
Telecom Service Access & Subscription
Specification, V1.0

This OMG document replaces the draft adopted specification and the submission document
telecom/2000-05-03. It is an OMG Final Adopted Specification, which has been approved by the
OMG board and technical plenaries, and is currently in the finalization phase. Comments on the
content of this document are welcomed, and should be directed to issues@omg.org by November
30, 2000.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on January 15, 2001.
If you are reading this after that date, please download the available specification from the OMG
formal specifications web page.

OMG Adopted Specification

Telecommunications Service Access
and Subscription (TSAS) Specification

Final Adopted Specification
October 2000

ee, paid
e mod-

nged the
 herein

y
ch a
 of
e users

tails an
ocument

ted
ages,

 above
 the sole
arks or
 is pro-

used in
ation

orth in

G IDL,
Inc.
Copyright 2000, Alcatel
Copyright 2000, AT&T
Copyright 2000, GMD Fokus
Copyright 2000, Hitachi
Copyright 2000, Lucent Technologies
Copyright 2000, Nippon Telegraph and Telephone (NTT) Corporation
Copyright 2000, Nortel Networks
Copyright 2000, Object Management Group (OMG)
Copyright 2000, Siemens AG

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-fr
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of th
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infri
copyright in the included material of any such copyright holder by reason of having used the specification set forth
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications ma
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for whi
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospectiv
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document de
Object Management Group specification in accordance with the license and notices set forth on this page. This d
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies lis
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover dam
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, tradem
other special designations to indicate compliance with these materials. This document contains information which
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or inform
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set f
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OM
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group,

readers
t
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form a
http://www.omg.org/library/issuerpt.htm.

Contents
1
1

 1

2

3

1-1

1-1

 1-2

1-4

1-4

1-5

1-6

2-1

 2-1

-3
-5

2-8
-10

 3-1

3-1

3-3

3-4
Preface .
About the Object Management Group

What is CORBA?.

Associated OMG Documents .

Acknowledgments .

1. Description .

1.1 Motivation .

1.2 Roles and Domains .

1.3 User Provider Relationship .

1.4 Sessions .

1.5 Segments .

1.6 Security .

2. Core Segment .

2.1 Overview .

2.2 Initial Contact and Authentication 2
2.2.1 Initial interface . 2

2.2.2 Authentication Interface 2-6

2.3 Access .
2.3.1 Access Interface . 2

3. Service Access Segments .

3.1 Overview .

3.2 Service Access Segment Interfaces

3.2.1 Base Interface .
Telecom Service Access & Subscription October 2000 i

Contents

3-4
-5

-7

3-13
-13

14

3-16
16

-18
19

3-21

-21

3-26
-26

-27
-27

4-1

 4-1

4-3
4-5

4-5
4-6

4-6
-8

-8
4-9

-9
4-9

4-10

10

-11

-12

-12
-14

-15

15

-17
-17
3.3 Invitation Segment .
3.3.1 EndUserInvite Interface 3

3.3.2 ProviderInvite Interface 3

3.4 Context Segment .
3.4.1 UserContext Interface 3

3.4.2 ProviderContext Interface 3-

3.5 Access Control Segment .
3.5.1 AccessControl Interface 3-

3.6 Service Discovery Segment . 3
3.6.1 ServiceDiscovery Interface 3-

3.7 Session Control Segment .

3.7.1 SessionControl Interface 3

3.8 Access Session Information Segment
3.8.1 Access Session Information structures 3

3.9 Service Session Information Segment 3
3.9.1 Service Session Information Structures 3

4. Subscription Segments .

4.1 Overview .

4.2 Information Model .
4.2.1 Service Provider .

4.2.2 Subscriber.
4.2.3 Service Contract .

4.2.4 Service template .
4.2.5 Subscription Assignment Group 4

4.2.6 Service Profile . 4
4.2.7 End-user .

4.2.8 End-user service profile 4
4.2.9 Service type .

4.3 Subscription Segments .

4.3.1 Overview . 4-

4.4 Scenario Description . 4

4.5 Subscriber Administration . 4

4.5.1 Subscriber Management 4
4.5.2 Service Contract Management 4

4.6 Service ProviderAdministration . 4

4.6.1 interface ServiceTemplateMgmt 4-

4.7 End-user Administration . 4
4.7.1 User and SAG Management 4
ii Telecom Service Access & Subscription October 2000

Contents

-21

-24
4

5

5-1

-1

5-1

5-3
5-4

-4

5-7

5-7

5-8

5-9

-10

-1
4.7.2 Service Profile Management 4

4.8 End-user Customization . 4
4.8.1 interface UserProfileMgmt { 4-2

4.8.2 interface UserProfileInfoQuery { 4-2

5. Common Types .

5.1 Common Information View . 5

5.1.1 Properties and Property Lists

5.2 User Information .
5.2.1 Usage Related Types .

5.2.2 Invitations and Announcements 5

5.3 Access Session Information .

5.4 User Information .

5.5 User Context Information .

5.6 Service and Session Information .

5.6.1 Base Interface . 5

Appendix A - OMG IDL . A-1

Appendix B - Compliance Points . B
Telecom Service Access & Subscription October 2000 iii

Contents
iv Telecom Service Access & Subscription October 2000

Preface
d by
sers.

nol-
of
e-

 Con-
plica-

tion

ent
r of

ca-

c
ber
can
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supporte
over 800 members, including information system vendors, software developers and u
Founded in 1989, the OMG promotes the theory and practice of object-oriented tech
ogy in software development. The organization's charter includes the establishment
industry guidelines and object management specifications to provide a common fram
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments.
formance to these specifications will make it possible to develop a heterogeneous ap
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direc
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Managem
Group's answer to the need for interoperability among the rapidly proliferating numbe
hardware and software products available today. Simply stated, CORBA allows appli
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specifi
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in Decem
of 1994, defines true interoperability by specifying how ORBs from different vendors
interoperate.
Telecom Service Access & Subscription October 2000 1

 are
ides
 are

aces

nd

d

 so

ith its
y when
 and

t. To
con-
Associated OMG Documents

The CORBA documentation set includes the following:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language emapping specifications.

• CORBAservices: Common Object Services Specification contains specifications for
OMG’s Object Services.

• CORBAfacilities: Common Facilities Specification includes OMG’s Common
Facility specifications.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interf
between related services and functions.

• CORBA Med: Comprised of specifications that relate to the healthcare industry a
represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services an
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and, w
membership, evaluating the responses. Specifications are adopted as standards onl
representatives of the OMG membership accept them as such by vote. (The policies
procedures of the OMG are described in detail in the Object Management Architecture
Guide.)

OMG formal documents are available from our web site in PostScript and PDF forma
obtain print-on-demand books in the documentation set or other OMG publications,
tact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404
2 Telecom Service Access & Subscription October 2000

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Alcatel

• AT&T

• Britich Telecommunications plc.

• Cicso Systems

• Deutsche Telekom AG

• GMD Fokus

• Hitachi

• Humboldt University

• IBM Telecommunications Industry

• KPN Royal Dutch Telecom

• Lucent Technologies

• Nippon Telegraph and Telephone (NTT) Corporation

• Nortel Networks

• Siemens AG

• Sprint

• Sun Microsystems
TSAS v1.0 Acknowledgments October 2000 3

4 Telecom Service Access & Subscription October 2000

Description 1
ing
c
 and
rs.

 call
access

ork
s and
er
This chapter introduces the key concepts used in this specification.

Contents

This chapter contains the following sections.

1.1 Motivation

Network operators have traditionally followed a network-centric approach to deliver
scalable, reliable and economic services to consumers and enterprises. The basi
functions that are required to support services such as 800 numbers, call waiting
personal numbering have been under the exclusive control of the network operato
Enterprises and service providers wishing to offer value-added solutions, such as
centers, have had to rely on an edge-of-network approach and have been denied
to useful information and capabilities within the network.

The disadvantages of this separation are significant in today’s marketplace. Netw
operators employing a network-centric approach are unlikely to have the resource
flexibility necessary to respond to the specialized requirements of different custom

Section Title Page

“Motivation” 1-1

“Roles and Domains” 1-2

“User Provider Relationship” 1-4

“Sessions” 1-4

“Segments” 1-5

“Security” 1-6
Telecommunications Service Access & Subscription October 2000 1-1

1

e
 the

es
ility

es

 be

erce

t]
ith

markets. Similarly, solution providers adopting an edge of network approach, whil
they may have the flexibility required for customizing services, are unable to gain
efficiency of using in-network functions and information. The architecture of the
Telecommunication Service Access and Subscription (TSAS) specification combin
the benefits of the network centric approach of economies of scale with the flexib
of the edge of network approach.

The set of interfaces contained within this specification provide the domain faciliti
through which network operators can offer 3rd party enterprises secure access to the
capabilities of the network. Capabilities such as call control and user location can
offered (through their own interfaces) or by 3rd party value-added services and
solutions.

Of course this approach is not only applicable to providing access to embedded
network capabilities. It can also be used for a wide range of commercial models
supporting customer-to-business or business-to-business relationships for eComm
and the Application Service Provider market in general. Provision of functions for
billing and payment can be easily integrated.

It is not within the scope of this specification to restrict the breadth of [componen
services that could be offered by TSAS. This specification is technically aligned w
that of the Parlay Group [Ref http://www.parlay.org]. Consequently the service
interfaces specified in the Parlay API [Parlay API specification 2.0] can be offered
using this specification.

1.2 Roles and Domains

Three different domains are defined for TSAS as shown in Figure 1-1: Consumer
Domain, Retailer Domain, and Service Provider Domain.

Figure 1-1 TSAS Domains

The domains are strongly correlated to roles, which will be explained in the following
text.

End-User

Subscriber

Retailer Service
Provider

Consumer
Domain

Retailer
Domain

Service
Provider
Domain

End-User

Subscriber

Retailer Service
Provider

Consumer
Domain

Retailer
Domain

Service
Provider
Domain
1-2 Telecommunications Service Access & Subscription October 2000

1

any.

icted

ees
d the

dded

ers
ogy to
se and

nalize

e
t
ired

ffers,

ports
 a
e

e

s,
In the Consumer Domain two kinds of roles are defined, the end-user role and the
subscriber role. Typically end-users can be private households or any kind of comp
The end-user is the one that makes use of the service while the subscriber holds the
contract with the retailer and subscribes to services for its users. This can be dep
with a very common example: A company - the subscriber - has a subscription
contract with a telephony provider. In the contract the rights of the different employ
are defined - the employees are the end-users. In the case of a private househol
subscriber and end-user role are identical.

Within the Retailer Domain the retailer role is defined. The retailer provides an
integrated view of services to the end-user or subscriber. A major point of value a
services offered by retailers is the unified management of services, in particular in
terms of subscription facilities. Retailers thus act as middlemen for service provid
and present a single point of contact to end-users and subscribers. This is an anal
the notion of one-stop-shopping in a supermarket. Retailers have to ensure the ea
quality of service access.

Within TSAS the retailer is giving end-users a single point of contact for all their
service needs. Additionally, the retailer enables end-users to customize and perso
services that they use by providing facilities to configure and select services
incorporating personal preferences.

A prerequisite for service provisioning is a contractual relationship between servic
providers and the retailer. For service access a contractual relationship must exis
between the subscriber and the retailer. No direct contractual relationship is requ
between end-user and service provider since the retailer mediates between both.

In general, the retailer:

• manages contracts for end-users and service providers,

• locates matches between user requirements and service provider subscription o
and finally,

• enables the interaction between end-user and service provider.

In the Service Provider Domain the service provider role is defined. It offers its
services to the end-user (or subscriber) through a retailer, or in other words, it sup
the retailer with services. In addition, the retailer allows service providers to reach
larger number of potential end-users. The services that are provided by the servic
provider can be service logic or content, or both. The service provider can also b
compared to a wholesaler.

The TSAS specification is a domain facility enabling end-users to access
telecommunication services according to their own wishes. In addition, the
specification describes how services can be retailed on behalf of service provider
which in turn offer their services to the retailer.
TSAS v1.0 Roles and Domains October 2000 1-3

1

een
s the

rface

ole

er are

 exist
er in

iler,
d by
r is a

der

ork

ain
e
ices.
an
s of
ive of
1.3 User Provider Relationship

TSAS offers mechanisms to establish and release authenticated connections betw
different domains; therefore, each domain provides interfaces to do so. TSAS use
terms user and provider instead of the client and server terminology, which would be
misleading in a number of situations. The user is the role directed to use the inte
and provider is the role providing the interface, which is shown in Figure 1-2.

The active role is always the user role that initiates the access whereas the passive r
is the provider, responding to a request.

For a single interaction between two domains request - response user and provid
situated in different domains. The domain boundaries are usually based on natural
affinities between objects, such as network topology, business stakeholder, or
geographical area. In a single scenario more than one user - provider relation may
(for example, it is possible to have a chain in which a single party acts as a provid
one direction and as user in the other direction).

This may be illustrated by the following example. There is a chain of end-user, reta
and service provider. The retailer offers services to the end-user, which are realize
the service provider. In the relationship between end-user and retailer the end-use
user, the retailer a provider. In the relationship between retailer and service provi
the retailer is a user and the service provider is a provider.

Note that the definitions in this section imply that the terms user and provider, end-
user, and service provider have different meanings.

Figure 1-2 use of generic user and provider roles

1.4 Sessions

The usage of services that are implemented taking into account the TSAS framew
can be structured in different sessions. These are used for grouping specific activities
between user and provider. The TSAS specification distinguishes between two
different sessions:

• An access session is used to establish an authenticated binding between two
domains, which in TSAS is between the consumer domain and the retailer dom
or between the retailer domain and the service provider domain. It maintains th
state about a user's attachment to a provider and about its involvement in serv
An access session hence represents the context through which the end-user c
access services. The general access session concept also supports all aspect
mobility, that means ubiquitous access by an end-user to the services, irrespect
the terminal being used and the point of attachment to the network.

End-user Retailer
Service
provider

User Provider User ProviderEnd-user Retailer
Service
provider

User Provider User Provider
1-4 Telecommunications Service Access & Subscription October 2000

1

le
nd-
ay be

r only
t by

sing

vices.

build
n be
o

s

e

ase.
d
ment,

ser
• A service session represents a single activation of a service. It can relate multip
end-users of the service so that they can interact with each other. Moreover, e
users can share resources such as documents or white boards. An end-user m
involved in many services at the same time although it has accessed the retaile
once. The state of a service session is always kept by the service provider (no
the retailer).

Generally, a service cannot be used without having an active access session. Clo
the connection between end-user and retailer, or retailer and service provider
respectively, will end an access session and also terminate all currently used ser

1.5 Segments

The operations offered by TSAS are grouped in interfaces. The interfaces in turn
segments: named sets of interfaces (including so-called callback interfaces) that ca
exchanged in one synchronous operation invocation. A segment may consist of tw
sets of interfaces: one dedicated set for each domain as shown in Figure 1-3.

Figure 1-3 Domains, Segments and Interfaces

One TSAS segment is mandatory: the core segment that handles the initial acces
phase between different domains. This covers the possibility to perform an
authentication protocol, and access to services an end-user may wish to use. In
addition, it offers the possibility to gain access to other segments supported by th
provider.

The other segments can be selected at runtime after an (optional) negotiation ph
Currently these additional segments are defined and described in this chapter an
chapter 2: The Invitation Segment, the Context Segment, the Access Control Seg
the Service Discovery Segment, the Session Control Segment, the End-user
Customization Segment, the Service Provider Administration Segment, the End-u
Administration Segment, and the End-user customization segment They all offer
additional service independent functionality.

Domain A Domain CDomain B

Example of a segment

Domain A Domain CDomain B

Example of a segment
TSAS v1.0 Segments October 2000 1-5

1

 are
f some
e.

.2,
r,
 roles

 the
the

n the
ler

2.2,

lt of
main
The usage of optional segments may be tailored for a certain purpose. Segments
self-contained, there exist no dependencies between segments. This eases use o
segments in a certain context, and allows adding additional segments in the futur

The optional segments (also called Service Access Segments and Subscription
Segments) are available during an access session only, as described in Section 1
“Roles and Domains,” on page 1-2. Its operations allow the end-user or subscribe
retailer, and service provider to interact during an access session in the respective
of user or provider across domains.

Segments can be requested or supported by the involved domains, depending on
required functionality. Each of these segments can be selected independently of
others. Once selected, however, the segment implementation must use the
specifications of this document.

1.6 Security

TSAS uses (mutually) authentication mechanisms between two domains, betwee
end-user of the consumer domain and the retailer domain, and between the retai
domain and the service provider domain respectively. For authentication either
CORBA security can be used or the authentication interface defined in Section 2.
“Authentication Interface,” on page 2-6. Once authenticated, the other optional
segments can be used without further authentication for each segment. As a resu
the authentication, references of interfaces are available between domains and re
available as long as the relationship resulting from authentication is valid.
1-6 Telecommunications Service Access & Subscription October 2000

Core Segment 2
initial
a
l,
 by the

ith the

ation
Contents

This chapter contains the following sections.

2.1 Overview

The core segment is mandatory and defines the interfaces which are used in the
phase between different domains. This covers the first point of contact to access
provider, the possibility for user and provider to perform an authentication protoco
the access to services they wish to use, and access to other segments supported
provider.

In TSAS a user contacts a provider to access services offered by the provider. To
access these services, the user is required to invoke authentication procedures w
provider before it is able to access services. The use of the terms user and provider is
made according to their definition in the previous chapter.

TSAS defines:

• The first point of contact for a user to access a provider.

• The authentication operations for the user and provider to perform an authentic
procedure.

• The user access to services they wish to use.

Section Title Page

“Overview” 2-1

“Initial Contact and Authentication” 2-3

“Access” 2-8
Telecommunications Service Access & Subscription October 2000 2-1

2

phases:

tions
iew of

ept of
ns

re.

s
es and

n

 to

r
:

• The user access to other segments supported by the provider.

The process by which the user accesses the provider has been separated into 3

1. Initial Contact

2. Authentication

3. Access to the provider’s services and segments

Within the core, segment interfaces are defined and within these interfaces opera
are defined to enable the user to progress through each of these phases. An overv
these interfaces and operations is given in Figure 2-1.

.

Figure 2-1 Core Interfaces

Initial - This interface allows a user to initiate an authentication procedure and to
request access to the provider domain. This initiates an access session; the conc
access session is explained in Section 1.4, “Sessions,” on page 1-4. The operatio
provided are:

• initiate_authentication() - allows the user to initiate an authentication procedu

• request_access() - allows the user to request the provider to initiate an acces
session. If successful the user gains access to an interface for accessing servic
other segments offered by the provider.

Authentication - This interface allows a user to proceed through an authenticatio
procedure. It provides the following operations:

• select_auth_method() - for selecting the authentication procedure.

• authenticate() - to perform the authentication. (It can be invoked several times
complete the authentication procedure).

• abort_authentication() - to abort the authentication procedure.

Access - This interface allows an authenticated user to access services and othe
segments offered by the provider. The interface provides the following operations

U ser

In itia l

A u then tica tion

A ccess

ProviderIn itia l

A u then tica tion

A ccess

U ser

In itia l

A u then tica tion

A ccess

ProviderIn itia l

A u then tica tion

A ccess
2-2 Telecommunications Service Access & Subscription October 2000

2

e

The
e

d

vider

pe is

pon

2.2 Initial Contact and Authentication

Before a user can retrieve information about services offered by a provider, or us
these services, they need to contact the provider, and perform an authentication
procedure. Figure 2-2 on page 2-4 shows the sequence of operations on the Initial and
Authentication interfaces, for the user to contact the provider, and authenticate.
user then gains access to the Access interface to retrieve information on services, us
services, and use other interfaces offered by the provider.

• (Before diagram) - User gains a reference to the Initial interface of the provider.
This may be gained through a URL, an Application Support Broker, a stringifie
object reference, etc.

• User may invoke initiate_authentication on the Initial interface. This 'starts' the
authentication of the user and provider. The operation allows the user and pro
to swap references to the Authentication interface. There is the possibility to
choose between different authentication types. Here the TSAS authentication ty
used also shown in Figure 2-2 the mutual authentication in brackets.

• User invokes select_auth_method on the provider's Authentication interface.
The user identifies to the provider the authentication methods that it can use. U
return, the provider selects the mechanism that it wishes the user to use.

Table 2-1

Operation Description

list_available_services() Lists all services that are available at the retailer.
The services are scoped using property lists. The
operation returns sufficient information for the user
to select a service, then start a service

select_service() To select the service to be provided, and provide
configuration information.

start_session() To start a service session.

sign_service_agreement() Used to start a service session when non-
repudiation of the request to start the session is
required.

end_access() To end the access session.

end_session() To end service sessions.

get_segment() To set-up a segment.

list_segments() To list the segments that are available from the
provider.

release_segments() To release segments.
TSAS v1.0 Initial Contact and Authentication October 2000 2-3

2

e

on
 to

er

and the
al
ted
se
vider
ied

 of
• User invokes authenticate on the Authentication interface, in accordance with the
authentication protocol selected. The authenticate operation contains an opaqu
parameter for the user to fill with data appropriate for the selected authenticati
protocol. This is the challenge parameter for the provider. The provider is able
'decode' this parameter, and produce an appropriate response, based upon the
challenge data, according to the authentication protocol. This response data is
returned to the user in the response parameter. This operation identifies the us
unequivocally to the provider.

• The response data is decoded by the user. Depending upon the response data
selected authentication protocol, the user may need to produce some addition
challenge data to the provider. If this is necessary, then the user makes repea
calls using authenticate Authentication. This process continues until the respon
data indicates that the authentication protocol is complete, and the user and pro
are satisfied that they have authenticated each other. If either side is not satisf
with the authentication, they may call the abortAuthentication operation to abort
the authentication protocol.

• Once user and provider are authenticated, the user invokes the requestAccess
operation on the Initial interface. This operation allows the user to select the type
access that they require. If they select ACCESS, then a reference to the Access
interface is returned.

Figure 2-2 Sequence diagram for initial access and authentication

user InitialAuthentication (on
user)

If user supports an Access interface, its
reference is passed to the Provider.
Provider's Access is returned.

user's Authentication reference is
passed to provider, and its
Authentication is returned.

This is an example of the sequence of
authenticate operations. Different
authentication protocols may have
difference requirements on the order of
operations.

initiateAuthentication()

requestAccess()

Authentication
 (on Provider)

selectAuthenticationMethod()

authenticate()

(authenticate())

(authenticate())
2-4 Telecommunications Service Access & Subscription October 2000

2

 is a

has

re of

an
to

 It

en it
 the
2.2.1 Initial interface

The user gains a reference to the Initial interface for the provider that it wishes to
access. This may be gained through a URL, an Application Support Broker, a
stringified object reference, etc. At this stage, the user has no guarantee that this
reference to a valid provider.

The user uses this interface to identify himself to the provider and to initiate the
authentication process. The Initial interface supports the initiate_authentication
operation to allow the authentication process to take place. It also supports the
request_access operation to gain access to the provider after the authentication
completed successfully.

2.2.1.1 initiate_authentication()

void initiate_authentication (
in AuthDomain user_domain,
in AuthType auth_type,

 out AuthDomain provider_domain)
raises (

DomainError,
AuthError);

The user uses this method to initiate the authentication process. user_domain is an
identifier for the user’s domain that starts the authentication process. It is a structu
the type AuthDomain that contains a DomainId and an interface reference. The
DomainId is used to identify the user to the provider (see authenticate() on
Authentication interface). If the DomainId is unknown to the provider, an exception
DomainError is raised by the provider. The interface reference is a reference to
Authentication interface at the user domain that can be invoked by the provider
perform the authentication procedure.

auth_type identifies the type of authentication mechanism requested by the user.
provides users and providers with the opportunity to use an alternative to the TSAS
Authentication interface (for example, CORBA Security). This authentication
process may be specific to the TSAS provider. The TSAS Authentication provided
by the authentication interface is the default authentication method.

If the CORBA Security Service is supported by both the user and the provider, th
may be used to mutually authenticate the user and the provider. The operation of
CORBA security service is out of the scope of TSAS. If it is used to provide
authentication of the parties, then the CORBA_SECURITY value is used for the
auth_type attribute, and no further authentication is required.

However, if the CORBA Security Service is not supported by both parties, and if
further authentication is required, then the TSAS Authentication interface can be
used. It is obtained by filling the auth_type attribute with the value
TSAS_AUTHENTICATION .
TSAS v1.0 Initial Contact and Authentication October 2000 2-5

2

ession.
this
e

ers
es of

ype,

 the
the

e of

r and
ider

ic
ion,

er
ider
The operation delivers provider_domain , an identifier of the provider domain.
Similar to the user_domain , it is a structure of the type AuthDomain that contains
a DomainId and an interface reference. The domainId is used to identify the provider
to the user. The interface reference is a reference to an Authentication interface at the
provider domain.

2.2.1.2 request_access()

 request_access (
in AccessType access_type,
in Object user_access,

 out Object provider_access)
raises (AccessError);

The user uses this method to gain access to the provider by means of an access s
This operation must be invoked only after user and provider are authenticated. If
method is called before the user and the provider have successfully completed th
authentication process, then the request fails and an exception AccessError is raised.

access_type identifies the type of access interface requested by the user. Provid
can define their own access interfaces to satisfy user requirements for different typ
access. If the user requests ACCESS, then the TSAS Access interface is returned.
TSAS Access is the default access method. Depending on the requested AccessT
the access interface with the corresponding type is returned (see below).

user_access provides the reference for the provider to call the access interface of
user. If the interface reference does not correspond to the type expected, due to
value of access_type , an exception AccessError is raised by the provider.

The returned object provides the reference for the user to call the access interfac
the provider.

2.2.2 Authentication Interface

Once the user has made initial contact with the provider, authentication of the use
provider may be required. The user may be required to authenticate with the prov
before it will be able to use any of the other interfaces supported by the provider.
Invocations on other interfaces may fail until authentication has been successfully
completed.

TSAS supports several authentication methods. TSAS also defines its own gener
authentication mechanism. If the user wants to use the TSAS generic authenticat
then it uses the initiate_authentication operation on the provider’s Initial interface
as described above, with auth_type parameter set to TSAS_AUTHENTICATION .
The reference returned is the TSAS Authentication interface. This interface can be
used to support an authentication procedure.

1. The user invokes the select_auth_method operation on the provider’s
Authentication interface. This includes the authentication capabilities of the us
(that is, the authentication procedures known by the user application). The prov
2-6 Telecommunications Service Access & Subscription October 2000

2

ties of

the

h

ion
on
ion

e

 the
y be
ns).

by
ser

rable
then chooses an authentication procedure based on the authentication capabili
the user and the provider. If the user is capable of handling more than one
authentication procedure, then the provider chooses one option, the selected_cap .
In some instances, the authentication capability of the user may not fulfill the
demands of the provider, in which case, the authentication will fail.

2. The user and provider interact to authenticate each other. Depending on the
authentication capability selected, this procedure may consist of a number of
interactions (for example, a challenge/response protocol). This authentication
procedure is performed using the authenticate operation on the TSAS
Authentication interface. Depending on the authentication capability selected,
procedure may require invocations on the Authentication interface supported by
the provider; or on the Authentication interface supported by the user; or on bot
interfaces.

After the authentication procedure has been completed, the user can invoke the
request_access operation on the Initial interface to gain access to the provider’s
services and other TSAS segments supported by the provider.

2.2.2.1 select_auth_method()

void select_auth_method (
in AuthCapabilityList auth_caps,

 out AuthCapability selected_cap)
raises (AuthError);

The user invokes the selectAuthMethod on the provider’s Authentication interface
to initiate the TSAS generic authentication process. This provides the authenticat
capabilities of the user to the provider. The provider then chooses an authenticati
method based on the authentication capabilities of user and provider. The operat
returns the selected method (selected_cap). In some instances, the authentication
capability of the user may not fulfil the demands of the provider, in which case th
authentication will fail (the operation raises the exception Authentication Error).

• auth_caps is the means by which the authentication mechanisms supported by
user are conveyed to the provider. Examples for authentication capabilities ma
(for example, bio ID techniques, chip cards, or username/password combinatio

• selected_cap is returned by the provider to indicate the mechanism preferred
the provider for the authentication process among the ones supported by the u
that were specified in authCaps . If the value of the selectedCap returned by the
provider is not understood by the user, it should be considered as an unrecove
error (‘panic’) and the user should abort its application.

2.2.2.2 authenticate()

void authenticate (
in AuthCapability selected_cap,
in string challenge,

 out string response)
TSAS v1.0 Initial Contact and Authentication October 2000 2-7

2

,

onse
 the
y
me

is, the

a of
ata,

oked
ple,
ed,

 no

shed.

r
ith a
ns
de a

d to
The
sed by
raises (AuthError);

The user and provider use this operation to authenticate each other. It returns a
response string. This operation is used according to the authentication procedure
selected by the selected_cap parameter (returned by select_auth_method()). This
procedure may consist of a number of messages (for example, a challenge/ resp
procedure). The values of the challenge and response parameters are defined by
authentication procedure. The challenge is used to identify a user uniquely. It ma
contain a userId or a certificate, which can identify the user by a distinguished na
conforming to X.509 v3.

An AuthError exception is raised if the selected_cap does not correspond to the
selected_cap returned by select_auth_method() . An AuthError exception is also
raised if the challenge data does not correspond to the procedure selected (that
challenge data cannot be decrypted according to that method).

The response attribute provides the response of the provider to the challenge dat
the user in the current sequence. The response will be based on the challenge d
according to the procedure selected by select_auth_method () .

2.2.2.3 abort_authentication()

void abort_authentication ()
raises (AuthError);

The user uses this method to abort the authentication process. This method is inv
if the user no longer wishes to continue with the authentication process (for exam
if the provider responds incorrectly to a challenge). If this method has been invok
calls to the request_access operation on the Initial interface will raise the
AccessError exception until the user has been properly authenticated. It contains
attributes.

2.3 Access

Once a user has been authenticated with a provider an access session is establi
The user now can gain access to the services and other segments offered by the
provider.

The user invokes the request_access operation on the Initial interface with the
required accessType. If it requests ACCESS, then a reference to the Access interface
is returned. (TSAS Providers can define their own access interfaces to satisfy use
requirements for different types of access). The user also provides the provider w
reference to its ‘callback’ interface to allow the TSAS provider to initiate interactio
during the access session. If the user has requested ACCESS, then it must provi
reference to an interface that will be used for the authentication procedure.

The Access interface allows the user to access services offered by the provider an
gain references to other segments. Segments are defined by TSAS in chapter 3.
sequence for accessing the segments is given in Figure 2-3. Segments are acces
using the list_segments() , get_segment() , and release_segments() operations.
2-8 Telecommunications Service Access & Subscription October 2000

2

hen
Figure 2-3 Sequence diagram for access segments

list_segments() may be used for getting informed which segments are currently
available for a user. With get_segment () a single segment will be returned. This
operation needs to be called separately for every segment which shall be used. W
segments are not needed anymore, they can be released with release_segments() .

User Initial Authentication Access

Access
(start of
access phase)

repeat for each
segment

requestAccess()

list_segments ()

get_segments ()

release_segments ()
TSAS v1.0 Access October 2000 2-9

2

ng the

the

ider.
ser
g the

te

s
e
Figure 2-4 Sequence diagram for accessing services

The user uses list_available_services() to retrieve the ServiceId of the service they
wish to use. The select_service() operation is used to inform the provider that the
user wishes to use the service. Then the start_session() operation is used to initiate
the session and return an interface reference to the service. Alternatively, the
sign_service_agreement() operation can be used when non-repudiation of the
request to initiate the session is required. A service session can be ended by usi
end_session operation. As a result, the interfaces offered by the service are not
longer available to the user. The complete process is described in more detail in
following section.

The end_access operation is used to end the user’s access session with the prov
After it is invoked, the user will no longer be authenticated with the provider. The u
will not be able to use the references to any of the provider interfaces gained durin
access session. Any calls to these interfaces will fail.

The Access interface is also offered by the user to the provider to allow it to initia
interactions during the access session.

2.3.1 Access Interface

During an authenticated access session the user will be able to select and acces
services. In order to use a service, the user must be authorized to use the servic
having establishing a service agreement.

U s e r In i ti al A u t he n t ic a t io n A c c e s s

O r, in s t e a d o f
s t a rt _ s e s s io n

l i s t_ u s e r_ s e rvic e s ()

s e le c t _ s e rvic e ()

s t a rt _ s e s s io n ()

s ig n _ s e rv ic e _ a g re e m e n t ()

e n d _ s e s s io n ()

e n d _ a c c e s s ()
2-10 Telecommunications Service Access & Subscription October 2000

2

. Off-
are
 made

er, the
n use

atch

 to
ned.

rties,

e user
e
nt

es to
fered
tion)

ll be
Service agreements can be concluded using either off-line or on-line mechanisms
line agreements will be gained outside of the scope of TSAS interactions and so
not described here. However, users can make use of service agreements that are
off-line. Some providers may only offer off-line mechanisms to conclude service
agreements. On-line service agreements may be concluded by using other TSAS
provider interfaces, such as the interfaces defined by the subscription segments.

After a service agreement has been established between the user and the provid
user will be able to make use of this agreement to access a service. The user ca
the operations on the Access interface to:

• list the services which it can use,

• select the service it wish to use with some specific service properties, and

• to start the service session.

The list_available_services() operation is used to provide a list of services, which
the user can use. The user can specify a list of properties that the service must m
in order to scope the range of services returned.

The select_service() operation is used to identify the service that the user wishes
use. A list of service properties initializes the service and a service token is retur

The user starts the service session by using the start_session() operation. This
operation uses the service token to identify the service, with specific service prope
from which to create a new service session. The operation returns a SessionInfo
structure that contains the SessionId , SessionPropertyList , and an InterfaceList
with references to interfaces offered by the service session implementation.

Alternatively, after the service has been selected, the sign_service_agreement()
operation can be used to start the service session. This operation is used when th
and provider wish to have non-repudiation for the request to start the service. Th
sign_service_agreement() operation allows the user to sign the service agreeme
for this service confirming their identity to the provider.

2.3.1.1 list_available_services()

void list_available_services (
in ListedServiceProperties desired_properties,

 out ServiceList service_list)
raises (

PropertyError,
ListError);

The list_end_user_services() returns a list of the services that are immediately
available to the user. It can be noted that the list that is returned can contain servic
which the user is already subscribed, as well as services that are (momentarily) of
for free (for which no subscription is required, see section 6 for details on subscrip

The desired_properties parameter can be used to scope the list of services.
desired_properties identifies the properties that the services must match. For
example, such a property can indicate that the services returned in the list must a
TSAS v1.0 Access October 2000 2-11

2

vice

 of

ause

ted
h no
currently available. ListedServiceProperties also defines whether a service must
match one, all or none of the properties (see MatchProperties in section
Section 5.1.1, “Properties and Property Lists,” on page 5-1). Currently no specific
property names and values have been defined for ListedServiceProperties
(‘available’ or ’subscribed’ would be a good example though), and so its use is ser
provider specific.

The list of services that matches the desired_properties is returned in the
ServiceList. This is a sequence of ServiceInfo structures which contain the
ServiceId , UserServiceName (consumer’s name for the service), and a sequence
service properties, ServicePropertyList . The ServiceId is associated with a specific
service when the service is subscribed.

The value of Service_id is unique among all the available services, bur may be
different for different users. The service_id value persists for the lifetime of the
contractual relation between user and provider concerning this service.

Currently no specific property names and values have been defined for
ServicePropertyList , and so its use is service provider specific.

If the desired_properties parameter is wrongly formatted, or provides an invalid
property name or value, the PropertyError exception should be raised. Property
names that are not recognized can be ignored if desired_properties require that only
some, or none of the properties are matched. If the service list is unavailable bec
the retailer’s services are not available, then the operation should raise a ListError
exception with the ListUnavailable error code.

The operation delivers a list of the services which the user may use. It can be no
that the list that is returned can contain services that are offered for free (for whic
subscription is required).

2.3.1.2 select_service()

 void select_service (
in ServiceId service_id,
in ServicePropertyList service_properties,

 out ServiceToken service_token)
 raises (

ServiceError,
PropertyError);

This operation is used by the user to identify the service that they wish to use.

service_id identifies the service required. It may be gained by using
list_available_servicesuser_services or by some other means. The service_id is
unique among all the available services. The service_id value persists for the lifetime
of the contractual relation between user and provider concerning this service.

If the service_id is not recognized, then a ServiceError exception is raised with an
InvalidServiceId error code. If the user is not allowed to use this service, a
ServiceError exception is raised with a ServiceAccessDenied error code.
2-12 Telecommunications Service Access & Subscription October 2000

2

. This
e
ser

as the

the
service_properties are a list of the service properties that the service instance
should support. (These properties are used to initialize the service instance.) If a
service property is not recognized by the provider, a PropertyError exception is
raised.

The returned service_token is a free format text token returned by the provider,
which can be used to start a service session with the selected service properties
token contains provider specific information relating to the service agreement. Th
user is not intended to be able to ‘decode’ or understand the service token. The u
merely offers the service token when they wish to gain a reference to the service
session (either using start_session , or sign_service_agreement .) The
ServiceToken may have a limited lifetime. If the lifetime of the ServiceToken
expires, a method accepting the ServiceToken will raise a ServiceError with an
InvalidServiceToken error code. ServiceToken s will not be accepted if the access
session has been terminated (that is, the user or provider invokes the end_access
operation on the other’s Access interface).

2.3.1.3 start_session()

void start_session (
in ServiceToken service_token
in ApplicationInfo app,
out SessionInfo session_info)

raises (
ServiceError);

This operation is used by the user to start a service session and is an alternative
operation to sign_service_agreement . The service session corresponds to the
service token (that is, the service session is a session of the service type), and h
service properties selected when the service token was generated (using
select_service()).

service_token is returned by the provider in the call to select_service() . This token
is used to identify the service type and service properties selected by the user. If
service_token is invalid, or has expired, a ServiceError exception is raised with an
InvalidServiceToken error code.

The returned session_info is a structure containing information about the started
service session instance. It includes the SessionId , SessionPropertyList , and a list
of interfaces relating to the service session.

2.3.1.4 sign_service_agreement()

void sign_service_agreement(
in ServiceToken service_token,
in string agreement_text,
in SigningAlgorithm signing_algorithm,
out SignatureAndSessionInfo signature_session_info)

raises (
ServiceError,
TSAS v1.0 Access October 2000 2-13

2

ement
n-
ce

the

r.

er
er be
 any

ServiceAgreementError);

This operation is used by the user to request that the provider signs a service agre
before the user is allowed to use the service. The service agreement provides no
repudiation that the user requested to use the service and gain access to a servi
session.

service_token is the token returned by the provider in the call to select_service() .
This token is used to identify the service type and service properties selected by
user. If the service_token is invalid, or has expired, a ServiceError exception is
raised with an InvalidServiceToken error code.

agreement_text is the service agreement text that is to be signed by the provide

signing_algorithm is the algorithm used to compute the digital signature of the
service agreement.

Returned is a structure containing the digital signature of the provider for the
agreement_text and the session information.

struct SignatureAndSessionInfo {
string digital_signature;
SessionInfo session_info;

};

The digital_signature is a signed version of a hash of the service token and
agreement text. The mechanism to compute the digital signature is given by
signing_algorithm .

session_info is a structure containing information about the service session. It
includes the SessionId , SessionPropertyList , and a list of interfaces relating to the
service session.

2.3.1.5 end_access()

void end_access (
in EndAccessPropertyList end_access_properties)

raises (PropertyError);

This operation is used to end the user’s access session with the provider. The us
requests that its access session is ended. After it is invoked, the user will no long
authenticated with the provider. The user will not be able to use the references to
of the provider interfaces gained during the access session. Any calls to these
interfaces will fail.

end_access_properties is a PropertyList defining the actions to be taken by the
provider in ending the access session (for example, the end_access_properties may
define the action to be taken if end_access() is called while there are active service
sessions). If the properties are invalid, a PropertyError exception is raised.
2-14 Telecommunications Service Access & Subscription October 2000

2

ssion
r,

n’s

r than
TSAS

s to
. If a
2.3.1.6 end_session()

void end_session (
in SessionId session_id)

raises (SessionError);

This operation is used to end a service session. After it is invoked, the service se
associated with the SessionID will have ended and will not be accessible to the use
(that is, the user will no longer be able to use any of the references to the sessio
usage interfaces).

session_id identifies the session to end. If the session_id is invalid, a
SessionError exception is raised with an InvalidSessionId error code.

2.3.1.7 list_segments()

void list_segments (
 out SegmentIdList segment_ids);

This operation is used to list the segments offered by the provider. Segments othe
this core segment are optional, and so only a subset of the segments defined by
may be offered by a provider. The segment_ids returned by this operation only
include segment identifiers to segments that are offered by this provider and are
available to this user.

2.3.1.8 get_segment()

 void get_segment (
in SegmentId segment_id,
in InterfaceList user_refs,
out InterfaceList provider_refs)

raises (
SegmentError,
InterfaceError);

This operation is used to establish a segment between the user and the provider.

• segment_id identifies the segment to be established. The segment defines a
number of interface to be offered by the user and the provider. If the segment_id
is invalid, the provider raises a SegmentError exception with an
InvalidSegmentId error code.

• user_refs is a list of interfaces supported by the user. It must include reference
all interfaces of the types which are required for this segment on the user side
required interface is missing from the list, a SegmentError exception is raised
with a RequiredSegmentInterfaceNotSupplied error code, and the interface
name is returned. If an interface is not part of the segment interfaces, a
SegmentError exception is raised, with an InvalidSegmentInterface error
code, and the interface name is returned.
TSAS v1.0 Access October 2000 2-15

2

es to

a user
ment

ent
A list of interfaces supported by the segment is returned. It must include referenc
interfaces of the types which must be supported by the provider for this segment.

2.3.1.9 release_segment()

void release_segments (
in SegmentIdList segment_ids)

raises (
SegmentError);

This operation is used to release segments that have been established between
and provider. Once a segment is released, the interfaces associated with the seg
cannot be used.

segment_ids is a list of segment identifiers of segments to be released. If a segm
identifier is invalid, a SegmentError exception is raised with an InvalidSegmentId
error code.
2-16 Telecommunications Service Access & Subscription October 2000

Service Access Segments 3
een

 domain
he
Contents

This chapter contains the following sections.

3.1 Overview

This chapter describes segments that are defined for controlling the access betw
domains and for controlling the access to services. In the scope of the
‘Telecommunication Service Access and Subscription’ (TSAS), these inter-domain
accesses and services access take place on the one hand between the consumer
and the retailer domain, and on the other hand between the retailer domain and t
service provider domain.

The service access segments address two types of access functionality:

Section Title Page

“Overview” 3-1

“Service Access Segment Interfaces” 3-3

“Invitation Segment” 3-4

“Context Segment” 3-13

“Access Control Segment” 3-16

“Service Discovery Segment” 3-18

“Session Control Segment” 3-21

“Access Session Information Segment” 3-26

“Service Session Information Segment” 3-27
Telecommunications Service Access & Subscription October 2000 3-1

3

in

kes

ntrol

tion

otify

e
in. In
• functionality dedicated to the control of (inter-domain) access sessions, which
turn is specialized into the control of the access between the

• consumer domain and the retailer domain, and

• the retailer domain and the service provider domain.

• functionality related to accessing services, for which the consumer domain invo
the retailer domain, and the retailer invokes in its turn one or more service
providers. These service providers support the actual services.

The functions dedicated to accessing domains consist of retrieving a list of active
access sessions and a facility to terminate active access sessions.

The functions dedicated to accessing services are:

• set up of the default context required for the control of access sessions and co
of service sessions,

• discovery of service offerings, including the retrieval of detailed service descrip
information,

• listings of service sessions and services, and

• control of service sessions from the access session (e.g., resume, invite, join, n
changes, etc.).

Some of the service access segments define two asymmetric interfaces, one to b
supported by the user domain and the other to be supported by the provider doma
that case the interface name will include ‘user’ or ‘provider’ in order to avoid
confusion.

Figure 3-1 illustrates the various interfaces offered by each domain.

Figure 3-1 Interfaces supported by the TSAS domains

EndUserInvite

UserContext

EndUserInvite

UserContext

ProviderInvite

ProviderContext

ServiceDiscovery

SessionControl

AccessControl

ProviderInvite

ProviderContext

ServiceDiscovery

SessionControl

C
on

su
m

er
 D

o
m

ai
n

(E
n

d-
us

e
rs

 a
n

d
S

ub
sc

rib
er

s)

R
e

ta
ile

r
D

om
a

in

S
e

rv
ic

e
 P

ro
vi

de
r

D
o

m
a

in

AccessControl
3-2 Telecommunications Service Access & Subscription October 2000

3

 their
 This
d-user

-

y to

s:

to

that

ss

face:

ed
t

sions
3.2 Service Access Segment Interfaces

This section globally describes the service access segments, their interfaces, and
operations in a generic fashion (that is, for the generic roles of user and provider).
generic specification can be re-used for the specific cases of, on the one hand en
and retailer, and on the other hand retailer and service provider.

The segments available for use during an access session are:

Invitation segment

It allows the control of invitations and announcements. It defines two interfaces:

1. EndUserInvite - This interface is used by the service provider to notify the end
user (via its retailer) of invitations to join service sessions.

2. ProviderInvite - This interface allows a known user to get a list of session
invitations and session announcements and to join these sessions, and to repl
invitations.

Context segment

It allows the control of configuration (context) information. It defines two interface

1. UserContext - This interface is used by the provider within an access session
access user configuration information.

2. ProviderContext - This interface allows a known user to set configuration
information at the provider side, and to verify the current settings by retrieving
same information when required.

Access control segment

It provides supplementary functionality for access session control. It defines one
interface:

1. AccessControl - This interface allows a known user to get a list of running acce
sessions and to end one or more of them.

Service discovery segment

It supports functionality helping to learn about (new) services. It defines one inter

1. ServiceDiscovery - This interface allows a known user to get a list of subscrib
services, to discover new services, and to get supplementary information abou
services.

Session control segment

It provides functionality for service session control. It defines one interface:

1. SessionControl - This interface allows a known user to get a list of running
service sessions and to resume service sessions or participation in service ses
(when these have been suspended), and to end service sessions.
TSAS v1.0 Service Access Segment Interfaces October 2000 3-3

3

er. It

ORBA

.

ment,

 a

 the

s
s. It

ve
Access session information segment

It allows a user to receive information over all its access sessions with this provid
defines no interface but rather uses either the CORBA CosNotification service or the
CORBA CosEvent service.

Service session information segment

It allows an end-user to receive information over all its service sessions (possibly
across several access session). It defines no interface but rather uses either the C
CosNotification service or the CORBA CosEvent service.

These segments, interfaces, and the operations they provide are described below

3.2.1 Base Interface

Since it must be possible to release any segment that is set up from within the seg
all the interfaces defined for the service access segments and for the subscription
segments inherit from a base interface that defines an operation release_segment() .
This base interface is defined in the common types (see Section 5.6.1, “Base
Interface,” on page 5-10).

3.3 Invitation Segment

The invitation segment defines two interfaces, the EndUserInvite interface and the
ProviderInvite interface.

EndUserInvite Interface

The EndUserInvite interface allows the service provider to send invitations to join
service session during an end-user’s access session with its retailer.

• invite_user() - allows the provider to invite the user to join a service session. A
session description and sufficient information to join the session is available in
parameter list. The session can only be joined using the
join_session_with_invitation() operation on the ProviderInvite interface.

• cancel_invite_user() - allows the provider to inform the user that an invitation
previously sent to the user has been cancelled.

ProviderInvite Interface

The ProviderInvite interface allows a known user to get a list of session invitation
and session announcements and to join these sessions, and to reply to invitation
provides the following operations:

• list_session_invitations() - lists the invitations to join a service session that ha
been sent to the user.

• list_session_announcements() - lists the service sessions with have been
announced. It can be scoped by some announcement properties.
3-4 Telecommunications Service Access & Subscription October 2000

3

n

to
 be
 the

ever,

nd
 the

r
seen

s
 This

e

 a
can
to the
user
• join_session_with_invitation() - allows the user to join a service session to
which he has been invited.

• join_session_with_announcement() - allows the user to join a service sessio
which has been announced.

• reply_to_invitation() - allows the user to reply to an invitation. It can be used
inform the service session to which they have been invited, that they will/will not
joining the session, or to send the invitation somewhere else (it does not allow
user to join the session).

As will be shown in the scenario examples for the invitation segment, the UserId (user
identity) must be exchanged between the Retailer and the Service Provider. How
the anonymity of the end-user can still be guaranteed by the following two facts:

• The value used for UserId between end-user and retailer, and between retailer a
service provider, can differ (however the publicly known one is the one used by
Service Provider to reach an end-user).

• With a UserId value as above, the service provider cannot contact the end-use
without transiting through the retailer (or at least local mechanisms can be fore
to ensure that).

3.3.1 EndUserInvite Interface

interface EndUserInvite: SegmentBase
{
};

The EndUserInvite interface allows a service provider to invite an end-user (via it
retailer) to join a service session, and to cancel pending invitations when required.
interface is returned as a result of the Core::Access::get_segment() operation
establishing this segment.

3.3.1.1 invite_end_user()

void invite_end_user (
 in SessionInvitation invitation,
 out InvitationReply reply
) raises (

InvitationError
);

The SessionInvitation and InvitationReply parameters are defined according to th
Internet Engineering Task Force working group MMUSIC, (Multimedia Multiparty
Session Control) draft standard ‘Session Initiation Protocol.’ This operation allows
service provider to invite an end-user (via its retailer) to join a service session. It
only be used during an access session. The service provider sends the invitation
appropriate retailer, and the retailer to the consumer domain(s) at which the end-
can be reached.
TSAS v1.0 Invitation Segment October 2000 3-5

3

the
 its

e

 this
 same
uld

d

sion

e
SessionInvitation describes the service session to which the end-user has been
invited and provides an InvitationId to identify this invitation when joining. It does
not give interface references to the session, nor any information that would allow
end-user to join the service session outside the context of an access session with
retailer.

An InvitationReply is returned that allows the end-user to inform the retailer of th
action it will take regarding the invitation (for more details, see Section 5.2.2,
“Invitations and Announcements,” on page 5-4).

The end-user may join the service session described by the invitation from within
access session, or it may establish another access session with this retailer. The
InvitationId will refer to this invitation in both access sessions. The end-user sho
use the operation join_session_with_invitation() from the ProviderInvite
interface of this invitation segment. Note that the service session cannot be joine
without an access session with the retailer.

3.3.1.2 cancel_invite_end_user()

void cancel_invite_end_user (
 in UserId invitee_id,
 in InvitationId id
) raises (

InvitationError
);

This operation allows a service provider to cancel an invitation to join a service ses
that has been sent to an end-user.

InvitationId is used to determine the invitation to be cancelled. InvitationId s are
unique across all access sessions with the same service provider.

If the InvitationId list is unknown to the consumer domain (receiving the
cancel_invite_end-user on behalf of its end-user), then the operation should rais
an InvitationError exception with the InvalidInvitationId error code. It is possible to
receive a cancel_invite_end_user before a corresponding invite_end_user . This
operation should raise the exception anyway.
3-6 Telecommunications Service Access & Subscription October 2000

3

ed
 can
ns or
e
3.3.1.3 Scenarios

Figure 3-2 Invitation Segment - EndUserInvite Diagram

3.3.2 ProviderInvite Interface

interface ProviderInvite: SegmentBase
{
};

The ProviderInvite interface allows a known end-user to retrieve information relat
to announced service sessions or to invitations meant for that user. The end-user
use this interface to reply to invitations or request to join announced service sessio
service sessions it has been invited to. This interface is returned as a result of th
Core::Access::get_segment() operation establishing this segment.

3.3.2.1 list_session_invitations()

void list_session_invitations (
out InvitationList invitations

) raises (
ListError

);

The list_session_invitations() returns a list of the invitations to join a service
session, which have been sent to the end-user through this retailer.

The InvitationList returned by this operation is a sequence of SessionInvitation
structures:

struct SessionInvitation {
 InvitationId id;

 : UserInvite : UserInvite Provider

invite_user()
invite_user()

cancel_invite_user()
cancel_invite_user()
TSAS v1.0 Invitation Segment October 2000 3-7

3

ave

ary
ment
nd to

 this

e

 one-
from
s are
), or
ssions
er to
. The
ment
e
 UserId invitee_id;
 SessionPurpose purpose;
 InvitationReason reason;
 InvitationOrigin origin;
};

• id - identifies the particular invitation. It uniquely identifies this invitation from
others for this end-user at this retailer (other end-users with this retailer may h
invitations with the same id). This id is used in join_session_with_invitation()
(see below) to join the session referred to by this invitation.

• invitee_id - is the user id of this end-user. This information is not strictly necess
here as the user id is known in the access session (in which this invitation seg
is established). However, it is included to make the structure more re-usable, a
allow the recipient to check that the invitation was for him.

• purpose - is a string containing the purpose of the session.

• reason - is a string containing the reason this end-user has been invited to join
session.

• origin - is a structure containing the user_id of the end-user that requested that th
invitation was sent to this end-user, and the session_id of the service session to
join.

If the invitation list is not available, then the operation should raise the ListError with
the ListUnavailable error code.

3.3.2.2 list_session_announcements()

void list_session_announcements (
in AnnouncementSearchProperties desired_properties,

 out AnnouncementList announcements
) raises (

PropertyError,
ListError

);

The list_session_announcements() returns a list of the session announcements
that have been announced through this retailer. As the retailer plays the role of a
stop-shop to the end-user, this list of announcements can be a collection of lists
several service providers that are in contact with this retailer. The service session
announced either by requests from session participants (service provider specific
due to properties established at service session start-up. The process by which se
are announced is not defined by TSAS. However, this operation is provided in ord
allow an end-user to request a list of service sessions that have been announced
announcements may be scoped in order to restrict the distribution of the announce
to particular groups. This operation returns a list of announcements that match th
desired_properties , as specified by the end-user.
3-8 Telecommunications Service Access & Subscription October 2000

3

ts.
ts
”
 for

er

nt,

t

r,
the

es:
The desired_properties parameter can be used to scope the list of announcemen
AnnouncementSearchProperties identifies the properties that the announcemen
must match. (See MatchProperties in Section 5.1.1, “Properties and Property Lists,
on page 5-1). Currently no specific property names and values have been defined
AnnouncementSearchProperties , and so its use is service provider specific.

The returned AnnouncementList is a list of announcements available to the end-us
and matching the desired_properties . This is a sequence of
SessionAnnouncement structures that contain the properties of the announceme
(that is, AnnouncementProperties). Currently no specific property names and
values have been defined for AnnouncementProperties, and so its use is service
provider specific.

If the desired_properties parameter is wrongly formatted, or provides an invalid
property name or value, the PropertyError exception is raised. Property names tha
are not recognized can be ignored if desired_properties requires that only some, or
none of the properties are matched.

If an announcement list is not available, then the operation should raise the ListError,
with the ListUnavailable error code.

3.3.2.3 join_session_with_invitation()

void join_session_with_invitation (
in InvitationId invitation_id,
in ApplicationInfo app,
in JoinPropertyList join_properties,
out SessionInfo session_info

) raises (
SessionError,
InvitationError,
ApplicationInfoError,
PropertyError

);

The join_session_with_invitation() allows the end-user to join an existing service
session, for which it has received an invitation.

• invitation_id - is the identifier of the invitation. The invitation, kept by the retaile
contains sufficient information for the retailer to contact the service session at
service provider's domain, and request that the end-user be allowed to join the
service session.

• app - is an ApplicationInfo structure containing information on the end-user
application that will be used to interact with the service session. It provides an
application name, version, serial number, license number, and a list of properti

struct ApplicationInfo {
string name;
string version;
string serial_num;
string licence_num;
TSAS v1.0 Invitation Segment October 2000 3-9

3

r
.

other

rvice

d-

rvice

ed by
ed

ler
 the
PropertyList properties;
};

join_properties is a PropertyList . It can contain information related to the end-use
that is requesting to join the session, such as for example a motivation for joining
Currently no specific property names and values have been defined for
JoinPropertyList , and so its use is service provider specific.

A SessionInfo is returned as a result of a successful joining. It is a structure that
contains information that allows the end-user to refer to this service session using
operations on this interface. It also contains information for the usage part of the
session, including the interface references to interact with the service session (se
provider specific).

The exception SessionError is raised if the service session refuses to allow the en
user to join it.

The exception InvitationError is raised if the invitation_id is invalid.

The exception ApplicationInfoError is raised if there are unknown or invalid values
for ApplicationInfo , or if the application is incompatible with the type of service
being joined.

If the join_properties parameter is wrongly formatted, the PropertyError exception
is raised.

3.3.2.4 join_session_with_announcement()

void join_session_with_announcement (
 in AnnouncementId announcement_id,

in ApplicationInfo app,
in JoinPropertyList join_properties,
out SessionInfo session_info

) raises (
SessionError,
AnnouncementError,
ApplicationInfoError,
PropertyError

);

The join_session_with_announcement() allows the end-user to join an existing
service session, for which the end-user has discovered an announcement. The se
session announcements are obtained by using the list_session_announcements
operation on the same interface, or in a number of other ways that are not describ
TSAS (can be retailer and service provider specific), including through a specializ
service session.

• announcement_id - is the identifier of the announcement. The announcement
information forwarded by the retailer, contains sufficient information for the retai
to contact the service session at the service provider domain, and request that
end-user be allowed to join the service session.

• ApplicationInfo and SessionInfo : same as above.
3-10 Telecommunications Service Access & Subscription October 2000

3

s
 the
o by
ly
y the

ction

ot to

 For
4.
• join_properties : same as above.

The exceptions SessionError, ApplicationInfoError, and PropertyError: same as
above.

The exception AnnouncementError is raised if the announcement_id is invalid.

3.3.2.5 reply_to_invitation()

void reply_to_invitation (
in InvitationId invitation_id,
in InvitationReply reply

) raises (
InvitationError,
InvitationReplyError

);

The reply_to_invitation() allows the end-user to reply to a received invitation. Thi
has two purposes. The first one is to enable the end-user to reply if it did not get
invitation when it was issued, and it had to be stored and momentarily be replied t
the retailer. The second possibility is for the end-user to reply with a different rep
code than the one used in the case the issued invitation was originally received b
end-user and replied to. This latter possibility, however, should only be used in
'exception' scenarios.

This operation is used by the end-user to inform the service provider about its rea
(its reply) to the invitation. The end-user can use one or more reply_to_invitation()
invocations to indicate ‘busy,’ then ‘ringing,’ then to indicate its intention to join, or
not, the session, or to indicate a different location to look for the end-user. This
operation is not used to join service sessions, the join_session_with_invitation()
and join_session_with_announcement() must be used for that purpose. In order
not to confuse the service session that issued the invitation, it is recommended n
use multiple reply_to_invitation() to the same invitation.

• invitation_id - is the identifier of the invitation.

• reply - is a structure which contains the information about the end-user's reply.
details see section Section 5.2.2, “Invitations and Announcements,” on page 5-

The exception InvitationError is raised if the invitation_id is invalid. The exception
InvitationReplyError is raised if there is an error in the reply.
TSAS v1.0 Invitation Segment October 2000 3-11

3

in the

veral
 in a

ding
is

t be
3.3.2.6 Scenarios

Figure 3-3 Invitation Segment - ProviderInvite Diagram

• The invitations are stored in the retailer domain, so that the
list_session_invitation() does not need to be invoked on the service provider
domains.

• The announcements should not be stored in the retailer domain because these
should be checked only upon request. As shown in the scenario the end-user
consumer domain invokes the list_session_announcements() on its retailer
only once. The retailer acting as a one-stop shop to the end-user can invoke se
service provider domains to collect session announcements and compile them
single list that is returned to the end-user.

• The end-user can reply to an invitation without requesting to join the correspon
service immediately. Several replies can be sent on the same invitation, but it
recommended that only one be used.

• The requests to join the service session, with invitation or announcement, mus
forwarded by the retailer to the appropriate service provider.

 : P ro v id e rI nv it e : P ro v id e rI nv it e : P ro v id erI nv it e

l i st_ se ssi o n _ i n v i t a t i o n s ()

l ist _s es s io n_ an n ou nc em e n ts ()

l is t _ s e s s io n _ a n n o un c e m e n t s ()

l i st_ se ssi o n _ a n n o u n c e m e n ts()

re p l y _ to _ i n v i t a t i o n ()

re p l y _ to _ i n v i t a t i o n ()

re p l y _ to _ i n v i t a t i o n ()

re p l y _ to _ i n v i t a t i o n ()

jo in _ s e s s io n _ wit h _ in v it a t io n ()
jo in _ s e s s io n _ wit h _ in v it a t io n ()

jo in _ s e s s io n _ wit h _ a n n o un c e m e n t ()
j o i n _ se ssi o n _ w i th _ a n n o u n ce m e n t ()

C o n su m e r D o m a i n R e ta i l e r D o m a i n S e rvi ce P rov i d er D om a i ns
3-12 Telecommunications Service Access & Subscription October 2000

3

n

s

e, to
face

,
3.4 Context Segment

The context segment defines two interfaces, the UserContext interface and the
ProviderContext interface.

The UserContext interface allows the provider to gain information about the user
domain’s configuration, and applications.

• get_user_ctxt() - allows the provider to retrieve information about the user
domain’s configuration.

The ProviderContext interface allows a known user to set configuration informatio
at the provider domain side.

It provides the following operations:

• set_user_ctxt() - allows the user to inform the provider about interfaces in the
user domain, and other user domain information. (for example, user application
available in the user domain, operating system used).

• get_user_ctxts() - allows the user to retrieve one or more sets of configuration
(context) information that has been stored in the provider domain.

3.4.1 UserContext Interface

interface UserContext: SegmentBase
{
};

This interface allows the provider to gain information about the user domain’s
configuration and applications. This interface could also be extended, (for exampl
allow a provider to ask more specific questions about the user domain). This inter
is returned as a result of the Core::Access::get_segment() operation establishing
this segment.

3.4.1.1 get_user_ctxt()

void get_user_ctxt(
 out UserCtxt user_ctxt);

This operation allows the provider to receive all the information about the user
domain’s configuration that the user accepts the provider to have access to. In
particular it can be used by the service provider to gain access, via the retailer, to
information related to the end-user's consumer domain, such as terminal and
applications used. The operation returns the UserCtxt structure that contains a
property list enabling provider specific information to be included. See Section 5.5
“User Context Information,” on page 5-8.
TSAS v1.0 Context Segment October 2000 3-13

3

ider
 user
vider

ed

of
rvice

nd
3.4.1.2 Scenario

Figure 3-4 Context Segment - User Context Diagram

Usually the request for user context information is initially issued by a service prov
and forwarded by the retailer to the end-user. However, as is explained above, the
context relates to the general user/provider scenario: for example, the service pro
can be logged on the retailer domain as a user.

3.4.2 ProviderContext Interface

interface ProviderContext: SegmentBase
{
};

The ProviderContext interface allows a known user to set context information relat
to its domain. This interface is returned as a result of the
Core::Access::get_segment() operation establishing this segment.

3.4.2.1 set_user_ctxt()

void set_user_ctxt (
 in UserCtxt user_ctxt
) raises (
 UserCtxtError
);

The set_user_ctxt() allows the user to inform the provider about the configuration
the consumer domain. In the particular case of the end-user, it can inform the se
provider, via the retailer, of user applications available in the consumer domain,
operating systems, etc.

user_ctxt - is a structure containing consumer domain configuration information a
possibly interfaces (in the list of properties).

 : UserContext : U serContext : UserContext

Consumer Domain Retailer Domain Service Provider Domain

get_user_ctxt()

get_user_ctxt()

get_user_ctxt()
3-14 Telecommunications Service Access & Subscription October 2000

3

e

all,

ion

d a
n
If there is a problem with user_ctxt , then UserCtxtError should be raised with the
appropriate error code.

3.4.2.2 get_user_ctxts()

void get_user_ctxts (
 in SpecifiedUserCtxt ctxt,
 out UserCtxtList user_ctxts
) raises (
 UserCtxtError,
 ListError
);

This operation allows the user to retrieve information about user contexts that hav
been registered with the provider.

ctxt - is a union specifying which contexts information must be returned, namely
only the current ones, or a list of specified ones.

The returned UserCtxtList is a list of structures each containing user domain
configuration information and properties such as, possibly, interfaces. This operat
will raise a UserCtxtError exception with a UserCtxtNotAvailable error code if
there is no context set. If there is a problem with ctxt , then UserCtxtError should be
raised with the appropriate error code, and if the list is not available then the ListError
is raised with the ListUnavailable error code.

3.4.2.3 get_user_info()

void get_user_info(
 out UserInfo user_info);

The get_user_info() allows the user to request information about himself. This
operation returns a UserInfo structure. This contains the user's UserId, its name, an
list of user properties. Currently no specific property names and values have bee
defined for UserPropertyList , and so its use is provider specific.
TSAS v1.0 Context Segment October 2000 3-15

3

ider
r

hat

ut
r is at
ervice

ed
3.4.2.4 Scenarios

Figure 3-5 Context Segment - Provider Context Diagram

These scenarios are valid in the general case of a User domain accessing a Prov
domain (end-user with retailer, retailer with provider, provider with retailer, or othe
domains to which the TSAS specifications would be applied).

3.5 Access Control Segment

The access control segment defines the AccessControl interface.

The AccessControl interface allows a known user to get a list of running access
sessions, to end one or more of them, and to get the user information stored at t
moment in the provider domain.

It provides the following operations:

• list_access_sessions() - allows the user in this access session to find out abo
other access sessions that he has with this provider. For example, an end-use
work, but has an access session set up at home which runs an active security s
session.

• end_access_sessions() - allows the user to end one or more specified access
session(s). This can include the current one, or others, found using
list_access_sessions() . The user can also specify some actions to be perform
if there are active service sessions within the access session(s) to be ended.

• get_user_info() - gets the user’s username and other properties.

3.5.1 AccessControl Interface

interface AccessControl: SegmentBase
{

 :
Prov iderContext

set_user_ctxt()

get_user_ctxts()

get_user_info()

User Domain Provider Domain
3-16 Telecommunications Service Access & Subscription October 2000

3

his

the
nce of

 for

ich
 on

 not

The
access
};

The AccessControl interface allows a known user to control its access sessions. T
interface is returned as a result of the Core::Access::get_segment() operation
establishing this segment.

3.5.1.1 list_access_sessions()

void list_access_sessions (
out AccessSessionList as_list

) raises (
ListError

);

The list_access_sessions() returns a list of access sessions. The list contains all
access sessions the user currently has established with this provider. It is a seque
AccessSessionInfo structures, which consist of the AccessSessionId ,
UserCtxtName , and AccessSessionPropertyList . The last of these is a
PropertyList . Currently no specific property names and values have been defined
AccessSessionPropertyList , and so its use is provider specific.

The information returned by this operation can be used by the user to find out wh
other access sessions are currently established, and to perform some operations
these access sessions as required, and as indicated below.

If the AccessSessionList is unavailable, because the user's access sessions are
available, then the operation should raise a ListError exception with the
ListUnavailable error code.

3.5.1.2 end_access_sessions()

void end_access_sessions(
in SpecifiedAccessSession as,

) raises (
SpecifiedAccessSessionError

);

The end_access_sessions() allows the user to end one or more access session.
operation can end the current access session, a specified access session, or all
sessions (including the current one), through the use of the
SpecifiedAccessSession parameter.

If as is wrongly formatted, or provides an invalid access session id, then the
SpecifiedAccessSessionError exception should be raised.
TSAS v1.0 Access Control Segment October 2000 3-17

3

and

s

ons.

ices.
3.5.1.3 Scenarios

Figure 3-6 Access Control Segment Diagram

The end-user can invoke the retailer domain to list the running access sessions,
then end one or more of them (remote access sessions can be deleted as well).

As the retailers and service providers do access each other with the same acces
session mechanisms, the same list_access_sessions() and
end_access_sessions() operations can be used to terminate these access sessi

3.6 Service Discovery Segment

The service discovery segment defines the ServiceDiscovery interface.

The ServiceDiscovery interface allows a known user to get a list of subscribed
services, to discover new services, and to get supplementary information on serv

It provides the following operations:

Co nsum er Doma in

 :
Acc es sC ontro l

 :
Acc essC ontro l

 :
AccessControl

 :
SessionControl

 :
AccessControl

Re taile r Doma in Se rvice Provid er Doa min

list_access_ses sions ()

end_access_sessions()

end_sessions()

end_my_participations()

end_access_sessions()

end_access_sessions()
3-18 Telecommunications Service Access & Subscription October 2000

3

e
t the

ut
s a

is
 end-

o
ser.
nd

ice

nt
• discover_services() - lists all the services available via this retailer (and from th
service providers). The user can scope the list by supplying some properties tha
service should have, and a maximum number to return.

• get_service_info() - returns the service information for a particular service
(identified in the invocation by its service_id). Similar information
(ServicePropertyList) can be obtained with the list_end_user_services or
discover_services , but the get_service_info is targeting on a single service and
is independent from subscription.

3.6.1 ServiceDiscovery Interface

interface ServiceDiscovery: SegmentBase
{
};

TSASServiceDiscovery interface allows a known user to access information abo
its subscribed services, and to discover new services. This interface is returned a
result of the Core::Access::get_segment() operation establishing this segment.

3.6.1.1 discover_services()

void discover_services(
in DiscoverServiceProperties desired_properties,
in unsigned long how_many,
out ServiceList services

) raises (
PropertyError,
ListError

);

The discover_services() returns a list of the services available via this retailer.Th
operation is used to discover the services provided via the retailer, for use by the
user. It can be scoped by the desired_properties parameter (see MatchProperties
in Section 5.1.1, “Properties and Property Lists,” on page 5-1).

The retailer has the possibility to contact one or more service providers in order t
fulfill the user's request. This takes place in a way totally transparent to the end-u
The retailer performs one or more invocations on one or more service providers a
collects the information received from each service provider. This collected
information is merged and provided to the end-user as one piece of information.

The list of retailer services matching the desired_properties is returned in services.
This is a sequence of ServiceInfo structures which contain the ServiceId ,
UserServiceName (the end-users name for the service), and a sequence of serv
properties, DiscoverServiceProperties . Currently no specific property names and
values have been defined for DiscoverServiceProperties , and so its use is service
provider specific. Examples of DiscoverServiceProperties can be ‘free’ services,
‘comfort’ telephony services, ‘information retrieval’ services, ‘video on demand,’ ‘joi
document editing,’ ‘payment,’ ‘calling card reload,’ etc.
TSAS v1.0 Service Discovery Segment October 2000 3-19

3

 then

d
The how_many parameter defines the number of ServiceInfo structures to return in
the services parameter. The number of services shall not exceed that number.

If the desired_properties parameter is wrongly formatted, or provides an invalid
property name or value, the PropertyError exception should be raised. Property
names that are not recognized can be ignored if desired_properties requires that
only some, or none of the properties are matched.

If the services list is unavailable, because the retailer’s services are not available,
the operation should raise an ListError exception with the ListUnavailable error
code.

3.6.1.2 get_service_info()

void get_service_info (
 in ServiceId service_id,
 in SubscribedServiceProperties desired_properties,

out ServicePropertyList service_properties
) raises (

ServiceError,
PropertyError

);

The get_service_info() returns information on a specific service, identified by the
service_id . The desired_properties list can scope the information that is requeste
to be returned.

3.6.1.3 Scenarios

Figure 3-7 Service Discovery Segment Diagram

 :
Serv iceDiscovery

 :
ServiceD is covery

 :
Serv iceDiscovery

Consuner Domain Reatiler Domain Service Provider Doamins

discover_services()
discover_services()

get_service_info()
ge t_serv ice_ info()

discover_services()
3-20 Telecommunications Service Access & Subscription October 2000

3

ices

n these

 be
ended,

re

hich its
 a list
 This
The discover_services() is invoked by the end-user on the retailer. The retailer
subsequently invokes discover_services() on one or more service provider to fulfil
the end-user’s request. The retailer will return the compiled list of discovered serv
to the end-user.

3.7 Session Control Segment

The session control segment defines the SessionControl interface.

The SessionControl interface allows a known user to get a list of running service
sessions and to resume service sessions or participation in service sessions (whe
have been suspended).

It provides the following operations:

• list_service_sessions() - lists the service sessions of the user. The request can
scoped by the access session and session properties (for example, active, susp
service type).

• end_sessions() - allows the user to end one or more service sessions.

• end_my_participations() - allows the user to end his participation in one or mo
service sessions, without ending the service session.

• resume_session() - allows the user to resume a service session.

• resume_my_participation() - allows the user to resume his participation in a
service session.

3.7.1 SessionControl Interface

interface SessionControl: SegmentBase
{
};

The SessionControl interface allows a known user to list its running service
sessions, and resume the suspended service sessions or the service sessions in w
participation has been suspended. This interface also provides an operation to end
of service sessions, or to end the user's participation in a list of service sessions.
interface is returned as a result of the Core::Access::get_segment() operation
establishing this segment.

3.7.1.1 list_service_sessions()

void list_service_sessions (
in SpecifiedAccessSession sas,
in SessionSearchProperties desired_properties,
out SessionList sessions

) raises (
SpecifiedAccessSessionError,
PropertyError,
ListError
TSAS v1.0 Session Control Segment October 2000 3-21

3

he
 used.

 that

being

ssion

ces,
AS.

, then
);

The list_service_sessions() returns a SessionList (list of the service sessions)
which the end-user is involved in. This includes active and suspended sessions. T
sas parameter scopes the list of sessions by the access session in which they are
It can identify the current access session, a list of access sessions, or all access
sessions. A session is associated with an access session if it is being used within
access session, or it has been suspended (or participation suspended), and was
used within that access session when it was suspended.

The desired_properties parameter can be used to scope the list of sessions. It
identifies the properties that the sessions must match. It also defines whether a se
must match one, all or none of the properties (see MatchProperties in Section 5.1.1,
“Properties and Property Lists,” on page 5-1). The following property names and
values have been defined for SessionSearchProperties :

• name: “SessionState”

• value: SessionState

If a property in SessionSearchProperties has the name “SessionState,” then the
matching service session must have the same SessionState as given in the property
value.

• name: “UserSessionState ”

• value: UserSessionState

If a property in SessionSearchProperties has the name “UserSessionState,” then
the matching service session must have the same UserSessionState as given in the
property value.

Other provider specific properties can also be defined in desired_properties .

The list of sessions matching the desired_properties and the access session sas are
returned in sessions. This is a sequence of SessionInfo structures which define the
SessionId , and a series of provider specific information, such as information on
existing service session participants, references to service session control interfa
etc. This information is provider specific, and consequently out of the scope of TS

If sas is wrongly formatted, or provides an invalid access session id, then the
SpecifiedAccessSessionError exception should be raised.

If the desired_properties parameter is wrongly formatted, or provides an invalid
property name or value, the PropertyError exception should be raised. Property
names that are not recognized can be ignored if desired_properties requires that
only some, or none of the properties are matched.

If the sessions list is unavailable because the end-user's sessions are not known
the operation should raise a ListError exception with the ListUnavailable error code.

3.7.1.2 end_sessions()

void end_sessions (
3-22 Telecommunications Service Access & Subscription October 2000

3

d

 that
n
ession

d a
end
AS,

hin a
in SessionIdList session_id_list
) raises (

SessionError
);

The end_sessions() ends one or more service sessions, identified by
session_id_list . The SessionError exception is raised if there is an unrecognize
session_id in the list.

3.7.1.3 end_my_participations()

void end_my_participations (
in SessionIdList session_id_list

) raises (
SessionError

);

The end_my_participations() ends the user's participation in one or more service
session identified by session_id_list , without ending the service session. The
SessionError exception is raised if there is an unrecognized session_id in the list.

3.7.1.4 resume_session()

void resume_session (
in SessionId session_id,
in ApplicationInfo app,
out SessionInfo session_info

) raises (
SessionError,
ApplicationInfoError

);

The resume_session() resumes a service session. It is used on a service session
is suspended. The suspension and resuming operations are mainly used to obtai
service session mobility. The service session can be resumed within an access s
different from the one in which the service session was initially running, which
possibly involves a different terminal as well. As the operation required to suspen
service session involves service session mobility, the mechanism required to susp
the service session might be service specific, and is therefore not provided by TS
but should be defined on one of the service specific interfaces.

session_id - is the identifier of the session to be resumed.

The ApplicationInfo is a structure containing information on the application which
will be used to interact with the resumed service session. This application may be
different to the user’s original application that was used when the session was
suspended, because as was said above, the service session can be resumed wit
different access session using a different terminal and different applications. The
structure of ApplicationInfo was explained in Section 3.3.2.3,
“join_session_with_invitation(),” on page 3-9”.
TSAS v1.0 Session Control Segment October 2000 3-23

3

the
.

ve

s

s.

tion.
The returned SessionInfo is a structure that contains information that allows the
consumer domain to refer to this service session using other operations on this
interface. It also contains information for the usage part of the session, including
interface references to interact with the service session (service provider specific)

The exception SessionError is raised if session_id is invalid, or if the session
refuses to resume because of the user’s session state, or if the user does not ha
permission.

The exception ApplicationInfoError is raised if there are unknown or invalid value
for ApplicationInfo , or if the application is incompatible with the type of service
being resumed.

3.7.1.5 resume_my_participation()

void resume_my_participation (
 in SessionId session_id,
 in ApplicationInfo app,
 out SessionInfo session_info
) raises (
 SessionError,
 ApplicationInfoError
);

The resume_my_participation() resumes the end-user's participation in a service
session. It is used on a session that the end-user has previously suspended his
participation from. See above for more details on the suspend-resume mechanism

session_id - is the identifier of the service session to resume the user’s participa

app and the returned SessionInfo : same as above.

The exceptions SessionError and ApplicationInfoError: same as above.
3-24 Telecommunications Service Access & Subscription October 2000

3

to
lved

in one
e

by the
3.7.1.6 Scenarios

Figure 3-8 Session Control Segment Diagram

The list_service_sessions() , end_sessions() and end_my_participations() are
invoked by the end-user on its retailer. The retailer will forward these invocations
one or more service providers, depending on the number of service providers invo
with this request (the end-user can have more than one service session running
access session, and each of these service sessions can be with a different servic
provider).

The resume_session() and resume_my_participation() operations are invoked by
the end-user on its retailer for one single service session, and must be forwarded
retailer to the appropriate service provider, as illustrated.

 :
S es s ionC ont ro l

 :
S es sio nC on tro l

 :
S es s io nC ont ro l

l i st_ se rvi ce _ sessio ns()
l i st_ se rvi ce _ se ssio n s()

l ist _serv ic e_ se ssi o n s()

Co n su m e r Do m a in Re ta i l e r Do m a in P ro vi de r D om a in s

e n d _ se ssio n s()
en d_ se ssion s()

e n d _ sessio n s()

e n d _ m y_ p a rti c i p a ti o n s()
en d_ m y_ p a rti c ip at i on s()

e n d _ m y_ p a rti c i p a ti o n s()

re su m e _ se ssio n ()
re su m e _ se ssio n ()

res um e_m y _part ic ipa t ion ()

re su m e _ m y_ p a rti c i p a ti o n ()
TSAS v1.0 Session Control Segment October 2000 3-25

3

r (in
ser (for
 is only

oes
 the

te or
nt.

lished.

by the
3.8 Access Session Information Segment

This segment is defined to allow a provider (in the general sense) to inform a use
the general sense) of changes of state in other access sessions with the same u
example, access sessions with the same user that are created or deleted). The user
informed about access sessions it is involved in.

Since this segment only provides simple information in a unidirectional fashion, it d
not define any interface but rather defines structures that can be used with either
CORBA CosNotification service or the CORBA CosEvent service to propagate the
information. It is still provided as a separate segment in order to be able to activa
deactivate the access session information by activating or deactivating the segme

The structures that are defined and their respective usage are listed below.

3.8.1 Access Session Information structures

3.8.1.1 NewAccessSessionInfo

struct NewAccessSessionInfo {
AccessSessionInfo access_session;

};

This structure is used to inform the user that a new access session has been estab
The NewAccessSessionInfo contains the AccessSessionInfo structure that
contains the following information:

• The AccessSessionId of the new access session.

• The corresponding UserCtxtName so that the user can identify which domain the
access session has been established from.

• The AccessSessionPropertyList that is a provider specific property list that can
be used to provide more information on the access session.

3.8.1.2 EndAccessSessionInfo

struct EndAccessSessionInfo {
AccessSessionId as_id;

};

This structure is used to inform the user that an access session has been ended (
user). The AccessSessionId identifies which access session has ended.

3.8.1.3 CancelAccessSessionInfo

struct CancelAccessSessionInfo {
AccessSessionId as_id;

};
3-26 Telecommunications Service Access & Subscription October 2000

3

 by the
.

by the

of
rough
s users

e
 the
 not
ession

oes
 the

te or
nt.
This structure is used to inform the user that an access session has been cancelled
provider. The AccessSessionId identifies which access session has been cancelled
This information differs from the EndAccessSessionInfo in that an access session is
cancelled when the provider invokes the end_access() operation on the Access
interface of the user, while a normal access session ending is done upon invocation
user of the end_access() operation on the Access interface of the provider.

3.8.1.4 NewServicesInfo

struct NewUserServicesInfo {
ServiceList services;

};

This structure is used to inform the user that some new services are immediately
available to this user (or subscriber). The ServiceList can contains identification of
services to which the user has just been subscribed, as well as services that are
(momentarily) offered for free (for which no subscription is required). In the case
newly subscribed services, the user may have recently subscribed to the services th
a service in this or another access session, or a subscriber may have subscribed hi
to a new service. The ServiceList is a sequence of ServiceInfo structures. The
ServiceInfo structure contains the ServiceId , the UserServiceName , and a
ServicePropertyList .

3.9 Service Session Information Segment

This segment allows a service provider to inform an end-user of changes of state in
service sessions in which the end-user is involved. Information will be provided
whenever a change to a service session affects the end-user, for example, a servic
session is suspended, but not when the change does not affect the end-user. Also,
information can be provided for all the service sessions involving the end-user, and
just those associated with this access session. This information helps the access s
update the knowledge of the end-user involvement in service sessions.

Since this segment only provides simple information in a unidirectional fashion, it d
not define any interface but rather defines structures that can be used with either
CORBA CosNotification service or the CORBA CosEvent service to propagate the
information. It is still provided as a separate segment in order to be able to activa
deactivate the service session information by activating or deactivating the segme

The structures that are defined and their respective usage are listed below.

3.9.1 Service Session Information Structures

3.9.1.1 NewSessionInfo

struct NewSessionInfo {
SessionInfo session;

};
TSAS v1.0 Service Session Information Segment October 2000 3-27

3

tarted.

d. The

n has

ended.

n has

 been
n
ession,
This structure is used to inform the end-user that a new service session has been s
The SessionInfo contains information about the new service session that has been
started.

3.9.1.2 EndSessionInfo

struct EndSessionInfo {
SessionId session_id;

};

This structure is used to inform the end-user that a service session has been ende
SessionId identifies the ended service session.

3.9.1.3 EndMyParticipationInfo

struct EndMyParticipationInfo {
SessionId session_id;

};

This structure is used to inform the end-user that its participation to a service sessio
been ended. The SessionId identifies the service session.

3.9.1.4 SuspendSessionInfo

struct SuspendSessionInfo {
SessionId session_id;

};

This structure is used to inform the end-user that a service session has been susp
The SessionId identifies the suspended service session.

3.9.1.5 SuspendMyParticipationInfo

struct SuspendMyParticipationInfo {
SessionId session_id;

};

This structure is used to inform the end-user that its participation to a service sessio
been suspended. The SessionId identifies the service session.

3.9.1.6 ResumeSessionInfo

struct ResumeSessionInfo {
SessionInfo session;

};

This structure is used to inform the end-user that a suspended service session has
resumed. The SessionInfo contains information about the suspended service sessio
that has been resumed. The end-user may or may not have re-joined the service s
depending on whether it or another end-user resumed the service session.
3-28 Telecommunications Service Access & Subscription October 2000

3

he
ined.
3.9.1.7 ResumeMyParticipationInfo

struct ResumeMyParticipationInfo {
SessionInfo session;

};

This structure is used to inform the end-user that its (suspended) participation to a
service session has been resumed. The SessionInfo contains information about the
service session to which the end-user’s participation has been resumed.

3.9.1.8 JoinSessionInfo

struct JoinSessionInfo {
SessionInfo session;

};

This structure is used to inform the end-user that it has joined a service session. T
SessionInfo contains information about the service session that the end-user has jo
TSAS v1.0 Service Session Information Segment October 2000 3-29

3

3-30 Telecommunications Service Access & Subscription October 2000

Subscription Segments 4
rvice

ries
ss

nd-

Contents

This chapter contains the following sections.

4.1 Overview

As described previously in Chapter 3 the retailer mediates services on behalf of se
providers to its end-users. The subscription segments offered by the retailer are
structured according to the functionality they provide, (that is, management of ent
and query interfaces), and for which roles (see section Section 3.2, “Service Acce
Segment Interfaces,” on page 3-3) they are used, as depicted in Figure 4-1. The
subscription segments define interfaces for the consumer domain to be used by e
users and subscribers, and for the service provider domain to be used by service
providers.

Section Title Page

“Overview” 4-1

“Information Model” 4-3

“Subscription Segments” 4-10

“Scenario Description” 4-11

“Subscriber Administration” 4-12

“Service ProviderAdministration” 4-15

“End-user Administration” 4-17

“End-user Customization” 4-24
Telecommunications Service Access & Subscription October 2000 4-1

4

ween
 the
r have

 an
ated
ment

-

ups

f
n.

d user

onal
Subscription manages information about services and contractual relationships bet
end-user/subscriber and retailer and between service provider and retailer. Before
subscription segments can be used, the end-user/subscriber or the service provide
to access the retailer by establishing an access session as defined in Chapter 2.

All subscription segments described in this chapter provide a framework for the
management of subscription information. The retailer can use them to either build
on-line subscription service or use the interfaces to administer its subscription rel
information. In general the management tasks for subscription encompass manage
of:

• subscriber related information concerning create, modify and delete subscriber
entries.

• service contracts to create, modify or delete service contracts and assign or de
assign service contracts to users.

• user related information concerning the administration of user entries, user gro
(subscription assignment groups) and service profiles.

• service templates to deploy, modify or withdraw a service offered by a service
provider.

The subscriber administration segment provides interfaces for the management o
subscriber related information and for queries related to the subscriber informatio
This segment is used by the subscriber.

With the end-user administration segment the subscriber can manage its users an
groups, called subscription assignment groups.

The service provider administration segment provides the management of service
templates and is used by the service provider.

The end-user customization segment is used by the end-user to manage its pers
preferences to be used for customization.

All subscription segments can only be obtained by using the get_segment operation,
defined in the core segment (see Chapter 2).
4-2 Telecommunications Service Access & Subscription October 2000

4

t are

ser
.
ions

of
ng
for
ct to
s.

 itself

t the

e
. The
o that
at is

eral,

e

fined

Figure 4-1 subscription Segments

4.2 Information Model

The information model describes the relationship between information objects tha
relevant for the retailer to support subscription segments.

Subscribers play an important role by representing organizations or a single end-u
which is going to sign service contracts for accessing services provided by a retailer
Signing a service contract gives the permission to use a service under the condit
described in the service profile.

If the subscriber represents an organization, it can also manage its end-users by
creating end-user information objects and building groups of these users, called
subscription assignment groups. The subscriber will authorize its end-users, groups
users or itself to access services for which it has signed the contract by associati
service profiles with them. Each service contract contains a default service profile
the subscribed service. The subscriber can create new service profiles with respe
its contract and associate these service profiles with its end-users and user group

The services a retailer provides to the end-users can be services the retailer offers
or services the retailer offers on behalf of service providers. In the latter case, the
service provider also signs a contract with the retailer and registers its services a
retailer domain by using the service provider administration segments.

A service type defines the generic classification or category of a service that will b
supported by a retailer. The services are deployed against a particular service type
service types are created at the retailer before a particular service corresponding t
type can be deployed by a service provider. The management of service types, th
the creation, modification and deletion of service types, is retailer specific. In gen
a retailer (administrator) would decide the types of services it wants to host in its
domain. The attributes of the service types are defined by properties, which can b
different with respect to each of the different service types. The properties are de

End-User

Subscriber

Consumer
Domain

Service
Provider

Service
Provider
Domain

Retailer

Retailer
Domain

Subscriber/
End-User
Admin

End-User
Customi-

zation

Service
Provider
AdminEnd-User

Subscriber

Consumer
Domain

End-User

Subscriber

Consumer
Domain

Service
Provider

Service
Provider
Domain

Service
Provider

Service
Provider
Domain

Retailer

Retailer
Domain

Retailer

Retailer
Domain

Retailer

Retailer
Domain

Subscriber/
End-User
Admin

End-User
Customi-

zation

Service
Provider
Admin
TSAS v1.0 Information Model October 2000 4-3

4

ent
ice,
e

r the

ed by

n a
The

nt

tion,

The
llows.
as a list of property name-value pairs. Each attribute has a mode which specifies
whether the attribute is mandatory, read-only or normal as defined by Cos trading
service.

The service template contains information about the service attributes, the environm
settings, for example configuration information and references to access the serv
and application information such as graphical user interface capabilities, languag
support.

The end-user service profile is related to service specifics which offer the end-use
ability to change individual attributes of the service (for example, to set personal
preferences). The end-user service profile is opaque for the retailer and only pass
to the service provider, which interprets it.

The service template conceives the basis for any contractual relationship betwee
retailer and a subscriber/end-user and between a retailer and a service provider.
service contract itself restricts the range for service settings defined in the service
template. The service settings again can be restricted to a subscription assignme
group of one subscriber who defines the individual rights for each user or for the
subscription assignment groups by setting attributes in the service profile. In addi
a user can specify individual settings within the range of contractual settings
predefined by the subscriber in customizable user profiles.

Figure 4-2 illustrates all relevant information objects using a UML class diagram.
detailed description of these objects and attributes can be found in the text that fo
4-4 Telecommunications Service Access & Subscription October 2000

4

s of
Figure 4-2 Subscription Information Model

4.2.1 Service Provider

struct ServiceProvider{
 ProviderId provider_id;
 PropertyList provider_properties;
};

The service provider can deploy new service templates of retailer available service
types. The service provider object contains a service provider_id and service
provider_properties which may contain the address, bank account and other detail
the service provider.

4.2.2 Subscriber

struct Subscriber {
 SubscriberId subscriber_id;
 PropertyList subscriber_properties;
};

A subscriber can subscribe to a number of services by signing a service contract. The
subscriber object contains a subscriber_id and subscriber_properties.

subscr ibe

au thorize

group m ember

SAG

id : string
properties : Property Lis t

0. .*0. .* 0. .*0. .*

PropList

name : s tring
ty pe : property Ty pe
mode : property Mode

Subscriber

properties : Property Lis t

1

0 .. *

1

0 .. *

Serv ice Prof ile

serv ice_ prof il e_i d : String
serv ice_ properties : Propert y List

0. .*

0. .*

0. .*

0. .*

Serv iceProv ider

prov ider_id : s tring
prov ider_propert ies : Property List

Serv ice Ty pe

serv ice_ty pe_name : String

1

1. .*

1

1. .*

Serv iceContract

cont ract_propert ies : Property List
0. .* 0. .*0. .* 0. .*

1

0. .*

1

0. .*

EndUser

security _propert ies : Property List
user_properties : Property Lis t

Serv ice Template

serv ice_template_id : String
serv ice-template_properties : Property Lis t
serv ice_properties : Property List
user_application_properties : Property Lis t

0 .. *1 0 .. *1

10. .* 10. .*

0. .*

1

0. .*

1

EndUserServ ice Prof ile

properties : Property Lis t
st ring : Serv iceTemplateID

0. .*1 0. .*1

1

0. .*

1

0. .*
TSAS v1.0 Information Model October 2000 4-5

4

 The
y

e
rvice
f the

e
vice
The following table is a non exhaustive example of valuable subscriber properties.
example uses property types as defined in the COS Trading Service. The propert
mode specifies whether the property is mandatory, read-only, or normal.

4.2.3 Service Contract

struct ServiceContract{
ServiceContractId service_contract_id;
ServiceProfile service_profile;
PropertyList contract_properties;

};

For each subscription a service contract exists. The service contract defines the servic
characteristics for a subscriber and the condition for accessing a service. The se
contract properties shall be defined by the retailer. As defined in the access part o
core segment (see Chapter 2) the operation sign_service_agreement requires an
end-users signature for starting a service. An attribute of the contract_properties
can be used for the agreement text.

The service contract is a specialization of the service profile. Thus it inherits all
properties of the service profile which specifies the service characteristics. The
service_contract_id represents a mapping of the service_profile_id (because
inheritance of structures is not possible in IDL).

The service contract, which is associated with a service template, restricts the usage of
a service at subscription time by setting the service properties in the contract. Th
agreement text indicates that the signature for a service is needed before the ser
can be used.

4.2.4 Service template

The service template defines three kinds of properties:

Table 4-1 Subscriber Properties

property
type name type mode

first name string normal

last name string normal

orgname string normal

city string normal

street string normal

postal code string normal

email string normal

payment string normal
4-6 Telecommunications Service Access & Subscription October 2000

4

rties.

ablish

perty
1. service template properties

2. service properties

3. end-user application properties

struct ServiceTemplate{ServiceTemplateId service_template_id;
ServiceTypeName service_type;
ProviderId provider_id;
PropertyList service_template_properties;
PropertyList service_properties;
PropertyList user_application_properties;

};

The service_type defines the category of services a retailer offers.

The provider_id identifies the service provider.

Table 4-2 illustrates a non exhaustive example of valuable service template prope
The example properties remote_provider_id ,
remote_initial_agent_naming_context and remote_url are attributes that can be
used to provide a reference to access the service provider domain in order to est
an access as defined in Chapter 2.

The example uses property types as defined in the COS Trading Service. The pro
mode specifies whether the property is mandatory, read-only or normal.

Table 4-2 Service Template Properties

property
structure name value mode

no_start bool normal

depends_on string normal

config_requirements string normal

autostart bool normal

remote_provider_ID string normal

remote_inital_agent_name_context string normal

remote_service_id ulong normal

remote_userID string normal

remote_password string normal

remote_URL string normal
TSAS v1.0 Information Model October 2000 4-7

4

able

istics

el

er

ted
e
The user_application_properties specify the capabilities of the end-user
application. A non exhaustive example of user application properties is given in T
4-3.

4.2.5 Subscription Assignment Group

A subscriber may not want to grant all of its end-users the same service character
and usage permissions. In this case he can group them into a Subscription Assignment
Group (SAG) and than assign service profiles to each group. The subscriber can also
assign more than one service profile for an end-user, for example an internet trav
booking service, where each entry page for flight booking, hotel booking or car
reservation can be expressed by a separate service profile. Subscription Assignment
Groups (SAG) are associated with the subscriber.

 struct Sag{
SagId sag_id;
PropertyList properties;

};

The sag_id is a string defined by the subscriber to identify its SAGs. The subscrib
can describe the SAG using the properties. The sag_id together with the
subscriber_id is unique in the retailer system.

4.2.6 Service Profile

The service profile specifies the service settings for the usage of that service. It
restricts the service contract settings for a specific end user or SAG. It is associa
with the service template, which contains all possible capabilities for service usag
defined by the service provider.

struct ServiceProfile{
ServiceProfileId service_profile_id;
ServiceTypeName service_type;
ServiceTemplateId service_template_id;
PropertyList service_properties;

};

Table 4-3 User Application Properties

property
structure name value mode

default_session_context string mandatory

browser bool normal

ORB string normal

java_lib string normal

URL string normal

os string normal
4-8 Telecommunications Service Access & Subscription October 2000

4

e
rvice.

gs
vice
art of

d
e

ltiple
rties

ice
-user.
The serviceType is the corresponding classification given by the retailer. The servic
template_id is used as a reference to the service template for the access of a se

The service_properties specify the capabilities of the service.

4.2.7 End-user

An end-user will be authorized by a subscriber for the access of a service. The end-
user entry contains an ID, security_properties and user_properties describing the end-
user relevant information for subscription. Each end-user is part of at least one SAG,
which can contain a single user or a group of users.

struct EndUser{
 UserID string;
 PropertyList security_properties;
 PropertyList user_properties;
 };

The security properties define the kind of authentication a user has, for example
password, credential or biometric information. Each end-user can define in the
user_properties the specific user data such as address, phone number, email..

4.2.8 End-user service profile

The end-user service profile defines the a range of end-user specific possible settin
for a customized service usage. The end-user service profile is related to the ser
template, which defines the possible properties for end-user specific settings as p
the service properties.

struct EndUserServiceProfile {
 ServiceTemplateId service_template_id;
 PropertyList end_user_service_properties;
 };

The end_user_service_properties are service dependent and have to be provide
by the service provider. The end-user can set its preferences as predefined by th
service template which contains the possible range of end-user preferences for a
service. The service_template_id identifies the service_template .

4.2.9 Service type

The service type describes the service category (for example, a communication
service). For each service type one service template exists, but there might be mu
service templates for one service type. The service type is described using prope
similar to those defined in COS Trading service. The properties exist for the serv
specific characteristics as well as for the preferences which can be set by an end
TSAS v1.0 Information Model October 2000 4-9

4

ler

orted
ion.

are

ng

les
4.3 Subscription Segments

4.3.1 Overview

The subscription interfaces are only available after successful access to the retai
from either the consumer side to manage subscribers and end-users or from the
provider side to manage service templates. If the subscription segments are supp
by the retailer, the access of certain services will be controlled by using subscript

The segments available for the subscription process are:

Subscriber Administration Segment

It allows subscribers to manage their subscription. Four interfaces are provided:

1. SubscriberMgmt - this interface is used by the subscriber to create, modify or
delete subscriber entries.

2. SubscriberInfoQuery - this interface is used to retrieve subscriber related
information.

3. ServiceContractManagement - this interface allows subscribers to create
modify and delete service contracts.

4. ServiceContractInfoQuery - this interface allows subscribers to query
information about its contracts and to list its subscribed services.

Service Provider Administration Segment

It allows service providers to provide new services in the retailer domain. Two
interfaces are provided:

1. ServiceTemplateMgmt allows a service provider to deploy, modify, or withdraw
a service in the retailer domain.

2. ServiceTemplateInfoQuery allows service providers to list all its deployed
service templates or get a specific deployed service template.

End-user Administration

• This allows a subscriber to manage its end-users and groups. Four interfaces
provided:

1. SagMgmt - this interface is used for the management of end-user groups.

2. SagInfoQuery - this interface allows subscribers to get information about existi
subscription assignment groups and users.

3. ServiceProfileMgmt - this interface allows subscribers to manage service profi
and assign these to subscription assignment groups.

4. ServiceProfileInfoQuery - this interface allows subscribers to retrieve
information about service profiles and assignment of profiles to subscription
assignment groups.
4-10 Telecommunications Service Access & Subscription October 2000

4

ings.

ser

s

4-3
re

ervice
 the
e
End-user Customization Segment

This allows end-users to customize the service within the range of predefined sett
Two interfaces are defined:

1. UserProfileMgmt - this allows an end-user to modify the user profiles and the u
service profile settings.

2. UserProfileInfoQuery - this allows an end-user to request information about it
user profile.

4.4 Scenario Description

To demonstrate the usage of the interfaces the UML sequence diagram in Figure
provides an example set of interfaces related to roles for which the UML actors a
used.

Figure 4-3 Subscription Scenario

1. Prior to any service usage the retailer needs services that can be used. The s
provider registers a new instance of a service template to the retailer by using
deploy operation. The service provider provides together with its provider Id th

 : SubscriberMgmt

 : Subscriber

 : SAGMgmt : ServiceProfileMgmt :
UserDescriptionMgmt

 : ServiceTemplateMgmt

 : Service Provider

 : ServiceContractMgmt

6: create_sag(in SubscriberId, in SAG, in UserIdList)

7: create_service_profile(in SubscriberId, in ServiceProfileId, in ServiceProfile)

8: assign(in SubscriberId, in SAGId, in ServiceProfileId)

1: deploy_service(in ProviderId, in ServiceTemplate)

5: create_user(in SubscriberId, in UserDescription)

repeat for
each user

2: create_subscriber(in Subscriber)

3: create_service_contract(in SubscriberId, in ServiceContract)

assign profile
(service or contract)
to subscriber

repeat for each
service profile

 : End User

9: modify_user_service_profile(in SubscriberId, in UserId, in ServiceTemplateId, in PropertyList)

4: assign(in ubscriberId, in SAGId, in ServiceProfileId)
TSAS v1.0 Scenario Description October 2000 4-11

4

nd-

ation
dify

h the
n is

s to
er

 an

a user

ties of
 has

ervice

n use

he
riber.

service template Id which must be unique in the retailer domain. The service
provider sets the service properties, which are provided by the retailer to the e
user.

2. A subscriber wants to subscribe to a retailer by using the subscriber administr
segment. A new entry will be created for the subscriber. The subscriber can mo
or delete its entries or query information about available entries by using the
particular operations.

3. After having an account in the system the subscriber sets up a new contract wit
retailer and the required settings for the service. Most of the contract informatio
defined by a property list, which is defined by retailers.

4. If the subscriber is an end-user it assigns a service profile to define the setting
use a service. The default service profile is defined by the service contract. Aft
that the service can be used.

1 to 4 are the necessary steps for simple subscription, where a subscriber is also
end-user. The next steps describe the management for end-users.

5. The subscriber creates for each end-user an entry using its subscriber id and
id. The subscriber has to create a new entry for each of its users.

6. The subscriber builds a subscription assignment group and can set the proper
that group. The subscriber adds its users (list of user Ids) to the SAG which he
previously created.

7. The subscriber defines the restrictions for its end-users to access and use a s
by setting chosen service properties in the service profile.

8. The subscriber assigns the service profiles to SAGs. After that the end-users ca
the service.

9. The end-user can now edit its user profile and set its preferences.

4.5 Subscriber Administration

Subscriber administration consists of the management of subscriber entries and t
management of service contracts. Subscriber administration is done by the subsc

4.5.1 Subscriber Management

The interface SubscriberMgmt is used to define new subscriber entries, to modify
and to delete them.

4.5.1.1 interface SubscriberMgmt

void
create_subscriber(

in Subscriber subscriber)
raises (
4-12 Telecommunications Service Access & Subscription October 2000

4

s

o
SubscriptionError
);

The operation create_subscriber allows a subscriber to create a subscriber entry.
The subscriber structure contains subscriber_id and subscriber_properties . The
id is given by the subscriber. If the subscriber_id already exists, the operation return
an AlreadyExists exception and the subscriber has to try again.

void
modify_subscriber(

in Subscriber subscriber)
raises (

SubscriptionError
);

The operation modify_subscriber modifies subscriber entries, for example a new
bank account or a new contact person for billing. The subscriber_id is used for
identification in the retailer domain. In the case of an invalid subscriber_id , the
operation returns an InvalidSubscriber exception.

void
delete_subscriber(

in SubscriberId subscriberid)
raises (

SubscriptionError
);

The delete_subscriber operation removes a subscriber from the system. The
subscriber_id is used for identification in the retailer domain. In the case of an
invalid subscriber id, the operation returns an InvalidSubscriber exception.

The SubscriberInfoQuery interface allows information about existing subscriber t
be queried.

4.5.1.2 interface SubscriberInfoQuery

void get_subscriber (
in SubscriberId subscriber_id,

 out Subscriber subscriber)
raises (

SubscriptionError
);

The get_subscriber operation returns the information about a subscriber. The
subscriber_id is used for the identification in the retailer domain. In case of an
invalid subscriber id, the operation returns an InvalidSubscriber exception.
TSAS v1.0 Subscriber Administration October 2000 4-13

4

m is

4.5.2 Service Contract Management

The ability to create new service contracts, modify these contracts and delete the
given by the ServiceContractMgmt interface.

4.5.2.1 interface ServiceContractMgmt

void
create_service_contract(

in SubscriberId subscriber_id,
in ServiceContract service_contract)

raises (
SubscriptionError

);

The operation create_service_contract is used by the subscriber to provide the
contract relevant information. The subscriber_id is unique in the retailer domain.
The service contract is a structure specifying the contract_properties and a default
service profile. Exceptions are InvalidSubscriber, InvalidContract.

void
modify_service_contract(

in SubscriberId subscriber_id,
in ServiceContract service_contract)

raises (
SubscriptionError

);

The operation modify_service_contract is used to modify an existing service
contract. The subscriber_id identifies the subscriber in the retailer domain and the
modifications to the contract will be provided by the subscriber. Exceptions are
InvalidSubscriber, InvalidContract.

void
delete_service_contract(

in SubscriberId subscriber_id,
in ServiceContractId service_contract_id)

raises (
Subscription Error

);

The operation delete_service_contract removes an existing service contract. The
subscriber_id identifies the subscriber in the retailer domain, service_contract_id
identifies the contract. Exceptions are InvalidSubscriber, InvalidContract.

Information on existing service contracts is provided at the
ServiceContractInfoQuery interface.
4-14 Telecommunications Service Access & Subscription October 2000

4

nage
ain.

s,

f a

er.

e

must

f
4.5.2.2 interface ServiceContractInfoQuery

void get_service_contract(
in SubscriberId subscriber_id,
in ServiceContractId service_contract_id,

 out ServiceContract service_contract)
raises (

SubscriptionError
);

The Operation get_service_contract allows information about a single service
contract to be queried and the contract itself to be returned. The subscriber_id
together with the contract_id is unique in the retailer domain. Exceptions are
InvalidSubscriber, InvalidContract.

void list_subscribed_services(
in SubscriberId subscriber_id,

 out ServiceProfileIdList service_profile_id_list)
raises (

SubscriptionError
);

The operation list_subscribed_services provides a list of all services to which
the subscriber has subscribed by a contract. The subscriber_id identifies the
subscriber in the retailer domain. The operation returns a list of subscribed
service_profile_ids . Exception is InvalidSubscriber.

4.6 Service ProviderAdministration

The service provider administration supports interfaces to service providers to ma
the service templates the service provider is going to offer through the retailer dom

The service template management can be used in order to introduce new service
modify the properties of existing services or delete offered services. The services
defined here are actual service offers; for example a video conferencing service o
non-monopolistic telecom operator. The interfaces are used by the service provid

The service providers can only register those services which are supported by th
retailer domain. The retailer itself, in the role of the retailer administrator, decides
which kind of services types it supports. Before a service template of a service
provider can be registered in the retailer domain, the corresponding service type
be supported. How this is done by the retailer administrator is out of scope of this
specification.

At the ServiceTemplateMgmt interface the registration, modification and deletion o
service templates can be done.

4.6.1 interface ServiceTemplateMgmt

void deploy_service(
TSAS v1.0 Service ProviderAdministration October 2000 4-15

4

e

ain.
etes

ain

rvice
own
iler.

ce
 the
in ProviderId provider_id,
in ServiceTemplate service_template,

 out ServiceTemplateId service_template_id)
raises (

SubscriptionError
);

The operation deploy_service allows the service provider to register a new instanc
of a service template. The operation returns the service_template_id , which is used
in the retailer domain to identify the service template. The service provider_id is
given by the service provider and used to identify the provider in the retailer dom
The service template is given by the service provider. The service provider compl
the provided service_properties and user_service_properties , the service_
template_properties that are needed for the retailer to access the provider dom
to start a service and the possible end-user_application_properties , which define
the conditions for the user_application in the consumer domain. Exceptions are
InvalidProvider, NotSupportedServiceType and InvalidPropertyList.

How the retailer and service provider exchange the type definitions used in the se
template is out of scope of this specification. However, how the retailer defines its
service template that is offered as a service to the end-user is internal to the reta

void
modify_service(

in ProviderId provider_id,
in ServiceTemplate service_template)

raises (
SubscriptionError

);

The operation modify_service allows a service provider to modify existing service
templates (service offers). The service provider_id and the service_template_id of
the service_template struct are used to identify in the retailer domain which servi
should be modified. The service capabilities are defined by the service provider in
service _properties . Exceptions are InvalidProvider and InvalidPropertyList.

void
withdraw_service(

in ProviderId provider_id,
in ServiceTemplateId service_template_id)

raises (
SubscriptionError

);

The operation withdraw allows a service provider to delete an existing service
template. The service provider_id and the service_template_id are used to identify
in the retailer domain which service should be removed. Exceptions are
InvalidProvider and InvalidServiceTemplateId.

Information about service templates can be obtained on the
ServiceTemplateInfoQuery interface.
4-16 Telecommunications Service Access & Subscription October 2000

4

he

tion
 used

r
he
4.6.1.1 interface ServiceTemplateInfoQuery

void list_service_templates(
in ProviderId provider_id,

 out ServiceTemplateIdList service_template_id_llst)
raises (

SubscriptionError
);

The operation list returns a list of all service templates for a service provider. The
service provider_id is used to identify the service provider in the retailer domain. T
operation returns a list of service template ids. Exception is raised for
InvalidProvider.

void get_service_template(
in ProviderId provider_id,
in ServiceTemplateId service_template-id,

 out ServiceTemplate service_template)
raises (

SubscriptionError
);

The operation returns the structure of a single service template. The service
provider_id and the service_template_id are used to identify which service
template should be returned. Exceptions are InvalidServiceProvider and
InvalidServiceTemplateId.

4.7 End-user Administration

The end-user administration interface is intended for situations where an organiza
wants to allow several end-users to be registered with a retailer. The interfaces are
by the subscriber, who manages the end-users.

When a registered subscriber wants to provide access to a subscribed service fo
several end-users in the name of its organization, then it has to register them in t
retailer domain.

The main task of the end-user administration is to:

• register, modify and delete user entries (User Management),

• management of user groups (SAG Management),

• management of service profiles which are defined for all subscribed services
(Service profile Management) and to assign / de-assign the service profiles.

4.7.1 User and SAG Management

The SAGMgmt interface provides operations to administrate the SAGs of the
subscriber.
TSAS v1.0 End-user Administration October 2000 4-17

4

new

n.
4.7.1.1 interface SagMgmt

void
create_sag (

in SubscriberId subscriber_id,
in Sag sag,
in UserIdList user_ids)

raises (
SubscriptionError

);

For the administration of SAGs the subscriber can use this operation to create a
SAG and to add end-users (which have been created by create_user). The
subscriber_id is used for the identification of the subscriber in the retailer domai
The list of user_ids is given by the subscriber. Exceptions are invalidSubscriber,
InvalidSag, or InvalidUser.

void
modify_sag (

in SubscriberId subscriber_id,
in Sag sag)

raises (
InvalidSubscriber,
InvalidSag

);

The operation modify_sag allows a subscriber to modify an existing SAG. The
subscriber_id is used in the retailer domain to identify which SAG should be
modified. Exceptions are InvalidSubscriber and InvalidSag.

void
delete_sag (

in SubscriberId subscriber_id,
in SagId sag_id)

raises (
SubscriptionError

);

The operation delete_sag allows a subscriber to delete an existing SAG. The
subscriber_id and sag_id are used in the retailer domain to identify which SAG
should be removed. Exceptions are InvalidSubscriber and InvalidSag.

void
create_user(

in SubscriberId subscriber_id,
in EndUser end_user)

raises (
SubscriptionError

);
4-18 Telecommunications Service Access & Subscription October 2000

4

r,
-user

ved.

The operation create_user creates a new user. The operation is used by the
subscriber. The subscriber _id together with the user _id from the end_user
structure are unique in the retailer domain. The first entry for an end-user in end_user
is given by the subscriber, the security properties are as well set by the subscribe
whereby the user properties can be defined by the end-user itself by using the end
customization segment. Exceptions are InvalidSubscriber and InvalidUser.

void
modify_user(

in SubscriberId subscriber_id,
in EndUser end_user)

raises (
SubscriptionError

);

The operation modify_user modifies information for an existing end-user. The
operation is used by the subscriber to modify an user entry. The subscriber_id and
the user_id identify for which end-user the modification should be performed.
Exceptions are InvalidSubscriber and InvalidUser.

void
delete_user(

in SubscriberId subscriber_id,
in EndUser end_user)

raises (
SubscriptionError

);

The operations delete_user deletes an existing user. The subscriber_id and the
user_id are used to in the retailer domain to identify the user that should be remo
Exceptions are InvalidSubscriber and InvalidUser.

void
add_sag_users(

in SubscriberId subscriber_id,
in SagId sag_id,
in UserIdList user_ids)

raises (
SubscriptionError

);

A subscriber can add users to specific SAGs by using the operation add_sag_users .
Before the subscriber can do that, it must have already created the users with the
operation create user. The subscriber can use a list with user_ids to add them to the
subscription assignment group. Exceptions are InvalidSubscriber, InvalidSag and
InvalidUser.

void
remove_sag_users(

in SubscriberId subscriber_id,
in SagId sag_id,
TSAS v1.0 End-user Administration October 2000 4-19

4

G.

er.

in UserIdList user_ids)
raises (

SubscriptionError
);

The operation remove_sag_users removes a single user or a list of users from a
SAG of a subscriber. Subscriber_id and user_id are used to identify in the retailer
domain which users should be removed. Exceptions are InvalidSubscriber,
InvalidSag, and InvalidUser.

SAGInfoQuery interface is provided to retrieve information about existing SAGs,
users and their assignment to SAGs.

4.7.1.2 interface SAGInfoQuery

void list_sags(
in SubscriberId subscriber_id,

 out SagIdList sag_id_list)
raises (

SubscriptionError
);

The operation list_sags allows a subscriber to get a list of already created sag_ids .
The subscriber_id is used in the retailer domain to identify the subscriber. The
exception InalidSubscriber can be raised.

 void get_sag(
in SubscriberId subscriber_id,
in SagId sag_id,

 out Sag sag)
raises (

SubscriptionError
);

The operation get_sag allows a subscriber to query information about a single SA
It returns the sag structure containing sag_id and properties. Subscribe_id and
sag_id are used to identify which SAG should be provided to the subscriber.
Exceptions are InvalidSubscribe and InvalidSag.

void get_user(
in SubscriberId subscriber_id,
in UserId user_id,

 out EndUser end_user)
raises (

SubscriptionError
);

The operation get_user allows a subscriber to query information about a single us
The information about a user contained in the struct EndUser is returned. The
subscriber_id and user_id must be unique in the retailer domain. Exceptions are
InvalidSubscriber and InvalidUser.
4-20 Telecommunications Service Access & Subscription October 2000

4

d the
AGs

ice
nd on
. The
void list_sag_users(
in SubscriberId subscriber_id,
in SagId sag_id,

 out UserIdList user_id_list)
raises (

SubscriptionError
);

The operation list_sag_users allows a subscriber to get a list of all users_ids for a
single SAG. The Subscriber_id and sag_id are used in the retailer domain for
identification of the SAG. Exceptions are InvalidSubsciber and InvalidUser.

void list_users(
in SubscriberId subscriber_id,

 out UserIdList user_id_list)
raises (

InvalidSubscriber
);

The operation list_users returns a list of all users_ids of one subscriber. The
subscriber_id is used to identify the subscriber in the retailer domain.

4.7.2 Service Profile Management

The management of service profiles that are defined for all subscribed services, an
permission for users to use a subscribed service by assigning service profiles to S
can be done at the ServiceProfileMgmt interface.

4.7.2.1 interface ServiceProfileMgmt

void
create_service_profile(

in SubscriberId subscriber_id,
in ServiceProfileId service_profile_id,
in ServiceProfile service_profile)

raises (
SubscriptionError

);

The operation create_service_profile allows a subscriber to create a new service
profile. The profile_id is given by the subscriber. The service profile contains serv
parameters which may restrict the service usage. The service profile settings depe
the possibilities the service provider allows and are provided as a list of properties
subscriber can define different service profiles for one service. Exceptions are
InvalidSubscriber and InvalidService ProfileId.

void
modify_service_profile(

in SubscriberId subscriber_id,
TSAS v1.0 End-user Administration October 2000 4-21

4

G.
in ServiceProfile service_profile)
raises (

SubscriptionError
);

The operation modify_service_profiles allows a subscriber to modify the service
properties of an existing service profile. Exceptions are InvalidSubsciber and
InvalidServiceProfileId.

void
delete_service_profile(

in SubscriberId subscriber_id,
in ServiceProfileId service_profile_id)

raises (
SubscriptionError

);

The operation delete_service_profiles allows a subscriber to delete an existing
service profile. Exceptions are InvalidSubsciber and InvalidServiceProfileId.

void
assign(

in SubscriberId subscriber_id,
in SagId sagId,
in ServiceProfileId service_profile_id)

raises (
SubscriptionError

);

The operation assign allows a subscriber to assign a service profile to a SAG. The
previously created service profile will be assigned to a SAG. Exceptions are
InvalidSubsciber, InvalidSag and InvalidServiceProfileId.

void
deassign(

in SubscriberId subscriber_id,
in SagId sag_id,
in ServiceProfileId service_profile_id)

raises (
SubscriptionError

);
};

The operation deassign allows a subscriber to remove a service profile from a SA
Exceptions are InvalidSubsciber, InvalidSag, and InvalidProfileId.

The interface ServiceProfileInfoQuery is provided to query information about
existing service profiles, their states, and their assignments to SAGs and users.
4-22 Telecommunications Service Access & Subscription October 2000

4

4.7.2.2 interface ServiceProfileInfoQuery

void list_service_profiles(
in SubscriberId subscriber_id,

 out ServiceProfileIdList service_profile_id_list)
raises (

SubscriptionError
);

The operation list_service_profiles returns a list of all service profiles ids of a
subscriber. Exception is InvalidSubscriber.

void list_assigned_service_profiles(
in SubscriberId subscriber_id,
in SagId sag_id,

 out ServiceProfileIdList service_profile_id_list)
raises (

SubscriptionError
);

The operation list_assigned_service_profiles returns all service profiles assigned
to a single SAG. Exceptions are InvalidSubscriber and InvalidSag.

void get_service_profile(
in SubscriberId subscriber_id,
in ServiceProfileId service_profile_id,

 out ServiceProfile service_profile)
raises (

SubscriptionError
);

The operation get_service_profile returns a single service profile. The struct
ServiceProfile contains the profile_id and the service properties. Exceptions are
InvalidSubscriber and InvalidServiceProfileId.

void list_assigned_sags(
in SubscriberId subscriber_id,
in ServiceProfileId service_profile_id,

 out SagIdList sag_id_list)
raises (

SubscriptionError
);

The operation list_assigned_sags returns a list of SAG Ids assigned to single
service profile. Exceptions are raised for InvalidSubscriber and
invalidServiceProfileID.

void list_assigned_users(
in SubscriberId subscriber_id,
in ServiceProfileId service_profile_id,

 out UserIdList user_id_list)
TSAS v1.0 End-user Administration October 2000 4-23

4

n the

s

ut

s
raises (
SubscriptionError
);

The operation list_assigned_users returns a list of user_ids that are assigned to
single service profile. Exceptions are InvalidSubscriber and
invalidServiceProfileID.

4.8 End-user Customization

The End-user customization segment allows end-users to customize the service i
range of predefined settings.

The interface UserProfileMgmt allows an end-user to modify the user profile setting
for and the user service profile settings.

The interface UserProfileInfoQuery allows an end-user to request information abo
its user profiles.

4.8.1 interface UserProfileMgmt {

void modify_security_properties(
in SubscriberId subscriber_id,
in UserId user_id,
in PropertyList security_properties)

raises (SubscriptionError);

The operation modify_security_properties provides the possibility to change for
example the user password. The user password can be one attribute of the user
properties. The subscriber_id and the user_id are used to identify the user in the
retailer domain. Exceptions are raised for InvalidSubscriber, InvalidProperty and
InvalidUserId.

void modify_user_profile(
in SubscriberId subscriber_id,
in UserId user_id,
in PropertyList user_properties)

raises (SubscriptionError);

The operation modify_user_profile allows an end-user to detail its personal entrie
in the user_properties . Subscriber and user_id are used to identify in the retailer
domain the end-user.

void modify_user_service_profile(
in SubscriberId subscriber_id,
in UserId user_id,
in EndUserServiceProfile end_user_service_profile)

raises (SubscriptionError);
4-24 Telecommunications Service Access & Subscription October 2000

4

ervice

e

 for
The operation modify _user_service_profile provides an end-user with the ability
to change the personal preferences for the usage of a service predefined by the s
provider. The Subscriber_id and the user_id are used to identify the end-user in the
retailer. The service_template_id is part of the end_user_service_profile
structure and is used as the reference for the subscribed service.

void delete_user_service_profile(
in SubscriberId subscriber_id,
in UserId userId,
in ServiceTemplateId service_template_id)

raises (SubscriptionError);

The operation delete_user_service_profile removes the user service profile in the
retailer domain. The subscriber_id and the user_id are used to identify the user in
the retailer domain, the service_template_id to identify for which service the profile
should be deleted. Exceptions are raised for InvalidSubscriberId, InvaliduserID,
InvalidServiceTemplateId.

4.8.2 interface UserProfileInfoQuery {

The query interface allows an end-user to question its user descriptions and user
service profiles

void get_user_description(
in SubscriberId subscriber_id,
in UserId user_id

 out EndUser end_user)
raises (SubscriptionError);

The operation get_user_description provides the end-user with information about
its user_id and user_properties . The subscriber_id and the user_id are used to
identify the end-user in the retailer domain. Exceptions are raised for
InvalidSubscriber and InvalidUserId.

void list_user_service_profile_ids (
in SubscriberId subscriber_id,
in UserId user_id,

 out ServiceTemplateIdList service_template_id_list)
raises (SubscriptionError);

The operation list_service_profiles_ids returns a list of subscribed end-user servic
profiles which are associated with the retailer’s service template_ids . Subscriber and
user_id are used to identify the user in the retailer domain. Exceptions are raised
InvalidSubscriber and InvalidUserId.

void get_user_service_profile(
in SubscriberId subscriberId,
in UserId userId,
in ServiceTemplateId service_template_id,

 out EndUserServiceProfile end_user_service_profile)
TSAS v1.0 End-user Customization October 2000 4-25

4

raises (SubscriptionError);
};

The operation get_user_service_profile returns the end-user service profile which
is associated with the retailer’s service_template_ids . Subscriber and user_id are
used to identify the user in the retailer domain. The service_template_id can be
obtain from the operation list_user_service_profile_ids . Exceptions are raised for
InvalidSubscriber, InvalidServiceTemplateId and InvalidUserId.
4-26 Telecommunications Service Access & Subscription October 2000

Common Types 5
for
in the

o
lar
rs,
ies,

e
e
Contents

This chapter contains the following sections.

5.1 Common Information View

This section describes common types of information which have a high potential
re-use (in several segments, or between other domains than the ones described
TSAS document).

5.1.1 Properties and Property Lists

Properties are attributes or qualities of something. In TSAS, properties are used t
assign a quality to something, or search for items or entities that have that particu
quality. The entities that can be qualified by such a property for TSAS can be use
providers, services, sessions, interfaces. Each of these will have different propert
and each property may have a range of different values and structures. While som
properties will be defined in this document, some supplementary properties can b
defined later and eventually be provider specific.

Section Title Page

“Common Information View” 5-1

“User Information” 5-3

“Access Session Information” 5-7

“User Information” 5-7

“User Context Information” 5-8

“Service and Session Information” 5-9
Telecommunications Service Access & Subscription October 2000 5-1

5

L

.
the
 it is
not

alue.

es to

 with
With this in mind, the type Property has been chosen to represent a property. Its ID
definition is taken from the CORBA Property Service.

typedef string PropertyName;
typedef sequence <PropertyName> PropertyNameList;
typedef any PropertyValue;
struct Property {
 PropertyName name;
 PropertyValue value;
};
typedef sequence <Property> PropertyList;

As can be seen above, the Property is a structure consisting of a name and a value
The name is a string, and the value is an any. This format allows the recipient of
property to read the string and match it against the properties they know about. If
a property they know, then they will also know the format of the value. If they do
know the property, then they should not read the value. The any value contains a
typecode that can be looked up in the interface repository to find the type of the v
The Property , and PropertyList are used to attribute qualities to entities. Some of
these qualities may also be provider-specific, and so they can also use these typ
extend the TSAS specifications.

TSAS defines property names and values where it is possible to do so. For some
property lists (for example, InterfaceProperties) it is up to the user (consumer-
/retailer-/service provider domain) to determine properties that can be associated
it.

enum WhichProperties {
 NoProperties,
 SomeProperties,
 SomePropertiesNamesOnly,
 AllProperties,
 AllPropertiesNamesOnly
};

struct MatchProperties {
 WhichProperties which_properties;
 PropertyList properties;
};

MatchProperties is used to scope the return values of some operations. These
operations return lists of items. MatchProperties is used to identify which items to
return, based on the item's properties. For the operation list_user_services , the
items are a user’s subscribed services. The MatchProperties parameter defines the
properties of the subscribed services that are to be returned in the list.
5-2 Telecommunications Service Access & Subscription October 2000

5

s
name

der

fined

.

MatchProperties contains a PropertyList and an enumerated type
WhichProperties . The PropertyList contains the properties that need to be
matched. The WhichProperties identifies whether some, all or none of the propertie
must be matched, and whether the property name and value, or just the property
must be matched.

For example, in the operation list_subscribed_services :

5.2 User Information

typedef string UserId;
typedef string UserName;
typedef PropertyList UserPropertyList;

The user_id (of type UserId) identifies the user to the provider. It is unique to this
user within the scope of this provider. The UserId does not contain the name of the
provider, and so cannot be used to contact the provider. It may be sent to a
broker/naming service when attempting to contact a provider along with the provi
name.

UserPropertyList is a sequence of UserProperty . It contains information about the
user that needs to be passed to the provider. The following property names are de
for UserProperty . Other property names are allowed, but are provider specific.

// Property Names defined for UserPropertyList:
// name: “PASSWORD”
// value: string

If WhichProperties is... Then the subscribed services...

NoProperties don’t have to match any property, and
consequently all subscribed services are returned

SomeProperties must match at least one property in the
PropertyList , (both the property name and value
must match), to be included in the returned list.

SomePropertiesNamesOnly must match at least one property name in the
PropertyList to be returned. The values of the
properties in the PropertyList may not be
meaningful and should not be used.

AllProperties must match all the properties in the
PropertyList , (both the property name and value
must match), to be included in the returned list.

AllPropertiesNamesOnly must match all the property names in the
PropertyList to be returned. The values of the
properties in the PropertyList may not be
meaningful, and should not be used.
TSAS v1.0 User Information October 2000 5-3

5

on to
user,

be
ssion
t can

ion,
// use: user password, as a string.

// name: “SecurityContext”
// value: opaque
// use: to carry a provider specific security context
// e.g.: could be used for an encoded user password.

5.2.1 Usage Related Types

5.2.1.1 SessionId

typedef unsigned long SessionId;

All the service sessions running in the service provider domain are identified by a
session_id (of the type SessionId). The retailer must translate these session_ids ,
to provide the consumer with a list of session_ids that are unique in the consumer
domain. The SessionId is a long (32 bits). This session_id is the same as the
session_id provided when a service session is started.

5.2.2 Invitations and Announcements

Invitations allow a session to ask a specific consumer to join a ‘running’ service
session. Invitations are delivered by the service provider running the service sessi
the appropriate retailer, and from that retailer to the consumer domain for the end-
if an access session exists. If no access session exists with the user domain, the
invitation may be delivered using other methods. For example, the invitation may
delivered to a ‘pre-registered’ interface, or stored by the retailer until an access se
is established. Such a 'pre-registered' interface is not defined in this document, bu
be defined in a provider specific segment. The invitations contain sufficient
information for the invited user to be able to identify the user that issued the invitat
find and join the session, or refuse the invitation.

typedef unsigned long InvitationId;
typedef string InvitationReason;

struct InvitationOrigin {
 UserId user_id;
 SessionId session_id;
};

struct SessionInvitation {
InvitationId id;
UserId invitee_id;
SessionPurpose purpose;
ServiceInfo service_info;
InvitationReason reason;
InvitationOrigin origin;
PropertyList inv_properties;

};
5-4 Telecommunications Service Access & Subscription October 2000

5

 the
sion
o
n

ice
e

n.

the
 the

er

e
des

g

ase
ve
typedef sequence <SessionInvitation> InvitationList;

enum InvitationReplyCodes {
 SUCCESS, UNSUCCESSFUL, DECLINE, UNKNOWN, ERROR,
 FORBIDDEN, RINGING, TRYING, STORED, REDIRECT, NEGOTIATE,
 BUSY, TIMEOUT
};

typedef PropertyList InvitationReplyPropertyList;

struct InvitationReply {
InvitationReplyCodes reply;
InvitationReplyPropertyListannouncementreplypropertylist properties;

};

SessionInvitation describes the service session to which the end-user (in the
consumer domain) has been invited, and provides an InvitationId to match this
invitation when joining later on. This structure does not give interface references to
session, nor any information that would allow the end-user to join the service ses
without first having an access session running with this retailer. The structure als
provides a UserId with the user_id of the invited end-user. The consumer domain ca
check that the invitation is meant for an end-user known to this domain.

SessionPurpose is a string describing the purpose of the service session. A serv
session purpose may be defined when that service session is started or during th
service session.

ServiceInfo is the subscribed service that the end-user can use to join the sessio

InvitationReason is a string describing the reason that this invitation was sent to
invited end-user. It can be defined by the end-user that issued the invitation, or by
service session itself.

InvitationOrigin is a structure defining where the invitation has been issued. It
contains, for example, the user_id of the end-user that started the session.

An InvitationReply is returned that allows the end-user to inform the service provid
(via the retailer) of the action it will eventually take regarding the invitation. This
information is not binding; that is, the end-user can reply that it will join the servic
session, then take no action, or join later, or not join at all. The following reply co
are defined:

• SUCCESS - the end-user in the consumer domain agrees to join the service
session. The use of this reply code should be followed by the end-user takin
action to join the service session (see the join_session_with_invitation()
operation on the ProviderInvite interface described in Section 3.3.2,
“ProviderInvite Interface,” on page 3-7). However, this reply code can be
followed by another reply code (sent with the reply_to_invitation() operation
that is described in Section 3.3.2, “ProviderInvite Interface,” on page 3-7), in c
the end-user changes his mind, but the RINGING reply code should then ha
been used instead.
TSAS v1.0 User Information October 2000 5-5

5

n.

as

ain.

en.

.

 the
 as

ed

pt to

 at
on.

given

ing

r.
ic at

ld be

imed
lue
d
L.

orce

 any
 the
• UNSUCCESSFUL - the end-user couldn’t be contacted through this operatio
However, if the same invitation was sent to multiple interfaces, a reply from
another interface may indicate that the end-user will join the session.

• DECLINE - the end-user declines to join the session.

• UNKNOWN - the end-user that is invited is not known by this interface. As w
said before, the SessionInvitation contains a UserId that allows the consumer
domain to check if the invitation is meant for an end-user known to this dom

• FAILED - the end-user is unable to join the service session. No reason is giv
The invitation may be badly formatted, or the end-user may be unable to join
service sessions.

• FORBIDDEN - the consumer domain is not authorized to accept the request

• RINGING - the end-user is known by this consumer domain and is being
contacted. The service provider should not assume that the end-user will join
session. If the end-user wishes to join the service session, then it can do so
described in SUCCESS above. If it wishes to keep the service provider inform
about its status regarding this invitation, it can use the reply_to_invitation()
operation as described in SUCCESS above.

• TRYING - the end-user is known by this consumer domain, but cannot be
contacted directly. The consumer domain is performing some action to attem
contact the end-user. The service provider can treat this as RINGING.

• STORED - the end-user is known by this domain, but is not being contacted
present. The invitation has been stored though for retrieval by the user later
The service provider can treat this as RINGING, although it may be a while
before the user responds.

• REDIRECT - the end-user is known by this consumer domain, but it is not
available through this interface. The service provider should use the address
back in InvitationReplyProperies to contact the end-user.

• NEGOTIATE - the end-user is known by this consumer domain, but it is not be
contacted at present. The InvitationReplyProperies contains a set of
alternatives that the service provider could try in order to contact the end-use
These alternatives are not defined by TSAS. They are service provider specif
present.

• BUSY - the end-user cannot be contacted because it is ‘busy.’ This code shou
treated similar to UNSUCCESSFUL.

• TIMEOUT - the end-user cannot be contacted, as the consumer domain has t
out while trying to contact it, (that is, the consumer domain has a time out va
for contacting the end-users), for example, pop-up window, ringing phone, an
this time has expired. This code should be treated similar to UNSUCCESSFU

These invitation reply codes have been taken from the Internet Engineering Task F
working group MMUSIC, (Multimedia Multiparty Session Control) draft standard
‘Session Initiation Protocol’ (SIP).

Announcements allow a session to publish itself to a ‘group’ of end-users. The
announcements are not directed to a specific end-user, nor are they ‘delivered’ to
consumer domain. Announcements issued by the service providers are stored by
retailer until the consumer domain requests a list of announcements.
5-6 Telecommunications Service Access & Subscription October 2000

5

main,
 user
fied
the

g the

ine
nt

ent
y the

ion

ss
Announcements are returned to the end-user that requested it in the consumer do
depending upon the ‘groups’ to which the end-user belongs. These are defined by
properties, but no specific mechanism for defining announcement groups is speci
by TSAS. Announcements contain sufficient information for the consumer to join
service session.

typedef PropertyList AnnouncementProperties;

struct SessionAnnouncement {
 AnnouncementId announcement_id;
 SessionPurpose session_purpose;
 ServiceInfo service_info;
 AnnouncementProperties properties;
};

typedef sequence <SessionAnnouncement> AnnouncementList;

typedef unsigned long AnnouncementId;

SessionAnnouncement describes the session that is being announced, and the
‘group’ of users that the announcement is broadcast to. It is a structure containin
announcement_id , the session_purpose , the service_info , and a list of
announcement properties. No property names or values are defined by TSAS for
announcements. The announcement properties allow the service providers to def
their own types for announcements, which can be passed using the announceme
operations defined by TSAS.

AnnouncementId identifies an announcement to the consumer domain. The
consumer domain can request a list of announcements that are associated with a
specific end-user. The AnnouncementId is used by the consumer domain to
discriminate between the announcements it receives. The ids for each announcem
can only be used by the end-user they are meant for. They do not uniquely identif
announcement across consumer domains.

5.3 Access Session Information
typedef unsigned long AccessSessionId;

The accessSessionId of type AccessSessionId is used to identify an access
session. The accessSessionId corresponding to the end-user’s current access sess
is returned at the end of the access session set-up phase. The accessSessionId for
other access sessions can be found using list_access_sessions() in the access
control segment, on the AccessControl interface. The AccessSessionId is scoped
by the end-user, (that is, for a single end-user (UserId) all AccessSessionIds are
unique).

5.4 User Information

This section describes user related information types more dedicated to the acce
session, and that have not already been described.
TSAS v1.0 Access Session Information October 2000 5-7

5

neric

er

ame
orted

ins.

 end-

ple,
struct UserInfo {
 UserId user_id;
 UserName name;
 UserPropertyList user_properties;
};

UserInfo describes the end-user. It is a struct of UserId , the user’s name (that is,
readable by a human), and UserPropertyList . It is returned by get_user_info() on
the ProviderContext interface.

5.5 User Context Information

The user context information described in this section concerns the user in the ge
sense, for example:

• the end-user as a user of the retailer,

• the retailer as a user of the service provider,

• the service provider when it contacts the retailer as a user (for example, for
deploying services).

Consequently the user context information can be used in most of the user-provid
contexts.

typedef string UserCtxtName;

typedef PropertyList UserCtxtPropertyList;

struct UserCtxt {
UserCtxtName ctxt_name;
AccessSessionId as_id;
UserCtxtPropertyList properties;

};

typedef sequence <UserCtxt> UserCtxtList;

UserCtxt informs the provider about the user and the user domain, including the n
of the context. The user context properties can contain a list of references to supp
interfaces.

UserCtxtName is a name given to this user context. It is generated by the user
domain. It is used to distinguish between access sessions to different user doma
When listing the access sessions, the UserCtxtName is returned, along with the
AccessSessionId , as the former should be a more human readable name (when
users are involved).

Properties is a list of user context related properties that might contain; for exam
a list of references to supported interfaces.
5-8 Telecommunications Service Access & Subscription October 2000

5

nd

have a

 the
uld

istics,

fer
 can

 of

ong
-user
5.6 Service and Session Information

The service and session information described in this section concerns the user a
provider in the generic sense, for example:

• The end-user as a user of the retailer, in its turn provider to the end-user.

• The retailer as a user of the service provider, in its turn provider to the retailer.

struct ServiceInfo {
 ServiceId id;
 UserServiceName name;
 ServicePropertyList properties;
};

ServiceInfo is a structure that describes a subscribed service of the user.

ServiceId is the identifier for the service. ServiceId is unique among all the user’s
subscribed services. Other users may be subscribed to the same service, but will
different ServiceId . The ServiceId value persists for the lifetime of a subscription.

UserServiceName is the name of the service as a string. The name is chosen by
subscriber when it subscribes to the service. It is the name of the service that wo
ultimately be displayed on the end-user's screen.

ServicePropertyList is a property list, which defines the characteristics of this
service. They can be used to search for types of service with the same character
(for example, using discover_services() on the ServiceDiscovery interface of the
service discovery segment).

TSAS has defined no properties for ServicePropertyList , and so its use is provider
specific.

struct SessionInfo {
SessionId id;
SessionPurpose purpose;
UserSessionState state;
InterfaceList itfs;
SessionProperties properties;

};

SessionInfo is a structure that contains information that allows the end-user to re
to a particular service session when using interfaces within an access session. It
also contain information for the usage part of the service session, including the
interface references to interact with the service session. The description of these
service session interfaces (and their types) is provider specific (outside the scope
TSAS).

Id is the identifier for this service session. It is unique to this service session, am
all service sessions that this end-user interacts with through this retailer. If the end
interacts with multiple retailers concurrently, then they may return SessionIds that
are identical.
TSAS v1.0 Service and Session Information October 2000 5-9

5

been
ic

 may
.

r

Purpose is a string containing the purpose of the service session. This may have
defined when the service session was created, or subsequently by service specif
interactions that are service provider specific.

State is the service session state as perceived by this end-user. It can be:
UserUnknownSessionState , UserActiveSession , UserSuspendedSession ,
UserSuspendedParticipation , UserInvited , or UserNotParticipating .

Itfs is a list of interface types and references supported by the service session. It
include service specific interfaces for the user to interact with the service session
Further details are service provider specific.

Properties is a list of properties of the service session. Its use is service provide
specific.

5.6.1 Base Interface

interface SegmentBase
{

void release_segment () ;
};

This is the definition of the base interface from which the segment interfaces can
inherit in order for all of them to support the release_segment() operation.
5-10 Telecommunications Service Access & Subscription October 2000

OMG IDL A
#ifndef _DFTSAS_IDL_
#define _DFTSAS_IDL_

#include "CORBA.idl"

module IOP {
 const ServiceId ACCESS_SESSION_ID = OMG_assigned;
 const ServiceId SERVICE_SESSION_ID = OMG_assigned;
};

module DfTsas {
 typedef string SegmentId;
 typedef sequence<SegmentId> SegmentIdList;

 const SegmentId INVITATION_SEGMENT = "Invitation";
 const SegmentId CONTEXT_SEGMENT = "Context";
 const SegmentId ACCESS_CONTROL_SEGMENT = "Access control";
 const SegmentId SERVICE_DISCOVERY_SEGMENT = "Service discovery";
 const SegmentId SESSION_CONTROL_SEGMENT = "Session control";
 const SegmentId SUBSCRIBER_ADMINISTRATION_SEGMENT = "Subscriber administration";
 const SegmentId SERVICE_PROVIDER_ADMINISTRATION_SEGMENT = "Service provider administration";
 const SegmentId END_USER_ADMINISTRATION_SEGMENT = "End user administration";
 const SegmentId END_USER_CUSTOMIZATION_SEGMENT = "End user customization";

 typedef string PropertyName;
 typedef sequence<PropertyName> PropertyNameList;
 typedef any PropertyValue;

 struct Property {
 PropertyName name;
 PropertyValue value;
 };

 typedef sequence<Property> PropertyList;

 enum HowManyProps { none, some, all };
Telecom Service Access & Subscription v1.0 October 2000 A-11

A

 union SpecifiedProps switch (HowManyProps) {
 case some: PropertyNameList prop_names;
 };

 typedef string InterfaceName;
 typedef sequence<InterfaceName> InterfaceNameList;

 typedef PropertyList InterfacePropertyList;

 struct InterfaceStruct {
 InterfaceName name;
 Object ref;
 InterfacePropertyList properties;
 };

 typedef sequence<InterfaceStruct> InterfaceList;

 typedef string ServiceId;

 typedef PropertyList ServicePropertyList;

 typedef string ServiceToken;

 typedef unsigned long SessionId;
 typedef sequence<SessionId> SessionIdList;

 typedef string UserSessionState; // defined values for this type, see doc.

 typedef PropertyList SessionPropertyList;

 struct SessionInfo {
 SessionId id;
 InterfaceList refs;
 SessionPropertyList properties;
 };

 typedef PropertyList EndAccessPropertyList;

 enum PropertyErrorCode {
 UnknownPropertyError,
 InvalidProperty,
 UnknownPropertyName,
 InvalidPropertyName,
 InvalidPropertyValue,
 NoPropertyError
 };

 exception PropertyError {
 PropertyErrorCode error;
 PropertyName name;
 PropertyValue value;
 };

 enum InterfaceErrorCode {
A-12 Telecom Service Access & Subscription v1.0 October 2000

A

 UnknownInterfaceError,
 InvalidInterfaceName,
 InvalidInterfaceRef,
 InvalidInterfaceProperty
 };

 exception InterfaceError {
 InterfaceErrorCode error;
 InterfaceName name;
 PropertyName property_name; // if error=InvalidInterfaceProperty, this contains the property in error.
 };

 enum DomainErrorCode {
 UnknownDomainError,
 InvalidDomainId,
 InvalidDomainRef
 };

 exception DomainError {
 DomainErrorCode error;
 };

 enum AuthErrorCode {
 UnknownAuthError,
 InvalidAuthType,
 InvalidAuthCapability,
 NoAcceptableAuthCapability,
 InvalidChallenge
 };

 exception AuthError {
 AuthErrorCode error;
 };

 enum AccessErrorCode {
 UnknownAccessError,
 InvalidAccessType,
 InvalidAccessInterface,
 AccessDenied
 };

 exception AccessError {
 AccessErrorCode error;
 };

 enum ServiceErrorCode {
 UnknownServiceError,
 InvalidServiceId,
 ServiceAccessDenied,
 InvalidServiceToken
 };

 exception ServiceError {
 ServiceErrorCode error;
 };
Telecom Service Access & Subscription v1.0 October 2000 A-13

A

 enum ServiceAgreementErrorCode {
 UnknownServiceAgreementError,
 InvalidServiceAgreementText,
 InvalidSigningAlgorithm
 };

 exception ServiceAgreementError {
 ServiceAgreementErrorCode error;
 };

 enum SessionErrorCode {
 UnknownSessionError,
 InvalidSessionId,
 InvalidUserSessionState,
 SessionNotAllowed,
 SessionNotAccepted
 };

 exception SessionError {
 SessionErrorCode error;
 SessionId session_id;
 };

 enum SegmentErrorCode {
 InknownSegmentError,
 InvalidSegmentId
 };

 exception SegmentError {
 SegmentErrorCode error;
 SegmentId segment_id;
 };

 typedef string UserId;
 typedef string UserName;

 struct EndUser{
 UserId user_id;
 PropertyList security_properties;
 PropertyList user_properties;
 };

 enum WhichProperties {
 NoProperties,
 SomeProperties,
 SomePropertiesNamesOnly,
 AllProperties,
 AllPropertiesNamesOnly
 };

 struct MatchProperties {
 WhichProperties which_properties;
 PropertyList properties;
 };
A-14 Telecom Service Access & Subscription v1.0 October 2000

A

 typedef MatchProperties DiscoverServiceProperties;
 typedef MatchProperties UserServiceProperties;
 typedef MatchProperties SessionSearchProperties;
 typedef MatchProperties AnnouncementSearchProperties;

 typedef PropertyList UserPropertyList;

 typedef unsigned long InvitationId;
 typedef string InvitationReason;

 struct InvitationOrigin {
 UserId user_id;
 SessionId session_id;
 };

 typedef string SessionPurpose;

 typedef string UserServiceName;

 struct ServiceInfo {
 ServiceId id;
 UserServiceName name;
 ServicePropertyList properties;
 };

 typedef sequence<ServiceInfo> ServiceList;

 struct SessionInvitation {
 InvitationId id;
 UserId invitee_id;
 SessionPurpose purpose;
 ServiceInfo service_info;
 InvitationReason reason;
 InvitationOrigin origin;
 PropertyList inv_properties;
 };

 typedef sequence <SessionInvitation> InvitationList;

 enum InvitationReplyCodes {
 SUCCESS, UNSUCCESSFUL, DECLINE, UNKNOWN, ERROR,
 FORBIDDEN, RINGING, TRYING, STORED, REDIRECT, NEGOTIATE,
 BUSY, TIMEOUT
 };

 typedef PropertyList InvitationReplyPropertyList;

 struct InvitationReply {
 InvitationReplyCodes reply;
 InvitationReplyPropertyList properties;
 };

 typedef PropertyList AnnouncementPropertyList;

 typedef unsigned long AnnouncementId;
Telecom Service Access & Subscription v1.0 October 2000 A-15

A

 struct SessionAnnouncement {
 AnnouncementId announcement_id;
 SessionPurpose session_purpose;
 ServiceInfo service_info;
 AnnouncementPropertyList properties;
 };

 typedef sequence<SessionAnnouncement> AnnouncementList;

 typedef unsigned long AccessSessionId;
 typedef sequence<AccessSessionId> AccessSessionIdList;

 struct UserInfo {
 UserId user_id;
 UserName name;
 UserPropertyList user_properties;
 };

 typedef string UserCtxtName;
 typedef sequence<UserCtxtName> UserCtxtNameList;

 typedef PropertyList UserCtxtPropertyList;

 struct UserCtxt {
 UserCtxtName ctxt_name;
 AccessSessionId as_id;
 UserCtxtPropertyList properties;
 };

 typedef sequence <UserCtxt> UserCtxtList;

 typedef PropertyList JoinPropertyList;

 typedef sequence<SessionInfo> SessionList;

 typedef PropertyList AccessSessionPropertyList;

 struct AccessSessionInfo {
 AccessSessionId id;
 UserCtxtName ctxt_name;
 AccessSessionPropertyList properties;
 };

 typedef sequence<AccessSessionInfo> AccessSessionList;

 struct ApplicationInfo {
 string name;
 string version;
 string serial_num;
 string licence_num;
 PropertyList properties;
 };

 enum WhichAccessSession {
A-16 Telecom Service Access & Subscription v1.0 October 2000

A

 CurrentAccessSession,
 SpecifiedAccessSessions,
 AllAccessSessions
 };

 union SpecifiedAccessSession switch (WhichAccessSession) {
 case SpecifiedAccessSessions: AccessSessionIdList as_id_list;
 case CurrentAccessSession: octet empty_1;
 case AllAccessSessions: octet empty_2;
 };

 enum WhichUserCtxt {
 CurrentUserCtxt,
 SpecifiedUserCtxts,
 AllUserCtxts
 };

 union SpecifiedUserCtxt switch (WhichUserCtxt) {
 case SpecifiedUserCtxts: UserCtxtNameList ctxt_names;
 case CurrentUserCtxt: octet empty_1;
 case AllUserCtxts: octet empty_2;
 };

 enum ListErrorCode {
 ListUnavailable
 };

 exception ListError {
 ListErrorCode error;
 };

 enum InvitationErrorCode {
 InvalidInvitationId
 };

 exception InvitationError {
 InvitationErrorCode errorCode;
 };

 struct PropertyErrorStruct {
 PropertyErrorCode error;
 PropertyName name;
 PropertyValue value;
 };

 enum InvitationReplyErrorCode {
 InvalidInvitationReplyCode,
 InvitationReplyPropertyError
 };

 exception InvitationReplyError {
 InvitationReplyErrorCode error;
 PropertyErrorStruct property_error;
 };

Telecom Service Access & Subscription v1.0 October 2000 A-17

A

 enum AnnouncementErrorCode {
 InvalidAnnouncementId
 };

 exception AnnouncementError {
 AnnouncementErrorCode error;
 };

 enum ApplicationInfoErrorCode {
 UnknownAppInfoError,
 InvalidApplication,
 InvalidAppInfo,
 UnknownAppName,
 InvalidAppName,
 UnknownAppVersion,
 InvalidAppVersion,
 InvalidAppSerialNum,
 InvalidAppLicenceNum,
 AppPropertyError,
 AppSessionInterfacesError,
 AppSessionModelsError,
 AppSIDescError
 };

 exception ApplicationInfoError {
 ApplicationInfoErrorCode error;
 PropertyErrorStruct property_error;
 };

 enum UserCtxtErrorCode {
 InvalidUserCtxtName,
 InvalidUserAccessIR,
 InvalidUserTerminalIR,
 InvalidUserInviteIR,
 InvalidTerminalId,
 InvalidTerminalType,
 InvalidNAPId,
 InvalidNAPType,
 InvalidTerminalProperty,
 UserCtxtNotAvailable
 };

 exception UserCtxtError {
 UserCtxtErrorCode error;
 UserCtxtName ctxt_name;
 PropertyErrorStruct property_error;
 };

 enum SpecifiedAccessSessionErrorCode {
 UnknownSpecifiedAccessSessionError,
 InvalidWhichAccessSession,
 InvalidAccessSessionId
 };

 exception SpecifiedAccessSessionError {
A-18 Telecom Service Access & Subscription v1.0 October 2000

A

 SpecifiedAccessSessionErrorCode error;
 AccessSessionId id;
 };

 interface SegmentBase {
 void release_segment ();
 };

 module Core {
 typedef string DomainId;

 typedef string AuthType; // defined values for this type, see doc.

 struct AuthDomain {
 DomainId domain_id;
 Object ref;
 };

 typedef string AccessType; // defined values for this type, see doc.
 typedef string SigningAlgorithm;

 struct SignatureAndSessionInfo {
 string digital_signature;
 SessionInfo session_info;
 };

 typedef string AuthCapability; // defined values for this type, see doc.
 typedef sequence<AuthCapability> AuthCapabilityList;

 interface Initial {
 void initiate_authentication (
 in AuthDomain user_domain,
 in AuthType auth_type,
 out AuthDomain provider_domain
) raises (
 DomainError,
 AuthError
);

 void request_access (
 in AccessType access_type,
 in Object user_access,
 out Object provider_access
) raises (
 AccessError
);
 };

 interface Authentication {
 void select_auth_method (
 in AuthCapabilityList auth_caps,
 out AuthCapability selected_cap
) raises (
 AuthError
);
Telecom Service Access & Subscription v1.0 October 2000 A-19

A

 void authenticate (
 in AuthCapability selected_cap,
 in string challenge,
 out string response
) raises (
 AuthError
);

 void abort_authentication ();
 };

 interface Access {
 void end_access (
 in EndAccessPropertyList end_access_properties
) raises (
 PropertyError
);

 void list_available_services (
 in UserServiceProperties desired_properties,
 out ServiceList services)
 raises (
 PropertyError,
 ListError
);

 void select_service (
 in ServiceId service_id,
 in ServicePropertyList service_properties,
 out ServiceToken service_token
) raises (
 ServiceError,
 PropertyError
);

 void start_session (
 in ServiceToken service_token,
 in ApplicationInfo app,
 out SessionInfo session_info)

 raises (
 ServiceError
);

 void sign_service_agreement (
 in ServiceToken service_token,
 in string agreement_text,
 in SigningAlgorithm signing_algorithm,
 out SignatureAndSessionInfo signature_session_info
) raises (
 ServiceError,
 ServiceAgreementError
);
A-20 Telecom Service Access & Subscription v1.0 October 2000

A

 void end_session (
 in SessionId session_id
) raises (
 SessionError
);

 void list_segments (
 out SegmentIdList segment_ids);

 void get_segment (
 in SegmentId segment_id,
 in InterfaceList user_refs,
 out InterfaceList provider_refs
) raises (
 SegmentError,
 InterfaceError
);

 void release_segments (
 in SegmentIdList segment_ids
) raises (
 SegmentError
);
 };
 };

 module Sub {
 enum SubExceptionCode{
 subInvalidService,
 subInvalidUser,
 subInvalidSubscriber,
 subInvalidContract,
 subInvalidProvider,
 subInvalidServiceTemplateId
 subNotSubscribed,
 subInvalidSag,
 subInvalidServiceProfileId,
 subInvalidSubscription,
 subNotSupportedServiceType,
 subAlreadyExists,
 subAlreadyAssigned
 } ;

 exception SubscriptionError{
 SubExceptionCode reason;
 };

 typedef sequence <UserId> UserIdList;
 typedef string SubscriberId;
 typedef sequence <SubscriberId> SubscriberIdList;

 typedef string ProviderId;
 typedef string ServiceTypeName;
 typedef string ServiceTemplateId;
 typedef sequence <ServiceTemplateId> ServiceTemplateIdList;
 typedef string ServiceProfileId;
Telecom Service Access & Subscription v1.0 October 2000 A-21

A

 typedef sequence <ServiceProfileId> ServiceProfileIdList;

 struct ServiceProfile{
 ServiceProfileId service_profile_id;
 ServiceTypeName service_type;
 ServiceTemplateId service_template_id;
 PropertyList service_properties;
 };

 struct ServiceTemplate{
 ServiceTemplateId service_template_id;
 ServiceTypeName service_type;

 ProviderId provider_id;
 PropertyList service_template_properties;
 ServiceProperties service_properties;
 PropertyList user_application_properties;
 };

 typedef string ServiceContractId;
 struct ServiceContract {
 ServiceContractId service_contract_id;
 PropertyList contract_properties;
 ServiceProfile service_profile;
 };

 struct Subscriber {
 SubscriberId subscriber_id;
 PropertyList subscriber_properties;
 };

 struct Provider {
 ProviderId provider_id;
 PropertyList provider_properties;
 };

 struct EndUser{
 UserId user_id;

 PropertyListsecurity_properties;
 PropertyList user_properties;
 };

 struct EndUserServiceProfile{
 ServiceTemplateId service_template_id;
 PropertyList end_user_service_properties;
 };

 typedef string SagId;
 typedef sequence <SagId> SagIdList;

 struct Sag {
 SagId sag_id;
 string sag_description;
 };

 module ServiceProviderAdmin {
A-22 Telecom Service Access & Subscription v1.0 October 2000

A

 interface ServiceTemplateMgmt : SegmentBase {
 void deploy_service (
 in ProviderId provider_id,

in ServiceTemplate service_template,
 out ServiceTemplateId service_template_id
) raises (
 SubscriptionError
);

 void modify_service (

 in ProviderId provider_id,
 in ServiceTemplate service_template)
 raises (SubscriptionError);

 void withdraw_service (
 in ProviderId provider_id,

 in ServiceTemplateId service_template_id
) raises (
 SubscriptionError
);
 };

 interface ServiceTemplateInfoQuery : SegmentBase {
 void list_service_templates (

 in ProviderID provider_id,
 out ServiceTemplateIdList service_template_id_list
) raises (
 SubscriptionError
);

 void get_service_template(
 in ProviderId provider_id,

 in ServiceTemplateId service_template_id,
 out ServiceTemplate service_template
) raises (
 SubscriptionError
);
 };
 };

 module SubscriberAdmin {
 interface SubscriberMgmt : SegmentBase {
 void create_subscriber(
 in Subscriber subscriber
) raises (
 SubscriptionError
);

 void modify_subscriber(
 in Subscriber subscriber
) raises (
 SubscriptionError
);

 void delete_subscriber(
Telecom Service Access & Subscription v1.0 October 2000 A-23

A

 in SubscriberId subscriber_id
) raises (
 SubscriptionError
);

 void get_subscriber (
 in SubscriberId subscriber_id,
 out Subscriber subscriber)
 raises (
 SubscriptionError
);
 };

 interface ServiceContractMgmt : SegmentBase {
 void create_service_contract(
 in SubscriberId subscriber_id,
 in ServiceContract service_contract
) raises (
 SubscriptionError
);

 void modify_service_contract(
 in SubscriberId subscriber_id,
 in ServiceContract service_contract
) raises (
 SubscriptionError
);

 void delete_service_contract(
 in SubscriberId subscriber_id,
 in ServiceContractId service_contract_id
) raises (
 SubscriptionError
);
 };

 interface ServiceContractInfoQuery : SegmentBase {
 void get_service_contract(
 in SubscriberId subscriber_id,
 in ServiceContractId service_contract_id,
 out ServiceContract service_contract
) raises (
 SubscriptionError
);

 void list_subscribed_services(
 in SubscriberId subscriber_id,
 out ServiceProfileIdList service_profile_id_list
) raises (
 SubscriptionError
);
 };
 };

A-24 Telecom Service Access & Subscription v1.0 October 2000

A

 module EndUserAdmin {
 interface SagMgmt : SegmentBase {
 void create_Sag(
 in SubscriberId subscriber_id,
 in Sag sag,
 in UserIdList user_ids
) raises (
 SubscriptionError
);

 void modify_Sag(
 in SubscriberId subscriber_id,
 in Sag sag
) raises (
 SubscriptionError
);

 void delete_Sag(
 in SubscriberId subscriber_id,
 in SagId sag_id
) raises (
 SubscriptionError
);

 void create_user(
 in SubscriberId subscriber_id,
 in EndUser end_user
) raises (
 SubscriptionError
);

 void modify_user(
 in SubscriberId subscriber_id,
 in EndUser end_user
) raises (
 SubscriptionError
);

 void delete_user(
 in SubscriberId subscriber_id,
 in UserId user_id
) raises (
 SubscriptionError
);

 void add_Sag_users(
 in SubscriberId subscriber_id,
 in SagId sag_id,
 in UserIdList user_ids
) raises (
 SubscriptionError
);

 void remove_Sag_users(
 in SubscriberId subscriber_id,
Telecom Service Access & Subscription v1.0 October 2000 A-25

A

 in SagId sag_id,
 in UserIdList user_ids
) raises (
 SubscriptionError
);
 };

 interface SagInfoQuery : SegmentBase {
 void list_Sags(
 in SubscriberId subscriber_id,
 out SagIdList sag_id_list
) raises (
 SubscriptionError
);

 void get_Sag(
 in SubscriberId subscriber_id,
 in SagId sag_id,
 out Sag sag
) raises (
 SubscriptionError
);

 void get_user(
 in SubscriberId subscriber_id,
 in UserId user_id,
 out EndUser end_user
) raises (
 SubscriptionError
);

 void list_sag_users(
 in SubscriberId subscriber_id,
 in SagId sag_id,
 out UserIdList user_id_list
) raises (
 SubscriptionError
);

 void list_users(
 in SubscriberId subscriber_id,
 out UserIdList user_id_list
) raises (
 SubscriptionError
);
 };

 interface ServiceProfileMgmt : SegmentBase {
 void create_service_profile(
 in SubscriberId subscriber_id,
 in ServiceProfileId service_profile_id,
 in ServiceProfile service_profile
) raises (
 SubscriptionError
);
A-26 Telecom Service Access & Subscription v1.0 October 2000

A

 void modify_service_profile(
 in SubscriberId subscriber_id,
 in ServiceProfile service_profile
) raises (
 SubscriptionError
);

 void delete_service_profile(
 in SubscriberId subscriber_id,
 in ServiceProfileId service_profile_id
) raises (
 SubscriptionError
);

 void assign(
 in SubscriberId subscriber_id,
 in SagId sag_id,
 in ServiceProfileId service_profile_id
) raises (
 SubscriptionError
);

 void deassign(
 in SubscriberId subscriber_id,
 in SagId sag_id,
 in ServiceProfileId service_profile_id
) raises (
 SubscriptionError
);
 };

 interface ServiceProfileInfoQuery : SegmentBase {
 void list_service_profiles(
 in SubscriberId subscriber_id,
 out ServiceProfileIdList service_profile_id_list
) raises (
 SubscriptionError
);

 void list_assigned_service_profiles(
 in SubscriberId subscriber_id,
 in SagId sag_id,
 out ServiceProfileIdList service_profile_id_list
) raises (
 SubscriptionError
);

 void get_service_profile(
 in SubscriberId subscriber_id,
 in ServiceProfileId service_profile_id,
 out ServiceProfile service_profile
) raises (SubscriptionError
);

Telecom Service Access & Subscription v1.0 October 2000 A-27

A

 void list_assigned_Sags(
 in SubscriberId subscriber_id,
 in ServiceProfileId service_profile_id,
 out SagIdList sag_id_list
) raises (SubscriptionError
);

 void list_assigned_users(
 in SubscriberId subscriber_id,
 in ServiceProfileId service_profile_id,
 out UserIdList user_id_list
) raises (SubscriptionError
);
 };
 };

 module EndUserCustomization {
 interface UserProfileMgmt : SegmentBase {
 void modify_security_properties(
 in SubscriberId subscriber_id,
 in UserId user_id,
 in PropertyList security_properties,
) raises (SubscriptionError
);

 void modify_user_profile(
 in SubscriberId subscriber_id,
 in UserId user_id,
 in PropertyList user_properties
) raises (SubscriptionError);

 void modify_user_service_profile(
 in SubscriberId subscriber_id,
 in UserId user_id,
 in EndUserServiceProfile end_user_service_profile
) raises (SubscriptionError
);

 void delete_user_service_profile(
 in SubscriberId subscriber_id,
 in UserId user_id,
 in ServiceTemplateId service_template_id
) raises (
 SubscriptionError
);
 };

 interface UserProfileInfoQuery : SegmentBase {
 void get_user_description(
 in SubscriberId subscriber_id,
 in UserId user_id,
 out EndUser end_user
) raises (SubscriptionError);

 void list_user_service_profile_ids (
A-28 Telecom Service Access & Subscription v1.0 October 2000

A

 in SubscriberId subscriber_id,
 in UserId user_id,
 out ServiceTemplateIdList service_template_id_list
) raises (
 SubscriptionError
);
 void get_user_service_profile(
 in SubscriberId subscriber_id,
 in UserId user_id,
 in ServiceTemplateId service_template_id,
 out EndUserServiceProfile end_ user_service_profile
) raises (
 SubscriptionError
);
 };
 };
 };

 module Invitation
 {
 interface UserInvite : SegmentBase
 {
 void invite_user (
 in SessionInvitation invitation,
 out InvitationReply reply
) raises (
 InvitationError
);

 void cancel_invite_user (
 in UserId invitee_id,
 in InvitationId id
) raises (
 InvitationError
);
 };

 interface ProviderInvite : SegmentBase
 {
 void list_session_invitations (
 out InvitationList invitations
) raises (
 ListError
);

 void list_session_announcements (
 in AnnouncementSearchProperties desired_properties,
 out AnnouncementList announcements
) raises (
 PropertyError,
 ListError
);

 void join_session_with_invitation (
 in InvitationId invitation_id,
Telecom Service Access & Subscription v1.0 October 2000 A-29

A

 in ApplicationInfo app,
 in JoinPropertyList join_properties,
 out SessionInfo session_info
) raises (
 SessionError,
 InvitationError,
 ApplicationInfoError,
 PropertyError
);

 void join_session_with_announcement (
 in AnnouncementId announcement_id,
 in ApplicationInfo app,
 in JoinPropertyList join_properties,
 out SessionInfo session_info
) raises (
 SessionError,
 AnnouncementError,
 ApplicationInfoError,
 PropertyError
);

 void reply_to_invitation (
 in InvitationId invitation_id,
 in InvitationReply reply
) raises (
 InvitationError,
 InvitationReplyError
);
 };
 };

 module Context
 {
 interface UserContext : SegmentBase
 {
 void get_user_ctxt(
 out UserCtxt user_ctxt
);
 };

 interface ProviderContext : SegmentBase
 {
 void set_user_ctxt (
 in UserCtxt user_ctxt
) raises (
 UserCtxtError
);

 void get_user_ctxts (
 in SpecifiedUserCtxt ctxt,
 out UserCtxtList user_ctxts
) raises (
 UserCtxtError,
 ListError
A-30 Telecom Service Access & Subscription v1.0 October 2000

A

);

 void get_user_info(
 out UserInfo user_info
);
 };
 };

 module AcsCtrl
 {
 interface AccessControl : SegmentBase
 {
 void list_access_sessions (
 out AccessSessionList as_list
) raises (
 ListError
);

 void end_access_sessions(
 in SpecifiedAccessSession as
) raises (
 SpecifiedAccessSessionError
);
 };
 };

 module ServDisc
 {
 interface ServiceDiscovery : SegmentBase
 {

 void discover_services(
 in DiscoverServiceProperties desired_properties,
 in unsigned long how_many,
 out ServiceList services
) raises (
 PropertyError,
 ListError
);

 void get_service_info (
 in ServiceId service_id,
 in UserServiceProperties desired_properties,
 out ServicePropertyList service_properties
) raises (
 ServiceError,
 PropertyError
);
 };
 };

 module SessCtrl
 {
 interface SessionControl : SegmentBase
 {
Telecom Service Access & Subscription v1.0 October 2000 A-31

A

 void list_service_sessions (
 in SpecifiedAccessSession as,
 in SessionSearchProperties desired_properties,
 out SessionList sessions
) raises (
 SpecifiedAccessSessionError,
 PropertyError,
 ListError
);

 void end_sessions (
 in SessionIdList session_id_list
) raises (
 SessionError
);

 void end_my_participations (
 in SessionIdList session_id_list
) raises (
 SessionError
);

 void resume_session (
 in SessionId session_id,
 in ApplicationInfo app,
 out SessionInfo session_info
) raises (
 SessionError,
 ApplicationInfoError
);

 void resume_my_participation (
 in SessionId session_id,
 in ApplicationInfo app,
 out SessionInfo session_info
) raises (
 SessionError,
 ApplicationInfoError
);
 };
 };
 module AccessSessionInformation
 {
 struct newAccessSessionInfo {
 AccessSessionInfo access_session;
 };

 struct endAccessSessionInfo {
 AccessSessionId as_id;
 };

 struct cancelAccessSessionInfo {
 AccessSessionId as_id;
 };
A-32 Telecom Service Access & Subscription v1.0 October 2000

A

 struct newServicesInfo {
 ServiceList services;
 };
 };

 module ServiceSessionInformation
 {
 struct newSessionInfo {
 SessionInfo session;
 };

 struct endSessionInfo {
 SessionId sessionId;
 };

 struct endMyParticipationInfo {
 SessionId sessionId;
 };

 struct suspendSessionInfo {
 SessionId sessionId;
 };

 struct suspendMyParticipationInfo {
 SessionId sessionId;
 };

 struct resumeSessionInfo {
 SessionInfo session;
 };

 struct ResumeMyParticipationInfo {
 SessionInfo session;
 };

 struct JoinSessionInfo {
 SessionInfo session;
 };
 };
};
#endif // for #ifndef _DFTSAS_IDL_
Telecom Service Access & Subscription v1.0 October 2000 A-33

A

A-34 Telecom Service Access & Subscription v1.0 October 2000

Compliance Points B
ent,

pter
ng

need

given
tion.

given
tion.
This specification does contain elements that are intended to become part of the
CORBA standard and, thus, would have to be supported by all CORBA ORBs.

The specification provides three compliance points for implementations of
Telecommunication Service Access and Subscription (TSAS), namely, Core Segm
Service Access Segment, and Subscription Segment.

B.1 Core Segment Compliance Point

All conforming implementations must support all interfaces that are defined in Cha
2 and in document telecom/00-02-03 which contains the IDL specification, followi
the specified semantics.

B.2 Service Access Segments Compliance Point

An implementation may support any segment defined in Chapter 3, but there is no
to support any of the segments.

When segments are implemented they need to be conformant to the specification
in Chapter 3 and in document telecom/00-02-03 which contains the IDL specifica

B.3 Subscription Segments Compliance Point

An implementation may support any segment defined in Chapter 4, but it is not
required to support any of the segments.

When segments are implemented they need to be conformant to the specification
in Chapter 4 and in document telecom/00-02-03 which contains the IDL specifica
Telecom Service Access & Subscription v1.0 October 2000 B-1

B

se
-07.

n

BA

.
rver
ese

tion
B.4 Changes to CORBA

The identification of multiple access sessions introduced in Chapter 2 requires an
extension to a very small part of the CORBA architecture. This section details tho
proposed changes. They are made against CORBA 2.3.1, document formal/99-10

B.4.1 Changes to CORBA Specification

The following service context identifiers are added to the list of service contexts i
Section 13.6.7.

const ServiceId ACCESS_SESSION_ID = XX; // Reserved for TSAS
const ServiceId SERVICE_SESSION_ID = XX; // R eserved for TSAS

The reason for defining these two ServiceIds, is so that a server on which a COR
invocation is performed, can always retrieve sufficient context information from
CORBA so that the client that has performed this invocation is uniquely identified
This has to do with the implementation choices: it is possible that one CORBA se
implements more than one access session, or more than one service session. Th
sessions can potentially be used by different CORBA clients. When a CORBA
invocation is made on the CORBA server, it must be able to identify the context
(access session identification or service session identification) in which this invoca
takes place.
B-2 Telecom Service Access & Subscription v1.0 October 2000

Index
A
abort_authentication() 4-8
Access 4-2, 4-8
Access Control segment 5-15
Access interface 4-10
Access Session Information 7-7
Access Session Information segment 5-25
Access Session Information structures 5-25
AccessControl Interface 5-15
authenticate() 4-7
Authentication 4-2
Authentication interface 4-6

B
Base interface 5-3, 7-9

C
cancel_invite_end_user() 5-5
CancelAccessSessionInfo 5-25
Changes to CORBA Specification 9-1
Common Information View 7-1
Context segment 5-12
CORBA

contributors 3
documentation set 2

Core Segment Compliance Point 8-1
Co-Submitting Companies 1-1

D
discover_services() 5-18

E
end_access() 4-14
end_access_sessions() 5-16
end_my_participations() 5-22
end_session() 4-15
end_sessions() 5-21
EndAccessSessionInfo 5-25
EndMyParticipationInfo 5-27
EndSessionInfo 5-27
End-user 6-8
End-user administration 6-16
End-user Customization 6-23
End-user service profile 6-8
EndUserInvite Interface 5-4

G
get_segment() 4-15
get_service_info() 5-19
get_user_ctxt() 5-12
get_user_ctxts() 5-14
get_user_info() 5-14

I
Information model 6-2
Initial 4-2
Initial access related interface requirements 2-2
Initial Contact and Authentication 4-3
Initial interface 4-4
initiate_authentication() 4-4
interface SAGInfoQuery 6-19
interface SagMgmt 6-16

interface ServiceContractInfoQuery 6-13
interface ServiceContractMgmt 6-12
interface ServiceProfileInfoQuery 6-21
interface ServiceProfileMgmt 6-20
interface ServiceTemplateInfoQuery 6-15
interface ServiceTemplateMgmt 6-14
interface SubscriberInfoQuery 6-12
interface SubscriberMgmt 6-11
interface UserProfileInfoQuery 6-24
interface UserProfileMgmt 6-23
Invitation segment 5-4
Invitations and Announcements 7-3
invite_end_user() 5-5
Issues to be Discussed 2-4

J
join_session_with_announcement() 5-9
join_session_with_invitation() 5-8
JoinSessionInfo 5-28

L
list_access_sessions() 5-16
list_available_services() 4-11
list_segments() 4-15
list_service_sessions() 5-20
list_session_announcements() 5-7
list_session_invitations() 5-6

M
Mandatory Requirements 2-1
Motivation 3-1

N
NewAccessSessionInfo 5-25
NewServicesInfo 5-26
NewSessionInfo 5-26

O
Object Management Group 1

address of 3
Optional Requirements 2-4
Overview of subscription segments 6-9

P
Properties and Property Lists 7-1
ProviderContext Interface 5-13
ProviderInvite Interface 5-6

R
release_segment() 4-16
reply_to_invitation() 5-10
request_access() 4-5
resume_my_participation() 5-23
resume_session() 5-22
ResumeMyParticipationInfo 5-28
ResumeSessionInfo 5-27
Retailer administration interface requirements 2-2
Roles and Domains 3-2

S
Scenario 5-13
TSAS v1.0 October 2000 Index-3

Index
Scenario description 6-10
Scenarios 5-6, 5-11, 5-15, 5-17, 5-19, 5-24
Security 3-6
Segments 3-5
select_auth_method() 4-7
select_service() 4-12
Service access related interface requirements 2-3
Service Access Segment Interfaces 5-2
Service Access Segments Compliance Point 8-1
Service and Session Information 7-8
Service contract 6-5
Service Contract Management 6-12
Service Discovery segment 5-17
Service profile 6-7
Service profile management 6-20
Service Provider 6-4
Service provider administration 6-14
Service Session Information segment 5-26
Service Session Information structures 6-26
Service template 6-6
Service type 6-8
ServiceDiscovery Interface 5-18
Session Control segment 5-20

SessionControl Interface 5-20
SessionId 7-3
Sessions 3-4
set_user_ctxt() 5-13
sign_service_agreement() 4-13
start_session() 4-13
Submission Guide 1-2
Subscriber 6-4
Subscriber administration 6-11
Subscriber Management 6-11
Subscription assignment group 6-7
Subscription Segments Compliance Point 8-1
SuspendMyParticipationInfo 5-27
SuspendSessionInfo 5-27

U
Usage related types 7-3
User and SAG Management 6-16
User Context Information 7-7
User Information 7-3, 7-7
User Provider relationship 3-3
UserContext Interface 5-12
Index-4 TSAS v1.0 October 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Description
	1.1 Motivation
	1.2 Roles and Domains
	1.3 User Provider Relationship
	1.4 Sessions
	1.5 Segments
	1.6 Security

	2. Core Segment
	2.1 Overview
	2.2 Initial Contact and Authentication
	2.2.1 Initial interface
	2.2.2 Authentication Interface

	2.3 Access
	2.3.1 Access Interface

	3. Service Access Segments
	3.1 Overview
	3.2 Service Access Segment Interfaces
	3.2.1 Base Interface

	3.3 Invitation Segment
	3.3.1 EndUserInvite Interface
	3.3.2 ProviderInvite Interface

	3.4 Context Segment
	3.4.1 UserContext Interface
	3.4.2 ProviderContext Interface

	3.5 Access Control Segment
	3.5.1 AccessControl Interface

	3.6 Service Discovery Segment
	3.6.1 ServiceDiscovery Interface

	3.7 Session Control Segment
	3.7.1 SessionControl Interface

	3.8 Access Session Information Segment
	3.8.1 Access Session Information structures

	3.9 Service Session Information Segment
	3.9.1 Service Session Information Structures

	4. Subscription Segments
	4.1 Overview
	4.2 Information Model
	4.2.1 Service Provider
	4.2.2 Subscriber
	4.2.3 Service Contract
	4.2.4 Service template
	4.2.5 Subscription Assignment Group
	4.2.6 Service Profile
	4.2.7 End-user
	4.2.8 End-user service profile
	4.2.9 Service type

	4.3 Subscription Segments
	4.3.1 Overview

	4.4 Scenario Description
	4.5 Subscriber Administration
	4.5.1 Subscriber Management
	4.5.2 Service Contract Management

	4.6 Service ProviderAdministration
	4.6.1 interface ServiceTemplateMgmt

	4.7 End-user Administration
	4.7.1 User and SAG Management
	4.7.2 Service Profile Management

	4.8 End-user Customization
	4.8.1 interface UserProfileMgmt {
	4.8.2 interface UserProfileInfoQuery {

	5. Common Types
	5.1 Common Information View
	5.1.1 Properties and Property Lists

	5.2 User Information
	5.2.1 Usage Related Types
	5.2.2 Invitations and Announcements

	5.3 Access Session Information
	5.4 User Information
	5.5 User Context Information
	5.6 Service and Session Information
	5.6.1 Base Interface

	Appendix A - OMG IDL
	Appendix B - Compliance Points
	B.1 Core Segment Compliance Point
	B.2 Service Access Segments Compliance Point
	B.3 Subscription Segments Compliance Point

	Index

