per-attribute cache
interface PerAttributeCacheConfigurator {
void add_cached_attributes (
in CachedAttributeSeq attr_list,
in boolean override_specific_settings
) raises (NoSuchAttributes);

void remove_cached_attributes (

in AttrldSeq attr_id_list,

in boolean override_specific_settings
) raises (CacheConfigException);

CachedAttributeSeq get_cached_attributes ();

Expirationinterval get_expiration_interval (
in Attrld attr_id
) raises (CacheConfigException);

void set_expiration_interval(
in AttrldSeq attr_id_list,
in Expirationinterval interval
) raises (CacheConfigException);

J

/I managed object class with indicated attributes cached
struct CachedObjectClass {
ManagedObjectClass moc;
CachedAttributeSeq cached_attributes_list;
b
typedef sequence < CachedObjectClass > CachedObjectClassSeq;

/I abstract interface to configure per-class cache
interface PerClassCacheConfigurator {
void add_cached_classes (
in CachedObjectClassSeq class_list,
in boolean override_specific_settings
) raises (CacheConfigException);

void remove_cached_classes (
in ManagedObjectClassSeq moc_list,
in boolean override_specific_settings
) raises (CacheConfigException);

void remove_cached_attributes_from_class_cache(
in ManagedObjectClass moc,
in AttrldSeq attr_id_list,
in boolean override_specific_settings

) raises (CacheConfigException);

CORBA/TMN Interworking V1.0 August 2000

CachedObjectClassSeq get_cached_classes ();

CachedAttributeSeq get_cached_attributes_for_class (
in ManagedObjectClass moc
) raises (OSIMgmt::NoSuchObjectClass);

void set_expiration_interval_for_class (

in ManagedObjectClass moc,

in AttrldSeq attr_list,

in Expirationinterval extension_duration
) raises (CacheConfigException);

J

interface ProxyAgent : OSIMgmt::ProxyAgent,
CacheConfigurator,
PerAttributeCacheConfigurator,
PerClassCacheConfigurator {};

interface ManagedObject : OSIMgmt::ManagedObiject,
CacheConfigurator,
PerAttributeCacheConfigurator {

void refresh_cached_values (
in AttrldSeq attr_list
) raises (CacheConfigException);

void invalidate_cached_values (
in AttrldSeq attr_list
) raises (CacheConfigException);

J

#endif /* _OSICACHING_IDL_ */

4.1.1.1 Description of OSICaching module

The interfaces and methods of tB&ICaching module permit the configuration of
attribute caching at multiple levels. The validity of the cached attribute values may also
be controlled by setting appropriate expiration intervals, which can also be controlled
at multiple levels.

The OSICaching::CacheConfigurator
OSlICaching::PerAttributeCacheConfigurator , and
OSICaching::PerClassCacheConfigurator interfaces are all abstract and should
not be instantiated directly. Only tl@SICaching::ProxyAgent and
OSlICaching::ManagedObject interfaces may be instantiated as concrete objects.

The attribute cache of any caching managed object is loaded with attribute values when
the cache is initialized. This might happen at different times, such as after successful
creation or before first access to the real managed object. Not all attributes of a
managed object need to be cached. The list of attributes that are cached for any given

CORBA/TMN V1.0 OSI Caching and Tracking Services Aug. 2000 4-5

4-6

managed object may be configured at multiple levels, including the proxy agent level,
the managed object class level, and on the individual managed object itself. The actual
list of attributes that are in any given managed object’'s cache is the union of all the
attributes requested to be cached at all these levels. The ability to selectively cache
only certain attributes of interest affords the flexibility of not caching attributes that
may be changing rapidly and dynamically in the underlying managed object, such as
PDU counters, gauges, and clocks.

It is important to note that the cache is a read-only cache, and that there is no access tc
directly writing the cached attribute value. The managed object implementation
automatically updates the cached attribute value when the appropriate attribute-
changing or attribute-retrieving operations occur.

If the cached value of an attribute is valid, any request to read the value (such as in a
get operation) will result in the request being serviced from the cache, thus precluding
the need to contact the underlying managed object. If the cached value of an attribute
is no longer valid (because its expiration interval has passed since the last update), any
request to read the value will trigger atiribute fault and will result in the request

being serviced from the actual attribute value in the underlying managed object. A
request to read the value of an attribute that is not in the cache is always serviced from
the underlying managed object, as is the case for any regular (non-caching) CORBA
managed object.

The attribute cache of a managed object is updated with the latest attribute values when
a CMIS operation is successfully performed. At this time, the cache reflects the same
attribute values that are reported back to the manager in the response, if those attributes
are in the cache. Other cached attributes that are not affected by the operation will
continue to retain their prior values. As soon as an attribute value in the cache is
updated as a result of a CMIS operation, the expiration clock for this attribute is reset,
and the duration of validity of this updated value will now be the full duration of the
applicable expiration interval; this applies regardless of whether the previous cached
value of the attribute had already expired or not. Specifically, the expiration timer for a
cached attribute value is reset back to its full applicable duration when any of the
following occurs:

®* A get operation has triggered an attribute fault and has been serviced from the
underlying managed object, and the cached attribute value is updated to the same
value reported back in thget response.

®* A set operation has been successfully serviced, and the cached attribute value is
updated to the same value reported back irséteresponse.

®* An explicit request is made to the managed object to refresh the cached attribute
value from the underlying managed object.

The duration of validity of any cached attribute value may be configured by the
application. An application may cause a cached attribute value to remain permanently
valid by setting an expiration interval of 0. This means that the cached attribute value
never expires and an attribute fault to read the value from the underlying managed
object is never necessary.

CORBA/TMN Interworking V1.0 August 2000

4

The cached value of an attribute is considered to be invalid when any of the following
occurs:

® The applicable time interval for the duration of the validity of the cached value has
expired.

®* An explicit method call is made to invalidate cached attribute values.
In these cases, any attempt to read an attribute value always triggers an attribute fault.

An application may explicitly invalidate the cached values of an
OSlICaching::ManagedObject by invoking the method

invalidate_cached_values() . This invalidates all its cached values immediately,
even if their expiration intervals haven't expired. An application may explicitly cause
the cached values of @SICaching::ManagedObject to be refreshed using the
current values from the underlying GDMO managed object by invoking the method
refresh_cached_values() . This also resets the expiration interval of the cached
values back to their full duration.

A managed object’'s cache may be configured at multiple levels. In general, the list of
attributes to be cached, and the expiration intervals for each, may be provided at the
level of a proxy agent, a managed object class, or an individual managed object. The
methods to apply these cache configuration policies are available on
OSICaching::ProxyAgent andOSICaching::ManagedObject . Note that the

cache configuration interfaces @tICaching::ProxyAgent imply that the caching
policies apply to managed objects controlled by #rakyAgent ; they do not imply

that theProxyAgent object itself has any caching capabilities.

The levels of cache configuration available are prioritized. From the most general to
the most specific, the levels are:

®* Proxy Agent: applies to all managed objects controlled by the proxy agent.
®* Managed Object Class: applies to all managed objects of that managed object class

®* Managed Object: applies to that individual managed object.

The cache configuration policy specified at a more specific level overrides the cache
configuration policy specified at the less specific level. In particular, the following
should be noted:

®* The list of attributes to be cached for a given managed object is the union of the list
of attributes requested to be cached at all applicable levels without the list of
attributes that have been specifically removed either using the
override_specific_settings parameter or using the operations at the managed
object level.

* |f the same attribute is requested to be cached at multiple levels, the expiration
interval for an attribute that is specified at the most specific level applies.

The caching policy ifOSICaching::ProxyAgent established by the methods

inherited fromPerAttributeCacheConfigurator applies to all indicated attributes
wherever they occur in any managed object, regardless of class. This permits the
establishment of a caching policy for all occurrences of the same attribute in a proxy
agent, even if there is no caching policy established at the managed object class level

CORBA/TMN V1.0 OSI Caching and Tracking Services Aug. 2000 4-7

4-8

or managed object level, in that proxy agent. The caching policy established by the
methods inOSICaching::ProxyAgent that are inherited from the
PerClassCacheConfigurator interface apply to all indicated attributes only if they
occur in the managed objects of the indicated managed object class.

The methods 0®SICaching::ManagedObject , including those inherited from
PerAttributeCacheConfigurator , apply to the actual attributes in the managed

object itself. These methods permit the addition or removal of attributes in the cache,
changing expiration timeouts, refreshing cached values, or invalidating cached values.

While configuring the caching policy onRroxyAgent or ManagedObiject , a list of
CachedAttribute structs (an attribute identifier coupled with an expiration interval),
may be supplied. While configuring the caching policy dPraxyAgent , a list of
CachedObjectClass structs (a class name coupled with a lis€CathedAttribute
structs) may be supplied. If any of these lists is an empty sequence, it is interpreted to
mean “all.” In addition, when empty lists are used, default expiration intervals are
associated with all relevant attributes. Thus, a caching policy that applies to all
attributes in @roxyAgent , aManagedObjectClass or aManagedObiject , or a
caching policy that applies to all attributes of all managed object classes in a
ProxyAgent , can be easily enforced by invoking the appropriate methods with an
empty list argument.

The methodsCacheConfigurator::set_default_expiration_interval() and
CacheConfigurator::set_caching_enabled() permit the caching policy to be
changed on a level-wide basis, at eitherRinexyAgent level or the

ManagedObiject level. If set_default_expiration_interval() has never been called,
the default expiration interval is considered to be zero (i.e., the cache never expires).

The method<CacheConfigurator::get_default_expiration_interval() and
CacheConfigurator::is_caching_enabled() indicate the state of the level-wide
caching policy, at either theroxyAgent level or theManagedObject level.

The set_default_expiration_interval() will affect only those attributes that are
cache-enabled. Theverride_specific_settings parameter allows the flexibility to

either retain any existing custom expiration intervals for some attributes or change the
interval to the specified value for all cache-enabled attributes including those that have
custom expiration intervals.

This specification permits multipleroxyAgent objects to represent the same
underlying TMN agent. It also permits these multiplexyAgent objects to have
different caching and tracking characteristics. For example PomeyAgent

representing a particular TMN agent may have caching and tracking capabilities, while
anotherProxyAgent representing the same TMN agent may not. This implies that a
ManagedObject accessed via the first ProxyAgent may be configured for caching and
tracking, whereas WanagedObject accessed via the second cannot be so
configured.

The caching and tracking configuration applied teraxyAgent object applies to all
managed object references obtained from it. It should be noted that an IOR for a
ManagedObject may be obtained from BroxyAgent in several different ways:

® by doing aresolve() on theNamingService in thatProxyAgent

CORBA/TMN Interworking V1.0 August 2000

® by invoking acreate() operation on thélanagedObjectFactory in that
ProxyAgent

A client application that obtainsManagedObject IOR for a particular underlying
GDMO managed object from a caching and traclngxyAgent will be able to take
advantage of caching and tracking, whereas the same client application obtaining
anotherManagedObject IOR for the same underlying GDMO managed object from a
non-caching and non-trackirigroxyAgent will not be able to take any advantage of
caching and tracking. Therefore, caching and tracking capabilities are properties of the
IOR of aManagedObject and not necessarily of the underlying managed object

itself.

The following rules apply when changes are made to the caching policy after an
existing caching policy has already been applied to various attributes.

®* Any change to the caching policy (list of cached attributes, attribute expiration
intervals, etc.) made onRroxyAgent applies only tdManagedObject references
subsequentlpbtained from thaProxyAgent , unless the parameter
override_specific_settings is set to TRUE. That is, existifganagedObject
object references are not affected. If the paranmterride_specific_settings is
set toTRUE, then the caching policy for all existiddanagedObject object
references affected by this change in BrexyAgent is updated to the one
specified.

®* Any change to the caching policy (list of cached attributes, attribute expiration
intervals, etc.) made onManagedObjectClass applies only tduture
ManagedObject object references of that class obtained from HrakyAgent ,
unless the parameteverride_specific_settings is set toTRUE. That is, existing
ManagedObject object references of that class are not affected. If the parameter
override_specific_settings is set toTRUE, then the caching policy for all
existingManagedObject object references of that class affected by this change in
the ProxyAgent is updated to the one specified.

®* Any change to the caching policy made on an individdahagedObject object
reference is applied immediately to thkanagedObject object reference. The
parameteoverride_specific_settings is ignored.

Any method that changes the caching and tracking policy may throw exceptions such
asNoSuchAttributes , NoSuchClasses , etc. The semantics of the exception are

that all known OIDs are treated as requested, and the unknown OIDs are returned in
the exception.

4.1.2 The OSITracking module

#ifndef _OSITRACKING_IDL_
#define _OSITRACKING_IDL_

#include <OSICaching.idl>
#pragma prefix “jidm.org”

module OSITracking {

CORBA/TMN V1.0 OSI Caching and Tracking Services Aug. 2000 4-9

typedef OSICaching::ManagedObjectClassSeq ManagedObjectClassSeq;
typedef OSICaching::AttrldSeq AttrldSeq;
/I abstract interface to configure all tracking
interface TrackConfigurator {
void set_tracking_enabled (

in boolean enabled,
in boolean override_specific_settings

);

boolean is_tracking_enabled ();

J

/I abstract interface to configure per-attribute tracking
interface PerAttributeTrackConfigurator {
void add_tracked_attributes (
in AttrldSeq attr_list,
in boolean override_specific_settings
) raises (OSICaching::NoSuchAttributes);

/I If the attr_id_list contains an attribute identifier that is not
/I being tracked, then that attribute identifier is ignored
/I by remove_tracked_attributes.
void remove_tracked_attributes (
in AttrldSeq attr_id_list,
in boolean override_specific_settings
) raises (OSICaching::NoSuchAttributes);

AttrldSeq get_tracked_attributes ();
b

/l managed object class with indicated attributes tracked
struct TrackedObjectClass {
OSlICaching::ManagedObjectClass moc;
AttrldSeq list_of_tracked_attributes;
h

typedef sequence < TrackedObjectClass > TrackedObjectClassSeq;

/I TrackConfigException is similar in purpose to

/I OSICaching::CacheConfigException

exception TrackConfigException {
ManagedObjectClassSeq no_such_mocs;
AttrldSeq no_such_attr_ids;
OSICaching::ObjectClassAttributesPairSeq invalid_moc_attrs_pairs;

J

/I abstract interface to configure per-class tracking
interface PerClassTrackConfigurator {
void add_tracked_classes (
in TrackedObjectClassSeq class_list,
in boolean override_specific_settings
) raises (TrackConfigException);

4-10 CORBA/TMN Interworking V1.0 August 2000

void remove_tracked_classes (
in ManagedObjectClassSeq moc_list,
in boolean override_specific_settings
) raises (OSICaching::NoSuchObjectClasses);

TrackedObjectClassSeq get_tracked_classes ();

AttrldSeq get_tracked_attributes_for_class (
in OSICaching::ManagedObjectClass class_name
) raises (OSIMgmt::NoSuchObjectClass);

%

interface ProxyAgent : OSICaching::ProxyAgent,
TrackConfigurator,
PerAttributeTrackConfigurator,
PerClassTrackConfigurator {};

interface ManagedObject : OSICaching::ManagedObject,
TrackConfigurator,
PerAttributeTrackConfigurator {};

J

#endif /* _OSITRACKING_IDL_ */

4.1.2.1 Description of the OSITracking module

The tracking mechanism is an extension to the caching mechanism specified above to
permit the dynamic update of critical information, without the need for any application
intervention.

A tracked attribute in a managed object is an attribute whose value in the cache is
dynamically updated by way of notifications received from the underlying managed
object. TheProxyAgent implementation dynamically updates its cache based on any
information made available to it in notifications emitted by the underlying managed
object, including at least the standard Systems Management notifications of object
creation, object deletion, attribute value change, state change, and relationship change

When a cached attribute value is dynamically updated as a result of notification
tracking, the expiration timer for that cached attribute value is reset back to its full
applicable duration of validity, regardless of whether the prior cached value was still
valid or had expired.

As with caching, tracking may be configured on a per proxy agent basis, per managed
object class basis, and per individual managed object basis. These have the same
meaning and same levels of overriding as caching.

An attribute value in a managed object may only be tracked if it is also cached. In
particular, the list of attributes configured to be tracked must have been configured to
also be in the cache at a prior time. Any attributes that are requested to be tracked at
any given level, but are not in the cache configuration at that particular level, are
ignored.

CORBA/TMN V1.0 OSI Caching and Tracking Services Aug. 2000 4-11

4-12

4.1.3 Mechanism to obtain Cached/Tracked services

The mechanism to obtain cached/tracked services is an extension to the one used to
obtain access to any managed domain. That is, using the
ProxyAgentFinder::access_domain operation.

An additional set of criteria are specified to gain access to these value added services,
if available. These criteria are specified in the following tables. Table 4-1 repeats the
basicOSIMgmt criteria needed to create @8IMgmt::ProxyAgent .

For use with caching and tracking, the criteria specified in Table 4-2 on page 4-13 may
replace these, by specifying an already exis@8Mgmt::ProxyAgent , that

represents the domain to be cached (and maybe tracked). Destruction of the original
OSIMgmt::ProxyAgent is the responsibility of the application that created it.

Table 4-1 Basic OSIMgmt ProxyAgentFinder Criteria

criterion name

type of value meaning

“domain title”

X227ACS::AE_titleType AE-title associated to the managed object
domain for which access is requested. The
wildcard address is allowed.

“controller object”

JIDM::ProxyAgentController reference associated to a
JIDM::ProxyAgentController object
registered by the manager (OPTIONAL)

“access control”

X711CMI::AccessControlType Information to be used as input to access
control functions in establishing default
access privileges for all exchanges on the
association (OPTIONAL)

“requestor title”

X227ACS::AE_titleType Title used to denote the Manager which
requested access to the OSI managed object
domain (OPTIONAL)

Table 4-2 Alternative for caching/tracking OSIMgmt ProxyAgentFinder Criteria

criterion name type of value meaning

“proxy agent”

OSIMgmt::ProxyAgent Already existing ProxyAgent to which
caching is to be applied.

CORBA/TMN Interworking V1.0 August 2000

criterion name type of value meaning

“controller object” | JIDM::ProxyAgentController Reference associated to a

JIDM::ProxyAgentController object
registered by the manager, that controls
destruction of the cached/tracked
ProxyAgent (OPTIONAL).

In addition to one of the above, the criteria specified in Table 4-3 must also be
provided for caching (and tracking) to be activated.

The values passed with the criteria names (“caching” and “tracking”) are
implementation-defined. Each implementation should specify what the appropriate
values for these criteria should be.

If caching is specified for RroxyAgent using the criteria specified in Table 4-3, then
it is an implementation issue whether there are really two seffam@tgAgent s, one
that does not support caching and another that does.

Table 4-3 Additional criteria needed for caching/tracking OSIMgmt ProxyAgentFinder

criterion name type of value meaning

“caching” any Caching is enabled; the value is

implementation dependent.

“tracking” any Tracking is enabled; the value is

implementation dependent (OPTIONAL).

4.2 Collection Service

4.2.1 Overview

The OSI Collection service specification provides facilities to manipulate arbitrary sets
of OSIMgmt::ManagedObjects .

This service is patterned after the CORBA Collection Service specification and re-uses
some of the concepts defined there. However, no direct interface re-use is attempted to
be able to provide highly typed interfaces, specific to OSI management environments,
and that takes into account the distributed nature of the collections being manipulated.

It defines anOSICollection::Iterator interface, to be able to navigate, traverse, and
manipulate the collections, and two different types of OSI collections:

®* Enumerated collectignin which the collection membership is explicitly controlled
by the client; any arbitrary set of managed objects may be added to the collection,
according to any grouping criterion convenient to the application.

CORBA/TMN V1.0 Collection Service Aug. 2000 4-13

® Rule collectionsin which the collection membership is defined by some rule (in
this case, a scope and filter specification). All managed objects that satisfy the rule
are the members of the rule collection.

4.2.2 The OSICollection Module

#ifndef _OSICOLLECTION_IDL_
#define _OSICOLLECTION_IDL_

#include <OSIMgmt.idI>
#pragma prefix “jidm.org”

module OSICollection {
typedef OSIMgmt::ManagedObject ManagedObject;
typedef sequence < ManagedObject > ManagedObjectSeq;
exception Iteratorinvalid { };
exception IteratorinBetween { };
exception Collectioninvalid { };
exception NotFound { };
exception InvalidName { };

interface Iterator {
/I retrieving elements
boolean get_element (
out ManagedObject mo
) raises (Iteratorinvalid, IteratorinBetween);
boolean get_n_elements (
in unsigned long how_many,
out ManagedObjectSeq mo_list
) raises (Iteratorinvalid);

/l moving iterator
void restart () raises (Iteratorinvalid);
void set_to_next_element () raises (Iteratorinvalid);
void set_to_next_nth_element (
in unsigned long how_many
) raises (Iteratorlnvalid);

/l iterator state
void invalidate ();
boolean is_valid ();
boolean is_in_between ();
boolean is_equal (in Iterator other) raises (Iteratorinvalid);
/I cloning, assigning and destroying
Iterator clone ();
void assign (in Iterator from_where) raises (Iteratorinvalid);
void destroy ();
h

typedef OSIMgmt::LinkedReplyHandler LinkedReplyHandler;
typedef OSIMgmt::EndOfRepliesHandler EndOfRepliesHandler;

/I abstract base interface

4-14 CORBA/TMN Interworking V1.0 August 2000

interface BaseCollection {

J

// operations to perform on all elements in the collection
void perform_get (
in OSIMgmt::ASN1_ObjectldentifierSeq attr_id_list,
in LinkedReplyHandler Irh,
in EndOfRepliesHandler eorh
)i
void perform_set (
in OSIMgmt::SetOperationArgument modif_list,
in LinkedReplyHandler Irh,
in EndOfRepliesHandler eorh
)i
void perform_action (
in ASN1_Objectldentifier action_id,
in ASN1_DefinedAny action_info,
in LinkedReplyHandler Irh,
in EndOfRepliesHandler eorh
)i
void perform_delete (
in LinkedReplyHandler Irh,
in EndOfRepliesHandler eorh

);

/I statistics
boolean is_empty ();

/I creating iterators
Iterator create_iterator (
in boolean read_only
) raises (CollectionInvalid);

/I destruction
void destroy ();

interface EnumCaollection : BaseCollection {

J

// adding elements

void add_element (in ManagedObject element);

void add_elements (in ManagedObjectSeq elem_list);
void add_all_from (in BaseCollection collection);

/I removing elements
void remove_element_at (
in Iterator where
) raises (Iteratorlnvalid, IteratorinBetween);
void remove_all ();

interface RuleCollection : BaseCollection {

ManagedObject get_base_object () raises (Collectionlnvalid);
X711CMI::ScopeType get_scope () raises (Collectioninvalid);
X711CMI::CMISFilterType get_filter () raises (Collectioninvalid);
X711CMI::CMISSyncType get_synchronization () raises (Collectioninvalid);

CORBA/TMN V1.0 Collection Service Aug. 2000 4-15

interface CollectionFactory {
EnumcCollection create_enum_collection ();

EnumcCollection create_enum_collection_from_collection (
in BaseCollection collection

);

RuleCollection create_rule_collection (
in OSIMgmt::ManagedObject base_managed_object,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType sync

RuleCollection create_rule_collection_by name (
in OSIMgmt::ProxyAgent proxy_agent,
in CORBA::ScopedName base_mo_interface,
in CosNaming::Name base_mo_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType sync

J

#endif /* _OSICOLLECTION_IDL_ */

4.2.2.1 Descriptions of OSICollection types and operations

The Iterator interface

The OSICollection::lterator interface is similar t@SIMgmt::Replieslterator (see
Chapter 3) in terms of navigation operatiogst(element , get_n_elements). The
semantics and behavior of these operations are the same as the equivalent operations
specified in theDSIMgmt::Replieslterator interface §et_reply , get_n_replies).

This interface also adds a number of operations for different purposes:

® to manipulate the iterator position:
 restart, resets the iterator to point to the first element in the collection.
» set to_next_element , moves the iterator to the next element in the collection.
* set to_next_nth_element , moves the iterator n times.

® to control and monitor the state of the iterator:
« invalidate , sets the state of the iterator to invalid.
 is_valid , checks validity of the iterator.

» is_in_between , checks whether the iterator points to an element, or is in
between elements.

* is_equal, checks if both iterators belong to the same collection and point to the
same element.

4-16 CORBA/TMN Interworking V1.0 August 2000

® to manipulate the lifecycle of iterators:
» clone, makes an exact copy of the iterator.
» assign, changes the state of the iterator to match the one assigned to it.
» destroy , destroys the iterator.

Note thatOSICollection::Iterators are ‘managed iterator$ as explained in the
CORBA Collection Service specification. This means that the status of the iterator is
always known, never undefined, specifically in the event the collection contents
change.

The possible iterator states are:
® valid, pointing to an element of the collection.
* invalid , pointing to nothing (for example, past the end of the collection).

®* in-between , not pointing to an element but knowing what its position in the
collection is.

A valid iterator remains valid as long as the element it points to remains in the
collection. If the element is removed, the iterator goes to the in-between state. Certain
operations require the iterator to be in a valid state (like alt theoperations), while
others work even when the iterator is in an in-between stategdiken _elements).

An iterator becomes invalid when it points to nothing (for example, it has been moved
past the last element).

The BaseCollection interface

The OSlICollection::BaseCollection is an abstract interface specification (i.e., that
may not be instantiated by itself) that provides the functionality that is common to all
collections (enumerated or rule-based).

Specifically, it provides operations to allow:

®* manipulation of the collection and its elements
« is_empty, identifies whether the collection has any elements
» create iterator , creates an iterator on the collection
« destroy , destroys of the collection

® specific operations to be performed on all objects in the collection
» perform_get , perform_set , perform_action , perform_delete

All these operations perform the corresponding CMIS operations on all the objects
in the collection (one per object in enumerated collections, or one for a whole rule
collection), returning the results via tRepliesHandlers passed in as parameters.

For a more detailed discussion of both the different CMIS operations and the
handler callback objects, see the corresponding OSI Mgmt sections in this
specification. Also, the semantics assigned to the presence or absence of the handlel
object references are those specified in the OSIMgmt sections, as well.

If an object in a collection returns the standard CORBA exception
OBJECT_NOT_EXIST when performing one of these global operations, the
collection will immediately remove the object from the collection.

CORBA/TMN V1.0 Collection Service Aug. 2000 4-17

4-18

The Enum@llection interface

The OSlICollection::EnumCollection interface provides a general mechanism to
group (otherwise not necessarily related) managed objects. Specifically, all the
managed objects in a single collection ac¢ required to belong to the same managed
object domain (i.e., their references might have been obtained through different
OSIMgmt::ProxyAgents).

The member managed objects of an enumerated collection are added and removed
from the collection on an individual basisdf_element , remove_element_at), or

in batch modeddd_elements , add_all_from , remove_all). It is important to note

that anOSlICollection::Collection object does not maintain any specified order

among its members. No assumption should be made regarding the retrieval order, as
compared to the insertion order. However, ordering within the collection is
implementation-defined; this means that any two traversals of an iterator over the same
collection will return managed objects in exactly the same order if no membership
manipulation has occurred in between the traversals.

The RuleCollection interface

The OSICollection::RuleCollection interface has its membership defined by its
governing rule. Specifically, the rule is a scope and filter specification, specified to the
collection factory at the time the rule collection is created. The governing rule of a rule
collection is defined by:

®* a base object, that specifies the base of the scoping specification for this collection,
® a scope specification, as defined in [X720] and in Chapter 4 OSIMgmt, and
* afilter specification, as defined in [X720] and in Chapter 4 OSIMgmt.

Once created, the governing rule of a rule collection cannot be changed, because doing
so may invalidate the existing collection membership. When a CMIS operation is
invoked on a rule collection, the indicated base managed object, scope, and filter that
form the collection’s governing rule are the parameters used to invoke the scoped
operation on the actual agent or agents that are spanned by that rule.

A CMIS synchronization (atomic or best effort) may also be specified for a rule
collection. This synchronization parameter is used in the scoped request that is sent to
the agent(s) when a CMIS operation is invoked on the rule collection.

When an iterator is requested from a rule collection (viectbate_iterator()

method), then a snapshot of the collection’'s membership is taken to serve the iterator.
This snapshot must reflect the best available knowledge of the managed objects that
meet the collection’s defining rule at that time.

The CollectionFactory Interface

The OSlICollection::CollectionFactory interface provides methods to create
EnumCollection andRuleCollection objects.

In particular, theCollectionFactory interface allows:

® Creation of an emptnumCollection (create_enum_collection()).

CORBA/TMN Interworking V1.0 August 2000

4

® Creation of arEnumcCaollection as a copy of anothéollection . If the copied
collection is aRuleCollection , a snapshot of its membership is taken at the time of
creation of theenumCollection
(create_enum_collection_from_collection()).

® Creation of aRuleCollection specifying its base managed object and
scoping/filtering rule ¢reate_rule_collection()).

® Creation of &RuleCollection specifying its base managed object by reference to
an OSIMgmt::ProxyAgent and the class and instance names of the base object,
plus the scoping/filtering rulecfeate_rule_collection_by name()).

4.3 Dynamic Management of ASN.1 Any Values

4.3.1 Overview

The Dynamic Management of CORBA::Any valudacility, introduced in the€ ORBA

2.2 specification, enables the manipulationG®RBA::Any values at runtime,

without having any static information (generated by an IDL compiler) about the type
being carried inside thany.

This facility extends the one above to supgd@RBA::Any values that originate from
an ASN.1 specification that has been translated into IDL via the JIDM Specification
Translation algorithm (see [XOJIDM]) in a way that is closer to the original ASN.1

type.

Note that all operations that may be performed through this interface may also be
performed directly using the basBORBA::DynAny interface. Additional

functionality provided by this interface is the access to ASN.1 specific information,
that might have been lost in the translation from ASN.1 to IDL (specifically, type
constraints), and the ability to use the original ASN.1 names, instead of the translated
IDL names. Also, mechanisms are provided to deal with common ASN.1 constructs
such as OPTIONAL, DEFAULT, and anonymous elements in an easier manner.

The behavior of DynAny objects has been defined in such a way as to enable efficient
implementations in terms of allocated memory space and speed of access.

In order for this interface to be fully operational and provide the above mentioned
advantages, some mechanism (not specified here) to access cross-domain information
is needed. The most likely scenario for this is the use of an OSI MIR (see Section 4.4,
“The OSI Management Information Repository,” on page 4-27), if available. However,
this facility does not require the use of an OSI MIR (other implementation mechanisms
are possible alternatives).

The ASN1::DynAny IDL is patterned after th€EORBA::DynAny IDL, with the
following differences:

® Defined within an ASN1 IDL module, rather than within the CORBA module.

®* The factory for these objects is explicitly defined as a CORBA object, rather than
using the ORB pseudo interface. The way to get a reference to such factory is
implementation specific.

CORBA/TMN V1.0 Dynamic Management of ASN.1 Any Values Aug. 2000 4-19

4-20

* Names ofASN1::DynAny subtypes resemble the names of the ASN.1 construct,
not those of IDL.

® |t inherits from theCORBA::DynAny interface, and redefines some of the
behaviors.

* While the CORBA::DynAny interface relies on thEORBA::TypeCode of the
value being processed, tA&N1::DynAny reuses that information, plus that
provided by a simpleASN1::Kind type.

4.3.2 The ASN1 Module

#ifndef ASN1_IDL_
#define _ASN1_IDL_

#include <orb.idl>
#include <ASN1Types.idl>

#pragma prefix “jidm.org”
module ASN1 {

typedef CORBA::Identifier Identifier;

enum Kind {
ak_none, // used when value is not ASN.1 based
ak_null, ak_boolean,
ak_integer, ak_real,
ak_numericstring, ak_printablestring,
ak_visiblestring, ak_iso646string,
ak_graphicstring, ak_objectdescriptor,
ak_teletexstring, ak_t61string,
ak_generalizedtime, ak_utctime,
ak_octetstring, ak_generalstring,
ak_iab5string, ak_videotexstring,
ak_bmpstring, ak_universalstring,
ak_objectidentifier,
ak_hitstring,
ak_any, ak_definedany,
ak_external,
ak_enum,
ak_sequence, ak_set,
ak_sequenceof, ak_setof,
ak_choice

interface DynAny : CORBA::DynAny {
Kind asnl_kind() raises (Invalid);
Identifier asnl_type_name () raises (Invalid);
Identifier asn1_module_name() raises (Invalid);
Identifier asn1_module_nickname() raises (Invalid);
ASN1_Objectldentifier asn1_module_oid() raises (Invalid);

void asnl_assign (in DynAny asnl_dyn_any) raises (Invalid);

CORBA/TMN Interworking V1.0 August 2000

void from_dyn_any (in CORBA::DynAny dyn_any) raises (Invalid);
CORBA::DynAny to_dyn_any() raises (Invalid);
DynAny asnl_copy();

interface DynAny : CORBA::DynAny {
Kind asn1_kind() raises (Invalid);
Identifier asn1_type_name () raises (Invalid);
Identifier asn1_module_name() raises (Invalid);
Identifier asn1_module_nickname() raises (Invalid);
ASN1_Objectldentifier asnl_module_oid() raises (Invalid);
void asnl_assign (in DynAny asnl_dyn_any) raises (Invalid);
void from_dyn_any (in CORBA::DynAny dyn_any) raises (Invalid);

CORBA::DynAny to_dyn_any() raises (Invalid);
DynAny asnl_copy();

void insert_asn1_nullin ASN1_Null value) raises(InvalidValue);

void insert_asnl_boolean(in ASN1_Boolean value)
raises(Invalidvalue);

void insert_asnl_unsigned16(in ASN1_Unsigned16 value)
raises(Invalidvalue);

void insert_asnl1_unsigned(in ASN1_Unsigned value)
raises(InvalidValue);

void insert_asnl_unsigned64(in ASN1_Unsigned64 value)
raises(InvalidValue);

void insert_asnl_integerl6(in ASN1_Integerl6 value)
raises(InvalidValue);

void insert_asnl_integer(in ASN1_Integer value)
raises(InvalidValue);

void insert_asnl_integer64(in ASN1_Integer64 value)
raises(InvalidValue);

void insert_asnl_real(in ASN1_Real value) raises(InvalidVvalue);

void insert_asnl1_numericstring(in ASN1_NumericString value)
raises(InvalidValue);

void insert_asnl_printablestring(in ASN1_PrintableString value)

raises(InvalidValue);

void insert_asn1_visiblestring(in ASN1_VisibleString value)
raises(Invalidvalue);

void insert_asnl_iso646string(in ASN1_ISO646String value)
raises(InvalidValue);

void insert_asn1_graphicstring(in ASN1_GraphicString value)
raises(InvalidValue);

void insert_asnl_objectdescriptor(in ASN1_ObjectDescriptor value)
raises(Invalidvalue);

void insert_asnl_teletexstring(in ASN1_TeletexString value)
raises(InvalidValue);

void insert_asn1_t61string(in ASN1_T61String value)
raises(Invalidvalue);

void insert_asn1_generalizedtime(in ASN1_GeneralizedTime value)
raises(Invalidvalue);

void insert_asnl_utctime(in ASN1_UTCTime value)
raises(InvalidValue);

CORBA/TMN V1.0 Dynamic Management of ASN.1 Any Values Aug. 2000 4-21

void insert_asnl_octetstring(in ASN1_OctetString value)
raises(InvalidVvalue);

void insert_asn1_generalstring(in ASN1_GeneralString value)
raises(Invalidvalue);

void insert_asn1_ia5string(in ASN1_IA5String value)
raises(Invalidvalue);

void insert_asnl_videotexstring(in ASN1_VideotexString value)
raises(Invalidvalue);

void insert_asnl1_bmpstring(in ASN1_BMPString value)
raises(InvalidVvalue);

void insert_asn1_universalstring(in ASN1_UniversalString value)
raises(Invalidvalue);

void insert_asnl_objectidentifier(in ASN1_Objectldentifier value)
raises(InvalidVvalue);

void insert_asn1_bitstring(in ASN1_BitString value)
raises(Invalidvalue);

void insert_asnl_any(in ASN1_Any value) raises(InvalidValue);
void insert_asn1_definedany(in ASN1_DefinedAny value)
raises(Invalidvalue);

void insert_asnl_external(in ASN1_External value)
raises(Invalidvalue);

ASN1_Null get_asnl_null() raises(TypeMismatch);
ASN1_Boolean get_asnl_boolean() raises(TypeMismatch);

ASN1_Unsigned16 get_asnl_unsigned16() raises(TypeMismatch);
ASN1_Unsigned get_asnl_unsigned() raises(TypeMismatch);
ASN1_Unsigned64 get_asnl_unsigned64() raises(TypeMismatch);
ASN1_Integerl6 get_asnl_integerl6() raises(TypeMismatch);
ASN1_Integer get_asnl_integer() raises(TypeMismatch);
ASN1_Integer64 get_asnl_integer64() raises(TypeMismatch);

ASN1_Real get_asnl_real() raises(TypeMismatch);

ASN1_NumericString get_asnl_numericstring()
raises(TypeMismatch);
ASNL1_PrintableString get_asn1_printablestring()
raises(TypeMismatch);
ASN1_VisibleString get_asnl_visiblestring() raises(TypeMismatch);
ASN1_ISO646String get_asnl_iso646string() raises(TypeMismatch);
ASN1_GraphicString get_asnl_graphicstring()
raises(TypeMismatch);
ASN1_ObjectDescriptor get_asnl_objectdescriptor()
raises(TypeMismatch);
ASN1_TeletexString get_asnl_teletexstring() raises(TypeMismatch);
ASN1_T61String get_asnl_t61string() raises(TypeMismatch);
ASN1_GeneralizedTime get_asnl_generalizedtime()
raises(TypeMismatch);

4-22 CORBA/TMN Interworking V1.0 August 2000

ASN1_UTCTime get_asnl_utctime() raises(TypeMismatch);

ASN1_OctetString get_asnl_octetstring() raises(TypeMismatch);

ASN1_GeneralString get_asnl_generalstring()
raises(TypeMismatch);

ASN1_IA5String get_asnl_ia5string() raises(TypeMismatch);

ASN1_VideotexString get_asnl_videotexstring()
raises(TypeMismatch);

ASN1_BMPString get_asnl_bmpstring() raises(TypeMismatch);
ASN1_UniversalString get_asnl1_universalstring()
raises(TypeMismatch);

ASN1_Objectldentifier get_asnl_objectidentifier()
raises(TypeMismatch);

ASN1_BitString get_asnl_bitstring() raises(TypeMismatch);

ASN1_Any get_asnl_any() raises(TypeMismatch);
ASN1_DefinedAny get_asnl_definedany() raises(TypeMismatch);

ASN1_External get_asnl_external() raises(TypeMismatch);

ASN1_Any current_asnl_component () raises(Invalid);

J

interface DynEnum: DynAny, CORBA::DynEnum {
attribute string value_as_asn1_identifier;
attribute long value_as_asnl_value;

J

interface DynNamedNumber: DynAny {
attribute string value_as_asn1_identifier;

J

typedef CORBA::FieldName FieldName;
typedef CORBA::NameValuePairSeq NameValuePairSeq;

interface DynSetSeq: DynAny, CORBA.::DynStruct {
FieldName current_asnl_elem_name ();
Kind current_asnl_elem_kind ();
NameValuePairSeq get_asnl_elems() raises(Invalid);
void set_asnl1_elems(in NameValuePairSeq value)

raises (InvalidSeq);

void insert_optional_absent() raises (InvalidValue);
DynAny insert_optional_present() raises (InvalidValue);
void insert_default_absent() raises (InvalidValue);
DynAny insert_default_present() raises (InvalidValue);
boolean get_optional_presence() raises (TypeMismatch);
DynAny get_optional_present() raises (TypeMismatch);
boolean get_default_presence() raises (TypeMismatch);
DynAny get_default_present() raises (TypeMismatch);

CORBA/TMN V1.0 Dynamic Management of ASN.1 Any Values

Aug

.2000 4-23

interface DynChoice: DynAny, CORBA::DynUnion {
DynAny asnl_elem ();
attribute FieldName asnl_elem_name;
Kind asnl_elem_kind ();

J

interface DynAnyFactory {
exception InconsistentKind {};
exception InconsistentTypeCode {};

typedef CORBA::Identifier Identifier;
DynAny create_asnl_dyn_any(in any value);

DynAny create_basic_dyn_any(in CORBA::TypeCode type)
raises(InconsistentTypeCode);
CORBA::DynStruct create_dyn_struct(in CORBA::TypeCode type)
raises(InconsistentTypeCode);
CORBA::DynSequence create_dyn_sequence
(in CORBA::TypeCode type)
raises(InconsistentTypeCode);
CORBA::DynUnion create_dyn_union(in CORBA::TypeCode type)
raises(InconsistentTypeCode);
CORBA::DynEnum create_dyn_enum(in CORBA::TypeCode type)
raises(InconsistentTypeCode);
CORBA::DynArray create_dyn_array(in CORBA::TypeCode type)
raises(InconsistentTypeCode);
CORBA::DynFixed create_dyn_fixed(in CORBA::TypeCode type)
raises(InconsistentTypeCode);
DynAny create_asnl_dyn_primitive(in Identifier asn1_nickname,
in Identifier asn1_name)
raises(InconsistentKind);
DynEnum create_asnl1_dyn_enum(in Identifier asn1_nickname,
in Identifier asn1l_name)
raises(InconsistentKind);
DynSetSeq create_asnl_dyn_setseq(in Identifier asnl_nickname,
in Identifier asn1_name)
raises(InconsistentKind);
DynSetSeqOf create_asnl_dyn_setseqof(in Identifier
asnl_nickname,
in Identifier asn1_name)
raises(InconsistentKind);
DynChoice create_asnl1_dyn_choice(in Identifier asn1_nickname,
in Identifier asn1_name)
raises(InconsistentKind);

J
#endif /* _ASN1_IDL_*/

Note that all types, derived from ASN.1 or not, can be manipulated through this
interface. In case the type comes from ASN.1, then extra operations might be available
(if needed), that could help to manipulate the value.

4-24 CORBA/TMN Interworking V1.0 August 2000

However, note that ALL operations are possible through the unextended
CORBA::DynAny interface. The added value provided by A&N1::DynAny

extension is the fact that ASN.1 constraints might be checked by the implementation, if
possible (this is not a mandatory conformance point for this facility, but a quality of
implementation issue).

4.3.2.1 Description of ASN1 types and operations

The Kind type
The ASN1::Kind type identifies the ASN.1 type, which is held b¥pgnAny object.
The specification provides functions in all modules to access the kind(s) at each level.

If the CORBA::TypeCode does not correspond to an ASN.1 type, then the special
kind of ak_none is used. In this case, none of the extended interfaces may be used
(they will all return an appropriate exceptidnyvalid, InvalidValue of
TypeMismatch).

The Exceptions
The following inherited exceptions are used:

¢ |nvalid means either thASN1::DynAny is not initialized (for read operations) or
it is incompatible with the operation being performed.

¢ InvalidvValue means trying to insert the wrong type/value. This exception would
also be raised in case an ASN.1 constraint is not satisfied when inserting a value.

* TypeMismatch means trying to extract the wrong type.

¢ |nvalidSeq means the sequence used does not have the appropriate structure or
types.

The Type identification

Besides getting the CORBA TypeCode, %&N.1::DynAny interfaces provide

methods to get the ASN.1 kind, type name, module name, OID, and module nickname.
If this is not an ASN.1 type, these would raiagalid (except theASN1::Kind would

be ak_none); if unknown, they would be empty.

The Lifecycle

Equivalent functions to the ones providedd®RBA::DynAny , with the same
semantics.

The Insertion operations

The inherited operations will work based on @@RBA::TypeCode and for all types
(ASN.1 or otherwise).

There are different insertion operations per primitive ASN.1 type, even if they map to
the same IDL type. In this way, the interface is more type safe (in the ASN.1 sense).

CORBA/TMN V1.0 Dynamic Management of ASN.1 Any Values Aug. 2000 4-25

4-26

For example, if we havelyType::=INTEGER(1..500) , then eitheinsert_ushort or
insert_asnl_unsigned16 would work. And both could check for the bounds, and
return InvalidValue if the constraint is violated.

Note that there is nothing to insert ABN1_Recursive . The appropriate type to be
inserted (whatever would go in the any) must be used if using$iNd::DynAny
interface, andnsert_any if using theCORBA::DynAny interface. Again, if the
wrong type is to be inserted in thay, then the exception could be raised.

The Extraction operations

The inherited operations will work based on @@RBA::TypeCode and for all types
(ASN.1 or otherwise).

There are different extraction operations per primitive ASN.1 type, even if they map to
the same IDL type. In this way, the interface is more type safe (in the ASN.1 sense).

For example, in the case introduced above, eiie¢rushort or
get_asnl_unsignedl16 would work.

Note that there is nothing to extract ABN1_Recursive: you have to extract the
appropriate type (whatever is in the any) if using A8N1::DynAny interface, and
get_any if using theCORBA::DynAny interface. If the wrong type is to be extracted
from theany, then theTypeMismatch exception should be raised.

The Navigation operations

In addition to the methods inherited fradORBA::DynAny , there is an extra method
to get the current component asABN1::DynAny , rather than as a
CORBA::DynAny (that would require narrowing for some operations).

The Enumeated interface

Provides operations to access names/values as specified in ASN.1. If these operations
are not going to be available (because the type does not correspond to an ASN.1
enumerated value), then narrowing to this interface should fail.

The NamedNumber interface

This is a special case, as it is a primitive type, but has a subtype specification. It
provides the ability to read or write values by their ASN.1 names. If these operations
are not going to be available, then narrowing to this interface should fail.

The SetSeq interface

Instead of providing two exact interfaces, just one is provided for both SET and
SEQUENCE types.

In addition to the operations to navigate the components, getting names, and
inserting/extracting sequences (inherited from @@RBA::DynStruct interface);
equivalent operations are provided with the ASN.1 counterparts. Specifically, field
names and insert/extract sequence would use ASN.1 type names, instead of the IDL

CORBA/TMN Interworking V1.0 August 2000

4

equivalents inherited from theORBA::DynStruct interface. Another difference is

that in the ASN.1 sequences, fields that have the OPTIONAL or DEFAULT clauses
might be omitted. Additionally, there are methods to insert absent/present optional (and
defaulted) and also to check for the presence and value of such fields.

The Choice interface

As the inherited interface was almost complete, this interface only specifies duplicates
of some operations to provide ASN.1 names/types.

The SetSeqOf interface

The same as with SetSeq, only one interface is specified for both SET OF and
SEQUENCE OF types. The only added operation is the one to get the ASN.1 item
kind.

The DynAnyFactory

This factory is capable of creatimynAny s for both normal IDL types and for ASN.1
types. Also, the creation methods are compatible and consistent with those provided by
the ORB interface for IDL types.

® The IDL Factory methods

Create theCORBA::DynAny subclasses appropriate for the provided typecode.
The returned objects might be narrowable to one oABNE1::DynAny interfaces,
if the IDL type was indeed coming from an ASN.1 type.

® The ASN1 Factory methods

In the absence of ASN.1 typecodes, the ASN.1 module nickname and type name are
used as the mechanism to identify the type being created. In this case, the returned
object already exports the appropriate interface. In case the specified type does not
match the factory operation being used, ltheonsistentKind exception is raised.

4.4 The OSI Management Information Repository

An OSI Management Information Repositd@SI| MIR) contains the description and
structure of the information models used within the TMN Management model.

This specification does not provide any standard interface for an OSI MIR, therefore
allowing implementations of CORBA/TMN systems to provide this functionality using
any appropriate mechanism.

An OSI MIR provides two services:

® Model descriptionThe translation from GDMO and ASN.1 to IDL leaves some
information elements untranslated. For example, some constraints on ASN.1 types,
or some inheritance relationships in GDMO class hierarchies, cannot be translated
into IDL. An OSI MIR can fill in the missing information for applications that need
it, by providing a full description of the original GDMO and ASN.1 syntax.

CORBA/TMN V1.0 The OSI Management Information Repository Aug. 20004-27

®* Translation descriptionSome implementations, in particular those dealing with
both OSI and CORBA domains, may need to know the correspondence between
GDMO/ASN.1 and the IDL representations of a model. For example, an
implementation might need to know that the IDL enumerated value selecting the
globalForm choice of X.711 ASN.RAttributeld syntax is named
globalFormChoice_1 . An OSI MIR can provide information on this mapping.

An OSI MIR allows managers and agents to dynamically access all information on a
certain model, both as an original GDMO/ASN.1 model and as the equivalent IDL
model. Among other things, this makes it feasible to dynamically process management
requests without necessarily having any compile-time knowledge of which
GDMO/ASN.1 documents and modules were processed and what mapping rules were
applied for translation into IDL. With the assistance of an OSI MIR available at run
time, an application may:

® Check the validity of values with the constraints applied to their syntax.

®* Translate management requests from one domain (CORBA or OSI) to another.

This specification allows implementations of CORBA/TMN systems to choose any
approach to building an OSI MIR for providing dynamic, run-time metadata support to
their applications, including, but not limited to, the following:

®* An OSI MIR may be provided as a stand-alone proprietary CORBA facility with its
own exposed IDL interface.

®* An OSI MIR may be provided as a repository, which is an extension of the CORBA
Interface Repository.

®* An OSI MIR may be an internal repository within a CORBA/TMN system, with no
exposed interface and hence no CORBA visibility to applications. It may be
reserved only for internal use by the CORBA/TMN system implementation.

4.5 SNMP Management Facilities Specification

4-28

45.1 Overview

The SNMP Management Facilities section addresses the bidirectional mapping of
names, messages, and events in SNMP domain to names, operation invocation, and
events in CORBA domain by providing a set of SNMP-specific CORBA object
services and extensions.

This is done by extending the JIDM Facilities specification and by providing SNMP-
specific extensions to the generic JIDM manager-agent framework. Those facilities
support functionality that is specific to SNMP Management, as follows:

® The ability to name MIB entries according to SNMP Management principles.

®* The ability to create and delete MIB entries (or table rows) according to SNMP
Management principles.

® The ability to communicate traps and notifications.

CORBA/TMN Interworking V1.0 August 2000

4

To support the interoperability between CORBA and SNMP domains, we have to
develop a set of service interfaces, called SNMP Management facilities as an extension
of some of the CORBA Object services specification. In addition, we take advantage of
the generic manager-agent framework provided by the JIDM facilities, to initialize and
find the services defined for the SNMP Management facilities.

The main purpose of the SNMP management facilities is to extend the CORBA object
services to support SNMP protocol-specific behavior of MIB entries/objects. For
example, the SNMP MIB entries have to be named whenever they are created, whereas
CORBA objects need not be named when they are created. So, we have to standardize
the way objects are created and named.

The goal of the service interfaces is to provide a uniform way to find MIB entries,
retrieve information from MIB entries, and handle events from CORBA and SNMP
domains.

In SNMP domains the MIB entries are named based on a set of well-defined policies
about the order and the types of the index variables associated with the MIB entries.
The SNMP Naming service interface encapsulates SNMP-specific naming behavior.
The SNMP-specific Lifecycle services interface extends the COSS generic factory to
support the behavior of the MIB module specific factories generated during SMI->IDL
translation. The SNMP specific Lifecycle would also take care of the naming of the
MIB entries when an MIB entry is created.

There is some information loss during the mapping of SNMP MIB to IDL and we have
to retrieve it through some mechanism. For example, OIDs of the table-entries/groups
and variables are not mapped to IDL but they are needed at the gateway. So we need tc
extend the CORBA interface repository to provide OID information.

The SNMP Management Information Repository (also known as SMI repository
service) [OPTIONAL Service] defines a set of interfaces that provide information
about the SNMP specific IDL modules and interfaces in the InterfaceRepository (IR) in
an SNMP specific way. For example, one can obtain information about SNMP specific
IDL module names, SNMP specific IDL interfaces, and SNMP specific variables
among all IDL interfaces in the IFR. The view one gets from the SMI repository is an
SNMP specific view based on the information in the IFR. One can use the SMI
repository to query about OID of a variable.

CORBA/TMN V1.0 SNMP Management Facilities Specification Aug. 2000 4-29

4-30 CORBA/TMN Interworking V1.0 August 2000

5.1 Overview

SNMP CORBA Facilities S

Contents

This chapter contains the following sections.

Section Title Page
“The SNMPMgmt Module” 5-2
“SNMP Management Information Repository” 5-30

This chapter addresses the bidirectional mapping of names, messages, and events in
SNMP domain to names, operation invocation, and events in CORBA domain by
providing a set of SNMP-specific CORBA object services and extensions.

This is done by extending the JIDM Facilities specification and by providing SNMP-
specific extensions to the generic JIDM manager-agent framework. Those facilities
support functionality that is specific to SNMP Management, as follows:

® the ability to name MIB entries according to SNMP Management principles.

® the ability to create and delete MIB entries (or table rows) according to SNMP
Management principles.

® the ability to communicate traps and notifications.

To support the interoperability between CORBA and SNMP domains, we have to
develop a set of service interfaces, called SNMP Management facilities as an extension
of some of the CORBA Object services specification. In addition, we take advantage of
the generic manager-agent framework provided by the JIDM facilities, to initialize and
find the services defined for the SNMP Management facilities.

CORBA/TMN Interworking V1.0 August 2000 5-1

The main purpose of the SNMP management facilities is to extend the CORBA object
services to support SNMP protocol-specific behavior of MIB entries/objects. For
example, the SNMP MIB entries have to be named whenever they are created, whereas
CORBA objects need not be named when they are created. So, we have to standardize
the way objects are created and named.

The goal of the service interfaces is to provide a uniform way to find MIB entries,
retrieve information from MIB entries, and handle events from CORBA and SNMP
domains.

In SNMP domains the MIB entries are named based on a set of well-defined policies
about the order and the types of the index variables associated with the MIB entries.
The SNMP Naming service interface encapsulates SNMP-specific naming behavior.
The SNMP-specific Lifecycle services interface extends the COSS generic factory to
support the behavior of the MIB module specific factories generated during SMI->IDL
translation. The SNMP specific Lifecycle would also take care of the naming of the
MIB entries when an MIB entry is created.

There is some information loss during the mapping of SNMP MIB to IDL and we have
to retrieve it through some mechanism. For example, OIDs of the table-entries/groups
and variables are not mapped to IDL but they are needed at the gateway. So we need tc
extend the CORBA interface repository to provide OID information.

The SNMP Management Information Repository (also known as SMI repository
service) [OPTIONAL Service] defines a set of interfaces that provide information
about the SNMP specific IDL modules and interfaces in the InterfaceRepository (IR) in
a SNMP specific way. For example, one can obtain information about SNMP specific
IDL module names, SNMP specific IDL interfaces and SNMP specific variables
among all IDL interfaces in the IFR. The view one gets from the SMI repository is an
SNMP specific view based on the information in the IFR. One can use the SMI
repository to query about OID of a variable.

5.2 The SNMPMgmt Module

The SNMPMgmt module comprises a collection of interfaces that together define a
basic set of services for developing SNMP Management Applications based on
CORBA. This module contains the following interfaces:

® TheProxyAgent interface

® The SmiEntry interface

® The GenericFactory interfaces
¢ The NamingContext interface

® The SmiTablelterator andGetNextEntrylterator interfaces

#ifndef _SNMPMGMT _IDL_
#define _SNMPMGMT _IDL_

#include <orb.idl>
#include <CosPropertyService.idl>

CORBA/TMN Interworking V1.0 August 2000

#include <ASN1Types.idl>
#include <JIDM.idI>

#pragma prefix “jidm.org”

module SNMPMgmt {
const string ManagementDomainKeyld = “Internet Management”;
const string ManagementDomainKeyKind = “XSM environment”;
const string ProtocolVer = “Protocol Version”;
const string TransportProtocol = “Transport Protocol”;
const string DomainTitle = “Domain Title”;
const string TransportAddress = “Transport Address”;
const string TransportPort = “Transport Port”;
const string CommunityName = “Community Name”;
const string ContextEnginelD = “Context EnginelD”;
const string ContextName = “Context Name”;

/I Redefinition of types

typedef CORBA::ScopedName ScopedName;

typedef CosLifeCycle::Criteria Criteria;

typedef CosPropertyService::PropertyName VarName;
typedef CosPropertyService::PropertyNames VarNamelList;
typedef CosPropertyService::Property NameValuePair;
typedef CosPropertyService::Properties NVPairList;

typedef ASN1_Obijectldentifier Entrylndex;
typedef sequence < Entrylndex > EntrylndexList;

typedef string TAddress; // Transport address of an agent
enum ProtocolVersion { snmpV1, snmpV2c, snmpV3 };

Il SNMP Protocol specific exceptions

exception ProtocolError {
ASNL1_Integer error_status;
ASN1_Integer error_index;

h

exception MultVarProtocolError {
ASNL1_Integer error_status;
VarNamelList error_var_list;
NVPairList result_var_list;

J

/I SMI information module specific exceptions.
exception NoSuchSmiModule { };

exception NoSuchSmiEntry { };

exception NoSuchVariable { };

/I MIB entry specific exceptions
exception NoSuchHost { };
exception NoSuchObject { };
exception EndOfMibView { };
exception AlreadyExists { };

CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000

interface SmiEntry : CosLifeCycle::LifeCycleObject,
CosPropertyService::PropertySet {
I the value of entry_name is always “0” for the groups.
readonly attribute ASN1_Objectldentifier entry_name;
b
typedef sequence < SmiEntry > SmiEntryList;

interface SmiTablelterator {
boolean next_one_entry(out SmiEntry smi_entry);
boolean next_n_entries (
in unsigned long how_many,
out SmiEntryList smi_entry_list
)i
void destroy();
b

interface GenericFactory : CosLifeCycle::GenericFactory {
SmiEntry create_mib_entry (
in ScopedName t_entry_type,
in ASN1_Objectldentifier entry_index,
in Criteria create_criteria
) raises (NoSuchSmiEntry, AlreadyEXxists);

SmiEntry create_mib_entry_with_auto_name (
in ScopedName t_entry_type,
in Criteria create_criteria

) raises (NoSuchSmiEntry, AlreadyEXxists);

J

interface GetNextEntrylterator {
/I Get the next entry index according to lexical ordering rule
/I of SNMP OIDs -- follows SNMP get-next traversal rule
boolean next_one_entry (out Entrylndex entry_index);
boolean next_n_entries (
in unsigned long how_many,
out EntryIindexList entry_index_list
)i
void destroy();
h

/l NamingContext extends CosNaming::NamingContext to provide
/l navigating the SNMP name space in the lexicographic order
/I and SNMP specific name and context resolution
interface NamingContext : CosNaming::NamingContext {
string get_next_entry(
in string entry_name
) raises (InvalidName, NotFound, CannotProceed);

GetNextEntrylterator get_next_entry_iterator(
in string initial_entry_name
) raises (InvalidName, NotFound);

J

interface NamingDirectory : NamingContext {
NamingContext resolve_domain_context(

CORBA/TMN Interworking V1.0 August 2000

J

in TAddress p_host_name
) raises (NoSuchHost, CannotProceed, InvalidName,
NotFound);

NamingContext resolve_smi_module(
in TAddress p_host_name,
in string p_smi_module_name
) raises (NoSuchHost, NoSuchSmiModule, InvalidName,
NotFound);

NamingContext resolve_smi_entry(
in TAddress p_host_name,
in ScopedName p_entry_type

) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed,
InvalidName, NotFound);

SmiEntry resolve_mib_entry(
in TAddress p_host_name,
in ScopedName p_entry_type,
in string p_entry_index
) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed,
InvalidName, NotFound);

void list_smi_entries(
in TAddress p_host_name,
in ScopedName p_entry_type,
in unsigned long how_many,
out SmiEntryList out_list,
out SmiTablelterator table_iterator
) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed,
InvalidName, NotFound);

/I ProxyAgent

interface ProxyAgent : JIDM::ProxyAgent {

readonly attribute TAddress host_name;

ASN1_Any get_a_variable (
in TAddress p_host_name,
in ScopedName p_var_scoped_name,
in Entrylndex p_var_index
) raises (NoSuchHost, NoSuchVariable, NoSuchObject,
ProtocolError);

NVPairList get_variables (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in VarNameList p_var_name_list,
in Entrylndex p_var_index
) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
MultVarProtocolError);

void set_a_variable (

CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000

5-5

in TAddress p_host_name,
in ScopedName p_var_scoped_name,
in Entrylndex p_var_index,
in ASN1_Any p_var_new_value
) raises (NoSuchHost, NoSuchVariable, NoSuchObject,
ProtocolError);

void set_variables (
in TAddress p_host_name,

in ScopedName p_entry_scoped_name,

in NVPairList p_var_nvp_list,
in Entrylndex p_var_index

) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
MultVarProtocolError);

void list_mib_entries(
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in long p_how_many,
out EntryIndexList p_entry_index_list,
out GetNextEntrylterator p_entry_name_list_itr
) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
ProtocolError);
boolean mib_entry_exists (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name
) raises (NoSuchHost, NoSuchSmiEntry, ProtocolError);

boolean is_mib_module_supported (
in TAddress p_host_name,
in string p_smi_module_name
) raises (NoSuchHost, NoSuchSmiModule, ProtocolError);

b
struct EntryVarBind {
ScopedName entry_name; // IDL scoped name of the interface
for table-entry
string entry_index; // row index of an entry in the form of
Objectld string
CosPropertyService::Properties nvp_list;
h

typedef sequence<EntryVarBind> EntryVarBindList;
typedef EntryVarBindList NotificationVariableList;
typedef EntryVarBindList InformVariableList;

struct NotificationInfo { // to be sent when using untyped event
channel
CosNaming::Name src_entry_name;
ScopedName event_type;
ASN1_GeneralizedTime event_time;
any notification_info;
h
struct Informinfo { // to be sent when using untyped event channel
CosNaming::Name src_obj_name;

CORBA/TMN Interworking V1.0 August 2000

J

InformVariableList inform_info;

interface Notifications {

J

void snmp_notification (
in CosNaming::Name src_entry_name,
in ScopedName event_type,
in ASN1_GeneralizedTime event_time,
in any notification_info

)i

void snmp_inform (
in CosNaming::Name src_entry_name,
in InformVariableList inform_variables

);

void snmp_report (
in CosNaming::Name src_entry_name,
in InformVariableList report_variables

);

interface PullNotifications {

boolean try_snmp_notification (
out CosNaming::Name src_entry_name,
out ScopedName event_type,
out ASN1_GeneralizedTime event_time,
out any notification_info

);

void pull_snmp_notification (
out CosNaming::Name src_entry_name,
out ScopedName event_type,
out ASN1_GeneralizedTime event_time,
out any notification_info

);

boolean try_snmp_inform (
out CosNaming::Name src_entry_name,
out InformVariableList inform_variables

);

void pull_snmp_inform (
out CosNaming::Name src_entry_name,
out InformVariableList inform_variables

);

boolean try_snmp_report (
out CosNaming::Name src_entry_name,
out InformVariableList report_variables
)i
void pull_snmp_report (

out CosNaming::Name src_entry_name,
out InformVariableList report_variables

CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000

5-7

J

#endif /¥ _SNMPMGMT _IDL_ */

5.2.1 The SNMPMgmt::ProxyAgent Interface

CORBA manager objects that require access to managed objects that are members of
some SNMP managed object domain must establish a connection with that domain.

As a result of establishing the connection,ShiMPMgmt::ProxyAgent object is
created SNMP::ProxyAgent objects export thdIDM::ProxyAgent interface and
support additional operations that are specific to SNMP Management.

The SNMPMgmt::ProxyAgent provides a generic and version independent SNMP
MIB based query interface, that encapsulates the SNMP protocol specific behavior.

/I ProxyAgent

interface ProxyAgent : JIDM::ProxyAgent {
readonly attribute TAddress host_name;

ASN1_Any get_a_variable (
in TAddress p_host_name,
in ScopedName p_var_scoped_name,
in Entrylndex p_var_index
) raises (NoSuchHost, NoSuchVariable, NoSuchObject,
ProtocolError);

NVPairList get_variables (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in VarNameList p_var_name_list,
in Entrylndex p_var_index
) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
MultVarProtocolError);

void set_a_variable (
in TAddress p_host_name,
in ScopedName p_var_scoped_name,
in Entrylndex p_var_index,
in ASN1_Any p_var_new_value
) raises (NoSuchHost, NoSuchVariable, NoSuchObject,
ProtocolError);

void set_variables (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in NVPairList p_var_nvp_list,
in Entrylndex p_var_index
) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
MultVarProtocolError);

5-8 CORBA/TMN Interworking V1.0 August 2000

void set_variables (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in NVPairList p_var_nvp_list,
in Entrylndex p_var_index
) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
MultVarProtocolError);

void list_mib_entries(
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in long p_how_many,
out EntryindexList p_entry_index_list,
out GetNextEntrylterator p_entry_name_list_itr
) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
ProtocolError);

boolean is_mib_entry_exist (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name
) raises (NoSuchHost, NoSuchSmiEntry, ProtocolError);

boolean is_mib_module_supported (
in TAddress p_host_name,
in string p_smi_module_name
) raises (NoSuchHost, NoSuchSmiModule, ProtocolError);

Connections are established by means of invokingatitess_domain operation
exposed by a roatIDM::ProxyAgentFinder object as explained in Section 2.1.4,

“The JIDM::ProxyAgentFinder Interface,” on page 2-11. The value associated with the
“XSM environment” Key parameter passed to #teess_domain operation is

Internet Management . Note that theaccess_domain operation returns a reference

to aJIDM::ProxyAgent interface. If the client wants to get visibility of the specific
operations defined for th@eNMPMgmt::ProxyAgent interface, this reference must

be narrowed.

Table 5-1 presents the names and meaning for criteria that can be passed in the
invocation to theaccess_domain operation when trying to access an SNMP
managed domain. While the domain title criterion is mandatory, the rest of criteria
components are optional.

Table 5-1 SNMPMgmt conventions for proxy agent finding criteria

criterion name type of value meaning

“domain title” TAddress Transport Address associated to the
managed object domain for which access
is requested. The wildcard address (“*”)
allowed.

n

CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-9

5-10

criterion name

type of value

meaning

“transport protocol”

string

Transport protocol used to access the
managed domain. Possible values are
“UDP”, “IPX", etc. If not present, “UDP”
is used as default. The value of this
criterion determines the format of the
TAddress used for the “domain title”
criterion.

“transport port”

any

Transport protocol dependent access
point. If not present, (unsigned short)16
is used as default (corresponding to the
default UDP port for SNMP).

“protocol version”

SNMPMgmt::ProtocolVersion

SNMP protocol version to be used to
access the managed domain. If not
specified, snmpV1 is used as default.

“controller object”

JIDM::ProxyAgentController

reference associated to a
JIDM::ProxyAgentController object

registered by the manager (OPTIONAL).

“‘community name”

string

Information to be used as the commun
name to be sent in the SNMP PDUs. On
valid for snmpV1 and snmpV2c. If not
present, “public” is used (OPTIONAL).

“context engine id”

string

Only valid for snmpV3. Consult SNMP
v3 documentation for more information
(OPTIONAL).

“context name”

string

Only valid for snmpV3. Consult SNMP
v3 documentation for more information
(OPTIONAL).

ity
ly

The TAddress type used as domain title follows th&ddress Textual-Convention
for transport service addresses defined in the SNMPv2-TC module. For the UDP

domain (default case), thiAddress follows the 4+2 octets format. The format of the
TAddress string for UDP domain is as followsiP-Address>[:<Udp-port>] . The
<IP-Address> represent the stringified value of first 4 octets in DNS format or dotted
number format. TheUdp-port> represents the integer value of last 2 bytes.

Semantics of the domain title and controller object parameters were specified in
Section 2.1.4, “The JIDM::ProxyAgentFinder Interface,” on page 2-11. If the domain

title specified is the wildcard (“*"), then a genelSiNMPMgmt::ProxyAgent

is returned, that would be able to interact with multiple SNMP agents.

object

The criteria, in the case of SNMP Systems Management Reference model, may include
additional parameters, namely:

CORBA/TMN Interworking V1.0

August 2000

5

* Transport and protocol specifications, carrying information on the type of transport
protocol, the protocol access point (port), and the version of SNMP required to
communicate with the managed domain.

®* Protocol dependent security related criteria.

SinceSNMPMgmt::ProxyAgent objects arelIDM::ProxyAgent objects, they
provide the means by which CORBA manager objects are able to obtain references to:

® An initial CosLifeCycle::FactoryFinder object located at the OSI managed
object domain.

® An initial CosNaming::NamingContext object located at the OSI managed
object domain.

Invoking thefind_factories operation exposed by the initial
CoslLifeCycle::FactoryFinder object, CORBA manager objects may find factories
that enable creation of new table entries in the SNMP managed object domain.

Invoking theresolve operation exposed by the init@bsNaming::NamingContext
object, CORBA manager objects may obtain CORBA object references to existing
members of the SNMPI managed object domain.

Once a CORBA manager object obtains a CORBA object reference associated to an
SNMP managed object, it can invoke operations exposed by the object. It will do so by
means of using the standard ORB services defin€ZldRBA The Common Object
Request Broker: Architecture and Specification:

® the Dynamic Invocation Interface (I} or

® |DL stubs generated from definitions in OMG IDL of interfaces exported by the
object (which might have been generated from SNMP definitions according to
XoJIDM (see “[XoJIDM] Inter Domain Management: Specification Translation”
mentioned in Appendix A).

5.2.1.1 Description of the ProxyAgent operations

The get_domain_factory_finder operation

The get_domain_factory finder operation obtains a reference to the initial
CoslLifeCycle::FactoryFinder object located at the domain being accessed through
an SNMPMgmt::ProxyAgent object. As already explained in Section 2.1.2, “The
JIDM::ProxyAgent Interface,” on page 2-4, CORBA manager objects can locate
appropriate managed object factories by means of invokinfjritiefactories

operation exposed by this initi@losLifeCycle::FactoryFinder object.

The space of keys established for SNMP Management environments is described in
Table 5-2.

CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-11

5-12

Table 5-2 SNMPMgmt conventions for factory finder keys

id field kind field meaning

fully scoped name of| “object interface” Find factories that create objects supporting the
object interface named interface.

fully scoped name of} “factory interface” Find factories supporting the named factory
factory interface interface.

CORBA Managers can create managed objects either using operations exposed by
specific factories whose interfaces are derived from specific SMI modules or by using
operations exposed by generic factories.

In respect to generic factories, one (or several) of the three following scenarios may be
supported:

1. The standar€osLifeCycle::GenericFactory interface is used.
2. TheSNMPMgmt::GenericFactory interface is used.

3. One of the standard factory interfaces defined in SYSMANfacilties (see
“[SYSMANfacilities] Systems Management: Common Management Facilities,
Volume |.” mentioned in Appendix A) is used.

In any case, the factory object would be responsible for checking if the new managed
object can be contained in the designated domain.

With these considerations in mind, the alternatives for finding factories in SNMP
Systems Management environments are more precisely described as follows:

®* Only the name of the object interface is specified.

Here, it is implicitly assumed that there is a specific factory interface associated
with the managed object interface. CORBA managers know the name and
operations associated with the factory in advance so that they can properly narrow
and use the reference returned by fihd_factories operation.

®* Only the name of the object factory interface is specified.

Here, references returned by tived _factories operation can be narrowed to the

IDL interface whose name has been specified. The CORBA manager object who
invoked the operation knows the signature and semantics of operations supported by
the designated object factory interface.

In case objects are created thro@psLifeCycle::GenericFactory objects, th&key

value passed in the invocation to ttreate_object operation would be the name of

the interface exported by the new MIB table entry. Tnigeria value would be a
sequence of <name, value> pairs, which would correspond to the rest of the arguments
needed for creation of the SMI entry as specified in Table 5-3 (hame of the SMI entry
in string or name-value-pair list format, initial attribute list, etc).

CORBA/TMN Interworking V1.0 August 2000

Table 5-3 SNMPMgmt conventions for managed object creation criteria

criterion name

type of value

interpretation

“managed object interface

CORBA::ScopedName

Name of interface exported by
new SMI entry.

the

“managed object name”

string

Naming parameter based on in
part of objectID of a variable,
given as a string. Concatenated
index values in dotted number
form. The information in “name”
and “index variables” are
interchangeable.

dex

“index variables”

CosPropertyService::Propertie

S

Naming parameter based on
variables, given as a sequence of
name-value pairs. Alternative to
“managed object name” criterion.

ndex

“initialization”

CosPropertyService::Properties

When this parameter is supplie
contains a set of attribute
identifiers and values to be
assigned to the new SMI entry.

The get_domain_naming_context operation

The get_domain_naming_context
CosNaming::NamingContext
an SNMPMgmt::ProxyAgent

objects.

operation obtains a reference to the initial

object located at the domain being accessed through
object. The returne@osNaming::NamingContext
reference can be narrowed to ®iIMPMgmt::NamingContext
the SNMPMgmt::NamingDirectory
SNMPMgmt::ProxyAgent

interface, or even t

interface for wildcard

(0]

As already explained in Section 2.1.2, “The JIDM::ProxyAgent Interface,” on page 2-4,
CORBA manager objects can obtain CORBA object references to members of a
managed object domain as a result of invokingrédsslve operation exposed by the
initial CosNaming::NamingContext object located at the domain. Tresolve
operation may also be used to obtain referend@oNaming::NamingContext

objects subordinated to the initi@bsNaming::NamingContext object.

Managed objects will be named according to the SNMP Naming Principles.

The type ofSNMPMgmt::ProxyAgent created depends on the criteria used when
access to the domain was solicited. In particular, if access to a “wildcard” ProxyAgent
was granted, then the initi@losNaming::NamingContext object in the managed
domain must support resolution using ffAeddress host_name parameters.

However, if theProxyAgent was not generic, then the use of this parameter with a
value other than the empty string (““) will raise the standsdfd PERMISSION
exception.

CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-13

The destroy operation

Any SNMPMgmt::ProxyAgent object exposes theestroy operation, which
disposes of the object. Disposing BNMPMgmt::ProxyAgent object means freeing
resources used to maintain the associated connection.

Destruction of arBNMPMgmt::ProxyAgent object can take place either gracefully

or non-gracefully, as described in Section 2.1.2, “The JIDM::ProxyAgent Interface,” on
page 2-4. A reference toJédDM::ProxyAgentController object may be passed at the
manager side, as described in Section 2.1.3, “The JIDM::ProxyAgentController
Interface,” on page 2-9.

SNMP operations

The SNMP protocol version independ@&NMPMgmt::ProxyAgent provides a set of
operations that are convenient to use in CORBA domain to browse SNMP MIB in
variable-specific as well as table-oriented ways. Besides, it extends the
JIDM::ProxyAgent interface to support SNMP-specific management operations.

All SNMP operations carry p_host_name parameter of typdAddress . This

parameter may only be used in “wildcardfoxyAgent s, and will contain the

transport specific address of the agent to be contacted for this particular management
operation. In case of “non-wildcardProxyAgent s, the agent is specified at the time

of creation of thé’roxyAgent object (specified in the criteria passed to the
access_domain call), and therefore this parameter must be the empty string (**); if a
different value is used, then the standtf@ PERMISSION exception is raised.

Type definitions and Exceptions

TheVarNamelList andNameValuePair types redefine the
CosPropertyService::PropertyNames andCosPropertyService::Property
respectively such that type name reflects variable centric approach of SNMP.

The Entrylndex type represents the string for instance information of a conceptual
row of a table. Th&ntrylndex string represents the stringfied (in dotted number
form) version of sequence of oids that represents the instance information.
EntryindexListtype represent a set of entry indexes.

The ProtocolError exception is raised to inform the client application about the
SNMP protocol related errors. SNMP errors are indicated by the
ProtocolError.error_status field. An application will map the SNMP related error
to the corresponding CORBA Exception as shown in Table 5-4.

Table 5-4 Mapping of SNMP Errors to IDL Exceptions

SNMP ERROR IDL Exception
noError NO_EXCEPTION
tooBig IMP_LIMIT
noSuchName NO_IMPLEMENT
badValue BAD_PARAM

5-14 CORBA/TMN Interworking V1.0 August 2000

SNMP ERROR IDL Exception
readonly BAD_OPERATION
genkrr INTERNAL
noAccess NO_PERMISSION
wrongType BAD_TYPECODE
wrongLength MARSHAL
wrongEncoding MARSHAL
wrongValue BAD_PARAM
noCreation CoslLifeCycle::InvalidCriteria
inconsistentValue BAD_PARAM
resourceUnavilable NO_RESOURCE
commitFailed INTERNAL
undoFailed INTERNAL

The MultVarProtocolError exception is raised during multiple value get-set method.
The error_status field follows the same mapping used férotocolError . The
result_var_list field contains the returned variable list. Téreor_var_list field
contains the names of the variables that are not part obtudt _var_list .

The NoSuchSmiModule exception is raised if an SNMP agent does not support the
associated MIB module. THdoSuchSmiEntry exception is raised if an SNMP

agent does not support a specific MIB table or a group.N&8uchVariable

exception is raised if the SNMP agent does not support the specific SMI variable. The
NoSuchHost exception is raised if the host cannot be found in the host database. The
NoSuchObject exception is raised if theoSuchObject element is selected in the
value part of th&/arBind returned result. ThBloSuchlnstance exception is raised

if the noSuchinstance element is selected in the value part of #aeBind returned
result.

The get_a_variable operation

The ProxyAgent::get_a_variable() operation returns the value of an SNMP variable
(tabular or non-tabular) given the name of the variable in IDL scoped foihatA ,
whereM is the SMI information moduld,is the interface identifier of the table-
entry/group for the variable, amd is the identifier of the attribute for the variable),
and the index information in ASN.1 Objectldentifier format.

The p_var_scoped_name is the IDL scoped name of the variable in the form of
M::I::A , whereM is the SMI information moduld,is the interface identifier of the
table-entry/group for the variable, aAdis the identifier of the attribute for the
variable.

CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-15

5-16

The p_var_index is the row index of the variable in the string form.

The returned value is of typeSN1_Any (typedef of CORBA::Any) and the
TypeCode of the returned value is set according to the Specification Translation
mapped IDL type of the attribute. In other words, TypeCode of the returned value
is equal to the value returned by tiype() operation of théttributeDef for M::1::A

The operation raisddoSuchVariable exception if the variable name in
p_var_scoped_name does not exist. The operation raif¢éeSuchObject

exception if the variable with given instance information does not exist at the remote
host. For all other cases the operation raises SNMP-specific protocol error using
ProtocolError exception.

The get_variables operation

The ProxyAgent::get_variables() operation returns a list of values of an SNMP
variable (tabular or non-tabular) given the IDL scoped name of the SMI table-
entry/group (in the form oM::l, whereM is the SMI information moduld,is the
interface identifier of the table-entry/group), IDL identifier of the variables, and the
index information of a specific entry in ASN.1 Objectldentifier format.

The returned value is in the form of Name-Value pair list where names are the
identifiers of the variables and values are of tagpg. The TypeCode of the values of
the variables are set according to the mapped IDL type of the corresponding attributes.

The operation raiseoSuchSmiEntry exception if the interface name in
p_entry_scoped_name does not exist in the interface repository. For all other cases
the operation raisaslultVarProtocolError exception by assigning the SNMP-
specific protocol error to therror_status field.

The set_a_variable and set_variables operations

The ProxyAgent::set_a_variable() andProxyAgent::set_variables() operations

are defined to modify the values of variables within MIB entries. The parameters are
similar to the correspondinget operations except that the new value is also provided
as a parameter.

The list_mib_entries operation

The ProxyAgent:list_ mib_entries interface provides access to the instance names
of the entries of a certain table. This operation is designed to handle very large tables
through the use of an iterator interface, caletNextEntrylterator (see

Section 5.2.8, “The SNMPMgmt::GetNextEntrylterator Interface,” on page 5-26).

The GetNextEntrylterator interface is defined to provide information about the
indexes (names) of each row of a table. PhexyAgentt::list_mib_entries()

operation may be implemented using GET-BULK (GET-NEXT for SNMPv1). The
GetNextEntrylterator interface provides the indexes of the entries of the MIB tables
in lexicographical order.

CORBA/TMN Interworking V1.0 August 2000

5

The p_entry_scoped_name is the IDL scoped name of the variable in the form of
M::I, whereM is the SMI information module, ards the interface identifier of the
table-entry/groupp_how_many specifies the maximum number of entry indexes to
be returned irp_entry_index_list .

If there are more entry indexes to be returned, then a reference to a
GetNextEntrylterator object is returned; otherwise, a null reference is returned. The
operation raiseBloSuchSmiEntry exception if the interface name in
p_entry_scoped_name does not exist. For all other cases the operation raises
ProtocolError exception.

The mib_entry_exists operation

The mib_entry_exists() operation checks if there exists any entry for a specific
(p_entry_scoped_name) group/table at the remote agent. It returns TRUE if there is
at least one entry gf_entry_scoped_name table-entry/group and returns FALSE if
there is none. Thep_entry_scoped_name is the IDL scoped name of the table-
entry/group in the fornM::I.

The is_mib_module_supported operation

Theis_mib_module_supported() operation returns TRUE if any group or table in
the module specified by_smi_module_name exists in the remote host. The
p_smi_module_name provides the identifier of the SMI module in IDL.

5.2.2 The SNMPMgmt::SmiEntry interface

The SNMPMgmt::SmiEntry interface is the base IDL interface for all IDL interfaces
of SMI groups and table-entries (possibly generated via the XoJIDM Specification
Translation algorithm for SNMP to IDL translation)..

interface SmiEntry : CosLifeCycle::LifeCycleObject, CosPropertyService::PropertySet {
/ the value of entry_name is always “0” for the groups.
readonly attribute ASN1_Objectldentifier entry_name;

1ypedef sequence < SmiEntry > SmiEntryList;
The SmiEntry interface inherits fronCosLifeCycle::LifeCycleObject and
CosPropertyService::PropertySet interfaces. Th6aNMPMgmt::SmiEntry
interface has a read-only attribute calltry name that contains the value of the
index(es) (instance information part of the object-id of the group or table entry) of the
corresponding variable or table entry. Tév@ry _name attribute always contains “0”
for SMI entries related to groups. Thatry_name of a table-entry is known during
the create time and set by the factory objects.

LifeCycle operations

The SNMPMgmt::SmiEntry interface inherits from the standard
CosLifeCycle::LifeCycleObject interface. This means that every SMI entry exposes
the operations defined in ti@osLifeCycle::LifeCycleObject interface. Specifically,
the following semantics for the operations is specified:

CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-17

5-18

®* Thecopy operation is not appropriate for SNMP management environments, so if
invoked it should raise thlotCopyable exception.

® Themove operation is not appropriate for SNMP management environments, so if
invoked it should raise thotMovable exception.

®* Theremove operation deletes the SmiEntry from the SNMP managed domain.
Note that deletion of an SMI entry might be forbidden (as is the case for SNMP
groups, and certain table entries). If, for whatever reason, the object could not be
destroyed, thiNotRemovable exception will be raised.

PropertySet operations

For SNMP management, each SNMP variable within a group or a table entry is always
represented as an IDL attribute. In order to manipulate these attributes in groups, the
CORBA Property Service is used.

The CosPropertyService::PropertySet interface is used to get the values of one or
more variables in a group or in a row of a table with a single method invocation.

The property names to be used when invokPngpertySet operations are the simple
unscoped names of the attributes that are to be accessed. The behavior of all operation:
is the same as specified in the Property Service Specification.

Specifically, it is possible to:

® Get the value of one, several, or all SNMP variables in an SNMP group or table
entry by using theget_property value() , get_properties() , and
get_all_properties() operations, respectively.

® Set the value of one or several SNMP variables in an SNMP group or table entry by
using thedefine_property() anddefine_properties() operations, respectively.

Note that this allows manipulation of multiple properties within a single SNMP group
or table entry. It is not possible to access multiple table entries and/or groups with a
single method invocation.

Since the properties based on SNMP variables are statically defined, the dynamic
deletion of property is not allowed, so all the delete operations d®rtymertySet
interface (lelete_property() , delete_properties() , anddelete_all_properties())
should return the standaMiO_PERMISSION exception.

5.2.3 The SNMPMgmt::SmiTablelterator Interface

For each SMI table within an SMI group, there is an operation to retrieve the
information contained in the table. These operations return an
SNMPMgmt::SmiTablelterator object reference, to allow the traversal of the
information within the table.

interface SmiTablelterator {
boolean next_one_entry(out SmiEntry smi_entry);
boolean next_n_entries (
in unsigned long how_many,

CORBA/TMN Interworking V1.0 August 2000

out SmiEntryList smi_entry_list

void destroy();
h

The SmiTablelterator interface allows a client application to traverse a MIB table in
the lexicographic order of the names (as defined in SNMP GET-NEXT) of its entries
and returns the reference to each table entry. A reference3mamablelterator is
obtained as a result of the invocation of #i>::<G>::get_<T>() operation, where
<M>::<G> represents the IDL scoped name of a group<arw represents the

identifier of the table.

The next_one_entry() operation retrieves the object reference to the next entry of a

specific table following the SNMP get-next traversal order. The returned reference is
put in thesmi_entry output parameter. If there are no more entries, then the operation
returns FALSE; otherwise, it returns TRUE.

The next_n_entries() operation retrieves the references to a set of entries of a
specific table following the SNMP get-next traversal order. The number of entries to be
retrieved is specified by theow_many parameter and the returned entries are placed
in thesmi_entry_list output parameter. If there are no more entries, then the
operation returns FALSE; otherwise, it returns TRUE.

The destroy() operation destroys the iterator object associated with the reference.

5.2.4 The SNMPMgmt::GenericFactory Interface

In SNMPv2, there is a data type (Textual Convention) cdledStatus , for creation

of a row whose value defines various stages of life-cycle of an entry in a table. A table
that supports entry creation by managers must include a variable dRoygetatus .

When a manager wants to create a table entry, it must pass the proper value of
RowsStatus variable in addition to all the variables with read-create access and the
index variables in the SNMPv2 SET message. (Please see the section 7.1.12.1. in
RFC1902).

These operations are mapped to create operations in a factory interface in CORBA
domain. A factory interface can be defined for each module and there will be one
create_<smi_entry type>() operation per IDL interface generated for group/table-
entry from the SNMP MIB module.

interface GenericFactory : CosLifeCycle::GenericFactory {
SmiEntry create_mib_entry (
in ScopedName t_entry_type,
in ASN1_Objectldentifier entry_index,
in Criteria create_criteria
) raises (NoSuchSmiEntry, AlreadyEXxists);

SmiEntry create_mib_entry_with_auto_name (
in ScopedName t_entry_type,
in Criteria create_criteria

) raises (NoSuchSmiEntry, AlreadyEXxists);

CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-19

5-20

The GenericFactory is an extension of th€osLifeCycle::GenericFactory
interface defined in the CORBA Life Cycle Service specification that provides SNMP
SMI specific generic life-cycle operations.

The create_mib_entry() operation creates a MIB entry that supports the interface
specified in the_entry_type parameter and binds the name (given by the
entry_ins_name parameter) with the reference to the object within the scope of the
naming-context for the given interface typeentry type). The operation returns the
object reference of the newly created object. Tlentry _type parameter specifies

the scoped name (in the form if:1) of the IDL interface for an SMI based group or
table-entry.

Theentry_ins_name parameter specifies the instance information of the given MIB
entry. The instance information is the stringified form of concatenated values of the
index variables of the given entry. Theeate_criteria parameter specifies the values

of a set of criterion in the form of a name-value-pair list. The allowed criteria are as
defined in Table 5-5 and only the “initialization” criterion is used with this operation.

Table 5-5 Criteria for SNMP Specific Life Cycle Service

criterion name type of value meaning

“entry name”

string Naming parameter based on index part of
objectID of a variable, given as a string.
Concatenated index values in dotted
number form. Alternative to “index
variables” criterion.

“index variables” CosPropertyService::Properties Naming parameter based on index

variables, given as a sequence of name-
value pairs. Alternative to “entry name”

criterion.

“initialization” CosPropertyService::Properties When this parameter is supplied, it contains
a set of attribute identifiers and values to be
assigned to the new SMI entry.

“domain title” SNMPMgmt:: TAddress Agent location where new entry is to be

created (cannot be wildcard).

Thecreate_mib_entry() operation raises thdoFactory exception if a type-specific
factory cannot be found. The operation raibagalidCriteria if the any of the

criterion increate_criteria parameter is not a valid one. The operation raises the
CannotMeetCriteria exception if any one of the criteria cannot be met. The
operation raises theosNaming::NamingContext::AlreadyBound exception if

the given name ientry_ins_name is already bound within the scope of the naming-
context for interface type ih entry_type .

The create_mib_entry_with_auto_name () is similar tocreate_mib_entry() but
the name of the newly created object is assigned by the factory object.

CORBA/TMN Interworking V1.0 August 2000

5.2.5 The SNMPMgmt::NamingContext Interface

The main goal of mapping names in SNMP domain to names in CORBA domain is to
standardize the SNMP naming hierarchy (host, variable, index) based on the
NamingContext interfaces of the CORBA naming service. This goal is achieved in
two ways: by standardizing the MIB tree hierarchy and by extending the
NamingContext interface to list its entries in the lexicographic order of the names.

/l NamingContext extends CosNaming::NamingContext to provide
/l navigating the SNMP name space in the lexicographic order
/I and SNMP specific name and context resolution

interface NamingContext : CosNaming::NamingContext {
string get_next_entry(

in string entry_name
) raises (InvalidName, NotFound, CannotProceed);

GetNextEntrylterator get_next_entry_iterator(
in string initial_entry_name
) raises (InvalidName, NotFound);

J

The SNMPMgmt::NamingContext extendsCosNaming::NamingContext to
provide the navigation capability of the SNMP name space in the lexicographic order,
as expected by the GET-NEXT command.

The get_next_entry() returns the name of the lexicographically next entry of that
given byentry_name . If entry_name is a zero-length string, then the first entry is
returned. If there are no more entries afterehy_name , then the
CannotProceed exception is raised. THavalidName andNotFound exceptions
are raised based on the response fronrekelve() operation usingntry _name .

The get_next_entry_iterator() returns an Iterator (of type
SNMPMgmt::GetNextEntrylterator) thatconforms to the SNMP get-next
lexicographic ordering. The returned iterator is set to point to the entry given by
initial_entry_name . A zero-length string (“*) foiinitial_entry _name will set the
returned iterator at the beginning of list of entries in the naming context.

5.2.6 Naming MIB Entries Using SNMP Names in CORBA Domain

5.2.6.1

This section describes how to name entries of SNMP MIB in CORBA domain using
the INDEX variables and access the MIB entries based on their corresponding SNMP
names and finally retrieve the values of SNMP variables.

Overview of Naming of Variables in SNMP Domains

In SNMP domain the names are associated with the instances of variables; and the
instances of tabular/non-tabular variables are uniquely addressable within the scope of
a host IP address. The notion of table-entries are conceptualized by assigning the same
index information to all the instances of variables of the same table entry. From a
manager’s perspective, entries of the SNMP MIBs are implicitly arranged in the

CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-21

5-22

following naming hierarchy: Host, variable OID, and row index. Since SNMP MIBs

are agent location dependent the SNMP names are also location dependent. For non-
tabular variables of group, the name is always zero (“0”) and for rows of tabular
variable, the instance information depends on the INDEX clause of the corresponding
table.

5.2.6.2 Building of Global Name Tree of SNMP MIBs using CORBA Naming

Service

To map names of variable instances in SNMP domain to attributes of MIB entries
CORBA domain, we need to map the names of variable within the scope of a host to
hierarchical name tree based on CORBA Naming Service specification.

The hierarchy of the nodes of the name tree is as follows: SNMP-MIB-ROOT (global
root of all SNMP MIBSs), host name, MIB information module name, IDL interface
names for table-entries/group, and finally the row indices (leaf nodes).

The nodes for root, host, module, and the table support the
SNMPMgmt::NamingContext interface. The references to MIB entries are bound
with the nodes for table-entries/groups using their names (row indices).

The SNMP names in string form are always mapped tadthgart of a
CosNaming::NameComponent . Thekind part of aNameComponent is always
initialized with a zero-length string.

The root of the global MIB tree is registered with a well-defined name, “SNMP-MIB-
ROOT,” within the scope of some naming-context in the CORBA name space.

The nodes for the hosts (domains) of SNMP MIBs are represented by a naming-context
(within the scope of the root MIB node, “SNMP-MIB-ROOT"). Since a host name can

be represented in many ways (ip-address, DNS name, many aliases of host name), we
need to define one name that can be used to unambiguously identify the nodes for the
host under MIB. The default scheme for naming a node for host is DNS based name.

If the DNS based naming is not supported, then IP address (e.g., 135.180.160.16) can
be used. Since the CORBA naming service allows name aliasing, a compliant
implementation can support both DNS based naming and Ip-address based naming by
registering the reference of nodes for a host haming-context using both names. Since
the CORBA name-component has two parts: id and kind, the id of part is initialized by
the host name and the kind part is initialized with zero-length string.

CORBA/TMN Interworking V1.0 August 2000

syste

uon

129.180.160.1

RFC1213

“0” “1” 5‘351 119911

SNMP-MIB-ROOT

.160.[L;ost-2.com host-n.com

FIZ_MIB RMON_MIB

evalEntry

ifEntry

’ u3n u99n

[] Node for Host Name |:| Node for SMI Modules
O Node for SMI Group <> Node for SMI Table Entry
Name Aliasing ® Bounded MIB entries

Figure 5-1 SNMP Naming hierarchy

A compliant implementation of the SNMP Name-Tree can add more nodes between the
root (“SNMP-MIB-ROOT") node and hosts based on the DNS domain hierarchy or IP
subnet as long as name resolution based on full DNS name or IP address returns the
reference to the same naming-context node.

The JIDM::ProxyAgent::get_domain_naming_context() operation will return a
reference to the naming-context at the host-name level for “non-wildcard”
ProxyAgent s, while it will return a reference to the rddamingContext for
“wildcard” ProxyAgent s.

Within the scope of each host (domain), there will be a naming-context for each of the
MIB information modules that are implemented at the host. The naming context
associated with the node for the MIB module is named using the IDL SMI module
identifier.

Within the scope of each MIB information module, there will be a naming-context
based node for each of the IDL interfaces for group, and table entry defined within the
scope of the IDL module. The naming context associated with the nodes for
groups/table-entries are named using the identifier of the corresponding IDL interface.

The entries (instances that support the IDL interfaces obtained by mapping SNMP
MIB) of the MIB implementation are bound within the naming-context for the
corresponding IDL interface. The names of the bounded MIB entries are the instance
information needed to identify all the variables of the row of the conceptual table.

CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-23

5-24

5.2.6.3

For non-tabular variables of group, the name is always zero(“0”) and for rows of
tabular variable, the instance information depends on the INDEX clause of the
corresponding table. The bounded objects are the leaf-object of the SNMP name tree.
To support get-next traversal, the naming-contexts SNMP name is extended to retrieve
the objects in the SNMP lexicography order.

Resolving SNMP names to obtain Object References to Table-
entries/Groups and Support for SNMP GET-NEXT message

The following example describes how to map the SNMP name of an instance of non-
tabular variable of a group to name of the corresponding MIB entry and IDL attribute
in the CORBA domain. Given a non-tabular name in OID form, first we have to
separate the instance information from the variable OID using the largest variable OID
prefix match, as shown in the second line. Next, we derive the OID of the group by
dropping the right-most identifier for the variable (as shown in third line).

evalSlot.0 (=> 1.3.6.1.3.555.2.1.0)

=>1.3.6.1.3.555.2.1, 0

=>1.3.6.1.3.555.2, 0, 1.3.6.1.3.555.2.1

=> FIZ_MIB::eval, 0, FIZ_MIB::eval:evalSlot

=> FIZ_MIB, eval, 0, FIZ_MIB::eval:evalSlot

=><FIZ_MIB, eval, 0>, evalSlot

=> host_nc->resolve(<FIZ_MIB, eval, 0>)->get_property(“evalSlot”)

The OIDs of the group and the variable are then converted to corresponding IDL
scoped names (possibly using tBRMPMIR::Repository interface). Then the IDL
scoped name for the group is split into its module and interface name. Finally, we use
the ordered sequence of module name, interface name, and instance information to
derive a compound name of the MIB entry for the group within the scope of a naming
context for a host. If we know the name of the host in DNS or IP address form, we
know the complete path name of the group within the scope of the well defined root
node, called MIB.

In the following example, we show how to access the value an instaegal8fot.0
(actually represented hy.3.6.1.3.555.2.1.0) to the IDL scoped name of the
corresponding group interfacelZ_MIB::eval) and attribute
(FIZ_MIB::eval::evalSlot) of the interface.

evalStatus.2 (=> 1.3.6.1.3.555.2.2.1.4.2)

=>1.3.6.1.3.555.2.2.1.4, 2

=>1.3.6.1.3.555.2.2.1, 2, 1.3.6.1.3.555.2.2.1.4

=> FIZ_MIB::evalEntry, 2, FIZ_MIB::evalEntry::evalStatus

=> <FIZ_MIB, evalEntry, 2>, evalStatus

=> host_nc->resolve(<FIZ_MIB, evalEntry, 2>)->get_property(“evalStatus”)

The compound name of the object (within the scope of a host) that suppalrts
derived by mapping the fully scoped name of the interface and the instance information
(“0”) to theid part of name-components of the compound name.

CORBA/TMN Interworking V1.0 August 2000

5

Given the compound name, we can get the reference to the MIB entry that represents
the eval group by using theesolve() operation of the host naming context. Then we
can use the resolved object reference to retrieve the value of the variable by invoking
the get operation associated with the attribata|Slot .

The example describes how to map the SNMP name of an instance of tabular variable
of a conceptual table to naming service based names of an MIB entry and the attribute
of the corresponding interface. The example splits the object-id
(1.3.6.1.3.555.2.2.1.4.2) into the OID of the variable

(1.3.6.1.3.555.2.2.1.4) and its instance information (2) by using the largest
prefix match.

Then we derive the OID1(3.6.1.3.555.2.2.1) of the corresponding table-entry

by dropping the last number of the variable OID. Then we obtain the OIDs of table
entry and the variable to corresponding IDL Scoped name of the interface
(FIZ_MIB::evalEntry) and attributg FIZ_MIB::evalEntry::evalStatus),

respectively. Then we split the IDL scoped name of the table-entry into module name
and interface name. Then we use the ordered sequence of the module name, interface
name and the instance information to derive the compound n<ihg MIB,

evalEntry, 2>), within the scope of a host context. This compound name represent the
name of the MIB entry representing the row in the table.

Given the compound name, we can get the reference to the MIB entry by using the
resolve() operation of the host naming context. Then we use the resolved object
reference to retrieve the value of the variable by invokingyiteoperation associated
with the attribute gvalStatus .

5.2.7 The SNMPMgmt::NamingDirectory Interface

The SNMPMgmt::NamingDirectory interface extends
SNMPMgmt::NamingContext to provide the global navigating capability of the
SNMP name space.

interface NamingDirectory : NamingContext {
NamingContext resolve_domain_context(
in TAddress p_host_name
) raises (NoSuchHost, CannotProceed, InvalidName, NotFound);

NamingContext resolve_smi_module(
in TAddress p_host_name,
in string p_smi_module_name
) raises (NoSuchHost, NoSuchSmiModule, InvalidName, NotFound);

NamingContext resolve_smi_entry(
in TAddress p_host_name,
in ScopedName p_entry_type
) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed, InvalidName,
NotFound);

SmiEntry resolve_mib_entry(

in TAddress p_host_name,
in ScopedName p_entry_type,

CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-25

5-26

in string p_entry_index
) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed, InvalidName,
NotFound);

void list_smi_entries(
in TAddress p_host_name,
in ScopedName p_entry_type,
in unsigned long how_many,
out SmiEntryList out_list,
out SmiTablelterator table_iterator
) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed, InvalidName,
NotFound);

J

Theresolve_domain_context() returns the reference to the naming context for the
domain specified by thp_host_name .

Theresolve_smi_module() returns the reference to the naming context for
p_smi_module_name within the scope of naming-context for the domain specified
by p_host_name . Thep_host_name follows the format defined in theAddress
type. Thep_smi_module_name is the MIB module name.

Theresolve_smi_entry context() returns the reference to the naming context for
p_entry_type (which has to be in scoped-name format) within the scope of the
naming-context fop_host_name . p_host_name follows the format defined in the
TAddress type.p_entry_type is in the form ofM::I scoped name.

Theresolve_mib_entry() operation returns the reference to the MIB entry for the
row with index specified bp_entry_name with the scope of naming contexts for
p_host_name andp_entry_type . p_host_name follows the format defined in the
TAddress type. Thep_entry type parameter is in the form &f::I scoped name;
p_entry_index is the instance part of the variables of a conceptual row of a table. For
groups,p_entry_index is always “0.” The returned reference is a reference to the
base SNMP interfac6GNMPMgmt::SmiEntry , and may be narrow casted to the
specific IDL interface for the table entry.

Thelist_mib_entries() operation returns the reference to a list of MIB entries of a
table specified by _entry name with the scope of naming contexts for
p_host_name . Thep_host_name follows the format defined in theAddress

type. Thep_entry type parameter is in the form &4::1 scoped name. The number of
entries to be retrieved is specified by ttewv_many parameter and the returned
entries are placed in th@. If there are more entries in the table than specified by
how_many parameter, then 8BNMPMgmt::SmiTablelterator reference is placed
in thetable_iterator parameter.

5.2.8 The SNMPMgmt::GetNextEntrylterator Interface

The GetNextEntrylterator interface lets a client application traverse an MIB table in
the lexicographic order followed by SNMP GET-NEXT message requirements and
returns the index information of each entry. A referenc&dtNextEntrylterator is

CORBA/TMN Interworking V1.0 August 2000

obtained as a result of the invocation of the
SNMPMgmt::ProxyAgent::list_mib_entries() and
SNMPMgmt::NamingContext::get_next_entry_iterator() operations.

interface GetNextEntrylterator {
/I Get the next entry index according to lexical ordering rule
/I of SNMP OIDs -- follows SNMP get-next traversal rule
boolean next_one_entry (out Entrylndex entry_index);
boolean next_n_entries (
in unsigned long how_many,
out EntryIndexList entry_index_list
)i
void destroy();
h

The next_one_entry() operation retrieves the instance information of the next entry
of a specific table following the SNMP get-next traversal rule. If there are no more
entries, then the operation returns FALSE; otherwise, it returns TRUE.

The next_n_entries() operation retrieves the instance information of a set of entries
of a specific table following the SNMP get-next traversal rule. The number of entries
to be retrieved is specified by thew_many parameter and the returned entries are
placed in theentry_index_list . If there are no more entries, the operation returns
FALSE; otherwise, it returns TRUE.

The destroy() operation destroys the object associated with the iterator reference.
5.2.9 Event Communication

5.2.9.1 Data Types for Untyped Event Communication

The following describes the data types for untyped event communications between
MIB objects and the manager objects.

struct EntryVarBind {
ScopedName entry_name; // IDL scoped name of the interface for table-entry
string entry_index; // row index of an entry in the form of Objectld string
CosPropertyService::Properties nvp_list;
h
typedef sequence<EntryVarBind> EntryVarBindList;
typedef EntryVarBindList NotificationVariableList;
typedef EntryVarBindList InformVariableList;

struct NotificationInfo { // to be sent when using untyped event channel
CosNaming::Name src_entry_name;

ScopedName event_type;

ASN1_GeneralizedTime event_time;

any notification_info;

h

struct Informinfo { // to be sent when using untyped event channel
CosNaming::Name src_obj_name;

InformV

CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-27

The SNMPMgmt::EntryVarBind type is defined to map variablesVarBindList of
SNMP PDU to IDL in a convenient form for objects in CORBA domain. The variables
of each row of same table are grouped together by their index values and mapped to
EntryVarBind . The name of the table-entry is mappecndry _name , the common

row index is mapped tentry _index . The textual names and the values of the variable
in eachVarBind are mapped t€osPropertyService::PropertyType based

nvp_list field. Since the variables MarBindList may span multiple rows of different
tables, a singl&arBindList may result in multipleEntryVarBind instances. The
EntryVarBindList type is defined to handle such cases.

The NotificationVariableList and thelnformVariableList types redefines the
EntryVarBindList for SNMP message specific information.

The NotificationInfo type is defined as the data type to be sent as event data for
untyped event communication. Thtificationinfo type has two parts: header and
body. The header part consists of three elements: name of the object generating the
event érc_entry_name), the type of the eveneyent_type) and the time of the

event generationefent_time).

The body part is in the form any and the structure of the data depends on the type of
the event being sent. The IDL type of the event body is generated based on the
OBJECTS clause in the associated SNMP SMI based TRAP-TYPE or
NOTIFICATION-TYPE macros. The actual event data based on the OBJECTS clause
is to be mapped to data of type generated for typed event communication and then put
into notification_info field as “any.”

Thelnforminfo type is defined to support theformRequest and Report PDU based
messages in SNMPV2. It consists of two parts: name of the object sending the inform-
request or report message and the body of the inform or report data.

5.2.9.2 The SNMPMgmt::Notifications Interface

The SNMPMgmt::Notifications interface is defined to support push model of typed
event communication described in the Typed Event Service specification.

interface Notifications {

void snmp_notification (
in CosNaming::Name src_entry_name,
in ScopedName event_type,
in ASN1_GeneralizedTime event_time,
in any notification_info

)

void snmp_inform (
in CosNaming::Name src_entry_name,
in InformVariableList inform_variables

)i

void snmp_report (
in CosNaming::Name src_entry_name,
in InformVariableList report_variables

5-28 CORBA/TMN Interworking V1.0 August 2000

5

Thesnmp_notification() operation is invoked to send event data using a typed event
channel. The parameters of themp_notification() operation are defined based on
the fields of theNotificationinfo data type for untyped event communication.

The snmp_inform() operation is invoked to send inform-request messages using a
typed event channel. The parameters ofstimap_inform() operation is defined based
on the fields of thénforminfo data type.

Thesnmp_report() operation is invoked to send report messages using a typed event
channel. The parameters of themp_inform() operation is defined based on the
fields of thelnforminfo data type.

5.2.9.3 The SNMPMgmt::PullNotifications Interface

The SNMPMgmt::PullNotifications interface is derived from the
SNMPMgmt::Notifications interface based on the design pattern defined for pull-
style typed interface in the typed event service specification. The interface name is
defined asPull<I>, where<I> is the name of the typed interface for the push model.
For each operatior<pp>) in <I> interface, ary_<op>() operation and a

pull_<op>() operation are defined. The “in” parameters of the corresponding push
operation in Notifications interface is converted to “out” parameter. The return value of
try_<op> andpull_<op> are boolean and void, respectively.

interface PullNotifications {
boolean try_snmp_notification (
out CosNaming::Name src_entry_name,
out ScopedName event_type,
out ASN1_GeneralizedTime event_time,
out any notification_info

);

void pull_snmp_notification (
out CosNaming::Name src_entry_name,
out ScopedName event_type,
out ASN1_GeneralizedTime event_time,
out any notification_info

);

boolean try_snmp_inform (
out CosNaming::Name src_entry_name,
out InformVariableList inform_variables

);

void pull_snmp_inform (
out CosNaming::Name src_entry_name,
out InformVariableList inform_variables
)i
boolean try_snmp_report (

out CosNaming::Name src_entry_name,
out InformVariableList report_variables

CORBA/TMN V1.0 The SNMPMgmt Module Aug. 2000 5-29

void pull_snmp_report (
out CosNaming::Name src_entry_name,
out InformVariableList report_variables

Note —All descriptions are exactly as described in Section 5.2.9.2, “The
SNMPMgmt::Notifications Interface,” on page 5-28.

5.3 SNMP Management Information Repository

This section describes the SNMP Management Information Repository service, also
known as the SNMP SMI repository service. This service is OPTIONAL-it is not
required to provide the full functionality of the model.

During the specification translation of SMI based information module to CORBA IDL
not all of the information is mapped to IDL. Some of the information got lost, for
example OID information. Also the way SMI related meta information is available
through CORBA Interface Repository (IFR) is not very convenient. For example, index
variables of table entries are available as string in contrast to sequence of variables.
Also the usage of the IDL interface repository interfaces are quite tedious. So we have
defined SMI specific repository interface on top of CORBA IFR.

The SMI Repository service consists of two components: OID Repository and SMI
macro repository. The OID repository provides the information about OID hierarchy
and the textual names associated with each OID node in the OID hierarchy tree. The
SMI macro repository provides meta-information about SMI modules and macros for
groups, table-entry and variables.

#ifndef _SNMPMIR_IDL_
#define _SNMPMIR_IDL_

#include <orb.idl>
#include <ASN1Types.idl>

#pragma prefix “jidm.org”
module SNMPMIR {

/l Snmpv1GenericTrapld defines the identifiers for generic trap
/l types in SNMPv1.

enum SnmpvlGenericTrapld {
TRAP_COLDSTART, TRAP_WARMSTART, TRAP_LINKDOWN, TRAP_LINKUP,
TRAP_AUTHFAIL, TRAP_EGPNEIGHBORLOSS,
TRAP_ENTERPRISESPECIFIC

J

/l GENERIC_TRAP_ENTERPRISE_OID defines the enterprise OID for
/I generic traps.

5-30 CORBA/TMN Interworking V1.0 August 2000

const ASN1_Objectldentifier GENERIC_TRAP_ENTERPRISE_OID =
“1.3.6.1.4.1.3.1.17%;

/I SmiAccessMode defines the enumerated values of the SMI based
/I access - mode defined for a specific variables.

enum SmiAccessMode {
read_only, read_write, read_create, write_only, inaccessible

h

/I Basic and Application specific SMI types.

enum SmiValueType {
smi_null_value, smi_integer_value, smi_string_value, smi_objectID_value,
smi_bit_value, smi_ipAddress_value, smi_counter_value, smi_gauge_value,
smi_timeticks_value, smi_arbitary_value, smi_nsapAddress_value,
smi_big_counter_value, smi_unsigned_integer_value, smi_unknown_type

J

typedef CORBA::ScopedName ScopedName;
typedef sequence < ScopedName > ScopedNamelList;
typedef sequence < string > VarNamelList;

typedef sequence < string > ModuleNamelList;
typedef sequence < ASN1_Objectldentifier > OIDList;

interface OidRepository {
ScopedName get_scoped_name (in ASN1_Objectldentifier in_oid);

string get_name (in ASN1_Objectldentifier in_oid);
ASN1_Objectldentifier get_oid (in ScopedName in_scoped_name);
ASN1_Objectldentifier get_var_oid (

in ScopedName iface_scoped_name,

in string var_name

)i
string get_textual_obj_id (in ASN1_Objectldentifier obj_id);

void split_var_object_id (
in ASN1_Objectldentifier var_obj_id,
out ASN1_Objectldentifier var_oid,
out ASN1_Objectldentifier obj_index

)
ASN1_Objectldentifier get_next_oid (in ASN1_Objectldentifier oid);

ScopedName get_next_scoped_name (in ScopedName scoped_name);
ScopedName get_next_entry_type (in ScopedName scoped_name);

interface VariableDef : CORBA::AttributeDef {
readonly attribute ASN1_Objectldentifier oid;

readonly attribute SmiValueType smi_type;

readonly attribute SmiAccessMode smi_access_mode;

CORBA/TMN V1.0 SNMP Management Information Repository Aug. 2006-31

readonly attribute any default_value;
h

typedef sequence < VariableDef > VariableDefList;

interface SmiEntryDef : CORBA::InterfaceDef {
readonly attribute ASN1_Objectldentifier oid;
readonly attribute unsigned long total_no_of_variables;
readonly attribute VariableDefList var_def_list;
readonly attribute VarNamelList var_name_list;
readonly attribute ScopedNamelList var_scoped_name_list;
readonly attribute OIDList var_oid_list;
readonly attribute VarNamelList index_var_names;

readonly attribute ScopedName next_group_or_table;
VariableDef lookup_variable(in string var_name);

h

typedef sequence < SmiEntryDef > SmiEntryDefList;

interface GroupDef : SmiEntryDef {

readonly attribute SmiEntryDefList table_entry_list;
h
typedef sequence < GroupDef > GroupDefList;

interface ModuleDef : CORBA::ModuleDef {
readonly attribute GroupDefList smi_group_def_list;
readonly attribute SmiEntryDefList smi_entry_def_list;
readonly attribute CORBA::InterfaceDef push_notification_def;
readonly attribute CORBA::InterfaceDef pull_notification_def;

readonly attribute CORBA::InterfaceDef default_value_def;
SmiEntryDef lookup_smi_entry(in string smi_entry_name);
h
typedef sequence < ModuleDef > ModuleDefList;

interface Repository : CORBA::Repository, OidRepository {
readonly attribute ModuleNameList module_name_list;
readonly attribute ModuleDefList module_def_list;
boolean is_smi_module(in CORBA::Identifier module_name);
ModuleDef lookup_smi_module(in string a_module_name);
SmiEntryDef lookup_smi_entry(in ScopedName entry_scoped_name);
ScopedNamelList get_entry_var_list(in ScopedName entry_scoped_name);
ScopedNamelList get_entry_index_var_list(in ScopedName
entry_scoped_name);
any get_var_default_value(in ScopedName var_scoped_name);
string get_generic_trap_desc(in ASN1_Integer trap_type);

J
#endif /* _SNMPMIR_IDL_ */

The SMI Repository provides information in an SMI specific way. One can get the
names of only those modules in IFR that are generated according to the Specification
Translation rules, one can also get the names of SMI specific IDL interfaces. We can
also get the default value of a variable (if defined) given its IDL scoped name. SMI

5-32 CORBA/TMN Interworking V1.0 August 2000

5

Macro Repository is built on top of the CORBA interface repository (IFR). Similar to
CORBA IFR, the SMI Macro Repository follows the SMI containment and extends the
corresponding IDL interfaces defined for CORBA IFR.

Table 5-6 Containment Hierarchy of the IDL interfaces in SMI Repository

SNMPMIR::Repository CORBA::Repository
ModuleDef ModuleDef
GroupDef InterfaceDef
SmiEntryDef InterfaceDef
VariableDef AttributeDef

Table 5-6 describes the IDL interfaces defined to capture the meta information of SMI
macros and their relationship with the interfaces defined in the CORBA IFR. The
relationship between interfaces for the SMI repository and IFR are based on the SMI to
IDL Specification Translation mapping rules.

The SMI related information about the variables are obtained waitgpleDef
interface.VariableDef extends th&CORBA::AttributeDef interface because
according to the Specification Translation we have mapped SMI variables as IDL
attributes. The attributes, OIBmMI_type , anddefault_value , of VariableDef

interface can be used to obtain the SMI information. The name, IDL scoped name.
access-mode and syntax information of the variable can be obtained frovaniee

id, mode, andTypeCode information of theCORBA::AttributeDef interface.

The SMI related information about the table entries are obtained using the
SmiEntryDef interface. TheSmiEntryDef interface extends the

CORBA::InterfaceDef because during the specification translation SMI table entries
are mapped as IDL interface. In addition to information provided by
CORBA::InterfaceDef , SmiEntryDef interface provides a set of convenience
operation optimized for SMI related operatiaar_name_list and
var_scoped_name_list attributes ofSmiEntryDef interface can be used to get the
names and IDL scoped names of the variables of a table/group in the lexicographic
order of their OID. Theoid attribute can be used to obtained the OID of a table-entry.

CORBA/TMN V1.0 SNMP Management Information Repository Aug. 2006-33

5-34

CORBA::AttributeDef CORBA::ModuleDef CORBA::InterfaceDef

SNMPMIR::ModuleDef

SNMPMIR::VariableDef SNMPMIR::SmiEntryDef

SNMPMIR::OidRepository CORBA::Repository

SNMPMIR::GroupDef

SNMPMIR::Repository

Figure 5-2 Interface Inheritance Hierarchy for the SMI Repository Service

The SMI related information about the groups are obtained usinGrieDef

interface. TheGroupDef interface extends thENMPMIR::SmiEntryDef because
during the specification translation SMI groups are mapped as if they are SMI table
entry with single entry. In addition to information provided by
SNMPMIR::SmiEntryDef , GroupDef interface provides a convenience operation to
obtain the list of table-entries in the group. The inherited
SNMPMIR::SmiEntryDef::names attribute can be used to obtain the names of the
non-tabular variables of the group.

The SMI related information about the modules are obtained usinglddaleDef
interface. TheModuleDef interface extends theORBA::ModuleDef because during
the specification translation SMI modules are mapped as IDL modules. In addition to
information provided byCORBA::ModuleDef , SNMPMIR::ModuleDef interface
provides a set of convenience operation optimized for SMI related operation.
smi_group_def list attribute of SNMPMIR::ModuleDef interface can be used to
get the lists of references of the groups within the scope of the module.
smi_entry_def_list attributes can be used get the references of both the
SmiEntryDef andGroupDef interface within the scope of the module.

push_notif interface andpull_notif_interface attributes can be used to obtain the
information about the Notification type macros.

Finally, SMI Macro Repository interfacSNMPMIR::Repository) is a specialization

of the CORBA information repositoryCORBA::Repository). The
SNMPMIR::Repository also inherits th®©idRepository interface so that an
application need not keep track of references to two repositories.
SNMPMIR::Repository interface is used to define a set of convenience operations to
get the SMI related information from the repository.

CORBA/TMN Interworking V1.0 August 2000

5

The SNMPMIR::Repository is the container for all the SMI related modules that are
registered with the CORBA IFR. According to the Specification Translation rules, the
SMI related IDL module would not contain nested modules. So the name of a SMI
based IDL module is sufficient to uniquely identify it in the repository.
SNMPMIR::Repository interface can be used to obtain BmiEntryDef reference

for a table-entry/group by providing the fully scoped name.

5.3.1 The SNMPMIR Module

The SNMPMIR module contains the IDL types and interfaces needed to build the
SNMP SMI repository extension of the CORBA interface repository.

module SNMPMIR {
/I Snmpv1GenericTrapld defines the identifiers for generic trap types in SNMPv1.
enum SnmpvlGenericTrapld {
TRAP_COLDSTART, TRAP_WARMSTART, TRAP_LINKDOWN, TRAP_LINKUP,
TRAP_AUTHFAIL,
TRAP_EGPNEIGHBORLOSS, TRAP_ENTERPRISESPECIFIC
h
/l GENERIC_TRAP_ENTERPRISE_OID defines the enterprise OID for generic traps.
const ASN1_Objectldentifier GENERIC_TRAP_ENTERPRISE_OID =
“1.3.6.1.4.1.3.1.17;

enum SmiAccessMode {
read_only, read_write, read_create, write_only, inaccessible };

enum SmiValueType {
smi_null_value, smi_integer_value, smi_string_value, smi_objectID_value,
smi_bit_value, smi_ipAddress_value, smi_counter_value, smi_gauge_value,
smi_timeticks_value, smi_arbitary_value, smi_nsapAddress_value,
smi_big_counter_value, smi_unsigned_integer_value, smi_unknown_type

J

typedef string FileName;

typedef CORBA::ScopedName ScopedName;
typedef sequence<ScopedName> ScopedNamelList;
typedef sequence<string> VarNamelList;

typedef sequence<string> ModuleNameList;

typedef sequence<ASN1_Objectldentifier> OIDList;

The SmiAccessMode type defines the enumerated values of the SMI based access-
mode defined for specific variables. TBeniValueType defines the enumerated

values of the basic and application specific SMI types. HiteName type is used to
specify the name of a file and it is defined for readability purposesOlDeist type

is a list of OID in dotted number form.

CORBA/TMN V1.0 SNMP Management Information Repository Aug. 2006-35

5-36

5.3.2 The OIDRepository Interface

The IDL files generated for each SMI modules do not contain any OID information (in
dotted number form) of variables, table-entried groups and object identifiers.
OidRepository interface (as shown in the example below) is defined to support
operations for mapping OIDs in dotted number to textual names and textual nhames to
OIDs. TheOidRepository interface, can also be used to query information about the
OID tree hierarchy.

module SNMPMIR {

interface OidRepository {
ScopedName get_scoped_name(in ASN1_Objectldentifier in_oid);
string get_name(in ASN1_Objectldentifier in_oid);

ASN1_Obijectldentifier get_oid(in ScopedName in_scoped_name);
ASN1_Obijectldentifier get_var_oid(
in ScopedName iface_scoped_name, in string var_name);

string get_textual_obj_id(in ASN1_Objectldentifier obj_id);

void split_var_object_id(
in ASN1_Objectldentifier var_obj_id,
out ASN1_Obijectldentifier var_oid, out ASN1_Objectldentifier
obj_index

)i

ASN1_Objectldentifier get_next_oid(in ASN1_Objectldentifier oid);

ScopedName get_next_scoped_name(in ScopedName scoped_name);
ScopedName get_next_entry_type(in ScopedName scoped_name);

boolean read_oid_file(in FileName file_name);

h
h
The OID Repository is initialized by reading in the OID files generated during
specification translation of SNMP MIB information modules. During the initialization,
SNMP module names are identified in the IFR and the corresponding OID files are
read in. The OID files generated according to the Specification Translation mapping
rules provide mapping between IDL scoped name and OID in dotted number form and
SMI type information for variables. This interface also supports operations for loading

an OID file for a specific MIB module. Theead_oid() operation is defined to load
OID information related to a new SNMP information module.

The get_name() andget_scoped_name() of SNMPMIR::OidRepository can be

used to obtain the name and scoped-name respectively of a variable, group, table-entry
or anObjectldentifier constants given its OID in dotted number form. The
SNMPMIR::OidRepository can also be used to get the oid given a scoped name.

The SNMPMIR::OidRepository interface also provides operation to support SNMP
GET-NEXT message. OID Repository can be used to get the next OID for a given OID
using theget_next_oid() operationget next scoped_name() returns IDL scoped
name given a IDL scoped name.

CORBA/TMN Interworking V1.0 August 2000

Note —The OID Repository is only useful at the CORBA/SNMP gateway - in most
MIB implementation and management applications it would not be needed.

Theget_scoped_name_by_oid() operation returns the IDL scoped name of an item
in Interface Repository (IFR) given the OID (in the dotted number form) of the item.
For examplepidRepoRef->get_scoped_name(*1.3.6.1.2.1.1") would return
“RFC1213_MIB::system” andoidRepoRef-
>get_scoped_name(“1.3.6.1.2.1.2.2.1.3") would return

“RFC1213_MIB:ifEntry:: ifType.” If the OID does not exist in the repository then
the CORBA::OBJECT_NOT_EXIST exception is raised.

The get_name() operation returns the identifier of an item in IFR given the OID (in
the dotted number form) of the item. For exampieRepoRef-
>get_name(“1.3.6.1.2.1.1") would return “system” andidRepoRef-
>get_name(“1.3.6.1.2.1.2.2.1.3") would return “ifType.” If the OID does not exist
in the repository then the ORBA::OBJECT_NOT_EXIST exception is raised.

The get_oid() operation returns the OID of an item in the IFR given the IDL scoped
name of the corresponding item. For exampidRepoRef-
>get_oid(“RFC1213_MIB::system”) would return “1.3.6.1.2.1.1" and
oidRepoRef->get_oid (“RFC1213_MIB::ifEntry::ifType”) would return
“1.3.6.1.2.1.2.2.1.3". If the OID does not exist in the repository then the
CORBA::OBJECT_NOT_EXIST exception is raised.

The get_var_oid() operation returns the OID of a variable given the scoped name of
the table-entry/group and textual name of the variable. For exaoigRepoRef-
>get_o0id("RFC1213_MIB::system”, “sysDescr”) would return “1.3.6.1.2.1.1.”
andoidRepoRef->get_oid(“RFC1213_MIB:ifEntry ”, “ifType *) would return
“1.3.6.1.2.1.2.2.1.3". If thear_name does not exist in the repository then
CORBA::OBJECT_NOT_EXIST exception is raised.

Theget_textual_obj_id() operation converts ambj_id in dotted number form into a
scoped name using the largest prefix match and returns a string by concatenating the
scoped name for the matchelj_id and the unmatched part of thbj_id . For

example oidRepoRef->get_scoped_name(“1.3.6.1.2.1.1.1.0") would return
“RFC1213_MIB::system::sysDescr.0 " and oidRepoRef-
>get_scoped_name(*1.3.6.1.2.1.2.2.1.3.1") would return
“RFC1213_MIB::ifEntry::ifType.1 .” If there is no such prefix match, then a copy of
the input OID is returned.

The split_var_object_id() operation splits an Objectld into OID form using longest
prefix match into two partsiar_oid and index-values.

For example,
oidRepoRef->get_scoped_name(“1.3.6.1.2.1.1.1.0")

would return*RFC1213_MIB::system::sysDescr " in var_oid and ‘0" in
obj_index ; and

CORBA/TMN V1.0 SNMP Management Information Repository Aug. 2006-37

5-38

oidRepoRef->get_scoped_name(“1.3.6.1.2.1.2.2.1.3.1")

would return RFC1213_MIB::ifEntry::ifType " in var_oid and “1” in obj_index .
If there is no index information in thear_obj_id then a zero-length string is returned
in obj_index . For example,

oidRepoRef->get_scoped_name(“1.3.6.1.2.1.1.1")

would return RFC1213_MIB::system:: sysDescr” in var_oid and ‘in
obj_index .”

The get_next_oid() operation returns the next OID in the OID hierarchy given the
input OID. Both input and returned OIDs are in dotted number form. The “next” based
on the lexicographic ordering of the OID as per GET-NEXT message. If there is no
such OID in the OID hierarchy thedBJECT_NOT_EXIST exception is raised.

For examplepidRepoRef->get_next_oid (“1.3.6.1.2.1.1.1")would return
“1.3.6.1.2.1.1.2” and oidRepoRef->get_next_oid (“1.3.6.1.2.1.2.1") would return
“1.3.6.1.2.1.2.2."

Theget_next_scoped_name() operation is similar tget_next_oid() but the input
and output parameters in the corresponding IDL scoped name form.

For examplepidRepoRef->
get_next_scoped_name(“RFC1213_MIB::system::sysDescr") would return
“RFC1213_MIB::system::sysObjectID ” andoidRepoRef-
>get_next_scoped_name(“RFC1213 MIB::interfaces:: ifNumber”) would
return“RFC1213_ MIB::ifTable .”

oidRepoRef->get_next_scoped_name(s) is equivalent tmidRepoRef-
>get_scoped_name(oidRepoRef->get_next_oid(oidRepoRef->get_oid(s)));

The get_next_entry_type() operation returns the IDL scoped name of the next IDL
interface for a group/table-entrget_next_entry_type() will always return IDL
scoped name for a SMI group/table-entry that correspond to an Specification
Translation generated IDL interface name.

For examplepidRepoRef->get_next_entry_type(*RFC1213_MIB::mib_2")
would return“RFC1213_MIB::system ”; oidRepoRef-
>get_next_entry_type("RFC1213_ MIB::interfaces::ifNumber”) would return
“RFC1213_MIB:ifEntry " andoidRepoRef-

>get_next_entry_type("“RFC1213_ MIB:ifEntry::ifindex”) would return
“RFC1213_MIB::ip” (RFC1213_MiIB::at is inaccessible) . If there is no such next
entry in the repository, theBORBA::OBJECT_NOT_EXIST exception is raised.

For each SNMP SMI module, an OID file is generated during specification translation.
The name of the OID file for SMI information moduledsmi-module-name>.oid
where<smi-module-name> is the IDL identifier of the SMI module in ASN.1.
read_oid_file() reads thescopedName/OID mapping table from the given input

file. Thefile_name could be name of the file, or complete path name of the file.

CORBA/TMN Interworking V1.0 August 2000

5.3.3 The VariableDef Interface

VariableDef interface is defined to retrieve SMI specific information of a SMI
variable.VariableDef interface extends theORBA::AttributeDef interface to
provide information that is not available throuGRBA::AttributeDef .

module SNMPMIR {

interface VariableDef : CORBA::AttributeDef {
readonly attribute ASN1_Objectldentifier oid;
readonly attribute SmiValueType smi_type;
readonly attribute SmiAccessMode smi_access_mode;
readonly attribute any default_value;

}.

typedef sequence<VariableDef> VariableDefList;
h
The attributeoid represents the Objectldentifier of the SMI variable. During

specification translation, the OID of a variable with scoped nimie:V is mapped in
M.oid file and this value is obtained using the repository interface.

The smi_type attribute represent the basic and application specific SMI type defined
for the variable. During specification translatiami_type of a variable with scoped
nameM::l::V is mapped irM.oid file.

The smi_access_mode attribute represents the value of the MAX-ACCESS clause
in the OBJECT-TYPE macro for the variable. According to the Specification
Translation rules, thesmi_access_mode of a variable with scoped nanv&:l::V is
mapped inM.oid file.

During specification translation, DEFVAL clause (if present) is mapped as
<M>::DefaultValues::<V>() operation for a variable withM>::1::<V> scoped name.
The default_value attribute can be obtained by invoking the
<M>::DefaultValues::<V>() operation where the scoped name of the variable is
<M>:l::<V>. If the default value is not defined, then
CORBA::OBJECT_NOT_EXIST exception is returned.

VariableDefList type represent a list &fariableDef interfaces.

5.3.4 The SmiEntryDef Interface

The SmiEntryDef interface represents SMI specific information associated with an
IDL interface generated from an SMI modu@miEntryDef interface extends
CORBA::InterfaceDef and provides in information in SMI centric way.

module SNMPMIR {

interface SmiEntryDef : CORBA::InterfaceDef {
readonly attribute ASN1_Objectldentifier oid;

readonly attribute unsigned long total_no_of variables;

CORBA/TMN V1.0 SNMP Management Information Repository Aug. 2006-39

5-40

readonly attribute VariableDefList var_def_list;
readonly attribute VarNamelList var_name_list;

readonly attribute ScopedNamelList var_scoped_name_list;
readonly attribute OIDList var_oid_list;

readonly attribute VarNamelList index_var_names;

readonly attribute ScopedName next_group_or_table;

VariableDef lookup_variable(in string var_name);
h
typedef sequence<SmiEntryDef> SmiEntryDefList;

h
The oid attribute represents the OID of this interface. According to the Specification

Translation rules, the, OID of a table-entry/group with scoped dmes mapped in
the M.oid file.

Thetotal_no_of variables attribute represents the total number of SMI based
variables in this interface.

Thevar_def_list attribute maintains the list of théariableDef interfaces of the
variables of this table-entry/group. It can be derived from the list of attributes of the
interface. The list is ordered according to the lexicographic order of the OIDs of the
variables.

Thevar_name_list attribute maintains the list of the names of the variables of this
table-entry/group. It can be derived from the list of attributes of the interface. The list
is ordered according to the lexicographic order of the OIDs of the variables.

Thevar_scoped_name_list attribute maintains the list of the IDL scoped names of
the variables of this interface. The IDL scoped name of the vanaldéa::l::vV where
M::1 is the scoped name of the interface for table-entry/group. The list is ordered
according to the lexicographic order of the OIDs of the variables.

Thevar_oid_list attribute maintains the list of the OID of the variables of this
interface. The list is ordered according to the lexicographic order of the OIDs.

The index_var_names attributes maintains the index variables of this interface.
According to the Specification Translation rules, the INDEX clause of a table-entry is
mapped as IDL string constant, callediexVarList , within the scope of the IDL
interface for the table-entry. Index var names are obtained by converting the value of
M::l::IndexVarList of a table entry with scoped narik:l, into a sequence of strings

(of individual index variables). If there is nodexVarList (e.g., for IDL interface for
groups) a zero-length sequence is returned.

The next_group_or_table attribute represents the information about the next IDL
interface for a group/table-entry according to the lexicographic OID order.

CORBA/TMN Interworking V1.0 August 2000

5

Thelookup_variable() operation is a convenience operation that return reference to
VariableDef of a variable of this interface.

The SmiEntryDefList type represent a list &miEntryDef interfaces.

5.3.5 The SmiGroupDef Interface

A group in SNMP SMI is a collection of tables and non-tabular varialesupDef
interface represents those IEmiEntry interfaces that are generated from SMI based
groups. TheSmiGroupDef interface extendSmiEntryDef and acts as a collection
entity of table-entry interfaces. The list of non-tabular variables can be obtained from
the inheritedvar_def_list attribute.

module SNMPMIR {

interface GroupDef : SmiEntryDef {
readonly attribute SmiEntryDefList table_entry_list;
h
typedef sequence<GroupDef> GroupDefList;

b

Thetable_entry_list attribute maintains the list of tf@miEntryDef for the table-
entries of this group.

5.3.6 The SmiModuleDef Interface

The SnmpModuleDef extends theCORBA::ModuleDef interface and provides
SNMP SMI specific attributes and functions. SMMPModuleDef contains a list of
SNMP interfaces and an interface object for push and pull notification interfaces.

module SNMPMIR {

interface ModuleDef : CORBA::ModuleDef {
readonly attribute GroupDefList smi_group_def_list;

readonly attribute SmiEntryDefList smi_entry_def_list;
readonly attribute CORBA::InterfaceDef push_notification_def;

readonly attribute CORBA::InterfaceDef pull_notification_def;

readonly attribute CORBA::InterfaceDef default_value_def;
SmiEntryDef lookup_smi_entry(in string smi_entry_name);

h
typedef sequence<ModuleDef> ModuleDefList;

b

Thesmi_group_def list attribute maintains the list of SMI specific groups in a SMI
information module.

CORBA/TMN V1.0 SNMP Management Information Repository Aug. 2006-41

5-42

Theentry_interface_list attribute maintains the list of interfaces which are a subtype
of SNMPMgmt::SmiEntry defined within the scope of this module. This list includes
SmiEntryDef interfaces for all the groups and table-entries of this module.

According to the Specification Translation rules, a push notification interface is
defined with the IDL scoped nani::Notifications for SMI MIB module with name

M. Thepush_notification_def attribute maintains the referenceltoerfaceDef for
M::Notifications interface. If no such interface is defined then a nil object-reference
is returned.

According to the Specification Translation rules, a pull notification interface is defined
with IDL scoped namé/::PullNotifications for SMI MIB module with naméA. The
pull_notification_def attribute maintains the referenceltterfaceDef for
M::PullNotifications interface. If no such interface is defined, then a nil object-
reference is returned.

According to the Specification Translation rules, a Default value interface is defined
with IDL scoped namd/i::DefaultValues for SMI MIB module with nameM. The
default_value_def attribute maintains the referencelterfaceDef for
M::DefaultValues interface. If no such interface is defined, then a nil object-reference
is returned.

Thelookup_smi_entry() operation returns th8miEntryDef for the specified
group/table-entry interface within the scope this SMI module.

The ModuleDefList type represents a list ModuleDef interfaces.

5.3.7 The Repository Interface

The SNMPMIR::Repository interface extends theORBA::Repository interface
and it provides SNMP SMI specific specialization of CORBA Interface Repository
(IFR) interface. The SNMPMIR::Repository interface inherits the
CORBA::Repository and theSNMPMIR::OidRepository interfaces.

module SNMPMIR {

interface Repository : CORBA::Repository, OidRepository {

readonly attribute ModuleNameList module_name_list;
readonly attribute ModuleDefList module_def_list;

boolean is_smi_module(in CORBA::Identifier module_name);
ModuleDef lookup_smi_module(in string a_module_name);

SmiEntryDef lookup_smi_entry(in ScopedName entry_scoped_name);

ScopedNamelList get_entry_var_list(in ScopedName entry_scoped_name);

ScopedNamelList get_entry_index_var_list(in ScopedName
entry_scoped_name);

any get_var_default_value(in ScopedName var_scoped_name);

string get_generic_trap_desc(in ASN1_Integer trap_type);

CORBA/TMN Interworking V1.0 August 2000

5

The module_name_list attribute maintains the list SNMP SMI specific IDL module
names in the IFR.

The module_def list attribute maintains the lISNMPMIR::ModuleDef interfaces
for the SNMP SMI specific IDL module names in the IFR.

Thelookup_smi_entry() operation returns the interface def of a specific SNMP
table-entry/groupentry_scoped_name is specified ad::l.

CORBA/TMN V1.0 SNMP Management Information Repository Aug. 2006-43

5-44 CORBA/TMN Interworking V1.0 August 2000

References A

A.1 List of References

[Telefonica 1+D]
Common Facilities for Systems Management

Juan J. Hierro, Jesus A. Gonzalez, José M. Lorenzo
Telefdnica Investigacion y Desarrollo.
June 1997

[Lucent]
Mapping of Common Management Information Service to CORBA Object
Services

Subrata Mazumdar
Lucent Technologies
February 1996

[Alcatel]
Alternative proposal to map OSI naming in CORBA

Olivier Potonniée
Alcatel Corporate Research Centre
July 1997

[XSMG]
Systems Management: Reference Model.

X/Open guide number G207.
August 1993.

[OMAG]
Object Management Architecture Guide.

Richard Mark Soley (ed.), OMG document number 92.11.1.
Revision 2.0, September 1992.

CORBA/TMN Interworking V1.0 August 2000

A-1

A-2

[CORBA]
The Common Object Request Broker: Architecture & Specification.

Revision 2.0, July 1995.

[CORBAservices]
CORBAservices: Common Object Services Specification.
(note: see individual CORBA Service documents)

[SYSMANTfacilities]
Systems Management: Common Management Facilities, Volume |.

X/Open Preliminary Specification number P421.
June 1995.

[X700]
OSI| Management Framework.

ITU-T (CCITT) Recommendation X.701, ISO/IEC 7498-4.
September 1992.

[X701]
Systems Management Overview.

ITU-T (CCITT) Recommendation X.701, ISO/IEC 10040.
January 1992,

[X710]
Common Management Information Service Definition.

ITU-T (CCITT) Recommendation X.710, ISO/IEC 9595.
March 1991.

[X720]
Management Information Model.

ITU-T (CCITT) Recommendation X.720, ISO/IEC 10165-1.
January 1992,

[X721]
Definition of Management Information.

ITU-T (CCITT) Recommendation X.721, ISO/IEC 10165-2.
February 1992.

[X722]
Guidelines for the definition of Managed Objects.

ITU-T (CCITT) Recommendation X.722, ISO/IEC 10165-4.
January 1992,

[X734]
Event Management Function.

CORBA/TMN Interworking V1.0 August 2000

ITU-T (CCITT) Recommendation X.734, ISO/IEC 10164-5.
September 1992.

[X735]
Log Control Function.

ITU-T (CCITT) Recommendation X.735, ISO/IEC 10164-6.
September 1992.

[ASN1]
Abstract Syntax Notation One (ASN.1).

ITU-T (CCITT) Recommendation X.208, ISO/IEC 8824-1.
April 1993.

[M3010]
Principles for a Telecommunications Management Network.

ITU-T (CCITT) Recommendation M.3010.
June 1992.

[OMNI]
OMNIPoint Architecture Integration.

Network Management Forum (NMF) document.
October 1994.

[XoJIDM]
Inter Domain Management: Specification Translation

Joint X/Open-NMF Inter-Domain Management (XoJIDM) Task Force.
X/Open Preliminary Specification
May 1997.

CORBA/TMN V1.0 List of References Aug. 2000 A-3

CORBA/TMN Interworking V1.0

August 2000

CompletdOMG IDL B

B.1 Normative IDL

IDL listed in this section is specified in this document. These files can also be found in
electronic format, as a ZIP archive file, from the OMG document server, with
document number telecom/98-10-11.

B.1.1 JIDM.idI

/I File: JIDM.idI
#ifndef _JIDM_IDL_
#define _JIDM_IDL_

#include <CosNaming.idI>
#include <CosLifeCycle.idl>
#include <CosEventChannelAdmin.idl>

#pragma prefix “jidm.org”

module JIDM

{
typedef CosNaming::Name Key;
typedef CosLifeCycle::Criteria Criteria;

exception InvalidKey {};

exception InvalidCriteria {};

exception CannotMeetCriteria { Criteria reason; };
exception CannotAccess {};

exception AlreadyExists {};

exception NoEventPort {};

interface ProxyAgent {

enum DestructionMode {gracefully, non_gracefully};
readonly attribute Criteria access_criteria;

CORBA/TMN Interworking V1.0 August 2000 B-1

CosLifeCycle::FactoryFinder get_domain_factory_finder ();
CosNaming::NamingContext get_domain_naming_context ();

Criteria destroy (in DestructionMode mode, in Criteria the_criteria)
raises (InvalidCriteria, CannotMeetCriteria);

J

interface ProxyAgentController {
Criteria destruction_is_allowed (in Criteria the_criteria)
raises (InvalidCriteria,CannotMeetCriteria);
void destroyed (in Criteria the_criteria);

interface ProxyAgentFinder {
ProxyAgent access_domain (in Key k, in Criteria the_criteria)
raises (InvalidKey, CannotAccess, InvalidCriteria, CannotMeetCriteria);

J

interface DomainPort {
readonly attribute Criteria associated_criteria;
void destroy ();

h

interface DomainPortFactory {
DomainPort create_domain_port (in Key k, in Criteria creation_criteria)
raises (InvalidKey, InvalidCriteria, CannotMeetCriteria);

J

interface EventPort {
readonly attribute CosEventChannelAdmin::SupplierAdmin supplier_admin;
readonly attribute Criteria associated_criteria;
void destroy ();

h

interface EventPortFactory {
EventPort
create_event_port (in Key k, in Criteria creation_criteria,
in CosEventChannelAdmin::SupplierAdmin the_supplier_admin)
raises (InvalidKey, InvalidCriteria, CannotMeetCriteria,
AlreadyEXxists);
h

interface EventPortFinder {
CosEventChannelAdmin::SupplierAdmin
find_event_port (in Key k, in Criteria the_criteria)
raises (InvalidKey, InvalidCriteria, CannotMeetCriteria, NoEventPort);

#endif /* _JIDM_IDL_ */

CORBA/TMN Interworking V1.0 August 2000

B.1.2 OSIMgmt.idl

/I File: OSIMgmt.idl
#ifndef _OSIMGMT_IDL_
#define _OSIMGMT _IDL_

#include <orb.idl>
#include <JIDM.idI>
#include “X501Inf.idl”
#include “X711CML.idI"

#pragma prefix “jidm.org”
/I Macros used in the ‘raises’ clauses

#define ROSE_ERRORS\
OSIMgmt::ROSEDuplicatelnvocation,\
OSIMgmt::ROSEMistypedArgument,\
OSIMgmt::ROSEResourceLimitation, \
OSIMgmt::ROSEUnrecognizedOperation

#define CREATE_ERRORS\
ROSE_ERRORS, \
OSIMgmt::AccessDenied,\
OSIMgmt::ClassinstanceConflict,\
OSIMgmt::DuplicateManagedObjectinstance,\
OSIMgmt::InvalidAttributeValue,\
OSIMgmt::InvalidObjectinstance,\
OSIMgmt::MissingAttributeValue,\
OSIMgmt::NoSuchAttribute,\
OSIMgmt::NoSuchObjectClass,\
OSIMgmt::NoSuchObjectinstance,\
OSIMgmt::NoSuchReferenceObject,\
OSIMgmt::ProcessingFailure,\
OSIMgmt::ProcessingFailureEmpty

#define COMMON_ERRORS \
ROSE_ERRORS, \
OSIMgmt::AccessDenied, \
OSIMgmt::ClassInstanceConflict, \
OSIMgmt::ComplexityLimitation, \
OSIMgmt::ComplexityLimitationEmpty, \
OSIMgmt::InvalidScope, \
OSIMgmt::InvalidFilter, \
OSIMgmt::NoSuchObjectClass, \
OSIMgmt::NoSuchObjectinstance, \
OSIMgmt::ProcessingFailure, \
OSIMgmt::ProcessingFailureEmpty, \
OSIMgmt::SyncNotSupported

#define GET_ERRORS \
COMMON_ERRORS, \
OSIMgmt::GetListError, \
OSIMgmt::OperationCancelled

CORBA/TMN V1.0 Normative IDL Aug. 2000

B-3

#define SET_ERRORS \
COMMON_ERRORS, \
OSIMgmt::SetListError

#define ATTRIBUTE_ERRORS \
COMMON_ERRORS, \
OSIMgmt::GetListError, \
OSIMgmt::SetListError

#define ACTION_ERRORS\
COMMON_ERRORS, \
OSIMgmt::InvalidArgumentValue, \
OSIMgmt::NoSuchAction, \
OSIMgmt::NoSuchArgument

#define DELETE_ERRORS \
COMMON_ERRORS

module OSIMgmt
{

/I Definitions of ROSE and CMIS exceptions
exception ROSEDuplicatelnvocation { };
exception ROSEMistypedArgument { };
exception ROSEResourceLimitation { };
exception ROSEUnrecognizedOperation { };
exception AccessDenied { };
exception ClassinstanceConflict

{ X711CMI::BaseManagedObjectldType error_info; };
exception ComplexityLimitation

{ X711CMI::ComplexityLimitationType error_info; };
exception ComplexityLimitationEmpty { };
exception DuplicateManagedObjectinstance

{ X711CMI::ObjectinstanceType error_info; };
exception GetListError

{ X711CMI::GetListErrorType error_info; };
exception InvalidArgumentValue

{ X711CMl::InvalidArgumentValueType error_info; };
exception InvalidAttributeValue

{ X711CMI::AttributeType error_info; };
exception InvalidFilter

{ X711CMI::CMISFilterType error_info; };
exception InvalidScope

{ X711CMl::ScopeType error_info; };
exception InvalidObjectinstance

{ X711CMI::ObjectinstanceType error_info; };
exception MissingAttributeValue

{ X711CMI::MissingAttributeValueType error_info; };
exception MistypedOperation { };
exception NoSuchAction

{ X711CMI::NoSuchActionType error_info; };
exception NoSuchArgument

{ X711CMI::NoSuchArgumentType error_info; };
exception NoSuchAttribute

{ X711CMl::AttributeldType error_info; };

CORBA/TMN Interworking V1.0 August 2000

exception NoSuchObjectClass

{ X711CMl::ObjectClassType error_info; };
exception NoSuchObjectinstance

{ X711CMI::ObjectinstanceType error_info; };
exception NoSuchReferenceObject

{ X711CMI::ObjectinstanceType error_info; };
exception OperationCancelled { };
exception ProcessingFailure

{ X711CMl::ProcessingFailureType error_info; };
exception ProcessingFailureEmpty { };
exception SetListError

{ X711CMIl::SetListErrorType error_info; };
exception SyncNotSupported

{ X711CMI::CMISSyncType error_info; };
exception NoSuchEventType

{ X711CMI::NoSuchEventTypeType error_info; };
exception NoSuchinvokeld

{ X711CMil::InvokeldTypeType error_info; };

/l Using Multiple Replies exception for Actions
interface Replieslterator; // forward declaration
exception UsingMR

{ Replieslterator replies_iterator; };

/I Definition of specific types used within this module
typedef string NameString;
typedef sequence<ASN1_Objectldentifier> ASN1_ObjectldentifierSeq;
struct AttributeValue {
ASN1_Objectldentifier attribute_id;
ASN1_DefinedAny value;
h
typedef sequence<AttributeValue> AttributeValueSeq;

/I Type to be used in cmis_create operations
enum CreationKind
{simple, autonaming, subordinate};

/I Type to be used in scoped set operations
enum ModifyOperator
{replace, add_member, remove_member, replace_with_default};

struct AttributeSetOperator {
ModifyOperator modify_operator;
ASN1_Objectldentifier attribute_id;
ASN1_DefinedAny attribute_value;
b

typedef sequence <AttributeSetOperator> SetOperationArgument;
/I Forward declaration for ReplyHandler interfaces

interface LinkedReplyHandler;
interface EndOfRepliesHandler;

CORBA/TMN V1.0 Normative IDL Aug. 2000 B-5

/I ProxyAgent
interface ProxyAgent : JIDM::ProxyAgent {

void cmis_create (
in CORBA::ScopedName interface_name,
in CreationKind creation_kind,
in CosNaming::Name object_name,
in X711CMI::AccessControlTypeOpt access_control,
in CosNaming::Name reference_object,
in AttributeValueSeq req_attribute_values,
in LinkedReplyHandler reply_handler

void cmis_create_sync (
in CORBA::ScopedName interface_name,
in CreationKind creation_kind,
in CosNaming::Name object_name,
in X711CMI::AccessControlTypeOpt access_control,
in CosNaming::Name reference_object,
in AttributeValueSeq req_attribute_values,
out CORBA::ScopedName created_interface_name,
out CosNaming::Name created_object_name,
out X711CMI::ASN1_GeneralizedTimeOpt creation_time,
out AttributeValueSeq created_attribute_values
) raises (CREATE_ERRORS);

void cmis_get (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObijectldentifierSeq attribute_id_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void cmis_set (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in SetOperationArgument modification_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void cmis_action (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,

CORBA/TMN Interworking V1.0 August 2000

in X711CMI::CMISSyncType synchronization,

in X711CMI::AccessControlTypeOpt access_control,
in ASN1_Objectldentifier action_name,

in ASN1_DefinedAny action_info,

in LinkedReplyHandler reply_handler,

in EndOfRepliesHandler end_of_replies_handler

);

void cmis_delete (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

h
const ASN1_Objectldentifier ACTUAL_CLASS = “2.9.3.4.3.42",
interface ManagedObiject; // forward declaration

interface NamingContext : CosNaming::NamingContext {
/I NOTE: These operations are optional
ManagedObiject resolve_with_intf (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name
) raises (NotFound, CannotProceed, InvalidName);

ManagedObiject resolve_osi_name (
in ASN1_Objectldentifier managed_object_class,
in X711CMI::ObjectinstanceType object_instance
) raises (NotFound, CannotProceed, InvalidName);

CosNaming::Name translate_osi_name (
in X711CMI::ObjectinstanceType object_instance
) raises (InvalidName);

X711CMI::ObjectinstanceType translate_idl_name (
in CosNaming::Name idl_name
) raises (InvalidName);

J

/l ManagedObject
interface ManagedObject : NamingContext, CosLifeCycle::LifeCycleObject {
readonly attribute CosNaming::Name object_name;

void scoped_get (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_ObijectldentifierSeq attribute_id_list,

CORBA/TMN V1.0 Normative IDL Aug. 2000 B-7

J

in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void scoped_set (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in SetOperationArgument modification_list,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void scoped_action (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in ASN1_Objectldentifier action_name,
in ASN1_DefinedAny action_info,
in LinkedReplyHandler reply_handler,
in EndOfRepliesHandler end_of_replies_handler

);

void scoped_delete (
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType synchronization,
in X711CMI::AccessControlTypeOpt access_control,
in LinkedReplyHandler reply _handler,
in EndOfRepliesHandler end_of replies_handler

);

AttributeValueSeq get_attributes (
in ASN1_ObijectldentifierSeq attribute_id_list
) raises (GET_ERRORS);

AttributeValueSeq set_attributes (
in SetOperationArgument modification_list
) raises (SET_ERRORS);

ASN1_DefinedAny perform_action (
in ASN1_Objectldentifier action_name,
in ASN1_DefinedAny action_info

) raises (ACTION_ERRORS, UsingMR);

void delete_mo () raises (DELETE_ERRORS);

/l ManagedObjectFactory
interface ManagedObjectFactory {

ManagedObiject create (
in CORBA::ScopedName interface_name,
in CosNaming::Name object_name,

CORBA/TMN Interworking V1.0 August 2000

in ManagedObiject reference_object,
in AttributeValueSeq requested_attribute_values
) raises (CREATE_ERRORS);

ManagedObiject create_with_auto_naming (

in CORBA::ScopedName interface_name,

in ManagedObject reference_object,

in AttributeValueSeq requested_attribute_values
) raises (CREATE_ERRORS);

ManagedObiject create_subordinate (

in CORBA::ScopedName interface_name,

in CosNaming::Name superior_name,

in ManagedObject reference_object,

in AttributeValueSeq requested_attribute_values
) raises (CREATE_ERRORS);

J

/I LocalRoot
typedef sequence<ManagedObject> ManagedObjectSeq;

interface LocalRoot : ManagedObject {
exception NoDescendants {};
ManagedObjectSeq list_orphans ();

ManagedObjectSeq
list_orphan_descendants (in CosNaming::Name object_name)
raises (NoDescendants);

J

/l LName
interface LName {
exception InvalidName {};

readonly attribute boolean is_distinguished_name;
readonly attribute unsigned long num_components;

void from_osi_form (in X711CMI::ObjectinstanceType osi_name);
X711CMI::ObjectinstanceType to_osi_form ()
raises(InvalidName);
void from_idl_form (in CosNaming::Name idl_name);
CosNaming::Name to_idl_form ()
raises(InvalidName);

LName to_ancestor_name (in unsigned long levels_up)
raises(InvalidName);

LName to_relative_name (in unsigned long levels_up)
raises(InvalidName);

LName append (in LName name);

LName append_ava (in X501Inf::AttributeValueAssertionType ava)
raises(InvalidName);

X501Inf::AttributeValueAssertionType get_ ava (in unsigned | ong index)
raises(InvalidName);

boolean equals (in LName name);

CORBA/TMN V1.0 Normative IDL Aug. 2000 B-9

LName copy ();

void from_string_form (in NameString name_string);
NamesString to_string_form ()
raises(InvalidName);
void destroy ();
h

/I ReplyHandler interfaces
interface LinkedReplyHandler {
void send_reply (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in any reply_info

);

void send_mo_error (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in short error_code,
in any error_info

);

void send_subtree_error (
in CORBA::ScopedName object_interface,
in CosNaming::Name object_name,
in X711CMI::ASN1_GeneralizedTimeOpt current_time,
in short error_code,
in any error_info

J

interface EndOfRepliesHandler {
void end_of_replies ();

h
interface MultipleRepliesHandler : LinkedReplyHandler, EndOfRepliesHandler {};

/I BufferedRepliesHandler
struct Reply {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
any reply_info;

h

typedef sequence<Reply> ReplyList;

interface Replieslterator {
exception MoError {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
short error_code;

B-10 CORBA/TMN Interworking V1.0 August 2000

any error_info;

J

exception SubtreeError {
CORBA::ScopedName object_interface;
CosNaming::Name object_name;
X711CMI::ASN1_GeneralizedTimeOpt current_time;
short error_code;
any error_info;

h
boolean get_reply (out Reply r) raises (MoError, SubtreeError);

boolean get_n_replies (in unsigned long how_many, out ReplyList r_list)
raises (MoError, SubtreeError);

boolean finished (out unsigned long num_pending);
void destroy ();
h

interface BufferedRepliesHandler : MultipleRepliesHandler, Replieslterator {};
b
#define UsingMR OSIMgmt::UsingMR

#endif /* _OSIMGMT _IDL_ */

B.1.3 SNMPMgmt.idI

/I File: SNMPMgmt.idl
#iftndef _SNMPMGMT_IDL_
#define _SNMPMGMT _IDL_

#include <orb.idl>

#include <CosPropertyService.idl>
#include <ASN1Types.idl>
#include <JIDM.idI>

#pragma prefix “jidm.org”

module SNMPMgmt {
const string ManagementDomainKeyld = “Internet Management”;
const string ManagementDomainKeyKind = “XSM environment”;
const string ProtocolVer = “Protocol Version”;
const string TransportProtocol = “Transport Protocol”;
const string DomainTitle = “Domain Title”;
const string TransportAddress = “Transport Address”;
const string TransportPort = “Transport Port”;
const string CommunityName = “Community Name”;
const string ContextEnginelD = “Context EnginelD”;
const string ContextName = “Context Name”;

/I Redefinition of types

CORBA/TMN V1.0 Normative IDL Aug. 2000 B-11

typedef CORBA::ScopedName ScopedName;

typedef CosLifeCycle::Criteria Criteria;

typedef CosPropertyService::PropertyName VarName;
typedef CosPropertyService::PropertyNames VarNameList;
typedef CosPropertyService::Property NameValuePair;
typedef CosPropertyService::Properties NVPairList;

typedef ASN1_Objectldentifier Entrylndex;
typedef sequence < Entrylndex > EntrylndexList;

typedef string TAddress; // Transport address of an agent
enum ProtocolVersion { snmpV1, snmpV2c, snmpV3 };

/I SNMP Protocol specific exceptions

exception ProtocolError {
ASN1_Integer error_status;
ASN1_Integer error_index;

h

exception MultVarProtocolError {
ASNL1_Integer error_status;
VarNamelList error_var_list;
NVPairList result_var_list;

J

/I SMI information module specific exceptions.
exception NoSuchSmiModule { };

exception NoSuchSmiEntry { };

exception NoSuchVariable { };

/I MIB entry specific exceptions
exception NoSuchHost { };
exception NoSuchObject { };
exception EndOfMibView { };

exception AlreadyExists { };

interface SmiEntry : CosLifeCycle::LifeCycleObject,
CosPropertyService::PropertySet {
/ the value of entry_name is always “0” for the groups.
readonly attribute ASN1_Objectldentifier entry_name;
b
typedef sequence < SmiEntry > SmiEntryList;

interface SmiTablelterator {
boolean next_one_entry(out SmiEntry smi_entry);
boolean next_n_entries (
in unsigned long how_many,
out SmiEntryList smi_entry_list
)i
void destroy();
b

interface GenericFactory : CosLifeCycle::GenericFactory {
SmiEntry create_mib_entry (

B-12 CORBA/TMN Interworking V1.0 August 2000

in ScopedName t_entry_type,
in ASN1_Objectldentifier entry_index,
in Criteria create_criteria
) raises (NoSuchSmiEntry, AlreadyEXxists);

SmiEntry create_mib_entry_with_auto_name (
in ScopedName t_entry_type,
in Criteria create_criteria

) raises (NoSuchSmiEntry, AlreadyEXxists);

J

interface GetNextEntrylterator {
/I Get the next entry index according to lexical ordering rule
/I of SNMP OIDs -- follows SNMP get-next traversal rule
boolean next_one_entry (out Entrylndex entry_index);
boolean next_n_entries (
in unsigned long how_many,
out EntryindexList entry_index_list
)i
void destroy();
h

/l NamingContext extends CosNaming::NamingContext to provide
/l navigating the SNMP name space in the lexicographic order
/I and SNMP specific name and context resolution

interface NamingContext : CosNaming::NamingContext {
string get_next_entry(
in string entry_name
) raises (InvalidName, NotFound, CannotProceed);

GetNextEntrylterator get_next_entry_iterator(
in string initial_entry_name
) raises (InvalidName, NotFound);

J

interface NamingDirectory : NamingContext {
NamingContext resolve_domain_context(
in TAddress p_host_name
) raises (NoSuchHost, CannotProceed, InvalidName, NotFound);

NamingContext resolve_smi_module(
in TAddress p_host_name,
in string p_smi_module_name
) raises (NoSuchHost, NoSuchSmiModule, InvalidName, NotFound);

NamingContext resolve_smi_entry(
in TAddress p_host_name,
in ScopedName p_entry_type
) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed, InvalidName,
NotFound);

SmiEntry resolve_mib_entry(

in TAddress p_host_name,
in ScopedName p_entry_type,

CORBA/TMN V1.0 Normative IDL Aug. 2000 B-13

in string p_entry_index
) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed, InvalidName,
NotFound);

void list_smi_entries(
in TAddress p_host_name,
in ScopedName p_entry_type,
in unsigned long how_many,
out SmiEntryList out_list,
out SmiTablelterator table_iterator
) raises (NoSuchHost, NoSuchSmiEntry, CannotProceed, InvalidName,
NotFound);

/I ProxyAgent
interface ProxyAgent : JIDM::ProxyAgent {
readonly attribute TAddress host_name;

ASN1_Any get_a_variable (
in TAddress p_host_name,
in ScopedName p_var_scoped_name,
in Entrylndex p_var_index
) raises (NoSuchHost, NoSuchVariable, NoSuchObject, ProtocolError);

NVPairList get_variables (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in VarNameList p_var_name_list,
in Entrylndex p_var_index
) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
MultVarProtocolError);

void set_a_variable (
in TAddress p_host_name,
in ScopedName p_var_scoped_name,
in Entrylndex p_var_index,
in ASN1_Any p_var_new_value
) raises (NoSuchHost, NoSuchVariable, NoSuchObject, ProtocolError);

void set_variables (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in NVPairList p_var_nvp_list,
in Entrylndex p_var_index
) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject,
MultVarProtocolError);

void list_mib_entries(
in TAddress p_host_name,
in ScopedName p_entry_scoped_name,
in long p_how_many,
out EntryIndexList p_entry_index_list,
out GetNextEntrylterator p_entry_name_list_itr

B-14 CORBA/TMN Interworking V1.0 August 2000

) raises (NoSuchHost, NoSuchSmiEntry, NoSuchObject, ProtocolError);

boolean mib_entry_exists (
in TAddress p_host_name,
in ScopedName p_entry_scoped_name
) raises (NoSuchHost, NoSuchSmiEntry, ProtocolError);

boolean is_mib_module_supported (
in TAddress p_host_name,
in string p_smi_module_name
) raises (NoSuchHost, NoSuchSmiModule, ProtocolError);

h

struct EntryVarBind {
ScopedName entry_name; // IDL scoped name of the interface for table-entry
string entry_index; // row index of an entry in the form of Objectld string
CosPropertyService::Properties nvp_list;

J

typedef sequence<EntryVarBind> EntryVarBindList;
typedef EntryVarBindList NotificationVariableList;
typedef EntryVarBindList InformVariableList;

struct NotificationInfo { // to be sent when using untyped event channel
CosNaming::Name src_entry_name;
ScopedName event_type;
ASN1_GeneralizedTime event_time;
any notification_info;

h

struct Informinfo { // to be sent when using untyped event channel
CosNaming::Name src_obj_name;
InformVariableList inform_info;

J

interface Notifications {

void snmp_notification (
in CosNaming::Name src_entry_name,
in ScopedName event_type,
in ASN1_GeneralizedTime event_time,
in any notification_info

)i

void snmp_inform (
in CosNaming::Name src_entry_name,
in InformVariableList inform_variables

)i

void snmp_report (
in CosNaming::Name src_entry_name,
in InformVariableList report_variables

J

interface PullNotifications {
boolean try_snmp_notification (
out CosNaming::Name src_entry_name,
out ScopedName event_type,

CORBA/TMN V1.0 Normative IDL Aug. 2000 B-15

out ASN1_GeneralizedTime event_time,
out any notification_info

)i

void pull_snmp_notification (
out CosNaming::Name src_entry_name,
out ScopedName event_type,
out ASN1_GeneralizedTime event_time,
out any notification_info

);

boolean try_snmp_inform (
out CosNaming::Name src_entry_name,
out InformVariableList inform_variables

);

void pull_snmp_inform (
out CosNaming::Name src_entry_name,
out InformVariableList inform_variables

);

boolean try_snmp_report (
out CosNaming::Name src_entry_name,
out InformVariableList report_variables

)i
void pull_snmp_report (

out CosNaming::Name src_entry_name,
out InformVariableList report_variables

J

#endif /¥ _SNMPMGMT _IDL_ */

B.2 Imported IDL

B-16

IDL listed in this section is specified elsewhere, but is listed here for ease of reference
and completeness. The ultimate authority for these IDLs should be the original source
of the IDL specifications.

B.2.1 ASN1Types.idl

Specified in the JIDM Specification Translation document XoJIDM (see “#endif /*
_SNMPMIR_IDL_ */" on page B-54), and amended by the JIDM Specification
Translation Issues List resolutions.

/I File: ASN1Types.idl
#ifndef ASNITYPES_IDL_
#define _ASN1TYPES_IDL_

#pragma prefix “jidm.org”

CORBA/TMN Interworking V1.0 August 2000

/l ASN.1 base types

// Null type

typedef char ASN1_Null;

const ASN1_Null ASN1_NullValue = \000’;
/I Boolean

typedef boolean ASN1_Boolean;

/I Integers

typedef unsigned short ASN1_Unsigned16;
typedef unsigned long ASN1_Unsigned;
typedef unsigned long long ASN1_Unsigned64;
typedef short ASN1_Integerl6;
typedef long ASN1_Integer;
typedef long long ASN1_Integer64;

/I Real

typedef double ASN1_Real;

/I ASN.1 strings which may not contain binary zeros
typedef string ASN1_NumericString;
typedef string ASN1_PrintableString;
typedef string ASN1_VisibleString;
typedef ASN1_VisibleString ASN1_ISO646String;
typedef string ASN1_GraphicString;
typedef ASN1_GraphicString ASN1_ObjectDescriptor;
typedef string ASN1_TeletexString;

typedef ASN1_TeletexString ASN1_T61String;

/I Times
typedef ASN1_VisibleString ASN1_GeneralizedTime; // PIDL defined
typedef ASN1_VisibleString ASN1_UTCTime;

/I ASN.1 strings which may contain binary zeros
typedef sequence<octet> ASN1_OctetString;
typedef sequence<octet> ASN1_GeneralString;
typedef sequence<octet> ASN1_IA5String;
typedef sequence<octet> ASN1_VideotexString;

/I ASN.1 strings of wide characters (which may contain binary zeros)
typedef sequence<unsigned short> ASN1_BMPString;
typedef sequence<unsigned long> ASN1_UniversalString;

// Object Identifier

typedef string ASN1_Objectldentifier;

/I Bit String

typedef sequence<octet> ASN1_BitString; // PIDL defined
/I Any

typedef any ASN1_Any;

typedef any ASN1_DefinedAny;

CORBA/TMN V1.0 Imported IDL Aug. 2000 B-17

B-18

/I ASN.1 recursive references
typedef any ASN1_Recursive;

/I External
module X208Ext {

union ASN1_ObjectldentifierOpt
switch (boolean) {
case TRUE: ASN1_Objectldentifier value;

b

union ASN1_IntegerOpt
switch (boolean) {
case TRUE: ASN1_Integer value;

b

union ASN1_ObjectDescriptorOpt
switch (boolean) {
case TRUE: ASN1_ObjectDescriptor value;

b

enum ExternalEncodingTypeChoice { single_ASN1_typeChoice,

octet_alignedChoice, arbitraryChoice };

union ExternalEncodingType
switch(ExternalEncodingTypeChoice) {

case single_ASN1_typeChoice:
ASN1_Any single_ASN1_type;

case octet_alignedChoice:
ASN1_OctetString octet_aligned;

case arbitraryChoice:
ASN1_BitString arbitrary;

h

struct ExternalType {
ASN1_ObjectldentifierOpt direct_reference;
ASN1_IntegerOpt indirect_reference;
ASN1_ObjectDescriptorOpt data_value_descriptor
ExternalEncodingType encoding;

h

h

typedef X208Ext::ExternalType ASN1_External;

/I define constants for ASN.1 Real infinity values
#include <ASN1Limits.idl>

const ASN1_Real plus_infinity = MAX_FLT;
const ASN1_Real minus_infinity = MIN_FLT;

#endif /* _ASNITYPES_IDL_ */

CORBA/TMN Interworking V1.0

August 2000

B.2.2 ASN1Limits.idl

Specified in the JIDM Specification Translation document XoJIDM and amended by
the JIDM Specification Translation Issues List resolutions.

/I File: ASN1Limits.idl

#ifndef _ASNILIMITS_IDL_

#define _ASNILIMITS_IDL_

/I Substitute <MAX> and <MIN> by the max and min (biggest negative)
// double values your machine can hold for IDL interfaces.

/I Conditional compilation can be used to support multiple architectures.

#define MIN_FLT <MIN>
#define MAX_FLT <MAX>

#endif /* _ASNI1LIMITS_IDL_ */

B.3 Generated IDL

IDL listed in this section is automatically generated, following the JIDM Specification
Translation process, as specified in XoJIDM and amended by the JIDM Specification
Translation Issues List resolutions. It is listed here for ease of reference and
completeness. The ultimate authority for these IDLs should be the use of the originally
published document and a compliant JIDM Specification Translation compiler.

B.3.1 X501Inf.idl

The original source for the ASN.1 document that translates into this IDL is [X501].
/I File: X501Inf.idl
#ifndef _X501INF_IDL_
#define _X501INF_IDL_
I
/I ASN.1 Module name: InformationFramework
/I ASN.1 Module OID: 2.5.1.1
/I ASN.1 Module nickname: X501Inf
i
#include <ASN1Types.idl>
module X501Inf {
/I Assignments mapping
typedef ASN1_Objectldentifier AttributeTypeType;
typedef ASN1_Any AttributeValueType;

typedef sequence <AttributeValueType>
AttributeValuesType;

CORBA/TMN V1.0 Generated IDL Aug. 2000 B-19

struct AttributeType {
Attribute TypeType type;
AttributeValuesType values;

h

struct AttributeValueAssertionType {
AttributeTypeType attribute Type;
ASN1_DefinedAny attributeValue; // defined by:attributeType

J

typedef sequence <AttributeValueAssertionType>
RelativeDistinguishedNameType;

typedef sequence <RelativeDistinguishedNameType>
RDNSequenceType;

enum NameTypeChoice { rDNSequenceChoice };
union NameType
switch(NameTypeChoice) {

case rDNSequenceChoice:
RDNSequenceType rDNSequence;

h
typedef RDNSequenceType DistinguishedNameType;

/INO complex constant declarations
/linterface ConstValues empty

J

#endif /* _XS501INF_IDL_*/

B.3.2 X227ACS.idl

The original source for the ASN.1 document that translates into this IDL is [X227].
Il File: X227ACS.idI
#ifndef _X227ACS_IDL_
#define _X227ACS_IDL_
il
/Il ASN.1 Module name: ACSE-1
/I ASN.1 Module OID: 2.2.0.0.1
/I ASN.1 Module nickname: X227ACS
I
#include <ASN1Types.idl>
#include “X501Inf.idl”
module X227ACS {

/I definitions imported from: X501Inf

B-20 CORBA/TMN Interworking V1.0 August 2000

typedef X501Inf::NameType
NameType;

typedef X501Inf::RelativeDistinguishedNameType
RelativeDistinguishedNameType;

/I Assignments mapping

const ASN1_Objectldentifier acse_as_id =
“2.2.1.0.17;

const ASN1_Objectldentifier aCSE_id =
“2.2.3.1.1"

typedef ASN1_BitString AARQ_apduProtocol_versionType;

union AARQ_apduProtocol_versionTypeOpt
switch (boolean) {
case TRUE: AARQ_apduProtocol_versionType value;

h
typedef AARQ_apduProtocol_versionTypeOpt AARQ_apduProtocol_versionTypeDef;
typedef ASN1_Objectldentifier Application_context_nameType;
typedef NameType AP_title_form1Type;
typedef ASN1_Objectldentifier AP_title_form2Type;
enum AP_titleTypeChoice { form1Choice, form2Choice };
union AP_titleType

switch(AP_titleTypeChoice) {

case form1Choice:
AP_title_form1Type form1,;

case form2Choice:
AP_title_form2Type form2;

h
union AP_titleTypeOpt
switch (boolean) {

case TRUE: AP_titleType value;
h

typedef RelativeDistinguishedNameType AE_qualifier_form1Type;
typedef ASN1_Integer AE_qualifier_form2Type;
enum AE_qualifierTypeChoice { form1Choice_1, form2Choice_1 };
union AE_qualifierType

switch(AE_qualifierTypeChoice) {

case form1Choice_1:
AE_qualifier_form1Type form1;

CORBA/TMN V1.0 Generated IDL Aug. 2000 B-21

case form2Choice_1:
AE_qualifier_form2Type form2;
h

union AE_qualifierTypeOpt
switch (boolean) {
case TRUE: AE_qualifierType value;

h
typedef ASN1_Integer AP_invocation_identifierType;

union AP_invocation_identifierTypeOpt
switch (boolean) {
case TRUE: AP_invocation_identifierType value;

h
typedef ASN1_Integer AE_invocation_identifierType;

union AE_invocation_identifierTypeOpt
switch (boolean) {
case TRUE: AE_invocation_identifierType value;

h
typedef ASN1_BitString ACSE_requirementsType;

union ACSE_requirementsTypeOpt
switch (boolean) {
case TRUE: ACSE_requirementsType value;
h

typedef ASN1_Objectldentifier Mechanism_nameType;

union Mechanism_nameTypeOpt
switch (boolean) {
case TRUE: Mechanism_nameType value;

b

struct Authentication_valueOtherType {
Mechanism_nameType other_mechanism_name;

ASN1_DefinedAny other_mechanism_value; // defined

by:other_mechanism_name

b

enum Authentication_valueTypeChoice { charstringChoice,
bitstringChoice, externalChoice, otherChoice };

union Authentication_valueType
switch(Authentication_valueTypeChoice) {

case charstringChoice:
ASN1_GraphicString charstring;

case bitstringChoice:
ASN1_BitString bitstring;

case externalChoice:
ASN1_External external;

case otherChoice:

CORBA/TMN Interworking V1.0

August 2000

Authentication_valueOtherType other;

J

union Authentication_valueTypeOpt
switch (boolean) {
case TRUE: Authentication_valueType value;

h
typedef ASN1_GraphicString Implementation_dataType;

union Implementation_dataTypeOpt
switch (boolean) {
case TRUE: Implementation_dataType value;

J

typedef sequence <ASN1_External>
Association_informationType;

union Association_informationTypeOpt
switch (boolean) {
case TRUE: Association_informationType value;

J

struct AARQ_apduType {
AARQ_apduProtocol_versionTypeDef protocol_version;
Application_context_nameType application_context_name;
AP_titleTypeOpt called_AP_title;
AE_qualifierTypeOpt called_AE_qualifier;
AP_invocation_identifierTypeOpt called_AP_invocation_identifier;
AE_invocation_identifierTypeOpt called_AE_invocation_identifier;
AP_titleTypeOpt calling_AP_title;
AE_qualifierTypeOpt calling_AE_qualifier;
AP_invocation_identifierTypeOpt calling_AP_invocation_identifier;
AE_invocation_identifierTypeOpt calling_AE_invocation_identifier;
ACSE_requirementsTypeOpt sender_acse_requirements;
Mechanism_nameTypeOpt mechanism_name;
Authentication_valueTypeOpt calling_authentication_value;
Implementation_dataTypeOpt implementation_information;
Association_informationTypeOpt user_information;

h

typedef ASN1_BitString AARE_apduProtocol_versionType;

union AARE_apduProtocol_versionTypeOpt
switch (boolean) {

case TRUE: AARE_apduProtocol_versionType value;

h

typedef AARE_apduProtocol_versionTypeOpt AARE_apduProtocol_versionTypeDef;
typedef ASN1_Integer Associate_resultType;

typedef ASN1_Integer Associate_source_diagnosticAcse_service_userType;

typedef ASN1_Integer Associate_source_diagnosticAcse_service_providerType;

CORBA/TMN V1.0 Generated IDL Aug. 2000

enum Associate_source_diagnosticTypeChoice {
acse_service_userChoice, acse_service_providerChoice };

union Associate_source_diagnosticType
switch(Associate_source_diagnosticTypeChoice) {
case acse_service_userChoice:
Associate_source_diagnosticAcse_service_userType acse_service_user;
case acse_service_providerChoice:
Associate_source_diagnosticAcse_service_providerType
acse_service_provider;

J

struct AARE_apduType {
AARE_apduProtocol_versionTypeDef protocol_version;
Application_context_nameType application_context_name;
Associate_resultType result;
Associate_source_diagnosticType result_source_diagnostic;
AP_titleTypeOpt responding_AP_title;
AE_qualifierTypeOpt responding_AE_qualifier;
AP_invocation_identifierTypeOpt responding_AP_invocation_identifier;
AE_invocation_identifierTypeOpt responding_AE_invocation_identifier;
ACSE_requirementsTypeOpt responder_acse_requirements;
Mechanism_nameTypeOpt mechanism_name;
Authentication_valueTypeOpt responding_authentication_value;
Implementation_dataTypeOpt implementation_information;
Association_informationTypeOpt user_information;

h
typedef ASN1_Integer Release_request_reasonType;

union Release_request_reasonTypeOpt
switch (boolean) {
case TRUE: Release_request_reasonType value;

J

struct RLRQ_apduType {
Release_request_reasonTypeOpt reason;
Association_informationTypeOpt user_information;

J
typedef ASN1_Integer Release_response_reasonType;

union Release_response_reasonTypeOpt
switch (boolean) {
case TRUE: Release_response_reasonType value;

J

struct RLRE_apduType {
Release_response_reasonTypeOpt reason;
Association_informationTypeOpt user_information;

J

typedef ASN1_Integer ABRT_sourceType;

B-24 CORBA/TMN Interworking V1.0 August 2000

enum ABRT_diagnosticType { no_reason_given, protocol_error,
authentication_mechanism_name_not_recognized,
authentication_mechanism_name_required,
authentication_failure, authentication_required };

union ABRT_diagnosticTypeOpt

switch (boolean) {

case TRUE: ABRT_diagnosticType value;
h

struct ABRT_apduType {
ABRT_sourceType abort_source;
ABRT_diagnosticTypeOpt abort_diagnostic;
Association_informationTypeOpt user_information;

J

enum ACSE_apduTypeChoice { aarqChoice, aareChoice, rlrgChoice,
rireChoice, abrtChoice };

union ACSE_apduType
switch(ACSE_apduTypeChoice) {
case aarqChoice:
AARQ_apduType aarq;
case aareChoice:
AARE_apduType aare;
case rlrqChoice:
RLRQ_apduType rlrq;
case rlreChoice:
RLRE_apduType rlre;
case abrtChoice:
ABRT_apduType abrt;
h

const unsigned long versionl =
0;

const unsigned long versionl_1 =
0;

const ABRT_sourceType acse_service_user =
0;

const ABRT_sourceType acse_service_provider =
1;

const unsigned long authentication =
0;

typedef NameType AE_title_form1Type;
typedef ASN1_Objectldentifier AE_title_form2Type;
enum AE_titleTypeChoice { form1Choice_2, form2Choice_2 };

union AE_titleType
switch(AE_titleTypeChoice) {

CORBA/TMN V1.0 Generated IDL Aug. 2000

B-25

B-26

case form1Choice_2:
AE_title_form1Type form1,;

case form2Choice_2:
AE_title_form2Type form2;

J

const Associate_resultType accepted =
0;

const Associate_resultType rejected_permanent =
1;

const Associate_resultType rejected_transient =
2;

const Associate_source_diagnosticAcse_service_userType null =

0;

const Associate_source_diagnosticAcse_service_userType no_reason_given_1 =

1

const Associate_source_diagnosticAcse_service_userType
application_context_name_not_supported =
2;

const Associate_source_diagnosticAcse_service_userType
calling_AP_title_not_recognized =
3;

const Associate_source_diagnosticAcse_service_userType
calling_AP_invocation_identifier_not_recognized =
4;

const Associate_source_diagnosticAcse_service_userType
calling_AE_qualifier_not_recognized =
5;

const Associate_source_diagnosticAcse_service_userType
calling_AE_invocation_identifier_not_recognized =
6;

const Associate_source_diagnosticAcse_service_userType
called_AP_title_not_recognized =
7,

const Associate_source_diagnosticAcse_service_userType
called_AP_invocation_identifier_not_recognized =
8;

const Associate_source_diagnosticAcse_service_userType

called_AE_qualifier_not_recognized =
9;

const Associate_source_diagnosticAcse_service_userType
called_AE_invocation_identifier_not_recognized =

CORBA/TMN Interworking V1.0

August 2000

10;
const Associate_source_diagnosticAcse_service_userType
authentication_mechanism_name_not_recognized_1 =
11;
const Associate_source_diagnosticAcse_service_userType
authentication_mechanism_name_required_1 =
12;

const Associate_source_diagnosticAcse_service_userType authentication_failure_1 =
13;

const Associate_source_diagnosticAcse_service_userType
authentication_required_1 =
14;

const Associate_source_diagnosticAcse_service_providerType null_1 =
0;

const Associate_source_diagnosticAcse_service_providerType no_reason_given_2 =
1
const Associate_source_diagnosticAcse_service_providerType
no_common_acse_version =
2;

const Release_request_reasonType normal =
0;

const Release_request_reasonType urgent =
1

const Release_request_reasonType user_defined =
30;

const Release_response_reasonType normal_1 =
0;

const Release_response_reasonType not_finished =
1;

const Release_response_reasonType user_defined_1 =
30;

/I Complex constants declaration.
interface ConstValues {
/I ** Generated values for <AARQ_apduType::protocol_version>:

AARQ_apduProtocol_versionType protocol_versionDefault();
Il returns: {(ASN.1: versionl1)}

/I ** Generated values for <AARE_apduType::protocol_version>:

CORBA/TMN V1.0 Generated IDL Aug. 2000 B-27

AARE_apduProtocol_versionType protocol_versionDefault_1();
Il returns: {(ASN.1: versionl1)}

h
J

#endif /* X227ACS_IDL_*

B.3.3 X711CMlL.idl

The original source for the ASN.1 document that translates into this IDL is [X711].

/I File: X711CML.idl
#ifndef _X711CMI_IDL_
#define _X711CMI_IDL_
il
/Il ASN.1 Module name: CMIP-1
/Il ASN.1 Module OID: 2.9.1.0.3
/I ASN.1 Module nickname: X711CMI
I
#include <ASN1Types.idl>
#include “X501Inf.idl”
module X711CMI {

/Il definitions imported from: X501Inf

typedef X501Inf::DistinguishedNameType
DistinguishedNameType;

typedef X501Inf::RDNSequenceType
RDNSequenceType;

/I Assignments mapping

typedef ASN1_Integer InvokeldTypeType;
typedef ASN1_External AccessControlType;
enum ObjectClassTypeChoice { globalFormChoice_3, localFormChoice_3 };

union ObjectClassType
switch(ObjectClassTypeChoice) {
case globalFormChoice_3:
ASN1_Objectldentifier globalForm;
case localFormChoice_3:
ASN1_Integer localForm;

B-28 CORBA/TMN Interworking V1.0 August 2000

enum ObjectinstanceTypeChoice { distinguishedNameChoice,
nonSpecificFormChoice, localDistinguishedNameChoice };

union ObjectinstanceType
switch(ObjectinstanceTypeChoice) {

case distinguishedNameChoice:
DistinguishedNameType distinguishedName;

case nonSpecificFormChoice:
ASN1_OctetString nonSpecificForm;

case localDistinguishedNameChoice:
RDNSequenceType localDistinguishedName;

J

union AccessControlTypeOpt
switch (boolean) {
case TRUE: AccessControlType value;

3
enum CMISSyncType { bestEffort, atomic };

union CMISSyncTypeOpt
switch (boolean) {
case TRUE: CMISSyncType value;

h
typedef CMISSyncTypeOpt CMISSyncTypeDef;
typedef ASN1_Integer ScopelLevelType;

enum ScopeTypeChoice { levelChoice, individualLevelsChoice,
baseToNthLevelChoice };

union ScopeType
switch(ScopeTypeChoice) {

case levelChoice:
ScopeLevelType level;

case individualLevelsChoice:
ASN1_Integer individualLevels;

case baseToNthLevelChoice:
ASN1_Integer baseToNthLevel;

J

union ScopeTypeOpt
switch (boolean) {
case TRUE: ScopeType value;

h
typedef ScopeTypeOpt ScopeTypeDef;
enum AttributeldTypeChoice { globalFormChoice_1, localFormChoice_1};
union AttributeldType
switch(AttributeldTypeChoice) {

case globalFormChoice_1:
ASN1_Objectldentifier globalForm;

CORBA/TMN V1.0 Generated IDL Aug. 2000 B-29

B-30

case localFormChoice_1:
ASN1_Integer localForm;

b

struct FilterltemSubstringsltemInitialStringType {
AttributeldType attributeld;
ASN1_DefinedAny string_1; // defined by:attributeld

J

struct FilterltemSubstringsltemAnyStringType {
AttributeldType attributeld;
ASN1_DefinedAny string_1; // defined by:attributeld
h

struct FilterltemSubstringsltemFinalStringType {
AttributeldType attributeld;
ASN1_DefinedAny string_1; // defined by:attributeld

b

enum FilterltemSubstringsltemTypeChoice { initialStringChoice,

anyStringChoice, finalStringChoice };

union FilterltemSubstringslitemType
switch(FilterltemSubstringsltemTypeChoice) {
case initialStringChoice:

FilterltemSubstringslteminitialStringType initialString;

case anyStringChoice:

FilterltemSubstringsltemAnyStringType anyString;

case finalStringChoice:

FilterltemSubstringslitemFinalStringType finalString;

J

typedef sequence <FilterltemSubstringsltemType>
FilterltemSubstringsType;

enum FilterltemTypeChoice { equalityChoice, substringsChoice,
greaterOrEqualChoice, lessOrEqualChoice, presentChoice,

subsetOfChoice, supersetOfChoice,
nonNullSetintersectionChoice };

union FilteritemType
switch(FilterltemTypeChoice) {

case equalityChoice:
AttributeType equality;

case substringsChoice:
FilterltemSubstringsType substrings;

case greaterOrEqualChoice:
AttributeType greaterOrEqual;

case lessOrEqualChoice:
AttributeType lessOrEqual;

case presentChoice:
AttributeldType present;

case subsetOfChoice:
AttributeType subsetOf;

case supersetOfChoice:

CORBA/TMN Interworking V1.0

August 2000

Attribute Type supersetOf;
case nonNullSetintersectionChoice:
AttributeType nonNullSetintersection;

J

enum CMISFilterTypeChoice { itemChoice, andChoice, orChoice,
notChoice };

union CMISFilterType
switch(CMISFilterTypeChoice) {
case itemChoice:
FilterltemType item;
case andChoice:
sequence<CMISFilterType> and;
case orChoice:
sequence<CMISFilterType> or;
case notChoice:
sequence<CMISFilterType, 1> not;
h

union CMISFilterTypeOpt
switch (boolean) {
case TRUE: CMISFilterType value;

h
typedef CMISFilterTypeOpt CMISFilterTypeDef;
enum ActionTypeldTypeChoice { globalFormChoice, localFormChoice };

union ActionTypeldType
switch(ActionTypeldTypeChoice) {
case globalFormChoice:
ASN1_Objectldentifier globalForm;
case localFormChoice:
ASN1_Integer localForm;

b

union ASN1_DefinedAnyOpt
switch (boolean) {
case TRUE: ASN1_DefinedAny value;
h

struct ActioninfoType {
ActionTypeldType actionType;
ASN1_DefinedAnyOpt actioninfoArg; // defined by:actionType
3

struct ActionArgumentType {
ObjectClassType baseManagedObjectClass;
ObjectinstanceType baseManagedObjectinstance;
AccessControlTypeOpt accessControl;
CMISSyncTypeDef synchronization;
ScopeTypeDef scope;
CMISFilterTypeDef filter;
ActioninfoType actioninfo;

CORBA/TMN V1.0 Generated IDL Aug. 2000 B-31

J

const ScopelLevelType baseObject =
0;

union ObjectClassTypeOpt
switch (boolean) {
case TRUE: ObjectClassType value;

J

union ObjectinstanceTypeOpt
switch (boolean) {
case TRUE: ObjectinstanceType value;

b

union ASN1_GeneralizedTimeOpt
switch (boolean) {
case TRUE: ASN1_GeneralizedTime value;

J

enum ActionErrorinfoErrorStatusType { accessDenied, noSuchAction,
noSuchArgument, invalidArgumentValue };

struct NoSuchArgumentActionldType {
ObjectClassTypeOpt managedObjectClass;
ActionTypeldType actionType;

h
enum EventTypeldTypeChoice { globalFormChoice_2, localFormChoice_2 };

union EventTypeldType
switch(EventTypeldTypeChoice) {

case globalFormChoice_2:
ASN1_Objectldentifier globalForm;

case localFormChoice_2:
ASN1_Integer localForm;

J

struct NoSuchArgumentEventldType {
ObjectClassTypeOpt managedObjectClass;
EventTypeldType eventType;

h

enum NoSuchArgumentTypeChoice { actionldChoice, eventldChoice };

union NoSuchArgumentType
switch(NoSuchArgumentTypeChoice) {
case actionldChoice:
NoSuchArgumentActionldType actionld;
case eventldChoice:
NoSuchArgumentEventldType eventld;

struct InvalidArgumentValueEventValueType {

B-32 CORBA/TMN Interworking V1.0 August 2000

EventTypeldType eventType;
ASN1_DefinedAnyOpt eventinfo; // defined by:eventType

b

enum InvalidArgumentValueTypeChoice { actionValueChoice,
eventValueChoice };

union InvalidArgumentValueType
switch(InvalidArgumentValueTypeChoice) {
case actionValueChoice:
ActionIinfoType actionValue;
case eventValueChoice:
InvalidArgumentValueEventValueType eventValue;

J

enum ActionErrorinfoErrorinfoTypeChoice { actionTypeChoice,
actionArgumentChoice, argumentValueChoice };

union ActionErrorinfoErrorinfoType
switch(ActionErrorinfoErrorinfoTypeChoice) {
case actionTypeChoice:
ActionTypeldType actionType;
case actionArgumentChoice:
NoSuchArgumentType actionArgument;
case argumentValueChoice:
InvalidArgumentValueType argumentValue;

J

struct ActionErrorinfoType {
ActionErrorinfoErrorStatusType errorStatus;
ActionErrorinfoErrorinfoType errorinfo;

J

struct ActionErrorType {
ObjectClassTypeOpt managedObjectClass;
ObjectinstanceTypeOpt managedObjectinstance;
ASN1_GeneralizedTimeOpt currentTime;
ActionErrorinfoType actionErrorinfo;

J

struct ActionReplyType {

ActionTypeldType actionType;

ASN1_DefinedAny actionReplyInfo; // defined by:actionType
h

union ActionReplyTypeOpt
switch (boolean) {
case TRUE: ActionReplyType value;

J

struct ActionResultType {
ObjectClassTypeOpt managedObjectClass;
ObjectinstanceTypeOpt managedObjectinstance;
ASN1_GeneralizedTimeOpt currentTime;
ActionReplyTypeOpt actionReply;

CORBA/TMN V1.0 Generated IDL Aug. 2000

B-33

J

enum AttributeErrorErrorStatusType { accessDenied_1,
noSuchAttribute, invalidAttributeValue, invalidOperation,
invalidOperator };

typedef ASN1_Integer ModifyOperatorType;

union ModifyOperatorTypeOpt
switch (boolean) {
case TRUE: ModifyOperatorType value;

b

struct AttributeErrorType {
AttributeErrorErrorStatusType errorStatus;
ModifyOperatorTypeOpt modifyOperator;
AttributeldType attributeld;
ASN1_DefinedAnyOpt attributeValue; // defined by:attributeld

b

enum AttributeldErrorErrorStatusType { accessDenied_2,
noSuchAttribute_1 };

struct AttributeldErrorType {
AttributeldErrorErrorStatusType errorStatus;
AttributeldType attributeld;

J

struct BaseManagedObjectldType {
ObjectClassType baseManagedObjectClass;
ObjectinstanceType baseManagedObjectinstance;

J

struct ComplexityLimitationType {
ScopeTypeOpt scope;
CMISFilterTypeOpt filter;
CMISSyncTypeOpt sync;

3

enum CreateArgumentObjectinstanceTypeChoice {
managedObjectinstanceChoice, superiorObjectinstanceChoice };

union CreateArgumentObjectinstanceType
switch(CreateArgumentObjectinstance TypeChoice) {
case managedObjectinstanceChoice:
ObjectinstanceType managedObjectinstance;
case superiorObjectinstanceChoice:
ObjectinstanceType superiorObjectinstance;

h
union CreateArgumentObjectinstanceTypeOpt

switch (boolean) {
case TRUE: CreateArgumentObjectinstanceType value;

B-34 CORBA/TMN Interworking V1.0 August 2000

typedef sequence <AttributeType>
CreateArgumentAttributeListType;

union CreateArgumentAttributeListTypeOpt
switch (boolean) {
case TRUE: CreateArgumentAttributeListType value;

J

struct CreateArgumentType {
ObjectClassType managedObjectClass;
CreateArgumentObjectinstanceTypeOpt objectinstance;
AccessControlTypeOpt accessControl;
ObjectinstanceTypeOpt referenceObjectinstance;
CreateArgumentAttributeListTypeOpt attributeList;

J

typedef sequence <AttributeType>
CreateResultAttributeListType;

union CreateResultAttributeListTypeOpt
switch (boolean) {
case TRUE: CreateResultAttributeListType value;

J

struct CreateResultType {
ObjectClassTypeOpt managedObjectClass;
ObjectinstanceTypeOpt managedObjectinstance;
ASN1_GeneralizedTimeOpt currentTime;
CreateResultAttributeListTypeOpt attributeList;

h

struct DeleteArgumentType {
ObjectClassType baseManagedObjectClass;
ObjectinstanceType baseManagedObjectinstance;
AccessControlTypeOpt accessControl;
CMISSyncTypeDef synchronization;
ScopeTypeDef scope;
CMISFilterTypeDef filter;

h
enum DeleteErrorDeleteErrorinfoType { accessDenied_3 };

struct DeleteErrorType {
ObjectClassTypeOpt managedObjectClass;
ObjectinstanceTypeOpt managedObjectinstance;
ASN1_GeneralizedTimeOpt currentTime;
DeleteErrorDeleteErrorinfoType deleteErrorinfo;

J

struct DeleteResultType {
ObjectClassTypeOpt managedObjectClass;
ObjectinstanceTypeOpt managedObjectinstance;
ASN1_GeneralizedTimeOpt currentTime;

CORBA/TMN V1.0 Generated IDL Aug. 2000

B-35

struct EventReplyType {
EventTypeldType eventType;
ASN1_DefinedAnyOpt eventReplylInfo; // defined by:eventType

J

struct EventReportArgumentType {
ObjectClassType managedObjectClass;
ObjectinstanceType managedObijectinstance;
ASN1_GeneralizedTimeOpt eventTime;
EventTypeldType eventType;
ASN1_DefinedAnyOpt eventinfo; // defined by:eventType

J

union EventReplyTypeOpt
switch (boolean) {
case TRUE: EventReplyType value;

b

struct EventReportResultType {
ObjectClassTypeOpt managedObjectClass;
ObjectinstanceTypeOpt managedObjectinstance;
ASN1_GeneralizedTimeOpt currentTime;
EventReplyTypeOpt eventReply;

J

typedef sequence <AttributeldType>
GetArgumentAttributeldListType;

union GetArgumentAttributeldListTypeOpt
switch (boolean) {
case TRUE: GetArgumentAttributeldListType value;

b

struct GetArgumentType {
ObjectClassType baseManagedObjectClass;
ObjectinstanceType baseManagedObjectinstance;
AccessControlTypeOpt accessControl;
CMISSyncTypeDef synchronization;
ScopeTypeDef scope;
CMISFilterTypeDef filter;
GetArgumentAttributeldListTypeOpt attributeldList;

J

enum GetlnfoStatusTypeChoice { attributeldErrorChoice,
attribute_1Choice };

union GetInfoStatusType
switch(GetlnfoStatusTypeChoice) {
case attributeldErrorChoice:
AttributeldErrorType attributeldError;
case attribute_1Choice:
Attribute Type attribute_1;

J

typedef sequence <GetInfoStatusType>

B-36 CORBA/TMN Interworking V1.0 August 2000

GetListErrorGetinfoListType;

struct GetListErrorType {
ObjectClassTypeOpt managedObjectClass;
ObjectinstanceTypeOpt managedObjectinstance;
ASN1_GeneralizedTimeOpt currentTime;
GetListErrorGetinfoListType getinfoList;

h

typedef sequence <AttributeType>
GetResultAttributeListType;

union GetResultAttributeListTypeOpt
switch (boolean) {
case TRUE: GetResultAttributeListType value;

J

struct GetResultType {
ObjectClassTypeOpt managedObjectClass;
ObjectinstanceTypeOpt managedObjectinstance;
ASN1_GeneralizedTimeOpt currentTime;
GetResultAttributeListTypeOpt attributeList;

J

typedef sequence <AttributeType>
SetResultAttributeListType;

union SetResultAttributeListTypeOpt
switch (boolean) {
case TRUE: SetResultAttributeListType value;

J

struct SetResultType {
ObjectClassTypeOpt managedObjectClass;
ObjectinstanceTypeOpt managedObjectinstance;
ASN1_GeneralizedTimeOpt currentTime;
SetResultAttributeListTypeOpt attributeList;

3

enum SetInfoStatusTypeChoice { attributeErrorChoice,
attribute_1Choice_1};

union SetInfoStatusType
switch(SetInfoStatusTypeChoice) {
case attributeErrorChoice:
AttributeErrorType attributeError;
case attribute_1Choice_1:
AttributeType attribute_1;

J

typedef sequence <SetinfoStatusType>
SetListErrorSetinfoListType;

struct SetListErrorType {
ObjectClassTypeOpt managedObjectClass;

CORBA/TMN V1.0 Generated IDL Aug. 2000

B-37

B-38

ObjectinstanceTypeOpt managedObjectinstance;
ASN1_GeneralizedTimeOpt currentTime;
SetListErrorSetinfoListType setinfoList;

h

struct SpecificErrorinfoType {
ASN1_Objectldentifier errorld;
ASN1_DefinedAny errorinfo; // defined by:errorld
h

struct ProcessingFailureType {
ObjectClassType managedObjectClass;
ObjectinstanceTypeOpt managedObjectinstance;
SpecificErrorinfoType specificErrorinfo;

J

enum LinkedReplyArgumentTypeChoice { getResultChoice,
getListErrorChoice, setResultChoice, setListErrorChoice,

actionResultChoice, processingFailureChoice,

deleteResultChoice, actionErrorChoice, deleteErrorChoice };

union LinkedReplyArgumentType
switch(LinkedReplyArgumentTypeChoice) {
case getResultChoice:
GetResultType getResult;
case getListErrorChoice:
GetListErrorType getListError;
case setResultChoice:
SetResultType setResult;
case setListErrorChoice:
SetListErrorType setListError;
case actionResultChoice:
ActionResultType actionResult;
case processingFailureChoice:
ProcessingFailureType processingFailure;
case deleteResultChoice:
DeleteResultType deleteResult;
case actionErrorChoice:
ActionErrorType actionError;
case deleteErrorChoice:
DeleteErrorType deleteError;

b

const ModifyOperatorType replace =
0;

const ModifyOperatorType addValues =
1;

const ModifyOperatorType removeValues =
2;

const ModifyOperatorType setToDefault =
3;

CORBA/TMN Interworking V1.0

August 2000

struct NoSuchActionType {
ObjectClassType managedObjectClass;
ActionTypeldType actionType;

h

struct NoSuchEventTypeType {
ObjectClassType managedObjectClass;
EventTypeldType eventType;

h

const ScopelLevelType firstLevelOnly =
1

const ScopeLevelType wholeSubtree =
2;

typedef ModifyOperatorTypeOpt ModifyOperatorTypeDef;

struct SetArgumentModificationListltemType {
ModifyOperatorTypeDef modifyOperator;
AttributeldType attributeld;
ASN1_DefinedAnyOpt attributeValue; // defined by:attributeld

J

typedef sequence <SetArgumentModificationListitemType>
SetArgumentModificationListType;

struct SetArgumentType {
ObjectClassType baseManagedObjectClass;
ObjectinstanceType baseManagedObjectinstance;
AccessControlTypeOpt accessControl;
CMISSyncTypeDef synchronization;
ScopeTypeDef scope;
CMISFilterTypeDef filter;
SetArgumentModificationListType modificationList;

J

const ModifyOperatorType modifyOperatorDefault =
replace;

typedef sequence <AttributeldType>
MissingAttributeValueType;

/I Complex constants declaration.
interface ConstValues {
/I ** Generated values for <ActionArgumentType::synchronization>:

CMISSyncType synchronizationDefault();
/I returns: bestEffort

/I ** Generated values for <ActionArgumentType::scope>:

ScopeType scopeDefault();

CORBA/TMN V1.0 Generated IDL Aug. 2000

B-39

/I returns: baseObject
/I ** Generated values for <ActionArgumentType::filter>:

CMISFilterType filterDefault();
/I returns: {}

/I ** Generated values for <DeleteArgumentType::synchronization>:

CMISSyncType synchronizationDefault_1();
/I returns: bestEffort

/I ** Generated values for <DeleteArgumentType::scope>:

ScopeType scopeDefault_1();
/I returns: baseObject

/I ** Generated values for <DeleteArgumentType::filter>:

CMISFilterType filterDefault_1();
/I returns: {}

/I ** Generated values for <GetArgumentType::synchronization>:

CMISSyncType synchronizationDefault_2();
/I returns: bestEffort

/I ** Generated values for <GetArgumentType::scope>:

ScopeType scopeDefault_2();
/I returns: baseObject

/I ** Generated values for <GetArgumentType::filter>:

CMISFilterType filterDefault_2();
[/l returns: {}

/I ** Generated values for <SetArgumentType::synchronization>:

CMISSyncType synchronizationDefault_3();
/I returns: bestEffort

/I ** Generated values for <SetArgumentType::scope>:

ScopeType scopeDefault_3();
/I returns: baseObject

/[** Generated values for <SetArgumentType:filter>:

CMISFilterType filterDefault_3();
/I returns: {}

g

B-40 CORBA/TMN Interworking V1.0 August 2000

#endif /*_X711CMI_IDL_*/

B.4 Optional IDL

IDL listed in this section is part of this specification, however, it is part of some

optional facility, and therefore not required from any implementation.

B.4.1 ASNL.idl
Specification of the Dynamic ASN1 Any API.

/I File: ASN1.idl
#ifndef _ASN1_IDL_
#define _ASN1_IDL_

#include <orb.idl>
#include <ASN1Types.idl>

#pragma prefix “jidm.org”
module ASN1 {
typedef CORBA::Identifier Identifier;

enum Kind {
ak_none, // used when value is not ASN.1 based
ak_null, ak_boolean,
ak_integer, ak_real,
ak_numericstring, ak_printablestring,
ak_visiblestring, ak_iso646string,
ak_graphicstring, ak_objectdescriptor,
ak_teletexstring, ak_t61string,
ak_generalizedtime, ak_utctime,
ak_octetstring, ak_generalstring,
ak_ia5string, ak_videotexstring,
ak_bmpstring, ak_universalstring,
ak_objectidentifier,
ak_bitstring,
ak_any, ak_definedany,
ak_external,
ak_enum,
ak_sequence, ak_set,
ak_sequenceof, ak_setof,
ak_choice

5

interface DynAny : CORBA.::DynAny {
Kind asn1_kind() raises (Invalid);
Identifier asnl_type_name () raises (Invalid);
Identifier asn1_module_name() raises (Invalid);
Identifier asn1_module_nickname() raises (Invalid);
ASN1_Objectldentifier asn1_module_oid() raises (Invalid);

CORBA/TMN V1.0 Optional IDL Aug. 2000

B-41

B-42

void asnl_assign (in DynAny asnl_dyn_any) raises (Invalid);
void from_dyn_any (in CORBA::DynAny dyn_any) raises (Invalid);
CORBA::DynAny to_dyn_any() raises (Invalid);

DynAny asnl_copy();

void insert_asn1_null(in ASN1_Null value) raises(InvalidValue);

void insert_asnl_boolean(in ASN1_Boolean value) raises(InvalidValue);

void insert_asnl_unsigned16(in ASN1_Unsigned16 value) raises(InvalidValue);

void insert_asnl_unsigned(in ASN1_Unsigned value) raises(InvalidValue);

void insert_asnl_unsigned64(in ASN1_Unsigned64 value) raises(InvalidValue);

void insert_asnl_integerl6(in ASN1_Integerl6 value) raises(InvalidValue);

void insert_asn1_integer(in ASN1_Integer value) raises(InvalidValue);

void insert_asnl_integer64(in ASN1_Integer64 value) raises(InvalidVvalue);

void insert_asnl_real(in ASN1_Real value) raises(InvalidValue);

void insert_asn1_numericstring(in ASN1_NumericString value) raises(InvalidValue);
void insert_asn1_printablestring(in ASN1_PrintableString value) raises(InvalidValue);
void insert_asnl_visiblestring(in ASN1_VisibleString value) raises(InvalidValue);
void insert_asnl_iso646string(in ASN1_ISO646String value) raises(InvalidValue);
void insert_asn1_graphicstring(in ASN1_GraphicString value) raises(InvalidValue);
void insert_asnl_objectdescriptor(in ASN1_ObjectDescriptor value) raises(InvalidValue);
void insert_asn1_teletexstring(in ASN1_TeletexString value) raises(InvalidValue);
void insert_asnl_t61string(in ASN1_T61String value) raises(InvalidValue);

void insert_asnl_generalizedtime(in ASN1_GeneralizedTime value) raises(InvalidValue);
void insert_asnl_utctime(in ASN1_UTCTime value) raises(InvalidValue);

void insert_asnl_octetstring(in ASN1_OctetString value) raises(InvalidValue);

void insert_asn1_generalstring(in ASN1_GeneralString value) raises(InvalidValue);
void insert_asn1_ia5string(in ASN1_IA5String value) raises(InvalidValue);

void insert_asnl_videotexstring(in ASN1_VideotexString value) raises(InvalidValue);

void insert_asn1_bmpstring(in ASN1_BMPString value) raises(InvalidValue);
void insert_asnl_universalstring(in ASN1_UniversalString value) raises(InvalidValue);

void insert_asnl_objectidentifier(in ASN1_Obijectldentifier value) raises(InvalidValue);
void insert_asnl_bitstring(in ASN1_BitString value) raises(InvalidValue);

void insert_asn1_any(in ASN1_Any value) raises(InvalidValue);
void insert_asnl_definedany(in ASN1_DefinedAny value) raises(InvalidValue);

void insert_asnl_external(in ASN1_External value) raises(InvalidValue);

ASN1_Null get_asnl_null() raises(TypeMismatch);
ASN1_Boolean get_asnl_boolean() raises(TypeMismatch);

ASN1_Unsigned16 get_asnl_unsigned16() raises(TypeMismatch);
ASN1_Unsigned get_asnl_unsigned() raises(TypeMismatch);
ASN1_Unsigned64 get_asnl_unsigned64() raises(TypeMismatch);
ASN1_Integerl6 get_asnl_integerl6() raises(TypeMismatch);
ASN1_Integer get_asnl_integer() raises(TypeMismatch);
ASN1_Integer64 get_asnl_integer64() raises(TypeMismatch);

ASN1_Real get_asnl_real() raises(TypeMismatch);

CORBA/TMN Interworking V1.0 August 2000

ASN1_NumericString get_asnl_numericstring() raises(TypeMismatch);
ASN1_PrintableString get_asnl_printablestring() raises(TypeMismatch);
ASN1_VisibleString get_asn1_visiblestring() raises(TypeMismatch);
ASN1_ISO646String get_asnl_iso646string() raises(TypeMismatch);
ASN1_GraphicString get_asnl1_graphicstring() raises(TypeMismatch);
ASN1_ObjectDescriptor get_asnl_objectdescriptor() raises(TypeMismatch);
ASN1_TeletexString get_asnl_teletexstring() raises(TypeMismatch);
ASN1_T61String get_asnl_t61string() raises(TypeMismatch);

ASN1_GeneralizedTime get_asnl_generalizedtime() raises(TypeMismatch);
ASN1_UTCTime get_asnl_utctime() raises(TypeMismatch);

ASN1_OctetString get_asnl_octetstring() raises(TypeMismatch);
ASN1_GeneralString get_asnl_generalstring() raises(TypeMismatch);
ASN1_IA5String get_asnl_ia5string() raises(TypeMismatch);
ASN1_VideotexString get_asnl_videotexstring() raises(TypeMismatch);

ASN1_BMPString get_asnl_bmpstring() raises(TypeMismatch);
ASN1_UniversalString get_asnl_universalstring() raises(TypeMismatch);

ASN1_Objectldentifier get_asnl_objectidentifier() raises(TypeMismatch);
ASN1_BitString get_asnl_bitstring() raises(TypeMismatch);

ASN1_Any get_asnl_any() raises(TypeMismatch);
ASN1_DefinedAny get_asnl_definedany() raises(TypeMismatch);

ASN1_External get_asnl_external() raises(TypeMismatch);

DynAny current_asnl_component () raises(Invalid);

J#

interface DynEnum: DynAny, CORBA::DynEnum {
attribute string value_as_asn1_identifier;
attribute long value_as_asnl_value;

J

interface DynNamedNumber: DynAny {
attribute string value_as_asn1_identifier;

J

typedef CORBA::FieldName FieldName;
typedef CORBA::NameValuePairSeq NameValuePairSeq;

interface DynSetSeq: DynAny, CORBA::DynStruct {
FieldName current_asnl_elem_name ();
Kind current_asnl_elem_kind ();
NameValuePairSeq get_asnl_elems() raises(Invalid);
void set_asnl_elems(in NameValuePairSeq value) raises (InvalidSeq);
void insert_optional_absent() raises (InvalidValue);
DynAny insert_optional_present() raises (InvalidValue);
void insert_default_absent() raises (InvalidValue);
DynAny insert_default_present() raises (InvalidVvalue);
boolean get_optional_presence() raises (TypeMismatch);
DynAny get_optional_present() raises (TypeMismatch);

CORBA/TMN V1.0 Optional IDL Aug. 2000 B-43

B-44

boolean get_default_presence() raises (TypeMismatch);
DynAny get_default_present() raises (TypeMismatch);
h

interface DynChoice: DynAny, CORBA::DynUnion {
DynAny asnl_elem ();
attribute FieldName asnl_elem_name;
Kind asnl_elem_kind ();

J

interface DynSetSeqOf : DynAny, CORBA::DynSequence {
Kind asni_item_kind ();
h

interface DynAnyFactory {
exception InconsistentKind {};
exception InconsistentTypeCode {};

typedef CORBA::Identifier Identifier;
DynAny create_asnl_dyn_any(in any value);

DynAny create_basic_dyn_any(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

CORBA::DynStruct create_dyn_struct(in CORBA:: TypeCode type)
raises(InconsistentTypeCode);

CORBA::DynSequence create_dyn_sequence(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

CORBA::DynUnion create_dyn_union(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

CORBA::DynEnum create_dyn_enum(in CORBA:: TypeCode type)
raises(InconsistentTypeCode);

CORBA::DynArray create_dyn_array(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

CORBA::DynFixed create_dyn_fixed(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

DynAny create_asnl_dyn_primitive(in Identifier asn1_nickname,
in Identifier asn1l_name)
raises(InconsistentKind);
DynEnum create_asnl_dyn_enum(in Identifier asn1_nickname,
in Identifier asn1l_name)
raises(InconsistentKind);
DynSetSeq create_asnl_dyn_setseq(in Identifier asnl_nickname,
in Identifier asn1_name)
raises(InconsistentKind);
DynSetSeqOf create_asnl_dyn_setseqof(in Identifier asn1_nickname,
in Identifier asn1_name)
raises(InconsistentKind);
DynChoice create_asnl1_dyn_choice(in Identifier asn1_nickname,
in Identifier asn1_name)
raises(InconsistentKind);

CORBA/TMN Interworking V1.0 August 2000

J

#endif /* _ASN1_IDL_*/

B.4.2 OSICaching.idl
Specification of the OSI Caching facility.

/I File: OSICaching.idl
#ifndef _OSICACHING_IDL_
#define _OSICACHING_IDL_

#include <OSIMgmt.idl>
#pragma prefix “jidm.org”

module OSICaching {
typedef unsigned long Expirationinterval; // in seconds
typedef ASN1_Objectldentifier ManagedObjectClass;
typedef sequence <ManagedObjectClass> ManagedObjectClassSeq;
typedef ASN1_Objectldentifier Attrid;
typedef sequence < ASN1_Objectldentifier > AttridSeq;

/I NoSuchAttributes is raised when any specified attribute identifiers
/Il are either unknown or invalid.
exception NoSuchAttributes {

AttrldSeq unknown_attributes;

J

/I AttributesNotCached is raised when any specified attribute identifiers
/I to relevant caching operations are not being cached.
exception AttributesNotCached {
AttrldSeq attr_id_list;
b

/l NoSuchObjectClasses is raised when any specified object classes are
/I either unknown or invalid.
exception NoSuchObjectClasses {

ManagedObjectClassSeq unknown_mocs;

h

/I ObjectClassesNotCached is raised when any specified object classes
/I to relevant caching operations are not being cached.
exception ObjectClassesNotCached {

ManagedObjectClassSeq moc_list;

J

/I InvalidObjectClassAttributesPairs is raised when any specified attribute
/I identifiers do not belong to the specified managed object class.
struct ObjectClassAttributesPair {
ManagedObjectClass moc;
AttrldSeq attr_id_list;
h
typedef sequence<ObjectClassAttributesPair> ObjectClassAttributesPairSeq;

CORBA/TMN V1.0 Optional IDL Aug. 2000 B-45

exception InvalidObjectClassAttributesPairs {
ObjectClassAttributesPairSeq invalid_pairs;

J

/* There may be situations when more than one type of error may occur
* because of a single invocation of an operation. To accurately convey
* the different types of error information, CacheConfigException is used
* by some operations. If any of the members of the following exception
* are not relevant, then such members shall be empty sequences, i.e.,
* sequences of zero length. For example, when passing an argument of
* AttrldSeq to remove cached attributes , the client may pass some invalid
* or unkown attribute identifiers, and some valid attribute identifiers
* that are not cached. In such situations, CacheConfigException is raised
* with the invalid or unknown attribute identifiers specified in the
* no_such_attributes member, the valid but not cached attribute
* identifiers specified in the attrs_not_cached member, and the rest of
* the members set to zero length sequences.
*/
exception CacheConfigException {
AttrldSeq no_such_attributes;
ManagedObjectClassSeq no_such_classes;
AttrldSeq attrs_not_cached;
ManagedObjectClassSeq mocs_not_cached;
ObjectClassAttributesPairSeq invalid_moc_attrs_pairs;

J

/I abstract interface for configuring all caches
interface CacheConfigurator {
void set_default_expiration_interval (
in Expirationinterval expiration_interval,
in boolean override_specific_settings
)i

Expirationinterval get_default_expiration_interval ();

void set_caching_enabled (

in boolean enabled,

in boolean override_specific_settings
);
boolean is_caching_enabled ();

J

/I cached attribute information
struct CachedAttribute {
Attrld attr_id;
Expirationinterval expiration_interval;
h
typedef sequence < CachedAttribute > CachedAttributeSeq;

/I abstract interface to configure per-attribute cache
interface PerAttributeCacheConfigurator {
void add_cached_attributes (
in CachedAttributeSeq attr_list,
in boolean override_specific_settings
) raises (NoSuchAttributes);

B-46 CORBA/TMN Interworking V1.0 August 2000

void remove_cached_attributes (

in AttrldSeq attr_id_list,

in boolean override_specific_settings
) raises (CacheConfigException);

CachedAttributeSeq get_cached_attributes ();

Expirationinterval get_expiration_interval (
in Attrld attr_id
) raises (CacheConfigException);

void set_expiration_interval(
in AttrldSeq attr_id_list,
in Expirationinterval interval
) raises (CacheConfigException);

J

/l managed object class with indicated attributes cached
struct CachedObjectClass {
ManagedObjectClass moc;
CachedAttributeSeq cached_attributes_list;
h
typedef sequence < CachedObjectClass > CachedObjectClassSeq;

/I abstract interface to configure per-class cache
interface PerClassCacheConfigurator {
void add_cached_classes (
in CachedObjectClassSeq class_list,
in boolean override_specific_settings
) raises (CacheConfigException);

void remove_cached_classes (
in ManagedObjectClassSeq moc_list,
in boolean override_specific_settings
) raises (CacheConfigException);

void remove_cached_attributes_from_class_cache(
in ManagedObjectClass moc,
in AttrldSeq attr_id_list,
in boolean override_specific_settings

) raises (CacheConfigException);

CachedObjectClassSeq get_cached_classes ();

CachedAttributeSeq get_cached_attributes_for_class (
in ManagedObjectClass moc
) raises (OSIMgmt::NoSuchObjectClass);

void set_expiration_interval_for_class (

in ManagedObjectClass moc,

in AttrldSeq attr_list,

in Expirationinterval extension_duration
) raises (CacheConfigException);

CORBA/TMN V1.0 Optional IDL Aug. 2000

B-47

B-48

interface ProxyAgent : OSIMgmt::ProxyAgent,
CacheConfigurator,
PerAttributeCacheConfigurator,
PerClassCacheConfigurator {};

interface ManagedObject : OSIMgmt::ManagedObiject,
CacheConfigurator,
PerAttributeCacheConfigurator {

void refresh_cached_values (
in AttrldSeq attr_list
) raises (CacheConfigException);

void invalidate_cached_values (
in AttrldSeq attr_list
) raises (CacheConfigException);

J

#endif /* _OSICACHING_IDL_ */

B.4.3 OSITracking.idl

Specification of the OSI Tracking facility.

/I File: OSITracking.idl
#ifndef _OSITRACKING_IDL_
#define _OSITRACKING_IDL

#include <OSICaching.idl>
#pragma prefix “jidm.org”
module OSITracking {

typedef OSICaching::ManagedObjectClassSeq ManagedObjectClassSeq;
typedef OSICaching::AttrldSeq AttrldSeq;

/I abstract interface to configure all tracking
interface TrackConfigurator {
void set_tracking_enabled (
in boolean enabled,
in boolean override_specific_settings

);

boolean is_tracking_enabled ();

J

/I abstract interface to configure per-attribute tracking
interface PerAttributeTrackConfigurator {
void add_tracked_attributes (
in AttrldSeq attr_list,
in boolean override_specific_settings

CORBA/TMN Interworking V1.0 August 2000

) raises (OSICaching::NoSuchAttributes);

/I If the attr_id_list contains an attribute identifier that is not
/I being tracked, then that attribute identifier is ignored
I/l by remove_tracked_attributes.
void remove_tracked_attributes (
in AttrldSeq attr_id_list,
in boolean override_specific_settings
) raises (OSICaching::NoSuchAttributes);

AttrldSeq get_tracked_attributes ();
h

/l managed object class with indicated attributes tracked
struct TrackedObjectClass {
OSICaching::ManagedObjectClass moc;
AttrldSeq list_of_tracked_attributes;

h
typedef sequence < TrackedObjectClass > TrackedObjectClassSeq;

/I TrackConfigException is similar in purpose to

/I OSICaching::CacheConfigException

exception TrackConfigException {
ManagedObjectClassSeq no_such_maocs;
AttrldSeq no_such_attr_ids;
OSICaching::ObjectClassAttributesPairSeq invalid_moc_attrs_pairs;

J

/I abstract interface to configure per-class tracking
interface PerClassTrackConfigurator {
void add_tracked_classes (
in TrackedObjectClassSeq class_list,
in boolean override_specific_settings
) raises (TrackConfigException);

void remove_tracked_classes (
in ManagedObjectClassSeq moc_list,
in boolean override_specific_settings
) raises (OSICaching::NoSuchObjectClasses);

TrackedObjectClassSeq get_tracked_classes ();

AttrldSeq get_tracked_attributes_for_class (
in OSICaching::ManagedObjectClass class_name
) raises (OSIMgmt::NoSuchObjectClass);

J

interface ProxyAgent : OSICaching::ProxyAgent,
TrackConfigurator,
PerAttributeTrackConfigurator,
PerClassTrackConfigurator {};

interface ManagedObject : OSICaching::ManagedObject,
TrackConfigurator,

CORBA/TMN V1.0 Optional IDL Aug. 2000 B-49

PerAttributeTrackConfigurator {};
h

#endif /* _OSITRACKING_IDL_ */

B.4.4 OSlICollection.idl
Specification of the OSI Collection facility.

/I File: OSICollection.idl
#ifndef _OSICOLLECTION_IDL_
#define _OSICOLLECTION_IDL_

#include <OSIMgmt.idl>
#pragma prefix “jidm.org”

module OSICollection {
typedef OSIMgmt::ManagedObject ManagedObiject;
typedef sequence < ManagedObject > ManagedObjectSeq;
exception Iteratorinvalid { };
exception IteratorinBetween { };
exception CollectionInvalid { };
exception NotFound { };
exception InvalidName {};

interface Iterator {
/l retrieving elements
boolean get_element (
out ManagedObject mo
) raises (Iteratorinvalid, IteratorinBetween);
boolean get_n_elements (
in unsigned long how_many,
out ManagedObjectSeq mo_list
) raises (Iteratorinvalid);

/l moving iterator
void restart () raises (Iteratorinvalid);
void set_to_next_element () raises (Iteratorinvalid);
void set_to_next_nth_element (
in unsigned long how_many
) raises (Iteratorlnvalid);

/l iterator state

void invalidate ();

boolean is_valid ();

boolean is_in_between ();

boolean is_equal (in Iterator other) raises (Iteratorinvalid);

/I cloning, assigning and destroying

Iterator clone ();

void assign (in Iterator from_where) raises (Iteratorinvalid);
void destroy ();

B-50 CORBA/TMN Interworking V1.0 August 2000

J

typedef OSIMgmt::LinkedReplyHandler LinkedReplyHandler;
typedef OSIMgmt::EndOfRepliesHandler EndOfRepliesHandler;

/I abstract base interface
interface BaseCollection {

// operations to perform on all elements in the collection
void perform_get (
in OSIMgmt::ASN1_ObijectldentifierSeq attr_id_list,
in LinkedReplyHandler Irh,
in EndOfRepliesHandler eorh
)i
void perform_set (
in OSIMgmt::SetOperationArgument modif_list,
in LinkedReplyHandler Irh,
in EndOfRepliesHandler eorh

);

void perform_action (

J

in ASN1_Objectldentifier action_id,
in ASN1_DefinedAny action_info,
in LinkedReplyHandler Irh,
in EndOfRepliesHandler eorh

)i

void perform_delete (
in LinkedReplyHandler Irh,
in EndOfRepliesHandler eorh

);

/] statistics
boolean is_empty ();

/I creating iterators
Iterator create_iterator (
in boolean read_only
) raises (CollectionInvalid);

/I destruction
void destroy ();

interface EnumCaollection : BaseCollection {

J

/l adding elements

void add_element (in ManagedObject element);

void add_elements (in ManagedObjectSeq elem_list);
void add_all_from (in BaseCollection collection);

/I removing elements
void remove_element_at (
in Iterator where
) raises (Iteratorinvalid, IteratorinBetween);
void remove_all ();

interface RuleCollection : BaseCollection {

CORBA/TMN V1.0 Optional IDL Aug. 2000

B-51

ManagedObiject get_base_object () raises (Collectionlnvalid);
X711CMI::ScopeType get_scope () raises (Collectioninvalid);
X711CMI::CMISFilterType get_filter () raises (Collectioninvalid);
X711CMI::CMISSyncType get_synchronization () raises (Collectionlnvalid);

J

interface CollectionFactory {
EnumcCollection create_enum_collection ();

EnumcCollection create_enum_collection_from_collection (
in BaseCollection collection

);

RuleCollection create_rule_collection (
in OSIMgmt::ManagedObject base_managed_object,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType sync
)

RuleCollection create_rule_collection_by name (
in OSIMgmt::ProxyAgent proxy_agent,
in CORBA::ScopedName base_mo_interface,
in CosNaming::Name base_mo_name,
in X711CMI::ScopeType scope,
in X711CMI::CMISFilterType filter,
in X711CMI::CMISSyncType sync

#endif /* _OSICOLLECTION_IDL_ */

B.4.5 SNMPMIR.idl

Specification of the SNMP Management Information Repository facility.
/I File: SNMPMIR.idI
#ifndef _SNMPMIR_IDL_
#define _SNMPMIR_IDL_

#include <orb.idl>
#include <ASN1Types.idl>

#pragma prefix “jidm.org”
module SNMPMIR {

/l Snmpv1GenericTrapld defines the identfiers for generic trap
/l types in SNMPv1.

enum SnmpvlGenericTrapld {

TRAP_COLDSTART, TRAP_WARMSTART, TRAP_LINKDOWN, TRAP_LINKUP,
TRAP_AUTHFAIL, TRAP_EGPNEIGHBORLOSS, TRAP_ENTERPRISESPECIFIC

B-52 CORBA/TMN Interworking V1.0 August 2000

J

/l GENERIC_TRAP_ENTERPRISE_OID defines the enterprise OID for
/I generic traps.

const ASN1_Objectldentifier GENERIC_TRAP_ENTERPRISE_OID =*“1.3.6.1.4.1.3.1.1";

/I SmiAccessMode defines the enumerated values of the SMI based
/I acces - mode defined for a specific variables.

enum SmiAccessMode {
read_only, read_write, read_create, write_only, inaccessible

J

/I Basic and Application specific SMI types.

enum SmiValueType {
smi_null_value, smi_integer_value, smi_string_value, smi_objectID_value,
smi_bit_value, smi_ipAddress_value, smi_counter_value, smi_gauge_value,
smi_timeticks_value, smi_arbitary_value, smi_nsapAddress_value,
smi_big_counter_value, smi_unsigned_integer_value, smi_unknown_type

J

typedef CORBA::ScopedName ScopedName;
typedef sequence < ScopedName > ScopedNamelList;
typedef sequence < string > VarNamelList;

typedef sequence < string > ModuleNamelList;
typedef sequence < ASN1_Objectldentifier > OIDList;

interface OidRepository {
ScopedName get_scoped_name (in ASN1_Objectldentifier in_oid);

string get_name (in ASN1_Objectldentifier in_oid);
ASN1_Objectldentifier get_oid (in ScopedName in_scoped_name);
ASN1_Objectldentifier get_var_oid (
in ScopedName iface_scoped_name,
in string var_name

)i
string get_textual_obj_id (in ASN1_Objectldentifier obj_id);
void split_var_object_id (

in ASN1_Objectldentifier var_obj_id,

out ASN1_Objectldentifier var_oid,
out ASN1_Objectldentifier obj_index

)
ASN1_Objectldentifier get_next_oid (in ASN1_Objectldentifier oid);

ScopedName get_next_scoped_name (in ScopedName scoped_name);
ScopedName get_next_entry_type (in ScopedName scoped_name);

CORBA/TMN V1.0 Optional IDL Aug. 2000 B-53

interface VariableDef : CORBA::AttributeDef {
readonly attribute ASN1_Objectldentifier oid;
readonly attribute SmiValueType smi_type;
readonly attribute SmiAccessMode smi_access_mode;

readonly attribute any default_value;
h

typedef sequence < VariableDef > VariableDefList;

interface SmiEntryDef : CORBA::InterfaceDef {
readonly attribute ASN1_Objectldentifier oid;

readonly attribute unsigned long total_no_of variables;
readonly attribute VariableDefList var_def_list;

readonly attribute VarNamelList var_name_list;
readonly attribute ScopedNamelList var_scoped_name_list;
readonly attribute OIDList var_oid_list;

readonly attribute VarNamelList index_var_names;
readonly attribute ScopedName next_group_or_table;

VariableDef lookup_variable(in string var_name);
h
typedef sequence < SmiEntryDef > SmiEntryDefList;

interface GroupDef : SmiEntryDef {

readonly attribute SmiEntryDefList table_entry_list;
h
typedef sequence < GroupDef > GroupDefList;

interface ModuleDef : CORBA::ModuleDef {
readonly attribute GroupDefList smi_group_def_list;
readonly attribute SmiEntryDefList smi_entry_def_list;
readonly attribute CORBA::InterfaceDef push_notification_def;
readonly attribute CORBA::InterfaceDef pull_notification_def;

readonly attribute CORBA::InterfaceDef default_value_def;
SmiEntryDef lookup_smi_entry(in string smi_entry_name);
b
typedef sequence < ModuleDef > ModuleDefList;

interface Repository : CORBA::Repository, OidRepository {
readonly attribute ModuleNameList module_name_list;
readonly attribute ModuleDefList module_def_list;
boolean is_smi_module(in CORBA::Identifier module_name);
ModuleDef lookup_smi_module(in string a_module_name);
SmiEntryDef lookup_smi_entry(in ScopedName entry_scoped_name);
ScopedNamelList get_entry_var_list(in ScopedName entry_scoped_name);
ScopedNamelList get_entry_index_var_list(in ScopedName entry_scoped_name);
any get_var_default_value(in ScopedName var_scoped_name);
string get_generic_trap_desc(in ASN1_Integer trap_type);

J

#endif /* _SNMPMIR_IDL_ */

B-54 CORBA/TMN Interworking V1.0 August 2000

Conformance Statement C

C.1 Conformance Statement

This section presents the different conformance points available for this specification.

C.1.1 General Conformance Requirements

All implementations claiming conformance to this specification will

® provide a complete implementation of an interface specification (mandatory or
otherwise) for which conformance is claimed unless some part of the interface
specification is identified as optional, and

® conform to the mappings of GDMO, ASN.1 and/or SNMP SMI to IDL as specified
in XoJIDM ST XoJIDM (see “[XoJIDM] Inter Domain Management: Specification
Translation” mentioned in Appendix A), and amended by the JIDM ST Issues lists
resolutions where support of an information model specified in GDMO, ASN.1, or
SNMP SMI respectively is also claimed.

C.1.2 Specific Conformance Requirements

An implementation can claim conformance to this specification atdonformance
pointsnamed, respectively:

* JIDM Facilities
® CMISE Access Facilities
® (OSI| Management Facilities

®* SNMP Management Facilities

in either the manager role, the agent role, or both.

CORBA/TMN Interworking V1.0 August 2000 C-1

C-2

C.1.3 JIDM Conformance Point

Manager Role

Implementations claiming conformance to JIDM Facilities in the manager role:

Use those interfaces specified in the JIDM module that are required to perform its
management functionality, namely:

« JIDM::ProxyAgentFinder

* JIDM::ProxyAgent

If the management model being supported defines one or more managed object
interfaces, use those interfaces required to perform the management functionality;

additionally, use the following interfaces, if needed to perform its management
function:

» CosNaming::NamingContext
» CoslifeCycle::FactoryFinder
» CosLifeCycle::GenericFactory

Implement the interface and behaviors specified for the
JIDM::ProxyAgentController object, if required.

Implement theJIDM::EventPortFinder interface, providing access to
CosEventChannelAdmin::SupplierAdmin objects in the manager domain, if
events are to be received by the manager.

Agent Role

Implementations claiming conformance to JIDM Facilities in the agent role:

Provide implementations of the following interfaces:
« JIDM::ProxyAgentFinder
* JIDM::ProxyAgent

If the management model being supported defines one or more managed object
interfaces, implement those interfaces being supported by the agent. Name
resolution of objects exposing those interfaces will be supported by providing an
implementation of th&€osNaming::NamingContext interface. If creation of
managed objects is supported by the agent, then implementations of the
CosLifeCycle::FactoryFinder andCosLifeCycle::GenericFactory interfaces
are provided.

Execute the client behavior of tlB&OM::ProxyAgentController interface, if
requested by a manager.

Execute the client behavior of tli#DM::EventPortFinder and supply events to
the correspondin@osEventChannelAdmin::SupplierAdmin interface, if the
agent implementation is capable of emitting event reports.

CORBA/TMN Interworking V1.0 August 2000

C.1.4 CMISE Access Conformance Point

Manager Role

Implementations claiming conformance to CMISE Access Facilities in the manager
role:

Use those interfaces specified in the JIDM and OSIMgmt modules that are required
to perform its management function:

« JIDM::ProxyAgentFinder

* OSIMgmt::ProxyAgent

Implement the interface and behavior specified for the
JIDM::ProxyAgentController object, if required.

Implement the interface and behavior specified for the
OSIMgmt::LinkedReplyHandler and OSIMgmt::EndOfRepliesHandler
objects.

Implement theJIDM::EventPortFinder interface, providing access to
CosEventChannelAdmin::SupplierAdmin objects in the manager domain, if
events are to be received by the manager.

Agent Role

Implementations claiming conformance to CMISE Access Facilities in the agent role:

Provide implementations of the following interfaces:
« JIDM::ProxyAgentFinder
* OSIMgmt::ProxyAgent

Execute the client behavior of tlB&OM::ProxyAgentController interface, if
requested by a manager.

Execute the client behavior of tl@SIMgmt::LinkedReplyHandler and
OSIMgmt::EndOfRepliesHandler interfaces.

Execute the client behavior of tli#DM::EventPortFinder and supply events to
the correspondin@osEventChannelAdmin::SupplierAdmin interface, if the
agent implementation is capable of emitting event reports.

C.1.5 OSI Management Conformance Point

It is the intent of the OSI Management Conformance Points to ensure that a
conformant manager role implementation interoperates with a conformant agent role
implementation.

Manager Role

Implementations claiming conformance to OSI Management Facilities in the manager
role:

CORBA/TMN V1.0 Conformance Statement Aug. 2000 C-3

® Use those interfaces specified in the JIDM and OSIMgmt modules that are required
to perform its management function, namely:

« JIDM::ProxyAgentFinder

* OSIMgmt::ProxyAgent

e OSIMgmt::NamingContext

» CoslLifeCycle::FactoryFinder

» CoslLifeCycle::GenericFactory

* OSIMgmt::ManagedObjectFactory
* OSIMgmt::ManagedObject

®* Use whatever managed object interface(s) specific to an information model are
required to perform its management function.

®* |Implement the interface and behavior specified for the
JIDM::ProxyAgentController object, if required.

®* |Implement the interface and behavior specified for the
OSIMgmt::LinkedReplyHandler andOSIMgmt::EndOfRepliesHandler
objects, if required.

* |Implement theJIDM::EventPortFinder interface, providing access to
CosEventChannelAdmin::SupplierAdmin objects in the manager domain, if
events are to be received by the manager.

Agent Role

Implementations claiming conformance to OSI Management Facilities in the agent role:

®* Provide implementations of the following interfaces:
« JIDM::ProxyAgentFinder
* OSIMgmt::ProxyAgent
e OSIMgmt::NamingContext
» CoslifeCycle::FactoryFinder
* OSIMgmt::ManagedObject

* Implement the managed object interface(s) specific to the information model being
supported by the agent.

®* Provide implementations of the following additional interfaces, if the agent is
capable of creating objects as a result of management operations:

« CoslLifeCycle::GenericFactory
* OSIMgmt::ManagedObjectFactory

® Execute the client behavior of tt#DM::ProxyAgentController interface, if
requested by a manager.

® Execute the client behavior of tl@SIMgmt::LinkedReplyHandler and
OSIMgmt::EndOfRepliesHandler interfaces, if requested by a manager.

® Execute the client behavior of téDM::EventPortFinder and supply events to
the correspondin@osEventChannelAdmin::SupplierAdmin interface, if the
agent implementation is capable of emitting event reports.

CORBA/TMN Interworking V1.0 August 2000

C.1.6 SNMP Management Conformance Point

It is the intent of the SNMP Management Conformance Points to ensure that a
conformant manager role implementation interoperates with a conformant agent role
implementation.

Manager Role

Implementations claiming conformance to SNMP Management Facilities in the
manager role:

Use those interfaces specified in the JIDM and SNMPMgmt modules that are
required to perform its management function, namely:

« JIDM::ProxyAgentFinder

« SNMPMgmt::ProxyAgent

* SNMPMgmt::NamingContext
e CoslLifeCycle::FactoryFinder
* SNMPMgmt::GenericFactory
« SNMPMgmt::SMIEntry

Use whatever managed object interface(s) specific to an information model are
required to perform its management function.

Implement the interface and behavior specified for the
JIDM::ProxyAgentController object, if required.

Implement theJIDM::EventPortFinder interface, providing access to
CosEventChannelAdmin::SupplierAdmin objects in the manager domain, if
events are to be received by the manager.

Agent Role

Implementations claiming conformance to SNMP Management Facilities in the agent
role:

Provide implementations of the following interfaces:
« JIDM::ProxyAgentFinder

« SNMPMgmt::ProxyAgent

* SNMPMgmt::NamingContext
CosLifeCycle::FactoryFinder

« SNMPMgmt::SMIEntry

Implement the managed object interface(s) specific to the information model being
supported by the agent.

Provide implementations of the following additional interfaces, if the agent is
capable of creating objects as a result of management operations:

« SNMPMgmt::GenericFactory

Execute the client behavior of tlB&OM::ProxyAgentController interface, if
requested by a manager.

CORBA/TMN V1.0 Conformance Statement Aug. 2000 C-5

C-6

® Execute the client behavior of téDM::EventPortFinder and supply events to
the correspondin@osEventChannelAdmin::SupplierAdmin interface, if the
agent implementation is capable of emitting event reports.

CORBA/TMN Interworking V1.0 August 2000

Index

A

access_control 3-34, 3-37
access_criteria attribute 2-8
access_domain operation 2-11
action_info 3-37

action_name 3-37

Agent Side Gateways 2-42, 3-72
append 3-12

append_ava 3-12

ASN1 Factory methods 4-28
ASN1 Module 4-20

ASNL1 types and operations 4-25
ASNLl.idl B-41

ASNI1Limits.idl B-19
ASN1Types.idl B-16
attribute_id 3-36

attribute_value 3-36

B
BaseCollection interface 4-18
Basic Concepts 1-4

Behavior common to all scoped operations 3-33

Creation of managed objects 2-38, 2-44
creation_kind 3-37
current_time 3-40

D

Data Types for Untyped Event Communication 5-27
default_value attribute 5-39

default_value_def attribute 5-42

DELETE operations 3-37

delete_mo operation 3-32

Description of CMIS Operations 3-33

Description of OSICaching module 4-6

Description of the LName operations 3-12

Description of the ManagedObiject attributes and operations 3-30
Description of the OSITracking module 4-11

Description of the ProxyAgent operations 3-21, 5-11
Descriptions of BufferedReplyHandler types and operations 3-44
Descriptions of the EndOfRepliesHandler operations 3-42
Descriptions of the LinkedReplyHandler operations 3-39

destroy operation 2-8, 3-24, 3-45, 5-14

destroy() operation 5-19, 5-27

destroyed operation 2-11

Both the name of the object interface and the superior object interdestruction_is_allowed Operation 2-10

face are specified 3-22

Building of Global Name Tree of SNMP MIBs using CORBA

Naming Service 5-22

C
Cached/Tracked services 4-12

caching and tracking functionality 4-2

Choice interface 4-27
CMIS Operations 3-33
CMIS operations 3-24, 3-31
cmis_create 3-38
cmis_create_sync 3-38

CMISE Access Conformance Point C-3

Agent Role C-3

Manager Role C-3
Collection Service 4-14
CollectionFactory Interface 4-19

Common arguments to the LinkedReplyHandler operations 3-39

Conformance Statement C-1
copy 3-12
CORBA
contributors 2
documentation set 2
CORBA/CMIP Gateways

CMISE service level scenarios 3-67
Creation of managed objects 3-60

Event reception 3-66

Getting access to managed object domains 3-59
Invocation of operations on single managed objects 3-62
Invoking operations with scope and filtering 3-63

Manager Side Gateways 3-57
CosNaming
Names 3-12
Names in string format 3-16
CREATE operations 3-37
create_mib_entry() operation 5-20

create_mib_entry_with_auto_name () 5-20
Creating Managed Objects 2-18, 3-48

destruction_is_allowed operation 2-10
Dynamic Management of ASN.1 Any Values 4-19
DynAnyFactory 4-28

E

end_of_replies operation 3-42
end_of_replies_handler 3-35
entry_ins_name parameter 5-20
entry_interface_list attribute 5-42
EnumCollection interface 4-18
Enumerated collection 4-14
Enumerated interface 4-27
equals 3-12

Event Communication 5-27
Event reception 2-40

Event Reporting 1-6

Event reporting 2-46
Exceptions 4-26

Extraction operations 4-26

F
Federation of JIDM
EventPortFinders and JIDM
EventPorts 2-32
ProxyAgentFinders and JIDM
DomainPorts 2-29

filter 3-34

Filtering 3-33

finished operation 3-45
flexibility of configuration 4-2

G

General Conformance Requirements C-1
Generated IDL B-19

Generic multi-attribute operations 3-31
GET operations 3-36

get_a_variable operation 5-15

get_ava 3-12

get_domain_factory_finder Operation 2-5

CORBA/TMN Interworking V1.0 August 2000 Index-1

Index

get_domain_factory_finder operation 2-5, 5-11 JIDM module 2-1
get_domain_naming_context operation 2-7, 3-23, 5-13 JIDM objects 2-3
get_n_replies operation 3-45 JIDM.idl B-1

get_name() 5-36

get_next_entry() 5-21 K
get_next_entry_iterator() 5-21 Key Design Principles 1-7
get_next_oid() 5-38 Kind type 4-25
get_next_scoped_name() 5-38

get_oid() 5-37 L

Lifecycle 4-26
LifeCycle operations 5-17
: LinkedReplyHandler/MultipleRepliesHandler 3-39
-37
get_scoped_name_by__ond() 53 LinkerReplyHandler/EndOfRepliesHandler 3-38
get_textual_obj_id() 5-37 - . . .
get_var_oid() 5-37 list_mib_entries operation 5-16
get_variables operation 5-16 tNan ope;atlons 3-12
Getting access to managed object domains 2-37 ocal form 3-10

local name 3-11
Global form 3-10)
global name 3-11 local orphan managed objects 3-46

lookup_smi_entry() operation 5-42

get_reply operation 3-44
get_scoped_name() 5-36

H lookup_variable() operation 5-41
Handling access to managed objects 2-43
Handling ACTIONs with multiple replies 3-45 M

managed object 3-10
I ManagedObiject attributes and operations 3-30

IDL Factory methods 4-28 Manager Side Gateways 2-34 .
Imported IDL B-16 Mechanism to obtain Cached/Tracked services 4-12
index_var_names attributes 5-40 mib_entry_exists operation 5-17
Inherited operations from CosLifeCycle Model description 4-28
LifeCycleObject 3-30 modification_list 3-36
Insertion operations 4-26 modlfy_ope(ator 3-36
Interaction Translation 1-3 ModuleDefList type 5-42
interface EventPortFactory { 2-15 MoError exception 3-44
interface_name 3-33, 3-37 MultVarProtocolError exception 5-15

Invocation of operations on managed objects 2-39, 2-45

Invoking operations on managed objects 2-22 N .

is_mibf;mopdule_supported opgeratiorjl 5-17 NamedNumber interface 4-27

Iterator interface 4-17 Naming 3-28 . .

Naming MIB Entries Using SNMP Names in CORBA

J Domain 5-21

JIDM Naming of Variables in SNMP Domains 5-21
DomainPort Interface 2-13 Navigation operations 4-27
DomainPort objects 2-13 next_group_or_table attribute 5-40
DomainPortFactory Interface 2-14 next_n_entries() operation 5-19, 5-27
DomainPortFactory objects. 2-14 next_one_entry() operation 5-19, 5-27
EventPort Interface 2-15 Normative IDL B-1
EventPortFactory Interface 2-15 NoSuchSmiModule exception 5-15
EventPortFinder Interface 2-16
ProxyAgent Interface 2-4 O

ProxyAgentController Interface 2-9 Object Manafgement Group 1
ProxyAgentFinder Interface 2-11 address of 2

JIDM Conformance Point C-2 object_interface 3-39
AgentRole €3 object_name 3-33, 3-37, 3-39

Manager Role C-2 object_name attribute 3-31

JIDM Gateways 2-34 oid attribute 5-40

. : OIDRepository Interface 5-36
Creation of managed objects 2-38 . . . -
Gettinlg access togmanaéed object domains 2-37 Only the name of the object factory interface is specified 3-22

Invocation of operations on managed objects 2-39 8”'?’ thel P[?ngoilthe object interface is specified 3-22
Manager Side Gateways 2-34 ptiona N

OSI Caching and Tracking Services 4-1
JIDM gateways 2-34, 2-42 >
JIDM Ig\’/Ian\;vggd Objects 2-3 OSI Management Conformance Point C-3
JIDM Module 2-1 Agent Role C-4

Manager Role C-3

Index-2 CORBA/TMN Interworking V1.0 August 2000

Index

OSI Management Information Repository 4-28 Table-entries/Groups and Support for SNMP GET-NEXT
OSI Objectinstance Names 3-12 message 5-24
OSICaching Module 4-2 Rule collections 4-14
OSICaching module 4-6 RuleCollection interface 4-18
OSlICaching.idl B-45
OSICollection Module 4-14 S
OSlICollection types and operations 4-17 scope 3-34
OSlICollection.idl B-50 Scoping 3-33
OSIMgmt send_mo_error operation 3-40
BufferedRepliesHandler Interface 3-43 send_reply operation 3-40
EndofRepliesHandler 3-38 send_subtree_error operation 3-41
LinkedReplyHandler 3-38 Send!ng m-event-report requests 3-83
LinkedReplyHandler, EndOfRepliesHandler, and Sending m-event-report requests (pull model) 3-85
MultipleRepliesHandler Interfaces 3-38 Sending m-event-report requests (push model) 3-84
LName Interface 3-10 SET operations 3-36
LocalRoot interface 3-46 set_a_variable and set_variables operations 5-16
ManagedObiject interface 3-26 SetSeq interface 4-27
ManagedObjectFactory Interface 3-32 SetSeqOf interface 4-27
ManagedObjectFactory interface 3-32 smi_access_mode attribute 5-39
MultipleRepliesHandler 3-38 smi_group_def_list attribute 5-41
NamingContext Interface 3-25 smi_type attribute 5-39
ProxyAgent interface 3-17 SmiEntry interface 5-17
OSIMgmt Module 3-1 SmiEntryDef Interface 5-39
OSIMgmt.idl B-3 SmiGroupDef Interface 5-41
OS|Tracking module 4-10, 4-11 SmiModuleDef Interface 5-41
OSlITracking.idl B-48 SmiTablelterator interface 5-19
SNMP Management Conformance Point C-5
P Agent Role C-5
perform_action operation 3-31 Manager Role C-5
Problem Statement SNMP Management Facilities Specification 4-29
Invoking Operations on Managed Objects 1-5 SNMP Management Information Repository 4-30, 5-2, 5-30
Programming Model SNMP operations 5-14
Creating Managed Objects 2-18 SNMPMgmt
Invoking operations on Managed Objects 2-22 GenericFactory Interface 5-19
Programming Semantics 2-18 GetNextEntrylterator Interface 5-26
Reception of Events at CORBA Managers 2-25 NamingContext Interface 5-21
Programming Semantics 2-18, 3-48 NamingDirectory Interface 5-25
PropertySet operations 5-18 Notifications Interface 5-28
ProxyAgent operations 3-21, 5-11 ProxyAgent Interface 5-8
pull_notification_def attribute 5-42 PullNotifications Interface 5-29
PullConsumer 2-28 SmiEntry interface 5-17
push_notification_def attribute 5-42 SmiTablelterator Interface 5-18
PushConsumer 2-27 SNMPMgmt Module 5-2
SNMPMIR Module 5-35
R SNMPMIR.idl B-52
Reception of Events at CORBA Managers 2-25 Speciﬁc Conformance Requirements Cc-1
reference_object 3-38 Specification Translation 1-2
Replieslterator interface 3-44 split_var_object_id() 5-37
Reply type 3-44 SubtreeError exception 3-44
reply_handler 3-35 synchronization 3-34
reply_info argument 3-40
reply_info/error_info 3-40 T
Repository Interface 5-42 The get_domain_factory_finder operation 3-21
Representation of CosNaming The OSICaching Module 4-2
Names 3-13 The OSIMgmt
Names in string format 3-16 BufferedRepliesHandler Interface 3-43
req_attribute_values 3-38 LName Interface 3-10
resolve_osi_name operation 3-25 NamingContext Interface 3-25
resolve_with_intf operation 3-25 ProxyAgent interface 3-17
Resolving SNMP names to obtain Object References to The OSIMgmt Module 3-1

to_ancestor_name 3-12

CORBA/TMN Interworking V1.0 August 2000 Index-3

Index

to_relative_name 3-12 \%

total_no_of_variables attribute 5-40 var_def_list attribute 5-40

translate_idl_name operation 3-26 var_name_list attribute 5-40

translate_osi_name operation 3-26 var_oid_list attribute 5-40

Translation between CosNaming var_scoped_name_list attribute 5-40
Names and OSI Objectinstance Names 3-12 VariableDef Interface 5-39

Translation description 4-28

transparency 4-2 X .

Type definitions and Exceptions 5-14 X227ACS.idl B-20

Type identification 4-26 X501Inf.idl B-19

X711CML.idl B-28

Index-4 CORBA/TMN Interworking V1.0 August 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Specification Description
	1.1 JIDM Overview
	1.2 Definitions and Design Principles
	1.2.1 Reference Model
	1.2.2 Specification Translation
	1.2.3 Interaction Translation

	1.3 Basic Concepts
	1.4 Problem Statement
	1.4.1 Invoking Operations on Managed Objects
	1.4.2 Event Reporting

	1.5 General Design Principles
	1.5.1 Key Design Principles
	1.5.2 Alignment with CORBA Design Principles
	1.5.3 Alignment with OSI Systems Management and Internet Management Design Principles

	2. JIDM CORBA Facilities
	2.1 The JIDM Module
	2.1.1 JIDM Managed Objects
	2.1.2 The JIDM::ProxyAgent Interface
	2.1.3 The JIDM::ProxyAgentController Interface
	2.1.4 The JIDM::ProxyAgentFinder Interface
	2.1.5 The JIDM::DomainPort Interface
	2.1.6 The JIDM::DomainPortFactory Interface
	2.1.7 The JIDM::EventPort Interface
	2.1.8 The JIDM::EventPortFactory Interface
	2.1.9 The JIDM::EventPortFinder Interface

	2.2 Programming Model
	2.2.1 Programming Semantics
	2.2.2 Creating Managed Objects
	2.2.3 Invoking Operations on Managed Objects
	2.2.4 Reception of Events at CORBA Managers
	2.2.5 Federation of JIDM::ProxyAgentFinders and JIDM::DomainPorts
	2.2.6 Federation of JIDM::EventPortFinders and JIDM::EventPorts

	2.3 JIDM Gateways
	2.3.1 Manager Side Gateways
	2.3.2 Agent Side Gateways

	3. OSI CORBA Facilities
	3.1 The OSIMgmt Module
	3.1.1 The OSIMgmt::LName Interface
	3.1.2 The OSIMgmt::ProxyAgent Interface
	3.1.3 The OSIMgmt::NamingContext Interface
	3.1.4 The OSIMgmt::ManagedObject interface
	3.1.5 The OSIMgmt::ManagedObjectFactory Interface
	3.1.6 Description of CMIS Operations
	3.1.7 The OSIMgmt::LinkedReplyHandler, EndOfRepliesHandler, and MultipleRepliesHandler Interfaces
	3.1.8 The OSIMgmt::BufferedRepliesHandler Interface
	3.1.9 Handling ACTIONs with multiple replies
	3.1.10 The OSIMgmt::LocalRoot interface

	3.2 Programming Model
	3.2.1 Programming Semantics
	3.2.2 Creating Managed Objects
	3.2.3 Invoking Operations on Single Managed Objects
	3.2.4 Invoking Operations with Scope and Filtering
	3.2.5 Iterator Interfaces for Scoped Operations
	3.2.6 Reception of Events at CORBA Managers
	3.2.7 Forwarding Events from CORBA Managed Object Domains

	3.3 CORBA/CMIP Gateways
	3.3.1 Manager Side Gateways
	3.3.2 Agent Side Gateways

	4. OSI Support Services
	4.1 OSI Caching and Tracking Services
	4.1.1 The OSICaching Module
	4.1.2 The OSITracking module
	4.1.3 Mechanism to obtain Cached/Tracked services

	4.2 Collection Service
	4.2.1 Overview
	4.2.2 The OSICollection Module

	4.3 Dynamic Management of ASN.1 Any Values
	4.3.1 Overview
	4.3.2 The ASN1 Module

	4.4 The OSI Management Information Repository
	4.5 SNMP Management Facilities Specification
	4.5.1 Overview

	5. SNMP CORBA Facilities
	5.1 Overview
	5.2 The SNMPMgmt Module
	5.2.1 The SNMPMgmt::ProxyAgent Interface
	5.2.2 The SNMPMgmt::SmiEntry interface
	5.2.3 The SNMPMgmt::SmiTableIterator Interface
	5.2.4 The SNMPMgmt::GenericFactory Interface
	5.2.5 The SNMPMgmt::NamingContext Interface
	5.2.6 Naming MIB Entries Using SNMP Names in CORBA Domain
	5.2.7 The SNMPMgmt::NamingDirectory Interface
	5.2.8 The SNMPMgmt::GetNextEntryIterator Interface
	5.2.9 Event Communication

	5.3 SNMP Management Information Repository
	5.3.1 The SNMPMIR Module
	5.3.2 The OIDRepository Interface
	5.3.3 The VariableDef Interface
	5.3.4 The SmiEntryDef Interface
	5.3.5 The SmiGroupDef Interface
	5.3.6 The SmiModuleDef Interface
	5.3.7 The Repository Interface

	Appendix A - References
	Appendix B - Complete OMG IDL
	Appendix C - Conformance Statement
	Index

