
Task and Session CBOs Specification

Version 1.0
New Edition: April 2000

Copyright 1999, NIIP Consortium
Copyright 1999, OSM

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
Preface . v
About the Object Management Group v

What is CORBA? . v

Associated OMG Documents . vi

Acknowledgments . vii

1. Task & Session with Resource Objects 1-1
1.1 Resource and Process Objects . 1-1

1.1.1 Process Objects . 1-1
1.1.2 Resource Objects . 1-3

1.2 Summary of Optional versus Mandatory Interfaces 1-4

1.3 Proposed Compliance Points . 1-4

2. Task and Session Interfaces . 2-1
2.1 IdentifiableDomainObject . 2-2

2.1.1 IDL Specification . 2-2

2.2 BaseBusinessObject . 2-3
2.2.1 IDL Specification . 2-3

2.3 Data Types . 2-4

2.3.1 IDL Specification . 2-4

2.4 Iterators . 2-4

2.5 Link . 2-5

2.5.1 IDL Specification . 2-5
2.5.2 Link Structural Features 2-6

2.5.3 Technical Note . 2-6
2.5.4 Usage . 2-7
Task & Session V1.0 April 2000 i

Contents
2.6 AbstractResource . 2-9
2.6.1 Description . 2-9

2.6.2 Structural Associations 2-10
2.6.3 Structured Events . 2-11

2.6.4 Structural Features . 2-11
2.6.5 IDL Specification . 2-12

2.6.6 Declaration of Dependencies 2-13
2.6.7 Workspaces . 2-14

2.6.8 Task Consumers . 2-14
2.6.9 Task Producer . 2-14

2.6.10 Get Resource Tree by Link Kind 2-14

2.7 AbstractPerson . 2-15
2.7.1 Description . 2-15

2.7.2 IDL Specification . 2-15
2.7.3 Structured Events . 2-16

2.8 User . 2-16

2.8.1 Description . 2-16
2.8.2 IDL Specification . 2-16

2.8.3 Structural Features . 2-18
2.8.4 Structured Events . 2-19

2.8.5 Connection State . 2-19
2.8.6 Connect Operations 2-20

2.8.7 Message Queue . 2-20
2.8.8 User Tasks and Tasklist 2-21

2.8.9 Desktop Operations 2-21
2.8.10 Workspace Operations 2-21

2.9 Message . 2-22
2.9.1 IDL Specification . 2-22

2.10 Desktop . 2-23

2.10.1 Description . 2-23
2.10.2 Structural Features . 2-23

2.10.3 IDL Specification . 2-23
2.10.4 Ownership . 2-24

2.11 Workspace . 2-24

2.11.1 Description . 2-24
2.11.2 Structural Features . 2-25

2.11.3 IDL Specification . 2-25
2.11.4 Container Operations 2-25

2.11.5 List Resources . 2-26
2.11.6 Administration . 2-26
ii Task & Session V1.0 April 2000

Contents
2.12 Task . 2-26

2.12.1 Description . 2-26
2.12.2 Structural Features . 2-28

2.12.3 IDL Specification . 2-28
2.12.4 Structured Events . 2-30

2.12.5 Task Description . 2-30
2.12.6 Task State . 2-30

2.12.7 Task Owner . 2-31
2.12.8 Resource Usage . 2-31

2.12.9 Resource Production 2-32
2.12.10 Task Execution . 2-32

Appendix A - Complete IDL . A-1

Appendix B - Conformance . B-1
Task & Session V1.0 April 2000 iii

Contents
iv Task & Session V1.0 April 2000

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.
Task & Session V1.0 April 2000 v

Associated OMG Documents

Formal documents are OMG’s final, published specifications. Currently, formal
documentation is available in both PDF and PostScript format from the OMG web site.
Use this URL to access the OMG formal documents:
http://www.omg.org/library/specindx.html.

The formal documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services: Common Object Services Specification contains specifications for
OMG’s Object Services.

• CORBA Facilities: Common Facilities Specification includes OMG’s Common
Facility specifications.

• CORBA Domain Technologies, a collection of stand-alone specifications that relate
to the following domain industries:

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented
interfaces between related services and functions.

• CORBA Med: Comprised of specifications that relate to the healthcare industry
and represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services
and accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
so forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each specification by issuing Requests for
Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

vi Task & Session V1.0 April 2000

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• NIIP Consortium

• OSM
Task & Session V1.0 Acknowledgments April 2000 vii

viii Task & Session V1.0 April 2000

Task & Session with Resource Objects 1
Contents

This chapter contains the following sections

1.1 Resource and Process Objects

1.1.1 Process Objects

Process objects, represented as Tasks in this specification, describe User units of work
that bind a User to selected data and process resources. Viewed in terms of model-
view-controller, Tasks are the controller with commands and selections. A Task defines
what instances to process and how to process (workflow, tool, or other executable). A
Task may represent:

• a simple request such as “edit a file” where what is file x and how is editor y

• a more abstract request where what is collection j of files and how is workflow k
(which may contain a hierarchy of workflows)

Tasks that describe simple requests are very similar to objects found in all systems -
commands. Task extends and generalizes the notion of command objects to include
abstract selections which facilitate dynamic binding of data and process resources.

Task objects represent information that is typically not presented at user interfaces.

Section Title Page

“Resource and Process Objects”

“Summary of Optional versus Mandatory Interfaces”

“Proposed Compliance Points”
Task & Session V1.0 April 2000 1-1

1

Simple requests (e.g., “edit a file”) create a Task but what is exposed at the user
interface is likely to be the editor, not a presentation of the Task object. Similarly Tasks
using workflows may, or may not, be presented as hooks to workflow viewer and
worklist handler user interfaces.

Task objects represent the decomposition of work, within projects, organizations, and
by people, to atomic units (individual work items) that are independent of, and isolated
from, each other. Dependencies between Task objects can be handled, as in the real
world, by waiting, polling, and requesting. Task objects may only be executed by their
assigned (by resource utilization mechanisms), authenticated User, not by another User.
If a process has a Task dependency it must either wait for this dependency to be met or
define rules for satisfying the dependency through alternative paths. Task objects
provide an abstraction of work consistent with how people and projects define and
manage their work. This includes the reality that collaboration between people requires
recognition of their independence and separateness in time and space.

A Task is associated with one, and only one, User. Tasks may, however, depend on
other Tasks. Dependent and independent Tasks have general differences, as described
below, but are represented in the same way.

Independent Tasks
• Typically created by direct User requests such as “edit a file” or “print a document”

as unplanned units of work.

• Can be created by other Users.

• Do not depend on other Tasks; however, when workflows are used this may not be
known until runtime.

Dependent Tasks
• Typically created by workflow and project management tools or scheduled by event

handlers, as planned units of work.

• Contain rules for sequencing, synchronization, and event handling.

• Use concurrency mechanisms, configurations, and versions.

Unplanned Tasks typically bind a tool, rather than a workflow process resource, to a
specific data resource. Using the “edit a file” example the Task object created will bind
the requester (User), to the edit tool selected (process resource), and to the file selected
(data resource). It is also possible that the request to “edit a file” included the selection
of an edit workflow, rather than an edit tool, and a collection of files, rather than a
single file. This, however, is just another Task with more abstract selections – the
process Resource is the selected workflow (which may itself invoke a sequence of tools
and other workflows), and the data Resource is the selected collection of files (which
will be selected by the User and/or workflow when the Task executes).

Planned Tasks may contain dependencies on other Users, with other skills. They are
usually controlled by workflows and operate on data resource contexts with types and
versions used by process rules for selection of instances at runtime.

Tasks, planned and unplanned, are scalable atomic units of work that:
1-2 Task & Session V1.0 April 2000

1

• capture user requests and assigned work

• can be executed by workflows or tools

• specify information instances to process and interpret

• can have abstract selections that dynamically bind process and data

• utilize resources selected by resource assignment mechanisms

• contain history for enabling recovery and analysis of cost and performance

• model units of work in terms of people and resources to enable collaboration.

1.1.2 Resource Objects

Resource is implemented with adapters that wrap distributed, loosely coupled, concrete
resources. Adapted resources are CORBA components which include dynamically
wrapped internet resources, workflows, resource managers, and domain objects.

Resources are collected in Workspaces and used to represent:

• process resources such as workflows and applications

• data resources which include files, pages, domain, and other CORBA objects.

Resource implementations are responsible for maintaining the integrity and
consistency of the User computing environment. This includes referential integrity
between resources, change notification, and recovery mechanisms.

Resources are like “bookmarks” in browsers that provide:

• links to independent resource objects with managed loose coupling

• role based links to units of work (Tasks)

• resource sharing via CORBA security and concurrency mechanisms

• typed resources that use interoperation capabilities provided by CORBA
Task & Session V1.0 Resource and Process Objects April 2000 1-3

1

Figure 1-1 Task and Session with Resource Objects

1.2 Summary of Optional versus Mandatory Interfaces

Task and Session objects define a model of systems that people interact with. For this
model to be complete and consistent, all interfaces in this specification are mandatory.

1.3 Proposed Compliance Points

There is only one proposed compliance point, the IDL specification in this
specification.

Person

User Workspace
place

Task

unit of work

Resource
Adapter

container

dataprocess

Domain
Objects

Workflow
Objects

Resource
Mgmt.
Objects

Wrapped
Internet

Resource

Other CORBA
Objects

role of
1-4 Task & Session V1.0 April 2000

Task and Session Interfaces 2
Contents

This chapter contains the following sections

This specification defines cooperative components that form a framework representing
the basic model for users of distributed systems.

Section Title Page

“IdentifiableDomainObject” 2-2

“BaseBusinessObject” 2-3

“Data Types” 2-4

“Iterators” 2-4

“Link” 2-5

“AbstractResource” 2-9

“AbstractPerson” 2-15

“User” 2-16

“Message” 2-22

“Desktop” 2-23

“Workspace” 2-24

“Task” 2-26
Task & Session V1.0 April 2000 2-1

2

Figure 2-1 Components

2.1 IdentifiableDomainObject

IdentifiableDomainObject is an abstract base type for BaseBusinessObject
through which object identity may be managed across independently managed domain.
The attribute domain qualifies the name space associated with the object identity
provided under the IdentifiableObject interface. The AuthorityId type is a struct
containing the declaration of a naming authority (ISO, DNS, IDL, OTHER, DCE), and
a string defining the naming entity. The same_domain operation is a convenience
operation to compare two IdentifiableDomainObject object instances for domain
equivalence.

2.1.1 IDL Specification

interface IdentifiableDomainObject :
CosObjectIdentity::IdentifiableObject
{

Workspace

add_contains_resource()
remove_contains_resource()
create_subworkspace()
list_resources_by_type()

User

connect()
disconnect()
enqueue_message()
dequeue_message()
list_messages()
create_task()
list_tasks()
get_desktop()
create_workspace()
list_workspaces()

connect_state : enum

Message

message_id
message

Desktop

set_belongs_to()
belongs_to()

Task

get_task_state()
owned_by()
set_owned_by()
add_consumed()
remove_consumed()
list_consumed()
add_produced()
remove_produced()
list_produced()
get_processor()
set_processor()
start()
suspend()
stop()

description: string

1 1

consumed_by *

contained_by *

*

contains *consumes *

1

AbstractPerson

*
accessed_by

AbstractResource

bind()
replace()
release()
list_contained()
list_consumers()
get_producer()
expand()

resourceKind : TypeCode
name : string produces *

produced_by 0..1

*
accesses
2-2 Task & Session V1.0 April 2000

2

readonly attribute NamingAuthority::AuthorityId domain;
boolean same_domain(

in IdentifiableDomainObject other_object
);

};

2.2 BaseBusinessObject

BaseBusinessObject is the abstract base class for all principal Task and Session
objects. It has identity, is transactional, has a lifecycle, and is a notification supplier
and consumer.

2.2.1 IDL Specification

interface BaseBusinessObject :
Session::IdentifiableDomainObject,
CosLifeCycle::LifeCycleObject,
CosNotifyComm::StructuredPushSupplier,
CosNotifyComm::StructuredPushConsumer
{

};

The CosNotification service defines a StructuredEvent that provide a framework
for the naming of an event and the association of specific properties to that event. All
events specified within this facility conform to the StructuredEvent interface. This
specification requires specific event types to provide the following properties as a part
of the filterable_data of the structured event header.

Under the CosNotification specification all events are associated with a unique
domain name space. This specification establishes the domain namespace
“org.omg.session” for structured events associated with AbstractResource and
its sub-types.
Task & Session V1.0 BaseBusinessObject April 2000 2-3

2

Figure 2-2 Base Business Object Diagram

2.3 Data Types

These type definitions specify user, task, message, resource, and workspace sequences.

2.3.1 IDL Specification

typedef sequence<Session::User>Users;
typedef sequence<Session::Workspace>Workspaces;
typedef sequence<Session::Task>Tasks;
typedef sequence<Session::AbstractResource>AbstractResources;
typedef sequence<Session::Message>Messages;
typedef sequence<Session::Link>Links;

2.4 Iterators

The interfaces defined below specify iterators used for the user, task, workspace,
resource, and message sequences.

interface UserIterator : CosCollection :: Iterator { };
interface WorkspaceIterator : CosCollection :: Iterator { };
interface TaskIterator : CosCollection :: Iterator { };
interface AbstractResourceIterator : CosCollection :: Iterator { };
interface MessageIterator : CosCollection :: Iterator { };
interface LinkIterator : CosCollection :: Iterator { };

Session:
BaseBusinessObject

CosNotifyComm::
StructuredPushSupplier

disconnect_structured_push_supplier()

CosNotifyComm::
StructuredPushConsumer

push_structured_event()
disconnect_structured_push_consumer()

CosLifeCycle::
LifeCycleObject

copy()
move()
remove()

Session::
IdentifiableDomainObject

same_domain()

domain : AuthorityId

CosNotifyComm::
NotifySubscribe

subscription_change()

CosNotifyComm::
NotifyPublish

offer_change()
2-4 Task & Session V1.0 April 2000

2

The core Task and Session interfaces are:

• AbstractPerson, defines information about people. In this model it is a
placeholder for party and organization models.

• User, defines people as distributed computing users with messages and state as
well as workspace, task, and resource associations.

• Message, defines basic interface for sending asynchronous messages to Users

• Desktop, links Users to Workspaces.

• Workspace, defines private and shared places for Resources and Tasks.

• Task, defines and manages of User units of work.

• AbstractResource, links resource objects to Task and Workspace objects.

• Link, defines a resource dependency.

2.5 Link

The Link type is a struct used within the Task and Session framework as an argument
to operations that establish relationship dependencies between resources such as usage
and containment. The Link type is used as an argument to the bind, replace, and
release operations of an AbstractResource and as a type exposed under the
expand operation.

2.5.1 IDL Specification

typedef long LinkKind;
typedef sequence<LinkKind>LinkKinds;

// reference (abstract)
const LinkKind references = 0;
const LinkKind referenced_by = 1;

// usage (abstract)
const LinkKind uses = 2;
const LinkKind used_by = 3;

// consumption
const LinkKind consumes = 8;
const LinkKind consumed_by = 9;

// production
const LinkKind produces = 10;
const LinkKind produced_by = 11;

// process
const LinkKind processes = 12;
const LinkKind processed_by = 13;
Task & Session V1.0 Link April 2000 2-5

2

// containment
const LinkKind contains = 4;
const LinkKind contained_by = 5;

// rights (abstract)
const LinkKind holds = 6;
const LinkKind grants = 7;

// access rights
const LinkKind accesses = 14;
const LinkKind accessed_by = 15;

// adminstration rights
const LinkKind administers = 16;
const LinkKind administered_by = 17;

// ownership rights
const LinkKind owns = 18;
const LinkKind owned_by = 19;

struct Link {
LinkKind kind;
AbstractResource resource;

};

struct LinkExtent {
LinkKind kind;
AbstractResources seq;
AbstractResourceIterator iterator;

};

2.5.2 Link Structural Features

2.5.3 Technical Note

In the absence of a value based mechanism to express the kind of links that can exist
between resources, the following hierarchy shall be assumed in evaluation of the
correspondence of a link kind during the execution of the expand operation on
AbstractResource. Non shaded blocks indicate abstract link kind values; whereas,
shaded blocks indicate concrete link kinds.

Name Type Purpose

kind LinkKind A value qualifying the kind of relationship the link
represents.

resource AbstractResource The abstract resource that is the subject of the
association.
2-6 Task & Session V1.0 April 2000

2

Figure 2-3 Implicit hierarchy of LinkKind values

For example, invoking the apply operation on a User with an abstract link_kind of
authorizes will result in the return of a sequence of concrete LinkExtent instances
that expose the extent of the respective relationship applicable to the type of resource.
Specifically, the sequence for the example query will return one LinkExtent
referencing owns as the LinkKind (because this is the only concrete kind of link
authorized by a user). A LinkKind of references would return all possible links
because references is the most implicitly abstract kind of link.

2.5.4 Usage

The Link type is a generalized utility that enables an AbstractResource, User, Task or
Workspace to declare a dependency which is exposed directly under the expand
operation on AbstractResource, and indirectly through related list operations.

The Link type is provided as a means through which the type and subject resource of a
dependency may be declared by the resource raising the dependency to the target.
Declaration of dependency between resources enables referential integrity between
resources irrespective of technology or administrative domain boundaries. Declaration,
modification, and retraction of dependencies are achieved through invocation of the
bind, release, and replace operations on the AbstractResource type by a client
resource.

references
referenced_by

consumes
consumed_by

produces
produced_by

processes
processed_by

owns
owned_by

holds
grants

uses
used_by

accesses
accessed_by

administers
administered_by

References

Usage

Ownership

Rights

Access

Administration

Consumption Production Processing

0
1

2
3

18
19

6
7

8
9

10
11

12
13

14
15

16
17

contains
contained_by

Containment

4
5

Task & Session V1.0 Link April 2000 2-7

2

For example, a Task may wish to register a dependency on a data resource in another
domain. The Task invokes the bind operation on the target resource using itself as the
resource argument, and consumes as the link kind. A subsequent query on the
Task using the expand operation will expose a Link referencing the resource under
the resource under the consumes link kind (i.e., the Task consumes the resource).
An expand query on the target resource will return a Link referencing the Task under
the reciprocal link kind of consumed_by (i.e., the resource is consumed_by the
Task).

The following table details the LinkKind constants, a description of the constant
value, its cardinality, and its reciprocal link kind.

Table 2-1 LinkKind exposed by AbstractResource

LinkKind Description Cardinality Reciprocal

consumed_by The resource argument references the Task that
this resource is consumed by.

* consumes

processes The resource argument references the Task that
this resource is acting as a processor to.

* processed_by

produced_by The resource argument references the Task that
this resource is produced by.

0,1 produces

contained_by References the Workspace that this resource is
contained by.

* contains

Table 2-2 LinkKind exposed by User

LinkKind Description Cardinality Reciprocal

owns The resource argument references a Task
owned by this User.

* owned_by

accesses References a Workspace that this User is
authorized to access

* accessed_by

administers References a Workspace that this User is
authorized to administer, granting the user the
right to modify access lists.

* administered_by

Table 2-3 LinkKind exposed by Task

LinkKind Description Cardinality Reciprocal

consumes The resource argument references an
AbstractResource that this Task is consuming.

* consumed_by
2-8 Task & Session V1.0 April 2000

2

2.6 AbstractResource

2.6.1 Description

An AbstractResource is a transactional and persistent CORBA objects contained in one
or more Workspaces. They may be selected, consumed, and produced by Tasks.
AbstractResources are found and selected by tools and facilities that present lists of
candidate resources. These lists may be filtered by things like security credentials, by
type, and by implementation. CORBAservice Trading can be used to build resource
candidate lists. Resources selected from the lists are then wrapped by the tool or
facility as AbstractResources. Task and Workspace are dependent on the
AbstractResources they use and contain. Implementations are required to notify Task
and Workspace of changes and defer deletion requests until all linked Tasks signal their
readiness to handle.

processed_by The resource argument references an
AbstractResource that this Task is processed by.

0..1 processes

produces The resource argument references an
AbstractResource that this Task is producing.

* produced_by

owned_by The resource argument references a User that this
Task is owned by.

1 owns

Table 2-4 LinkKind exposed by Workspace

LinkKind Description Cardinality Reciprocal

contains The resource argument references an
AbstractResource that this Workspace contains.

* contained_by

accessed_by The resource argument references a User
included in the access control list of this
Workspace.

* accesses

administered_by The resource argument references a User
included in the access control list of this
Workspace, that has the right to modify the
Workspace ACL.

* administers

Table 2-3 LinkKind exposed by Task (Continued)
Task & Session V1.0 AbstractResource April 2000 2-9

2

Figure 2-4 AbstractResource Diagram

2.6.2 Structural Associations

Attributes

Table 2-5 LinkKind exposed by AbstractResource

LinkKind Description Cardinality Reciprocal

consumed_by The resource argument references the Task that
this resource is consumed by.

* consumes

processes The resource argument references the Task that
this resource is acting as a processor to.

* processed_by

produced_by The resource argument references the Task that
this resource is produced by.

0,1 produces

contained_by The resource argument references the Workspace
that this resource is contained within.

* contained

Name Type Purpose

name string Resource name.

resourceKind CORBA::TypeCode The most derived type that this resource
represents.

Session:
BaseBusinessObject

Session::
AbstractResource

bind()
replace()
release()
list_contained()
list_consumers()
get_producer()
expand()

resourceKind : TypeCode
name : string
2-10 Task & Session V1.0 April 2000

2

2.6.3 Structured Events

2.6.4 Structural Features

Table 2-6 AbstractResource Filterable Data Properties

Name Type Description

timestamp TimeBase::UtcT Date and time of to which the event is issued.

source AbstractResource Abstract resource raising the event.

Table 2-7 Life Cycle Structured Event Table

Event: Description

move Notification of the transfer (move) of a AbstractResource under which
the identity is changed. The source of the event supplies the old
instance identity.

Supplementary properties:

new AbstractResource Reference containing the new object
identity.

remove Notification of the removal of an AbstractResource

Table 2-8 Feature Event Table

Event: Description

update Notification of the change of a value of an attribute from value x to
value y, where x represents the old value and y represents the new
value.

Supplementary properties:

feature string Attribute name.

old any Old value.

new any New value.

bind Notification of the addition of a link from a dependant resource to this
resource.

Supplementary properties:

link Link The link defining the dependency.

replace Notification of the replacement of a link under this resource.

Supplementary properties:

old Link The link being replaced.
Task & Session V1.0 AbstractResource April 2000 2-11

2

2.6.5 IDL Specification

interface AbstractResource :
BaseBusinessObject {
attribute string name;
// readonly attribute string key; /* deprecated, issue 2698 */
readonly attribute TypeCode resourceKind;
exception ResourceUnavailable{ };
exception ProcessorConflict{ };
exception SemanticConflict{ };
void bind(

in Link link
) raises (

ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);
void replace(

in Link old,
in Link new

) raises (
ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);
void release(

in Link link
);
void list_contained (

in long max_number,
out Session::Workspaces workspaces,
out WorkspaceIterator wsit

);
void list_consumers (

in long max_number,
out Tasks tasks,
out TaskIterator taskit

);
Task get_producer(
); // get_producer replaces list_producers, issue 2701
//void list_producers (
// in long max_number,

new Link The replacement Link.

release Notification of the release of a dependency link from this resource.

Supplementary properties:

link Link The link being released.

Table 2-8 Feature Event Table
2-12 Task & Session V1.0 April 2000

2

// out Tasks tasks,
// out TaskIterator taskit);
void expand (// levels argument removed

in LinkKinds link_types, // string replaced by LinkKinds
in long max_number,
out LinkExtents seq, // return value updated
out LinkExtentIterator iterator // return value updated

);
};

2.6.6 Declaration of Dependencies

The bind, replace and release operations enable a client to declare a dependency on an
AbstractResource. When a Task, User, or Workspace establishes a usage of
containment dependency on an AbstractResource, it is required to invoke the bind
operation. When dependencies are changed, such as the modification of the owner of a
Task or the replacement of a resource within a workspace, an implementation is
required to invoke the replace operation. When a relationship is retracted, as a result
of the completion of a task, an implementation is required to invoke the release
operation on resources to which it has established a dependency.

void bind(
in Link link

) raises (
ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);
void replace(

in Link old,
in Link new

) raises (
ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);
void release(

in Link link
);

Exceptions raised under the bind and replace operations include
ResourceUnavailable, ProducerConflict, and SemanticConflict. The
ResourceUnavailable and ProducerConflict exception may be raised by an
implementation to indicate that the resource that is the target of a bind or replace
operation is unable to fulfill the request. ResourceUnavailable may be raised as a
result of a concurrency control conflict. The ProducerConflict exception may be
raised in a situation where the producer resource is unable to support the association
(for example, as a result of a processing capacity limit). A SemanticConflict
exception may be raised if an attempt is made to violate the cardinality or type rules
concerning the link kind referenced under the Link argument.
Task & Session V1.0 AbstractResource April 2000 2-13

2

2.6.7 Workspaces

This operation returns a list of Workspaces containing this resource.

void list_contained (
in long max_number,
out Session::Workspaces workspaces,
out WorkspaceIterator wsit

);

2.6.8 Task Consumers

This operation returns a list of Tasks using or consuming this resource.

void list_consumers (
in long max_number,
out Tasks tasks,
out TaskIterator taskit

);

2.6.9 Task Producer

This operation returns the Task that produced this resource.

Task get_producer();

2.6.10 Get Resource Tree by Link Kind

This operation asks an AbstractResource to return a set of resources linked to it by a
specific relationship. Objects returned are, or are created as, AbstractResources. This
operation may be used by desktop managers to present object relationship graphs.

struct LinkExtent {
LinkKind kind;
AbstractResources seq;
AbstractResourceIterator iterator;

};

typedef sequence<LinkExtent>LinkExtents;

// from AbstractResource

void expand (
in LinkKinds link_types,
in long max_number,
out LinkExtents seq,
out LinkExtentIterator iterator

);
2-14 Task & Session V1.0 April 2000

2

2.7 AbstractPerson

2.7.1 Description

The AbstractPerson interface is a placeholder for organization and other models
that define information about people. When AbstractPerson uses an organization
model it obtains information about Users (role_of AbstractPerson) is including things
like roles and membership within projects and organizations.

AbstractPerson inherits from the interface
CosPropertyService::PropertySetDef, providing mechanisms through which
implementations may attribute features to a person such as a name, address
information, or history.

2.7.2 IDL Specification

interface AbstractPerson :
CosPropertyService::PropertySetDef {

};

Table 2-9 Expand Argument list

Argument Description

link_types A sequence of LinkKind structures that defines the set of abstract
of concrete link kinds that the expand operation should evaluate.

max_number The maximum number of elements to be included in the seq of
exposed LinkExtent instances.

seq A sequence of LinkExtent structures.

iterator An iterator of LinkExtent structures.
Task & Session V1.0 AbstractPerson April 2000 2-15

2

Figure 2-5 AbstractPerson Diagram

2.7.3 Structured Events

2.8 User

2.8.1 Description

User is a role of a person in a distributed computing environment. Information about
the person is inherited by User. In this specification Users have tasks and resources
located in workspaces on a desktop, as well as a message queue and a connection state.

A specialization of User can add things like preferences.

2.8.2 IDL Specification

interface User :
AbstractResource,
AbstractPerson,

Table 2-10 AbstractPerson Structure Event Table

Event Description

property Notification of the change in the value of a property

Supplementary properties:

old Property The old value of the property,
possibly null in the case of a new
property addition.

new Property The value of the property, possibly
null in the case of property deletion.

Session::
AbstractPerson

CosPropertyService::
PropertySetDef
2-16 Task & Session V1.0 April 2000

2

CosLifeCycle::FactoryFinder // issue 2689
{
enum connect_state {connected, disconnected};
readonly attribute connect_state connectstate; // issue 2685
exception AlreadyConnected {};
exception NotConnected {};
void connect()

raises (AlreadyConnected);
void disconnect()

raises (NotConnected);
void enqueue_message (

in Message new_message);
void dequeue_message (

in Message message);
void list_messages(

in long max_number,
out Messages messages,
out MessageIterator messageit);

Task create_task (
// in string key, /*removed, issue 2698 */
in string name,
in AbstractResource process,
in AbstractResource data);

void list_tasks (
in long max_number,
out Tasks tasks,
out TaskIterator taskit

);
Desktop get_desktop ();
Workspace create_workspace (

// in string key, /*removed, issue 2698 */
in string name,
in Users accesslist

);
void list_workspaces (

in long max_number, // issue, 2687
out Session::Workspaces workspaces,
out WorkspaceIterator wsit

);

};
Task & Session V1.0 User April 2000 2-17

2

Figure 2-6 AbstractResource - User Diagram

2.8.3 Structural Features

Table 2-11 LinkKind exposed by User

LinkKind Description Cardinality Reciprocal

owns The resource argument references a Task
owned by this User.

* owned_by

accesses References a Workspace that this User is
authorized to access

* accessed_by

administers References a Workspace that this User is
authorized to administer, granting the user
the right to modify access lists.

* administered_by

Workspace
User

connect()
disconnect()
enqueue_message()
dequeue_message()
list_messages()
create_task()
list_tasks()
get_desktop()
create_workspace()
list_workspaces()

connect_state : enum

Message

Task

1 1
1

owned_by

AbstractPerson

*
accessed_by

AbstractResource

Desktop

*
accesses

*
owns

*
administered_by

*
administers
2-18 Task & Session V1.0 April 2000

2

Attributes

2.8.4 Structured Events

2.8.5 Connection State

This represents the basic current state of a User connection (logically at, or not at, the
desktop). Asynchronous processes and events are managed in the disconnected state
within the limitations this state imposes. When the User reconnects informational
messages and actions required, if any, are presented.

Information which people expect to be retained between connections is persistent. The
currency of this information must be sufficient to provide consistency over
synchronous and asynchronous (including abrupt system failure) terminations.

enum connect_state {
connected,
disconnected
};

readonly attribute connect_state connectstate;

Table 2-12 Supplementary associations

Feature Type Description

desktop Desktop Link to resources and task in a distributed
workspaces.

messages MessageIterator Receives asynchronous messages for this user.

Name Type Purpose

connectstate connect_state Declaration of the connected state of a physical
user to the system, may be one of the
enumerated values connected or

disconnected.

Table 2-13 User Structure Event Table

Event Description

connected Notification of the change of the connected state of a User.

Supplementary properties:

value boolean True indicated that the user is connected,
false indicates that the user is disconnected.
Task & Session V1.0 User April 2000 2-19

2

2.8.6 Connect Operations

Connect establishes the User session for clients, such as desktop managers to present
Workspaces and the computing environment. Successful completion of this operation
will result in the session state being changed to connected. Clients of disconnect
interact with the User and the computing environment to close the session. When
complete, the session state is set to not connected.

exception AlreadyConnected {};
exception NotConnected {};

void connect(
) raises (
AlreadyConnected
);

void disconnect(
) raises (
NotConnected
);

2.8.7 Message Queue

These operations are used to enqueue, dequeue, and get a list of messages.

void enqueue_message (
in Message new_message
);

void dequeue_message (
in Message message
);

void list_messages(
in long max_number,
out Messages messages,
out MessageIterator messageit
);

Table 2-14 connect_state Enumeration Table

Value Purpose

connected The User is connected (logged in) to the system.

disconnected The User is not connected to the system (logged off).
2-20 Task & Session V1.0 April 2000

2

Message factory location is achieved through invocation of the find_factories
operation (inherited from the CosLifeCycle::FactoryFinder interface), and passing
the CosNaming::Name sequence of “Factory” and “MessageFactory” as the
factory_key argument. Client applications may choose to create a message within or
external to the domain of the User to whom a message is enqueued.

Note – It is a recommendation of the Task and Session 1.1 RTF that the Message
reviewed in the context of pass-by-value services.

2.8.8 User Tasks and Tasklist

These operations are used to create and list Tasks. Task creation includes the initial
specification of “who,” “what,” and “how” for the Task. The User instance of this
interface is “who,” the “what” is the AbstractResource data to update or produce, and
the “how” is the AbstractResource process (workflow, tool, etc.) used.

Task create_task (
in string name,
in AbstractResource process,
in AbstractResource data
);

void list_tasks (
in long max_number,
out Tasks tasks,
out TaskIterator taskit
);

2.8.9 Desktop Operations

This operation returns the Desktop that links one User to many Workspaces.
Workspaces may have many Users linked via Desktop.

Desktop get_desktop ();

2.8.10 Workspace Operations

Users may create and find their Workspaces with these operations. As Workspace may
be shared implementations must set access control lists to the Users sequence specified
with the create operation.

Workspace create_workspace (
in string name,
in Users accesslist
);

void list_workspaces (
out Workspaces workspaces,
Task & Session V1.0 User April 2000 2-21

2

out WorkspaceIterator wsit
);

2.9 Message

This interface defines the basic structure for messages that are enqueued to Users and
dequeued for presentation by a desktop manager or used, as needed, by other clients. It
is expected that Message will be specialized by implementations and user message
definition standards. Typical messages include asynchronous completion, notification
of Workspace content changes, and communications from other people.

Message factory location is achieved through invocation of the find_factories
operation (inherited from the CosLifeCycle::FactoryFinder interface), and passing
the CosNaming::Name sequence of “Factory” and “MessageFactory” as the
factory_key argument. Client applications may choose to create a message within or
external to the domain of the User to whom a message is enqueued.

Figure 2-7 AbstractResource - User Message Diagram

Attributes

2.9.1 IDL Specification

interface Message : AbstractResource {
attribute any message_id;
attribute any message;

};

Name Type Purpose

message_id any Message name

message any Message description

Message

message_id
message

User

AbstractResource
2-22 Task & Session V1.0 April 2000

2

interface MessageFactory {
Message create(

in any message_id,
in any message

);
};

2.10 Desktop

2.10.1 Description

The Desktop interface links Users to many Workspaces and Workspaces to many
Users. Each User has one Desktop and many Workspaces. Workspaces may be shared
so they may have many Users.

Figure 2-8 Desktop Diagram

2.10.2 Structural Features

2.10.3 IDL Specification

interface Desktop:Workspace {
void set_belongs_to(

in Session::User user
);

User belongs_to();
};

Keyword Type Description

owner User Identify desktop owner

Desktop

set_belongs_to()
belongs_to()

1 1
User

Workspace
Task & Session V1.0 Desktop April 2000 2-23

2

2.10.4 Ownership

These operations set and return the User that is the owner of this Desktop.

void set_belongs_to(
in Session::User user
);

User belongs_to();

2.11 Workspace

2.11.1 Description

Workspace defines private and shared places where resources, including Task and
Session objects, may be contained. Workspaces may contain Workspaces. The support
for sharing and synchronizing the use of objects available in Workspaces is provided
by the objects and their managers. Each Workspace may contain any collection of
private and shared objects that the objects and their managers provide access to, and
control use of.

Figure 2-9 Workspace Diagram

Workspace

add_contains_resource()
remove_contains_resource()
create_subworkspace()
list_resources_by_type()

contained_by *

contains *
AbstractResource

User
grants_access_rights_to *

holds_access_rights_to *
2-24 Task & Session V1.0 April 2000

2

2.11.2 Structural Features

2.11.3 IDL Specification

interface Workspace :
AbstractResource,
CosLifeCycle::FactoryFinder
{
void add_contains_resource(

in AbstractResource resource
);
void remove_contains_resource(

in AbstractResource resource
);
Workspace create_subworkspace (

in string name,
in Users accesslist

);
void list_resources_by_type(

in TypeCode resourcetype,
in long max_number,
out AbstractResources resources,
out AbstractResourceIterator resourceit

);
};

2.11.4 Container Operations

These operations will add and remove AbstractResources to/from a Workspace. They
will also create a new Workspace contained in this Workspace.

An implementation of add_contains_resource must invoke the bind operation on
the target resource with the link kind of contains and the issuing Task as the resource.
An implementation of remove_contains_resource must invoke the release

Table 2-15 LinkKind exposed by Workspace

LinkKind Description Cardinality Reciprocal

contains The resource argument references an
AbstractResource that this Workspace contains.

* contained_by

accessed_by The resource argument references a User
included in the access control list of this
Workspace.

* accesses

administered_by The resource argument references a User
included in the access control list of this
Workspace, that has the right to modify the
Workspace ACL.

* administers
Task & Session V1.0 Workspace April 2000 2-25

2

operation on the target resource with the link kind of contains and the issuing Task as
the resource. An implementation of create_subworkspace must invoke the bind
operation on newly created workspace using the contains link kind and the parent
workspace as the resource argument.

void add_contains_resource(
in AbstractResource resource

);
void remove_contains_resource(

in AbstractResource resource
);

Workspace create_subworkspace (
in string name,
in Users accesslist

);

2.11.5 List Resources

The list resources operation will return a list of all Workspace resources by type.
This facilitates organization of resource types by user interfaces and use by task
creation, workflow, and other functions requiring specified types.

void list_resources_by_type(
in TypeCode resourcetype,
in long max_number,
out AbstractResources resources,
out AbstractResourceIterator resourceit

);

2.11.6 Administration

On creation of a new workspace (through either the create_workspace or
create_subworkspace operations), the principal User creating the new instance is
implicitly associated with the workspace as administrator. As administrator, the User
holds rights enabling the modification of the access control list through bind, replace,
and release operations.

2.12 Task

2.12.1 Description

A Task represents a unit of work defined by users. It represents the binding (which can
be dynamic) between the data to be processed, the method for processing, and the User
responsible. The duration of a Task can range from a short, single, non-repeatable
process step to long process steps that can be repeated many times. A Task can be
2-26 Task & Session V1.0 April 2000

2

completed with the execution of a single tool, or the execution of a flow. Tasks may be
suspended to the extent that the tool or flow used to execute them can be suspended.
Tasks can serve as the repository of execution history information.

Figure 2-10 Task State Diagram

The task state is determined by the state of its execution and the state of the data
content being processed. The task state and data state are related but independent. The
data state contains information about the application or system object. The task state
contains information about the task. For example, when a fault simulator completes
execution it is not necessarily true that the fault simulation task has completed – the
completeness depends on the value of the fault coverage. The value of the fault
coverage is based on the data, what has been called the “data state.” The execution of
the fault simulator is independent of the results of the execution. Also the fault
coverage may be changed, independent of the fault simulator, if the parameters of the
design are changed.
Task & Session V1.0 Task April 2000 2-27

2

Figure 2-11 Task Diagram

2.12.2 Structural Features

2.12.3 IDL Specification

interface Task : AbstractResource {
exception CannotStart {};
exception AlreadyRunning {};
exception CannotSuspend {};
exception CurrentlySuspended {};

Table 2-16 LinkKind exposed by Task

LinkKind Description Cardinality Reciprocal

consumes The resource argument references an
AbstractResource that this Task is consuming.

* consumed_by

processed_by The resource argument references an
AbstractResource that this Task is processed by.

0..1 processes

produces The resource argument references an
AbstractResource that this Task is producing.

* produced_by

owned_by The resource argument references a User that this
Task is owned by.

1 owns

Task

get_task_state()
owned_by()
set_owned_by()
add_consumed()
remove_consumed()
list_consumed()
add_produced()
remove_produced()
list_produced()
get_processor()
set_processor()
start()
suspend()
stop()

description: string
0..1
produced_by

1
owned_by

processed_by *

owns
*

AbstractResource

User

*
produces

processes
0..1

*
consumes

*
consumed_by
2-28 Task & Session V1.0 April 2000

2

exception CannotStop {};
exception NotRunning {};
attribute string description;
enum task_state {

open, not_running, notstarted, running,
suspended, terminated, completed, closed

};
task_state get_task_state();
User owned_by();
void set_owned_by (

in User new_task_owner
);
void add_consumed(

in AbstractResource resource
);
void remove_consumed(

in AbstractResource resource
);
void list_consumed (

in long max_number,
out AbstractResources resources,
out AbstractResourceIterator resourceit

);
void add_produced(

in AbstractResource resource);
void remove_produced(

in AbstractResource resource
);
void list_produced (

in long max_number,
out AbstractResources resources,
out AbstractResourceIterator resourceit

);
void set_processor(

in AbstractResource processor
) raises (

ProcessorConflict
);
AbstractResource get_processor();
void start () raises (CannotStart, AlreadyRunning);
void suspend () raises (CannotSuspend, CurrentlySuspended);

void stop () raises (CannotStop, NotRunning);
};
Task & Session V1.0 Task April 2000 2-29

2

Attributes

2.12.4 Structured Events

2.12.5 Task Description

This attribute can describe the Task.

attribute string description;

2.12.6 Task State

States are defined, as in Figure 2-10 on page 2-27, and the get_task_state operation
returns the current Task state, as calculated by the implementation.

Name Type Purpose

description string Task description.

Table 2-17 Task Structured Event Table

Event Description

process_state Notification of the change of state of a Task.

Supplementary properties:

value task_state Task state enumeration.

ownership Notification of the change of ownership of a Task.

Supplementary properties:

owner User User assigned as owner of the
Task.

Table 2-18 task_state Enumeration Table

Value Description

open Task is not finished and active.

closed Task is finished and inactive.

not_running Task is active and quiescent, but ready to execute.

running Task is active and executing.

notstarted Task is active and ready to be initialized and started.

suspended Task is active, has been started and suspended.

completed Task is finished and completed normally.

terminated Task finished and stopped before normal completion.
2-30 Task & Session V1.0 April 2000

2

enum task_state {
open,
not_running,
notstarted,
running,
suspended,
terminated,
completed,
closed
};

task_state get_task_state(
);

2.12.7 Task Owner

These operations will return the User that owns the Task and reassign a Task to another
User. Task reassignment is a process that requires an agreed protocol for one User to
transfer a Task to another User. Authority to reassign belongs to the User or authorized
agents and managers, such as workflow and project management systems.

User owned_by(
);
void set_owned_by (
in User new_task_owner
);

2.12.8 Resource Usage

These operations add, remove, and list execution and information resources consumed
by the Task.

An implementation of add_consumed must invoke the bind operation on the target
resource with the link kind of consumes and the issuing Task as the resource. An
implementation of remove_consumes must invoke the release operation on the
target resource with the link kind of consumes and the issuing Task as the resource.

void add_consumed(
in AbstractResource resource

);

void remove_consumed(
in AbstractResource resource

);

void list_consumed (
in long max_number,
out AbstractResources resources,
out AbstractResourceIterator resourceit

};
Task & Session V1.0 Task April 2000 2-31

2

2.12.9 Resource Production

These operations create, modify, and list associations to resources produced by the
Task.

An implementation of add_produced must invoke the bind operation on the target
resource with the link kind of produces and the issuing Task as the resource. An
implementation of remove_produces must invoke the release operation on the
target resource with the link kind of produces and the issuing Task as the resource.

void add_produced(
in AbstractResource resource);

void remove_produced(in AbstractResource resource);

void list_produced (
in long max_number,
out AbstractResources resources,
out AbstractResourceIterator resourceit

);

2.12.10 Task Execution

These operations start/resume, stop, or suspend Tasks. Successful completion of start
Task will set its state to Running. Completion of stop Task will set the state to
Terminated. Successful completion of suspend Task will result in a Suspended state.

void start (
) raises (
CannotStart,
AlreadyRunning
);

void suspend (
) raises (
CannotSuspend,
CurrentlySuspended
);

void stop (
) raises (
CannotStop,
NotRunning
);

A Task is associated to an AbstractResource that acts as the processor for the Task.
The protocol of interaction between a Task and its processing resource is
implementation dependent. An example of a processor resource is an application
editor, simulation, or workflow engine.

The following operations set the AbstractResource acting in this capability.
2-32 Task & Session V1.0 April 2000

2

void set_processor(
in AbstractResource processor

) raises (
ProcessorConflict

);
AbstractResource get_processor();

The set_processor operation may raise the ProcessorConflict exception if the
AbstractResource passed under the processor argument is unable or unwilling to
provide processing services to the task.

An implementation of set_process must ensure that appropriate bind and release
operations are invoked on the processor resources in order to ensure referential
integrity. When a task is initially created, the implementation is responsible for
invocation of the bind operation on the abstract resource that is serving as the
processor, using the processed_by link kind. Subsequent invocations of
set_processor are responsible for the releasing and re-establishing processed_by
links on the old and new process resource using the release and bind operation on
the respective process resources.
Task & Session V1.0 Task April 2000 2-33

2

2-34 Task & Session V1.0 April 2000

Complete IDL A
A.1 Full IDL Listing

// Task and Session RTF V2.0 of Session.idl

#ifndef _SESSION_
#define _SESSION_

//#include <CosTransactions.idl> // retracted 2680
#include <CosLifeCycle.idl>
#include <CosObjectIdentity.idl>
#include <CosCollection.idl>
#include <NamingAuthority.idl> // added 2680
#include <CosNotifyComm.idl> // added 2692
#include <CosPropertyService.idl> // added 2682

#pragma prefix "omg.org"
#pragma javaPackage "org.omg"

module Session {

interface AbstractResource;
interface Task;
interface Workspace;
interface AbstractPerson;
interface User;
interface Message;
interface Desktop;

// sequence defintions

typedef sequence<Session::AbstractResource>AbstractResources;
typedef sequence<Session::Task>Tasks;
typedef sequence<Session::Message>Messages;
typedef sequence<Session::User>Users;
typedef sequence<Session::Workspace>Workspaces;
Task and Session V1.0 April 2000 A-1

A

// The following two types have been deprecated by inclusion of
// CosNotification under issue 2692

// enum event_type {ProcessEvent, DataEvent};
// struct ResourceEvent {event_type type; any eventdata;};

// the following types have been introduced as a replacement to the
// usage and containment interface defintions and address issues
// 2681, 2683, 2687, 2688, 2693, 2698, 2699 2700 and 2701.

typedef long LinkKind;
typedef sequence<LinkKind>LinkKinds;

// reference (abstract)
const LinkKind references = 0;
const LinkKind referenced_by = 1;

// usage (abstract)
const LinkKind uses = 2;
const LinkKind used_by = 3;

// consumption
const LinkKind consumes = 8;
const LinkKind consumed_by = 9;

// production
const LinkKind produces = 10;
const LinkKind produced_by = 11;

// process
const LinkKind processes = 12;
const LinkKind processed_by = 13;

// containment
const LinkKind contains = 4;
const LinkKind contained_by = 5;

// rights (abstract)
const LinkKind holds = 6;
const LinkKind grants = 7;

// access rights
const LinkKind accesses = 14;
const LinkKind accessed_by = 15;

// adminstration rights
const LinkKind administers = 16;
const LinkKind administered_by = 17;

// ownership rights
const LinkKind owns = 18;
const LinkKind owned_by = 19;

struct Link {
A-2 Task and Session V1.0 April 2000

A

LinkKind kind;
AbstractResource resource;

};

typedef sequence<Session::Link>Links;

interface AbstractResourceIterator : CosCollection :: Iterator { };
interface TaskIterator : CosCollection :: Iterator { };
interface MessageIterator : CosCollection :: Iterator { };
interface WorkspaceIterator : CosCollection :: Iterator { };
interface UserIterator : CosCollection :: Iterator { };

struct LinkExtent {

LinkKind kind;
AbstractResources seq;
AbstractResourceIterator iterator;

};

typedef sequence<LinkExtent>LinkExtents;

interface LinkExtentIterator : CosCollection :: Iterator { };

// Defintion of BaseBusinessObject has been enhanced to include explicit
// declaration of the domain under which an object identity is scoped.
// Issue 2680 also calls for the retraction of the TransactionalObject
// from the BaseBusinessObject inheritance graph.

interface IdentifiableDomainObject :
CosObjectIdentity::IdentifiableObject
{
readonly attribute NamingAuthority::AuthorityId domain;
boolean same_domain(

in IdentifiableDomainObject other_object
);

};

// Resolution of BaseBusinessObject event semantics under issue 2692

interface BaseBusinessObject :
Session::IdentifiableDomainObject,
CosLifeCycle::LifeCycleObject,
CosNotifyComm::StructuredPushSupplier,
CosNotifyComm::StructuredPushConsumer
{

};

// AbstractResource has been enhanced as a result of a number of
// issues that directly or indirectly effect this base type. These
// issues include 2681, 2683, 2687, 2688, 2693, 2698, 2699 2700 and 2701.

interface AbstractResource :
BaseBusinessObject {
// exception NotRemoved {}; /* already defined under LifeCycleObject */
attribute string name;
// readonly attribute string key; /* deprecated, issue 2698 */
Task and Session V1.0 Full IDL Listing April 2000 A-3

A

readonly attribute TypeCode resourceKind;
exception ResourceUnavailable{ };
exception ProcessorConflict{ };
exception SemanticConflict{ };
void bind(

in Link link
) raises (

ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);
void replace(

in Link old,
in Link new

) raises (
ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);
void release(

in Link link
);
void list_contained (

in long max_number,
out Session::Workspaces workspaces,
out WorkspaceIterator wsit

);
void list_consumers (

in long max_number,
out Tasks tasks,
out TaskIterator taskit

);
 Task get_producer(

); // get_producer replaces list_producers, issue 2701
//void list_producers (
// in long max_number,
// out Tasks tasks,
// out TaskIterator taskit);
void expand (// levels argument removed

in LinkKinds link_types, // argument type string replaced by LinkKinds
in long max_number,
out LinkExtents seq, // return value updated
out LinkExtentIterator iterator // return value updated

);
/* remove operation depricated, issue 2702 */
//void remove () raises(NotRemoved);

};

interface AbstractPerson :
CosPropertyService::PropertySetDef // issue 2682
{

};

interface User :
AbstractResource,
A-4 Task and Session V1.0 April 2000

A

AbstractPerson,
CosLifeCycle::FactoryFinder // issue 2689
{
enum connect_state {connected, disconnected};
readonly attribute connect_state connectstate; // issue 2685
exception AlreadyConnected {};
exception NotConnected {};
void connect()

raises (AlreadyConnected);
void disconnect()

raises (NotConnected);
void enqueue_message (

in Message new_message);
void dequeue_message (

in Message message);
void list_messages(

in long max_number,
out Messages messages,
out MessageIterator messageit);

Task create_task (
// in string key, /*removed, issue 2698 */
in string name,
in AbstractResource process,
in AbstractResource data);

void list_tasks (
in long max_number,
out Tasks tasks,
out TaskIterator taskit

);
Desktop get_desktop ();
Workspace create_workspace (

// in string key, /*removed, issue 2698 */
in string name,
in Users accesslist

);
void list_workspaces (

in long max_number, // issue, 2687
out Session::Workspaces workspaces,
out WorkspaceIterator wsit

);

};

interface Message : AbstractResource {
attribute any message_id;
attribute any message;

};

// Issue 2689
// The following factory interface is defined as the means through which

instances
// of message may be created within an appropriate administrative domain.

interface MessageFactory{
Message create(
Task and Session V1.0 Full IDL Listing April 2000 A-5

A

in any message_id,
in any message

);
};

interface Workspace :
AbstractResource,
CosLifeCycle::FactoryFinder // issue 2689 - target for copy and move
{
void add_contains_resource(

in AbstractResource resource
);
void remove_contains_resource(

in AbstractResource resource
);
Workspace create_subworkspace (

// in string key, /*removed, issue 2698 */
in string name,
in Users accesslist

);
void list_resources_by_type(

in TypeCode resourcetype, // issue 2691
in long max_number,
out AbstractResources resources,
out AbstractResourceIterator resourceit

);
// oneway void resource_event (in ResourceEvent event);

/* depricated, issue 2692 */
};

interface Desktop:Workspace {
void set_belongs_to(

in User user
);
User belongs_to();

};

interface Task : AbstractResource {
exception CannotStart {};
exception AlreadyRunning {};
exception CannotSuspend {};
exception CurrentlySuspended {};
exception CannotStop {};
exception NotRunning {};
attribute string description;
enum task_state {

open, not_running, notstarted, running,
suspended, terminated, completed, closed

};
task_state get_task_state();
User owned_by();
void set_owned_by (

in User new_task_owner
);
void add_consumed(// issue 2695, was add_consumer
A-6 Task and Session V1.0 April 2000

A

in AbstractResource resource
);
void remove_consumed(// issue 2695, was remove_consumer

in AbstractResource resource
);
void list_consumed (

in long max_number,
out AbstractResources resources,
out AbstractResourceIterator resourceit

);
void add_produced(// issue 2695, was add_producer

in AbstractResource resource);
void remove_produced(// issue 2696

in AbstractResource resource);
void list_produced (

in long max_number, // 2687
out AbstractResources resources,
out AbstractResourceIterator resourceit

);
AbstractResource get_processor(); // issue 2688
void set_processor(// issue 2688

in AbstractResource processor
) raises (

ProcessorConflict
);
/* resource_event depricated, issue 2692 */
// oneway void resource_event (in ResourceEvent event);
/* list_history depricated, issue 2692 */
// CosCollection::Iterator list_history (in string filter);
void start () raises (CannotStart, AlreadyRunning);
void suspend () raises (CannotSuspend, CurrentlySuspended);
void stop () raises (CannotStop, NotRunning);

};

// The following two interfaces are deprecated in line with the inclusion of the
 // Link type and supporting operations.

// interface Containment : BaseBusinessObject {};
// interface Usage : BaseBusinessObject {};

};

#endif /* _SESSION_ */
Task and Session V1.0 Full IDL Listing April 2000 A-7

A

A-8 Task and Session V1.0 April 2000

Conformance B
B.1 Proposed Compliance Points

There is only one proposed compliance point, the IDL specification in this
specification.

B.2 Summary of Optional versus Mandatory Interfaces

Task and Session objects define a model of systems that people interact with. For this
model to be complete and consistent all interfaces in this specification are mandatory.
Task and Session V1.0 April 2000 B-1

B

B-2 Task and Session V1.0 April 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	Task & Session with Resource Objects
	1.1 Resource and Process Objects
	1.1.1 Process Objects
	1.1.2 Resource Objects

	1.2 Summary of Optional versus Mandatory Interfaces
	1.3 Proposed Compliance Points

	Task and Session Interfaces
	2.1 IdentifiableDomainObject
	2.1.1 IDL Specification

	2.2 BaseBusinessObject
	2.2.1 IDL Specification

	2.3 Data Types
	2.3.1 IDL Specification

	2.4 Iterators
	2.5 Link
	2.5.1 IDL Specification
	2.5.2 Link Structural Features
	2.5.3 Technical Note
	2.5.4 Usage

	2.6 AbstractResource
	2.6.1 Description
	2.6.2 Structural Associations
	2.6.3 Structured Events
	2.6.4 Structural Features
	2.6.5 IDL Specification
	2.6.6 Declaration of Dependencies
	2.6.7 Workspaces
	2.6.8 Task Consumers
	2.6.9 Task Producer
	2.6.10 Get Resource Tree by Link Kind

	2.7 AbstractPerson
	2.7.1 Description
	2.7.2 IDL Specification
	2.7.3 Structured Events

	2.8 User
	2.8.1 Description
	2.8.2 IDL Specification
	2.8.3 Structural Features
	2.8.4 Structured Events
	2.8.5 Connection State
	2.8.6 Connect Operations
	2.8.7 Message Queue
	2.8.8 User Tasks and Tasklist
	2.8.9 Desktop Operations
	2.8.10 Workspace Operations

	2.9 Message
	2.9.1 IDL Specification

	2.10 Desktop
	2.10.1 Description
	2.10.2 Structural Features
	2.10.3 IDL Specification
	2.10.4 Ownership

	2.11 Workspace
	2.11.1 Description
	2.11.2 Structural Features
	2.11.3 IDL Specification
	2.11.4 Container Operations
	2.11.5 List Resources
	2.11.6 Administration

	2.12 Task
	2.12.1 Description
	2.12.2 Structural Features
	2.12.3 IDL Specification
	2.12.4 Structured Events
	2.12.5 Task Description
	2.12.6 Task State
	2.12.7 Task Owner
	2.12.8 Resource Usage
	2.12.9 Resource Production
	2.12.10 Task Execution

	Complete IDL
	Conformance

