Date: December 2017

Tools Output Integration Framework
(TOIF)

Request for Comments

Version 1.2

OMG Document Number: sysa/2017-12-01
Standard document URL: http://www.omg.org/spec/TOIF/1.2/pdf

Normative Machine Consumable files:

http://www.omg.org/spec/TOIF/1.2/toif.emof

http://www.omg.org/spec/TOIF/1.2/toif.xsd

Non-normative Machine Consumable files:

http://www.omg.org/spec/TOIF/1.2/toif.ecore

http://www.omg.org/spec/TOIF/1.2/toif. mdxml

http://www.omg.org/spec/TOIF/1.2/toif clean uml.xmi

Copyright © 2017, KDM Analytics, Inc.
Copyright © 2017, Lockheed Martin Corporation
Copyright © 2017, The MITRE Corporation
Copyright © 2017, Model Driven Solutions
Copyright © 2017, 88solutions Corp.

Copyright © 2017, NoMagic, Inc

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(i1) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, 140 Kendrick Street,
Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ | Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, I[IOP™ | MOF™ | OMG Interface Definition Language (IDL)™ ,
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

OMG'’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.)

Table of Contents

1 Submission Specific Material.......ccccceeiiiiiiiimuiiiiiiininirse s sssessssssenns 1
1.1 SUDMISSION Preface... ittt rreneecrrenee e eenaeeseenaseeseennsssseennssssennssssennsssssennssessennsnanns 1
1.2 COPYHIBhE WAVELSiiiiiiieeeeiiiiiiiiiieeeneeiiiiiinisennssssisssssiissnnsssssss 1
1.3 IPR IMOAE..c iieiciiieeieeitieiieetenenieereneseestenesseseenessessenssssseenssssseenssssseennsssseennsssseennssssssnnsssssennssessnnnssanns 1
1.4 Submitter REPreseNtatiVesiiiieeeeiiiiiiiiiiiienmiiiiiiiiiiieesseiiisiiiiessssssssssssssasssssssssssssssssssssssssssss 1
1.5 AULNOI TEAM ettt rtneee s reneeesrene s e seenasssseenssssseensssssesnnsssseennsssssennssssssnnsssssennsssasnnnnanns 1

7 ol o ' 1= N 2

3 CONFOIMANCE ..cceeiieieiitiecctieeetreeeeereeeereeasseseensseseenssessensseseensssssenssssesnsssssenssssesnsssseenssenesnsnnns 2

L R] (=Y =T 1ot =T3RS 3
4.1 NOrMAtive REFEIrENCES ...ccuuiiieeiiiiiiiiiciitiiettreeeereneeeettneseeseensssssennsssseensssssesnsssssesnssessssnssessannsnnns 3
4.2 INfOrmative REFEIENCES......ciiteuiiiiiiiciiitieeeetreeeereneeeereneseeseensssseenssssseenssssseensssssesnssessennssessannsnanns 3

5 Terms and Definitionscoieeiiieeiiiiiiiiriccrrenc e rees e reeeesrensseseenssessenssesesnssssenssesesnnnans 3

T V7 1 o Yo S 4

7 Additional INformation.........ce. it rr e ee e s s e n s e s e e ns s s s ensseseennnans 4
7.1 How to Read this SPecifiCation.......cccciiiiimuiiiiiiiiiiiiiiiiciiiinieenieeesssssssssesssseesssssssssssssssessanes 4
7.2 ACKNOWIEAZEMENLSuciiiiiiiiinniiiiiiiiiiitinniiieetitttrannsssseesteeessnsssssssssssssssssssssssssssasessnsssssssssssssssnnns 5

8 TOIF EXChange FOrmat......cccveeuuiiiiiiiiinneiiiiniinenneiiiiiiieeneiiiimeemssiiiimesssssiiimesssssssssmmsssssssssnns 5
<00 I 0 T < =Y ot {1 - PPN 5
3072 0 11 o =Tl T3V =T o o 6

9 TOIF Conceptual Model........cccuuuiiiiiiiinniiiiiiiiiiiiiiieeiiireessessirieessssssimessssssssrsesssssssnns 9
1= 05 R - ¥~ T Toll 301 1 T=T3 4 1o I - Yot £ 9
9.2 “Housekeeping” Entities and FACtS......ccccccveriiiiiiiiiiimnniiiiiniiiiiiimmiiieniiieememmsseesiieesssmmssssssssssses 17
9.3 Fact-oriented organization of TOIF XIMIcciiiiiiiiimmnniiiiiiiiiiiimmsiieiiiieemmmmssesiieesssmssssssssesses 20

10 TOIF Logical MOdEl.....ccceuuueiiiiiiiinniiiiiiiinnniiiiiiieneiiiiieesssiistinessssssssssresssssssssrsessssssssssssnnns 23
10.1 The basic elements of the TOIF XIMIL......ccccuuiiiieeuiiiiienieriennccrtennneeerennseesnennssessensssessennsssssennsnnns 23

10.1.1 Finding Class DIagram......uuceeeceieeieeiiiiiiiiieeeee e e e e eecectrerreeeeeeaeeesesabtasaesaeaaaeseeasssstsssasaeasaeeeseansssnns 23
10.1.1.1 1o Yo LT a T o = U UU U SRPRRRRt 23
10.1.1.2 FINdiNgISREPOIrtEAASTYPE ClasS ...ccoeiiiiiiiiee ettt et e e et e e e e e e e s eabbae e e e e e e eeeaasbeeeeaeeeesannres 25
10.1.1.3 FINdinglSReportedByGENErator Classiiiiiiiiiiiiiieee e ececiitiee e e e e eeecrtee e e e e e e e setbbareeeeeeeeesasreseeaaeeesannens 26
10.1.1.4 FINdINgISDEfiNE@AASCWE Class.....ccciieiiiiiiee ettt e ettt e e e e e e et be e e e e e e e e s eabbaaeeaeeeeeesasbeseeaassenannses 27
10.1.1.5 FindinglsProducedByAdaptor CIasscuiiiiiiiiiiiiiieee ettt e e eeette e e e e e e s bbae e e e e e e eeeansaeseeaaeeesnnens 27
10.1.1.6 FINdingHasCodeLoCation Classcccuuiiiiiieiieciiiieeee e e ettt e e e et e e e e e e e s eabbae e e e e e e eeesnsteseeaaeeenannrns 28
10.1.1.7 FINAINGREfEIENCESFIIE Class....uuiiiiiiieiiiiiii ettt e e e et e e e e e e e sttt ar e e e e e e e e snsaeseeaaesenannres 28
10.1.1.8 FindinglsReportedINBUIlA Classc.uuiiiiiiii ettt e e e e e s etra e e e e e e e e e aaraeeeeaaeeennnnns 29

10.1.2 WeaknessType Class DIaBramcccccuuuiiiiieiieeeeeecccciiiiitee e e e e e e e eeeetbrrtaeeeeeaeeeseeesnssssassaeesaeeeeesanssnns 29
10.1.2.1 WeaknessTypeldentifier Class (@hSTract).........ueeii i 30
10.1.2.2 (O IV [o 1T} Ay =T G =TSR UURTRR 31
10.1.2.3 Y o Lo L= o N i} 1T o O - 1 U UUPTR 31

vi Tools Output Integration Framework (TOIF), Version 1.2

10.1.2.4 Y o O [V Ty =T @ =TT

10.1.2.5 CWEBelongsToSFP Class................
10.1.2.6 SFPBelongsToCluster Class
10.1.3 Weakness Class DIQBIamcciciieeiiiiiiiieeeee e e e e e eccctrtet e e e e e e e e e e se e abbssaeseeeaeeeesessanssssassaeasaeeseesnnassnns
10.1.3.1 W EAKNESS ClaSS. . eeeiuiiiteiiiiee et ie ettt ettt e sttt e e e sttt e e st e e e s bbe e e e s abbeeesaabaeeesabbeeesaabaeeesnbaeessnsaaesansaeaenn
10.1.3.2 WeaknessISDEfiNEAASCWE ClasSuiiiiuieiiiiiiieeeiiieeeesiteeesitee e s sbte e e sttt e e sateeessbaeeessabaeessnsaaessaraeeenn
10.1.3.3 WeaknessHaSCOAELOCATION ClaSS......iiiiiiiiiiiiieeiiiiee e eeiiee e stee ettt e e st e e st e e s sbae e e ssabaeessaraeeesabaeaens
10.1.34 WeaknesSREfErENCESFIlE Classccuuiiiiiiiiiie ettt ettt s sttt e e sttt e e e st e e e s abae e s sabaeeesabaeaens
10.1.4 Citing Class DI@BIaMuuiiiieieeeieeieeiiiiiiiieeeeeeeeeeeeseebbaareeeeeaaeessasasabtssaasaeaaaasseeasssstsssssaeasaeeesesnsnssnns
10.1.4.1 (01 41T O = TSR UUR
10.1.4.2 CitingReferenCeSWEaKNESS ClAaSScuiii ittt e e et e e e e e e st a e e e e e e e e e s aneeaeeeas
10.1.4.3 CitinglSGENEratedATDATE Class.......uuiiiiiiieiiiiiiiiee et e e e ee e e e e e e e e ebrb e e e e e e e sesabbaseeaeeeesaasseneeeas
10.1.4.4 CitingAZENT Class (ADSTIACE)...cccccuiiiiiiie et e e e e e e e e e e e e e e e s aatbaaeeaeeeesenanneaeneas
10.1.4.5 CitinglsGeNneratedBYAZENT ClAaSScciiiiiieiiiiiiiee ettt e et e e e e e et e e e e e e e e s abbaeeeeaeeesananeeaeeeas
10.1.5 Code Location Class Diagrami.......ccccccuiiiiiieiieeeeeeecciitiiteeeeeeeeeeeeetbrasreeeeeaeeesessssssssassaeesaaeeessansssnns
10.1.5.1 (0foTe 1=Y o Tor- Y o] o T 6 - 113 OSSP RTPPRPPP
10.1.5.2 CodelocationReferencesFile Class
10.1.6 File Class DI@Bramuuuiiiieeeeeeeeieeiiiititeteeeeeeeeeeseeettbaaseeeaaaaeeseaaaastssassaaaaaesesasassssssassaeasasessesassssnns
10.1.6.1 e LI O - 1RSSR
10.1.6.2 FilelsContainedINDir@Ctory ClIasscccuviiiiieiieiiiiiiieee e e e e ettt e e e e e e eette e e e e e e e e s eabbaeeeeaeeeeesnsaeseaaaeeenannsns
10.1.6.3 FileBeloNGSTOPIOJECT Class ..uuuvieiieiiieiiiiiiii e e e e e ettt e e e e e et e e e e e e e e e et beeeeaeeeeseastbaseeaaessaassssessaaaseesannses
10.1.7 Directory Class DIiagramMce e i e i e cciiiiiiieeeeeeeeeeeeecirrreeeeeeeaeesee s astssaaseeaaaesseassssstssassaeasaseesesnsnssens
10.1.7.1 BT To1 o] oV O F- TSP U SUPRRRRRRt
10.1.7.2 DirectoryBelongSTOPIOJECE Classccuuiiiiiiei ittt eee e e e ettt e e e e et e e e e e e e s eabbaeeeeeeeeeesasbeseeaaeeesannsns
10.1.7.3 DirectorylsContainedINDireCtory Class........ciuiiiiiiiieee ettt e e e eesere e e e e e e e eeaabbeeeeaeeeesnnens 44
10.1.8 Semantic Statement Class DIagramceecieeeiiiiiciiiiiieeee e e e eeeeeecitrrre e e e e e e e e e e essaarsraereeeaaaeesesannssnns 45
10.1.8.1) 1410 0= o Ll O - TSP P TR RTPPRPPI 45
10.1.8.2 StatementlsinvolvedInFinding Class
10.1.8.3 StatementlsSinkOfFinding Class
10.1.8.4 StatementlsSourceOfFinding Class
10.1.8.5 StatementHasCoAELOCAtION Classiiiruiiiiiiiieeiiiiee ettt s ettt e sttt e e s st e e e ssabae e s sabaeessabaeeens
10.1.8.6 StatementlsPrecededByStatemMent ClIassceiiiiiieiiiiiiiee ettt e e e et e e e e e e e aaaae s 48
10.1.9 Semantic Data Class DIagramcccccuiiiiiiieiie e e ettt et e e e e e e e eee b re e e e e aeeeesessaarsraeraeeaaeeeeesasnnsnns
10.1.9.1 DY = = [T = o Ll O - TP PSPPI
10.1.9.2 DatalsINVolvedINFINAING Classcocccuiiiiiiee ettt e e e e e e e st ae e e e e e e s eeaabaeeeeeaeeesannens

10.1.9.3 DatalsInvolvedInStatement Class
10.1.94 DatalsDefinedAtCodelocation Class

10.2 The housekeeping elements of the TOIF XIMLcccooiiiieeeeiiiiiiiiiiienmeiiiiiiiiieesmsiessssssses 51
10.2.1 BUild Class DI@Iamuuuiiiieieieieiiieiiiiiiieteeeee e e e e e esecttteareeeeeaeeessaseabtssaasaeaaaasesasassssssassaeasaaesseansassnns
10.2.1.1 2 TU 1] o I @ TSP
10.2.1.2 BuildIsRelatedToProject Class
10.2.2 Housekeeping Class DIagrami.......cccccuiiiiieeieeeeeeecccciiiiteeeeeeeeeeeseabrarreeeeeaeeeeeessssssrsssaeasaesaeesansssnes
10.2.2.1 BUildIsOrchestratedByTOOl Classccuuiiiiiiiiiiiiiiiiee ettt e e eee e e e e e e e s ebbae e e e e e e e eeaasaeeeeaaeeesannens 54
10.2.2.2 BuildIsProducedByOrganization Classccocicciiiiieee et e e e eeccttee e e e e e e sebrae e e e e e e e eeaarreeeeaaeeesnnnns 55
10.2.2.3 BuildIsOWNedByOrganization Classiiciieiiiiiiiieee e eccciitee e e e e eeeettee e e e e e e e seabbareeeeeeeeeaasreseeaaeeesnnens 55
10.2.2.4 BUildISGENeratedBYPerson Classcuueiiiiiiiiiiiiiiieee e cecteee e e e eee e e e e e e e e s etbbaeeeeeeeeeesasbeseeaaeeenannens 56
10.2.2.5 BUildISSUPErviSEdBYPErsoNn Class.........uuuiiiieiiiiiiiiiieeee e e e cecitieee e e e e eeette e e e e e e e e seabsaeeeeeeeeeesasteseeaaeeenannrns 57
10.2.2.6 BUIldISGENEratEdATDAtE Class......uiiiicueieiiiiiieieiiieeeritee ettt e ettt e e e sttt e e s sate e e ssabeeeesbbeeesnasaeessnnes 57
10.2.3 Project Class DIGgIramuueceeeieieeeeciiiiiiiiee et e e e e e e eeectreereeeeeeeeessssabtasaesaeaaaeeeeasasstssassaeasaeessesasnssnns 57
10.2.3.1 o oY [=To A O - 1SR U UUPPRO 58
10.2.3.2 ProjectlsOWNedByOrganization Class..........couiiiiiiiiee et e e e ee st ae e e e e e e e eeabreeeeeaeeesnnens 60
10.2.3.3 OrganizationlsInvolvedINProjectASROIE Class.........ccccuiiiiiiee ittt e e e e aae e 60

Tools Output Integration Framework (TOIF), Version 1.2 vii

10.2.3.4 PersonlsinvolvedINProjeCtASROIE Classccouiiuiiiiiiee ettt e e e et e e e e e e eeabr e e e e e e e eesnnees 61

10.2.4 TOOIS Class DIABIamMuuuiiiieeeeeeeeieeiiiiiittteeeeeeeeeeesestbraareeeeeaaeesaaaaastsssasaeaaaasesesasssrsssssaeasasessesnssssnns
10.2.4.1 B Koo MO T -1 o o = Yot f PSP PUUURRRRE
10.2.4.2 ToOlSSUPPIIEABYVENAOr ClaSS.....cceiiiiiieee ettt ettt e e e et e e e e e e e s ata e e e e e e e e eeesarbeeeeaeeeesnanees
10.2.4.3 (CT=T Y= =) o] G G - 1SR RTPPRPPI
10.2.4.4 P Y FoY o) o] g O = ST PRSPPI
10.2.4.5 OrChestratioNTOO] ClIass......uiiiuiieiiiiiiee ittt e ettt e sttt e e st e e e st e e e s sabae e e sbbeeessabaeeesabbeessnsaaessabaeaenn
10.2.4.6 ANAIYTICS TOOI ClaSS.ciiiiiiiiiiiiiiee e ettt e e e e ettt e e e e e e e et ba e e e e e e eeeeebaabeseeeeeeesastaaseaaaeseaasnrreseeaaesasnntes
10.2.4.7 AdaptorSUPPOrtSGENEIAtOr ClasS.......uuiiieiiieiiiiiiiieieeeeeeciiite e e e e e e seeiarreeeeeeeeessatrareeaeeeeeasasseeeeaeseesnnnses
10.2.4.8 AdaptorlsCapableOfFindingCWE Class

10.2.5 0Organization Class DIiagramccccccciiiiiiiieiie e e e e e ettt e e e e e e e e e eee bt rrreeeeeaeeeeesssssssrassaeasaaeeesssnssnns
10.2.5.1 (017 - Y aTr2=Y] W @ =133 SR UUPRR
10.2.5.2 LYz g e [o] 01 1 PSPPSRI
10.2.5.3 OrganizationlsPartOfOrganizationAsRole Class

10.2.6 Person Class DIGBIamuuueeeeieieiieeiiiiiiiiiee e e e e e e eeeeccttaereeeeeaeeeess s atbtasaasaeaaaeeeeassnstssassaeaaaeessesnsnssnns
10.2.6.1 T 5o o 1 PP P
10.2.6.2 PersonlsEmployedByOrganizationAsRole Class

10.2.7 ROIE Class DIGZIamuuuiiiiiieieieiieeiiiiiiiete et e e e e e e e eeecbbtaeeeeeeaaeessastastssaesaeaaaasesasssssssassseasaaessesnnssnes
10.2.7.1 200] [@ T3 PSPPSR

10.3 The fact-oriented structure of the TOIF XIML.......cccoiiiiiiemmnniiiiiiiiiiennniiiniiiieesmsssimssssssssses

10.3.1 Abstract Structure Class DIiagramuuueeeiieeeiieiiiiiiiiieeeee e e e e e ececrrrrreeeeeeeeeesessaatsraerseesaaeesesannssnns
10.3.1.1 TOIFSEEMENT ClASS coeeiiieiiiiiiiee ettt e e e ettt e e e e e e et ba e e e e e e eeseebaabeeeeaaeeesastsaseaaaeseaasnrseneaaeesesnntes
10.3.1.2 TOIFEIEMENT Class (ADSTraCE)...ccccieeiiiiieee et e e et e e e e e e et e e e e e e e e eeeaarreeeeaeeeesnannes
10.3.1.3 [o VA O T 1 o1 = Yot f [P U U UUPRRRRO
10.3.1.4 2 [t A O - T =1 o 1 - [o1 o F TSP UUR R PUPPRROt
10.3.1.5 ALErIDUTE Class (ADSTIACT) . .uuuiiiiii it e e e e et e e e e e e e et a e e e e e e e e eeenaasreeeeaeeeesnnntes
10.3.1.6 EvidentialRecord Class (abstract) .

10.3.2 Abstract Types Class DIiagramcccccuiiiiiiiiieeeeeecccciititee e e e e e e e e eeeabrarreeeeeaeeeeesssasrsssssaeesaaeesesansssnes
10.3.2.1 Element Class (@DSTIaCt)uuuiiiii it e e e e e e st ba e e e e e e e s e aasbeseeaaeeennnres

10.3.3 Basic ENtities Class DIaBramccccccciiiiiiiieiee e e e e e ccecitirte e e e e e e e e e eeeabtrraeeeeeaaeesesssanssssassaeasaseeeesnassnes
10.3.3.1 BaSiCENTity Class (ADSTIACE) ...uuuiiiiiiiiiiiiiiiie ettt e e e e et e e e e e e e e s eabbae e e e e e e seeaaasbeseeaaeeesannses

10.3.4 BasiC FACtS Class DiagramS..ccueiciii e iiiiiiiiieeeeeeeeeeeecitrreeeeeeeeeeeseseabtssaeseeeaaesesassasstsssssaeesaaesseanssssnns
10.3.4.1 FINAINGFACt Class (QDSTIACT) ...uueiiii it et e e e e e e st ba e e e e e e e e eeaabbeeeeaaeeesnnnes
10.3.4.2 WeaknessTypeFact Class (@hSTract).......coo i e ae s
10.3.4.3 WeaknessFact Class (QDSTraCt)ueeiiei oot e e e et r e e e e e e e aaaeaee s
10.3.4.4 CodeLocationFact Class (ADSTraCT)uiiii et e et e e e e e e e s b ra e e e e e e e e e aaaaaeeeas
10.3.4.5 SemanticFact Class (ADSTrACT)cuuuiiiiiee e e e et e e e e e e e s abb e e e e e e e e e e aaneaeeeas

10.3.5 Basic Attributes Class DIagramcccuuiiiiieiieeeieecccciiiiee et e e e e e e e esectrrrreeeeeaeeeeeeesnsrsrsesaeesaeeesesssnssnns
10.3.5.1 Offset Class..............
10.3.5.2 Checksum Class
10.3.5.3 T T=Y o 10T o] o 1T ol O =11 SR TUPTUP
10.3.54 o Ty 4 oY W @ - 1 PSPPSR
10.3.5.5 N [0 [l 0P T PSPPSR
10.3.5.6 VBISTON ClaSS . eieiuiieiiiiiie e ittee e ettt e ettt e e e sttt e e sttt e s satteee s sttt e e s sabteeesaabaeeesabteeesansaeessasbaeesanbaeessnsaeeennsaeaenn
10.3.5.7 DESCIIPTION ClASS .uvvviiieeiieiiiiiieeee e e e ettt e e e e e ettt e e e e e e e ee bbb e e e eeeeeeetatbaseeaaeeeaasssssaeaaaassaaassssesaaaasaesasres
10.3.5.8 (0fo] 0 iTe 1=T o Vol I O - TSP RTPPRPPI
10.3.5.9 (O a 14 [or=] L AV @ = TS UUUPTRR
10.3.5.10 VEIAICE Class wuveeeeeiieeeiiiieeeiiiee e ettt e e sttt e e ettt e e sttt e s sttt e e sabeeessasteeesaabeaeesssbeeesasbeeesansaeessnsbeeesansaeeesnnsees

10.3.6 Housekeeping Entities Class DIagram.......ccicccceeiciiiiiiiiieeeeeeeeeececiirrreeee e e e e e e e eesanrsraereeesaeeeeessnssnns
10.3.6.1 HousekeepingEntity Class (ADSTIraCt)ueuiiiiiiiiiiiiiiiee et e et e e e e e e et re e e e e e e e e nnees

10.3.7 Housekeeping Facts Class DIagramsuueeeieeeieeiciciiiiiieeeeeeeeeeeeeeintrrreeeeeseesseessssssrssssessasessessssssnns
10.3.7.1 B KeTo] o Tot @ TN 1 o1 d = Yot o [U UUUURRRRE

viii Tools Output Integration Framework (TOIF), Version 1.2

10.3.7.2 STUT1Te | o Tl A O F- T = o 1 o - [o1 PO PR TR SUPPROt
10.3.7.3 ProjectFact Class (abstract)

10.3.8 Housekeeping Attributes Class DIiagram........cccoccciiiiiiiiiiie ettt e e e e e e e e eecarrrre e e e e e e e e e e eeannnes 85
10.3.8.1 o] o Yo Y TN @ o TSP UUR P UUPPRRROt 85
10.3.8.2 P Y o [T O - 1P RPUUUURRE 85
10.3.8.3 [oY1 VAN [o [T @1 - T PP U RUUPRRROt 86

104 Evidential Records in TOIF XIMILiiieeiiiiiieniiciiienniceiennneerennsieesensseesensssessenssssssensssssesnnssssasnnes 86

10.4.1 EvidentialRecord Class DI@Bramccccueeeeeieeeeeeiiiiiiiireeeeeeeeeeeesitrrsseeeeeaaeseeessnsssssessessaeeaeesasassnns 86
10.4.1.1 2 TUT1 e | U=l] o I @ =TT SUPRRROt 86
10.4.1.2 (00e] g] oY1 [T 34=TeloT dc I - 1SS UUUPTRR 87
10.4.1.3 (CTT o1) (o] 4 AX=Tolo] fo [61 - 1Y UURRRR 87

Tools Output Integration Framework (TOIF), Version 1.2 ix

Table of Figures

Figure 1. Organization of the TOIF SPeCIfICAtION.ccirirtiririiieieiiieieiteeet ettt ettt 5
Figure 2. The Flow of the TOIF Protocol and the TOIF ECOSYStEMcccceceririririinineniiieieeeieteeeceieec e 8
Figure 3. UML class diagram FINding..........cccerieiieriieieeniieiesiieieeiesiesee sttt etesseesaesseensessaensessaenseessenseensesseennas 24
Figure 4. UML class diagram WeaKneSSTYPECccuerverueriieieeiieiieiiesieeeiesteetesteeaesseensesseessesseensessaesseessesseensesseenses 30
Figure 5. UML class diagram WeEaKIEssceererueririiniirieniiieieteteitei ettt sttt sttt sttt sttt ebeeieeresnens 33
Figure 6. UML class diagram CItiNZcceeverueriieriieiertietesteeteeseeseseeessessaesseensesseensesseessesseensesssessesssessessessesnses 36
Figure 7. UML class diagram Code LOCAtION.ccoeririiriiririiieieicteteitei ettt sttt ene e 39
Figure 8. UML class diagram FIleccooiiiiiiiiiiiiinieresecte ettt sttt 41
Figure 9. UML class diagram DIrCCIOTYccueruirieriieiertieienteeteeteetesstesseeseesseessesseessesseessesseessesssessesssessesnsesseenss 43
Figure 10. UML class diagram Semantic Statementcoceecuirieriirieniirieninieneetenieereeieete e 45
Figure 11. UML class diagram Semantic Data...........cccccoieiiriiiiiniiiniinieniiieneeeenieeeese ettt 49
Figure 12. UML class diagram Buildc..coccooiiiiiiiiiiiiiiiiic ettt 51
Figure 13. UML class diagram HOUSEKEEPINGcvevvirveriieiieiieiieiieie ettt sttt sttt et eneesseennesseennas 53
Figure 14. UML class diagram PrOJECE......cccuiiiiiiiiiiiieiieeie ettt ettt ettt et sttt st e sbeesabeesbeesabeebeeens 58
Figure 15. UML class diagram TOOIScccocueriiiieniiiiiniiiieniieieetete ettt ettt et sae e s 61
Figure 16. UML class diagram OrganizZationc..ceccoieuenieiiinieniineeneeeene et sie et sieenesieesneeueeneeseesaeesnenaeennes 66
Figure 17. UML class diagram PerSONc.cccoeiieriiiiiniieiiniieiieteie ettt ettt et 68
Figure 18. UML class diagram ROIE.......c..ccceiiiiiiiiiriniiesteniecte ettt sttt 69
Figure 19. UML class diagram AbStract StrUCIUIEc..cocuirieiiiniiiiiiieiieieceecnccteseereee ettt 71
Figure 20. UML class diagram ADBSLract TYPEScoeecieriiiiiniiiinieiieeeieetest ettt ettt e 74
Figure 21. UML class diagram BasiC @Ntities..........cocevcueriieiiiniiiiiinieiieieiceteneet ettt et 75
Figure 22. UML class diagram Basic FaCts Lcccocoiiiiiiiiiiniiiiiiiiiicc ettt 76
Figure 23. UML class diagram Basic FaCtS 2..........cociiiiiiiiiiiiniiiiiiiiiiceceetet ettt 76
Figure 24. UML class diagram Basic Facts 3cociiiiiiiiiiiniiiiiiiiiicc ettt 77
Figure 25. UML class diagram Basic FACtS 4ccoiiiiiiiiiiiiiiiiiiiiici ettt 77
Figure 26. UML class diagram Basic AUITDULESc.coirererieriiienieieieiceieeieniesie ettt 79
Figure 27. UML class diagram HouseKeeping entitiesc.ccverueruerieieiiiiininieniestestesie sttt eie e 82
Figure 28. UML class diagram Housekeeping Facts 1cccoviriirieriiiiiiiiiiiiiencseesescee et 83
Figure 29. UML class diagram Housekeeping Facts 2cccoverieriiriiiiiiiiininenesieeeneseeee ettt 83
Figure 30. UML class diagram Housekeeping Facts 3cccooiriiriiiiiiiiiiiinineneneese ettt 84
Figure 31. UML class diagram Housekeeping AttrIDULESc..ccveoveieieiiiiininerentestenee sttt 85
Figure 32 UML class diagram EvidentialREcordc.ooeririiiiiieniiiiiiiinencnc ettt 86

X Tools Output Integration Framework (TOIF), Version 1.2

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog
is available from the OMG website at:

http.://www.omg.org/technology/documents/spec catalog.htm

Specifications within the Catalog are organized by the following categories:
OMG Modeling Specifications

UML

MOF

XMI

CWM

Profile specifications

OMG Middleware Specifications

CORBA/IIOP

IDL/Language Mappings
Specialized CORBA specifications
CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

CORBAservices

CORBA(facilities

OMG Domain specifications

OMG Embedded Intelligence specifications
OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

Tools Output Integration Framework (TOIF), Version 1.2 xi

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetical/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

xii Tools Output Integration Framework (TOIF), Version 1.2

1 Submission Specific Material

1.1 Submission Preface

TOIF XML (XMI) is a common normalized format for representing the findings of static code analysis tools for the
purpose of integrating multiple facts related to the system under assessment. This format is described in this specification
first as a conceptual model in SBVR Structured English, focusing at the key noun and verb concepts, then by a more
specific logical model in MOF/UML which determines the TOIF XML schema. The MOF metamodel is consistent with
the SBVR Structured English representation (and can in principle, be systematically derived from it). The key to the
TOIF MOF metamodel is that each verb concept is represented by an association class in such a way that the resulting
XML has a “triple flavor”. SBVR stands for Semantic for Business Vocabulary and Rules. MOF stands for Meta Object
Facility. XML stands for eXtended Markup Language. The acronym XMI stands for XML Metadata Interchange format.
XMLl is a specific form of XML that is associated with the Model Driven Development approach. XMI has been
developed for the purpose of exchanging metadata such as models. XMI is standardized by OMG (current specification is
identified as MOF 2.0 / XMI Mapping Specification, v2.1.1, document formal/07-12-01) and ISO (19503:2005).

1.2 Copyright Wavers

KDM Analytics Inc., Lockheed Martin Corporation, The MITRE Corporation, Model Driven Solutions, NoMagic Inc.,
and 88 Solutions Corp: (i) grants to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version, and (ii) grants to each member of the OMG a nonexclusive, royalty-free, paid up, worldwide license to
make up to fifty (50) copies of this document for internal review purposes only and not for distribution, and (iii) has
agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright
holder by reason of having used any OMG specification that may be based hereon or having conformed any computer
software to such specification.

1.3 IPR Mode

The IPR Mode for this specification is: Non-Assertion Covenant

1.4 Submitter Representatives

Dr. Nikolai Mansourov, KDM Analytics, Inc., nick@kdmanalytics.com

Dr. Ben A. Calloni, Lockheed Martin Corporation, ben.a.calloni@lmco.com
Robert A. Martin, The MITRE Corporation, ramartin@mitre.org

Cory Casanave, Model Driven Solutions, cory-c@modeldriven.com

Gary Duncanson, NoMagic, Inc., gary@nomagic.com

Manfred Koethe, 88solutions Corp,. koethe@88solutions.com

1.5 Author Team

Dr. Nikolai Mansourov, KDM Analytics Inc., nick@kdmanalytics.com

Dr. Ben A. Calloni, Lockheed Martin Corporation, ben.a.calloni@lmco.com

Manfred Koethe, 88solutions Corp,. koethe@88solutions.com

Robert A. Martin, The MITRE Corporation, ramartin@mitre.org

Cory Casanave, Model Driven Solutions, cory-c@modeldriven.com

Tools Output Integration Framework (TOIF), Version 1.0 1

2 Scope

This document provides specification of the Tools Output Integration Framework (TOIF) XMI schema — the common
reporting format of source/machine code weaknesses. TOIF XMI is one of the inputs to the TOIF Analyzer tool that
integrates multiple weakness findings and the basic facts related to a system under assessment.
This specification describes TOIF schema at three different levels of abstraction. First, the specification describes the
conceptual schema of the TOIF XML as SBVR Structured English focusing at a technology-independent description of
the key noun and verb concepts involved in reporting weak ness findings. This conceptual schema defines a common
vendor-neutral vocabulary for the TOIF Ecosystem. The conceptual schema that addresses the following concerns:

o Defining TOIF basic facts and entities

o Defining TOIF housekeeping concepts

o Presenting TOIF fact-oriented organization (emphasizing the noun and verb organization of TOIF facts which

gives it a characteristic “triple flavor”)

Second, the TOIF specification then describes the MOF/UML metamodel of the TOIF XMI. This metamodel is
consistent with the Strucutred English representation and can be, in principle, produced by a systematic transformation
from the conceptual schema. The MOF metamodel determines the TOIF XML/XMI schema which can be derived from
the UML model as described in the MOF and XMI specifications.
Third, the specification illustrates the usage of the TOIF XMI schema by providing examples of the TOIF XMI data
representation that uses the TOIF XMI schema.

TOIF addresses two types of normalization. First, syntactic normalization addresses the differences in reporting formats
of static code analysis tools, is addressed by the common TOIF XML schema. Second, the semantic normalization
addresses the nomenclature of the findings by the static analysis tools is addressed by a mapping to a common
nomenclature. The common nomenclature of weaknesses in TOIF is based on the Software Fault Pattern (SFP) system of
clusters and individual patterns, and the further mapping to a catalog known as the Common Weakness Enumeration
(CWE). The vendor-neutral common nomenclature of weakness types consisting of SFP and CWE is an integral part of
the TOIF approach. Both the syntactic and the logical mapping from a proprietary reporting format of a given static
analysis tool to TOIF is assumed to be implemented by an Adaptor in a way that is non-intrusive with respect to the static
code analysis tool.

3 Conformance

The principle goal of TOIF is the common normalized format for representing the findings of multiple static code
analysis tools for the purpose of integrating multiple facts related to the system under assessment.
To be TOIF compliant, a tool must fully support TOIF as one compliance point. An implementation must:
1. Provide the capability to generate XMI documents based on the TOIF XMI schema capturing findings from the
existing model of the tool.
2. Provide the capability to import findings via representations based on the TOIF XMI schema and to map the
findings into the existing model of the tool.
3. Ensure the mapping from each proprietary weakness type to common TOIF vendor-neutral weakness type based
on SFP and CWE.
This compliance point is formally defined as follows. Let’s assume an SCA tool XYZ is capable of
producing proprietaty weakness findings of types WDi where i=1..k. This means that given a set of files
F1,..,Fn the tool XYZ may produce a set of findings, described by proprietary set report items
RWDI1,..,.RWDm such that each RWDj refers to a certain weakness type RWDi. The number of findings,
m, depends on the presence of weaknesses in the input files F, as well as on the capability of the tool XYZ
to identify a finding (true positive) and the capability of the tool XYZ to avoid reporting a false positive.
The TOIF mapping is a set of k tuples (where k is the number of all distinct proprietary weakness types for
tool XYZ), {WDi, {CWEi, SFPi, SFP Cluster-i } } where
WDi is the proprietary description of the weakness type by tool XYZ
CWEi is the CWE identifier aligned with the SFPi and SFP Cluster-i that provides the most specific
description of the weakness
SFPi is the SFP identifier that provides the most specific description of the weakness; the SFP catalog
provides mappings from each SFP to a set of relevant CWE

2 Tools Output Integration Framework (TOIF), Version 1.0

SFP Cluster-i is the SFP Cluster that describes the broad and non-overlapping set of faults to which the
weakness type belongs.

According to the TOIF specification, each individual finding RWDj refers only to the CWEj, while the relations
between CWEI, SFPi and SFP Cluster-i are defined once at the weakness type level rather than at the finding
level.
TOIF mapping constitutes the semantic specification of a TOIF Adaptor for tool XYZ. The other part of the
specification of the Adaptor is the syntactic specification related to transforming the proprietary syntax of report
items RWDj into TOIF data conforming to the TOIF XML.

4 References

4.1 Normative References

The following normative documents contain provisions which, through reference in this text, provide normative context
for material in this specification.

[kdm] Knowledge Discovery Metamodel (KDM), v1.4, http://www.omg.org/spec/KDM/1.4

[sbvr] Semantics for Business Vocabulary and Rules (SBVR), v1.4, http://www.omg.org/spec/SBVR/1.4/

[uml] Unified Modeling Language (UML), v2.5, http://www.omg.org/spec/UML/2.5

[xmi] XML Metadata Interchange (XMI), v2.5.1, http://www.omg.org/spec/XMI/2.5.1

[xml] Extensible Markup Language, v1.1, http:// http://www.w3.org/TR/xml11

[xsd-1] XML Schema Definition Language (XSD) v1.1 Part 1: Structures, http://www.w3.org/TR/xmlschemall-1
[xsd-2] XML Schema Definition Language (XSD) v1.1 Part 2: Datatypes, http://www.w3.org/TR/xmlschemal 1-2

4.2 Informative References

The following non-normative documents contain provisions which, through reference in this text, provide informative
context for material in this specification.

e [cwe] Common Weakness Enumeration (CWE) —

e arepository maintained by MITRE Corporation of known weaknesses in software that can be exploited to
modify data, read data, create a denial-of-service that results in unreliable execution, create a denial-of-
service that results in resource consumption, execute unauthorized code or commands, gain privileges /
assume identity, bypass protection mechanism, and/or hide their activities'. <https://cwe.mitre.org>

e also, ITU standard: ITU X.1524 Common Weakness Enumeration < https://www.itu.int/rec/T-REC-
X.1524-201203-1/en >

e Software Fault Patterns (SFP) Catalog —
e AFRL-RY-WP-TR-2012-0111, V2 - DoD document approved for public release, distribution unlimited;

e Software Fault Pattern Clusters - a repository maintained by MITRE Corporation of links connecting SFPs
and CWEs <https://cwe.mitre.org/data/definitions/888.html> ;

5 Terms and Definitions

1 L . . .
CWE technical impact enumeration <https://cwe.mitre.org/cwraf/enum_of_ti.html>

Tools Output Integration Framework (TOIF), Version 1.0 3

For the purposes of this specification, the most of applicable terms and definitions are provided in Section 9 TOIF
Conceptual Model.

6 Symbols

List of symbols/abbreviations:

CWE Common Weakness Enumeration
KDM Knowledge Discovery Metamodel
SCA Static Code Analysis

SFP Software Fault Patterns

TOIF Tools Output Integration Framework

XMI XML Metadata Interchange

7 Additional Information

7.1 How to Read this Specification

TOIF Exchange Format is a common normalized format for representing the findings of static code analysis (SCA) tools
for the purpose of integrating multiple facts related to the system under assessment.

This specification has the following structure.

Section 8.1 “Objectives” summarizes the key design objectives for the TOIF XML format and its role in the TOIF
Ecosystem

Section 9 “TOIF Conceptual Model” presents the conceptual schema for TOIF XMI described in SBVR Structured
English as a set of definitions of noun and verb concepts. This section defines a vendor-neutral vocabulary for the entire
TOIF Ecosystem. TOIF Conceptual Model provides a technology-neutral vocabulary for TOIF which is then
systematically implemented as a MOF/UML metamodel for the purpose of specifying a concrete XML/XMI schema for
the TOIF data (the TOIF Exchange Format).

Section 9.1. describes the basic common facts related to weakness findings.

Section 9.2 “Housekeeping considerations for TOIF XMI” describes several “housekeeping” facts that facilitate
management of multiple TOIF XMI files during the entire life cycle of the operation of the TOIF framework. The
“housekeeping” fact define various meta-data to the basic TOIF facts, mainly related to multiple builds of the system,
and versions of the tools used, etc. Such additional information is important to manage TOIF data over the entire life-
cycle of the system under assessment as well as in an enterprise context where multiple systems are assessed by multiple
teams.

Section 9.3 “Fact-oriented organization of TOIF XMI” elaborates the conceptual model and describes the organization of
the TOIF XMI as triples built around the verb concepts with noun concepts as the endpoints.

Section 10 “TOIF Logical Model” presents the MOF/UML metamodel for TOIF which is systematically developed
based on the TOIF Conceptual Model as an intermediate step towards the TOIF XMI schema. Both the TOIF Conceptual
Model as well as the TOIF Logical Model provide an adequate description of the TOIF XMI schema, so either (or both)
can be used to understand TOIF. However it is the TOIF Logical Model that determines the exact structure of the TOIF
XMI schema through the rules described in MOF and XMI specifications. Section 10 provides multiple examples of the
TOIF XMI data compliant to the TOIF XMI schema. Section 10 has the following organization.

Section 10.1 describes the basic concepts of TOIF represented as MOF/UML metamodel.

4 Tools Output Integration Framework (TOIF), Version 1.0

Section 10.2 describes the MOF/UML representation pf the house-keeping concepts of TOIF.
Section 10.3 describes the fact-oriented structure of TOIF XML.
Section 10.4 describes evidential records in TOIF XML.

Finding

In SBVR
(non-normative) TOIF Conceptual Model

systematic
transformation

In MOF/UML TOIF Logical Model
(normative)

transformation)
defined by XMl

A

§ DI XMl instance

SCA tool TOIF adaptor

Figure 1. Organization of the TOIF specification

7.2 Acknowledgements

The following companies submitted this specification:

KDM Analytics Inc
Lockheed Martin Corporation
The MITRE Corporation
Model Driven Solutions
88solutions Corp

NoMagic Inc

8 TOIF Exchange Format

8.1 Objectives

TOIF is a standard vendor-neutral protocol that facilitates information flow from multiple proprietary static code analysis
(SCA) tools as producers ro various consumer tools that can integrate, collate, store, transform and present findings from
multiple SCA tools. TOIF establishes a uniform, vendor-neutral, normalized environment for processing findings from
multiple SCA tools and managing findings in enterprise environments. TOIF facilitates managing findings originating
from multiple SCA tools over the life-cycle of a system under assessment. TOIF is a normalized fact-oriented protocol
which is aligned with other protocols, such as the standard Knowledge Discovery Metamodel (KDM) protocol
describing basic facts about the system under assessment, risk analysis interchange protocol, as well as other protocols of
the System Assurance Ecosystem, by the Object Management Group (OMG). This alignment establishes a practical
integrated environment where multiple tools can contribute software assurance information and facilitates systematic
evaluation and measurement of existing static code analysis tools. The core of the TOIF protocol is the specification of
the TOIF exchange format.

The key requirement for the TOIF protocol is that no modifications to the source code of the original static code analysis
tools is made, in other words, the TOIF shall include an explicit adaptation step that is performed outside of an off-the-
shelf proprietary static code analysis tool, and that is capable of transforming the original report from such tool into a

Tools Output Integration Framework (TOIF), Version 1.0 5

normalized TOIF report that performs both syntactic integration (normalizing the differences in the output reporting
formats of proprietary SCA tools) as well as semantic integration (normalizing the meaning of the findings and the
location of the findings). The semantic normalization maps the nomenclature of the findings used in a proprietary static
analysis tool into a common vendor-neutral nomenclature. The “mapping” artifact is formally described in the
Compilance Section, clause 3. The common nomenclature of weaknesses in TOIF is based on the Software Fault Pattern
(SFP) system of clusters and individual patterns, and the further mapping to a catalog known as the Common Weakness
Enumeration (CWE). The vendor-neutral common nomenclature of weakness types consisting of SFP and CWE is an
integral part of the TOIF approach. Both the syntactic and the semantic normalizations of the proprietary reporting
format of a given static analysis tool to TOIF is assumed to be implemented by an TOIF Adaptor in a way that is non-
intrusive with respect to the static code analysis tool. This consideration is important to the design of the TOIF as it
separates the syntactic aspects of integration from the semantic ones. In addition, TOIF extends finding reports from
proprietary SCA tools with normalized vendor-neutral meta-information (further referred to as housekeeping),

facilitating management of facts, their provenance and attribution over larger life-cycles, independent on any of the SCA
tools.

A key requirement of the TOIF is that the production of the normalized TOIF facts shall not depend on the modification
of the original SCA tool. The open description of the normalized report format TOIF XMI will encourage the vendors of
the commercial SCA tools to support it natively, however regardless of the adoption by the tool vendors of the original
tools, such tools can still be integrated into the framework by third parties providing the adaptation capability.

Therefore the second requirement is that the TOIF shall define a TOIF XMI format as the output for the adaptation tools.
The TOIF XMI format shall normalize the syntax of the original weakness reports so that the TOIF Consumers can focus
at the semantic integration of the findings. The TOIF XMI may be positioned as the markup language such that the
predefined markers can be inserted into the original report and the TOIF-compliant consumer will then read the report as
it is structured by the markers.

TOIF data are organized as triples, following the verb nad noun phrases in the TOIF Structured English Vocabulary.
While the specific embodiment of the TOIF Exchange Format is specified in this document as a TOIF XMI schema
(through a MOF/UML metamodel and the MOF/XMI rules that determine a an XML/XMI schema) the “triple flavor” of
the TOIF data is designed to support additional formats and technology spaces, including, for example, reasoning tools.

8.2 TOIF Ecosystem

The TOIF exchange protocol assumes several specific capabilities with regards to how TOIF information can be
produced and consumed. Thus the TOIF protocol determines a certain ecosystem where there can exist multiple
implementations of the TOIF capabilities that satisfy the interfaces defined by the TOIF protocol and that address the
different roles within the TOIF protocol.
The operation of the TOIF Ecosystem involves three distinct phases. Phase 1 involves application of one or more static
code analysis tools to the system under assessment. Phase 1 also may involve application of a Knowledge Discovery
Metamodel (KDM) extractor tool to the same system under assessment in order to generate the basic KDM facts about
the system. Within the Phase 1, TOIF Adaptor tools process the proprietary finding reports from each SCA tool, and
normalize these report (both syntactically and semantically) into the TOIF format. Since weakness finding reports are
produced by multiple off-the-shelf static code analysis tools, phase 1 shall perform normalization of the original reports
by tool-specific TOIF Adaptors so that the rest of capabilities in the TOIF Ecosystem can successfully consume reports
from multiple TOIF producers.
Phase 1 is often performed as part of the regular build of the system under investigation, in which case this phase would
also involve running code compilers and linkers. Regular builds are usually orchestrated by build tools. Extending the
orchestration to correctly include SCA tools and TOIF adaptors into the build process is one of the key success factors
for running static code analysis programmes and software assurance.
In Phase 2, normalized weakness reports from various tools are integrated into a single, comprehensive report. As the
result, an integrated repository of the TOIF facts can be populated.
Phase 3 involves consuming the integrated TOIF weakness finding facts for the purposes of presenting them to human
analysts (browsing), analyzing them as the software assurance, entering them as evidence for risk assessment or RMF
security control assessment, as well as any other purposes.
The TOIF Ecosystem assumes the following roles:

e SCA tool — provides capability to scan source or machine code of the system under investigation and generate

weakness finding reports. An SCA tool usually involves components that perform scanning and parsing of source

6 Tools Output Integration Framework (TOIF), Version 1.0

code, or perform diassembling of the machine code, implement optimized control and data flow analysis
algorithms, often incorporate extensive information about standard software libraries and components, operating
systems and compilers, as well as a certain knowledge base of what they consider as weaknesses and the
corresponding patterns that can be used to discover at least some of these weaknesses in the code. Effectiveness
of an SCA tool is determined by multiple factors

e TOIF Adaptor tool — provides capability to transform the proprietary weakness finding report from a particular
SCA tool into a normalized representation determined by the TOIF specification. The most challenging part of
implementing a TOIF adaptor is to provide a mapping from proprietary weakness type system used by a particular
SCA tool into a normalized system of weakness types in a justifiable and unambiguous way that facilitates further
semantic integration of the TOIF finding facts. TOIF specification uses a formalized 3-level hierarchical system
of weakness types that involve a combination of the Software Fault Patterns (SFP) catalog and the Common
Weakness Enumeration (CWE). The “mapping” artifact is formally defined in Compliance Section of this
document, clause 3.

e TOIF producer — a generic term to describe any capability that produces output conformant with the TOIF
specification. For example, a combination of an SCA tool and the corresponding TOIF Adaptor can play a role of
a TOIF Producer

e KDM tool — provides capability to scan source or machine code of the system under investigation and produce
normalized description of this system conformant to the Knowledge Discovery Metamodel (KDM) specification.
KDM facts, as we will refer to such normalized description provide a vendor-neutral general-purpose
representation of the semantic structure, behavior, and datatype organization of the system under investigation.
KDM facts are a form of intermediate representation of the system under assessment. A KDM tool usually
involves components that perform scanning and parsing of source code, or perform diassembling of the machine
code, may incorporate information about standard software libraries and components, and operating systems.
KDM facts may be generated by a Code Complier. KDM facts can be integrated with the TOIF facts for more
powerful analysis of the weakness findings.

e Code Compiler — provides capability to scan source code of the system under investigation and produce linkable
object code or excitable machine code for the selected platform. A Code Compiler involves a proprietary
intermediate representation of each module of the system under assessment from the syntax viewpoint, and from
the semantic viewpoint. A Code Compiler usually involves components that perform scanning and parsing of
source code, build the intermediate representation(s) of the code, analyze the intermediate representation and
generate the machine code. The last component is often called the BackEnd, while the first two components are
often referred to a the FrontEnd. The intermediate representation constructed by a code compiler provides valuable
information about the sytem under investigation that may be useful for the purposes of software assurance,
however this information is seldom exposed by code compilers and when it is, it is often difficult to utlize it
because of its proprietary nature, technology dependencies, and low level. Some compilers may choose to
transform their high-fidelity intermediate representation into KDM facts, thus removing the barriers for using this
information by other consumers

e Code Linker — provides capability to combine one or more linkable object code files into machine code for the
selected execultion platform. Code Linker is used in system builds because the execulatble machine code of the
system usually involves a mix of application modules and various third-party libraries, already precompiled for
the selected platform.

e Build Tool — provides capability to orchestrate the process of running Code Compilers, with desired options,
inputs and outputs, running Code Linkers, packaging the outputs, and performing other desired steps to transform

Tools Output Integration Framework (TOIF), Version 1.0 7

input source files, precompiled object files and libraries into the output artifacts. Usually a Build Tool is general-
purpose, driven by a Build Script that describes the build steps.

e Build Script — description of the build steps to be performed by a Build Tool to perform a build of the system
under investigation

e TOIF Orchestration tool — provides capability to orchestrate the process of running SCA tools and their
corresponding TOIF Adaptors in alignment with the regular build, i.e. such that each source file is processed by
selected SCA tools with desired options, aligned with the options used during the regular build, that an appropriate
TOIF Adaptor is called for each SCA tool, that all TOIF output files are appropriately managed; Similarly for
machine code analysis, the TOIF Orchestration tool aligns the process of running the selected SCA tools and their
TOIF Adaptors on all desired machine code files. From the software assurance evidence perspective, the TOIF
Orchestration tool generates the key piece of evidence regarding the coverage of the source and machine code
files, correctness of the SCA findings, etc.

e TOIF repository — provides capability to store, manage and query TOIF facts.

e TOIF browser — provides capability to view TOIF related entities and relationships by human analysts in some
kind of visual environment.

e TOIF consumer - a generic term to describe any capability that consumes input conformant with the TOIF
specification

e TOIF Analytics tool — a generic term to describe any capability that consumes one or more TOIF segments and
produces one or more TOIF segments. This may include, for example, a TOIF Integration tool, that consumes
partial TOIF segments and produces a single integrated segment, or a TOIF Citing tool that consumes TOIF
integrated segment and augments it with some elements.

TOIF producers TOIF adaptors

TOIF integration
SCA tools

—>

TOIF repository

-

TOIF browser

TOIF consumers

Figure 2. The Flow of the TOIF Protocol and the TOIF Ecosystem

8 Tools Output Integration Framework (TOIF), Version 1.0

9 TOIF Conceptual Model

This section describes TOIF Exchange Format in SBVR Structured English by focusing at a set of vendor-neutral noun
and verb phrases that provide the foundation for the TOIF Ecosystem as its technology neutral vocabulary. The actual
TOIF XMI schema is consistently derived from this conceptual model by representing each verb concept as a triple.
However the precise details of the TOIF XMI schema are provided by the TOIF MOF/UML metamodel defined in
Section 10 together woth multiple example of TOIF XMI data compliant with the TOIF XMI schema. The TOIF
MOF/UML metamodel determines the TOIF XMI schema through a set of rules described in MOF and XMI
specifications.

9.1 Basic Entities and Facts

The conceptual model of the TOIF protocol describes the characteristics of the weakness findings, as they are reported by
SCA tools. We also defined the facts where the original weakness findings can be merged with the basic facts about the
system under investigation, as defined by the standard Knowledge Discovery Metamodel (KDM).

Weakness

Definition: characteristic or property of software that, in proper conditions, could contribute to the introduction of
vulnerabilities within that software

Synonym: weakness of software

Note: Each weakness is categorized by a weakness type. Some weaknesses can be characterized by a certain
location in the code of the system under assessment.

Note: A claim of a weakness (of a certain weakness type at a certain code location) can be supported by by one or
more findings as well as additional citings.

Vulnerability

Definition: weakness of software, hardware, or online service that can be exploited by a threat

Description: Examples of weaknesses in a system are software and hardware design flaws, poor administrative
processes, lack of awareness and education, and advancements in the state of the art or improvements to
current practices. Regardless of cause, an exploitation of such vulnerabilities may result in real threats to
mission-critical information systems.

Note: Vulnerabilities can be architecture flaws, coding errors, or other implementation errors, or insecure
configuration. Vulnerabilities can also result from insufficient or incorrect security documentation, security
awareness, or communication.

Finding
Definition: Weakness that has been discovered in the code of the system under investigation

Description: Finding represents a simple claim (statement, report) that a weakness has been discovered. This
discovery must be associated with several additional pieces of information: a certain code location
where the weakness is discovered; the type of weakness as well as various “housekeeping” facts (when
discovered, who discovered, etc.).

Note: Significance of the absence of findings must be evaluated in a larger context before any claims of the
absence of weaknesses can be made. Evidential records related to the build of the system under
investigation may be used for such asssessment

Tools Output Integration Framework (TOIF), Version 1.0 9

Note: Defined in Figure 3. UML class diagram Finding.

Finding has code location

Definition: Code location that is claimed to be associated with the weakness that has been discovered

Description: System under investigation may be represented as one or more source files , executable files
(machine code) or a combination of both. The mechanism to uniquely identify a location within the code of the
system under investigation is the foundation for reporting weaknesses.

Possibility: Each finding is associated with one or more code location.

Finding is defined as CWE
Definition: Normalized identifier of the weakness type associated with the finding.

Possibility: a finding may have many CWE identifier

Note: CWE identifier will be added during the adaptation phase.

Note: In the situation when there is an ambiguity in a mapping of a particular finding (type) of a static analysis
tool to CWE, multiple CWE identifier will be associated with the corresponding finding.

Note: the TOIF Analyzer may split finding with multiple CWE identifier into several findings with a single CWE
identifier

Finding is reported as Weakness Description

Definition: Description of the weakness type other than the normalized identifier associated with the finding.

Description: Weakness description is associated with the finding. Usually this description represents a proprietary
report generated by the static code analysis tool (either specific to the weakness type, or specific to the
finding).

Finding references File
Finding is produced by Adaptor
Finding is reported by Generator

Finding is reported in Build

Finding has Criticality

Definition: Description of the weakness type other than the normalized identifier associated with the finding.

Description: Weakness description is associated with the finding. Usually this description represents a proprietary
report generated by the static code analysis tool (either specific to the weakness type, or specific to the finding).

Finding has Confidence

Definition: Description of the weakness type other than the normalized identifier associated with the finding.

Description: Weakness description is associated with the finding. Usually this description represents a proprietary
report generated by the static code analysis tool (either specific to the weakness type, or specific to the finding).

10 Tools Output Integration Framework (TOIF), Version 1.0

Criticality
Definition: A measure of impact that a certain weakness may cause.
General concept: Percent

Description: 0% - means that a weakness does not cause any impact, while 100% means that the weakness
corresponds to a critical vulnerability. Criticality is a natural number from 0 to 100 interpreted as percent.

Confidence
Definition: a measure of confidence of an agent making a claim that the statement is actually true.
General concept: Percent

Description: 0% means that an agent is not confident (the evidence is slim, yet there is something that caused the
agent to make the claim). 100% means that the agent is very confident (there is strong evidence supporting the
claim). Confidence is a natural number from 0 to 100 interpreted as percent

Weakness is defined as CWE

Weakness has Code Location

Code location

Definition: Location in the code of a system under investigation.

Description: This element is a statement of a location within a system under investigation. The system under
investigation may be represented as one or more source files, executable files (machine code) or a combination
of both. Location in the code of the system under investigation is defined as a combination of a file and a
location within the file. Location in a source file is given as a line number and optionally a position within the
line. Location within an executable file is defined as an offset. Multiple Code Location elements may refer to
the same logical location, for example when the same set of files is analyzed independently by multiple static
code analysis tools and several reports are produced.

Note: In some cases, Code location may refer to the entire file (including situations when the file is empty). In this
case, the Code location involves only the reference to a File. In other cases, Code location must involve either
a Line number or an Offset. When a Code location involves a Line number, it may additionally involve a
position.

Note: this provides a unique reference schema for findings. The corresponding concept in KDM is SourceRef

Note: Defined in Figure 7. UML class diagram Code Location

Code location references file

Definition: Code location is uniquely described as a location within a certain file.

Description: Code location element refers to a location in the code of the system under investigation by
describing a combination of a file and a location within the file.

Possibility: Code location references exactly one file

Code location has line number

Definition: Line number that describes a location within a source file.

Tools Output Integration Framework (TOIF), Version 1.0 11

Description: for locations in source files; this attribute is optional

Possibility: code location may have line number

Code location has position

Definition: Position of a character within a line number that uniquely describes a location within a source file.
Description: for locations in source files; this attribute is optional

Possibility: code location may have position

Code location has offset

Definition: Number of a byte in a binary file that uniquely describes a location within an executable file.

Description: for locations in binary files. Code locations in executable files are identified in binary image,
therefore offset is the same as the virtual address of a byte in the image. Offset does not represent the offset in
the executable file itself.

Possibility: code location may have offset

Line number
Definition: Line number that uniquely describes a location within a file.

General concept: Natural number

Description: A source file is assumed to be a text file that consists of a sequence of one or more lines, marked by
an end-of-line characters. Lines are enumerated from 1. Line number in case of an empty file is not applicable.

Position

Definition: Number of a character within a line (identified by a line number) that uniquely describes a location
within a file.

General concept: Nonnegative integer number

Description: A line of a source file is assumed to be a sequence of one or more characters different from an end-
of-line character. Characters are enumerated from 1. Position in in case of an empty line is not applicable.

Offset
Definition: Offset of a byte that uniquely describes a location within a binary image.

General concept: Nonnegative integer number

Description: A binary file is assumed to be a sequence of one or more bytes. Bytes are enumerated from 1. Offset
in in case of an empty binary file is not applicable. Offset is the same as the virtual address of a byte in the
image. Offset does not represent the offset in the executable file itself.

Weakness Type Identifier

Definition: A category of weakness.

Note: This is not a designation, but the actual category. The suffix Identifier is added for consistency with “CWE
Identifier” and SFP Identifier”, to avoid possible confusion between “CWE” as the entire catalog, “CWE” as a
specific category of weakness in the CWE catalog.

Synonym: Weakness Type

Note: Defined in Figure 4. UML class diagram WeaknessType

12 Tools Output Integration Framework (TOIF), Version 1.0

Weakness Type Identifier has name

Definition: A unique name provided to a weakness type defined by the Common Weakness Enumeration (CWE).

Description: Common Weakness Enumeration (CWE) is a standard that provides a list of weakness types, each
identified by a CWE name, for example, “CWE-561".

Weakness Type Identifier has description

Definition: Description of a Weakness Type Identifier is an informal description of the corresponding weakness
type

CWE identifier

Definition: A weakness type defined by the Common Weakness Enumeration (CWE).

Description: Common Weakness Enumeration (CWE) is a catalog that provides a list of weakness types, each
identified by a CWE name, for example, “CWE-561”. CWE associates several information blocks with each

weakness type, including a long name, an informal description, examples, references to other standards, such
as CVE, etc.

Note: This is not a designation, but the actual category. The suffix Identifier is added to avoid possible confusion
between “CWE” as the entire catalog, “CWE?” as a specific category of weakness in the CWE catalog.

Note: Defined in Figure 4. UML class diagram WeaknessType

SFP Identifier

Definition: A weakness type provided by the Software Fault Patterns (SFP) catalog.

Note: This is not a designation, but the actual category. The suffix Identifier is added to avoid possible confusion
between “SFP” as the entire catalog, “SFP” as a specific category of weakness in the SFP catalog.

Description: Software Fault Patterns (SFP) is a standard that provides a list of weakness types, each identified by
a SFP name, for example, “SFP-8”.

SFP Cluster

Definition: A weakness category provided by the Software Fault Patterns (SFP) catalog.

Description: Software Fault Patterns (SFP) is a standard that provides a list of weakness clusters, each identified
by a unique name, for example, “Authentication”.

Note: Defined in Figure 4. UML class diagram WeaknessType

Weakness Description

Definition: Description of the weakness type other than the normalized identifier associated with the finding.

Description: Weakness description is associated with the finding. Usually this description represents a proprietary

report generated by the static code analysis tool (either specific to the weakness type, or specific to the
finding).

Note: Weakness Description is a proprietary Weakness Type Identifier. Because it is proprietary, and also because

it is defined operationally (by an SCA tool), it is difficult to reason about the exact extent of this Weakness
Type.

Tools Output Integration Framework (TOIF), Version 1.0 13

Weakness description has description

Definition: Text of the weakness description

Description
General concept: Text

File

Definition: A computer resource for recording a collection of related data or program records stored as a unit with
a single name.

Description: File in TOIF corresponds to the Inventoryltem concept in KDM. In TOIF a File is assumed to
represent code of the system under investigation and is usually either a source file (KDM SourceFile) or an
executable file (KDM ExecutableFile).

Note : Defined in Figure 8. UML class diagram File.

File has name

Definition: Name of the file

Name

General concept: Text

File has checksum

Definition: Checksum of the file

Note: the ability to compute the checksum of a file that is the source for the particular weakness report depends on
the access to this file. In general, the application of the generator is done at a separate phase, therefore the
adaptor may not be able to compute this information. However, availability of the checksum will facilitate
management of multiple TOIF segment and reduce errors caused by merging unrelated TOIF segment.

Note: the Inventory Model of the KDM Model includes the checksum of each file in the system under assessment.
Checksum
General concept: Integer

Definition: Checksum is a small-sized datum derived from a block of digital data for the purpose of detecting
errors which may have been introduced during its transmission or storage or to identify duplicate blocks.

File has version

Note: the ability to compute the version of a file that is the source for the particular weakness report depends on
the access to this file. In general, the application of the generator tool is done at a separate phase; therefore the
adaptor may not be able to compute this information. However, availability of the version will facilitate
management of multiple TOIF segment and reduce errors caused by merging unrelated TOIF segment.

Note: the Inventory Model of the KDM Model includes the version of each file in the system under assessment.
Version

Definition: A unique identifieable state of something.

14 Tools Output Integration Framework (TOIF), Version 1.0

General concept: State

Note: Version of the subject is designated by a string

File is contained in Directory

File belongs to Project

Directory
Definition: An organizational unit or container, used to organize directories and files into a hierarchical structure.
Note: Defined in Figure 9. UML class diagram Directory

Directory is contained in Directory

Directory has name

Directory belongs to Project

Statement
Definition: An basic identifieable unit of behavior in software such as a source code statement, a basic block, a
operator.

Note: this corresponds to KDM ActionElement class

Note: Defined in Figure 10. UML class diagram Semantic Statement

Statement has code location

Statement is involved in Finding
Synonym: Finding is associated with statement

Possibility: each Finding may be associated with many statement

Statement is part of sink of Finding

Note: This is a stronger form of the fact type Statement is involved in Finding where the role of Statement is
known to be a sink, i.e. a statement that corresponds to the discernable necessary condition of the weakness.
For example, a statement that performs access to a buffer is the necessary condition to a buffer overflow
weakness, since without an access there is no overflow. Sink is a concept use in the Software Fault Patterns
(SFP). Many software faults have discenrable Sink and Source statements and a data flow path between them.

Statement is part of source of Finding

Note: This is a stronger form of the fact type Statement is involved in Finding where the role of Statement is
known to be a source, i.e. a statement that corresponds to the discernable sufficient condition of the weakness.
For example, a statement that sets the pointer outside of the available space in a buffer is the sufficient
condition to a buffer overflow weakness, provided that there also exists an data flow path to a sink which
performs access to the buffer using the same pointer, and the value of the pointer is unchanged along the path.
Source is a concept use in the Software Fault Patterns (SFP). A weakness finding may have multiple sources.
Many software faults have discenrable Sink and Source statements and a data flow path between them.

Tools Output Integration Framework (TOIF), Version 1.0 15

Statement is preceded by Statement

Data

element

Data

Definition: An basic identifieable data item is software such as global and local variables, records, formal
parameters and constants.

Note: This corresponds to the KDM DataElement class
Note: Defined in Figure 11. UML class diagram Semantic Data

element is defined at Code Location

Data

element is involved in Finding

Data

element has name

Data

element is involved in Statement

Note: This is a stronger form of the fact type Data element is involved in Finding, and is usually related to the
Source and Sink of the Finding. In this case the Data element is passed along the data flow path from the
Statement is known to be a source, i.e. a statement that corresponds to the discernable sufficient condition of the
weakness to the sink of the finding. For example, a statement that sets the pointer outside of the available space in
a buffer is the sufficient condition to a buffer overflow weakness, provided that there also exists an data flow path
to a sink which performs access to the buffer using the same pointer, and the value of the pointer is unchanged
along the path. The pointer is then the Data element involved in the Source statement. Data element, Source and
Sink is are concept use in the Software Fault Patterns (SFP). A weakness finding may have multiple data elements
involved in the data flow path between Source and Sink.

Citing

Definition: An observation related to a weakness that may supply additional information to the weakness and a
verdict which is a claim that a weakness is valid or is not valid.

Note: Some citings may be performed by analysts, while other citings may be performed by Analytics Tools, for
example based on pattern matching and/or machine learning

Note: Defined in Figure 6. UML class diagram Citing

Citing references Weakness

Citing has Description

Citing has Confidence

Citing is generated at Date

Citing is generated by Citing Agent

Citing has Verdict

Verdict

16

Definition: An evaluation of the findings and code facts for a particular weakness as represented by one or more
findings, CWE Identifier and code location into Code Artifacts. Verdict represents a claim that a weakness is a
valid finding (true) or not a valid finding (false)

Tools Output Integration Framework (TOIF), Version 1.0

9.2 “Housekeeping” Entities and Facts

This section describes several “housekeeping” facts that facilitate management of multiple TOIF facts during the entire
life cycle of the system under investigation, or multiple systems under investigation within an enterprise.
The key objectives are
o to facilitate management of multiple TOIF Segment generated during the course of the TOIF project
o to reduce the possibility of errors caused by merging unrelated TOIF Segment
o to reduce the possibility of errors caused by merging TOIF Segment with the unrelated KDM model
The audit information includes the following:
o project identifier (unique project name that corresponds to the system under investigation)
build identifier
name of the generator tool
vendor name of the generator tool
generator tool identifier (unique version of the generator tool)
adaptor identifier (unique name and version of the adaptor tool)
person name responsible to the TOIF Segment
organization responsible for the TOIF Segment
date when the TOIF Segment was produced

O 0O 0O O O O O O

Tool

Definition: Any software that can be used to develop, test, analyze, or maintain a computer program or its
documentation.

Note: Defined in Figure 15. UML class diagram Tools

Tool has Description

Tool has name

Tool has version

Generator

Definition: Any capability to scan source or machine code of the system under investigation and generate
weakness finding reports.

Description: Generator tool usually involves components that perform scanning and parsing of source code, or
perform diassembling of the machine code, implement optimized control and data flow analysis algorithms,
often incorporate extensive information about standard software libraries and components, operating systems
and compilers, as well as a certain knowledge base of what they consider as weaknesses and the corresponding
patterns that can be used to discover at least some of these weaknesses in the code. Effectiveness of Generator
tool is determined by multiple factors.

Synonym: SCA tool
Note: Defined in Figure 15. UML class diagram Tools
Adaptor

Definition: Any capability to transform the proprietary weakness finding report from a particular Generator tool
into a normalized representation determined by the TOIF specification.

Description: The most challenging part of implementing a TOIF adaptor is to provide a mapping from proprietary
weakness type system used by a particular Generator tool into a normalized system of weakneds types in a
justifiable and unambiguous wat that facilitates further semantic integration of the TOIF finding facts. TOIF
specification uses a formalized 3-level hierarchical system of weakness types that involve a combination of the
Software Fault Patterns (SFP) catalog and the Common Weakness Enumeration (CWE)

Tools Output Integration Framework (TOIF), Version 1.0 17

Note: Defined in Figure 15. UML class diagram Tools
Adaptor supports Generator
Synonym: Generator requires Adaptor
Adaptor is capable of finding CWE

Synonym: CWE can be reported by Adaptor

Orchestration tool

Definition: Any capability to perform the process of running Generator tools and their corresponding TOIF
Adaptors in alignment with the regular build

Description: The responsibility of the Orchestration tool is to make sure that each source file is processed by
selected Generator tools with desired options, aligned with the options used during the regular build, that an
appropriate TOIF Adaptor is called for each Generator tool, that all TOIF output files are appropriately
managed; Similarly for machine code analysis, the TOIF Orchestration tool aligns the process of running the
selected Generator tools and their TOIF Adaptors on all desired machine code files. From the software
assurance evidence perspective, the TOIF Orchestration tool generates the key piece of evidence regarding the
coverage of the source and machine code files, correctness of the weakness findings, etc.

Note: Defined in Figure 15. UML class diagram Tools

Analytics tool

Definition: Any capability to consumes one or more TOIF segments and produces one or more TOIF segments.

Description: Analytics tools may include, for example, a TOIF Integration tool, that consumes partial TOIF
segments and produces a single integrated segment, or a TOIF Citing tool that consumes TOIF integrated
segment and augments it with some elements.

Note: Defined in Figure 15. UML class diagram Tools

Vendor
Definition: An organization that supplies a Tool used in project

General concept: Organization

Note: Defined in Figure 16. UML class diagram Organization

Tool is supplied by Vendor

Synonym: Vendor supplies Tool

Person

Synonym: Individual, human

Note: Defined in Figure 17. UML class diagram Person
Person has name

Person has email address

18 Tools Output Integration Framework (TOIF), Version 1.0

Person has phone number

Email address

Phone number

Address

Person is employed by Organization as Role

Note: it is assumed that the dynamics of this relationship is not relevant to the TOIF. So this relationship means

that the Person was employed by Organization for the duration of the project.

Organization

Description: An entity comprising multiple persons that have a shared goal and is linked to an external
environment

Description: an Organization involved in project

Note: Defined in Figure 16. UML class diagram Organization

Organization has name

Organization has Description

Organization has address

Organization has email address

Organization has phone number

Organization, is part of Organization, as Role

Role

Note: Defined in Figure 18. UML class diagram Role

Role has name

Role has Description

Project
Description: a TOIF project related to a specific system under investigation
Note: Defined in Figure 14. UML class diagram Project

Project has name

Project has Description

Note: a separate TOIF Segment may be used to own all “housekeeping” elements and their descriptions

Person is involved in Project as Role

Organization is involved in Project as Role

Tools Output Integration Framework (TOIF), Version 1.0

19

Build

Definition: An engineering activity that involves a series of transformations of the “source code” artifacts into
“executables” that can run on a selected computer platform. Build is performed in the context of the system
under investigation. Build is a specific event and the corresponding set of artifacts.

Synonym: TOIFBuild
Note: Defined in Figure 12. UML class diagram Build and in Figure 13. UML class diagram Housekeeping
Build has name

Build has description

Definition: Text of the weakness description

Build is related to Project

Build is generated by Person
Build is supervised by Person

Synonym: Person is responsible for TOIF Segment

Build is produced by Organization

Build is owned by Organization

Build is created at Date

Date

Definition: Time stated in terms of year, month, day and possibly also hour, minute
Note: Date may include a Time Zone.
Synonym: Timestamp

Build is orchestrated by Orchestration tool

Synonym: Orchestration tool generated Build

9.3 Fact-oriented organization of TOIF XMI

This section elaborates the conceptual model and describes the fact-oriented organization of the TOIF XMI. More
specifically, this section describes a certain abstract structure of the TOIF concepts, by observing that all above concepts
of TOIF are either noun concepts (such as Finding), or verb concepts (such as Finding is reported in Build), or take a
specific form of an owned attribute (such as File has Name). Noun concepts will be further referred to as Entities (or
TOIF Entities). Verb concepts will be further referred to as Facts, or Clauses (or TOIF Facts). Few special purpose verb
concepts will be referred to as TOIF Records (or Evidential Records). Finally, we will keep distinguishing the Attributes,
as few special verb concepts in the form of TOIF Entity has something.

Collectively, TOIF Entities and TOIF Facts/Clauses will be referred as TOIF Elements.

The physical structure of the TOIF XMI shall be based on the abstract structure of the TOIF, i.e. shall be structured as a
collection of instances of TOIF Entities, together with their owned Attributes, and instances of TOIF Facts/Clauses and
Records. A TOIFSegment is a physical container for a collection of the instances of TOIF Entities together with their
owned/unique Attributes, and instances of TOIF Facts/Clauses and TOIF Records. When this does not lead to confusion,
the content of a TOIFSegment will be also referred to as “TOIF facts”, meaning the individual noun and verb concepts
that are instances of the TOIF concepts from the TOIF specification, taken as the truth.

20 Tools Output Integration Framework (TOIF), Version 1.0

First, a Segment is the root element for the TOIF XMI file and the container of the TOIF facts and the corresponding
entities. TOIF segment is be the main unit of information exchange within the TOIF framework. The TOIF Segment
owns the corresponding entities and facts. The concept of element ownership is important from the design perspective of
the XML/XMI. Eventually, ownership corresponds to the nested XMI tags. It is assumed that every TOIF entity and
every TOIF fact is defined by a unique pair of XMI tags. Facts and entities in a TOIF Segment are flat, i.e a TOIF
Segment is an ordered list of TOIF entities and facts. The following logical constraints apply:

C1: TOIF Segment shall own all TOIF entities that are objects of the TOIF facts owned by that Segment
C2: TOIF entity that is the object of a TOIF fact shall precede that fact in the TOIF Segment.
C3: TOIF Entity owns all its attributes

The physical organization of the TOIF facts is defined by the following conceptual schema:

Fact
Definition: A general category that includes all verb concepts defined in TOIF, that represent general statements
(assertions) about TOIF entities, except the verb concepts that define owned attributes of TOIF Entities.
Synonym: TOIF Fact
Synonym: Clause
Synonym: TOIF Clause
Description: a TOIFSegment describes instances of TOIF Facts. TOIF distinguishes Facts and Evidential Records
where a Fact provides a statement related to both basic and housekeeping TOIF Entities, and Evidential Record
provides a statement related to the build (orchestration) environment.
Note: Defined in Figure 19. UML class diagram Abstract Structure
Note: Concrete facts are enumerated in Figure 22. UML class diagram Basic Facts 1, Figure 23. UML class
diagram Basic Facts 2, Figure 24. UML class diagram Basic Facts 3, Figure 25. UML class diagram Basic Facts 4
and Figure 28. UML class diagram Housekeeping Facts 1, Figure 29. UML class diagram Housekeeping Facts 2,
Figure 30. UML class diagram Housekeeping Facts 3

Entity

Definition: A general category that includes all noun concepts defined in TOIF, except ones that define owned
attributes of TOIF Entities.

Synonym: a TOIF entity
Description: a TOIFSegment describes instances of TOIF Facts that reference TOIF Entities

Note: TOIF specification describes a number of noun concepts referred to as Entity. TOIF segment enumerates
instances of Entity as individual noun concept. Introduction of an individual Entity is considered as the so-
called existential fact

Note: Concrete noun concepts that correspond to Entity in TOIF specification are enumerated in Figure 21. UML
class diagram Basic entities and Figure 27. UML class diagram Housekeeping entities

Entity is subject of Fact

Synonym: Fact adds information about Entity

Entity is object of Fact

Synonym: Fact references Entity

Tools Output Integration Framework (TOIF), Version 1.0 21

Attribute

Definition: A general category of noun concepts and the corresponding role concepts in the form of X has Y that
describe owned attributes of TOIF Entities

Description: a TOIF attribute
General concept: Fact
Possibility: an Attribute is owned by exactly one Entity

Note: Defined in Figure 26. UML class diagram Basic Attributes and Figure 31. UML class diagram
Housekeeping Attributes

Attribute is an attribute of Entity

Synonym: Entity owns Attribute

Evidential Record

TOIF

Definition: A general category of verb concepts that represent evidential record related to the build (orchestration)
environment of the system under assessment rather that generic statements about TOIF Basic or Housekeeping
Entities

Description: A general category that includes few verb concepts defined in TOIF that have a form of a TOIF fact
with one or more additional attributes.

Synonym: TOIF Record

Synonym: Record

Note: Defined in Figure 19. UML class diagram Abstract Structure

Note: Concrete record are enumerated in Figure 32 UML class diagram EvidentialRecord

Example: BuildRecord, CompileRecord, GeneratorRecord

Segment

TOIF

Synonym: Segment
Definition: A container for one or more instances of TOIF elements with a shared purpose

Segment has name

TOIF

Segment has Description

TOIF

Note: Defined in Figure 19. UML class diagram Abstract Structure

Segment owns Fact

TOIF

Segment owns Entity

22

Necessity: TOIF Segment owns each Entity that is referenced by Fact that is
owned by the TOIF Segment

Tools Output Integration Framework (TOIF), Version 1.0

10 TOIF Logical model

This section describes the MOF/UML metamodel for TOIF XMI which is developed as an intermediate step from the
TOIF Conceptual Model defined in SBVR Structured English as a technology-independent vocabulary for the TOIF
Ecosystem towards the TOIF XMI schema. The TOIF MOF/UML metamodel is consistent with the TOIF Conceptual
Model. The TOIF XMI schema is derived from the TOIF MOF/UML model by applying the MOF/XMI rules.
The TOIF UML model consists of a single UML package and includes 30 class diagrams to represent the following:
o TOIF basic elements
o TOIF housekeeping elements
o TOIF fact-oriented structure

The TOIF UML model is structured as an explicit set of classes corresponding to the conceptual schema, where each
verb concept is represented as a UML association class, and each TOIF attribute is implemented as an owned class,
rather than a UML attribute. This determines a certain “triple flavor” of the TOIF XMI data, and facilitates the potential
use of other technology spaces, including reasoning tools to handle TOIF data.

The rest of this section has the following organization. Section 10.1 presents 7 UML class diagrams that describe the
basic elements of the TOIF XMI, the logical entities and fact types. Section 10.2 presents 8 UML class diagrams that
describe the housekeeping elements of the TOIF XML. Section 10.3 presents 8 UML class diagram that describes the
physical structure of the TOIF XMI.

10.1 The basic elements of the TOIF XML

This section presents 9 UML class diagrams that represent the basic entities and facts of the TOIF XMI: Finding,
Weakness Type Identifier, Code Location, File, Directory, Semantic Statement and Semantic Data.

10.1.1 Finding Class Diagram

This section describes the UML representation of the Finding concept and the corresponding facts that fully describe the
finding through several clauses where the finding is the subject and other concepts of TOIF are objects of the clause.

10.1.1.1 Finding Class

The Finding class is the key class of TOIF. Instances of this class represent individual weakness findings reported by
static analysis tools for the code of the system under investigation. The Finding class only has a unique id, it does not
own any attributes, and is defined through connections to other instances of TOIF through association classes, such as,
for example, FindingIDefined AsSCWE, which represents a verb concept “Finding is represented as CWE” and associated
the instance of Finding to an instance of a class CWEIdentifier. An instance of Finding is essentially a “hub” that joins
multiple related clauses, each providing a facet of information about the finding.

The superclass BasicEntity is defined in Section 10.3.3 Basic Entities Class Diagram

Superclass
BasicEntity
Associations
criticality:Criticality[0..1] Owned attribute that specifies criticality of the finding in terms of
the impact that it may cause.
confidence:Confidence[0..1] Owned attribute that specifices the confidence in this finding

claim.

Tools Output Integration Framework (TOIF), Version 1.0 23

Constraints
1. Each Finding instance must be the subject of at least one FindinglsReportedAsType clause

2. Each Finding instance must be the subject of at least one FindinglsReportedByGenerator clause
3. Each Finding instance must be the subject of exactly one FindinglsDefinedAsCWE clause

4. Each Finding instance must the the subject of at least one FindinglsProducedByAdaptor clause
5. Each Finding instance must the the subject of at least one FindingHasCodeLocation clause

6. Each Finding instance must the the subject of at least one FindingIsProducedInBuild clause

package toif[) Finding]

WeaknessDescription Generator
Description | +text
+text : String |1 S
+ype (1 OQenerator‘r
FindinglsReportedAsType | \r' dinglsReportedByG TiocatorTs
+finding | 1 +finding (1
Confi Finding +finding FindingHasCodeLocation
0..1
+evel : Integer B 1
Criticality
+evel : Integer 0.1 +inding F gl ile
1 —
+finding

+finding |1 +finding |1
g 9‘[+ile |1
FindinglsDefinedAsCWE F dByAdap e

+adaptor |1
Adaptor

+build |1
Build

+cwe |1

CWEIdentifier

Figure 3. UML class diagram Finding

Example

This example illustrates a single Finding and a complete set of related clauses. Note, that all finding-related clauses are
mandatory, except for the FindingReferencesFile. This clause is optional, since the same information is provides by the
pair of mandatory clauses FindingHasCodeLocation and CodeLocationReferencesFile.

<fact xmi:type="toif:Finding” xmi:id="£0001"/>

<fact xmi:type="toif:CodeLocation” xmi:id="locl0”>
<linenumber linenumber="1856"/>
</fact>

<fact xmi:type="toif:FindingIsReportedAsType”
finding="£0001" type="wd _tl 1"/>

<fact xmi:type="toif:FindingIsReportedByGenerator”
finding="£0001” generator="rats 2.3"/>

24 Tools Output Integration Framework (TOIF), Version 1.0

<fact xmi:type="toif:FindingIsDefinedAsCWE"”
finding="£0001" cwe="CWE-561"/>

<fact xmi:type="toif:FindingIsProducedByAdaptor”
finding="£f0001"” adaptor="rats_toif adaptor_ 1.1"/>

<fact xmi:type="toif:FindingIsRelatedToBuild”
finding="£f0001” build="b1020171330"/>

<fact xmi:type="toif:FindingReferencesFile”
finding="£f0001" file="£f10"/>

<fact xmi:type="toif:FindingHasCodeLocation”
finding="£f0001” location="locl0”/>

<fact xmi:type="toif:WeaknessDescription” xmi:id="wd_t1_1">
<description text="Weakness that may lead to severe exposure”/>
</fact>
<fact xmi:type="toif:CWEIdentifier” xmi:id="CWE-561">
<description text="xxxxxx"/>
</fact>
<fact xmi:type="toif:Generator” xmi:id="rats_ 2.3">
<name name="RATS"/>
<description text="xxxxxx"/>
<version version="2.3"/>
</fact>
<fact xmi:type="toif:Adaptor” xmi:id="rats-toif-adaptor 1.1"”>
<name name="RATS-TOIF"/>
<description text="xxxxxx"/>
<version version="1.1"/>
</fact>
<fact xmi:type="toif:Build” xmi:id="b1020171330">
<description text="xxxxxx"/>
</fact>
<fact xmi:type="toif:CodeLocationReferencesFile”
finding="locl0” file="£10"/>

<fact xmi:type="toif:File” xmi:id="£f10">
<name name="main.c”/>
</fact>

Example
This example illustrates a single Finding with attributes. Other clauses are assumed to be refer to the previous example.
<fact xmi:type="toif:Finding” xmi:id="£0001">
<confidence xmi:type="toif:Confidence” xmi:id="co £0001” level=90/>
<criticality xmi:type="toif:Criticality” xmi:id="cr £0001” level=50/>
</fact>

10.1.1.2 FindinglsReportedAsType Class

The FindinglsReportedAsType class represents a verb concept “Finding is reported as Weakness Description”. This is an
important clause that associates an instance of a Finding class to an instance of WeaknessDescription, which is a
proprietary weakness type provided by a static code analysis tool.

When one instance of Finding is a subject of more than one FindingIsReportedAsType clauses, all corresponding
descriptions are assumed to be jointly describing the finding, however no particular order is assumed. This may be
utilized by some Adaptor tools to split proprietary reports into parts, some of which may be shared across findings, while
others are specific to an individual finding.

Superclass

Tools Output Integration Framework (TOIF), Version 1.0 25

FindingFact

Associations
type:WeaknessDescription[1] represents a proprietary weakness type reported by a static
code analysis tool (either specific to the weakness type, or
specific to the finding)
finding: Finding[1] Weakness that has been discovered in the code of the system
under investigation
Example

For the basic example, see 10.1.1.1

The following example illustrates multiple FindingIsReportedAsType clauses for the same subject, described below as
xmi:id “f0001”. Note, that several mandatory clauses for the finding are not shown. Note, that the generic
WeaknessDescription is shared by two findings “f0001” and “f0002”.

<fact xmi:type="toif:Finding” xmi:id="£0001"/>

<fact xmi:type="toif:FindingIsReportedAsType”
finding="£0001" type="wd_tl 1 generic”/>

<fact xmi:type="toif:FindingIsReportedAsType”
finding="£0001” type="wd_tl 1 concrete”/>

<fact xmi:type="toif:WeaknessDescription” xmi:id="wd_tl 1 generic”>
<description text="Unprotected global may lead to severe exposure”/>
</fact>

<fact xmi:type="toif:WeaknessDescription” xmi:id="wd_tl_1_ concrete”>
<description text="unprotected global X" />
</fact>

<fact xmi:type="toif:Finding” xmi:id="£0002"/>
<fact xmi:type="toif:FindingIsReportedAsType”
finding="£0002" type="wd_tl 1 generic”/>

10.1.1.3 FindinglsReportedByGenerator Class

The FindinglsReportedByGenerator class represents a verb concept “Finding is reported by Generator”. This clause
provides an association between a weakness finding and the static code analysis tool that has reported this finding. The
Generator is represented as an instance of the Generator class, including specific version of the Generator used in the
current Build. The clauses represented by TOIF can address situations where multiple versions of Generator were used in
the same build, processing same or different files, and in these situations each instance of Finding is associated with a
specific instance of Generator, where some of these instances will have the same name, and possibly description, but
different version numbers. For more details, see the description of the Generator class.

Situations where one instance of Finding is a subject of more than one FindingIsReportedByGenerator clauses, may
occur after merging multiple TOIFSegment in a TOIF repository in which case it may be beneficial to further normalize
similar findings reported by multiple version of the same Generator tool by merging them into a single Finding instance.

Superclass

26 Tools Output Integration Framework (TOIF), Version 1.0

FindingFact

Associations
generator:Generator[1] Generator tool that discovered weakness
finding: Finding[1] Weakness that has been discovered in the code of the system under
investigation
Example
See 10.1.1.1

10.1.1.4 FindinglsDefinedAsCWE Class
The FindinglsDefinedAsCWE class represents a verb concept “Finding is defined as CWE”. This clause provides an

association between a weakness finding and the normalized weakness type identifier for the weakness —a Common
Weakness Enumerated identifier, represented by an instance of CWElIdentifier class.

Superclass
FindingFact
Associations
cwe:CWElIdentifier[1] A weakness type defined by the Common Weakness Enumeration (CWE).
Finding: Finding[1] Weakness that has been discovered in the code of the system under
investigation
Constraints

1. Each Finding must be the subject of exactly one FindinglsDefined AsCWE clause
Example

See 10.1.1.1

10.1.1.5 FindinglsProducedByAdaptor Class

The FindinglsProducedByAdaptor class represents a verb concept “Finding is produced by Adaptor”. This clause
provides a direct association between a weakness finding and the Adaptor tool that transformed the original proprietary
finding reported by the Generator into a normalized format and a normalized weakness type identifier. For more details,
see description of the Adaptor class.

Situations where one instance of Finding is a subject of more than one FindinglsProducedByAdaptor clauses, may occur
after merging multiple TOIFSegment in a TOIF repository in which case it may be beneficial to further normalize similar
findings reported by multiple version of the same Generator tooland/or multiple versions of the Adaptor tools for the
Generator tool by merging them into a single Finding instance.

Tools Output Integration Framework (TOIF), Version 1.0 27

Superclass

FindingFact
Associations
adaptor:Adaptor[1] Instance of the Adaptor tool that performed normalization of the
original proprietary tool weakness report
finding: Finding[1] Weakness that has been discovered in the code of the system
under investigation
Example
See 10.1.1.1

10.1.1.6 FindingHasCodeLocation Class
The FindingHasCodeLocation class represents a verb concept “Finding has Code Location”. This clause provides an

association between a weakness finding and the specific location in the code of the system under investigation, where the
original finding was reported by some Generator tool. For more details, see description of the CodeLocation class.

When one instance of Finding is a subject of more than one FindingHasCodeLocation clauses, all corresponding
locations are assumed to be jointly describing the finding, however no particular order is assumed. This may be utilized
by some Adaptor tools to split proprietary reports involves multiple code locations. For a more semantically accurate
descriptions, see descriptions of semantic facts (Semantic Statement and Semantic Data class diagrams).

Superclass
FindingFact
Associations
location:CodeLocation[1] Location in the code of a system under investigation
where weakness is discovered
finding: Finding[1] Weakness that has been discovered in the code of the
system under investigation
Example
See 10.1.1.1

10.1.1.7 FindingReferencesFile Class
The FindingReferencesFile class represents a verb concept “Finding references File”. This clause provides a direct

association between a weakness finding and the specific file of the system under investigation, where the original finding
was reported by the Generator. For more details, see description of the CodeLocation and File classes.

This is an optional clause, since CodeLocation is already referencing a File.

28 Tools Output Integration Framework (TOIF), Version 1.0

Superclass

FindingFact
Associations
file:File[1] File of the system under investigation in which the original
weakness has been reported
finding: Finding[1] Weakness that has been discovered in the code of the system
under investigation
Example
See 10.1.1.1

10.1.1.8 FindinglsReportedinBuild Class
The FindinglsReportedInBuild class represents a verb concept “Finding is reported in Build”. This clause provides a

direct association between a weakness finding and the specific Build of the system under investigation, when the original
finding was reported by some Generator. For more details, see description of the Build class.

Situations where one instance of Finding is a subject of more than one FindinglsReportedInBuild clauses, may occur
after merging multiple TOIFSegment in a TOIF repository in which case it may be beneficial to further normalize similar
findings reported in multiple builds by merging them into a single instance.

Superclass
FindingFact
Associations
build: Build[1] TOIF build has a name and description and is related to the project
finding: Finding[1] Weakness that has been discovered in the code of the system under investigation
Example

See 10.1.1.1

10.1.2 WeaknessType Class Diagram

This section describes the UML representation of the Weakness Type Identifier concept and the corresponding facts.

Tools Output Integration Framework (TOIF), Version 1.0 29

package toif[i] WeaknessType U
WeaknessTypeldentifier ‘ame SEEm.
1 +name : String
+descripti
P ‘1’" Description
0 +text : String
FAY
SFPCluster SFPidentifier CWElIdentifier
+sfpcluster +sfp +sfp ' +cwe
SFPBelongsToCluster }i CWEBelongsToSFP

Figure 4. UML class diagram WeaknessType

10.1.2.1 WeaknessTypeldentifier Class (abstract)

WeaknessTypeldentifier is one of the key concepts in TOIF since it provides the means to achieve unique identification
of weakness finding reports through a normalized standardized type identifier. The WeaknessTypeldentifier in TOIF is a
3 level hierarchical structure consisting of the so-called SFP Cluster at the top, the SFP Identifier in the middle and the
CWE identifier at the bottom. The use of Software Fault Patterns (SFP) catalog to augment CWE provides the means to
overcome semantic ambiguity of CWE. Althougth TOIF uses the CWE identifiers, the allocation of such identifiers must
be coordinated with the mappings described in the SFP catalog, including the gaps and ambiguities. This strategy
represents a unique formalized approach to normalization of (a discernable subset of) code weaknesses that is also
aligned with the automated generation of test cases from the same set of formalizations. On the other hand, TOIF
recognizes the importance of using CWE identifiers as the basis for the normalization.

Superclass
BasicEntity
Associations

name:Name[1]

description:Description[0..1]

Example

30

Owned attribute that specifies the name of weakness type
identifier

Owned attribute that provides the text description of the
normalized weakness type

Tools Output Integration Framework (TOIF), Version 1.0

<fact xmi:type="toif:CWEIdentifier” xmi:id="CWE-561">
<description text="xxxxxx"/>
</fact>

<fact xmi:type="toif:CWEBelongsToSFP”
cwe=“CWE-561" sfp=“SFP-8"/>

<fact xmi:type="toif:SFPBelongsToCluster”
sfp=“SFP-8" cluster=“Authentication”/>

<fact xmi:type="toif:SFPIdentifier” xmi:id="SFP-8">

<name name=“es-ef-pi-eight”/>

<description description=“this is the description that usually comes with
it />

<fact xmi:type="toif:SFPCluster” xmi:id="Authentication”>
<name name=“Authentication Cluster”/>
<description description=“Description of the cluster”/>
</fact>

10.1.2.2 CWElIldentifier Class
CWEldentifier class represents the CWE Identifier concept.
Superclass
WeaknessTypeldentifier
Example

See 10.1.2.1

10.1.2.3 SFPIdentifier Class
SFPIdentifier class represents the SFP Identifier concept.
Superclass
WeaknessTypeldentifier
Example

See 10.1.2.1

10.1.2.4 SFPCluster Class
SFPCluster class represents the SFP Cluster concept.
Superclass
WeaknessTypeldentifier
Example

See 10.1.2.1

Tools Output Integration Framework (TOIF), Version 1.0

10.1.2.5 CWEBelongsToSFP Class
CWEBelongsToSFP class represents the verb concept CWE belongs to SFP.

Superclass
WeaknessTypeFact

Associations

cwe:CWElIdentifier[1] A weakness type defined by the Common Weakness Enumeration (CWE)

sfp: SFPIdentifier[1] SFP Identifier which formalizes the mapping to the CWE identifier of the clause
Constraints

1. Each CWElIdentifier belongs to exactly one SFPIdentifier

Example

See 10.1.2.1

10.1.2.6 SFPBelongsToCluster Class
SFPBelongsToSCluster class represents the verb concept SFP belongs to Cluster.

Superclass
WeaknessTypeFact
Associations
sfp:SFPIdentifier[1] SFP Identifier that is the subject of the clause
cluster: SFPCluster[1] SFP Cluster to which the SFP Identifier belongs
Constraints
1. Each SFPIdentifier belongs to exactly one SFPCluster
Example

See 10.1.2.1

10.1.3 Weakness Class Diagram

This section describes the UML representation of Weakness concept and the corresponding facts.

32 Tools Output Integration Framework (TOIF), Version 1.0

package toif[ﬂ Weaknessu
CWEldentifier
+cwe |1 CodeLocation
+codelocation |1
|Wuln'|osslsD¢ﬂnodAsCWE I
+weakness |1
Description |+description Weakness —{’w“"""“ w.dmossHasCodoLocadon’
+text: String [0..1 1
o +confidence
0..1
+evel : Integer +weakness
1 WeaknessReferencesFile |
Criticality | +criticality
+level : Integer |0..1 f
+ile |1
Isupporting findings File
+ffindingf1..*
Finding

Figure 5. UML class diagram Weakness

10.1.3.1 Weakness Class

Weakness class represents the Weakness concept. Objects of this class are created by TOIF Analytics Tools, and not by
the TOIF Adaptor Tools as are the Finding objects. A Weakness object represents a unique weakness in the code of
system under assessment, as supported by one or more Findings. This class supports integration and analysis of mutltiple
TOIF reports and serves as the subject for additional statements, mainly the criticality, confidence, and citing statements.
Confidence and Criticality statements involve owned attributes of the Weakness class, and Citing statements involve
additional instances of a Citing class, described in section 10.1.4.

The Weakness class is an important part of the TOIF interface for the consumer tools and integration tools that can be
used for the vulnerability management purposes. Property Finding is provided for illustration purposes only, as it is
defined as derived, and the corresponding association is non-navigable in both directions. Relation between Weakness
and its supporting Findings is dynamic: while Finding object is related to a particular Build, a Weakness is related to the
entire Project, but may have a certain range of builds during which it was present, starting from the build where one or
more tools has reported this weakness until the build where none of the tools were any longer reporting this weakness
either because it was fixed or for other reasons.

Superclass
BasicEntity
Constraints
1. Each Weakness must be the subject of exactly one WeaknessIsDefinedAsCWE clause
2. Each Weakness must be the subject of exactly one WeaknessHasCodeLocation clause
Associations

description:Description[0..1] Owned attribute that provides than informal text description of the
weakness

Tools Output Integration Framework (TOIF), Version 1.0 33

criticality:Criticality[0..1] Owned attribute that specifies criticality of the weakness in terms
of the impact that it may cause.

confidence:Confidence[0..1] Owned attribute that specifices the confidence in this weakness
claim.

Example

<fact xmi:type="toif:Weakness” xmi:id="w0001">
<criticality xmi:type="Criticality” level=80 />
</fact>
<fact xmi:type="toif:WeaknessHasCodeLocation”
finding="w0001” location="locl0"”/>

<fact xmi:type="toif:WeaknessHasCodeLocation”
finding="w0001” location="locl0"”/>

<fact xmi:type="toif:CodeLocation” xmi:id="locl0”>
<linenumber linenumber="1856"/>

</fact>

<fact xmi:type="toif:Finding” xmi:id="£0001"/>

For the facts related to the finding id=“£f0001” refer to example in Section
10.1.1.1

10.1.3.2 WeaknesslsDefinedAsCWE Class

CodeLocationReferencesFile class represents the verb concept “Code Location references File”.

Superclass
WeaknessFact
Associations
location:CodeLocation[1] Code Location that is the subject of the clause
file: File[1] File that is referenced by the Code Location of the clause
Example

See 10.1.3.1

10.1.3.3 WeaknessHasCodelLocation Class

CodeLocationReferencesFile class represents the verb concept “Code Location references File”.

Superclass

34 Tools Output Integration Framework (TOIF), Version 1.0

WeaknessFact

Associations
location:CodeLocation[1] Code Location that is the subject of the clause
file: File[1] File that is referenced by the Code Location of the clause
Example
See 10.1.3.1

10.1.3.4 WeaknessReferencesFile Class

CodeLocationReferencesFile class represents the verb concept “Code Location references File”.

Superclass
WeaknessFact
Associations
location:CodeLocation[1] Code Location that is the subject of the clause
file: File[1] File that is referenced by the Code Location of the clause
Example

See 10.1.3.1

10.1.4 Citing Class Diagram

This section describes the UML representation of Citing concept and the corresponding facts.

Tools Output Integration Framework (TOIF), Version 1.0

35

package toif[;1{] Citingu
Weakness
+weakness |1
[CMngRofonncosWuknoss’
+citing |1
Citing
CodePattern |+pattern
+text: String [0..1
Dacdpﬂon +description +confidence | Confidence
#ext: String |0..1 0..1 |*level: Integer
+verdict
Verdict 1
+isValidWeakness : Boolean +oiting |1 +eiting |1
IcnlnglsGomrabdMDm ‘ CitinglsGeneratedByAgent |
+agent |1
+date |1 CitingAgent
= |
Analytics TooII ‘ Person ’

Figure 6. UML class diagram Citing

10.1.4.1 Citing Class

Citing class represents the Citing concept. Objects of this class are created by TOIF Analytics Tools. A Citing object
supplies additional statements to some Weakness object, mainly the verdict, confidence as well as some audit trail. This
class is an important part of the TOIF interface for the consumer tools and integration tools that can be used for the
vulnerability management purposes. CodePattern element can be used to group related Weaknesses that have the same
CWE. This mechanism can use used by TOIF Analytics tools to identify the characteristics of a Weakness, and then

identify other Weaknesses that have the same characteristics.
Superclass

BasicEntity
Constraints

1. Each Citing must be the subject of exactly one CitingReferencesWeakness clause

Associations
description:Description[0..1] Owned attribute that provides than informal text description of the
weakness
verdict:Verdict Owned attribute that specifies criticality of the weakness in terms

of the impact that it may cause.

36 Tools Output Integration Framework (TOIF), Version 1.0

confidence:Confidence[0..1] Owned attribute that specifices the confidence in this weakness
claim.

pattern:CodePattern[0..1] Owned attribute that specifices the confidence in this weakness
claim.

Example

<fact xmi:type="toif:Citing" xmi:id="cl110">
<verdict xmi:type="Verdict” verdict="true"/>
<condifence xmi:type="Confidence” level="90" />
</fact>

<fact xmi:type="toif:CitingReferencesWeakness"
location="c110" file="w0001"/>

For the facts related to Weakness id="w0001” refer to example in Section 10.1.3.1

10.1.4.2 CitingReferencesWeakness Class

CitingReferences Weakness class represents the verb concept “Citing references Weakness”.

Superclass
WeaknessFact
Associations
location:CodeLocation[1] Code Location that is the subject of the clause
file: File[1] File that is referenced by the Code Location of the clause
Example

See 10.1.4.1

10.1.4.3 CitinglsGeneratedAtDate Class

CitingIsGeneratedAtDate class represents the verb concept “Citing is generated at Date”.

Superclass
WeaknessFact
Associations

location:CodeLocation[1] Code Location that is the subject of the clause

Tools Output Integration Framework (TOIF), Version 1.0 37

file: File[1] File that is referenced by the Code Location of the clause
Example

See 10.1.4.1

10.1.4.4 CitingAgent Class (abstract)

CitingAgent class represents the common supertype of agents that can generate Citings and is used as the endpoint class
of the clause “CitinglsGeneratedByAgent”. Two subtypes of this class are Person and Analytics tool, defeined in
Housekeeping concepts section.

Superclass

Element

10.1.4.5 CitinglsGeneratedByAgent Class

CitinglsGeneratedByAgent class represents the verb concept “Citing is generated at Agent”.

Superclass
WeaknessFact
Associations
citing:Citing[1] Citing that is the subject of the clause
agent: CitingAgent[1] CitingAgent that has generated the Citing of the clause
Example

See 10.1.3.1

10.1.5 Code Location Class Diagram

This section describes the UML representation of the Code Location concept and the corresponding facts.

38 Tools Output Integration Framework (TOIF), Version 1.0

package toif[i] Code Lomtionu

Eemmber +linenumber

+linenumber: Integer 0.1

Easiion +position
+position : Integer 0.1

CodeLocation

Offset

+offset

+location |1

CodelocationReferencesFile

+ile |1

File

0.1

+offset : Integer

Figure 7. UML class diagram Code Location

10.1.5.1 CodeLocation Class

CodeLocation class represents the Code Location concept.

Superclass
BasicEntity

Constraints

3. Each CodeLocation must define either Linenumber or Offset attribute

4. When CodeLocation defines Position attribute, the CodeLocation must define Linenumber attribute

Associations

linenumber:Linenumber[0..1]

position:Position[0..1]

offset:Offset[0..1]

Example

Owned attribute that specifies the linenumber of the Code
Location. The Linenumber is taken to be in the File that is

referenced by the CodeLocation

Owned attribute that specifies the position of the Code Location.

The position is takes to be within the Linenumber.

Owned attribute that specifices the offset in a binary image. The
offset is assumed to be in the File that is referenced by the Code

Location.

Tools Output Integration Framework (TOIF), Version 1.0

<fact xmi:type="toif:CodeLocation" xmi:id="locl0">
<linenumber linenumber="1856"/>
</fact>

<fact xmi:type="toif:CodeLocationReferencesFile"
location="locl0" file="£10"/>

<fact xmi:type="toif:File" xmi:id="£f10">

<name name="main.c"/>
</fact>

10.1.5.2 CodeLocationReferencesFile Class

CodeLocationReferencesFile class represents the verb concept “Code Location references File”.

Superclass
CodeLocationFact
Associations
location:CodeLocation[1] Code Location that is the subject of the clause
file: File[1] File that is referenced by the Code Location of the clause
Example

See 10.1.5.1

10.1.6 File Class Diagram

This section describes the UML representation of the File concept and the corresponding facts.

40 Tools Output Integration Framework (TOIF), Version 1.0

package toif[é] Fileu

Directory

+directory (1

FilelsContainedinDirectory

+ile (1

Checksum
File +checksum

+checksum : Integer
Name +name 0..1 9

+name : String 1

Version
+version : String

+version
0..1

+ile |1

IFIloBolongsToProjoct l

+project (1

]

Figure 8. UML class diagram File

10.1.6.1 File Class
File class represents the File concept.

in TOIF corresponds to the Inventoryltem concept in KDM. In TOIF a File is assumed to represent code of the system
under investigation and is usually either a source file (KDM SourceFile) or an executable file (KDM ExecutableFile).

Superclass
BasicEntity

Associations
name:Name[1] Owned attribute of the File, specifying its name

version:Version[0..1] Owned attribute of the File, specifying its version

checksum:Checksum[0..1] Owned attribute of the File, specifying its checksum

Constraints
1. Each File class must be the subject of at least one FileBelongsToProject clause

Example

<fact xmi:type="toif:File" xmi:id="£f10">
<name name="main.c"/>
<checksum checksum="898432423894723"/>
<version version=10092017"/>

Tools Output Integration Framework (TOIF), Version 1.0

</fact>

<fact xmi:type="toif:FileIsContainedInDirectory"
file="£10" directory="d10"/>

<fact xmi:type="toif:FileBelongsToProject"
file="f10" project="pl0"/>

<fact xmi:type="toif:Directory" xmi:id="d10">
<name name="applications/src"/>

</fact>

<fact xmi:type="toif:Project" xmi:id="pl0">
<name name="Dispatcher"/>

</fact>

10.1.6.2 FilelsContainedinDirectory Class

FileIsContainedInDirectory class represents the verb concept “File is contained in Directory”.

Superclass
CodeLocationFact
Associations
file:File[1] File that is the subject of the clause
directory: Directory[1] Directory that the File is contained in
Example

See 10.1.6.1

10.1.6.3 FileBelongsToProject Class

FileBelongsToProject class represents the verb concept “File belongs to Project”.

Superclass
ProjectFact
Associations
file:File[1] File that is the subject of the clause
project: Project[1] Project that the File belongs o
Example

42 Tools Output Integration Framework (TOIF), Version 1.0

See 10.1.6.1

10.1.7 Directory Class Diagram

This section describes the UML representation of the Directory concept and the corresponding facts.

package toif[i] Directoryu

Directory

Nane +name

+name : String 1

-

+directory |1 +directory1 |1 +directory2

DirectoryisContainedinDirectory

I DirectoryBelongsToProject ’

+project |1

Figure 9. UML class diagram Directory

10.1.7.1 Directory Class

Directory class represents the Directory concept. Directories provide additional context to the TOIF Findings, which
reference individual Files. TOIF does not make any assumptions on whether the name of the Directory represents an
absolute or a relative path. TOIF also does not make any assumptions regarding the correlation between the names of the
Directory and File and relations DirectorylsContainedInDirectory and FileIsContainedInDiretory.

Superclass
BasicEntity

Associations
name:Name[1] Owned attribute that specifies the name of the Directory

Example
<fact xmi:type="toif:Directory" xmi:id="d10">

<name name="applications/src"/>
</fact>

Tools Output Integration Framework (TOIF), Version 1.0 43

<fact xmi:type="toif:DirectoryIsContainedInDirectory"
directoryl="d10" directory2="d20"/>

<fact xmi:type="toif:DirectoryBelongsToProject"
directory="d1l0" project="plo0"/>

<fact xmi:type="toif:Directory" xmi:id="d20">
<name name="dispatcher"/>

</fact>

<fact xmi:type="toif:Project" xmi:id="pl0">
<name name="Dispatcher"/>

</fact>

10.1.7.2 DirectoryBelongsToProject Class

DirectoryBelongsToProject class represents the verb concept “Directory belongs to Project”.

Superclass
ProjectFact
Associations
directory:Directory[1] Directory that is the subject of this clause
project: Project[1] Project that the Directory belongs to
Example

See 10.1.7.1

10.1.7.3 DirectorylsContainedinDirectory Class

DirectorylsContainedInDirectory class represents the verb concept “Directory; is contained in Directory,”.

Superclass
CodeLocationFact
Associations
directory1:Directory[1] Directory that is the subject of this clause
directory2: Directory[1] Directory in which the subject Directory is contained
Example

See 10.1.7.1

44 Tools Output Integration Framework (TOIF), Version 1.0

10.1.8 Semantic Statement Class Diagram

This section describes the UML representation of the Statement concept and the corresponding facts.

package toif[i] Semantic Statementu
Finding
+finding |1 +finding |1 +finding |1
""""" < StatementisSinkOfFinding StatementisSourceOfFinding
+statement |1 +statement |1 +statement | 1
Statement
Description
0..1 |*ext: String
+statement | 1 +statement1 |1 +statement2 | 1
StatementHasCodeLocation
st PrecededByS
+location | 1
CodeLocation

Figure 10. UML class diagram Semantic Statement

10.1.8.1 Statement Class
Statement class represents the Statement concept.
Superclass

BasicEntity

Associations
description:Description[0..1] Owned attribute that an informal text description of the Statement

Constraints
1. Each Statement class must be the subject of at least one StatementHasCodeLocation clause

Example

<fact xmi:type="toif:Statement" xmi:id="s10"/>
<fact xmi:type="toif:StatementIsInvolvedInFinding"
statement="s10" finding="f10"/>

<fact xmi:type="toif:StatementIsSinkOfFinding"

Tools Output Integration Framework (TOIF), Version 1.0

45

statement="s20" finding="£20"/>

<fact xmi:type="toif:StatementIsSourceOfFinding"
statement="s30" finding="£30"/>

<fact xmi:type="toif:StatementPrecedesStatement"
statementl="s30" statement2="s20"/>

<fact xmi:type="toif:StatementPrecedesStatement"
statementl="s1l0" statement2="s20"/>

<fact xmi:type="toif:StatementHasCodeLocation"
statementl="s10" location="locl0"/>

<fact xmi:type="toif:Statement" xmi:id="s20">
<description text="*pHandler(pData, 0x200);” />

</fact>

<fact xmi:type="toif:Statement" xmi:id="s30"/>

<fact xmi:type="toif:Finding" xmi:id="£10"/>

<fact xmi:type="toif:Finding" xmi:id="£20"/>

<fact xmi:type="toif:CodeLocation" xmi:id="locl0">
<linenumber linenumber="1856"/>
</fact>

10.1.8.2 StatementlsinvolvedInFinding Class

StatementIsInvolvedInFinding class represents the verb concept “Statement is involved in Finding”.

Superclass
SemanticFact
Associations
statement: Statement[1] Statement that is the subject of the clause
finding: Finding[1] Finding in which the Statement is involved in
Example

See 10.1.8.1

10.1.8.3 StatementlsSinkOfFinding Class

StatementIsSinkOfFinding class represents the verb concept “Statement is sink of Finding”. A Sink of a Finding
corresponds to the necessary condition of the Finding.

Superclass

SemanticFact

46 Tools Output Integration Framework (TOIF), Version 1.0

Associations

statement: Statement[1] Statement that is the subject of the clause
finding: Finding[1] Finding of which the Statement is the Sink
Example
See 10.1.8.1

10.1.8.4 StatementlsSourceOfFinding Class

StatementIsSourceOfFinding class represents the verb concept “Statement is source of Finding”. A Source of a Finding
corresponds to one of the sufficient conditions of the Finding.
Superclass
SemanticFact

Associations

statement: Statement[1] Statement that is the subject of the clause

finding: Finding[1] Finding of which the Statement is the Source
Example

See 10.1.8.1

10.1.8.5 StatementHasCodeLocation Class

StatementHasCodeLocation class represents the verb concept “Statement has Code Location”.

Superclass
SemanticFact
Associations
statement:Statement[1] Statement that is the subject of the clause
location: CodeLocation[1] Code Location to which the Statement refers
Example

See 10.1.8.1

Tools Output Integration Framework (TOIF), Version 1.0 47

10.1.8.6 StatementlsPrecededByStatement Class

StatementIsPrecededByStatement class represents the verb concept “Statement; is preceded by Statement,”. This fact
corresponds to a segment of the data flow path between a Source and a Sink of the Finding.

Superclass
SemanticFact
Associations
statement]:Statement[1] Statement that is the subject of the clause
statement2: Statement[1] Statement that precedes Statementl

Example

See 10.1.8.1

10.1.9 Semantic Data Class Diagram

This section describes the UML representation of the Data Element concept and the corresponding facts.

10.1.9.1 DataElement Class
DataElement class represents the Data Element concept.
Superclass

BasicEntity

Associations
name:Name[1] Owned attribute that specifies the name of the Data Element

description:Description[0..1] Owned attribute that an informal text description of the Data Element

Example

<fact xmi:type="toif:DataElement" xmi:id="d10">

<name name="X"/>

<description text="struct pData * X[MAXDATA];" />
</fact>

<fact xmi:type="toif:DataIsInvolvedInFinding"
data="d1l0" finding="£10"/>

<fact xmi:type="toif:DataIsInvolvedInFinding"
data="d1l0" project="£20"/>

<fact xmi:type="toif:DataIsInvolvedInStatement"
data="d1l0" statement="s20"/>

48 Tools Output Integration Framework (TOIF), Version 1.0

<fact xmi:type="toif:DataIsInvolvedInStatement"

data="d1l0"

statement="s30"/>

<fact xmi:type="toif:DataIsDefinedAtCodeLocation"

data="d1l0"

location="locl0"/>

<fact xmi:type="toif:Statement" xmi:id="s20"/>
<fact xmi:type="toif:Statement" xmi:id="s30"/>

<fact xmi:type="toif:Finding" xmi:id="£10"/>
<fact xmi:type="toif:Finding" xmi:id="£20"/>

<fact xmi:type="toif:CodeLocation" xmi:id="locl0">
<linenumber linenumber="1856"/>

</fact>

package toif[__1{] Semantic Datau

+name : String

+name

Codelocation
+location |1
DatalsDefinedAtCodeL ocation
+data |1
DataElement
+description | Description
0..1 |*text: String
+data |1 +data |1
B intinding DatalsinvolvedinStatement
+inding |1 +statement |1
Finding Statement

Figure 11. UML class diagram Semantic Data

10.1.9.2 DatalsinvolvedinFinding Class

DatalsInvolvedInFinding class represents the verb concept “Data Element is involved in Finding”.

Superclass

Tools Output Integration Framework (TOIF), Version 1.0

49

SemanticFact
Associations
data:DataElement[1]
finding: Finding[1]
Example

See 10.1.9.1

Data Element that is the subject of the clause

Finding in which the Data Element is involved

10.1.9.3 DatalsInvolvedIinStatement Class

DatalsInvolvedInStatement class represents the verb concept “Data Element is involved in Statement”. Data Element
usually corresponds to the data flow path between the Source and the Sink of a Finding.

Superclass
SemanticFact
Associations

data:DataElement[1]

statement: Statement[1]

Example

See 10.1.9.1

Data Element that is the subject of the clause

Statement in which the Data Element is involved

10.1.9.4 DatalsDefinedAtCodeLocation Class

DatalsDefinedAtCodeLocation class represents the verb concept “Data Element is defined at Code Location”.

Superclass
SemanticFact
Associations
data:DataElement[1]
location: Location[1]
Example

See 10.1.9.1

50

’

DataElement that is the subject of the clause

Code Location at which the Data Element is defined

Tools Output Integration Framework (TOIF), Version 1.0

10.2 The housekeeping elements of the TOIF XML

This section presents 7 UML class diagrams that describe the housekeeping elements of the TOIF XML: Build,

Housekeeping, Project, Tools, Organization, Person, Role.

10.2.1 Build Class Diagram

This section describes the UML representation of the Build concept and illustrates the corresponding facts are described

in the Basic Entities and Facts section. Thid diagram shows how housekeeping facts provide the context for the basic

facts and allow management of the TOIF facts in the life-cycle of the system-under investigation, across multiple builds,
evolving SCA tools. TOIF Adaptors, and TOIF Orchestration tools, and evolving understanding of the weaknesses. Also
in an enterprise environment, source files and build may be shared across multiple systems.

package toif[ﬂ Build]

+name

Build

+name : String

Description

0..1

+description

+ext : String

0..1

+build

| ToProject #prolect: Gciect

1

+build |1

FindingisReportedinBuild

+finding (1

Finding

+finding

l 1

+project |1

FileBelongsToProject

+ile |1
File

+ile

+finding |1

1

+ile 1

FindingReferencesFile

+location +location

L 5 CodelLocation
FindingHasCodeLocation 1 9 CodeLocationReferencesFile

Figure 12. UML class diagram Build

10.2.1.1 Build Class

Build class represents the Build concept. The superclass Housekeeping Entity is defined in Section 10.3.5.8
Housekeeping Entities Class Diagram. Build represents (the results of) one particular build of the system under

assessment, for example, corresponding to running a custom ‘“Make” script.

Superclass

HousekeepingEntity

Associations

Tools Output Integration Framework (TOIF), Version 1.0

51

name:Name[1] Owned attribute that specifies the name of the Build

description: Description[0..1] Owned attribute that provides a text description of the Build

Constraints
1. Each Build class must be the subject of at least one BuildIsRelatedToProject clause

2. Each Build class must be the subject of at least one BuildIsGeneratedAtDate clause

Example

The following example illustrates 2 Builds, both belonging to the same Project, and a single Finding that was reported in
both builds. The Finding references a File that is related to the same Project. Note that some mandatory clauses are
omitted.

<fact xmi:type="toif:Build" xmi:id="b1020171330">
<description text="xxxxxx"/>

</fact>

<fact xmi:type="toif:Build" xmi:id="b1020171340">
<description text="xxxxxx"/>

</fact>

<fact xmi:type="toif:Project" xmi:id="proj01">
<description text="xxxxxx"/>
</fact>

<fact xmi:type="toif:Finding" xmi:id="£0001"/>

<fact xmi:type="toif:FindingIsReportedToBuild"
finding="£f0001" build="b1020171330"/>

<fact xmi:type="toif:FindingIsReportedToBuild"
finding="£f0001" build="b1020171340"/>

<fact xmi:type="toif:FindingReferencesFile"
finding="£0001" file="£f10"/>

<fact xmi:type="toif:File" xmi:id="£f10">
<name name="main.c"/>
</fact>

<fact xmi:type="toif:BuildIsRelatedToProject"
build=" b1020171330" project=" projo0l"/>

<fact xmi:type="toif:BuildIsRelatedToProject"
build=" b1020171340" project="projol"/>

<fact xmi:type="toif:FileBelongsToProject"
file=" f10" project="projo0l"/>

<fact xmi:type="toif:BuildIsGeneratedAtDate"

build=" b1020171330" date="2016-10-24 at 22:30 UTC"/>
<fact xmi:type="toif:BuildIsGeneratedAtDate"

build=" b1020171340" date="2016-10-25 at 10:30 UTC"/>

52 Tools Output Integration Framework (TOIF), Version 1.0

10.2.1.2 BuildlsRelatedToProject Class

L1

BuildIsRelatedToProject class represents the verb concept “Build is related to Project”.

Superclass
BuildFact
Associations
build:Build[1] Build that is the subject of the clause
project: Project[1] Project to which the Build is related
Example

See 10.2.1.1

10.2.2 Housekeeping Class Diagram

This section describes the UML representation of several housekeeping facts related to the Build concept.

toif[%)+ i U

OrchestrationTool

BuildisOrchestratedByTool
+tool

+build
Build

+date |1

‘ BuildtisGeneratedAtDate +build
1
) +build 550
’ BuildisGeneratedByPerson +build ;
1

+build
1

+build
1

’ BuildisOwnedByOrganization ’

’ BuildisSupervisedByPerson ’

+person |1 +person |1 +organization | 1 +organization | 1
Person Organization

Figure 13. UML class diagram Housekeeping

Tools Output Integration Framework (TOIF), Version 1.0

53

10.2.2.1 BuildlsOrchestratedByTool Class

BuildIsOrchestratedByTool class represents the verb concept “Build is orchestrated by Tool”.

Superclass
BuildFact
Associations
build:Build[1] Build that is the subject of the clause
tool: OrchestrationTool[1] Orchestration tool that produced the Build
Example

<fact xmi:type="toif:Build" xmi:id="b1020171330">
<description text="xxxxxx"/>

</fact>

<fact xmi:type="toif:Build" xmi:id="b1020171340">
<description text="xxxxxx"/>

</fact>

<fact xmi:type="toif:Project" xmi:id="proj01">
<description text="xxxxxx"/>
</fact>
<fact xmi:type="toif:BuildIsRelatedToProject"
build=" b1020171330" project=" projo0l"/>
<fact xmi:type="toif:BuildIsRelatedToProject
build=" b1020171340" project="projol"/>

<fact xmi:type="toif:BuildIsGeneratedAtDate"
build=" b1020171330" date="2016-10-24 at 22:30 UTC"/>
<fact xmi:type="toif:BuildIsGeneratedAtDate"
build=" b1020171340" date="2016-10-25 at 10:30 UTC"/>

<fact xmi:type="toif:0OrchestrationTool" xmi:id="bt01l">
<name name="Build Environment 2"/>
<description text="xxxxxx"/>
<version version="2.3.04A"/>

</fact>

<fact xmi:type="toif:0OrchestrationTool" xmi:id="bt02">
<name name="Build Environment 2"/>
<description text="xxxxxx"/>
<version version="2.3.05B"/>

</fact>

<fact xmi:type="toif:BuildIsOrchestratedByTool"
build=" b1020171330" project="bt0l1l"/>

<fact xmi:type="toif:BuildIsOrchestratedByTool"
build=" b1020171340" project="bt0l1l"/>

<fact xmi:type="toif:BuildIsProducedByOrganization"

54 Tools Output Integration Framework (TOIF), Version 1.0

build=" b1020171330" organization="org0l"/>
<fact xmi:type="toif:BuildIsProducedByOrganization"
build=" b1020171340" organization="org02"/>

<fact xmi:type="toif:0Organization" xmi:id="org0l">
<name name="Night Shift Build Group"/>
<description text="xxxxxx"/>

</fact>

<fact xmi:type="toif:0Organization" xmi:id="org02">
<name name="Day Shift Build Group"/>
<description text="xxxxxx"/>

</fact>

<fact xmi:type="toif:Person" xmi:id="p88997766">
<name name="John The LoadBuilder"/>
<description text="xxxxxx"/>
</fact>
<fact xmi:type="toif:BuildIsSupervisedByPerson"
build=" bl1020171330" person="p88997766"/>
<fact xmi:type="toif:BuildIsSupervisedByPerson"
build=" bl1020171340" person="p88997766"/>

10.2.2.2 BuildlsProducedByOrganization Class

l

BuildIsProducedByOrganization class represents the verb concept “Build is produced by Organization”.

Superclass
BuildFact
Associations
build:Build[1] Build that is the subject of the clause
organization: Organization[1] Organization which produced the Build
Example

See 10.2.2.1

10.2.2.3 BuildlsOwnedByOrganization Class

BuildIsOwnedByOrganziation class represents the verb concept “Build is owned by Organization”.

Superclass
BuildFact

Associations

Tools Output Integration Framework (TOIF), Version 1.0

55

build:Build[1] Build that is the subject of the clause
organization: Organization[1] Organization that owns the Build
Example
The following TOIF facts illustrate ownership of builds, described in the basic example in 10.2.2.1
<fact xmi:type="toif:BuildIsOwnedByOrganization"
build=" b1020171330" organization="org03"/>
<fact xmi:type="toif:BuildIsOwnedByOrganization"
build=" b1020171340" organization="org03"/>
<fact xmi:type="toif:0Organization" xmi:id="org03">
<name name="McDuck and Sons Assurance"/>

<description text="xxxxxx"/>
</fact>

10.2.2.4 BuildlsGeneratedByPerson Class

BuildIsGeneratedByPerson class represents the verb concept “Build is generated by Person”.

Superclass
BuildFact
Associations
build:Build[1] Build that is the subject of the clause
person: Person[1] Person that has generated the Build
Example

<fact xmi:type="toif:Build" xmi:id="b_007_025">
<description text="xxxxxx"/>
</fact>

<fact xmi:type="toif:Person" xmi:id="p007">
<name name="Scroodge The Inspector Guy"/>
<description text="xxxxxx"/>
</fact>
<fact xmi:type="toif:BuildIsRelatedToProject"
build="b_ 007 025" project=" projol"/>

<fact xmi:type="toif:BuildIsProducedByPerson"
build="b_007_025" person="p007"/>

<fact xmi:type="toif:BuildIsSupervisedByPerson"
build="b_007_025" person="p88997766"/>

<fact xmi:type="toif:BuildIsGeneratedAtDate"
build="b 007 _025" date="2016-11-01 at 15:00 UTC"/>

56 Tools Output Integration Framework (TOIF), Version 1.0

10.2.2.5 BuildlsSupervisedByPerson Class

BuildIsSupervisedByPerson class represents the verb concept “Build is supervised by Person”.

Superclass
BuildFact
Associations
build:Build[1] Build that is the subject of the clause
person: Person[1] Person who has supervised the Build
Example

See 10.2.2.1 and 10.2.2.4

10.2.2.6 BuildlsGeneratedAtDate Class

tE)

BuildIsGeneratedAtDate class represents the verb concept “Build is generated at Date”.

Superclass
BuildFact
Associations
build:Build[1] Build that is the subject of the clause
date: Date[1] Date at which the Build was generated
Example

See 10.2.2.1

10.2.3 Project Class Diagram

This section describes the UML representation of the Project concept and the corresponding facts.

Tools Output Integration Framework (TOIF), Version 1.0

57

package toif|) Project U
Organization
+organization |1
ProjectisOwnedByOrganization
+project |1
Name sname Project
+name : String 1
Description +description
+text : String 1
+project 1 +project |1
OrganizationisinvolvedinProjectAsRole PersonisinvolvedinProjectAsRole
+role |1 +role |1
Role
+person |1
+organization | 1 Person
Organization

Figure 14. UML class diagram Project

10.2.3.1 Project Class

Project class represents the Project concept. Project corresponds to the system under assessment and is a container for the
corresponding File and Directory elements. The corresponding facts are described in sections 10.1.6 and 10.1.7. Project
is also a container for the related Builds. The corresponding facts are described in section 10.2.1

Superclass

HousekeepingEntity

Associations

58 Tools Output Integration Framework (TOIF), Version 1.0

name:Name[1] Owned attribute that specifies the name of the Project

description: Description[0..1] Owned attribute that provides an informal text description of
the Project

Example

The following is an example how TOIF data is represented in TOIF XMI:

Suppose we want to represent the following statements:
There exists a project TOIF that sas description “Flying Gizmo Assessment using TOIF”.
There exists an organization that as name “McDuck & Sons Assurance”
There exists an organization that sas name “Gizmo Mfg”
There exists a person that zas name “Scroodge
There exists a role that zas name “Prime Investigator”
There exists a role that ~as name “CTO”
There exists a role that zas name “Third-party Assessor”
Scroodge is employed by McDuck & Sons as CTO
Scroodge is involved in project TOIF as Prime Investigator
Project TOIF is owned by Gizmo Mgf
McDuck & Sons Assurance is involved in Project TOIF as Third-party Assessor

The first 7 statements represent the so-called existential facts that introduce entities. Entity project will be referenced by
an identifier TOIF, other entities will be referenced by their names. The last 4 facts correspond to the regular TOIF facts
that refer to the entities. The facts above are represented in SBVR Structured English. Below is the TOIF XMI
representation of these facts.

<fact xmi:type="toif:Project" xmi:id="prl">
<name name="TOIF"/>
<description text="Flying Gizo Assessment using TOIF"/>
</fact>

<fact xmi:type="toif:0Organization" xmi:id="ol">
<name name="McDuck and Sons Assurance"/>
</fact>

<fact xmi:type="toif:0Organization" xmi:id="o2">
<name name="Gizmo Mfg"/>
</fact>

<fact xmi:type="toif:Person" xmi:id="pl">
<name name="Scroodge" />
</fact>

<fact xmi:type="toif:Role" xmi:id="rl">
<name name="Prime Investigator"/>
</fact>

<fact xmi:type="toif:Role" xmi:id="r2">
<name name="CTO"/>
</fact>

<fact xmi:type="toif:Role" xmi:id="r3">

<name name="Third-party Assessor"/>
</fact>

Tools Output Integration Framework (TOIF), Version 1.0 59

<fact xmi:type="toif:PersonIsInvolvedInProjectAsRole" project="prl" role="rl"
person="pl"/>

<fact xmi:type="toif:PersonIsEmployedByOrganizationAsRole" role="r2"
person="pl" organization="ol"/>

<fact xmi:type="toif:ProjectIsOwnedByOrganization" project="prl"
organization="02"/>

<fact xmi:type="toif:0OrganizationIsInvolvedInProjectAsRole" organization="ol"
project="prl" role="r3"/>

10.2.3.2 ProjectlsOwnedByOrganization Class

ProjectlsOwnedByOrganization class represents the verb concept “Project is owned by Organization”.

Superclass
ProjectFact
Associations
project:Project[1] Project that is the subject of the clause
organization: Organization[1] Organization that owns the Project
Example

See 10.2.3.1

10.2.3.3 OrganizationisinvolvedinProjectAsRole Class

29

OrganizationlsInvolvedInProjectAsRole class represents the verb concept “Organization is involved in Project as Role”.

Superclass
ProjectFact
Associations
organization: Organization[1] Organization that is the subject of the clause
project:Project[1] Project in which Organization is involved in
role: Role[1] Role in which the Organization is involved in the Project
Example

See 10.2.3.1

60 Tools Output Integration Framework (TOIF), Version 1.0

10.2.3.4 PersonisinvolvedinProjectAsRole Class

PersonlsInvolvedInProjectAsRole class represents the verb concept “Person is involved in Project as Role”.

Superclass
ProjectFact
Associations
person: Person[1]
project:Project[1]
role: Role[1]
Example

See 10.2.3.1

Person that is the subject of the clause

Project is which the Person is involved

Role in which the Person is involved in the Project

10.2.4 Tools Class Diagram

This section describes the UML representation of the Tool concept, describes several concrete tools that are essential to
the TOIF Ecosystem and the corresponding facts.

package toif[;!{] Tools |

Name Lename

Tool

CWEldentifier

+name : String 1 +version
1 +version : String
Description Vendor
+ext : String 7 +tool e} +vendor
1] 1
Generator +adaptor Adaptor OrchestrationTool Analytics Tool
1
+generator
1
oadaptor'[
(A -apableO gCWE C
AdaptorSupportsGenerator | o e
+cwe,

Figure 15. UML class diagram Tools

Tools Output Integration Framework (TOIF), Version 1.0

61

10.2.4.1 Tool Class (abstract)

Tool class represents the Tool concept.

Superclass
HousekeepingEntity

Associations

name:Name[1] Owned attribute that specifies the name of the Tool

description: Description[1] Owned attribute that provides an informal text description of the

Tool

version: Version[1] Owned attribute that specifies the Version of the Tool

Example

10.2.4.2 ToollsSuppliedByVendor Class

ToollsSuppliedByVendor class represents the verb concept “Tool is supported by Vendor”.

Superclass
ToolFact
Associations
tool:Tool[1] Tool that is the subject of the clause
vendor: Vendor[1] Vendor which supplies the Tool
Example

<fact xmi:type="toif:0OrchestrationTool" xmi:id="bt02">
<name name="Build Environment 2"/>
<description text="xxxxxx"/>
<version version="2.3.05B"/>

</fact>

<fact xmi:type="toif:Vendor" xmi:id="v1">
<name name="McDuck Tool Craft"/>
</fact>

<fact xmi:type="toif:Vendor" xmi:id="ol">
<name name="McDuck and Sons Assurance"/>
</fact>

<fact xmi:type="toif:Role" xmi:id="rl">
<name name="Tiger Team"/>
</fact>

62 Tools Output Integration Framework (TOIF), Version 1.0

<fact xmi:type="toif:ToolIsSuppliedByVendor" tool="bt02" vendor="v1"/>

<fact xmi:type="toif:0OrganizationIsPartOfOrganizationAsRole" organizationl="v1"
organization="ol" role="rl"/>

10.2.4.3 Generator Class

Generator class represents the Generator concept.

Superclass
Tool

Example

See 10.1.1.1

10.2.4.4 Adaptor Class

Adaptor class represents the Adaptor concept.

Superclass
Tool
Constraints
1. Each Adaptor class must be the subject of at least one AdaptorSupportsGenerator clause

2. Each Adaptor class must be the subject of at least one AdaptorIsCapableOfFindingCWE clause

3. For each instance of Finding that is the subject of the clause FindinglsProducedByAdaptor, where A is the
object is the above clause, and the Finding is the subject of the FindinglsDefinedAsSCWE where X is the
instance of CWEIdentifier that is the object of the above clause, A must be the subject of the clause
AdaptorlsCapableOfFindingCWE where X is the object.

Example

See 10.1.1.1

10.2.4.5 OrchestrationTool Class

OrchestrationTool class represents the Orchestration Tool concept.

Superclass
Tool

Example

Tools Output Integration Framework (TOIF), Version 1.0 63

See 10.2.2.1

10.2.4.6 Analytics Tool Class

Analytics Tool class represents the Analytics Tool concept.

Superclass
Tool

Example

See 10.2.2.1

10.2.4.7 AdaptorSupportsGenerator Class

AdaptorSupportsGenerator class represents the verb concept “Adaptor supports Generator”.

Superclass
ToolFact

Constraints

1. Each Adaptor class must be the subject of at least one AdaptorSupportsGenerator clause

Associations
adaptor:Adaptor|1] Adaptor that is the subject of the clause
generator: Generator[1] Generator that is supported by the Adaptor
Example

<fact xmi:type="toif:Generator" xmi:id="rats_ 2.3">
<name name="RATS"/>
<description text="xxxxxx"/>
<version version="2.3"/>
</fact>
<fact xmi:type="toif:Adaptor" xmi:id="rats-toif-adaptor 1.1">
<name name="RATS-TOIF"/>
<description text="xxxxxx"/>
<version version="1.1"/>
</fact>

<fact xmi:type="toif:AdaptorSupportsGenerator" adaptor="rats-toif-adaptor 1.1"
generator="rats_2.3"/>

64 Tools Output Integration Framework (TOIF), Version 1.0

10.2.4.8 AdaptorisCapableOfFindingCWE Class

AdaptorlsCapableOfFindingCWE class represents the verb concept “Adaptor is capable of finding CWE”.

Superclass
ToolFact
Associations
adaptor:Adaptor|1] Adaptor that is the subject of the clause
cwe: CWElIdentifier[1] CWE Identifier that specifies the type of weakness findings that the

Adaptor is capable of producing

Confidence:Confidence[0..1] Owned attribute that specifies the confidence that the Consumer of TOIF
findings has in findings of the CWE of the clause by the tool of the clause

Constraints
1. Each Adaptor class must be the subject of at least one AdaptorIsCapableOfFindingCWE clause

2. For each instance of Finding that is the subject of the clause FindinglsProducedByAdaptor, where A is the
object is the above clause, and the Finding is the subject of the FindinglsDefinedAsSCWE where X is the
instance of CWEIdentifier that is the object of the above clause, A must be the subject of the clause
AdaptorlsCapableOfFindingCWE where X is the object.

Example

<fact xmi:type="toif:Adaptor" xmi:id="rats-toif-adaptor 1.1">
<name name="RATS-TOIF"/>
<description text="xxxxxx"/>
<version version="1.1"/>

</fact>

<fact xmi:type="toif:AdaptorIsCapableOfFindingCWE" adaptor="rats-toif-
adaptor_1.1" cwe="CWE-121"/>

<fact xmi:type="toif:AdaptorIsCapableOfFindingCWE" adaptor="rats-toif-
adaptor_1.1" cwe="CWE-122"/>

<fact xmi:type="toif:AdaptorIsCapableOfFindingCWE" adaptor="rats-toif-
adaptor_1.1" cwe="CWE-124"/>

<fact xmi:type="toif:AdaptorIsCapableOfFindingCWE" adaptor="rats-toif-
adaptor_1.1" cwe="CWE-124">

<confidence xmi:type="toif:Confidence” level=20/>
</fact>

10.2.5 Organization Class Diagram

This section describes the UML representation of the Organization concept and the corresponding facts.

Tools Output Integration Framework (TOIF), Version 1.0

65

package toif[__!{] Organizaﬁonu

Address
Organization
Name rname +address [, _ oss : String
+name : String 1 0.1
Phone
+phone -
o1 +phone : String
Description +description
+text : String EmailAddress
0..1 (]
+email | *émail: String
0..1
+organization|1 +organization2|1 =

OrganizationisPartOfOrganizationAsRole

+role |1 Vendor
Role

Figure 16. UML class diagram Organization

10.2.5.1 Organization Class

Organization class represents the Organization concept.

Superclass
HousekeepingEntity
Associations
name:Name[1]

description: Description[0..1]

address: Address[0..1]

phone: Phone[0..1]

email: EmailAddress[0..1]

Example

See 10.2.3.1

66

Owned attribute that specifies the name of the Organization

Owned attribute that provides an informal text description of the
Organization

Owned attribute that specifies the Address of the Organization

Owned attribute that specifies the contact Phone number for the
Organization

Owned attribute that specifies the contact Email Address for the
Organization

Tools Output Integration Framework (TOIF), Version 1.0

10.2.5.2 Vendor Class

Vendor class represents the Vendor concept.

Superclass
Organization

Example

See 10.2.4.2

10.2.5.3 OrganizationlsPartOfOrganizationAsRole Class

OrganizationlsPartOfOrganizationAsRole class represents the verb concept “Organization, is part of Organization, as
Role”.
Superclass
ProjectFact
Associations
organizationl:Organization[1] Organization-1 that is the subject of the clause
organization2: Organization[1] Organization-2 of which Organization-1 is a part

role: Role[1] Role in which Organization-1 participates in Organization-2

Example

See 10.2.4.2

10.2.6 Person Class Diagram

This section describes the UML representation of the Person concept and the corresponding facts.

Tools Output Integration Framework (TOIF), Version 1.0

67

package toif[__!_,] Personu

Person Phone

+phone
+phone : String
Name +name 0..1

+name : String |1

+email [EmailAddress
0..1 |+email: String

+person |1

PersonisEmployedByOrganizationAsRole

+role |1 +organization | 1
Role Organization

Figure 17. UML class diagram Person

10.2.6.1 Person Class

Person class represents the Person concept.

Superclass
HousekeepingEntity
Associations
name:Name[1] Owned attribute that specifies the name of the Person
phone: Phone[0..1] Owned attribute that provides a contact Phone number for the
Person
email: EmailAddress[0..1] Owned attribute that provides a contact Email Address for the
Person
Example
See 10.2.3.1

68 Tools Output Integration Framework (TOIF), Version 1.0

10.2.6.2 PersonlsEmployedByOrganizationAsRole Class

PersonlsEmployedByOrganizationAsRole class represents the verb concept “Person is employed by Organization as
Role”.
Superclass
ProjectFact
Associations
person:Person[1] Person that is the subject of the clause
organization: Organization[1] Organization which employs Person

role: Role[1] Role in which the Person is employed by the Organization

Example
See 10.2.3.1

10.2.7 Role Class Diagram

This section describes the UML representation of the Role concept and the corresponding facts.

package toif[ﬂ Roley

Role

Name +name

+name : String 1

Description |+description
+text : String [0..1

Figure 18. UML class diagram Role

10.2.7.1 Role Class

Role class represents the Role concept. Roles are useful in enterprise context to manage multiple TOIF Builds and
multiple TOIF Projects performed by multiple people and oven organizations (for example, departments and contrators).
Only a name and an uninterpreted description is associated with a role. TOIF does not link Role to any of the standard
taxonomy, although an enterprise adopting TOIF may choose to interpret TOIF Roles more formally by referencing some
standard taxonomy in the description.

Tools Output Integration Framework (TOIF), Version 1.0 69

Superclass
HousekeepingEntity
Associations
name:Name[1]

description: Description[0..1]

Example

See 10.2.3.1

70

Owned attribute that specifies the name of the Role

Owned attribute that provides an informal text description of the

role

Tools Output Integration Framework (TOIF), Version 1.0

10.3 The fact-oriented structure of the TOIF XML

This section presents 13 UML diagrams that describes the physical structure of the TOIF XMI.

The Figure 19. UML class diagram Abstract Structure represent the physical structure of the TOIF XMI. All basic
entities are defined as subclasses of class BasicEntity. All logical facts are defined as subclasses of class Fact. Similarly,
all housekeeping entities are defined as subclasses of class HousekeepingEntity and all housekeeping facts are defined as
subclasses of class Fact. All records are defined as subclasses of class Record.

Classes BasicEntity and HousekeepingEntity are both subclasses of class Entity.

This allows the TOIFSegment class to own an ordered list of both Entities, Facts and Records. Attributes are owned by
the entities to which they belong, so they are not owned directly by the TOIFSegment.

Classes Entity, Fact and Record are subclasses of class TOIFElements.

Classes TOIFElements, TOIFSegment and Attribute are subclasses of class Element.

Class Element defines and XMIL attribute “xmi:id” which is used in the TOIF XML to reference elements. This makes
all Entity, Fact, Attribute, Record and TOIFSegment referenceable.

The rest of this section presents 8 UML diagrams that arrange the basic and housekeeping facts, entities and attributes as
subclasses of the 3 main structure elements — Entities, Facts and Attributes.

10.3.1 Abstract Structure Class Diagram

This section describes the UML representation of the TOIFSegment concept and the corresponding facts.

package toif[ﬂ Abstract Structure U

TOIFSegment
Name +name
+name : String 1
Description |, yoscription
+text : String 0.1
+fact |0..*
TOIFElement

?

Entity Fact EvidentialRecord
+idref : String [0..1]

+/entity40..* +/entityy1..*

+/attribute0..*
Attribute

Figure 19. UML class diagram Abstract Structure

Tools Output Integration Framework (TOIF), Version 1.0 71

10.3.1.1 TOIFSegment Class

TOIFSegment class represents the TOIFSegment concept.

Superclass
Element
Associations
name:Name[1] Owned attribute that specifies the name of the Segment
description: Description[0..1] Owned attribute that provides an informal text description
of the Segment
fact: TOIFElement[0..*] Owned TOIFElement that represent the Facts contained in

the Segment

10.3.1.2 TOIFElement Class (abstract)

Superclass

Element

10.3.1.3 Entity Class (abstract)

Entity class represents the Entity concept.

Superclass
TOIFElement
Attributes
idref:String[0..1] Optional attribute reserved for alternative reference schemas for TOIF
Entities
Associations
/attribute: Attribute[0..*] Owned Attribute of this Entity. This is a derived property. The actual

owned attributes are specified by the subclasses of the Entity class

10.3.1.4 Fact Class (abstract)

Fact class represents the Fact concept.

Superclass

72 Tools Output Integration Framework (TOIF), Version 1.0

TOIFElement
Associations

/entity:Entity[1..*] Entity that are referenced by the Fact (clause). Each clause has a subject
represented by an Entity, and one or mode objects. This is a derived
property. The actual are specified by the subclasses of the Fact class

10.3.1.5 Attribute Class (abstract)

Attribute class represents the Attribute concept.

Superclass

Element

10.3.1.6 EvidentialRecord Class (abstract)

EvidentialRecord class represents the Evidential Record concept.

Superclass
TOIFElement
Associations

/entity:Entity[1..*] Entity that are referenced by the Evidential Record. Each references one
or mode objects. This is a derived property. The actual are specified by
the subclasses of the Fact class. Concrete subclasses of Evidential Record
may define owned attributes.

10.3.2 Abstract Types Class Diagram

This section describes the top class of the TOIF metamodel and its direct subclasses.

Tools Output Integration Framework (TOIF), Version 1.0 73

package toif[__z{} Abstract Types U

e B =)
CitingAgent

Figure 20. UML class diagram Abstract Types

10.3.2.1 Element Class (abstract)

Superclass

MOF Element

74 Tools Output Integration Framework (TOIF), Version 1.0

10.3.3 Basic Entities Class Diagram

This section describes the class hierarchy of the basic entities of the TOIF specification.

package toif[é} Basic Entitiesu

Entity
+idref : String [0..1]

i

BasicEntity

Statement

Finding Codelocation

File DataElement

Weakness

Directory

WeaknessTypeldentifier

WeaknessDescription

Figure 21. UML class diagram Basic entities

10.3.3.1 BasicEntity Class (abstract)

Superclass

Entity

10.3.4 Basic Facts Class Diagrams

This section describes the class hierarchy of the basic facts of the TOIF specification. Basic facts are grouped into the
following four categories: Finding Facts, Weakness Facts, Code Location Facts and Semantic Facts. Each category is
represented by own UML diagram. These diagrams introduce 4 abstract superclasses and provide the subclass
relationships to the subclasses, defined earlier in Section 10.3.1

Tools Output Integration Framework (TOIF), Version 1.0

package toif[) BssicFacmy

FindinglsDefinedAsCWE FindingHasCodeLocation | |FindinglsReportedinBuild
FindinglsProducedByAdaptor
FindingReferencesFile
FindingisRelatedToWeakness
FindinglsReportedByGenerator
Figure 22. UML class diagram Basic Facts 1
package toif|) Basic Factszu
Fact
w..nnj:ryp.ﬁm WblthFac(
lcwauongs'rosrpn |8FPB.I9ngsToCIu_shrm
[w.umuuucodoLoauonm |melum IWuknudsDoﬂmdAsc‘\NEm
Wm m WW.:I(M" |W5vkmmm

Figure 23. UML class diagram Basic Facts 2

76 Tools Output Integration Framework (TOIF), Version 1.0

package toif|) Basic Facts 3 U
Fact
CodelLocationFact
|
DirectorylsContainedinDirectory CodeLocationReferencesFile
FilelsContainedinDirectory
Figure 24. UML class diagram Basic Facts 3
package toif[&) Basic Facts 4 U
Fact
T
SemanticFact
T

DatalsinvolvedinFinding ’smm.nﬂ;_&mmoofﬂnd!ng

I StatementisinvolvedinFinding

StatementHasCodelLocation

Figure 25. UML class diagram Basic Facts 4

10.3.4.1 FindingFact Class (abstract)

Superclass

Fact

10.3.4.2 WeaknessTypeFact Class (abstract)

Superclass

Tools Output Integration Framework (TOIF), Version 1.0

77

Fact

10.3.4.3 WeaknessFact Class (abstract)

Superclass

Fact

10.3.4.4 CodeLocationFact Class (abstract)

Superclass

Fact

10.3.4.5 SemanticFact Class (abstract)

Superclass

Fact

10.3.5 Basic Attributes Class Diagram

This section describes the class hierarchy of the attributes of the TOIF specification. More attributes are defined in the
Housekeeping Attributes Class Diagram. TOIF does not make distinction between Basic Attributes nad Housekeeping
Attributes. The two diagrams are split mostly for the presentation purposes, as the attributes described in the Basic
Attribute diagram are used both by the Basic as well as the Housekeeping entities.

78 Tools Output Integration Framework (TOIF), Version 1.0

Verdict

+isValidWeakness : Boolean

package toif[) Basic Attributes U
Attribute
Checksum Name - - Confid
+checksum : Integer +name : String sk String +evel: Integer
Linenumber
Criticality
+inenumber: Integer Description L re—
+text : String y
Position
+position : Integer
Offset
+offset : Integer

Figure 26. UML class diagram Basic Attributes

10.3.5.1 Offset Class

Superclass
Attribute
Attributes
offset:Integer([1] Offset in a binary image file

10.3.5.2 Checksum Class

Superclass
Attribute

Attributes

checksum:Integer|1] MDS5 Checksum of a file

10.3.5.3 Linenumber Class

Superclass
Attribute

Attributes

Tools Output Integration Framework (TOIF), Version 1.0

79

linenumber:Integer[1]

10.3.5.4 Position Class

Superclass
Attribute
Attributes
position:Integer[1]

10.3.5.5 Name Class

Superclass
Attribute
Attributes
name:String[1]

10.3.5.6 Version Class

Superclass
Attribute
Attributes
version:String[1]

10.3.5.7 Description Class

Superclass
Attribute
Attributes

text:String[1]

10.3.5.8 Confidence Class

Superclass
Attribute

Attributes

80

Linenumber in a text File

Position in a line in a text File

Name of an Entity

Version of an Thing that may involve multiple versions

Informal text description

Tools Output Integration Framework (TOIF), Version 1.0

level:Integer[1] Confidence level (0..100) as percent

10.3.5.9 Criticality Class

Superclass
Attribute
Attributes
level:Integer[1] Criticality level (0..100) as percent

10.3.5.10 Verdict Class

Superclass
Attribute

Attributes
isValidWeakness:Boolean[1] True or false

10.3.6 Housekeeping Entities Class Diagram

This section describes the class hierarchy of the housekeeping entities of the TOIF specification.

Tools Output Integration Framework (TOIF), Version 1.0

81

package toif[;-{] Housekeeping Entitiesu

Entity
+idref : String [0..1]

]Homknplnasnﬂry |
FAY

Build

E’Z’ Project v Organization Role
AN

Adaptor Generator OrchestrationTool

Figure 27. UML class diagram Housekeeping entities

10.3.6.1 HousekeepingEntity Class (abstract)

Superclass

Entity

10.3.7 Housekeeping Facts Class Diagrams

This section describes the class hierarchy of the housekeeping facts of the TOIF specification. Housekeeping facts are
grouped into the following three categories: Tool Facts, Build Facts and Project Facts. Each category is represented by
own UML diagram. These diagrams introduce 3 abstract superclasses and provide the subclass relationships to the
subclasses, defined earlier in Section 10.3.2

82 Tools Output Integration Framework (TOIF), Version 1.0

package toif[) Housekeeping Facts 1 U
Fact
ToolFact
AdaptorSupportsGenerator ToollsSuppliedByVendor AdaptorisCapableOfFindingCWE
Figure 28. UML class diagram Housekeeping Facts 1
kage toif[&)t i FactsZU
Fact
T
BuildFact
BuildtisGe BuildisPrgducedByOrganization BuildisRelatedToProject
BuildisOrchestratedByTool
BuildisOwnedByOrganization
BuildisGeneratedByPerson
BuildisSupervisedByPerson

Figure 29. UML class diagram Housekeeping Facts 2

Tools Output Integration Framework (TOIF), Version 1.0

83

package toif|) Housekeeping Facts 3 U

Fact

ProjectFact

‘ i il ‘

i" I InProj ’ FileBelongsToProject DirectoryBelongsToProject

ProjectisOwnedByOrganization

Figure 30. UML class diagram Housekeeping Facts 3

10.3.7.1 ToolFact Class (abstract)

Superclass

Fact

10.3.7.2 BuildFact Class (abstract)

Superclass

Fact

10.3.7.3 ProjectFact Class (abstract)

Superclass

Fact

84 Tools Output Integration Framework (TOIF), Version 1.0

10.3.8 Housekeeping Attributes Class Diagram

This section continues with the description of the class hierarchy of the attributes of the TOIF specification. More
attributes are defined in the Basic Attributes Class Diagram. TOIF does not make distinction between Basic Attributes
and Housekeeping Attributes, the two diagrams are split mostly for the presentation purposes.

package toif[i] Housekeeping Attributesy

Attribute

Phone
+phone : String

EmailAddress
+email: String

Address
+address : String

Figure 31. UML class diagram Housekeeping Attributes

10.3.8.1 Phone Class

Superclass
Attribute
Attributes
phone:String[1] Phone number

10.3.8.2 Address Class

Superclass
Attribute

Attributes
address:String[1] Postal Address of some Thing

Tools Output Integration Framework (TOIF), Version 1.0

85

10.3.8.3 EmailAddress Class

Superclass
Attribute

Attributes
email:String[1] Electornic Mail Address of some Thing

10.4 Evidential Records in TOIF XML

This section presents a single UML diagram that describes evidential records defined in TOIF XMI.

10.4.1 EvidentialRecord Class Diagram

This section describes the UML representation of the BuildRecord, CompileRecord and GeneratorRecord records.

toif[£ Evident; 1]
EvidentialRecord
a
— +iile ‘:w'ldJ Bulld CompileRecord +ile
—— File
1 +numberOfFindings : Integer +compiler : String 1
+options : String

+adaptor

> +project
1 >

Il

+generator
I

e GeneratorRecord +build

+generator
P

I é

Figure 32 UML class diagram EvidentialRecord

10.4.1.1 BuildRecord Class

Superclass
Record

Attributes

86 Tools Output Integration Framework (TOIF), Version 1.0

numberOfFindings:Integer[1]

Associations
file:File[1]

adaptor:Adaptor[1]
generator:Generator[1]
build:Build[1]

Example

Record of the number of findings produced by Adaptor that was
processing the output of the Generator processing File in Build. This
number can be equal to zero, which indicates the absence of findings, but
confirms the fact that File was processed by Generator.

File of the BuildRecord

Adaptor of the BuildRecord

Generator of the BuildRecord

Build of the BuildRecord

<fact xmi:type="toif:BuildRecord" file="f10" adaptor="rats-toif-adaptor 1.1"
cwe="CWE-121" generator="rats” build="bl0” numberOfFindings=0/>

<fact xmi:type="toif:BuildRecord" file="f11" adaptor="rats-toif-adaptor 1.1"
cwe="CWE-121" generator="rats” build="bl0” numberOfFindings=10/>

10.4.1.2 CompileRecord Class

Superclass
Record

Attributes
compiler:String[1]

options:String[1]
Associations

file:File[1]

project:Project[1]

Example

Name of the compiler that was used to compile File in Project.
Command line options that were used by the compiler to compile File in
Project

File of the CompileRecord

Project of the CompileRecord

<fact xmi:type="toif:CompileRecord" file="f10" project="prl" compiler="gcc"
options="-wall —I /usr/include” />

10.4.1.3 GeneratorRecord Class

Superclass
Record

Attributes

Tools Output Integration Framework (TOIF), Version 1.0

87

options:String[1] Command line options that were used by the Generator to process File in

Build
Associations
file:File[1] File of the GeneratorRecord
build:Build[1] Build of the GeneratorRecord
generator:Generator[1] Generator of the GeneratorRecord
Example

<fact xmi:type="toif:GeneratorRecord" file="£f10” build="bl0" compiler="gcc"
options="-wall —I /usr/include” />

<fact xmi:type="toif:GeneratorRecord" file="£f10” build="bl1l" compiler="gcc"
options="-wall —I /usr/include” —I /test/sonic-boon/stub />

88 Tools Output Integration Framework (TOIF), Version 1.0

