An OMGP® Tools Output Integration Framework™ Publication

OBJECT MANAGEMENT GROUP

Tools Output Integration Framework
(TOIF™)

Version 1.3

OMG Document Number : formal/2019-03-01
Standard document URL :
https://www.omg.org/spec/TOIF/

Release Date : March 2019

Normative Machine Consumable files:

https://www.omg.org/spec/TOIF/20180901/toif.emof
https://www.omg.org/spec/TOIF/20180901/toif.xsd

https://www.omg.org/spec/TOIF/
https://www.omg.org/spec/TOIF/20180901/toif.emof
https://www.omg.org/spec/TOIF/20180901/toif.xsd

Copyright © 2017, KDM Analytics, Inc.
Copyright © 2017, Lockheed Martin Corporation
Copyright © 2017, The MITRE Corporation
Copyright © 2017, Model Driven Solutions
Copyright © 2017, 88solutions Corp.

Copyright © 2017, NoMagic, Inc

Copyright © 2019, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,

electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(i1) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, 140 Kendrick Street,
Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ | Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, I[IOP™ , MOF™ | OMG Interface Definition Language (IDL)™ ,
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed

using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page https://www.omg.org, under Documents, Report a Bug/Issue
(https://issues.omg.org/issues/create-new-issue).

Table of Contents

1 Specification Specific Material ... s s s e s senasses 8
1.1 Specification Prefacecccccciiiiiiiiiuiiiiiniiiiiiiiiniiinciiniisssiisessssssissstisesssssssissssssssssssssssssssssssssssss 8
1.2 CoPYright WaIVErS....cccevuuiiiiiiiiiiiiniiiiieniiiieiiniiiiseiiieessnsssisesiisesssssssissssisessssssssssssssssssssssssssssssssssssss 8
1.3 IPRIMIOAE .cceeeiiiiiieciiiiecectenetieeteneseestnassessensssesssnsssssennsssssensssssssnsssssenssssssenssssssnnsssssensssssssnssssssnnsnnns 8
1.4 Submitter RePresentativesccccccciiiiiiiiiiiiiiuiiiiiniiiieiiieniiieessesistiisesssssisstisesssssssssssssssssssss 8
T YU T Tl = T o o T POt 8

7 2 Y o o T oY 9

S N 00T ¢ | {0 o 40 T=1 1 LT PP 9

L R (=T (= =1 1ot L3OO 10
4.1 NOrmMative RefErENCES....cccu ittt eerrreeeereneeeseeasseesensssessenssssssenssessennsssssenssssssanssanns 10
4.2 INFfOrMative REfEIENCESccceeeeueciiiiiiiiiiccciererreeceeeeeeseeeeennansseeeeseeeeannssssssssssesennnssssssssnesennnnnnnnns 10

5 Terms and DefinitioNns.......cccciiiiiiiieeiiiiiiiiiiiiiiccniniinreeressnsss s ssssssssssssssssssssesnnsssssssssssasanns 11

LS 101 + Yo 1 £ PUTRN 11

7 Additional INformation ... e e e e e s s s s n e e s s e nnsseneen 11
7.1 How to Read this SPecificationccccviiuiiiiiiiiiiiiiniiiiniesssnsesssessssssssssssssessses 11
2 S Vol (3 Lo TV T =T P =Ty 4 T=T 4N P 12

230 0]| 3 270el s =10 V-0 o] 1 11 -) ST 13
200 R @ 1 <1 1T 1 4 Y T3 TPRN 13
< 307 2N 0 11 28 =1l T3V £ =Y o Y 14

L= T o][S ofaToTol=T o JAUE:1 1Y, Lo o [=] 1SS PTIN 17
L= 05 S - ¥ T (ol 31 LT T T I o Vot £ PR 17
9.2 “Housekeeping” Entities and FACLScccceuuiiiiiiiiieemeeciiiiiiiieecneeceesseeeeennsssssesssseennnsssessssssesnnnnnnnns 24
9.3 Fact-oriented organization of TOIF XIMIccoiiiiieeeeeiiiiniiieecneenceisneeeeennsssesesssseennnssssssssssssnnnnnnns 28

(0 I 01| S e Y={Tor-] Iy 4 VoY [=] (SRRt 33
10.1 The basic elements of the TOIF XIMIL............ciiiiiiiiieeeciieerereeeenneeeesseeeennnssssssssseeennsssssssssssssnnnnnnns 33

10.1.1 Finding Class DIABramccccueeiiiiieeeiiieee e eitiee e e ettt e e eetee e s ssatee e e sbteeeesabaeeesataeeesseeesesseeesennsesesennees 33
10.1.1.1 FINAING Class...eiuiiiieieetit ettt sttt b e et s bt e s bt esa bt e sab e e bt e e bt e s bt e sabeeeabeesabeeenteesnteeneenanes 33
10.1.1.2 FiINdiNgISREPOIEAASTYPE ClIaSS ...eevuiieiiiieiiieiiieeite ettt sttt ettt ettt e s bt s be e st esabeesaneesaneesnneenns 35
10.1.1.3 FindinglsSReportedByGENErator CIAsscciiciiiiiiiieeieeiiiieee e e e eeciree e e e e eeesaarreeeeeeeesabareeeseeeeesnareeeaeens 36
10.1.1.4 FINAINGISDEfINEAASCWE ClaSS ... uviiiiieiieeiiieeiiieeieesteeestee st e ete e sttt e sseeesseeesseeesessseesaseesaseessseesssaassenanes 37
10.1.1.5 FINdinglsProducedByAdaptor Class.........icicuieeiiiiieeeiiee ettt e e et e e st e e e stte e e eeataeeeabeaeenareeeenns 37
10.1.1.6 FINAINgHASCOAELOCAtION ClaSS.....ccvviiiiiiriieiiieeiiiesiieetee st e st e st e sieeesbeeesaeesbeesbeesaseesabeessseessseenseesnns 38
10.1.1.7 FINAINGRETErENCESFIIE Classceiiviieieiie ettt e e re e s e e e s ta e e e enteeesnaeeeanreeennnes 38
10.1.1.8 FiINdingISREPOIrtedINBUIlA ClIass.....cccuiiiieiriiiiiieiie ettt ettt st sbe e sbeesateesabeesaeeenns 39
10.1.1.9 WeaknessDESCIIPTION Class.....c.eiiuiiriieiiieeieerite ettt ettt et et sb e st e sbeesat e e satesneesbeeeanee s 39

10.1.2 WeaknessType Class DIiagram ...cc.ueiiiciieeeiiieee e cciiee e ceitee e setee e s seite e e e sbre e e e sabae e e ssabeeeesbeeeessneeeeennnes 39
10.1.2.1 WeaknessTypeldentifier Class (ADSTraCt)c.uiiciiiiieiiiirii e s 40
10.1.2.2 (@AYo o o A 1T O O - TSRS 41
10.1.2.3 Y B o LT =Y 1 = T OO PRSI 41
10.1.2.4 Y B 2O VT =T @1 - 1 TP ORI 41
10.1.2.5 CWEBEIONGSTOSFP Class ..ceuveeeueerieerieeniieesite sttt eiteesteesteesateesaeeesbeeessaesbeesseesateesaseessseesssesseesnseesseens 41
10.1.2.6 Y 3 2T FoT g Yoy o T [0 1y =Y g 1 - 1Y USSR 42

10.1.3 Weakness Class DIagramceicccuiieiiiiiee e ccieee e eciee e ettt e e rtee e e e tte e e e sbee e e e eataeeeenteeeesasteeesenseeeeennens 42

Tools Output Integration Framework (TOIF), Version 1.3 1

10.1.3.1 W BAKNESS ClASS . uuvrveriiiiieiiirieee e e eieitr e et e e e eeebtreeeeeeeeebbareeeeeeseabareeeeeeesstaaaeeeesesassraseeeeseassstaereeeesesssrenens 43

10.1.3.2 WeaknessISDEfiNEAASCWE ClaSSuiiieuieririieeeeiieeesteeeesteeesseteeesseeeesbeeessseeessnseeeessseeesssssesesseneens 44
10.1.3.3 WeaknessHasCOAELOCAtION ClAaSSuiiiiiiieiiiieeceiieeceieee e sttt e et e siee e e stee e e s ete e e snteeeesbaeesesneeesnsaeaens 44
10.1.34 WeaknesSREfErENCESFIlE Classicciiiiiiiiiiieiiieiieciteeesee sttt ae e ee et eebe e s beesabeesateenaaeessaeensee s 45
10.1.4 Citing Class DIGBIaM ...ccccuvveeeeeeeeiiitiieeeeeeeeeiiirreeeeeeeesetareeeeeeeeessbrrseseeessassssaseeesessssssssseesesesnsssrenes 45
10.1.4.1 (011 41T 1 - 1 USSP 46
10.1.4.2 CitingReferenCeSWEAKNESS Class........ccicuiieiiiiie ettt ettt tee e et e e e e tre e e sata e e e e baeeeeasaeeesaraeaens 47
10.1.4.3 CitinglSGENEratedALDAtE Classccccuiiiieieeeeiiie e ettt e eette e e st e e e st e e e s e e e e st e e s e saeeesnseeeesnsaeesensneeesnsaneans 47
10.1.4.4 CitingAZeNnt Class (ADSTrACE) ..eeiviieieiiie e e e et e e e st e e seneeeeesnraeeens 48
10.1.4.5 CitinglsGeneratedBYAZENT Classcc.uiiiieriieiiieee ettt st s b e st e st e sbeeenee s 48
10.1.5 Code Location Class DIagram......c..ccccccuiiieiiiiieeeciieeeceiie e e eetee e e eratee e e srte e e s sataeeessabaeeessteeesenneeesennens 48
10.1.5.1 (@foTe [T o or= Yo o T O - 173 RPN 49
10.1.5.2 CodeLocatioNREFEreNCESFIlE Class........cciiiiciiiiiiiiieeiie ettt se s e et s e sbe e sbe e steesaaeessaeeaeeen 50
10.1.6 File Class DIGBIam ..cccccccciiiiiiee e e eeciite et e e e eee bttt e e e e e e e ettate e e e e e eesaabaeeeaeasesansssaaeaaaeaeaansttaaeeseseansrnsenes 50
10.1.6.1] LI P T ST POUP TSP 51
10.1.6.2 FilelsContain@dINDir@CTOry Class......ccccuiieiiiieeeiiieeeeieeecette e e steeeeetreeeetaeeesbaeeestseeeessaeessseasanssasennnes 51
10.1.6.3 1o ST FoT oY =dy o] ad o =T O = 1RSSR 52
10.1.7 Directory Class DIagram......ccceiicciiieeieiiee e cciee ettt e e e eee e e et e e e s bte e e esbae e e esataeeesateeeesbeeesesnseeesennees 52
10.1.7.1 DIrECLONY ClaSS ...veeueeetiieiite ettt ettt st ettt et e bt e et e st e s st e sab e e sab e e bt e e bt e s abeesabeesabeesabeeenseesateenneeennes 53
10.1.7.2 DirectoryBeloNgSTOPIOJECE ClaSs ..cc.vtiiiieriieiiiieiie ettt sttt ettt ettt s sbe e st e sbeesaneesabeesneeenne 53
10.1.7.3 DirectorylsContainedINDireCtory Classccioiiiiiiee ettt e e et e e e e e e eaaaaeeeaeeean 53
10.1.8 Semantic Statement Class DIagram cciireeeeeeeeeeiirreeeeeeeeeeetreeeeeeeeesearrreeeeeeeesssnreseeeeessssssnns 54
10.1.8.1) 1410 0 1Yo L O - 1L PSPPSRI 54
10.1.8.2 StatementIsINVoIVedINFINAING Classcccuueeiiiiieiciee ettt e e e e are e st e e e e ba e e e e raee e sraeaean 55
10.1.8.3 StatementIsSINKOFFINAING Class......cuviiiiiiie ettt e e e et e e e e tt e e e sbe e e e eabae e eeasaeeesaraeaens 56
10.1.8.4 StatementIsSoUrceOTFINAING CIASsScccccueeeiiiiie et ceee ettt e sre e s e e st e e e s bae e s eneaeesanaeaens 56
10.1.8.5 StatementHasCodeLoCatioN Class.........uuuueeiiiiieieiiieeeiieeesieeesere e see e e stee e s s ere e s sbeeeesbaeesenaeeesnsaneens 56
10.1.8.6 StatementIsPrecededByStatemeEnt Class.........ceeviieiieiriiiiieeee ettt 57
10.1.9 Semantic Data Class DIagramc.ceiiicuiiieiiiiieeeciiiee e eciiee e eeiee e e ssteeeesesteeessbeeeessnbeeeesasseeeesnnseeessnnes 57
10.1.9.1 DAtAEIEMENT ClASS ...veeieiiiieiiiiee et ettt ettt e e st e s et e e e sttt e e sttt e e saeeeesbbeesssbeeesabaeesnseeesanbeeesnnnes 57
10.1.9.2 DatalsINVoIVedINFINAING Class......cuuii ittt e ettt e e e e e e e eta e e e e e e eebbaaeeassesennraaeeaeeeenns 58
10.1.9.3 DatalsINVolvedinStatemMENT Class.......iiuiiriiiiieiie it esee st ettt e sae s sbe s ssbeesbeesabeesaseesaseesaneenes 59
10.1.9.4 DatalsDefinedAtCOdELoCation Class......couuiirieiriiiieeree ettt ettt sbe e s e s sabeesaee e 59
10.2 The housekeeping elements of the TOIF XIMIL........c..uuciiiiiiieieeciiienreeeneeneeeeeseeennssssssesssssennnnnnns 59
3O R = T 1] Fo [1 = T D - =T o PSSR 60
10.2.1.1 BUITA ClaSS 1eeuuteiiiteiiieeitee ettt sttt sttt et sat e s bt e st e st esat e e sb e e e sabeeabeesbeesabeesabeesabeesabeesabeenneeeneesares 60
10.2.1.2 BUIlAISREIatEATOPIOJECE ClaSSveiiuiieiiieiieeite ettt sttt ettt ettt st sbe e st e sabeesane e saseesneeeane 61
10.2.2 Housekeeping Class DIagram......c.ceiiicuiiieiiiiieeiiiieeeeciteeesssiteeeseteeessesteeessbeeeessseeeesssseesssssseeessnes 62
10.2.2.1 BuildIsSOrchestratedByTOO! Classcccuuiiiiieeiicciieeee ettt e e e et e e e e e et aa e e e e e e e abaaeeeeeeenns 62
10.2.2.2 BuildIsProducedByOrganization Class.........ieiiieciiiiiieeeiceiiieee e e e ceeiree e e e e eeeciarre e e e e e eesirraeeeseeeeensnareeeaeeaan 64
10.2.2.3 BuildIsOWNedBYOrganization Classccccieeeiiiieieiieecciiee e scieeeectte e eeeate e e stbeeeestbaeeeensaeeessbeaeesaraeeenans 64
10.2.2.4 BUildISGENEeratedBYPErsON Classccccuiieiiiiieiiiieeeeieeeceite e e steeeeetreeeeateeesbbeeeestbeeeesseeessseaeansresennnes 64
10.2.2.5 BUildISSUPErViSEABYPErsON Classcccueiiiiuieeiiiieeeeieeesetteeeseeesetreeeeeeeeesnseeessssesesseeeesnseasanssesennnes 65
10.2.2.6 BUIldISGENEratedALDATE Classccuveeieeeiiiieiiieeeiiee e ettt e ertte e see e e sttt e e saee e e sbeeeesbeeeessaeeesnaeesensseeennne 65
10.2.3 Project Class DIQBIamccccuueeiiiiieeeccieee e eitiee e eeite e e eeiee e e e ate e e e sbteeeesabaeeeentaeeesnteesesaseeesennseeesennees 66
10.2.3.1 PrOJECE ClaSS ..eeeuiieiieetiteit ettt ettt ettt h ettt e b e et e st e s bt e sa bt e sab e e bt e e bt e sabeesabeeeabeesabeeeateesareeneeeares 67
10.2.3.2 ProjectlsOWNedByOrganization ClIasscccciiiiiiiee et ee e e e e e strre e e e e e e e eaaaaeeeaeeaan 68
10.2.3.3 OrganizationlsInvolvedINProjectASROIE Classcoeiccuiiiieii ittt e e eear e e e e e e e 68
10.2.34 PersonlsInvolvedINProjeCtASROIE ClIASSc.ueiiiiiieieiee ettt et eetee e et e e e e te e e e eaaeeesabaeeeeasaeaeeaes 69
O A A Ko To] O - T B =Y ={ = o [PSP 69
10.2.4.1 BeTo] K@ - TN =1 o 1y o = Lot o SR 70
10.2.4.2 ToOlISSUPPIIEABYVENAOT ClaSSuiieeiiiieecitee ettt ettt ee e ettt e et e e e ere e e s e e e ese e e e sanaeeesnsaeeeenseeeennnenas 70
10.2.4.3 (CT=T U= = o 1 TSP 71
10.2.4.4 ADAPTON CIASS c.neteenieieite ettt ettt sttt ettt et e e st e e s ae e e s a b e e bt e e be e e bt e s beeeabeesab e e enee e bee e bt e eabeeereenareas 71
10.2.4.5 OrchestratioNTOO] CIassuuiiiiiieiiiiieeiee ettt sttt e e st e sttt e s iee e e s bbe e e s atee e sbbeeesbbeeesseaaessseeanns 71
10.2.4.6 FAN o F= YAV Tt e To] I 1 =TSP UUPUN 72

Tools Output Integration Framework (TOIF), Version 1.3

10.2.4.7 AdaptorSUPPOrtSGENEIator ClAaSsscccuviiiccereeeiiieeeeite e eete e e stre e e e tre e e see e e s tteeessreeesnaeeessseeeesseeesnees 72

10.2.4.8 AdaptorlsCapableOfFINdINGCWE Class.......cocueiriieriieiiieenite ettt sttt e sareesaeesbeeesaeesans 72
10.2.5 Organization Class DIiagramcccueeeicciiee e ectee ettt e e eree e e e rte e e e sbte e e e tae e e ssabee e e sneeeeeenneeeeennees 73
10.2.5.1 OrZANIZAtION ClasS....uuieeeeiiieeteeiitteete ettt ettt sa e st e bt e s bt e et e st e e sabeesabeesbeeesbeeebeesabeeenneesareesaneens 74
10.2.5.2 LV L= g o [T 1 S PO PP URRRRRTUPPI 75
10.2.5.3 OrganizationlsPartOfOrganizatioNASROIE Classcccuiieieiiieeciiee ettt e et e e 75
10.2.6 Person Class Diaglram.........ueeeeiiieiiiiieiieeeeeeciieee e e e e e eseitteeeeeeeeseabtseeeeaeessasstaseeaseeasnssssssesesesannsssenes 75
10.2.6.1 PEISON ClASS ..veiviieiuieiititeiiteeitee st e st e st e stteesbteesuee s beeebee s beesaseesaseesabeenbeeesaeenbeesabeesateesabaensseessseansesenses 76
10.2.6.2 PersonlsEmployedByOrganizatioNASROIE Classcccueieieeeeeiiieieeeiiieeetee e seee e e ire e eeeee e snaeeeeeeeeeeaes 76
O A (o] 1ol O - T D 1T T =1 o PSSR 77
10.2.7.1 20 LN 1 = 1 OO TPUU PPN 77
10.3 The fact-oriented structure of the TOIF XIVILccceeereememnmmnnmmnmmmmsmmmsmmssmsssssssssssssssssssssssssssssssssses 79
10.3.1 Abstract Structure Class DIagramccuueeiiciieieiiiieeeccieee e esiee e eette e e setre e e eetteeessbteeeesbeeeessnsaeessnnes 79
10.3.1.1 TOIFSEEMENT ClaSS ...cueeeieiiiieeiee et et st st st bttt e st e et e s beesaeeesabeesabe e bt e eaeesabeesaseesateesaseenseeensnesnsees 80
10.3.1.2 TOIFElIemMeNnt Class (ADSTIACE)cuuiieeiiie ettt et e et e e et e e e e ta e e e e tbeeeenbeaeeaneeas 80
10.3.1.3 A1 O T 1 o 1 o = Lot o PSSRSOt 80
10.3.14 o [t O T = o 4 L1 o SRR RPNt 80
10.3.1.5 TN] o 10 O T] o 1 - ot o PR 81
10.3.1.6 EvidentialRecord Class (@DStract)......cccuuiiiceieeiiiie st e e e e e e ae e e st e e eareeeenes 81
10.3.2 Abstract TYpes Class Diagrrami...c.cuceciccuiieeiiiieeeecieee e ettt e e ecttee e seteeeessrteeeesbtaeessbeeeessaseeeesnnsaeeesnnes 81
10.3.2.1 LT T ol A O T] o X ot o PSP 82
10.3.3 Basic Entities Class DIagram......cccueiiiiiiieeciiiee e eiiee e ceitee e eeree e sstee e e sbae e e e sabee e e ssabaeeesbaeeessnneeesennses 82
10.3.3.1 BasiCENLity Class (ADSTIACE)ueiiiiiieieiiie ettt e e et e e e e ta e e e eaae e e etaeaeeareaeeanns 82
10.3.4 BasiC FACtS Class DiagramS...u.cccciiccireeeeeeeeeiiirereeeeeeeieiisreeeeeeeeesiarrseeseessssssresseesesessssssseseesessnssrenes 82
10.3.4.1 FINAINGFACt Class (QDSTraCt) c...eeeieuiieieiie ettt et e e e e et e e e et e e e etaeeeeareaeeanes 84
10.3.4.2 WeaknessTypeFact Class (ADStract)cccueeciiuiie ittt e e et e e e e naa e e saaeeean 84
10.3.4.3 N | TeI = Tot a0 T o1y o = ot o R 85
10.3.4.4 (@foTe [SY WeTor=Yd oY o] o= Yot a @ F- 1Y -1 o 1Y = ot o 1SR 85
10.3.4.5 SemManticFact Class (ADSTIrACT)cccviiccieiiieeie et e et e et e st e e st e e sateeaaeeraeennee s 85
10.3.5 Basic Attributes Class DIagramcoccieiiiiiiieiiiieeecctee e ertee e e ertee e e ette e e e eaae e e e eate e e e eaaee e e eaeeeeenees 85
10.3.5.1 (05 £ A1 - 1SR 86
10.3.5.2 (010 1=Tol 0T 0 [1 - T PP URRRPUPPI 86
10.3.5.3 T T=Y o104 o] oT=T ol O - 1Y PP P PP 86
10.3.5.4 (o T 1o W @ - 1RSSR 86
10.3.5.5 INBIME ClaSS .. uuteititeiieetee ettt ettt ete e stte e sttt e bt e e bt e st e e e bt e sabeesaseesbeeesabeeabeeeabeesabeesabaesabeesabeenateenseeenneesares 86
10.3.5.6 VEISION ClASS .euvveeiitiiieeiee et st e st ettt stt e st e s be e st e e sabeesubeesbbe e bt e sabae e bt e sabeesateessbeesstesabaesnbeesabeesnseenateas 87
10.3.5.7 DESCIIPEION ClaSS .enuteiutiteitieiet ettt sttt e rb ettt et esa bt e st e e bt e e s bt e ebe e s bt e eabeesabeeeabeesabeenneeennes 87
10.3.5.8 (00T) e 1T g ol I 0 - 11 PSSP 87
10.3.5.9 (O g4 Tor=] 1 A2 1 F= TSR 87
O T (O B V=T o [ot a1 - 11 PSPPSR PP 87
10.3.6 Housekeeping Entities Class Diagram........ccccuuiiieeeeeiciiiiieeee e e ecccireee e e e e eseirree e e e e e e e e snnbeaeeeeeesennnnnns 88
10.3.6.1 HousekeepingEntity Class (ADSTIaCT)........cocciieiiiiieiciiie ettt eere et e e et e e eere e e s sabeeeeearaeeeaes 88
10.3.7 Housekeeping Facts Class DIagramsSccciiccuriieeeeiiiiiiiiieeeeeeeiscrtreeeessesssnrseeeeeessesssnsenneessssennssnns 88
10.3.7.1 oTo] | o Tt f @ = T = o 1] =) ISP 90
10.3.7.2 S TUT] o =T A O F T = o 1 o = Yot o SRS 90
10.3.7.3 ProjectFact Class (ADSTIrACT)........ciiiiieiieccie ettt ettt e s e et e e ae e e e e s teesateesateesnaeessseensnenans 90
10.3.8 Housekeeping Attributes Class DIiagramc..eeeiccuiieeieiiieeiiiiee s ccieeeeetree e estee e ssre e e s sbeeeessbaeeesnes 90
10.3.8.1 (o] 0T T o ol O - T O ORISR 91
10.3.8.2 AAIESS ClASS ..veieiiiieieiiiie ettt ettt ertt e st e e ettt e e sttt eseabteeesabeeesaataeesaabaeesasbaeesaabaeesaabaeeeaabaeesaasaeesaabaeenn 91
10.3.8.3 [T17Ae fo [T O - 11 USSP OP PPN 91
10.4 Evidential Records in TOIF XIMIL......cccuuuuiiiiiiiiiimmmnnisiiiniinmsmmsesiiniiimesssssissiimsssssssssssssisssssssssses 92
10.4.1 EvidentialRecord Class DI@Bramccceeeiiiiiiuiireeeeeeeiiiieeeeeeeeescerteeeeessessnaesneeeeesesssstennessessanssenns 92
10.4.1.1 BUIIARECOIT ClaSS . .uveieiiiiieiiiieite ettt ettt ettt sttt e st e st e e sat e e s st e s baesbaesabeesabaesateesabeenaeeenees 92
10.4.1.2 (00T 0] o111 24=Tole Yo I @1 - 113N 93
104.1.3 GENEIAtOrRECOIT ClIASS .iiiiuviieiiiiieieiiieeectee e sttt e e et e e e etteeestteeeesateeesaaeeeesseeesseeeessseeeesseeesnssenesnsseeeans 93

Tools Output Integration Framework (TOIF), Version 1.3 3

Tools Output Integration Framework (TOIF), Version 1.3

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.

Table of Figures

Organization of the TOIF SPeCifiCationcccueviirierieiieiieie et 12
The Flow of the TOIF Protocol and the TOIF ECOSYStEM.cccueieiieriirinieeiieiieieiesiese e 16
UML class diagram FINAINGc.ooieiiiiieiiiieieee ettt ettt eae e eneeee s 34
UML class diagram WeaKnesSTYPEccueruerueruiririeieienierie sttt ettt sttt ettt e eesbeseesseeseeneeneeneas 40
UML class dia@ram WEaKNEsseecuieiiiierieiieitieieeteeeeeeesteesteesseessesssessaesseesseessesssesssesseesseessessseens 43
UML class dia@ram CItINgcceevvierieeiieiieieesiesteesieesteeeeseesseesseesseessesssesssesseesseessesssesssesssessesssesssenns 46
UML class diagram Code LOCAtION.........ccueruierieeriiiiesiesiesie et eieeaesteeseeeseeeesaeseeesseeseenseensesssessaensens 49
UML class diagram Filecooieiiieiiieiecieiieeeie ettt s ae e sseesseenseenseensessaennees 50
UML class diagram DITCCIOTYccvievirieriieriierieesieetestesteesteeteentesaesseesseeseesessaesseesseeseanseansesssesseesses 52

UML class diagram Semantic STatement............oecueerueerieiieeieriere et et eeeetee sttt ee e seeeseeeseeeneeens 54
UML class diagram Semantic Data...........ccocoueiiiiiiiiiiiie ettt s ene 58
UML class diagram Buildoooioiieiioieeeee ettt st en 60
UML class diagram HOuSeKEePING.ceeiiiiiiiiieiieiieteee ettt 62
UML class dia@ram PrOJECEoiiiiiiieieiieieieee ettt ettt ettt et e bt st eneeneenee s 66
UML class dia@ram TOOISccueiuiriiiiieiieieiestee sttt st b et e bbb ebe st eneeneenee s 69
UML class diagram OrganiZatiOon............c.ecverueerreeruerieseesseesseesseesesseseesseessesssesssesseessesssesssesssesssessees 74
UML class dia@ram PEISOMcc.iecuiiiiiieiieiieesieete e stee sttt esr et e steesteesseessessaesseesseesseesseessenssesssesses 76
UML class diagram ROIE.........coeouieiiiiiiiieiieeete ettt ettt ettt et ae e s e steesseesseesseessensaessees 77

Figure 19. UML class diagram ADSLract STIUCLUIEcc.ceeeuteriirieniiriinieeieeitetetente sttt ettt st sbe i eaeeeenenaens 79
Figure 20. UML class diagram ADSLrACt TYPES ...c.eoverueruirieieriiienieniesieeiceitet st sttt ettt b bt eeaeneens 81
Figure 21. UML class diagram BasiC NtItIEsccererereeieriiriinieniinieeieeitet ettt ettt ettt naens 82
Figure 22. UML class diagram Basic Facts 1cociiiiiiiiiiiieeee e 83
Figure 23. UML class diagram Basic FACtS 2coouiiiiiiiiiieieeeeee et 83
Figure 24. UML class diagram Basic Facts 3cooiiiiiiiiieeeee et 84
Figure 25. UML class diagram Basic FACS 4cciiiiiiieiiiieie ettt ettt 84
Figure 26. UML class diagram Basic AMITDULES.ceieieiieriirieie sttt sttt ettt sbe et ee e nnens 85
Figure 27. UML class diagram HouseKeeping €Ntitiescouerueririririeienieieniesiesiesie ettt 88
Figure 28. UML class diagram Housekeeping Facts 1ccooeriiriiiniiiiieieiecseseceeeeese et 89
Figure 29. UML class diagram Housekeeping Facts 2cc.coeriiiiiiiiiieieieiescseeiescee et 89
Figure 30. UML class diagram Housekeeping Facts 3c..coeviririniiiiiiiiienenenen ettt 90
Figure 31. UML class diagram Housekeeping AttrIDULES...........coeriririririenieienenenerceiteteteeestesie st 91
Figure 32 UML class diagram EvidentialREcordcoceeiiriiriinininiiicieiciencseses ettt 92
Tools Output Integration Framework (TOIF), Version 1.3

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog
is available from the OMG website at:

https.://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:
OMG Modeling Specifications

UML

MOF

XMI

CWM

Profile specifications

OMG Middleware Specifications

e CORBA/IIOP

IDL/Language Mappings
Specialized CORBA specifications
CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

e CORBAservices

CORBA facilities

OMG Domain specifications

OMG Embedded Intelligence specifications
OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street

6 Tools Output Integration Framework (TOIF), Version 1.3

https://www.omg.org/

Building A, Suite 300

Needham, MA 02494

USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetical/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Part of TOIF uses the SBVR Structured English, which includes the use of color as well as other typographic styles. This
content is located in Section 9. The rules that have been used are a subset of the SBVR Structured English, in particular:
Norm Terms are teal and underlined. Verb concepts are teal and italic. Keywords are bold, black.

Tools Output Integration Framework (TOIF), Version 1.3 7

1 Specification Specific Material

1.1 Specification Preface

TOIF XML (XMI) is a common normalized format for representing the findings of static code analysis tools for the
purpose of integrating multiple facts related to a single system under assessment. This format is described in this
specification first as a conceptual model in SBVR Structured English, focusing at the key noun and verb concepts, then
by a more specific logical model in MOF/UML which determines the TOIF XML schema. The MOF metamodel is
consistent with the SBVR Structured English representation (and can in principle, be systematically derived from it). The
key to the TOIF MOF metamodel is that each verb concept is represented by an association class in such a way that the
resulting XML has a “triple flavor”. SBVR stands for Semantic for Business Vocabulary and Rules. MOF stands for
Meta Object Facility. XML stands for eXtended Markup Language. The acronym XMI stands for XML Metadata
Interchange format. XMI is a specific form of XML that is associated with the Model Driven Development approach.
XMI has been developed for the purpose of exchanging metadata such as models. XMI is standardized by OMG (current
specification is identified as MOF 2.0 / XMI Mapping Specification, v2.1.1, document formal/07-12-01) and ISO
(19503:2005).

1.2 Copyright Waivers

KDM Analytics Inc., Lockheed Martin Corporation, The MITRE Corporation, Model Driven Solutions, NoMagic Inc.,
and 88 Solutions Corp: (i) grants to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version, and (ii) grants to each member of the OMG a nonexclusive, royalty-free, paid up, worldwide license to
make up to fifty (50) copies of this document for internal review purposes only and not for distribution, and (iii) has
agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright
holder by reason of having used any OMG specification that may be based hereon or having conformed any computer
software to such specification.

1.3 IPR Mode

The IPR Mode for this specification is: Non-Assertion Covenant

1.4 Submitter Representatives

Dr. Nikolai Mansourov, KDM Analytics, Inc., nick@kdmanalytics.com

Dr. Ben A. Calloni, Lockheed Martin Corporation, ben.a.calloni@lmco.com
Robert A. Martin, The MITRE Corporation, ramartin@mitre.org

Cory Casanave, Model Driven Solutions, cory-c@modeldriven.com

Gary Duncanson, NoMagic, Inc., gary@nomagic.com

Manfred Koethe, 88solutions Corp,. koethe@88solutions.com

1.5 Author Team

Dr. Nikolai Mansourov, KDM Analytics Inc., nick@kdmanalytics.com

Dr. Ben A. Calloni, Lockheed Martin Corporation, ben.a.calloni@lmco.com

Manfred Koethe, 88solutions Corp,. koethe@88solutions.com

Robert A. Martin, The MITRE Corporation, ramartin@mitre.org

Cory Casanave, Model Driven Solutions, cory-c@modeldriven.com

8 Tools Output Integration Framework (TOIF), Version 1.3

mailto:nick@kdmanalytics.com
mailto:ben.a.calloni@lmco.com
mailto:ramartin@mitre.org
mailto:cory-c@modeldriven.com
mailto:gary@nomagic.com
mailto:koethe@88solutions.com
mailto:nick@kdmanalytics.com
mailto:ben.a.calloni@lmco.com
mailto:koethe@88solutions.com
mailto:ramartin@mitre.org
mailto:cory-c@modeldriven.com

2 Scope

This document provides specification of the Tools Output Integration Framework (TOIF) XMI schema — the common
reporting format of source/machine code weaknesses. TOIF XMI is the core part of a protocol that integrates weakness
findings, from multiple static code analysis tools, related to a single system under assessment.
This specification describes TOIF schema at three different levels of abstraction.
First, the specification describes the conceptual schema of the TOIF as SBVR Structured English focusing at a
technology-independent description of the key noun and verb concepts involved in reporting weakness findings. This
conceptual schema defines a common vendor-neutral vocabulary for the TOIF Ecosystem. The conceptual schema
addresses the following concerns:

o Defining TOIF basic facts and entities

o Defining TOIF housekeeping concepts

o Presenting TOIF fact-oriented organization (emphasizing the noun and verb organization of TOIF facts which

gives it a characteristic “triple flavor”)

Second, the TOIF specification then describes the MOF/UML metamodel of the TOIF. This metamodel is consistent
with the Structured English representation and can be, in principle, produced by a systematic transformation from the
conceptual schema. The MOF metamodel determines the TOIF XML/XMI schema which can be derived from the
UML model as described in the MOF and XMI specifications.
Third, the specification illustrates the usage of the TOIF XMI schema by providing examples of the TOIF XMI data
that uses the TOIF XMI schema.

TOIF addresses two types of normalization of weakness reporting. First, syntactic normalization addresses the
differences in reporting formats of various static code analysis tools. This is addressed by the common TOIF XML
schema. Second, the semantic normalization addresses the nomenclature of the findings by the static analysis tools. This
is addressed by a mapping from proprietary nomenclature to a common nomenclature. The common nomenclature of
weaknesses in TOIF is based on the Software Fault Pattern (SFP) catalog of clusters and patterns, that are further linked
to a catalog known as the Common Weakness Enumeration (CWE). The vendor-neutral common nomenclature of
weakness types consisting of SFP and CWE is an integral part of the TOIF approach. Both the syntactic and the logical
mapping from a proprietary reporting format of a given static analysis tool to TOIF is assumed to be implemented by an
non-intrusive Adaptor to the static code analysis tool.

3 Conformance

The principle goal of TOIF is the common normalized format for representing the findings of multiple static code
analysis (SCA) tools for the purpose of integrating multiple findings related to a single system under assessment and
managing collections of findings in an enterprise context.

To be TOIF compliant as a TOIF generator, an implementation shall fully support TOIF as one compliance point. An
implementation shall:

1. Provide the capability to generate XMI documents based on the TOIF XMI schema capturing findings from the
internal proprietary model of the tool.

2. Generate “housekeeping” facts according to the TOIF schemaProvide the mapping from each proprietary
weakness type to common TOIF vendor-neutral weakness type based on SFP and CWE when capturing
findings.

This compliance point is formally defined as follows. Let’s assume an SCA tool TOOLA is capable of
producing proprietary weakness findings of types WDi where i=1..k. This means that given a set of input
files F1,..,Fn the tool TOOLA may produce a set of findings, described by proprietary set report items
RWDI,..,RWDm such that each RWDj refers to a certain weakness type RWDi. The number of findings,
m, depends on the presence of weaknesses in the input files {Fi}, as well as on the capability of the tool
TOOLA to identify a finding (true positive) and the capability of the tool TOOLA to avoid reporting a false
positive.
The TOIF mapping is a set of k tuples (where k is the number of all distinct proprietary weakness types for
tool TOOLA), {WDi, {CWEi, SFPi, SFP Cluster-i}} where

WDi is the proprietary description of the weakness type by tool TOOLA

CWEi is the CWE identifier aligned with the SFPi and SFP Cluster-i that provides the most specific
description of the weakness.

SFPi is the SFP identifier that provides the most specific description of the weakness; the SFP catalog
provides mappings from each SFP to a set of relevant CWE. SFP identifiers are defined as part of the SFP
Catalog.

Tools Output Integration Framework (TOIF), Version 1.3 9

SFP Cluster-i is the SFP Cluster that describes the broad and non-overlapping set of faults to which the
weakness type belongs. SFP Clusters are defined in the SFP Catalog.

According to the TOIF specification, each individual finding RWDj refers only to the CWE;j, while the relations
between CWEi, SFPi and SFP Cluster-i are defined once at the weakness type level rather than at the finding
level.

TOIF mapping constitutes the semantic specification of a TOIF Adaptor for tool TOOLA. The other part of the
specification of the Adaptor is the syntactic specification related to transforming the proprietary syntax of report
items RWDj from TOOLA into TOIF data conforming to the TOIF XMI schema.

To be TOIF compliant as a TOIF consumer, an implementation shall fully support TOIF as one compliance point. The
implementation shall:
1. Provide the capability to import the facts described by the TOIF XMI schema and to map the facts into the
internal proprietary model of the tool.

In contrast to a TOIF Generator, a TOIF Analytics tool does not produce new findings, but can filter the original findings
and produce additional information, for example, compute ranks, citings, etc. To be TOIF compliant as a TOIF analytics
tool, an implementation shall fully support TOIF as one compliance point. The implementation shall:
1. Provide the capability to import the facts described by the TOIF XMI schema.
2. To generate XMI documents based on the TOIF XMI schema that are based on the original findings and include
some added value facts.

4 References

4.1 Normative References

The following normative documents contain provisions which, through reference in this text, provide normative context
for material in this specification.

[kdm] Knowledge Discovery Metamodel (KDM), v1.4, http://www.omg.org/spec/KDM/1.4

[sbvr] Semantics for Business Vocabulary and Rules (SBVR), v1.4, http://www.omg.org/spec/SBVR/1.4/

[uml] Unified Modeling Language (UML), v2.5, https://www.omg.org/spec/UML/2.5

[xmi] XML Metadata Interchange (XMI), v2.5.1, https://www.omg.org/spec/XMI/2.5.1

[xml] Extensible Markup Language, v1.1, http:// http://www.w3.org/TR/xml11

[xsd-1] XML Schema Definition Language (XSD) v1.1 Part 1: Structures, http://www.w3.org/TR/xmlschemal 1-1
[xsd-2] XML Schema Definition Language (XSD) v1.1 Part 2: Datatypes, http://www.w3.org/TR/xmlschemal 1-2

4.2 Informative References

The following non-normative documents contain provisions which, through reference in this text, provide informative
context for material in this specification.

e J[cwe] Common Weakness Enumeration (CWE) —

e arepository maintained by MITRE Corporation of known weaknesses in software that can be exploited to
modify data, read data, create a denial-of-service that results in unreliable execution, create a denial-of-
service that results in resource consumption, execute unauthorized code or commands, gain privileges /
assume identity, bypass protection mechanism, and/or hide their activities'. <https://cwe.mitre.org>

e also, ITU standard: ITU X.1524 Common Weakness Enumeration
< http://www.itu.int/rec/T-REC-X.1524-201203-1/en >

e Software Fault Patterns (SFP) Catalog —

e AFRL-RY-WP-TR-2012-0111, V2 - DoD document approved for public release, distribution unlimited;

! CWE technical impact enumeration <https://cwe.mitre.org/cwraf/enum_of ti.html>

10 Tools Output Integration Framework (TOIF), Version 1.3

http://www.omg.org/spec/SBVR/1.4/
https://www.omg.org/spec/UML/2.5
https://www.omg.org/spec/XMI/2.5.1
http://www.w3.org/TR/xml11
https://cwe.mitre.org/
http://www.itu.int/rec/T-REC-X.1524-201203-I/en

e Software Fault Pattern Clusters - a repository maintained by MITRE Corporation of links connecting SFPs
and CWEs <https://cwe.mitre.org/data/definitions/888.html> ;

5 Terms and Definitions

For the purposes of this specification, the most of applicable terms and definitions are provided in Section 9 TOIF
Conceptual Model.

6 Symbols

List of symbols/abbreviations:

CWE Common Weakness Enumeration
KDM Knowledge Discovery Metamodel
SCA Static Code Analysis

SFP Software Fault Patterns

TOIF Tools Output Integration Framework

XMI XML Metadata Interchange

7 Additional Information

7.1 How to Read this Specification

TOIF Exchange Format is a common normalized format for representing the findings of static code analysis (SCA) tools
for the purpose of integrating multiple facts related to a single system under assessment.

This specification has the following structure.

Section 8.1 “Objectives” summarizes the key design objectives for the TOIF XML format and its role in the TOIF
Ecosystem.

Section 9 “TOIF Conceptual Model” presents the conceptual schema for TOIF XMI described in SBVR Structured
English as a set of definitions of noun and verb concepts. This section defines a vendor-neutral vocabulary for the entire
TOIF Ecosystem. TOIF Conceptual Model provides a technology-neutral vocabulary for TOIF which is then
systematically implemented as a MOF/UML metamodel for the purpose of specifying a concrete XML/XMI schema for
the TOIF data (the TOIF Exchange Format).

Section 9.1. describes the basic common facts related to weakness findings.

Section 9.2 “Housekeeping considerations for TOIF XMI” describes several “housekeeping” facts that facilitate
management of multiple TOIF XMI files during the entire life cycle of the operation of the TOIF framework. The
“housekeeping” facts define various meta-data to the basic TOIF facts, mainly related to multiple builds of the system,
and versions of the tools used, etc. Such additional information is important to manage TOIF data over the entire life-
cycle of the system under assessment as well as in an enterprise context where multiple systems are assessed by multiple
teams.

Section 9.3 “Fact-oriented organization of TOIF XMI” elaborates the conceptual model and describes the organization of
the TOIF XMI as triples built around the verb concepts with noun concepts as the endpoints.

Section 10 “TOIF Logical Model” presents the MOF/UML metamodel for TOIF which is systematically developed
based on the TOIF Conceptual Model as an intermediate step towards the TOIF XMI schema. Both the TOIF Conceptual
Model as well as the TOIF Logical Model provide an adequate description of the TOIF XMI schema, so either (or both)

Tools Output Integration Framework (TOIF), Version 1.3 11

https://cwe.mitre.org/data/definitions/888.html

can be used to understand TOIF. However, it is the TOIF Logical Model that determines the exact structure of the TOIF
XMI schema through the rules described in MOF and XMI specifications. Section 10 provides multiple examples of the
TOIF XMI data compliant to the TOIF XMI schema. Section 10 has the following organization:

e Section 10.1 describes the basic concepts of TOIF represented as MOF/UML metamodel.

e Section 10.2 describes the MOF/UML representation pf the house-keeping concepts of TOIF.
e Section 10.3 describes the fact-oriented structure of TOIF XML.

e Section 10.4 describes evidential records in TOIF XML.

In SBVR
(non-normative) TOIF Conceptual Model

systematic
transformation

In MOF/UML TOIF Logical Model
(normative)

transformation
defined by XMI

A

é DI XMl instance

SCA tool TOIF adaptor

Figure 1. Organization of the TOIF specification

7.2 Acknowledgements

The following companies submitted this specification:

KDM Analytics Inc
Lockheed Martin Corporation
The MITRE Corporation
Model Driven Solutions
88solutions Corp

NoMagic Inc

12 Tools Output Integration Framework (TOIF), Version 1.3

8 TOIF Exchange Format
8.1 Objectives

e Define a standard vendor-neutral protocol that facilitates information flow from multiple proprietary static code
analysis tools as producers to various consumer tools that can integrate, collate, store, rank, measure, transform
and present findings from multiple sources for a single system under assessment.

e Establish a uniform, vendor-neutral, normalized environment for processing findings from multiple SCA tools
for a single system under assessment.

e Define standard semantic for weakness findings, focusing at the standard nomenclature of weakness findings to
collate findings by multiple tools and identify weaknesses reported by more than one tool.

e Facilitate managing findings from multiple SCA tools over the life-cycle of a system under assessment.

e Facilitate managing findings in enterprise environments (multiple tools, multiple builds, multiple systems,
multiple consumers).

e Be a common normalized schema for integrating findings from multiple static code analysis tools and
developing vendor-neutral “big data” analytics.

e Define a standard syntax — based on MOF XML — to represent results of SCA tools to be consumed by third-
party tools, including the analytics environment.

e Align with the standard Knowledge Discovery Metamodel (KDM) protocol describing basic facts about the
system under assessment.

e Align with risk analysis interchange protocol, and Software Fault Pattern (SFP) catalog as well as other
protocols of the OMG System Assurance Ecosystem to link findings as evidence to risks.

o Facilitate systematic evaluation and measurement of existing static code analysis tools.

e Be anon-intrusive format that requires no modification of the source code of a static analysis tool to adopt such
that TOIF adapters can be developed independently of an SCA tool.

The key requirement for the TOIF protocol is that no modifications to the source code of the original static code analysis
tools be made, in other words, the TOIF protocol assumes an explicit adaptation step that is performed outside of an off-
the-shelf proprietary static code analysis tool (non-intrusive), and that transforms the original report from such tool into a
normalized TOIF report. The open description of the normalized TOIF XMI format will encourage the vendors of the
commercial SCA tools to support TOIF natively, however regardless of the adoption by the tool vendors of the original
tools, their outputs can still be integrated into the framework by the adaptors implemented by the third parties. The
adaptation step performs both syntactic normalization (normalizing the differences in the output reporting formats of
proprietary SCA tools) as well as semantic normalization (normalizing the meaning of the findings and the location of
the findings).

The semantic normalization maps the nomenclature of the findings used in a proprietary static analysis tool into a
common vendor-neutral nomenclature. The “mapping” artifact is formally described in the Conformance Section, clause
3. The common nomenclature of weaknesses in TOIF is based on the Software Fault Pattern (SFP) system of clusters and
individual patterns, and the further mapping to a catalog known as the Common Weakness Enumeration (CWE). The
vendor-neutral common nomenclature of weakness types consisting of SFP and CWE is an integral part of the TOIF
approach.

In addition, TOIF extends finding reports from proprietary SCA tools with normalized vendor-neutral meta-information
(further referred to as the housekeeping information), facilitating management of facts, their provenance and attribution
over larger life-cycles, independent on any of the SCA tools in an enterprise environment.

Tools Output Integration Framework (TOIF), Version 1.3 13

TOIF data are organized as triples, following the verb and noun phrases in the TOIF Structured English Vocabulary.
While the specific embodiment of the TOIF Exchange Format is specified in this document as a TOIF XMI schema
(through a MOF/UML metamodel and the MOF/XMI rules that determine the XML/XMI schema) the “triple flavor” of
the TOIF data is designed to support additional formats and technology spaces, including, for example, reasoning tools.

8.2 TOIF Ecosystem

The TOIF exchange protocol assumes several specific capabilities with regards to how TOIF information can be
produced and consumed. Thus, the TOIF protocol determines a certain ecosystem where there can exist multiple
implementations of the TOIF capabilities that satisfy the interfaces defined by the TOIF protocol and that address the
different roles within the TOIF protocol.

The operation of the TOIF Ecosystem involves three distinct phases. Phase 1 involves application of one or more static
code analysis tools to the system under assessment. Phase 1 also may involve application of a Knowledge Discovery
Metamodel (KDM) extractor tool to the same system under assessment in order to generate the basic KDM facts about
the system. Within the Phase 1, TOIF Adaptor tools process the proprietary finding reports from each SCA tool, and
normalize these reports (both syntactically and semantically) into the TOIF format. Since weakness finding reports are
produced by multiple off-the-shelf static code analysis tools, phase 1 shall perform normalization of the original reports
by tool-specific TOIF Adaptors so that the rest of capabilities in the TOIF Ecosystem can successfully consume reports
from multiple TOIF producers.

Phase 1 is often performed as part of the regular build of the system under investigation, in which case this phase would
also involve running code compilers and linkers. Regular builds are usually orchestrated by build tools. Extending the
orchestration to correctly include SCA tools and TOIF adaptors into the build process is one of the key success factors
for running static code analysis and software assurance.

In Phase 2, normalized weakness reports from various tools are integrated into a single, comprehensive report. As the
result, an integrated repository of the TOIF facts can be populated.

Phase 3 involves consuming the integrated TOIF weakness finding facts for the purposes of presenting them to human
analysts (browsing), analyzing them as evidence for software assurance, entering them as evidence for risk assessment or
Risk Management Framework (RMF) security control assessment, as well as any other purposes.

The TOIF Ecosystem assumes the following roles:

e SCA tool — provides capability to scan source or machine code of the system under investigation and generate
weakness finding reports. An SCA tool usually involves components that perform scanning and parsing of
source code, or perform disassembling of the machine code, implement optimized control and data flow
analysis algorithms, often incorporate extensive information about standard software libraries and components,
operating systems and compilers, as well as a certain knowledge base of what they consider as weaknesses and
the corresponding patterns that can be used to discover at least some of these weaknesses in the code.
Effectiveness of an SCA tool is determined by multiple factors. An SCA tool will be also referred to as a TOIF
Generator.

e TOIF Adaptor tool — provides capability to transform the proprietary weakness finding report from a particular
SCA tool into a normalized representation determined by the TOIF specification. The most challenging part of
implementing a TOIF adaptor is to provide a mapping from proprietary weakness type system used by a particular
SCA tool into a normalized system of weakness types in a justifiable and unambiguous way that facilitates further
semantic integration of the TOIF finding facts. The TOIF specification uses a formalized 3-level hierarchical
system of weakness types that involve a combination of the Software Fault Patterns (SFP) catalog and the
Common Weakness Enumeration (CWE). The “mapping” artifact is formally defined in Compliance Section of
this document, clause 3.

e TOIF producer — a generic term to describe any capability that produces output conformant with the TOIF
specification. For example, a combination of an SCA tool (a TOIF Generator) and the corresponding TOIF
Adaptor can play a role of a TOIF Producer.

e KDM tool — provides the capability to scan source or machine code of the system under investigation and produce
normalized description of this system conformant to the Knowledge Discovery Metamodel (KDM) specification.
KDM facts, as we will refer to such normalized description provide a vendor-neutral general-purpose

14 Tools Output Integration Framework (TOIF), Version 1.3

representation of the semantic structure, behavior, and datatype organization of the system under investigation.
KDM facts are a form of intermediate representation of the system under assessment. A KDM tool usually
involves components that perform scanning and parsing of source code, or perform disassembling of the machine
code, may incorporate information about standard software libraries and components, and operating systems.
KDM facts may be generated by a Code Complier. KDM facts can be integrated with the TOIF facts for more
powerful analysis of the weakness findings.

e Code Compiler — provides capability to scan source code of the system under investigation and produce linkable
object code or excitable machine code for the selected platform. A Code Compiler involves a proprietary
intermediate representation of each module of the system under assessment from the syntax viewpoint, and from
the semantic viewpoint. A Code Compiler usually involves components that perform scanning and parsing of
source code, build the intermediate representation(s) of the code, analyze the intermediate representation and
generate the machine code. The last component is often called the BackEnd, while the first two components are
often referred to as the FrontEnd. The intermediate representation constructed by a code compiler provides
valuable information about the system under investigation that may be useful for the purposes of software
assurance, however this information is seldom exposed by code compilers and when it is, it is often difficult to
utilize it because of its proprietary nature, technology dependencies, and low level. Some compilers may choose
to transform their high-fidelity intermediate representation into KDM facts, thus removing the barriers for using
this information by other consumers.

e Code Linker — provides capability to combine one or more linkable object code files into machine code for the
selected execution platform. Code Linker is used in system builds because the executable machine code of the
system usually involves a mix of application modules and various third-party libraries, already precompiled for
the selected platform.

e Build Tool — provides capability to orchestrate the process of running Code Compilers, with desired options,
inputs and outputs, running Code Linkers, packaging the outputs, and performing other desired steps to transform
input source files, precompiled object files and libraries into the output artifacts. Usually a Build Tool is general-
purpose, driven by a Build Script that describes the build steps.

e Build Script — description of the build steps to be performed by a Build Tool to perform a build of the system
under investigation.

e TOIF Orchestration tool — provides capability to orchestrate the process of running SCA tools and their
corresponding TOIF Adaptors in alignment with the regular build, i.e. such that each source file is processed by
selected SCA tools with desired options, aligned with the options used during the regular build, that an appropriate
TOIF Adaptor is called for each SCA tool, that all TOIF output files are appropriately managed; Similarly for
machine code analysis, the TOIF Orchestration tool aligns the process of running the selected SCA tools and their
TOIF Adaptors on all desired machine code files. From the software assurance evidence perspective, the TOIF
Orchestration tool generates the key piece of evidence regarding the coverage of the source and machine code
files, correctness of the SCA findings, etc.

e TOIF repository — provides capability to store, manage and query TOIF facts.

e TOIF browser — provides capability to view TOIF related entities and relationships by human analysts in a visual
environment.

e TOIF consumer - a generic term to describe any capability that consumes input conformant with the TOIF
specification.

e TOIF Analytics tool — a generic term to describe any capability that consumes one or more TOIF segments and
produces one or more TOIF segments. This may include, for example, a TOIF Integration tool, that consumes
partial TOIF segments and produces a single integrated segment, or a TOIF Citing tool that consumes TOIF
integrated segment and augments it with some elements, or a TOIF ranking tool that consumes TOIF integrated

Tools Output Integration Framework (TOIF), Version 1.3 15

segment possibly with some original measurements captured by the SCA tools and evaluates a normalized
ranking. A TOIF Analytics tool is both a TOIF consumer and a TOIF producer.

TOIF generators TOIF adaptors
) — TOIF integration

.

TOIF repository

-

TOIF browser

-

TOIF analytics
.
—_—
-/ TOIF consumers

Figure 2. The Flow of the TOIF Protocol and the TOIF Ecosystem

SCA tools

16 Tools Output Integration Framework (TOIF), Version 1.3

9 TOIF Conceptual Model

This section describes TOIF Exchange Format in SBVR Structured English by focusing at a set of vendor-neutral noun
and verb phrases that provide the foundation for the TOIF Ecosystem as its technology neutral vocabulary. The actual
TOIF XMI schema is consistently derived from this conceptual model by representing each verb concept as a triple.
However, the precise details of the TOIF XMI schema are provided by the TOIF MOF/UML metamodel defined in
Section 10 together with multiple examples of TOIF XMI data compliant with the TOIF XMI schema. The TOIF
MOF/UML metamodel determines the TOIF XMI schema through a set of rules described in MOF and XMI
specifications.

9.1 Basic Entities and Facts

The conceptual model of the TOIF protocol describes the characteristics of the weakness findings, as they are reported by
SCA tools. We also defined the facts where the original weakness findings can be merged with the basic facts about the
system under investigation, as defined by the standard Knowledge Discovery Metamodel (KDM).

Weakness

Definition: characteristic or property of software that, in proper conditions, could contribute to the introduction of
vulnerabilities within that software.

Synonym: weakness of software.

Note: Each weakness is categorized by a weakness type. Some weaknesses can be characterized by a certain
location in the code of the system under assessment.

Note: A claim of a weakness (of a certain weakness type at a certain code location) can be supported by one or
more findings as well as additional citings.

Vulnerabilit

Definition: weakness of software, hardware, or online service that can be exploited by a threat.

Description: Examples of weaknesses in a system are software and hardware design flaws, poor administrative
processes, lack of awareness and education, and advancements in the state of the art or improvements to
current practices. Regardless of cause, an exploitation of such vulnerabilities may result in real threats to
mission-critical information systems.

Note: Vulnerabilities can be architecture flaws, coding errors, or other implementation errors, or insecure
configuration. Vulnerabilities can also result from insufficient or incorrect security documentation, security
awareness, or communication.

Finding
Definition: Weakness that has been discovered in the code of the system under investigation.

Description: Finding represents a simple claim (statement, report) that a weakness has been discovered. This
discovery shall be associated with several additional pieces of information: a certain code location where
the weakness is discovered; the type of weakness as well as various “housekeeping” facts (when discovered,
who discovered, etc.).

Note: Significance of the absence of findings should be evaluated in a larger context before any claims of the
absence of weaknesses can be made. Evidential records related to the bui 1d of the system under
investigation may be used for such assessment.

Note: Defined in Figure 3. UML class diagram Finding.

Tools Output Integration Framework (TOIF), Version 1.3 17

Finding has code location

Definition: Code location that is claimed to be associated with the weakness that has been discovered.

Description: System under investigation may be represented as one or more source files, executable files
(machine code) or a combination of both. The mechanism to uniquely identify a location within the code of the
system under investigation is the foundation for reporting weaknesses.

Possibility: Each finding is associated with one or more code location.

Finding is defined as CWE
Definition: Normalized identifier of the weakness type that is claimed to be associated with the finding.

Possibility: a2 finding may have many CWE identifier

Note: CWE identifier shall be added during the adaptation phase.

Note: In the situation when there is an ambiguity in a mapping of a particular finding (type) of a static analysis
tool to CWE, multiple CWE identifier will be associated with the corresponding finding.

Note: the TOIF Analyzer may split finding with multiple CWE identifier into several findings with a single CWE
identifier.

Finding is reported as Weakness Description

Definition: Description of the weakness type other than the normalized identifier associated with the finding.

Description: Weakness description is associated with the finding by the generator. Usually this description
represents a proprietary message generated by the static code analysis tool (either specific to the weakness
type, or specific to the finding).

Finding references File

Finding is produced by_Adaptor
Finding is reported by Generator
Finding is reported in Build

Finding has Criticality

Definition: Claim that a finding has certain criticality.
Description: Generator tools may capture criticality of an individual finding to facilitate ranking of the findings.

Finding has Confidence

Definition: Claim that a finding has certain confidence.

Description: Generator tools may associate confidence with a finding to facilitate analysis of the findings and
ranking of the findings.

Criticality
Definition: A measure of impact that a certain weakness may cause.
General concept: Percent

Description: 0% - means that a weakness does not cause any impact, while 100% means that the weakness
corresponds to a critical vulnerability. Criticality is a natural number from 0 to 100 interpreted as percent.

Note: Original SCA tools may use proprietary methodology to calculate criticality of a finding.

18 Tools Output Integration Framework (TOIF), Version 1.3

Confidence

Definition: a measure of confidence of an agent making a claim that the statement is actually true.
General concept: Percent

Description: 0% means that an agent is not confident (the evidence is slim, yet there is something that caused the
agent to make the claim). 100% means that the agent is very confident (there is strong evidence supporting the
claim). Confidence is a natural number from 0 to 100 interpreted as percent.

Note: Original SCA tools may use proprietary methodology to calculate confidence of a finding.

Weakness is defined as CWE

Weakness has Code Location

Code

location

Code

Definition: Location in the code of a system under investigation.

Description: This element is a statement of a location within a system under investigation. The system under
investigation may be represented as one or more source files, executable files (machine code) or a combination
of both. Location in the code of the system under investigation is defined as a combination of a file and a
location within the file. Location in a source file is given as a line number and optionally a position within the
line. Location within an executable file is defined as an offset. Multiple Code Location elements may refer to
the same logical location, for example when the same set of files is analyzed independently by multiple static
code analysis tools and several reports are produced.

Note: In some cases, Code location may refer to the entire file (including situations when the file is empty). In this
case, the Code location involves only the reference to a File. In other cases, Code location shall involve either
a Line number or an Offset. When a Code location involves a Line number, it may additionally involve a
position.

Note: this provides a unique reference schema for findings. The corresponding concept in KDM is SourceRef

Note: Defined in Figure 7. UML class diagram Code Location

location references file

Code

Definition: Code location is uniquely described as a location within a certain file.

Description: Code location element refers to a location in the code of the system under investigation by
describing a combination of a file and a location within the file.

Possibility: Code location references exactly one file

location has line number

Code

Definition: Line number that describes a location within a source file.
Description: for locations in source files; this attribute is optional.

Possibility: code location may have line number

location has position

Definition: Position of a character within a line number that uniquely describes a location within a source file.
Description: for locations in source files; this attribute is optional.

Possibility: code location may have position

Tools Output Integration Framework (TOIF), Version 1.3 19

Code location has offset

Definition: Number of a byte in a binary file that uniquely describes a location within an executable file.

Description: for locations in binary files. Code locations in executable files are identified in binary image,
therefore offset is the same as the virtual address of a byte in the image. Offset does not represent the offset in

the executable file itself.

Possibility: code location may have offset

Line number

Definition: Line number that uniquely describes a location within a file.

General concept: Natural number

Description: A source file is assumed to be a text file that consists of a sequence of one or more lines, marked by
an end-of-line character. Lines are enumerated from 1. Line number in case of an empty file is not applicable.
Position

Definition: Number of a character within a line (identified by a line number) that uniquely describes a location

within a file.

General concept: Nonnegative integer number

Description: A line of a source file is assumed to be a sequence of one or more characters different from an end-
of-line character. Characters are enumerated from 1. Position in in case of an empty line is not applicable.

Offset

Definition: Offset of a byte that uniquely describes a location within a binary image.

General concept: Nonnegative integer number

Description: A binary file is assumed to be a sequence of one or more bytes. Bytes are enumerated from 1. Offset
in in case of an empty binary file is not applicable. Offset is the same as the virtual address of a byte in the
image. Offset does not represent the offset in the executable file itself.

Weakness Type Identifier

Definition: A category of weakness.

Note: This is not a designation, but the actual category. The suffix Identifier is added for consistency with “CWE
Identifier” and SFP Identifier”, to avoid possible confusion between “CWE” as the entire catalog, “CWE” as a

specific category of weakness in the CWE catalog.

Synonym: Weakness Type
Note: Defined in Figure 4. UML class diagram WeaknessType

Weakness Type Identifier has name

Definition: A unique name provided to a weakness type defined by the Common Weakness Enumeration (CWE).

Description: Common Weakness Enumeration (CWE) is a standard that provides a list of weakness types, each
identified by a CWE name, for example, “CWE-561".

Weakness Type Identifier has description

Definition: Description of a Weakness Type Identifier is an informal description of the corresponding weakness

type.

20 Tools Output Integration Framework (TOIF), Version 1.3

CWE identifier

Definition: A weakness type defined by the Common Weakness Enumeration (CWE).

Description: Common Weakness Enumeration (CWE) is a catalog that describes a collection of weakness types,
each identified by a CWE identifier, for example, “CWE-121". CWE associates several information blocks
with each weakness type, including a long name, an informal description, examples, references to other
standards, such as CVE, etc.

Note: The CWE Identifier represents an individual weakness type. The suffix “Identifier” is added to avoid
possible confusion between “CWE” as the entire catalog, “CWE” as a specific category of weakness in the
CWE catalog. The “Name” attribute corresponds to the CWE identifier.

Note: Since the original CWE catalog provides only an informal description of each weakness type, TOIF uses the
more formal approach aligned with the SFP catalog, which involves several adjustments to the original CWE
types to achieve an unambiguous identification scheme.

Note: Defined in Figure 4. UML class diagram WeaknessType

SFP Identifier

Definition: A weakness type defined by the Software Fault Patterns (SFP) catalog.

Note: This is not a designation, but the actual category. The suffix Identifier is added to avoid possible confusion
between “SFP” as the entire catalog, “SFP” as a specific category of weakness in the SFP catalog.

Description: Software Fault Patterns (SFP) is a standard that provides a list of weakness types, each identified by
an SFP identifier, for example, “SFP-8”. Each SFP weakness type is further linked to one or more individual
CWE weakness types, possibly with some adjustments to the original CWE types in order to achieve an
unambiguous identification scheme. Each SFP weakness type is part of one SFP Cluster.

SEFP Cluster
Definition: A weakness category provided by the Software Fault Patterns (SFP) catalog.

Description: Software Fault Patterns (SFP) is a standard that provides a list of weakness clusters, each identified
by a unique name, for example, “Authentication”.

Note: Defined in Figure 4. UML class diagram WeaknessType

Weakness Description

Definition: Description of the weakness type other than the normalized identifier associated with the finding.

Description: Weakness description is associated with the finding. Usually this description represents a proprietary
report generated by the static code analysis tool (either specific to the weakness type, or specific to the
finding).

Note: Weakness Description is a proprietary Weakness Type Identifier. Because it is proprietary, and also because
it is defined operationally (by an SCA tool), it is difficult to reason about the exact extent of this Weakness

Type.

Weakness description has description

Definition: Text of the weakness description.

Tools Output Integration Framework (TOIF), Version 1.3 21

Description

General concept: Text

File

Definition: A computer resource for recording a collection of related data or program records stored as a unit with
a single name.

Description: File in TOIF corresponds to the Inventoryltem concept in KDM. In TOIF a File is assumed to
represent code of the system under investigation and is usually either a source file (KDM SourceFile) or an
executable file (KDM ExecutableFile).

Note : Defined in Figure 8. UML class diagram File.

File has name

Definition: Name of the file
Name

General concept: Text

File has checksum

Definition: Checksum of the file

Note: the ability to compute the checksum of a file that is the source for the particular weakness report depends on
the access to this file. In general, the application of the generator is done at a separate phase, therefore the
adaptor may not be able to compute this information. However, availability of the checksum will facilitate
management of multiple TOIF segments and reduce errors caused by merging unrelated TOIF segments.

Note: The Inventory Model of the KDM Model includes the checksum of each file in the system under
assessment.

Checksum
General concept: Integer

Definition: Checksum is a small-sized datum derived from a block of digital data for the purpose of detecting
errors which may have been introduced during its transmission or storage or to identify duplicate blocks.

File has version

Note: the ability to compute the version of a file that is the source for the particular weakness report depends on
the access to this file. In general, the application of the generator tool is done at a separate phase; therefore, the
adaptor may not be able to compute this information. However, availability of the version will facilitate
management of multiple TOIF segments and reduce errors caused by merging unrelated TOIF segments.

Note: The Inventory Model of the KDM Model includes the version of each file in the system under assessment.
Version
Definition: A unique identifiable state of something.
General concept: State

Note: Version of the subject is designated by a string.

File is contained in Directory

File belongs to Project

22 Tools Output Integration Framework (TOIF), Version 1.3

https://en.wikipedia.org/wiki/Datum
https://en.wikipedia.org/wiki/Digital_data
https://en.wikipedia.org/wiki/Error_detection
https://en.wikipedia.org/wiki/Error_detection
https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Computer_storage

Directory
Definition: An organizational unit or container, used to organize directories and files into a hierarchical structure.
Note: Defined in Figure 9. UML class diagram Directory

Directory is contained in_Directory

Directory has name

Directory belongs to Project

Statement

Definition: A basic identifiable unit of behavior in software such as a source code statement, a basic block, an
operator.

Note: this corresponds to KDM ActionElement class

Note: Defined in Figure 10. UML class diagram Semantic Statement

Statement has code location

Statement is involved in Finding
Synonym: Finding is associated with statement

Possibility: each Finding may be associated with many statement

Statement is part of sink of Finding

Note: This is a stronger form of the fact type Statement is involved in Finding where the role of Statement is
known to be a sink, i.e. a statement that corresponds to the discernable necessary condition of the weakness.
For example, a statement that performs access to a buffer is the necessary condition to a buffer overflow
weakness, since without an access there is no overflow. Sink is a concept use in the Software Fault Patterns
(SFP). Many software faults have discernable Sink and Source statements and a data flow path between them.

Statement is part of source of Finding

Note: This is a stronger form of the fact type Statement is involved in Finding where the role of Statement is
known to be a source, i.c., a statement that corresponds to the discernable sufficient condition of the weakness.
For example, a statement that sets the pointer outside of the available space in a buffer is the sufficient
condition to a buffer overflow weakness, provided that there also exists a data flow path to a sink which
performs access to the buffer using the same pointer, and the value of the pointer is unchanged along the path.
Source is a concept used in the Software Fault Patterns (SFP). A weakness finding may have multiple sources.
Many software faults have discernable Sink and Source statements and a data flow path between them.

Statement is preceded by Statement

Data element

Definition: A basic identifiable data item is software such as global and local variables, records, formal
parameters and constants.

Note: This corresponds to the KDM DataElement class
Note: Defined in Figure 11. UML class diagram Semantic Data

Tools Output Integration Framework (TOIF), Version 1.3 23

Data element is defined at Code Location

Data element is involved in Finding
Note: This fact type establishes an association between a Data element and a Finding, but does not provide any
further detail regarding the role of the Data Element.

Data element has_name

Data element is involved in Statement
Note: This fact type establishes an association between a Data element and a Statement, where a Statement can be
further identified as either the Source or the Sink of the Finding. In this case, the Data element is passed along the
data flow path from the Statement is known to be a Source, i.e., a statement that corresponds to the discernable
sufficient condition of the weakness, to the Sink of the finding, i.c., a statement that corresponds to the necessary
condition of the weakness. For example, a statement that sets the pointer outside of the available space in a buffer
is the sufficient condition to a buffer overflow weakness, if there also exists a data flow path to a sink which
performs access to the buffer using the same pointer, and the value of the pointer is unchanged along the path. The
pointer is then the Data element involved in the Source statement. Data element, Source and Sink are concepts
used in the Software Fault Patterns (SFP). A weakness finding may have multiple data elements involved in the
data flow path between Source and Sink.

Citing
Definition: An observation related to a weakness that may supply additional information to the weakness and a
verdict which is a claim that a weakness is valid or is not valid.

Note: Some citings may be performed by analysts, while other citings may be performed by Analytics Tools, for
example based on pattern matching and/or machine learning.

Note: Defined in Figure 6. UML class diagram Citing
Citing references_Weakness

Citing has Description

Citing has Confidence

Citing is generated at_Date

Citing is generated by Citing Agent

Citing has Verdict

Verdict
Definition: An evaluation of the findings and code facts for a particular weakness as represented by one or more
findings, CWE Identifier and code location into Code Artifacts. Verdict represents a claim that a weakness is a
valid finding (true) or not a valid finding (false).

Citing Agent
Definition: A Person or an Analytics Tool that has provided the Citing.

Note: Some citings may be performed by analysts, while other citings may be performed by Analytics Tools, for
example based on pattern matching and/or machine learning.

9.2 “Housekeeping” Entities and Facts

This section describes several “housekeeping” facts that facilitate management of multiple TOIF facts during the entire
life cycle of the system under investigation, or multiple systems under investigation within an enterprise.
The key objectives are:

e to facilitate management of multiple TOIF Segment generated during the course of the TOIF project

e to reduce the possibility of errors caused by merging unrelated TOIF Segments

e to reduce the possibility of errors caused by merging a TOIF Segment with an unrelated KDM model

24 Tools Output Integration Framework (TOIF), Version 1.3

The housekeeping information includes the following:
e project identifier (unique project name that corresponds to the system under investigation)
build identifier
name of the generator tool
vendor name of the generator tool
generator tool identifier (unique version of the generator tool)
adaptor identifier (unique name and version of the adaptor tool)
person name responsible to the TOIF Segment
organization responsible for the TOIF Segment
date when the TOIF Segment was produced

Tool

Definition: Any software that can be used to develop, test, analyze, or maintain a computer program or its
documentation.

Note: Defined in Figure 15. UML class diagram Tools

Tool has Description

Tool has_name

Tool has version

Generator

Definition: Any capability to scan source or machine code of the system under investigation and generate
weakness finding reports.

Description: Generator tool usually involves components that perform scanning and parsing of source code, or
perform disassembling of the machine code, implement optimized control and data flow analysis algorithms,
often incorporate extensive information about standard software libraries and components, operating systems
and compilers, as well as a certain knowledge base of what they consider as weaknesses and the corresponding
patterns that can be used to discover at least some of these weaknesses in the code. Effectiveness of Generator
tool is determined by multiple factors.

Synonym: SCA tool
Note: Defined in Figure 15. UML class diagram Tools
Adaptor

Definition: Any capability to transform the proprietary weakness finding report from a particular Generator tool
into a normalized representation determined by the TOIF specification.

Description: The most challenging part of implementing a TOIF adaptor is to provide a mapping from proprietary
weakness type system used by a particular Generator tool into a normalized system of weakness types in a
justifiable and unambiguous way that facilitates further semantic integration of the TOIF finding facts. TOIF
specification uses a formalized 3-level hierarchical system of weakness types that involve a combination of the
Software Fault Patterns (SFP) catalog and the Common Weakness Enumeration (CWE).

Note: Defined in Figure 15. UML class diagram Tools

Adaptor supports Generator
Synonym: Generator requires Adaptor
Adaptor is capable of finding CWE

Synonym: CWE can be reported by Adaptor

Tools Output Integration Framework (TOIF), Version 1.3 25

Orchestration tool

Definition: Any capability to perform the process of running Generator tools and their corresponding TOIF

Adaptors in alignment with the regular build.

Description: The responsibility of the Orchestration tool
selected Generator tools with desired options, aligned

is to make sure that each source file is processed by
with the options used during the regular build, that an

appropriate TOIF Adaptor is called for each Generator tool, that all TOIF output files are appropriately
managed; Similarly for machine code analysis, the TOIF Orchestration tool aligns the process of running the
selected Generator tools and their TOIF Adaptors on all desired machine code files. From the software
assurance evidence perspective, the TOIF Orchestration tool generates the key piece of evidence regarding the
coverage of the source and machine code files, correctness of the weakness findings, etc.

Note: Defined in Figure 15. UML class diagram Tools

Analytics tool

Definition: Any capability to consume one or more TOIF segments and produce one or more TOIF segments.

Description: Analytics tools may include, for example, a

TOIF Integration tool, that consumes partial TOIF

segments and produces a single integrated segment, or a TOIF Citing tool that consumes TOIF integrated

segment and augments it with some elements.

Note: Defined in Figure 15. UML class diagram Tools

Vendor

Definition: An organization that supplies a Tool used in project

General concept: Organization

Note: Defined in Figure 16. UML class diagram Organization

Tool is supplied by Vendor

Synonym: Vendor supplies Tool

Person
Synonym: Individual, human

Note: Defined in Figure 17. UML class diagram Person

Person has name

Person has email address

Person has phone number

Email address

Phone number

Address

Person is employed by Organization as Role

Note: it is assumed that the dynamics of this relationship
that the Person was employed by Organization for the

26

are not relevant to the TOIF. So, this relationship means
duration of the project.

Tools Output Integration Framework (TOIF), Version 1.3

Organization

Description: An entity comprising multiple persons that have a shared goal and is linked to an external
environment.

Description: an Organization involved in project

Note: Defined in Figure 16. UML class diagram Organization

Organization has name

Organization has Description

Organization has address

Organization has email address

Organization has phone number

Organization; is part of QOrganization, as Role

Role

Definition: The position or purpose that someone or something has in a situation, organization, society, or
relationship. Role usually defines a function or part performed in a particular operation or process. In TOIF, this
element describes the nature of involvement of a Person in an Organization, or one Organization in another, or
Person/Organization in a Project.

Note: Defined in Figure 18. UML class diagram Role

Role has name

Role has Description

Project

Description: a TOIF project related to a specific system under investigation. This element is part of TOIF
“housekeeping” elements that describe metadata for managing findings in an enterprise environment.

Note: Defined in Figure 14. UML class diagram Project
Project has name
Project has Description

Note: a separate TOIF Segment may be used to own all “housekeeping” elements and their descriptions.

Person 1is involved in Project as_Role

Organization is involved in Project as Role

Build

Definition: An engineering activity that involves a series of transformations of the “source code” artifacts into
“executables” that can run on a selected computer platform. Build is performed in the context of the system
under investigation. Build is a specific event and the corresponding set of artifacts.

Synonym: TOIFRuild

Note: Defined in Figure 12. UML class diagram Build and in Figure 13. UML class diagram Housekeeping.

Build has name

Tools Output Integration Framework (TOIF), Version 1.3 27

Build has description

Definition: Text that provides a description of the build

Build is related to Project

Build is generated by Person
Build is supervised by Person

Synonym: Person is responsible for TOIF Segment

Build is produced by Organization

Build is owned by Organization

Build is created at Date

Date
Definition: Time stated in terms of year, month, day and possibly also hour, minute.
Note: Date may include a Time Zone.

Synonym: Timestamp

Build is orchestrated by Orchestration tool

Synonym: Orchestration tool generated Build

9.3 Fact-oriented organization of TOIF XMl

This section elaborates the conceptual model and describes the fact-oriented organization of the TOIF XMI. More
specifically, this section describes a certain abstract structure of the TOIF concepts, by observing that all above concepts
of TOIF are either noun concepts (such as Finding), or verb concepts (such as Finding is reported in Build), or take a
specific form of an owned attribute (such as File has Name). Noun concepts will be further referred to as Entities (or
TOIF Entities). Verb concepts will be further referred to as Facts, or Clauses (or TOIF Facts). Few special purpose verb
concepts will be referred to as TOIF Records (or Evidential Records). Finally, Attributes are special verb concepts in the
form of TOIF Entity has something.

Collectively, TOIF Entities and TOIF Facts/Clauses will be referred as TOIF Elements.

The physical structure of the TOIF XMI shall be based on the abstract structure of the TOIF, i.e., shall be structured as a
collection of instances of TOIF Entities, together with their owned Attributes, and instances of TOIF Facts/Clauses and
Records. A TOIFSegment is a physical container for a collection of the instances of TOIF Entities together with their
owned/unique Attributes, and instances of TOIF Facts/Clauses and TOIF Records. When this does not lead to confusion,
the content of a TOIFSegment will be also referred to as “TOIF facts”, meaning the individual noun and verb concepts
that are instances of the TOIF concepts from the TOIF specification, taken as the truth.

First, a Segment is the root element for the TOIF XMI file and the container of the TOIF facts and the corresponding
entities. TOIF segment is be the main unit of information exchange within the TOIF framework. The TOIF Segment
owns the corresponding entities and facts. The concept of element ownership is important from the design perspective of
the XML/XMI. Eventually, ownership corresponds to the nested XMI tags. It is assumed that every TOIF entity and
every TOIF fact is defined by a unique pair of XMI tags. Facts and entities in a TOIF Segment are flat, i.e., a TOIF
Segment is an ordered list of TOIF entities and facts. The following logical constraints apply:

C1: TOIF Segment shall own all TOIF entities that are objects of the TOIF facts owned by that Segment.

C2: TOIF entity that is the object of a TOIF fact shall precede that fact in the TOIF Segment.
C3: TOIF Entity owns all its attributes.

28 Tools Output Integration Framework (TOIF), Version 1.3

The physical organization of the TOIF facts is defined by the following conceptual schema:

Fact
Definition: A general category that includes all verb concepts defined in TOIF, that represent general statements
(assertions) about TOIF entities, except the verb concepts that define owned attributes of TOIF Entities.
Synonym: TOIF Fact
Synonym: Clause
Synonym: TOIF Clause
Description: a TOIFSegment describes instances of TOIF Facts. TOIF distinguishes Facts and Evidential Records
where a Fact provides a statement related to both basic and housekeeping TOIF Entities, and Evidential Record
provides a statement related to the build (orchestration) environment.
Note: Defined in Figure 19. UML class diagram Abstract Structure
Note: Concrete facts are enumerated in Figure 22. UML class diagram Basic Facts 1, Figure 23. UML class
diagram Basic Facts 2, Figure 24. UML class diagram Basic Facts 3, Figure 25. UML class diagram Basic Facts 4
and Figure 28. UML class diagram Housekeeping Facts 1, Figure 29. UML class diagram Housekeeping Facts 2,
Figure 30. UML class diagram Housekeeping Facts 3.

Entity

Definition: A general category that includes all noun concepts defined in TOIF, except ones that define owned
attributes of TOIF Entities.

Synonym: a TOIF entity
Description: a TOIFSegment describes instances of TOIF Facts that reference TOIF Entities.

Note: TOIF specification describes a number of noun concepts referred to as Entity. TOIF segment enumerates
instances of Entity as individual noun concept. Introduction of an individual Entity is considered as the so-
called existential fact.

Note: Concrete noun concepts that correspond to Entity in TOIF specification are enumerated in Figure 21. UML
class diagram Basic entities and Figure 27. UML class diagram Housekeeping entities.

Entity is subject of Fact

Synonym: Fact adds information about Entity
Entity is object of Fact

Synonym: Fact references Entity
Attribute

Definition: A general category of noun concepts and the corresponding role concepts in the form of X has Y that
describe owned attributes of TOIF Entities.

Description: a TOIF attribute
General concept: Fact
Possibility: an Attribute is owned by exactly one Entity

Note: Defined in Figure 26. UML class diagram Basic Attributes and Figure 31. UML class diagram
Housekeeping Attributes.

Attribute is an attribute of Entity

Synonym: Entity owns Attribute

Tools Output Integration Framework (TOIF), Version 1.3 29

Evidential Record

Definition: A general category of verb concepts that represent evidential record related to the build (orchestration)
environment of the system under assessment rather that generic statements about TOIF Basic or Housekeeping

Entities.

Description: A general category that includes few verb concepts defined in TOIF that have a form of a TOIF fact
with one or more additional attributes.

Synonym: TOIF Record

Synonym: Record

Note: Defined in Figure 19. UML class diagram Abstract Structure

Note: Concrete record are enumerated in Figure 32 UML class diagram EvidentialRecord

Example: BuildRecord, CompileRecord, GeneratorRecord

Build Record

Definition: An evidential record that captures the total number of findings by a given SCA tool in a given file in a
given build. Build Record is part of the mechanism that supports “negative claims” — understanding what
weaknesses are absent in the system under assessment (or in one of its components). The other part of this
mechanism is the access to full list of weaknesses that a given SCA tool is capable of finding (the so-called

adaptor api).

General concept: Evidential Record

Compile Record

Definition: An evidential record that captures the options used to compile a given file in a given build. Compile
Record together with Generator Record can be used to validate the orchestration of multiple tools for a given

build.

General concept: Evidential Record

Generator Record

Definition: An evidential record that captures the options of a given SCA tool used to analyze a given file in a
given build. Generator Record together with Compile Record can be used to validate the orchestration of
multiple tools for a given build. Generator Record also has a role in “negative claims” as the options used to
analyze a given file by a given SCA tool may limit the types of weaknesses being reported for that file.

General concept: Evidential Record

TOIF Segment

Synonym: Segment

Definition: A container for one or more instances of TOIF elements with a shared purpose.

Note: TOIF describes a logical model — a network of entities linked by named relationships. Segment is a physical
unit of exchange for some cohesive collection of elements and corresponding relationships.

TOIF Segment has_name

TOIF Segment has Description

30 Tools Output Integration Framework (TOIF), Version 1.3

Note: Defined in Figure 19. UML class diagram Abstract Structure

TOIF Segment owns_Fact

TOIF Segment owns Entity

Necessity: TOIF Segment owns each Entity that is referenced by Fact that is
owned by the TOIF Segment

Tools Output Integration Framework (TOIF), Version 1.3

31

32

This page intentionally left blank.

Tools Output Integration Framework (TOIF), Version 1.3

10 TOIF Logical model

This section describes the MOF/UML metamodel for TOIF XMI which is developed as an intermediate step from the
TOIF Conceptual Model defined in SBVR Structured English as a technology-independent vocabulary for the TOIF
Ecosystem towards the TOIF XMI schema. The TOIF MOF/UML metamodel is consistent with the TOIF Conceptual
Model. The TOIF XMI schema is derived from the TOIF MOF/UML model by applying the MOF/XMI rules.
The TOIF UML model consists of a single UML package and includes 30 class diagrams to represent the following:

e TOIF basic elements

e TOIF housekeeping elements

e TOIF fact-oriented structure

The TOIF UML model is structured as an explicit set of classes corresponding to the conceptual schema, where each
verb concept is represented as a UML association class, and each TOIF attribute is implemented as an owned class,
rather than a UML attribute. This determines a certain “triple flavor” of the TOIF XMI data, and facilitates the potential
use of other technology spaces, including reasoning tools to handle TOIF data.

The rest of this section has the following organization. Section 10.1 presents 7 UML class diagrams that describe the
basic elements of the TOIF XMI, the logical entities and fact types. Section 10.2 presents 8 UML class diagrams that
describe the housekeeping elements of the TOIF XML. Section 10.3 presents 8 UML class diagram that describes the
physical structure of the TOIF XMI.

10.1 The basic elements of the TOIF XML

This section presents 9 UML class diagrams that represent the basic entities and facts of the TOIF XMI: Finding,
Weakness Type Identifier, Code Location, File, Directory, Semantic Statement and Semantic Data.

10.1.1 Finding Class Diagram

This section describes the UML representation of the Finding concept and the corresponding facts that fully describe the
finding through several clauses where the finding is the subject and other concepts of TOIF are objects of the clause.

10.1.1.1 Finding Class

The Finding class is the key class of TOIF. Instances of this class represent individual weakness findings reported by
static analysis tools for the code of the system under investigation. The Finding class only has a unique id, it does not
own any attributes, and is defined through connections to other instances of TOIF through association classes, such as,
for example, FindingldefinedAsCWE, which represents a verb concept “Finding is represented as CWE” and associated
the instance of Finding to an instance of a class CWElIdentifier. An instance of Finding is essentially a “hub” that joins
multiple related clauses, each providing a facet of information about the finding.

The superclass BasicEntity is defined in Section 10.3.3 Basic Entities Class Diagram

Superclass
BasicEntity
Associations
criticality:Criticality[0..1] Owned attribute that specifies criticality of the finding in terms of
the impact that it may cause.
confidence:Confidence[0..1] Owned attribute that specifies the confidence in this finding claim.
Constraints

1. Each Finding instance shall be the subject of at least one FindinglsReportedAsType clause.
2. Each Finding instance shall be the subject of at least one FindingIsReportedByGenerator clause.

3. Each Finding instance shall be the subject of exactly one FindinglsDefined AsSCWE clause.

Tools Output Integration Framework (TOIF), Version 1.3 33

4. Each Finding instance shall be the subject of at least one FindinglsProducedByAdaptor clause.
5. Each Finding instance shall be the subject of at least one FindingHasCodeLocation clause.

6. Each Finding instance shall be the subject of at least one FindingIsProducedInBuild clause.

package toif[ﬂ Finding]

WeaknessDescription Generator
Description |+text i CodeLocation
+text : String |1
+type |1 +ganaramr'[1
FindinglsReportedAsType | IF todBy +locaton]1
. +finding [1 +finding |1
Finding +inding F CodelLocati

0..
+evel : Integer 1

Criticality

D1)
+evel : Integer B *inding F ile
1 I—:I
+inding
— | 1

+inding |1 +inding |1
ing | g’[+ile |1
FindinglsDefined AsCWE FindinglsProducedByAdaptor A

+adaptor |1
+owe |1 Adaptor

CWEldentifier

+build | 1
Build

Figure 3. UML class diagram Finding

Example

This example illustrates a single Finding and a complete set of related clauses. Note, that all finding-related clauses are
mandatory, except for the FindingReferencesFile. This clause is optional, since the same information is provided by the
pair of mandatory clauses FindingHasCodeLocation and CodeLocationReferencesFile.

<fact xmi:type="toif:Finding” xmi:id="f0001"/>

<fact xmi:type="toif:Codelocation” xmi:id="1loclQ0”>
<linenumber linenumber="1856"/>
</fact>

<fact xmi:type="toif:FindingIlsReportedAsType”
finding="£0001" type="wd tl 1”/>

<fact xmi:type="toif:FindingIsReportedByGenerator”
finding="f0001” generator="rats 2.3"/>

<fact xmi:type="toif:FindinglsDefinedAsCWE”
finding="£0001” cwe="CWE-561"/>

<fact xmi:type="toif:FindingIsProducedByAdaptor”
finding="£f0001” adaptor="rats toif adaptor 1.1”/>

<fact xmi:type="toif:FindingIsRelatedToBuild”
finding="£0001" build="b1020171330"/>

<fact xmi:type="toif:FindingReferencesFile”
finding="f0001” file="f10"/>

<fact xmi:type="toif:FindingHasCodeLocation”
finding="£f0001” location="1ocl0”/>

34 Tools Output Integration Framework (TOIF), Version 1.3

<fact xmi:type="toif:WeaknessDescription” xmi:id="wd tl 1”>
<description text="Weakness that may lead to severe exposure”/>
</fact>
<fact xmi:type="toif:CWEIdentifier” xmi:id="CWE-561">
<description text="xxxxxx"/>
</fact>
<fact xmi:type="toif:Generator” xmi:id="rats 2.3">
<name name="RATS”/>
<description text="xxxxxx"/>
<version version="2.3"/>
</fact>
<fact xmi:type="toif:Adaptor” xmi:id="rats-toif-adaptor 1.17">
<name name="RATS-TOIF”/>
<description text="xxxxxx"”/>
<version version="1.1"/>
</fact>
<fact xmi:type="toif:Build” xmi:id="b1020171330">
<description text="xxxxxx"”/>
</fact>
<fact xmi:type="toif:CodelLocationReferencesFile”
finding="1locl0” file="£10"/>

<fact xmi:type="toif:File” xmi:id="£f10">
<name name="main.c”/>
</fact>

Example
This example illustrates a single Finding with attributes. Other clauses are assumed to be refer to the previous example.
<fact xmi:type="toif:Finding” xmi:id="£0001">
<confidence xmi:type="toif:Confidence” xmi:id="co f0001” level=90/>
<criticality xmi:type="toif:Criticality” xmi:id="cr f0001” level=50/>
</fact>

10.1.1.2 FindinglsReportedAsType Class
The FindinglsReportedAsType class represents a verb concept “Finding is reported as Weakness Description”. This is an

important clause that associates an instance of a Finding class to an instance of WeaknessDescription, which is a
proprietary weakness type provided by a static code analysis tool.

When one instance of Finding is a subject of more than one FindinglsReportedAsType clauses, all corresponding
descriptions are assumed to be jointly describing the finding, however no particular order is assumed. This may be
utilized by some Adaptor tools to split proprietary reports into parts, some of which may be shared across findings, while
others are specific to an individual finding.

Superclass
FindingFact
Associations
type: WeaknessDescription[1] Represents a proprietary weakness type reported by a static
code analysis tool (either specific to the weakness type, or
specific to the finding).
finding: Finding[1] Weakness that has been discovered in the code of the system
under investigation.
Example

Tools Output Integration Framework (TOIF), Version 1.3 35

For the basic example, see 10.1.1.1

The following example illustrates multiple FindingIsReportedAsType clauses for the same subject, described below as
xmi:id “f0001”. Note, that several mandatory clauses for the finding are not shown. Note, that the generic
WeaknessDescription is shared by two findings “f0001” and “f0002”.

<fact xmi:type="toif:Finding” xmi:id="f0001"/>

<fact xmi:type="toif:FindingIsReportedAsType”
finding="£f0001" type="wd tl 1 generic”/>

<fact xmi:type="toif:FindingIsReportedAsType”
finding="f0001” type="wd tl 1 concrete”/>

<fact xmi:type="toif:WeaknessDescription” xmi:id="wd tl 1 generic”>
<description text="Unprotected global may lead to severe exposure”/>
</fact>

<fact xmi:type="toif:WeaknessDescription” xmi:id="wd tl 1 concrete”>
<description text="unprotected global X”/>
</fact>

<fact xmi:type="toif:Finding” xmi:id="f0002"/>
<fact xmi:type="toif:FindingIsReportedAsType”
finding="£f0002"” type="wd tl 1 generic”/>

10.1.1.3 FindinglsReportedByGenerator Class
The FindinglsReportedByGenerator class represents a verb concept “Finding is reported by Generator”. This clause

provides an association between a weakness finding and the static code analysis tool that has reported this finding. The
Generator is represented as an instance of the Generator class, including specific version of the Generator used in the
current Build. The clauses represented by TOIF can address situations where multiple versions of Generator were used in
the same build, processing same or different files, and in these situations each instance of Finding is associated with a
specific instance of Generator, where some of these instances will have the same name, and possibly description, but
different version numbers. For more details, see the description of the Generator class.

Situations where one instance of Finding is a subject of more than one FindinglsReportedByGenerator clauses, may
occur after merging multiple TOIFSegment in a TOIF repository in which case it may be beneficial to further normalize
similar findings reported by multiple version of the same Generator tool by merging them into a single Finding instance.

Superclass
FindingFact
Associations
generator:Generator[1] Generator tool that discovered weakness.
finding: Finding[1] Weakness that has been discovered in the code of the system under
investigation.
Example
See 10.1.1.1

36 Tools Output Integration Framework (TOIF), Version 1.3

10.1.1.4 FindinglsDefinedAsCWE Class
The FindinglsDefinedAsCWE class represents a verb concept “Finding is defined as CWE”. This clause provides an

association between a weakness finding and the normalized weakness type identifier for the weakness — a Common
Weakness Enumerated identifier, represented by an instance of CWElIdentifier class.

Superclass
FindingFact
Associations
cwe:CWElIdentifier[1] A weakness type defined by the Common Weakness Enumeration (CWE).
Finding: Finding[1] Weakness that has been discovered in the code of the system under
investigation
Constraints

1. Each Finding shall be the subject of exactly one FindinglsDefinedAsCWE clause
Example

See 10.1.1.1

10.1.1.5 FindinglsProducedByAdaptor Class
The FindinglsProducedByAdaptor class represents a verb concept “Finding is produced by Adaptor”. This clause

provides a direct association between a weakness finding and the Adaptor tool that transformed the original proprietary
finding reported by the Generator into a normalized format and a normalized weakness type identifier. For more details,
see description of the Adaptor class.

Situations where one instance of Finding is a subject of more than one FindinglsProducedByAdaptor clauses, may occur
after merging multiple TOIFSegment in a TOIF repository in which case it may be beneficial to further normalize similar
findings reported by multiple version of the same Generator tool and/or multiple versions of the Adaptor tools for the
Generator tool by merging them into a single Finding instance.

In a situation when some static analysis tool provides full native support to TOIF, an Adaptor element is still required.

Superclass
FindingFact
Associations
adaptor:Adaptor[1] Instance of the Adaptor tool that performed normalization of the
original proprietary tool weakness report.
finding: Finding[1] Weakness that has been discovered in the code of the system
under investigation.
Example
See 10.1.1.1

Tools Output Integration Framework (TOIF), Version 1.3 37

10.1.1.6 FindingHasCodeLocation Class
The FindingHasCodeLocation class represents a verb concept “Finding has Code Location”. This clause provides an

association between a weakness finding and the specific location in the code of the system under investigation, where the
original finding was reported by some Generator tool. For more details, see description of the CodeLocation class.

When one instance of Finding is a subject of more than one FindingHasCodeLocation clauses, all corresponding
locations are assumed to be jointly describing the finding, however no particular order is assumed. This may be utilized
by some Adaptor tools to split proprietary reports involves multiple code locations. For a more semantically accurate
description, see descriptions of semantic facts (Semantic Statement and Semantic Data class diagrams).

Superclass
FindingFact
Associations

location:CodeLocation[1]

finding: Finding[1]

Example

See 10.1.1.1

Location in the code of a system under investigation
where weakness is discovered.

Weakness that has been discovered in the code of the
system under investigation.

10.1.1.7 FindingReferencesFile Class
The FindingReferencesFile class represents a verb concept “Finding references File”. This clause provides a direct

association between a weakness finding and the specific file of the system under investigation, where the original finding
was reported by the Generator. For more details, see description of the CodeLocation and File classes.

This is an optional clause, since CodeLocation is already referencing a File.

Superclass
FindingFact
Associations

file:File[1]

finding: Finding[1]

Example

See 10.1.1.1

38

File of the system under investigation in which the original
weakness has been reported.

Weakness that has been discovered in the code of the system
under investigation.

Tools Output Integration Framework (TOIF), Version 1.3

10.1.1.8 FindinglsReportedinBuild Class

The FindingIsReportedInBuild class represents a verb concept “Finding is reported in Build”. This clause provides a
direct association between a weakness finding and the specific Build of the system under investigation, when the original
finding was reported by some Generator. For more details, see description of the Build class.

Situations where one instance of Finding is a subject of more than one FindinglsReportedInBuild clauses, may occur
after merging multiple TOIFSegment in a TOIF repository in which case it may be beneficial to further normalize similar
findings reported in multiple builds by merging them into a single instance.

Superclass
FindingFact
Associations
build: Build[1] TOIF build has a name and description and is related to the project.
finding: Finding[1] Weakness that has been discovered in the code of the system under investigation.
Example

See 10.1.1.1

10.1.1.9 WeaknessDescription Class

WeaknessDescription represents the proprietary description of the weakness type generated by the static code analysis
tool. WeaknessDescription may be shared by multiple findings of the same type, or may be used to capture specific
information about a particular finding generated by the static analysis tool.

Superclass
BasicEntity
Associations
text:Description[0..1] Owned attribute that provides the text of the proprietary
weakness description.
Example
See 10.1.1.1

10.1.2 WeaknessType Class Diagram

This section describes the UML representation of the Weakness Type Identifier concept and the corresponding facts.

Tools Output Integration Framework (TOIF), Version 1.3 39

package toif[ﬂ WeaknessType]/J
+
WeaknessTypeldentifier name, -
1 +name : String
+descripti
PO I~ Deseription
0.1
+text . String
Fas
SFPCluster SFPidentifier CWEldentifier
+sfpcluster +sfp +sfp +owe
SFPBelongsToCluster |7 CWEBelongsToSFP

Figure 4. UML class diagram WeaknessType

10.1.2.1 WeaknessTypeldentifier Class (abstract)

WeaknessTypeldentifier is one of the key concepts in TOIF since it provides the means to achieve unique identification
of weakness finding reports through a normalized standardized type identifier. The WeaknessTypeldentifier in TOIF is a
3-level hierarchical structure consisting of the so-called SFP Cluster at the top, the SFP Identifier in the middle and the
CWE identifier at the bottom. The use of Software Fault Patterns (SFP) catalog to augment CWE provides the means to
overcome semantic ambiguity of CWE. Although TOIF uses the CWE identifiers, the allocation of such identifiers shall
be coordinated with the mappings described in the SFP catalog, including the gaps and ambiguities. This strategy
represents a unique formalized approach to normalization of (a discernable subset of) code weaknesses that is also
aligned with the automated generation of test cases from the same set of formalizations. On the other hand, TOIF
recognizes the importance of using CWE identifiers as the basis for the normalization.

Superclass
BasicEntity
Associations
name:Name[1] Owned attribute that specifies the name of weakness type
identifier.
description:Description[0..1] Owned attribute that provides the text description of the
normalized weakness type.
Example

<fact xmi:type="toif:CWEIdentifier” xmi:id="CWE-561">
<description text="xxxxxx”/>

40 Tools Output Integration Framework (TOIF), Version 1.3

</fact>

<fact xmi:type="toif:CWEBelongsToSFP”
cwe="CWE-561" sfp=“SFP-8"/>

<fact xmi:type="toif:SFPBelongsToCluster”
sfp="SFP-8” cluster=“Authentication”/>

<fact xmi:type="toif:SFPIdentifier” xmi:id="SFP-8">

<name name=“es-ef-pi-eight”/>

<description description=“this is the description that usually comes with
it”/>

<fact xmi:type="toif:SFPCluster” xmi:id="”Authentication”>
<name name=“Authentication Cluster”/>
<description description=“Description of the cluster”/>
</fact>

10.1.2.2 CWElIdentifier Class
CWEIdentifier class represents the CWE Identifier concept.
Superclass
WeaknessTypeldentifier
Example

See 10.1.2.1

10.1.2.3 SFPIldentifier Class
SFPIdentifier class represents the SFP Identifier concept.
Superclass
WeaknessTypeldentifier
Example

See 10.1.2.1

10.1.2.4 SFPCluster Class
SFPCluster class represents the SFP Cluster concept.
Superclass
WeaknessTypeldentifier
Example

See 10.1.2.1

10.1.2.5 CWEBelongsToSFP Class
CWEBelongsToSFP class represents the verb concept CWE belongs to SFP.

Superclass

WeaknessTypeFact

Tools Output Integration Framework (TOIF), Version 1.3

Associations
cwe:CWElIdentifier[1] A weakness type defined by the Common Weakness Enumeration (CWE)
sfp: SFPIdentifier[1] SFP Identifier which formalizes the mapping to the CWE identifier of the clause
Constraints
1. Each CWElIdentifier belongs to exactly one SFPIdentifier
Example

See 10.1.2.1

10.1.2.6 SFPBelongsToCluster Class
SFPBelongsToSCluster class represents the verb concept SFP belongs to Cluster.

Superclass
WeaknessTypeFact
Associations
sfp:SFPIdentifier[1] SFP Identifier that is the subject of the clause
cluster: SFPCluster[1] SFP Cluster to which the SFP Identifier belongs
Constraints
1. Each SFPIdentifier belongs to exactly one SFPCluster
Example
See 10.1.2.1

10.1.3 Weakness Class Diagram

This section describes the UML representation of Weakness concept and the corresponding facts.

42 Tools Output Integration Framework (TOIF), Version 1.3

package toif[ﬂ Weaknessu

CWEIldentifier
+owe |1 CodeLocation
+codeLocation |1

|WnaknnaslsbaﬂnsdhscWE |

+weakness |1

Description |+description Weakness wealness AIWQﬂmaansCodoLunﬂ‘lion|
+ext : String [i0..1 !
re— +confidence
Hevel : Integer 0-1 +weakness
3 WeaknessReferencesFile |
Criticality [+criticality
Hevel: Integer |0..1
+ile |1
isupporting findings File
+findingf1..*
Finding

Figure 5. UML class diagram Weakness

10.1.3.1 Weakness Class

Weakness class represents the Weakness concept. Objects of this class are created by TOIF Analytics Tools, and not by
the TOIF Adaptor Tools as are the Finding objects. A Weakness object represents a unique weakness in the code of
system under assessment, as supported by one or more Findings. This class supports integration and analysis of multiple
TOIF reports and serves as the subject for additional statements, mainly the criticality, confidence, and citing statements.
Confidence and Criticality statements involve owned attributes of the Weakness class, and Citing statements involve
additional instances of a Citing class, described in section 10.1.4.

The Weakness class is an important part of the TOIF interface for the consumer tools and integration tools that can be
used for vulnerability management purposes. Property Finding is provided for illustration purposes only, as it is defined
as derived, and the corresponding association is non-navigable in both directions. Relation between Weakness and its
supporting Findings is dynamic: while Finding object is related to a particular Build, a Weakness is related to the entire
Project, but may have a certain range of builds during which it was present, starting from the build where one or more
tools have reported this weakness until the build where none of the tools were any longer reporting this weakness either
because it was fixed or for other reasons.

Superclass
BasicEntity
Constraints
1. Each Weakness shall be the subject of exactly one WeaknessIsDefined AsSCWE clause

2. Each Weakness shall be the subject of exactly one WeaknessHasCodeLocation clause

Associations
description:Description[0..1] Owned attribute that provides an informal text description of the
weakness.
criticality:Criticality[0..1] Owned attribute that specifies criticality of the weakness in terms

of the impact that it may cause.

Tools Output Integration Framework (TOIF), Version 1.3 43

confidence:Confidence[0..1] Owned attribute that specifies the confidence in this weakness
claim.

Example

<fact xmi:type="toif:Weakness” xmi:id="w0001"”>
<criticality xmi:type="Criticality” level=80 />
</fact>
<fact xmi:type="toif:WeaknessHasCodeLocation”
finding="w0001” location="1locl0”/>

<fact xmi:type="toif:WeaknessHasCodeLocation”
finding="w0001” location="locl0”/>

<fact xmi:type="toif:CodelLocation” xmi:id="1locl0”>
<linenumber linenumber="1856"/>

</fact>

<fact xmi:type="toif:Finding” xmi:id="£f0001"/>

For the facts related to the finding id="“f0001" refer to example in Section 10.1.1.1

10.1.3.2 WeaknesslsDefinedAsCWE Class

CodeLocationReferencesFile class represents the verb concept “Code Location references File”.

Superclass
WeaknessFact
Associations
location:CodeLocation[1] Code Location that is the subject of the clause
file: File[1] File that is referenced by the Code Location of the clause
Example

See 10.1.3.1

10.1.3.3 WeaknessHasCodeLocation Class

CodeLocationReferencesFile class represents the verb concept “Code Location references File”.

Superclass
WeaknessFact
Associations

location:CodeLocation[1] Code Location that is the subject of the clause

44 Tools Output Integration Framework (TOIF), Version 1.3

file: File[1] File that is referenced by the Code Location of the clause

Example

See 10.1.3.1

10.1.3.4 WeaknessReferencesFile Class

CodeLocationReferencesFile class represents the verb concept “Code Location references File”.

Superclass
WeaknessFact
Associations
location:CodeLocation[1] Code Location that is the subject of the clause
file: File[1] File that is referenced by the Code Location of the clause
Example

See 10.1.3.1

10.1.4 Citing Class Diagram

This section describes the UML representation of Citing concept and the corresponding facts.

Tools Output Integration Framework (TOIF), Version 1.3

45

package toif[ﬁ Citjng’]J
+weakness |1
|Ciﬂnngnn:uWuknm |
+citing | 1
Citing
CodePattern |+pattern
+text : String 0.1
D“:ﬂpfbn dsecription +confidence | Confidence
gy .1 0..1 [Hevel: Integer
+verdict
Verdict 7
+isValidWeakness : Boolean +citing |1 +citing |1
‘cmnghﬁ."' e ‘Giﬂnglsﬂonllahdayhgsn‘l ‘
+agent (1
+date |1 CitingAgent
=
Analytics Tool | | Person |

Figure 6. UML class diagram Citing

10.1.4.1 Citing Class

Citing class represents the Citing concept. Objects of this class are created by TOIF Analytics Tools. A Citing object
supplies additional statements to some Weakness object, mainly the verdict, confidence as well as some audit trail. This
class is an important part of the TOIF interface for the consumer tools and integration tools that can be used for
vulnerability management purposes. CodePattern element can be used to group related Weaknesses that have the same
CWE. This mechanism can use used by TOIF Analytics tools to identify the characteristics of a Weakness, and then
identify other Weaknesses that have the same characteristics.

Superclass
BasicEntity
Constraints

1. Each Citing shall be the subject of exactly one CitingReferencesWeakness clause.

Associations
description:Description[0..1] Owned attribute that provides than informal text description of the
weakness.
verdict:Verdict Owned attribute that specifies criticality of the weakness in terms
of the impact that it may cause.
confidence