
Transaction Service Specification

September 2003
Version 1.4

formal/03-09-02

Copyright © 1997 BEA Systems
Copyright © 1994, 1995, 1996 Groupe Bull
Copyright © 1994, 1995, 1996 IBM
Copyright © 1994, 1995, 1996 ICL plc
Copyright © 1994, 1995, 1996 Iona Technologies Ltd.
Copyright © 1994, 1995, 1996 Novell, Inc.
Copyright © 2003, Object Management Group, Inc.
Copyright © 1995, 1996 Sun Microsystems, Inc.
Copyright © 1994, 1995, 1996 SunSoft, Inc.
Copyright © 1994, 1995, 1996 Tandem Computers, Inc.
Copyright © 1994, 1995, 1996 Tivoli Systems, Inc.
Copyright © 1994, 1995, 1996 Transarc Corporation

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
1. Overview . 1-1
1.1 Introduction . 1-1
1.2 Service Description . 1-2

1.2.1 Overview of Transactions 1-2
1.2.2 Transactional Applications 1-3
1.2.3 Definitions . 1-3
1.2.4 Transaction Service Functionality 1-6
1.2.5 Principles of Function, Design, and Performance 1-8

1.3 Service Architecture. 1-12
1.3.1 Typical Usage . 1-13
1.3.2 Transaction Context . 1-13
1.3.3 Context Management . 1-14
1.3.4 Datatypes . 1-14
1.3.5 Structures . 1-16
1.3.6 Exceptions . 1-16

2. Transaction Service Interfaces . 2-1
2.1 Introduction . 2-2
2.2 Current Interface . 2-2

2.2.1 begin . 2-3
2.2.2 commit . 2-3
2.2.3 rollback. 2-3
2.2.4 rollback_only . 2-4
2.2.5 get_status . 2-4
2.2.6 get_transaction_name . 2-4
2.2.7 set_timeout . 2-4
September 2003 Transaction Service, v1.4 i

Contents
2.2.8 get_timeout. 2-5
2.2.9 get_control . 2-5
2.2.10 suspend . 2-5
2.2.11 resume . 2-5

2.3 TransactionFactory Interface . 2-5
2.3.1 create . 2-6
2.3.2 recreate . 2-6

2.4 Control Interface . 2-6
2.4.1 get_terminator . 2-7
2.4.2 get_coordinator. 2-7

2.5 Terminator Interface. 2-7
2.5.1 commit . 2-8
2.5.2 rollback. 2-8

2.6 Coordinator Interface . 2-8
2.6.1 get_status . 2-9
2.6.2 get_parent_status . 2-10
2.6.3 get_top_level_status . 2-10
2.6.4 is_same_transaction . 2-10
2.6.5 is_ancestor_transaction. 2-11
2.6.6 is_descendant_transaction 2-11
2.6.7 is_related_transaction . 2-11
2.6.8 is_top_level_transaction 2-11
2.6.9 hash_transaction . 2-11
2.6.10 hash_top_level_tran . 2-11
2.6.11 register_resource . 2-11
2.6.12 register_synchronization. 2-12
2.6.13 register_subtran_aware 2-12
2.6.14 rollback_only . 2-13
2.6.15 get_transaction_name . 2-13
2.6.16 create_subtransaction . 2-13
2.6.17 get_txcontext . 2-13

2.7 Recovery Coordinator Interface . 2-13
2.7.1 replay_completion . 2-14

2.8 Resource Interface . 2-14
2.8.1 prepare . 2-14
2.8.2 rollback. 2-15
2.8.3 commit . 2-15
2.8.4 commit_one_phase . 2-16
2.8.5 forget . 2-16

2.9 Synchronization Interface . 2-16
ii Transaction Service, v1.4 September 2003

Contents
2.9.1 before_completion . 2-17
2.9.2 after_completion. 2-17

2.10 Subtransaction Aware Resource Interface 2-17
2.10.1 commit_subtransaction 2-18
2.10.2 rollback_subtransaction 2-18

2.11 .
TransactionalObject Interface . 2-18

2.12 Policy Interfaces. 2-18
2.12.1 Creating Transactional Object References 2-23
2.12.2 OTSPolicy carried by the Transaction

Service objects . 2-25
2.13 The User’s View. 2-26

2.13.1 Application Programming Models 2-26
2.13.2 Interfaces . 2-27
2.13.3 Checked Transaction Behavior 2-28
2.13.4 X/Open Checked Transactions 2-28
2.13.5 Implementing a Transactional Client: Heuristic

Completions . 2-29
2.13.6 Implementing a Recoverable Server 2-30
2.13.7 Application Portability 2-31
2.13.8 Distributed Transactions 2-31
2.13.9 Applications Using Both Checked and

Unchecked Services . 2-31
2.13.10 Examples . 2-32
2.13.11 Model Interoperability 2-35
2.13.12 Failure Models . 2-38

2.14 The Implementers’ View . 2-39
2.14.1 Transaction Service Protocols 2-40
2.14.2 ORB/TS Implementation Considerations 2-51
2.14.3 Model Interoperability 2-62

Appendix A - Complete OMG IDL A-1

Appendix B - Relationship to TP Standards B-1

Appendix C - Conformance Requirements C-1
September 2003 Transaction Service, v1.4 iii

Contents
iv Transaction Service, v1.4 September 2003

Preface
About This Document
Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group
The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The Open Group
The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.
September 2003 Transaction Service, v1.4 v

The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

• Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

• Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

• Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

• Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating
certification programs and has extensive experience developing and facilitating
industry adoption of test suites used to validate conformance to an open standard or
specification. The Open Group portfolio of test suites includes tests for CORBA, the
Single UNIX Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX
Realtime, Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are
essential for proper development and maintenance of standards-based products,
ensuring conformance of products to industry-standard APIs, applications portability,
and interoperability. In-depth testing identifies defects at the earliest possible point in
the development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

Intended Audience
The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following section, “Need
for Object Services.”

Need for Object Services
To understand how Object Services benefit all computer vendors and users, it is helpful
to understand their context within OMG’s vision of object management. The key to
understanding the structure of the architecture is the Reference Model, which consists
of the following components:

• Object Request Broker, which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in CORBA: Common
Object Request Broker Architecture and Specification.
vi Transaction Service, v1.4 September 2003

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains.

• Common Facilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.

The Object Request Broker, then, is the core of the Reference Model. Nevertheless, an
Object Request Broker alone cannot enable interoperability at the application semantic
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication between
subscribers. Meaningful, productive communication depends on additional interfaces,
protocols, and policies that are agreed upon outside the telephone system, such as
telephones, modems and directory services. This is equivalent to the role of Object
Services.

What Is an Object Service Specification?
A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is the
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model. The
OMG Object Model is based on objects, operations, types, and subtyping. It provides a
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to the Object Management Architecture Guide).

Associated OMG Documents
The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA Platform Technologies
• CORBA: Common Object Request Broker Architecture and Specification contains

the architecture and specifications for the Object Request Broker.
• CORBA Languages, a collection of language mapping specifications. See the

individual language mapping specifications.
• CORBA Services, a collection of specifications for OMG’s Object Services. See

the individual service specifications.
• CORBA Facilities, a collection of specifications for OMG’s Common Facilities.

See the individual facility specifications.
September 2003 Transaction Service: Associated OMG Documents vii

• CORBA Domain Technologies
• CORBA Manufacturing, a collection of specifications that relate to the

manufacturing industry. This group of specifications defines standardized object-
oriented interfaces between related services and functions.

• CORBA Healthcare, a collection of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important application
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

Contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue

Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org

Service Design Principles

Build on CORBA Concepts
The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation
• Object references are typed by interfaces
• Clients depend on interfaces, not implementations
• Use of multiple inheritance of interfaces
• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:
viii Transaction Service, v1.4 September 2003

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use of
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the HP-
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10).

Basic, Flexible Services
The services are designed to do one thing well and are only as complicated as they
need to be. Individual services are by themselves relatively simple yet they can, by
virtue of their structuring as objects, be combined together in interesting and powerful
ways.

For example, the event and life cycle services, plus a future relationship service, may
play together to support graphs of objects. Object graphs commonly occur in the real
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Generic Services
Services are designed to be generic in that they do not depend on the type of the client
object nor, in general, on the type of data passed in requests. For example, the event
channel interfaces accept event data of any type. Clients of the service can dynamically
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations
In general the services are structured as CORBA objects with OMG IDL interfaces that
can be accessed locally or remotely and which can have local library or remote server
styles of implementations. This allows considerable flexibility as regards the location
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic
Service interfaces are designed to allow a wide range of implementation approaches
depending on the quality of service required in a particular environment. For example,
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the
interfaces to the event channel are the same for all implementations and all clients.
September 2003 Transaction Service: Service Design Principles ix

Because rules are not wired into a complex type hierarchy, developers can select
particular implementations as building blocks and easily combine them with other
components.

Objects Often Conspire in a Service
Services are typically decomposed into several distinct interfaces that provide different
views for different kinds of clients of the service. For example, the Event Service is
composed of PushConsumer, PullSupplier and EventChannel interfaces. This
simplifies the way in which a particular client uses a service.

A particular service implementation can support the constituent interfaces as a single
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference to
communicate with each distinct service function. Conceptually, these “internal” objects
conspire to provide the complete service.

As an example, in the Event Service an event channel can provide both PushConsumer
and EventChannel interfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implements
either the PushConsumer and EventChannel interface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interfaces
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Using
the event service again as an example, when an event consumer is connected with an
event channel, a new object is created that supports the PullSupplier interface. An
object reference to this object is returned to the event consumer which can then request
events by invoking the appropriate operation on the new “supplier” object. Because
each client uses a different object reference to interact with the event channel, the
event channel can keep track of and manage multiple simultaneous clients. An event
channel as a collection of objects conspiring to manage multiple simultaneous
consumer clients.

Use of Callback Interfaces
Services often employ callback interfaces. Callback interfaces are interfaces that a
client object is required to support to enable a service to call back to it to invoke some
operation. The callback may be, for example, to pass back data asynchronously to a
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operation
invocation (object reference) mechanisms.
x Transaction Service, v1.4 September 2003

Assume No Global Identifier Spaces
Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some context.
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique within
its scope but should not make any other assumption.

Finding a Service is Orthogonal to Using It
Finding a service is at a higher level and orthogonal to using a service. These services
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured as
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated to be
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes
Throughout the services, exceptions are used exclusively for handling exceptional
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is the use of a DONE return code to indicate iteration
completion.

Explicit Versus Implicit Operations
Operations are always explicit rather than implied (e.g., by a flag passed as a
parameter value to some “umbrella” operation). In other words, there is always a
distinct operation corresponding to each distinct function of a service.

Use of Interface Inheritance
Interface inheritance (subtyping) is used whenever one can imagine that client code
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clients
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.
September 2003 Transaction Service: Interface Style Consistency xi

Typographical Conventions
The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments
The following companies submitted and/or supported parts of this specification:

• BEA Systems
• Groupe Bull
• IBM
• ICL plc
• Iona Technologies Ltd.
• Novell, Inc.
• SunSoft, Inc.
• Tandem Computers, Inc.
• Tivoli Systems, Inc.
• Transarc Corporation
xii Transaction Service, v1.4 September 2003

Overview 1
Contents
This chapter contains the following topics.

1.1 Introduction
This chapter provides the following information about the Transaction Service:

• A description of the service, which explains the functional design and
performance requirements that are satisfied by this specification.

• An overview of the Transaction Service that introduces the concepts used
throughout this chapter.

• A description of the Transaction Service’s architecture and a detailed definition of
the Transaction Service, including definitions of its interfaces and operations.

• A user’s view of the Transaction Service as seen by the application programmer,
including client and object implementer.

• An implementer’s view of the Transaction Service, which will interest
Transaction Service and ORB providers.

This specification also contains an appendix that explains the relationship between the
Transaction Service and TP standards, and a glossary that contains transaction terms.

Topic Page

“Introduction” 1-1

“Service Description” 1-2

“Service Architecture” 1-12
September 2003 Transaction Service, v1.4 1-1

1

1.2 Service Description
The concept of transactions is an important programming paradigm for simplifying the
construction of reliable and available applications, especially those that require
concurrent access to shared data. The transaction concept was first deployed in
commercial operational applications where it was used to protect data in centralized
databases. More recently, the transaction concept has been extended to the broader
context of distributed computation. Today it is widely accepted that transactions are the
key to constructing reliable distributed applications.

The Transaction Service described in this specification brings the transaction
paradigm, essential to developing reliable distributed applications, and the object
paradigm, key to productivity and quality in application development, together to
address the business problems of commercial transaction processing.

1.2.1 Overview of Transactions
The Transaction Service supports the concept of a transaction. A transaction is a unit
of work that has the following (ACID) characteristics:

• A transaction is atomic; if interrupted by failure, all effects are undone (rolled
back).

• A transaction produces consistent results; the effects of a transaction preserve
invariant properties.

• A transaction is isolated; its intermediate states are not visible to other transactions.
Transactions appear to execute serially, even if they are performed concurrently.

• A transaction is durable; the effects of a completed transaction are persistent; they
are never lost (except in a catastrophic failure).

A transaction can be terminated in two ways: the transaction is either committed or
rolled back. When a transaction is committed, all changes made by the associated
requests are made permanent. When a transaction is rolled back, all changes made by
the associated requests are undone.

The Transaction Service defines interfaces that allow multiple, distributed objects to
cooperate to provide atomicity. These interfaces enable the objects to either commit all
changes together or to rollback all changes together, even in the presence of
(noncatastrophic) failure. No requirements are placed on the objects other than those
defined by the Transaction Service interfaces.

Transaction semantics can be defined as part of any object that provides ACID
properties. Examples are ODBMSs and persistent objects. The value of a separate
transaction service is that it allows:

• Transactions to include multiple, separately defined, ACID objects.

• The possibility of transactions that include objects and resources from the non-
object world.
1-2 Transaction Service, v1.4 September 2003

1

1.2.2 Transactional Applications
The Transaction Service provides transaction synchronization across the elements of a
distributed client/server application.

A transaction can involve multiple objects performing multiple requests. The scope of
a transaction is defined by a transaction context that is shared by the participating
objects. The Transaction Service places no constraints on the number of objects
involved, the topology of the application, or the way in which the application is
distributed across a network.

In a typical scenario, a client first begins a transaction (by issuing a request to an
object defined by the Transaction Service), which establishes a transaction context
associated with the client thread. The client then issues requests. These requests are
implicitly associated with the client’s transaction; they share the client’s transaction
context. Eventually, the client decides to end the transaction (by issuing another
request). If there were no failures, the changes produced as a consequence of the
client’s requests would then be committed; otherwise, the changes would be rolled
back.

In this scenario, the transaction context is transmitted implicitly to the objects, without
direct client intervention (see Section 2.2.1, “Application Programming Models,” on
page 2-25. The Transaction Service also supports scenarios where the client directly
controls the propagation of the transaction context. For example, a client can pass the
transaction context to an object as an explicit parameter in a request. An
implementation of the Transaction Service might limit the client’s ability to explicitly
propagate the transaction context, in order to guarantee transaction integrity (see
Section 2.2.1, “Application Programming Models,” on page 2-25).

The Transaction Service does not require that all requests be performed within the
scope of a transaction. A request issued outside the scope of a transaction has no
associated transaction context. It is up to each object to determine its behavior when
invoked outside the scope of a transaction; an object that requires a transaction context
can raise a standard exception.

1.2.3 Definitions
Applications supported by the Transaction Service consist of the following entities:

• Transactional Client (TC)
• Transactional Objects (TO)
• Recoverable Objects
• Transactional Servers
• Recoverable Servers
September 2003 Transaction Service: Service Description 1-3

1

Figure 1-1 shows a simple application that includes these basic elements.

Figure 1-1 Application Including Basic Elements

1.2.3.1 Transactional Client
A transactional client is an arbitrary program that can invoke operations of many
transactional objects in a single transaction. The program that begins a transaction is
called the transaction originator.

1.2.3.2 Transactional Object
We use the term transactional object to refer to an object whose behavior is affected
by being invoked within the scope of a transaction. A transactional object typically
contains or indirectly refers to persistent data that can be modified by requests.

The Transaction Service does not require that all requests have transactional behavior,
even when issued within the scope of a transaction. An object can choose to not
support transactional behavior, or to support transactional behavior for some requests
but not others.

transaction completion,
may force rollbackmay force rollback

transaction completion

Transaction Service

Distributed

transaction
context

Client/Server Application

Participates in

Resource

Recoverable
Server

Transactional
Server

Transactional
Client

Transactional
Operation

Transactional
Operation

begin or
 end

not involved in
transaction completion,

registers resource in

transaction

Transactional
Object Object

Recoverable
1-4 Transaction Service, v1.4 September 2003

1

We use the term nontransactional object to refer to an object none of whose operations
are affected by being invoked within the scope of a transaction.

If an object does not support transactional behavior for a request, then the changes
produced by the request might not survive a failure and the changes will not be undone
if the transaction associated with the request is rolled back.

An object can also choose to support transactional behavior for some requests but not
others. This choice can be exercised by both the client and the server of the request.

The Transaction Service permits an interface to have both transactional and
nontransactional implementations. No IDL extensions are introduced to specify
whether or not an operation has transactional behavior. Transactional behavior can be a
quality of service that differs in different implementations.

Transactional objects are used to implement two types of application servers:
• Transactional Server
• Recoverable Server

1.2.3.3 Recoverable Objects and Resource Objects
To implement transactional behavior, an object must participate in certain protocols
defined by the Transaction Service. These protocols are used to ensure that all
participants in the transaction agree on the outcome (commit or rollback) and to
recover from failures.

To be more precise, an object is required to participate in these protocols only if it
directly manages data whose state is subject to change within a transaction. An object
whose data is affected by committing or rolling back a transaction is called a
recoverable object.

A recoverable object is by definition a transactional object. However, an object can be
transactional but not recoverable by implementing its state using some other
(recoverable) object. A client is concerned only that an object is transactional; a client
cannot tell whether a transactional object is or is not a recoverable object.

A recoverable object must participate in the Transaction Service protocols. It does so
by registering an object called a Resource with the Transaction Service. The
Transaction Service drives the commit protocol by issuing requests to the resources
registered for a transaction.

A recoverable object typically involves itself in a transaction because it is required to
retain in stable storage certain information at critical times in its processing. When a
recoverable object restarts after a failure, it participates in a recovery protocol based on
the contents (or lack of contents) of its stable storage.

A transaction can be used to coordinate non-durable activities that do not require
permanent changes to storage.
September 2003 Transaction Service: Service Description 1-5

1

1.2.3.4 Transactional Server
A transactional server is a collection of one or more objects whose behavior is affected
by the transaction, but have no recoverable states of their own. Instead, it implements
transactional changes using other recoverable objects. A transactional server does not
participate in the completion of the transaction, but it can force the transaction to be
rolled back.

1.2.3.5 Recoverable Server
A recoverable server is a collection of objects, at least one of which is recoverable. A
recoverable server participates in the protocols by registering one or more Resource
objects with the Transaction Service. The Transaction Service drives the commit
protocol by issuing requests to the resources registered for a transaction.

1.2.4 Transaction Service Functionality
The Transaction Service provides operations to:

• Control the scope and duration of a transaction.
• Allow multiple objects to be involved in a single, atomic transaction.
• Allow objects to associate changes in their internal state with a transaction.
• Coordinate the completion of transactions.

1.2.4.1 Transaction Models
The Transaction Service supports two distributed transaction models: flat transactions
and nested transactions. An implementation of the Transaction Service is not required
to support nested transactions.

Flat Transactions
The Transaction Service defines support for a flat transaction model. The definition of
the function provided, and the commitment protocols used, is modeled on the X/Open
DTP transaction model definition.1

A flat transaction is considered to be a top-level transaction that cannot have a child
transaction.

1. See Distributed Transaction Processing: The XA Specification, X/Open Document C193.
X/Open Company Ltd., Reading, U.K., ISBN 1-85912-057-1.
1-6 Transaction Service, v1.4 September 2003

1

Nested Transactions
The Transaction Service also defines a nested transaction model. Nested transactions
provide for a finer granularity of recovery than flat transactions. The effect of failures
that require rollback can be limited so that unaffected parts of the transaction need not
rollback.

Nested transactions allow an application to create a transaction that is embedded in an
existing transaction. The existing transaction is called the parent of the subtransaction;
the subtransaction is called a child of the parent transaction.

Multiple subtransactions can be embedded in the same parent transaction. The children
of one parent are called siblings.

Subtransactions can be embedded in other subtransactions to any level of nesting. The
ancestors of a transaction are the parent of the subtransaction and (recursively) the
parents of its ancestors. The descendants of a transaction are the children of the
transaction and (recursively) the children of its descendants.

A top-level transaction is one with no parent. A top-level transaction and all of its
descendants are called a transaction family.

A subtransaction is similar to a top-level transaction in that the changes made on
behalf of a subtransaction are either committed in their entirety or rolled back.
However, when a subtransaction is committed, the changes remain contingent upon
commitment of all of the transaction’s ancestors.

Subtransactions are strictly nested. A transaction cannot commit unless all of its
children have completed. When a transaction is rolled back, all of its children are
rolled back.

Objects that participate in transactions must support isolation of transactions. The
concept of isolation applies to subtransactions as well as to top level transactions.
When a transaction has multiple children, the children appear to other transactions to
execute serially, even if they are performed concurrently.

Subtransactions can be used to isolate failures. If an operation performed within a
subtransaction fails, only the subtransaction is rolled back. The parent transaction has
the opportunity to correct or compensate for the problem and complete its operation.
Subtransactions can also be used to perform suboperations of a transaction in parallel,
without the risk of inconsistent results.

1.2.4.2 Transaction Termination
A transaction is terminated by issuing a request to commit or rollback the transaction.
Typically, a transaction is terminated by the client that originated the transaction—the
transaction originator. Some implementations of the Transaction Service may allow
transactions to be terminated by Transaction Service clients other than the one that
created the transaction.
September 2003 Transaction Service: Service Description 1-7

1

Any participant in a transaction can force the transaction to be rolled back (eventually).
If a transaction is rolled back, all participants rollback their changes. Typically, a
participant may request the rollback of the current transaction after encountering a
failure. It is implementation-specific whether the Transaction Service itself monitors
the participants in a transaction for failures or inactivity.

1.2.4.3 Transaction Integrity
Some implementations of the Transaction Service impose constraints on the use of the
Transaction Service interfaces in order to guarantee integrity equivalent to that
provided by the interfaces, which support the X/Open DTP transaction model. This is
called checked transaction behavior.

For example, allowing a transaction to commit before all computations acting on
behalf of the transaction have completed can lead to a loss of data integrity. Checked
implementations of the Transaction Service will prevent premature commitment of a
transaction.

Other implementations of the Transaction Service may rely completely on the
application to provide transaction integrity. This is called unchecked transaction
behavior.

1.2.4.4 Transaction Context
As part of the environment of each ORB-aware thread, the ORB maintains a
transaction context. The transaction context associated with a thread is either null
(indicating that the thread has no associated transaction) or it refers to a specific
transaction. It is permitted for multiple threads to be associated with the same
transaction at the same time, in the same execution environment or in multiple
execution environments.

The transaction context can be implicitly transmitted to transactional objects as part of
a transactional operation invocation. The Transaction Service also allows programmers
to pass a transaction context as an explicit parameter of a request.

1.2.4.5 Synchronization
The Transaction Service defines support for a synchronization interface. This provides
a protocol by which an object may be notified prior to the start of the two-phase
commit protocol within the coordinator with which it is registered. An implementation
of the Transaction Service is not required to support synchronization.

1.2.5 Principles of Function, Design, and Performance
The Transaction Service defined in this specification fulfills a number of functional,
design, and performance requirements.
1-8 Transaction Service, v1.4 September 2003

1

1.2.5.1 Functional Requirements
The Transaction Service defined in this specification addresses the following
functional requirements:

Support for multiple transaction models. The flat transaction model, which is widely
supported in the industry today, is a mandatory component of this specification. The
nested transaction model, which provides finer granularity isolation and facilitates
object reuse in a transactional environment, is an optional component of this
specification.

Evolutionary Deployment. An important property of object technology is the ability
to “wrapper” existing programs (coarse grain objects) to allow these functions to serve
as building blocks for new business applications. This technique has been successfully
used to marry object-oriented end-user interfaces with commercial business logic
implemented using classical procedural techniques.

It can similarly be used to encapsulate the large body of existing business software on
legacy environments and leverage that in building new business applications. This will
allow customers to gradually deploy object technology into their existing
environments, without having to reimplement all existing business functions.

Model Interoperability. Customers desire the capability to add object
implementations to existing procedural applications and to augment object
implementations with code that uses the procedural paradigm. To do so in a transaction
environment requires that a single transaction be shared by both the object and
procedural code. This includes the following:

• A single transaction that includes ORB and non-ORB applications and resources.
• Interoperability between the object transaction service model and the X/Open

Distributed Transaction Processing (DTP) model.
• Access to existing (non-object) programs and resource managers by objects.
• Access to objects by existing programs and resource managers.
• Coordination by a single transaction service of the activities of both object and

non-object resource managers.
• The network case: A single transaction, distributed between an object and non-

object system, each of which has its own Transaction Service.

The Transaction Service accommodates this requirement for implementations where
interoperability with X/Open DTP-compliant transactional applications is necessary.

Network Interoperability. Customers require the ability to interoperate between
systems offered by multiple vendors:

• Single transaction service, single ORB - It must be possible for a single
transaction service to interoperate with itself using a single ORB.

• Multiple transaction services, single ORB - It must be possible for one transaction
service to interoperate with a cooperating transaction service using a single ORB.

• Single transaction service, multiple ORBs - It must be possible for a single
transaction service to interoperate with itself using different ORBs.
September 2003 Transaction Service: Service Description 1-9

1

• Multiple transaction services, multiple ORBs - It must be possible for one
transaction service to interoperate with a cooperating transaction service using
different ORBs.

The Transaction Service specifies all required interactions between cooperating
Transaction Service implementations necessary to support a single ORB. The
Transaction Service depends on ORB interoperability as defined in the Common Object
Request Broker: Architecture and Specification (CORBA specification) to provide
cooperating Transaction Services across different ORBs.

Flexible transaction propagation control. Both client and object implementations
can control transaction propagation:

• A client controls whether or not its transaction is propagated with an operation.
• A client can invoke operations on objects with transactional behavior and objects

without transactional behavior within the scope of a single transaction.
• An object can specify transactional behavior for its interfaces.

The Transaction Service supports both implicit (system-managed) propagation and
explicit (application-managed) propagation. With implicit propagation, transactional
behavior is not specified in the operation’s signature. With explicit propagation,
applications define their own mechanisms for sharing a common transaction.

Support for TP Monitors. Customers need object technology to build mission-critical
applications. These applications are deployed on commercial transaction processing
systems where a TP Monitor provides both efficient scheduling and the sharing of
resources by a large number of users. It must be possible to implement the Transaction
Service in a TP monitor environment. This includes the ability to execute:

• multiple transactions concurrently
• clients, servers, and transaction services in separate processes.

The Transaction Service is usable in a TP Monitor environment.

1.2.5.2 Design Requirements
The Transaction Service supports the following design requirements:

Exploitation of OO Technology. This specification permits a wide variety of ORB
and Transaction Service implementations and uses objects to enable ORB-based,
secure implementations. The Transaction Service provides the programmer with easy
to use interfaces that hide some of the complexity inherent in general-use
specifications. Meaningful user applications can be constructed using interfaces that
are as simple or simpler than their procedural equivalents.

Low Implementation Cost. The Transaction Service specification considers cost from
the perspective of three users of the service - clients, ORB implementers, and
Transaction Service providers.
1-10 Transaction Service, v1.4 September 2003

1

• For clients, it allows a range of implementations that are compliant with the
proposed architecture. Many ORB implementations will exist in client
workstations, which have no requirement to understand transactions within
themselves, but will find it highly desirable to interoperate with server platforms
that implement transactions.

• The specification provides for minimal impact to the ORB. Where feasible,
function is assigned to an object service implementation to permit the ORB to
continue to provide high performance object access when transactions are not
used.

• Since this Transaction Service will be supported by existing (procedural)
transaction managers, the specification allows implementations that reuse existing
procedural Transaction Managers.

Portability. The Transaction Service specification provides for portability of
applications. It also defines an interface between the ORB and the Transaction Service
that enables individual Transaction Service implementations to be ported between
different ORB implementations.

Avoidance of OMG IDL interface variants. The Transaction Service allows a single
interface to be supported by both transactional and non-transactional implementations.
This approach avoids a potential “combinatorial explosion” of interface variants that
differ only in their transactional characteristics. For example, the existing Object
Service interfaces can support transactional behavior without change.

Support for both single-threaded and multi-threaded implementations. The
Transaction Service defines a flexible model that supports a variety of programming
styles. For example, a client with an active transaction can make requests for the same
transaction on multiple threads. Similarly, an object can support multiple transactions
in parallel by using multiple threads.

A wide spectrum of implementation choices. The Transaction Service allows
implementations to choose the degree of checking provided to guarantee legal behavior
of its users. This permits both robust implementations that provide strong assurances
for transaction integrity and lightweight implementations where such checks are not
warranted.

1.2.5.3 Performance Requirements
The Transaction Service is expected to be implemented on a wide range of hardware
and software platforms ranging from desktop computers to massively parallel servers
and in networks ranging in size from a single LAN to worldwide networks. To meet
this wide range of requirements, consideration must be given to algorithms that scale,
efficient communications, and the number and size of accesses to permanent storage.
Much of this is implementation, and therefore not visible to the user of the service.
Nevertheless, the expected performance of the Transaction Service was compared to its
procedural equivalent, the X/Open DTP model in the following areas:

• The number of network messages required.
• The number of disk accesses required.
• The amount of data logged.
September 2003 Transaction Service: Service Description 1-11

1

The objective of the specification was to achieve parity with the X/Open model for
equivalent function, where technically feasible.

1.3 Service Architecture
Figure 1-2 illustrates the major components and interfaces defined by the Transaction
Service. The transaction originator is an arbitrary program that begins a transaction.
The recoverable server implements an object with recoverable state that is invoked
within the scope of the transaction, either directly by the transaction originator or
indirectly through one or more transactional objects.

The transaction originator creates a transaction using a TransactionFactory; a Control
is returned that provides access to a Terminator and a Coordinator. The transaction
originator uses the Terminator to commit or rollback the transaction. The Coordinator
is made available to recoverable servers, either explicitly or implicitly (by implicitly
propagating a transaction context with a request). A recoverable server registers a
Resource with the Coordinator. The Resource implements the two-phase commit
protocol which is driven by the Transaction Service. A recoverable server may register
a Synchronization with the Coordinator. The Synchronization implements a dependent
object protocol driven by the Transaction Service. A recoverable server can also
register a specialized resource called a SubtransactionAwareResource to track the
completion of subtransactions. A Resource uses a RecoveryCoordinator in certain
failure cases to determine the outcome of the transaction and to coordinate the
recovery process with the Transaction Service.

To simplify coding, most applications use the Current pseudo object, which provides
access to an implicit per-thread transaction context.

Transaction Service

(transmitted with request)

transaction originator

SubtransactionAwareResource

transaction
context

transaction
context

(associated with thread)

transaction
context

(associated with thread)

Control

Resource

Figure 1-2 Major Components and Interfaces of the Transaction Service

TransactionFactory

Current CurrentTerminator
Coordinator
Control

recoverable server

RecoveryCoordinator

Synchronization
1-12 Transaction Service, v1.4 September 2003

1

1.3.1 Typical Usage
A typical transaction originator uses the Current object to begin a transaction, which
becomes associated with the transaction originator’s thread.

The transaction originator then issues requests. Some of these requests involve
transactional objects. When a request is issued to a transactional object, the transaction
context associated with the invoking thread is automatically propagated to the thread
executing the method of the target object. No explicit operation parameter or context
declaration is required to transmit the transaction context. Propagation of the
transaction context can extend to multiple levels if a transactional object issues a
request to a transactional object.

Using the Current object, the transactional object can unilaterally rollback the
transaction and can inquire about the current state of the transaction. Using the Current
object, the transactional object also can obtain a Coordinator for the current
transaction. Using the Coordinator, a transactional object can determine the
relationship between two transactions, to implement isolation among multiple
transactions.

Some transactional objects are also recoverable objects. A recoverable object has
persistent data that must be managed as part of the transaction. A recoverable object
uses the Coordinator to register a Resource object as a participant in the transaction.
The resource represents the recoverable object’s participation in the transaction; each
resource is implicitly associated with a single transaction. The Coordinator uses the
resource to perform the two-phase commit protocol on the recoverable object’s data.

After the computations involved in the transaction have been completed, the
transaction originator uses the Current object to request that the changes be committed.
The Transaction Service commits the transaction using a two-phase commit protocol
wherein a series of requests are issued to the registered resources.

1.3.2 Transaction Context
The transaction context associated with a thread is either null (indicating that the
thread has no associated transaction) or it refers to a specific transaction. It is
permitted for multiple threads to be associated with the same transaction at the same
time.

When a thread in an object server is used by an object adapter to perform a request on
a transactional object, the object adapter initializes the transaction context associated
with that thread by effectively copying the transaction context of the thread that issued
the request. An implementation of the Transaction Service may restrict the capabilities
of the new transaction context. For example, an implementation of the Transaction
Service might not permit the object server thread to request commitment of the
transaction.

The object adapter initializes the transaction context of the request handler only if a
Transaction Service provided IOP::ServiceContext is present in the request message.
Otherwise, the initial transaction context of the thread is empty because there is no
transaction.
September 2003 Transaction Service: Service Architecture 1-13

1

When a thread retrieves the response to a deferred synchronous request, an exception
may be raised if the thread is no longer associated with the transaction that it was
associated with when the deferred synchronous request was issued. See the Common
Object Request Broker: Architecture and Specification, Dynamic Invocation Interface
chapter for a definition of the “WrongTransaction Exception” and for its usage in
get_response and get_next_response respectively.

When nested transactions are used, the transaction context remembers the stack of
nested transactions started within a particular execution environment (e.g., process) so
that when a subtransaction ends, the transaction context of the thread is restored to the
context in effect when the subtransaction was begun. When the context is transferred
between execution environments, the received context refers only to one particular
transaction, not a stack of transactions.

1.3.3 Context Management
The Transaction Service supports management and propagation of transaction context
using objects provided by the Transaction Service. Using this approach, the transaction
originator issues a request to a TransactionFactory to begin a new top-level
transaction. The factory returns a Control object specific to the new transaction that
allows an application to terminate the transaction or to become a participant in the
transaction (by registering a Resource). An application can propagate a transaction
context by passing the Control as an explicit request parameter.

The Control does not directly support management of the transaction. Instead, it
supports operations that return two other objects, a Terminator and a Coordinator. The
Terminator is used to commit or rollback the transaction. The Coordinator is used to
enable transactional objects to participate in the transaction. These two objects can be
propagated independently, allowing finer granularity control over propagation.

An application can also use the Current object operations get_control, suspend, and
resume to obtain or change the implicit transaction context associated with its thread.

When nested transactions are used, a Control can include a stack of nested transactions
begun in the same execution environment. When a Control is transferred between
execution environments, the received Control refers only to one particular transaction,
not a stack of transactions.

1.3.4 Datatypes
The CosTransactions module defines the following datatypes:

enum Status {
StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
1-14 Transaction Service, v1.4 September 2003

1

StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

};

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

};
// Old definitions are retained for backward compatibility. //
// TransactionPolicyValue definitions are deprecated and replaced with new//
// InvocationPolicy and OTSPolicy definitions which are defined below //
// Old definitions are retained for backward compatibility. //

typedef unsigned short TransactionPolicyValue;

const TransactionPolicyValue Allows_shared = 0;
const TransactionPolicyValue Allows_none = 1;
const TransactionPolicyValue Requires_shared = 2;
const TransactionPolicyValue Allows_unshared = 3;
const TransactionPolicyValue Allows_either = 4;
const TransactionPolicyValue Requires_unshared = 5;
const TransactionPolicyValue Requires_either = 6;

typedef unsigned short InvocationPolicyValue;

const InvocationPolicyValue EITHER = 0;
const InvocationPolicyValue SHARED = 1;
const InvocationPolicyValue UNSHARED =2;

typedef unsigned short OTSPolicyValue;

const OTSPolicyValue REQUIRES = 1;
const OTSPolicyValue FORBIDS =2;
const OTSPolicyValue ADAPTS =3;

// Deprecated
typedef unsigned short NonTxTargetPolicyValue;

const NonTxTargetPolicyValue PREVENT = 0;
const NonTxTargetPolicyValue PERMIT = 1;

The CosTSInteroperation module defines the following datatypes:

const IOP::ComponentId TAG_TRANSACTION_POLICY= 26;

struct TransactionPolicyComponent {
September 2003 Transaction Service: Service Architecture 1-15

1

CosTransactions::TransactionPolicyValue tpv;
};

const IOP::ComponentId TAG_OTS_POLICY= 31;

const IOP::ComponentId TAG_INV_POLICY= 32;

1.3.5 Structures
The CosTransactions module defines the following structures:

struct otid_t {
long formatID; /*format identifier. 0 is OSI TP */
long bqual_length;
sequence <octet> tid;

};
struct TransIdentity {

Coordinator coord;
Terminator term;
otid_t otid;

};
struct PropagationContext {

unsigned long timeout;
TransIdentity current;
sequence <TransIdentity> parents;
any implementation_specific_data;

};

1.3.6 Exceptions

1.3.6.1 Standard Exceptions
The standard exceptions TRANSACTION_REQUIRED,
TRANSACTION_ROLLEDBACK, INVALID_TRANSACTION,
TRANSACTION_UNAVAILABLE, and TRANSACTION_MODE are related to
the Transaction Service. These exceptions are defined in the Common Object Request
Broker: Architecture and Specification (ORB Interface chapter, Standard Exception
Definitions section).

1.3.6.2 Heuristic Exceptions
A heuristic decision is a unilateral decision made by one or more participants in a
transaction to commit or rollback updates without first obtaining the consensus
outcome determined by the Transaction Service. A participant can only make a
heuristic decision once the two-phase-commit protocol has begun, in particular it
cannot make such a decision if it receives a rollback without a previous prepare.
Heuristic decisions are normally made only in unusual circumstances, such as
1-16 Transaction Service, v1.4 September 2003

1

communication failures, that prevent normal processing. When a heuristic decision is
taken, there is a risk that the decision will differ from the consensus outcome, resulting
in a loss of data integrity.

The CosTransactions module defines the following exceptions for reporting
incorrect heuristic decisions or the possibility of incorrect heuristic decisions:

exception HeuristicRollback {};
exception HeuristicCommit {};
exception HeuristicMixed {};
exception HeuristicHazard {};

HeuristicRollback Exception
The commit operation on Resource raises the HeuristicRollback exception to report
that a heuristic decision was made and that all relevant updates have been rolled back.

HeuristicCommit Exception
The rollback operation on Resource raises the HeuristicCommit exception to report
that a heuristic decision was made and that all relevant updates have been committed.

HeuristicMixed Exception
A request raises the HeuristicMixed exception to report that a heuristic decision was
made and that some relevant updates have been committed and others have been rolled
back.

HeuristicHazard Exception
A request raises the HeuristicHazard exception to report that a heuristic decision
may have been made, the disposition of all relevant updates is not known, and for
those updates whose disposition is known, either all have been committed or all have
been rolled back. (In other words, the HeuristicMixed exception takes priority over
the HeuristicHazard exception.)

TRANSACTION_UNAVAILABLE Exception
The CosTransactions module adds the TRANSACTION_UNAVAILABLE
exception that can be raised by the ORB when it cannot process a transaction service
context because its connection to the Transaction Service has been abnormally
terminated. This exception is defined in the Common Object Request Broker:
Architecture and Specification, IDL Syntax and Semantics chapter.

TRANSACTION_MODE Exception
The CosTransactions module adds the TRANSACTION_MODE exception that
can be raised by the ORB when it detects a mismatch between the TransactionPolicy
in the IOR and the current transaction mode. This exception is defined in the Common
Object Request Broker Architecture: Core Specification, IDL Syntax and Semantics
chapter.
September 2003 Transaction Service: Service Architecture 1-17

1

1.3.6.3 Other Exceptions
The CosTransactions module defines the following additional exceptions:

exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
exception Inactive {};
exception NotPrepared {};
exception NoTransaction {};
exception InvalidControl {};
exception Unavailable {};
exception SynchronizationUnavailable {};

These exceptions are described in Chapter 2 along with the operations that raise them.
1-18 Transaction Service, v1.4 September 2003

Transaction Service Interfaces 2
Note – All text in black is from the Transaction Service, v1.2 (formal/01-11-03). Text
in blue is from the Components specification.

Contents
This chapter contains the following sections.

Section Title Page

“Introduction” 2-2

“Current Interface” 2-2

“TransactionFactory Interface” 2-5

“Control Interface” 2-6

“Terminator Interface” 2-7

“Coordinator Interface” 2-8

“Recovery Coordinator Interface” 2-13

“Resource Interface” 2-14

“Synchronization Interface” 2-16

“Subtransaction Aware Resource Interface” 2-17

“TransactionalObject Interface” 2-18

“Policy Interfaces” 2-18

“The User’s View” 2-26

“The Implementers’ View” 2-39
September 2003 Transaction Service, v1.4 2-1

2

2.1 Introduction
The interfaces defined by the Transaction Service reside in the CosTransactions
module (see Appendix A - OMG IDL for the CosTransactions module IDL). The
interfaces for the Transaction Service are as follows:

• Current
• TransactionFactory
• Terminator
• Coordinator
• RecoveryCoordinator
• Resource
• Synchronization
• Subtransaction Aware Resource

No operations are defined in these interfaces for destroying objects. No application
actions are required to destroy objects that support the Transaction Service because the
Transaction Service destroys its own objects when they are no longer needed.

2.2 Current Interface
The Current interface defines operations that allow a client of the Transaction Service
to explicitly manage the association between threads and transactions. The Current
interface also defines operations that simplify the use of the Transaction Service for
most applications. These operations can be used to begin and end transactions and to
obtain information about the current transaction.

The Current interface is a locality-constrained interface whose behavior depends upon
and may alter the transaction context associated with the invoking thread. It is obtained
by using a resolve initial references (“TransactionCurrent”) operation on the
CORBA::ORB interface. Current supports the following operations:

local interface Current : CORBA::Current {
void begin()

raises(SubtransactionsUnavailable);
void commit(in boolean report_heuristics)

raises(
NoTransaction,
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(NoTransaction);
void rollback_only()

raises(NoTransaction);

Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds)
2-2 Transaction Service, v1.4 September 2003

2

unsigned long get_timeout();

Control get_control();
Control suspend();
void resume(in Control which)

raises(InvalidControl);
};

Note – In order to pass the transaction from one thread to another, a program should
not use the Current object. It should pass the Control object to the other thread.

2.2.1 begin
A new transaction is created. The transaction context of the client thread is modified so
that the thread is associated with the new transaction. If the client thread is currently
associated with a transaction, the new transaction is a subtransaction of that
transaction. Otherwise, the new transaction is a top-level transaction.

The SubtransactionsUnavailable exception is raised if the client thread already
has an associated transaction and the Transaction Service implementation does not
support nested transactions.

2.2.2 commit
If there is no transaction associated with the client thread, the NoTransaction
exception is raised. If the client thread does not have permission to commit the
transaction, the standard exception NO_PERMISSION is raised. (The commit
operation may be restricted to the transaction originator in some implementations.)

Otherwise, the transaction associated with the client thread is completed. The effect of
this request is equivalent to performing the commit operation on the corresponding
Terminator object (see Section 2.5, “Terminator Interface,” on page 2-7 and
Section 1.3.6, “Exceptions,” on page 1-16 for a description of the exceptions that may
be raised).

The client thread transaction context is modified as follows: If the transaction was
begun by a thread (invoking begin) in the same execution environment, then the
thread’s transaction context is restored to its state prior to the begin request.
Otherwise, the thread’s transaction context is set to null.

2.2.3 rollback
If there is no transaction associated with the client thread, the NoTransaction
exception is raised. If the client thread does not have permission to rollback the
transaction, the standard exception NO_PERMISSION is raised. (The rollback
operation may be restricted to the transaction originator in some implementations;
however, the rollback_only operation, described below, is available to all transaction
participants.)
September 2003 Transaction Service: Current Interface 2-3

2

Otherwise, the transaction associated with the client thread is rolled back. The effect of
this request is equivalent to performing the rollback operation on the corresponding
Terminator object (see Section 2.5, “Terminator Interface,” on page 2-7).

The client thread transaction context is modified as follows: If the transaction was
begun by a thread (invoking begin) in the same execution environment, then the
thread’s transaction context is restored to its state prior to the begin request.
Otherwise, the thread’s transaction context is set to null.

2.2.4 rollback_only
If there is no transaction associated with the client thread, the NoTransaction
exception is raised. Otherwise, the transaction associated with the client thread is
modified so that the only possible outcome is to rollback the transaction. The effect of
this request is equivalent to performing the rollback_only operation on the
corresponding Coordinator object (see Section 2.6, “Coordinator Interface,” on
page 2-8).

2.2.5 get_status
If there is no transaction associated with the client thread, the StatusNoTransaction
value is returned. Otherwise, this operation returns the status of the transaction
associated with the client thread. The effect of this request is equivalent to performing
the get_status operation on the corresponding Coordinator object (see Section 2.6,
“Coordinator Interface,” on page 2-8).

2.2.6 get_transaction_name
If there is no transaction associated with the client thread, an empty string is returned.
Otherwise, this operation returns a printable string describing the transaction. The
returned string is intended to support debugging. The effect of this request is
equivalent to performing the get_transaction_name operation on the corresponding
Coordinator object (see Section 2.6, “Coordinator Interface,” on page 2-8).

2.2.7 set_timeout
This operation modifies a state variable associated with the target object that affects
the time-out period in number of seconds associated with top-level transactions created
by subsequent invocations of the begin operation. If the parameter has a non-zero value
n, then top-level transactions created by subsequent invocations of begin will be
subject to being rolled back if they do not complete before n seconds after their
creation. Nested transactions are not subject to such time-outs and will only be rolled
back automatically if their enclosing top-level transaction is rolled back. If the
parameter is zero, then no application specified time-out is established.
2-4 Transaction Service, v1.4 September 2003

2

2.2.8 get_timeout
This operation returns the state variable associated with the target object that affects
the time-out period in number of seconds associated with top-level transactions created
by invocations of the begin operation, or 0 if no application specific time-out has been
established.

2.2.9 get_control
If the client thread is not associated with a transaction, a null object reference is
returned. Otherwise, a Control object is returned that represents the transaction
context currently associated with the client thread. This object can be given to the
resume operation to re-establish this context in the same thread or a different thread.
The scope within which this object is valid is implementation dependent; at a
minimum, it must be usable by the client thread. This operation is not dependent on the
state of the transaction; in particular, it does not raise the
TRANSACTION_ROLLEDBACK exception.

2.2.10 suspend
If the client thread is not associated with a transaction, a null object reference is
returned. Otherwise, an object is returned that represents the transaction context
currently associated with the client thread. This object can be given to the resume
operation to re-establish this context in the same thread or a different thread. The scope
within which this object is valid is implementation dependent; at a minimum, it must
be usable by the client thread. In addition, the client thread becomes associated with no
transaction. This operation is not dependent on the state of the transaction; in
particular, it does not raise the TRANSACTION_ROLLEDBACK exception.

2.2.11 resume
If the parameter is a null object reference, the client thread becomes associated with no
transaction. Otherwise, if the parameter is valid in the current execution environment,
the client thread becomes associated with that transaction (in place of any previous
transaction). Otherwise, the InvalidControl exception is raised. See Section 2.4,
“Control Interface,” on page 2-6 for a discussion of restrictions on the scope of a
Control. This operation is not dependent on the state of the transaction; in particular,
it does not raise the TRANSACTION_ROLLEDBACK exception.

2.3 TransactionFactory Interface
The TransactionFactory interface is provided to allow the transaction originator to
begin a transaction. This interface defines two operations, create and recreate, which
create a new representation of a top-level transaction.
September 2003 Transaction Service: TransactionFactory Interface 2-5

2

interface TransactionFactory {
Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);

};

2.3.1 create
A new top-level transaction is created and a Control object is returned. The Control
object can be used to manage or to control participation in the new transaction. An
implementation of the Transaction Service may restrict the ability for the Control
object to be transmitted to or used in other execution environments. At a minimum, it
can be used by the client thread.

If the parameter has a nonzero value n, then the new transaction will be subject to
being rolled back if it does not complete before n seconds have elapsed. If the
parameter is zero, then no application specified time-out is established.

2.3.2 recreate
A new representation is created for an existing transaction defined by the
PropagationContext and a Control object is returned. The Control object can be
used to manage or to control participation in the transaction. An implementation of the
Transaction Service, which supports interposition (see Section 2.14.2, “ORB/TS
Implementation Considerations,” on page 2-51) uses recreate to create a new
representation of the transaction being imported, subordinate to the representation in
ctx. The recreate operation can also be used to import a transaction that originated
outside of the Transaction Service.

2.4 Control Interface
The Control interface allows a program to explicitly manage or propagate a
transaction context. An object supporting the Control interface is implicitly associated
with one specific transaction.

interface Control {
Terminator get_terminator()

raises(Unavailable);
Coordinator get_coordinator()

raises(Unavailable);
};

The Control interface defines two operations, get_terminator and
get_coordinator. The get_terminator operation returns a Terminator object,
which supports operations to end the transaction. The get_coordinator operation
returns a Coordinator object, which supports operations needed by resources to
participate in the transaction. The two objects support operations that are typically
performed by different parties. Providing two objects allow each set of operations to be
made available only to the parties that require those operations.
2-6 Transaction Service, v1.4 September 2003

2

A Control object for a transaction is obtained using the operations defined by the
TransactionFactory interface or the create_subtransaction operation defined by
the Coordinator interface. It is possible to obtain a Control object for the current
transaction (associated with a thread) using the get_control or suspend operations
defined by the Current interface (see Section 2.2, “Current Interface,” on page 2-2).
(These two operations return a null object reference if there is no current transaction.)

An implementation of the Transaction Service may restrict the ability for the Control
object to be transmitted to or used in other execution environments; at a minimum, it
can be used within a single thread.

2.4.1 get_terminator
An object is returned that supports the Terminator interface. The object can be used
to rollback or commit the transaction associated with the Control. The Unavailable
exception may be raised if the Control cannot provide the requested object. An
implementation of the Transaction Service may restrict the ability for the Terminator
object to be transmitted to or used in other execution environments. At a minimum, it
can be used within the client thread.

2.4.2 get_coordinator
An object is returned that supports the Coordinator interface. The object can be used
to register resources for the transaction associated with the Control. The
Unavailable exception may be raised if the Control cannot provide the requested
object. An implementation of the Transaction Service may restrict the ability for the
Coordinator object to be transmitted to or used in other execution environments. At a
minimum, it can be used within the client thread.

2.5 Terminator Interface
The Terminator interface supports operations to commit or rollback a transaction.
Typically, these operations are used by the transaction originator.

interface Terminator {
void commit(in boolean report_heuristics)

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback();

};

An implementation of the Transaction Service may restrict the scope in which a
Terminator can be used. At a minimum, it can be used within a single thread.
September 2003 Transaction Service: Terminator Interface 2-7

2

2.5.1 commit
If the transaction has not been marked rollback only, and all of the participants in the
transaction agree to commit, the transaction is committed and the operation terminates
normally. Otherwise, the transaction is rolled back (as described below) and the
TRANSACTION_ROLLEDBACK standard exception is raised.

The report_heurisitcs parameter allows the application to control how long it will
block after issuing a commit. If the report_heuristics parameter is true, the call will
block until phase 2 of the commit protocol is complete and all heuristic outcomes are
known. The Transaction Service will report inconsistent or possibly inconsistent
outcomes using the HeuristicMixed and HeuristicHazard exceptions (defined in
Section 1.3.6, “Exceptions,” on page 1-16). If the parameter is false, a conforming
Transaction Service must not raise these exceptions. Transaction Service
implementations may make use of this fact to block only to the end of phase 1 when
the outcome is known, but heuristics are still possible. Heuristics that do occur may be
reported to some management interface that is more suited to taking recovery action
than the application.

The commit operation may rollback the transaction if there are subtransactions of the
transaction that have not themselves been committed or rolled back, or if there are
existing or potential activities associated with the transaction that have not completed.
The nature and extent of such error checking is implementation-dependent.

When a top-level transaction is committed, all changes to recoverable objects made in
the scope of this transaction are made permanent and visible to other transactions or
clients. When a subtransaction is committed, the changes are made visible to other
related transactions as appropriate to the degree of isolation enforced by the resources.

2.5.2 rollback
The transaction is rolled back. When a transaction is rolled back, all changes to
recoverable objects made in the scope of this transaction (including changes made by
descendant transactions) are rolled back. All resources locked by the transaction are
made available to other transactions as appropriate to the degree of isolation enforced
by the resources.

2.6 Coordinator Interface
The Coordinator interface provides operations that are used by participants in a
transaction. These participants are typically either recoverable objects or agents of
recoverable objects, such as subordinate coordinators. Each object supporting the
Coordinator interface is implicitly associated with a single transaction.

interface Coordinator {

Status get_status();
Status get_parent_status();
Status get_top_level_status();
2-8 Transaction Service, v1.4 September 2003

2

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_synchronization (in Synchronization sync)
raises(Inactive, SynchronizationUnavailable);

};

void register_subtran_aware(in SubtransactionAwareResource r)
raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();

Control create_subtransaction()
raises(SubtransactionsUnavailable, Inactive);

PropagationContext get_txcontext ()
raises(Unavailable);

};

An implementation of the Transaction Service may restrict the scope in which a
Coordinator can be used. At a minimum, it can be used within a single thread.

2.6.1 get_status
This operation returns the status of the transaction associated with the target object:

• StatusActive - A transaction is associated with the target object and it is in the
active state. An implementation returns this status after a transaction has been
started and prior to a coordinator issuing any prepares unless it has been marked for
rollback.

• StatusMarkedRollback - A transaction is associated with the target object and
has been marked for rollback, perhaps as the result of a rollback_only operation.

• StatusPrepared - A transaction is associated with the target object and has been
prepared (i.e., all subordinates have responded VoteCommit). The target object
may be waiting for a superior’s instructions as to how to proceed.
September 2003 Transaction Service: Coordinator Interface 2-9

2

• StatusCommitted - A transaction is associated with the target object and it has
completed commitment. It is likely that heuristics exists; otherwise, the transaction
would have been destroyed and StatusNoTransaction returned.

• StatusRolledBack - A transaction is associated with the target object and the
outcome has been determined as rollback. It is likely that heuristics exists;
otherwise, the transaction would have been destroyed and StatusNoTransaction
returned.

• StatusUnknown - A transaction is associated with the target object, but the
Transaction Service cannot determine its current status. This is a transient
condition, and a subsequent invocation will ultimately return a different status.

• StatusNoTransaction - No transaction is currently associated with the target
object. This will occur after a transaction has completed.

• StatusPreparing - A transaction is associated with the target object and it is the
process of preparing. An implementation returns this status if it has started
preparing, but has not yet completed the process, probably because it is waiting for
responses to prepare from one or more resources.

• StatusCommitting - A transaction is associated with the target object and is in the
process of committing. An implementation returns this status if it has decided to
commit, but has not yet completed the process, probably because it is waiting for
responses from one or more resources.

• StatusRollingBack - A transaction is associated with the target object and it is in
the process of rolling back. An implementation returns this status if it has decided
to rollback, but has not yet completed the process, probably because it is waiting for
responses from one or more resources.

2.6.2 get_parent_status
If the transaction associated with the target object is a top-level transaction, then this
operation is equivalent to the get_status operation. Otherwise, this operation returns
the status of the parent of the transaction associated with the target object.

2.6.3 get_top_level_status
This operation returns the status of the top-level ancestor of the transaction associated
with the target object. If the transaction is a top-level transaction, then this operation is
equivalent to the get_status operation.

2.6.4 is_same_transaction
This operation returns true if, and only if, the target object and the parameter object
both refer to the same transaction.
2-10 Transaction Service, v1.4 September 2003

2

2.6.5 is_ancestor_transaction
This operation returns true if, and only if, the transaction associated with the target
object is an ancestor of the transaction associated with the parameter object. A
transaction T1 is an ancestor of a transaction T2 if, and only if, T1 is the same as T2
or T1 is an ancestor of the parent of T2.

2.6.6 is_descendant_transaction
This operation returns true if, and only if, the transaction associated with the target
object is a descendant of the transaction associated with the parameter object. A
transaction T1 is a descendant of a transaction T2 if, and only if, T2 is an ancestor of
T1 (see above).

2.6.7 is_related_transaction
This operation returns true if, and only if, the transaction associated with the target
object is related to the transaction associated with the parameter object. A transaction
T1 is related to a transaction T2 if, and only if, there exists a transaction T3 such that
T3 is an ancestor of T1 and T3 is an ancestor of T2.

2.6.8 is_top_level_transaction
This operation returns true if, and only if, the transaction associated with the target
object is a top-level transaction. A transaction is a top-level transaction if it has no
parent.

2.6.9 hash_transaction
This operation returns a hash code for the transaction associated with the target object.
Each transaction has a single hash code. Hash codes for transactions should be
uniformly distributed.

2.6.10 hash_top_level_tran
This operation returns the hash code for the top-level ancestor of the transaction
associated with the target object. This operation is equivalent to the
hash_transaction operation when the transaction associated with the target object is
a top-level transaction.

2.6.11 register_resource
This operation registers the specified resource as a participant in the transaction
associated with the target object. When the transaction is terminated, the resource will
receive requests to commit or rollback the updates performed as part of the transaction.
These requests are described in the description of the Resource interface. The
September 2003 Transaction Service: Coordinator Interface 2-11

2

Inactive exception is raised if the transaction has already been prepared. The standard
exception TRANSACTION_ROLLEDBACK may be raised if the transaction has
been marked rollback only.

If the resource is a subtransaction aware resource (it supports the
SubtransactionAwareResource interface) and the transaction associated with the
target object is a subtransaction, then this operation registers the specified resource
with the subtransaction and indirectly with the top-level transaction when the
subtransaction’s ancestors have committed.

If the resource is not a subtransaction aware resource and the transaction associated
with the target object is a subtransaction, then the resource is registered as a participant
of this subtransaction. It is registered with the parent of this subtransaction only if and
when this subtransaction is committed. Otherwise (the transaction is a top-level
transaction), the resource is registered as a participant in this transaction.

This operation returns a RecoveryCoordinator that can be used by this resource
during recovery.

2.6.12 register_synchronization
This operation registers the specified Synchronization object such that it will be
notified to perform necessary processing prior to prepare being driven to resources
registered with this Coordinator. These requests are described in the description of
the Synchronization interface. The Inactive exception is raised if the transaction
has already been prepared. The SynchronizationUnavailable exception is raised if
the Coordinator does not support synchronization. The standard exception
TRANSACTION_ROLLEDBACK may be raised if the transaction has been
marked rollback only.

A synchronization cannot be registered with a subtransaction. A call to
register_synchronization on a subtransaction always raises
SynchronizationUnavailable.

2.6.13 register_subtran_aware
This operation registers the specified subtransaction aware resource such that it will be
notified when the subtransaction has committed or rolled back. These requests are
described in the description of the SubtransactionAwareResource interface.

Note that this operation registers the specified resource only with the subtransaction.
This operation cannot be used to register the resource as a participant in the
transaction.

The NotSubtransaction exception is raised if the current transaction is not a
subtransaction. The Inactive exception is raised if the subtransaction (or any ancestor)
is terminating, or has already been terminated. The standard exception
TRANSACTION_ROLLEDBACK may be raised if the subtransaction (or any
ancestor) has been marked rollback only.
2-12 Transaction Service, v1.4 September 2003

2

2.6.14 rollback_only
The transaction associated with the target object is modified so that the only possible
outcome is to rollback the transaction. The Inactive exception is raised if the
transaction has already been prepared.

2.6.15 get_transaction_name
This operation returns a printable string describing the transaction associated with the
target object. The returned string is intended to support debugging.

2.6.16 create_subtransaction
A new subtransaction is created whose parent is the transaction associated with the
target object. The Inactive exception is raised if the target transaction is terminating,
or has already been terminated. An implementation of the Transaction Service is not
required to support nested transactions. If nested transactions are not supported, the
exception SubtransactionsUnavailable is raised.

The create_subtransaction operation returns a Control object, which enables the
subtransaction to be terminated and allows recoverable objects to participate in the
subtransaction. An implementation of the Transaction Service may restrict the ability
for the Control object to be transmitted to or used in other execution environments.

2.6.17 get_txcontext
The get_txcontext operation returns a PropagationContext object, which is used
by one Transaction Service domain to export the current transaction to a new
Transaction Service domain. An implementation of the Transaction Service may also
use the PropagationContext to assist in the implementation of the
is_same_transaction operation when the input Coordinator has been generated by
a different Transaction Service implementation.

The Unavailable exception is raised if the Transaction Service implementation
chooses to restrict the availability of the PropagationContext.

2.7 Recovery Coordinator Interface
A recoverable object uses a RecoveryCoordinator to drive the recovery process in
certain situations. The object reference for an object supporting the
RecoveryCoordinator interface, as returned by the register_resource operation,
is implicitly associated with a single resource registration request and may only be
used by that resource.

interface RecoveryCoordinator {
Status replay_completion(in Resource r)

raises(NotPrepared);
};
September 2003 Transaction Service: Recovery Coordinator Interface 2-13

2

2.7.1 replay_completion
This operation can be invoked at any time after the associated resource has been
prepared. The Resource must be passed as the parameter. Performing this operation
provides a hint to the Coordinator that the commit or rollback operations have not
been performed on the resource. This hint may be required in certain failure cases.
This non-blocking operation returns the current status of the transaction. The
NotPrepared exception is raised if the resource has not been prepared.

2.8 Resource Interface
The Transaction Service uses a two-phase commitment protocol to complete a top-
level transaction with each registered resource. The Resource interface defines the
operations invoked by the transaction service on each resource. Each object supporting
the Resource interface is implicitly associated with a single top-level transaction.
Note that in the case of failure, the completion sequence will continue after the failure
is repaired. A resource should be prepared to receive duplicate requests for the
commit or rollback operation and to respond consistently.

interface Resource {
Vote prepare()

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard

);
void commit()

raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard

);
void commit_one_phase()

raises(
HeuristicHazard

);
void forget();

};

2.8.1 prepare
This operation is invoked to begin the two-phase commit protocol on the resource. The
resource can respond in several ways, represented by the Vote result.
2-14 Transaction Service, v1.4 September 2003

2

If no persistent data associated with the resource has been modified by the transaction,
the resource can return VoteReadOnly. After receiving this response, the Transaction
Service is not required to perform any additional operations on this resource.
Furthermore, the resource can forget all knowledge of the transaction.

If the resource is able to write (or has already written) all the data needed to commit
the transaction to stable storage, as well as an indication that it has prepared the
transaction, it can return VoteCommit. After receiving this response, the Transaction
Service is required to eventually perform either the commit or the rollback operation
on this object. To support recovery, the resource should store the
RecoveryCoordinator object reference in stable storage.

The resource can return VoteRollback under any circumstances, including not having
any knowledge about the transaction (which might happen after a crash). If this
response is returned, the transaction must be rolled back. Furthermore, the Transaction
Service is not required to perform any additional operations on this resource. After
returning this response, the resource can forget all knowledge of the transaction.

The resource is expected to raise the BAD_INV_ORDER standard exception if it is
already prepared.

The resource reports inconsistent outcomes using the HeuristicMixed and
HeuristicHazard exceptions (described in Section 1.3.6, “Exceptions,” on
page 1-16). Heuristic outcomes occur when a resource acts as a sub-coordinator and at
least one of its resources takes a heuristic decision after a VoteCommit return. If a
heuristic outcome exception is raised, the resource must remember this outcome until
the forget operation is performed so that it can return the same outcome in case
commit or rollback is performed.

2.8.2 rollback
If necessary, the resource should rollback all changes made as part of the transaction.
If the resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (described in Section 1.3.6, “Exceptions,” on
page 1-16) are used to report heuristic decisions related to the resource. The resource
may raise these exceptions only if the prepare operation has been performed
previously. If a heuristic outcome exception is raised, the resource must remember this
outcome until the forget operation is performed so that it can return the same outcome
in case rollback is performed again. Otherwise, the resource can immediately forget
all knowledge of the transaction.

2.8.3 commit
If necessary, the resource should commit all changes made as part of the transaction. If
the resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (described in Section 1.3.6, “Exceptions,” on
page 1-16) are used to report heuristic decisions related to the resource. If a heuristic
outcome exception is raised, the resource must remember this outcome until the forget
September 2003 Transaction Service: Resource Interface 2-15

2

operation is performed so that it can return the same outcome in case commit is
performed again. Otherwise, the resource can immediately forget all knowledge of the
transaction.

The NotPrepared exception is raised if the commit operation is performed without
first performing the prepare operation.

2.8.4 commit_one_phase
If possible, the resource should commit all changes made as part of the transaction. If
it cannot, it should raise the TRANSACTION_ROLLEDBACK standard exception.

If a failure occurs during commit_one_phase, it must be retried when the failure is
repaired. Since their can only be a single resource, the HeuristicHazard exception is
used to report heuristic decisions related to that resource. If a heuristic exception is
raised, the resource must remember this outcome until the forget operation is
performed so that it can return the same outcome in case commit_one_phase is
performed again. Otherwise, the resource can immediately forget all knowledge of the
transaction.

2.8.5 forget
This operation is performed only if the resource raised a heuristic outcome exception
to rollback, commit, commit_one_phase, or prepare. Once the coordinator has
determined that the heuristic situation has been addressed, it should issue forget on
the resource. The resource can forget all knowledge of the transaction.

2.9 Synchronization Interface
The Transaction Service provides a synchronization protocol, which enables an object
with transient state data that relies on an X/Open XA conformant Resource Manager
for ensuring that data is made persistent to be notified before the start of the two-phase
commitment protocol, and after its completion. If the transaction is instructed to roll
back rather than be committed, the object will only be notified after rollback
completes. An object with transient state data that relies on a Resource object for
ensuring that data is made persistent can also make use of this protocol, provided that
both objects are registered with the same Coordinator. Each object supporting the
Synchronization interface is implicitly associated with a single top-level transaction.

For backward compatibility with earlier revisions of the Transaction Service, the
Synchronization interface inherits from the deprecated TransactionalObject
interface. The Transaction Service may or may not propagate a transaction context
when calling operations on a Synchronization object. If a transaction context is
propagated, it must correspond to the transaction about to be committed or that has just
completed

interface Synchronization : TransactionalObject {
void before_completion();
void after_completion(in Status s);
2-16 Transaction Service, v1.4 September 2003

2

};

2.9.1 before_completion
This operation is invoked prior to the start of the two-phase commit protocol within the
coordinator the Synchronization has registered with. This operation will therefore be
invoked prior to prepare being issued to Resource objects or X/Open Resource
Managers registered with that same coordinator. The Synchronization object must
ensure that any state data it has that needs to be made persistent is made available to
the resource.

Only standard exceptions may be raised. Unless there is a defined recovery procedure
for the exception raised, the transaction should be marked rollback only.

2.9.2 after_completion
Regardless of how the transaction was originally instructed to terminate, this operation
is invoked after all commit or rollback responses have been received by this
coordinator. The current status of the transaction (as determined by a get_status on
the Coordinator) is provided as input.

Only standard exceptions may be raised and they have no effect on the outcome of the
transaction termination.

2.10 Subtransaction Aware Resource Interface
Recoverable objects that implement nested transaction behavior may support a
specialization of the Resource interface called the
SubtransactionAwareResource interface. A recoverable object can be notified of
the completion of a subtransaction by registering a specialized resource object that
offers the SubtransactionAwareResource interface with the Transaction Service.
This registration is done by using the register_resource or the
register_subtran_aware operation of the current Coordinator object. A
recoverable object generally uses the register_resource operation to register a
resource that will participate in the completion of the top-level transaction and the
register_subtran_aware operation to be notified of the completion of a
subtransaction.

Certain recoverable objects may want a finer control over the registration in the
completion of a subtransaction. These recoverable objects will use the
register_resource operation to ensure participation in the completion of the top-
level transaction and they will use the register_subtran_aware operation to be
notified of the completion of a particular subtransaction. For example, a recoverable
object can use the register_subtran_aware operation to establish a “committed with
respect to” relationship between transactions; that is, the recoverable object wants to
be informed when a particular subtransaction is committed and then perform certain
operations on the transactions that depend on that transaction’s completion. This
technique could be used to implement lock inheritance, for example.
September 2003 Transaction Service: Subtransaction Aware Resource Interface 2-17

2

The Transaction Service uses the SubtransactionAwareResource interface on each
Resource object registered with a subtransaction. Each object supporting this
interface is implicitly associated with a single subtransaction.

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

};

2.10.1 commit_subtransaction
This operation is invoked only if the resource has been registered with a subtransaction
and the subtransaction has been committed. The Resource object is provided with a
Coordinator that represents the parent transaction. This operation may raise a
standard exception such as TRANSACTION_ROLLEDBACK.

Note that the results of a committed subtransaction are relative to the completion of its
ancestor transactions, that is, these results can be undone if any ancestor transaction is
rolled back.

2.10.2 rollback_subtransaction
This operation is invoked only if the resource has been registered with a subtransaction
and notifies the resource that the subtransaction has rolled back.

2.11 TransactionalObject Interface
The TransactionalObject interface is a remnant of previous versions of this
specification and is no longer used. It is retained here only for backward compatibility
with OTS 1.0 and OTS 1.1.

interface TransactionalObject{
};

2.12 Policy Interfaces
The Transaction Service utilizes POA policies to define characteristics related to
transactions. These policies are encoded in the IOR as tag components and exported to
the client when an object reference is created. This enables validation that a particular
object is capable of supporting the transaction characteristics expected by the client.

Background
The introduction of asynchronous messaging (AMI) into CORBA requires a new form
of transaction model to be supported. The current CORBA model, the shared
transaction model, provides an end to end transaction shared by the client and the
server. This model cannot be supported by asynchronous messaging. Instead, a new
model, which uses a store and forward transport between the client and server, is
2-18 Transaction Service, v1.4 September 2003

2

introduced. In this new model, the communication between client and server is broken
into separate requests, separated by a reliable transmission between routers. When
transaction are used, this model uses multiple shared transactions, each executed to
completion before the next one begins. This transaction model is called the unshared
transaction model.

Design Rationale
Introducing the unshared transaction model into CORBA requires enhancements to the
current method for specifying transactional behavior, which currently defines only the
shared transaction model. The different models of transactional behaviors are more
properly implementation properties, suggesting that they not be declared in interfaces.
Instead they are specified by the server using POA policies and made available to the
client via IOR profile components.

In OTS 1.0 and OTS 1.1, an object declared its ability to support a shared transaction
by inheriting from an empty interface called TransactionalObject. This mechanism
had weak transaction semantics, since it was also used by the infrastructure to control
transaction propagation. Such an object always received a shared transaction if one
was active, but did not receive one when there was no active transaction. This behavior
is more accurately described as allowing a shared transaction, since it provided no
guarantee to the client as to what the object might do if it did or did not receive a
shared transaction. This weak semantic is not carried forward as an explicit policy.
OTS 1.0 and OTS 1.1 did not provide a mechanism to require a shared transaction at
invocation time. This behavior produces the following two by two matrix of possible
choices for shared transaction support.

• cell (1,1) - the object requires ‘no transaction’

• cell (1,2) - the object requires a shared transaction

• cell (2,1) - the object allows ‘no transaction’

• cell (2,2) - the object allows a shared transaction

Table 2-1 Shared Transaction Behaviors

Transaction None Shared

Requires no inheritance from
TransactionalObject

cannot be specified with OTS
1.1

Allows no inheritance from
TransactionalObject

inheritance from
TransactionalObject
September 2003 Transaction Service: Policy Interfaces 2-19

2

OTSPolicy
Although the use of TransactionalObject is maintained for backward compatability,
explicit transactional behaviors are now encoded using OTSPolicy values, which are
independent of the transaction propagation rules used by the infrastructure. These
policies and their OTS 1.1 equivalents are defined as shown in Table 2-2

[1] - The ALLOWS semantics associated with inheritance from TransactionalObject cannot be coded as an explicit OTSPolicy value in
OTS 1.2.

[2] - FORBIDS is more restrictive than the absence of inheritance from TransactionalObject since it may raise the INVALID_TRANSACTION
exception.

[3] - ADAPTS provides a stronger client-side guarantee than inheritance from TransactionalObject.
• REQUIRES - The behavior of the target object depends on the existence of a

current transaction. If the invocation does not have a current transaction, a
TRANSACTION_REQUIRED exception will be raised.

• FORBIDS - The behavior of the target object depends on the absence of a current
transaction. If the invocation does have a current transaction, an
INVALID_TRANSACTION exception will be raised.

• ADAPTS - The behavior of the target object will be adjusted to take advantage of a
current transaction, if one exists. If not, it will exhibit a different behavior (i.e., the
target object is sensitive to the presence or absence of a current transaction).

OTSPolicy values are encoded in the TAG_OTS_POLICY component of the IOR.
An IOR with a TAG_OTS_POLICY component can only be created by an OTS-aware
ORB at the OTS 1.2 level or above.

IORs with no OTSPolicy
An OTS-aware client that supports OTS 1.1 objects treats IORs with no OTSPolicy
(i.e. no TAG_OTS_POLICY component) like IORs with the ADAPTS OTSPolicy
when the target object's interface derives from TransactionalObject. Otherwise,
IORs with no OTSPolicy designate objects that do not use transaction contexts, but
unlike FORBIDS objects, do not reject them. An OTS implementation is free to
propagate or not propagate transaction contexts to such objects.

Table 2-2 New Shared Transaction Behaviors

OTSPolicy Policy Value OTS 1.1 Equivalent

Reserved [1] 0 inheritance from TransactionalObject

REQUIRES 1 No equivalent

FORBIDS 2 no inheritance from TransactionalObject [2]

ADAPTS [3] 3 No equivalent
2-20 Transaction Service, v1.4 September 2003

2

InvocationPolicy
With the introduction of messaging, the unshared transaction model is used when the
request is made via a router. The InvocationPolicy specifies which form of
invocation is supported by the target object. The InvocationPolicy is defined in Table
2-3.

• EITHER - The behavior of the target is not affected by the mode of client
invocation. Both direct invocations (synchronous) and invocations using routers
(asynchronous) are supported.

• SHARED - all invocations which do not involve a routing element (i.e., the client
ORB directly invokes the target object with no intermediate routers). This includes:
• synchronous stub based invocations,
• synchronous or deferred synchronous invocations using Dynamic Invocation

Interface (DII),
• Asynchronous Method Invocations (AMI) with an effective RoutingPolicy of

ROUTE_NONE.

• UNSHARED - all invocations that involve a routing element. This includes
Asynchronous Method Invocations (AMI) with an effective RoutingPolicy of
ROUTE_FORWARD or ROUTE_STORE_AND_FORWARD.

The InvocationPolicy component is significant only when transactions are used with
CORBA messaging.

InvocationPolicy values are encoded in the TAG_INV_POLICY component of the
IOR. If an InvocationPolicy is not present in the IOR, it is interpreted as if the
TAG_INV_POLICY was present with a value of EITHER.

Interactions between InvocationPolicy and OTSPolicy
Although InvocationPolicy and OTSPolicy are distinct policies, not all
combinations are valid. The valid choices are shown in Table 2-4.

Table 2-3 InvocationPolicy Behaviors

InvocationPolicy Policy Value

EITHER 0

SHARED 1

UNSHARED 2

Table 2-4 InvocationPolicy and OTSPolicy combinations

InvocationPolicy/
OTSPolicy

EITHER SHARED UNSHARED

REQUIRES ok
Requires_either

ok
Requires_shared

ok
Requires_unshared
September 2003 Transaction Service: Policy Interfaces 2-21

2

Transactional target objects that accept invocations via routers must support shared
transactions, since the routers use the shared transaction model to reliably forward the
request to the next router or the eventual target object.

Invalid policy combinations are detected when the POA is created (see Section 2.12.1,
“Creating Transactional Object References,” on page 2-23).

NonTxTargetPolicy Policy
The NonTxTargetPolicy policy and associated NonTxTargetPolicy values are
deprecated. Setting this policy has no effect.

Policy Interface Definitions
The new policy interfaces are defined in the CosTransactions module. These
interfaces are defined by the following OMG IDL:

module CosTransactions {

// TransactionPolicyType is deprecated and replaced //
// by InvocationPolicyType and OTSPolicyType //
// It is retained for backward compatibility. //

typedef unsigned short TransactionPolicyValue;

const CORBA::PolicyType TransactionPolicyType = 46;

interface TransactionPolicy : CORBA::Policy {
readonly attribute TransactionPolicyValue tpv;

};

const CORBA::PolicyType INVOCATION_POLICY_TYPE = 55;

typedef unsigned short InvocationPolicyValue;

interface InvocationPolicy : CORBA::Policy {
readonly attribute InvocationPolicyValue ipv;

};

const CORBA::PolicyType OTS_POLICY_TYPE = 56;

FORBIDS invalid ok
Allows_none

invalid

ADAPTS invalid ok
Allows_shared

invalid

Table 2-4 InvocationPolicy and OTSPolicy combinations

InvocationPolicy/
OTSPolicy

EITHER SHARED UNSHARED
2-22 Transaction Service, v1.4 September 2003

2

typedef unsigned short OTSPolicyValue;

interface OTSPolicy : CORBA::Policy {
readonly attribute OTSPolicyValue tpv;

};

// Deprecated
const CORBA::PolicyType NON_TX_TARGET_POLICY_TYPE = 57;

typedef unsigned short NonTxTargetPolicyValue;

interface NonTxTargetPolicy : CORBA::Policy {
readonly attribute NonTxTargetPolicyValue tpv;

};
};

2.12.1 Creating Transactional Object References
Object references are created as defined by the POA. An OTSPolicy object is created
by invoking ORB::create_policy with a PolicyType of OTSPolicyType and a
value of type OTSPolicyValue. An InvocationPolicy may also be associated with a
POA using the same mechanism. When either or both of these policies are associated
with a POA, the POA will create object references with either or both policies encoded
as tagged components in the IOR:

• OTSPolicy objects can only be used with POAs that support an OTS-aware ORB
at the OTS 1.2 level or above.

• InvocationPolicy objects can only be used with POAs that support an OTS-aware
ORB at the OTS 1.2 level or above.

If a POA is not created with either policy object, the object references created by this
POA do no include either tag component.

Transaction-unaware POAs
A transaction-unaware POA is any POA created with no OTSPolicy; in particular any
POA created by an OTS-unaware ORB is a transaction-unaware POA. A transaction-
unaware POA will never create a TAG_OTS_POLICY component in any IORs it
creates.

Transaction-aware POAs
A transaction-aware POA is any POA which is created with an OTSPolicy. A
transaction-aware POA will include tag components in IORs it creates for OTSPolicy
values and optionally InvocationPolicy values.

• Transaction-aware POAs can only be created in a server, which has an OTS 1.2 or
higher implementation associated with its ORB (i.e., an OTS-aware ORB).
September 2003 Transaction Service: Policy Interfaces 2-23

2

• If an application attempts to create a POA with an OTSPolicy object in a server
that does not have an associated OTS (i.e., an OTS-unaware ORB), the
InvalidPolicy exception is raised.

• Transaction-aware POAs may (but need not) have InvocationPolicy objects
associated with them.

• An attempt to create a transaction-aware POA with conflicting OTSPolicy and
InvocationPolicy values (as defined in Table 2-4 on page 2-21) will raise the
InvalidPolicy exception.

Table 2-5 summarizes the relationship between POA creation and IOR components on
both OTS-unaware and OTS-aware ORBs.

Impact of Transactions on the POA
When there is a current transaction established, the POA’s Servant location function
is performed within the scope of that transaction. The POA is responsible for making
sure that all invocations on a Servant Locator, which can result in reading or writing
persistent storage (pre_invoke and post_invoke) execute within the scope of the
current transaction. Activators are not invoked as part of the transaction. The following
behaviors must be made explicit:

• A Servant Locator cannot send the operation reply to the client until post_invoke
has completed successfully.

• Certain failures in these operation calls take precedence over sending replies (e.g.,
TRANSACTION_ROLLEDBACK) and must be raised back to the client.

Table 2-5 POA creation and IOR components

create_POA OTS-unaware
ORB

OTS-aware ORB

POA Policies Result Result TAG_INV_POLICY TAG_OTS_POLICY

Neither ok ok NO NO

InvocationPolicy
SHARED

raise InvalidPolicy raise
InvalidPolicy

- -

InvocationPolicy
EITHER or
UNSHARED

raise InvalidPolicy raise
InvalidPolicy

- -

OTSPolicy raise InvalidPolicy ok NO YES

Both with valid
combinations

raise InvalidPolicy ok YES YES

Both with invalid
combinations

raise InvalidPolicy raise
InvalidPolicy

- -
2-24 Transaction Service, v1.4 September 2003

2

• ServantActivator and AdapterActivator invocations are not within the scope of
the transaction. An Activator implementation must start its own transaction if its
actions are to take place within a transaction.

Appearance of Policy Components in IORs
The OTSPolicyValue and InvocationPolicyValue are encoded as CDR
encapsulations in the TAG_OTS_POLICY and TAG_INVOCATION_POLICY
TaggedComponents of the IOR. The tags of these TaggedComponents are
defined in the following IDL:

// The TAG_TRANSACTION_POLICY component is deprecated and //
// replaced by InvocationPolicy and OTSPolicy components //
// It is retained for backward compatibility only. //

module CosTSInteroperation {

const IOP::ComponentId TAG_TRANSACTION_POLICY=26:

struct TransactionPolicyComponent {
CosTransactions::TransactionPolicyValue tpv;

};

const IOP::ComponentId TAG_OTS_POLICY= 31;

const IOP::ComponentId TAG_INV_POLICY= 32;

};

2.12.2 OTSPolicy carried by the Transaction Service objects
The Transaction Service implements objects supporting the following interfaces in
such a way that their references have no TAG_OTS_POLICY component:

• Control
• Terminator
• Coordinator
• RecoveryCoordinator
• TransactionFactory

TransactionalObject objects must be implemented in such a way that their
references carry the ADAPTS or REQUIRES OTSPolicy (using the
TAG_OTS_POLICY component), or carry no OTSPolicy.

Synchronization objects must be implemented in such a way that their references
carry the ADAPTS OTSPolicy (using the TAG_OTS_POLICY component), or carry
no OTSPolicy.

Resource and SubtransactionAwareResource objects must be implemented in
such a way that their references carry the FORBIDS OTSPolicy (using the
TAG_OTS_POLICY component), or carry no OTSPolicy.
September 2003 Transaction Service: Policy Interfaces 2-25

2

2.13 The User’s View
The audience for this section is object and client implementers; it describes application
use of the Transaction Service functions.

2.13.1 Application Programming Models
A client application program may use direct or indirect context management to manage
a transaction.

• With indirect context management, an application uses the Current object provided
by the Transaction Service, to associate the transaction context with the application
thread of control.

• In direct context management, an application manipulates the Control object and
the other objects associated with the transaction.

Propagation is the act of associating a client’s transaction context with operations on a
target object. An object may require transactions to be either explicitly or implicitly
propagated on its operations.

Implicit propagation means that requests are implicitly associated with the client’s
transaction; they share the client’s transaction context. It is transmitted implicitly to the
objects, without direct client intervention. Implicit propagation depends on indirect
context management, since it propagates the transaction context associated with the
Current object. Explicit propagation means that an application propagates a
transaction context by passing objects defined by the Transaction Service as explicit
parameters.

An object that supports implicit propagation would not typically expect to receive any
Transaction Service object as an explicit parameter.

A client may use one or both forms of context management, and may communicate
with objects that use either method of transaction propagation.

This results in four ways in which client applications may communicate with
transactional objects. They are described below.

2.13.1.1 Direct Context Management: Explicit Propagation
The client application directly accesses the Control object, and the other objects that
describe the state of the transaction. To propagate the transaction to an object, the
client must include the appropriate Transaction Service object as an explicit parameter
of an operation.

2.13.1.2 Indirect Context Management: Implicit Propagation
The client application uses operations on the Current object to create and control its
transactions. When it issues requests on transactional objects, the transaction context
associated with the current thread is implicitly propagated to the object.
2-26 Transaction Service, v1.4 September 2003

2

2.13.1.3 Indirect Context Management: Explicit Propagation
For an implicit model application to use explicit propagation, it can get access to the
Control using the get_control operation on Current. It can then use a Transaction
Service object as an explicit parameter to a transactional object. This is explicit
propagation.

2.13.1.4 Direct Context Management: Implicit Propagation
A client that accesses the Transaction Service objects directly can use the resume
operation on Current to set the implicit transaction context associated with its thread.
This allows the client to invoke operations of an object that requires implicit
propagation of the transaction context.

2.13.2 Interfaces

Note – For clarity, subtransaction operations are not shown.

Table 2-6 Use of Transaction Service Functionality

Context management

Function Used by Direct Indirect1

1. All Indirect context management operations are on the Current object interface

Create a transaction Transaction
originator

TransactionFactory::create
Control::get_terminator
Control::get_coordinator

begin,set_timeout

Terminate a transaction Transaction
originator—implicit
All—explicit

Terminator::commit
Terminator::rollback

commit
rollback

Rollback a transaction Server Terminator::rollback_only rollback_only
Control propagation
of transaction to a server

Server Declaration of method parameter begin
resume

Control by client
of transaction
propagation
to a server

All Request parameters get_control
suspend
resume

Become a participant
in a transaction

Recoverable Server Coordinator::register_resource Not applicable

Miscellaneous All Coordinator::get_status
Coordinator::get_transaction_name
Coordinator::is_same_transaction
Coordinator::hash_transaction

get_status
get_transaction_name
Not applicable
Not applicable
September 2003 Transaction Service: The User’s View 2-27

2

2.13.3 Checked Transaction Behavior
Some Transaction Service implementations will enforce checked behavior for the
transactions they support, to provide an extra level of transaction integrity. The
purpose of the checks is to ensure that all transactional requests made by the
application have completed their processing before the transaction is committed. A
checked Transaction Service guarantees that commit will not succeed unless all
transactional objects involved in the transaction have completed the processing of their
transactional requests.

There are many possible implementations of checking in a Transaction Service. One
provides equivalent function to that provided by the request/response inter-process
communication models defined by X/Open.

The X/Open Transaction Service model of checking is particularly important because it
is widely implemented. It describes the transaction integrity guarantees provided by
many existing transaction systems. These transaction systems will provide the same
level of transaction integrity for object-based applications by providing a Transaction
Service interface that implements the X/Open checks.

2.13.4 X/Open Checked Transactions
In X/Open, completion of the processing of a request means that the object has
completed execution of its method and replied to the request.

The level of transaction integrity provided by a Transaction Service implementing the
X/Open model of checking provides equivalent function to that provided by the
XATMI and TxRPC interfaces defined by X/Open for transactional applications.
X/Open DTP Transaction Managers are examples of transaction management functions
that implement checked transaction behavior.

This implementation of checked behavior depends on implicit transaction propagation.
When implicit propagation is used, the objects involved in a transaction at any given
time may be represented as a tree, the request tree for the transaction. The beginner of
the transaction is the root of the tree. Requests add nodes to the tree, replies remove
the replying node from the tree. Synchronous requests, or the checks described below
for deferred synchronous requests, ensure that the tree collapses to a single node before
commit is issued.

If a transaction uses explicit propagation, the Transaction Service cannot know which
objects are or will be involved in the transaction; that is, a request tree cannot be
constructed or assured. Therefore, the use of explicit propagation is not permitted by a
Transaction Service implementation that enforces X/Open-style checked behavior.

Applications that use synchronous requests implicitly exhibit checked behavior. For
applications that use deferred synchronous requests, in a transaction where all clients
and objects are in the domain of a checking Transaction Service, the Transaction
Service can enforce this property by applying a reply check and a commit check.

The Transaction Service must also apply a resume check to ensure that the transaction
is only resumed by application programs in the correct part of the request tree.
2-28 Transaction Service, v1.4 September 2003

2

2.13.4.1 Reply Check
Before allowing an object to reply to a transactional request, a check is made to ensure
that the object has received replies to all its deferred synchronous requests that
propagated the transaction in the original request. If this condition is not met, an
exception is raised and the transaction is marked as rollback-only, that is, it cannot be
successfully committed.

A Transaction Service may check that a reply is issued within the context of the
transaction associated with the request.

2.13.4.2 Commit Check
Before allowing commit to proceed, a check is made to ensure that:

• The commit request for the transaction is being issued from the same execution
environment that created the transaction.

• The client issuing commit has received replies to all the deferred synchronous
requests it made that caused the propagation of the transaction.

2.13.4.3 Resume Check
Before allowing a client or object to associate a transaction context with its thread of
control, a check is made to ensure that this transaction context was previously
associated with the execution environment of the thread. This would be true if the
thread either created the transaction or received it in a transactional operation.

2.13.5 Implementing a Transactional Client: Heuristic Completions
The commit operation takes the boolean report_heuristics as input. If the
report_heuristics argument is false, commit can complete as soon as the root
coordinator has made its decision to commit or rollback the transaction. The
application is not required to wait for the coordinator to complete the commit protocol
by informing all the participants of the outcome of the transaction. This can
significantly reduce the elapsed time for the commit operation, especially where
participant Resource objects are located on remote network nodes. However, no
heuristic conditions can be reported to the application in this case.

Using the report_heuristics option guarantees that the commit operation will not
complete until the coordinator has completed the commit protocol with all resources
involved in the transaction. This guarantees that the application will be informed of
any non-atomic outcomes of the transaction via the HeuristicMixed or
HeuristicHazard exceptions, but increases the application-perceived elapsed time for
the commit operation.
September 2003 Transaction Service: The User’s View 2-29

2

2.13.6 Implementing a Recoverable Server
A Recoverable Server includes at least one recoverable object and one Resource
object. The responsibilities of each of these objects are explained in the following
sections.

2.13.6.1 Recoverable Object
The responsibilities of the recoverable object are to implement the object’s operations,
and to register a Resource object with the Coordinator so commitment of the
recoverable object’s resources, including any necessary recovery, can be completed.

The Resource object identifies the involvement of the recoverable object in a
particular transaction. This means a Resource object may only be registered in one
transaction at a time. A different Resource object must be registered for each
transaction in which a recoverable object is concurrently involved.

A recoverable object may receive multiple requests within the scope of a single
transaction. It only needs to register its involvement in the transaction once. The
is_same_transaction operation allows the recoverable object to determine if the
transaction associated with the request is one in which the recoverable object is already
registered.

The hash_transaction operations allow the recoverable object to reduce the number
of transaction comparisons it has to make. All coordinators for the same transaction
return the same hash code. The is_same_transaction operation need only be done
on coordinators that have the same hash code as the coordinator of the current request.

2.13.6.2 Resource Object
The responsibilities of a Resource object are to participate in the completion of the
transaction, to update the Recoverable Server’s resources in accordance with the
transaction outcome, and ensure termination of the transaction, including across
failures. The protocols that the Resource object must follow are described in
Section 2.14.1, “Transaction Service Protocols,” on page 2-40.

2.13.6.3 Reliable Servers
A Reliable Server is a special case of a Recoverable Server. A Reliable Server can use
the same interface as a Recoverable Server to ensure application integrity for objects
that do not have recoverable state. In the case of a Reliable Server, the recoverable
object can register a Resource object that replies VoteReadOnly to prepare if its
integrity constraints are satisfied (e.g., all debits have a corresponding credit), or
replies VoteRollback if there is a problem. This approach allows the server to apply
integrity constraints that apply to the transaction as a whole, rather than to individual
requests to the server.
2-30 Transaction Service, v1.4 September 2003

2

2.13.7 Application Portability
This section considers application portability across the broadest range of Transaction
Service implementations.

2.13.7.1 Flat Transactions
There is one optional function of the Transaction Service, support for nested
transactions. For an application to be portable across all implementations of the
Transaction Service, it should be designed to use the flat transaction model. The
Transaction Service specification treats flat transactions as top-level nested
transactions.

2.13.7.2 X/Open Checked Transactions
Transaction Service implementations may implement checked or unchecked behavior.
The transaction integrity checks implemented by a Transaction Service need not be the
same as those defined by X/Open. However, many existing transaction management
systems have implemented the X/Open model of interprocess communication, and will
implement a checked Transaction Service that provides the same guarantee of
transaction integrity.

Applications written to conform to the transaction integrity constraints of X/Open will
be portable across all implementations of an X/Open checked Transaction Service, as
well as all Transaction Service implementations that support unchecked behavior.

2.13.8 Distributed Transactions
The Transaction Service can be implemented by multiple components located across a
network. The different components can be based on the same or on different
implementations of the Transaction Service.

A single transaction can involve clients and objects supported by more than one
instance of the Transaction Service. The number of Transaction Service instances
involved in the transaction is not visible to the application implementer. There is no
change in the function provided.

2.13.9 Applications Using Both Checked and Unchecked Services
A single transaction can include objects supported by both checked and unchecked
Transaction Service implementations. Checked transaction behavior cannot be applied
to the transaction as a whole.

It is possible to provide useful, limited forms of checked behavior for those subsets of
the transaction’s resources in the domain of a checked Transaction Service.
September 2003 Transaction Service: The User’s View 2-31

2

• First, a transactional or recoverable object, whose resources are managed by a
checked Transaction Service, may be accessed by unchecked clients. The checked
Transaction Service can ensure, by registering itself in the transaction, that the
transaction will not commit before all the integrity constraints associated with the
request have been satisfied.

• Second, an application whose resources are managed by a checked Transaction
Service may act as a client of unchecked objects, and preserve its checked
semantics.

2.13.10 Examples

Note – All the examples are written in pseudo code based on C++. In particular they
do not include implicit parameters such as the ORB::Environment, which should
appear in all requests. Also, they do not handle the exceptions that might be returned
with each request.

2.13.10.1 A Transaction Originator: Indirect and Implicit
In the code fragments below, a transaction originator uses indirect context management
and implicit transaction propagation; txn_crt is an example of an object supporting the
Current interface. The client uses the begin operation to start the transaction which
becomes implicitly associated with the originator's thread of control.

...
txn_crt.begin();
// should test the exceptions that might be raised
...
// the client issues requests, some of which involve
// transactional objects;
BankAccount1->makeDeposit(deposit);
...

The program commits the transaction associated with the client thread. The
report_heuristics argument is set to false so no report will be made by the
Transaction Service about possible heuristic decisions.

....
txn_crt.commit(false);
...

2.13.10.2 Transaction Originator: Direct and Explicit
In the following example, a transaction originator uses direct context management and
explicit transaction propagation. The client uses a factory object supporting the
CosTransactions::TransactionFactory interface to create a new transaction and
uses the returned Control object to retrieve the Terminator and Coordinator
objects.
2-32 Transaction Service, v1.4 September 2003

2

...
CosTransactions::Control c;
CosTransactions::Terminator t;
CosTransactions::Coordinator co;

c = TFactory->create(0);
t = c->get_terminator();
...

The client issues requests, some of which involve transactional objects, in this case
explicit propagation of the context is used. The Control object reference is passed as
an explicit parameter of the request; it is declared in the OMG IDL of the interface.

...
transactional_object->do_operation(arg, c);

The transaction originator uses the Terminator object to commit the transaction; the
report_heuristics argument is set to false: so no report will be made by the
Transaction Service about possible heuristic decisions.

...
t->commit(false);

2.13.10.3 Example of a Recoverable Server
BankAccount1 is an object with internal resources. It inherits from the Resource
interfaces:

interface BankAccount1:
CosTransactions::Resource

{
...
 void makeDeposit (in float amt);
...
};

class BankAccount1
{
public:
...
void makeDeposit(float amt);
...
}

Upon entering, the context of the transaction is implicitly associated with the object’s
thread. The pseudo object supporting the Current interface is used to retrieve the
Coordinator object associated with the transaction.

void makeDeposit (float amt)
{

September 2003 Transaction Service: The User’s View 2-33

2

CosTransactions::Control c;
CosTransactions::Coordinator co;

c = txn_crt.get_control();
co = c->get_coordinator();
...

Before registering the Resource, the object must check whether it has already been
registered for the same transaction. This is done using the hash_transaction and
is_same_transaction operations on the current Coordinator to compare a list of
saved coordinators representing currently active transactions. In this example, the
object registers itself as a Resource. This requires the object to durably record its
registration before issuing register_resource to handle potential failures and
imposes the restriction that the object may only be involved in one transaction at a
time.

If more parallelism is required, separate Resource objects can be registered for each
transaction the object is involved in.

RecoveryCoordinator r;
r = co->register_resource (this);

// performs some transactional activity locally
balance = balance + f;
num_transactions++;
...
// end of transactional operation
};

2.13.10.4 Example of a Transactional Object
BankAccount2 is an object with external resources.

interface BankAccount2 {
...
 void makeDeposit(in float amt);
...
};

class BankAccount2
{
public:
...
void makeDeposit(float amt);
...
}

2-34 Transaction Service, v1.4 September 2003

2

Upon entering, the context of the transaction is implicitly associated with the object’s
thread. The makeDeposit operation performs some transactional requests on external,
recoverable servers. The objects res1 and res2 are recoverable objects. The current
transaction context is implicitly propagated to these objects.

void makeDeposit(float amt)
{

balance = res1->get_balance(amt);
balance = balance + amt;
res1->set_balance(balance);

res2->increment_num_transactions();
} // end of transactional operation

2.13.11 Model Interoperability
The Transaction Service supports interoperability between Transaction Service
applications using implicit context propagation and procedural applications using the
X/Open DTP model. A single transaction management component may act as both the
Transaction Service and an X/Open Transaction Manager.

Interoperability is provided in two ways:
• Importing transactions from the X/Open domain to the Transaction Service

domain.
• Exporting transactions from the Transaction Service domain to the X/Open

domain.

2.13.11.1 Importing Transactions
X/Open applications can access transactional objects. This means that an existing
application, written to use X/Open interfaces, can be extended to invoke transactional
operations. This causes the X/Open transaction to be imported into the domain of the
Transaction Service.
September 2003 Transaction Service: The User’s View 2-35

2

The X/Open application may be a client or a server.

Figure 2-1 X/Open Client

Figure 2-2 X/Open Server

Transaction

Service

Object

transactional operation

Transactional

ORB

Transaction

Manager

New Application (Objects) Existing Application

Transactional
Originator

TX

X/Open

Client

Transaction

Service

Object

transactional operation

Transactional

ORB

Transaction

Manager

New Application (Objects) Existing Application

Transactional
Originator

X/Open

Server
X/Open
client
2-36 Transaction Service, v1.4 September 2003

2

2.13.11.2 Exporting Transactions
Transactional objects can use X/Open communications and resource manager
interfaces, and include the resources managed by these components in a transaction
managed by the Transaction Service. This causes the Transaction Service transaction to
be exported into the domain of the X/Open transaction manager.

Figure 2-3 Sample Transaction Managed by the Transaction Service

2.13.11.3 Programming Rules
Model interoperability results in application programs that use both X/Open and
Transaction Service interfaces.

A transaction originator may use the X/Open TX interface or the Transaction Service
interfaces to create and terminate a transaction. Only one style may be used in one
originator.

A single application may inherit a transaction with an application request either by
using the X/Open server interfaces, or by being a transactional object.

Within a single transaction, an application program can be a client of both X/Open
resource manager interfaces and transactional object interfaces.

An X/Open client or server may invoke operations of transactional objects. The
X/Open transaction is imported into the Transaction Service domain using the
recreate operation on TransactionFactory.

A transactional object with a Current object that associates a transaction context with
a thread of control, can call X/Open Resource Managers. How requests to the X/Open
Resource managers become associated with the transaction context of the Current
object is implementation dependent.

Transactional

Client

Transaction

Service

propagation

Object

transactional operation

Transactional

ORB

RM API

Transaction

Manager

New Application (Objects)

X/Open
Resource
Manager

CM API

X/Open
server
September 2003 Transaction Service: The User’s View 2-37

2

2.13.12 Failure Models
The Transaction Service provides atomic outcomes for transactions in the presence of
application, system, or communication failures. This section describes the behavior of
application entities when failures occur. The protocols used to achieve this behavior
are described in Section 2.14.1, “Transaction Service Protocols,” on page 2-40.

From the viewpoint of each user object role, two types of failure are relevant: a failure
affecting the object itself (local failure) and a failure external to the object (external
failure), such as failure of another object or failure in the communication with that
object.

2.13.12.1 Transaction Originator

Local Failure
A failure of a transaction originator prior to the originator issuing commit will cause
the transaction to be rolled back. A failure of the originator after issuing commit and
before the outcome is reported may result in either commitment or rollback of the
transaction depending on timing; in this case completion of the transaction takes place
without regard to the failure of the originator.

External Failure
Any external failure affecting the transaction prior to the originator issuing commit
will cause the transaction to be rolled back; the standard exception
TRANSACTION_ROLLEDBACK will be raised in the originator when it issues
commit.

A failure after commit and before the outcome has been reported will mean that the
client may not be informed of the transaction outcome, depending on the nature of the
failure, and the use of the report_heuristics option of commit. For example, the
transaction outcome will not be reported to the client if communication between the
client and the coordinator fails.

A client may use get_status on the Coordinator to determine the transaction
outcome. However, this is not reliable because the status NoTransaction is
ambiguous: it could mean that the transaction committed and has been forgotten, or
that the transaction rolled back and has been forgotten.

If an originator needs to know the transaction outcome, including in the case of
external failures, then either the originator’s implementation must include a Resource
object so that it will participate in the two-phase commit procedure (and any recovery),
or the originator and coordinator must be located in the same failure domain (for
example, the same execution environment).
2-38 Transaction Service, v1.4 September 2003

2

2.13.12.2 Transactional Server

Local Failure
If the Transactional Server fails, then optional checks by a Transaction Service
implementation may cause the transaction to be rolled back. Without such checks,
whether the transaction is rolled back depends on whether the commit decision has
already been made. This would be the case where an unchecked client invokes
commit before receiving all replies from servers.

External Failure
Any external failure affecting the transaction during the execution of a Transactional
Server will cause the transaction to be rolled back. If this occurs while the
transactional object’s method is executing, the failure has no effect on the execution of
this method. The method may terminate normally, returning the reply to its client.
Eventually the TRANSACTION_ROLLEDBACK exception will be returned to a
client issuing commit.

2.13.12.3 Recoverable Server
Behavior of a recoverable server when failures occur is determined by the two phase
commit protocol between the coordinator and the recoverable server’s Resource
object(s). This protocol, including the local and external failure models and the
required behavior of the Resource, is described in Section 2.14.1, “Transaction Service
Protocols,” on page 2-40.

2.14 The Implementers’ View
This section contains three major categories of information.

1. Section 2.14.1, “Transaction Service Protocols,” on page 2-40 defines in more detail
the protocols of the Transaction Service for ensuring atomicity of transactions, even
in the presence of failure.

This section is not a formal part of the specification but is provided to assist in
building valid implementations of the specification. These protocols affect
implementations of Recoverable Servers and the Transaction Service.

2. Section 2.14.2, “ORB/TS Implementation Considerations,” on page 2-51 provides
additional information for implementers of ORBs and Transaction Services in those
areas where cooperation between the two is necessary to realize the Transaction
Service function.

The following aspects of ORB and Transaction Service implementation are covered:
• transaction propagation.
• interoperation between different transaction service implementations.
• ORB changes necessary to support portability of transaction service

implementations.
September 2003 Transaction Service: The Implementers’ View 2-39

2

3. Section 2.14.3, “Model Interoperability,” on page 2-62 describes how an
implementation achieves interoperation between the Transaction Service and
procedural transaction managers.

2.14.1 Transaction Service Protocols
The Transaction Service requires that certain protocols be followed to implement the
atomicity property. These protocols affect the implementation of recoverable servers,
(recoverable objects that register for participation in the two-phase commit process)
and the coordinators that are created by a transaction factory. These responsibilities
ensure the execution of the two-phase commit protocol and include maintaining state
information in stable storage, so that transactions can be completed in case of failures.

2.14.1.1 General Principles
The first coordinator created for a specific transaction is responsible for driving the
two-phase commit protocol. In the literature, this is referred to as the root Transaction
Coordinator or simply root coordinator. Any coordinator that is subsequently created
for an existing transaction (for example, as the result of interposition) becomes a
subordinate in the process. Such a coordinator is referred to as a subordinate
Transaction Coordinator or simply subordinate coordinator and by registering a
resource becomes a transaction participant. Recoverable servers are always transaction
participants. The root coordinator initiates the two-phase commit protocol; participants
respond to the operations that implement the protocol. The specification is based on
the following rules for commitment and recovery:

1. The protocol defined by this specification is a two-phase commit with presumed
rollback. This permits efficient implementations to be realized since the root
coordinator does not need to log anything before the commit decision and the
participants (i.e., Resource objects) do not need to log anything before they
prepare.

2. Resource objects—including subordinate coordinators—do not start commitment
by themselves, but wait for prepare to be invoked.

3. The prepare operation is issued at most once to each resource.

4. Participants must remember heuristic decisions until the coordinator or some
management application instructs them to forget that decision.

5. A coordinator knows which Resource objects are registered in a transaction and
so is aware of resources that have completed commitment. In general, the
coordinator must remember this information if a transaction commits in order to
ensure proper completion of the transaction. Resources can be forgotten early if
they do not vote to commit the transaction.

6. A participant should be able to request the outcome of a transaction at any time,
including after failures occurring subsequent to its Resource object being
prepared.
2-40 Transaction Service, v1.4 September 2003

2

7. Participants should be able to report the completion of the transaction (including
any heuristic condition).

The recording of information relating to the transaction which is required for recovery
is described as if it were a log file for clarity of description; an implementation may
use any suitable persistent storage mechanism.

2.14.1.2 Normal Transaction Completion
Transaction completion can occur in two ways; as part of the normal execution of the
Current::commit or Terminator::commit operations or independent of these
operations if a failure should occur before normal execution can complete. This section
describes the normal (no failure) case. Section 2.14.1.3, “Failures and Recovery,” on
page 2-48 describes the failure cases.

Coordinator Role
The root coordinator implements the following protocol:

• When the client asks to commit the transaction, and no prior attempt to rollback
the transaction has been made, the coordinator issues the before_completion
request to all registered synchronizations.

• When all registered synchronizations have responded, the coordinator issues the
prepare request to all registered resources.

• If all registered resources reply VoteReadOnly, then the root coordinator replies
to the client that the transaction committed (assuming that the client can still be
reached).

Before doing so, however, it first issues after_completion to any registered
synchronizations and, after all responses are received, replies to the client. There
is no requirement for the coordinator to log in this case.

• If any registered resource replies VoteRollback, raises an exception or cannot be
reached, then the coordinator will decide to rollback and will so inform those
registered resources that already replied VoteCommit.

• Once a VoteRollback reply or an exception is received, a coordinator need not
send prepare to the remaining resources. Rollback will be subsequently sent to
resources that replied VoteCommit.

If the report_heuristics parameter was specified on commit, the client will
be informed of the rollback outcome when any heuristic reports have been
collected (and logged if required).

• Once at least one registered resource has replied VoteCommit and all others
have replied VoteCommit or VoteReadOnly, a root coordinator may decide to
commit the transaction.

• Before issuing commit operations on those registered resources that replied
VoteCommit, the coordinator must ensure that the commit decision and the list
of registered resources—those that replied VoteCommit—is stored in stable
storage.
September 2003 Transaction Service: The Implementers’ View 2-41

2

• If the coordinator receives VoteCommit or VoteReadOnly responses from each
registered resource, it issues the commit request to each registered resource that
responded VoteCommit.

• After having received all commit or rollback responses, if synchronizations
exist, the root coordinator issues after_completion to each of them passing the
transaction outcome as status before responding to the client.

• The root coordinator issues forget to a resource after it receives a heuristic
exception.

• This responsibility is not affected by failure of the coordinator. When receiving
commit replies containing heuristic information, a coordinator constructs a
composite for the transaction.

• The root coordinator forgets the transaction after having logged its heuristic status
if heuristics reporting was requested by the originator.

• The root coordinator can now trigger the sending of the reply to the commit
operation if heuristic reporting is required. If no heuristic outcomes were
recorded, the coordinator can be destroyed.

One Phase Commit
If a coordinator has only a single registered resource, it can perform the
commit_one_phase operation on the resource instead of performing prepare and
then commit or rollback. If a synchronization exists, before_completion is issued
prior to commit_one_phase and after_completion is issued when the response to
commit_one_phase has been received. If a failure occurs, the coordinator will not
be informed of the transaction outcome.

Subtransactions
When completing a subtransaction, the subtransaction coordinator must notify any
registered subtransaction aware resources of the subtransaction’s commit or rollback
status using the commit_subtransaction or rollback_subtransaction operations
of the SubtransactionAwareResource interface.

A transaction service implementation determines how it chooses to respond when a
resource responds to commit_subtransaction with a system exception. The service
may choose to rollback the subtransaction or it may ignore the exceptional condition.
The SubtransactionAwareResource operations are used to notify the resources of
a subtransaction when the subtransaction commits in the case where the resource needs
to keep track of the commit status of its ancestors. They are not used to direct the
resources to commit or rollback any state. The operations of the Resource interface
are used to commit or rollback subtransaction resources registered using the
register_resource operation of the Coordinator interface.

When the subtransaction is committed and after all of the registered subtransaction
aware resources have been notified of the commitment, the subtransaction registers any
resources registered using register_resource with its parent Coordinator or it may
register a subordinate coordinator to relay any future requests to the resources.
2-42 Transaction Service, v1.4 September 2003

2

From the application programmer point of view, the same rules that apply to the
completion of top-level transactions also apply to subtransactions. The
report_heuristics parameter on commit is ignored since heuristics are not produced
when subtransactions are committed.

Recoverable Server Role
A recoverable server includes at least one recoverable object and one Resource
object. The recoverable object has state that demonstrates at least the atomicity
property. The Resource object implements the two-phase commit protocol as a
participant on behalf of the recoverable object. The responsibilities of each of these
objects is described below.

Synchronization Registration
A recoverable server may need to register a Synchronization object to ensure that
object state data, which is persistently managed by a resource is returned to the
resource prior to starting the commitment protocol.

Top-Level Registration
A recoverable object registers a Resource object with the Coordinator so
commitment of the transaction including any necessary recovery can be completed.

A recoverable object uses the is_same_transaction operation to determine whether
it is already registered in this transaction. It can also use hash_transaction to reduce
the number of comparisons. This relies on the definition of the hash_transaction
operation to return the same value for all coordinators in the same transaction even if
they are generated by multiple Transaction Service implementations.

Once registered, a recoverable server assumes the responsibilities of a transaction
participant.

Subtransaction Registration
A Recoverable Server registers for subtransaction completion only if it needs to take
specific actions at the time a subtransaction commits. An example would be to change
ownership of locks acquired by this subtransaction to its parent.

A recoverable object uses the is_same_transaction operation to determine whether
it is already registered in this subtransaction. It can also use hash_transaction to
reduce the number of comparisons.

Top Level Synchronization
Synchronization objects ensure that persistent state data is returned to the
recoverable object managed by a resource or to the underlying database manager. To
do so they implement a protocol that moves the data prior to the prepare phase and
does necessary processing after the outcome is complete.
September 2003 Transaction Service: The Implementers’ View 2-43

2

Top-Level Completion
Resource objects implement a recoverable object’s involvement in transaction
completion. To do so, they must follow the two-phase commit protocol initiated by
their coordinator and maintain certain elements of their state in stable storage. The
responsibilities of a Resource object with regard to a particular transaction depend on
how it will vote:

1. Returning VoteCommit to prepare

Before a Resource object replies VoteCommit to a prepare operation, it must
implement the following:
• make persistent the recoverable state of its recoverable object.

The method by which this is accomplished is implementation dependent. If a
recoverable object has only transient state, it need not be made persistent.

• ensure that its object reference is recorded in stable storage to allow it to
participate in recovery in the event of failure.

How object references are made persistent and then regenerated after a failure is
outside the scope of this specification. The Persistent Object Service or some
other mechanism may be used. How persistent Resource objects get restarted
after a failure is also outside the scope of this specification.

• record the RecoveryCoordinator object reference so that it can initiate
recovery of the transaction later if necessary.

• the Resource then waits for the coordinator to invoke commit or rollback.
• A Resource with a heuristic outcome must not discard that information until it

receives a forget from its coordinator or some administrative component.

2. Returning VoteRollback to prepare

A Resource that replies VoteRollback has no requirement to log. Once having
replied, the Resource can return recoverable resources to their prior state and
forget the transaction.

3. Returning VoteReadOnly to prepare

A Resource that replies VoteReadOnly has no requirement to log. Once having
replied, the Resource can release its resources and forget the transaction.

Subtransaction Completion
The role of the subtransaction aware resource at subtransaction completion are defined
by the subtransaction aware resource itself. The coordinator only requires that it
respond to commit_subtransaction or rollback_subtransaction.

All resources need to be notified when a transaction commits or is rolled back. But
some resources need to know when subtransactions commit so that they can update
local data structures and track the completion status of ancestors. The resource may
have rules that are specific to ancestry and must perform some work as all or some
ancestors complete. The nested semantics and effort required by the Resource object
are defined by the object and not the Transaction Service.
2-44 Transaction Service, v1.4 September 2003

2

Once the resource has been told to prepare, the resource’s obligations are exactly the
same as a top-level resource.

For example, in the Concurrency Control Service, a resource in a nested transaction
might want to know when the subtransaction commits because another subtransaction
may be waiting for a lock held by that subtransaction. Once that subtransaction
commits, others may be granted the lock. There is no requirement to make lock
ownership persistent until a prepare message is received.

For the Persistent Object Service, it is important to keep separate update information
associated with a subtransaction. When that subtransaction commits, the Persistent
Object Service may need to reorganize its information (such as undo information) in
case the parent subtransaction chooses to rollback. Again, the Persistent Object Service
resource need not make updates permanent until a prepare message is received. At
that point, it has the same responsibilities as a top-level resource.

Subordinate Coordinator Role
An implementation of the Transaction Service may interpose subordinate coordinators
to optimize the commit tree for completing the transaction. Such coordinators behave
as transaction participants to their superiors and as coordinators to their resources or
inferior coordinators.

Synchronization
A subordinate coordinator may register a Synchronization object with its superior
coordinator if it needs to perform processing before its prepare phase begins.

Registration
A subordinate coordinator registers a Resource with its superior coordinator. Once
registered, a subordinate coordinator assumes the responsibilities of a transaction
participant and implements the behavior of a recoverable server.

Subtransaction Registration
If any of the resources registered with the subordinate coordinator support the
SubtransactionAwareResource interface, the subordinate coordinator must
register a subtransaction aware resource with its parent coordinator. If any of the
resources registered with the subordinate using the register_resource operation, the
subordinate must register a Resource with its superior. If both types of resources
were registered with the subordinate, the subordinate only needs to register a
subtransaction aware resource with its superior.

Top-level Completion
A subordinate coordinator implements the completion behavior of a recoverable server.

Subtransaction Completion
A subordinate coordinator implements the subtransaction completion behavior of a
recoverable server.
September 2003 Transaction Service: The Implementers’ View 2-45

2

Subordinate Coordinator
A subordinate coordinator does not make the commit decision but simply relays the
decision of its superior (which may also be a subordinate coordinator) to resources
registered with it. A subordinate coordinator acts as a recoverable server as described
previously, in terms of saving its state in stable storage. A subordinate coordinator (or
indeed any resource) may log the commit decision once it is known (as an
optimization) but this is not essential.

• A subordinate coordinator issues the before_completion operation to any
synchronizations when it receives prepare from its superior.

• When all responses to before_completion have been received, a subordinate
coordinator issues the prepare operation to its registered resources.

• If all registered resources reply VoteReadOnly, then the subordinate coordinator
will decide to reply VoteReadOnly.

Before doing so, however, it first issues after_completion to any registered
synchronizations and, after all responses are received, replies VoteReadOnly to its
superior. There is no requirement for the subordinate coordinator to log in this case;
the subordinate coordinator takes no further part in the transaction and can be
destroyed.

• If any registered resource replies VoteRollback or cannot be reached, then the
subordinate coordinator will decide to rollback and will so inform those registered
resources that already replied VoteCommit.

Once a VoteRollback reply is received, the subordinate coordinator need not send
prepare to the remaining resources. The subordinate coordinator issues
after_completion to any synchronizations and, after all responses have been
received, replies VoteRollback to its superior.

• Once at least one registered resource has replied VoteCommit and all others have
replied VoteCommit or VoteReadOnly, a subordinate coordinator may decide to
reply VoteCommit.

The subordinate coordinator must record the prepared state, the reference of its
superior RecoveryCoordinator and its list of resources that responded
VoteCommit in stable storage before responding to prepare.

• A subordinate coordinator issues the commit operation to its registered resources,
which replied VoteCommit when it receives a commit request from its superior.

• If any resource reports a heuristic outcome, the subordinate coordinator must report
a heuristic outcome to its superior.

Before doing so, however, it first issues after_completion to any registered
synchronizations and, after all responses are received, reports the heuristic outcome
to its superior. The specific outcome reported depends on the other heuristic
outcomes received. The subordinate coordinator must record the heuristic outcome
in stable storage.

• After having received all commit replies, a subordinate coordinator logs its
heuristic status (if any).
2-46 Transaction Service, v1.4 September 2003

2

• The subordinate coordinator then replies to the commit from its superior
coordinator.

Before doing so, it issues after_completion to any registered synchronizations
and, after all responses have been received, it then replies to its superior. If no
heuristic report was sent the Coordinator is destroyed.

• A subordinate coordinator performs the rollback operation on its registered
resources when it receives a rollback request from its superior.

If any resource reports a heuristic outcome, the subordinate coordinator records the
appropriate heuristic outcome in stable storage and will report this outcome to its
superior. Before doing so, however, it issues after_completion to any registered
synchronizations and, after receiving all the responses, reports the heuristic
outcome to its superior.

• The subordinate coordinator then replies to the rollback from its superior
coordinator.

Before doing so, it issues after_completion to any registered synchronizations
and, after all responses have been received, it then replies to its superior. If no
heuristic report was sent the Coordinator is destroyed.

• If a subordinate coordinator receives a commit_one_phase request, and it has a
single registered resource, it can simply perform the commit_one_phase request
on its resource. Before doing so, if a synchronization exists, it issues
before_completion to the synchronization, then, after receiving the
commit_one_phase response, issues after_completion to the synchronization.

If it has multiple registered resources, it behaves like a superior coordinator, issuing
before_completion to any synchronizations and, after receiving the responses,
issuing prepare to each resource to determine the outcome, then issuing commit
or rollback requests, followed by after_completion requests if synchronizations
exist.

• A subordinate coordinator performs the forget operation on those registered
resources that reported a heuristic outcome when it receives a forget request from
its superior.

Subtransactions
A subordinate coordinator for a subtransaction relays commit_subtransaction and
rollback_subtransaction requests to any subtransaction aware resources registered
with it. In addition, it performs the same roles as a top-level subordinate coordinator
when the top-level transaction commits. It must relay prepare and commit requests
to each of the resources that registered with it using the register_resource operation.
September 2003 Transaction Service: The Implementers’ View 2-47

2

2.14.1.3 Failures and Recovery
The previous descriptions dealt with the protocols associated with the Transaction
Service when a transaction completes without failure. To ensure atomicity and
durability in the presence of failure, the transaction service defines additional protocols
to ensure that transactions, once begun, always complete.

Failure Processing
The unit of failure is termed the failure domain. It may consist of the coordinator and
some local resources registered with it, or the coordinator and the resources may each
be in its own failure domain.

Local Failure
Any failure in the transaction during the execution of a coordinator prior to the commit
decision being made will cause the transaction to be rolled back.

A coordinator is restarted only if it has logged the commit decision.
• If the coordinator only contains heuristic information, nothing is done.
• If the transaction is marked rollback only, a coordinator can send rollback to its

resources and inferior coordinators.
• If the transaction outcome is commit, the coordinator sends commit to prepared

registered resources and the regular commitment procedure is started.
• If any registered resources exist but cannot be reached, then the coordinator must

try again later.

If registered resources no longer exist, then this means that they completed
commitment before the coordinator failed and have no heuristic information.

• If a subordinate coordinator is prepared, then it must contact its superior
coordinator to determine the transaction outcome.

• If the superior coordinator exists but cannot be reached, then the subordinate must
retry recovery later.

• If the superior coordinator no longer exists, then the outcome of the transaction
can be presumed to be rollback.

The subordinate will inform its registered resources.

External Failure
Any failure in the transaction during the execution of a coordinator prior to the commit
decision being made will cause the transaction to be rolled back.

2.14.1.4 Transaction Completion after Failure
In general, the approach is to continue the completion protocols at the point where the
failure occurred. That means that the coordinator will usually have the responsibility
for sending the commit decision to its registered resources. Certain failure conditions
will require that the resource initiate the recovery procedure—recall that the resource
might also be a subordinate coordinator. These are described in more detail below.
2-48 Transaction Service, v1.4 September 2003

2

Resources
A resource represents some collection of recoverable data associated with a
transaction. It supports the Resource interface described in Section 2.8, “Resource
Interface,” on page 2-14. When recovering from failure after its changes have been
prepared, a resource uses the replay_completion operation on the
RecoveryCoordinator to determine the outcome of the transaction and continue
completion.

Heuristic Reporting
If the coordinator does not complete the two-phase commit in a timely manner, a
subordinate (i.e., a resource or a subordinate coordinator) in the transaction may elect
to commit or rollback the resources registered with it in a prepared transaction (take a
heuristic decision). When the coordinator eventually sends the outcome, the outcome
may differ from that heuristic decision. The result is referred to as HeuristicMixed or
HeuristicHazard. The result is reported by the root coordinator to the client only
when the report_heuristics option on commit is selected. In these circumstances,
the participant (subordinate) and the coordinator must obey a set of rules that define
what they report.

Coordinator Role
A root coordinator that fails prior to logging the commit decision can unilaterally
rollback the transaction. If its resources have also rolled back because they were not
prepared, the transaction is returned to its prior state of consistency. If any resources
are prepared, they are required to initiate the recovery process defined below.

• A root coordinator that has a committed outcome will continue the completion
protocol by sending commit.

• A root coordinator that has a rolled back outcome will continue the completion
protocol by sending rollback.

Synchronizations
Synchronization objects are not persistent so they are not restarted after failure and,
as a result, their operations are not invoked during failure processing.

Subtransactions
Subtransactions are not durable, so there is no completion after failure. However, once
the top-level coordinator issues prepare, a subtransaction subordinate coordinator has
the same responsibilities as a top-level subordinate coordinator.

Recoverable Server role
The Transaction Service imposes certain requirements on the recoverable objects
participating in a transaction. These requirements include an obligation to retain
certain information at certain times in stable storage (storage not likely to be damaged
September 2003 Transaction Service: The Implementers’ View 2-49

2

as the result of failure). When a recoverable object restarts after a failure, it
participates in a recovery protocol based on the contents (or lack of contents) of its
stable storage.

Once having replied VoteCommit, the resource remains responsible for discovering
the outcome of the transaction (i.e., whether to commit or rollback). If the resource
subsequently makes a heuristic decision, this does not change its responsibilities to
discover the outcome.

If No Heuristic Decision is Made
A resource that is prepared is responsible for initiating recovery. It does so by issuing
replay_completion to the RecoveryCoordinator. The reply tells the resource the
outcome of the transaction. The coordinator can continue the completion protocol
allowing the resource to either commit or rollback. The resource can resend
replay_completion if the completion protocol is not continued.

• If the resource having replied VoteCommit initiates recovery and receives
StExcep::OBJECT_NOT_EXIST, it will know that the Coordinator no longer
exists and therefore the outcome was to rollback (presumed rollback).

• If the resource having replied VoteCommit initiates recovery and receives
StExcep::COMM_FAILURE, it will know only that the Coordinator may or
may not exist. In this case, the resource retains responsibility for initiating
recovery again at a later time.

When a Heuristic Decision is Made
Before acting on a heuristic decision, it must record the decision in stable storage.

• If the heuristic decision turns out to be consistent with the outcome, then all is
well and the transaction can be completed and the heuristic decision can be
forgotten.

• If the heuristic decision turns out to be wrong, the heuristic damage is recorded in
stable storage and one of the heuristic outcome exceptions (HeuristicCommit,
HeuristicRollback, HeuristicMixed, or HeuristicHazard) is returned when
completion continues.

The heuristic outcome details must be retained persistently until the resource is
instructed to forget. In this case, the resource remains persistent until the forget is
received.

Subordinate Coordinator Role
The behavior of a subordinate coordinator after a failure of its superior coordinator is
implementation-dependent; however, it does follow the following protocols:

• Since it appears as a resource to its superior coordinator, the protocol defined for
recoverable servers applies to subordinate coordinators.

• Since it is also a subordinate coordinator for its own registered resources, it is
permitted to send duplicate commit, rollback, and forget requests to its
registered resources.

• It is required to (eventually) perform either commit or rollback on any resource
to which it has received a VoteCommit response to prepare.
2-50 Transaction Service, v1.4 September 2003

2

• It1 is required to (eventually) perform the forget operation on any resource that
reported a heuristic outcome.

Since subtransactions are not durable, it has no responsibility in this area for failure
recovery.

2.14.2 ORB/TS Implementation Considerations
The Transaction Service and the ORB must cooperate to realize certain Transaction
Service function. This cooperation is realized on the client invocation path and
through the transaction interceptor. The client invocation path is present even in an
OTS-unaware ORB and is required to make certain checks to ensure successful
interoperability. The transaction interceptor is a request-level interceptor that is bound
into the invocation path. This cooperation is discussed in greater detail in the following
sections.

2.14.2.1 Policy Checking Requirements
This section describes the policy checks that are required on the client side before a
request is sent to a target object and the server side when a request is received. The
client invocation path is used to describe components of the client-side ORB which
may include the ORB itself, the generated client stub, CORBA messaging, and the
OTS interceptor. This function will be more rigorously assigned to each of these
components in a future revision of the OTS specification. The server side includes the
server-side ORB, the POA, and the OTS interceptor.

Client behavior when making transactional invocations
When a client makes a request on a target object, the behavior is influenced by the type
of invocation, the existence of an active client transaction, and the InvocationPolicy
and OTSPolicy associated with the target object. The client invocation path must
verify that the client invocation mode matches the requirements of the target object.
This requires checking the InvocationPolicy encoded in the IOR and, in some cases,
the OTSPolicy. The required behavior is completely described by the following
tables.

1.or some “agent” acting on its behalf: for example a system management application.

Table 2-7 InvocationPolicy checks required on the client invocation path

Invocation Mode InvocationPolicy Required Action

Synchronous EITHER ok; check OTSPolicy

SHARED ok; check OTSPolicy

UNSHARED raise TRANSACTION_MODE

Asynchronous EITHER ok; check OTSPolicy
September 2003 Transaction Service: The Implementers’ View 2-51

2

An invocation is considered synchronous if it uses a standard client stub, the DII, or
AMI with an effective routing policy of ROUTE_NONE. An invocation is considered
asynchronous if it uses the features of CORBA messaging to invoke on a router rather
than the target object.

In the case of routed invocations, the client invocation path must substitute an
appropriate router IOR before the OTSPolicy checks are executed. This ensures that
the OTSPolicy checks are done against the correct IOR.

The client OTS interceptor is required to make the following policy checks before
processing the transaction context. Transaction context processing is described in
Section 2.14.2.5, “Behavior of the Callback Interfaces,” on page 2-60.”

SHARED raise TRANSACTION_MODE

UNSHARED ok; check OTSPolicy

Table 2-8 OTSPolicy checks required on the Client Invocation Path

OTSPolicy OTS-unaware ORB OTS-aware ORB

REQUIRES raise TRANSACTION_UNAVAILABLE call OTS interceptor

FORBIDS process invocation call OTS interceptor

ADAPTS process invocation call OTS interceptor

Table 2-9 OTSPolicy checking required by client OTS interceptor

OTSPolicy Current Transaction No Current Transaction

REQUIRES process transaction raise TRANSACTION_REQUIRED

FORBIDS
[1]

raise INVALID_TRANSACTION process invocation

ADAPTS process transaction process invocation

Table 2-7 InvocationPolicy checks required on the client invocation path

Invocation Mode InvocationPolicy Required Action
2-52 Transaction Service, v1.4 September 2003

2

Server-side behavior when receiving transactional invocations
Since the active transaction state as seen by the server-side can be different than the
state observed by the client ORB, the server-side is also required to make the
OTSPolicy checks. These checks will be made prior to the service context
propagation checks defined in Section 2.14.2.5, “Behavior of the Callback Interfaces,”
on page 2-60.

The server OTS interceptor is required to make the following policy checks before
processing the transaction context. Transaction context processing is described in
Section 2.14.2.5, “Behavior of the Callback Interfaces,” on page 2-60.”

If a transaction context is received with a request for an object with no OTSPolicy,
this transaction context is not passed to the object implementation (Current is not set).

Interoperation with OTS 1.1 servers and clients
When OTS 1.2 clients are interoperating with OTS 1.1 servers (i.e., the IOR does not
contain TAG_OTS_POLICY component) the client invocation path must determine if
the target object inherits from TransactionalObject. If it does, it processes the
request as if the OTSPolicy value was ADAPTS.

OTS 1.1 clients can interoperate with OTS 1.2 servers when the interface of the target
objects inherits from TransactionalObject, and/or when the client always propagates
the transaction context (when in a transaction).

2.14.2.2 Transaction Propagation
The transaction is represented to the application by the Control object. Within the
Transaction Service, an implicit context is maintained for all threads associated with a
transaction. Although there is some common information, the implicit context is not

Table 2-10 OTSPolicy checks required on the Server-side

OTSPolicy OTS-unaware ORB OTS-aware ORB

REQUIRES raise TRANSACTION_UNAVAILABLE call OTS interceptor

FORBIDS process invocation call OTS interceptor

ADAPTS process invocation call OTS interceptor

Table 2-11 OTSPolicy checking required by server OTS interceptor

OTSPolicy Current Transaction No Current Transaction

REQUIRES process transaction raise TRANSACTION_REQUIRED

FORBIDS raise INVALID_TRANSACTION process invocation

ADAPTS process transaction process invocation
September 2003 Transaction Service: The Implementers’ View 2-53

2

the same as the Control object defined in this specification and is distinct from the
ORB Context defined by CORBA. It is the implicit context that must be transferred
between execution environments to support transaction propagation.

The objects using a particular Transaction Service implementation in a system form a
Transaction Service domain. Within the domain, the structure and meaning of the
implicit context information can be private to the implementation. When leaving the
domain, this information must be translated to a common form if it is to be understood
by the target Transaction Service domain, even across a single ORB. When the implicit
context is transferred, it is represented as a PropagationContext.

No OMG IDL declaration is required to cause propagation of the implicit context with
a request. The minimum amount of information that could serve as an implicit context
is the object reference of the Coordinator. However, an identifier (e.g., an X/Open
XID) is also required to allow efficient (local) execution of the
is_same_transaction and hash_transaction operations when interposition is
done. Implementations may choose to also include the Terminator object reference if
they support the ability for ending the transaction in other execution environments than
the originator’s. Transferring the implicit context requires interaction between the
Transaction Service and the ORB to add or extract the implicit context from ORB
messages. This interaction is also used to implement the checking functions described
in Section 2.13.4, “X/Open Checked Transactions,” on page 2-28.

When the Control object is passed as an operation argument (explicit propagation), no
special transfer mechanism is required.

Interposition
When a transaction is propagated, the implicit context is exported and can be used by
the importing Transaction Service implementation to create a new Control object,
which refers to a new (local) Coordinator. This technique, interposition, allows a
surrogate to handle the functions of a coordinator in the importing domain. These
coordinators act as subordinate coordinators. When interposition is performed, a single
transaction is represented by multiple Coordinator objects.

Interposition allows cooperating Transaction Services to share the responsibility for
completing a transaction and can be used to minimize the number of network messages
sent during the completion process. Interposition is required for a Transaction Service
implementation to implement the is_same_transaction and hash_transaction
operations as local method invocations, thus improving overall systems performance.

An interposed coordinator registers as a participant in the transaction with the
Coordinator identified in the PropagationContext of the received request. The
relationships between coordinators in the transaction form a tree. The root coordinator
is responsible for completing the transaction.

Many implementations of the Transaction Service will want to perform interposition
and thus create Control objects and subsequently Coordinator objects for each
execution environment participating in the transaction. To create a new (local)
Control, an importing Transaction Service uses the information in the propagation
2-54 Transaction Service, v1.4 September 2003

2

context to recreate a Control object using a TransactionFactory. Interposition
must be complete before the get_control operation can complete in the target object.
An object adapter is one possible place to implement interposition.

Subordinate Coordinator Synchronization
A subordinate coordinator may register with its superior coordinator to ensure that any
local state data maintained by the subordinate coordinator is returned to the underlying
resource prior to the subordinate coordinator’s associated Resource seeing prepare.

Subordinate Coordinator Registration
A subordinate coordinator must register with its superior coordinator to orchestrate
transaction completion for its local resources. The register_resource operation of
the Coordinator can be used to perform this function. The subordinate coordinator
can either support the Resource interface itself or provide another Resource object
that will support transaction completion. Some implementations of the Transaction
Service may wish to perform this function as a by-product of invoking the first
operation on an object in a new domain as is done with the X/Open model. This
requires that the information necessary to perform registration be added to the reply
message of that first operation.

2.14.2.3 Transaction Service Interoperation
The Transaction Service can be implemented by multiple components at different
locations. The different components can be based on the same or different
implementations of the Transaction Service. As stated in Section 1.2.5, “Principles of
Function, Design, and Performance,” on page 1-8, it is a requirement that multiple
Transaction Services interoperate across the same ORB and different ORBs.

Transaction Service interoperation is specified by defining the data structures exported
between different implementations of the Transaction Service. When the implicit
context is propagated with a request, the destination uses it to locate the superior
coordinator. That coordinator may be implemented by a foreign Transaction Service.
By registering a resource with that coordinator, the destination arranges to receive two-
phase commit requests from the (possibly foreign) Transaction Service.

The Transaction Service permits many configurations; no particular configuration is
mandated. Typically, each program will be directly associated with a single
Transaction Service. However, when requests are transmitted between programs in
different Transaction Service domains, both Transaction Services must understand the
shared data structures to interoperate.

An interface between the ORB and the Transaction Service is defined that arranges for
the implicit context to be carried on messages that represent method invocations made
within the scope of a transaction.
September 2003 Transaction Service: The Implementers’ View 2-55

2

Structure of the Propagation Context
The PropagationContext structure is defined in Section 1.3.5, “Structures,” on
page 1-16. It is passed between Transaction Service domains as an
IOP::ServiceContext in both GIOP requests and replies. Implementations may use
the vendor specific portion for additional functions (for example, to register an
interposed coordinator with its superior).

otid_t
The otid_t structure is a more efficient OMG IDL version of the X/Open defined
transaction identifier (XID). The otid_t can be transformed to an X/Open XID and
vice versa.

TransIdentity
A structure that defines information for a single transaction. It consists of a coord, an
optional term, and an otid.

coord
The Coordinator for this transaction in the exporting Transaction Service domain.

term
The Terminator for this transaction in the exporting Transaction Service domain.
Transaction Services that do not allow termination by other than the originator will set
this field to a null reference (OBJECT_NIL).

otid
An identifier specific to the current transaction or subtransaction. This value is
intended to support efficient (local) execution of the is_same_transaction and
hash_transaction operations when the importing Transaction Service does
interposition.

timeout
The timeout value associated with the hierarchy’s top-level transaction in the relevant
set_timeout operation (or the default timeout). This timeout is the time remaining,
i.e. the timeout when the transaction was begun (or the timeout received through a
transactional request, or through a Current::resume operation) less the elapsed time,
in seconds.

<TransIdentity> parents
A sequence of TransIdentity structures representing the parent(s) of the current
transaction. The ordering of the sequence starts at the parent of the current transaction
and includes all ancestors up to the top-level transaction. An implementation that does
not support nested transactions would send an empty sequence. This allows a non-
2-56 Transaction Service, v1.4 September 2003

2

nested transaction implementation to know when a nested transaction is being
imported. It also supports efficient (local) execution of the Coordinator operations
which test parentage when the importing Transaction Service does interposition.

implementation_specific_data
This information is exported from an implementation and is required to be passed back
with the rest of the context if the transaction is re-imported into that implementation.
The intent is to permit additional information to be sent that might optimize the
commit process (e.g., the entire transaction tree rather than just the immediate
ancestors). In the case of OTS interoperation across any vendor boundaries, the
importing implementation must not require that any specific information is passed as
part of the implementation_specific_data. It must only pass back the provided
information to the exporting implementation.

Appearance of the Propagation Context in Messages
The appearance of the PropagationContext in messages is defined by the CORBA
interoperability specification (see the General Inter-ORB Protocol chapter of the
Common Object Request Broker: Architecture and Specification). The Transaction
Service passes the PropagationContext to the ORB via the TSPortability interface
defined in “The Transaction Service Callbacks” on page 2-58.

• When exporting a transaction, the ORB sets the PropagationContext into the
ServiceContext::context_data field and marshals the PropagationContext as
defined by the GIOP message format and marshalling rules.

• When importing a transaction, the ORB demarshalls the
ServiceContext::context_data according to the GIOP formatting rules and
extracts the PropagationContext to be presented to the Transaction Service.

For more information, see the General Inter-ORB Protocol chapter of the Common
Object Request Broker: Architecture and Specification.

2.14.2.4 Transaction Service Portability
This section describes the way in which the ORB and the Transaction Service
cooperate to enable the PropagationContext to be passed and any X/Open-style
checking to be performed on transactional requests.

Because it is recognized that other object services and future extensions to the CORBA
specification may require similar mechanisms, this component is specified separately
from the main body of the Transaction Service to allow it to be revised or replaced by
a mechanism common to several services independently of any future Transaction
Service revisions.

To enable a single Transaction Service to work with multiple ORBs, it is necessary to
define a specific interface between the ORB and the Transaction Service, which
conforming ORB implementations will provide, and demanding Transaction Service
implementations can rely on. The remainder of this section describes these interfaces.
There are two elements of the required interfaces:
September 2003 Transaction Service: The Implementers’ View 2-57

2

1. An additional ORB interface that allows the Transaction Service to identify itself to
the ORB when present in order to be involved in the transmission of transactional
requests.

2. A collection of Transaction Service operations (the Transaction Service callbacks)
that the ORB invokes when a transactional request is sent and received.

These interfaces are defined as pseudo-IDL to allow them to be implemented as
procedure calls.

Identification of the Transaction Service to the ORB
Prior to the first transactional request, the Transaction Service will identify itself to the
ORB within its domain to establish the transaction callbacks to be used for
transactional requests and replies.

The Transaction Service identifies itself to the ORB using the following interface.

interface TSIdentification { // PIDL
exception NotAvailable {};
exception AlreadyIdentified {};

void identify_sender(in CosTSPortability::Sender sender)
raises (NotAvailable, AlreadyIdentified);

void identify_receiver(in CosTSPortability::Receiver receiver)
raises (NotAvailable, AlreadyIdentified);

};

The callback routines identified in this operation are always in the same addressing
domain as the ORB. On most machine architectures, there are a unique set of callbacks
per address space. Since invocation is via a procedure call, independent failures cannot
occur.

NotAvailable
The NotAvailable exception is raised if the ORB implementation does not support the
CosTSPortability module.

AlreadyIdentified
The AlreadyIdentified exception is raised if the identify_sender or
identify_receiver operation had previously identified callbacks to the ORB for this
addressing domain.

identify_sender
The identify_sender operation provides the interface that defines the callbacks to be
invoked by the ORB when a transactional request is sent and its reply received.
2-58 Transaction Service, v1.4 September 2003

2

identify_receiver
The identify_receiver operation provides the interface that defines the callbacks to
be invoked by the ORB when a transactional request is received and its reply sent.

The Transaction Service must identify itself to the ORB at least once per Transaction
Service domain. Sending and receiving transactional requests are separately identified.
If the callback interfaces are different for different processes within a Transaction
Service domain, they are identified to the ORB on a per process basis. Only one
Transaction Service implementation per addressing domain can identify itself to the
ORB.

A Transaction Service implementation that only sends transactional request can
identify only the sender callbacks. A Transaction Service that only receives
transactional requests can identify only the receiver callbacks.

The Transaction Service Callbacks
The CosTSPortability module defines two interfaces. Both interfaces are defined as
PIDL. The Sender interface defines a pair of operations, which are called by the ORB
sending the request before it is sent and after its reply is received. The Receiver
interface defines a pair of operations that are called by the ORB receiving the request
when the request is received and before its reply is sent. Both interfaces use the
PropagationContext structure defined in Section 1.3.5, “Structures,” on page 1-16.

module CosTSPortability { // PIDL
typedef long ReqId;

interface Sender {
void sending_request(in ReqId id,

out CosTransactions::PropagationContext ctx);
void received_reply(in ReqId id,

in CosTransactions::PropagationContext ctx,
in CORBA::Environment env);

};

interface Receiver {
void received_request(in ReqId id,

in CosTransactions::PropagationContext ctx);
void sending_reply(in ReqId id,

out CosTransactions::PropagationContext ctx);
};

};

ReqId
The ReqId is a unique identifier generated by the ORB, which lasts for the duration of
the processing of the request and its associated reply to allow the Transaction Service
to correlate callback requests and replies.
September 2003 Transaction Service: The Implementers’ View 2-59

2

Sender::sending_request
A request is about to be sent. The Transaction Service returns a PropagationContext
to be delivered to the Transaction Service at the server managing the target object. A
null PropagationContext is returned if invoked outside the scope of a transaction.

Sender::received_reply
A reply has been received. The PropagationContext from the server is passed to the
Transaction Service along with the returned environment. The Transaction Service
examines the Environment to determine whether the request was successfully
performed. A request completes unsuccessfully if it raises a system exception.
Requests that raise a user exception or no exception at all are deemed to have
completed successfully. Requests that are deemed unsuccessful cause the transaction
associated with the request to be marked rollback only. This ensures that a subsequent
call to commit will raise the TRANSACTION_ROLLBACKED system exception.

Receiver::received_request
A request has been received. The PropagationContext defines the transaction
making the request.

Receiver::sending_reply
A reply is about to be sent. A checking transaction service determines whether there
are outstanding deferred requests or subtransactions and raises a system exception
using the normal mechanisms. The exception data from the callback operation needs to
be re-raised by the calling ORB.

2.14.2.5 Behavior of the Callback Interfaces
The following describes the behavior of the ORB and Transaction Service in managing
the callback interfaces. The behavior is based on a combination of an active connection
between the transaction service and the ORB and the presence or absence of a
transaction service context in the GIOP message. The new behavior is summarized
below:

Client sending a Request
When the client ORB sends a request, there are three possible transaction service states
in the client:

• OTS_NOT_CONNECTED - The transaction service has not connected to the
client ORB. In this state, the client ORB does not invoke the Sending_Request
operation and no transaction service context is inserted in the GIOP request
message.

• OTS_NO_CURRENT_TRANSACTION - The transaction service has connected
to the client ORB, but there is no Current transaction associated with the client’s
request. In this state, the client ORB invokes the Sending_Request operation and
the transaction service returns a null PropagationContext. The client ORB does
not place a transaction service context in the GIOP request message.
2-60 Transaction Service, v1.4 September 2003

2

• OTS_CURRENT_TRANSACTION - The transaction service is connected to the
client ORB and there is a Current transaction associated with the client’s request.
In this state, the client ORB invokes the Sending_Request operation and receives
a PropagationContext from the transaction service. The PropagationContext
is inserted into the transaction service context of the GIOP request message.

The client ORB cannot distinguish between states 2 and 3 and knows both as OTS (a
transaction service is connected to the ORB). This difference is known by the
transaction service, which implements the difference in behavior.

Server Receiving a Request
The server ORB receiving a request has two transaction service states:

• OTS_NOT_CONNECTED - as defined for the client, and

• OTS - a transaction service is connected to the server ORB.

Additionally the server ORB has two states defined by the presence or absence of a
transaction service context in the GIOP request message. The server ORB behavior is
captured below:

• If no transaction service context is present in the GIOP request message, the server
ORB does not call the Receiving_Request operation and sets NO_REPLY to
TRUE. This will be tested when the reply is ready to be sent.

• If a transaction service context is present in the GIOP request message and the
transaction service state is OTS_NOT_CONNECTED, the server ORB raises the
TRANSACTION_UNAVAILABLE exception back to the client and does not
deliver the method request.

• If a transaction service context is present and the transaction service state is OTS,
the server ORB invokes Receiving_Request passing the transaction service
context to the server ORB’s transaction service as a PropagationContext.

Server sending a Reply
The server ORB sending a reply is driven by the NO_REPLY state set by receiving this
request and the transaction service state. Its behavior is as follows:

• If NO_REPLY is TRUE for this reply (there can be multiple outstanding with
deferred synchronous), then the server ORB does not call Sending_Reply and
does not insert a service context in the GIOP reply message.

• If NO_REPLY is FALSE and the transaction service state is
OTS_NOT_CONNECTED, the server ORB raises the
TRANSACTION_ROLLEDBACK exception back to the client. The client is
then required to either initiate Rollback or mark the transaction rollback_only.
This can only happen if the transaction service abnormally terminates between the
time the request is received and the reply is ready to be sent.

• If NO_REPLY is FALSE and the transaction service state is OTS, invoke
Sending_Reply and insert the returned PropagationContext in the transaction
service context of the GIOP reply message.
September 2003 Transaction Service: The Implementers’ View 2-61

2

Client Receiving a Reply
A client ORB receiving a reply is driven by the presence or absence of a transaction
service context in the GIOP reply message and the two transaction service states (OTS
and OTS_NOT_CONNECTED). The behavior is outlined below:

• If a transaction service context is not present in the GIOP reply message, the client
ORB does not call Receiving_Reply.

• If a transaction service context is present in the GIOP reply message and the
transaction service state is OTS_NOT_CONNECTED, the client ORB raises the
TRANSACTION_ROLLEDBACK exception back to the client. Like it’s analog
in the server, this can only happen if the client transaction service abnormally
terminates between the time the request is sent and the reply is received. Since the
client’s transaction service is no longer active, subsequent operations on any of the
OTS interfaces will fail (OBJECT_NOT_EXIST) and the in-flight transaction will
rollback when the transaction service is subsequently restarted.

• If a transaction service context is present in the GIOP reply message and the
transaction service state is OTS, the client ORB invokes Receiving_Reply passing
the transaction service context as a PropagationContext.

2.14.3 Model Interoperability
The indirect context management programming model of the Transaction Service is
designed to be compatible with the X/Open DTP standard, and implementable by
existing Transaction Managers. In X/Open DTP, a current transaction is associated
with a thread of control. Some X/Open Transaction Managers support a single thread
of control in a process, others allow multiple threads of control per process.

Model interoperability is possible because the Transaction Service design is compatible
with the X/Open DTP model of a Transaction Manager. X/Open associates an implicit
current transaction with each thread of control.

This means that a single transaction management service can provide the interfaces
defined for the Transaction Service and also provide the TX and XA interfaces of
X/Open DTP. This is illustrated in Figure 2-4.
2-62 Transaction Service, v1.4 September 2003

2

Figure 2-4 Model Interoperability Example

The transactional object making the SQL call, and the SQL Resource manager, are
both executing on the same thread of control. The transaction manager is able to
recognize the relationship between the transaction context of the object, and the
transaction associated with the SQL DB.

The Current and Coordinator interfaces of the Transaction Service implement two-
phase commit for the objects in the transaction. The Resource Manager will participate
in the two-phase commitment process via the X/Open XA interface.

Transactional

Client

Transaction

Service

propagation

Object

transactional operation

Transactional

ORB
XA

SQL

Transaction

Manager

New Application (Objects) SQL Data Base

SQL DB
Resource
Manager
September 2003 Transaction Service: The Implementers’ View 2-63

Complete OMG IDL A
Note – All text in black is from the Transaction Service, v1.3 (formal/02-08-07). Text
in blue is from the Components specification.

A.1 The CosTransactions Module

#include <orb.idl>
module CosTransactions {
// DATATYPES
enum Status {

StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

};

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

};

typedef unsigned short TransactionPolicyValue;
// TransactionPolicyValue definitions are deprecated and replaced //
// with new InvocationPolicy and OTSPolicy definitions. They are //
September 2003 Transaction Service, v1.4 A-1

A

// retained for backward compatibility. //
const TransactionPolicyValue Allows_shared = 0;
const TransactionPolicyValue Allows_none = 1;
const TransactionPolicyValue Requires_shared = 2;
const TransactionPolicyValue Allows_unshared = 3;
const TransactionPolicyValue Allows_either = 4;
const TransactionPolicyValue Requires_unshared = 5;
const TransactionPolicyValue Requires_either = 6;

// Forward references for interfaces defined later in module
local interface Current;
interface TransactionFactory;
interface Control;
interface Terminator;
interface Coordinator;
interface RecoveryCoordinator;
interface Resource;
interface Synchronization;
interface SubtransactionAwareResource;

// TransactionalObject has been deprecated.
interface TransactionalObject;

// Structure definitions
struct otid_t {

long formatID; /*format identifier. 0 is OSI TP */
long bqual_length;
sequence <octet> tid;

};

struct TransIdentity {
Coordinator coord;
Terminator term;
otid_t otid;

};
struct PropagationContext {

unsigned long timeout;
TransIdentity current;
sequence <TransIdentity> parents;
any implementation_specific_data;

};

// Heuristic exceptions
exception HeuristicRollback {};
exception HeuristicCommit {};
exception HeuristicMixed {};
exception HeuristicHazard {};

// Other transaction-specific exceptions
exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
A-2 Transaction Service, v1.4 September 2003

A

exception Inactive {};
exception NotPrepared {};
exception NoTransaction {};
exception InvalidControl {};
exception Unavailable {};
exception SynchronizationUnavailable {};

// Current transaction
local interface Current : CORBA::Current {

void begin()
raises(SubtransactionsUnavailable);

void commit(in boolean report_heuristics)
raises(

NoTransaction,
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(NoTransaction);
void rollback_only()

raises(NoTransaction);
Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);
unsigned long get_timeout ();
Control get_control();
Control suspend();
void resume(in Control which)

raises(InvalidControl);
};

interface TransactionFactory {
Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);

};

interface Control {
Terminator get_terminator()

raises(Unavailable);
Coordinator get_coordinator()

raises(Unavailable);
};

interface Terminator {
void commit(in boolean report_heuristics)

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback();

};
September 2003 Transaction Service: The CosTransactions Module A-3

A

interface Coordinator {
Status get_status();
Status get_parent_status();
Status get_top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_synchronization (in Synchronization sync)
raises(Inactive, SynchronizationUnavailable);

void register_subtran_aware(in SubtransactionAwareResource r)
raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();

Control create_subtransaction()
raises(SubtransactionsUnavailable, Inactive);

PropagationContext get_txcontext ()
raises(Unavailable);

};

interface RecoveryCoordinator {
Status replay_completion(in Resource r)

raises(NotPrepared);
};

interface Resource {
Vote prepare()

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback()
A-4 Transaction Service, v1.4 September 2003

A

raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard

);
void commit()

raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard

);
void commit_one_phase()

raises(
HeuristicHazard

);
void forget();

};

// TransactionalObject has been deprecated
// and replaced by the OTSPolicy component
// Synchronization will use the OTSPolicy of ADAPTS
// Inheritance from TransactionalObject is for backward compatability/

interface Synchronization : TransactionalObject {
void before_completion();
void after_completion(in Status s);

};

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

};

// TransactionalObject has been deprecated.
interface TransactionalObject {
};

// TransactionPolicyType is deprecated and replaced
// by InvocationPolicyType and OTSPolicyType
// It is retained for backward compatibility.

typedef unsigned short TransactionPolicyValue;

const CORBA::PolicyType TransactionPolicyType = 46;

interface TransactionPolicy : CORBA::Policy {
readonly attribute TransactionPolicyValue tpv;

};
September 2003 Transaction Service: The CosTransactions Module A-5

A

typedef unsigned short InvocationPolicyValue;

const InvocationPolicyValue EITHER = 0;
const InvocationPolicyValue SHARED = 1;
const InvocationPolicyValue UNSHARED =2;

typedef unsigned short OTSPolicyValue;

const OTSPolicyValue REQUIRES = 1;
const OTSPolicyValue FORBIDS =2;
const OTSPolicyValue ADAPTS =3;

typedef unsigned short NonTxTargetPolicyValue;

const NonTxTargetPolicyValue PREVENT = 0;
const NonTxTargetPolicyValue PERMIT = 1;

const CORBA::PolicyType INVOCATION_POLICY_TYPE = 55;

interface InvocationPolicy : CORBA::Policy {
readonly attribute InvocationPolicyValue ipv;

};

const CORBA::PolicyType OTS_POLICY_TYPE = 56;

interface OTSPolicy : CORBA::Policy {
readonly attribute OTSPolicyValue tpv;

};

// Deprecated
const CORBA::PolicyType NON_TX_TARGET_POLICY_TYPE = 57;

// Deprecated
interface NonTxTargetPolicy : CORBA::Policy {

readonly attribute NonTxTargetPolicyValue tpv;
};

}; // End of CosTransactions Module

A.2 The CosTSPortability Module

module CosTSPortability { // PIDL
typedef long ReqId;

interface Sender {
void sending_request(in ReqId id,

out CosTransactions::PropagationContext ctx);
void received_reply(in ReqId id,

in CosTransactions::PropagationContext ctx,
A-6 Transaction Service, v1.4 September 2003

A

in CORBA::Environment env);
};

interface Receiver {
void received_request(in ReqId id,

in CosTransactions::PropagationContext ctx);
void sending_reply(in ReqId id,

out CosTransactions::PropagationContext ctx);
};

};

A.3 The CosTSInteroperation Module

#include <orb.idl>
#include <IOP.idl>
module CosTSInteroperation {

const IOP::ComponentId TAG_TRANSACTION_POLICY=26;

struct TransactionPolicyComponent {
CosTransactions::TransactionPolicyValue tpv;

};

const IOP::ComponentId TAG_OTS_POLICY= 31;

const IOP::ComponentId TAG_INV_POLICY= 32;
};
September 2003 Transaction Service: The CosTSInteroperation Module A-7

A

A-8 Transaction Service, v1.4 September 2003

Relationship to TP Standards B
Note – Editorial changes are in green.

This appendix discusses the relationship and possible interactions with the following
related standards:

• X/Open TX interface

• X/Open XA interface

• OSI TP protocol

• LU 6.2 protocol

• ODMG standard

B.1 Support of X/Open TX Interface

 B.1.1 Requirements
The X/Open DTP model1 is now widely known and implemented.

Since the Transaction Service and the X/Open DTP models are interoperable, an
application using transactional objects could use the TX interface, the X/Open-defined
interface to delineate transactions, to interact with a Transaction Manager. (The
Transaction Manager is the access point of the Transaction Service.)

1. See “Distributed Transaction Processing: The XA Specification, X/Open Document C193.”
X/Open Company Ltd., Reading, U.K., ISBN 1-85912-057-1.
September 2003 Transaction Service, v1.4 B-1

B

 B.1.2 TX Mappings
The correspondence between the TX interface primitives and the Transaction Service
operations (Current interface) are as follows:

tx_open
tx_open() provides a way to open, in a given execution environment, the Transaction
Manager and the set of Resource Managers that are linked to it. Such an operation does
not exist in the Transaction Service; such processing may be implicitly executed when
the first operation of the Transaction Service is executed in the execution environment.

This processing is also related to a future Initialization Service.

tx_close
tx_close() provides a way to close, in a given execution environment, the Transaction
Manager and the set of Resource Managers that are linked to it. Such an operation does
not exist in the Transaction Service.

Table B-1 TX mappings

TX interface Current interface

tx_open() no equivalent

tx_close() no equivalent

tx_begin() Current::begin()

tx_rollback() Current::rollback() or
Current::rollback_only()

tx_commit() Current::commit()

tx_set_commit_return() report_heuristics parameter of
Current::commit()

tx_set_transaction_control() no equivalent
(chained transactions not supported)

tx_set_transaction_timeout() Current::set_timeout()

tx_info() - XID Coordinator::get_txcontext()
Current::get_name()1

1. A printable string is output: not guaranteed to be the XID in all implementations.

tx_info() - COMMIT_RETURN no equivalent

tx_info() - TRANSACTION_TIME_OUT no equivalent

tx_info() - TRANSACTION_STATE Current::get_status()
B-2 Transaction Service, v1.4 September 2003

B

tx_begin
tx_begin() corresponds to Current::begin() or to TransactionFactory::create().

tx_rollback
tx_rollback() corresponds to Current::rollback(), Terminator::rollback(),
Current::rollback_only(), or Coordinator::rollback_only() . In TX, when a
server calls tx_rollback(), the transaction may be rolled back or set as rollback only,
as in the Transaction Service.

tx_commit and tx_set_commit_return
tx_commit() corresponds to Current::commit(). The Transaction Service operations
have a parameter, report_heuristics, corresponding to the commit_return
parameter of TX.

tx_set_transaction_control
tx_set_transaction_control() is used, in TX, to switch between unchained and
chained mode; this function is not needed in the Transaction Service environment
because it does not support chained transactions.

tx_set_transaction_timeout
tx_set_transaction_timeout() corresponds to Current::set_timeout() or
TransactionFactory::create().

tx_info
tx_info() returns information related to the current transaction. In the Transaction
Service:

• the XID may be retrieved by Coordinator::get_txcontext();
• the XID (in effect) may be retrieved by Current::get_transaction_name();
• the transaction state may be retrieved by Current::get_status();
• the commit return attribute is not needed because this attribute is given in the

commit() operation;
• the timeout attribute cannot be obtained.

B.2 Support of X/Open Resource Managers

 B.2.1 Introduction
In order to use a transactional system, such as a database system, with the Transaction
Service, it is necessary to “hook” the transactions provided by this system and the
distributed transactions managed by the Transaction Service.
September 2003 Transaction Service: Support of X/Open Resource Managers B-3

B

With the Transaction Service, this is achieved by implementing
CosTransactions::Resource objects — each resource represents a local transaction
in the transactional system — and registering these Resource objects with the
distributed transactions.

Since many systems provide a standard interface to their transactional capabilities —
the XA interface — it is possible to implement CosTransactions::Resource
objects on top of the XA interface, and provide an easy to use integration with the
Transaction Service. The same integration (with the same interfaces and behavior) may
also be provided through proprietary interfaces provided by a given Transaction
Service implementation, without the creation and registration of
CosTransactions::Resource objects. See Figure B-1.

The Java Transaction API Specification [JTA] defines the Java equivalent of the XA
interface (javax.transaction.xa.XAResource) and a set of local Java
interfaces that provide a "higher level" API to the Transaction Service (the interfaces
are defined in the javax.transaction package). JTA also specifies the standard
integration between the Transaction Service and Resource Managers that implement
the Java XAResource interface.

For implementations in Java, JTA when available, is the preferred standard integration
API between the Transaction Service and XA Resource Managers.

Note – JTA is the standard Transaction Service/XA Resource Manager integration API
for implementations in Java compatible with the J2EE platform [J2EE].
B-4 Transaction Service, v1.4 September 2003

B

This section specifies the interfaces for the standard integration between the
Transaction Service and C XA resource managers2. Unlike JTA, this section does not
define a higher level API to the Transaction Service: it relies directly on the
Transaction Service types defined in the CosTransactions module.

This XA integration can be implemented using the standard Transaction Service
interfaces; as a result, it may be provided by a Transaction Service vendor, a Resource
Manager vendor, or any other third party. Likewise the integration with Resource
Managers that implement the Java XAResource interface can be provided by a
Transaction Service vendor, a Resource Manager vendor, or any other third party. A
compliant Transaction Service implementation may, but does not need to, provide any
or both of these standard integrations.

 B.2.2 XA-compatible Transaction Service
An implementation of the Transaction Service is XA-compatible if it satisfies the
following requirements:

• The Transaction Service does not restrict the availability of the
PropagationContext: the operation get_txcontext on the Coordinator never
raises Unavailable.

• The format of each otid_t value generated by the Transaction Service must
correspond to the XID format, that is:
• the bqual_length must be between 1 and 64
• the tid length must be between bqual_length + 1 and bqual_length + 64
• the gtrid (global transaction id) is provided by the first bytes in tid; the following

bqual_length bytes correspond to the bqual (branch qualifier) part of the XID.

• Transactions in unrelated transaction families have distinct otid_t values.

• otid_t values generated by different XA-compatible Transaction Service
implementations are always distinct.
This is achieved by assigning formatIDs to Transaction Service implementations:
each XA-compatible Transaction Service implementation must use its own
formatID value. formatID values other than 0 and -13are assigned by the OMG.
Allocation of formatIDs may be requested by sending email to
tag-request@omg.org.

The standard XA integration described below requires an XA-compatible
implementation of the Transaction Service.

2. This integration with C XA resource managers is briefly described in Sun's Java Transaction
Service specification (http://java.sun.com/products/jts), "3.3 Support for pre-JTA Resource
Managers"

3. 0 is reserved for OSI CCR naming. -1 means the XID is null.
September 2003 Transaction Service: Support of X/Open Resource Managers B-5

B

 B.2.3 XA Overview
XA [XA] specifies a standard C API provided by transactional systems (called
Resource Managers in the XA specification) that want to participate in distributed
transactions managed by transaction managers developed by other vendors.

XA defines a set of C-function pointers, and a C-struct that holds these function
pointers, xa_switch_t:

/*

 * From Appendix A of the XA specification:

 */

struct xa_switch_t {

char name[RMNAMESZ]; /* name of resource manager */

long flags; /* resource manager specific options */

long version; /* must be 0 */

int (*xa_open_entry) /* xa_open function pointer */

(char *, int, long);

int (*xa_close_entry) /* xa_close function pointer */

(char *, int, long);

int (*xa_start_entry) /* xa_start function pointer */

(XID *, int, long);

int (*xa_end_entry) /* xa_end function pointer */

(XID *, int, long);

int (*xa_rollback_entry) /* xa_rollback function pointer */

(XID *, int, long);

int (*xa_prepare_entry) /* xa_prepare function pointer */

(XID *, int, long);

int (*xa_commit_entry) /* xa_commit function pointer */

(XID *, int, long);

int (*xa_recover_entry) /* xa_recover function pointer */

(XID *, long, int, long);

int (*xa_forget_entry) /* xa_forget function pointer */

(XID *, int, long);

int (*xa_complete_entry) /* xa_complete function pointer */

(int *, int *, int, long);

};

Each XA-capable system must provide a global instance of xa_switch_t.

The function pointers provided by this xa_switch_t instances can be divided in
four categories:
B-6 Transaction Service, v1.4 September 2003

B

• functions to connect and disconnect to the XA resource manager:
xa_open() and xa_close()
The string passed to xa_open() typically contains connection information (e.g.,
a database name and a username and password).

• transaction completion functions:
xa_prepare(), xa_commit(), xa_rollback(), xa_forget()
They correspond to the CosTransactions::Resource operations.

• recovery functions
xa_recover()

• functions used to start and end associations between connections and a transactions:
xa_start(), xa_end()
In order to use an XA connection to do some work within a distributed transaction,
it is necessary to create an association between this connection and the distributed
transaction.
• xa_start() is used to create such an association;
• xa_end(TMSUSPEND) suspends the association, without releasing the

connection;
• xa_start(TMRESUME) resumes a suspended association;
• xa_end(TMSUCCESS) terminates an association with success, and
• xa_end(TMFAIL) terminates an association and marks the transaction

rollback-only.

xa_complete() is only used for asynchronous XA, an optional part of XA which
is not supported by any popular XA implementation.

 B.2.4 XA and Multi-Threading
In the XA specification, the scope of an XA connection is called thread of control:
each thread-of-control can only use the connections that it has established (using
xa_open()).

The XA specification maps thread-of-control to operating system process (see
paragraph 2.2.8 in the XA specification), so one would expect that each thread in a
process has access to all the XA connections established by this process. This is
however not the case: most vendors implement the following:

• A thread-unsafe mode, in which the scope of each XA connection is the process
(XA thread-of-control maps to process).

• A thread-safe mode, in which the scope of each XA connection is the thread by
which is was created (XA thread-of-control maps to thread).

Sun’s Java Transaction API provides a very different thread model: with JTA, every
thread can use any connection (XAResource object).

The main drawback of tying connections and threads is flexibility since it prevents the
application from managing connections independently of threads, which limits a lot the
kind of connection pooling that can be implemented. Also, a CORBA server typically
dispatches different requests to different threads: the thread of control equal thread
September 2003 Transaction Service: Support of X/Open Resource Managers B-7

B

model prevents the use of xa_end(TMSUSPEND) at the end of a request and
xa_start(TMRESUME) at the beginning of the next request in the same
transaction, since an association must be resumed by the thread of control by which it
was suspended.

 B.2.5 The Standard Integration with C XA Resource Managers
An implementation of the standard Transaction/Service XA integration implements the
following three interfaces, defined in the XA module:

• ResourceManager
A resource manager (logically) manages CosTransactions::Resource servants,
or, using the XA vocabulary, transaction branches. ResourceManager is a
distributed interface, which allows XA connections created in different ORB
instances (and processes) to share the same
CosTransactions::Resource/transaction branch.

• CurrentConnection
A CurrentConnection is a local object that gives access to the XA connection
associated with the current XA thread-of-control.

• Connector
A local object used to create ResourceManager and CurrentConnection
objects.

The XA module defines a fourth interface, BeforeCompletionCallback: it is
implemented by applications that want to be notified before the completion of any
transaction branch (CosTransactions::Resource) managed by a given
ResourceManager.

 B.2.6 CurrentConnection
The CurrentConnection local interface is defined in the XA module as follows:

typedef short ThreadModel;
const ThreadModel PROCESS = 0;
const ThreadModel THREAD = 1;
local interface CurrentConnection
{

void
start(// xa_start(TMNOFLAGS) or xa_start(TMJOIN)

in CosTransactions::Coordinator tx,
in CosTransactions::otid_t otid

);
void
suspend(// xa_end(TMSUSPEND)

in CosTransactions::Coordinator tx,
in CosTransactions::otid_t otid

);
B-8 Transaction Service, v1.4 September 2003

B

void resume(// xa_start(TMRESUME)
in CosTransactions::Coordinator tx,
in CosTransactions::otid_t otid

);
void end(// xa_end(TMSUCCESS) or xa_end(TMFAIL)

in CosTransactions::Coordinator tx,}
in CosTransactions::otid_t otid,
in boolean success

);
ThreadModel thread_model();
long rmid();

};

start
start creates an association between an XA connection and a transaction branch.

In order to do some work within a distributed transaction with a given XA resource
manager, the application needs to associate the resource manager's current connection
with this transaction (or more precisely a transaction branch which represents this
transaction in the resource manager), by calling CurrentConnection::start:

// C++
// assuming the OTS transaction is associated with the current thread

CosTransactions::Control_var control = tx_current->get_control();
CosTransactions::Coordinator_var tx = control->get_coordinator();
CosTransactions::PropagationContext_var ctx = tx->get_txcontext();
const CosTransactions::otid_t& otid = ctx->current.otid;
current_connection->start(tx, otid);

The first time start is called with a given otid on one of the CurrentConnection
objects associated with a ResourceManager, the ResourceManager creates a
transaction branch, creates a CosTransactions::Resource persistent object
representing this transaction branch and registers this object with the given transaction
coordinator. The otid parameter is transformed into an XID and passed to
xa_start(), unaltered.

Note – A compliant implementation does not need to create and register a
CosTransaction::Resource object, as long as the external behavior is the same.

suspend
suspend suspends an association between an XA connection and a transaction
branch. It is merely a wrapper around xa_end(TMSUSPEND). The otid parameter
is transformed into an XID and passed to xa_end(TMSUSPEND), unaltered. The
tx parameter can be used to mark the transaction rollback-only when the
implementation detects a fatal error.
September 2003 Transaction Service: Support of X/Open Resource Managers B-9

B

resume
resume resumes a previously suspended association between an XA connection and a
transaction branch. It is merely a wrapper around xa_start(TMRESUME). The
otid parameter is transformed into an XID and passed to xa_start(TMRESUME),
unaltered. The tx parameter can be used to mark the transaction rollback-only when
the implementation detects a fatal error.

end
ends the association between an XA connection and a transaction branch

Once the application has finished using a connection, it needs to end the association
with the transaction branch, for two reasons:

• ending the association releases the connection, and makes it available for other
transaction branches. (suspend has actually the same effect).

• as long as any connection is associated with a transaction branch, the transaction
cannot be committed (even if the association is suspended). Some systems do not
even allow to rollback a transaction branch while it is associated with any
connection.

The otid parameter is transformed into an XID and passed to xa_end(), unaltered.
The tx parameter can be used to mark the transaction rollback-only when the
implementation detects a fatal error.

thread_model
thread_model returns the XA thread-of-control mapping used by this
CurrentConnection object.

When the thread model is PROCESS, xa_open() is called by or before the first
start call; xa_close() is called during shutdown. When the thread model is
THREAD, each thread calls xa_open() the first time (or before the first time) this
thread executes CurrentConnection::start; xa_close() is called when this
thread exits.

rmid
rmid returns the rmid associated with this CurrentConnection object. The returned
value is the same for any thread calling this operation.

The otid_t value cannot be simply extracted from the tx parameter because that would
limit the users ability to optimize the calls under some circumstances (for example
when using explicit propagation). It also allows to perform some operations (e.g. end)
when the coordinator for a transaction is unreachable.

In addition, the user may wish to alter the branch qualifier of the otid to either share
the same transaction branch between different processes (tightly-coupled model) or use
different transaction branches in processes using the same resource manager within the
same distributed transaction (loosely-coupled model).
B-10 Transaction Service, v1.4 September 2003

B

Figure B-2 shows the components involved when the application creates a new
association by calling start on a CurrentConnection object:

1. The application calls start on a CurrentConnection object.

2. The XA integration calls xa_start(TMNOFLAGS) to create a new transaction
branch.

3. The XA integration creates a Resource object representing this branch, and
registers this resource with the transaction coordinator.

Figure B-1 Creating a New Association

 B.2.7 Association State Diagram
Figure B-3 shows the state diagram of an association between a transaction and a XA
connection. In this diagram all start, suspend, resume, and end calls are successful
(they do not raise any exception).
September 2003 Transaction Service: Support of X/Open Resource Managers B-11

B

Figure B-2 Association State Diagram

When start, suspend, resume or end raises CORBA::INTERNAL with the minor
code 2, the new state is “non existent.”

When resume, suspend or end raises
CORBA::TRANSACTION_ROLLEDBACK with the minor code 1, the new state
is “non existent.”

When end raises CORBA::TRANSACTION_ROLLEDBACK with the minor code
3, the new state is “non existent.”

For every other exceptions raised by start, suspend, resume and end, there is no
state transition.

Note – The PSS TransactionalSession interface has no resume operation: with
PSS, when start is called on a suspended association, the association is resumed. Like
PSS, JTA combines start and resume in a single method,
Transaction.enlistResource().

Because of the CurrentConnection::resume operation, an implementation of the
CurrentConnection local interface does not need to maintain information about the
state of the underlying XA connection(s).

ResourceManager
The BeforeCompletionCallback and the ResourceManager interfaces are defined
in the XA module as follows:
B-12 Transaction Service, v1.4 September 2003

B

interface BeforeCompletionCallback
{
 void
 before_completion(
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid,
 in boolean success
);
};

interface ResourceManager
{
 unsigned long
 register_before_completion_callback(in BeforeCompletionCallback bcc);

 void
 unregister_before_completion_callback(in unsigned long key);
};

A Resource Manager object manages transaction branches. An application can register
any number (up to 2^31 -1) of BeforeCompletionCallback objects with a resource
manager, to get notified each time a non-prepared transaction branch is about to be
prepared, committed-in-one-phase or rolled back. ResourceManager objects are
implemented in such a way that their references carry the FORBIDS OTSPolicy
(using the TAG_OTS_POLICY component). BeforeCompletionCallback objects
must be implemented in such a way that their references carry the FORBIDS
OTSPolicy (using the TAG_OTS_POLICY component), or carry no OTSPolicy.

The only operation on BeforeCompletionCallback, before_completion, accepts
the following parameters:

• tx - if available, tx is the transaction coordinator used in the call to
CurrentConnection::start that created this transaction branch; else tx is nil.

• otid - the otid_t parameter used in the call to CurrentConnection::start that
created this transaction branch.

• success - a boolean parameter which is TRUE when the non-preparated
transaction branch is about to be prepared or committed in one phase, and FALSE
when the transaction branch is about to be rolled back. If success is TRUE and
before_completion raises any exception, the transaction branch is rolled back.

A typical use of a BeforeCompletionCallback object is to end a suspended
association in a single-threaded server, as shown on Figure B-4.
September 2003 Transaction Service: Support of X/Open Resource Managers B-13

B

An application uses the operation register_before_completion_callback to
registers a BeforeCompletionCallback with a ResourceManager.
register_before_completion_callback returns an unsigned long that the
application uses to unregister a BeforeCompletionCallback object.

Figure B-3 Using a BeforeCompletionCallback to End a Suspended Association
B-14 Transaction Service, v1.4 September 2003

B

Please note the following:

1. The primary advantage of BeforeCompletionCallback objects over
CosTransactions::Synchronization objects is the number of CORBA requests
per transaction: three for a synchronization (registration, before_completion,
after_completion) versus only one for a BeforeCompletionCallback object.

2. When starting and ending an association for each request, there is no need for any
BeforeCompletionCallback object.

3. The interfaces between the CurrentConnection objects, the ResourceManager
object and the Resource objects (if there is any) are not specified. The diagram
above illustrates a possible implementation. Other implementations are possible: for
example a Resource object could register itself with the Transaction Coordinator
in its constructor.

 B.2.8 Connector
A connector local object is used to create CurrentConnection and
ResourceManager objects. The connector itself is obtained by calling
resolve_initial_references() on an ORB instance, with the "XAConnector"
parameter.

The Connector local interface is defined in the XA module as follows:

native XASwitch;

local interface Connector
{
 ResourceManager
 create_resource_manager(
 in string resource_manager_name,
 in XASwitch xa_switch,
 in string open_string,
 in string close_string,
 in ThreadModel thread_model,
 in boolean automatic_association,
 in boolean dynamic_registration_optimization,
 out CurrentConnection current_connection
);

 CurrentConnection
 connect_to_resource_manager(
 in ResourceManager rm,
 in XASwitch xa_switch,
 in string open_string,
 in string close_string,
 in ThreadModel thread_model,
September 2003 Transaction Service: Support of X/Open Resource Managers B-15

B

 in boolean automatic_association,
 in boolean dynamic_registration_optimization
);
};

native XASwitch
In C and C++, the native type XASwitch maps to an xa_switch_t: an 'in'
XASwitch parameter is mapped to a const xa_switch_t& parameter in the
corresponding C/C++ function.4

create_resource_manager
The create_resource_manager operation creates (or recreates) a
ResourceManager object, and a CurrentConnection local object.

The create_resource_manager parameters are:

• (in) resource_manager_name - A string identifying the resource manager. This
string may be used by the implementation to generate a POA name unique within
some scope.

• (in) xa_switch - A const reference to the xa_switch_t global variable that gives
access to the XA resource manager.

• (in) open_string - The XA resource manager open string .

• (in) close_string - The XA resource manager close string.

• (in) thread_model - The thread model used by this XA resource manager.

• (in) automatic_association - When TRUE, each time the ORB from which the
Connector was retrieved receives a transactional request, the XA integration calls
start on the CurrentConnection created by this operation, using the coordinator
and current otid retrieved from the PropagationContext. When the processing of
the transactional request is complete, the XA integration calls end on the
CurrentConnection created by this operation, using the same coordinator and
otid. The success parameter is TRUE when the operation completed without
raising a standard exception, and FALSE otherwise. When FALSE, the XA
integration is not involved during request processing.

• (in) dynamic_registration_optimization - When
dynamic_registration_optimization is TRUE and the provided xa_switch
supports dynamic registration, the XA integration may optimize the

4.Mappings for other languages that interface with C, for example Ada and Java, could be
defined as well. For Java, it is expected that JTA-compliant XAResource
implementations will be much more common than C xa_switch_t structs wrapped
using JNI.
B-16 Transaction Service, v1.4 September 2003

B

automatic_association processing described above by using XA dynamic
registration: instead of calling start on the CurrentConnection when a
transactional request is received, the XA integration relies on the ax_reg() call
to create the association when needed. When
dynamic_registration_optimization is FALSE, the automatic_association
processing is as described above.

• (out) current_connection - A new CurrentConnection local object connected
to the ResourceManager created (or recreated) by this operation.

The ResourceManager object reference returned by create_resource_manager
is persistent.

connect_to_resource_manager
The connector_to_resource_manager operation creates a new
CurrentConnection local object connected to an existing ResourceManager.

The connect_to_resource_manager parameters are:

• (in) rm - An object reference of the ResourceManager to connect to. This
ResourceManager needs to be provided by the same XA integration
implementation: XA integration A cannot create a CurrentConnection connected
to a ResourceManager provided by XA integration B.

• (in) xa_switch - A const reference to the xa_switch_t global variable that
gives access to the XA resource manager.

• (in) open_string - The XA resource manager open string .

• (in) close_string - The XA resource manager close string.

• (in) thread_model - The thread model used by this XA resource manager.

• (in) automatic_association - When TRUE, each time the ORB from which the
Connector was retrieved receives a transactional request, the XA integration calls
start on the CurrentConnection created by this operation, using the coordinator
and current otid retrieved from the PropagationContext. When the processing of
the transactional request is complete, the XA integration calls end on the
CurrentConnection created by this operation, using the same coordinator and
otid. The success parameter is TRUE when the operation completed without raising
a standard exception, and FALSE otherwise. When FALSE, the XA integration is
not involved during request processing.

• (in) dynamic_registration_optimization - When
dynamic_registration_optimization is TRUE and the provided xa_switch
supports dynamic registration, the XA integration may optimize the
automatic_association processing described above by using XA dynamic
registration: instead of calling start on the CurrentConnection when a
transactional request is received, the XA integration relies on the ax_reg() call
to create the association when needed. When
dynamic_registration_optimization is FALSE, the automatic_association
processing is as described above.
September 2003 Transaction Service: Support of X/Open Resource Managers B-17

B

 B.2.9 Exceptions and Minor Codes
All the operations on the interfaces defined in the XA module can only raise standard
exceptions. For portability, the table below defines which exceptions are raised in
some circumstances, and the minor code of these exceptions. The mappings are
summarized in the following table:

Table B-2 Exceptions and Minor Codes

Exception Minor
Code

Raised By/When

BAD_PARAM 33 Connector::create_resource_manager,
Connector::connector_to_resource_manager,

CurrentConnection::start, CurrentConnection::suspend,
CurrentConnection::resume, CurrentConnection::end

when an xa_ call returns XAER_INVAL

BAD_INV_ORDER 19 CurrentConnection::start

when an xa_start() call returns XAER_OUTSIDE

BAD_INV_ORDER 20 CurrentConnection::start, CurrentConnection::suspend,
CurrentConnection::resume, CurrentConnection::end

when an xa_ call returns XAER_PROTO

INTERNAL 1 Connector::create_resource_
manager, Connector::connector_to_
resource_manager CurrentConnection::start,
CurrentConnection::suspend,
CurrentConnection::resume, CurrentConnection::end

when an xa_ call returns XAER_RMERR

INTERNAL 2 CurrentConnection::start, CurrentConnection::suspend,
CurrentConnection::resume, CurrentConnection::end

when an xa_ call returns XAER_RMFAIL

TRANSACTION_ROLLEDBACK 1 CurrentConnection::start, CurrentConnection::suspend,
CurrentConnection::resume, CurrentConnection::end

when an xa_ call returns an XAER_RB error code

TRANSACTION_ROLLEDBACK 2 CurrentConnection::start, CurrentConnection::suspend,
CurrentConnection::resume, CurrentConnection::end

when an xa_ call returns XAER_NOTA
B-18 Transaction Service, v1.4 September 2003

B

 B.2.10 Comparison with the Java Transaction API (JTA)
The following informational tables show the correspondance between the
Transaction/XA integration IDL interfaces and some JTA interfaces, the XA C
function pointers and JTA XAResource methods, and between the OMG
Transaction Service IDL interfaces and JTA's transaction manager interfaces.

TRANSACTION_ROLLEDBACK 3 CurrentConnection::end

In some circumstances, the XA integration may defer the rollback
of a transaction branch until an association with this branch is
ended. When this occurs and end is called with success set to
TRUE, end raises TRANSACTION_ROLLEDBACK with the 3
minor code.

Table B-3 Comparing the OTS/XA integration with JTA

OTS/XA integration JTA

CurrentConnection::start(Coordinator, otid_t) Transaction.enlistResource(XAResource)

CurrentConnection::suspend (Coordinator,
otid_t)

Transaction.delistResource(XAResource,
TMSUSPEND)

CurrentConnection::resume (Coordinator, otid_t) Transaction.enlistResource(XAResource)

CurrentConnection::end (Coordinator, otid_t,
boolean)

Transaction.delistResource(XAResource,
TMSUCCESS) or
Transaction.delistResource(XAResource,
TMFAIL)

ResourceManager no equivalent

BeforeCompletionCallback no equivalent

CurrentConnection no equivalent, although the notion of XA connection is the
same in the OTS/XA integration and in JTA

Connector no equivalent

Automatic association no equivalent

Table B-2 Exceptions and Minor Codes

Exception Minor
Code

Raised By/When
September 2003 Transaction Service: Support of X/Open Resource Managers B-19

B

Table B-4 Comparing XA with JTA

XA JTA

A xa_switch_t object A transactional resource factory

An opened rmid A XAResource object

xa_open_entry(char *, int, long) no equivalent; JTA does not standardize an API to open or
close XA connections

xa_close_entry(char *, int, long) no equivalent

xa_start_entry(XID *, int, long) XAResource.start(Xid, int)

xa_end_entry(XID *, int, long) XAResource.end(Xid, int)

xa_rollback_entry(XID *, int, long) XAResource.rollback(Xid, int)

xa_prepare(XID *, int, long) XAResource.prepare(Xid, int)

xa_commit(XID *, int, long) XAResource.commit(Xid, int)

xa_recover(XID *, long, int, long) XAResource.recover(int)

xa_forget(XID *, int, long) XAResource.forget(Xid, int)

xa_complete(int *, int *, int, long) no equivalent

no equivalent XAResource.getTransactionTimeout()

no equivalent XAResource.isSameRM(XAResource)

no equivalent XAResource.setTransactionTimeout(int)

Table B-5 Comparing the Transaction Service with JTA

Transaction Service JTA

Current TransactionManager, UserTransaction

Synchronization Synchronization

Control/Coordinator/Terminator Transaction

Current::begin TransactionManager.begin(),
UserTransaction.begin()

Current::commit TransactionManager.commit(),
UserTransaction.commit()
B-20 Transaction Service, v1.4 September 2003

B

 B.2.11 XA Module
#ifndef _XA_IDL_
#define _XA_IDL_
#include <CosTransactions.idl>
#pragma prefix "omg.org"

module XA
{
 native XASwitch;

 typedef short ThreadModel;
 const ThreadModel PROCESS = 0;
 const ThreadModel THREAD = 1;

Current::rollback TransactionManager.rollback(),
UserTransaction.rollback()

Current::rollback_only TransactionManager.setRollbackOnly(),
UserTransaction.setRollbackOnly()

Current::get_status TransactionManager.getStatus(),
UserTransaction.getStatus()

Current::get_transaction_name TransactionManager.toString(),
UserTransaction.toString()

Current::set_timeout TransactionManager.setTransactionTimeout()

Current::get_control TransactionManager.getTransaction()

Current::suspend TransactionManager.suspend()

Current::resume TransactionManager.resume()

Coordinator::get_status Transaction.getStatus()

Coordinator::is_same_transaction Transaction.equals()

Coordinator::hash_transaction Transaction.hashCode()

Coordinator::register_synchronization Transaction.registerSynchronization()

Coordinator::rollback_only Transaction.setRollbackOnly()

Terminator::commit() Transaction.commit()

Terminator::rollback Transaction.rollback()

Other Coordinator operations no equivalent

Table B-5 Comparing the Transaction Service with JTA

Transaction Service JTA
September 2003 Transaction Service: Support of X/Open Resource Managers B-21

B

 local interface CurrentConnection
 {
 void
 start(// xa_start(TMNOFLAGS) or
xa_start(TMJOIN)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid
);

 void
 suspend(// xa_end(TMSUSPEND)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid
);

 void resume(// xa_start(TMRESUME)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid
);

 void end(// xa_end(TMSUCCESS) or
xa_end(TMFAIL)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid,
 in boolean success
);

 ThreadModel thread_model();
 long rmid();

 };

 interface BeforeCompletionCallback
 {
 void
 before_completion(
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid,
 in boolean success
);
 };

 interface ResourceManager
 {
 unsigned long
 register_before_completion_callback(in BeforeCompletionCallback
bcc);

 void
 unregister_before_completion_callback(in unsigned long key);
 };
B-22 Transaction Service, v1.4 September 2003

B

 local interface Connector
 {
 ResourceManager
 create_resource_manager(
 in string resource_manager_name,
 in XASwitch xa_switch,
 in string open_string,
 in string close_string,
 in ThreadModel thread_model,
 in boolean automatic_association,
 in boolean dynamic_registration_optimization,
 out CurrentConnectioncurrent_connection
);

 CurrentConnection
 connect_to_resource_manager(
 in ResourceManager rm,
 in XASwitch xa_switch,
 in string open_string,
 in string close_string,
 in ThreadModel thread_model,
 in boolean automatic_association,
 in boolean dynamic_registration_optimization
);
 };
};

#endif /*!_XA_IDL_*/

 B.2.12 References
[J2EE] Java 2 Platform Enterprise Edition (J2EE), Platform specification: http://java.sun.com/j2ee

[JTA] Java Transaction API (JTA): http://java.sun.com/jta

[XA] Open Group Technical Standard, Distributed TP: The XA Specification, February 1991,
ISBN: 1 872630 24 3

B.3 Interoperation with Transactional Protocols

 B.3.13 Transactional Protocols
A CORBA application may sometimes need to interoperate with one or more
applications using one of the de-facto standard transactional protocol: OSI TP and
SNA LU 6.2. In this case, the Transaction Service must be able to import or export
transactions using one of these protocols.
September 2003 Transaction Service: Interoperation with Transactional Protocols B-23

B

Export is the ability to relate a transaction of the Transaction Service to a transaction
of a foreign transactional protocol. Importing means relating a Transaction Service
transaction to a transaction started on a remote application and propagated via the
foreign transactional protocol.

Since the model used by the Transaction Service is similar to the model of OSI TP and
the X/Open DTP model, the interactions with OSI TP are straightforward. Since OSI
TP is a compatible superset of SNA LU 6.2, a mapping to SNA communications is
easily accomplished.

To interoperate, a mapping should be defined for the two-phase commit, rollback, and
recovery mechanisms, and for the transaction identifiers.

Notice that neither OSI TP nor SNA LU 6.2 supports nested transactions.

 B.3.14 OSI TP Interoperability
OSI TP [ISO92] is the transactional protocol defined by ISO. It has been selected by
X/Open to allow the distribution of transactions by one of the communication
interfaces: remote procedure call5, client-server 6 or peer-to-peer (CPI-C Level-2 API
[CIW93]).

The Transaction Service supports only unchained transactions. The use of dialogues
using the Chained Transactions functional unit is possible only if restrictive rules are
defined. These rules are not described in this document.

OSI TP Transaction Identifiers
In OSI TP, loosely-coupled transactions are supported and every node of the
transaction tree possesses a transaction branch identifier which is composed of the
transaction identifier (or atomic action identifier) and a branch identifier (the branch
identifier being null for the root node of the transaction tree). Both the transaction
identifier and the branch identifier contains an AE-Title (Application Entity Title) and
a suffix that make it unique within a certain scope.

The format of the standard X/Open XID is compatible with the OSI TP identifiers, the
gtrid corresponding to the atomic action identifier and the bqual corresponding to the
branch identifier.

5. See “Distributed Transaction Processing: The TxRPC Specification, X/Open Document P305.”
X/Open Company Ltd., Reading, U.K.

6. See “Distributed Transaction Processing: The XATMI Specification, X/Open Document P306.”
X/Open Company Ltd., Reading, U.K.
B-24 Transaction Service, v1.4 September 2003

B

Incoming OSI TP Communications (Imported Transactions)
The Transaction Service is a subordinate in an OSI TP transaction tree and interacts
with its superior by regular PDUs as defined by the OSI TP protocol. The Transaction
Service introduces the transaction identifier received on the OSI TP dialogue using the
TransactionFactory::recreate operation.

The Transaction Service maps the OSI TP commitment, rollback and recovery
procedures to the Transaction Service commitment procedure as follows:

• The Transaction Service, upon reception of an OSI TP Prepare message, will
enter the first phase of commitment procedure.

• When it enters the prepared state for the transaction, the Transaction Service will
trigger the sending of an OSI TP Ready message to its superior. (It may trigger a
Recover (Ready) message when normal communications are broken with the
superior).

• The Transaction Service, upon reception of an OSI TP Commit message, enters
the second phase of commitment procedure. (It may receive a Recover (Commit)
when normal communications are broken with the superior.)

• The Transaction Service, upon reception of an OSI TP Rollback message (it may
be a Recover (Unknown) when normal communications are broken with the
superior or any other rollback-initiating condition) will enter its rollback
procedure (unless a rollback is already in progress).

• The Transaction Service, upon reception of the last rollback reply, will trigger the
sending of a Rollback Response/Confirm message to its superior.

Outgoing OSI TP Communications (Exported Transactions)
The Transaction Service behaves as a superior in an OSI TP transaction tree and
interacts with its subordinates by regular PDUs as defined by the OSI TP protocol.

The Transaction Service will map the OSI TP commitment procedure as follows:
• The Transaction Service, during the first phase of commitment procedure will

invoke an OSI TP Prepare message to all its subordinates.
• Upon reception of an OSI TP Ready message, the Transaction Service will

process this message as a successful reply to prepare.
• The Transaction Service, upon entering the second phase of the commitment

procedure will send an OSI TP Commit message (it may be a Recover (Commit)
when normal communications are broken with the subordinate) to all
subordinates.

• The Transaction Service, upon reception of an OSI TP Rollback message (it may
be any other rollback-initiating condition) will enter its rollback procedure (unless
a rollback is already in progress).

• The Transaction Service, upon reception of the last Rollback Response/Confirm
message from its subordinates, will process this message as a reply to a rollback
operation and determine the heuristic situation.
September 2003 Transaction Service: Interoperation with Transactional Protocols B-25

B

SNA LU 6.2 Interoperability
SNA LU 6.2 ([SNA88a], [SNA88b]) is a transactional protocol defined by IBM. It is
widely used for transaction distribution. The standard interface to access LU 6.2
communications is CPI-C (Common Programming Interface for Communications)
defined by IBM in the context of SAA [CPIC93] and currently being evolved by the
CPI-C Implementers' Workshop to become CPI-C level 2, a modern interface usable
for LU 6.2 and OSI TP communications [CIW93].

LU 6.2 supports only chained transactions but, at a given node, a transaction is started
only when resources have been involved in the transaction. LU 6.2 can be used for a
portion of an “unchained” transaction tree if the LU 6.2 conversations are ended after
each transaction by any node that has both LU 6.2 conversations and dialogues of an
unchained transaction.

LU 6.2 Transaction Identifiers
SNA LU 6.2 also supports loosely-coupled transactions and uses a specific format for
transaction identifiers: the Logical Unit of Work (LUWID) corresponds to the OSI
Transaction Identifier. The LUWID is composed of:

• The Fully Qualified Logical Unit Name, which is composed of up to 17 bytes, is
unique in an SNA network or a set of interconnected SNA networks.

• An instance number which is unique at the LU that create the transaction.
• The sequence number that is incremented whenever the transaction is committed.

The Conversation Correlator corresponds to the OSI TP Branch Identifier; it is a string
of 1 to 8 bytes which are unique within the context of the LU having established the
conversation and is meaningful when combined with the Fully Qualified LU Name of
this Logical Unit.

Incoming LU 6.2 Communications
The LU 6.2 two-phase commit protocol is different from the OSI TP protocol: the
system sending a Prepare message has to perform logging and is responsible for
recovery. LU 6.2 does also support features like last-agent optimization, read-only and
allows any node in the transaction tree to request commitment.

The Transaction Service is a subordinate in an LU 6.2 transaction tree and interacts
with its superior using SNA requests and responses as defined by the LU 6.2 protocol.
The Transaction Service maps the LUWID corresponding to the incoming conversation
to an OMG otid_t and issues TransactionFactory::recreate to import the transaction.

The Transaction Service maps the LU 6.2 commitment, rollback and recovery
procedures to the Transaction Service commitment procedure as follows:

• The Transaction Service, upon reception of an LU 6.2 Prepare message will enter
the first phase of commitment procedure.

• The Transaction Service, upon entering the prepared state for the transaction, the
Transaction Service will trigger the sending of a Request Commit message to is
superior.
B-26 Transaction Service, v1.4 September 2003

B

• The Transaction Service, upon reception of an LU 6.2 Committed message (it
may be a Compare States (Committed) when normal communications are broken
with the superior) will enter the second phase of commitment procedure.

• The Transaction Service, upon leaving the decided commit state, will trigger the
sending of a Forget message to is superior (it may be a Reset when normal
communications are broken with the superior).

Due to the two-phase commit difference, the Transaction Service will never send the
equivalent of the Recover(Ready) unless prompted by the superior.

The last-agent and read-only features may also be supported by the Transaction
Service.

Outgoing LU 6.2 Communications
The Transaction Service has to log when the Prepare message is sent and, in case of
communication failure or restart of the Transaction Service, a recovery is needed.

ODMG Standard
ODMG-93 is a standard defined by ODMG (Object Database Management Group)
describing portable interface to access Object Database Management Systems
(ODBMS).

Since it is likely that, in the future, many objects involved in transactions will be
handled by an ODBMS, this standard has a strong relationship with the Transaction
Service.

B.4 ODMG Model
The ODMG model defines optional transactions and supports the nested transaction
concept. The ODMG model does not cover the integration of ODBMS with an external
Transaction Service, allowing other resources and communications to be involved in a
transaction. No two-phase commit or recovery protocol is described.

A transaction object must be created. The transactional operations are:
• Begin (or start) to begin a transaction (or a subtransaction).
• Commit to request commitment of a transaction.
• Abort to rollback a transaction.
• Checkpoint to commit the transaction but keep the locks. This feature is not

supported by the current version of the Transaction Service.
• abort_to_top_level to request rollback of a nested transaction family. The

Transaction Service does not directly support this feature but does provide means
to perform this functionality by resuming the context of the top-level transaction
and then requesting rollback.

If the transaction object is destroyed, the transaction is rolled back.
September 2003 Transaction Service: ODMG Model B-27

B

 B.4.1 Integration of ODMG ODBMSs with the Transaction Service
Since ODMG-93 does not define any way to integrate an ODBMS into an existing
transaction, the integration is difficult unless the ODBMS supports the XA interface, in
which case the section on XA-compliant RM is applicable.

In the future, it is anticipated that ODBMS will implement the Transaction Service-
defined interfaces and be considered as a recoverable server.

A possibility is to use, at a root node, an ODBMS as a last resource and, after all
subordinates are prepared, to request a one-phase commitment to the ODBMS. If the
outcome for the ODBMS is commit, the transaction will be committed, if it is rollback,
the transaction will be rolled back. The mechanism may work if it is possible to
determine, after a crash, whether the ODBMS committed or rolled back; this may be
done at application level.
B-28 Transaction Service, v1.4 September 2003

Conformance Requirements C
A conformant Transaction Service implements all the features that are not described as
optional in this specification.

However, to satisfy the lite conformance level, an implementation does not need to
support the registration of more than one resource per transaction, and it does not need
to support distribution (the flow of transactions from ORB context to ORB context).

To satisfy the lite-distributed conformance level, an implementation must support
distribution.

To satisfy the full conformance level, an implementation must support distribution and
the registration of multiple resources per transaction.
September 2003 Transaction Service, v1.4 C-1

C

C-2 Transaction Service, v1.4 September 2003

Glossary
2PC See Two-phase commit.

Abort See Rollback

Active The state of a transaction when processing is in progress and completion
of the transaction has not yet commenced.

Atomicity A transaction property that ensures that if work is interrupted by failure,
any partially completed results will be undone. A transaction whose
work completes is said to commit. A transaction whose work is
completely undone is said to rollback (abort).

Begin An operation on the Transaction Service which establishes the initial
boundary of a transaction.

Commit Commit has two definitions as follows:

An operation in the Current and Terminator interfaces that a program
uses to request that the current transaction terminate normally and that
the effects of that transaction be made permanent.

An operation in the Resource interface which causes the effects a
transaction to be made permanent.

Commit coordinator In a two-phase commit protocol, the program that collects the vote from
the participants.

Commit participant In a two-phase commit protocol, the program that returns a vote on the
completion of a transaction.

Committed The property of a transaction or a transactional object, when it has
successfully performed the commit protocol. See also in-doubt, active,
and rolled back.
September 2003 Transaction Service, v1.4 Glossary-1

Completion The processing required (either by commit or rollback) to obtain the
durable outcome of a transaction.

Coordinator A coordinator involves Resource objects in a transaction when they are
registered. A coordinator is responsible for driving the two-phase commit
protocol. See also Commit coordinator and Commit participant.

Consistency A property of a transaction that ensures that the transaction’s actions,
taken as a group, do not violate any of the integrity constraints associated
with the state of its associated objects. This requires that the application
program be implemented correctly: the Transaction Service provides the
functionality to support application data consistency.

Decided commit state A root coordinator enters the decided commit state when it has written a
log-commit record; a subordinate coordinator or resource is in the
decided commit state when it has received the commit instruction from
its superior; in the latter case, a log-commit record may be written but
this is not essential.

Decided rollback state A coordinator or resource enters the decided rollback state when it
decides to rollback the transaction or has received a signal to do so.

Direct context
management

An application manipulates the Control object and the other objects
associated with the transaction. See also Indirect context management.

Durability A transaction property that ensures the results of a successfully
completed transaction will never be lost, except in the event of
catastrophe. It is generally implemented by a combination of persistent
storage and a logging service that provides a backup copy of permanent
changes.

Execution environment An implementation-dependent factor that may determine the outcome of
certain operations on the Transaction Service. Typically the execution
environment is the scope within which shared state is managed.

Flat Transaction A transaction that has no subtransactions—and that cannot have
subtransactions.

Forgotten "state" This is not really a transaction state at all, because there is no memory of
the transaction: it has either completed or rolled back and all records on
permanent storage have been deleted.

Heuristic Commit or
Rollback

To unilaterally make the commit or rollback decision about in-doubt
transactions when the coordinator fails or contact with the coordinator
fails.

Indirect context
management

An application uses the Current object, provided by the Transaction
Service, to associate the transaction context with the application thread
of control. See also Direct context management.

In-doubt The state of a transaction if it is controlled by a transaction manager that
can not be contacted, so the commit decision is in doubt. See also active,
committed, rolled back.
Glossary-2 Transaction Service, v1.4 September 2003

Interposition Adding a sequence of one or more subordinate coordinators between a
root coordinator and its participants.

Isolation A transaction property that allows concurrent execution, but the results
will be the same as if execution was serialized. Isolation ensures that
concurrently executing transactions cannot observe inconsistencies in
shared data.

Lock service Called the Concurrency Control Service, it is an Object Service used by
resources to control access to shared objects by concurrently executing
methods.

Log-ready record (and
contents)

for an intermediate coordinator a log-ready record contains identification
of the (superior) coordinator and of Resource objects (including
subordinate coordinators) registered with the coordinator which replied
VoteCommit (i.e., it excludes registered objects that replied
VoteReadOnly); for a Resource object a log-ready record includes
identification of the coordinator with which it is registered.

Log-commit record
(and contents)

A log-commit record contains identification of all registered Resource
objects that replied VoteCommit.

Log-heuristic record This contains a record of a heuristic decision either HeuristicCommit or
HeuristicRollback.

Log-damage record This contains a record of heuristic damage i.e. where it is known that a
heuristic decision conflicted with the decided outcome (HeuristicMixed)
or where there is a risk that a heuristic decision conflicted with the
decided outcome (HeuristicHazard).

Log service A service used by resource managers for recording recovery information
and the Transaction Service for recording transaction state durably.

Nested transaction A transaction that either has subtransaction or is a subtransaction on
some other transaction.

Participant See Commit participant.

Persistent storage Generally speaking, a synonym for Stable storage. In the context of the
OMA, the Persistent Object Service (POS) provides an object
representation of stable storage.

Prepared The state that a transaction is in when phase one of a two-phase commit
has completed.

Presumed rollback An optimization of the two-phase commit protocol that results in more
efficient performance as the root coordinator does not need to log
anything before the commit decision and the Participants (i.e., Resource
objects) do not need to log anything before they prepare. So called
because, at restart, if no record of the transaction is found, it is safe to
assume the transaction rolled back.
September 2003 Transaction Service, v1.4 Glossary-3

Propagation A function of the Transaction Service that allows the Transaction context
of a client to be associated with a transactional operation on a server
object. The Transaction Service supports both implicit and explicit
propagation of transaction context.

Recoverable Object An object whose data is affected by committing or rolling back a
transaction.

Recoverable Server A transactional object with recoverable state that registers a Resource
(not necessarily itself) with a Coordinator to participate in transaction
completion.

Recovery Service A service used by resource managers for restoring the state of objects to
a prior state of consistency.

Resource An object in the Transaction Service that is registered for involvement in
two-phase commit—2PC. Corresponds to a Resource Manager.

Resource Manager An X/Open term for a component which manages the integrity of the
state of a set of related resources.

Rollback Rollback (also known as Abort) has two definitions, as follows:

An operation in the Current and Terminator interfaces used to indicate
that the current transaction has terminated abnormally and its effects
should be discarded.

An operation in the Resource interface which causes all state changes in
the transaction to be undone.

Rolled Back The property of a transaction or a transactional object when it has
discarded all changes made in the current transaction. See also in-doubt,
active, and committed.

Root Coordinator The first coordinator in a sequence of coordinators where there is
interposition. The coordinator associated with the transaction originator.

Security Service An object service which provides identifications of users
(authentication), controls access to resources (authorization), and
provides auditing of resource access.

Stable storage Storage not likely to be damaged as the result of node failure.

Sub-coordinator See Subordinate Coordinator.

Subordinate
Coordinator

A coordinator subordinate to the root coordinator when interposition has
been performed. A subordinate coordinator appears as a Resource object
to its superior. Also known as a Sub-coordinator.

Synchronization An object in the Transaction Service which controls the transfer of
persistent object state data so it can be made durable by its associated
resource.

Thread The entity that is currently in control of the processor.
Glossary-4 Transaction Service, v1.4 September 2003

Thread Service A service which enables methods to be executed concurrently by the
same process. Where two or more methods can execute concurrently
each method is associated with its own thread of control.

TP monitor A system component that accepts input work requests and associates
resources with the programs that act upon these requests to provide a
run-time environment for program execution.

Transaction A collection of operations on the physical and abstract application state.

Transactional client An arbitrary program that can invoke operations of many transactional
objects in a single transaction. Not necessarily the Transaction
originator.

Transaction Context The transaction information associated with a specific thread. See
Propagation.

Transactional operation An operation on an object that participates in the propagation of the
current transaction.

Transaction originator An arbitrary program—typically, a transactional client, but not
necessarily an object—that begins a transaction.

Transaction Manager A system component that implements the protocol engine for 2-phase
commit protocol. See also Transaction Service.

Transactional object An object whose operations are affected by being invoked within the
scope of a transaction.

Transactional server A collection of one or more objects whose behavior is affected by the
transaction, but has no recoverable state of its own.

Transaction Service An Object Service that implements the protocols required to guarantee
the ACID (Atomicity, Consistency, Isolation, and Durability) properties
of transactions. See also Transaction Manager.

TSPortability An interface of the Transaction Service which allows it to track
transactional operations and propagate transaction context to another
Transaction Service implementation.

Two-Phase commit A transaction manager protocol for ensuring that all changes to
recoverable resources occur atomically and furthermore, the failure of
any resource to complete will cause all other resource to undo changes.
Also called 2PC.
September 2003 Transaction Service, v1.4 Glossary-5

Glossary-6 Transaction Service, v1.4 September 2003

Index
A
abort

see rollback
atomicity 2-40, 2-43, 2-48

glossary definition 1

C
callback interface

described x
common facilities vii
compound object ix
concepts of viii
Control interface 2-6
control object 2-6, 2-13, 2-54
Coordinator interface 2-8

create_subtransaction operation 2-13
get_parent_status operation 2-10
get_status operation 2-9
get_top_level_status operation 2-10
get_transaction_name operation 2-13
hash_top_level_tran operation 2-11
hash_transaction operation 2-11
is_ancestor_transaction operation 2-11
is_descendant_transacation operation 2-11
is_related_transaction operation 2-11
is_same_transaction operation 2-10
is_top_level_transaction operation 2-11
register_resource operation 2-11
register_subtran_aware operation 2-12
rollback_only operation 2-13

coordinator object 2-15, 2-17, 2-32, 2-33, 2-44, 2-54
glossary definition 2

CORBA viii
contributors xii
documentation set vii

CosTransactions module
datatypes defined by 1-14
OMG IDL A-1–??

CosTSInteroperation module
PIDL 2-55, A-6, A-7

Current interface 2-32

E
event channel ix, x
EventChannel interface x
exceptions

described xi

G
global identifier xi

I
interface inheritance.see subtyping

O
Object Management Group v

address of viii
object model vii
object request broker vi, vii
object service

context vi
specification defined vii

ODMG-93 protocol B-27
integration with transaction service B-27

OMG IDL vii, ix
OSI TP protocol B-24

exported transactions B-25
imported transactions B-24
transaction identifiers B-24

P
propagation ??–2-29, 2-32, 2-35, 2-53, 2-57, 2-58

glossary definition 4
PullSupplier interface x
PushConsumer interface x

Q
quality of service ix

R
recoverable object 1-5

and nested transactions 2-17
recoverable server 1-6, 2-33

glossary definition 4
implementing 2-30

RecoveryCoordinator interface 2-13
replay_completion operation 2-14

reference model vi
Resource interface 2-14

commit operation 2-15
commit_one_phase operation 2-16
forget operation 2-16
prepare operation 2-14
rollback operation 2-15

resource manager 1-9, 2-62
resource object

defined 1-5
rollback

glossary definition 4

S
SNA LU protocol B-23, B-25

incoming communication B-26
outgoing communication B-27
transaction identifiers B-26

SubtransactionAwareResource interface 2-17
commit_substransaction operation 2-18
commit_subtransaction operation 2-18

subtransactions 1-7, 1-12, 2-47, 2-49, 2-51, 2-56, 2-60
subtyping viii, xi

T
Terminator interface

rollback operation 2-8
terminator object 2-32
transacations

resource manager 2-62
transaction abort

see Resource interface
rollback operation 2-15

transaction context 2-3
management of 2-6
propagation of 2-6

transaction originator 1-13, 2-3, 2-7, 2-38
September 2003 Transaction Service, v1.4 Index-1

Index
glossary definition 5
transaction service

application use of 2-26
transactional client 1-4, 2-29

glossary defintion 5
transactional object 1-4

example 2-34
transactional server

defined 1-6
TransactionFactory interface 2-32
transactions

checked 2-28–2-29, 2-31
consistency property 2-49
consistency property,glossary definition 2
coordinator object 2-15, 2-17, 2-32, 2-33, 2-44, 2-54
distributed 2-31
durability 2-48
durability, glossary definition 2
flat 1-6, 1-7, 1-9, 2-31
flat,glossary definition 2

implicit propagation 2-32
interposition 2-40, 2-54, 2-56
interposition, glossary defintion 3
isolation 1-7, 1-9, 1-13, 2-8
isolation, glossary definition 3
propagation ??–2-29, 2-32, 2-35, 2-53, 2-57, 2-58, 4
recoverable object 1-5, 2-17
recoverable server 1-6, 2-30
recoverable server, glossary defintion 4
recoverable server,example 2-33
resource manager 1-9
terminator object 2-32
two-phase commit protocol 1-12, 2-14, 2-40, 2-43, 2-49, 2-55,

2-62, B-23, B-26
two-phase commit, glossary definition 5

X
X/Open TX interface B-1–B-3
X/Open XA interface 2-62
Index-2 Transaction Service, v1.4 September 2003

Transaction Service, v1.4
Reference Sheet

This is a revision of the Transaction Service. You will find specific changes marked with change bars and
colored text.

OMG documents used to create this revision:

• Convenience document: ptc/2003-03-08

• 2002 RTF Report: ptc/2003-03-07

Previous versions include:

• Transaction Service, v1.3: formal/02-08-07

• Transaction Service, v1.2.1: formal/01-11-03

• Transaction Service, v1.2: formal/01-05-02

• Transaction Service, v1.1: formal/00-06-28

• Transaction Service, v1.0: formal/97-12-17

	Preface
	Intended Audience
	Need for Object Services
	What Is an Object Service Specification?

	Associated OMG Documents
	Service Design Principles
	Build on CORBA Concepts
	Basic, Flexible Services
	Generic Services
	Allow Local and Remote Implementations
	Quality of Service is an Implementation Characteristic
	Objects Often Conspire in a Service
	Use of Callback Interfaces
	Assume No Global Identifier Spaces
	Finding a Service is Orthogonal to Using It

	Interface Style Consistency
	Use of Exceptions and Return Codes
	Explicit Versus Implicit Operations
	Use of Interface Inheritance

	Acknowledgments

	1. Overview
	1.1 Introduction
	1.2 Service Description
	1.2.1 Overview of Transactions
	1.2.2 Transactional Applications
	1.2.3 Definitions
	1.2.4 Transaction Service Functionality
	1.2.5 Principles of Function, Design, and Performance

	1.3 Service Architecture
	1.3.1 Typical Usage
	1.3.2 Transaction Context
	1.3.3 Context Management
	1.3.4 Datatypes
	1.3.5 Structures
	1.3.6 Exceptions

	2. Transaction Service Interfaces
	2.1 Introduction
	2.2 Current Interface
	2.2.1 begin
	2.2.2 commit
	2.2.3 rollback
	2.2.4 rollback_only
	2.2.5 get_status
	2.2.6 get_transaction_name
	2.2.7 set_timeout
	2.2.8 get_timeout
	2.2.9 get_control
	2.2.10 suspend
	2.2.11 resume

	2.3 TransactionFactory Interface
	2.3.1 create
	2.3.2 recreate

	2.4 Control Interface
	2.4.1 get_terminator
	2.4.2 get_coordinator

	2.5 Terminator Interface
	2.5.1 commit
	2.5.2 rollback

	2.6 Coordinator Interface
	2.6.1 get_status
	2.6.2 get_parent_status
	2.6.3 get_top_level_status
	2.6.4 is_same_transaction
	2.6.5 is_ancestor_transaction
	2.6.6 is_descendant_transaction
	2.6.7 is_related_transaction
	2.6.8 is_top_level_transaction
	2.6.9 hash_transaction
	2.6.10 hash_top_level_tran
	2.6.11 register_resource
	2.6.12 register_synchronization
	2.6.13 register_subtran_aware
	2.6.14 rollback_only
	2.6.15 get_transaction_name
	2.6.16 create_subtransaction
	2.6.17 get_txcontext

	2.7 Recovery Coordinator Interface
	2.7.1 replay_completion

	2.8 Resource Interface
	2.8.1 prepare
	2.8.2 rollback
	2.8.3 commit
	2.8.4 commit_one_phase
	2.8.5 forget

	2.9 Synchronization Interface
	2.9.1 before_completion
	2.9.2 after_completion

	2.10 Subtransaction Aware Resource Interface
	2.10.1 commit_subtransaction
	2.10.2 rollback_subtransaction

	2.11 TransactionalObject Interface
	2.12 Policy Interfaces
	2.12.1 Creating Transactional Object References
	2.12.2 OTSPolicy carried by the Transaction Service objects

	2.13 The User’s View
	2.13.1 Application Programming Models
	2.13.2 Interfaces
	2.13.3 Checked Transaction Behavior
	2.13.4 X/Open Checked Transactions
	2.13.5 Implementing a Transactional Client: Heuristic Completions
	2.13.6 Implementing a Recoverable Server
	2.13.7 Application Portability
	2.13.8 Distributed Transactions
	2.13.9 Applications Using Both Checked and Unchecked Services
	2.13.10 Examples
	2.13.11 Model Interoperability
	2.13.12 Failure Models

	2.14 The Implementers’ View
	2.14.1 Transaction Service Protocols
	2.14.2 ORB/TS Implementation Considerations
	2.14.3 Model Interoperability

	A. Complete OMG IDL
	B. Relationship to TP Standards
	C. Conformance Requirements
	Glossary
	Index
	Reference Sheet

