Task and Sessilon CBOs Specification

Version1.0
New Edition: April 2000

Copyright 1999, NIIP Consortium
Copyright 1999, OSM

The companies listed above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adoptersisdirected to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patentsfor which alicense may be
required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patentsthat are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on thispage. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION ISBELIEVED TO BEACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holderslisted
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other specia designations to indicate compliance with these materials. This document containsinformation which is protected
by copyright. All Rights Reserved. No part of thiswork covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Rightin Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object M anagement Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and I1OP are trademarks of the Object Management Group, Inc.
X/Open isatrademark of X/Open Company Ltd.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readersto

report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface
About the Object Management Group
What iISCORBA? e
Associated OMG Documentsocovivevnennnn...
Acknowledgments
1. Task & Session with ResourceObjects
1.1 Resourceand ProcessObjects
111 ProcessObjects ...,
112 ResourceObjects
1.2 Summary of Optional versus Mandatory Interfaces
1.3 Proposed CompliancePoints
2. Task and Session Interfaces
2.1 ldentifiableDomainObject
21.1 IDL Specification
2.2 BaseBusinessObject
221 |IDL Specification
23 DataTypes.
231 |IDL Specification
24 erators
25 LinK ..o
251 IDL Specification
25.2 Link Structural Features
253 Technica Note.......................
254 Usage

Task & Session V1.0 April 2000

Contents

26 AbstractResource
2.6.1 Description
2.6.2 Structural Associations
2.6.3 StructuredEvents
2.6.4 Structural Features
2.6.5 |IDL Specification
2.6.6 Declaration of Dependencies
267 Workspaces,
268 TaskConsumers..............covvunn..
269 TaskProducer
2.6.10 Get Resource Treeby LinkKind
2.7 AbstractPerson
271 Description
2.7.2 |IDL Specification
273 StructuredEvents
2.8 USEr L
2.81 Description i
2.8.2 |IDL Specification
2.83 Structural Features
284 StructuredEvents
285 ConnectionState
2.86 ConnectOperations
287 MessageQueue
2.8.8 User Tasksand Tasklist
2.8.9 Desktop Operations
2.8.10 Workspace Operations
29 MESSAgE
29.1 |IDL Specification
210 Desktop ...
2.10.1 Description ...
2.10.2 Structural Features.
2.10.3 IDL Specification
2104 OWNErshiP .. oove i
211 WOrKSPaCeo ot e
2111 Description ...
2112 Structural Features
2.11.3 |IDL Specification
2.11.4 Container Operations

2.11.5 List Resources
2.11.6 Administration

i Task & Session V1.0 April 2000

Contents

2121 Descriptionciiiiiii...
2.12.2 Structural Features
2.12.3 |IDL Specification
2124 StructuredEvents
2125 Task Description
2126 TaskStateciiiiiininn...
2127 TaskOwnerciiiiii...
2128 ResourceUsage
2.12.9 Resource Production
2.12.10 Task Execution

Appendix A -CompleteIDL

Appendix B- Conformance

Task & Session V1.0 April 2000

Contents

Task & Session V1.0

April 2000

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) isan international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OM G promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.

Task & Session V1.0 April 2000 v

Associated OMG Documents

Vi

Formal documents are OMG’s final, published specifications. Currently, formal
documentation is available in both PDF and PostScript format from the OMG web site.
Use this URL to access the OMG formal documents:
http://www.omg.org/library/specindx.html.

The formal documentation is organized as follows:

® Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

® CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

® CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

® CORBA Services. Common Object Services Specification contains specifications for
OMG’s Object Services.

® CORBA Facilities: Common Facilities Specification includes OMG’'s Common
Facility specifications.

® CORBA Domain Technologies, a collection of stand-alone specifications that relate
to the following domain industries:

« CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented
interfaces between related services and functions.

« CORBA Med: Comprised of specifications that relate to the healthcare industry
and represents vendors, healthcare providers, payers, and end users.

« CORBA Finance: Targets a vitally important vertical market: financial services
and accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
so forth.

« CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each specification by issuing Requests for
Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

Task & Session V1.0 April 2000

Acknowl edgments

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

The following companies submitted and/or supported parts of this specification:

* NIIP Consortium
« OSM

Task & SessionV1.0 Acknowledgments

April 2000

vii

viii Task & Session V1.0 April 2000

Task& SessionwithResourceObjects 1

Contents

This chapter contains the following sections

Section Title Page

“Resource and Process Objects’

“Summary of Optional versus Mandatory Interfaces’

“Proposed Compliance Points”

1.1 Resourceand Process Objects

1.1.1 Process Objects

Process objects, represented as Tasks in this specification, describe User units of work
that bind a User to selected data and process resources. Viewed in terms of model-
view-controller, Tasks are the controller with commands and selections. A Task defines
what instances to process and how to process (workflow, tool, or other executable). A
Task may represent:

® asimple request such as “edit a file” where what is file x and how is editor y

® amore abstract request where what is collection j of files and how is workflow k
(which may contain a hierarchy of workflows)

Tasks that describe simple requests are very similar to objects found in all systems -
commands. Task extends and generalizes the notion of command objects to include
abstract selections which facilitate dynamic binding of data and process resources.

Task objects represent information that is typically not presented at user interfaces.

Task & Session V1.0 April 2000 1-1

1-2

Simple requests (e.g., “edit afile”) create a Task but what is exposed at the user
interface islikely to be the editor, not a presentation of the Task object. Similarly Tasks
using workflows may, or may not, be presented as hooks to workflow viewer and
worklist handler user interfaces.

Task objects represent the decomposition of work, within projects, organizations, and
by people, to atomic units (individual work items) that are independent of, and isolated
from, each other. Dependencies between Task objects can be handled, as in the real
world, by waiting, polling, and requesting. Task objects may only be executed by their
assigned (by resource utilization mechanisms), authenticated User, not by another User.
If aprocess has a Task dependency it must either wait for this dependency to be met or
define rules for satisfying the dependency through alternative paths. Task objects
provide an abstraction of work consistent with how people and projects define and
manage their work. Thisincludes the reality that collaboration between people requires
recognition of their independence and separateness in time and space.

A Task is associated with one, and only one, User. Tasks may, however, depend on
other Tasks. Dependent and independent Tasks have general differences, as described
below, but are represented in the same way.

I ndependent Tasks

® Typically created by direct User requests such as “edit afile” or “print a document”
as unplanned units of work.

® Can be created by other Users.

® Do not depend on other Tasks; however, when workflows are used this may not be
known until runtime.

Dependent Tasks

® Typically created by workflow and project management tools or scheduled by event
handlers, as planned units of work.

® Contain rules for sequencing, synchronization, and event handling.

® Use concurrency mechanisms, configurations, and versions.

Unplanned Tasks typically bind a tool, rather than a workflow process resource, to a
specific data resource. Using the “edit afile’” example theTask object created will bind
the requester (User), to the edit tool selected (process resource), and to the file selected
(dataresource). It is also possible that the request to “edit afile” included the selection
of an edit workflow, rather than an edit tool, and a collection of files, rather than a
single file. This, however, isjust another Task with more abstract selections — the
process Resource is the selected workflow (which may itself invoke a sequence of tools
and other workflows), and the data Resource is the selected collection of files (which
will be selected by the User and/or workflow when the Task executes).

Planned Tasks may contain dependencies on other Users, with other skills. They are
usually controlled by workflows and operate on data resource contexts with types and
versions used by process rules for selection of instances at runtime.

Tasks, planned and unplanned, are scalable atomic units of work that:

Task & Session V1.0 April 2000

capture user requests and assigned work

can be executed by workflows or tools

specify information instances to process and interpret

can have abstract selections that dynamically bind process and data

utilize resources selected by resource assignment mechanisms

contain history for enabling recovery and analysis of cost and performance

model units of work in terms of people and resources to enable collaboration.

1.1.2 Resource Objects

Resource isimplemented with adapters that wrap distributed, |oosely coupled, concrete
resources. Adapted resources are CORBA components which include dynamically
wrapped internet resources, workflows, resource managers, and domain objects.

Resources are collected in Workspaces and used to represent:

process resources such as workflows and applications

data resources which include files, pages, domain, and other CORBA objects.

Resource implementations are responsible for maintaining the integrity and
consistency of the User computing environment. This includes referential integrity
between resources, change notification, and recovery mechanisms.

Resources are like “bookmarks” in browsers that provide:

links to independent resource objects with managed loose coupling
role based links to units of work (Tasks)
resource sharing via CORBA security and concurrency mechanisms

typed resources that use interoperation capabilities provided by CORBA

Task & Session V1.0 Resource and Process Objects April 2000 1-3

Person

? role of

place
User Workspace
unit of work containgr
Task
process datg
Workflow |\ [Domain Resource
Objects Objects Adapter
Resource Wrapped Other CORBA
gmt. || | | Objects |

Objects

Resource,

Figure1l-1 Task and Session with Resource Objects

1.2 Summary of Optional versus Mandatory I nterfaces

Task and Session objects define a model of systems that people interact with. For this
model to be complete and consistent, all interfaces in this specification are mandatory.

1.3 Proposed Compliance Points

1-4

There is only one proposed compliance point, the IDL specification in this
specification.

Task & Session V1.0 April 2000

Taskand Session | nterfaces

Contents

This chapter contains the following sections

Section Title Page
“IdentifiableDomainObject” 2-2
“BaseBusinessObject” 2-3
“Data Types” 2-4
“Iterators’ 2-4
“Link” 2-5
“AbstractResource” 2-9
“AbstractPerson” 2-15
“User” 2-16
“Message” 2-22
“Desktop” 2-23
“Workspace” 2-24
“Task” 2-26

This specification defines cooperative components that form a framework representing

the basic model for users of distributed systems.

Task & Session V1.0 April 2000

2-1

consumes *

AbstractResource

contains *

produced_by 0..1

produces *

resourceKind : TypeCode

name : string

bind()

replace()
release()
list_contained()
list_consumers()
get_producer()
expand()

[\

AbstractPerson

Task

consumed_by *

description: string

get_task_state()
owned_by()
set_owned_by()
add_consumed()
remove_consumed()
list_consumed()
add_produced()
remove_produced()
list_produced()
get_processor()
set_processor()
start()

suspend()

stop()

T

Figure2-1

User

connect_state : enum

accessed_by

connect()
disconnect()
enqueue_message()
dequeue_message()
list_messages()

contained_by *

Message

Workspace

*

message_id
message

add_contains_resource()
remove_contains_resource()

create_subworkspace()

list_resources_by_type()

accesses

create_task()
list_tasks()
get_desktop()
create_workspace()
list_workspaces()

. li

Desktop

set_belongs_to()
belongs_to()

Components

2.1 ldentifiableDomainObject

IdentifiableDomainObject is an abstract base type for BaseBusinessObject

2-2

through which object identity may be managed across independently managed domain.

The attribute domain qualifies the name space associated with the object identity

provided under the IdentifiableObject interface. The Authorityld type is a struct
containing the declaration of a naming authority (1SO, DNS, IDL, OTHER, DCE), and

a string defining the naming entity. The same_domain operation is a convenience
operation to compare two IdentifiableDomainObject object instances for domain
equivalence.

2.1.1 IDL Specification

interface ldentifiableDomainObject :

CosObjectldentity::ldentifiableObject

{

Task & Session V1.0

April 2000

readonly attribute NamingAuthority::Authorityld domain;
boolean same_domain(
in IdentifiableDomainObject other_object
);
3

2.2 BaseBusinessObject

BaseBusinessObject is the abstract base class for all principal Task and Session
objects. It has identity, is transactional, has a lifecycle, and is a notification supplier
and consumer.

2.2.1 IDL Specification

interface BaseBusinessObject :
Session::ldentifiableDomainObject,
CosLifeCycle::LifeCycleObject,
CosNotifyComm::StructuredPushSupplier,
CosNotifyComm::StructuredPushConsumer
{

3

The CosNotification service defines a StructuredEvent that provide a framework
for the naming of an event and the association of specific properties to that event. All
events specified within this facility conform to the StructuredEvent interface. This
specification requires specific event types to provide the following properties as a part
of thefilterable data of the structured event header.

Under the CosNotification specification all events are associated with a unique
domain name space. This specification establishes the domain namespace
“org.omg.session” for structured events associated with AbstractResource and
its sub-types.

Task & Session V1.0 BaseBusinessObject ~ April 2000 2-3

2.3 DataTypes

2.4

CosNotifyComm:: CosNotifyComm::
NotifySubscribe NotifyPublish
subscription_change() offer_change()
CosLifeCycle:: -)
LifeCycleObject CosNotifyComm:: Session::
CosNotifyComm:: StructuredPushConsumer IdentifiableDomainObject
StructuredPushSupplier
copy() domain : Authorityld
move() p_ush_structured_evento
remove() disconnect_structured_push_supplier() | | disconnect_structured_push_consumer() same_domain()
Session:

BaseBusinessObject

Figure2-2 Base Business Object Diagram

These type definitions specify user, task, message, resource, and workspace sequences.

2.3.1 IDL Specification

|terators

typedef sequence<Session::User>Users;

typedef sequence<Session::Workspace>Workspaces;

typedef sequence<Session::Task>Tasks;

typedef sequence<Session::AbstractResource>AbstractResources;
typedef sequence<Session::Message>Messages;

typedef sequence<Session::Link>Links;

The interfaces defined below specify iterators used for the user, task, workspace,
resource, and message segquences.

interface Userlterator : CosCollection :: Iterator { };

interface Workspacelterator : CosCollection :: Iterator { };
interface Tasklterator : CosCollection :: Iterator { };

interface AbstractResourcelterator : CosCollection :: Iterator { };
interface Messagelterator : CosCollection :: Iterator { };
interface Linklterator : CosCollection :: Iterator { };

Task & Session V1.0 April 2000

2.5 Link

The core Task and Session interfaces are:

AbstractPerson, defines information about people. In this model it is a
placeholder for party and organization models.

User, defines people as distributed computing users with messages and state as
well as workspace, task, and resource associations.

Message, defines basic interface for sending asynchronous messages to Users
Desktop, links Users to Workspaces.

Workspace, defines private and shared places for Resources and Tasks.
Task, defines and manages of User units of work.

AbstractResource, links resource objects to Task and Workspace objects.

Link, defines a resource dependency.

The Link typeisa struct used within the Task and Session framework as an argument
to operations that establish relationship dependencies between resources such as usage
and containment. The Link type is used as an argument to the bind, replace, and
release operations of an AbstractResource and as a type exposed under the
expand operation.

2.5.1 IDL Specification

typedef long LinkKind;
typedef sequence<LinkKind>LinkKinds;

/I reference (abstract)
const LinkKind references = 0;
const LinkKind referenced_by = 1;

/l usage (abstract)
const LinkKind uses = 2;
const LinkKind used_by = 3;

/I consumption
const LinkKind consumes = 8;
const LinkKind consumed_by = 9;

/I production
const LinkKind produces = 10;
const LinkKind produced_by =11;

/I process
const LinkKind processes =12;
const LinkKind processed_by = 13;

Task & SessionV1.0 Link April 2000 2-5

2-6

/I containment

const LinkKind contains = 4;

const LinkKind contained_by = 5;

Il rights (abstract)

const LinkKind holds = 6;
const LinkKind grants = 7;

/I access rights

const LinkKind accesses = 14;
const LinkKind accessed_by = 15;

/ adminstration rights

const LinkKind administers = 16;
const LinkKind administered_by = 17;

/I ownership rights

const LinkKind owns = 18;

const LinkKind owned_by = 19;

struct Link {

LinkKind kind;
AbstractResource resource;
b
struct LinkExtent {
LinkKind kind;
AbstractResources seq;
AbstractResourcelterator iterator;
b

2.5.2 Link Sructural Features

Name Type

Purpose

kind LinkKind

A value qualifying the kind of relationship thelink
represents.

resource | AbstractResource

The abstract resource that is the subject of the
association.

2.5.3 Technical Note

In the absence of a value based mechanism to express the kind of links that can exist
between resources, the following hierarchy shall be assumed in evaluation of the
correspondence of a link kind during the execution of the expand operation on
AbstractResource. Non shaded blocks indicate abstract link kind values; whereas,
shaded blocks indicate concrete link kinds.

Task & Session V1.0

April 2000

References
refe ren ces 0
reerenced_by 1
Usage Containment Rights
uses 2 contains 4 holds 6
used_by 3 contained_by 5 grants 7
Consumption Production Processing Aacess Ownership
consume s produces 10 proceses 12 accesses 14 owns 18
consumed_by produced_by 11 processed_by 13 accessed_by 15 owned_by 19
Administration
administers 16
administered by | 17

Figure2-3 Implicit hierarchy of LinkKind values

For example, invoking the apply operation on a User with an abstract link_kind of
authorizes will result in the return of a sequence of concrete LinkExtent instances
that expose the extent of the respective relationship applicable to the type of resource.
Specifically, the sequence for the example query will return one LinkExtent
referencing owns as the LinkKind (because this is the only concrete kind of link
authorized by a user). A LinkKind of references would return all possible links
because references is the most implicitly abstract kind of link.

2.5.4 Usage

The Link typeis a generalized utility that enables an AbstractResource, User, Task or
Workspace to declare a dependency which is exposed directly under the expand
operation on AbstractResource, and indirectly through related list operations.

The Link typeis provided as a means through which the type and subject resource of a
dependency may be declared by the resource raising the dependency to the target.
Declaration of dependency between resources enables referential integrity between
resources irrespective of technology or administrative domain boundaries. Declaration,
modification, and retraction of dependencies are achieved through invocation of the
bind, release, and replace operations on the AbstractResource type by a client
resource.

Task & SessionV1.0 Link April 2000 2-7

For example, a Task may wish to register a dependency on a data resource in another
domain. The Task invokes the bind operation on the target resource using itself as the
resource argument, and consumes as the link kind. A subsequent query on the
Task using the expand operation will expose a Link referencing the resource under
the resource under the consumes link kind (i.e., the Task consumes the resource).
An expand query on the target resource will return a Link referencing the Task under
the reciprocal link kind of consumed_by (i.e., the resource is consumed_by the
Task).

The following table details the LinkKind constants, a description of the constant
value, its cardinality, and its reciproca link kind.

Table 2-1 LinkKind exposed by AbstractResource

LinkKind Description Cardinality | Reciprocal
consumed_by | The resource argument references the Task that * consumes
this resource is consumed by.
processes The resource argument references the Task that * processed_by
this resource is acting as a processor to.
produced by The resource argument references the Task that 0,1 produces
this resource is produced by.
contained by | References the Workspace that this resource is * contains
contained by.
Table 2-2 LinkKind exposed by User
LinkKind Description Cardinality | Reciprocal
owns The resource argument references a Task * owned_by
owned by this User.
accesses References a Workspace that this User is * accessed by
authorized to access
administers References a Workspace that this User is * administered_by
authorized to administer, granting the user the
right to modify access lists.
Table 2-3 LinkKind exposed by Task
LinkKind Description Cardinality | Reciprocal
consumes The resource argument references an * consumed_by
AbstractResource that this Task is consuming.

2-8

Task & Session V1.0 April 2000

Table 2-3 LinkKind exposed by Task (Continued)

processed_by The resource argument references an 0.1 processes
AbstractResource that this Task is processed by.

produces The resource argument references an * produced by
AbstractResource that this Task is producing.

owned_by The resource argument references aUser that this | 1 owns
Task is owned by.

Table 2-4 LinkKind exposed by Workspace

LinkKind Description Cardinality Reciprocal

contains The resource argument references an * contained_by
AbstractResource that this Workspace contains.

accessed by The resource argument references a User * accesses
included in the access control list of this
Workspace.

administered by | The resource argument references a User * administers

included in the access control list of this
Workspace, that has the right to modify the
Workspace ACL.

2.6 AbstractResource

2.6.1 Description

An AbstractResource is a transactional and persistent CORBA objects contained in one
or more Workspaces. They may be selected, consumed, and produced by Tasks.
AbstractResources are found and selected by tools and facilities that present lists of
candidate resources. These lists may be filtered by things like security credentials, by
type, and by implementation. CORBA service Trading can be used to build resource
candidate lists. Resources selected from the lists are then wrapped by the tool or
facility as AbstractResources. Task and Workspace are dependent on the
AbstractResources they use and contain. Implementations are required to notify Task
and Workspace of changes and defer deletion requests until all linked Tasks signal their
readiness to handle.

Task & Session V1.0 AbstractResource April 2000 2-9

Session:
BaseBusinessObject

7

Session::
AbstractResource

resourceKind : TypeCode
name : string

bind()

replace()
release()
list_contained()
list_consumers()
get_producer()
expand()

Figure2-4 AbstractResource Diagram

2.6.2 Structural Associations

Table 2-5 LinkKind exposed by AbstractResource

LinkKind Description Cardinality Reciprocal

consumed_by | The resource argument references the Task that * consumes
this resource is consumed by.

processes The resource argument references the Task that * processed by
this resource is acting as a processor to.

produced_by The resource argument references the Task that 01 produces
this resource is produced by.

contained by | The resource argument references the Workspace | * contained
that this resource is contained within.

2-10

Attributes
Name Type Purpose
name string Resource name.

resourceKind | CORBA::TypeCode

The most derived type that this resource

represents.

Task & Session V1.0 April 2000

Table 2-6 AbstractResource Filterable Data Properties

Name Type Description

timestamp | TimeBase::UtcT | Date and time of to which the event is issued.

source AbstractResource | Abstract resource raising the event.

2.6.3 Sructured Events

Table 2-7 Life Cycle Structured Event Table

Event: Description

move Notification of the transfer (move) of a AbstractResource under which
the identity is changed. The source of the event supplies the old
instance identity.

Supplementary properties:

new AbstractResource | Reference containing the new object
identity.
remove Notification of the removal of an AbstractResource

2.6.4 Sructural Features

Table 2-8 Feature Event Table

Event: Description

update Notification of the change of avaue of an attribute from value x to
value y, where x represents the old value and y represents the new
value.
Supplementary properties:
feature string Attribute name.
old any Old value.
new any New value.

bind Notification of the addition of alink from a dependant resource to this
resource.

Supplementary properties:

link Link The link defining the dependency.

replace Notification of the replacement of alink under this resource.

Supplementary properties:

old Link The link being replaced.

Task & Session V1.0 AbstractResource April 2000 2-11

Table 2-8 Feature Event Table

new Link The replacement Link.

release

Supplementary properties:

link Link The link being released.

2.6.5 IDL Specification

interface AbstractResource :

BaseBusinessObject {
attribute string name;
/l readonly attribute string key; /* deprecated, issue 2698 */
readonly attribute TypeCode resourceKind;
exception ResourceUnavailable{ };
exception ProcessorConflict{ };
exception SemanticConflict{ };
void bind(
in Link link
) raises (
ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);

void replace(
in Link old,
in Link new

) raises (
ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);

void release(
in Link link

);

void list_contained (
in long max_number,
out Session::Workspaces workspaces,
out Workspacelterator wsit
);
void list_consumers (
in long max_number,
out Tasks tasks,
out Tasklterator taskit
);
Task get_producer(
); I/ get_producer replaces list_producers, issue 2701
/Ivoid list_producers (
/I inlong max_number,

Task & Session V1.0 April 2000

Notification of the release of a dependency link from this resource.

/I out Tasks tasks,

/I out Tasklterator taskit);

void expand (// levels argument removed
in LinkKinds link_types, // string replaced by LinkKinds
in long max_number,
out LinkExtents seq, // return value updated
out LinkExtentlterator iterator // return value updated

);

¥

2.6.6 Declaration of Dependencies

The bind, replace and release operations enable a client to declare a dependency on an
AbstractResource. When a Task, User, or Workspace establishes a usage of
containment dependency on an AbstractResource, it is required to invoke the bind
operation. When dependencies are changed, such as the modification of the owner of a
Task or the replacement of a resource within a workspace, an implementation is
required to invoke the replace operation. When a relationship is retracted, as a result
of the completion of atask, an implementation is required to invoke the release
operation on resources to which it has established a dependency.

void bind(
in Link link

) raises (
ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);

void replace(
in Link old,
in Link new

) raises (
ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);

void release(
in Link link

);

Exceptions raised under the bind and replace operations include
ResourceUnavailable, ProducerConflict, and SemanticConflict. The
ResourceUnavailable and ProducerConflict exception may be raised by an
implementation to indicate that the resource that is the target of abind or replace
operation is unable to fulfill the request. ResourceUnavailable may be raised as a
result of a concurrency control conflict. The ProducerConflict exception may be
raised in a situation where the producer resource is unable to support the association
(for example, as aresult of a processing capacity limit). A SemanticConflict
exception may be raised if an attempt is made to violate the cardinality or type rules
concerning the link kind referenced under the Link argument.

Task & Session V1.0 AbstractResource April 2000 2-13

2.6.7 Workspaces

This operation returns a list of Workspaces containing this resource.

void list_contained (
in long max_number,
out Session::Workspaces workspaces,
out Workspacelterator wsit

2.6.8 Task Consumers

This operation returns a list of Tasks using or consuming this resource.

void list_consumers (
in long max_number,
out Tasks tasks,
out Tasklterator taskit

2.6.9 Task Producer

This operation returns the Task that produced this resource.

Task get_producer();

2.6.10 Get Resource Tree by Link Kind

This operation asks an AbstractResource to return a set of resources linked to it by a
specific relationship. Objects returned are, or are created as, AbstractResources. This
operation may be used by desktop managers to present object relationship graphs.

struct LinkExtent {
LinkKind kind;
AbstractResources seq;
AbstractResourcelterator iterator;

3
typedef sequence<LinkExtent>LinkExtents;
/l from AbstractResource
void expand (
in LinkKinds link_types,
in long max_number,

out LinkExtents seq,
out LinkExtentlterator iterator

2-14 Task & Session V1.0 April 2000

Table 2-9 Expand Argument list

Argument

Description

link_types

A sequence of LinkKind structures that defines the set of abstract
of concrete link kinds that the expand operation should evaluate.

max_number

The maximum number of elements to be included in the seq of
exposed LinkExtent instances.

seq

A sequence of LinkExtent structures.

iterator

An iterator of LinkExtent structures.

2.7 AbstractPerson

2.7.1 Description

The AbstractPerson interface is a placeholder for organization and other models
that define information about people. When AbstractPerson uses an organization
model it obtains information about Users (role_of AbstractPerson) is including things
like roles and membership within projects and organizations.

AbstractPerson inherits from the interface
CosPropertyService::PropertySetDef, providing mechanisms through which
implementations may attribute features to a person such as a name, address
information, or history.

2.7.2 IDL Specification

interface AbstractPerson :
CosPropertyService::PropertySetDef {

b

Task & Session V1.0 AbstractPerson April 2000 2-15

CosPropertyService::
PropertySetDef

!

Session::
AbstractPerson

Figure2-5 AbstractPerson Diagram

2.7.3 Structured Events

Table 2-10 AbstractPerson Structure Event Table

Event Description

property Notification of the change in the value of a property

Supplementary properties:

old Property The old value of the property,
possibly null in the case of a new
property addition.

new Property The value of the property, possibly
null in the case of property deletion.

2.8 User

2.8.1 Description

User is arole of aperson in a distributed computing environment. Information about
the person is inherited by User. In this specification Users have tasks and resources
located in workspaces on a desktop, as well as a message queue and a connection state.

A specialization of User can add things like preferences.

2.8.2 IDL Specification

interface User :
AbstractResource,
AbstractPerson,

2-16 Task & Session V1.0 April 2000

CoslLifeCycle::FactoryFinder // issue 2689
{
enum connect_state {connected, disconnected};
readonly attribute connect_state connectstate; // issue 2685
exception AlreadyConnected {};
exception NotConnected {};
void connect()
raises (AlreadyConnected);
void disconnect()
raises (NotConnected);
void enqueue_message (
in Message new_message);
void dequeue_message (
in Message message);
void list_messages(
in long max_number,
out Messages messages,
out Messagelterator messageit);
Task create_task (
/I in string key, *removed, issue 2698 */
in string name,
in AbstractResource process,
in AbstractResource data);
void list_tasks (
in long max_number,
out Tasks tasks,
out Tasklterator taskit
);
Desktop get_desktop ();
Workspace create_workspace (
/I in string key, [*removed, issue 2698 */
in string name,
in Users accesslist
);
void list_workspaces (
in long max_number, // issue, 2687
out Session::Workspaces workspaces,
out Workspacelterator wsit

);

Task & SessionVV1.0 User April 2000 2-17

Task

AbstractResource

I\

AbstractPerson

T

User

*

administers

Message

Workspace

connect_state : enum

owns

2-18

owned_by

connect()
disconnect()
enqueue_message()
dequeue_message()
list_messages()
create_task()
list_tasks()
get_desktop()
create_workspace()
list_workspaces()

*

accessed_by

Desktop

*

*

accesses

administered_by

Figure2-6 AbstractResource - User Diagram

2.8.3 Sructural Features

Table 2-11 LinkKind exposed by User

LinkKind

Description

Cardinality

Reciprocal

owns

The resource argument references a Task
owned by this User.

*

owned_by

accesses

References a Workspace that this User is
authorized to access

accessed by

administers

References a Workspace that this User is
authorized to administer, granting the user
the right to modify access lists.

administered by

Task & Session V1.0

April 2000

Table 2-12 Supplementary associations

Feature Type Description
desktop Desktop Link to resources and task in a distributed
workspaces.
messages Messagelterator | Receives asynchronous messages for this user.
Attributes
Name Type Purpose
connectstate connect_state Declaration of the connected state of a physical

user to the system, may be one of the
enumerated values connected or
disconnected.

2.8.4 Sructured Events

Table 2-13 User Structure Event Table

Event Description

connected | Notification of the change of the connected state of a User.

Supplementary properties:

value boolean True indicated that the user is connected,
falseindicates that the user is disconnected.

2.8.5 Connection Sate

This represents the basic current state of a User connection (logically at, or not at, the
desktop). Asynchronous processes and events are managed in the disconnected state
within the limitations this state imposes. When the User reconnects informational
messages and actions required, if any, are presented.

Information which people expect to be retained between connections is persistent. The
currency of this information must be sufficient to provide consistency over
synchronous and asynchronous (including abrupt system failure) terminations.

enum connect_state {

connected,
disconnected

b

readonly attribute connect_state connectstate;

Task & SessionVV1.0 User April 2000 2-19

2-20

Table 2-14 connect_state Enumeration Table

Value Purpose
connected The U