Telecom Service Access & Subscription
Specification, V1.0

This OMG document replaces the draft adopted specification and the submission document
telecom/2000-05-03. It is an OMG Final Adopted Specification, which has been approved by the
OMG board and technical plenaries, and is currently in the finalization phase. Comments on the
content of this document are welcomed, and should be directeslitss @omg.orgy November

30, 2000.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issueshowever, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on January 15, 2001.
If you are reading this after that date, please download the available specification from the OMG
formal specifications web page.

OMG Adopted Specification

Telecommunications Service Access
and Subscription (TSAS) Specification

Final Adopted Specification
October2000

Copyright 2000, Alcatel

Copyright 2000, AT&T

Copyright 2000, GMD Fokus

Copyright 2000, Hitachi

Copyright 2000, Lucent Technologies

Copyright 2000, Nippon Telegraph and Telephone (NTT) Corporation
Copyright 2000, Nortel Networks

Copyright 2000, Object Management Group (OMG)

Copyright 2000, Siemens AG

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF

TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7028r@dMG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.

X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface 1
About the Object Management Group 1
Whatis CORBA?. e 1
Associated OMG Documents 2
Acknowledgments 3
1. Description 1-1
1.1 Motivation 1-1
1.2 Rolesand Domainsiiiiiiinnnn 1-2
1.3 User Provider Relationship 1-4
1.4 SESSIONS . o 1-4
15 Segments 1-5
1.6 SeCUMtY ..o e 1-6
2. Core Segment 2-1
2.1 OVeIVIBW . o 2-1
2.2 Initial Contact and Authentication 2-3
2.2.1 Initialinterface 2-5
2.2.2 Authentication Integice 2-6
2.3 ACCESS . it 2-8
2.3.1 Accessinterface 2-10
3. Service AcCesS Segments. 3-1
3.1 OVeIVIEW . o 3-1
3.2 Service Access Segment Interfaces 3-3
3.2.1 Baselnterface 3-4

Telecom Service Access & Subscription October 2000 i

Contents

3.3 Invitation Segment 3-4
3.3.1 EndUserlnvite Interface 3-5
3.3.2 Providerlnvite Interface 3-7

3.4 ContextSegment 3-13
3.4.1 UserContextliInterface 3-13
3.4.2 ProviderContext Interface 3-14

3.5 AccessControl Segment, 3-16
3.5.1 AccessControl Interface 3-16

3.6 Service Discovery Segment 3-18
3.6.1 ServiceDiscovery Interface 3-19

3.7 Session Control Segment, 3-21
3.7.1 SessionControl Interface 3-21

3.8 Access Session Information Segment 3-26
3.8.1 Access Session Information structures 3-26

3.9 Service Session Information Segment 3-27
3.9.1 Service Session Information Structures 3-27

4. Subscription Segments 4-1
4.1 OVEIVIEW . ot e e e 4-1
4.2 Information Model 4-3
4.2.1 ServiceProvider................ 4-5

4.2.2 Subscriber. 4-5
4.2.3 Service Contract 4-6

4.2.4 Servicetemplate 4-6
4.2.5 Subscription Assignment Group 4-8
426 ServiceProfile 4-8

427 End-user 4-9
4.2.8 End-user service profile 4-9

429 Servicetype 4-9

4.3 Subscription Segments. L o e 4-10
431 OVeIVieW e 4-10

4.4 Scenario Description 4-11
4.5 Subscriber Administration 4-12
4.5.1 Subscriber Management 4-12

4.5.2 Service Contract Management 4-14

4.6 Service ProviderAdministration 4-15
4.6.1 interface ServiceTemplateMgmt 4-15

4.7 End-user Administration 4-17
4.7.1 User and SAG Management 4-17

Telecom Service Access & Subscription October 2000

Contents

4.7.2 Service Profile Management 4-21
4.8 End-user Customization 4-24
4.8.1 interface UserProfileMgmt{ 4-24
4.8.2 interface UserProfileInfoQuery { 4-25
5. CommMON TYPES . . .ot 5-1
5.1 Common Information View 5-1
5.1.1 Properties and Property Lists 5-1
5.2 User Information 5-3
5.2.1 UsageRelated Types 5-4
5.2.2 Invitations and Announcements 5-4
5.3 Access Session Information 5-7
5.4 UserInformation 5-7
5.5 User Context Information 5-8
5.6 Service and Session Information 5-9
5.6.1 Baselnterface.......................... 5-10
Appendix A-OMG IDL A-1
Appendix B - Compliance Points B-1

Telecom Service Access & Subscription October 2000 iii

Contents

Telecom Service Access & Subscription

October 2000

Preface

About the Object Management Group

What

The Object Management Group, Inc. (OMG) is an international organization supported by
over 800 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to develop a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

iIs CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.

Telecom Service Access & Subscription October 2000 1

Associated OMG Documents

The CORBA documentation set includes the following:

® Object Management Architecture Guidefines the OMG'’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

® CORBA: Common Object Request Broker Architecture and Specificaiitains
the architecture and specifications for the Object Request Broker.

® CORBA Languages collection of language mapping specifications. See the
individual language emapping specifications.

® CORBAservices: Common Object Services Specificatimtains specifications for
OMG'’s Object Services.

®* CORBAfacilities: Common FacilitieSpecificationincludes OMG’s Common
Facility specifications.

®* CORBA ManufacturingContains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

®* CORBA MedComprised of specifications that relate to the healthcare industry and
represents vendors, healthcare providers, payers, and end users.

® CORBA FinanceTargets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

® CORBA TelecomgComprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only whe
representatives of the OMG membership accept them as such by vote. (The policies and
procedures of the OMG are described in detail infbgct Management Architecture

Guide)

OMG formal documents are available from our web site in PostScript and PDF format. To
obtain print-on-demand books in the documentation set or other OMG publications, con-
tact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404

2 Telecom Service Access & Subscription October 2000

Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:
 Alcatel
o AT&T
 Britich Telecommunications plc.
¢ Cicso Systems
* Deutsche Telekom AG
* GMD Fokus
 Hitachi
¢ Humboldt University
« IBM Telecommunications Industry
* KPN Royal Dutch Telecom
¢ Lucent Technologies
* Nippon Telegraph and Telephone (NTT) Corporation
* Nortel Networks
* Siemens AG
e Sprint
¢ Sun Microsystems

TSAS V1.0 Acknowledgments October 2000

Telecom Service Access & Subscription October 2000

1.1 Motivation

Description 1

This chapter introduces the key concepts used in this specification.

Contents

This chapter contains the following sections.

Section Title Page
“Motivation” 1-1
“Roles and Domains” 1-2
“User Provider Relationship” 1-4
“Sessions” 1-4
“Segments” 1-5
“Security” 1-6

Network operators have traditionally followed a network-centric approach to delivering
scalable, reliable and economic services to consumers and enterprises. The basic
functions that are required to support services such as 800 numbers, call waiting and
personal numbering have been under the exclusive control of the network operators.
Enterprises and service providers wishing to offer value-added solutions, such as call
centers, have had to rely on an edge-of-network approach and have been denied acces
to useful information and capabilities within the network.

The disadvantages of this separation are significant in today’s marketplace. Network
operators employing a network-centric approach are unlikely to have the resources and
flexibility necessary to respond to the specialized requirements of different customer

Telecommunications Service Access & Subscription October 2000 1-1

markets. Similarly, solution providers adopting an edge of network approach, while
they may have the flexibility required for customizing services, are unable to gain the
efficiency of using in-network functions and information. The architecture of the
Telecommunication Service Access and Subscription (TSAS) specification combines
the benefits of the network centric approach of economies of scale with the flexibility
of the edge of network approach.

The set of interfaces contained within this specification provide the domain facilities
through which network operators can offéf Barty enterprises secure access to the
capabilities of the network. Capabilities such as call control and user location can be
offered (through their own interfaces) or b&9' Party value-added services and
solutions.

Of course this approach is not only applicable to providing access to embedded
network capabilities. It can also be used for a wide range of commercial models
supporting customer-to-business or business-to-business relationships for eCommerce
and the Application Service Provider market in general. Provision of functions for
billing and payment can be easily integrated.

It is not within the scope of this specification to restrict the breadth of [component]
services that could be offered by TSAS. This specification is technically aligned with
that of the Parlay Group [Ref http://www.parlay.org]. Consequently the service
interfaces specified in the Parlay API [Parlay API specification 2.0] can be offered
using this specification.

1.2 Roles and Domains

Three different domains are defined for TSAS as shown in Figure 1-1: Consumer
Domain, Retailer Domain, and Service Provider Domain.

Consumer Retailer Service
Domain Domain Provider
Domain

Subscribern
Retailer Serv_lce
End-User Provider

Figure 1-1 TSAS Domains

The domains are strongly correlatedrates, which will be explained in the following
text.

Telecommunications Service Access & Subscription October 2000

In the Consumer Domaiwo kinds of roles are defined, tie@d-userole and the
subscriberrole. Typically end-users can be private households or any kind of company.
The end-useris the one that makes use of the service whilesthescriberholds the
contract with the retailer and subscribes to services for its users. This can be depicted
with a very common example: A company - the subscriber - has a subscription
contract with a telephony provider. In the contract the rights of the different employees
are defined - the employees are the end-users. In the case of a private household the
subscriber and end-user role are identical.

Within the Retailer Domain the retailer role is defined. Tdtailer provides an

integrated view of services to the end-user or subscriber. A major point of value added
services offered by retailers is the unified management of services, in particular in
terms of subscription facilities. Retailers thus act as middlemen for service providers
and present a single point of contact to end-users and subscribers. This is an analogy tc
the notion of one-stop-shopping in a supermarket. Retailers have to ensure the ease anc
guality of service access.

Within TSAS the retailer is giving end-users a single point of contact for all their
service needs. Additionally, the retailer enables end-users to customize and personalize
services that they use by providing facilities to configure and select services
incorporating personal preferences.

A prerequisite for service provisioning is a contractual relationship between service
providers and the retailer. For service access a contractual relationship must exist
between the subscriber and the retailer. No direct contractual relationship is required
between end-user and service provider since the retailer mediates between both.

In general, the retailer:
® manages contracts for end-users and service providers,

® |ocates matches between user requirements and service provider subscription offers,
and finally,

® enables the interaction between end-user and service provider.

In the Service Provider Domain tiservice providerole is defined. It offers its

services to the end-user (or subscriber) through a retailer, or in other words, it supports
the retailer with services. In addition, the retailer allows service providers to reach a
larger number of potential end-users. The services that are provided by the service
provider can be service logic or content, or both. The service provider can also be
compared to a wholesaler.

The TSAS specification is a domain facility enabling end-users to access
telecommunication services according to their own wishes. In addition, the
specification describes how services can be retailed on behalf of service providers,
which in turn offer their services to the retailer.

TSAS v1.0 Roles and Domains October 2000 1-3

1-4

1.3 User Provider Relationship

TSAS offers mechanisms to establish and release authenticated connections between
different domains; therefore, each domain provides interfaces to do so. TSAS uses the
termsuser andproviderinstead of thelient andserverterminology, which would be
misleading in a number of situations. The user is the role directed to use the interface
and provider is the role providing the interface, which is shown in Figure 1-2.

The active role is always theser rolethat initiates the access whereas the passive role
is theprovider, responding to a request.

For a single interaction between two domains request - response user and provider are
situated in differentomains The domain boundaries are usually based on natural
affinities between objects, such as network topology, business stakeholder, or
geographical area. In a single scenario more than one user - provider relation may exist
(for example, it is possible to have a chain in which a single party acts as a provider in
one direction and as user in the other direction).

This may be illustrated by the following example. There is a chain of end-user, retailer,
and service provider. The retailer offers services to the end-user, which are realized by
the service provider. In the relationship between end-user and retailer the end-user is a
user, the retailer a provider. In the relationship between retailer and service provider
the retailer is a user and the service provider is a provider.

Note that the definitions in this section imply that the teussrandprovider, end
user andservice providethave different meanings.

End-use(

TS — . Service
w> Retailer <w> provider

1.4 Sessions

Figure 1-2 use of generic user and provider roles

The usage of services that are implemented taking into account the TSAS framework
can be structured in differesessionsThese are used for grouping specific activities
between user and provider. The TSAS specification distinguishes between two
different sessions:

® An access sessiois used to establish an authenticated binding between two
domains, which in TSAS is between the consumer domain and the retailer domain
or between the retailer domain and the service provider domain. It maintains the
state about a user's attachment to a provider and about its involvement in services.
An access session hence represents the context through which the end-user can
access services. The general access session concept also supports all aspects of
mobility, that means ubiquitous access by an end-user to the services, irrespective of
the terminal being used and the point of attachment to the network.

Telecommunications Service Access & Subscription October 2000

1

1.5 Segments

® A service sessiorepresents a single activation of a service. It can relate multiple
end-users of the service so that they can interact with each other. Moreover, end-
users can share resources such as documents or white boards. An end-user may be
involved in many services at the same time although it has accessed the retailer only
once. The state of a service session is always kept by the service provider (not by
the retailer).

Generally, a service cannot be used without having an active access session. Closing
the connection between end-user and retailer, or retailer and service provider
respectively, will end an access session and also terminate all currently used services.

The operations offered by TSAS are grouped in interfaces. The interfaces in turn build
segmentsnamed sets of interfaces (including so-called callback interfaces) that can be
exchanged in one synchronous operation invocation. A segment may consist of two
sets of interfaces: one dedicated set for each domain as shown in Figure 1-3.

Domain A

(-

T

b
s

v
/\|_‘
I_

>Domain B Domain C

_I

D

i |

Example of a segment

Figure 1-3 Domains, Segments and Interfaces

One TSAS segment is mandatory: the core segment that handles the initial access
phase between different domains. This covers the possibility to perform an
authentication protocol, and access to services an end-user may wish to use. In
addition, it offers the possibility to gain access to other segments supported by the
provider.

The other segments can be selected at runtime after an (optional) negotiation phase.
Currently these additional segments are defined and described in this chapter and
chapter 2: The Invitation Segment, the Context Segment, the Access Control Segment,
the Service Discovery Segment, the Session Control Segment, the End-user
Customization Segment, the Service Provider Administration Segment, the End-user
Administration Segment, and the End-user customization segment They all offer
additional service independent functionality.

TSAS V1.0 Segments October 2000 1-5

1-6

1.6 Security

The usage of optional segments may be tailored for a certain purpose. Segments are
self-contained, there exist no dependencies between segments. This eases use of som
segments in a certain context, and allows adding additional segments in the future.

The optional segments (also called Service Access Segments and Subscription
Segments) are available during an access session only, as described in Section 1.2,
“Roles and Domains,” on page 1-2. Its operations allow the end-user or subscriber,
retailer, and service provider to interact during an access session in the respective roles
of user or provider across domains.

Segments can be requested or supported by the involved domains, depending on the
required functionality. Each of these segments can be selected independently of the
others. Once selected, however, the segment implementation must use the
specifications of this document.

TSAS uses (mutually) authentication mechanisms between two domains, between the
end-user of the consumer domain and the retailer domain, and between the retailer
domain and the service provider domain respectively. For authentication either
CORBA security can be used or the authentication interface defined in Section 2.2.2,
“Authentication Interface,” on page 2-6. Once authenticated, the other optional
segments can be used without further authentication for each segment. As a result of
the authentication, references of interfaces are available between domains and remain
available as long as the relationship resulting from authentication is valid.

Telecommunications Service Access & Subscription October 2000

2.1 Overview

Core Segment 2

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 2-1
“Initial Contact and Authentication” 2-3
“Access” 2-8

The core segment is mandatory and defines the interfaces which are used in the initial
phase between different domains. This covers the first point of contact to access a
provider the possibility for user and provider to perform an authentication protocol,

the access to services they wish to use, and access to other segments supported by th
provider.

In TSAS a user contacts a provider to access services offered by the provider. To
access these services, the user is required to invoke authentication procedures with the
provider before it is able to access services. The use of the tsenmandprovideris

made according to their definition in the previous chapter.

TSAS defines:
® The first point of contact for a user to access a provider.

® The authentication operations for the user and provider to perform an authentication
procedure.

® The user access to services they wish to use.

Telecommunications Service Access & Subscription October 2000 2-1

2-2

® The user access to other segments supported by the provider.

The process by which the user accesses the provider has been separated into 3 phase
1. Initial Contact

2. Authentication

3. Access to the provider’s services and segments

Within the core, segment interfaces are defined and within these interfaces operations
are defined to enable the user to progress through each of these phases. An overview o
these interfaces and operations is given in Figure 2-1.

| Initial

—| Authentication
—| Access

User Initial — Provider

Authentication|_‘

Accessl—

Figure 2-1 Core Interfaces

Initial - This interface allows a user to initiate an authentication procedure and to
request access to the provider domain. This initiates an access session; the concept of
access session is explained in Section 1.4, “Sessions,” on page 1-4. The operations
provided are:

® initiate_authentication() - allows the user to initiate an authentication procedure.

® request_access() - allows the user to request the provider to initiate an access
session. If successful the user gains access to an interface for accessing services an
other segments offered by the provider.

Authentication - This interface allows a user to proceed through an authentication
procedure. It provides the following operations:

® select_auth_method() - for selecting the authentication procedure.

® authenticate() - to perform the authentication. (It can be invoked several times to
complete the authentication procedure).

® abort_authentication() - to abort the authentication procedure.

Access - This interface allows an authenticated user to access services and other
segments offered by the provider. The interface provides the following operations:

Telecommunications Service Access & Subscription October 2000

Table 2-1

Operation Description

list_available_services() Lists all services that are available at the retailer.
The services are scoped using property lists. The
operation returns sufficient information for the user
to select a service, then start a service

select_service() To select the service to be provided, and provide
configuration information.

start_session() To start a service session.

sign_service_agreement() Used to start a service session when non-
repudiation of the request to start the session is

required.

end_access() To end the access session.

end_session() To end service sessions.

get_segment() To set-up a segment.

list_segments() To list the segments that are available from the
provider.

release_segments() To release segments.

2.2 Initial Contact and Authentication

Before a user can retrieve information about services offered by a provider, or use
these services, they need to contact the provider, and perform an authentication
procedure. Figure 2-2 on page 2-4 shows the sequence of operationsimitigh@nd
Authentication interfaces, for the user to contact the provider, and authenticate. The
user then gains access to thecess interface to retrieve information on services, use
services, and use other interfaces offered by the provider.

* (Before diagram) - User gains a reference toltiitgal interface of the provider.
This may be gained through a URL, an Application Support Broker, a stringified
object reference, etc.

® User may invokenitiate_authentication on thelnitial interface. This 'starts' the
authentication of the user and provider. The operation allows the user and provider
to swap references to thaithentication interface. There is the possibility to
choose between different authentication types. Here the TSAS authentication type is
used also shown in Figure 2-2 the mutual authentication in brackets.

® User invokesselect_auth_method on the provider'@uthentication interface.
The user identifies to the provider the authentication methods that it can use. Upon
return, the provider selects the mechanism that it wishes the user to use.

TSAS v1.0 Initial Contact and Authentication October 2000 2-3

® User invokes authenticate on tAathentication interface, in accordance with the
authentication protocol selected. The authenticate operation contains an opaque
parameter for the user to fill with data appropriate for the selected authentication
protocol. This is the challenge parameter for the provider. The provider is able to

‘decode’ this parameter, and
challenge data, according to

produce an appropriate response, based upon the
the authentication protocol. This response data is

returned to the user in the response parameter. This operation identifies the user
unequivocally to the provider.

® The response data is decoded by the user. Depending upon the response data and th
selected authentication protocol, the user may need to produce some additional
challenge data to the provider. If this is necessary, then the user makes repeated
calls using authenticate Authentication. This process continues until the response
data indicates that the authentication protocol is complete, and the user and provider
are satisfied that they have authenticated each other. If either side is not satisfied
with the authentication, they may call tabortAuthentication operation to abort

the authentication protocol.

® Once user and provider are authenticated, the user invokesdiestAccess
operation on thénitial interface. This operation allows the user to select the type of
access that they require. If they select ACCESS, then a referenceAoctss

interface is returned.

Authentication (on user Initial

user,

Authentication

(on_Provider)

I I
initiateAuthentication()
I

user's Authentication reference is
passedto provider, and its
Authentication is returned.

|
|
|
selectAuth ehticau'onMethod() \
|
|
|
|
|

This is an example of the sequence of
authenticate operations. Different
authentication protocols mayhave
diference requirements on the order of
operations.

authenticate()
|

I
(authenticate(?)

|
|
|
|
|
|
|
|
|
=
|
|
|
|
|

‘ requestAccess ()‘
E—
\ \
\ \

~J
/‘

|

(authv‘anticate() J
\

\

\

\

Figure 2-2 Sequence diagram for

Telecommunications Service Access & Subscription

If user supports an Access interface, its
reference is passed to the Provider.
Provder's Access is returned.

initial access and authentication

October 2000

2.2.1 Initial interface

22.1.1

The user gains a reference to thiial interface for the provider that it wishes to
access. This may be gained through a URL, an Application Support Broker, a
stringified object reference, etc. At this stage, the user has no guarantee that this is a
reference to a valid provider.

The user uses this interface to identify himself to the provider and to initiate the
authentication process. Theitial interface supports thigitiate_authentication

operation to allow the authentication process to take place. It also supports the
request_access operation to gain access to the provider after the authentication has
completed successfully.

initiate_authentication()

void initiate_authentication (
in AuthDomain user_domain,
in AuthType auth_type,
out AuthDomain provider_domain)
raises (
DomainError,
AuthError);

The user uses this method to initiate the authentication pracgss.domain is an
identifier for the user’s domain that starts the authentication process. It is a structure of
the typeAuthDomain that contains @omainld and an interface reference. The
Domainld is used to identify the user to the provider (aathenticate() on
Authentication interface). If theDomainld is unknown to the provider, an exception
DomainError is raised by the provider. The interface reference is a reference to an
Authentication interface at the user domain that can be invoked by the provider to
perform the authentication procedure.

auth_type identifies the type of authentication mechanism requested by the user. It
provides users and providers with the opportunity to use an alternative TS A%
Authentication interface (for example, CORBA Security). This authentication
process may be specific to the TSAS provider. TBAS Authentication provided

by the authentication interface is the default authentication method.

If the CORBA Security Service is supported by both the user and the provider, then it
may be used to mutually authenticate the user and the provider. The operation of the
CORBA security service is out of the scope of TSAS. If it is used to provide
authentication of the parties, then the CORBA_SECURITY value is used for the
auth_type attribute, and no further authentication is required.

However, if the CORBA Security Service is not supported by both parties, and if
further authentication is required, then th@AS Authentication interface can be
used. It is obtained by filling thauth_type attribute with the value
TSAS_AUTHENTICATION.

TSAS v1.0 Initial Contact and Authentication October 2000 2-5

The operation deliverprovider_domain , an identifier of the provider domain.
Similar to theuser_domain , it is a structure of the typ&uthDomain that contains
aDomainld and an interface reference. Téh@mainld is used to identify the provider
to the user. The interface reference is a reference Autlrentication interface at the
provider domain.

2.2.1.2 request_access()

request_access (
in AccessType access_type,
in Object user_access,
out Object provider_access)
raises (AccessError);

The user uses this method to gain access to the provider by means of an access sessio
This operation must be invoked only after user and provider are authenticated. If this
method is called before the user and the provider have successfully completed the
authentication process, then the request fails and an excéatiwessError is raised.

access_type identifies the type of access interface requested by the user. Providers
can define their own access interfaces to satisfy user requirements for different types of
access. If the user requests ACCESS, therm8%S Access interface is returned.

TSAS Access is the default access method. Depending on the requested AccessType,
the access interface with the corresponding type is returned (see below).

user_access provides the reference for the provider to call the access interface of the
user. If the interface reference does not correspond to the type expected, due to the
value ofaccess_type , an exceptiorAccessError is raised by the provider.

The returned object provides the reference for the user to call the access interface of
the provider.

2.2.2 Authentication Interface

Once the user has made initial contact with the provider, authentication of the user and
provider may be required. The user may be required to authenticate with the provider
before it will be able to use any of the other interfaces supported by the provider.
Invocations on other interfaces may fail until authentication has been successfully
completed.

TSAS supports several authentication methods. TSAS also defines its own generic
authentication mechanism. If the user wants to use the TSAS generic authentication,
then it uses thénitiate_authentication operation on the providerlsitial interface

as described above, witiuth_type parameter set tdSAS_AUTHENTICATION.

The reference returned is tR&AS Authentication interface. This interface can be
used to support an authentication procedure.

1. The user invokes theelect_auth_method operation on the provider's
Authentication interface. This includes the authentication capabilities of the user
(that is, the authentication procedures known by the user application). The provider

Telecommunications Service Access & Subscription October 2000

2

then chooses an authentication procedure based on the authentication capabilities of
the user and the provider. If the user is capable of handling more than one
authentication procedure, then the provider chooses one opticseldoted _cap .

In some instances, the authentication capability of the user may not fulfill the
demands of the provider, in which case, the authentication will fail.

2. The user and provider interact to authenticate each other. Depending on the
authentication capability selected, this procedure may consist of a number of
interactions (for example, a challenge/response protocol). This authentication
procedure is performed using the authenticate operation ohRSAS
Authentication interface. Depending on the authentication capability selected, the
procedure may require invocations on fhghentication interface supported by
the provider; or on th&uthentication interface supported by the user; or on both
interfaces.

After the authentication procedure has been completed, the user can invoke the
request_access operation on thénitial interface to gain access to the provider's
services and other TSAS segments supported by the provider.

2.2.2.1 select_auth_method()

void select_auth_method (
in AuthCapabilityList auth_caps,
out AuthCapability selected_cap)
raises (AuthError);

The user invokes theelectAuthMethod on the provider'sauthentication interface

to initiate the TSAS generic authentication process. This provides the authentication
capabilities of the user to the provider. The provider then chooses an authentication
method based on the authentication capabilities of user and provider. The operation
returns the selected methogklected_cap). In some instances, the authentication
capability of the user may not fulfil the demands of the provider, in which case the
authentication will fail (the operation raises the excepfAathentication Error).

® auth_caps is the means by which the authentication mechanisms supported by the
user are conveyed to the provider. Examples for authentication capabilities may be
(for example, bio ID techniques, chip cards, or username/password combinations).

® selected_cap is returned by the provider to indicate the mechanism preferred by
the provider for the authentication process among the ones supported by the user
that were specified iauthCaps . If the value of theselectedCap returned by the
provider is not understood by the user, it should be considered as an unrecoverable
error (‘panic’) and the user should abort its application.

2.2.2.2 authenticate()

void authenticate (
in AuthCapability selected_cap,
in string challenge,
out string response)

TSAS v1.0 Initial Contact and Authentication October 2000 2-7

2-8

2.3 Access

2.2.2.3

raises (AuthError);

The user and provider use this operation to authenticate each other. It returns a
response string. This operation is used according to the authentication procedure,
selected by theelected _cap parameter (returned tselect_auth_method()). This
procedure may consist of a number of messages (for example, a challenge/ response
procedure). The values of the challenge and response parameters are defined by the
authentication procedure. The challenge is used to identify a user uniquely. It may
contain a userld or a certificate, which can identify the user by a distinguished name
conforming to X.509 v3.

An AuthError exception is raised if theelected_cap does not correspond to the
selected cap returned byselect_auth_method() . An AuthError exception is also

raised if the challenge data does not correspond to the procedure selected (that is, the
challenge data cannot be decrypted according to that method).

The response attribute provides the response of the provider to the challenge data of
the user in the current sequence. The response will be based on the challenge data,
according to the procedure selectedskject_auth_method () .

abort_authentication()

void abort_authentication ()
raises (AuthError);

The user uses this method to abort the authentication process. This method is invoked
if the user no longer wishes to continue with the authentication process (for example,
if the provider responds incorrectly to a challenge). If this method has been invoked,
calls to therequest_access operation on thénitial interface will raise the

AccessError exception until the user has been properly authenticated. It contains no
attributes.

Once a user has been authenticated with a provider an access session is established.
The user now can gain access to the services and other segments offered by the
provider.

The user invokes theequest_access operation on thénitial interface with the

required accessType. If it requests ACCESS, then a reference Acdbss interface

is returned. (TSAS Providers can define their own access interfaces to satisfy user
requirements for different types of access). The user also provides the provider with a
reference to its ‘callback’ interface to allow the TSAS provider to initiate interactions
during the access session. If the user has requested ACCESS, then it must provide a
reference to an interface that will be used for the authentication procedure.

The Access interface allows the user to access services offered by the provider and to
gain references to other segments. Segments are defined by TSAS in chapter 3. The
sequence for accessing the segments is given in Figure 2-3. Segments are accessed &
using thelist_segments() , get_segment() , andrelease_segments() operations.

Telecommunications Service Access & Subscription October 2000

User Initial Authentication Access
?;;is; 3 requestAccess() | |
I
access phase) \ \ \ \
‘ Iist_segments‘()

\ \
| get segments () repeat for each

| | segmert
| |
release_segments ()
\ \

Figure 2-3 Sequence diagram for access segments

list_segments() may be used for getting informed which segments are currently
available for a user. Witbet_segment () a single segment will be returned. This
operation needs to be called separately for every segment which shall be used. When
segments are not needed anymore, they can be releasegtiwitbe segments() .

TSAS v1.0 Access October 2000 2-9

Initial Authentication Access

[
‘Iist_us er_services ()
|

|
select_servicé () ‘
start_session () ‘

|

\

‘ Or, instead of
start_session

\

sign_service_agree‘ment ()

\
end_session ‘()

end_access ‘()

Figure 2-4 Sequence diagram for accessing services

The user uselist_available_services() to retrieve theServiceld of the service they

wish to use. Thaelect_service() operation is used to inform the provider that the

user wishes to use the service. Thendtat_session() operation is used to initiate

the session and return an interface reference to the service. Alternatively, the
sign_service_agreement() operation can be used when non-repudiation of the
request to initiate the session is required. A service session can be ended by using the
end_session operation. As a result, the interfaces offered by the service are not
longer available to the user. The complete process is described in more detail in the
following section.

The end_access operation is used to end the user’s access session with the provider.
After it is invoked, the user will no longer be authenticated with the provider. The user

will not be able to use the references to any of the provider interfaces gained during the
access session. Any calls to these interfaces will fail.

The Access interface is also offered by the user to the provider to allow it to initiate
interactions during the access session.

2.3.1 Access Interface

2-10

During an authenticated access session the user will be able to select and access
services. In order to use a service, the user must be authorized to use the service
having establishing a service agreement.

Telecommunications Service Access & Subscription October 2000

2

Service agreements can be concluded using either off-line or on-line mechanisms. Off-
line agreements will be gained outside of the scope of TSAS interactions and so are
not described here. However, users can make use of service agreements that are mad
off-line. Some providers may only offer off-line mechanisms to conclude service
agreements. On-line service agreements may be concluded by using other TSAS
provider interfaces, such as the interfaces defined by the subscription segments.

After a service agreement has been established between the user and the provider, the
user will be able to make use of this agreement to access a service. The user can use
the operations on th&ccess interface to:

® list the services which it can use,
® select the service it wish to use with some specific service properties, and

® to start the service session.

The list_available_services() operation is used to provide a list of services, which
the user can use. The user can specify a list of properties that the service must match
in order to scope the range of services returned.

The select_service() operation is used to identify the service that the user wishes to
use. A list of service properties initializes the service and a service token is returned.

The user starts the service session by usingtdm¢ session() operation. This

operation uses the service token to identify the service, with specific service properties,
from which to create a new service session. The operation ret@ess@ininfo

structure that contains tiessionld , SessionPropertyList , and aninterfaceList

with references to interfaces offered by the service session implementation.

Alternatively, after the service has been selectedsidye_service_agreement()

operation can be used to start the service session. This operation is used when the use
and provider wish to have non-repudiation for the request to start the service. The
sign_service_agreement() operation allows the user to sign the service agreement

for this service confirming their identity to the provider.

2.3.1.1 list_available_services()

void list_available_services (
in ListedServiceProperties desired_properties,
out ServiceList service_list)
raises (
PropertyError,
ListError);

The list_end_user_services() returns a list of the services that are immediately
available to the user. It can be noted that the list that is returned can contain services to
which the user is already subscribed, as well as services that are (momentarily) offered
for free (for which no subscription is required, see section 6 for details on subscription)

The desired_properties parameter can be used to scope the list of services.
desired_properties identifies the properties that the services must match. For
example, such a property can indicate that the services returned in the list must all be

TSAS v1.0 Access October 2000 2-11

2-12

currently availableListedServiceProperties also defines whether a service must
match one, all or none of the properties (schProperties in section

Section 5.1.1, “Properties and Property Lists,” on page 5-1). Currently no specific
property names and values have been definedistedServiceProperties

(‘available’ or 'subscribed’ would be a good example though), and so its use is service
provider specific.

The list of services that matches tthesired_properties is returned in the

Servicelist. This is a sequence $4rvicelnfo structures which contain the

Serviceld , UserServiceName (consumer’s name for the service), and a sequence of
service propertieservicePropertyList . TheServiceld is associated with a specific
service when the service is subscribed.

The value ofService_id is unique among all the available services, bur may be
different for different users. Theervice_id value persists for the lifetime of the
contractual relation between user and provider concerning this service.

Currently no specific property names and values have been defined for
ServicePropertyList , and so its use is service provider specific.

If the desired_properties parameter is wrongly formatted, or provides an invalid
property name or value, tHeropertyError exception should be raised. Property

names that are not recognized can be ignorddsired_properties require that only
some, or none of the properties are matched. If the service list is unavailable because
the retailer’s services are not available, then the operation should raistEsror

exception with thdListUnavailable error code.

The operation delivers a list of the services which the user may use. It can be noted
that the list that is returned can contain services that are offered for free (for which no
subscription is required).

2.3.1.2 select_service()

void select_service (
in Serviceld service_id,
in ServicePropertyList service_properties,
out ServiceToken service_token)
raises (
ServiceError,
PropertyError);

This operation is used by the user to identify the service that they wish to use.

service_id identifies the service required. It may be gained by using
list_available_servicesuser_services or by some other means. Thervice_id is
unique among all the available services. Fhevice_id value persists for the lifetime
of the contractual relation between user and provider concerning this service.

If the service_id is not recognized, thenServiceError exception is raised with an
InvalidServiceld error code. If the user is not allowed to use this service, a
ServiceError exception is raised with 8erviceAccessDenied error code.

Telecommunications Service Access & Subscription October 2000

2

2.3.1.3

23.1.4

service_properties are a list of the service properties that the service instance
should support. (These properties are used to initialize the service instance.) If a
service property is not recognized by the providd?rapertyError exception is
raised.

The returnedservice_token is a free format text token returned by the provider,
which can be used to start a service session with the selected service properties. This
token contains provider specific information relating to the service agreement. The
user is not intended to be able to ‘decode’ or understand the service token. The user
merely offers the service token when they wish to gain a reference to the service
session (either usingtart_session , or sign_service_agreement .) The

ServiceToken may have a limited lifetime. If the lifetime of tt8erviceToken

expires, a method accepting tBerviceToken will raise aServiceError with an
InvalidServiceToken error codeServiceToken s will not be accepted if the access
session has been terminated (that is, the user or provider invokesdh&ccess

operation on the otherAccess interface).

start_session()

void start_session (
in ServiceToken service_token
in Applicationinfo app,
out SessionInfo session_info)
raises (
ServiceError);

This operation is used by the user to start a service session and is an alternative
operation tosign_service_agreement . The service session corresponds to the

service token (that is, the service session is a session of the service type), and has the
service properties selected when the service token was generated (using
select_service()).

service_token is returned by the provider in the callgelect_service() . This token

is used to identify the service type and service properties selected by the user. If the
service_token is invalid, or has expired, ServiceError exception is raised with an
InvalidServiceToken error code.

The returnedsession_info is a structure containing information about the started
service session instance. It includes $essionld , SessionPropertyList , and a list
of interfaces relating to the service session.

sign_service_agreement()

void sign_service_agreement(

in ServiceToken service_token,

in string agreement_text,

in SigningAlgorithm signing_algorithm,

out SignatureAndSessioninfo signature_session_info)
raises (

ServiceError,

TSAS v1.0 Access October 2000 2-13

2-14

ServiceAgreementError);

This operation is used by the user to request that the provider signs a service agreemen
before the user is allowed to use the service. The service agreement provides non-
repudiation that the user requested to use the service and gain access to a service
session.

service_token is the token returned by the provider in the calbétect _service() .

This token is used to identify the service type and service properties selected by the
user. If theservice_token is invalid, or has expired, @erviceError exception is

raised with arinvalidServiceToken error code.

agreement_text is the service agreement text that is to be signed by the provider.

signing_algorithm is the algorithm used to compute the digital signature of the
service agreement.

Returned is a structure containing the digital signature of the provider for the
agreement_text and the session information.

struct SignatureAndSessioninfo {
string digital_signature;
SessionInfo session_info;

h

The digital_signature is a signed version of a hash of the service token and
agreement text. The mechanism to compute the digital signature is given by
signing_algorithm

session_info is a structure containing information about the service session. It
includes theSessionld , SessionPropertyList , and a list of interfaces relating to the
service session.

2.3.1.5 end_access()

void end_access (
in EndAccessPropertyList end_access_properties)
raises (PropertyError);

This operation is used to end the user’'s access session with the provider. The user
requests that its access session is ended. After it is invoked, the user will no longer be
authenticated with the provider. The user will not be able to use the references to any
of the provider interfaces gained during the access session. Any calls to these
interfaces will fail.

end_access_properties is aPropertyList defining the actions to be taken by the
provider in ending the access session (for examplegrideaccess_properties may
define the action to be takendhd_access() is called while there are active service
sessions). If the properties are invalidRepertyError exception is raised.

Telecommunications Service Access & Subscription October 2000

2.3.1.6 end_session()

void end_session (
in Sessionld session_id)
raises (SessionError);

This operation is used to end a service session. After it is invoked, the service session
associated with th8essionID will have ended and will not be accessible to the user,
(that is, the user will no longer be able to use any of the references to the session’s
usage interfaces).

session_id identifies the session to end. If teession_id is invalid, a
SessionError exception is raised with dmvalidSessionld error code.

2.3.1.7 list_segments()

void list_segments (
out SegmentldList segment_ids);

This operation is used to list the segments offered by the provider. Segments other than
this core segment are optional, and so only a subset of the segments defined by TSAS
may be offered by a provider. Tlsegment_ids returned by this operation only

include segment identifiers to segments that are offered by this provider and are
available to this user.

2.3.1.8 get_segment()

void get_segment (
in Segmentld segment_id,
in InterfaceList user_refs,
out InterfacelList provider_refs)
raises (
SegmentError,
InterfaceError);

This operation is used to establish a segment between the user and the provider.

®* segment_id identifies the segment to be established. The segment defines a
number of interface to be offered by the user and the provider. Hettpment_id
is invalid, the provider raises@egmentError exception with an
InvalidSegmentld error code.

® user_refs is a list of interfaces supported by the user. It must include references to
all interfaces of the types which are required for this segment on the user side. If a
required interface is missing from the listSegmentError exception is raised
with a RequiredSegmentinterfaceNotSupplied error code, and the interface
name is returned. If an interface is not part of the segment interfaces, a
SegmentError exception is raised, with dnvalidSegmentinterface error
code, and the interface name is returned.

TSAS v1.0 Access October 2000 2-15

2-16

A list of interfaces supported by the segment is returned. It must include references to
interfaces of the types which must be supported by the provider for this segment.

2.3.1.9 release_segment()

void release_segments (

in SegmentldList segment_ids)
raises (

SegmentError);

This operation is used to release segments that have been established between a usel
and provider. Once a segment is released, the interfaces associated with the segment
cannot be used.

segment_ids is a list of segment identifiers of segments to be released. If a segment
identifier is invalid, aSSegmentError exception is raised with dnvalidSegmentid
error code.

Telecommunications Service Access & Subscription October 2000

3.1 Overview

Service Access Segments 3

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 3-1
“Service Access Segment Interfaces” 3-3
“Invitation Segment” 3-4
“Context Segment” 3-13
“Access Control Segment” 3-16
“Service Discovery Segment” 3-18
“Session Control Segment” 3-21
“Access Session Information Segment” 3-26
“Service Session Information Segment” 3-27

This chapter describes segments that are defined for controlling the access between
domains and for controlling the access to services. In the scope of the
‘Telecommunication Service Access and Subscription’ (TSAS), these inter-domain
accesses and services access take place on the one hand between the consumer dome
and the retailer domain, and on the other hand between the retailer domain and the
service provider domain.

The service access segments address two types of access functionality:

Telecommunications Service Access & Subscription October 2000 3-1

3-2

Consumer Domain
(End-users and Subscribers)

functionality dedicated to the control of (inter-domain) access sessions, which in
turn is specialized into the control of the access between the

e consumer domain and the retailer domain, and
« the retailer domain and the service provider domain.
functionality related to accessing services, for which the consumer domain invokes

the retailer domain, and the retailer invokes in its turn one or more service
providers. These service providers support the actual services.

The functions dedicated to accessing domains consist of retrieving a list of active
access sessions and a facility to terminate active access sessions.

The functions dedicated to accessing services are:

set up of the default context required for the control of access sessions and control
of service sessions,

discovery of service offerings, including the retrieval of detailed service description
information,

listings of service sessions and services, and

control of service sessions from the access session (e.g., resume, invite, join, notify
changes, etc.).

Some of the service access segments define two asymmetric interfaces, one to be
supported by the user domain and the other to be supported by the provider domain. In
that case the interface name will include ‘user’ or ‘provider’ in order to avoid
confusion.

Figure 3-1 illustrates the various interfaces offered by each domain.

EndUserlnvite EndUserlnvite
£
UserContext UserCantext ©
&
. . @]
Providerlnvite c Providerlnvite o
cu —_
. £ z
ProviderContext S ProviderContext S
e >
- o
ServiceDiscovery B ServiceDiscovery o
S 8
. +—
SessionControl Q SessionControl 'S
0: [-
(¢b)
0p)
AccessControl AccessControl

Figure 3-1 Interfaces supported by the TSAS domains

Telecommunications Service Access & Subscription October 2000

3.2 Service Access Segment Interfaces

This section globally describes the service access segments, their interfaces, and their
operations in a generic fashion (that is, for the generic roles of user and provider). This
generic specification can be re-used for the specific cases of, on the one hand end-usel
and retailer, and on the other hand retailer and service provider.

The segments available for use during an access session are:

Invitation segment

It allows the control of invitations and announcements. It defines two interfaces:

1. EndUserlnvite - This interface is used by the service provider to notify the end-
user (via its retailer) of invitations to join service sessions.

2. Providerinvite - This interface allows a known user to get a list of session
invitations and session announcements and to join these sessions, and to reply to
invitations.

Context segment

It allows the control of configuration (context) information. It defines two interfaces:

1. UserContext - This interface is used by the provider within an access session to
access user configuration information.

2. ProviderContext - This interface allows a known user to set configuration
information at the provider side, and to verify the current settings by retrieving that
same information when required.

Access control segment

It provides supplementary functionality for access session control. It defines one
interface:

1. AccessControl - This interface allows a known user to get a list of running access
sessions and to end one or more of them.

Service discovery segment
It supports functionality helping to learn about (new) services. It defines one interface:

1. ServiceDiscovery - This interface allows a known user to get a list of subscribed
services, to discover new services, and to get supplementary information about
services.

Session control segment

It provides functionality for service session control. It defines one interface:

1. SessionControl - This interface allows a known user to get a list of running
service sessions and to resume service sessions or participation in service sessions
(when these have been suspended), and to end service sessions.

TSAS V1.0 Service Access Segment Interfaces October 2000 3-3

Access session information segment

It allows a user to receive information over all its access sessions with this provider. It
defines no interface but rather uses either the CORB#Notification service or the
CORBA CosEvent service.

Service session information segment

It allows an end-user to receive information over all its service sessions (possibly
across several access session). It defines no interface but rather uses either the CORB/
CosNotification service or the CORBACosEvent service.

These segments, interfaces, and the operations they provide are described below.

3.2.1 Base Interface

Since it must be possible to release any segment that is set up from within the segment,
all the interfaces defined for the service access segments and for the subscription
segments inherit from a base interface that defines an operatéase_segment() .

This base interface is defined in the common types (see Section 5.6.1, “Base
Interface,” on page 5-10).

3.3 Invitation Segment

The invitation segment defines two interfaces, HmelUserInvite interface and the
Providerinvite interface.

EndUserlnvite Interface

The EndUserlnvite interface allows the service provider to send invitations to join a
service session during an end-user’s access session with its retailer.

® invite_user() - allows the provider to invite the user to join a service session. A
session description and sufficient information to join the session is available in the
parameter list. The session can only be joined using the
join_session_with_invitation() operation on th@roviderinvite interface.

® cancel_invite_user() - allows the provider to inform the user that an invitation
previously sent to the user has been cancelled.
Providerinvite Interface

The Providerinvite interface allows a known user to get a list of session invitations
and session announcements and to join these sessions, and to reply to invitations. It
provides the following operations:

® list_session_invitations() - lists the invitations to join a service session that have
been sent to the user.

® list_session_announcements() - lists the service sessions with have been
announced. It can be scoped by some announcement properties.

Telecommunications Service Access & Subscription October 2000

3

® join_session_with_invitation() - allows the user to join a service session to
which he has been invited.

® join_session_with_announcement() - allows the user to join a service session
which has been announced.

® reply_to_invitation() - allows the user to reply to an invitation. It can be used to
inform the service session to which they have been invited, that they will/will not be
joining the session, or to send the invitation somewhere else (it does not allow the
user to join the session).

As will be shown in the scenario examples for the invitation segmenitisirtd (user
identity) must be exchanged between the Retailer and the Service Provider. However,
the anonymity of the end-user can still be guaranteed by the following two facts:

® The value used foUserld between end-user and retailer, and between retailer and
service provider, can differ (however the publicly known one is the one used by the
Service Provider to reach an end-user).

®* With aUserld value as above, the service provider cannot contact the end-user
without transiting through the retailer (or at least local mechanisms can be foreseen
to ensure that).

3.3.1 EndUserlnvite Interface

interface EndUserlnvite: SegmentBase

{
h

The EndUserlnvite interface allows a service provider to invite an end-user (via its
retailer) to join a service session, and to cancel pending invitations when required. This
interface is returned as a result of there::Access::get_segment() operation
establishing this segment.

3.3.1.1 invite_end_user()

void invite_end_user (
in Sessionlnvitation invitation,
out InvitationReply reply

) raises (
InvitationError

);

The Sessionlinvitation andlInvitationReply parameters are defined according to the
Internet Engineering Task Force working group MMUSIC, (Multimedia Multiparty
Session Control) draft standard ‘Session Initiation Protocol.” This operation allows a
service provider to invite an end-user (via its retailer) to join a service session. It can
only be used during an access session. The service provider sends the invitation to the
appropriate retailer, and the retailer to the consumer domain(s) at which the end-user
can be reached.

TSAS V1.0 Invitation Segment October 2000 3-5

3-6

Sessionlnvitation describes the service session to which the end-user has been
invited and provides amvitationld to identify this invitation when joining. It does

not give interface references to the session, nor any information that would allow the
end-user to join the service session outside the context of an access session with its
retailer.

An InvitationReply is returned that allows the end-user to inform the retailer of the
action it will take regarding the invitation (for more details, see Section 5.2.2,
“Invitations and Announcements,” on page 5-4).

The end-user may join the service session described by the invitation from within this
access session, or it may establish another access session with this retailer. The same
Invitationld will refer to this invitation in both access sessions. The end-user should
use the operatiojoin_session_with_invitation() from theProviderlnvite

interface of this invitation segment. Note that the service session cannot be joined
without an access session with the retailer.

3.3.1.2 cancel_invite_end_user()

void cancel_invite_end_user (
in Userld invitee_id,
in Invitationld id
) raises (
InvitationError

);

This operation allows a service provider to cancel an invitation to join a service session
that has been sent to an end-user.

Invitationld is used to determine the invitation to be cancellpdtationld s are
unique across all access sessions with the same service provider.

If the Invitationld list is unknown to the consumer domain (receiving the
cancel_invite_end-user on behalf of its end-user), then the operation should raise
an InvitationError exception with thénvalidinvitationld error code. It is possible to
receive acancel_invite_end_user before a correspondirigvite_end_user . This
operation should raise the exception anyway.

Telecommunications Service Access & Subscription October 2000

3.3.1.3 Scenarios

: Userinvite . Userlnvite Provider

o invite_user()
invite_user()

cancel_invite_user()

cancel_invite_user()

U
|
M
|
|

L

‘ =

Figure 3-2 Invitation Segment - EndUserInvite Diagram

3.3.2 Providerinvite Interface

interface Providerlnvite: SegmentBase

{
h

The Providerlnvite interface allows a known end-user to retrieve information related

to announced service sessions or to invitations meant for that user. The end-user can
use this interface to reply to invitations or request to join announced service sessions or
service sessions it has been invited to. This interface is returned as a result of the
Core::Access::get_segment() operation establishing this segment.

3.3.2.1 list_session_invitations()

void list_session_invitations (

out InvitationList invitations
) raises (

ListError

);

Thelist_session_invitations() returns a list of the invitations to join a service
session, which have been sent to the end-user through this retailer.

The InvitationList returned by this operation is a sequenc&edsioninvitation
structures:

struct Sessionlnvitation {
Invitationld id;

TSAS V1.0 Invitation Segment October 2000 3-7

3-8

Userld invitee_id;
SessionPurpose purpose;
InvitationReason reason;
InvitationOrigin origin;

® id - identifies the particular invitation. It uniquely identifies this invitation from
others for this end-user at this retailer (other end-users with this retailer may have
invitations with the same id). Thid is used inoin_session_with_invitation()
(see below) to join the session referred to by this invitation.

® invitee_id - is the user id of this end-user. This information is not strictly necessary
here as the user id is known in the access session (in which this invitation segment
is established). However, it is included to make the structure more re-usable, and to
allow the recipient to check that the invitation was for him.

® purpose - is a string containing the purpose of the session.

® reason - is a string containing the reason this end-user has been invited to join this
session.

® origin - is a structure containing thuser_id of the end-user that requested that the
invitation was sent to this end-user, and $kssion_id of the service session to
join.

If the invitation list is not available, then the operation should rais&igt&rror with
the ListUnavailable error code.

3.3.2.2 list_session_announcements()

void list_session_announcements (
in AnnouncementSearchProperties desired_properties,
out AnnouncementList announcements
) raises (
PropertyError,
ListError

);

Thelist_session_announcements() returns a list of the session announcements

that have been announced through this retailer. As the retailer plays the role of a one-
stop-shop to the end-user, this list of announcements can be a collection of lists from
several service providers that are in contact with this retailer. The service sessions are
announced either by requests from session participants (service provider specific), or
due to properties established at service session start-up. The process by which session
are announced is not defined by TSAS. However, this operation is provided in order to
allow an end-user to request a list of service sessions that have been announced. The
announcements may be scoped in order to restrict the distribution of the announcement
to particular groups. This operation returns a list of announcements that match the
desired_properties , as specified by the end-user.

Telecommunications Service Access & Subscription October 2000

3

The desired_properties parameter can be used to scope the list of announcements.
AnnouncementSearchProperties identifies the properties that the announcements
must match. (Seb®latchProperties in Section 5.1.1, “Properties and Property Lists,”
on page 5-1). Currently no specific property names and values have been defined for
AnnouncementSearchProperties , and so its use is service provider specific.

The returneddnnouncementList is a list of announcements available to the end-user
and matching thelesired_properties . This is a sequence of

SessionAnnouncement structures that contain the properties of the announcement,
(that is,AnnouncementProperties). Currently no specific property names and
values have been defined for AnnouncementProperties, and so its use is service
provider specific.

If the desired_properties parameter is wrongly formatted, or provides an invalid
property name or value, tHé&ropertyError exception is raised. Property names that
are not recognized can be ignoredidésired_properties requires that only some, or
none of the properties are matched.

If an announcement list is not available, then the operation should raikéstheror,
with the ListUnavailable error code.

3.3.2.3 join_session_with_invitation()

void join_session_with_invitation (
in Invitationld invitation_id,
in Applicationinfo app,
in JoinPropertyList join_properties,
out SessionInfo session_info

) raises (

SessionError,
InvitationError,
ApplicationinfoError,
PropertyError

);

The join_session_with_invitation() allows the end-user to join an existing service
session, for which it has received an invitation.

® invitation_id - is the identifier of the invitation. The invitation, kept by the retailer,
contains sufficient information for the retailer to contact the service session at the
service provider's domain, and request that the end-user be allowed to join the
service session.

® app - is anApplicationinfo structure containing information on the end-user
application that will be used to interact with the service session. It provides an
application name, version, serial number, license number, and a list of properties:

struct Applicationinfo {
string name;
string version;
string serial_num;
string licence_num,;

TSAS V1.0 Invitation Segment October 2000 3-9

3-10

3.3.2.4

PropertyList properties;
h

join_properties is aPropertyList . It can contain information related to the end-user
that is requesting to join the session, such as for example a motivation for joining.
Currently no specific property names and values have been defined for
JoinPropertyList , and so its use is service provider specific.

A Sessioninfo is returned as a result of a successful joining. It is a structure that
contains information that allows the end-user to refer to this service session using other
operations on this interface. It also contains information for the usage part of the
session, including the interface references to interact with the service session (service
provider specific).

The exceptiorSessionError is raised if the service session refuses to allow the end-
user to join it.

The exceptiorinvitationError is raised if thanvitation_id is invalid.

The exceptiorApplicationInfoError is raised if there are unknown or invalid values
for Applicationinfo , or if the application is incompatible with the type of service
being joined.

If the join_properties parameter is wrongly formatted, tReopertyError exception
is raised.

join_session_with_announcement()

void join_session_with_announcement (
in Announcementld announcement _id,
in Applicationinfo app,
in JoinPropertyList join_properties,
out SessionInfo session_info

) raises (

SessionError,
AnnouncementError,
ApplicationinfoError,
PropertyError

);

The join_session_with_announcement() allows the end-user to join an existing
service session, for which the end-user has discovered an announcement. The service
session announcements are obtained by usingistheession_announcements

operation on the same interface, or in a number of other ways that are not described by
TSAS (can be retailer and service provider specific), including through a specialized
service session.

® announcement_id - is the identifier of the announcement. The announcement
information forwarded by the retailer, contains sufficient information for the retailer
to contact the service session at the service provider domain, and request that the
end-user be allowed to join the service session.

® Applicationinfo andSessioninfo : same as above.

Telecommunications Service Access & Subscription October 2000

® join_properties : same as above.

The exception§SessionError, ApplicationInfoError, andPropertyError: same as
above.

The exceptio’AnnouncementError is raised if theannouncement_id is invalid.

3.3.2.5 reply_to_invitation()

void reply_to_invitation (
in Invitationld invitation_id,
in InvitationReply reply
) raises (
InvitationError,
InvitationReplyError

);

Thereply_to_invitation() allows the end-user to reply to a received invitation. This
has two purposes. The first one is to enable the end-user to reply if it did not get the
invitation when it was issued, and it had to be stored and momentarily be replied to by
the retailer. The second possibility is for the end-user to reply with a different reply
code than the one used in the case the issued invitation was originally received by the
end-user and replied to. This latter possibility, however, should only be used in
‘exception' scenarios.

This operation is used by the end-user to inform the service provider about its reaction
(its reply) to the invitation. The end-user can use one or meplg_to_invitation()
invocations to indicate ‘busy, then ‘ringing,’ then to indicate its intention to join, or
not, the session, or to indicate a different location to look for the end-user. This
operation is not used to join service sessionsjdime session_with_invitation()
andjoin_session_with_announcement() = must be used for that purpose. In order

not to confuse the service session that issued the invitation, it is recommended not to
use multiplereply_to_invitation() to the same invitation.

® invitation_id - is the identifier of the invitation.

® reply -is a structure which contains the information about the end-user's reply. For
details see section Section 5.2.2, “Invitations and Announcements,” on page 5-4.

The exceptiornvitationError is raised if thanvitation_id is invalid. The exception
InvitationReplyError is raised if there is an error in the reply.

TSAS V1.0 Invitation Segment October 2000 3-11

3.3.2.6 Scenarios

Consumer Domain Retailer Domain Service Provider Domains

|:| ‘ R

‘ list_session_invitations () ‘

] T
\

‘ Providerlnv ite

list_session_announcements ()
1 1

g

Iist_session_announqem ents()

u ’u Ilstfsessmnfannouncements(,L

1

reply_to_invitation()

reply_to_invitation()

reply_to_invitation()

reply_to_invitation()

A —

T join_session_with_inv itation() ‘ . . . ‘
join_session_with_inv itation()

— o

join_session_with_announcement() L . .
L Joln_sessmn_wnh_anno‘uncemenl()

|
|
w
|
|
|
|
|
|
|
|
!
|
|

|
1 | |
|

Figure 3-3 Invitation Segment - Providerinvite Diagram

® The invitations are stored in the retailer domain, so that the
list_session_invitation() does not need to be invoked on the service provider
domains.

® The announcements should not be stored in the retailer domain because these
should be checked only upon request. As shown in the scenario the end-user in the
consumer domain invokes thist_session_announcements() on its retailer
only once. The retailer acting as a one-stop shop to the end-user can invoke several
service provider domains to collect session announcements and compile them in a
single list that is returned to the end-user.

® The end-user can reply to an invitation without requesting to join the corresponding
service immediately. Several replies can be sent on the same invitation, but it is
recommended that only one be used.

® The requests to join the service session, with invitation or announcement, must be
forwarded by the retailer to the appropriate service provider.

3-12 Telecommunications Service Access & Subscription October 2000

3.4 Context Segment

The context segment defines two interfaces,UkerContext interface and the
ProviderContext interface.

The UserContext interface allows the provider to gain information about the user
domain’s configuration, and applications.

® get user_ctxt() - allows the provider to retrieve information about the user
domain’s configuration.

The ProviderContext interface allows a known user to set configuration information
at the provider domain side.

It provides the following operations:

® set_user_ctxt() - allows the user to inform the provider about interfaces in the
user domain, and other user domain information. (for example, user applications
available in the user domain, operating system used).

® get user_ctxts() - allows the user to retrieve one or more sets of configuration
(context) information that has been stored in the provider domain.

3.4.1 UserContext Interface

interface UserContext: SegmentBase

{
h

This interface allows the provider to gain information about the user domain’s
configuration and applications. This interface could also be extended, (for example, to
allow a provider to ask more specific questions about the user domain). This interface
is returned as a result of ti@ore::Access::get_segment() operation establishing

this segment.

3.4.1.1 get_user_ctxt()

void get_user_ctxt(
out UserCtxt user_ctxt);

This operation allows the provider to receive all the information about the user
domain’s configuration that the user accepts the provider to have access to. In
particular it can be used by the service provider to gain access, via the retailer, to
information related to the end-user's consumer domain, such as terminal and
applications used. The operation returns tlserCtxt structure that contains a
property list enabling provider specific information to be included. See Section 5.5,
“User Context Information,” on page 5-8.

TSASv1.0 Context Segment October 2000 3-13

3-14

Consumer Domain

: UserContext

get_user_ctxt()

3.4.1.2 Scenario

Retailer Domain Service Provider Domain

: UserConte xt |:| : UserContext

\ get_user_ctxt()

|
|
]
|
|
|
|
|

get_user_cixt()

\
Figure 3-4 Context Segment - User Context Diagram

Usually the request for user context information is initially issued by a service provider
and forwarded by the retailer to the end-user. However, as is explained above, the user
context relates to the general user/provider scenario: for example, the service provider
can be logged on the retailer domain as a user.

3.4.2 ProviderContext Interface

interface ProviderContext: SegmentBase

{
h

TheProviderContext interface allows a known user to set context information related
to its domain. This interface is returned as a result of the
Core::Access::get_segment() operation establishing this segment.

3.4.2.1 set _user_ctxt()

void set_user_ctxt (

in UserCtxt user_ctxt
) raises (

UserCtxtError
);

Theset_user_ctxt() allows the user to inform the provider about the configuration of
the consumer domain. In the particular case of the end-user, it can inform the service
provider, via the retailer, of user applications available in the consumer domain,
operating systems, etc.

user_ctxt - is a structure containing consumer domain configuration information and
possibly interfaces (in the list of properties).

Telecommunications Service Access & Subscription October 2000

3

3.4.2.2

3.4.2.3

If there is a problem witluser_ctxt , thenUserCtxtError should be raised with the
appropriate error code.

get_user_ctxts()

void get_user_ctxts (
in SpecifiedUserCtxt ctxt,
out UserCtxtList user_ctxts
) raises (
UserCtxtError,
ListError

);

This operation allows the user to retrieve information about user contexts that have
been registered with the provider.

ctxt - is a union specifying which contexts information must be returned, namely all,
only the current ones, or a list of specified ones.

The returnedJserCtxtList is a list of structures each containing user domain
configuration information and properties such as, possibly, interfaces. This operation
will raise aUserCtxtError exception with dJserCtxtNotAvailable error code if

there is no context set. If there is a problem wittt , thenUserCtxtError should be
raised with the appropriate error code, and if the list is not available thésmstieror

is raised with thd_istUnavailable error code.

get_user_info()
void get_user_info(
out UserlInfo user_info);

The get_user_info() allows the user to request information about himself. This
operation returns "serinfo structure. This contains the user's Userld, its name, and a
list of user properties. Currently no specific property names and values have been
defined forUserPropertyList , and so its use is provider specific.

TSASv1.0 Context Segment October 2000 3-15

3.4.2.4 Scenarios

User Domain Provider Domain

Prov iderConte xt

set_user_ctxt() ‘

g

get_user_ctxts() ‘

ki
|

E

get_user_info()

Figure 3-5 Context Segment - Provider Context Diagram

These scenarios are valid in the general case of a User domain accessing a Provider
domain (end-user with retailer, retailer with provider, provider with retailer, or other
domains to which the TSAS specifications would be applied).

3.5 Access Control Segment

The access control segment defines AkeessControl interface.

The AccessControl interface allows a known user to get a list of running access
sessions, to end one or more of them, and to get the user information stored at that
moment in the provider domain.

It provides the following operations:

® list_access_sessions() - allows the user in this access session to find out about
other access sessions that he has with this provider. For example, an end-user is at
work, but has an access session set up at home which runs an active security service
session.

® end_access_sessions() - allows the user to end one or more specified access
session(s). This can include the current one, or others, found using
list_access_sessions() . The user can also specify some actions to be performed
if there are active service sessions within the access session(s) to be ended.

® get_user_info() - gets the user's username and other properties.
3.5.1 AccessControl Interface

interface AccessControl: SegmentBase

{

3-16 Telecommunications Service Access & Subscription October 2000

3511

3.5.1.2

h

The AccessControl interface allows a known user to control its access sessions. This
interface is returned as a result of there::Access::get_segment() operation
establishing this segment.

list_access_sessions()

void list_access_sessions (
out AccessSessionList as_list
) raises (
ListError

);

Thelist_access_sessions() returns a list of access sessions. The list contains all the
access sessions the user currently has established with this provider. It is a sequence o
AccessSessioninfo structures, which consist of thecessSessionld

UserCtxtName , andAccessSessionPropertyList . The last of these is a

PropertyList . Currently no specific property names and values have been defined for
AccessSessionPropertyList , and so its use is provider specific.

The information returned by this operation can be used by the user to find out which
other access sessions are currently established, and to perform some operations on
these access sessions as required, and as indicated below.

If the AccessSessionList is unavailable, because the user's access sessions are not
available, then the operation should raideigtError exception with the
ListUnavailable error code.

end_access_sessions()

void end_access_sessions(
in SpecifiedAccessSession as,
) raises (
SpecifiedAccessSessionError

);

Theend_access_sessions() allows the user to end one or more access session. The
operation can end the current access session, a specified access session, or all acces:
sessions (including the current one), through the use of the

SpecifiedAccessSession parameter.

If as is wrongly formatted, or provides an invalid access session id, then the
SpecifiedAccessSessionError exception should be raised.

TSAS V1.0 Access Control Segment October 2000 3-17

3.5.1.3 Scenarios

Consumer Domain RetailerDomain Service Provider Doamin

AccessControl AccessControl AccessControl SessionControl AccessControl

‘Iist_access_ses sions () ‘

1

'end_access_sessions()‘
|

b

\

\

\

\
end_sessions&)

end_access_sessions()

— —

)
)

end_‘access_sessions()
T
\
\
\
|

\
\
\
\
\
| |
\ \
\ \
\ . i
e‘nd_my_partlmpa‘lons()
\ \
\
|
\
\
\
\
\
|

\
<

\

\

Figure 3-6 Access Control Segment Diagram

The end-user can invoke the retailer domain to list the running access sessions, and
then end one or more of them (remote access sessions can be deleted as well).

As the retailers and service providers do access each other with the same access
session mechanisms, the salise access_sessions() and
end_access_sessions() operations can be used to terminate these access sessions.

3.6 Service Discovery Segment

The service discovery segment defines $leeviceDiscovery interface.

The ServiceDiscovery interface allows a known user to get a list of subscribed
services, to discover new services, and to get supplementary information on services.

It provides the following operations:

3-18 Telecommunications Service Access & Subscription October 2000

3

® discover_services() - lists all the services available via this retailer (and from the
service providers). The user can scope the list by supplying some properties that the
service should have, and a maximum number to return.

® get_service_info() - returns the service information for a particular service
(identified in the invocation by itservice_id). Similar information
(ServicePropertyList) can be obtained with thést_end_user_services or
discover_services , but theget_service_info is targeting on a single service and
is independent from subscription.

3.6.1 ServiceDiscovery Interface

interface ServiceDiscovery: SegmentBase

{
h

TSASServiceDiscovery interface allows a known user to access information about
its subscribed services, and to discover new services. This interface is returned as a
result of theCore::Access::get_segment() operation establishing this segment.

3.6.1.1 discover_services()

void discover_services(
in DiscoverServiceProperties desired_properties,
in unsigned long how_many,
out ServiceList services
) raises (
PropertyError,
ListError

);

The discover_services() returns a list of the services available via this retailer.This
operation is used to discover the services provided via the retailer, for use by the end-
user. It can be scoped by tHesired_properties parameter (seBlatchProperties

in Section 5.1.1, “Properties and Property Lists,” on page 5-1).

The retailer has the possibility to contact one or more service providers in order to
fulfill the user's request. This takes place in a way totally transparent to the end-user.
The retailer performs one or more invocations on one or more service providers and
collects the information received from each service provider. This collected
information is merged and provided to the end-user as one piece of information.

The list of retailer services matching ttiesired_properties is returned in services.
This is a sequence &ervicelnfo structures which contain thgerviceld ,
UserServiceName (the end-users name for the service), and a sequence of service
properties DiscoverServiceProperties . Currently no specific property names and
values have been defined fDiscoverServiceProperties , and so its use is service
provider specific. Examples @iscoverServiceProperties can be ‘free’ services,
‘comfort’ telephony services, ‘information retrieval’ services, ‘video on demand,’ ‘joint
document editing,” ‘payment,’ ‘calling card reload, etc.

TSAS V1.0 Service Discovery Segment October 2000 3-19

The how_many parameter defines the numberS#rvicelnfo structures to return in
the services parameter. The number of services shall not exceed that number.

If the desired_properties parameter is wrongly formatted, or provides an invalid
property name or value, tHéropertyError exception should be raised. Property
names that are not recognized can be ignore@sfred_properties requires that
only some, or none of the properties are matched.

If the services list is unavailable, because the retailer’s services are not available, then
the operation should raise histError exception with thd.istUnavailable error
code.

3.6.1.2 get_service_info()

void get_service_info (
in Serviceld service_id,
in SubscribedServiceProperties desired_properties,
out ServicePropertyList service_properties
) raises (
ServiceError,
PropertyError

);

The get_service_info() returns information on a specific service, identified by the
service_id . Thedesired_properties list can scope the information that is requested
to be returned.

3.6.1.3 Scenarios

Service Provider Doamins

Consuner Domain Reatiler Domain
ServiceDiscovery ServiceDiscovery ServiceDiscovery

discover_services() . . ‘
| discover_services() ‘

Figure 3-7 Service Discovery Segment Diagram

\

\

I |

T _ | |

‘ dlscover_serw?es() |

\ | /u
‘ get_service_info() T ‘ ‘
get_service_info() ‘ ‘

I |

L \ \

\ \

\ \

3-20 Telecommunications Service Access & Subscription October 2000

3

The discover_services() is invoked by the end-user on the retailer. The retailer
subsequently invokediscover_services() on one or more service provider to fulfil

the end-user’s request. The retailer will return the compiled list of discovered services
to the end-user.

3.7 Session Control Segment

The session control segment defines $lessionControl interface.

The SessionControl interface allows a known user to get a list of running service
sessions and to resume service sessions or participation in service sessions (when thes
have been suspended).

It provides the following operations:

® list_service_sessions() - lists the service sessions of the user. The request can be
scoped by the access session and session properties (for example, active, suspende
service type).

®* end_sessions() - allows the user to end one or more service sessions.

®* end_my participations() - allows the user to end his participation in one or more
service sessions, without ending the service session.

®* resume_session() - allows the user to resume a service session.

® resume_my_participation() - allows the user to resume his participation in a
service session.

3.7.1 SessionControl Interface

interface SessionControl: SegmentBase

{
h

The SessionControl interface allows a known user to list its running service

sessions, and resume the suspended service sessions or the service sessions in which |
participation has been suspended. This interface also provides an operation to end a list
of service sessions, or to end the user's participation in a list of service sessions. This
interface is returned as a result of there::Access::get_segment() operation
establishing this segment.

3.7.1.1 list_service_sessions()

void list_service_sessions (
in SpecifiedAccessSession sas,
in SessionSearchProperties desired_properties,
out SessionList sessions

) raises (

SpecifiedAccessSessionError,
PropertyError,
ListError

TSAS V1.0 Session Control Segment October 2000 3-21

);

The list_service_sessions() returns aSessionList (list of the service sessions)

which the end-user is involved in. This includes active and suspended sessions. The
sas parameter scopes the list of sessions by the access session in which they are usec
It can identify the current access session, a list of access sessions, or all access
sessions. A session is associated with an access session if it is being used within that
access session, or it has been suspended (or participation suspended), and was being
used within that access session when it was suspended.

The desired_properties parameter can be used to scope the list of sessions. It
identifies the properties that the sessions must match. It also defines whether a session
must match one, all or none of the properties {datchProperties in Section 5.1.1,
“Properties and Property Lists,” on page 5-1). The following property names and
values have been defined f8essionSearchProperties

® pame: “SessionState”

® value: SessionState

If a property inSessionSearchProperties has the name “SessionState,” then the
matching service session must have the s8emsionState as given in the property
value.

® name: UserSessionState

® value:UserSessionState

If a property inSessionSearchProperties has the name “UserSessionState,” then
the matching service session must have the ddseeSessionState as given in the
property value.

Other provider specific properties can also be definedkesired_properties

The list of sessions matching tHesired_properties and the access sessigas are
returned in sessions. This is a sequenc8assioninfo structures which define the
Sessionld , and a series of provider specific information, such as information on
existing service session participants, references to service session control interfaces,
etc. This information is provider specific, and consequently out of the scope of TSAS.

If sas is wrongly formatted, or provides an invalid access session id, then the
SpecifiedAccessSessionError exception should be raised.

If the desired_properties parameter is wrongly formatted, or provides an invalid
property name or value, tHéropertyError exception should be raised. Property
names that are not recognized can be ignore@sfred_properties requires that
only some, or none of the properties are matched.

If the sessions list is unavailable because the end-user's sessions are not known, then
the operation should raiselastError exception with thé_istUnavailable error code.

3.7.1.2 end_sessions()

void end_sessions (

3-22 Telecommunications Service Access & Subscription October 2000

in SessionldList session_id_list
) raises (
SessionError

);

The end_sessions() ends one or more service sessions, identified by
session_id_list . The SessionError exception is raised if there is an unrecognized
session_id in the list.

3.7.1.3 end_my_participations()

void end_my_ participations (
in SessionldList session_id_list
) raises (
SessionError

);

The end_my_participations() ends the user's participation in one or more service
session identified bgession_id_list , without ending the service session. The
SessionError exception is raised if there is an unrecognigession_id in the list.

3.7.1.4 resume_session()

void resume_session (
in Sessionld session_id,
in Applicationinfo app,
out Sessioninfo session_info
) raises (
SessionError,
ApplicationInfoError

);

Theresume_session() resumes a service session. It is used on a service session that
is suspended. The suspension and resuming operations are mainly used to obtain
service session mobility. The service session can be resumed within an access sessior
different from the one in which the service session was initially running, which

possibly involves a different terminal as well. As the operation required to suspend a
service session involves service session mobility, the mechanism required to suspend
the service session might be service specific, and is therefore not provided by TSAS,
but should be defined on one of the service specific interfaces.

session_id - is the identifier of the session to be resumed.

The Applicationinfo is a structure containing information on the application which

will be used to interact with the resumed service session. This application may be
different to the user’s original application that was used when the session was
suspended, because as was said above, the service session can be resumed within a
different access session using a different terminal and different applications. The
structure ofApplicationinfo was explained in Section 3.3.2.3,
“join_session_with_invitation(),” on page 3-9".

TSAS V1.0 Session Control Segment October 2000 3-23

3-24

3.7.1.5

The returnedsessioninfo is a structure that contains information that allows the
consumer domain to refer to this service session using other operations on this
interface. It also contains information for the usage part of the session, including the
interface references to interact with the service session (service provider specific).

The exceptiorSessionError is raised ifsession_id is invalid, or if the session
refuses to resume because of the user’s session state, or if the user does not have
permission.

The exceptiorApplicationInfoError is raised if there are unknown or invalid values
for Applicationinfo , or if the application is incompatible with the type of service
being resumed.

resume_my_participation()

void resume_my_participation (
in Sessionld session_id,
in Applicationinfo app,
out Sessioninfo session_info
) raises (
SessionError,
ApplicationinfoError

);

Theresume_my_participation() resumes the end-user's participation in a service
session. It is used on a session that the end-user has previously suspended his
participation from. See above for more details on the suspend-resume mechanisms.

session_id - is the identifier of the service session to resume the user’s participation.
app and the returne&essioninfo : same as above.

The exceptionsSessionError and ApplicationInfoError: same as above.

Telecommunications Service Access & Subscription October 2000

3.7.1.6 Scenarios

Consumer Domain Retailer Domain ProviderDomains

SessionControl SessionControl SessionControl

list_service_sessons() ‘ . . .
list_service_sessions()

| |

list_service_sessons() /u ‘

| 1

i T | |

end_sessions() ‘ ‘ ‘
end_sessions() |

end_sessions() /u ‘

| g

. | |

T end_my_participations() ‘ e . ‘ ‘

end_my_participationy) | ‘

end_my_participations() /u |

I /U

L | |

T resume_session() ‘ i ‘ ‘

resume_session() | ‘

; T

T resume_my _participation() ‘ ‘ ‘

g | |

T resume_mprarticipation() ‘ ‘

| i |

T | | |

| |

Figure 3-8 Session Control Segment Diagram

Thelist_service_sessions() , end_sessions() andend_my_participations() are
invoked by the end-user on its retailer. The retailer will forward these invocations to
one or more service providers, depending on the number of service providers involved
with this request (the end-user can have more than one service session running in one
access session, and each of these service sessions can be with a different service
provider).

Theresume_session() andresume_my_participation() operations are invoked by
the end-user on its retailer for one single service session, and must be forwarded by the
retailer to the appropriate service provider, as illustrated.

TSAS V1.0 Session Control Segment October 2000 3-25

3.8 Access Session Information Segment

3-26

This segment is defined to allow a provider (in the general sense) to inform a user (in
the general sense) of changes of state in other access sessions with the same user (fc
example, access sessions with the same user that are created or deleted). The user is on
informed about access sessions it is involved in.

Since this segment only provides simple information in a unidirectional fashion, it does
not define any interface but rather defines structures that can be used with either the
CORBA CosNotification service or the CORBAosEvent service to propagate the
information. It is still provided as a separate segment in order to be able to activate or
deactivate the access session information by activating or deactivating the segment.

The structures that are defined and their respective usage are listed below.

3.8.1 Access Session Information structures

3.8.1.1

3.8.1.2

3.8.1.3

NewAccessSessionInfo

struct NewAccessSessioninfo {
AccessSessioninfo access_session;

h

This structure is used to inform the user that a new access session has been establishec
The NewAccessSessionIinfo contains theAccessSessioninfo structure that
contains the following information:

® The AccessSessionld of the new access session.

® The correspondingyserCtxtName so that the user can identify which domain the
access session has been established from.

® The AccessSessionPropertyList that is a provider specific property list that can
be used to provide more information on the access session.

EndAccessSessioninfo

struct EndAccessSessioninfo {
AccessSessionld as_id;

h

This structure is used to inform the user that an access session has been ended (by the
user). TheAccessSessionld identifies which access session has ended.

CancelAccessSessionlInfo

struct CancelAccessSessioninfo {
AccessSessionld as_id;

h

Telecommunications Service Access & Subscription October 2000

3

This structure is used to inform the user that an access session has been cancelled by th
provider. TheAccessSessionld identifies which access session has been cancelled.
This information differs from th&ndAccessSessioninfo in that an access session is
cancelled when the provider invokes #mad_access() operation on the Access

interface of the user, while a normal access session ending is done upon invocation by the
user of theend_access() operation on théccess interface of the provider.

3.8.1.4 NewsServicesInfo

struct NewUserServicesInfo {
Servicelist services;

h

This structure is used to inform the user that some new services are immediately
available to this user (or subscriber). TervicelList can contains identification of

services to which the user has just been subscribed, as well as services that are
(momentarily) offered for free (for which no subscription is required). In the case of
newly subscribed services, the user may have recently subscribed to the services through
a service in this or another access session, or a subscriber may have subscribed his uset
to a new service. ThBerviceList is a sequence @ervicelnfo structures. The

Servicelnfo structure contains th®erviceld , the UserServiceName , and a
ServicePropertyList

3.9 Service Session Information Segment

This segment allows a service provider to inform an end-user of changes of state in
service sessions in which the end-user is involved. Information will be provided
whenever a change to a service session affects the end-user, for example, a service
session is suspended, but not when the change does not affect the end-user. Also, the
information can be provided for all the service sessions involving the end-user, and not
just those associated with this access session. This information helps the access sessior
update the knowledge of the end-user involvement in service sessions.

Since this segment only provides simple information in a unidirectional fashion, it does
not define any interface but rather defines structures that can be used with either the
CORBA CosNotification service or the CORBAosEvent service to propagate the
information. It is still provided as a separate segment in order to be able to activate or
deactivate the service session information by activating or deactivating the segment.

The structures that are defined and their respective usage are listed below.
3.9.1 Service Session Information Structures
3.9.1.1 NewSessionInfo

struct NewSessionInfo {
Sessioninfo session;

h

TSAS V1.0 Service Session Information Segment October 2000 3-27

3-28

3.9.1.2

3.9.1.3

3.9.14

3.9.15

3.9.1.6

This structure is used to inform the end-user that a new service session has been startec
The SessionInfo contains information about the new service session that has been
started.

EndSessioninfo

struct EndSessioninfo {
Sessionld session_id;

h

This structure is used to inform the end-user that a service session has been ended. The
Sessionld identifies the ended service session.

EndMyParticipationinfo

struct EndMyParticipationinfo {
Sessionld session_id;

h

This structure is used to inform the end-user that its participation to a service session has
been ended. Th8essionld identifies the service session.

SuspendSessioninfo

struct SuspendSessioninfo {
Sessionld session_id;

h

This structure is used to inform the end-user that a service session has been suspendec
The Sessionld identifies the suspended service session.

SuspendMyParticipationinfo

struct SuspendMyParticipationinfo {
Sessionld session _id;

h

This structure is used to inform the end-user that its participation to a service session has
been suspended. Tisessionld identifies the service session.

ResumeSessioninfo

struct ResumeSessioninfo {
SessionInfo session;

h

This structure is used to inform the end-user that a suspended service session has beer
resumed. Th&essionIinfo contains information about the suspended service session
that has been resumed. The end-user may or may not have re-joined the service sessior
depending on whether it or another end-user resumed the service session.

Telecommunications Service Access & Subscription October 2000

3.9.1.7 ResumeMyParticipationinfo

struct ResumeMyParticipationinfo {
Sessioninfo session;

h

This structure is used to inform the end-user that its (suspended) participation to a
service session has been resumed. Séssioninfo contains information about the
service session to which the end-user’s participation has been resumed.

3.9.1.8 JoinSessionInfo

struct JoinSessioninfo {
Sessioninfo session;

h

This structure is used to inform the end-user that it has joined a service session. The
Sessioninfo contains information about the service session that the end-user has joined.

TSAS V1.0 Service Session Information Segment October 2000 3-29

3-30 Telecommunications Service Access & Subscription October 2000

4.1 Overview

Subscription Segments 4

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 4-1

“Information Model” 4-3

“Subscription Segments” 4-10
“Scenario Description” 4-11
“Subscriber Administration” 4-12
“Service ProviderAdministration” 4-15
“End-user Administration” 4-17
“End-user Customization” 4-24

As described previously in Chapter 3 the retailer mediates services on behalf of service
providers to its end-users. The subscription segments offered by the retailer are
structured according to the functionality they provide, (that is, management of entries
and query interfaces), and for which roles (see section Section 3.2, “Service Access
Segment Interfaces,” on page 3-3) they are used, as depicted in Figure 4-1. The
subscription segments define interfaces for the consumer domain to be used by end-
users and subscribers, and for the service provider domain to be used by service
providers.

Telecommunications Service Access & Subscription October 2000 4-1

4-2

Subscription manages information about services and contractual relationships between
end-user/subscriber and retailer and between service provider and retailer. Before the
subscription segments can be used, the end-user/subscriber or the service provider havi
to access the retailer by establishing an access session as defined in Chapter 2.

All subscription segments described in this chapter provide a framework for the
management of subscription information. The retailer can use them to either build an
on-line subscription service or use the interfaces to administer its subscription related
information. In general the management tasks for subscription encompass management
of:

® subscriber related information concerning create, modify and delete subscriber
entries.

® service contracts to create, modify or delete service contracts and assign or de-
assign service contracts to users.

® user related information concerning the administration of user entries, user groups
(subscription assignment groups) and service profiles.

® service templates to deploy, modify or withdraw a service offered by a service
provider.

The subscriber administration segment provides interfaces for the management of
subscriber related information and for queries related to the subscriber information.
This segment is used by the subscriber.

With the end-user administration segment the subscriber can manage its users and use
groups, called subscription assignment groups.

The service provider administration segment provides the management of service
templates and is used by the service provider.

The end-user customization segment is used by the end-user to manage its personal
preferences to be used for customization.

All subscription segments can only be obtained by usingy¢hesegment operation,
defined in the core segment (see Chapter 2).

Telecommunications Service Access & Subscription October 2000

4.2

Subscribet

Consumer |Subscriber] Retailer Service
Domain Exg-t!ser Domain Provider
m'“l_ Domain
End-User] Service Service
Customi- || Retailer L providen| 5 \iie

End-User zation |— Admin

Figure 4-1 subscription Segments

Information Model

The information model describes the relationship between information objects that are
relevant for the retailer to support subscription segments.

Subscribergplay an important role by representing organizations or a single end-user
which is going to sigrservice contractfor accessing services provided by a retailer.
Signing a service contract gives the permission to use a service under the conditions
described in theervice profile

If the subscriber represents an organization, it can also managelissershy

creating end-user information objects and building groups of these users, called
subscription assignment groupBhe subscriber will authorize its end-users, groups of
users or itself to access services for which it has signed the contract by associating
service profileswith them. Each service contract contains a default service profile for
the subscribed service. The subscriber can create new service profiles with respect to
its contract and associate these service profiles with its end-users and user groups.

The services a retailer provides to the end-users can be services the retailer offers itself
or services the retailer offers on behalf of service providers. In the latter case, the
service provider also signs a contract with the retailer and registers its services at the
retailer domain by using the service provider administration segments.

A service typedefines the generic classification or category of a service that will be
supported by a retailer. The services are deployed against a particular service type. The
service types are created at the retailer before a particular service corresponding to that
type can be deployed by a service provider. The management of service types, that is
the creation, modification and deletion of service types, is retailer specific. In general,
a retailer (administrator) would decide the types of services it wants to host in its
domain. The attributes of the service types are defined by properties, which can be
different with respect to each of the different service types. The properties are defined

TSAS v1.0 Information Model October 2000 4-3

4-4

as a list of property name-value pairs. Each attribute has a mode which specifies
whether the attribute is mandatory, read-only or normal as defined by Cos trading
service.

Theservice templateontains information about the service attributes, the environment
settings, for example configuration information and references to access the service,
and application information such as graphical user interface capabilities, language
support.

The end-user service profile is related to service specifics which offer the end-user the
ability to change individual attributes of the service (for example, to set personal
preferences). The end-user service profile is opaque for the retailer and only passed by
to the service provider, which interprets it.

The service template conceives the basis for any contractual relationship between a
retailer and a subscriber/end-user and between a retailer and a service provider. The
service contract itself restricts the range for service settings defined in the service
template. The service settings again can be restricted to a subscription assignment
group of one subscriber who defines the individual rights for each user or for the
subscription assignment groups by setting attributes in the service profile. In addition,
a user can specify individual settings within the range of contractual settings
predefined by the subscriber in customizable user profiles.

Figure 4-2 illustrates all relevant information objects using a UML class diagram. The
detailed description of these objects and attributes can be found in the text that follows.

Telecommunications Service Access & Subscription October 2000

Sewvice Template
ServiceProvider -‘,servmeflemplaleild : String Sewice Type
Teprovider_id : string 1 0.* | flgservice-template_properties : Property List Teservice_type_name : String
...prov ider_properties : Property List -‘.servlcefpropemes : Property List 0..* 1 - -)
-‘,’userfappIlcallonipropemes : PropertyList
1
[1
| '
“ 0. 1.
Subscriber ServiceContract PropList
N . name : string
properties : Property List hscrhe !._ tract_properties : Property List ‘.‘
L 0. o sty pe : property Type
- dizmode : property Mode
|
\‘ 1 1
|
|
|
0.*
SAG
Mliyid : string
...properlles: PropertyList | 0..*
authorize 0.
170..* 0. 0.*
Service Profile
...servlcefpmfleﬁld : String
group member Migservice_poperties : Property List
|
|
|
\] 0.
EndUser N EndUserServ ice Prof ie
-...secumyfpropemes : Property List 1 0

...properlles : PropertyList
-..-slnng : ServiceTemplatelD

Wiuser_properties : Property List

Figure 4-2 Subscription Information Model

4.2.1 Service Provider

struct ServiceProvider{
Providerld provider_id;
PropertyList provider_properties;

h

The service provider can deploy new service templates of retailer avakabiee
types The service provider object contains a seryicevider_id and service

provider_propertiesvhich may contain the address, bank account and other details of
the service provider.

4.2.2 Subscriber

struct Subscriber {
Subscriberld subscriber _id;
PropertyList subscriber_properties;

h

A subscribercan subscribe to a number of services by signiegraice contractThe
subscriber object contains a subscrili¢rand subscriber_properties

TSAS v1.0 Information Model October 2000 4-5

The following table is a non exhaustive example of valuable subscriber properties. The
example uses property types as defined in the COS Trading Service. The property
mode specifies whether the property is mandatory, read-only, or normal.

Table 4-1 Subscriber Properties

property

type name type mode
first name string normal
last name string normal
orgname string normal
city string normal
street string normal
postal code string normal
email string normal
payment string normal

4.2.3 Service Contract

struct ServiceContract{
ServiceContractld service_contract_id;
ServiceProfile service_profile;
PropertyList contract_properties;

I3

For each subscriptionservice contracexists. The service contract defines the service
characteristics for a subscriber and the condition for accessing a service. The service
contract properties shall be defined by the retailer. As defined in the access part of the
core segment (see Chapter 2) the operatign_service_agreement requires an
end-users signature for starting a service. An attribute ofdh&act_properties

can be used for the agreement text.

The service contract is a specialization of sleevice profile Thus it inherits all
properties of the service profile which specifies the service characteristics. The
service_contract_id represents a mapping of teervice_profile_id (because
inheritance of structures is not possible in IDL).

The service contract, which is associated wigeevice templaterestricts the usage of

a service at subscription time by setting the service properties in the contract. The
agreement text indicates that the signature for a service is needed before the service
can be used.

4.2.4 Service template

The service templatelefines three kinds of properties:

4-6 Telecommunications Service Access & Subscription October 2000

1. service template properties
2. service properties

3. end-user application properties

struct ServiceTemplate{ServiceTemplateld service_template_id;
ServiceTypeName service_type;
Providerld provider_id;
PropertyList service_template_properties;
PropertyList service_properties;
PropertyList user_application_properties;

h
The service_typalefines the category of services a retailer offers.
The provider_ididentifies the service provider.

Table 4-2 illustrates a non exhaustive example of valuable service template properties.
The example propertiaemote_provider_id

remote_initial_agent_naming_context andremote_url are attributes that can be

used to provide a reference to access the service provider domain in order to establish
an access as defined in Chapter 2.

The example uses property types as defined in the COS Trading Service. The property
mode specifies whether the property is mandatory, read-only or normal.

Table 4-2 Service Template Properties

property

structure name value mode
no_start bool normal
depends_on string normal
config_requirements string normal
autostart bool normal
remote_provider_ID string normal
remote_inital_agent_name_context string normal
remote_service_id ulong normal
remote_useriD string normal
remote_password string normal
remote_ URL string normal

TSAS v1.0 Information Model October 2000 4-7

The user_application_properties specify the capabilities of the end-user
application. A non exhaustive example of user application properties is given in Table
4-3.

Table 4-3 User Application Properties

property

structure name value mode
default_session_context string mandatory
browser bool normal
ORB string normal
java_lib string normal
URL string normal
0s string normal

4.2.5 Subscription Assignment Group

A subscriber may not want to grant all of its end-users the same service characteristics
and usage permissions. In this case he can group them $ubsaription Assignment
Group (SAG)nd than assigservice profiledo each group. The subscriber can also
assign more than one service profile for an end-user, for example an internet travel
booking service, where each entry page for flight booking, hotel booking or car
reservation can be expressed by a separate service pgfilecription Assignment

Groups (SAGhare associated with the subscriber.

struct Sag{
Sagld sag_id;
PropertyList properties;
h

The sag_id is a string defined by the subscriber to identify its SAGs. The subscriber
can describe the SAG using the properties. Jdge id together with the
subscriber_id is unique in the retailer system.

4.2.6 Service Profile

The service profilespecifies the service settings for the usage of that service. It
restricts the service contract settings for a specific end user or SAG. It is associated
with the service template, which contains all possible capabilities for service usage
defined by the service provider.

struct ServiceProfile{
ServiceProfileld service_profile_id;
ServiceTypeName service_type;
ServiceTemplateld service_template_id;
PropertyList service_properties;

Telecommunications Service Access & Subscription October 2000

4

The serviceTypas the corresponding classification given by the retailer. The service
template_id is used as a reference to the service template for the access of a service.

The service_properties specify the capabilities of the service.

4.2.7 End-user

An end-userwill be authorized by aubscriberfor the access of a service. Taed-
userentry contains atD, security_propertiesinduser_propertieslescribing the end-
user relevant information for subscription. Eaatd-useris part of at least one SAG,
which can contain a single user or a group of users.

struct EndUser{

UserID string;

PropertyList security _properties;
PropertyList user_properties;

%

The security properties define the kind of authentication a user has, for example
password, credential or biometric information. Each end-user can define in the
user_properties the specific user data such as address, phone number, email..

4.2.8 End-user service profile

The end-user service profildefines the a range of end-user specific possible settings
for a customized service usage. The end-user service profile is related to the service
template, which defines the possible properties for end-user specific settings as part of
the service properties.

struct EndUserServiceProfile {
ServiceTemplateld service_template_id;
PropertyList end_user_service_properties;

%

The end_user_service_properties are service dependent and have to be provided
by the service provider. The end-user can set its preferences as predefined by the
service template which contains the possible range of end-user preferences for a
service. Theservice_template_id identifies theservice_template .

4.2.9 Service type

The service typalescribes the service category (for example, a communication

service). For each service type one service template exists, but there might be multiple
service templates for one service type. The service type is described using properties
similar to those defined in COS Trading service. The properties exist for the service
specific characteristics as well as for the preferences which can be set by an end-user.

TSAS v1.0 Information Model October 2000 4-9

4

4.3 Subscription Segments

4.3.1 Overview

The subscription interfaces are only available after successful access to the retailer
from either the consumer side to manage subscribers and end-users or from the
provider side to manage service templates. If the subscription segments are supported
by the retailer, the access of certain services will be controlled by using subscription.

The segments available for the subscription process are:

Subscriber Administration Segment

It allows subscribers to manage their subscription. Four interfaces are provided:

1. SubscriberMgmt - this interface is used by the subscriber to create, modify or
delete subscriber entries.

2. SubscriberinfoQuery - this interface is used to retrieve subscriber related
information.

3. ServiceContractManagement - this interface allows subscribers to create
modify and delete service contracts.

4. ServiceContractinfoQuery - this interface allows subscribers to query
information about its contracts and to list its subscribed services.
Service Provider Administration Segment

It allows service providers to provide new services in the retailer domain. Two
interfaces are provided:

1. ServiceTemplateMgmt allows a service provider to deploy, modify, or withdraw
a service in the retailer domain.

2. ServiceTemplatelnfoQuery allows service providers to list all its deployed
service templates or get a specific deployed service template.

End-user Administration

® This allows a subscriber to manage its end-users and groups. Four interfaces are
provided:

1. SagMgmt - this interface is used for the management of end-user groups.

2. SaginfoQuery - this interface allows subscribers to get information about existing
subscription assignment groups and users.

3. ServiceProfileMgmt - this interface allows subscribers to manage service profiles
and assign these to subscription assignment groups.

4. ServiceProfilelInfoQuery - this interface allows subscribers to retrieve
information about service profiles and assignment of profiles to subscription
assignment groups.

4-10 Telecommunications Service Access & Subscription October 2000

End-user Customization Segment

This allows end-users to customize the service within the range of predefined settings.
Two interfaces are defined:

1. UserProfileMgmt - this allows an end-user to modify the user profiles and the user
service profile settings.

2. UserProfileInfoQuery - this allows an end-user to request information about its
user profile.

4.4 Scenario Description

To demonstrate the usage of the interfaces the UML sequence diagram in Figure 4-3
provides an example set of interfaces related to roles for which the UML actors are

used.
% % _: SaviesTenplaevitt _+ Subsaibeivint _: SavieeQrraavint SO _+ SavigeRdfleMytt 2
SaniceRider UsCesiigioivim
T dqu}m'&‘ﬂnﬂom d, inSa\loeTarlae)

\
\
Zuaf_atmiln‘ﬂnsmuitﬂ') N

| |
| |
‘ asigpdie ‘
arted)
3 gese SN ¢ In&tsail‘ﬂﬁ,inil\mlrnzd) ‘ E:\‘;TH) ‘
Jam’g‘(lndmilmding(]din&\i@dld@ ‘ ‘
| | |
5 aeste LeafSbecitetd ingaDesoipio) | ‘
I I I
| | | |
| |
[
|

|
|
|
|
|
ﬂmj\
ehuss
|
|
|
|
|
|
|
|

7 e S SG\ICB _p(ﬂs(nambaJd inSieeRdiled inSaveeRdile)

I

|

[

|

\

\

|

l

} euaﬂ_sagnambauln%‘nwmd.lso

|

| |

\

|

| _ o .
i erm%wa_sa\me _pdle(lns‘tsulbmdnlsdd nSanmﬂ&anlqnv.‘s)
|

| l
\ \ i jm
sanicepdile
Szﬁ’g‘(lrlatmil:md in%dirl&mkﬂ?cﬁlé@ ‘
\ \

e

Figure 4-3 Subscription Scenario
1. Prior to any service usage the retailer needs services that can be used. The service

provider registers a new instance of a service template to the retailer by using the
deploy operation. The service provider provides together with its provider Id the

TSAS V1.0 Scenario Description October 2000 4-11

service template |d which must be unique in the retailer domain. The service
provider sets the service properties, which are provided by the retailer to the end-
user.

2. A subscriber wants to subscribe to a retailer by using the subscriber administration
segment. A new entry will be created for the subscriber. The subscriber can modify
or delete its entries or query information about available entries by using the
particular operations.

3. After having an account in the system the subscriber sets up a new contract with the
retailer and the required settings for the service. Most of the contract information is
defined by a property list, which is defined by retailers.

4. If the subscriber is an end-user it assigns a service profile to define the settings to
use a service. The default service profile is defined by the service contract. After
that the service can be used.

1 to 4 are the necessary steps for simple subscription, where a subscriber is also an
end-user. The next steps describe the management for end-users.

5. The subscriber creates for each end-user an entry using its subscriber id and a usel
id. The subscriber has to create a new entry for each of its users.

6. The subscriber builds a subscription assignment group and can set the properties of
that group. The subscriber adds its users (list of user Ids) to the SAG which he has
previously created.

7. The subscriber defines the restrictions for its end-users to access and use a service
by setting chosen service properties in the service profile.

8. The subscriber assigns the service profiles to SAGs. After that the end-users can use
the service.

9. The end-user can now edit its user profile and set its preferences.

4.5 Subscriber Administration

4-12

Subscriber administration consists of the management of subscriber entries and the
management of service contracts. Subscriber administration is done by the subscriber.

4.5.1 Subscriber Management

4511

The interfaceSubscriberMgmt is used to define new subscriber entries, to modify
and to delete them.

interface SubscriberMgmt

void
create_subscriber(

in Subscriber subscriber)
raises (

Telecommunications Service Access & Subscription October 2000

45.1.2

SubscriptionError

);

The operatiorcreate_subscriber allows a subscriber to create a subscriber entry.
The subscriber structure contaisisbscriber_id andsubscriber_properties . The

id is given by the subscriber. If tlsgbscriber_id already exists, the operation returns
an AlreadyExists exception and the subscriber has to try again.

void
modify_subscriber(

in Subscriber subscriber)
raises (

SubscriptionError

);

The operatiomodify_subscriber modifies subscriber entries, for example a new
bank account or a new contact person for billing. $hlescriber_id is used for
identification in the retailer domain. In the case of an invalidscriber_id , the
operation returns amvalidSubscriber exception.

void
delete_subscriber(

in Subscriberld subscriberid)
raises (

SubscriptionError

);

The delete_subscriber operation removes a subscriber from the system. The
subscriber_id is used for identification in the retailer domain. In the case of an
invalid subscriber id, the operation returnslamalidSubscriber exception.

The SubscriberinfoQuery interface allows information about existing subscriber to
be queried.

interface SubscriberinfoQuery

void get_subscriber (
in Subscriberld subscriber _id,
out Subscriber subscriber)
raises (
SubscriptionError

);

The get_subscriber operation returns the information about a subscriber. The
subscriber_id is used for the identification in the retailer domain. In case of an
invalid subscriber id, the operation returnslawalidSubscriber exception.

TSAS v1.0 Subscriber Administration October 2000 4-13

4.5.2 Service Contract Management

The ability to create new service contracts, modify these contracts and delete them is
given by theServiceContractMgmt interface.

4.5.2.1 interface ServiceContractMgmt

void
create_service_contract(

in Subscriberld subscriber id,

in ServiceContract service_contract)
raises (

SubscriptionError

);

The operatiorcreate_service_contract is used by the subscriber to provide the
contract relevant information. Theubscriber_id is unique in the retailer domain.

The service contract is a structure specifyingdbetract_properties and a default
service profile. Exceptions atavalidSubscriber, InvalidContract.

void
modify_service_contract(

in Subscriberld subscriber id,

in ServiceContract service_contract)
raises (

SubscriptionError

);

The operatiormodify_service_contract is used to modify an existing service
contract. Thesubscriber_id identifies the subscriber in the retailer domain and the
modifications to the contract will be provided by the subscriber. Exceptions are
InvalidSubscriber, InvalidContract.

void
delete_service_contract(

in Subscriberld subscriber id,

in ServiceContractld service_contract_id)
raises (

Subscription Error

);

The operatiordelete_service_contract removes an existing service contract. The
subscriber_id identifies the subscriber in the retailer domaiervice contract_id
identifies the contract. Exceptions drvalidSubscriber, InvalidContract.

Information on existing service contracts is provided at the
ServiceContractinfoQuery interface.

4-14 Telecommunications Service Access & Subscription October 2000

4.5.2.2 interface ServiceContractinfoQuery

void get_service_contract(
in Subscriberld subscriber id,
in ServiceContractld service_contract_id,
out ServiceContract service_contract)
raises (
SubscriptionError

);

The Operatiorget_service_contract allows information about a single service
contract to be queried and the contract itself to be returnedsdyseriber_id
together with theontract_id is unique in the retailer domain. Exceptions are
InvalidSubscriber, InvalidContract.

void list_subscribed_services(

in Subscriberld subscriber id,

out ServiceProfileldList service_profile_id_list)
raises (

SubscriptionError

);

The operation list_subscribed_services provides a list of all services to which
the subscriber has subscribed by a contract.sliiscriber_id identifies the
subscriber in the retailer domain. The operation returns a list of subscribed
service_profile_ids . Exception isinvalidSubscriber.

4.6 Service ProviderAdministration

The service provider administration supports interfaces to service providers to manage
the service templates the service provider is going to offer through the retailer domain.

The service template management can be used in order to introduce new services,
modify the properties of existing services or delete offered services. The services
defined here are actual service offers; for example a video conferencing service of a
non-monopolistic telecom operator. The interfaces are used by the service provider.

The service providers can only register those services which are supported by the
retailer domain. The retailer itself, in the role of the retailer administrator, decides
which kind of services types it supports. Before a service template of a service
provider can be registered in the retailer domain, the corresponding service type must
be supported. How this is done by the retailer administrator is out of scope of this
specification.

At the ServiceTemplateMgmt interface the registration, modification and deletion of
service templates can be done.

4.6.1 interface ServiceTemplateMgmt

void deploy_service(

TSAS v1.0 Service ProviderAdministration October 2000 4-15

4-16

in Providerld provider_id,

in ServiceTemplate service_template,

out ServiceTemplateld service_template_id)
raises (

SubscriptionError

);

The operatiordeploy_service allows the service provider to register a new instance
of a service template. The operation returnsséérwice_template_id , which is used

in the retailer domain to identify the service template. The seprmmader_id is

given by the service provider and used to identify the provider in the retailer domain.
The service template is given by the service provider. The service provider completes
the providedservice_properties anduser_service_properties , theservice_
template_properties that are needed for the retailer to access the provider domain
to start a service and the possibkled-user_application_properties , which define

the conditions for theiser_application in the consumer domain. Exceptions are
InvalidProvider, NotSupportedServiceType andlInvalidPropertyList.

How the retailer and service provider exchange the type definitions used in the service
template is out of scope of this specification. However, how the retailer defines its own
service template that is offered as a service to the end-user is internal to the retailer.

void
modify_service(

in Providerld provider_id,

in ServiceTemplate service_template)
raises (

SubscriptionError

);

The operatiormodify_service allows a service provider to modify existing service
templates (service offers). The servievider_id and theservice_template_id of

the service_template struct are used to identify in the retailer domain which service
should be modified. The service capabilities are defined by the service provider in the
service _properties . Exceptions arénvalidProvider andInvalidPropertyList.

void
withdraw_service(

in Providerld provider_id,

in ServiceTemplateld service_template_id)
raises (

SubscriptionError

);

The operation withdraw allows a service provider to delete an existing service
template. The servigerovider_id and theservice_template_id are used to identify
in the retailer domain which service should be removed. Exceptions are
InvalidProvider and InvalidServiceTemplateld.

Information about service templates can be obtained on the
ServiceTemplatelnfoQuery interface.

Telecommunications Service Access & Subscription October 2000

46.1.1

interface ServiceTemplatelnfoQuery

void list_service_templates(

in Providerld provider_id,

out ServiceTemplateldList service_template_id_lIst)
raises (

SubscriptionError

);

The operation list returns a list of all service templates for a service provider. The
serviceprovider_id is used to identify the service provider in the retailer domain. The
operation returns a list of service template ids. Exception is raised for
InvalidProvider.

void get_service_template(
in Providerld provider_id,
in ServiceTemplateld service_template-id,
out ServiceTemplate service_template)
raises (
SubscriptionError

);

The operation returns the structure of a single service template. The service
provider_id and theservice_template_id are used to identify which service
template should be returned. Exceptions lanealidServiceProvider and
InvalidServiceTemplateld.

4.7 End-user Administration

4.7.1 User

The end-user administration interface is intended for situations where an organization
wants to allow several end-users to be registered with a retailer. The interfaces are used
by the subscriber, who manages the end-users.

When a registered subscriber wants to provide access to a subscribed service for
several end-users in the name of its organization, then it has to register them in the
retailer domain.

The main task of the end-user administration is to:
® register, modify and delete user entrieks¢r Managemeit
®* management of user groupfBAG Managemeht

®* management of service profiles which are defined for all subscribed services
(Service profile Managemeénand to assign / de-assign the service profiles.

and SAG Management

The SAGMgmt interface provides operations to administrate the SAGs of the
subscriber.

TSAS v1.0 End-user Administration October 2000 4-17

4.7.1.1 interface SagMgmt

void
create_sag (
in Subscriberld subscriber id,
in Sag sag,
in UserldList user_ids)
raises (
SubscriptionError

);

For the administration of SAGs the subscriber can use this operation to create a new
SAG and to add end-users (which have been createdebye user). The

subscriber_id is used for the identification of the subscriber in the retailer domain.
The list ofuser_ids is given by the subscriber. Exceptions #&r¢alidSubscriber,
InvalidSag, or InvalidUser.

void
modify_sag (
in Subscriberld subscriber id,
in Sag sag)
raises (
InvalidSubscriber,
InvalidSag

);

The operatiormodify_sag allows a subscriber to modify an existing SAG. The
subscriber_id is used in the retailer domain to identify which SAG should be
modified. Exceptions artnvalidSubscriber andInvalidSag.

void

delete_sag (
in Subscriberld subscriber _id,
in Sagld sag_id)

raises (
SubscriptionError

);

The operatiordelete_sag allows a subscriber to delete an existing SAG. The
subscriber_id andsag_id are used in the retailer domain to identify which SAG
should be removed. Exceptions darvalidSubscriber and InvalidSag.

void
create_user(
in Subscriberld subscriber _id,
in EndUser end_user)
raises (
SubscriptionError

);

4-18 Telecommunications Service Access & Subscription October 2000

The operatiorcreate_user creates a new user. The operation is used by the

subscriber. Thesubscriber _id together with theuser _id from theend_user

structure are unique in the retailer domain. The first entry for an end-used iniser

is given by the subscriber, the security properties are as well set by the subscriber,
whereby the user properties can be defined by the end-user itself by using the end-user
customization segment. Exceptions émgalidSubscriber andInvalidUser.

void
modify_user(
in Subscriberld subscriber id,
in EndUser end_user)
raises (
SubscriptionError

);

The operatiommodify_user modifies information for an existing end-user. The

operation is used by the subscriber to modify an user entrysitecriber_id and
the user_id identify for which end-user the modification should be performed.

Exceptions ardnvalidSubscriber and InvalidUser.

void

delete_user(
in Subscriberld subscriber id,
in EndUser end_user)

raises (
SubscriptionError

);

The operationslelete_user deletes an existing user. Thebscriber_id and the
user_id are used to in the retailer domain to identify the user that should be removed.
Exceptions ardnvalidSubscriber andInvalidUser.

void
add_sag_users(
in Subscriberld subscriber _id,
in Sagld sag_id,
in UserldList user_ids)
raises (
SubscriptionError

);

A subscriber can add users to specific SAGs by using the opeeatibrsag_users .
Before the subscriber can do that, it must have already created the users with the
operation create user. The subscriber can use a listuaéth ids to add them to the
subscription assignment group. ExceptionslamalidSubscriber, InvalidSag and
InvalidUser.

void

remove_sag_users(
in Subscriberld subscriber _id,
in Sagld sag_id,

TSAS v1.0 End-user Administration October 2000 4-19

in UserldList user_ids)
raises (
SubscriptionError

);

The operatiorremove_sag_users removes a single user or a list of users from a
SAG of a subscribeSubscriber_id anduser_id are used to identify in the retailer
domain which users should be removed. ExceptionsraalidSubscriber,
InvalidSag, andInvalidUser.

SAGInfoQuery interface is provided to retrieve information about existing SAGs,
users and their assignment to SAGs.

4.7.1.2 interface SAGInfoQuery

void list_sags(
in Subscriberld subscriber _id,
out SagldList sag_id_list)
raises (
SubscriptionError

);

The operatiorist_sags allows a subscriber to get a list of already creatagl ids .
The subscriber_id is used in the retailer domain to identify the subscriber. The
exceptionlnalidSubscriber can be raised.

void get_sag(

in Subscriberld subscriber id,

in Sagld sag_id,

out Sag sag)
raises (

SubscriptionError
)i
The operatiorget_sag allows a subscriber to query information about a single SAG.
It returns the sag structure containisag_id and propertiesSubscribe_id and
sag_id are used to identify which SAG should be provided to the subscriber.
Exceptions argnvalidSubscribe andInvalidSag.

void get_user(
in Subscriberld subscriber id,
in Userld user_id,
out EndUser end_user)
raises (
SubscriptionError

);

The operatiorget_user allows a subscriber to query information about a single user.
The information about a user contained in the stEmtUser is returned. The
subscriber_id anduser_id must be unique in the retailer domain. Exceptions are
InvalidSubscriber andInvalidUser.

4-20 Telecommunications Service Access & Subscription October 2000

void list_sag_users(
in Subscriberld subscriber _id,
in Sagld sag_id,
out UserldList user_id_list)
raises (
SubscriptionError

);

The operatiodist_sag_users allows a subscriber to get a list of allers_ids for a
single SAG. TheSubscriber_id andsag_id are used in the retailer domain for
identification of the SAG. Exceptions ahavalidSubsciber and InvalidUser.

void list_users(
in Subscriberld subscriber id,
out UserldList user_id_list)
raises (
InvalidSubscriber

);

The operatiorist_users returns a list of alusers_ids of one subscriber. The
subscriber_id is used to identify the subscriber in the retailer domain.

4.7.2 Service Profile Management

The management of service profiles that are defined for all subscribed services, and the
permission for users to use a subscribed service by assigning service profiles to SAGs
can be done at th®erviceProfileMgmt interface.

4.7.2.1 interface ServiceProfileMgmt

void
create_service_profile(
in Subscriberld subscriber _id,
in ServiceProfileld service_profile_id,
in ServiceProfile service_profile)
raises (
SubscriptionError

);

The operatiorcreate_service_profile allows a subscriber to create a new service
profile. Theprofile_id is given by the subscriber. The service profile contains service
parameters which may restrict the service usage. The service profile settings depend on
the possibilities the service provider allows and are provided as a list of properties. The
subscriber can define different service profiles for one service. Exceptions are
InvalidSubscriber andInvalidService Profileld.

void

modify_service_profile(
in Subscriberld subscriber id,

TSAS v1.0 End-user Administration October 2000 4-21

4-22

in ServiceProfile service_profile)
raises (
SubscriptionError

);

The operatiormodify_service _profiles allows a subscriber to modify the service
properties of an existing service profile. ExceptionslamalidSubsciber and
InvalidServiceProfileld.

void
delete_service_profile(
in Subscriberld subscriber _id,
in ServiceProfileld service_profile_id)
raises (
SubscriptionError
)i
The operatiordelete_service_profiles allows a subscriber to delete an existing
service profile. Exceptions atavalidSubsciber and InvalidServiceProfileld.

void
assign(

in Subscriberld subscriber _id,

in Sagld sagld,

in ServiceProfileld service_profile_id)
raises (

SubscriptionError

);

The operatiorassign allows a subscriber to assign a service profile to a SAG. The
previously created service profile will be assigned to a SAG. Exceptions are
InvalidSubsciber, InvalidSag andInvalidServiceProfileld.

void
deassign(
in Subscriberld subscriber id,
in Sagld sag_id,
in ServiceProfileld service_profile_id)
raises (
SubscriptionError
)i
h

The operatiordeassign allows a subscriber to remove a service profile from a SAG.
Exceptions ardnvalidSubsciber, InvalidSag, andInvalidProfileld.

The interfaceServiceProfileInfoQuery is provided to query information about
existing service profiles, their states, and their assignments to SAGs and users.

Telecommunications Service Access & Subscription October 2000

4.7.2.2 interface ServiceProfileiInfoQuery

void list_service_profiles(

in Subscriberld subscriber id,

out ServiceProfileldList service_profile_id_list)
raises (

SubscriptionError

);

The operatiorist_service_profiles returns a list of all service profiles ids of a
subscriber. Exception igvalidSubscriber.

void list_assigned_service_profiles(

in Subscriberld subscriber _id,

in Sagld sag_id,

out ServiceProfileldList service_profile_id_list)
raises (

SubscriptionError

);

The operatiorist_assigned_service_profiles returns all service profiles assigned
to a single SAG. Exceptions atavalidSubscriber andInvalidSag.

void get_service_profile(
in Subscriberld subscriber id,
in ServiceProfileld service_profile_id,
out ServiceProfile service_profile)
raises (
SubscriptionError

);

The operatiorget_service_profile returns a single service profile. The struct
ServiceProfile contains thgrofile_id and the service properties. Exceptions are
InvalidSubscriber andInvalidServiceProfileld.

void list_assigned_sags(
in Subscriberld subscriber _id,
in ServiceProfileld service_profile_id,
out SagldList sag_id_list)
raises (
SubscriptionError

);

The operatiorist_assigned_sags returns a list of SAG Ids assigned to single
service profile. Exceptions are raised fovalidSubscriber and
invalidServiceProfilelD.

void list_assigned_users(
in Subscriberld subscriber id,
in ServiceProfileld service_profile_id,
out UserldList user_id_list)

TSAS v1.0 End-user Administration October 2000 4-23

raises (
SubscriptionError

);

The operatiorist_assigned_users returns a list oluser_ids that are assigned to
single service profile. Exceptions akevalidSubscriber and
invalidServiceProfilelD.

4.8 End-user Customization

The End-user customization segment allows end-users to customize the service in the
range of predefined settings.

The interfacdJserProfileMgmt allows an end-user to modify the user profile settings
for and the user service profile settings.

The interfaceJserProfileiInfoQuery allows an end-user to request information about
its user profiles.

4.8.1 interface UserProfileMgmt {

void modify_security_properties(

in Subscriberld subscriber _id,

in Userld user_id,

in PropertyList security_properties)
raises (SubscriptionError);

The operatiormodify_security_properties provides the possibility to change for
example the user password. The user password can be one attribute of the user
properties. Thesubscriber_id and theuser_id are used to identify the user in the
retailer domain. Exceptions are raised liovalidSubscriber, InvalidProperty and
InvalidUserld.

void modify_user_profile(

in Subscriberld subscriber id,

in Userld user_id,

in PropertyList user_properties)
raises (SubscriptionError);

The operatiomodify_user_profile allows an end-user to detail its personal entries
in the user_properties . Subscriber andiser_id are used to identify in the retailer
domain the end-user.

void modify_user_service_profile(

in Subscriberld subscriber _id,

in Userld user_id,

in EndUserServiceProfile end_user_service_profile)
raises (SubscriptionError);

4-24 Telecommunications Service Access & Subscription October 2000

4

The operatiommodify _user_service_profile provides an end-user with the ability

to change the personal preferences for the usage of a service predefined by the service
provider. TheSubscriber_id and theuser_id are used to identify the end-user in the
retailer. Theservice_template_id is part of theend_user_service_profile

structure and is used as the reference for the subscribed service.

void delete_user_service_profile(

in Subscriberld subscriber _id,

in Userld userld,

in ServiceTemplateld service_template_id)
raises (SubscriptionError);

The operatiordelete_user_service_profile removes the user service profile in the
retailer domain. Theubscriber_id and theuser_id are used to identify the user in
the retailer domain, thgervice_template_id to identify for which service the profile
should be deleted. Exceptions are raisedlfimalidSubscriberld, InvaliduserID,
InvalidServiceTemplateld.

4.8.2 interface UserProfilelInfoQuery {

The query interface allows an end-user to question its user descriptions and user
service profiles

void get_user_description(
in Subscriberld subscriber _id,
in Userld user_id
out EndUser end_user)
raises (SubscriptionError);

The operatiorget_user_description provides the end-user with information about
its user_id anduser_properties . Thesubscriber_id and theuser_id are used to
identify the end-user in the retailer domain. Exceptions are raised for
InvalidSubscriber and InvalidUserld.

void list_user_service_profile_ids (

in Subscriberld subscriber id,

in Userld user_id,

out ServiceTemplateldList service_template_id_list)
raises (SubscriptionError);

The operatiodist_service_profiles_ids returns a list of subscribed end-user service
profiles which are associated with the retailer’'s sertéeeplate_ids . Subscriber and
user_id are used to identify the user in the retailer domain. Exceptions are raised for
InvalidSubscriber and InvalidUserld.

void get_user_service_profile(
in Subscriberld subscriberld,
in Userld userld,
in ServiceTemplateld service_template_id,
out EndUserServiceProfile end_user_service_profile)

TSAS v1.0 End-user Customization October 2000 4-25

raises (SubscriptionError);
h

The operatiorget_user_service_profile returns the end-user service profile which
is associated with the retailesgrvice_template_ids . Subscriber andser_id are
used to identify the user in the retailer domain. $hevice_template_id can be
obtain from the operatiolist_user_service_profile_ids . Exceptions are raised for
InvalidSubscriber, InvalidServiceTemplateld andInvalidUserld.

4-26 Telecommunications Service Access & Subscription October 2000

Common Types 5

Contents

This chapter contains the following sections.

Section Title Page
“Common Information View” 5-1
“User Information” 5-3
“Access Session Information” 5-7
“User Information” 5-7
“User Context Information” 5-8
“Service and Session Information” 5-9

5.1 Common Information View

This section describes common types of information which have a high potential for
re-use (in several segments, or between other domains than the ones described in the
TSAS document).

5.1.1 Properties and Property Lists

Properties are attributes or qualities of something. In TSAS, properties are used to
assign a quality to something, or search for items or entities that have that particular
quality. The entities that can be qualified by such a property for TSAS can be users,
providers, services, sessions, interfaces. Each of these will have different properties,
and each property may have a range of different values and structures. While some
properties will be defined in this document, some supplementary properties can be
defined later and eventually be provider specific.

Telecommunications Service Access & Subscription October 2000 5-1

With this in mind, the typ@roperty has been chosen to represent a property. Its IDL
definition is taken from the CORBA Property Service.

typedef string PropertyName;
typedef sequence <PropertyName> PropertyNameList;
typedef any PropertyValue;
struct Property {
PropertyName name;
PropertyValue value;
h

typedef sequence <Property> PropertyList;

As can be seen above, tReoperty is a structure consisting of a name and a value.
The name is a string, and the value is an any. This format allows the recipient of the
property to read the string and match it against the properties they know about. If it is
a property they know, then they will also know the format of the value. If they do not
know the property, then they should not read the value. The any value contains a
typecode that can be looked up in the interface repository to find the type of the value.
The Property , andPropertyList are used to attribute qualities to entities. Some of
these qualities may also be provider-specific, and so they can also use these types to
extend the TSAS specifications.

TSAS defines property names and values where it is possible to do so. For some
property lists (for exampldnterfaceProperties) it is up to the user (consumer-
[retailer-/service provider domain) to determine properties that can be associated with
it.

enum WhichProperties {
NoProperties,
SomeProperties,
SomePropertiesNamesOnly,
AllProperties,
AllPropertiesNamesOnly

h

struct MatchProperties {
WhichProperties which_properties;
PropertyList properties;

h

MatchProperties is used to scope the return values of some operations. These
operations return lists of itemslatchProperties is used to identify which items to
return, based on the item's properties. Fordperation list_user_services , the
items are a user’s subscribed services. MagéchProperties parameter defines the
properties of the subscribed services that are to be returned in the list.

Telecommunications Service Access & Subscription October 2000

MatchProperties contains aPropertyList and an enumerated type

WhichProperties . ThePropertyList contains the properties that need to be

matched. Th&VhichProperties identifies whether some, all or none of the properties
must be matched, and whether the property name and value, or just the property name
must be matched.

For example, in the operatidist_subscribed_services

If WhichProperties is... Then the subscribed services...

NoProperties don’t have to match any property, and
consequently all subscribed services are returned.

SomeProperties must match at least one property in the
PropertyList , (both the property name and value
must match), to be included in the returned list.

SomePropertiesNamesOnly must match at least one property name in the
PropertyList to be returned. The values of the
properties in thé’ropertyList may not be
meaningful and should not be used.

AllProperties must match all the properties in the
PropertyList , (both the property name and value
must match), to be included in the returned list.

AllPropertiesNamesOnly must match all the property names in the
PropertyList to be returned. The values of the
properties in thé’ropertyList may not be
meaningful, and should not be used.

5.2 User Information

typedef string Userld;
typedef string UserName;
typedef PropertyList UserPropertyList;

The user_id (of typeUserld) identifies the user to the provider. It is unique to this
user within the scope of this provider. Theerld does not contain the name of the
provider, and so cannot be used to contact the provider. It may be sent to a
broker/naming service when attempting to contact a provider along with the provider
name.

UserPropertyList is a sequence afserProperty . It contains information about the
user that needs to be passed to the provider. The following property names are defined
for UserProperty . Other property names are allowed, but are provider specific.

/I Property Names defined for UserPropertyList:

/[name: “PASSWORD”
/[value: string

TSAS v1.0 User Information October 2000 5-3

Il use: user password, as a string.

/I name: “SecurityContext”

/I value: opaque

/I use: to carry a provider specific security context
Ileg. could be used for an encoded user password.

5.2.1 Usage Related Types

5.2.1.1 Sessionld
typedef unsigned long Sessionld;

All the service sessions running in the service provider domain are identified by a
session_id (of the typeSessionld). The retailer must translate thesession_ids ,

to provide the consumer with a list séssion_ids that are unique in the consumer
domain. TheSessionld is a long (32 bits). Thisession_id is the same as the
session_id provided when a service session is started.

5.2.2 Invitations and Announcements

Invitations allow a session to ask a specific consumer to join a ‘running’ service
session. Invitations are delivered by the service provider running the service session to
the appropriate retailer, and from that retailer to the consumer domain for the end-user,
if an access session exists. If no access session exists with the user domain, the
invitation may be delivered using other methods. For example, the invitation may be
delivered to a ‘pre-registered’ interface, or stored by the retailer until an access session
is established. Such a 'pre-registered’ interface is not defined in this document, but can
be defined in a provider specific segment. The invitations contain sufficient

information for the invited user to be able to identify the user that issued the invitation,
find and join the session, or refuse the invitation.

typedef unsigned long Invitationid;
typedef string InvitationReason;

struct InvitationOrigin {
Userld user _id;
Sessionld session_id;

h

struct Sessionlnvitation {
Invitationld id;
Userld invitee_id;
SessionPurpose purpose;
Servicelnfo service_info;
InvitationReason reason;
InvitationOrigin origin;
PropertyList inv_properties;

Telecommunications Service Access & Subscription October 2000

typedef sequence <Sessionlnvitation> InvitationList;

enum InvitationReplyCodes {
SUCCESS, UNSUCCESSFUL, DECLINE, UNKNOWN, ERROR,
FORBIDDEN, RINGING, TRYING, STORED, REDIRECT, NEGOTIATE,
BUSY, TIMEOUT

h
typedef PropertyList InvitationReplyPropertyList;

struct InvitationReply {
InvitationReplyCodes reply;
InvitationReplyPropertyListannouncementreplypropertylist properties;

J3

Sessionlnvitation describes the service session to which the end-user (in the
consumer domain) has been invited, and providekntationld to match this

invitation when joining later on. This structure does not give interface references to the
session, nor any information that would allow the end-user to join the service session
without first having an access session running with this retailer. The structure also
provides dJserld with theuser_id of the invited end-user. The consumer domain can
check that the invitation is meant for an end-user known to this domain.

SessionPurpose is a string describing the purpose of the service session. A service
session purpose may be defined when that service session is started or during the
service session.

Servicelnfo is the subscribed service that the end-user can use to join the session.

InvitationReason is a string describing the reason that this invitation was sent to the
invited end-user. It can be defined by the end-user that issued the invitation, or by the
service session itself.

InvitationOrigin is a structure defining where the invitation has been issued. It
contains, for example, theser_id of the end-user that started the session.

An InvitationReply is returned that allows the end-user to inform the service provider
(via the retailer) of the action it will eventually take regarding the invitation. This
information is not binding; that is, the end-user can reply that it will join the service
session, then take no action, or join later, or not join at all. The following reply codes
are defined:
¢ SUCCESS - the end-user in the consumer domain agrees to join the service
session. The use of this reply code should be followed by the end-user taking
action to join the service session (seejtie_session_with_invitation()
operation on thé&roviderinvite interface described in Section 3.3.2,
“Providerlnvite Interface,” on page 3-7). However, this reply code can be
followed by another reply code (sent with tleply to_invitation() operation
that is described in Section 3.3.2, “Providerlnvite Interface,” on page 3-7), in case
the end-user changes his mind, but the RINGING reply code should then have
been used instead.

TSAS v1.0 User Information October 2000 5-5

5-6

« UNSUCCESSFUL - the end-user couldn’t be contacted through this operation.
However, if the same invitation was sent to multiple interfaces, a reply from
another interface may indicate that the end-user will join the session.

 DECLINE - the end-user declines to join the session.

« UNKNOWN - the end-user that is invited is not known by this interface. As was
said before, th&essionlnvitation contains &Jserld that allows the consumer
domain to check if the invitation is meant for an end-user known to this domain.

e FAILED - the end-user is unable to join the service session. No reason is given.
The invitation may be badly formatted, or the end-user may be unable to join
service sessions.

« FORBIDDEN - the consumer domain is not authorized to accept the request.

¢ RINGING - the end-user is known by this consumer domain and is being
contacted. The service provider should not assume that the end-user will join the
session. If the end-user wishes to join the service session, then it can do so as
described in SUCCESS above. If it wishes to keep the service provider informed
about its status regarding this invitation, it can useréipdy to_invitation()
operation as described in SUCCESS above.

¢ TRYING - the end-user is known by this consumer domain, but cannot be
contacted directly. The consumer domain is performing some action to attempt to
contact the end-user. The service provider can treat this as RINGING.

« STORED - the end-user is known by this domain, but is not being contacted at
present. The invitation has been stored though for retrieval by the user later on.
The service provider can treat this as RINGING, although it may be a while
before the user responds.

« REDIRECT - the end-user is known by this consumer domain, but it is not
available through this interface. The service provider should use the address given
back inlnvitationReplyProperies to contact the end-user.

« NEGOTIATE - the end-user is known by this consumer domain, but it is not being
contacted at present. ThevitationReplyProperies contains a set of
alternatives that the service provider could try in order to contact the end-user.
These alternatives are not defined by TSAS. They are service provider specific at
present.

« BUSY - the end-user cannot be contacted because it is ‘busy.” This code should be
treated similar to UNSUCCESSFUL.

« TIMEOUT - the end-user cannot be contacted, as the consumer domain has timed
out while trying to contact it, (that is, the consumer domain has a time out value
for contacting the end-users), for example, pop-up window, ringing phone, and
this time has expired. This code should be treated similar to UNSUCCESSFUL.

These invitation reply codes have been taken from the Internet Engineering Task Force
working group MMUSIC, (Multimedia Multiparty Session Control) draft standard
‘Session Initiation Protocol’ (SIP).

Announcements allow a session to publish itself to a ‘group’ of end-users. The
announcements are not directed to a specific end-user, nor are they ‘delivered’ to any
consumer domain. Announcements issued by the service providers are stored by the
retailer until the consumer domain requests a list of announcements.

Telecommunications Service Access & Subscription October 2000

5

Announcements are returned to the end-user that requested it in the consumer domain,
depending upon the ‘groups’ to which the end-user belongs. These are defined by user
properties, but no specific mechanism for defining announcement groups is specified
by TSAS. Announcements contain sufficient information for the consumer to join the
service session.

typedef PropertyList AnnouncementProperties;

struct SessionAnnouncement {
Announcementld announcement_id;
SessionPurpose session_purpose;
Servicelnfo service_info;
AnnouncementProperties properties;

h
typedef sequence <SessionAnnouncement> AnnouncementList;

typedef unsigned long Announcementlid;

SessionAnnouncement describes the session that is being announced, and the
‘group’ of users that the announcement is broadcast to. It is a structure containing the
announcement_id , thesession_purpose , theservice_info , and a list of
announcement properties. No property names or values are defined by TSAS for
announcements. The announcement properties allow the service providers to define
their own types for announcements, which can be passed using the announcement
operations defined by TSAS.

Announcementld identifies an announcement to the consumer domain. The
consumer domain can request a list of announcements that are associated with a
specific end-user. ThAnnouncementld is used by the consumer domain to
discriminate between the announcements it receives. The ids for each announcement
can only be used by the end-user they are meant for. They do not uniquely identify the
announcement across consumer domains.

5.3 Access Session Information
typedef unsigned long AccessSessionld;

The accessSessionld of type AccessSessionld is used to identify an access
session. ThaccessSessionld corresponding to the end-user’s current access session
is returned at the end of the access session set-up phasaccEssSessionld for

other access sessions can be fousithg list_access_sessions() in the access

control segment, on thiccessControl interface. TheAccessSessionld is scoped

by the end-user, (that is, for a single end-utkse(ld) all AccessSessionlds are
unique).

5.4 User Information

This section describes user related information types more dedicated to the access
session, and that have not already been described.

TSAS v1.0 Access Session Information October 2000 5-7

struct UserlInfo {
Userld user _id;
UserName name;
UserPropertyList user_properties;

I3

Userinfo describes the end-user. It is a structgerld, the user’'s name (that is,
readable by a human), atuberPropertyList . It is returned byget_user_info() on
the ProviderContext interface.

5.5 User Context Information

The user context information described in this section concerns the user in the generic
sense, for example:

® the end-user as a user of the retailer,
® the retailer as a user of the service provider,

® the service provider when it contacts the retailer as a user (for example, for
deploying services).

Consequently the user context information can be used in most of the user-provider
contexts.

typedef string UserCtxtName;
typedef PropertyList UserCtxtPropertyList;

struct UserCtxt {
UserCtxtName ctxt_name;
AccessSessionld as_id;
UserCtxtPropertyList properties;

h
typedef sequence <UserCtxt> UserCtxtList;

UserCtxt informs the provider about the user and the user domain, including the name
of the context. The user context properties can contain a list of references to supported
interfaces.

UserCtxtName is a hame given to this user context. It is generated by the user
domain. It is used to distinguish between access sessions to different user domains.
When listing the access sessions, tlserCtxtName is returned, along with the
AccessSessionld , as the former should be a more human readable name (when end-
users are involved).

Properties is a list of user context related properties that might contain; for example,
a list of references to supported interfaces.

Telecommunications Service Access & Subscription October 2000

5.6 Service and Session Information

The service and session information described in this section concerns the user and
provider in the generic sense, for example:

® The end-user as a user of the retailer, in its turn provider to the end-user.

® The retailer as a user of the service provider, in its turn provider to the retailer.

struct Servicelnfo {
Serviceld id;
UserServiceName name;
ServicePropertyList properties;

h
Servicelnfo is a structure that describes a subscribed service of the user.

Serviceld is the identifier for the servic&erviceld is unique among all the user’s
subscribed services. Other users may be subscribed to the same service, but will have «
different Serviceld . The Serviceld value persists for the lifetime of a subscription.

UserServiceName is the name of the service as a string. The name is chosen by the
subscriber when it subscribes to the service. It is the name of the service that would
ultimately be displayed on the end-user's screen.

ServicePropertyList is a property list, which defines the characteristics of this
service. They can be used to search for types of service with the same characteristics,
(for example, usingliscover_services() on theServiceDiscovery interface of the
service discovery segment).

TSAS has defined no properties f8ervicePropertyList , and so its use is provider
specific.

struct SessionlInfo {
Sessionld id;
SessionPurpose purpose;
UserSessionState state;
InterfaceList itfs;
SessionProperties properties;

h

Sessioninfo is a structure that contains information that allows the end-user to refer
to a particular service session when using interfaces within an access session. It can
also contain information for the usage part of the service session, including the
interface references to interact with the service session. The description of these
service session interfaces (and their types) is provider specific (outside the scope of
TSAS).

Id is the identifier for this service session. It is unigue to this service session, among
all service sessions that this end-user interacts with through this retailer. If the end-user
interacts with multiple retailers concurrently, then they may reBessionlds that

are identical.

TSAS v1.0 Service and Session Information October 2000 5-9

5-10

Purpose is a string containing the purpose of the service session. This may have been
defined when the service session was created, or subsequently by service specific
interactions that are service provider specific.

State is the service session state as perceived by this end-user. It can be:
UserUnknownSessionState , UserActiveSession , UserSuspendedSession
UserSuspendedParticipation , Userlnvited , or UserNotParticipating

Itfs is a list of interface types and references supported by the service session. It may
include service specific interfaces for the user to interact with the service session.
Further details are service provider specific.

Properties is a list of properties of the service session. Its use is service provider
specific.

5.6.1 Base Interface

interface SegmentBase

{
h

void release_segment () ;

This is the definition of the base interface from which the segment interfaces can
inherit in order for all of them to support thelease_segment() operation.

Telecommunications Service Access & Subscription October 2000

OMG IDL A

#ifndef DFTSAS_IDL_
#define DFTSAS_IDL_

#include "CORBA.idI"

module IOP {
const Serviceld ACCESS_SESSION_ID = OMG_assigned;
const Serviceld SERVICE_SESSION_ID = OMG_assigned;

b

module DfTsas {
typedef string Segmentld;
typedef sequence<Segmentld> SegmentidList;

const Segmentld INVITATION_SEGMENT = "Invitation";

const Segmentld CONTEXT_SEGMENT = "Context";

const Segmentld ACCESS_CONTROL_SEGMENT = "Access control";

const Segmentld SERVICE_DISCOVERY_SEGMENT = "Service discovery";

const Segmentld SESSION_CONTROL_SEGMENT = "Session control";

const Segmentld SUBSCRIBER_ADMINISTRATION_SEGMENT = "Subscriber administration";

const Segmentld SERVICE_PROVIDER_ADMINISTRATION_SEGMENT = "Service provider administration”;
const Segmentld END_USER_ADMINISTRATION_SEGMENT = "End user administration";

const Segmentld END_USER_CUSTOMIZATION_SEGMENT = "End user customization"”;

typedef string PropertyName;

typedef sequence<PropertyName> PropertyNameList;
typedef any PropertyValue;

struct Property {

PropertyName name;
PropertyValue value;

h

typedef sequence<Property> PropertyList;

enum HowManyProps { none, some, all };

Telecom Service Access & Subscription v1.0 October 2000 A-11

A-12

union SpecifiedProps switch (HowManyProps) {
case some: PropertyNameList prop_names;

h

typedef string InterfaceName;
typedef sequence<interfaceName> InterfaceNameList;

typedef PropertyList InterfacePropertyList;
struct InterfaceStruct {

InterfaceName name;

Object ref;

InterfacePropertyList properties;

h

typedef sequence<interfaceStruct> InterfacelList;
typedef string Serviceld;

typedef PropertyList ServicePropertyList;
typedef string ServiceToken;

typedef unsigned long Sessionld;
typedef sequence<Sessionld> SessionldList;

typedef string UserSessionState; // defined values for this type, see doc.

typedef PropertyList SessionPropertyList;

struct Sessioninfo {
Sessionld id;
InterfacelList refs;
SessionPropertyList properties;

3
typedef PropertyList EndAccessPropertyList;

enum PropertyErrorCode {
UnknownPropertyError,
InvalidProperty,
UnknownPropertyName,
InvalidPropertyName,
InvalidPropertyValue,
NoPropertyError

h

exception PropertyError {
PropertyErrorCode error;
PropertyName name;
PropertyValue value;

h

enum InterfaceErrorCode {

Telecom Service Access & Subscription v1.0

October 2000

UnknowninterfaceError,
InvalidinterfaceName,
InvalidinterfaceRef,
InvalidinterfaceProperty

h

exception InterfaceError {
InterfaceErrorCode error;
InterfaceName name;

PropertyName property_name; // if error=InvalidinterfaceProperty, this contains the property in error.

h

enum DomainErrorCode {
UnknownDomainError,
InvalidDomainld,
InvalidDomainRef

h

exception DomainError {
DomainErrorCode error;

b

enum AuthErrorCode {
UnknownAuthError,
InvalidAuthType,
InvalidAuthCapability,
NoAcceptableAuthCapability,
InvalidChallenge

b

exception AuthError {
AuthErrorCode error;

b

enum AccessErrorCode {
UnknownAccessError,
InvalidAccessType,
InvalidAccesslnterface,
AccessDenied

h

exception AccessError {
AccessErrorCode error;

b

enum ServiceErrorCode {
UnknownServiceError,
InvalidServiceld,
ServiceAccessDenied,
InvalidServiceToken

b

exception ServiceError {
ServiceErrorCode error;

b

Telecom Service Access & Subscription v1.0

October 2000

A-13

A-14

enum ServiceAgreementErrorCode {
UnknownServiceAgreementError,
InvalidServiceAgreementText,
InvalidSigningAlgorithm

3

exception ServiceAgreementError {
ServiceAgreementErrorCode error;

h

enum SessionErrorCode {
UnknownSessionError,
InvalidSessionld,
InvalidUserSessionState,
SessionNotAllowed,
SessionNotAccepted

h

exception SessionError {
SessionErrorCode error;
Sessionld session_id;

h

enum SegmentErrorCode {
InknownSegmentError,
InvalidSegmentid

b

exception SegmentError {
SegmentErrorCode error;
Segmentld segment_id;

b

typedef string Userld;
typedef string UserName;

struct EndUser{
Userld user_id;
PropertyList security_properties;
PropertyList user_properties;

3

enum WhichProperties {
NoProperties,
SomeProperties,

SomePropertiesNamesOnly,
AllProperties,
AllPropertiesNamesOnly

b

struct MatchProperties {
WhichProperties which_properties;
PropertyList properties;

3

Telecom Service Access & Subscription v1.0

October 2000

typedef MatchProperties DiscoverServiceProperties;
typedef MatchProperties UserServiceProperties;

typedef MatchProperties SessionSearchProperties;
typedef MatchProperties AnnouncementSearchProperties;

typedef PropertyList UserPropertyList;

typedef unsigned long Invitationlid;
typedef string InvitationReason;

struct InvitationOrigin {
Userld user_id;
Sessionld session_id;

3
typedef string SessionPurpose;
typedef string UserServiceName;

struct Servicelnfo {
Serviceld id;
UserServiceName name;
ServicePropertyList properties;

3
typedef sequence<Servicelnfo> ServiceList;

struct Sessionlnvitation {
Invitationld id;
Userld invitee_id;
SessionPurpose purpose;
Servicelnfo service_info;
InvitationReason reason;
InvitationOrigin origin;
PropertyList inv_properties;

3
typedef sequence <Sessionlnvitation> InvitationList;

enum InvitationReplyCodes {
SUCCESS, UNSUCCESSFUL, DECLINE, UNKNOWN, ERROR,
FORBIDDEN, RINGING, TRYING, STORED, REDIRECT, NEGOTIATE,
BUSY, TIMEOUT

3
typedef PropertyList InvitationReplyPropertyList;
struct InvitationReply {
InvitationReplyCodes reply;
InvitationReplyPropertyList properties;
3
typedef PropertyList AnnouncementPropertyList;

typedef unsigned long Announcementlid;

Telecom Service Access & Subscription v1.0

October 2000

A-15

A-16

struct SessionAnnouncement {
Announcementld announcement_id;
SessionPurpose session_purpose;
Servicelnfo service_info;
AnnouncementPropertyList properties;

3
typedef sequence<SessionAnnouncement> AnnouncementList;

typedef unsigned long AccessSessionld;
typedef sequence<AccessSessionld> AccessSessionldList;

struct UserInfo {
Userld user_id;
UserName name;
UserPropertyList user_properties;

b

typedef string UserCtxtName;
typedef sequence<UserCtxtName> UserCtxtNameList;

typedef PropertyList UserCtxtPropertyList;

struct UserCtxt {
UserCtxtName ctxt_name;
AccessSessionld as_id;
UserCtxtPropertyList properties;
3

typedef sequence <UserCtxt> UserCtxtList;
typedef PropertyList JoinPropertyList;

typedef sequence<Sessioninfo> SessionList;
typedef PropertyList AccessSessionPropertyList;

struct AccessSessioninfo {
AccessSessionld id;
UserCtxtName ctxt_name;
AccessSessionPropertyList properties;

J3
typedef sequence<AccessSessioninfo> AccessSessionList;

struct Applicationinfo {
string name;
string version;
string serial_num;
string licence_num;
PropertyList properties;
k

enum WhichAccessSession {

Telecom Service Access & Subscription v1.0

October 2000

CurrentAccessSession,
SpecifiedAccessSessions,
AllAccessSessions

b

union SpecifiedAccessSession switch (WhichAccessSession) {
case SpecifiedAccessSessions: AccessSessionldList as_id_list;
case CurrentAccessSession: octet empty_1;
case AllAccessSessions: octet empty_2;

h

enum WhichUserCtxt {
CurrentUserCtxt,
SpecifiedUserCtxts,
AllUserCtxts

h

union SpecifiedUserCtxt switch (WhichUserCtxt) {
case SpecifiedUserCtxts: UserCtxtNamelList ctxt_names;
case CurrentUserCtxt: octet empty_1;
case AllUserCtxts: octet empty_2;

b

enum ListErrorCode {
ListUnavailable

h

exception ListError {
ListErrorCode error;

b

enum InvitationErrorCode {
Invalidinvitationld

b

exception InvitationError {
InvitationErrorCode errorCode;

b

struct PropertyErrorStruct {
PropertyErrorCode error;
PropertyName name;
PropertyValue value;

b

enum InvitationReplyErrorCode {
InvalidinvitationReplyCode,
InvitationReplyPropertyError
3

exception InvitationReplyError {
InvitationReplyErrorCode error;
PropertyErrorStruct property_error;

h

Telecom Service Access & Subscription v1.0

October 2000

A-17

A-18

enum AnnouncementErrorCode {
InvalidAnnouncementld

h

exception AnnouncementError {
AnnouncementErrorCode error;

b

enum ApplicationinfoErrorCode {
UnknownApplInfoError,
InvalidApplication,
InvalidApplinfo,
UnknownAppName,
InvalidAppName,
UnknownAppVersion,
InvalidAppVersion,
InvalidAppSerialNum,
InvalidAppLicenceNum,
AppPropertyError,
AppSessioninterfacesError,
AppSessionModelsError,
AppSIDescError

b

exception ApplicationInfoError {
ApplicationinfoErrorCode error;
PropertyErrorStruct property_error;

b

enum UserCtxtErrorCode {
InvalidUserCtxtName,
InvalidUserAccessIR,
InvalidUserTerminallR,
InvalidUserlInvitelR,
InvalidTerminalld,
InvalidTerminalType,
InvalidNAPId,
InvalidNAPType,
InvalidTerminalProperty,
UserCtxtNotAvailable

b

exception UserCtxtError {
UserCtxtErrorCode error;
UserCtxtName ctxt_name;
PropertyErrorStruct property_error;

b

enum SpecifiedAccessSessionErrorCode {
UnknownSpecifiedAccessSessionError,
InvalidWhichAccessSession,
InvalidAccessSessionld

b

exception SpecifiedAccessSessionError {

Telecom Service Access & Subscription v1.0

October 2000

SpecifiedAccessSessionErrorCode error;
AccessSessionld id;

h

interface SegmentBase {
void release_segment ();

b

module Core {
typedef string Domainld;

typedef string AuthType; /I defined values for this type, see doc.

struct AuthDomain {
Domainld domain_id;
Object ref;

b

typedef string AccessType; /I defined values for this type, see doc.

typedef string SigningAlgorithm;

struct SignatureAndSessioninfo {
string digital_signature;
Sessioninfo session_info;

b

typedef string AuthCapability; /I defined values for this type, see doc.

typedef sequence<AuthCapability> AuthCapabilityList;

interface Initial {
void initiate_authentication (
in AuthDomain user_domain,
in AuthType auth_type,
out AuthDomain provider_domain

) raises (
DomainError,
AuthError

);

void request_access (
in AccessType access_type,
in Object user_access,
out Object provider_access
) raises (
AccessError
)i
b

interface Authentication {
void select_auth_method (
in AuthCapabilityList auth_caps,
out AuthCapability selected_cap
) raises (
AuthError
);

Telecom Service Access & Subscription v1.0

October 2000

A-19

void authenticate (
in AuthCapability selected_cap,
in string challenge,
out string response
) raises (
AuthError
);

void abort_authentication ();

b

interface Access {
void end_access (
in EndAccessPropertyList end_access_properties
) raises (
PropertyError
)i

void list_available_services (
in UserServiceProperties desired_properties,
out ServiceList services)

raises (
PropertyError,
ListError

);

void select_service (
in Serviceld service_id,
in ServicePropertyList service_properties,
out ServiceToken service_token

) raises (
ServiceError,
PropertyError

);

void start_session (

in ServiceToken service_token,
in Applicationinfo app,

out Sessioninfo session_info)

raises (
ServiceError

)i

void sign_service_agreement (
in ServiceToken service_token,
in string agreement_text,
in SigningAlgorithm signing_algorithm,
out SignatureAndSessioninfo signature_session_info
) raises (
ServiceError,
ServiceAgreementError

);

A-20 Telecom Service Access & Subscription v1.0

October 2000

void end_session (

in Sessionld session_id
) raises (

SessionError

)

void list_segments (
out SegmentldList segment_ids);

void get_segment (
in Segmentld segment_id,
in InterfaceList user_refs,
out InterfaceList provider_refs

) raises (
SegmentError,
InterfaceError

);

void release_segments (
in SegmentldList segment_ids

) raises (
SegmentError
)i
b
3
module Sub {

enum SubExceptionCode{
sublnvalidService,
sublnvalidUser,
sublnvalidSubscriber,
sublnvalidContract,
sublnvalidProvider,
sublnvalidServiceTemplateld
subNotSubscribed,
sublnvalidSag,
sublnvalidServiceProfileld,
sublnvalidSubscription,
subNotSupportedServiceType,
subAlreadyEXxists,
subAlreadyAssigned

b

exception SubscriptionError{
SubExceptionCode reason;

h

typedef sequence <Userld> UserldList;
typedef string Subscriberld;
typedef sequence <Subscriberld> SubscriberldList;
typedef string Providerld;
typedef string ServiceTypeName;
typedef string ServiceTemplateld;
typedef sequence <ServiceTemplateld> ServiceTemplateldList;
typedef string ServiceProfileld;

Telecom Service Access & Subscription v1.0

October 2000

A-21

A-22

typedef sequence <ServiceProfileld> ServiceProfileldList;

struct ServiceProfilef
ServiceProfileld service_profile_id;
ServiceTypeName service_type;
ServiceTemplateld service_template_id;
PropertyList service_properties;

b

struct ServiceTemplate{
ServiceTemplateld service_template_id;
ServiceTypeName service_type;
Providerld provider_id;
PropertyList service_template_properties;
ServiceProperties service_properties;
PropertyList user_application_properties;

b

typedef string ServiceContractld;

struct ServiceContract {
ServiceContractld service_contract_id;
PropertyList contract_properties;
ServiceProfile service_profile;

b

struct Subscriber {
Subscriberld subscriber_id;
PropertyList subscriber_properties;

b

struct Provider {
Providerld provider_id;
PropertyList provider_properties;

b

struct EndUser{
Userld user_id;
PropertyListsecurity_properties;
PropertyList user_properties;

b

struct EndUserServiceProfile{
ServiceTemplateld service_template_id;
PropertyList end_user_service_properties;

b

typedef string Sagld;
typedef sequence <Sagld> SagldList;

struct Sag {
Sagld sag_id;
string sag_description;

h

module ServiceProviderAdmin {

Telecom Service Access & Subscription v1.0

October 2000

interface ServiceTemplateMgmt : SegmentBase {
void deploy_service (
in Providerld provider_id,
in ServiceTemplate service_template,
out ServiceTemplateld service_template_id
) raises (
SubscriptionError

);

void modify_service (
in Providerld provider_id,
in ServiceTemplate service_template)
raises (SubscriptionError);

void withdraw_service (
in Providerld provider_id,
in ServiceTemplateld service_template_id
) raises (
SubscriptionError
)
b

interface ServiceTemplatelnfoQuery : SegmentBase {
void list_service_templates (
in ProviderID provider_id,
out ServiceTemplateldList service_template_id_list
) raises (
SubscriptionError

);

void get_service_template(
in Providerld provider_id,
in ServiceTemplateld service_template_id,

out ServiceTemplate service_template

) raises (

SubscriptionError

)
b

b

module SubscriberAdmin {
interface SubscriberMgmt : SegmentBase {
void create_subscriber(
in Subscriber subscriber
) raises (
SubscriptionError

);

void modify_subscriber(
in Subscriber subscriber
) raises (
SubscriptionError

);

void delete_subscriber(

Telecom Service Access & Subscription v1.0 October 2000 A-23

in Subscriberld subscriber_id
) raises (
SubscriptionError

);

void get_subscriber (
in Subscriberld subscriber_id,
out Subscriber subscriber)
raises (
SubscriptionError
)
b

interface ServiceContractMgmt : SegmentBase {
void create_service_contract(
in Subscriberld subscriber_id,
in ServiceContract service_contract
) raises (
SubscriptionError

);

void modify_service_contract(

in Subscriberld subscriber_id,

in ServiceContract service_contract
) raises (

SubscriptionError

);

void delete_service_contract(
in Subscriberld subscriber_id,
in ServiceContractld service_contract_id
) raises (
SubscriptionError
)
h

interface ServiceContractinfoQuery : SegmentBase {
void get_service_contract(
in Subscriberld subscriber_id,
in ServiceContractld service_contract_id,
out ServiceContract service_contract
) raises (
SubscriptionError

);

void list_subscribed_services(
in Subscriberld subscriber_id,
out ServiceProfileldList service_profile_id_list
) raises (
SubscriptionError

);

A-24 Telecom Service Access & Subscription v1.0

October 2000

module EndUserAdmin {
interface SagMgmt : SegmentBase {
void create_Sag(
in Subscriberld subscriber_id,
in Sag sag,
in UserldList user_ids
) raises (
SubscriptionError

);

void modify_Sag(
in Subscriberld subscriber_id,
in Sag sag

) raises (
SubscriptionError

);

void delete_Sag(
in Subscriberld subscriber_id,
in Sagld sag_id

) raises (
SubscriptionError

);

void create_user(
in Subscriberld subscriber_id,
in EndUser end_user

) raises (
SubscriptionError

);

void modify_user(
in Subscriberld subscriber_id,
in EndUser end_user

) raises (
SubscriptionError

);

void delete_user(
in Subscriberld subscriber_id,
in Userld user_id

) raises (
SubscriptionError

);

void add_Sag_users(
in Subscriberld subscriber_id,
in Sagld sag_id,
in UserldList user_ids
) raises (
SubscriptionError

);

void remove_Sag_users(
in Subscriberld subscriber_id,

Telecom Service Access & Subscription v1.0 October 2000 A-25

in Sagld sag_id,

in UserldList user_ids
) raises (

SubscriptionError
)
b

interface SaginfoQuery : SegmentBase {
void list_Sags(
in Subscriberld subscriber_id,
out SagldList sag_id_list
) raises (
SubscriptionError

);

void get_Sag(
in Subscriberld subscriber_id,
in Sagld sag_id,
out Sag sag
) raises (
SubscriptionError

);

void get_user(
in Subscriberld subscriber_id,
in Userld user_id,
out EndUser end_user
) raises (
SubscriptionError

);

void list_sag_users(
in Subscriberld subscriber_id,
in Sagld sag_id,
out UserldList user_id_list
) raises (
SubscriptionError

);

void list_users(
in Subscriberld subscriber_id,
out UserldList user_id_list
) raises (
SubscriptionError
)i
h

interface ServiceProfileMgmt : SegmentBase {
void create_service_profile(
in Subscriberld subscriber_id,
in ServiceProfileld service_profile_id,
in ServiceProfile service_profile
) raises (
SubscriptionError

);

A-26 Telecom Service Access & Subscription v1.0

October 2000

void modify_service_profile(
in Subscriberld subscriber_id,
in ServiceProfile service_profile
) raises (
SubscriptionError

);

void delete_service_profile(
in Subscriberld subscriber_id,
in ServiceProfileld service_profile_id
) raises (
SubscriptionError

);

void assign(
in Subscriberld subscriber_id,
in Sagld sag_id,
in ServiceProfileld service_profile_id
) raises (
SubscriptionError

);

void deassign(
in Subscriberld subscriber_id,

in Sagld sag_id,
in ServiceProfileld service_profile_id
) raises (

SubscriptionError
)
h

interface ServiceProfileInfoQuery : SegmentBase {
void list_service_profiles(
in Subscriberld subscriber_id,
out ServiceProfileldList service_profile_id_list
) raises (
SubscriptionError

);

void list_assigned_service_profiles(
in Subscriberld subscriber_id,
in Sagld sag_id,
out ServiceProfileldList service_profile_id_list
) raises (
SubscriptionError

);

void get_service_profile(
in Subscriberld subscriber_id,
in ServiceProfileld service_profile_id,
out ServiceProfile service_profile

) raises (SubscriptionError

);

Telecom Service Access & Subscription v1.0 October 2000 A-27

void list_assigned_Sags(
in Subscriberld subscriber_id,
in ServiceProfileld service_profile_id,
out SagldList sag_id_list

) raises (SubscriptionError

);

void list_assigned_users(
in Subscriberld subscriber_id,
in ServiceProfileld service_profile_id,
out UserldList user_id_list

) raises (SubscriptionError

)
b

b

module EndUserCustomization {
interface UserProfileMgmt : SegmentBase {
void modify_security_properties(
in Subscriberld subscriber_id,
in Userld user_id,
in PropertyList security_properties,
) raises (SubscriptionError

);

void modify_user_profile(
in Subscriberld subscriber_id,
in Userld user_id,
in PropertyList user_properties
) raises (SubscriptionError);

void modify_user_service_profile(

in Subscriberld subscriber_id,

in Userld user_id,

in EndUserServiceProfile end_user_service_profile
) raises (SubscriptionError

);

void delete_user_service_profile(

in Subscriberld subscriber_id,

in Userld user_id,

in ServiceTemplateld service_template_id
) raises (

SubscriptionError
)i
h

interface UserProfileInfoQuery : SegmentBase {
void get_user_description(
in Subscriberld subscriber_id,
in Userld user_id,
out EndUser end_user
) raises (SubscriptionError);

void list_user_service_profile_ids (

A-28 Telecom Service Access & Subscription v1.0

October 2000

in Subscriberld subscriber_id,
in Userld user_id,
out ServiceTemplateldList service_template_id_list
) raises (
SubscriptionError
)
void get_user_service_profile(
in Subscriberld subscriber_id,
in Userld user_id,
in ServiceTemplateld service_template_id,
out EndUserServiceProfile end_ user_service_profile
) raises (
SubscriptionError

);

module Invitation
{
interface Userlnvite : SegmentBase
{
void invite_user (
in Sessionlnvitation invitation,
out InvitationReply reply
) raises (
InvitationError

)i

void cancel_invite_user (
in Userld invitee_id,
in Invitationld id
) raises (
InvitationError
)i
b

interface Providerlnvite : SegmentBase
{
void list_session_invitations (
out InvitationList invitations
) raises (
ListError

)i

void list_session_announcements (
in AnnouncementSearchProperties desired_properties,
out AnnouncementList announcements

) raises (
PropertyError,
ListError

);

void join_session_with_invitation (
in Invitationld invitation_id,

Telecom Service Access & Subscription v1.0

October 2000

A-29

A-30

in Applicationinfo app,
in JoinPropertyList join_properties,
out Sessioninfo session_info
) raises (
SessionError,
InvitationError,
ApplicationinfoError,
PropertyError

)i

void join_session_with_announcement (
in Announcementld announcement_id,
in Applicationinfo app,
in JoinPropertyList join_properties,
out Sessioninfo session_info

) raises (
SessionError,
AnnouncementError,
ApplicationinfoError,
PropertyError

)i

void reply_to_invitation (
in Invitationld invitation_id,
in InvitationReply reply

) raises (
InvitationError,
InvitationReplyError

module Context

{

interface UserContext : SegmentBase
{
void get_user_ctxt(
out UserCtxt user_ctxt
);
b

interface ProviderContext : SegmentBase
{
void set_user_ctxt (
in UserCtxt user_ctxt
) raises (
UserCtxtError
)i

void get_user_ctxts (
in SpecifiedUserCtxt ctxt,
out UserCtxtList user_ctxts
) raises (
UserCtxtError,
ListError

Telecom Service Access & Subscription v1.0

October 2000

)

void get_user_info(
out UserInfo user_info

module AcsCitrl

{

interface AccessControl : SegmentBase
{
void list_access_sessions (
out AccessSessionList as_list
) raises (
ListError

)

void end_access_sessions(
in SpecifiedAccessSession as
) raises (
SpecifiedAccessSessionError
)i
b
3

module ServDisc

{

interface ServiceDiscovery : SegmentBase

{

void discover_services(
in DiscoverServiceProperties desired_properties,
in unsigned long how_many,
out ServiceList services
) raises (
PropertyError,
ListError

)i

void get_service_info (
in Serviceld service_id,
in UserServiceProperties desired_properties,
out ServicePropertyList service_properties
) raises (
ServiceError,
PropertyError

b
b

module SessCitrl

{

interface SessionControl : SegmentBase

{

Telecom Service Access & Subscription v1.0

October 2000

A-31

A-32

b

void list_service_sessions (
in SpecifiedAccessSession as,
in SessionSearchProperties desired_properties,
out SessionList sessions

) raises (
SpecifiedAccessSessionError,
PropertyError,

ListError

);

void end_sessions (

in SessionldList session_id_list
) raises (

SessionError

)i

void end_my_participations (

in SessionldList session_id_list
) raises (

SessionError

)i

void resume_session (
in Sessionld session_id,
in Applicationinfo app,
out Sessioninfo session_info
) raises (
SessionError,
ApplicationinfoError

)i

void resume_my_participation (
in Sessionld session_id,
in Applicationinfo app,
out Sessioninfo session_info
) raises (
SessionError,
ApplicationinfoError

module AccessSessioninformation

struct newAccessSessioninfo {

b

AccessSessioninfo access_session;

struct endAccessSessioninfo {

h

AccessSessionld as_id;

struct cancelAccessSessioninfo {

h

AccessSessionld as_id;

Telecom Service Access & Subscription v1.0

October 2000

struct newServiceslinfo {
Servicelist services;
b
k

module ServiceSessionInformation

{

struct newSessionInfo {
Sessioninfo session;

b

struct endSessioninfo {
Sessionld sessionld;

b

struct endMyParticipationinfo {
Sessionld sessionld;

b

struct suspendSessioninfo {
Sessionld sessionld;

b

struct suspendMyParticipationinfo {
Sessionld sessionld;

b

struct resumeSessioninfo {
Sessioninfo session;

b

struct ResumeMyParticipationinfo {
Sessioninfo session;

b

struct JoinSessioninfo {
Sessioninfo session;

b

h
h
#endif // for #ifndef _DFTSAS_IDL_

Telecom Service Access & Subscription v1.0 October 2000 A-33

A-34 Telecom Service Access & Subscription v1.0 October 2000

Compliance Points B

This specification does contain elements that are intended to become part of the
CORBA standard and, thus, would have to be supported by all CORBA ORBs.

The specification provides three compliance points for implementations of
Telecommunication Service Access and Subscription (TSAS), namely, Core Segment,
Service Access Segment, and Subscription Segment.

B.1 Core Segment Compliance Point

All conforming implementations must support all interfaces that are defined in Chapter
2 and in document telecom/00-02-03 which contains the IDL specification, following
the specified semantics.

B.2 Service Access Segments Compliance Point

An implementation may support any segment defined in Chapter 3, but there is no need
to support any of the segments.

When segments are implemented they need to be conformant to the specification given
in Chapter 3 and in document telecom/00-02-03 which contains the IDL specification.

B.3 Subscription Segments Compliance Point

An implementation may support any segment defined in Chapter 4, but it is not
required to support any of the segments.

When segments are implemented they need to be conformant to the specification given
in Chapter 4 and in document telecom/00-02-03 which contains the IDL specification.

Telecom Service Access & Subscription v1.0 October 2000 B-1

B

B.4 Changesto CORBA

B-2

The identification of multiple access sessions introduced in Chapter 2 requires an
extension to a very small part of the CORBA architecture. This section details those
proposed changes. They are made against CORBA 2.3.1, document formal/99-10-07.

B.4.1 Changes to CORBA Specification

The following service context identifiers are added to the list of service contexts in
Section 13.6.7.

const Serviceld ACCESS_SESSION_ID = XX; // Reserved for TSAS
const Serviceld SERVICE_SESSION_ID = XX; // R eserved for TSAS

The reason for defining these two Servicelds, is so that a server on which a CORBA
invocation is performed, can always retrieve sufficient context information from
CORBA so that the client that has performed this invocation is uniquely identified.
This has to do with the implementation choices: it is possible that one CORBA server
implements more than one access session, or more than one service session. These
sessions can potentially be used by different CORBA clients. When a CORBA
invocation is made on the CORBA server, it must be able to identify the context
(access session identification or service session identification) in which this invocation
takes place.

Telecom Service Access & Subscription v1.0 October 2000

Index

A

abort_authentication() 4-8

Access 4-2, 4-8

Access Control segment 5-15

Access interface 4-10

Access Session Information 7-7

Access Session Information segment 5-25
Access Session Information structures 5-25
AccessControl Interface 5-15
authenticate() 4-7

Authentication 4-2

Authentication interface 4-6

B
Base interface 5-3, 7-9

C
cancel_invite_end_user() 5-5
CancelAccessSessioninfo 5-25
Changes to CORBA Specification 9-1
Common Information View 7-1
Context segment 5-12
CORBA

contributors 3

documentation set 2
Core Segment Compliance Point 8-1
Co-Submitting Companies 1-1

D
discover_services() 5-18

E

end_access() 4-14
end_access_sessions() 5-16
end_my_participations() 5-22
end_session() 4-15
end_sessions() 5-21
EndAccessSessioninfo 5-25
EndMyParticipationinfo 5-27
EndSessioninfo 5-27
End-user 6-8

End-user administration 6-16
End-user Customization 6-23
End-user service profile 6-8
EndUserlnvite Interface 5-4

G

get_segment() 4-15
get_service_info() 5-19
get_user_ctxt() 5-12
get_user_ctxts() 5-14
get_user_info() 5-14

|

Information model 6-2

Initial 4-2

Initial access related interface requirements 2-2
Initial Contact and Authentication 4-3

Initial interface 4-4

initiate_authentication() 4-4

interface SAGInfoQuery 6-19

interface SagMgmt 6-16

TSAS v1.0

interface ServiceContractinfoQuery 6-13
interface ServiceContractMgmt 6-12
interface ServiceProfileInfoQuery 6-21
interface ServiceProfileMgmt 6-20
interface ServiceTemplatelnfoQuery 6-15
interface ServiceTemplateMgmt 6-14
interface SubscriberinfoQuery 6-12
interface SubscriberMgmt 6-11

interface UserProfileInfoQuery 6-24
interface UserProfileMgmt 6-23
Invitation segment 5-4

Invitations and Announcements 7-3
invite_end_user() 5-5

Issues to be Discussed 2-4

J

join_session_with_announcement() 5-9
join_session_with_invitation() 5-8
JoinSessioninfo 5-28

L

list_access_sessions() 5-16
list_available_services() 4-11
list_segments() 4-15
list_service_sessions() 5-20
list_session_announcements() 5-7
list_session_invitations() 5-6

M
Mandatory Requirements 2-1
Motivation 3-1

N

NewAccessSessionInfo 5-25
NewServicesInfo 5-26
NewSessionIinfo 5-26

)
Object Management Group 1
address of 3
Optional Requirements 2-4
Overview of subscription segments 6-9

P

Properties and Property Lists 7-1
ProviderContext Interface 5-13
ProviderInvite Interface 5-6

R

release_segment() 4-16

reply_to_invitation() 5-10

request_access() 4-5

resume_my_participation() 5-23
resume_session() 5-22
ResumeMyParticipationinfo 5-28
ResumeSessioninfo 5-27

Retailer administration interface requirements 2-2
Roles and Domains 3-2

S
Scenario 5-13

October 2000

Index-3

Index

Scenario description 6-10

Scenarios 5-6, 5-11, 5-15, 5-17, 5-19, 5-24
Security 3-6

Segments 3-5

select_auth_method() 4-7

select_service() 4-12

Service access related interface requirements 2-3
Service Access Segment Interfaces 5-2
Service Access Segments Compliance Point 8-1
Service and Session Information 7-8
Service contract 6-5

Service Contract Management 6-12
Service Discovery segment 5-17

Service profile 6-7

Service profile management 6-20

Service Provider 6-4

Service provider administration 6-14
Service Session Information segment 5-26
Service Session Information structures 6-26
Service template 6-6

Service type 6-8

ServiceDiscovery Interface 5-18

Session Control segment 5-20

Index-4 TSAS v1.0

SessionControl Interface 5-20
Sessionld 7-3

Sessions 3-4

set_user_ctxt() 5-13
sign_service_agreement() 4-13
start_session() 4-13

Submission Guide 1-2

Subscriber 6-4

Subscriber administration 6-11
Subscriber Management 6-11
Subscription assignment group 6-7
Subscription Segments Compliance Point 8-1
SuspendMyParticipationinfo 5-27
SuspendSessioninfo 5-27

U

Usage related types 7-3

User and SAG Management 6-16
User Context Information 7-7
User Information 7-3, 7-7

User Provider relationship 3-3
UserContext Interface 5-12

October 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Description
	1.1 Motivation
	1.2 Roles and Domains
	1.3 User Provider Relationship
	1.4 Sessions
	1.5 Segments
	1.6 Security

	2. Core Segment
	2.1 Overview
	2.2 Initial Contact and Authentication
	2.2.1 Initial interface
	2.2.2 Authentication Interface

	2.3 Access
	2.3.1 Access Interface

	3. Service Access Segments
	3.1 Overview
	3.2 Service Access Segment Interfaces
	3.2.1 Base Interface

	3.3 Invitation Segment
	3.3.1 EndUserInvite Interface
	3.3.2 ProviderInvite Interface

	3.4 Context Segment
	3.4.1 UserContext Interface
	3.4.2 ProviderContext Interface

	3.5 Access Control Segment
	3.5.1 AccessControl Interface

	3.6 Service Discovery Segment
	3.6.1 ServiceDiscovery Interface

	3.7 Session Control Segment
	3.7.1 SessionControl Interface

	3.8 Access Session Information Segment
	3.8.1 Access Session Information structures

	3.9 Service Session Information Segment
	3.9.1 Service Session Information Structures

	4. Subscription Segments
	4.1 Overview
	4.2 Information Model
	4.2.1 Service Provider
	4.2.2 Subscriber
	4.2.3 Service Contract
	4.2.4 Service template
	4.2.5 Subscription Assignment Group
	4.2.6 Service Profile
	4.2.7 End-user
	4.2.8 End-user service profile
	4.2.9 Service type

	4.3 Subscription Segments
	4.3.1 Overview

	4.4 Scenario Description
	4.5 Subscriber Administration
	4.5.1 Subscriber Management
	4.5.2 Service Contract Management

	4.6 Service ProviderAdministration
	4.6.1 interface ServiceTemplateMgmt

	4.7 End-user Administration
	4.7.1 User and SAG Management
	4.7.2 Service Profile Management

	4.8 End-user Customization
	4.8.1 interface UserProfileMgmt {
	4.8.2 interface UserProfileInfoQuery {

	5. Common Types
	5.1 Common Information View
	5.1.1 Properties and Property Lists

	5.2 User Information
	5.2.1 Usage Related Types
	5.2.2 Invitations and Announcements

	5.3 Access Session Information
	5.4 User Information
	5.5 User Context Information
	5.6 Service and Session Information
	5.6.1 Base Interface

	Appendix A - OMG IDL
	Appendix B - Compliance Points
	B.1 Core Segment Compliance Point
	B.2 Service Access Segments Compliance Point
	B.3 Subscription Segments Compliance Point

	Index

