Date: January 2012

UML Profile for Advanced and Integrated
Telecommunication Services (TelcoML)

FTF Beta 1

OMG Document Number:  ptc/2012-01-02
Standard document URL.: http://www.omg.org/spec/TelcoML/
Associated File(s)*:

http://www.omg.org/spec/TelcoML/20110601
mars/11-06-07 http://www.omg.org/spec/TelcoML/20110601/TelcoML_CompositionProfile.xml

http://www.omg.org/spec/TelcoML/20110602
mars/11/06-08 http://www.omg.org/spec/TelcoML/20110602/TelcoML_EnablerLibrary.xml

http://www.omg.org/spec/TelcoML/20110603

mars/11-06-05 http://www.omg.org/spec/TelcoML/20110603/TelcoML_CompositionProfile.papyrus.uml
http://iww.omg.org/spec/TelcoML/20110603/TelcoML_EnablerLibrary.papyrus.uml
http://iww.omg.org/spec/TelcoML/20110603/TelcoML_EnablerLibrary.txt

* origina files: Normative: mars/11-06-07, mars/11-06-08
Non-normative; mars/11-06-05

This OMG document replaces the submission document (mars/2011-08-06, Alpha). It is an OMG
Adopted Beta Specification and is currently in the finalization phase. Comments on the content of
this document are welcome, and should be directed to issues@omg.org by May 21, 2012.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on September 21,
2012. If you are reading this after that date, please download the available specification from the
OMG Specifications Catalog.



Copyright © 2011, France Telecom

Copyright © 2011, International Business Machines Corporation
Copyright © 2011, Object Management Group

Copyright © 2011, Unisys

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsis for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. Thislimited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OM G specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.



DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entirerisk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.SA.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMl
Logo™, CWM™ CWM Logo™, [IOP™  IMM™ /MOF™  OMG Interface Definition Language (IDL)™, and
SysML ™ are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) isand shall at al times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.






OMG’s|ssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process
we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http: //mwww.omg.org, under
Documents, Report a Bug/lssue (http://www.omg.org/technol ogy/agreement.htm).






Table of Contents

P O A e - Vil
S Yo 0] o 1 PP PTPPTRN 1
A Of0] 0] {0]0 4 1F=1 0 (o1 = R ru TR 1
3 NOMMALIVE REIEIENCES ... ettt 1
4 Terms and DefiNITIONS ....oeie ettt 2
5 SYMDOIS o 3
6 AdAItioNal INTOIrMATION ...eeeie e e et 3
6.1 ACKNOWIEAGEMENLS ... e e e e e e e eeeeaeeens 3

T TEICOML OVEIVIEW ..o e e e 5
4% R 101 1 (o 1o U {3 1o ] o IR 5

7.2 Relation with other StanNdardS ........cooovieii e 5

7.3 Service Delivery ENVIFONMENT .....uuuuuiiiiiii et e e e e e eeeeeeeenaeeees 6

8 TelcoOML Enabler LIDrary ... 7
7 M 0 A (o 1o U {3 (o ] o IR 7

P Od 11 1V/=T o (o] ISR 7

8.3 PaCKAQE SITUCLUIE ....ciiiiie ittt e e e e e e e e e e e eeeesaeeees 7

8.3.1 GENEIC MESSAQING -.vuvvvrrrreiieeeeeiesiiiiuttteereereaeseesaassasateaeereteaaeaesaaansrrarareereeeeeesssanansnrensnnes 7

SR I (01 =] g £= Tl =T B 1<) {1 0111 0] LT 8

8.4 Short Messaging (SMS) ... 10

LI N R @ AV =T /1<) TR 10

8.4.2 INTEITACE DIINITIONS ..oieeieteeee et ettt ettt e et et e et e ettt e e ee e e e e et reeeeernreen 11

8.5 Multimedia MessSaging (MMS) ......uuuuiiiiiii e e e e e e e e 18

LIRS T R @ V=T /1<) AT 18

8.5.2 INTEITACE DEIINITIONS ..oieeeiie et ettt e et et e et e e et e e e e e e e ea e et reeaeernrean 19

oI T O o] G o N O || IR 27

LS T R @ V=T /=) AT 27

8.6.2 INTEITACE DEIINITIONS ..iieeiet ettt ettt e et et e et e e et e e e e re e e et reeeeernreen 28

A I Tox- 1 1] o [T 31

LT R O V=T AV [ VAT 31

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 i



A 41 (=T g £= o =R =] 1 11T T T 31

8.8 SYNCNIONIZALION .....ciiee i e e e e e e e e e e e e e eeeeenannnnes 33
B.8.1 OVEIVIEW ...teeiieiiiiiiee e ettt e ettt e e ettt e e e e sttt e e e e sttt e e e s ekt bt e e e e eh bt e e e e e sabeee e e e e nabeeeeeennbeeeeeannnes 33

RS T2 ©o] (= PP PPPPPPPPPPPRPTR 34

8.8.3 Interface DEefiNItiONS ........ueiiiiiiiiiie e 35

8.9 Voice recognition and TTS.. ... ittt e e e e e e eeeeeeeanaes 45
8.9.1 OVEIVIEW ...teiiieiiiitiie ettt ee ettt e e e ettt e e e e s ittt e e s e ettt e e e s an b b et e e e e ah b et e e e e aabeeee e e e asbeeeeeeanbeeeeennnnes 45

8.9.2 Interface DEefiNItIONS ........ueiiiiiiiiii et 45

S0 IO I €17 Ton PO PPPUPRPPPRTR 52
8.L0.1 OVEIVIEW ..eveeieiiuiiieeeeittteee e ettt e e e e sttt e e e s bt eee e e saba e et e e s nbbeee e e sabbeeeeeanbbbeeeeeanbbeeeeeantbaeeennn 52

8.10.2 Interface DEfiNItIONS .......ooiiiiiiiieie i e e eneees 52

9 TelcoML Composition Profile ...........coiiiiiiiiiii e 57
O.1 OVEIVIBW .ottt e e e e e e e e e e e et ettt ettt bt e e e e e e e e e e e e e e aeeeeeaesebnnnn s 57
9.1.1 RelationShip t0 SOAML .....ciiiiiiii e e e 57

9.1.2 Relationship t0 VOICE Profile ..o 57

9.1.3 Relationship to CCXML and VOICEXML .....cccoiiiiiiiiiiiieiee e 57

S I Y = V1 o I oo o =T o) U 58
9.2.1 SEIVICE INTEITACE ....eeeieiiiiiee ettt e e e e e e e e e e a e eeaaaeeas 58

9.3 Most commonly used stereotypes from SoaML ........ccccccoeeeeiiiiiiiieeeieiiceeen, 59
9.3.1 Annotating ServiCe INtEIMACES ........uuiiiiiiiii e a e 59

9.3.2 Using graphical or textual NOtAtION ...........cciooiiiiiiiiiiiiiiiie e 59

9.4 TelCOML SPECITIC SLEIEOLYPES ...vuiiiiie e e eee ettt e e e e e 59
9.4.1 Service 10giC related StErEOLYPES.....uuuuiiiiiiiie et e i e e 59

9.4.2 Voice and multi-modal interaction related Stereotypes .........ccccevvvvveveeeeeeveiiccinieieeeeeeenn 61

9.4.3 Annotations for service interface elementS..........ccooiiviiiiiiiieee e 63

9.4.4 Additional presentation OPtIONS ..........uuvviiiiieeere i e e e e s e e e e e e s 64

0.5 EXAMPIES oottt a e e e e e e e e eeeeararaana 65
9.5.1 "Send by SMS weather in Paris translated in English” ..., 65

9.5.2 The Dinner Planning eXampPle ......ccvuviiiiiiiiee i e e e st e e e e e e nnrneee s 67
ANNEX A: SES/ISMI Draft ..o 71

i UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG's specifications include: UML® (Unified
Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technol ogy/documents/spec_catal og.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
e XMI

. CWM

. Profile specifications.

OMG Middleware Specifications
« CORBA/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
. CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
e CORBAservices

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 Vil



e CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. (as of
January 16, 2006) at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technol ogy/agreement.htm.

viii UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



1 Scope

The objective of this specification is to define a UML Profile for designing advanced and integrated Telecommunication
services.

An advanced and integrated telecom service generally means a service that exploits the convergence of communication
networks - landline, wireless and voice, and in the same time takes advantage of the plethora of facilities accessible from the
World Wide Web. Sensihility to user context - like presence, localization, user preferences and use of communication means
(like SMS or voice messaging) are some of typical ingredients that appear in innovative telecommunication services that
operators or third party service providers would like to offer to end-users. Application of model-driven techniques for an agile
development of this new kind of serviceswill be facilitated by the definition of a domain specific UML profile.

This specification standardizes firstly the UML representation of a selected set of service interfaces of typical
telecommunication facilities (the TelcoML Enabler Library). Secondly, among different possibilities offered by UML to
represent service logic, this specification selects one convention to represent service compositions (the TelcoML Composition
profile).

The UML Profile defined by this specification is defined as a speciaization of the SoaML UML Profile (see normative
references) and is named Telecommunication Modeling Library (TelcoML).

2 Conformance

An implementation that claims conformance to this specification needs to refer to one or two of the two conformance levels
defined here:

» TelcoML Editing: A UML tool that has pre-installed the model elements of the TelcoML profile: the interface
definitions specified in the Enabler Library, the list of stereotypes of the Composition Profile. Such tool should provide
means to edit state machinesin line with TelcoML notation conventions defined by the Composition Profile. In
addition such tool should provide export facility using either UML compliant XMI 2.1 or ALF representation.

» TelcoML Execution: A UML tool that supports TelcoML Edition compliance level and that providesin addition means
to execute or simulate service compositions specified using the TelcoML composition profile. Thisimplies meansto
connect service interfaces in the Enabler Library to concrete implementations of these telecommunication facilities.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

List of normative references
1. Object Constraint Language 2.0, OMG document number formal/2006-05-01

2. Service oriented architecture Modeling Language (SoaML), OMG document number ptc/2009-12-09
3. UML v2.1.2 Superstructure Specification, OMG document number formal/07-11-02
4. Action Language for Foundational UML (ALF), OMG document number ptc/10-10-05.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 1



5. MOF v2.0 Specification, OMG document number formal/06-01-01
6. MOF 2.0/XMI Mapping v2.1.1 Specification document number formal/07-12-01

Normative parts of TelcoML
Thefollowing isincluded as part of this specification:

« XMI Document for TelcoML mars/2011-02-03

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Unified Modeling Language (UML)

The Unified Modeling Language, an adopted OMG standard, is a visua language for specifying, constructing and
documenting the artifacts of systems. It is a general-purpose modeling language that can be used with all major object and
component methods, and that can be applied to al application domains (e.g., health, finance, telecommunications, aerospace)
and implementation platforms (e.g., JEE, .NET).

SoaML Specification — FTF Beta 2 10

Modeling language that can be used with all major object and component methods, and that can be applied to all application
domains (e.g., health, finance, telecommunications, aerospace) and implementation platforms (e.g., JEE, .NET).

XML Metadata Interchange (XMI)

XMl isawidely used interchange format for sharing objects using XML. Sharing objectsin XML is acomprehensive solution
that builds on sharing data with XML. XMI is applicable to a wide variety of objects: analysis (UML), software (Java, C++),
components (EJB, IDL, CORBA Component Model), and databases (CWM).

EXtensible Markup Language (XML)

Extensible Markup Language (XML) is a simple, very flexible text format derived from SGML (ISO 8879). Originally
designed to meet the challenges of large-scale el ectronic publishing, XML isalso playing an increasingly important rolein the
exchange of a wide variety of data on the Web and elsewhere. RDF and OWL build on XML as a basis for representing
business semantics on the Web. Relevant W3C recommendations are cited in the RDF and OWL documents as well as those
cited under Normative References, above.

One API Specification

GSMA OneAPI initiative defines a commonly supported set of lightweight and Web friendly APIsto allow maobile and other
network operators to expose useful network information and capabilities to Web application developers. It aims to reduce the
effort and time needed to create applications and content that is portable across mobile operators.

2 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



5 Symbols

UML: Unified Modeling Language

MOF: Meta Object Facility

SoaML: Service Oriented Modeling Language
SMS : Short Message Service

MMS: Multimedia Message Service

6 Additional Information

6.1 Acknowledgements

The following persons were mainly responsible for the specification:

Mariano Belaunde (Orange Labs), Irv Badr (IBM), Jenny Huang (AT&T), Huascar Espinoza (ESI), Sumeet Mahotra
(Unisys), Hendrik Berndt (DOCOMO Euro Labs)

The following companies submitted this specification:
« International Business Machines
» Unisys
The following companies supported this specification:
 France Telecom - Orange Labs
o AT&T
» European Software Institute
» DoCoMo Communication Laboratory Europe GmbH
« SINTEF
- Telefonica

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 3



UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



-

7.1

TelcoML Overview

Introduction

This clause is normative except sub clause 7.3. This clause gives an overview of TelcoML, a UML profile for advanced and
integrated telecommunication services built on top of SoaML language.

SOA isan architectural paradigm for defining how people, organizations and systems provide and use services to achieve
results. SOAML is a standard extension to UML 2 that facilitates these services modeling. The TelcoML provides additional
extension to SOAML with the consideration of real-time communication services and many of the existing communication
services and architecture standards.

The value proposition of the TelcoML isto provide acommon abstraction to all existing communication services standards so
that tools can be built for the Communication Service Providers (CSP) to model variety of services in a consistent manner.

The TelcoML specification consists of the following normative constituents:

7.2

The TelcoML Enabler Library: A set of SoaML interfaces representing telecom specific facilities. It comprises
management interfaces for services and variousinterfaces for communication facilities (like SM'S messaging, presence
and so on). Theinterfacesincluded here are generally re-formulations of existing APIsalready standardized in different
telecom-oriented standardization bodies (mainly TMF, GSMA, OMA).

The TelcoML Service Composition Profile: a specialization of SoaML UML profiles to enable specifications of
composite services with enhanced capacities like voice interaction support. UML State Machines are used here with
some specific notational convention (transition centric notation, additional icons).

Relation with other standards

This specification has strong connection with the following standard coming from various standardization bodies:

OASIS - OASIS SOA Reference Model provides the foundation for SoaML, so transitively it is aso fundamental to
TelcoML, especialy for I T capabilities for Service Component definition and combination

TM Forum - The Software Enabled Services (SES) Management Interface (SMI) - which is actually in draft state -
will be considered for integration in future releases of the TelcoML library. Annex A provides atemporary non-
normative SoaML representation of this API. Besides that TM Forum Frameworx defines an architecture for service
management Along with SES Reference Architecture and other related work such as | Psphere for B2B interactions of
service trading. The TM Forum spec. will help to complete the picture of service lifecycle management (LMM) from
concept, design, deploy, operation to retirement.

OMA - OMA isstandardizing various telecom enablers (like Presence). Some of them have been reformulated asUML
interfaces and integrated to TelcoML library. Notice however that TelcoML only retain functional aspects of enablers
definitions (protocol aspects are skipped)

GSMA - The One APIsfrom GSMA s the successor of Parlay/ParlayX APIs. One APIs are reformulated in terms of
UML and integrated in TelecoML.

W3C - The VoiceXML standard defines concepts and XML vocabulary for execution of voice based interaction. Some
voice based concepts are present in TelcoML in the IVR Facility enabler (Clause 8.7) and in the composition profilein
Clause 9.4.2. VoiceXML represents an implementation technology to support voice features exposed by TelcoML.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 5



7.3  Service Delivery Environment

In this sub clause we recall architectural considerations of a service delivery environment, with service delivery platforms
(SDPs) at its core. SDPswill typically provide aframework that consists out of capabilities for service creation, composition,
execution and service control. SDPs will consist out of service enabler components that are either service independent,
service specific or both. Examples of service delivery support functions that an SDP may offer are shown in Figure 7.1. The
classification of supporting function follows TM Forum Solution Frameworks (Frameworx).

Creation of New Services Services to Optimize Customer Centric Services
and Organizational arch. Operational Efficiency

Figure 7.1 - Example service delivery supporting functions

Most of the service interfaces included in the TelcoML Enabler Library (Clause 8) fit in the first category: creation of new
services. An exception is the SES SMI interface which fits in the BSS part. The Composition Service Profile (Clause 9)
fits in the first category since its purpose is the specification of executable composite services.

Note: In future releases of this specification other kind of interfaces could be incorporated, like the OneAPI Billing
interface as well as additional interfaces coming from OneAPI v2.0 (like user data management).

6 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



8 TelcoML Enabler Library

8.1 Introduction

This clause is normative, with the exception of some sub-sections explicitly marked as non normative.

The TelcoML Enabler library defines a set of predefined service interfaces to facilitate the definition of composite
services accessing well-known telecommunication facilities (called enablers) usually provided by telecom operators.
These service definitions are provided in a sufficient technology agnostic way to enable independence in respect to the
enabler provider and to the usage of a specific implementation technol ogy.

Whenever possible the service interfaces defined here are reformulations in UML of pre-existing enablers defined in
telecom-oriented standardization bodies and implemented by telecom operators.

8.2 Conventions

Each enabler is described using at |least two sub-clauses:
» The“Overview” gives a short explanation of the purpose of the enabler.

« Anoptiona “Context” provides additional information that may be of interest to understand the design of the interface.
If present, thisis non normative.

» The“Interface Definitions’ givesthelist of interfaces defined for the enabler.
For each service interface, there is a specific section, containing:
» The“DataTypes’ liststhe datatypesin graphical form and with additional textual explanations.

» The“Operations’ provides the details on each service operation:
« firstly aheader providing in short the semantics of the operation,
« -secondly the complete signature (with all multiplicities),
« -then, if useful for the comprehension, an additional explanation of the purpose of the operation,

finally three sections: parameters, outputs and exceptions.

8.3 Package Structure

Technically the TelcoML Enabler Library is defined by a UML Package containing a list of sub-packages corresponding
to each sub clause (“ Generic Messaging,” “ Short Messaging,” and so on). The SoaML profile applies to this package. The
Servicelnterface stereotype used in the enabler library is the stereotype defined by SoaML.

8.3.1 Generic Messaging

8.3.1.1 Overview

This enabler provides a simplified interface to send messages using different medias (SMS, SMS, EMAIL, Instant
Messaging and Voice). In contrast with complete SMS and MM S facilities (see next sub clauses), this enabler only allows
using individually one of the messaging methods with a limited set of parameters.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 7



8.3.2 Interface Definitions

8.3.2.1 Messaging Interface

The Messaging interface provides one operation for each communication mode.

<<Servicelnterface>>
Messaging

+sendSMS(recipient: String, senderString, body: String): String

+sendMMS(recipient: String, sender: String, body: String, attachment: File): String
+sendEmail(recipient: String, sender: String, title: String, body: String, attachment: File): String
+sendIM(recipient: String, sender: String, body: String): String

+sendVoice(recipient: String, sender: String, body: String, audio: File): String

+send(recipient: String, sender: String, title: String, body: String, attachment: File): String

Figure 8.1 - Generic Messaging Service Interface

This interface does not require the definition of specific data types (only primitive types are used). File represents a file
location provided as a string.

8.3.2.1.1 Operations

Send an SMS

sendSMS (recipient: String, sender: String, body: String): String

Sends an SM S to a recipient (example: a phone number). Success return implies that the message was successfully
precessed but actual delivery may occur at a future time.

Parameters:
recipient : The phone address that will receive the SMS.
sender : The sender indication to be displayed by the receiving terminal.
body : The content of the short message.

Outputs:

A string statusis returned: 'OK: <message-id>' or 'FAILED: <message reason>'
Exceptions:

InvalidRecipient : Raised if the recipient is not valid.
Send an MMS

sendMMS (recipient :String, sender:String, body:String, attachment:File) :String
Sends an MMS to a recipient (example: a phone number).

Parameters:
recipient : The phone address that will receive the SMS.
sender : The sender indication to be displayed by the receiving terminal.
body : The content of the short message.

8 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



attachment : Thefile reference (aURL) to include in the message.

Outputs:
A string statusis returned: ‘ OK: <message-id>" or ‘FAILED: <message reason>.’

Exceptions:
InvalidRecipient : Raised if the recipient is not valid.
InvalidAttachment : Raised if the file cannot be read, and hence attached to the message.

Send an Email

sendEmail (recipient:String,sender:String, title:String,
body:String, attachment:File): String

Sends an Email to the recipient (an email address).

Parameters:
recipient : The email address that will receive the message.
sender : The sender address of the message.
title : The subject of the email.
body : The textual content of the message.
attachment : The file reference (a URL) to include in the message.

Outputs:
A string status is returned: * OK: <message-id>" or ‘FAILED: <message reason>.’

Exceptions:
InvalidRecipient : Raised if the recipient is not valid.
InvalidAttachment: Raised if the file cannot be read, and hence attached to the message.

Send an Instant Message
sendIM(recipient: String, sender: String, body: String): String

Sends an instant message to a recipient (typically an email address). The content is passed in the body parameter. The
sender parameter indicates the sender address.

Parameters:
recipient : The destination address that will receive the instant message.
sender : The address of the sender of the message.
body : The content of the instant message.

Outputs:
A string status is returned: 'OK: <message-id>' or 'FAILED: <message reason>".

Exceptions:
InvalidRecipient : Raised if the recipient is not valid.
InvalidAttachment : Raised if the file cannot be read, and hence attached to the message.

Send an Voice Message

sendVoice (recipient: String, sender: String,
body: String[0..1], audio: File[0..1]): String

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Deposit a voice message to the recipient (a phone number). Body is used to pass a text to synthesize (text to speech) or
alternatively audio is a File path reference to the audio file.

Parameters:
recipient : The destination phone number that will receive the voice message.
sender : Anidentifier for the sender of the message.
body (optional): The text to be synthesized.
audio (optional): A reference to aaudio file to be played as the message.

Outputs:
A string status is returned: 'OK: <message-id>' or 'FAILED: <message reason>".

Exceptions:
InvalidRecipient : Raised if the recipient is not valid.
InvalidAudioFile: Raised if the audio file cannot be read.

Send a message (generic)

send (recipient: String, sender: String, title: String, subject: String,
body: String, attachment: File[0..1]): String

Send a message using a given media selected based on context information. The kind of message send depends on
recipient format (a phone number? An email?). It may also depend on user preferences.

Parameters:
Recipient : The address that will receive the message.
sender : An address identifying the sender of the message.
title : The subject of the message.
body : The textual content of the message.
attachment : The file reference (a URL) of an attachment included in the message.

Outputs:
A string status is returned: 'OK: <message-id>' or 'FAILED: <message reason>".

Exceptions:
InvalidRecipient: Raised if the recipient is not valid.
InvalidAttachment: Raised if the attachment file cannot be processed.

8.4 Short Messaging (SMS)

8.4.1 Overview

The SMS interface has been standardized by GSMA and is part of the OneAPI interfaces. This is the reformulation in
SoaML.

See original specification at:
https://gsma.securespsite.com/access/ A ccess¥%20A Pl %20Wiki/SM S%20RESTful %620A Pl .aspx
The SMS service enabler provides operations for:

» Sending an SMSto aterminal, for example from a Web page or desktop application.

10 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



A polling mechanism for monitoring the delivery status of asent SMS
» Being notified of delivery status

» A polling mechanism in order to receive SMS, for example auser sending text to a Web application from their mobile
device.

» Being notified of SM S reception status (i.e. when an SMSisreceived by the Web application)
8.4.2 Interface Definitions

Three interfaces are defined. The SMS interface is the server side enabler. The SMSDeliveryNotification is a client side
interface to alow a client application to receive notifications related to status of messages sent by the application to
individuals. The SM SMessageNotification is another client side interface to allow receiving notifications of messages sent to
an application.

<<Servicelnterface>> <<uses>>

SM S

<<Servicelnterface>>
SMSMessageNotification

<<uses>>

<<Servicelnterface>>
SMSDeliveryNotification

Figure 8.2 - Interfaces of the SMS Enabler

8.4.2.1 SMS Interface
The SMS interface is the server-side enabler interface.

Note: For readability reasons, optional multiplicities ([0..1]) in the arguments of service operations of this interface have
been skipped in the diagram below. The details of signature can be found in the detailed service operation descriptions.

<<Servicelnterface>>
SMS

+send(address: String[*], senderAddress: String, message: String, clientCorrelator: String, senderName: String, notifyUrl: String): String

+getDeliveryStatus(resourceURL: String): SMSDelivery InfolLst

+subscribeDeliveryReceipt (notifyURL: String, clientCorrelator: String, calbackData: String): SMSDeliveryReceiptSubscription

+stopDeliveryReceipt(subscriptionld: String)

+receiveMessages(registrationld: String, maxBatchSize: Integer): InboundSMSMessageL ist

+subscribeMessageNotification(des tinationAddress: String, notifyURL: String, criteria: String, notificationFormat: String, clientCorrelator: String, calbackData: String): String
+stopMessageNotification(s ubscriptionld: String)

Figure 8.3 - SMS Interface

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 11



8.4.2.1.1 Data Types

The specification of the SMS interface involves the definition of seven data types and one enumeration:
SMSDeliverylnfoList, SMSDeliverylnfo, SMSDeliveryStatus, SM SDeliveryRecei ptDescription, SM SCallbackReference,
InboundSM SMessagel.ist, InboundSM SM essage.

<<enumeration>>

<<datatype>> <<datatype>> SM SDeliveryStatus
SM SDeliveryInfolList SMSDeliverylnfo
+DeliveredToTerminal
+deliveryInfo: SMSDeliveryInfo[*] +address: String +DeliveredUncertain
+resourceURL: String +deliveryStatus: SMSDeliveryStatus +Deliverylmpossible

+MessageW aiting
+DeliveredToNetwork

<<datatype>> <<datatype>>
SMSDeliveryReceiptSubscription SMSCallbackReference
+calbackReference: SMSCalbackReference +calbackData: String
+resourceURL: String +notifyURL: String
<<datatype>>
InboundSMSMessage
<<datatype>> - -
InboundSM SMessagelList +dateTime: String
+destinationAddress: String
+inboundSMSMessage: InboundSMSMessage[*] +messageld: String
+message: String
+resourceURL: String
+senderAddress: String

Figure 8.4 - Specific data types for the SMS interface

SMSDeliverylnfoList

A SMSDeliveryInfolList is used for receiving delivery notifications. It contains an URL to locate in the web the delivery
information (resourceURL field) and the list of delivery reports, one per SMS address (deliverylnfo field).

SMSDeliverylnfo

A SMSDeliveryInfo contains the delivery information for a given address. It holds the address and the status value
(deliveryStatus field).

SMSDeliveryStatus

The enumeration defining possible delivery status values: DeliveredToTerminal, DeliveredUncertain,
Deliveredlmpossible, MessageWaiting, DeliveredToNetwork.

SMSDeliveryReceiptDescription

A SMSDeliveryReceiptSubscription is used in notification subscriptions. It contains a callbackReference (information for
treating the notification when received) and a URL to identify the subscription (resourceURL field).

12 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



SMSCallbackReference

A SMSCallbackReference contains information how to receive the subscribed notifications. The callbackData field
contains the operation to call and the notifyURL field specifies the URL to be used by the SMS server for posting the
notifications.

InboundSMSMessagelList

An InboundSM SMessageL.ist is used for retrieving SM 'S messages. It contains a list of InboundSM SM essages
(inboundSM SM essage field).

InboundSMSMessage

An InboundSM SMessage contain all the details of a SMS message. This comprises: a dateTime, destinationAddress,
messagel d, message (the body of the SM'S message), resourceURL (a URL to locate the message as a resource in the web)
and the original sender Address.

Note: Additional semantics details of these data types are provided inline with the description of the operations where
they are used.

8.4.2.1.2 Operations

Send an SMS

send (address: Stringl[*], senderAddress: String, message: String,
clientCorrelator: String, senderName: String, notifyUrl: String): String

Sends an SMS to one or more terminals, i.e. mobile devices or SMS-enabled |aptops.

Parameters:
address (multi-valued): Contains the list of addresses to which the SMS will be sent.
sender Address: The address to whom a responding SMS may be sent.

message: Contains the message to be sent. Messages over 160 characters may end up being sent as two or more
messages by the operator.

clientCorrelator : A string that uniquely identifies this create SM S request. If there is a communication failure during
the request, using the same clientCorrelator (when retrying the request) allows the operator to avoid sending the same
SMStwice.

senderName : The name of the sender to appear on the terminal.

notifyURL : The URL to notify the application for delivery receipts.

Outputs:
A resource URL is returned to serve as unique identifier to request delivery notifications.

Exceptions:
InvalidAddress : All the addresses are invalid.
InvalidNotificationUr| : The passed notification URL cannot be reached.

Query the delivery status of an SMS

getDeliveryStatus (resourceURL: String): SMSDeliveryInfoList

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 13



Parameters:
resourceURL : Theidentifier of the message for which the delivery statusis requested.

Outputs
The output isa SMSDdliverylnfolList object containing the delivery information for each address that the application
asked to send the message to, in a SMSDeliverylnfo array comprising the address and a deliverySatus value.

The deliverySatus value may be one of:
* “DeliveredToTerminal”: Successful delivery to Terminal.
« “DeliveryUncertain”: Delivery status unknown: e.g. because it was handed off to another network.
« “Deliverylmpossible’: Unsuccessful delivery; the message could not be delivered before it expired.

» “MessageWaiting”: The message is still queued for delivery. Thisisatemporary state, pending transition to one
of the preceding states.

« “DeliveredToNetwork”: Successful delivery to the network enabler responsible for routing the MMS.
Exceptions
InvalidM essagel dentification : The resourceURL is unknown as an identifier of the message.
Subscribe to SMS delivery notifications

subscribeDeliveryReceipt (
notifyURL: String, clientCorrelator: String,
callbackData: String): SMSDeliveryReceiptSubscription

Parameters:
notifyURL : URL to be used by the server to send notifications.

clientCorrelator : Uniquely identifies this create subscription request. If there is a communication failure during the
reguest, using the same clientCorrelator (when retrying the request) allows the operator to avoid creating a duplicate
subscription.

callbackData : A function name or other data that you would like included when the notification is received.

Outputs
A SMSDeliveryRecei ptSubscription object containing the subscription information and aidentifier of the
subscription that can be used later to unsubscribe.

Exceptions

InvalidNotificationURL : The notification URL cannot be reached.
Stop the subscription to delivery notifications
stopDeliveryReceipt (subscriptionId: String)

Parameters:
subscriptionld : The identifier of the subscription (obtained when making the subscription).

Outputs
None

14 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Exceptions
InvalidSubscription: The subscription id is not known to the system.

Retrieve messages sent to an application

receiveMessages (
registrationId: String,maxBatchSize: Integer): InboundSMSMessageList

Parameters:
« registrationld: An identified agreed with the service operator.
« maxBatchSize: The maximum number of messages to retrievein this request

Outputs
An InboundSM SMessageL.ist object containing alist of InboundSM SM essage objects (one per address) with the
following contained fields:

« dateTime : The date the message was received.

destinationAddress : The number associated with your service (for example an agreed short code).
* messageld : A server-generated message identifier.

« message : Thetextual content of the message.

resourceURL : A link to the message (seen as aweb resource).
« senderAddress: The MSISDN or Anonymous Customer Reference of the sender.

Exceptions
Retrieval Failed: Retrieval of message failed.
Subscribe to notifications of messages sent to an application

subscribeMessageNotification (
destinationAddress: String, notifyURL: String,
criteria: String[0..1], notificationFormat: String[0..1],
clientCorrelator: String[0..1], callbackData: String[0..1]) : String

Parameters:

destinationAddress : The MSISDN, or code agreed with the operator, to which people may send an SMS to the

application.
notifyURL : Address to which notifications will be sent.

criteria (optional): Case-insensitve text to match against the first word of the message, ignoring any leading
whitespace. This allows you to reuse a short code among various applications, each of which can register their own

subscription with different criteria.

notificationFormat (optional): The content type that notifications will be sent in (example JSON).

clientCorrelator (optional): Uniquely identifies this create subscription request. If there is a communication failure
during the request, using the same clientCorrelator when retrying the request allows the operator to avoid creating a

duplicate subscription.

callbackData (optional): A function name or other data to be included in the notification.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1

15



Outputs
Returns the identifier of the subscription (usable to stop the subscription).

Exceptions
DestinationAddresslnvalid: The destination address does not match the one agreed with the operator.
InvalidNotificationURL: The notification URL cannot be accessed.

Stop the subscription to message notifications

stopMessageNotification (subscriptionId: String)

Parameters:
subscriptionld : String

Outputs
None

Exceptions
InvalidSubscription : The subscription id is not known to the system.

8.4.2.2 SMS Delivery Notification Interface

The SMSDeliveryNotification interface is called by the SMS enabler to notify a client application on events related to the
delivery of a SMS previously sent.

<<Servicelnterface>>
SMSDeliveryNotification

+notifyDeliveryReceipt(deliverylInfoNotification: SMSDeliveryInfoNotification)

Figure 8.5 - SMSDeliveryNotification interface

8.4.2.2.1 Data Types

The specification of the SMSDeliverylnformation interface involves the definition of a specific data type
SM SDeliverylnfoNotification, which in turn refers to the SMSDelivery Status enumeration (see definition data types of
SMS interface).

<<datatype>>
SM SDelivery InfoNotification

+callbackData: String
+deliveryStatus: SMSDeliveryStatus

Figure 8.6 - Specific data types for the SMS Delivery Notification interface

16 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



SMSDeliverylnfoNotification

A SMDeliverylnfoNotification contains the information passed in the notification. It includes a callbackData string and
a deliverySatus. The callbackData, typically the name of a function to call, is the data passed when subscribing to the
notification (through the operation SMS::subscribeDeliveryReceipt). Possible values for the delivery status are:
DeliveredToTerminal, DeliveredUncertain, Deliverylmpossible, MessageWaiting and DeliveredToNetwork (see

SM SDeliveryStatus enumeration defined in “ SM SDeliveryStatus” on page 12 and used by SMS::getDeliveryStatus).

8.4.2.2.2 Operations

Receive the notification of SMS delivery
notifyDeliveryReceipt (deliveryInfoNotification: SMSDeliveryInfoNotification)

This operation is called by the SM S enabler to notifiy the application when a SMSis delivered to aterminal or if delivery
was impossible.

Parameters

deliverylnfoNotification: A SMSDeliverylnfoNatification containing the delivery information made of a callback
information and a delivery status (see detailsin SM SDeliverylnfoNotification datatype description above).

Outputs
None

Exceptions
None

8.4.2.3 SMS Message Notification Interface

The SMSMessageNotification interface is called by the SMS enabler to notify an application the reception of SMS
messagesfor which the application has subscribed.

<<Servicelnterface>>
SMSMessageNotification

+notifyMessageReceipt(inboundSMSMess ageNotification: InboundSMSMessageNotification)

8.4.2.3.1 Data Types

The specification of the SMSMessageNotification interface involves the definition of a specific data type:
InboundSM SM essageNatification. This data type uses the InboundSM SM essage datatype defined in Data types of SMS
interface (see “SMS Interface” on page 11).

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 17



<<datatype>>
InboundSMSMessageNotification

+callbackData: String
+inboundSMSMessage: InboundSMSMessage

Specific data types for the Inbound SMS Message Notification interface

+ InboundSM SMessageNatification - An InboundSM SM essageNotification object containsthe information passed in the
notification. It includes a callbackData string and a InboundSM SMessage. The callbackData, typically the name of a
function to call, is the data passed when subscribing to the notification (through the operation
SMSS::subscribeDeliveryReceipt). The InboundSM SM essage object contains all the information on the received
message: adate time, the destination address, the identifier and the content of the message and the sender address (see
additional detailsin the definition of operation SMS::receiveM essages).

8.4.2.3.2 Operations

Receiving the notification of arrival of messages for a client application

notifyM essageRecei pt( inboundSM SM essageN otifi cation: 1nboundSM SM essageNotification)
This operation is called by the SMS enabler to notify the application whether messages for him are available or not.

Parameters
inboundSM SM essageNotification: contains the information on the received message in a InboundSM SM essageNoti-
fication object which contains the callbackData and the details of the received SM S within a InboundSM SM essage
object (see details in InboundSM SM essageNotification datatype description above).

Outputs
None

Exceptions
None

8.5 Multimedia Messaging (MMS)

8.5.1 Overview

The MMS interface allows an application to send and receive MM S messages. The MM S interface has been standardized
by GSMA and is part of OneAPI interfaces. This is the reformulation in SoaML. Original specification can be found at:

https://gsma.securespsite.com/access/A ccess¥20A Pl %20Wiki/M M S%20REST ful %20A Pl .aspx
The MMS service enabler provides operations for:

» Sending an MMSto aterminal, for example from a Web page or desktop application.

» Query the delivery status of an MMS.

 Subscribe to MMS delivery notifications and stop subscription.

18 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



» Retrieve alist of messages, with or without attachments.

« Subscribe to notifications of messages sent to your application and stop the subscription.

8.5.2 Interface Definitions

Provided below are three interfaces: the MMS interface is the "server-side' enabler interface and the two notification

interfaces, which are both required client interfaces (to be implemented by applications in order to receive notifications

from the enabler).

<<Servicelnterface>>
M MS

<<uses>>

I—

<<uses>>

<<Servicelnterface>>
M MSMessageNotification

<<Servicelnterface>>
MM SDeliveryNotification

Figure 8.7 - Interfaces for the MMS Enabler

8.5.2.1 MMS interface

Note: For readability, optional multiplicities ([0..1]) in the arguments of service operations of this interface have been
skipped in the diagram below. The details of signature can be found in the detailed service operation descriptions.

<<Servicelnterface>>
MMS

+send(address: String[*], senderAddress: String, senderName: String, message: String, attachments: File[*], clientCorrelator: String, notifyURL: String, calbackData: String): String
+getDeliveryStatus(resourceURL: String): MMSDelvery InfoList
+subscribeDeliveryNot if cation(messageld: String, notifyURL: String, clientCorrelator: String, callbackData: String) : MMSDeliveryReceiptSubscription
+stopDeliveryNot if cation(subscriptionld: String)
+retrieveMessages(registrationld: String, matchBatchSie: Integer): MMSInboundMessagelList

+retrieveMessage(registrationld: String, messageld: String, resFormat: String): MMSMessageData
+subscribeMessageNotification(des tinationAddress: String, notifyURL: String, criteria: String, notificationFormat: String, clientCorrelator: String, calbackData: String): String
+stopMessageNotification(s ubscriptionld: String)

Figure 8.8 - MMS Interface

8.5.2.1.1 Data Types

The specification of the MMS interface involves the definition of eight data types and one enumeration:
MM SDeliverylnfoList, MM SDeliverylnfo, MM SDeliveryStatus, MM SDeliveryRecei ptDescription,
MM SCallbackReference, MM SMessageData, MM SlnboundM essageL ist, MM SInboundM essage.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1

19



<<datatype>> <<datatype>> <<enumeration>>
MMSDe livery InfoList MMSDeliveryInfo MMSDeliveryStatus
+deliveryInfo: MMSDeliveryInfo[*] +address: String +DeliveredToTerminal
+resourceURL: String +deliveryStatus: MMSDeliveryStatus +DeliveryUncertain
+Deliverylmpossible
+MessageWaiting
+DeliveryToNetwork
<<datatype>> <<datatype>>
MMSDeliveryReceiptSubscription MMSCallbackReference
+callbackReference: MMSCallbackReference +callbackData: String
+resourceURL: String +notifyURL: String
<<datatype>>
<<datatype>> MMSInboundMessage
<<datatype>> ;
MMSMessage Data MMSInboundMessagelist +date'Tim_3: String .

. +inboundMessage: MMSInboundMessage[* +destinationAddress: String
+inboundMessage: MMSInboundMessage +numberOfMes§agesInThisBatch: Integer[ ] +subject: String
+attachements: File[*] +resourceURL: String +messageld: String

+totalNumberOfPendingMessages: Integer +resourceURL: String
+senderAddress: String

Figure 8.9 - Specific data types for the MMS interface

MMSDeliveryInfoList

A MMSDeliveryInfoList is used for receiving delivery notifications. It contains an URL to locate in the web the delivery
information (resourceURL field) and the list of delivery reports, one per MMS address (deliverylnfo field).

MMSDeliverylnfo

A MMSDeliverylnfo contains the delivery information for a given address. It holds the address and the status value
(deliveryStatus field).

MMSDeliveryStatus

The enumeration defining possible delivery status values: DeliveredToTerminal, DeliveredUncertain,
Deliveredimpossible, MessageWaiting and DeliveredToNetwork.

MMSDeliveryReceiptDescription

A MM SDeliveryReceiptSubscription is used in notification subscriptions. It contains a callbackReference (information for
treating the notification when received) and a URL to identify the subscription (resourceURL field).

MMSCallbackReference

A SMSCallbackReference contains information how to receive the subscribed notifications. The callbackData field
contains the operation reference to call and the notifyURL field specifies the URL to be used by the MMS server for
posting the notifications.

20 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



MMSInboundMessageList

An MM SInboundMessagel.ist is used for retrieving MM S messages. It contains a list of MM SInboundM essages
(inboundMessage field), the number of messages retrieved (number OfMessagesinThisBatch field), the number of
messages not yet retrieved (total Number OfPendingMessages field) and a URL to identify the message list as a web
resource (resourceURL field).

MMSInboundMessage

An MM SInboundMessage contain all the details of a MM S message. This comprises: a dateTime, destinationAddress, a
subject, messageld, message (the body of the MM S message), resourceURL (a URL to locate the message as a resource
in the web) and the original sender Address.

MMSMessageData

A MMSMessageData is used for retrieving the details of a given MM S message. It contains the data associated with the
MMS (inboundMessage field of type MM SInboundM essage) and the list of attachment files (attachments field).

Note: Additional semantics details of these data types are provided inline with the description of the operations where
they are used.

8.5.2.1.2 Operations

Send an MMS

send (address: String[*], senderAddress: String, senderName:
String, message: String, attachments: File[*],
clientCorrelator: String[0..1], notifyURL: String[0..1],
callbackData: Stringl[0..1]): String

Sends a Multimedia message (MMS) to alist of addresses.

Parameters:

address (multi-valued): Represents the phone recipients to reach. At least one addressis required; in this case their
MSISDN including the ‘tel:” protocol identifier and the country code preceded by ‘+', for example tel:
+16309700001. The address parameter also supports the Anonymous Customer Reference (ACR) if provided by the
operator.

sender Address : The address to whom a responding MM S may be sent.

senderName : The name to appear on the user’ s terminal as the sender of the message.

message : The textual content of the message.

attachments (multi-valued): List of file references containing the multimedia content (photo, video, text and so on).

clientCorrelator (optional): Uniquely identifies this create MM S request. If there is a communication failure during
the request, using the same clientCorrelator (when retrying the request) allows the operator to avoid sending the same
MMS twice.

notifyURL (optional): The URL to which you would like a notification of delivery sent. The format of this
notification is documented in the MM SDeliveryServiceNotification interface definition.

callbackData (optional): Any meaningful datathe application would like send back in the notification, for exampleto
identify the message or pass a function name, etc.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 21



Outputs
Returns aresource URL that identifies uniquely the MM S sent. Thisidentifier can be used to receive notifications on
the status of the M SS.

Exceptions
InvalidAddresses; All addresses are invalid. The MM S cannot be sent.
InvalidNotificationURL: The notification URL cannot be reached.

Query the delivery status
getDeliveryStatus (resourceURL: String): MMSDeliveryInfoList
This operation allows an application to query the delivery status of a previously sent MMS.

Parameters
resourceURL : Theidentifier of the MMS for which the delivery statusis requested.

Outputs
The output isa MM SDeliverylnfoList object containing the delivery information for each address that the application
asked to send the message to in a MM SDeliverylnfo array comprising the address and a deliverySatus val ue.

The deliverySatus value may be one of:
* “DeliveredToTerminal”: Successful delivery to Terminal.
« “DeliveryUncertain”: Delivery status unknown: e.g., because it was handed off to another network.

« “Deliverylmpossible’: Unsuccessful delivery; the message could not be delivered before it expired.

» “MessageWaiting”: The message is still queued for delivery. Thisisatemporary state, pending transition to one
of the preceding states.

 “DeliveredToNetwork”: Successful delivery to the network enabler responsible for routing the MM S
Exceptions
InvalidMessagel dentification : The resourceURL is unknown as an identifier of the message.
Subscribe to MMS delivery notifications

subscribeDeliveryNotification (
messageld: String, notifyURL: String, clientCorrelator: String[0..1],
callbackData: String[0..1]): MMSDeliveryReceiptSubscription

This operation allows an application to subscribe to MMS delivery notifications.

Parameters
messageld : An identifier for identifying the MM S for which the subscription is requested.
notifyURL : The URL of the listener application used by the enabler to notify the subscribing client application.

clientCorrelator (optional): A string that uniquely identifies this create subscription request. If thereisa
communication failure during the request, using the same clientCorrelator (when retrying the request) allows the
operator to avoid creating a duplicate subscription.

callbackData (optional): A function name or other data that the subscribing application would like included in the
received notification.

22 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Outputs
An MM SDeliveryRecei ptSubscription object containing the subscription information and aidentifier of the
subscription which can be used later to unsubscribe.

Exceptions
InvalidMessageidentifier: The message identifier isinvalid (because it is unknown or has expired).
InvalidNotificationURL: The notification URL cannot be reached.

Stop the subscription to delivery notifications

stopDeliveryNotification (subscriptionId: String)

This operation is used to stop the delivery of notification previously subscribed by the application.

Parameters
subscriptionld : The identifier of the subscription to stop.

Outputs
None

Exceptions
InvalidSubscriptionl dentification : The subscriptionld is unknown to the system.
Retrieve a list of messages sent

retrieveMessages (registrationId: String, matchBatchSize: Integer[0..1])
: MMSInboundMessageList

This operation allows the calling application to retrieve MMS received by the server. Attachments are not included.

Parameters

registrationld : An identification negociated with the service operator. For instance ‘3456’ agreed with a OneAPI

operator.

matchBatchSize (optional): The maximum number of messages to retrieve in this request.

Outputs
The output is an MM SInboundMessagel ist object containing:

« an MM SInboundMessage object with the following fields:
« dateTime : The date the message was received.

« destinationAddress : The number associated with your service (for example, an agreed short code).

« subject : The subject of the message, which may determine whether you want to retrieve the entire MMS.

« messageld : A server-generated message identifier.
« resourceURL : A link to the message used to retrieve the entire message including attachments.
* senderAddress: The MSISDN or Anonymous Customer Reference of the sender.

« the number OfMessagesl nThisBatch, which is the number of messages retrieved.

« aresourceURL, a self referring URL (the actual output seen as a web resource).

« the total Number OfPendingMessages awaiting retrieval from gateway storage.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1

23



Exceptions
Retrieval Failed: Retrieval of message failed.

Retrieve the full MMS including attachments

retrieveMessage (registrationId: String, messagelId: String, resFormat: String)
: MMSMessageData

This operation allows the application to retrieve an MMS received by the server including the attachments.

Parameters
registrationld : An identification agreed with the operator. For instance ‘3456’ agreed with anl operator.

resFormat : Indicates the format to retrieve the information. For example 'JSON' value ensures a JSON response
content-type.

Outputs
The output isa MM SMessageData consisting of an MM SlnboundMessage instance (see detail s in previous operation
'retrieveMessages) and alist of file attachments.

Exceptions
Retrieval Failed: Retrieval of message failed
InvalidM essagel d: Message identifier unknown to the system.

Subscribe to notifications of messages sent to your application

subscribeMessageNotification (
destinationAddress: String, notifyURL: String, criteria: String[0..1],
notificationFormat: String[0..1], clientCorrelator: String[0..1],
callbackData: String[0..1]): String

Parameters

destinationAddress : The MSISDN, or code agreed with the operator, to which people may send an MM Sto the
calling application.

notifyURL : The address to which notifications will be sent.

criteria (optional): Case-insensitve text to match against the first word of the message, ignoring any leading
whitespace. This allows you to reuse a short code among various applications, each of which can register their own
subscription with different criteria.

notificationFormat (optional) : Content type that notifications will be sent in —for instance JSON.

clientCorrelator (optional): A string that uniquely identifies this create subscription request. If thereisa
communication failure during the request, using the same clientCorrelator when retrying the request allows the
operator to avoid creating a duplicate subscription.

callbackData (optional): A function name or other data that you would like included when the POST is received.

Outputs
The output is a subscriber identifier.

Exceptions
InvalidNotificationURL: The notification URL cannot be reached.

24 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Stop the subscription to message notifications
stopMessageNotification (subscriptionId: String)

Parameters
subscriptionld : The subscription identifier returned by the prior subscription (which is being canceled).

Outputs
None.

Exceptions
InvalidSubscriptionl dentification : The subscriptionld is unknown to the system.

8.5.2.2 MMS Delivery Notification interface

The MM SDeliveryNatification interface needs to be implemented by a client to receive message delivery notifications.

<<Servicelnterface>>
M MSDeliveryNotification

+notifyDeliveryReceipt(delivery InfoNotification: MMSDeliveryInfoNotification)

Figure 8.10 - Definition of MMSDeliveryNotification client interface

8.5.2.2.1 Data Types

The specification of the MM SDeliverylnformation interface involves the definition of a specific data type
MM SDeliverylnfoNotification, which in turn refers to the MM SDelivery Status enumeration (firstly defined as a data type
of the MMS interface (see “MMS interface” on page 19).

<<datatype>>
M MSDelivery InfoNotification

+deliveryInfo: MMSDeliveryInfo[*]
+calbackData: String

Figure 8.11 - Specific data types for the MMS Delivery Notification

MMSDeliveryInfoNotification

An MM SDeliverylnfoNotification object contains the information passed in the notification. It includes a callbackData
string and delivery information for each destination address of the MM S by means of MM SDeliverylnfo objects. The
callbackData, typically the name of afunction to call, is the data passed when subscribing to the notification (through the
operation SMS::subscribeDeliveryReceipt). The MSSDeliverylnfo (primarily defined in the context of the SMS interface)
isapair consisting of an address and a delivery status.

Possible values for the delivery status are: DeliveredToTerminal, DeliveredUncertain, Deliverylmpossible,
MessageWaiting and DeliveredToNetwork (see MM SDeliveryStatus enumeration used by MM S::getDeliveryStatus).

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 25



8.5.2.2.2 Operations

Notifying delivery receipt at application side

notifyDeliveryReceipt(deliverylnfoNotification: MM SDeliverylnfoNotification)
This operation is invoked by the MM S enabler to pass notification information to a client application.

Parameters
deliverylnfoNatification: Contains all the notification information sent by the MM S server facility to the client
application. Itis structured asfollow:

« A deliverylnfo array contains an address and a deliveryStatus for each user destination address of the MMS.

The deliveryStatus can take same values than those used to query delivery status of an MM, except for
'MessageWaiting', since that isthe initial status. The callbackData string is al so passed back to the client
application, echoing what was provided when the message was sent or subscribed to delivery notifications.

Outputs
None.

Exceptions
None

8.5.2.3 MMS Message Notification interface
The MM SMessageNotification needs to be implemented by a client to receive message notifications.

<<Servicelnterface>>
MMSMessageNotification

+notifyMessageReceipt(inboundMessageNotification: MMSInboundMessageNotification)

Figure 8.12 - Definition of the MMSMessageNotification

8.5.2.3.1 Data Types

The specification of the MM SMessageNotification interface involves the definition of a specific data type:
InboundSM SM essageNotification. This data type implies in turn the definition of InboundMM SM essageNotification data

type.

The MM SMessageNoatification interface uses an MM SInboundM essageNotification data type which in turn uses a
InboundM M SM essageNotificationdata type.

26 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



<<datatype>>
<<datatype>> InboundM MSMessageNotification
MMSInboundMessageNotification

+dateTime: String
+inboundMMSMess ageNotification: InboundMMSMessageNotification +destinationAddress : String
+callbackData: String +messageld: String
+message: String
+senderAddress: String

Figure 8.13 - Specific data types for the MMS Message Notification interface

MMSInboundMessageNotification

An MM SInboundM essageNotification object contains the information passed in the notification. It includes a
callbackData string and an InboundM M SMessageNoatification. The callbackData, typically the name of a function to call,
is the data passed when subscribing to the notification (through the operation MM S::subscribeDeliveryReceipt).

InboundMMSMessageNotification

The InboundMM SMessageNotification object contains all the information on the received message: a date time, the
destination address, the identifier and the content of the message and the sender address.

8.5.2.3.2 Operations

Notifying message receipt at application side

notifyM essageRecei pt(inboundM essageNotification: InboundM essageNotification)

Parameters
inboundM essageNotification: The structure sent by the MM S enabler for every MMS received (matching the
optional criteriaif provided). The inboundM essageNatification object includes any callbackData for use by the
calling application, and an inboundM M SM essage structure with the detail s bel ow:

« the dateTime that the message was received,

 destinationAddressis the number associated with the calling application's service,

* messageld is a server-generated message identifier message isthe MM S message itself
 resourceURL isalink to the message

« senderAddressisthe MSISDN or Anonymous Customer Reference of the sender.

Outputs
None.

Exceptions
None

8.6 Click To Call

8.6.1 Overview

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 27



The click-to-call service alows an application to establish calls between two telephones. Since there is a notification
mechanism, two interfaces are defined as: a server side ClickToCall and a client side ClickToCalINotification. The latter
is the service that needs to be implemented by a client of the ClickToCall service in order to receive the notification.
Notice that generally the provider of the ClickToCall imposes the implementation technology for receiving the
notification - typically it will send an HTTP "GET" request with appropriate parameters.

<<Servicelnterface>>
ClickToCall k<uses>>

I

<<Servicelnterface>>
ClickToCallNotification

Figure 8.14 - Interfaces for the ClickToCall enabler

Note: This interface is a reformulation in UML of Orange Partner click-to-call APl implementation (see http://
api.orange.com/en/api/click-to-call-api/documentation).

8.6.2 Interface Definitions

8.6.2.1 Click To Call Interface

Note: For readability, optional multiplicities ([0..1]) in the arguments of service operations of this interface have been
skipped in the diagram below. The details of signature can be found in the detailed service operation descriptions.

<<Servicelnterface>>
ClickToCall

+createCall(fromt String, to: String, private: String, max_duration: Integer, cal_confirmation: Boolean, audio_url: String, lang: String, notification_url: String): String
+releaseCall(call_id: String): String

Figure 8.15 - Click to call service interface
This interface does not require the definition of specific data types (only primitive types are used).

8.6.2.1.1 Operations

Establishing a call

createCall (from:String, to:String,private:String[0..1],
max_duration:String[0..1],call confirmation:String[0..1],
audio url:String[0..1],notification url:String[0..1]) : String

Thisis the server-side operation used by an application to establish calls and release calls between two phone numbers. A
notification URL can provided to allow the enabler to send notifications regarding call status.

28 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Parameters:
from: The phone number of the caler.
to : The phone number of the callee.

private (optional) : Indicates weather the phone numbers should be hidden. Possible values are ‘true,” ‘false,’ ‘caller,
and ‘callee.’

max_duration (optional): Max duration of the call in seconds. May be restricted by proper limitations of the enabler.
call_confirmation (optional): Indicates whether the system should ask the caller for a confirmation.
lang (optional): The language for the confirmation message if any (examples: FR, EN,...).

audio_url (optional) The audio file to be read for the confirmation message (if confirmation activated) or during the
waiting period before establishing the call (confirmation not activated).
Note: The supported audio formats depends on the platform, hence they are not specified here.

notification_url (optional) Indicates the url for receiving the notification.

Outputs:
A call identifier of the new created call is returned. Thisidentifier can be user to release the call.

Exceptions:
ForbiddenNumber: Either the caller or the callee number is forbidden or malformed.
MissingNumber: Missing ‘number’ parameter

Releasing a call

releaseCall (call id:String): String

Parameters:
call_id: identifier of the call to be terminated.

Outputs:
The call identifier of the terminated call is returned (the one passed as parameter).
Thisidentifier can be used to release the call.

Exceptions:
InvalidCallldentifier: The call identifier is not valid (possibly because the call terminated).

8.6.2.2 Click To Call Notification Interface

<<Servicelnterface>>
ClickToCallNotification

+notification(call_id: String, code: String, message: String, cal_start_date: String, cal_end_date: String): String

Figure 8.16 - Click to call notification interface

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 29



8.6.2.2.1 Operations

Receiving call status notification

notification(call id: String, code: String, message: String,
call start date: String, call end date: String): String

This operation is invoked by the ClickToCall enabler to notify a client on the status of a call.

Parameters:
call_id : Id of the call (the ID returned by createCall).
code: Status of the call (see the code table below).
message : Message of the event associated to code (see the code table below).
call_start_date: Start date of the call (in 1SO 8601 date format). Not sent if the call is not fully established.
call_end_date: End date of the call (in1SO 8601 date format). Not sent if the call is not completed.

We provide below the values for code and corresponding message:
e 110 Cdlerisringing
e 120 Caller has answered
e 130 Cdlleeisringing
e 200 Cdl isestablished
e 310 Caller hung up
e 330 Callee hung up
e 350 API hung up (max duration reached)
e 410 Cdller isbusy
e 420 Cdleeisbusy
e 430 Cdler isunavailable
e 431 Caller rejected call
e 432 Caller cancelled during negotiation
e 440 Calleeisunavailable
e 441 Calleerejected call
e 442 Callee cancelled during negotiation
e 450 API cancelled call (max duration reached)
e 460 Caller did not confirm call

¢ 500 Internal error

Outputs:
The call_id value is returned as an acknowledgment.

Exceptions:
None

30 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



8.7 Location

8.7.1 Overview

This enabler provides the operations for localizing a person (typically based on GSM cell or on aternatives technologies

like GPRS, UMTS and LTE).

This enabler typically works with some privacy management assumptions like the ability of the provider of the location

service to identify and authenticate the sender of the requests. The data used to ensure privacy management — like a
subscription id transparently passed at each request — is not exposed here but is typically part of the configuration

accompanying the activation of the service.

Note: This interface is a reformulation in UML of OneAPI Location RESTful API. See original specification at:
https://gsma.securespsite.com/access/ A ccess¥%20A Pl %620Wiki/L ocation%20REST ful %20A Pl .aspx

8.7.2 Interface Definitions

8.7.2.1 Location Service Interface

<<Servicelnterface>>
Location

+getLocation(address: String, requestedAccuracy: Integer): TermnalLocationList
+getLocationForGroup(address: String[*], requestedAccuracy: Integer): TerminalLocationList

Figure 8.17 - Location interface and associated data

8.7.2.1.1 Data Types

The specification of the Location interface involves the definition of one specific data type TerminalLocationList, which
in turn implies the definition of three additional data types: TerminalLocation, Locationlnfo and L ocationRetrieval Status.

<<datatype>>
TerminalLocationlList

<<datatype>>
TerminalLocation

<<datatype>>
LocationlInfo

+terminalLocation: LocationInfo[*]

+address: String

+locationRetrievalStatus: LocationRetrievalStatus | [ +currentLocation: LocationInfo

<<enumeration>>
LocationRetrievalStatus

+Retrieved
+NorRetrieved
+Error

Figure 8.18 - Specific data types for the Location interface

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1

+accuracy: Integer
+altitude: Integer
+latitude: Integer
+longitude: Integer
+timestamp: String

31



TerminalLocationList

A TerminalLocationList contains a list of TerminalL ocations (terminalLocation field) and the overall retrieval status
(locationRetrieval Status).

TerminalLocation

A TerminalLocation contains the address of the terminal (address) and the location information for the given address
(currentLocation field).

LocationInfo

A LocationInfo gathers all the information concerning the location: accuracy, altitude, latitude, longitude and the
timestamp of the location operation.

LocationRetrievalStatus
An enumeration representing three possible values regarding the tempative to retrieve the location: Retrieved,
NotRetrieved or Error.

Note: Additional semantics details of these data types are provided inline in the description of Location operations where
they are used.

8.7.2.1.2 Operations

Query the location of one mobile terminal
getLocation(address: String, requestedAccuracy: Integer): TerminalLocationList

Parameters:
address: The MSISDN or Anonymous Customer Reference of the mobile device to locate. The protocol and * +'
identifier must be used for MSISDN.

requestedA ccuracy: The preferred accuracy of the result, in metres. Typically, when an accurate location is requested
it will take longer to retrieve than a coarse location. So requestedAccuracy=10 will take longer than requestedA ccu-
racy=100.

oupus The output is a Terminal LocationList object. It contains a unique Terminal L ocation object, comprising:
e an“address’ pair, to denote the terminal located, as per RFC 3966. Local and international numbers supported.
e a“currentLocation” object, comprising values for:
 accuracy (result accuracy in metres)
altitude (metres)
latitude (Decimal Degrees, 1SO 6709)
longitude (Decimal Degrees, 1SO 6709)
* timestamp (xsd:dateTime format)
« a“locationRetrieval Status” pair, with possible values:

« “Retrieved” (success)
* “NotRetrieved” (unableto retrieve)

32 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



e “Error” (error retrieving location)

Exceptions:
« BadRequest : One of the parameters is malformed.
« AuthenticationFailure: The provided credentials are not valid.
« Forbidden: Authentification credentials not provided.
» ServerBusyAndServiceUnavailable. Server istemporarily not available.

Query the location of multiple mobile terminals
getL ocationForGroup(address: String[*], requestedAccuracy: Integer) : TerminalLocationList

Parameters:
address (multi-valued) : The MSISDN or Anonymous Customer References of the mobile devicesto locate. The
protocol and ‘+' identifier must be used for MSISDN.

regquestedAccuracy : The preferred accuracy of the result, in metres. Typically, when an accurate location is requested
it will take longer to retrieve than a coarse location. So requestedA ccuracy=10 will take longer than requestedA ccu-
racy=100.

Outputs:
The output is a Terminal LocationList object. It contains a Terminal L ocation object for each passed address.

Exceptions:
» BadRequest : One of the parameters is malformed.
¢ AuthenticationFailure: The provided credentials are not valid.
« Forbidden: Authentification credentials not provided.

8.8 Synchronization

8.8.1 Overview

Synchronization Enabler role is to maintain user's data coherence between his services and devices. Two interfaces are
needed. Firstly, on the server side the capabilities offered by the synchronization facility (Synchronization interface) and
secondly the interface that synchronizable services need to implement in order to exploit the synchronization facility
(Syncable interface). The diagram below shows the usage dependency between these two interfaces (Synchronization
relies on availability of Syncable interfaces).

<<Servicelnterface>>
Synchronization <<uses>>

<<Servicelnterface>>
Syncable

Figure 8.19 - Interfaces related with the Synchronization enabler

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 33



8.8.2 Context

This sub clause is non-normative. It is provided to allow implementers and users to understand the design of this
interface.

The role of the Synchronization Enabler is to maintain user's data coherence between his services and devices. The most
noticeable expected properties of a synchronization facility are:

« independence from the data to be synchronized
- ability to detect change on adata source
« ability to declare new data sources through a generic and decentralized interface

The OMA-DS standard describes precise protocols for realizing the synchronization on top of the HTTP infrastructure.
An implementation of the synchronization enabler interface described here will typically be built on top of a OMA-DS
compliant synchronization facility; however other supporting technologies could also be used.

Figure 8.20 in the left shows a data model representing the set of synchronized services/devices of a user. This data model
illustrates the notion of Synchronization Sphere that represents a synchronized content (e.g., user’s photos). A
synchronization Sphere is composed of several data sources that are expressed as synchronization endpoints. Inner
complexity is handled at the synchronization enabler level with the willingness to hide the complexity for end users and
service developers. A Synchronization Endpoint Pattern represents synchronizable data source. When the system wants to
add a new data source to a synchronization sphere, a synchronization endpoint is created taking a pattern as instantiation
basis.

class Domain Objects 7 . .
Synchronization Enabler

- email: string pURCERNRTE SyncAssociation f
L ] Synchronization

name: string B association|D: int

Synchronization

lastname: string |1 spherell: int

nidaame: sting b Logic Manager Triggering
: Manager
2 Synchronization
SyncEndpaint Component

- configuration : properies
- ourir uri

OMA-DS

Synchronization

\ Component / \ /

extends

e Synchronization

- accesspoint url -

. conten':Type: string PrOpagatIOFI Manager

- contractType: string

e Synchronization

- name: sting Sphere Manager )

Figure 8.20 - Implementing the Synchronization Enabler: A data model and a possible internal architecture

34 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



As an enabler, the Synchronization Enabler exposes several interfaces:

» Thefirst interface targets service developers and alows them to dig into Synchronization Enabler Data Model to
display to users which services are part of their synchronization spheres.

» The second interface targets devel opers to allow usersto extend their synchronization spheres with their services. This
interface allow devel opers to enrich Synchronization Enabler scope by pushing new synchronizable data sources that
can be reused by others actors.

Figure 8.20 on the right shows a typical architecture of the synchronization enabler in line with the data model. Implementers
of the Synchronization enabler may select a different design. This is provided for helping understanding the underlying
concepts.

In this architecture, we identify the following functional components:

» Synchronization Logic Manager (SLM) - This component is in charge of performing the actual synchronization
process. To achieve this task the SLM relies on two major subcomponents:

« The Synchronization Component: This component allows to provide connectors to new data sources (typically
using REST).

¢ The Synchronization Enabler provides also an OMA-DS layer that allows declaration of any OMA-DS compliant
handset as element of a synchronization sphere.

» Synchronization Triggering Manager (STM) - this component is in charge of detecting if changes have occurred on a
data source.

 Synchronization Propagation Manager (SPM) - Computing and ordering synchronizations to be performed are under
the responsibility of the Synchronization Propagation Manager. When a new device or serviceis added to auser’s
synchronization sphere, the Synchronization Propagation Manager computes the new set of synchronization to be
performed and how they shall be ordered. Theideaisto put servicesthat have the longer response time (maobile devices
for instance) at the end of the synchronization chain.

» Synchronization Sphere Manager (SSM) - this component isin charge of:

» Managing the topology of user’s devices and services that are to be synchronized. The SSM allowsto create
Synchronization Spheres for a user and to define the services that are part of them.

* Managing the triggering of synchronization session by external actors.
8.8.3 Interface Definitions

8.8.3.1 Synchronization Interface

The Synchronization Enabler covers several aspectslike:
+ access and configure user’s synchronization spheres
» control the synchronization logic manager

» manage new data sources

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 35



<<Servicelnterface>>
Synchronization

+getUserSpheres(userld: String): Sphere[*]

+getUserSphere(userld: String, sphereld: String): Sphere
+getUserSphereEndpoint(userld: String, sphereld: String, endpointld: String): Endpoint
+getSphereSyncs(userld: String, sphereld: String): Syncltem[*]

+getPatterns(): Pattern[*]

+getPattern(patternld: String): Pattern

+getEndpointConfig(endpointld: String): Configuration

+getCapabilities(): Capability [*]

+getCapability Sources(capability: String): Source[*]

+addSphere(userld: String, capability: String, endpoints: Endpoints[*]): Sphere
+getlLastSync(sphereld: String): Syncltem[*]

+startSync(sphereld: String): String

+synclsOn(sphereld: String): Boolean

+getElementUrlis(userld: String, sphereld: String, endpoint: String, capability: String): String[*]
+inform(serviceName: String, url: String, logourl: String)

+addSource(userld: String, sphereld: String, endpointld: String): Source

Figure 8.21 - Synchronization interface

8.8.3.1.1 Data Types

The specification of the Synchronization interface involves the definition of seven specific data types: Sphere, Endpoint,
Capability, Source, Configuration, Pattern and Syncltem. The definition of Configuration in turn involves the definition of
ConfigurationProperty.

<<datatype>> <<datatype>> <<datatype>>
Sphere Endpoint <<datatype>> Pattern
+sphereld: String +endpointld: String Configuration +patternld: String
+name: String +name: String +properties: ConfigurationProperty[*] +name: String
+type: String ] +configuration: String +contract: String
+endpoints: Endpoint[*] +description: String
+capability: Capability
<<datatype>> +accessPoint: String
<<datatype>> <<datatype>> <<datatype>> ConfigurationProperty
Capability Source Syncltem +key: String
+name: String +name: String :Itdm(f;g]rglp String +val: String
i : Stri
+url: String

Figure 8.22 - Specific data types for the Synchronization interface

Sphere

A Sphere represents the sets of synchronized services and devices that are associated to a type of content (e.g. Photo
content, Contacts, etc). The association between services is done by means of endpoints.

 gsphereld: A unique identifier for the sphere within the synchronization framework.
« name: An "human readable" name for the sphere.

« type: Thetype of content of the sphere. Types of spheres are user-defined.

36 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



» endpoints: Represents connections to services providing a given data that can be synchronized.

Endpoint

An Endpoint represents one side of a synchronisation association between two services. An endpoint includes
Configuration data that characterizes the service.

» endpointld: A uniqueidentifier for the endpoint within the synchronization framework.
« name: A “human readable” name for the endpoint.

- configuration: The configuration data characterizing the connected service.

Configuration

A Configuration: represents the endpoint configuration as a whole. It includes a list of configuration properties
characterizing the synchronized service.

« properties: list of configuration properties.

ConfigurationProperty

A ConfigurationProperty represents a given configuration property described with a key and a value.
« key: the key of the property

« value: the value of the property.

Pattern

A Pattern is a generic representation of a synchronizable data source. When the system wants to add a new data source to
a synchronization sphere, a synchronization endpoint is created taking a pattern as instantiation basis. A pattern refers to
a capability.

 patternid: A unique identifier for the pattern within the synchronization framework.
« name: An "human readable" name for the pattern
 contract: A text describing informally the conditionsto fulfil to apply the pattern.
 description: A text providing a description of the pattern.
« capability: The capability supported by the pattern.

Capability

A Capability represents a given synchronization capability.
« name: The name identifying the capability.

Source

A Source represents an application managing some data that a user may want to synchronize. A capability can be
supported by multiple sources.

« name: The name identifying the source.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 37



Syncltem

A Syncltem represents a unit of synchroni

zation. It is uniquely identified by a URL and has a timestamp.

 id: Anidentifier used by the synchronization system.

« timestamp: The time of the last synchronization.

« url: The URL of the unit of synchronization seen as a web resource.

8.8.3.1.2 Operations

Retrieving user's sphere list:

getUserSpheres (userId: String): Sphere[*]

This operation retrieves all spheres connected to a user.

Parameters
userld: The identifier of the user.

Outputs
Thelist of spheres.

Exceptions

UserInvalid: userld unknown to the system.

Retrieving sphere details:

getUserSphere (userId:String,

Parameters
« userld: Theidentifier of the user.

» gsphereld: Theidentifier of a Sphere.

Outputs

sphereId: String): Sphere

Returns a Sphere object containing all data associated to a sphere (including the list of endpoints)

Exceptions

» Userlnvalid: userld unknown to the system.

« Spherelnvalid: sphereld unknown to the system.

Retrieving endpoint details
getUserSphereEndpoint (userId:
Parameters

- userld: Theidentifier of the user.

» gsphereld: Theidentifier of a Sphere.

String, sphereld: String, endpointId: String): Endpoint

« endpointld: Theidentifier of an endpoint.

38

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Outputs
The Endpoint details, including his configuration.

Exceptions
» Userlnvalid: userld unknown to the system.
» Spherelnvalid: sphereld unknown to the system.

 Endpointinvalid: endpointld unknown to the system.

Retrieving synchronizations attached to a sphere

getSphereSyncs (userId: String, sphereId: String): SyncItem/[*]
Parameters
- userld: Theidentifier of the user.

» gsphereld: The identifier of a Sphere.

Outputs
The output is the list of synchronization items of this sphere.

Exceptions
» Userlnvalid: userld unknown to the system.

» Spherelnvalid: sphereld unknown to the system.

Retrieving supported patterns

getPatterns () : Pattern[*]

Parameters
patternid: Theidentifier of the endpoint pattern.

Outputs
The output is the list of endpoint patterns supported by the synchronization enabler.

Exceptions
Patterninvalid: patternid unknown to the system.

Retrieving pattern details
getPattern (patternId: String): Pattern

Parameters
patternid: Theidentifier of the endpoint pattern.

Outputs
The output is the endpoint pattern definition.

Exceptions
Patterninvalid: patternid unknown to the system.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1

39



Retrieving endpoint configuration

getEndpointConfig(endpointId: String): Configuration

Parameters
endpointld: The identifier of the endpoint.

Outputs
The output is the configuration object containing all configuration properties of this endpoint.

Exceptions
Endpointinvalid: endpointld unknown to the system.

Retrieving sync capabilities
getCapabilities(): Capability[*]

Parameters
None

Outputs
The output is the list of capabilities supported by the enabler.

Exceptions
None

Retrieving list of sources supporting a capability

getCapabilitySources (capability: String): Source[*]

Parameters
capability: The name identifying the capability.

Outputs
The list of sources supporting the capability.

Exceptions
CapabilityNotSupported: The capability is not supported by the enabler.

Adding a new sphere to a user
addSphere (userId: String, capability: String, endpoints: Endpoint[]) : Sphere
Parameters

« userld: Theidentifier of the user.

« capability: the name identifying the capability.

« endpoints: A list of endpoints objects.

Outputs
A sphere object representing the new Sphere.

40 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Exceptions
» Userlnvalid: userld unknown to the system.
» CapabilityNotSupported: The capability is not supported by the enabler.
« InvalidEndpoint: One of the passed endpointsisinvalid.

Retrieving last synchronization data for a sphere
getLastSync (spherelId: String): SyncItem[*]

Parameters
sphereld: Theidentifier of the sphere.

Outputs

The list of synchronization items (Syncltems objects) involved in the last synchronization.

Exceptions
» Spherelnvalid: sphereld unknown to the system.

» NotSynchronized: No synchronization has been done for this sphere
Starting a synchronization
startSync (sphereId: String): String

Parameters
sphereld: Theidentifier of the sphere.

Outputs

Returns the sphereld if the synchronization start successfully, an empty string otherwise.

Exceptions
« Spherelnvalid: sphereld unknown to the system.

 SynchonizationCannotSart: The synchronization could not start for any internal reason.
Retrieving synchronization process status
syncIsOn (sphereId:String): Boolean

Parameters
sphereld: Theidentifier of the sphere.

Outputs
A Boolean indicating if synchronization isin progress.

Exceptions
Soherelnvalid: sphereld unknown to the system.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1

41



Retrieving item list urls for a data source

getElementUrls (userId: String, sphereId: String, endpointId: String,
capability: String): String[*]

This operation gets the synchronization items of a data source, then collects and returns the URL fields.
Parameters

« userld: Theidentifier of the user.

 gsphereld: Theidentifier of the sphere.

« endpointld:: The identifier of the endpoint.

« capability:: The name of the capability.

Outputs
Thelist of URLs of all synchronization items of a data source

Exceptions
» Userlnvalid: userld unknown to the system.
« Spherelnvalid: sphereld unknown to the system.

 Endpointincalid: endpointld unknown to the system

Informing the Synchronization Enabler that a new syncable source is available
inform(serviceName: String, url: String, logourl: String)
Parameters

» serviceName : Name of the service offering a Syncabl el nterface.

« url: The URL representing the service.

« logourl: The URL of the logo representing the service.

Outputs
None

Exceptions
ServiceNotReachable: The syncable interface cannot be accessed.

Creating/Adding a new syncable data source

addSource (userId: String, sphereld: String, endpointId: String): Source
Parameters

« userld: Theidentifier of the user.

 gphereld: Theidentifier of the sphere.

« endpointld:: Theidentifier of the endpoint.

42 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Outputs
A source object representing the new source.

Exceptions
» Userlnvalid: userld unknown to the system.
» Spherelnvalid: sphereld unknown to the system.

 Endpointincalid: endpointld unknown to the system.

8.8.3.2 Syncable Interface

The user’s sphere can be enriched by declaring new data sources to be synchronized. This is done through the Syncable

interface that a service may provide. This interface hides the complexity of implementation components (see Context sub-

clause).

< =Servicelnterface ==
Syncable

+getCapabilites () String *]

+getCatalisticapability: String): Syncltenm(™]

+getCatalcapability : String, id: String): Basesd

+addData(capability: String, id: String, content: Basesd): Syncltem™]
+LpdateDatalcapakbility: String, id: String, cortent: Bases<): Synclte m*]
+dele telata{capakility : String, id: String)

Figure 8.23 - Syncable interface

8.8.3.2.1 Data Types

The specification of the Syncable interface refers to the Syncltem data type (see definition in Synchronization interface)

and involves the definition of a specific data type: Base64.

zzdatatypes>
Baseb4

+basetd: String

Figure 8.24 - Specific data types for the Syncable interface

Base64
A Base64 data type represents a text encoded using base64 coding.

8.8.3.2.2 Operations

Retrieving service capabilities

getCapabilities(): String[*]

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1

43



Parameters
None

Outputs
Returns the list of synchronization capabilities offered by the syncable service.

Exceptions
None

Retrieving item list for a capability

getDatalList (capability: String): SyncItem[*]

Parameters
capability : The capability to filter the synchronization items (Syncltems).

Outputs
Returnsthe list of Syncltems that belong the the capability.

Exceptions
InvalidCapability : The capability is not known to the syncable service.

Retrieving item's data
getData (capability: String, id: String): Baseé4
Parameters
« capability: The capability of the synchronization item.
« id: Theidentifier of the synchronization item (which is unique for a given capability).

Outputs
The actual content of the item (for instance a JPEG image) encoded in base64.

Exceptions
» Synclteminvalid: The synchronization item does not exists.

« |temContentlnvalid: The content of the item could not be accessed.

Adding a new Item
addData (capability: String, id: String, content: Base64): SyncItem/[*]
Parameters

- capability: The capability of the synchronization item to add.

« id: Theidentifier of the synchronization item (which is unique for a given capability).

« content: The content of the synchronization item in base64 encoding.

Outputs
A list of synchronization items containing a unique Syncltem object representing the created item.

44 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Exceptions
InvalidDuplicatedldentifier: The identifier passed is already used.

Updating an item
updateData (capability: String, id: String, content: Base64): SyncItem[*]
Parameters

- capability: The capability of the synchronization item to add.

« id: Theidentifier of the synchronization item (which is unique for a given capability).

« content: The content of the synchronization item in base64 encoding.

Outputs
A list of synchronization items containing a unique Syncltem object representing the updated item.

Exceptions
Synclteminvalid: The synchronization item does not exist.

Removing an item
deleteData (capability: String, id: String)
Parameters
« capability: The capability of the synchronization item to add.
« id: Theidentifier of the synchronization item (which is unique for a given capability).

Outputs
None

Exceptions
« InvalidCapability : The capability is unknown to the system.

« Invaliditem: The synchronization item is unknown.

8.9 Voice recognition and TTS

8.9.1 Overview

The available functions in the current version of the api allow any http client to pilot an Interactive Voice Response server
(IVR), by requesting it to:

» Make or accept calls
» Say or play voice prompts
» Collect voice inputs (digit or speech recognition)

« Record

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 45



» Tear down (hang up or transfer)
8.9.2 Interface Definitions

8.9.2.1 Interactive Voice Response Facility Interface

The InteractiveV oiceResponseFacility service interface defines twelve simple operations exposing the basic functionality of a
interactive voice response server. A specific data type named | VRResponse is defined in order to capture in a generic way the
outputs of these operations. It includes a call identifier and a 'body’ field to contain any response information.

Note: Thisinterface is areformulation in UML of Orange Partner MRF (Media Resource Facility) APl implementation (see
http://www.orangepartner.com/).

<<Servicelnterface>>
InteractiveVoiceResponseFacility

+makeCall(to: String): IVRResponse

+waitCall(from: String[0..1]): IVRResponse

+answerCal(call_id: String[0..1]): IVRResponse

+hangUp(call_id: String): IVRResponse

+transfer(cal_id: String, to: String): IVRResponse

+sayPrompt(cal_id: String, content: String): IVRResponse

+playPrompt(call_id: String, url: String): IVRResponse

+collectDtmf (call_id: String, max: Integer[0..1], term[0..1]: String): IVRResponse
+recognizeSpeech(cal_id: String, grammar: String, lang: String[0..1]): IVRResponse
+startRecord(call_id: String, url: String): IVRResponse

+stopRecord(call_id: String): IVRResponse

+getVersion(): String

Figure 8.25 - IVR Facility service interface

8.9.2.1.1 Data Types

The specification of the IVRFacility interface involves the definition of one specific data type: the IV RResponse.

<<datatype>>
IVRResponse

+cal_id: String
+body: String

Figure 8.26 - Specific data types for the IVR Facility Interface

IVRResponse

IVRResponse is a generic data type defined to capture all responses of service operations of this enabler. It includes the
following fields:

46 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



« call_id: A cal identifier (unique in the system).

» body: Any additional information in the response (like the matched items when recognizing speech).

8.9.2.1.2 Operations

Making a call
makeCall (to:String) : IVRResponse
This function requests the IVR to dial a phone number. It returns when the connection is established or if an error occurs.

Parameters:
to : A valid phone number

Outputs
Returns a IV RResponse object with ‘call_id' assigned with the identifier for the new call. The 'body’ field is left

empty.

Exceptions:

 Invalid_param: Parameter ‘to’ is not avalid phone number.

Timeout: the VR could not fulfill the request within the time limit.

» Hangup: Calleergjected thecall.

IVR_ERROR: Any other error encountered by the IVR.

Waiting for a call
waitCall (from:String[0..1]) :IVRResponse

This function requests the IVR to wait for a call for some duration (default value: 60s). It returns when the IVR receives
an incoming call or when an error or timeout occurs.

Parameters:
from (optional) : A phone number. If provided the operation waits for a call to this number.

Outputs
Returns an IVRResponse object with ‘call_id’ of the incoming call. The ‘body’ field is left empty.

Exceptions:
« Invalid_param:from: Parameter from is not a valid phone number.
« Timeout: No call received before timeout.

» IVR_ERROR: Any other error encountered by the IVR.

Answering to a call
answerCall (from:String[0..1]) : IVRResponse

This function requests the IVR to answer to an incoming call. It returns when the connection is established or if an error
occurs.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 47



Parameters:
from (optional) : A phone number. If provided the operation answers a call to this number.

Outputs
Returns an 1V RResponse object with ‘call_id’ of the answered call. The ‘body’ field left is empty.

Exceptions:
» Invalid param:call_id Parameter call_idisnot avalid call identifier.
« Timeout ThelVR could not fulfill the request within the time limit.
« Hangup Caler hung up the call.
» IVR_ ERROR Any other error encountered by the IVR.

Disconnecting a call
hangUp (call id:String) :IVRResponse

This function requests the IV R to hang-up the call identified by call_id. It returns when the connection has been closed or
if an error occurs.

Parameters:
call_id : Thecall identifier.

Outputs
The output - and IV RResponse object, repeats the passed call identifier parameter.

Exceptions:
» Invalid_param:call_id Parameter call_idisnot avalid call identifier.
« Timeout ThelVR could not fulfil the request within the time limit.
« IVR_ERROR Any other error encountered by the IVR.

Transfering a call
transfer (call id:String,to:String): String

This function requests the IVR to transfer the call identified by call_id to another phone number. It returns when the
connection between the two users has been established or if an error occurs. Once transferred, no more requests to the
IVR can be made on the original call_id.

Parameters:
« call_id: Thecadl identifier.

 to: A valid phone number.

Outputs
Returns an 1V RResponse object with ‘call_id’ of the new call. The ‘body’ field isleft empty.

Exceptions:

 Invalid_param:call_id Parameter ‘call_id' isnot avalid call identifier.

48 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



» Invalid_param:to Parameter ‘to’ is not avalid phone number.
« Timeout ThelVR could not fulfill the request within the time limit.
» Transfer_failed Transfer could not complete. For example the callee rejected the call.

» IVR_ERROR Any other error encountered by the IVR.

Playing a prompt message (text to speech)
sayPrompt (call id:String,content:String): IVRResponse

This function requests the IVR to say a prompt to the user connected. It returns when the prompt has been played or if an
error occurs.

Parameters:
« call_id : Thecall identifier.

« content : A URL encoded string representing the prompt.

Outputs
Returns an IVRResponse object. The ‘body’ contains data regarding the selected voice. The exact content of body is

|eft unspecified to accommodate to different implemented policies.
Exceptions:
» Invalid_param:call_id Parameter call_idisnot avalid cal identifier.
« Timeout The IVR could not fulfill the request within the time limit.
+ IVR ERROR Any other error encountered by the IVR.

Playing a prompt message from a file
playPrompt (call id:String,url:String): IVRResponse

This function requests the IVR to play afile to the user connected. It returns when the IVR begins to read the file or if an
error occurs.

Parameters:
« call_id : Thecal identifier.
« url: The URL of thefileto read.

Outputs
Returns an IVRResponse object. Thefield ‘call_id' contains the passed call identifier.

Exceptions:
 Invalid_param:call_id Parameter call_idisnot avalid call identifier.
 Invalid_param:url Parameter URL isnot avalid URL.
» File_error Thefile cannot be red. Possible causes: file not found, wrong format.

« Timeout ThelVR could not fulfill the request within the time limit.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 49



» IVR_ ERROR Any other error encountered by the IVR.

Retrieve DTMF input
collectDtmf (call id:String,max:Integer[0..1],term:String[0..1]) : IVRResponse

This function regquests the IVR to wait for specified number of digits from the connected user. It returns when max digits
or terminal digit are received or if an error occurs.

Parameters:
« call_id: Thecadl identifier.
» max (optiona) : The maximum number of digits to retrieve from user input.

 term(optional): A terminal digit marking the end of the input.

Outputs
Returns an 1VRResponse abject. Thefield ‘call_id' contains the passed call identifier and the field ‘body’ isastring

consisting of recognized DTMF codes.
Exceptions:
 Invalid_param:call_id Parameter call_id isnot avalid call identifier.
 Invalid_param:max,term Parameters max AND term are null.

« Timeout thelVR could not fulfill the request within the time limit.

IVR_ERROR Any other error encountered by the IVR.

Retrieve and recognize speech input
recognizeSpeech(call id:String,grammar:String,lang:String[0..1]) : IVRResponse

This function requests the VR to start Speech Recognition with a list of given recognizable items. It returns when one
of the items has been recognized or when an error or timeout occurs.

Parameters:
 call_id : Thecall identifier.
« grammar : The url-encoded list of recognizable items.
Format: <item>iteml</item><item>item2</item>...

- lang (optional) : Language for recognition. Default depends on the provider (example: fr-FR).

Output
Returns an 1VRResponse abject. Thefield ‘call_id' contains the passed call identifier and the field ‘body’ isastring

containing the recognized item.

Exceptions:
 Invalid_param:call_id Parameter call_idisnot avalid call identifier.

 Invalid_param:grammar Parameter grammar is not valid.

50 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



» Timeout thelVR could not fulfill the request within the time limit.
« IVR_ ERROR Any other error encountered by the IVR.

Start recording voice
startRecord(call id:String,url:String) : IVRResponse

This function requests the IVR to start recording user’s speech. It returns when the recording has started or if an error
occurs.

Parameters:
« call_id : Thecal identifier.

« url : Thelocation where the record will be stored.

Outputs
Returns an |VRResponse object. The‘call_id' field copiesthe passed call identifier. The ‘body’ isacomma separated
string containing the format used (for example ‘wav’ or ‘mpeg’) and information on rate quality.

Exceptions:
 Invalid_param:call_id Parameter call_idisnot avalid call identifier.
 Invalid_param:url Parameter URL isnot avalid URL.

« Timeout ThelVR could not fulfill the request within the time limit.

IVR_ERROR Any other error encountered by the IVR.

Stop recording voice
stopRecord(call id:String): IVRResponse

This function requests the VR to stop recording user’s speech. It returns when the recording has been stopped or if an
error occurs

Parameters:
call_id : Thecal identifier.

Outputs
Returns an IVRResponse abject. The ‘call_id’ field repeats the passed call identifier. The ‘body’ field is empty.

Exceptions:
 Invalid_param:call_id Parameter call_idisnot avalid call identifier.
« Timeout ThelVR could not fulfill the request within the time limit.
« IVR_ ERROR Any other error encountered by the IVR.

Retrieve the version of IVR facility
getVersion() : String

Returns the version of the VR service.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 51



Parameters:
None

Outputs
A comma separated string delivering information on the service. It containsin order the following information: a
title, the service provider, and the version.

Exceptions:
None

8.10 Privacy

8.10.1 Overview

Two interfaces are defined here: the PrivacyResourceManager is used to validate a token to access a given functionality,
and/or to access a set of attribute list. As an example the accessed functionality could be the user profile and the attribute
list the list of fields such as phone number and address. On the other hand, the PrivacyPolicyManager provides CRUD
operations (create/request,update,delete) to manage policy parameters in order to permit access to specific services. The
detailed structure of policy is left opaque (Any datatype) to accommodate to different proprietary strategies.

8.10.2 Interface Definitions

Two complementary interfaces are defined here: PrivacyResourceManager and PrivacyPolicyM anager.

8.10.2.1 Privacy Resource Manager Interface

<<Servicelnterface>>
PrivacyResourceManager

+validateToken(request: AccessRequest): Attributelnfo[*]

Figure 8.27 - Privacy Resource Manager

8.10.2.1.1 Data Types

The specification of the PrivacyResourceManager interface involves the definition of two specific data types:
AccessReqguest and Attributelnfo. The later implies the definition of an ActionKind enumeration.

52 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



<<datatype>>
AccessRequest <<datatype>> -
Attribute Info <=<enumeration=>
+calledFunc: String ActionKind
+token: String +owner: String
+recipient: String +attributeName: String :\r/ver?tg
+accessor: String +action: ActionKind
+attrbutelList: Attributelnfo[*]

Figure 8.28 - Specific data types for the Privacy Resource Manager Interface
AccessRequest
The AccessReqguest data type contains the information to control access to a protected resource. It includes:
« calledFunc: the function for which an access is requested.
« token: the token passed to be validated to validate an access request.
- recipient: an identity of the user that wishes to access the resource.
» accessor: an identity of the service being used to access the resource.

- attributeList : thelist of attributes (Attributelnfo object) that will be accessed (for fine grained control).

Attributelnfo
The Attributel nfo data type contains the following fields:

- the owner of the attribute to be accessed (such as an Entity name or an Application name).
- attributeName: the name of the attribute.

« action: the action to be done (see ActtionKind).

ActionKind

The ActionKind enumeration defines the different kinds of actions that can be requested on an attribute. The two possible
values are: read and write.

8.10.2.1.2 Operations

Token validation
validateToken(request: AccessRequest): Attributelnfo[*]

Return alist of personal attributes that can be accessed by the requestor with given token or null if the token is invalid.
Within the AccessReguest parameter, the recipient field is the user identifier of the recipient who would like to access the
attribute, the accessor field is an identifier of the service to be accessed. Each attribute in the attribute has a name, an
owner (a user identifier) and permitted actions (read or write).

Parameters:
reguest: the request information provided by means of an AccessRequest object. This structure of arequest is
decribed above (see AccessRequest data type definition).

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 53



Outputs
Thelist of permitted attributes. The returned list may be a subset of the attributes requested in the request parameter.
In that case authorization is partially provided. An empty list means that the access is not authorized at all.

Exceptions:
None

8.10.2.2 Privacy Policy Manager Interface

<<Servicelnterface>>
PrivacyPolicyM anager

+get(clientld: String, serviceld: String): Policy
+update(clientld: String, serviceld: String, policy: Policy): Policy
+create(clientld: String, serviceld: String, policy: Policy): Policy
+delete(clientld: String, serviceld: String)

Figure 8.29 - PrivacyPolicyManager interface

8.10.2.2.1 Data Types

The specification of the PrivacyResourceManager interface involves the definition of one specific data type: Policy.

<<datatype>>
Policy

+policy: String
+language: String

Figure 8.30 - Specific data types for the Privacy Policy Manager interface
Policy
The Policy data type contains the specification of the policy. The formalism used to express the policy is left user defined.
The Policy data type contains the following fields:
 policy: A string containing the specification of the policy.
 language: The formalism used to specify the policy.
8.10.2.2.2 Operations

Retrieve policy

get(clientld: String, serviceld: String): Policy

Returns the policy information for a given user and service.

54 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Parameters:
clientld: Theidentifier of aregistered user.
serviceld:. Theidentifier of aregistered service.

Outputs
The Palicy object for agiven user an agiven service.

Exceptions:
« InvalidClient : The passed clientld is unknown to the system.
 InvalidService : The passed serviceld is unknown to the system.
Update policy
update(clientld: String, serviceld: String, policy: Palicy): Policy
Assign a new policy content for a given user and service.
Parameters:
« clientld: The identifier of aregistered user.

» serviceld:. Theidentifier of aregistered service.

 policy : The policy datato be stored in replacement of the existing one.

Outputs
The Policy object for agiven user an agiven service.

Exceptions:
« InvalidClient: The passed clientld is unknown to the system.
 IncvalidService: The passed serviceld is unknown to the system.

« InvalidPolicy: The policy passed is not correct.

Create policy
create(clientld: String, serviceld: String, policy: Policy): Policy

Adds a new policy for a given user and service.
Parameters:
« clientld: The identifier of aregistered user.
» serviceld:. Theidentifier of aregistered service.
 policy : The policy datato be stored.

Outputs
The Policy object for agiven user an agiven service.

Exceptions:

« InvalidClient: The passedclientld is unknown to the system.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1

55



 IncvalidService: The passed serviceld is unknown to the system.

« InvalidPolicy: The policy passed is not correct.

Delete policy
delete(clientld: String, serviceld: String)

Deletes an existing policy for a given client and a given service.
Parameters:

« clientld: The identifier of aregistered user.

» serviceld:. Theidentifier of aregistered service.

Outputs
None.

Exceptions:
« InvalidClient: The passedclientld is unknown to the system.

« InvalidService: The passed serviceld is unknown to the system.

56 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



9 TelcoML Composition Profile

9.1 Overview

This Clause is normative, with the exception of some sub-clauses explicitly marked as non-normative.

This clause specifies the “TelcoML Composition Profile” which, combined with the TelcoML Enabler Library form the
TelcoML UML Profile. Technically it is defined as a UML profile specializing the SoaML UML profile.

The TelcoML Composition profile is intended to facilitate the development of composite telecommunication services by
combining building blocks originating from the telecommunication industry (the so-called communication enablers) along
with software components obtained from the internet. Typical services to be developed with TelcoML are mobile
applications, which are portable across various smartphone platforms, or service logic deployed in the network by
telecommunication service providers (CSP) or third party service providers. The TelcoML Enabler Library (see Clause 8)
provides a set of standardized UML interfaces that can be used in service compositions when dealing with
telecommunication facilities.

9.1.1 Relationship to SoaML

The TelcoML profile specialize SoaML profile and hence allowing telecom service designers to potentially take
advantage of all the features of SoaML. Service logic in SoaML can be specified using various behavioral formalisms, for
example, activity diagrams, state machines, and sequence diagrams. While this freedom is appropriate for addressing
many needs related to SOA modeling, when designers are interested in interchanging executable specifications related to
service compositions, it is necessary to make some restrictive choices. The TelcoML Composition profile selects state
machines as the primary execution paradigm and defines a list of conventions to ensure some homogeneity in the way to
represent service logic. State Machines have been selected because there is well known set of best practices using this
formalism in the telecom community (inherited from ITU-T SDL experience) and also because it is very appropriate for
representing interactive voice-based services.

When specifying service compositions using the TelcoML composition profile, the service designer need not represent
SoaML participant components in order to define behavior. The behavior specification representing a service composition
can be directly attached to the service operation owned by the service interface.

9.1.2 Relationship to Voice Profile

The Voice UML Profile defines means to express the design of voice based interactive applications based on a state-
machine paradigm. All voice-oriented extensions defined in this profile have been re-introduced in the TelcoML profile to
enable the definition of integrated services with multi-modal capacities. However TelcoML do not replace the Voice
profile to deal with pure voice-interactive applications (because typical voice specifications are structured differently,
where a dialog is the central structuring concept).

9.1.3 Relationship to CCXML and VoiceXML
The CCXML (Call Control eXtensible Markup Language) is designed to provide telephony call control support for dialog
systems. It is connected to the VoiceXML standard. The TelcoML specification has no direct link with CCXML except

that a CCXML implementation represents a natural candidate for supporting TelcoML state machines enhanced by voice
and call control capacities.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 57



9.2 Main concepts

Almost all concepts (except for Dialog) are specializations of the existing SoaML concept. However their usage in the
TelcoML composition profile tends to be simpler since the focus is primarily the specification of composite services from
an algorithmic point of view (rather than architectural point of view).

Technically, reuse of SoaML stereotypes - like Servicelnterface - is achieved by means of package import from the
package defining the TelcoML Composition profile to the package defining SoaML. Instances of the imported stereotypes
are not redefined by this profile.

9.2.1 Service Interface

A service interface in TelcoML (Servicelnterface concept from SoaML) consists basically of alist of service operations
and, when relevant, the declaration of received and transmitted asynchronous events. The operations declare a signature
with one or more input parameters and one output parameter. There are two possible styles to pass parameters and receive
outputs: when message style is used (versus RPC style) the operation has a unique input parameter with a composite
structure.

A usage dependency may be defined between a“server-side” service interface and a“ client-side” service interface: thisis
relevant in telecom enablers that allow applications to receive asynchronous notifications from the enabler. In this case
the specification of the "client" interface is part of the specification of the enabler. An example of thisis given by the
“Click to call” enabler in TelcoML Enabler Library.

In the case of a composite service there will be one operation representing the entry point of the orchestration with an
explicit behavior attached. In the more general case, service operations may or may not expose a behavior specification.

Servicelnterface is represented in the TelcoML profile by the stereotype <<Servicel nterface>> on classes (reuse of
SoaML stereotype).

9.2.1.1 Service Logic

By service logic we mean the specification of the behavior of a service operation. By convention, in the following
“service logic” will be used as a shortcut of “logic of a service operation.”

The service logic may be “simple:” a sequence of actions with no parallelism and no asynchronous event reception, or
“complex,” and in which case it is provided by a state machine. Conceptually, the first case can be treated as a
“degenerate” case of the second case.

Use of the state machine paradigm potentially poses the possibility of representing arbitrary complex behaviors. Within a
state machine we can refer to asynchronous events (accepting or transmitting events) which can be defined as part of the
service interface.

The graphical rendering for state machines in TelcoML uses the transition-oriented notation specified by the UML
specification (see UML2 Superstructure specification, Figure 15.44). When this notation is used the accepted events and
actions to be executed when firing the transition are rendered by specific UML action icons.

Note: Tools providing no support or insufficient support on the transition-oriented notation can exploit activity diagrams
to render state machines in transition-oriented manner. In TelcoML this is a notation variation point. However, TelcoML
compliant tools exploiting this flexibility should have the ability to generate in XMI the same representation as if
transition-oriented state machines were used.

ServiceLogic is represented in the TelcoML profile by the stereotype <<ServiceL ogic>> of StateMachine.

58 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Note: In TelcoML the notion of Participant (imported from SoaML) that exposes the internal structure of a component
that realizes a service interface is out of focus. Service designers are free to provide such a view of the service by using
full-fledged SoaML diagrams. However the interpretation of such view is not part of the TelcoML specification and a
TelcoML execution tool (claiming the TelcoML Execution Conformance level) is not requested to support it.

9.2.1.2 Multi-modal Dialogs

In the telecommunication world services may be designed as muti-modal (for example accepting voice in combination
with graphical interface inputs). TelcoML incorporates primitives of the Voice UML OMG standard in order to allow
expressing interactions that imply voice recognition and synthesis. This is done by enhancing the list of actions and
events that can be specified in state machine transitions, such as Play action, Inactivity, Utterance and Reject event types.
In TelcoML dialogs are specific operations used to retrieve information from a user utilizing some form of interaction -
for example voice or a graphical interface. These operations may be invoked explicitly from service logic.

9.3 Most commonly used stereotypes from SoaML

TelcoML adds alist of specific stereotypes. Potentially all stereotypes from SoaML can be used but the ones below play
adistinctive role in TelcoML composition specifications.

» Servicelnterface: Defines the interface and responsibilities of a participant to provide or consume a service.
 Attachment: A part of aMessage that is attached to rather than contained in the message.
« Property: Augments the standard UML Property with the ability to be distinguished as an identifying property

» MessageType: The specification of information exchanged between service consumers and providers.
9.3.1 Annotating service interfaces

TelcoML provides some basic mechanisms to classify different annotations that may enrich a model element involved in
the definition of a service interface, for instance a service operation or a given parameter or the complete service
interface. Three kinds of annotations are supported: annotations to provide semantic information (typically through links
to pre-existing ontologies), annotation to provide non functional property information on the service and annotation to
guide automatic generation of GUIs from the service specification. The details of these annotations are generally opague
(unspecified) to allow service designers use their preferred formalism. Also they serve as placeholders for future use of
new formalisms.

9.3.2 Using graphical or textual notation

TelcoML defines a UML profile to allow service designer to take advantage of standardized UML conventions. However
in some case it may be useful to use alternative textual notations. TelcoML which exploits state machines can take benefit
of ALF textual notation, as described in Executable UML specification from OMG, to represent behavior.

9.4 TelcoML specific stereotypes

In this sub clause we provide the definition of specific TelcoML stereotypes.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 59



9.4.1 Service logic related stereotypes

This section specifies the list of stereotypes dealing with service logic description.

< <petaclkhss> =
StaterMachine

<=metackss=>
OpaqueBehavior

< <gtereoty pes >
ServicelLogic

<<m_etaclass>>_ <<tretacksss= <<metaclass_>> < <metaclasss =
OperationCall Action State OpaqueAction OpaqueExpression

< <gtereatype=:=> < <sterectypes> < =gtereatype= = = <StErEDtype.>.>
ServiceCall Wait Inform alAction Inform alCondition

Figure 9.1 - Service Logic related concepts

In the following the semantics of the above stereotypes are defined and, when relevant, the specific notation is also
covered. The information which can be derived from the provided diagram (such as the base metaclass) are not repeated.

9.4.1.1 Servicelogic

A Service Logic defines the specification of the behavior of a service operation in the form of a state machine or an
opaque definition. Both forms may coexist (useful in iterative development). A service logic is owned by a service
operation.

Usage of <<Servicel ogic>> notation is not mandatory in a state machine diagram.

9.4.1.2 ServicecCall

A Service Call represents a call to a service operation within a service logic. From the point of view of the caller the call
is always synchronous (it blocks until a response is received). However the effect of the call may be asynchronous. For
example invoking “sendSM S’ returns immediately but the SMS may take some time to arrive to the target phone.

Note: Calls to operations that are not service operations use the “regular” rectangle box representing actions in transition-
oriented UML state machines.

A specific icon is used to notate a ServiceCall. It is similar to a “send event action,” except that the left side border has a
triangle. Depending on tool presentation options and preferences, the call action text specification may be placed outside
the box or inside the box. Also the <<ServiceCall>> stereotype indication may not appear in the icon. Another
presentation option is use of the “regular” rectangle for action representation rather than the icon. However in such case
the stereotype indication is mandatory. Figure 9.2 depicts various presentation options.

60 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



<<ServiceCall>> > <<ServiceCall>>

ret = proxy.myOperation()

ret = proxy.myOperation() ret = proxy.myOperation()

Figure 9.2 - Notations for service calls

9.4.1.3 Wait
A wait state is a state containing at least one outgoing transition triggered by the reception of an event.

A Wait state is notated as a regular state with <<Wait>> stereotype indication.

9.4.1.4 InformalCondition

An informal condition is a condition in a choice state specified informally, for instance by using natural language. An
Informal Condition is a kind of OpaqueExpression..

An informal condition is notated as a regular Choice vertex with stereotype indication <<Informal Condition>>.

9.4.1.5 InformalAction

Aninformal action is an action definition specified informally, for instance by using natural language. An Informal Action
isa kind of OpagueAction.

An InformalAction is notated as a regular action (a rectangle box) with stereotype indication <<Informal Action>>.
9.4.2 Voice and multi-modal interaction related stereotypes

This sub clause specifies the list of stereotypes related to voice and other means of interaction.

= =metaclass= = < zmetaclass ==
ReceiveSignalEvent SerndAction
= zstereotype= = < =sterectype: = = <sterectype= = = <stereotypes= = =z zstereotype= = = <sterectype= =
GuiEvent InactivityEvent RejectEvent UtterancekEvent PlayAction Playallaction

= =metaclass ==
Operation

A

Dialog
+rmodality: String

Figure 9.3 - Voice and multi-modality related concepts

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 61



In the sub clauses below we provide the semantics of the stereotypes and, when necessary the specific notation is also
provided. The information which can be derived from the accompanying diagram is not repeated.

9.4.2.1 Dialog

A dialog represents an operation used to retrieve information from an end user, possibly using alternate methods
(graphical interface, voice conversation, and so on).

Attributes
modality: String

Modality indicates the interaction mode. The attribute modality has two predefined values: “gui” and “voice.” Other
values may be used.

The stereotype to be used is <<Diaog>>.

9.4.2.2 PlayAction

A play action represents the action of issuing an audio message to a user (text to speech or audio playing). This message
can be interrupted by the user (bargin mode is active).

The stereotype to be used is <<Play>>.

9.4.2.3 PlayAllAction

A play all action represents the action of issuing an audio message to a user (text to speech or audio playing). This
message cannot be interrupted by the user (bargin mode is active).

The stereotype to be used is <<PlayAll>>.

9.4.2.4 UtteranceEvent
An utterance event is an event definition representing the acceptance and recognition of voice input from the user.

The stereotype to be used is <<UtteranceEvent>>.

9.4.2.5 RejectEvent
A reject event is an event definition representing rejection - a recognition failure - of voice input from the user.

The stereotype to be used is <<RejectEvent>>.

9.4.2.6 InactivityEvent
A inactivity event is an event definition representing the absence of input from the user.

The stereotype to be used is <<InactivityEvent>>.

9.4.2.7 GuiEkvent
A GUI event is an event generated by a graphical interface.

The stereotype to be used to denote this concept is <<GuiEvent>>.

62 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



9.4.3 Annotations for service interface elements

This sub clause defines specific concepts to annotate model elements used in service interface descriptions with some
useful information: non functional properties, semantic annotations, and GUI annotations.

< <metadass s>
Constraint
< <stereotypes== < «stereotypes = << sterectypes =
NorFunctionalT ag SemanticTag GuiTag
+category: String +kird: String ~+kind: String
+Lrl; String +Lirl: String +uirl; Siring

Figure 9.4 - Annotation facilities

In the following text we provide the semantics of the three stereotypes and, when relevant the specific notation. We do not
repeat information that can be derived from the diagram.

9.4.3.1 SemanticTag

A semantic tag annotates an element within a service description (such as a service interface or a service operation) with
some semantic information. Semantic annotations are typically realized by attaching references to concepts predefined in
ontologies. Attaching semantic information to service descriptions is often useful for automatic service discovery.

Attributes
kind: String

Indicates to which kind the semantic annotation belongs. Pre-defined (normative) kinds are: goal, effect, precondition,
postcondition and semantictype. Other non-normative values for the ‘kind' attribute may be defined by the user.

A goal semantic annotation applies only to service interfaces or a given service operation.
preconditions and postconditions annotations apply to service operations.
An effect annotation apply to service operations: it can be used to represent side-effect semantics.

A semantictype annotation applies to a parameter. It typically references a concept in an ontology. Example: a ‘lang’
parameter may technically have String datatype but can be connected to the ‘Language’ concept defined by an ontology.

url: String
Gives the address of a concept defined in an ontol ogy.

A Semantig tag is technically defined as a kind of Constraint. The value specification (inherited from Constraint
metaclass) may be used to give details on preconditions and post-conditions.

A semantic tag is notated by a Note rectangle with <<SemanticTag>> stereotype indication.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 63



9.4.3.2 NonFunctionalTag

A non functional tag annotates an element of a service description (such as interfaces or operations) with information
concerning non functional features like Quality of Service, cost, availability and so on.

Attributes
category: String
Indicates to which category the non functional tag belongs.
The classification is user-defined, to accommodate to different preferences and future standardization.
url: String

Gives the address of a concept representing the non functional feature (typically as part of an ontology).

A non functional tag is technically defined as a kind of Constraint. The value specification (inherited from Constraint
metaclass) may be used to give details on the described features (like cost conditions).

A non functional tag is notated by a Note rectangle with <<NonFunctional Tag>> stereotype indication.

9.4.3.3 GuiTag

A GUI tag represents information to guide GUI generation from the service interface definition. For example, a ‘text’
parameter may be annotated as “combo-box” to render it as a combo-box. The detailed classification ans structure is of
these tags are left unspecified in TelcoML to allow service designer to adopt their own strategies based on the kind of
GUI they want to generate.

Attributes
kind: String
Allows the classification of GUI information. This classification is user-defined.
url: String
Allows to refer to a GUI type (for instance a URL that identifies a widget type, such as a Combo-box in a pre-
existing GUI library).
9.4.4 Additional presentation options

TelcoML notation defines two optional notational short-hands: one related to junctions pseudo-states and the other related
to action sequences.

9.4.4.1 Junction pseudo-states

The regular UML notation for a Junction pseudo-state is an unnamed small black-filled circle. When there is a unique
outgoing transition from a junction node, a TelcoML tool may propose the ability to assign a name to the junction pseudo-
state: thisis interpreted as a short-hand notation for a transition originating from the junction vertex to the state denoted
by the junction name. The short-hand is only applicable if there is no name conflict.

64 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



This short-hand can be used to improve the readability of a service logic diagram (avoiding excessive amount of arrows
in loops). The Figure below illustrates the use of this shorthand.

Sleeping
Sleeping

Figure 9.5 - Shorthand for junctions

9.4.4.2 Action sequences

State Machine UML notation allows using a single rectangle to denote an ordered sequence of actions. In complement to
this TelcoML allows the following shorthand: the text content of the rectangle representing an action sequence may start
with a slash symbol ('/*). In such case the rectangle is connected to a UML note containing the detail of the actions.

This short-hand can be used to limit the size of diagrams. An example of use of this notation is presented below.

*

var v:String
\J/ var v: String;
|:| |::> ] v := localComputations();
v := localComputations() /Preparation someMoreWork(v);
J/
someMoreWork(v)

Figure 9.6 - Shorthand for Action Sequences

9.5 Examples

This sub clause is non-normative.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 65



9.5.1 “Send by SMS weather in Paris translated in English”

The service “Send by SMS weather in Paris translated in English” is a very simple composite service that aggregates one
telecom enabler (messaging) and two capabilities from internet (weather broadcast and translation). This example does
not require managing asynchronous events, hence the state machine representing the behavior can be replaced by asimple
sequence of actions.

First we provide the list of composed service interfaces and then the composite service itself. The SMS sent uses the
“Generic messaging” capability from the TelcoML library, hence this capability is not explained here.

The two used interfaces (besides the Messaging service) are “Meteo France” and “ Translator.”

<<Servicelnterface=>>
MMeteoFrance

getWeatherF orecast(city: String, date: String): String

<<Servicelnterface>>
Translator

translate(lang: String text: String): String

Figure 9.7 - Interface of the composed services

The interface of the composite service inquires the time of weather information (today, tomorrow, next week?) and also
the telephone number destination where the weather summary will be sent.

< <5Servicelnterface>>
Send by SMS the_ weather_in_Paris_translated_in_english

go(when:String,mobile:String):String

Figure 9.8 - Interface of the composite service

Finally we specify the sequencing of service calls. In this case no intermediate computation is needed. The three service
invocations can be done immediately after retrieving service proxies in an initialization step.

66 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Send_by_SMS_the_weather_in_Paris_translated_in_english::go

var sl: MeteoFrance := createProxy("MeteoFrance")
var s2: Translator := createProxy("Translator")
wvar s3: Messaging := createProxy("Messaging")

I

<=<synccall>=>
var rl ;= sl.getWeatherForecast("Paris",when)

I

<<synccall>>
wvar r2 := s2.translate("fr_en",rl)

I

<<synccall>>
result := s3.sendSMS(mobile,“NatMashups®,r2)

é

Figure 9.9 - Composite Service Logic

9.5.2 The Dinner Planning Example

We provide below an example of an integrated composite service that combines telco enablers and IT facilities. The
composite service is designed using the TelcoML composition profile.

The E-tourism dinner planning scenario is as follow:

« AnEnd User isontravel in acity. Because he does not want to waste time trying to find agood restaurant for his dinner
he will delegate this task to a specialized dinner planning service. In the morning, he sends an SMS to the Service
dinner planning requesting a search for "best recommended” restaurant at 20:00 near the location where he plans to be
at that time, and respecting some criteria (such as the type of food).

« At dinner time (20:00), the Service locates suitable restaurants based on the end user geographic position.

» The Service sends amessage to the End User containing the list of restaurants|ocated in the surrounding areaincluding
the contact information for dinner reservation.

» The End User activates a call to the restaurant of choice using the restaurant contact point information.
The components that need to be in place for this scenario are:
» A Personal Agenda, to store from the user his willingness to be notified at dinner time.

« A Locdlization service, which will find the user's location based on GSM network information.

A SMSor Instant Messaging enabler to notify the user when thelist of restaurantsis available.
» A Yelow Pages service to find the restaurants near the location of the user.

« A Third Party Call component to activate the call to the selected restaurant.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 67



Add event "find restauram at 20:00"

f§‘§ Wb Locallzatlon
O i EEYEE T
Call the selected restaurant ) YELLOW
Orchestration 32 PAGES
Traveller Engine Interest Points

3rd Party Call

Figure 9.10 - Dinner planning scenario

From the point of view of the orchestrator, the scenario has three temporal phases:
» The orchestration engine receives the user request (1-1) and registers the event in the personal agenda (1-2).

» At dinner time, the orchestrator receives the reminder from the personal agenda (2.1) and subsequently invokes the
localization services (2.2) to obtain the location information for the traveler. Then it requests the points of interest in the
yellow pages services (2.3), collects the responses and sends the results to the traveler (2.4).

Finally, if the user selects a restaurant, the orchestrator receives the request (3.1) and invokes the 3rd party call service to
establish the communication.

Design of the composite service - the following steps need to be accomplished by athird party service provider:

» Declaring the interfaces for all the invoked components (Agenda, Localization, Yellow Pages, 3rd Party Call),

 Declaring the composite component - with a single 'orchestrate’ operation - and defining the logic of this operation
through a state machine.

Figure 9.11 shows the interface of the Agenda component which abstracts and simplifies a piece of functionality common
to various online calendar tools.

==Servicelnterface ==
Personalfgenda

= =Fires == +akamSigral

+addEventarEvent: AgendaEwvent, rermind RL: Sringl Sring

Figure 9.11 - Interface of an invoked component

Figure 9.12 shows an excerpt of the model of the service logic of the orchestration operation where three threads of
execution are observed.

Note: Interface definitions are not detailed here as well as the declaration of some of the variables being used.

68 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



war IM - InstantMessager = createProxy("InstantMessager")
war Rl Requestinterpreter = createProxy("Requestinterpreter”)
war LOC © Locator = createProwy{"Locator™)

finitialization var TLOC - TownlLocator © createProxy(" TownLocator")

var YF . YellowPages = createProxy("VelowPages")

ret = I subscribeToMessage( filter, listener)

<<\ ait==
Loop
k4 k4
MessageEvent{userid dest,src body) AlarmEwvent{userid, rkind)
rkind = Rl.getkind{body)) ploc = LOC locate(userid)
l tinfo = TLOC getFrenchTown{ploc. latitude, ploc longitude )
— |
time = Rl getTime{body) h 4 D
] _
reslist = YP.getinterest{restaurant tinfo.name, tinfo zipname)
restauld = Rl getRestaurantid{body)
agendalnfo = Rl prepareflarmitime)) :l
body = Rl prepareResult(reslist)
m FCC activateCall{userid, restauid) b
PA afddEvent{agendainfo listener) l
¢ Il sendMessage(userid sipaddress body listener False)
o
. Loop
Loop

',
o
(=]

=l

Figure 9.12 - Logic of the dinner planning composite service

On the left branch of the diagram, user's initial request is received, while on the right branch, processing of the event
triggered at dinner time is performed and in the middle branch the final phone call is placed. Note that this state machine
uses the UML2 transition centric view in which the actions executed during the triggering of a transition are explicitly
represented as rectangles. In this diagram a specific icon is used to denote a remote service invocation, similar to an
asynchronous signal sending symbol in UML.

In this diagram the two short-hand notations presented in “Additional presentation options” on page 64 have been used.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 69



70

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Annex A: SES/SMI Draft

(non-normative)

The SES/SMI specification from TMF is still a draft but is expected to be completed before the finalization of this
specification. That's why technical elements are actually provided in a non normative annex.

More information on SES/SMI initiative can be found at:

http://www.tmforum.org/SoftwareEnabl edServices/4664/home.html

A.1 Overview

The SMI interface provides a list of operations which interact with the management applications to manage deployed
services and control their execution.

A.1.1 Context

In order for the service interfaces to be re-usable and manageble in different service/business context the TM Forum SES
Management Solution specifies a hook to allow consistent access to the software components for OAM tasks in order to
achieve consistent end-to-end management for the Service Providers.

This consistent access is achieved by incorporating the SES Management Interface (SMI) as part of the software
component creation. In addition, the SMI operation is supported by Lifecycle Management Metadata (LMM) defined in
the SES Reference Architecture. The LMM allows multiple stakeholders within a service ecosystem to access, create and
manipulate management information per applicable business scenario. The SES design patterns enable reusability of
services in different environments including Cloud by manipulating the LMM.

A.1.2 Technical Definition in SoaML

The figure below provides the interface definition. Service operations defined by this interfaces uses various data types
which are also formalized in UML.

Figure A.1 - SMI Service Interface

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 71



<<enumeration>>
ExecutionState

<<enumeration>>

ExecutionStateRequest <<datatype>>

ServiceConfiguration

+activating + activat

+active actvate +items: Item[*]

+suspending +suspend

+suspended

<<datatype>> ) <<datatype>>
ManagementReportFilter <<datatype>> atatype
- - ServiceConfigurationFilter ManagementReport

+includeExecutionState: Boolean|[0..1] s
+includeHealthState: Boolean[0..1] +items: Item[*] +iD: Str_|ng_ )
+includeMetric: Boolean[0..1] +pagination: Pagination[0..1] :Ste:te;n;féétrlng

+includeFailures: Boolean[0..1]
+metricsCategories: MetricCategories|[0..1]
+pagination: Pagination[0..1]

+metrics: Metric[*]

Figure A.2 - SMI Data Types (first level)

<<datatype>>

<<datatype>> <<datatype>> |
Metric

State Failure

<<datatype>>

+healph: HealthState
+execution: ExecutionState
+failures: Failure[*]

+code: String
+detail: String[0..1]
+sourceld: String

+sourceld: String
+code: String
+value: String

MetricCategories

+categoryCode: String[*]

+reference: String[0..1]

<<enumeration>>

HealthState <<datatype>> <<datatyp6>>
<<enumeration>> Pagination Item
+unknown ExceptionType 9 -
+operational — +pageNumber: Integer +key: String
+operationalWithFailures +Unspecified +itemsPerPage: Integer +value: String
+NotImple mented

+unoperational

+Invalidinput
+InternalError
+AccessDenied

<<datatype>>
Exception

+exceptionType: ExceptionType
+detail: String

Figure A.3 - SMI Data types (second level)

A.2 Semantics of service operations

For convenience, we provide below the summary description of the operations as defined by the SMI TMF draft
document. More details need to be found in the TMF document.

Retrieving the execution state

getExecutionState () : ExecutionState

72 UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



Returns an ExecutionSate, describing the current execution state of a service instance.

Retrieving the management report
getManagementReport (filter: ManagementReportFilter): ManagementReport

Returns a ManagementReport containing information about the service instance health, execution state, eventual failures
and metrics (usage, performance for example). Optionally, it accepts a ManagementReportFilter input parameter that
allows the service consumer to select which information will be returned and also to control the amount of Metrics
returned, using a Pagination element in the ManagementReportFilter. The operation will return a complete
ManagementReport when the parameter ManagementReportFilter is not received.

Retrieving the service configuration

getServiceConfiguration (filetr: ServiceConfigurationFilter): ServiceConfiguration

Returns a ServiceConfiguration containing alist of pairs Key/Value that describe the current set configuration values used
by the service instance. Optionally, it accepts a ServiceConfigurationFilter input parameter that alows the service
consumer to select which information will be returned and also to control the amount of configuration values returned,
using a Pagination element in the ServiceConfigurationFilter. The operation will return a complete ServiceConfiguration
when the parameter ServiceConfigurationFilter is not received.

Setting the execution state

setExecutionState (request: ExecutionStateRequest): Boolean

Allows a service consumer to activate or suspend service execution. It has one output parameter (a Boolean) that will
return the value True if the change of service execution state requested by the consumer was made successfully. It has one
input parameter (to activate or suspend the service instance).

Setting the notification address (register the listener)

setNotificationAddress (address: String): Boolean

It has one input parameter that configures the communication endpoint address the service instance must use to deliver a
report containing information about their health, execution state, eventual failures and metrics. It has one output
parameter (a Boolean) that will return the value True if the notification address configuration requested by the service
consumer was made successfully.

Setting the service configuration
setServiceConfiguration(config: ServiceConfiguration): Boolean

Applies configuration values used by the service instance. It requires ServiceConfiguration input parameters that describe
the configuration values to be applied to the service instance.

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1 73



74

UML Profile for Advanced & Integrated Telecommunication Services, Beta 1



	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgements

	7 TelcoML Overview
	7.1 Introduction
	7.2 Relation with other standards
	7.3 Service Delivery Environment

	8 TelcoML Enabler Library
	8.1 Introduction
	8.2 Conventions
	8.3 Package Structure
	8.3.1 Generic Messaging
	8.3.2 Interface Definitions

	8.4 Short Messaging (SMS)
	8.4.1 Overview
	8.4.2 Interface Definitions

	8.5 Multimedia Messaging (MMS)
	8.5.1 Overview
	8.5.2 Interface Definitions

	8.6 Click To Call
	8.6.1 Overview
	8.6.2 Interface Definitions

	8.7 Location
	8.7.1 Overview
	8.7.2 Interface Definitions

	8.8 Synchronization
	8.8.1 Overview
	8.8.2 Context
	8.8.3 Interface Definitions

	8.9 Voice recognition and TTS
	8.9.1 Overview
	8.9.2 Interface Definitions

	8.10 Privacy
	8.10.1 Overview
	8.10.2 Interface Definitions


	9 TelcoML Composition Profile
	9.1 Overview
	9.1.1 Relationship to SoaML
	9.1.2 Relationship to Voice Profile
	9.1.3 Relationship to CCXML and VoiceXML

	9.2 Main concepts
	9.2.1 Service Interface

	9.3 Most commonly used stereotypes from SoaML
	9.3.1 Annotating service interfaces
	9.3.2 Using graphical or textual notation

	9.4 TelcoML specific stereotypes
	9.4.1 Service logic related stereotypes
	9.4.2 Voice and multi-modal interaction related stereotypes
	9.4.3 Annotations for service interface elements
	9.4.4 Additional presentation options

	9.5 Examples
	9.5.1 “Send by SMS weather in Paris translated in English”
	9.5.2 The Dinner Planning Example


	Annex A: SES/SMI Draft
	A.1 Overview
	A.1.1 Context
	A.1.2 Technical Definition in SoaML

	A.2 Semantics of service operations


