
Telecommunications Service Access
and Subscription Specification

December 2002
Version 1.0

formal/02-12-01

An Adopted Specification of the Object Management Group, Inc.

Copyright © 2002, Alcatel
Copyright © 2002, AT&T
Copyright © 2002, GMD Fokus
Copyright © 2002, Hitachi
Copyright © 2002, Lucent Technologies
Copyright © 2002, Nippon Telegraph and Telephone (NTT) Corporation
Copyright © 2002, Nortel Networks
Copyright © 2002, Object Management Group (OMG)
Copyright © 2002, Siemens AG

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

December 2002 Telecom Service Access & Subscription, v1.0 i

Contents

Preface . v

1. Description . 1-1
1.1 Motivation . 1-1

1.2 Roles and Domains . 1-2

1.3 User Provider Relationship . 1-4

1.4 Sessions . 1-4

1.5 Segments . 1-5

1.6 Security . 1-6

2. Core Segment . 2-1

2.1 Overview . 2-1

2.2 Initial Contact and Authentication 2-3
2.2.1 Initial interface . 2-5
2.2.2 Authentication Interface 2-8

2.3 Access . 2-10
2.3.1 Access Interface . 2-12
2.3.2 Base Interface . 2-16

3. Session Segments . 3-1
3.1 Overview . 3-1

3.2 Session Control Segment . 3-3
3.2.1 SessionControl Interface 3-3

3.3 Session Information Segment . 3-6
3.3.1 Session Information Interface 3-6

ii Telecom Service Access & Subscription, v1.0 December 2002

4. Subscription Segments . 4-1

4.1 Overview . 4-1

4.2 Information Model . 4-3
4.2.1 Service Provider . 4-5
4.2.2 Subscriber . 4-5
4.2.3 Service Contract . 4-5
4.2.4 Service Template . 4-6
4.2.5 Subscription Assignment Group 4-7
4.2.6 Service Profile . 4-8
4.2.7 End User . 4-8
4.2.8 User Service Profile . 4-9
4.2.9 Service Type . 4-9

4.3 Subscription Segments . 4-9
4.3.1 Overview . 4-9

4.4 Scenario Description . 4-10

4.5 Registration Segment . 4-12
4.5.1 Interface SubscriberRegistration 4-12

4.6 Subscriber Administration . 4-13
4.6.1 Subscriber Management 4-13

4.7 Service ProviderAdministration . 4-21
4.7.1 interface ServiceTemplateMgmt 4-22

4.8 Service Discovery Segment . 4-23
4.8.1 ServiceDiscovery Interface 4-23
4.8.2 Scenarios . 4-24

4.9 End-User Customization . 4-25
4.9.1 interface EndUserMgmt { 4-25

5. Common Types . 5-1
5.1 Generic Information Types . 5-1

5.1.1 Properties and Property Lists 5-1
5.1.2 Match Properties . 5-2

5.2 User Information . 5-3
5.2.1 UserInfo . 5-4

5.3 Service Information . 5-4

5.4 Access Session Information . 5-4
5.4.1 User Context Information 5-5

5.5 Service Session Information . 5-5
5.5.1 SessionInfo . 5-6

December 2002 Telecom Service Access & Subscription, v1.0 iii

Appendix A - OMG IDL . A-1

Appendix B - Compliance Points . B-1

Index. 1

iv Telecom Service Access & Subscription, v1.0 December 2002

December 2002 Telecommunication Service Access & Subscription, v1.0 v

Preface

About This Document

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The Open Group

The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.

vi Telecommunication Service Access & Subscription, v1.0 December 2002

The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

• Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

• Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

• Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

• Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of
test suites used to validate conformance to an open standard or specification. The Open
Group portfolio of test suites includes tests for CORBA, the Single UNIX
Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX Realtime,
Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are essential
for proper development and maintenance of standards-based products, ensuring
conformance of products to industry-standard APIs, applications portability, and
interoperability. In-depth testing identifies defects at the earliest possible point in the
development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

OMG Documents

The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications

Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications

Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.

December 2002 Telecommunication Service Access & Subscription, v1.0 vii

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.) OMG formal documents are available from our web site in
PostScript and PDF format. Contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Alcatel

• AT&T

• Britich Telecommunications plc.

• Cicso Systems

• Deutsche Telekom AG

• GMD Fokus

• Hitachi

• Humboldt University

• IBM Telecommunications Industry

viii Telecommunication Service Access & Subscription, v1.0 December 2002

• KPN Royal Dutch Telecom

• Lucent Technologies

• Nippon Telegraph and Telephone (NTT) Corporation

• Nortel Networks

• Siemens AG

• Sprint

• Sun Microsystems

December 2002 Telecommunications Service Access & Subscription, v1.0 1-1

Description 1

This chapter introduces the key concepts used in this specification.

Contents

This chapter contains the following sections.

1.1 Motivation

Network operators have traditionally followed a network-centric approach to delivering
scalable, reliable, and economic services to consumers and enterprises. The basic
functions that are required to support services such as 800 numbers, call waiting, and
personal numbering have been under the exclusive control of the network operators.
Enterprises and service providers wishing to offer value-added solutions, such as call
centers, have had to rely on an edge-of-network approach and have been denied access
to useful information and capabilities within the network.

The disadvantages of this separation are significant in today’s marketplace. Network
operators employing a network-centric approach are unlikely to have the resources and
flexibility necessary to respond to the specialized requirements of different customer

Section Title Page

“Motivation” 1-1

“Roles and Domains” 1-2

“User Provider Relationship” 1-4

“Sessions” 1-4

“Segments” 1-5

“Security” 1-6

1-2 Telecommunications Service Access & Subscription, v1.0 December 2002

1

markets. Similarly, solution providers adopting an edge of network approach, while
they may have the flexibility required for customizing services, are unable to gain the
efficiency of using in-network functions and information. The architecture of the
Telecommunication Service Access and Subscription (TSAS) specification combines
the benefits of the network-centric approach of economies of scale with the flexibility
of the edge of network approach.

The set of interfaces contained within this specification provide the domain facilities
through which network operators can offer 3rd party enterprises secure access to the
capabilities of the network. Capabilities such as call control and user location can be
offered (through their own interfaces) or by 3rd party value-added services and
solutions.

Of course this approach is not only applicable to providing access to embedded
network capabilities. It can also be used for a wide range of commercial models
supporting customer-to-business or business-to-business relationships for eCommerce
and the Application Service Provider market in general. Provision of functions for
billing and payment can be easily integrated.

It is not within the scope of this specification to restrict the breadth of [component]
services that could be offered by TSAS. This specification is technically aligned with
that of the Parlay Group [Ref http://www.parlay.org]. Consequently the service
interfaces specified in the Parlay API [Parlay API specification 2.0] can be offered
using this specification.

1.2 Roles and Domains

Three different domains are defined for TSAS as shown in Figure 1-1: Consumer
Domain, Retailer Domain, and Service Provider Domain.

Figure 1-1 TSAS Domains

The domains are strongly correlated to roles, which will be explained in the following
text.

End-User

Subscriber

Retailer Service
Provider

Consumer
Domain

Retailer
Domain

Service
Provider
Domain

End-User

Subscriber

Retailer Service
Provider

Consumer
Domain

Retailer
Domain

Service
Provider
Domain

December 2002 TSAS Specification: Roles and Domains 1-3

1

In the Consumer Domain two kinds of roles are defined, the end-user role and the
subscriber role. Typically end-users can be private households or any kind of company.
The end-user is the one that makes use of the service while the subscriber holds the
contract with the retailer and subscribes to services for its users. This can be depicted
with a very common example: A company - the subscriber - has a subscription
contract with a telephony provider. In the contract the rights of the different employees
are defined - the employees are the end-users. In the case of a private household the
subscriber and end-user roles are identical.

Within the Retailer Domain the retailer role is defined. The retailer provides an
integrated view of services to the end-user or subscriber. A major point of value added
services offered by retailers is the unified management of services, in particular in
terms of subscription facilities. Retailers thus act as middlemen for service providers
and present a single point of contact to end-users and subscribers. This is an analogy to
the notion of one-stop-shopping in a supermarket. Retailers have to ensure the ease and
quality of service access.

Within TSAS the retailer is giving end-users a single point of contact for all their
service needs. Additionally, the retailer enables end-users to customize and personalize
services that they use by providing facilities to configure and select services
incorporating personal preferences.

A prerequisite for service provisioning is a contractual relationship between service
providers and the retailer. For service access a contractual relationship must exist
between the subscriber and the retailer. No direct contractual relationship is required
between end-user and service provider since the retailer mediates between both.

In general, the retailer:

• manages contracts for end-users and service providers,

• locates matches between user requirements and service provider subscription offers,
and finally,

• enables the interaction between end-user and service provider.

In the Service Provider Domain the service provider role is defined. It offers its
services to the end-user (or subscriber) through a retailer, or in other words, it supports
the retailer with services. In addition, the retailer allows service providers to reach a
larger number of potential end-users. The services that are provided by the service
provider can be service logic, or content, or both. The service provider can also be
compared to a wholesaler.

The TSAS specification is a domain facility enabling end-users to access
telecommunication services according to their own wishes. In addition, the
specification describes how services can be retailed on behalf of service providers,
which in turn offer their services to the retailer.

1-4 Telecommunications Service Access & Subscription, v1.0 December 2002

1

1.3 User Provider Relationship

TSAS offers mechanisms to establish and release authenticated connections between
different domains; therefore, each domain provides interfaces to do so. TSAS uses the
terms user and provider instead of the client and server terminology, which would be
misleading in a number of situations. The user is the role directed to use the interface
and provider is the role providing the interface, which is shown in Figure 1-2.

The active role is always the user role that initiates the access; whereas, the passive
role is the provider, responding to a request.

For a single interaction between two domains request - response user and provider are
situated in different domains. The domain boundaries are usually based on natural
affinities between objects, such as network topology, business stakeholder, or
geographical area. In a single scenario more than one user - provider relation may
exist. For example, it is possible to have a chain in which a single party acts as a
provider in one direction and as user in the other direction.

This may be illustrated by the following example. There is a chain of end-user, retailer,
and service provider. The retailer offers services to the end-user, which are realized by
the service provider. In the relationship between end-user and retailer the end-user is a
user, the retailer a provider. In the relationship between retailer and service provider,
the retailer is a user and the service provider is a provider.

Note that the definitions in this section imply that the terms user and provider, end-
user, and service provider have different meanings.

Figure 1-2 Use of generic user and provider roles

1.4 Sessions

The usage of services that are implemented taking into account the TSAS framework
can be structured in different sessions. These are used for grouping specific activities
between user and provider. The TSAS specification distinguishes between two
different sessions:

• An access session is used to establish an authenticated binding between two
domains, which in TSAS is between the consumer domain and the retailer domain
or between the retailer domain and the service provider domain. It maintains the
state about a user’s attachment to a provider and about its involvement in services.
An access session hence represents the context through which the end-user can
access services. The general access session concept also supports all aspects of
mobility, that means ubiquitous access by an end-user to the services, irrespective of
the terminal being used and the point of attachment to the network.

End-user Retailer
Service
provider

User Provider User ProviderEnd-user Retailer
Service
provider

User Provider User Provider

December 2002 TSAS Specification: Segments 1-5

1

• A service session represents a single activation of a service. It can relate multiple
end-users of the service so that they can interact with each other. Moreover, end-
users can share resources such as documents or white boards. An end-user may be
involved in many services at the same time although it has accessed the retailer only
once. The state of a service session is always kept by the service provider (not by
the retailer).

Generally, a service cannot be used without having an active access session. Closing
the connection between end-user and retailer, or retailer and service provider
respectively, will end an access session and also terminate all currently used services.

1.5 Segments

The operations offered by TSAS are grouped in interfaces. The interfaces in turn build
segments: named sets of interfaces (including so-called callback interfaces) that can be
exchanged in one synchronous operation invocation. A segment may consist of two
sets of interfaces: one dedicated set for each domain as shown in Figure 1-3.

Figure 1-3 Domains, Segments, and Interfaces

One TSAS segment is mandatory: the core segment that handles the initial access
phase between different domains. This covers the possibility to perform an
authentication protocol, and access to services an end-user may wish to use. In
addition, it offers the possibility to gain access to other segments supported by the
provider.

The other segments can be selected at runtime after an (optional) negotiation phase.
Currently these additional segments are defined and described in this chapter and in
Chapter 2. The Invitation Segment, Context Segment, Access Control Segment,
Service Discovery Segment, Session Control Segment, End-user Customization
Segment, Service Provider Administration Segment, End-user Administration
Segment, and End-user customization segment all offer additional service independent
functionality.

Domain A Domain CDomain B

Example of a segment

Domain A Domain CDomain B

Example of a segment

1-6 Telecommunications Service Access & Subscription, v1.0 December 2002

1

The usage of optional segments may be tailored for a certain purpose. Segments are
self-contained, there exist no dependencies between segments. This eases use of some
segments in a certain context, and allows adding additional segments in the future.

The optional segments (also called Service Access Segments and Subscription
Segments) are available during an access session only, as described in Section 1.2,
“Roles and Domains,” on page 1-2. Its operations allow the end-user or subscriber,
retailer, and service provider to interact during an access session in the respective roles
of user or provider across domains.

Segments can be requested or supported by the involved domains, depending on the
required functionality. Each of these segments can be selected independently of the
others. Once selected, however, the segment implementation must use the
specifications of this document.

1.6 Security

TSAS uses (mutually) authentication mechanisms between two domains, between the
end-user of the consumer domain and the retailer domain, and between the retailer
domain and the service provider domain respectively. For authentication either
CORBA security can be used or the authentication interface defined in Section 2.2.2,
“Authentication Interface,” on page 2-8. Once authenticated, the other optional
segments can be used without further authentication for each segment. As a result of
the authentication, references of interfaces are available between domains and remain
available as long as the relationship resulting from authentication is valid.

December 2002 Telecommunications Service Access & Subscription, v1.0 2-1

Core Segment 2

Contents

This chapter contains the following sections.

2.1 Overview

The core segment is mandatory and defines the interfaces that are used in the initial
phase between different domains. This covers the first point of contact to access a
provider, the possibility for user and provider to perform an authentication protocol,
the access to services they wish to use, and access to other segments supported by the
provider.

In TSAS a user contacts a provider to access services offered by the provider. To
access these services, the user is required to invoke authentication procedures with the
provider before it is able to access services. The use of the terms user and provider is
made according to their definition in the previous chapter.

TSAS defines:

• The first point of contact for a user to access a provider.

• The authentication operations for the user and provider to perform an authentication
procedure.

• The user access to services they wish to use.

Section Title Page

“Overview” 2-1

“Initial Contact and Authentication” 2-3

“Access” 2-10

2-2 Telecommunications Service Access & Subscription, v1.0 December 2002

2

• The user access to other segments supported by the provider.

The process by which the user accesses the provider has been separated into 3 phases:

1. Initial Contact

2. Authentication

3. Access to the provider’s services and segments

Within the core, segment interfaces are defined and within these interfaces operations
are defined to enable the user to progress through each of these phases. An overview of
these interfaces and operations is given in Figure 2-1.

.

Figure 2-1 Core Interfaces

Initial

This interface allows a user to initiate an authentication procedure and to request
access to the provider domain. This initiates an access session; the concept of access
session is explained in Section 1.4, “Sessions,” on page 1-4. The operations provided
are listed below.

Authentication

This interface allows a user to proceed through an authentication procedure. It provides
the following operations:

Operation Description

initiate_authentication() Allows the user to initiate an authentication
procedure.

request_access() Allows the user to request the provider to initiate an
access session. If successful, the user gains access
to an interface for accessing services and other
segments offered by the provider.

end_access() Allows the user to terminate an access session.

U ser

In itia l

A uthen tica tion

A ccess

P rov iderIn itia l

A uthen tica tion

A ccess

U ser

In itia l

A uthen tica tion

A ccess

P rov iderIn itia l

A uthen tica tion

A ccess

December 2002 TSAS Specification: Initial Contact and Authentication 2-3

2

Access

This interface allows an authenticated user to access services and other segments
offered by the provider. The interface provides the following operations:

2.2 Initial Contact and Authentication

Before a user can retrieve information about services offered by a provider, or use
these services, they need to contact the provider, and perform an authentication
procedure. Figure 2-2 on page 2-5 shows the sequence of operations on the Initial and
Authentication interfaces, for the user to contact the provider, and authenticate. The
user then gains access to the Access interface to retrieve information on services, use
services, and use other interfaces offered by the provider.

• (Before diagram) - User gains a reference to the Initial interface of the provider.
This may be gained through a URL, an Application Support Broker, a stringified
object reference, etc.

Operation Description

select_auth_method() For selecting the authentication procedure.

authenticate() To perform the authentication. It can be invoked
several times to complete the authentication
procedure.

abort_authentication() To abort the authentication procedure.

Operation Description

list_available_services() Lists all services that are available at the retailer.
The services are scoped using property lists. The
operation returns sufficient information for the user
to select a service, then start a service.

start_session() To start a service session.

get_service_info () Obtain information about a service.

end_access() To end the access session.

end_session() To end service sessions.

establish_segment() To set-up a segment.

list_segments() To list the segments that are available from the
provider.

release_segment() To release a segment.

2-4 Telecommunications Service Access & Subscription, v1.0 December 2002

2

• User may invoke initiate_authentication on the Initial interface. This ‘starts’ the
authentication of the user and provider. The operation allows the user and provider
to swap references to the Authentication interface. There is the possibility to
choose between different authentication types. Here the TSAS authentication type is
used also shown in Figure 2-2 the mutual authentication in brackets.

• User invokes select_auth_method on the provider’s Authentication interface.
The user identifies to the provider the authentication methods that it can use. Upon
return, the provider selects the mechanism that it wishes the user to use.

• User invokes authenticate on the Authentication interface, in accordance with the
authentication protocol selected. The authenticate operation contains an opaque
parameter for the user to fill with data appropriate for the selected authentication
protocol. This is the challenge parameter for the provider. The provider is able to
‘decode’ this parameter, and produce an appropriate response, based upon the
challenge data, according to the authentication protocol. This response data is
returned to the user in the response parameter. This operation identifies the user
unequivocally to the provider.

• The response data is decoded by the user. Depending upon the response data and the
selected authentication protocol, the user may need to produce some additional
challenge data to the provider. If this is necessary, then the user makes repeated
calls using authenticate Authentication. This process continues until the response
data indicates that the authentication protocol is complete, the user and provider are
satisfied that they have authenticated each other and a credential is passed to the
user. If either side is not satisfied with the authentication, they may call the
abortAuthentication operation to abort the authentication protocol.

• Once user and provider are authenticated, the user invokes the requestAccess
operation on the Initial interface. This operation allows the users to select the type
of access that they require. If they select TSAS_ACCESS, then a reference to the
TSAS Access interface is returned.

December 2002 TSAS Specification: Initial Contact and Authentication 2-5

2

Figure 2-2 Sequence diagram for initial access and authentication

2.2.1 Initial interface

interface Initial
{ ...
};

The user gains a reference to the Initial interface for the provider that it wishes to
access. This may be gained through a URL, an Application Support Broker, a
stringified object reference, etc. At this stage, the user has no guarantee that this is a
reference to a valid provider.

The user uses this interface to identify himself to the provider and to initiate the
authentication process. The Initial interface supports the initiate_authentication
operation to allow the authentication process to take place. It also supports the
request_access operation to gain access to the provider after the authentication has
completed successfully.

2.2.1.1 initiate_authentication()

void initiate_authentication (
in Object user_authentication,

UserUser :
Authentication

Provider :
Authentication

Provider :
Initial

select_auth_method()

initiate_authentication()
exchange of
authentication
references

authenticate()
sample
authentication
protocol

authenticate()

authenticate()

return
credential

request_access()

se credential
eturn session token

2-6 Telecommunications Service Access & Subscription, v1.0 December 2002

2

in AuthType auth_type,
out Object provider_authentication)

raises (AuthError);

The user uses this method to initiate the authentication process.

user_authentication is a reference to an authentication interface at the user domain
that can be invoked by the provider to perform the authentication procedure.This
interface can be nil, the TSAS Authentication interface, or an authentication protocol
specific interface. In case of the default, TSAS authentication, it is a nil reference.

auth_type identifies the type of authentication mechanism requested by the user. It
provides users and providers with the opportunity to use an alternative to the TSAS
Authentication interface (for example, CORBA Security). This authentication
process may be specific to the TSAS provider. The “TSAS_AUTHENTICATION”
provided by the authentication interface is the default authentication method.

If the CORBA Security Service is supported by both the user and the provider, then it
may be used to mutually authenticate the user and the provider. The operation of the
CORBA security service is out of the scope of TSAS. If it is used to provide
authentication of the parties, then the “CORBA_SECURITY” value is used for the
auth_type attribute, and no further authentication is required.

However, if the CORBA Security Service is not supported by both parties, and if
further authentication is required, then the TSAS Authentication interface can be
used. It is obtained by filling the auth_type attribute with the value
“TSAS_AUTHENTICATION.”

The operation returns the provider_authentication, a reference to an authentication
interface at the provider domain that has to be invoked by the user to perform the
authentication procedure. This interface can be the TSAS Authentication interface
(default), or an authentication protocol specific interface.

2.2.1.2 request_access()

request_access (
in AccessType access_type,
in Object user_access,
in Opaque credentials,
in UserCtxt user_ctxt,
out Object provider_access,
out Opaque session_token,
out AccessSessionId as_id,
out UserInfo user_info)

raises (AccessError, UserCtxtError);

The user uses this method to gain access to the provider by means of an access session.
This operation must be invoked only after user and provider are authenticated. To
guarantee that the user has been authenticated, the authentication token credential has

December 2002 TSAS Specification: Initial Contact and Authentication 2-7

2

to be passed to this operation. If this method is called before the user and the provider
have successfully completed the authentication process or with an invalid token, then
the request fails and an exception AccessError is raised.

access_type identifies the type of access interface requested by the user. Providers
can define their own access interfaces to satisfy user requirements for different types of
access. If the user requests “TSAS_ACCESS,” then the TSAS Access interface is
returned. TSAS_ACCESS is the default access method. Depending on the requested
access type, the access interface with the corresponding type is returned (see below).

user_access provides the reference for the provider to call the access interface of the
user. If the interface reference does not correspond to the type expected, due to the
value of access_type, an exception AccessError is raised by the provider. This
interface reference can be nil.

The user_ctxt allows the user to inform the provider about the configuration of his
domain. In the particular case of the end-user, it can inform the service provider, via
the retailer, of user applications available in the consumer domain, operating systems,
etc. user_ctxt is a structure containing consumer domain configuration information. If
there is a problem with user_ctxt, then UserCtxtError should be raised with the
appropriate error code.

The returned object provider_access provides the reference for the user to call the
access interface of the provider. The session_token contains an internal
identification of the established access session. This token has to be passed as an input
parameter to all access related operation. The introduction of the session_token
allows the provision of one provider_access interface per access session or the
provision of a common interface per user. Every time an illegal session_token is
used as an in-parameter a SessionError exception with the value
InvalidSessionToken is raised. The access session identification as_id can be used
to obtain information about all active or resumed service session in an arbitrary access
session of the user. This id is given to other access sessions of the user.

The user_info contains information about the user himself. This structure contains the
user’s UserId, its name, and a list of user properties. Currently no specific property
names and values have been defined for UserPropertyList, and so its use is provider
specific.

2.2.1.3 end_access ()

end_access (
in Opaque session_token,
in EndAccessSessionOption option)

raises (SessionError, AccessError);

The user uses this method to terminate an established access session that is identified
by the session_token. Corresponding to component systems the termination of an
access session is provided by the initial interface (factory) and by the
provider_access interface (instance).

2-8 Telecommunications Service Access & Subscription, v1.0 December 2002

2

The following behavior during the termination of an access session is possible,
depending on the chosen EndAccessSessionOption. If the default option is chosen
and some active session exists, an AccessError exception with the value
ActiveSessions is raised.

2.2.2 Authentication Interface

interface Authentication
{ ...
};

Once the user has made initial contact with the provider, authentication of the user and
provider may be required. The user may be required to authenticate with the provider
before it will be able to use any of the other interfaces supported by the provider.
Invocations on other interfaces may fail until authentication has been successfully
completed.

TSAS supports several authentication methods. TSAS also defines its own generic
authentication mechanism. If the user wants to use the TSAS generic authentication,
then it uses the initiate_authentication operation on the provider’s Initial interface
as described above, with auth_type parameter set to “TSAS_AUTHENTICATION.”
The reference returned is the TSAS Authentication interface. This interface can be
used to support an authentication procedure.

1. The user invokes the select_auth_method operation on the provider’s
Authentication interface. This includes the authentication capabilities of the user
(that is, the authentication procedures known by the user application). The provider
then chooses an authentication procedure based on the authentication capabilities of
the user and the provider. If the user is capable of handling more than one
authentication procedure, then the provider chooses one option, the selected_cap.
In some instances, the authentication capability of the user may not fulfill the
demands of the provider, in which case the authentication will fail.

2. The user and provider interact to authenticate each other. Depending on the
authentication capability selected, this procedure may consist of a number of
interactions (for example, a challenge/response protocol). This authentication
procedure is performed using the authenticate operation on the TSAS
Authentication interface. Depending on the authentication capability selected, the
procedure may require invocations on the Authentication interface supported by
the provider; or on the Authentication interface supported by the user; or on both
interfaces.

Table 2-1 End access session options

DefaultOption Termination is only possible if no active service
session exists.

SuspendActiveSessions Suspend all active service session and terminate.

EndActiveSessions End all active sessions and terminate.

EndAllSessions End all service sessions and terminate.

December 2002 TSAS Specification: Initial Contact and Authentication 2-9

2

After the authentication procedure has been completed, the user can invoke the
request_access operation on the Initial interface to gain access to the provider’s
services and other TSAS segments supported by the provider.

2.2.2.1 select_auth_method()

void select_auth_method (
in AuthCapabilityList auth_caps,
out AuthCapability selected_cap)

raises (AuthError);

The user invokes the selectAuthMethod on the provider’s Authentication interface
to initiate the TSAS generic authentication process. This provides the authentication
capabilities of the user to the provider. The provider then chooses an authentication
method based on the authentication capabilities of user and provider. The operation
returns the selected method (selected_cap). In some instances, the authentication
capability of the user may not fulfill the demands of the provider, in which case the
authentication will fail (the operation raises the exception Authentication Error).

• auth_caps is the means by which the authentication mechanisms supported by the
user are conveyed to the provider. Examples for authentication capabilities may be
(for example, bio ID techniques, chip cards, or username/password combinations).

• selected_cap is returned by the provider to indicate the mechanism preferred by
the provider for the authentication process among the ones supported by the user
that were specified in authCaps. If the value of the selectedCap returned by the
provider is not understood by the user, it should be considered as an unrecoverable
error (‘panic’) and the user should abort its application.

2.2.2.2 authenticate()

void authenticate (
in AuthCapability selected_cap,
in Opaque challenge,

 out Opaque response,
out Opaque credentials)

raises (AuthError);

The user and provider use this operation to authenticate each other. It is used according
to the authentication procedure, selected by the selected_cap parameter (returned by
select_auth_method()). This procedure may consist of a number of messages (for
example, a challenge/ response procedure). The values of the challenge and
response parameters are defined by the authentication procedure. The challenge is
used to identify a user uniquely. It may contain a userId or a certificate, which can
identify the user by a distinguished name conforming to X.509 v3. In case of a
successful authentication the credentials parameter contains a token that has to be
used as an input parameter in further access operations.

2-10 Telecommunications Service Access & Subscription, v1.0 December 2002

2

An AuthError exception is raised if the selected_cap does not correspond to the
selected_cap returned by select_auth_method(). An AuthError exception is also
raised if the challenge data does not correspond to the procedure selected (that is, the
challenge data cannot be decrypted according to that method).

The response attribute provides the response of the provider to the challenge data of
the user in the current sequence. The response will be based on the challenge data,
according to the procedure selected by select_auth_method ().

2.2.2.3 abort_authentication()

void abort_authentication ()
raises (AuthError);

The user uses this method to abort the authentication process. This method is invoked
if the user no longer wishes to continue with the authentication process (for example,
if the provider responds incorrectly to a challenge). If this method has been invoked,
calls to the request_access operation on the Initial interface will raise the
AccessError exception until the user has been properly authenticated. It contains no
attributes.

2.3 Access

Once a user has been authenticated with a provider an access session is established.
The user now can gain access to the services and other segments offered by the
provider.

The user invokes the request_access operation on the Initial interface with the
required accessType. If it requests TSAS_ACCESS, then a reference to the
Access interface is returned. (TSAS Providers can define their own access interfaces
to satisfy user requirements for different types of access). The user also provides the
provider with a reference to its ‘callback’ interface to allow the TSAS provider to
initiate interactions during the access session.

The Access interface allows the user to access services offered by the provider and to
gain references to other segments. Segments are defined by TSAS in Chapter 3. The
sequence for accessing the segments is given in Figure 2-3. Segments are accessed by
using the list_segments(), get_segment(), and release_segments() operations.

December 2002 TSAS Specification: Access 2-11

2

Figure 2-3 Sequence diagram for access segments

list_segments() may be used for getting informed which segments are currently
available for a user. With get_segment () a single segment will be returned. This
operation needs to be called separately for every segment which shall be used. When
segments are not needed anymore, they can be released with release_segments().

Figure 2-4 Sequence diagram for accessing services

User Provider :
Authentication

Provider :
ccess

request_access()

list_segments()

establish_segment()

release_segments()

end_access()

Repeat for each
segmentestablish_segment()

User Provider :
Authentication

Provider :
Access

request_access()

list_available_services()

start_session()

end_session()

end_access()

use credential
return session token

use
session token

get_service_info()

2-12 Telecommunications Service Access & Subscription, v1.0 December 2002

2

The users use list_available_services() to retrieve the ServiceId of the service they
wish to use. Using the get_service_info() operation the user can obtain more
information about the service he wants to start. Then the start_session() operation is
used to initiate the session and return an interface reference to the service. A service
session can be ended by using the end_session operation. As a result, the interfaces
offered by the service are no longer available to the user. The complete process is
described in more detail in the following section.

The end_access operation is used to end the user’s access session with the provider.
After it is invoked, the user will no longer be authenticated with the provider. The user
will not be able to use the references to any of the provider interfaces gained during the
access session. Any calls to these interfaces will fail.

The Access interface is also offered by the user to the provider to allow it to initiate
interactions during the access session.

2.3.1 Access Interface

interface Access
{ ...
};

During an authenticated access session the user will be able to select and access
services. In order to use a service, the user must be authorized to use the service
having established a service agreement.

Service agreements can be concluded using either off-line or on-line mechanisms. Off-
line agreements will be gained outside of the scope of TSAS interactions and so are
not described here. However, users can make use of service agreements that are made
off-line. Some providers may only offer off-line mechanisms to conclude service
agreements. On-line service agreements may be concluded by using other TSAS
provider interfaces, such as the interfaces defined by the subscription segments.

After a service agreement has been established between the user and the provider, the
user will be able to make use of this agreement to access a service. The user can use
the operations on the Access interface to:

• list the services that it can use,

• start the service session,

• end the service session, and

• end the access session.

The list_available_services() operation is used to provide a list of services that the
user can use. The user can specify a list of properties that the service must match in
order to scope the range of services returned.

December 2002 TSAS Specification: Access 2-13

2

The user starts the service session by using the start_session() operation. This
operation uses the service token to identify the service, with specific service properties,
from which to create a new service session. The operation returns a SessionInfo
structure that contains the SessionId, SessionPropertyList, and an InterfaceList
with references to interfaces offered by the service session implementation.

2.3.1.1 list_available_services()

void list_available_services (
in Opaque session_token,
in ListedServiceProperties desired_properties,

 out ServiceList service_list)
raises (SessionError, PropertyError, ListError);

The list_end_user_services() returns a list of the services that are immediately
available to the user in the current access session. The list that is returned can contain
services to which the user is already subscribed, as well as services that are
(momentarily) offered for free (for which no subscription is required). See Chapter 4
for details on subscription.

The desired_properties parameter can be used to scope the list of services.
desired_properties identifies the properties that the services must match. For
example, such a property can indicate that the services returned in the list must all be
currently available. ListedServiceProperties also defines whether a service must
match one, all, or none of the properties (see MatchProperties in Section 5.1.1,
“Properties and Property Lists,” on page 5-1). Currently no specific property names
and values have been defined for ListedServiceProperties (‘available’ or
’subscribed’ would be a good example though), and so its use is service provider
specific.

The list of services that matches the desired_properties is returned in the
ServiceList. This is a sequence of ServiceInfo structures that contain the
service_id, and a sequence of service properties, ServicePropertyList. The
service_id is associated with a specific service when the service is subscribed.

The value of service_id is unique among all the available services, but may be
different for different users. The service_id value persists for the lifetime of the
contractual relation between user and provider concerning this service.

Currently no specific property names and values have been defined for
ServicePropertyList, and so its use is service provider specific.

If the desired_properties parameter is wrongly formatted, or provides an invalid
property name or value, the PropertyError exception should be raised. Property
names that are not recognized can be ignored if desired_properties require that only
some, or none of the properties are matched. If the service list is unavailable because
the retailer’s services are not available, then the operation should raise a ListError
exception with the ListUnavailable error code.

2-14 Telecommunications Service Access & Subscription, v1.0 December 2002

2

The operation delivers a list of the services that the user may use. The list that is
returned can contain services that are offered for free (for which no subscription is
required).

2.3.1.2 get_service_info()

void get_service_info (
in Opaque session_token,

 in ServiceId service_id,
 in MatchProperties desired_properties,

out ServicePropertyList service_properties)
raises (SessionError, ServiceError, PropertyError);

The get_service_info() returns information on a specific service, identified by the
service_id. The desired_properties list scopes the information that is requested to
be returned. The service_properties may contain information that is necessary to
launch the service GUI.

2.3.1.3 start_session()

void start_session (
in Opaque session_token,
in ServiceId service_id,
in ServicePropertyList service_properties,
out SessionInfo session_info)

raises (
ServiceError, SessionError, PropertyError);

This operation is used by the user to start a service session for the service with the
specified service_id in the context of the specified access session (session_token).

The service_properties can be used to pass some service specific attributes from the
user to the provider. These properties can be used to initialize the session related
service instance.

The returned session_info is a structure containing information about the started
service session instance. It includes the SessionId, SessionPropertyList, and a list
of interfaces relating to the service session. The SessionId has to be unique in the
context of all of the user’s access sessions. It is used to end, suspend, and resume (refer
to Section 3.2.1, “SessionControl Interface”) the established service session.

2.3.1.4 end_access()

void end_access (
in Opaque session_token,
in EndAccessSessionOption option)

raises (SessionError, AccessError);

December 2002 TSAS Specification: Access 2-15

2

This operation is used to end the user’s access session with the provider. The user
requests that its access session is ended. After it is invoked, the user will no longer be
authenticated with the provider. The user will not be able to use the references to any
of the provider interfaces gained during the access session. Any calls to these
interfaces will fail.

EndAccessSessionOption defines the behavior during the termination of the
access session. For details refer to Table 2-1 on page 2-8.

2.3.1.5 end_session()

void end_session (
in Opaque session_token,
in SessionId session_id)

raises (SessionError);

This operation is used to end a service session. After it is invoked, the service session
associated with the session_id will have ended and will not be accessible to the user,
(that is, the user will no longer be able to use any of the references to the session’s
usage interfaces).

session_id identifies the session to end. If the session_id is invalid, a
SessionError exception is raised with an InvalidSessionId error code.

2.3.1.6 list_segments()

void list_segments (
 in Opaque session_token,

out SegmentIdList segment_ids)
raises (SessionError);

This operation is used to list the segments offered by the provider. Segments other than
this core segment are optional, and so only a subset of the segments defined by TSAS
may be offered by a provider. The segment_ids returned by this operation only
include segment identifiers to segments that are offered by this provider and are
available to this user.

2.3.1.7 establish_segment()

 void establish_segment (
 in Opaque session_token,

in SegmentId segment_id,
in InterfaceList user_refs,
out InterfaceList provider_refs)

raises (SessionError, SegmentError, InterfaceError);

This operation is used to establish a segment between the user and the provider.

2-16 Telecommunications Service Access & Subscription, v1.0 December 2002

2

• segment_id identifies the segment to be established. The segment defines a
number of interfaces to be offered by the user and the provider. If the segment_id
is invalid, the provider raises a SegmentError exception with an
InvalidSegmentId error code.

• user_refs is a list of interfaces supported by the user. It must include references to
all interfaces of the types that are required for this segment on the user side. If a
required interface is missing from the list, a SegmentError exception is raised
with a RequiredSegmentInterfaceNotSupplied error code, and the interface
name is returned. If an interface is not part of the segment interfaces, a
SegmentError exception is raised with an InvalidSegmentInterface error code,
and the interface name is returned.

A list of interfaces supported by the segment is returned. It must include references to
interfaces of the types that must be supported by the provider for this segment.

2.3.1.8 release_segments()

void release_segments (
 in Opaque session_token,

in SegmentIdList segment_ids)
raises (SessionError, SegmentError);

This operation is used to release segments that have been established between a user
and provider. Once a segment is released, the interfaces associated with the segment
cannot be used.

segment_ids is a list of segment identifiers of segments to be released. If a segment
identifier is invalid, a SegmentError exception is raised with an InvalidSegmentId
error code.

2.3.2 Base Interface

interface SegmentBase
{

void release_segment (
in Opaque session_token)

raises (SessionError);
};

This is the definition of the base interface from which the segment interfaces can
inherit in order for all of them to support the release_segment operation. Once a
segment is released by calling this operation on one of its supported interfaces, all the
interfaces associated with the segment cannot be used.

In contrast to the factory type release_segments operation provided by the access
segment, the release_segment operation is provided from every interface instance.

December 2002 Telecommunications Service Access & Subscription, v1.0 3-1

Session Segments 3

Contents

This chapter contains the following sections.

3.1 Overview

This section describes segments that are defined for controlling access and service
sessions. In the scope of the Telecommunication Service Access and Subscription
(TSAS), inter-domain sessions take place on the one hand between the consumer
domain and the retailer domain, and on the other hand between the retailer domain and
the service provider domain.

The session segments address two types of functionality, as follows:

• Functionality dedicated to the control of (inter-domain) access sessions, which in
turn is specialized into the control of the access between the

• consumer domain and the retailer domain, and

• the retailer domain and the service provider domain.

• Functionality related to the control of (inter-domain) service sessions for which the
consumer domain invokes the retailer domain, and the retailer invokes in its turn
one or more service providers.

The functions dedicated to accessing domains consist of retrieving a list of active
access sessions.

Section Title Page

“Overview” 3-1

“Session Control Segment” 3-3

“Session Information Segment” 3-6

3-2 Telecommunications Service Access & Subscription, v1.0 December 2002

3

The functions dedicated to accessing service sessions are:

• listings of service sessions and services, and

• control of service sessions from the access session (e.g., resume, notify changes,
etc.).

Figure 3-1 illustrates the various interfaces offered by each domain.

Figure 3-1 Interfaces supported by the TSAS domains

This section globally describes the session segments, their interfaces, and their
operations in a generic fashion (that is, for the generic roles of user and provider). This
generic specification can be re-used for the specific cases of, on the one hand end-user
and retailer, and on the other hand retailer and service provider.

The segments available for use during an access session are:

Session control segment

It provides functionality for service session control. It defines one interface:

• SessionControl - This interface allows a known user to get a list of running
service sessions and to resume service sessions or participation in service sessions
(when these have been suspended), and to end service sessions.

 Session information segment

• SessionInformation - This interface allows a user to receive information over all
its access and service sessions from his provider.

These segments, interfaces, and the operations they provide are described below. Since
it must be possible to release any segment that is set up from within the segment, all
the interfaces inherit from a base interface that defines an operation
release_segment(). This base interface is defined in the access segment (see
Section 2.3.2, “Base Interface,” on page 2-16).

SessionControl SessionControl

C
on

su
m

er
 D

om
ai

n
(E

nd
-u

se
rs

 a
nd

 S
ub

sc
ri

be
rs

)

R
et

ai
le

r
D

om
ai

n

S
er

vi
ce

 P
ro

vi
de

r
D

om
ai

n

SessionInformation SessionInformation

December 2002 TSAS Specification: Session Control Segment 3-3

3

3.2 Session Control Segment

The session control segment defines the SessionControl interface.

The SessionControl interface allows a known user to get a list of running service
sessions and to resume service sessions or participation in service sessions (when these
have been suspended).

It provides the following operations:

• list_access_sessions() - lists the access sessions of the user.

• list_service_sessions() - lists the service sessions of the user. The request can be
scoped by the access session and session properties like “active,” “suspended,” or a
fixed service type.

• end_sessions() - allows the user to end one or more service sessions.

• suspend_sessions () - allows the user to suspend one or more service sessions.

• resume_session() - allows the user to resume a service session.

3.2.1 SessionControl Interface

interface SessionControl: SegmentBase
{
};

The SessionControl interface allows a known user to list, to end, and to suspend its
running service sessions, and to resume the suspended service sessions. This interface
is returned as a result of the Core::Access::establish_segment() operation
establishing this segment.

3.2.1.1 list_access_sessions()

void list_access_sessions (
in Opaque session_token,
out AccessSessionIdList as_id_list)

raises (SessionError);

The list_access_sessions() returns a list of access session identifications
AccessSessionIdList of all access sessions the user is involved in.

3.2.1.2 list_service_sessions()

void list_service_sessions (
in Opaque session_token,
in AccessSessionId as_id,
in SessionSearchProperties desired_properties,
out SessionDescriptionList session_description_list)

 raises (SessionError, PropertyError, ListError);

3-4 Telecommunications Service Access & Subscription, v1.0 December 2002

3

The list_service_sessions() returns a SessionList (list of sessions) of the
specified access session as_id. This includes active and suspended sessions. A session
is associated with an access session if it is being used within that access session, or if
it has been suspended in an arbitrary access session.

The desired_properties parameter can be used to scope the list of sessions. It
identifies the properties that the sessions must match. It also defines whether a session
must match one, all, or none of the properties (see MatchProperties in Section 5.1.1,
“Properties and Property Lists,” on page 5-1). The following property names and
values have been defined for SessionSearchProperties.

If a property in SessionSearchProperties has the name “SessionState,” then the
matching service session must have the same SessionState as given in the property
value.

• name: “SessionState”

• value: UserSessionState (“active” or “suspended”)

Other provider specific properties can also be defined in desired_properties.

The list of sessions matching the desired_properties are returned in sessions. This is
a sequence of SessionDescription structures that define the SessionId, the
SessionState, and a series of provider specific properties. This information is
provider specific, and consequently out of the scope of TSAS.

If the desired_properties parameter is wrongly formatted, or provides an invalid
property name or value, the PropertyError exception should be raised. Property
names that are not recognized can be ignored if desired_properties requires that
only some, or none of the properties are matched.

If the sessions list is unavailable because the end-user’s sessions are not known, then
the operation should raise a ListError exception with the ListUnavailable error code.

3.2.1.3 end_sessions()

void end_sessions (
in Opaque session_token,
in SessionIdList session_id_list)

raises (SessionError);

The end_sessions() ends one or more service sessions, identified by
session_id_list. The SessionError exception is raised if the session_token is
invalid or there is an unrecognized session_id in the list.

3.2.1.4 suspend_sessions()

void suspend_sessions (
in Opaque session_token,
in SessionIdList session_id_list)

raises (SessionError);

December 2002 TSAS Specification: Session Control Segment 3-5

3

The suspend_sessions() suspends one or more service sessions, identified by
session_id_list. The SessionError exception is raised if the session_token is
invalid or there is an unrecognized session_id in the list.

3.2.1.5 resume_session()

void resume_session (
in Opaque session_token,
in SessionId session_id,
in ServicePropertyList service_properties,
out SessionInfo session_info)

raises (SessionError, PropertyError);

The resume_session() resumes a service session. It is used on a service session that
is suspended. The suspension and resuming operations are mainly used to obtain
service session mobility. The service session can be resumed within an access session
different from the one in which the service session was initially running, which
possibly involves a different terminal as well. As the operation required to suspend a
service session involves service session mobility, the mechanism required to suspend
the service session might be service specific, and is therefore not provided by TSAS,
but should be defined on one of the service specific interfaces.

session_id - is the identifier of the session to be resumed.

The service_properties can be used to pass some service specific attributes from the
user to the provider. These properties can be used to re-initialize the session related
service instance (e.g., to pass some informations about the actual environment of the
user).

The returned SessionInfo is a structure that contains information that allows the
consumer domain to refer to this service session using other operations on this
interface. It also contains information for the usage part of the session, including the
interface references to interact with the service session (service provider specific).

The exception SessionError is raised if the session_token is invalid, the
session_id is invalid, or if the session refuses to resume because of the user’s session
state, or if the user does not have permission.

3-6 Telecommunications Service Access & Subscription, v1.0 December 2002

3

3.2.1.6 Scenario

Figure 3-2 Sample Session Control Segment Diagram

The list_access_sessions(), list_service_sessions(), end_sessions(), and
suspend_sessions() operations are invoked by the user on its provider. The
resume_session() operation is invoked by the user on its provider for one single
service session.

3.3 Session Information Segment

This segment is defined to allow a provider (in the general sense) to inform a user (in
the general sense) of changes of state in other access sessions and service sessions with
the same user (for example, access sessions with the same user that are created or
deleted). The user is only informed about the access sessions he is involved in.

If the user does not want to provide such an interface, he is able to obtain information
about running sessions by polling the provider’s Control Segment.

3.3.1 Session Information Interface

interface SessionInformation::SegmentBase
{ ...
};

Provider :
Access

User Provider :
SessionControl

establish_segment()

list_access_sessions()

list_service_sessions()

suspend_sessions()

resume_session()

end_sessions()

release_segment()

get SessionControl
interface

get information
about sessions

change session
states

release
SessionControl
interface

December 2002 TSAS Specification: Session Information Segment 3-7

3

The SessionInformation interface allows a user to receive notifications about
session changes. This interface is returned as a result of the
Core::Access::establish_segment () operation. Using this interface the provider
can signal changes of the state of user related sessions. Because these are only
notifications, they are specified as oneway.

3.3.1.1 new_access_session_info

oneway void new_access_session_info (
in AccessSessionId as_id);

The user gets information about a new access session, started with his own user
identification. The as_id is an identifier for the new access session.

3.3.1.2 end_access_session_info

oneway void end_access_session_info (
in AccessSessionId as_id);

The user gets information about a terminated access session. The as_id is the
identifier of the terminated access session.

3.3.1.3 end_session_info

oneway void end_session_info (
in SessionId session_id);

The user gets information about a terminated service session. The session_id is the
identifier of the terminated service session.

3.3.1.4 suspend_session_info

oneway void suspend_session_info (
in SessionId session_id);

The user gets information about a suspended service session. The session_id is the
identifier of the suspended service session.

3-8 Telecommunications Service Access & Subscription, v1.0 December 2002

3

3.3.1.5 Scenario

Figure 3-3 Sample Session Information Segment Diagram

Figure 3-3 extends the sample scenario shown in Figure 3-2. It shows the establishment
of the SessionInformation segment and the notifications that are sent from the
provider to the user in case of changes of the session states.

User Prov ider :
Access

Prov ider :
SessionControl

User :
Access

User :
SessionInf ormation

establish_segment()

establish_segment()
establish
segments

list_access_sessions()

list_serv ice_sessions()
get inf ormation
about sessions

suspend_sessions()

suspend_session_info()

resume_session()

suspend_session_info()

suspend
sessions
suspend
sessions

res ume
session

end_sessions()

end_session_inf o()

end_session_inf o()

end
sessions

release_segments()

release_segments()
release
segments

December 2002 Telecommunications Service Access & Subscription, v1.0 4-1

Subscription Segments 4

Contents

This chapter contains the following sections.

4.1 Overview

As described previously in Chapter 3 the retailer mediates services on behalf of service
providers to its end-users. The subscription segments offered by the retailer are
structured according to the functionality they provide and for which roles (see
Section 2.3.1, “Access Interface,” on page 2-12) they are used, as depicted in
Figure 4-1. The subscription segments define interfaces for the consumer domain to be
used by end-users and subscribers, and for the service provider domain to be used by
service providers.

Section Title Page

“Overview” 4-1

“Information Model” 4-3

“Subscription Segments” 4-9

“Scenario Description” 4-10

“Registration Segment” 4-12

“Subscriber Administration” 4-13

“Service ProviderAdministration” 4-21

“Service Discovery Segment” 4-23

“End-User Customization” 4-25

4-2 Telecommunications Service Access & Subscription, v1.0 December 2002

4

Subscription manages information about services and contractual relationships between
end-user/subscriber and retailer and between service provider and retailer. Before the
subscription segments can be used, the end-user/subscriber or the service provider have
to access the retailer by establishing an access session as defined in Chapter 2.

All subscription segments described in this chapter provide a framework for the
management of subscription information. The retailer can use them to either build an
on-line subscription service or use the interfaces to administer its subscription related
information. In general the management tasks for subscription encompass management
of:

• Subscriber related information concerning create, modify, and delete subscriber
entries.

• Service contracts to create, modify, or delete service contracts and assign or de-
assign service contracts to users.

• User related information concerning the administration of user entries, user groups
(subscription assignment groups), and service profiles.

• Service templates to deploy, modify, or withdraw a service offered by a service
provider.

The registration segment provides an operation for the service provider to register itself
as subscriber. Following the procedures for accessing the retailer, the subscriber logs in
as a user and then registers itself after retrieving the registration segment as a
subscriber.

The subscriber administration segment provides interfaces for the management of
subscriber related information and can only be used by the subscriber, which has
registered itself beforehand by using the registration interface. The subscriber can also
manage its users and user groups, called subscription assignment groups.

The service discovery segment is used by subscribers and end-users to discover new
services.

The service provider administration segment provides the management of service
templates and is used by the service provider.

The end-user customization segment is used by the end-user to manage its personal
preferences to be used for customization.

All subscription segments can only be obtained by using the establish_segment
operation, defined in the core segment (see Chapter 2).

December 2002 TSAS Specification: Information Model 4-3

4

Figure 4-1 Subscription Segments provided by the retailer

4.2 Information Model

The information model describes the relationship between information objects that are
relevant for the retailer to support subscription segments.

Subscribers play an important role by representing organizations or a single end-user
that is going to sign service contracts for accessing services provided by a retailer.
Signing a service contract gives the permission to use a service under the conditions
described in the service profile.

If the subscriber represents an organization, it can also manage its end-users by
creating end-user information objects and building groups of these users, called
subscription assignment groups. The subscriber will authorize its end-users, groups of
users, or itself to access services for which it has signed the contract by associating
service profiles with them. Each service contract refers to a default service profile for
the subscribed service. The subscriber can create new service profiles with respect to
its contract and associate these service profiles with its end-users and user groups.

The services a retailer provides to the end-users can be services the retailer offers itself
or services the retailer offers on behalf of service providers. In the latter case, the
service provider also signs a contract with the retailer and registers its services at the
retailer domain by using the service provider administration segments.

A service type defines the generic classification or category of a service that will be
supported by a retailer. The service types are created at the retailer before a particular
service corresponding to that type can be deployed by a service provider. The
management of service types, that is the creation, modification, and deletion of service
types, is retailer specific. In general, a retailer (administrator) would decide the types
of services it wants to host in its domain. The attributes of the service types are defined
by properties, which can be different with respect to each of the different service types.
The properties are defined as a list of property name-value pairs. Each attribute has a
mode that specifies whether the attribute is mandatory, read-only, or normal as defined
by Cos Trading Service.

Subscriber

Consumer
Domain

End-User

Retailer
Domain

Service
Provider
Domain

Retailer Service
Provider

Registration

Service
Discovery

Subscriber
Administration

End-User
Customization

Service
Provider
Administration

4-4 Telecommunications Service Access & Subscription, v1.0 December 2002

4

The service template contains information about the service attributes, the environment
settings. For example, configuration information and references to access the service,
and application information such as graphical user interface capabilities, language
support.

The end-user service profile is related to service specifics that offer the end-user the
ability to change individual attributes of the service (for example, to set personal
preferences). The end-user service profile is opaque for the retailer and only passed by
to the service provider, which interprets it.

The service template conceives the basis for any contractual relationship between a
retailer and a subscriber/end-user and between a retailer and a service provider. The
service contract itself restricts the range for service settings defined in the service
template. The service settings again can be restricted to a subscription assignment
group of one subscriber who defines the individual rights for each user or for the
subscription assignment groups by setting attributes in the service profile. In addition,
a user can specify individual settings within the range of contractual settings
predefined by the subscriber in customizable user profiles.

Figure 4-2 illustrates the most relevant information objects using a UML class
diagram. The detailed description of these objects and attributes can be found in the
text that follows.

Figure 4-2 Subscription Information Model (example)

S ervic eP rovider
(fro m S u b)

<<CO RB A S tru ct>>

S ag
(from Sub)

<<CO RB A S tru ct>>

S erviceC ontrac t
(from Sub)

<<CO RB A S truc t>>

Se rviceTe mpla te
(from Sub)

<<CO RB A S truc t>>

u bsc r iber
(fro m S u b)

<<CO RB A S tru ct>>

S erviceP rofile
(from Sub)

<<CO RB A S truc t>>

S erviceType

UserS ervic eP rofile
(from Sub)

<<CO RB A S tru ct>>

E n dUser
(fro m S u b)

<<CO RB A S tru ct>>

December 2002 TSAS Specification: Information Model 4-5

4

4.2.1 Service Provider

struct ServiceProvider{
 ProviderId provider_id;
 PropertyList provider_properties;

};

The ServiceProvider can deploy new services at a retailer by registering service
templates of retailer available service types. The service provider object contains a
provider_id and provider_properties that may contain the address, bank account,
and other details of the service provider.

4.2.2 Subscriber

struct Subscriber {
 SubscriberId subscriber_id;
 PropertyList subscriber_properties;

};

A Subscriber can subscribe to a number of services by signing a service contract.
The subscriber object contains a subscriber_id and subscriber_properties.

Table 4-1 is a non-exhaustive example of valuable subscriber properties. The example
uses property types as defined in the COS Trading Service. The property mode
specifies whether the property is mandatory, read-only, or normal.

4.2.3 Service Contract

A service contract exists for each subscription. The service contract defines the service
characteristics for a subscriber and the condition for accessing a service. The service
contract properties shall be defined by the retailer.

Table 4-1 Subscriber Properties

property
type name type mode

first name string normal

last name string normal

orgname string normal

city string normal

street string normal

postal code string normal

email string normal

payment string normal

4-6 Telecommunications Service Access & Subscription, v1.0 December 2002

4

The service contract needs a reference to the service template to identify for which
service the contract is valid. It also needs the service category defined by the service
type for identification. The service properties define the specific settings for the
service usage by the subscriber. They are a restriction of the service properties defined
in the service template.

struct ServiceContract {
ServiceContractId service_contract_id;
ServiceTemplateId service_template_id;
PropertyList service_contract_properties
ServiceTypeName service_type;
PropertyList service_properties;

};

The service_contract_id is used to identify the contract. The service_template_id
provides the reference to the service template. The service_type gives the category of
the service. The service_properties define the setting of the subscriber for the usage
of a service.

4.2.4 Service Template

The service template defines three kinds of properties:

1. service template properties

2. service properties

3. end-user application properties

struct ServiceTemplate{ServiceTemplateId service_template_id;
ServiceTypeName service_type;
PropertyList service_template_properties;
PropertyList service_properties;
PropertyList user_application_properties;

};

The service_type defines the category of services a retailer offers.

Table 4-2 illustrates a non exhaustive example of valuable service template properties.
The example properties remote_provider_id,
remote_initial_agent_naming_context, and remote_url are attributes that can be
used to provide a reference to access the service provider domain in order to establish
an access as defined in Chapter 2.

The example uses property types as defined in the COS Trading Service. The property
mode specifies whether the property is mandatory, read-only, or normal.

December 2002 TSAS Specification: Information Model 4-7

4

The user_application_properties specify the capabilities of the end-user
application. A non exhaustive example of user application properties is given in Table
4-3.

4.2.5 Subscription Assignment Group

A subscriber may not want to grant all of its end-users the same service characteristics
and usage permissions. In this case he can group them into a Subscription Assignment
Group (SAG) and than assign service profiles to each group. The subscriber can also
assign more then one service profile for an end-user, for example an internet travel
booking service, where each entry page for flight booking, hotel booking, or car
reservation can be expressed by a separate service profile. Subscription Assignment
Groups (SAG) are associated with the subscriber.

Table 4-2 Service Template Properties

property
structure

name value mode

no_start bool normal

depends_on string normal

config_requirements string normal

autostart bool normal

remote_provider_id string normal

remote_inital_agent_name_context string normal

remote_service_id ulong normal

remote_user_id string normal

remote_password string normal

remote_url string normal

Table 4-3 User Application Properties

property
structure

name value mode

default_session_context string mandatory

browser bool normal

orb string normal

java_lib string normal

url string normal

os string normal

4-8 Telecommunications Service Access & Subscription, v1.0 December 2002

4

struct Sag{
SagId sag_id;
PropertyList properties;

};

The sag_id is a string defined by the subscriber to identify its SAGs. The subscriber
can describe the SAG using the properties. The sag_id together with the
subscriber_id is unique in the retailer system.

4.2.6 Service Profile

The service profile specifies the service settings for the usage of that service. It may
restrict the service contract settings for a specific end user or SAG. It is associated
with the service type, which relates to the category. The service properties defines the
service settings by the subscriber.

struct ServiceProfile{
ServiceProfileId service_profile_id;
ServiceContractId service_contract_id;
ServiceTypeName service_type;
PropertyList service_properties;

};

The service_profile_id is used to identify the profile.

The service_contract_id provides the reference for which service contract the
service profile is valid.

The service_type is the corresponding classification given by the retailer.

The service_properties specify the specific service settings for a service usage.

4.2.7 End User

An end-user will be authorized by a subscriber for the access of a service. The end-
user entry contains an ID, security_properties, and user_properties describing the end-
user relevant information for subscription.

struct EndUser{
 UserId user_id;
 PropertyList security_properties;
 PropertyList user_properties;
 };

The security_properties define the kind of authentication a user has, for example
password, credential, or biometric information. Each end-user can define in the
user_properties the specific user data such as address, phone number, email.

December 2002 TSAS Specification: Subscription Segments 4-9

4

4.2.8 User Service Profile

The user service profile defines a range of end-user specific possible settings for a
customized service usage. The user service profile is related to the service type, which
defines the possible properties for end-user specific settings as part of the service
properties.

struct UserServiceProfile {
 UserServiceProfileId user_service_profile_id;

ServiceTypeName service_type;
PropertyList user_service_properties;

};

The user_service_profile_id is used to identify the profile. The
user_service_properties are service dependent and have to be provided by the
service provider. The end-user can set its preferences as predefined by the service type,
which contains the possible range of end-user preferences for a service. The
service_type is the corresponding classification given by the retailer.

4.2.9 Service Type

The service type describes the service category (for example, a communication
service). For each service type one service template exists, but there might be multiple
service templates for one service type. The service type is described using properties
similar to those defined in the COS Trading Service. The properties exist for the
service specific characteristics (service profile) as well as for the preferences (user
service profile), which can be set by an end-user.

4.3 Subscription Segments

4.3.1 Overview

The subscription interfaces are only available after successful access to the retailer
from either the consumer side to manage subscribers and end-users or from the
provider side to manage service templates. If the subscription segments are supported
by the retailer, the access of the services relevant for subscription will be controlled.
That means subscription is checking the authorization of user for service usage.

The segments available for the subscription process are listed below.

Registration Segment

It provides an interface for a subscriber to register itself by the retailer. After successful
registration the subscriber is a know role authorized to manage subscriptions at the
retailer.

Subscriber Administration Segment

It allows subscribers to manage their subscription. Five interfaces are provided:

4-10 Telecommunications Service Access & Subscription, v1.0 December 2002

4

1. SubscriberMgmt - this interface is used by the subscriber to create, modify, or
delete subscriber entries and to retrieve subscriber related information.

2. ServiceContractManagement - this interface allows subscribers to create
modify, and delete service contracts and to get information about its contracts and
subscribed services.

3. SagMgmt - this interface is used for the management of end-user groups. The
subscriber can create, modify, and delete new groups (SAGs) and retrieve
information about already existing groups.

4. UserMgmt - this interface is used for the management of users. The subscriber can
create, modify, and delete users as well as retrieving information about its users.

5. AuthorizationMgmt - this interface is used by the subscriber to authorize its users
for using a service. It contains operations to manage service profiles. A subscriber
can create service profiles for users and assign these profiles to users groups. All
operations to retrieve information about service profiles and assignments are also
provided.

Service Discovery Segment

It allows a known user to access information about its subscribed services and to
discover new services. One interface is provided:

ServDisc - this interface is used by an end-user to get information about
subscribed and new services.

Service Provider Administration Segment

It allows service providers to provide new services in the retailer domain. One interface
is provided:

ServiceTemplateMgmt - this allows a service provider to register, modify, or
unregister a service in the retailer domain. Operations to retrieve information about
service templates are also provided.

End-user Customization Segment

This allows end-users to customize the service within the range of predefined settings.
One interface is defined:

UserProfileMgmt - this allows an end-user to modify the user profiles and the user
service profile settings and to request information about existing user profiles.

4.4 Scenario Description

To demonstrate the usage of the interfaces the following UML sequence diagrams
provide an example set of interfaces related to roles for which the UML actors are
used.

December 2002 TSAS Specification: Scenario Description 4-11

4

Figure 4-3 Subscription example Scenario for Service Provider Role

Prior to any service usage the retailer needs services that can be used. The service
provider registers a new instance of a service template to the retailer by using the
register_service operation as demonstrated in Figure 4-3. The service provider is
a known user of the retailer and has accessed as a user with the role provider. It has
to give the service template Id, which must be unique in the retailer domain. The
service provider sets the service properties, which are provided by the retailer to the
end-user.

Figure 4-4 Subscription example Scenario for Subscriber Role

 : ProviderRole theRetailer :
ServiceTemplateMgmt

register_service(session_token, service_template)

 :
SubscriberRole

theRetailer :
SubscriberRegistration

theRetailer :
Serv iceContractMgmt

theRetailer :
UserMgmt

theRetailer :
AuthorizationMgmt

theRetailer :
SagMgmt

register_me(session_token, subscriber, user)

create_serv ice_contract(session_token, serv ice_contract)

assign_serv ice_prof ile(session_token, named_entity _id, serv ice_prof ile_id)

Repeat f or
each user

create_user(session_token, user)

create_s ag(session_token, sag, named_ent ity_ids)

assign_serv ice_prof ile(session_token, named_entity _id, serv ice_prof ile_id)

4-12 Telecommunications Service Access & Subscription, v1.0 December 2002

4

1. A subscriber wants to subscribe to a retailer by using the registration segment. A
new entry will be created for the subscriber. The subscriber can modify or delete its
entries by using the particular operations in the subscriber administration segment.

2. After having an account in the system the subscriber sets up a new contract with the
retailer and the required settings for the service. Most of the contract information is
defined by a property list, which is defined by retailers.

3. If the subscriber is an end-user, it assigns a service profile to define the settings to
use a service. After that the service can be used.

Note – 1 to 3 are the necessary steps for simple subscription, where a subscriber is also
an end-user. The next steps describe the management for end-users.

4. The subscriber creates for each end-user an entry using a user id. The subscriber has
to create a new entry for each of its users.

5. The subscriber builds a subscription assignment group and can set the properties of
that group. The subscriber adds its users (list of user Ids) to the SAG that he has
previously created.

6. The subscriber defines the restrictions for its end-users to access and use a service
by setting chosen service properties in the service profile.

.

Figure 4-5 Subscription example Scenario for End-User Role

7. The end-user can now edit its user profile and set its preferences.

4.5 Registration Segment

4.5.1 Interface SubscriberRegistration

 : EndUserRole
theRetailer :

EndUserMgmt

modify_user_properties(session_token, user_properties)

create_user_service_profile(session_token, user_service_profile)

December 2002 TSAS Specification: Subscriber Administration 4-13

4

void register_me (
 in Opaque session_token,

in Subscriber subscriber,
in EndUser user

) raises (
SubscriptionError, SessionError

);

The operation register_me allows an authenticated user to create a new subscriber
entry. The subscriber is representing the role and can be either a company or a
customer. The Subscriber structure contains subscriber_id and
subscriber_properties. The id is given by the subscriber. The EndUser represents
the user, which is the person to be allowed administering the subscription related
information. The EndUser structure contains user_id, security_properties, and
user_properties. If the subscriber_id or the user_id already exists, the operation
returns an InvalidSubsciber, InvalidUser, or AlreadyExists exception and the
subscriber has to try again.

4.6 Subscriber Administration

Subscriber administration segment consists of the management of subscriber entries,
the management of service contracts, management of subscription assignment groups,
initial management of its users. The Subscriber administration is done by the
subscriber.

4.6.1 Subscriber Management

The interface SubscriberMgmt is used to define new subscriber entries, to modify,
and to delete them.

4.6.1.1 interface SubscriberMgmt

void
modify_subscriber(
 in Opaque session_token,

in PropertyList subscriber_properties)
raises (

SubscriptionError, SessionError
);

The operation modify_subscriber modifies subscriber entries, for example a new
bank account or a new contact person for billing. In the case of invalid
subscriber_properties, the operation returns an InvalidSubscription exception.

4-14 Telecommunications Service Access & Subscription, v1.0 December 2002

4

void
unregister_me(
 in Opaque session_token)
raises (

SubscriptionError,SessionError
);

The unregister_me operation removes a subscriber from the system.

Subscriber
get_subscriber (
 in Opaque session_token)
raises (

SubscriptionError, SessionError
);

The get_subscriber operation returns the information about the subscriber.

4.6.1.2 interface ServiceContractMgmt

The ability to create new service contracts, modify these contracts, and delete them is
given by the ServiceContractMgmt interface.

void
create_service_contract(
 in Opaque session_token,

in ServiceContract service_contract)
raises (

SubscriptionError, SessionError
);

The operation create_service_contract is used by the subscriber to provide the
contract relevant information. The service contract_id is used to identify the contract,
the service_template_id relates the service contract to the respective service
template. The contract_properties and the service_properties can be set by the
subscriber. Exception is InvalidServiceContract.

void
modify_service_contract(
 in Opaque session_token,

in ServiceContract service_contract)
raises (

SubscriptionError, SessionError
);

The operation modify_service_contract is used to modify an existing service
contract. The modifications to the contract will be provided by the subscriber.
Exception is InvalidServiceContract.

December 2002 TSAS Specification: Subscriber Administration 4-15

4

void
delete_service_contract(
 in Opaque session_token)

in ServiceContractId service_contract_id)
raises (

Subscription Error, SessionError
);

The operation delete_service_contract removes an existing service contract. The
service_contract_id identifies the contract. Exception is InvalidServiceContract.

ServiceContract
get_service_contract(
 in Opaque session_token,

in ServiceContractId service_contract_id)
raises (

SubscriptionError, SessionError
);

The Operation get_service_contract allows information about a single service
contract to be queried and the contract itself to be returned. The contract_id is used
to identify which contract information shall be provided. Exception is
InvalidServiceContract.

ServiceContractIdList
list_services(
 in Opaque session_token)
raises (

SubscriptionError, SessionError
);

The list_services operation provides a list of all services to which the subscriber has
subscribed by a contract. The operation returns a list of subscribed
service_contract_id_list. Exception is InvalidServiceContract.

4.6.1.3 interface SagMgmt

The SAGMgmt interface provides operations to administrate the Subscription
Assignment Groups (SAGs) of the subscriber.

void
create_sag (
 in Opaque session_token,

in Sag sag,
in NamedEntityIdList named_entity_ids)

raises (
SubscriptionError, SessionError

);

4-16 Telecommunications Service Access & Subscription, v1.0 December 2002

4

For the administration of SAGs the subscriber can use this operation to create a new
SAG and to add end-users (which have been created by create_user). The
named_entity_ids are used to reference either user_ids or sag_ids. The list is
given by the subscriber. Exceptions are InvalidSag and InvalidNamedEntityId.

void
modify_sag (

in Opaque session_token,
in Sag sag)

raises (
SubscriptionError, SessionError

);

The operation modify_sag allows a subscriber to modify an existing SAG. Exception
is InvalidSag.

void
delete_sag (

in Opaque session_token,
in SagId sag_id)

raises (
SubscriptionError, SessionError

);

The operation delete_sag allows a subscriber to delete an existing SAG. The sag_id
is used in the retailer domain to identify which SAG should be removed. Exception is
InvalidSag.

void
add_sag_named_entities(

in Opaque session_token,
in SagId sag_id,
in NamedEntityIdList named_entity_ids)

raises (
SubscriptionError, SessionError

);

A subscriber can add users to specific SAGs by using the operation
add_sag_named_entities. Before the subscriber can do that, it must have already
created the users with the operation create user. The subscriber can use a list with
named_entitiy_ids to add either user_ids or sag_ids to the subscription
assignment group. Exceptions are InvalidSag and InvalidNamedEntityId.

void
remove_sag_named_entities(

in Opaque session_token,
in SagId sag_id,
in NamedEntityIdList named_entity_ids)

raises (
SubscriptionError, SessionError

);

December 2002 TSAS Specification: Subscriber Administration 4-17

4

The operation remove_sag_named_entities removes a single user or a list of users
from a SAG of a subscriber. Sag_id and named_entity_ids are used to identify in
the retailer domain which users or sags should be removed. Exceptions are InvalidSag
and InvalidNamedEntityId.

SagIdList
list_sags(
 in Opaque session_token)
raises (

SubscriptionError, SessionError
);

The operation list_sags allows a subscriber to get a list of already created sag_ids.

Sag
get_sag(

in Opaque session_token,
in SagId sag_id)

raises (
SubscriptionError, SessionError

);

The operation get_sag allows a subscriber to query information about a single SAG.
It returns the sag structure containing sag_id and properties. Sag_id is used to
identify which SAG should be provided to the subscriber. Exception is InvalidSag.

NamedEntityIdList
list_sag_named_entities(

in Opaque session_token,
in SagId sag_id)

raises (
SubscriptionError, SessionError

);

The operation list_sag_named_entities allows a subscriber to get a list of all
named_entity_id_list containing user ids or sag ids for a single SAG. The sag_id is
used in the retailer domain for identification of the SAG. Exception is InvalidSag.

4.6.1.4 interface UserMgmt

The user administration interface is intended for situations where an organization
wants to allow several end-users to be registered with a retailer. The interface is used
by the subscriber, who manages the end-users.

When a registered subscriber wants to provide access to a subscribed service for
several end-users in the name of its organization, then it has to register them in the
retailer domain.

The main task of the end-user administration is to register, modify, and delete user
entries.

4-18 Telecommunications Service Access & Subscription, v1.0 December 2002

4

void
create_user(

in Opaque session_token,
in EndUser user)

raises (
SubscriptionError, SessionError

);

The operation create_user creates a new user. The operation is used by the
subscriber. The first entry for an end-user in end_user is given by the subscriber,
these are the user _id and the security properties, whereby the user properties can be
defined by the end-user itself by using the end-user customization segment. Exception
is InvalidUser.

void
modify_user(

in Opaque session_token,
in EndUser user)

raises (
SubscriptionError, SessionError

);

The operation modify_user modifies information for an existing end-user. The
operation is used by the subscriber to modify a user entry. The user_id is used to
identify for which user the modification should be performed. Exception is
InvalidUser.

void
delete_user(

in Opaque session_token,
in UserId user_id)

raises (
SubscriptionError, SessionError

);

The operation delete_user deletes an existing user. The user_id is used to identify
the user that should be removed. Exception is InvalidUser.

EndUser
get_user(

in Opaque session_token,
in UserId user_id)

raises (
SubscriptionError, SessionError

);

The operation get_user allows a subscriber to query information about a single user.
The information about a user contained in the struct EndUser is returned. The
user_id is used to identify which user information shall be provided. Exception is
InvalidUser.

December 2002 TSAS Specification: Subscriber Administration 4-19

4

UserIdList
list_users(

in Opaque session_token)
raises (

SubscriptionError, SessionError
);

The operation list_users returns a list of all user_ids of the subscriber.

4.6.1.5 interface AuthorizationMgmt

The management of service profiles that are defined for all subscribed services, and the
permission for users to use a subscribed service by assigning service profiles to SAGs
can be done at the AuthorizationMgmt interface. This interface is used by the
subscriber.

void
create_service_profile(

in Opaque session_token,
in ServiceProfile service_profile)

raises (
SubscriptionError, SessionError

);

The operation create_service_profile allows a subscriber to create a new service
profile. The profile_id is given by the subscriber. The service profile contains service
parameters that may restrict the service usage. The service profile settings depend on
the possibilities the service provider allows and are provided as a list of properties. The
subscriber can define different service profiles for one service. Exception is
InvalidServiceProfile.

void
modify_service_profile(

in Opaque session_token,
in ServiceProfile service_profile)

raises (
SubscriptionError, SessionError

);

The operation modify_service_profiles allows a subscriber to modify the service
profile properties of an already created service profile. Exception is
InvalidServiceProfile.

void
delete_service_profile(

in Opaque session_token,
in ServiceProfileId service_profile_id)

raises (
SubscriptionError, SessionError

);

4-20 Telecommunications Service Access & Subscription, v1.0 December 2002

4

The operation delete_service_profiles allows a subscriber to delete an existing
service profile. Exception is InvalidServiceProfile.

void
assign_service_profile(

in Opaque session_token,
in NamedEntityId named_entity_id,
in ServiceProfileId service_profile_id)

raises (
SubscriptionError, SessionError

);

The operation assign_service_profile allows a subscriber to assign a service profile
to a named_entity_id. The previously created service profile will be assigned to a
named entity (end user or SAG). Exceptions are InvalidNamedEntityId and
InvalidServiceProfile.

void
deassign_service_profile(

in Opaque session_token,
in NamedEntityId named_entity_id,
in ServiceProfileId service_profile_id)

raises (
SubscriptionError, SessionError

);

The operation deassign_service_profile allows a subscriber to deassign a service
profile from a named entity (end user or SAG). Exceptions are
InvalidNamedEntityId and InvalidServiceProfile.

ServiceProfileIdList
list_service_profiles(

in Opaque session_token)
raises (

SubscriptionError, SessionError
);

The operation list_service_profiles returns a list of all service profile ids of the
subscriber.

ServiceProfileIdList
list_assigned_service_profiles(

in Opaque session_token,
in NamedEntityId named_entity_id)

raises (
SubscriptionError, SessionError

);

The operation list_assigned_service_profiles returns all service profiles assigned
to a named entity (end user or SAG). Exception is InvalidNamedEntityId.

December 2002 TSAS Specification: Service ProviderAdministration 4-21

4

ServiceProfile
get_service_profile(

in Opaque session_token,
in ServiceProfileId service_profile_id)

raises (
SubscriptionError, SessionError

);

The operation get_service_profile returns a single service profile. Exception is
InvalidServiceProfile.

SagIdList
list_assigned_sags(

in Opaque session_token,
in ServiceProfileId service_profile_id)

raises (
SubscriptionError, SessionError

);

The operation list_assigned_sags returns a list of SAG Ids assigned to a single
service profile. Exception is InvalidServiceProfile.

UserIdList
list_assigned_users(

in Opaque session_token,
in ServiceProfileId service_profile_id)

raises (
SubscriptionError, SessionError

);

The operation list_assigned_users returns a list of user_ids that are assigned to
single service profile. Exception is InvalidServiceProfile.

4.7 Service ProviderAdministration

The service provider administration segment supports interfaces to service providers to
manage the service templates the service provider is going to offer through the retailer
domain.

The service template management can be used to introduce new services, modify the
properties of existing services, or delete offered services. The services defined here are
actual service offers; for example, a video conferencing service of a non-monopolistic
telecom operator. The interfaces are used by the service provider.

The service providers can only register those services that are supported by the retailer
domain. The retailer itself, in the role of the retailer administrator, decides which kind
of service types it supports. Before a service template of a service provider can be
registered in the retailer domain, the corresponding service type must be supported.
How this is done by the retailer administrator is beyond the scope of this specification.

4-22 Telecommunications Service Access & Subscription, v1.0 December 2002

4

At the ServiceTemplateMgmt interface the registration, modification, and deletion
of service templates can be done.

4.7.1 interface ServiceTemplateMgmt

void register_service(
in Opaque session_token,
in ServiceTemplate service_template)

raises (
SubscriptionError, SessionError

);

The operation register_service allows the service provider to register a new instance
of a service template. The service template is given by the service provider. The
service provider completes the actual range of provided service_properties,
user_service_properties, and the service_ template_properties that are needed
for the retailer to access the provider domain to start a service and the possible end-
user_application_properties, which define the conditions for the
user_application in the consumer domain. Exception is InvalidServiceTemplate.

How the retailer and service provider exchange the type definitions used in the service
template is out of scope of this specification. However, how the retailer defines its own
service template that is offered as a service to the end-user is internal to the retailer.

void
modify_service(

in Opaque session_token,
in ServiceTemplate service_template)

raises (
SubscriptionError, SessionError

);

The operation modify_service allows a service provider to modify existing service
templates (service offers). The service_template is a structure containing a
service_template_id that is used to identify in the retailer domain which service
should be modified. The service capabilities are defined by the service provider in the
service_properties. Exception is InvalidServiceTemplate.

void
unregister_service(

in Opaque session_token,
in ServiceTemplateId service_template_id)

raises (
SubscriptionError, SessionError

);

The operation unregister_service allows a service provider to delete an existing
service template. Exception is InvalidServiceTemplate.

December 2002 TSAS Specification: Service Discovery Segment 4-23

4

ServiceTemplateIdList
list_service_templates(

in Opaque session_token)
raises (

SubscriptionError, SessionError
);

The operation list_service_templates returns a list of all service templates of a
service provider. The operation returns a list of service template ids.

ServiceTemplate
get_service_template(

in ServiceTemplateId service_template_id)
raises (

SubscriptionError, SessionError
);

The operation returns the structure of a single service template. The
service_template_id is used to identify which service template should be returned.
Exception is InvalidServiceTemplate.

4.8 Service Discovery Segment

The service discovery segment defines the ServiceDiscovery interface.

The ServiceDiscovery interface allows a known user or subscriber to discover new
services. It provides the following operation:

• discover_services() - lists all the services available via this retailer (and from the
service providers). The user can scope the list by supplying some properties that the
service should have, and a maximum number to return.

4.8.1 ServiceDiscovery Interface

interface ServiceDiscovery: SegmentBase
{
};

This interface is returned as a result of the Core::Access::establish_segment()
operation establishing this segment.

ServiceList
discover_services(

 in Opaque session_token,
in DiscoverServiceProperties desired_properties,
in unsigned long how_many)

raises (
PropertyError, ListError, SessionError

);

4-24 Telecommunications Service Access & Subscription, v1.0 December 2002

4

The discover_services() operation returns a list of the services available via this
retailer. This operation is used to discover the services provided via the retailer, for use
by the end-user. It can be scoped by the desired_properties parameter (see
MatchProperties in Section 5.1.1, “Properties and Property Lists,” on page 5-1).

The retailer has the possibility to contact one or more service providers in order to
fulfill the user’s request. This takes place in a way totally transparent to the end-user.
The retailer performs one or more invocations on one or more service providers and
collects the information received from each service provider. This collected
information is merged and provided to the end-user as one piece of information.

The list of retailer services matching the desired_properties is returned in services.
This is a sequence of ServiceInfo structures that contain the ServiceId and a
sequence of service properties. Currently no specific property names and values have
been defined for DiscoverServiceProperties, and so its use is service provider
specific. Examples of DiscoverServiceProperties can be ‘free’ services, ‘comfort’
telephony services, ‘information retrieval’ services, ‘video on demand,’ ‘joint
document editing,’ ‘payment,’ ‘calling card reload,’ etc.

The how_many parameter defines the number of ServiceInfo structures to return in
the services parameter. The number of services shall not exceed that number.

If the desired_properties parameter is wrongly formatted, or provides an invalid
property name or value, the PropertyError exception should be raised. Property
names that are not recognized can be ignored if desired_properties requires that
only some, or none of the properties are matched.

If the services list is unavailable, because the retailer’s services are not available, then
the operation should raise a ListError exception with the ListUnavailable error code.

4.8.2 Scenarios

Figure 4-7 Service Discovery Segment Diagram

 : EndUserRole theRetailer :
Serv iceDiscov ery

aProv ider :
Serv iceDiscov ery

anotherProv ider :
Serv iceDiscov ery

discov er_serv ices(session_token, desired_properties, how_many)

discov er_serv ices(session_token, desired_properties, how_many)

discov er_serv ices(session_token, desired_properties, how_many)

Repeat f or each
prov ider

December 2002 TSAS Specification: End-User Customization 4-25

4

The discover_services() is invoked by the end-user on the retailer. The retailer
subsequently invokes discover_services() on one or more service provides to fulfil
the end-user’s request. The retailer will return the compiled list of discovered services
to the end-user.

4.9 End-User Customization

The End-User customization segment allows end-users to customize the service in the
range of predefined settings.

The interface EndUserMgmt allows an end-user to modify the user profile settings
and the user service profile settings.

4.9.1 interface EndUserMgmt {

void modify_security_properties(
in Opaque session_token,
in PropertyList security_properties)

raises (SubscriptionError, SessionError);

The operation modify_security_properties provides the possibility to change the
user password, for example. The user password can be one attribute of the user
properties. Exception is InvalidProperty.

void modify_user_properties(
in Opaque session_token,
in PropertyList user_properties)

raises (SubscriptionError, SessionError);

The operation modify_user_profile allows an end-user to detail its personal entries
in the user_properties. Exception is InvalidProperty.

void create_user_service_profile(
in Opaque session_token,
in UserServiceProfile service_profile)

raises (SubscriptionError, SessionError);

The operation create_user_service_profile provides an end-user with the ability to
define the personal preferences for the usage of a service predefined by the service
provider. The service_type_name is used to identify the related service type. The
user_service_properties is a property list where the user can define its settings.
Exception is InvalidUserServiceProfile.

void modify_user_service_profile(
in Opaque session_token,
in UserServiceProfile service_profile)

raises (SubscriptionError, SessionError);

4-26 Telecommunications Service Access & Subscription, v1.0 December 2002

4

The operation modify _user_service_profile provides an end-user with the ability
to change the personal preferences for the usage of a service predefined by the service
provider. The user_service_profile_id is used to identify the related user service
profile that should be modified for the user. The user_service_properties is a
property list where the user can modify its settings. Exception is
InvalidUserServiceProfile.

void delete_user_service_profile(
in Opaque session_token,
in UserServiceProfileId user_service_profile_id)

raises (SubscriptionError, SessionError);

The operation delete_user_service_profile removes the user service profile in the
retailer domain. The user_service_profile_id is used to identify which user service
profile shall be deleted. Exception is InvalidUserServiceProfile.

EndUser
get_user_description(

in Opaque session_token)
raises (SubscriptionError, SessionError);

The operation get_user_description provides the end-user with information about
its user_id and user_properties.

UserServiceProfileIdList
list_user_service_profile_ids (

in Opaque session_token)
raises (SubscriptionError, SessionError);

The operation list_user_service_profiles_ids returns the list of subscribed end-
user service profile identifications.

UserServiceProfile
get_user_service_profile(

in Opaque session_token,
in UserServiceProfileId user_service_profile_id)

raises (SubscriptionError, SessionError);
);

The operation get_user_service_profile returns the end_user_service_profile.
The service_profile_id is used to identify the service profile. Exception is
InvalidUserServiceProfile.

ServiceProfileIdList
get_service_profile_ids(

in Opaque session_token)
raises (SubscriptionError, SessionError
);

The operation get_service_profile_ids returns a list of service profile ids for the
user.

December 2002 Telecommunications Service Access & Subscription, v1.0 5-1

Common Types 5

Contents

This chapter contains the following sections.

5.1 Generic Information Types

This section describes common types of information that have a high potential for re-
use (in several segments, or between other domains than the ones described in the
TSAS document).

5.1.1 Properties and Property Lists

Properties are attributes or qualities of something. In TSAS, properties are used to
assign a quality to something, or search for items or entities that have that particular
quality. The entities that can be qualified by such a property for TSAS can be users,
providers, services, sessions, interfaces. Each of these will have different properties,
and each property may have a range of different values and structures. While some
properties will be defined in this document, some supplementary properties can be
defined later and eventually be provider specific.

Section Title Page

“Generic Information Types” 5-1

“User Information” 5-3

“Service Information” 5-4

“Access Session Information” 5-4

“Service Session Information” 5-5

5-2 Telecommunications Service Access & Subscription, v1.0 December 2002

5

With this in mind, the type Property has been chosen to represent a property. Its IDL
definition is taken from the CORBA Property Service. The CORBA type of property
names has been changed from string to wstring.

typedef wstring PropertyName;
typedef sequence <PropertyName> PropertyNameList;
typedef any PropertyValue;
struct Property {

PropertyName name;
PropertyValue value;

};
typedef sequence <Property> PropertyList;

As can be seen above, the Property is a structure consisting of a name and a value.
The name is a wstring, and the value is an any. This format allows the recipient of the
property to read the wstring and match it against the properties they know about. If it
is a property they know, then they will also know the format of the value. If they do not
know the property, then they should not read the value. The any value contains a
typecode that can be looked up in the interface repository to find the type of the value.
The Property and PropertyList are used to attribute qualities to entities. Some of
these qualities may also be provider specific, and so they can also use these types to
extend the TSAS specifications.

TSAS defines property names and values where it is possible to do so. For some
property lists (for example, InterfaceProperties) it is up to the user (consumer-
/retailer-/service provider domain) to determine properties that can be associated with
it.

5.1.2 Match Properties

enum WhichProperties {
NoProperties,
SomeProperties,
SomePropertiesNamesOnly,
AllProperties,
AllPropertiesNamesOnly

};

struct MatchProperties {
WhichProperties which_properties;
PropertyList properties;

};

MatchProperties is used to scope the return values of some operations. These
operations return lists of items. MatchProperties is used to identify which items to
return, based on the item’s properties. For the operation list_available_services, the
items are a user’s subscribed services. The MatchProperties parameter defines the
properties of the subscribed services that are to be returned in the list.

December 2002 TSAS Specification: User Information 5-3

5

MatchProperties contains a PropertyList and an enumerated type
WhichProperties. The PropertyList contains the properties that need to be
matched. The WhichProperties identifies whether some, all, or none of the
properties must be matched, and whether the property name and value, or just the
property name, must be matched.

For example, in the operation list_subscribed_services:

5.2 User Information

typedef wstring UserId;
typedef wstring UserName;
typedef PropertyList UserPropertyList;

The user_id (of type UserId) identifies the user to the provider. It is unique to this
user within the scope of this provider. The UserId does not contain the name of the
provider, and so cannot be used to contact the provider. It may be sent to a
broker/naming service when attempting to contact a provider along with the provider
name.

UserPropertyList is a sequence of UserProperty. It contains information about the
user that needs to be passed to the provider. The following property names are defined
for UserProperty. Other property names are allowed, but are provider specific.

// Property Names defined for UserPropertyList:
// name: “PASSWORD”
// value: string

If WhichProperties is... Then the subscribed services...

NoProperties don’t have to match any property, and
consequently all subscribed services are returned.

SomeProperties must match at least one property in the
PropertyList, (both the property name and value
must match), to be included in the returned list.

SomePropertiesNamesOnly must match at least one property name in the
PropertyList to be returned. The values of the
properties in the PropertyList may not be
meaningful and should not be used.

AllProperties must match all the properties in the
PropertyList, (both the property name and value
must match), to be included in the returned list.

AllPropertiesNamesOnly must match all the property names in the
PropertyList to be returned. The values of the
properties in the PropertyList may not be
meaningful, and should not be used.

5-4 Telecommunications Service Access & Subscription, v1.0 December 2002

5

// use: user password, as a wstring.

// name: “SecurityContext”
// value: Opaque
// use: to carry a provider specific security context
// e.g.: could be used for an encoded user password.

5.2.1 UserInfo

This section describes user related information types more dedicated to the access
session.

struct UserInfo {
UserId user_id;
UserName name;
UserPropertyList user_properties;

};

UserInfo describes the end-user. It is a struct of UserId, the user’s name (that is,
readable by a human), and UserPropertyList. It is returned by request_access()
on the Initial interface.

5.3 Service Information

struct ServiceInfo {
ServiceId id;
ServicePropertyList properties;

};

ServiceInfo is a structure that describes a subscribed service of the user.

ServiceId is the textual identifier for the service. ServiceId is unique among all the
user’s subscribed services. Other users may be subscribed to the same service, but will
have a different ServiceId. The ServiceId value persists for the lifetime of a
subscription.

ServicePropertyList is a property list, which defines the characteristics of this
service. They can be used to search for types of service with the same characteristics,
(for example, using discover_services() on the ServiceDiscovery interface of the
service discovery segment).

TSAS has defined no properties for ServicePropertyList, and so its use is provider
specific.

5.4 Access Session Information
typedef unsigned long AccessSessionId;

December 2002 TSAS Specification: Service Session Information 5-5

5

The accessSessionId of type AccessSessionId is used to identify an access
session. The accessSessionId corresponding to the end-user’s current access session
is returned at the end of the access session set-up phase. The accessSessionId for
other access sessions can be found using list_access_sessions() in the access
control segment, on the AccessControl interface. The AccessSessionId is scoped
by the end-user, (that is, for a single end-user (UserId) all AccessSessionIds are
unique).

5.4.1 User Context Information

The user context information described in this section concerns the user in the generic
sense, for example:

• The end-user as a user of the retailer.

• The retailer as a user of the service provider.

• The service provider when it contacts the retailer as a user (for example, for
deploying services).

Consequently the user context information can be used in most of the user-provider
contexts.

typedef wstring UserCtxtName;

typedef PropertyList UserCtxtPropertyList;

struct UserCtxt {
UserCtxtName ctxt_name;
UserCtxtPropertyList properties;

};

UserCtxt informs the provider about the user’s environment, including the name of
the context.

UserCtxtName is a name given to this user context. It is generated by the user
domain. It is used to distinguish between access sessions to different user domains.

Properties is a list of user context related properties that might contain, for example,
a list of environment specific attributes.

The UserCtxt is an input parameter of the request_access() operation on the Initial
interface.

5.5 Service Session Information

The session information described in this section concerns the user and provider in the
generic sense, for example:

• The end-user as a user of the retailer, in its turn provider to the end-user.

• The retailer as a user of the service provider, in its turn provider to the retailer.

5-6 Telecommunications Service Access & Subscription, v1.0 December 2002

5

typedef unsigned long SessionId;

All the service sessions running in the service provider domain are identified by a
session_id (of the type SessionId). The retailer must translate these session_ids,
to provide the consumer with a list of session_ids that are unique in the consumer
domain. The SessionId is a long (32 bits). This session_id is the same as the
session_id provided when a service session is started.

5.5.1 SessionInfo

struct SessionInfo {
SessionId id;
SessionPurpose purpose;
SessionState state;
InterfaceList itfs;
SessionProperties properties;

};

SessionInfo is a structure that contains information that allows the end-user to refer
to a particular service session when using interfaces within an access session. It can
also contain information for the usage part of the service session, including the
interface references to interact with the service session. The description of these
service session interfaces (and their types) is provider specific (outside the scope of
TSAS).

Id is the identifier for this service session. It is unique to this service session, among
all service sessions that this end-user interacts with through this retailer. If the end-user
interacts with multiple retailers concurrently, then they may return SessionIds that
are identical.

Purpose is a string containing the purpose of the service session. This may have been
defined when the service session was created, or subsequently by service specific
interactions that are service provider specific.

State is the service session state as perceived by this end-user. It can be unknown,
active, or suspended.

Itfs is a list of interface types and references supported by the service session. It may
include service specific interfaces for the user to interact with the service session.
Further details are service provider specific.

Properties is a list of properties of the service session. Its use is service provider
specific.

December 2002 Telecom Service Access & Subscription, v.1.0 A-1

OMG IDL A

#ifndef _DFTSAS_IDL_
#define _DFTSAS_IDL_
#pragma prefix “omg.org”

module DfTsas {

typedef sequence <octet> Opaque;

typedef wstring PropertyName;

typedef sequence <PropertyName> PropertyNameList;

typedef any PropertyValue;

struct Property {
PropertyName name;
PropertyValue value;

};

typedef sequence <Property> PropertyList;

enum HowManyProps {
none,
some,
all

};

union SpecifiedProps switch(HowManyProps) {
case some: PropertyNameList prop_names;
};

typedef string InterfaceName;

typedef sequence <InterfaceName> InterfaceNameList;

typedef PropertyList InterfacePropertyList;

A-2 Telecom Service Access & Subscription, v.1.0 December 2002

A

struct InterfaceStruct {
InterfaceName name;
Object ref;

InterfacePropertyList properties;
};

typedef sequence <InterfaceStruct> InterfaceList;

typedef wstring Istring;

typedef Istring SegmentId;

typedef sequence <SegmentId> SegmentIdList;

const SegmentId SESSION_INFORMATION_SEGMENT = “Session information”;
const SegmentId ACCESS_CONTROL_SEGMENT = “Access control”;
const SegmentId SERVICE_DISCOVERY_SEGMENT = “Service discovery”;
const SegmentId SESSION_CONTROL_SEGMENT = “Session control”;
const SegmentId SUBSCRIBER_ADMINISTRATION_SEGMENT = “Subscriber administration”;
const SegmentId SERVICE_PROVIDER_ADMINISTRATION_SEGMENT = “Service provider administration”;
const SegmentId END_USER_CUSTOMIZATION_SEGMENT = “End user customization”;
const SegmentId REGISTRATION_SEGMENT = “Customer registration”;

typedef Istring ServiceId;

typedef PropertyList ServicePropertyList;

typedef unsigned long SessionId;

typedef sequence <SessionId> SessionIdList;

typedef Istring SessionState;

typedef Istring SessionPurpose;

typedef PropertyList SessionPropertyList;

struct SessionInfo {
SessionId id;
SessionPurpose purpose;
SessionState state;
InterfaceList itfs;
SessionPropertyList properties;

};

typedef PropertyList EndAccessPropertyList;

enum PropertyErrorCode {
UnknownPropertyError,
InvalidProperty,
UnknownPropertyName,
InvalidPropertyName,
InvalidPropertyValue,
NoPropertyError,

December 2002 Telecom Service Access & Subscription, v1.0 A-3

A

OtherPropertyError
};

exception PropertyError {
PropertyErrorCode error;
PropertyName name;
PropertyValue value;

};

enum InterfaceErrorCode {
UnknownInterfaceError,
InvalidInterfaceName,
InvalidInterfaceProperty,
OtherInterfaceError

};

exception InterfaceError {
InterfaceErrorCode error;
InterfaceName name;
PropertyName property_name;

};

enum AuthErrorCode {
UnknownAuthError,
InvalidAuthType,
InvalidAuthCapability,
NoAcceptableAuthCapability,
InvalidChallenge,
OtherAuthError

};

exception AuthError {
AuthErrorCode error;
Istring description;

};

enum AccessErrorCode {
UnknownAccessError,
InvalidAccessType,
InvalidAccessInterface,
AccessDenied,
ActiveSessions,
OtherAccessError

};

exception AccessError {
AccessErrorCode error;
Istring description;

};

enum ServiceErrorCode {
UnknownServiceError,
InvalidServiceId,
ServiceUnavailable,
ServiceAccessDenied,

A-4 Telecom Service Access & Subscription, v.1.0 December 2002

A

OtherServiceError
};

exception ServiceError {
ServiceErrorCode error;
Istring description;

};

enum SessionErrorCode {
UnknownSessionError,
InvalidUserSessionState,
SessionNotAllowed,
SessionNotAccepted,
InvalidSessionToken,
OtherSessionError

};

exception SessionError {
SessionErrorCode error;
SessionId session_id;

};

enum SegmentErrorCode {
UnknownSegmentError,
InvalidSegmentId,
OtherSegmentError

};

exception SegmentError {
SegmentErrorCode error;
SegmentId segment_id;

};

typedef Istring UserId;

typedef Istring UserName;

enum WhichProperties {
NoProperties,
SomeProperties,
SomePropertiesNamesOnly,
AllProperties,
AllPropertiesNamesOnly

};

struct MatchProperties {
WhichProperties which_properties;
PropertyList properties;

};

typedef MatchProperties ListedServiceProperties;

typedef MatchProperties DiscoverServiceProperties;

typedef MatchProperties SubscribedServiceProperties;

December 2002 Telecom Service Access & Subscription, v1.0 A-5

A

typedef MatchProperties SessionSearchProperties;

typedef PropertyList UserPropertyList;

struct ServiceInfo {
ServiceId id;
ServicePropertyList properties;

};

typedef sequence <ServiceInfo> ServiceList;

typedef unsigned long AccessSessionId;

typedef sequence <AccessSessionId> AccessSessionIdList;

struct UserInfo {
UserId user_id;
UserName name;
UserPropertyList user_properties;

};

typedef Istring UserCtxtName;

typedef PropertyList UserCtxtPropertyList;

struct UserCtxt {
UserCtxtName ctxt_name;
UserCtxtPropertyList properties;

};

typedef sequence <SessionInfo> SessionList;

enum ListErrorCode {
ListUnavailable

};

exception ListError {
ListErrorCode error;

};

struct PropertyErrorStruct {
PropertyErrorCode error;
PropertyName name;
PropertyValue value;

};

enum UserCtxtErrorCode {
InvalidUserCtxtProperty,
OtherUserCtxtError

};

exception UserCtxtError {
UserCtxtErrorCode error;
UserCtxtName ctxt_name;

A-6 Telecom Service Access & Subscription, v.1.0 December 2002

A

PropertyErrorStruct property_error;
};

struct SessionDescription {
SessionId session_id;
SessionState session_state;
SessionPropertyList session_properties;

};

typedef sequence <SessionDescription> SessionDescriptionList;

enum EndAccessSessionOption {
DefaultOption,
SuspendActiveSessions,
EndActiveSessions,
EndAllSessions

};

interface SegmentBase {
/*
@roseuid 3CF24D6602AA */
void release_segment (

in Opaque session_token
)
raises (SessionError);

};

module Core {

typedef Istring AuthType;

typedef Istring AccessType;

typedef Istring AuthCapability;

typedef sequence <AuthCapability> AuthCapabilityList;

interface Initial {
/*
@roseuid 3CF24D660336 */
void initiate_authentication (

in Object user_authentication,
in AuthType auth_type,
out Object provider_authentication
)
raises (AuthError);

/*
@roseuid 3CF24D66033A */
void request_access (

in AccessType access_type,
in Object user_access,
in Opaque credentials,

December 2002 Telecom Service Access & Subscription, v1.0 A-7

A

in UserCtxt user_ctxt,
out Object provider_access,
out Opaque session_token,
out AccessSessionId as_id,
out UserInfo user_info
)
raises (AccessError,UserCtxtError);

/*
@roseuid 3CF24D66034A */
void end_access (

in Opaque session_token,
in EndAccessSessionOption option
)
raises (SessionError,AccessError);

};

interface Authentication {
/*
@roseuid 3CF24D66034D */
void select_auth_method (

in AuthCapabilityList auth_caps,
out AuthCapability selected_cap
)
raises (AuthError);

/*
@roseuid 3CF24D660356 */
void authenticate (

in AuthCapability selected_cap,
in Opaque challenge,
out Opaque response,
out Opaque credentials
)
raises (AuthError);

/*
@roseuid 3CF24D66035B */
void abort_authentication ()

raises (AuthError);

};

interface Access {
/*
@roseuid 3CF24D66035E */
void end_access (

in Opaque session_token,
in EndAccessSessionOption option
)
raises (SessionError,AccessError);

/*
@roseuid 3CF24D660368 */

A-8 Telecom Service Access & Subscription, v.1.0 December 2002

A

void list_available_services (
in Opaque session_token,
in ListedServiceProperties desired_properties,
out ServiceList service_list
)
raises (SessionError,PropertyError,ListError);

/*
@roseuid 3CF24D66036C */
void start_sesssion (

in Opaque session_token,
in ServiceId service_id,
in ServicePropertyList service_properties,
out SessionInfo session_info
)
raises (SessionError,ServiceError,PropertyError);

/*
@roseuid 3CF24D660374 */
void end_session (

in Opaque session_token,
in SessionId session_id
)
raises (SessionError);

/*
@roseuid 3CF24D660377 */
void list_segments (

in Opaque session_token,
out SegmentIdList segment_ids
)
raises (SessionError);

/*
@roseuid 3CF24D66037C */
void establish_segment (

in Opaque session_token,
in SegmentId segment_id,
in InterfaceList user_refs,
out InterfaceList provider_refs
)
raises (SessionError,SegmentError,InterfaceError);

/*
@roseuid 3CF24D660381 */
void release_segments (

in Opaque session_token,
in SegmentIdList segment_ids
)
raises (SessionError,SegmentError);

/*
@roseuid 3CF24D660386 */
void get_service_info (

in Opaque session_token,

December 2002 Telecom Service Access & Subscription, v1.0 A-9

A

in ServiceId service_id,
in MatchProperties desired_properties,
out ServicePropertyList service_properties
)
raises (SessionError,ServiceError,PropertyError);

};

};

module SessCtrl {

interface SessionControl : SegmentBase {
/*
@roseuid 3CF24D6603A5 */
void list_service_sessions (

in Opaque session_token,
in DfTsas::AccessSessionId as_id,
in SessionSearchProperties desired_properties,
out SessionDescriptionList session_description_list
)
raises (SessionError,PropertyError,ListError);

/*
@roseuid 3CF24D6603AF */
void end_sessions (

in Opaque session_token,
in SessionIdList session_id_list
)
raises (SessionError);

/*
@roseuid 3CF24D6603B2 */
void resume_session (

in Opaque session_token,
in SessionId session_id,
in ServicePropertyList service_properties,
out SessionInfo session_info
)
raises (SessionError,PropertyError);

/*
@roseuid 3CF24D6603B8 */
void suspend_sessions (

in Opaque session_token,
in SessionIdList session_id_list
)
raises (SessionError);

/*
@roseuid 3CF24D6603BB */
void list_access_sessions (

in Opaque session_token,
out AccessSessionIdList as_id_list
)

A-10 Telecom Service Access & Subscription, v.1.0 December 2002

A

raises (SessionError);

};

interface SessionInformation : SegmentBase {
/*
@roseuid 3CF24D6603D7 */
oneway void new_access_session_info (

in AccessSessionId as_id
);

/*
@roseuid 3CF24D6603D9 */
oneway void end_access_session_info (

in AccessSessionId as_id
);

/*
@roseuid 3CF24D6603DB */
oneway void end_session_info (

in SessionId session_id
);

/*
@roseuid 3CF24D6603E1 */
oneway void suspend_session_info (

in SessionId session_id
);

};

};

module Sub {

enum SubExceptionCode {
InvalidService,
InvalidUser,
InvalidSubscriber,
InvalidServiceContract,
InvalidServiceTemplate,
NotSubscribed,
InvalidSag,
InvalidNamedEntityId,
InvalidServiceProfile,
InvalidUserServiceProfile,
InvalidServiceType,
InvalidSubscription,
InvalidProperty,
NotAssigned,
NotActivated,
AlreadyExists,
AlreadyAssigned,
InternalError,
OtherSubError

December 2002 Telecom Service Access & Subscription, v1.0 A-11

A

};

exception SubscriptionError {
SubExceptionCode reason;
Istring description;

};

typedef sequence <UserId> UserIdList;

typedef Istring SubscriberId;

typedef sequence <SubscriberId> SubscriberIdList;

typedef Istring ProviderId;

typedef sequence <ProviderId> ProviderIdList;

typedef Istring ServiceTypeName;

typedef Istring ServiceTemplateId;

typedef sequence <ServiceTemplateId> ServiceTemplateIdList;

typedef Istring ServiceProfileId;

typedef sequence <ServiceProfileId> ServiceProfileIdList;

typedef Istring UserServiceProfileId;

typedef sequence <UserServiceProfileId> UserServiceProfileIdList;

typedef Istring ServiceContractId;

typedef sequence <ServiceContractId> ServiceContractIdList;

typedef Istring NamedEntityId;

typedef sequence <NamedEntityId> NamedEntityIdList;

typedef Istring SagId;

typedef sequence <SagId> SagIdList;

struct ServiceProfile {
ServiceProfileId service_profile_id;
ServiceContractId service_contract_id;
ServiceTypeName service_type;
PropertyList service_properties;

};

struct UserServiceProfile {
UserServiceProfileId user_service_profile_id;
ServiceTypeName service_type;
PropertyList user_service_properties;

};

A-12 Telecom Service Access & Subscription, v.1.0 December 2002

A

struct ServiceTemplate {
ServiceTemplateId service_template_id;
ServiceTypeName service_type;
PropertyList service_template_properties;
PropertyList service_properties;
PropertyList user_application_properties;

};

struct ServiceContract {
ServiceContractId service_contract_id;
ServiceTemplateId service_template_id;
PropertyList service_contract_properties;
ServiceTypeName service_type;
PropertyList service_properties;

};

struct ServiceProvider {
ProviderId provider_id;
PropertyList provider_properties;

};

struct Subscriber {
SubscriberId subscriber_id;
PropertyList subscriber_properties;

};

struct EndUser {
UserId user_id;
PropertyList security_properties;
PropertyList user_properties;

};

struct Sag {
SagId sag_id;
PropertyList sag_properties;

};

module ServiceProviderAdmin {

interface ServiceTemplateMgmt : SegmentBase {
/*
@roseuid 3CF24D670357 */
void register_service (

in Opaque session_token,
in ServiceTemplate service_template
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D670360 */
void modify_service (

in Opaque session_token,
in ServiceTemplate service_template
)

December 2002 Telecom Service Access & Subscription, v1.0 A-13

A

raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D670363 */
void unregister_service (

in Opaque session_token,
in ServiceTemplateId service_template_id
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D670366 */
ServiceTemplateIdList list_service_templates (

in Opaque session_token
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D67036A */
ServiceTemplate get_service_template (

in Opaque session_token,
in ServiceTemplateId service_template_id
)
raises (SubscriptionError,SessionError);

};

};

module ServDisc {

interface ServiceDiscovery : SegmentBase {
/*
@roseuid 3CF24D67037F */
ServiceList discover_services (

in Opaque session_token,
in DiscoverServiceProperties desired_properties,
in unsigned long how_many
)
raises (PropertyError,ListError,SessionError);

};

};

module Registration {

interface SubscriberRegistration : SegmentBase {
/*
@roseuid 3CF24D67039D */
void register_me (

in Opaque session_token,
in Subscriber subscriber,
in EndUser user
)

A-14 Telecom Service Access & Subscription, v.1.0 December 2002

A

raises (SubscriptionError,SessionError);

};

};

module SubscriberAdmin {

interface SubscriberMgmt : SegmentBase {
/*
@roseuid 3CF24D6703B1 */
void modify_subscriber (

in Opaque session_token,
in PropertyList subscriber_properties
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D6703B4 */
void unregister_me (

in Opaque session_token
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D6703BB */
Subscriber get_subscriber (

in Opaque session_token
)
raises (SubscriptionError,SessionError);

};

interface ServiceContractMgmt : SegmentBase {
/*
@roseuid 3CF24D6703CF */
void create_service_contract (

in Opaque session_token,
in ServiceContract service_contract
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D6703D8 */
void modify_service_contract (

in Opaque session_token,
in ServiceContract service_contract
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D6703DB */
void delete_service_contract (

in Opaque session_token,
in ServiceContractId service_contract_id

December 2002 Telecom Service Access & Subscription, v1.0 A-15

A

)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D6703DE */
ServiceContract get_service_contract (

in Opaque session_token,
in ServiceContractId service_contract_id
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D6703E4 */
ServiceContractIdList list_services (

in Opaque session_token
)
raises (SubscriptionError,SessionError);

};

interface SagMgmt : SegmentBase {
/*
@roseuid 3CF24D68000F */
void create_sag (

in Opaque session_token,
in Sag sag,
in NamedEntityIdList named_entity_ids
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D68001B */
void modify_sag (

in Opaque session_token,
in Sag sag
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D68001E */
void delete_sag (

in Opaque session_token,
in SagId sag_id
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D680023 */
void add_sag_named_entities (

in Opaque session_token,
in SagId sag_id,
in NamedEntityIdList named_entity_ids
)
raises (SubscriptionError,SessionError);

A-16 Telecom Service Access & Subscription, v.1.0 December 2002

A

/*
@roseuid 3CF24D680027 */
void remove_sag_named_entities (

in Opaque session_token,
in SagId sag_id,
in NamedEntityIdList named_entity_ids
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D68002D */
SagIdList list_sags (

in Opaque session_token
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D68002F */
Sag get_sag (

in Opaque session_token,
in SagId sag_id
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D680032 */
NamedEntityIdList list_sag_named_entities (

in Opaque session_token,
in SagId sag_id
)
raises (SubscriptionError,SessionError);

};

interface UserMgmt : SegmentBase {
/*
@roseuid 3CF24D680055 */
void create_user (

in Opaque session_token,
in EndUser user
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D680058 */
void modify_user (

in Opaque session_token,
in EndUser user
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D68005B */
void delete_user (

in Opaque session_token,

December 2002 Telecom Service Access & Subscription, v1.0 A-17

A

in UserId end_user_id
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D680060 */
EndUser get_user (

in Opaque session_token,
in UserId user_id
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D680063 */
UserIdList list_users (

in Opaque session_token
)
raises (SubscriptionError,SessionError);

};

interface AuthorizationMgmt : SegmentBase {
/*
@roseuid 3CF24D68007D */
void create_service_profile (

in Opaque session_token,
in ServiceProfile service_profile
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D680080 */
void modify_service_profile (

in Opaque session_token,
in ServiceProfile service_profile
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D680087 */
void delete_service_profile (

in Opaque session_token,
in ServiceProfileId service_profile_id
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D68008A */
void assign_service_profile (

in Opaque session_token,
in NamedEntityId named_entity_id,
in ServiceProfileId service_profile_id
)
raises (SubscriptionError,SessionError);

A-18 Telecom Service Access & Subscription, v.1.0 December 2002

A

/*
@roseuid 3CF24D680090 */
void deassign_service_profile (

in Opaque session_token,
in NamedEntityId named_entity_id,
in ServiceProfileId service_profile_id
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D680094 */
ServiceProfileIdList list_service_profiles (

in Opaque session_token
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D680096 */
ServiceProfileIdList list_assigned_service_profiles (

in Opaque session_token,
in NamedEntityId named_entity_id
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D68009B */
ServiceProfile get_service_profile (

in Opaque session_token,
in ServiceProfileId service_profile_id
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D68009E */
SagIdList list_assigned_sags (

in Opaque session_token,
in ServiceProfileId service_profile_id
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D6800A1 */
UserIdList list_assigned_users (

in Opaque session_token,
in ServiceProfileId service_profile_id
)
raises (SubscriptionError,SessionError);

};

};

module EndUserCustomization {

interface EndUserMgmt : SegmentBase {

December 2002 Telecom Service Access & Subscription, v1.0 A-19

A

/*
@roseuid 3CF24D6800C3 */
void modify_security_properties (

in Opaque session_token,
in PropertyList security_properties
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D6800CC */
void modify_user_properties (

in Opaque session_token,
in PropertyList user_properties
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D6800CF */
void create_user_service_profile (

in Opaque session_token,
in UserServiceProfile user_service_profile
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D6800D2 */
void modify_user_service_profile (

in Opaque session_token,
in UserServiceProfile user_service_profile
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D6800D7 */
void delete_user_service_profile (

in Opaque session_token,
in UserServiceProfileId user_service_profile_id
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D6800DA */
EndUser getUserDescription (

in Opaque session_token
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D6800DC */
UserServiceProfileIdList listUserServiceProfileIds (

in Opaque session_token
)
raises (SubscriptionError,SessionError);

/*

A-20 Telecom Service Access & Subscription, v.1.0 December 2002

A

@roseuid 3CF24D6800E1 */
UserServiceProfile getUserServiceProfile (

in Opaque session_token,
in UserServiceProfileId user_service_profile_id
)
raises (SubscriptionError,SessionError);

/*
@roseuid 3CF24D6800E4 */
ServiceProfileIdList get_service_profile_ids (

in Opaque session_token
)
raises (SubscriptionError,SessionError);

};

};

};

};

module IOP {
const ServiceId ACCESS_SESSION_ID = OMG_assigned;
const ServiceId SERVICE_SESSION_ID = OMG_assigned;
};

/* for #ifndef _DFTSAS_IDL_ */

#endif

December 2002 Telecom Service Access & Subscription, v1.0 B-1

Compliance Points B

This specification does contain elements that are intended to become part of the
CORBA standard and, thus, would have to be supported by all CORBA ORBs.

The specification provides three compliance points for implementations of
Telecommunication Service Access and Subscription (TSAS), namely, Core Segment,
Service Access Segment, and Subscription Segment.

B.1 Core Segment Compliance Point

All conforming implementations must support all interfaces that are defined in Chapter
2 and in document telecom/00-02-03 which contains the IDL specification, following
the specified semantics.

B.2 Service Access Segments Compliance Point

An implementation may support any segment defined in Chapter 3, but there is no need
to support any of the segments.

When segments are implemented they need to be conformant to the specification given
in Chapter 3 and in document telecom/00-02-03 which contains the IDL specification.

B.3 Subscription Segments Compliance Point

An implementation may support any segment defined in Chapter 4, but it is not
required to support any of the segments.

When segments are implemented they need to be conformant to the specification given
in Chapter 4 and in document telecom/00-02-03 which contains the IDL specification.

B-2 Telecom Service Access & Subscription, v1.0 December 2002

B

B.4 Changes to CORBA

The identification of multiple access sessions introduced in Chapter 2 requires an
extension to a very small part of the CORBA architecture. This section details those
proposed changes. They are made against CORBA 2.3.1, document formal/99-10-07.

B.4.1 Changes to CORBA Specification

The following service context identifiers are added to the list of service contexts in
Section 13.6.7.

const ServiceId ACCESS_SESSION_ID = 18; // Reserved for TSAS
const ServiceId SERVICE_SESSION_ID = 19; // Reserved for TSAS

The reason for defining these two ServiceIds, is so that a server on which a CORBA
invocation is performed, can always retrieve sufficient context information from
CORBA so that the client that has performed this invocation is uniquely identified.
This has to do with the implementation choices: it is possible that one CORBA server
implements more than one access session, or more than one service session. These
sessions can potentially be used by different CORBA clients. When a CORBA
invocation is made on the CORBA server, it must be able to identify the context
(access session identification or service session identification) in which this invocation
takes place.

Index

December 2002 Telecom Service Access & Subscription, v1.0 Index-1

A
abort_authentication() 2-10
Access 2-3, 2-10
Access interface 2-12
Access Session Information 5-4
authenticate() 2-9
Authentication 2-2
Authentication interface 2-8

B
Base interface 2-16

C
Consumer 1-2
CORBA

contributors 1-vii
documentation set 1-vi

Core Segment Compliance Point B-1

E
end 1-3, 2-7, 3-7
End User 4-8
end_access() 2-14
end_session() 2-15
end_sessions() 3-4
End-user 4-8
End-user Customization 4-25
End-user Customization Segment 4-10
End-user service profile 4-9

G
get_segment() 2-15
get_service_info() 2-14

I
Information model 4-3
Initial 2-2
Initial Contact and Authentication 2-3
Initial interfa c e2-5
initiate_authentication() 2-5
interface SagMgmt 4-15, 4-17
interface ServiceContractMgmt 4-14
interface ServiceProfileMgmt 4-19
interface ServiceTemplateMgmt 4-22
interface SubscriberMgmt 4-13
interface UserProfileMgmt 4-25

L
list_available_services() 2-13
list_segments() 2-15
list_service_sessions() 3-3

M
Motivation 1-1

N
new 3-7

O
Overview of subscription segments 4-9

P
Properties and Property Lists 5-1

provider 1-3

R
register_me 4-13
Registration Segment 4-9
release_segment() 2-16
request_access() 2-6
resume_session() 3-5
Retailer 1-2, 1-3
Roles and Domains 1-2

S
Scenario description 4-10
Scenarios 3-6, 3-8, 4-24
Security 1-6
SegmentBase 2-16
Segments 1-5
select_auth_method() 2-9
Service 1-2
Service Access Segments Compliance Point B-1
Service and Session Informatio n5-5
Service Contract 4-5
Service Discovery Segment 4-10, 4-23
Service Information 5-4
Service Profile 4-8
Service Provider 4-5
Service provider administration 4-21
Service Provider Administration Segment 4-10
Service Session Information 5-5
Service Template 4-6
Service Type 4-9
ServiceDiscovery Interface 4-23
Session 3-2
Session Control segment 3-3
SessionControl Interface 3-3
SessionInfo 5-6
Sessions 1-4
start_session() 2-14
Subscriber 1-3, 4-5
Subscriber administration 4-13
Subscriber Administration Segment 4-9
Subscriber Management 4-13
Subscription Assignment Group 4-7
Subscription Segments Compliance Point B-1
suspend 3-7

U
User Context Information 5-5
User Informatio n5-3
User Provider relationshi p1-4
User Service Profile 4-9
UserInfo 5-4

Index

Index-2 Telecom Service Access & Subscription, v1.0 December 2002

December 23, 2002 1

Telecom Service Access & Subscription (TSAS), v1.0
Reference Sheet

This is the first formal version of the TSAS Specification.

OMG documents used to create this version:

• Submission Document: telecom/00-05-03

• Final Adopted Specification: dtc/00-10-03

• FTF Report: dtc/02-04-01

• Convenience Document: dtc/02-04-02

2 December 23, 2002

	Preface
	1. Description
	1.1 Motivation
	1.2 Roles and Domains
	1.3 User Provider Relationship
	1.4 Sessions
	1.5 Segments
	1.6 Security

	2. Core Segment
	2.1 Overview
	2.2 Initial Contact and Authentication
	2.3 Access

	3. Session Segments
	3.1 Overview
	3.2 Session Control Segment
	3.3 Session Information Segment

	4. Subscription Segments
	4.1 Overview
	4.2 Information Model
	4.3 Subscription Segments
	4.4 Scenario Description
	4.5 Registration Segment
	4.6 Subscriber Administration
	4.7 Service ProviderAdministration
	4.8 Service Discovery Segment
	4.9 End-User Customization

	5. Common Types
	5.1 Generic Information Types
	5.2 User Information
	5.3 Service Information
	5.4 Access Session Information
	5.5 Service Session Information

	Appendix A - OMG IDL
	Appendix B - Compliance Points
	Index
	Reference Sheet

