
TestIF Beta 1 Specification Page 1

Date: January 2013

Test Information Interchange Format (TestIF)
Specification

FTF Beta 12

OMG Document Number: dtc/2013-xx-xx
Standard Document URL: http://www.omg.org/spec/TestIF
Machine Consumable Files:
 Normative:
 c4i/12-09-08 – http://www.omg.org/spec/TestIF/20121101/TestIF_UMLPIM_2012_09_24.xml
 c4i/12-09-09 – http://www.omg.org/spec/TestIF/20121101/TestIF.xsd
 c4i/12-09-11 – http://www.omg.org/spec/TestIF/20121101/org_omg_testif_attributes.xml
 Non-Normative:
 c4i/12-09-10 – http://www.omg.org/spec/TestIF/20121101/TestIF_SQL_Create_Scrips.sql
 c4i/12-09-12 – http://www.omg.org/spec/TestIF/20121101/TestIF_UML_PIM_2012_09_24.mdzip

TestIF Beta 1 Specification Page 2

Copyright © 2011, SimVentions, IDT, Critical Logic, Intervise Consultants
Copyright © 2013, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this specification in
any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and to
use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice
identified above and this permission notice appear on any copies of this specification; (2) the use of the specifications is for
informational purposes and will not be copied or posted on any network computer or broadcast in any media and will not be
otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited
permission automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require
use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF

TestIF Beta 1 Specification Page 3

MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of
the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , IMM™ , OMG Interface Definition Language (IDL)™ , and OMG SysML™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only
if the software compliance is of a nature fully matching the applicable compliance points as stated in the specification.
Software developed only partially matching the applicable compliance points may claim only that the software was based on
this specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

TestIF Beta 1 Specification Page 4

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/report_issue.htm.)

TestIF Beta 1 Specification Page 5

Contents

Preface... 7
1 Scope ... 9

1.1 Purpose ... 9
1.2 Usage .. 10
1.3 Examples .. 12
1.4 Overall Design Rationale ... 23

2 Conformance ... 24
3 References ... 24

3.1 Normative ... 24
3.2 Relationship with other standards .. 25

4 Terms and definitions .. 28
4.1 Terms .. 28
4.2 General Notes on Semantics .. 28

5 Symbols (and abbreviated terms) .. 29
6 Additional Information .. 30

6.1 Changes to Existing OMG Specifications .. 30
6.2 Acknowledgements .. 30

7 Platform Independent Model (PIM) .. 31
7.1 Package TestIF ... 31
7.2 Package TestIF::Attributes ... 39
7.3 Package TestIF::Test Classes ... 57
7.4 Predefined Attribute Definitions .. 72
7.5 Extending the Standard .. 7877

8 XML Platform Specific Model .. 80
8.1 Purpose ... 80
8.2 Method of Mapping .. 80
8.3 Using the XML PSM ... 81

9 SQL Platform Specific Model ... 95
9.1 Purpose ... 95
9.2 Method of Mapping .. 95
9.3 Attributes .. 95
9.4 Test Sequence ... 96
9.5 Related Test Objects... 97

ANNEX A Example of PSM-Compliant XML ... 99
ANNEX B Example of PSM-Compliant XML ... 100

TestIF Beta 1 Specification Page 6

List of Figures

Figure 1-1: Notional Interchange Example .. 10
Figure 1-2: Basic Test Information Interchange .. 11
Figure 1-3: Tool Independence .. 12
Figure 1-4: Test Procedure Translated into TestIF Objects ... 15
Figure 1-5: The Execution of the Test Cases Represented in TestIF .. 16
Figure 1-6: Cause-Effect Model .. 18
Figure 1-7: The ‘Test Paths’ Relationship ... 20
Figure 1-8: Test Steps Definition Outside of Test Cases ... 21
Figure 1-9: Creation of a Test Set .. 21
Figure 1-10: Test Runs Contain the Test Results from Executing the Test Steps 22
Figure 7-1: Basic Classes ... 31
Figure 7-2: High Level Classes.. 32
Figure 7-3: All Attributes... 40
Figure 7-4: Arguments ... 41
Figure 7-5: Test Object Types ... 57
Figure 7-6: Conceptual Relationship between these SequencedTestObject Types 58
Figure 7-7: Test Object Sequences .. 58
Figure 7-8: Related Test Objects ... 59
Figure 7-9: Results ... 60
Figure 9-1: Attributes ... 96
Figure 9-2: Test Sequence ... 97
Figure 9-3: Related Test Objects ... 98

List of Tables

Table 1-1: Vender Process for Test Information Interchange ... 11
Table 1-2: Sample Requirements ... 13
Table 1-3: Notional Human Readable Test Procedure .. 13
Table 1-4: Legend for Subsequent Diagrams .. 14
Table 1-5: Requirements .. 17
Table 1-6: Test Case Output Generated by a Cause-Effect Model .. 18
Table 1-7: Legend for Subsequent Diagrams .. 19
Table 5-1: Acronyms and Abbreviations ... 29
Table 7-1: AttributeDefinitions in the org.omg.testIF namespace ... 72
Table 7-2: AttributeValues in the org.omg.testIF namespace ... 77

TestIF Beta 1 Specification Page 7

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and reusable
enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors,
end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and
industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications are
available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

TestIF Beta 1 Specification Page 8

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, may
be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier/Courier New - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

TestIF Beta 1 Specification Page 9

1 Scope

The scope of this response is to propose a standard for Test Information Interchange for Automating Software Test Processes
for C4I and software systems. Hardware testing is not directly in the scope of the proposed standard.

1.1 Purpose

The goal is to achieve a specification that defines the format for the exchange of test information between among tools,
applications, and systems that utilize it. The term “test information” is deliberately vague, because it includes the concepts
of tests (test cases), test results, test scripts, test procedures, and other items that are normally documented as part of a
software test effort.

The long term goal is to standardize the exchange of all test related artifacts produced or consumed as part of the testing
process, however, the current proposal is primarily focused on artifacts used or produced outside of test execution. The
following are specifically in scope:

• The format of information artifacts related to testing to enable data exchange. The list of types of information is

provided in the Issues to be Discussed section.

• Description of test specification entities including mandatory and user defined attributes

• The logical relationships between among the test information entities.

• Specification of a MOF compliant Platform Independent Model (expressed in UML) to cover test information data

exchange.

• A simple XML schema for validation of test data being exchanged.

• Description of the process by which the standard can be extended.

Figure 1 is a notional view of the way compliant tools would access and contribute test information in a standard format. The
red boxes represent instances of different types of tools that might produce or consume test information. These boxes are not
intended to be prescriptive or a comprehensive capture of all of the functionality related to test data information exchange.
This is merely here as an illustration of the types of tools and functionality that would utilize and benefit from this standard.

Comment [MW1]: Issue 18335

Comment [MW2]: Issue 18360

Comment [MW3]: Issue 18360

Comment [MW4]: Issue 18336

TestIF Beta 1 Specification Page 10

Figure 1-1: Notional Interchange Example

1.2 Usage

The following paragraphs outline the primary usage of the TestIF Standard.

1.2.1 Basic Test Information Interchange

Interchange Examples

DOORS
Quality Center

TMX
ATRT

QTP
ATRT

Selenium
EggPlant
SilkTest

TestPartner
Functional

Tester
Open Source

(e.g. Selenium)

Quality
Center

ATRT
TestMaP

TestMaP
ARBITR

App
Specific

•Requirements Management
•Test Construction

•Test Execution

•Test Management
•Defect Tracking
•Reporting

•Results Analysis

DTT
Bender RBT
UTP Impls.

• Model-Based Testing Tools

TestIF
Test Interchange

Format

* A sampling of the kinds of tools that can leverage TestIF interchange.
Listed tools do not necessarily currently support TestIF, nor is the list intended to be comprehensive.

Interchange Examples

* A sampling of the kinds of tools that can leverage TestIF interchange.
Listed tools do not necessarily currently support TestIF, nor is the list intended to be comprehensive.

DOORS

UTP

Quality Center
TMX
ATRT

QTP
ATRT

Selenium
EggPlant
SilkTest

TestPartner
Functional Tester

Open Source
(e.g. Selenium)Quality Center

ATRT
TestMaP

TestMaP
ARBITR

App Specific

•Requirements Management

•Test Definition Frameworks

•Test Construction

•Test Execution

•Test Management
•Defect Tracking
•Reporting

•Results Analysis

DTT
Bender RBT

•Test Definition
•Modeling Tool

TestIF
Test Interchange

Format

Comment [MW5]: Issue 18337

TestIF Beta 1 Specification Page 11

Figure 1-2: Basic Test Information Interchange

Figure 1-2 represents common scenarios on how Test Information is exchanged between several testing organizations using
different testing tools. A C4I organization engages two vendors to design tests case for an application “X”. Table 1-1 details
this process. The client desires to execute the tests in their own environments. The vendors export test cases to the TestIF
compliant XML document using a TestIF compliant component or utility (TestIF Exporter). The test cases then are
independently imported by the two different client labs using TestIF compliant component or utility (TestIF Importer). Each
lab then adds the necessary tool specific execution code and environment specific attribute values to the TestIF Test Objects
imported from the XML document. The tests are then executed against the application under test in their respective
environments. The execution results are added to the test information and the updated test information is exported to a
TestIF document for consumption by an arbitration process. Arbitration Tool E then imports the documents for
consolidation, analysis and reporting. The results are then published to a TestIF document. The TestIF standard allows all of
these organizations to exchange test information without regard to the other’s testing technologies.

Table 1-1: Vender Process for Test Information Interchange

Step 1 Vendors develop Tests Cases for application “X”

Step 2 Vendors export Test Cases to TestIF documents

Step 3 Client labs Import the TestIF documents into their respective test environments

Step 4 Labs “instrument” the Test Steps with appropriate executable expressions and execute the tests

Step 5 Labs export Test Information including results

Step 6 Arbiter imports TestIF documents into a consolidated repository

Step 7 Arbiter analyzes tests information and test results to roll up verdicts Arbiter publishes test
information and test results in a TestIF compliant document

1.2.2 Usage – Tool Independence

TestIF Beta 1 Specification Page 12

Figure 1-3: Tool Independence

A testing organization (TO) has developed a test library using Automation Tool A and has been executing test case against
the System Under Test for several test cycles. Conditions have changed and the organization decides to utilize Test
Automation Tool B in place of Automation Tool A. The TO acquires a tool “TestIF Exporter B” that can create a TestIF
document from tests stored in Automation Tool A. Automation Tool C has the capability of importing TestIF documents
directly. Test cases are imported into Automation Tool C and tests are executed against a SUT. In this exchange the Test
Cases are preserved and only the contents of Test Objects that contain executable code are replaced to make the transition.

Note on TestIF Export and Import Utilities:

The specifications for tools that export or import TestIF compliant documents are outside the standard. Such utilities must
simply comply with the defined TestIF document standards. It is anticipated that vendors will create integrated import/export
capabilities within existing testing tools as well as new independent tools that act as servers to provide interfaces between
TestIF documents and available commercial testing tools.

1.3 Examples

1.3.1 Example 1 – C4I Simple Example

Introduction
The goal of this example is to show how a very simple test is represented in the basic TestIF structures. The TestIF is very
flexible in the level of expressivity of the test information. For tests that are fully automated the structures in the TestIF
document would likely be highly annotated with machine readable attributes. In this example we will focus only on the
underlying basic structures.

Note that the symbols used in the example figures are non-normative. They are intended for illustrative purposed only.

Example
The testing of C4I systems typically involves verification of interface contracts and verification of the outputs of processing
received messages. To keep the example short we will deal with only two fairly simple requirements from a system that is
processing an external message about a track’s course:

Comment [MW6]: Issue 18338

Comment [MW7]: Issue 18330

TestIF Beta 1 Specification Page 13

Table 1-2: Sample Requirements

ID Requirement

R1 Values less than 0 received in the course field shall be set to 0.00.

R2 Values greater than 359.99 received in the course field shall be set to 359.99.

A human readable test procedure derived from the above requirements might take the form shown in Table 1-3.

Table 1-3: Notional Human Readable Test Procedure

Test
Case

Step Requirement Action Expected Response

TC1 TC1_TS1
Send message with course set to less
than zero.

TC1 TC1_TS2 R1 Verify displayed value. Displayed course equals 0.00

TC2 TC2_TS1

Send message with course set to greater
than 359.99.

TC2 TC2_TS2 R2 Verify displayed value. Displayed course equals 359.99

TestIF representation of the Test Procedure

The diagram in Table 1-4 is a legend of the symbols used in the subsequent diagrams. Each item maps directly to a TestIF
object.

TestIF Beta 1 Specification Page 14

Table 1-4: Legend for Subsequent Diagrams

Symbols Definition

Requirement (Externally
Defined)

 Attribute ValueThe expected
result

Test Case

Test Step

Sequenced Step

Test Result – Pass

Test Result – Fail

The above Test Procedure translated into TestIF objects would take the form shown in Figure 1-4.

Expected
Result

TC2

Step 003F

SS A2

Res3

Res4

Requirement
Reference

Formatted Table

Comment [MW8]: Issue 18331

TestIF Beta 1 Specification Page 15

Figure 1-4: Test Procedure Translated into TestIF Objects

• The Test Case objects in this example act as the container for the sequence of execution of their associated steps

(Test Sets and Test Steps can also contain an internal sequence of associated items).

• The Test Sequences in this Test Procedure are linear and straightforward, but TestIF’s Test Sequence object and
referencing approach is able to represent any directed graph. This allows TestIF to handle complex test sequences
(eg. loops, parallel execution, etc.).

• Essentially all the objects in TestIF are defined once in the document and then referenced where they are needed.
The blue arrows indicate this referencing mechanism. If two different Test Cases needed to reference the same Test
Step(s), the Test Steps are defined once in the TestIF document and simply referenced from both locations.

• Requirement Reference Attributes are used in this example to attach the requirement to the Test Case the
requirement could have been attached at the Test Step level instead if that is more expressive/correct in another
scenario.

• Expected Result Attributes are used to capture the value that must be verified in the associated item in a well-
defined machine readable format.

A record of an execution of the Test Cases above represented in TestIF would take the form shown in Figure 1-5.

Step TC1_TS1

Step TC1_TS2

SS A1

SS A2
TC1 Expected Result:

0.00

Requirement
Reference: R1

Step TC2_TS1

Step TC2_TS2

SS B1

SS B2
TC2

Expected
Result: 359.99

Requirement
Reference: R2

Test Sequence

Test Sequence

Comment [MW9]: Issue 18331

TestIF Beta 1 Specification Page 16

Figure 1-5: The Execution of the Test Cases Represented in TestIF

• In this example we can see that an execution of the two Test Cases above produced a set of Test Results. The first

Test Case passed with correct result. The second failed due to a observing an incorrect value.

• The Test Run objects acts as a container for a list of Test Result objects.

• Each Test Result object references the object that it is a result for. Sequence Steps are the most common reference
since they indicate exactly where in a specific Test Sequence this result was generated from. In the case where there
is a Test Result that is generated external to specific Test Sequence the Test Result references the item for which the
Result is associated (Test Set, Test Case, and Test Step). In this example the rollup results for each of the Test
Cases was determined by a second tool after the execution of the test and then written into the TestIF document.

• Result Value Attributes are used to capture the results observed during execution.

1.3.2 Example 2 – Requirement Traceability and Results Arbitration for Cause-Effect
Model-Generated Tests

Introduction
Critical Logic uses a Cause-Effect Modeling tool called DTTto generate test cases. Cause-Effect Models represent rules for
system behavior. The models automatically generate test cases for complete functional test coverage of the rules.

SS A1

SS A2

TC1

Result Value:
0.00

SS B1

SS B2

TC2

Res1

Res2

Test Run

Res3

Res5

Res4

Res6

Result Value:
720.01

Comment [MW10]: Issue 18360

Comment [MW11]: Issue 18360

Comment [MW12]: Issue 18332

TestIF Beta 1 Specification Page 17

The model-generated test cases can be output to reports for manual test execution, imported into test management tools, or
imported into automation tools for scripting. These test case definitions have potentially complex structures that allow for
optimized test design, very accurate requirement traceability, and fine-tuned test result arbitration.

The goal of this example is to show how TestIF supports the unique capabilities of DTT around requirement traceability and
results arbitration, allowing other tools to leverage and build on those capabilities.

Note that the symbols used in the example figures are non-normative. They are intended for illustrative purposed only.

Example
Automated Testing of C4I and other complex systems requires automation of reporting on Requirement Verification Status
(RVS). The reporting requirement common creates two problems:

1. Oversimplification of test cases to be requirement-specific, resulting in incomplete test coverage
2. Inaccurate reporting of requirement status when a failed test case nonetheless successfully verified some

requirement within it

Both increase risk and cost. Cause-Effect Models solve these problems by providing complete test coverage, optimizing test
counts, and maintaining test-step-level requirement traceability. In so doing, Cause-Effect Models reveal deeper challenges
to RVS reporting:

1. It typically takes more than one test to fully exercise a requirement.
2. A typical test exercises more than one requirement.

The present example shows how TestIF supports DTT’s solution to these two problems.

Requirements
Our example starts with the requirements for user login to a secure, account-based system.

Table 1-5: Requirements

RqmtID Requirement

R01 If the user logs in successfully and their account is Open or Pending, display the welcome screen.

R02 If the user logs in successfully and their account is Open, display Message 2.

R03 If the user logs in successfully and their account is Pending, display Message 3.

Notes:

• R01 requires two positive verifications – one for “Open” and one for “Pending”.

• R02 is specific to “Open,” and may occur regardless of the outcomes related to R01.

• R03 is specific to “Pending,” and may occur regardless of the outcomes related to R01.

Cause-Effect Model

This Cause-Effect Model, Figure 1-6, is a complete representation of the requirements in Table 1-5.

A legend is included to the right of the model.

Comment [MW13]: Issue 18330

TestIF Beta 1 Specification Page 18

Figure 1-6: Cause-Effect Model

The above model is not normative. It is included only to support the example.

Figure 1-6: Cause-Effect Model

Test Case Definitions

Table 1-6 reflects the Test Case output generated by the Cause-Effect Model in Figure 1-6.

Table 1-6: Test Case Output Generated by a Cause-Effect Model

Test
Scenario

Step Seq Test Description
TP1

(R01)
TP2

(R01)
TP3

(R02)
TP4

(R03)

1 001T 1
System is configured to operate in the user's language,
represented by <LANG_VAR>. X X

1 002T 2
User logs in successfully with UserID = <USERID> and
Password = <PSSWD>. X X

1 003T 3 User's Account is Open. X X

1 007T 4 System displays the Welcome screen. X

1 009T 5
System displays Message ID#1 (as defined in the
Conditional Message Index) for the current language (as
defined by <LANG_VAR>), indicating the account is Open.

 X

2 001T 1
System is configured to operate in the user's language,
represented by <LANG_VAR>.

 X X

2 002T 2
User logs in successfully with UserID = <USERID> and
Password = <PSSWD>.

 X X

2 003F 3 User's Account is Pending. X X

2 007T 4 System displays the Welcome screen. X

2 008T 5
System displays Message ID#2 (as defined in the
Conditional Message Index) for the current language (as

 X

Comment [MW14]: Issue 18333

TestIF Beta 1 Specification Page 19

Test
Scenario

Step Seq Test Description
TP1

(R01)
TP2

(R01)
TP3

(R02)
TP4

(R03)
defined by <LANG_VAR>), indicating the account is
Pending.

Notes:

1. “Test Scenario” is the executable test case. There are 2 Test Scenarios.

2. “TP1,” “TP2,” etc. are “Test Paths.” There are 4 Test Paths.
3. Test Paths are collections of steps which when executed in the same Test Scenario verify related Requirements.
4. Each Test Path traces to one or more Requirements – in this case one each. In this example, each Test Scenario

exercises two Test Paths.
5. Failure of one Test Path in a Test Scenario does not necessarily imply failure of another.

In this example, Step 007T in Test Scenario 1 is returned with a Verdict of “FAIL”. All other Steps pass. This gives rise to a
set of questions for deriving Requirement Verification Status from this set of results.

1. What is the Status of Requirement 02? It is exercised by a single Test Path (TP3). All the steps in TP3 passed, but
other unrelated steps in the Scenario that exercises TP3 failed.

2. What is the Status of Requirement 01? It is exercised by 2 Test Paths (TP1, TP2). One passed, one failed.
3. What is the status of Test Scenario 1? Part of it succeeded, part of it failed.

Different systems, projects, and organizations have different answers to these questions. Some may be more nuanced than
others. The answers to these types of questions are what make up the rules for Test Results Arbitration. Arbitration itself is
outside the scope of the TestIF standard, but the standard must support interchange of sufficient data to support external
arbitration.

Translating to TestIF

Test Scenarios and Test Paths as Test Cases Related by Custom Attribute
TestIF does not provide a specific semantically defined structure for differentiating between and relating Test Scenarios and
Test Paths as defined in this example – they are tool-specific concepts. Both concepts map well to the TestIF TestCase Test
Object, because they are a sequenced set of reusable Test Steps.

The following diagrams use the example described above to show how TestIF can be extended to set up this relationship.
Further, it shows how step-level execution results support test result higher-level arbitration of requirement verification status
by tracing back through the Scenario-Test Path relationship to the requirement. Table 1-7 is a legend of the symbols used in
the subsequent diagrams. The complete XML for this example can be found as an Appendix to this document.

Table 1-7: Legend for Subsequent Diagrams

Symbols Definition

 Requirement (Externally
Defined)

Test Case TC2

R1

TestIF Beta 1 Specification Page 20

Test Step

Sequenced Step

Test Result – Pass

Test Result – Fail

Test Cases and Requirement Traceability

Figure 1-7 shows how the ‘Test Paths’ from the example above are defined as Test Case objects and related to externally
defined requirements using an attribute. The ‘Test Paths’ are also related to the ‘Test Scenarios’ they belong to by defining
the ‘Test Scenarios’ as Test Cases, and relating the ‘Test Paths’ and ‘Test Scenarios’ using another attribute.

Figure 1-7: The ‘Test Paths’ Relationship

Test Cases and Test Steps

Figure 1-8 shows how Test Steps are defined outside of Test Cases, so they can be reused in different sequences defined by
different Test Cases.

TC5

TC1 TC2

TC3 TC6 TC4

Attribute: satisfiedTestPath

 Attribute: requirementReference

‘Test Scenarios’

Requirements (Externally defined)

‘Test Paths’ and ‘Test Scenarios’ are transmitted as Test Cases, and related using an Attribute.

‘Test Paths’

Test
Cases

R1 R2 R3

Step 003F

SS A2

Res3

Res4

TestIF Beta 1 Specification Page 21

Figure 1-8: Test Steps Definition Outside of Test Cases

Executable Test Sets

Figure 1-9 shows how a Test Set is created for test execution. The Test Set contains Sequenced Steps, each of which points
to a Sequenced Test Object (i.e. one of the three types of Test Objects that can be sequenced [Test Set, Test Case, Test Step]),
and the next Sequenced Step.

In this example, the Test Set is simply a sequence of the two Test Cases (the two ‘Test Scenarios’ from the example above).

Figure 1-9: Creation of a Test Set

Test Sequence for Test Case 2

Step 001T Step 003T Step 009T Step 008T Step 002T Step 007T Step 003F

Test Step Sequence for Test Case 1

SS A1 SS A4SS A2 SS A3 SS A5

SS B1 SS B4SS B2 SS B3 SS B5

Test Cases contain Sequenced Steps.
Each Sequenced Step references a reusable Test Step, and the next Sequenced Step.

TC 1

TC 2

Test Set

SS C1

TC1 TC2

Like Test Cases, Test Sets contain Sequenced Steps.
Each Sequenced Step references a Sequenced (i.e. sequenceable) Test Object, and the next Sequenced Step.

SS C2

TestIF Beta 1 Specification Page 22

Test Run, Test Results, and Post-Run Result Arbitration

Figure 1-10 shows how Test Runs contain the Test Results from executing the Test Steps that flow from the Test Set. Test
Results can reference either a Sequenced Step or a Test Object.

In this example, the Test Results for Test Cases were supplied by an external arbiter after evaluating the Step-level Results
from the Run, using the SatisfiedTestPaths attribute to determine which Test Cases to supply results for.

Figure 1-10: Test Runs Contain the Test Results from Executing the Test Steps

Even though only two Test Cases were sequenced in the Test Set, Test Results can be derived for all 6 Test Cases, allowing
for a more granular traceability of results to requirements.

Test Run

Res7

Res1
0

Res8

Res9

Res6

Res2

Res5

Res3

Res4

Res1
1

Res1

Res1
2

SS B2

SS B5

SS B3

SS B4

SS B1

SS A2

SS A5

SS A3

SS A4

SS A1

Sequenced Steps fromTest Run

Res1
3

Res1
4

TC4 TC3

Res1
5

Res1
6

TC6 TC5

SS C2 SS C1

R1

R2 R3

R1

Sequenced Steps from Test
Cases sequenced in Test Run

Test Case 1 Test Case 2

Test Results in the blue background are set at run-time based on step-level arbitration rules.
Test Results in the orange background are set later, after interchange, based on Test-level arbitration rules.
Further requirement-level arbitration can be performed externally based on the fully arbitrated test results.

TestIF Beta 1 Specification Page 23

By this external arbiter’s rules, a failure in any Test Case step causes that Test Case to fail (Res11, Res13). If R2 had been
traced to Test Case 1, its verdict would have been incorrectly set to FAIL.

This structure of combining Test Cases into a single executable set of steps that share environmental variables and sequence
is analogous to the UTP concept of “Test Context”.

This example demonstrates TestIF’s ability to combine test cases (‘Test Paths’) into executable test contexts (‘Test
Scenarios’) that share environment and control, without sacrificing granularity of requirement traceability. Tests can be
combined, and unrelated failures can be disregarded in rollup of Requirement Verification Status.

TestIF supports this power of Cause-Effect Models to optimize both test efficiency and requirement traceability.

1.4 Overall Design Rationale

The following design issues and considerations were prioritized during the development of the proposed specification:

• Interchange
o Supports interchange between homogeneous and heterogeneous systems and test tools
o Does not presume any form or method of test authoring (tool-independence)
o Relevant to common C4I testing scenarios
o Support interchange of test definitions, not translation of scripting languages
o Support all kinds of test definitions, including UML Testing Profile (UTP) compliant (or not), model-based

definitions, or even a simple spreadsheet.
o Compliant tools can process the entities they understand and ignore what they don’t
o The standard primarily assumes that it enables software-to-software interchange, as opposed to optimizing for

human readability.Assume software-to-software interchange, with no special consideration for read/write by
people

• Test Results Arbitration Support

o Leverage UTP concept of separating results arbitration from test execution
o Support interchange of results of verdict (consistent with UTP concept)
o Nothing in standard about how verdicts are set
o Provides for verdict attribution at any level (addresses Issue to Be Discussed #1)

• Expressivity vs. strong typing
o Provide semantic definitions for very common testing terms, within flexible structure
o Flexibility to extend the standard using simple attribution structures

• Self-Consistency

o Assume self-consistency of interchanged data
o E.g. Verdicts only apply to the versions of the tests included in the same file
o No enforcement of referential conflict built into standard – up to implementers

• Compatibility With Adopted Standards

o Leverage structural concept of attributed identifiables from ReqIF
o Not trying to be UTP, which defines the entire test system, but consistent with it
o Explored other standards to ensure no conflict (see also Relationship to Adopted OMG Specifications, below)

• Generic

o Ensure meeting C4I needs first, but support wide adoption
o Testing space requires interface between wide variety of tools for different purposes
o Flexibility to support all kinds of test authoring and execution

Comment [MW15]: Issue 18329

TestIF Beta 1 Specification Page 24

2 Conformance

Implementations of this standard are considered to be in conformance if they fully match one or more of the language-level
PSMs specified. The implementation must indicate the language PSMs that they match in their statement of conformance.

• Must follow hierarchy rules defined in the text of the PIM for allowed sequence containment (i.e., a Test Set can
only contain any other SequencedTestObject, a Test Case can only contain Test Steps, and a Test Step can only
contain Test Steps). See the diagram in the TestIF Package section and the diagram labeled “Conceptual
Relationship between these SequencedTestObject Types”.

• Identifiers are required to be unique within a TestIF document. Data that is expected to be referenced outside of the
TestIF document or across TestIF documents must have a UUID. TestIF does not specify the mechanism for
declaring UUIDs. There are various startegies for defining UUIDs that are acceptable. For “transient” objects, only
relevant within the scope of a single TestIF document may use local identifiers. Local Identifiers must begin with
“localonly.” Other uses of Identifier are considered to be non-conforming.

• When creating custom AttributeDefinition objects, it is recommended to use Identifiers that provide appropriate
attribution of the author (tool). The pre-defined AttributeDefinitions in TestIF are all prefixed with org.omg.TestIF.

• Tools shall use the semantic structures prescribed by the standard where applicable. Usage of the flexibility features
of relatedTestObjects and Attributes to convey concepts that are already semantically covered elsewhere in the
standard via direct structure or attribute is considered non-conforming.

• TestItems are provided to cover the cases where the semantic meanings of the other objects are too restrictive or do
not match, but to be useful and understandable by other tools TestItems should always have attributes attached to
them to define their semantics using the standard extension mechanism.

• It is not necessary for a conformant tool Conformant to exporting export tools are not required or to produce all of
the object types outlined in the standard if that tool does not use all of the types. If a tool states that they can import
TestIF artifact, they must preserve support all of the data types and features of the specification.

3 References

3.1 Normative

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
TestIF Specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

The following normative documents contain provisions that, through reference in this text, constitute provisions of this
specification:

URI

• Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, IETF RFC 2396,
August 1998

http://www.ietf.org/rfc/rfc2396.txt

XHTML 1.1 Modularization

Comment [MW16]: Issue 18339

Comment [MW17]: Issue 18341

Comment [MW18]: Discuss in the FTF further
refinement of this conformance point.

TestIF Beta 1 Specification Page 25

• XHTML™ Modularization 1.1, Daniel Austin et al., eds., W3C, 8 October 2008

http://www.w3.org/TR/xhtml-modularization/

XML 1.0 (Second Edition)

• Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et al., eds., W3C, 6 October 2000

http://www.w3.org/TR/REC-xml

XML-Namespaces

• Namespaces in XML, Tim Bray et al., eds., W3C, 14 January 1999

http://www.w3.org/TR/REC-xml-names

XML-Schema

The authoritative description of the Test Interchange Format exchange document structure is provided as an XML Schema.
XML Schemas express shared vocabularies and allow machines to carry out rules made by people. They provide a means for
defining the structure, content and semantics of XML documents.

• XML Schema Part 1: Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn, W3C, 2
May 2001

http://www.w3.org/TR/xmlschema-1//

• XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2 May 2001

http://www.w3.org/TR/xmlschema-2/

3.2 Relationship with other standards

No changes to UML 2.0 any or other OMG specifications are is required.

3.2.1 UML Testing Profile (UTP)

UTP is a powerful framework for creating abstract test models that completely define the testing space and expected system
behaviours therein. UTP strives to be a language for methodologies.

TestIF supports UTP by providing a means to communicate the information stored in UTP models to other tools that do not
'speak' UTP. This includes both model-based and non-model-based test authoring tools, as well as other kinds of tools that
rely on test information.

TestIF addresses the reality that there are many kinds of tools involved with testing that use and contribute to test case
information. Tools for Test Management, Automation Frameworks, Results Arbitration, and others all rely on interchange of
test case information.

Adoption of UTP is not yet widespread. Other frameworks for elaborating test specifications are pervasive. UTP has the
potential to become the underlying framework of a wide variety of test design tools. TestIF fills the need of every one of
those tools to express an interchangeable specification for test behavior in the form of executable test cases.

Please see the table in “Responses to Issues to be Discussed,” Item #1, for a detailed treatment of the relationship between
specific TestIF and UTP concepts.

UTP Home: http://utp.omg.org/

TestIF Beta 1 Specification Page 26

3.2.2 ReqIF

ReqIF is an XML interchange standard for exchange of software requirements. It is directly analogous to TestIF in its
purpose and structure.

Where possible, TestIF leverages ReqIF concepts and patterns. These include:

• The concept of extensibility through Attributes

• General XML PSM structure

• Providing a core semantic structure to support extensibility and ease of adoption

Both TestIF and ReqIF provide an XML PSM, which allows for ease of implementation to the standard, encouraging
adoption.

ReqIF Home: http://www.omg.org/spec/ReqIF/

3.2.3 Systems Assurance

Sometimes referred to as “Software Assurance,” Systems Assurance is an umbrella term that covers a number of OMG
standards.

While there are some analogous concepts in the various SA standards, TestIF addresses needs that are outside the scope of
the SA standards. Indeed, TestIF could be extended for transmitting SA information in a variety of ways.

Systems Assurance home: http://www.omgwiki.org/SysA/doku.php

3.2.4 Semantics of Business Vocabulary and Business Rules (SBVR)

SBVR provides a framework for writing business rules (not in terms of system). Test design or authoring tools may benefit
from leveraging SBVR by writing test step descriptions according to a structure specified in an SBVR framework. SBVR is
thus ‘upstream’ from TestIF.

3.2.5 Software Assurance Evidence Metamodel (SAEM)

SAEM uses SBVR to define a vocabulary for evidence about software artifacts to support assurance arguments against
claims (typically related to safety and security).

• Claims define the expected behavior of the system. In system design and testing, claims are conceptually analogous
to requirements or test cases (depending on the methodology).

• Evidence describes anything that might be used to support an argument that the system satisfies a claim.

o “Evidence can be diverse as various things may be produced as evidence, such as documents, expert
testimony, test results, measurement results, records related to process, product, and people, etc.”

TestIF supports transmittal of any kind of result, including external references to documents.

• Arguments are potentially more complex (see ARM, below). In TestIF, an Argument can be thought of as an
assertion made by some external Arbiter based on the information transmitted in TestIF format.

TestIF Beta 1 Specification Page 27

TestIF can be extended to support transmittal of all kinds of information. The core concepts of the SAEM are analogous to
common testing concepts. As such, TestIF may be a good choice for transmittal of SAEM information.

3.2.6 Argumentation Metamodel (ARM)

ARM provides a structure for making claims about security, in support of the SAEM.

TestIF can be extended to support transmittal of ARM information.

3.2.7 Systems Modeling Language (SysML)

SysML provides a broad set of notations and tools for describing a system. SysML includes the concept of test case,
requirements, and other items which have some overlap of the concepts covered in UTP, SysML, and the concepts requested
in this standard.

While some terms may be shared across the standards, TestIF provides a general semantic framework that allows for any
standard or tool to communicate test information according to its own definition of a given shared term.

TestIF can be extended to reference any externally identifiable thing in the SysML model, and attach that reference to any
Test Object in the TestIF structure, providing complete traceability to any part of the model.

3.2.8 SysML Requirements Management

SysML includes a graphical construct to represent text based requirements and relate them to other model elements. The
requirements diagram captures requirements hierarchies and requirements derivation. The ‘satisfy’ and ‘verify’ relationships
allow a modeler to relate a requirement to a model element that satisfies or verifies the requirements. The requirement
diagram provides a bridge between the typical requirements management tools and the system models.

TestIF can be extended to reference any externally identifiable thing in the SysML model, and attach that reference to any
Test Object in the TestIF structure, providing complete traceability to any part of the model, including Requirements and
related objects.

SysML home: http://www.omgsysml.org/

3.2.9 MARTES (Modeling and Analysis of Real-Time and Embedded “Systems”)

MARTES provides facilities to annotate UML models with information required to conduct performance and schedulability
analysis on real-time embedded systems. It also defines a general framework for quantitative analysis which can be leveraged
to refine/specialize any other kind of analysis. The primary objectives of MARTES:

• Provide a common way of modeling both hardware and software aspects of a RTES in order to improve
communication between developers.

• Enable interoperability between development tools used for specification, design, verification, code generation, etc.

• Foster the construction of models that may be used to make quantitative predictions regarding real-time and
embedded features of systems taking into account both hardware and software characteristics.

TestIF could be used for transmitting MARTES-related test info.

MARTES home: http://www.omgmarte.org/ Comment [MW19]: Issue 18356

TestIF Beta 1 Specification Page 28

3.2.10 UML Profile for DODAF/MODAF (UPDM)

The Unified Profile for DoDAF and MODAF (UPDM) supports for DoDAF and MODAF. This provides a standard means of
describing DoDAF and MODAF compliant architectures using UML and SysML. UPDM significantly enhances the quality,
productivity, and effectiveness associated with enterprise and system of systems architecture modeling. UPDM is used to
model C4I systems at an architectural level. It is a specification for the UML/SysML/SOAML frameworks.

TestIF can be extended to reference any externally identifiable thing in the SysML model, and attach that reference to any
Test Object in the TestIF structure, providing complete traceability to any part of the model.
UPDM home: http://www.omg.org/spec/UPDM/index.htm.

4 Terms and definitions

For the purposes of this specification, the following terms and definitions apply.

4.1 Terms

• TestIF – The abbreviated name for the Test Information Interchange Format standard specified in this document.
• Exchange XML Document – The XML artifact, conformant to the TestIF Standard.
• Exporting TestIF Tool – A software program that generates TestIF conformant artifacts.
• Importing TestIF Tool – A software program that consumes TestIF conformant artifacts.
• Test Authoring Tool – A software program that is used to define, model, and/or specify tests.
• Test Execution Tool – A software program that utilizes automation techniques to perform tests.
• UUID – Universally Unique Identifier.
• Requirement – A statement specifying the necessary functionality and expected performance of a system or

component.
• ReqIF – Requirements Interchange Format (OMG Standard)
• C4I – A term used in military and command situations that is an abbreviation for Command, Control, Computers,

Communications, and Intelligence.

4.2 General Notes on Semantics

In the testing space, many standards, tool vendors, and organizations have their own definitions of what constitutes a Test
Case, and other concepts related to testing. TestIF is designed to support ALL definitions of what a “Test Case” is.

The semantics of TestIF are intended to support universal concepts that are foundational to testing, providing an extensible
core for all testing tools to build around.

The variety of tools, systems, test environments, test approaches, and project needs around testing begs for an interchange
standard that provides a common framework for each interested tool to document and communicate not only its test
information, but also an explicit definition of how to interpret the information.

Among the highest aims of TestIF is to not be at odds with any one standard’s or tool’s definition of what a “Test Case” is.

TestIF Beta 1 Specification Page 29

5 Symbols (and abbreviated terms)

Table 5-1: Acronyms and Abbreviations

Acronym Definition
AB Architecture Board

API Application Program Interface

ARM Argumentation Metamodel

ATRT Automated Test and Re-Test

AUT Application Under Test

BMD Ballistic Missile Defense

BoD Board of Directors

C4I Command, Control, Computers, Communications, and Intelligence

CCM CORBA Component Model

CORBA Common Object Request Broker Architecture

CWM Common Warehouse Metamodel

DoD Department of Defense

DTT Direct-to-Test

HP Hewlett Packard

HTTP HyperText Transfer Protocol

IDL identification

IDL Interface Definition Language

IEEE Institute of Electrical and Electronics Engineers

ISO International Standardization Organization

LCS Littoral Combat Ship

LOI Letter of Intent

MARTES Modeling and Analysis of Real-Time and Embedded Systems

MDA Model Driven Architecture

MOF Meta Object Facility

OMG Object Management Group, Inc.

PEO IWS Program Executive Office Integrated Warfare System

PEO SUB Program Executive Office for Submarines

PIM Platform Independent Model

PSM Platform Specific Model

RVS Requirement Verification Status

QTP QuickTest Professional

RFI Request for Information

RFP Request for Proposal

RM-ODP Reference Model of Open Distributed Processing

SAEM Software Assurance Evidence Metamodel

SBVR Semantics of Business Vocabulary and Business Rules

TestIF Beta 1 Specification Page 30

Acronym Definition
SPEM Software Process Engineering Metamodel

SQL Structured Query Language

SUT System Under Test

SysML Systems Modeling Language

TC Technology Committee

TF Task Force

TMX Test Management and Execution

TO Testing Organization

UML Unified Modeling Language

UPDM UML Profile for DODAF/MODAF

URI Uniform Resource Identifiers

URL User Requirements Language

UTP UML Testing Profile

UUID Universally Unique Identifier

XHTML Extensible Hypertext Markup Language

XMI XML Metadata Interchange

XML eXtensible Mark-up Language

6 Additional Information

6.1 Changes to Existing OMG Specifications

There are nNo changes to any existing OMG Specifications is required as a result of this standard.

6.2 Acknowledgements

The following companies submitted this specification:

• SimVentions
• IDT

The following companies supported this specification:

* Critical Logic
* Intervise Consulting
* Lockheed Martin

Comment [MW20]: Issue 18356

TestIF Beta 1 Specification Page 31

7 Platform Independent Model (PIM)

The PIM consists of the following logical packages:

• org.omg.TestIF – root package of the spec containing the high level and container items of the standard

• org.omg.TestIF.Attributes – package that contains Attribute related classes

• org.omg.TestIF.Test Classes – package that contains Test Specific classesPackage TestIF

7.1 Package TestIF

TestIF is the base package of the standard. The general classes and interfaces of the TestIF standard are kept in the base
package. Examine the sub-packages for the definition of Attributes and specific test related classes.

All objects in TestIF contain the common attributes of being “Identifiable”. Objects that require additional (and unbounded)
attributes add the “AttributedIdentifiable” classification. All items that extend this abstraction have an unbound list of
AttributeValues in addition to the basic characteristics of being Identifiable.

Figure 7-1 shows the relationships between these types.

Figure 7-2 provides an overview of the structure of information types and groups in TestIF.

Figure 7-1: Basic Classes

Comment [MW21]: Issue 18340

TestIF Beta 1 Specification Page 32

Figure 7-2: High Level Classes

7.1.1 Class AttributeDefinitions

A container for all AttributeDefinition items to be exchanged in TestIF

Name AttributeDefinitions
Qualified Name TestIF::AttributeDefinitions
Visibility public
Abstract false
Base Classifier
Realized Interface

TestIF Beta 1 Specification Page 33

7.1.1.1 Fields / Attributes

7.1.1.1.1 attributeDefinitions

Type AttributeDefinition
Default Value
Visibility public
Multiplicity 0..*

7.1.2 Class AttributedIdentifiable

A Class AttributedIdentifiable is an object that has attributes.

Name AttributedIdentifiable
Qualified Name TestIF::AttributedIdentifiable
Visibility Public
Abstract True
Base Classifier •Identifiable
Realized Interface

7.1.2.1 Fields / Attributes

7.1.2.1.1 attributes

Type AttributeValue
Default Value
Visibility public
Multiplicity 0..*

7.1.3 Class AttributeValues

A container for all AttributeValue items to be exchanged in TestIF

Name AttributeValues
Qualified Name TestIF::AttributeValues

TestIF Beta 1 Specification Page 34

Visibility public
Abstract false
Base Classifier
Realized Interface

7.1.3.1 Fields / Attributes

7.1.3.1.1 attributeValues

Type AttributeValue
Default Value
Visibility Public
Multiplicity 0..*

7.1.4 Class Identifiable

The Class Identifiable is the base class of identifiable objects in TestIF.

Name Identifiable
Qualified Name TestIF::Identifiable
Visibility
Abstract True
Base Classifier
Realized Interface

7.1.4.1 Fields / Attributes

7.1.4.1.1 alternativeID

Optional

Type String
Default Value
Visibility public
Multiplicity 0..*

TestIF Beta 1 Specification Page 35

7.1.4.1.2 dateLastUpdated

Type date
Default Value
Visibility public
Multiplicity

7.1.4.1.3 desc

This is an optional description of the object.

Type String
Default Value
Visibility public
Multiplicity

7.1.4.1.4 identifier

This is a unique identifier for the object within the TestIF interchange file document. If the object needs to be referenced
outside this documentthe TestIF interchange file, use a UUID.

Type String
Default Value
Visibility public
Multiplicity

7.1.4.1.5 longName

Optional

Type String
Default Value
Visibility public
Multiplicity

7.1.5 Class TestIF

The Class TestIF is the base container node for all TestIF Content.

Name TestIF
Qualified Name TestIF::TestIF
Visibility Public
Abstract False
Base Classifier
Realized Interface

Comment [MW22]: Issue 18341

TestIF Beta 1 Specification Page 36

7.1.5.1 Fields / Attributes

7.1.5.1.1 content

Type TestIFContent
Default Value
Visibility Public
Multiplicity 1

7.1.5.1.2 header

Type TestIFHeader
Default Value
Visibility public
Multiplicity 1

7.1.6 Class TestIFContent

The Class TestIFContent is the container node for the Test Objects defined in TestIF

Name TestIFContent
Qualified Name TestIF::TestIFContent
Visibility public
Abstract false
Base Classifier
Realized Interface

7.1.6.1 Fields / Attributes

7.1.6.1.1 extensionData

Type TestIFToolExtension
Default Value
Visibility Public
Multiplicity 0..1

7.1.6.1.2 attributeDefinitions

Type AttributeDefinitions
Default Value
Visibility Public
Multiplicity 1

TestIF Beta 1 Specification Page 37

7.1.6.1.3 attributeValues

Type AttributeValues
Default Value
Visibility Private
Multiplicity 1

7.1.6.1.4 testRuns

Type TestRuns
Default Value
Visibility Public
Multiplicity 1

7.1.6.1.5 testObjects

Type TestObjects
Default Value
Visibility Private
Multiplicity 1

7.1.7 Class TestIFHeader

This element contains metadata for the exchange file.

Name TestIFHeader
Qualified Name TestIF::TestIFHeader
Visibility
Abstract false
Base Classifier
Realized Interface

7.1.7.1 Fields / Attributes

7.1.7.1.1 comment

Optional

Type String
Default Value
Visibility public

TestIF Beta 1 Specification Page 38

Multiplicity

7.1.7.1.2 dateCreated

This is the date that the project was initially created.

Type date
Default Value
Visibility public
Multiplicity

7.1.7.1.3 identifier

Optional

Type String
Default Value
Visibility public
Multiplicity

7.1.7.1.4 repositoryId

This is an optional unique identifier of the repository containing the test definitions that have been exported, such as database
ID or URL.

Type String
Default Value
Visibility public
Multiplicity

7.1.7.1.5 sourceToolId

This is an optional identifier of the exporting tool.

Type String
Default Value
Visibility public
Multiplicity

7.1.7.1.6 testIFVersion

Version of TestIF that this document supports

Type String
Default Value
Visibility public

TestIF Beta 1 Specification Page 39

Multiplicity

7.1.7.1.7 title

This is the title of the project that this TestIF document is capturing. This item is optional.

Type String
Default Value
Visibility Public
Multiplicity

7.1.8 Class TestIFToolExtension

This element can contain tool specific interchange information which cannot be transported in core TestIF content. This
class serves as an “anchor” class where non-standard implementations can add to or extend with their own data. It provides a
structural placeholder in the specification.

Name TestIFToolExtension
Qualified Name TestIF::TestIFToolExtension
Visibility
Abstract false
Base Classifier
Realized Interface

7.2 Package TestIF::Attributes
The Attributes package contains the classes and interfaces that comprise the Attribute definitions and values for the TestIF
standard.

Each concrete attribute value that is used in TestIF needs to be valid against its related data type (AttributeDefinition). For
example: the value of a "priority"-attribute may need to be an integer number, while the value for a "status"-attribute may
need to be picked from a list of choices. In TestIF, each attribute value (AttributeValue element) is related to the definition
object that specifies what the attribute represents and its data type. TestIF also supports the concept of Composite Attributes.
This allows the user to specify complex strucutres for attributes that can be referenced by their “root”
AttributeValueComposite” object.

Comment [MW23]: Issue 18342

TestIF Beta 1 Specification Page 40

Figure 7-3: All Attributes

7.2.1 Class Argument

Arguments specify the parameters (in and/or out) relevant to performing any particular step. Arguments provide the
mechanism for describing the inputs to a Sequenced Test Object. TestIF uses a combination of ArgumentDefinition and
Argument Value to distinguish the declarative options for input values versus the “runtime” values of any particular test
sequence. Arguments provide an explicit mechanism for tying test inputs to sequences beyond simply using Attributes.
Figure 7-4 shows the logical relationships where Arguments are used in TestIF.

TestIF Beta 1 Specification Page 41

Figure 7-4: Arguments

Name Argument
Qualified Name TestIF::Attributes::Argument
Visibility public
Abstract false
Base Classifier •AttributeValueComposite
Realized Interface

TestIF Beta 1 Specification Page 42

7.2.1.1 Fields / Attributes

7.2.1.1.1 argumentType

This specifies the type of field that this argument represents

Type AttributeDefinition
Default Value
Visibility public
Multiplicity

7.2.1.1.2 defaultValue

This is the default value of the argument.

Type ArgumentValue
Default Value
Visibility public
Multiplicity

7.2.1.1.3 directionInOut

This indicates the "direction" of the argument (in, out, both, or not specified).

Type DataDirection
Default Value Not Specified
Visibility public
Multiplicity

7.2.1.1.4 isRequired

This flag is to indicate whether a value is required for the argument.

Type boolean
Default Value
Visibility public
Multiplicity

TestIF Beta 1 Specification Page 43

7.2.1.1.5 multiplicity

This is the permitted number of values for this argument.

Type Integer
Default Value
Visibility public
Multiplicity

7.2.2 Class ArgumentValue

Arguments specify the parameters (in and/or out) relevant to performing any particular step. Arguments provide the
mechanism for describing the inputs to a Sequenced Test Object. TestIF uses a combination of ArgumentDefinition and
Argument Value to distinguish the declarative options for input values versus the “runtime” values of any particular test
sequence. Arguments provide an explicit mechanism for tying test inputs to sequences beyond simply using Attributes.

Name ArgumentValue
Qualified Name TestIF::Attributes::ArgumentValue
Visibility public
Abstract false
Base Classifier •AttributeValueComposite
Realized Interface

7.2.2.1 Fields / Attributes

7.2.2.1.1 theArg

Type Argument
Default Value
Visibility Public
Multiplicity 1

7.2.2.1.2 theValue

Type AttributeValue
Default Value
Visibility public
Multiplicity

TestIF Beta 1 Specification Page 44

7.2.3 Class AttribteValueExternalData

Name AttribteValueExternalData
Qualified Name TestIF::Attributes::AttribteValueExternalData
Visibility public
Abstract false
Base Classifier •AttributeValue
Realized Interface

7.2.3.1 Fields / Attributes

7.2.3.1.1 definition

Type AttributeDefinitionExternalData
Default Value
Visibility public
Multiplicity

7.2.3.1.2 externalReference

Machine readable reference to the external content expected to be a URL or relative path to an item contained in the
distributed TestIF artifact.

Type String
Default Value
Visibility public
Multiplicity

7.2.3.1.3 mimeType

Type String
Default Value
Visibility Public
Multiplicity

TestIF Beta 1 Specification Page 45

7.2.4 Class AttributeDefinition

The abstract super-class for the different types of "attribute definitions". The "attribute definition" is in priniciple the
definition specification of an attribute’s type column within a TestIF document n RE/RM tool (but without concrete values).

Name AttributeDefinition
Qualified Name TestIF::Attributes::AttributeDefinition
Visibility
Abstract True
Base Classifier Identifiable
Realized Interface

7.2.5 Class AttributeDefinitionBoolean

Name AttributeDefinitionBoolean
Qualified Name TestIF::Attributes::AttributeDefinitionBoolean
Visibility
Abstract False
Base Classifier •AttributeDefinition
Realized Interface

7.2.6 Class AttributeDefinitionComposite

Name AttributeDefinitionComposite
Qualified Name TestIF::Attributes::AttributeDefinitionComposite
Visibility Public
Abstract False
Base Classifier •AttributeDefinition
Realized Interface

7.2.6.1 Fields / Attributes

7.2.6.1.1 valueDefs

Type AttributeDefinition
Default Value
Visibility private
Multiplicity 0..*

Comment [MW24]: Issue 18343

Comment [MW25]: Issue 18344

TestIF Beta 1 Specification Page 46

7.2.7 Class AttributeDefinitionDate

Name AttributeDefinitionDate
Qualified Name TestIF::Attributes::AttributeDefinitionDate
Visibility
Abstract false
Base Classifier •AttributeDefinition
Realized Interface

7.2.8 Class AttributeDefinitionEnumeration

This is a definition of a requirement attribute that is based on an "Enumeration" data type. In principle, this element
constitutes an attribute column that can contain enumeration values of a certain enumeration data type.

Name AttributeDefinitionEnumeration
Qualified Name TestIF::Attributes::AttributeDefinitionEnumeration
Visibility
Abstract false
Base Classifier •AttributeDefinition
Realized Interface

7.2.8.1 Fields / Attributes

7.2.8.1.1 enumValues

This is the list of enumeration value options.

Type String
Default Value
Visibility public
Multiplicity 1..*

7.2.8.1.2 isMultiSelect

This is a flag indicating whether the selection is single or multiple choice enumerations.

Type Boolean
Default Value
Visibility public
Multiplicity

TestIF Beta 1 Specification Page 47

7.2.9 Class AttributeDefinitionExternalData

Name AttributeDefinitionExternalData
Qualified Name TestIF::Attributes::AttributeDefinitionExternalData
Visibility Public
Abstract False
Base Classifier •AttributeDefinition
Realized Interface

7.2.10 Class AttributeDefinitionInlineData

Name AttributeDefinitionInlineData
Qualified Name TestIF::Attributes::AttributeDefinitionInlineData
Visibility public
Abstract false
Base Classifier •AttributeDefinition
Realized Interface

7.2.11 Class AttributeDefinitionInteger

Name AttributeDefinitionInteger
Qualified Name TestIF::Attributes::AttributeDefinitionInteger
Visibility
Abstract False
Base Classifier •AttributeDefinition
Realized Interface

7.2.12 Class AttributeDefinitionReal

Name AttributeDefinitionReal
Qualified Name TestIF::Attributes::AttributeDefinitionReal
Visibility
Abstract false
Base Classifier •AttributeDefinition
Realized Interface

TestIF Beta 1 Specification Page 48

7.2.13 Class AttributeDefinitionString

Name AttributeDefinitionString
Qualified Name TestIF::Attributes::AttributeDefinitionString
Visibility
Abstract False
Base Classifier •AttributeDefinition
Realized Interface

7.2.14 Class AttributeDefinitionUUID

Name AttributeDefinitionUUID
Qualified Name TestIF::Attributes::AttributeDefinitionUUID
Visibility Public
Abstract False
Base Classifier •AttributeDefinition
Realized Interface

7.2.15 Class AttributeDefinitionXHTML

This is a definition of a requirement attribute that is based on a formatted data type.

Name AttributeDefinitionXHTML
Qualified Name TestIF::Attributes::AttributeDefinitionXHTML
Visibility
Abstract false
Base Classifier •AttributeDefinition
Realized Interface

TestIF Beta 1 Specification Page 49

7.2.16 Class AttributeValue

This is the abstract super-class for concrete values of the different data type.

Name AttributeValue
Qualified Name TestIF::Attributes::AttributeValue
Visibility
Abstract True
Base Classifier •Identifiable
Realized Interface

7.2.17 Class AttributeValueBoolean

Name AttributeValueBoolean
Qualified Name TestIF::Attributes::AttributeValueBoolean
Visibility
Abstract false
Base Classifier •AttributeValue
Realized Interface

7.2.17.1 Fields / Attributes

7.2.17.1.1 definition

Type AttributeDefinitionBoolean
Default Value
Visibility public
Multiplicity

7.2.17.1.2 theValue

Type Boolean
Default Value
Visibility public
Multiplicity

TestIF Beta 1 Specification Page 50

7.2.18 Class AttributeValueComposite

Name AttributeValueComposite
Qualified Name TestIF::Attributes::AttributeValueComposite
Visibility public
Abstract false
Base Classifier •AttributeValue
Realized Interface

7.2.18.1 Fields / Attributes

7.2.18.1.1 definition

Type AttributeDefinitionComposite
Default Value
Visibility public
Multiplicity

7.2.18.1.2 theValues

Type AttributeValue
Default Value
Visibility private
Multiplicity 0..*

7.2.19 Class AttributeValueDate

Name AttributeValueDate
Qualified Name TestIF::Attributes::AttributeValueDate
Visibility
Abstract False
Base Classifier •AttributeValue
Realized Interface

TestIF Beta 1 Specification Page 51

7.2.19.1 Fields / Attributes

7.2.19.1.1 definition

Type AttributeDefinitionDate
Default Value
Visibility Public
Multiplicity

7.2.19.1.2 theValue

Type Date
Default Value
Visibility Public
Multiplicity

7.2.20 Class AttributeValueEnumeration

This contains the concrete values of an "Enumeration" data type. Note that in case of "multi value enumerations", a set of
different enumeration values can be specified. The value is thus indicated by multiple references ("values") to enumeration
values that are contained in the associated enumeration data type.

Name AttributeValueEnumeration
Qualified Name TestIF::Attributes::AttributeValueEnumeration
Visibility
Abstract false
Base Classifier •AttributeValue
Realized Interface

7.2.20.1 Fields / Attributes

7.2.20.1.1 definition

Type AttributeDefinitionEnumeration
Default Value
Visibility public
Multiplicity

7.2.20.1.2 values

Type String
Default Value
Visibility public
Multiplicity 1..*

TestIF Beta 1 Specification Page 52

7.2.21 Class AttributeValueInlineData

Name AttributeValueInlineData
Qualified Name TestIF::Attributes::AttributeValueInlineData
Visibility Public
Abstract False
Base Classifier •AttributeValue
Realized Interface

7.2.21.1 Fields / Attributes

7.2.21.1.1 binaryToTextEncodingType

Type BinaryToTextEncodingType
Default Value Base 64
Visibility public
Multiplicity

7.2.21.1.2 definition

Type AttributeDefinitionInlineData
Default Value
Visibility public
Multiplicity

7.2.21.1.3 mimeType

Type String
Default Value
Visibility public
Multiplicity

7.2.21.1.4 theValue

Type String
Default Value
Visibility public
Multiplicity

TestIF Beta 1 Specification Page 53

7.2.22 Class AttributeValueInteger

Name AttributeValueInteger
Qualified Name TestIF::Attributes::AttributeValueInteger
Visibility
Abstract False
Base Classifier •AttributeValue
Realized Interface

7.2.22.1 Fields / Attributes

7.2.22.1.1 definition

Type AttributeDefinitionInteger
Default Value
Visibility Public
Multiplicity

7.2.22.1.2 theValue

Type Integer
Default Value
Visibility Public
Multiplicity

7.2.23 Class AttributeValueReal

Name AttributeValueReal
Qualified Name TestIF::Attributes::AttributeValueReal
Visibility
Abstract false
Base Classifier •AttributeValue
Realized Interface

TestIF Beta 1 Specification Page 54

7.2.23.1 Fields / Attributes

7.2.23.1.1 definition

Type AttributeDefinitionReal
Default Value
Visibility public
Multiplicity

7.2.23.1.2 theValue

Type double
Default Value
Visibility public
Multiplicity

7.2.24 Class AttributeValueString

Name AttributeValueString
Qualified Name TestIF::Attributes::AttributeValueString
Visibility
Abstract false
Base Classifier • AttributeValue

Realized Interface

7.2.24.1 Fields / Attributes

7.2.24.1.1 definition

Type AttributeDefinitionString
Default Value
Visibility public
Multiplicity

7.2.24.1.2 theValue

Type String
Default Value
Visibility public
Multiplicity

TestIF Beta 1 Specification Page 55

7.2.25 Class AttributeValueUUID

Name AttributeValueUUID
Qualified Name TestIF::Attributes::AttributeValueUUID
Visibility public
Abstract false
Base Classifier •AttributeValue
Realized Interface

7.2.25.1 Fields / Attributes

7.2.25.1.1 definition

Type AttributeDefinitionUUID
Default Value
Visibility public
Multiplicity

7.2.25.1.2 theValue

Type String
Default Value
Visibility public
Multiplicity

7.2.26 Class AttributeValueXHTML

Name AttributeValueXHTML
Qualified Name TestIF::Attributes::AttributeValueXHTML
Visibility
Abstract false
Base Classifier •AttributeValue
Realized Interface

TestIF Beta 1 Specification Page 56

7.2.26.1 Fields / Attributes

7.2.26.1.1 definition

Type AttributeDefinitionXHTML
Default Value
Visibility public
Multiplicity

7.2.26.1.2 isSimplified

This is a flag indicating that the value is simplified from the original XHTML. This is a simplified means that the string in
the value has minimal or no XHTML formatting data.

Type Boolean
Default Value
Visibility public
Multiplicity 0..

7.2.26.1.3 theOriginalValue

Type String
Default Value
Visibility public
Multiplicity 0..

7.2.26.1.4 theValue

Type String
Default Value
Visibility public
Multiplicity

7.2.27 Enumeration BinaryToTextEncodingType

Name BinaryToTextEncodingType
Qualified Name TestIF::Attributes::BinaryToTextEncodingType
Visibility public
Base Classifier

TestIF Beta 1 Specification Page 57

7.3 Package TestIF::Test Classes

The Test Classes package of TestIF provides the meat of the TestIF standard. Figure 7-5 shows the identified classes in the
TestIF Specification.

Figure 7-5: Test Object Types

A key concept in TestIF is the ability to relate various data items. There are three main relationship types in TestIF: 1)
attributes, 2) sequences, and 3) related objects. Attributes have already been covered earlier in the spec.

Sequences:
Items that are put together to describe a chain of actions to define a test are arranged in Sequences. There are four kinds of
SequencedTestObjects in TestIF: TestSet, TestCase, TestStep, and TestExecutable. Figure 7-6 shows the conceptual
relationship between among these SequencedTestObject types. While the standard does not structurally enforce these
“ownership” rules, it is expected that implementers will are required to follow these semantic levels of hierarchy in their
implementations.

Comment [MW26]: Issue 18360

Comment [MW27]: Issue 18345

TestIF Beta 1 Specification Page 58

TestCase

TestStep

TestSet

TestExecutable

Lines show the conceptual
relationship between
SequencedTestObjects
contained within
TestSequence(s)

Figure 7-6: Conceptual Relationship between among these SequencedTestObject Types

SequencedTestObjects contain a TestSequence which in turn contains a series of directed edge graph nodes captured in
SequenceStep objects. Each SequenceStep contains a pointer to the related SequencedTestObject that is represented by the
test. A SequencedTestObject may define its expected Arguments. Each SequenceStep then “fills in” the expected
Arguments with specific ArgumentValues. The ExpectedResult list provides the ability to define the desired outcome from
each step.

Figure 7-7 shows the relationships between these various types.

Figure 7-7: Test Object Sequences

Comment [MW28]: Issue: 18360

TestIF Beta 1 Specification Page 59

Related Objects:
Outside the concept of sequences, TestObjects can be related to any other TestObject. There is any number of reasons why
or when this is appropriate for your test definition. TestIF provides several predefined typical relationships (shown in Figure
7-5). TestIF also provides the ability to create TestObjectLists that contain any number of related TestObjects. Note that
TestObjectLists are AttributedIdentifiable; therefore, you can name them and provide a description of their purpose. Figure
7-8 shows the basic construct for genrallygenerally related TestObjects.

Figure 7-8: Related Test Objects

Once tests have been “executed” their results can be stored in TestRuns. A TestRun contains some basic data describing
when the test occurred and which test object was the “starting” node. TestRuns then contain an ordered list of TestResults.
Each TestResult contains a pointer back to the SequenceStep or the SequencedTestObject that “created” it.

Figure 7-9 shows the relationships relevant to TestResults.

Comment [MW29]: Issue 18360

TestIF Beta 1 Specification Page 60

Figure 7-9: Results

7.3.1 Class ExpectedResult

This is the value or outcome that is anticipated to be achieved for a sequence step.

Name ExpectedResult
Qualified Name TestIF::Test Classes::ExpectedResult
Visibility Public
Abstract False
Base Classifier •AttributeValueComposite
Realized Interface

TestIF Beta 1 Specification Page 61

7.3.2 Class ListItem

Name ListItem
Qualified Name TestIF::Test Classes::ListItem
Visibility Public
Abstract False
Base Classifier •AttributedIdentifiable
Realized Interface

7.3.2.1 Fields / Attributes

7.3.2.1.1 listOrder

Type int
Default Value
Visibility public
Multiplicity

7.3.2.1.2 relatedTestObject

Type TestObject
Default Value
Visibility public
Multiplicity 1

7.3.3 Class SequencedTestObject

SequencedTestObject is an abstract TestObject that contains sequential procedural steps. The sequential steps are contained
in zero or more related TestSequence objects.

Name SequencedTestObject
Qualified Name TestIF::Test Classes::SequencedTestObject
Visibility Public
Abstract True
Base Classifier •TestObject
Realized Interface

TestIF Beta 1 Specification Page 62

7.3.3.1 Fields / Attributes

7.3.3.1.1 arguments

Type Argument
Default Value
Visibility Public
Multiplicity 0..*

7.3.3.1.2 environments

Type TestEnvironment
Default Value
Visibility Public
Multiplicity 0..*

7.3.3.1.3 sequence

Type TestSequence
Default Value
Visibility Public
Multiplicity 0..1

7.3.3.1.4 testItems

Type TestItem
Default Value
Visibility Public
Multiplicity 0..*

TestIF Beta 1 Specification Page 63

7.3.4 Class SequenceStep

SequenceStep is the directed graph node that is contained within a TestSequence. The sequence step contains a reference to
the SequencedTestObject that it is representing in the directed graph. Each SequenceStep may have ArgumentValues that
relate to the specific input variables into the related SequencedTestObject. Being an AttributedIdentifiable, each sequence
step may also reference other Attributes to provide the additional context as needed. The nextSteps contain reference(s) to
the SequenceStep object(s) (directed graph node) that follow this step.

Name SequenceStep
Qualified Name TestIF::Test Classes::SequenceStep
Visibility Public
Abstract False
Base Classifier •AttributedIdentifiable
Realized Interface

7.3.4.1 Fields / Attributes

7.3.4.1.1 argumentValues

Type ArgumentValue
Default Value
Visibility Public
Multiplicity 0..*

7.3.4.1.2 expectedResults

Type ExpectedResult
Default Value
Visibility Public
Multiplicity 0..*

7.3.4.1.3 nextSteps

Type SequenceStep
Default Value
Visibility Public
Multiplicity 0..*

7.3.4.1.4 relatedTestObject

Type SequencedTestObject
Default Value
Visibility public
Multiplicity 1

TestIF Beta 1 Specification Page 64

7.3.5 Class TestCase

This class defines the set of steps necessary to verify something. A Test Case may contain any number of Test Steps, defined
in a Test Sequence, to define the series of occurrences to satisfy the test case.

Name TestCase
Qualified Name TestIF::Test Classes::TestCase
Visibility public
Abstract false
Base Classifier •SequencedTestObject
Realized Interface

7.3.5.1 Fields / Attributes

7.3.5.1.1 testPurpose

Test Purpose provides a textual description of the reason for a test. This is optional.

Type String
Default Value
Visibility public
Multiplicity

7.3.6 Class TestEnvironment

Test Environment is a Test Object that describes the system configuration necessary to execute a test. It allows for the
definition of system constraints and variables that can be reused by other TestObjects. Test Environments may reference
other TestObjects such as Test Items as necessary. As TestEnvironments are “referenced” in the course of a test sequence,
their “effect” is assumed to remain in place throughout the rest of the sequence (unless overridden by a subsequent
TestEnvironment reference in the sequence).

Name TestEnvironment
Qualified Name TestIF::Test Classes::TestEnvironment
Visibility public
Abstract False
Base Classifier •TestObject
Realized Interface

TestIF Beta 1 Specification Page 65

7.3.6.1 Fields / Attributes

7.3.6.1.1 realtedTestItem

Type TestItem
Default Value
Visibility Private
Multiplicity 0..*

7.3.6.1.2 theValue

Type ArgumentValue
Default Value
Visibility Private
Multiplicity 0..*

7.3.7 Class TestExecutable

Test Executable is similar to Test Step, for use by steps that contain low-level procedural (code/script) step definitions
(intended for automation code).

Name TestExecutable
Qualified Name TestIF::Test Classes::TestExecutable
Visibility Public
Abstract False
Base Classifier •SequencedTestObject
Realized Interface

7.3.7.1 Fields / Attributes

7.3.7.1.1 executableType

This is a human readable indicator of the language or format of the associated executable data, such as "java code", VBScript,
etc. This is optional.

Type String
Default Value
Visibility Public
Multiplicity

TestIF Beta 1 Specification Page 66

7.3.8 Class TestItem

Test Item represents an entity in the scope of the test. You can use Test Item to describe the System Under Test (SUT) and
any necessary related objects in the system. Given the compositional capabilities of TestObjects in TestIF, TestItems can be
composed of multiple “smaller” TestItems items as necessary to fully describe the SUT.

Name TestItem
Qualified Name TestIF::Test Classes::TestItem
Visibility Public
Abstract False
Base Classifier •TestObject
Realized Interface

7.3.9 Class TestObject

TestObject is the base class for the defined types of test classes in TestIF.

Name TestObject
Qualified Name TestIF::Test Classes::TestObject
Visibility Public
Abstract True
Base Classifier •AttributedIdentifiable
Realized Interface

7.3.9.1 Fields / Attributes

7.3.9.1.1 relatedTestObjects

Type TestObjectList
Default Value
Visibility Public
Multiplicity 0..*

7.3.10 Class TestObjects

Name TestObjects
Qualified Name TestIF::Test Classes::TestObjects
Visibility Public
Abstract False
Base Classifier
Realized Interface

TestIF Beta 1 Specification Page 67

7.3.10.1 Fields / Attributes

7.3.10.1.1 testObjects

Type TestObject
Default Value
Visibility Public
Multiplicity 0..*

7.3.11 Class TestResult

Test Results provide an ordered list of the outcomes from executing a test. In addition to any result data, Test Results contain
references back to the original Test Objects for which each result was created. These results can be used to support
arbitration and verdict declarations; however those issues are outside the scope of TestIF. Note: A value can be attributed to
TestResult at any level at any time by any tool - whether by a separate Arbiter, or at run-time by automation script, etc.

Name TestResult
Qualified Name TestIF::Test Classes::TestResult
Visibility Public
Abstract False
Base Classifier •TestObject
Realized Interface

7.3.11.1 Fields / Attributes

7.3.11.1.1 complete

Optional

Type Date
Default Value
Visibility Public
Multiplicity

7.3.11.1.2 relatedStep

Type SequenceStep
Default Value
Visibility Public
Multiplicity

TestIF Beta 1 Specification Page 68

7.3.11.1.3 relatedTest

Type SequencedTestObject
Default Value
Visibility Public
Multiplicity 1

7.3.11.1.4 resultValue

Type AttributeValue
Default Value
Visibility Public
Multiplicity

7.3.11.1.5 start

Optional

Type Date
Default Value
Visibility Public
Multiplicity

7.3.11.1.6 verdict

Type Verdict
Default Value
Visibility Public
Multiplicity

7.3.12 Class TestRun

A Test Run is a container for all of the contextual information about when a test has been executed and the results of the run.

Name TestRun
Qualified Name TestIF::Test Classes::TestRun
Visibility Public
Abstract False
Base Classifier •TestObject
Realized Interface

TestIF Beta 1 Specification Page 69

7.3.12.1 Fields / Attributes

7.3.12.1.1 results

Type TestResult
Default Value
Visibility Public
Multiplicity 0..*

7.3.12.1.2 runCompleteTime

Optional

Type Date
Default Value
Visibility Public
Multiplicity

7.3.12.1.3 runStartTime

Date / Time stamp of the start time of the run.

Type Date
Default Value
Visibility Public
Multiplicity

7.3.12.1.4 startTestObject

This is an optional indicator of the starting point of the test run.

Type SequencedTestObject
Default Value
Visibility Public
Multiplicity

TestIF Beta 1 Specification Page 70

7.3.13 Class TestRuns

This is a container for all Test Rub items to be exchanged in TestIF.

Name TestRuns
Qualified Name TestIF::Test Classes::TestRuns
Visibility Public
Abstract False
Base Classifier
Realized Interface

7.3.13.1 Fields / Attributes

7.3.13.1.1 testRuns

Type TestRun
Default Value
Visibility Public
Multiplicity 0..*

7.3.14 Class TestSequence

This class defines the order and progression of execution for a series of Sequenced Test Objects. Each Test Sequence
contains a collection of one or more directed edge-graph nodes. Each node points to a sequenced test object and the next
step(s) in the sequence. A test sequence can have multiple first steps and/or next steps, which supports parallel test
“execution”. Test Sequences are required for defining and directing the execution necessary to “run” tests.

Name TestSequence
Qualified Name TestIF::Test Classes::TestSequence
Visibility Public
Abstract False
Base Classifier •AttributedIdentifiable
Realized Interface

7.3.14.1 Fields / Attributes

7.3.14.1.1 firstSteps

Type SequenceStep
Default Value
Visibility public
Multiplicity 1..*

TestIF Beta 1 Specification Page 71

7.3.15 Class TestSet

TestSet is a SequencedTestObject that can serve as a container for multiple Test Sets, Test Cases, and Test Sets and related
test objects such as Test Environment.

Name TestSet
Qualified Name TestIF::Test Classes::TestSet
Visibility public
Abstract false
Base Classifier •SequencedTestObject
Realized Interface

7.3.15.1 Fields / Attributes

7.3.15.1.1 testPurpose

Test Purpose provides a textual description of the reason for a test. This is optional.

Type String
Default Value
Visibility public
Multiplicity

7.3.16 Class TestStep

This is an action or validation performed as part of a test sequence. Test Steps are typically contained in Test Cases and/or
Test Sets, for execution together, in a specified order (within a Test Sequence). Test Steps can also contain other Test Steps
to decompose the steps necessary to capture test execution.

Name TestStep
Qualified Name TestIF::Test Classes::TestStep
Visibility public
Abstract false
Base Classifier •SequencedTestObject
Realized Interface

TestIF Beta 1 Specification Page 72

7.3.17 Enumeration DataDirection

Name DataDirection
Qualified Name TestIF::Test Classes::DataDirection
Visibility public
Base Classifier

7.3.18 Enumeration Verdict

Name Verdict
Qualified Name TestIF::Test Classes::Verdict
Visibility Public
Base Classifier

7.4 Predefined Attribute Definitions

7.4.1 Predefined Attributes

Table 7- 1 lists AttributeDefinitions in the org.omg.testIF namespace. The attributes listed below are part of the TestIF
standard and therefore TestIF compliant parsers/exporters must support these attributes. The companion document
“org_omg_testif_attrbutes.xml” contains the normative XML definitions for the following attributes.

Table 7-1: AttributeDefinitions in the org.omg.testIF namespace

Identifier (UUID) Name Description
org.omg.testIF.testPurpose Test Purpose - A human-readable string description of the purpose of a Test

Case or Test Set.
- No formatting restrictions.
- May be attached to Test Set or Test Case.

org.omg.testIF.attributeDefinitionRe
f

Attribute
Definition
Reference

 - A machine-readable attribute whose value is the identifier of
an AttributeDefinition.

org.omg.testIF.optionalFlagDef Optional - A machine-readable tagging attribute that indicates that the
item it is attached to optional.
- No value is required, and any supplied value will be ignored.

org.omg.testIF.dataFlowDirection Data Flow
Direction

 - A machine-readable string value that contains one of the valid
Data Flow Directions below.

Comment [MW30]: Issue 18326

TestIF Beta 1 Specification Page 73

Identifier (UUID) Name Description
- NOT_SPECIFIED
- IN
- OUT
- BOTH

org.omg.testIF.min Minimum - A machine-readable numeric attribute that indicates the
minimum of the item it is attached to.
- A value of -INF indicates that the minimum is unbounded.

org.omg.testIF.max Maximum - A machine-readable numeric attribute that indicates the
maximum of the item it is attached to.
- A value of INF indicates that the maximum is unbounded.

org.omg.testIF.multiplicity Multiplicity - A machine-readable composite attribute that indicates the
valid number of the items it is attached to.
- The first child Attribute is the minimum.
- The second child Attribute is the maximum.
<AttributeDefinitionRef> org.omg.testIF.min
</AttributeDefinitionRef>
<AttributeDefinitionRef> org.omg.testIF.max
</AttributeDefinitionRef>

org.omg.testIF.argumentDefinition argumentDefiniti
on

 - The longName xml attribute of the AttributeValueComposite
implementing this definition is required and is the name of the
argument.
- The first child Attribute is required and is a reference to the
AttributeDefinition that defines the type (eg.
org.omg.testIF.stringData, etc.).
- All other child attributes are optional and can be presented in
any order.
- An argument defined by usage of this definition is known to be
a required argument if an org.omg.testIF.optionalFlag is not
present.
- The default Data Flow Direction is IN, if an
org.omg.testIF.dataFlowDirection is not present.
- The default multiplicity is 1, if an org.omg.testIF.multiplicity
is not present
- There is no default argument value if an
org.omg.testIF.argumentValue is not present.
- Additional Child Attributes can be added to further
define/constrain the valid values of the argument as needed (eg.
org.omg.testIF.min/max, etc.).
- May be attached to any SequencedTestObject.
<AttributeDefinitionRef> org.omg.testIF.attributeDefinitionRef
</AttributeDefinitionRef>

org.omg.testIF.argumentValue argumentValue - A tagging composite attribute that identifies the child
Attribute set after the first child as being an argument value for
a test or some operation.
- The first child Attribute is required and is the reference to the
argumentDefinition for this argumentValue.
- At least one more child Attribute must be contained.
- More than one more child Attribute is allowed if multiple
Attributes are needed to represent a single argument value
correctly.
- This attribute was designed to be used to carry argument
values for SequenceStep and TestEnvironment, but it may be
used anywhere an Attribute needs to be tagged as being an
argument value.

TestIF Beta 1 Specification Page 74

Identifier (UUID) Name Description
<AttributeDefinitionRef> org.omg.testIF.argumentDefinition
</AttributeDefinitionRef>

org.omg.testIF.name Name - A human and machine-readable string value that contains only
a name.
- Leading and/or trailing white spaces are removed.

org.omg.testIF.mimeType MIME Type - A machine-readable string value that contains only a valid
MIME Type (IETF: RFC 2045, RFC 2046, RFC 2047, RFC
4288, RFC 4289 and RFC 2049).
- Leading and/or trailing white spaces are removed.

org.omg.testIF.externalReference External
Reference

 - A machine-readable string value that contains only a reference
to an external content (such as an architectural component in
UPDM, model element, defect report, or other component).
- Leading and/or trailing white spaces are removed.
- Not defined past the link to the external content.
- Expected to be a publicly available URL or a relative path to
an item contained with the distribution of the document that
contains the reference.

org.omg.testIF.stringData String Data - A machine-readable String value that contains data.
- This AttributeDefinition is meant to be used within an
AttributeDefinitionComposite which will give it context,
provide a description of the contents, and describe the format.

org.omg.testIF.integerData Integer Data - A machine-readable Integer value that contains data.
- This AttributeDefinition is meant to be used within an
AttributeDefinitionComposite which will give it context,
provide a description of the contents, and describe the format.

org.omg.testIF.realData Real Data - A machine-readable Real value that contains data.
- This AttributeDefinition is meant to be used within an
AttributeDefinitionComposite which will give it context,
provide a description of the contents, and describe the format.

org.omg.testIF.booleanData Boolean Data - A machine-readable Boolean value that contains data.
- This AttributeDefinition is meant to be used within an
AttributeDefinitionComposite which will give it context,
provide a description of the contents, and describe the format.

org.omg.testIF.
binaryToTextEncodingType

Binary to Text
Encoding Type

 - A machine-readable string value that contains one of the valid
binary to text encodings below.
- Base16 (hexadecimal)
- Base64

org.omg.testIF.
requirementReference

Requirement
Reference

 - A machine-readable string value that contains only a reference
to a requirement (ReqIF or any other requirement source).
- Leading and/or trailing white spaces are removed.
- Supports the need for traceability from tests to requirements,
and for results arbitration at the requirement level.
- May be attached to a Test Set, Test Case, or Test Step.

org.omg.testIF.preCondition Pre-Condition - A human-readable string description of a condition that must
be true in order to execute the test.
- No formatting restrictions.
- May be attached to a Test Set, Test Case, or Test Step.

org.omg.testIF.PreConditionList Preconditions A list of preconditions.
<AttributeDefinitionRef> org.omg.testIF.PreCondition
</AttributeDefinitionRef>

org.omg.testIF.postCondition preCondition A description of a condition that must be true when the test
completes.

Comment [MW31]: Issue 18349

TestIF Beta 1 Specification Page 75

Identifier (UUID) Name Description
org.omg.testIF.PostConditionList Postconditions A list of postconditions.

<AttributeDefinitionRef> org.omg.testIF.PostCondition
</AttributeDefinitionRef>

org.omg.testIF.countsForScore Counts for Score - A machine-readable flag indicating that the item that it is
attached to should be used in test result arbitration.
- May be attached to a Test Set, Test Case, or Test Step.

org.omg.testIF.criticality Criticality - A machine-readable string value that is an Indication of
importance, for use in result arbitration.
- May be attached to a Test Set, Test Case, or Test Step.
- The value must be one of the valid criticality value names
below:
- Normal: no special criticality imparted
- High Importance: indicates high importance to results
arbitration
- Critical: Typically indicates the entire 'container' fails when
the item fails.

org.omg.testIF.lastUpdatedBy Last Updated by - The name of the person who last updated the test case.
- Machine readable and human readable.
- Leading and/or trailing white spaces are removed.
- Care should be taken to use the same spelling of an
individual's name throughout the usage of this field.

org.omg.testIF.executableType Executable Type - The name of the execution system that is expected to process
the item that this Attribute is attached to.
- Machine readable and human readable.
- Leading and/or trailing white spaces are removed.
- Care should be taken to use the same spelling of an Executable
Type throughout the usage of this field.

org.omg.testIF.expectedResultValue expectedResult - A tagging composite attribute that identifies the child
Attribute set as being an expected result value for a test or some
operation.
- At least one child Attribute must be contained in associated
Attribute Value.
- More than one child Attribute is allowed if multiple Attributes
are needed to represent a single expected result value correctly.
- This attribute was designed to be used to carry expected result
values for SequencedTestObject and/or SequenceStep, but it
may be used anywhere an Attribute needs to be tagged as being
an expected result value.

org.omg.testIF.resultValue Result Value - A tagging composite attribute that identifies the child
Attribute set as being a result value from a test or some
operation.
- At least one child Attribute must be contained in associated
Attribute Value.
- More than one child Attribute is allowed if multiple Attributes
are needed to represent a single result value correctly.
- This attribute was designed to be used to carry result values for
the TestResult, but it may be used anywhere an Attribute needs
to be tagged as being a result value.

TestIF Beta 1 Specification Page 76

Identifier (UUID) Name Description
org.omg.testIF.sequenceConstraints.
PASS

Sequence
Constraint PASS

 - A machine-readable tagging Attribute that indicates that the
test sequence should only continue to the Sequence Step
specified in the value if the Verdict of the current step is PASS.
- This attribute exists to be used when a test's flow between
sequence steps needs to be explicitly constrained/controlled in
the definition.
- The value of this attribute must be the identifier of the
sequence step to be constrained.
- This Attribute is only intended to be used on SequenceSteps.

org.omg.testIF.sequenceConstraints.
INCONCLUSIVE

Sequence
Constraint
INCONCLUSIV
E

 - A machine-readable tagging Attribute that indicates that the
test sequence should only continue to the Sequence Step
specified in the value if the Verdict of the current step is
INCONCLUSIVE.
- This attribute exists to be used when a test's flow between
sequence steps needs to be explicitly constrained/controlled in
the definition.
- The value of this attribute must be the identifier of the
sequence step to be constrained.
- This Attribute is only intended to be used on SequenceSteps.

org.omg.testIF.sequenceConstraints.
FAIL

Sequence
Constraint FAIL

 - A machine-readable tagging Attribute that indicates that the
test sequence should only continue to the Sequence Step
specified in the value if the Verdict of the current step is FAIL.
- This attribute exists to be used when a test's flow between
sequence steps needs to be explicitly constrained/controlled in
the definition.
- The value of this attribute must be the identifier of the
sequence step to be constrained.
- This Attribute is only intended to be used on SequenceSteps.

org.omg.testIF.sequenceConstraints.
ERROR

Sequence
Constraint
ERROR

 - A machine-readable tagging Attribute that indicates that the
test sequence should only continue to the Sequence Step
specified in the value if the Verdict of the current step is
ERROR.
- This attribute exists to be used when a test's flow between
sequence steps needs to be explicitly constrained/controlled in
the definition.
- The value of this attribute must be the identifier of the
sequence step to be constrained.
- This Attribute is only intended to be used on SequenceSteps.

org.omg.testIF.
applicationUnderTestName

Application
Under Test
Name

 - A human and machine-readable string value that contains only
the name of application being tested.
- Leading and/or trailing white spaces are removed.

org.omg.testIF.
applicationUnderTestVersion

Application
Under Test
Version

 - A human and machine-readable string value that contains only
the version of application being tested.
- Leading and/or trailing white spaces are removed.

org.omg.testIF.createdBy Created By - A human and machine-readable string value that contains only
the name of the Author of the item this Attribute is attached to.
- Leading and/or trailing white spaces are removed.
- Care should be taken to use the same spelling of an
individual's name throughout the usage of this field.
- Multiple Created By Attributes can be added if there are
multiple authors.

org.omg.testIF.dateCreated dateCreated - The machine readable creation date of the item this Attribute
is attached to.

TestIF Beta 1 Specification Page 77

Identifier (UUID) Name Description
org.omg.testIF.shortDescription shortDescription - A human and machine-readable string value that contains a

one line summary/description of the item this Attribute is
attached to.
- Leading and/or trailing white spaces are removed.

org.omg.testIF.note Note - A human readable string value that contains a note about the
item this Attribute is attached to.
- For example, if attached to a TestSet/Case/Step, any helpful
hints or other text that pertains to the test.
- Use the notesList Attribute for multiple related notes.

org.omg.testIF.notesList Notes List - A human readable list of notes.
<AttributeDefinitionRef> org.omg.testIF.note
</AttributeDefinitionRef>

org.omg.testIF.errorImpact Error Impact - A human and machine-readable enumeration that indicates
what action should be taken when an Error is encountered
during execution.
- The enumeration value PAUSE indicates that the test executor
should pause test execution, display the error, and prompt the
user for direction.
- The enumeration value
STOP_SCOPED_SEQUENCE_AND_RETURN_ERROR
indicates that the test executor should stop only the sequence
that had the error and set the result for the container of the
sequence to ERROR.
- The enumeration value STOP indicates that the test executor
should stop the entire test execution and display the error.
- This attribute was designed to be used to carry the Error
Impact on the SequenceStep object.
<EnumerationValue>CONTINUE</EnumerationValue>
<EnumerationValue>PAUSE</EnumerationValue>
<EnumerationValue>STOP_SCOPED_SEQUENCE_AND_RE
TURN_ERROR</EnumerationValue>
<EnumerationValue>STOP</EnumerationValue>

7.4.2 Predefined Attribute Values

The following Table 7-2 lists AttributeValues in the org.omg.testIF namespace. The attributes values listed below are part of
the TestIF standard and therefore TestIF compliant parsers/exporters must support these attribute values. The values are
provided for some of the Attributes Definitions that either require no value or the value set is already well defined. TestIF
uses a set of predefined Attribute Definitions and Attribute Value types as part of the normative specification. This same
basic pattern can be used in the process of extending the standard.

Table 7-2: AttributeValues in the org.omg.testIF namespace

UUID Attribute Definition Value

org.omg.testIF.stringData.DefinitionRef org.omg.testIF.attributeDefinitionRef org.omg.testIF.stringData

org.omg.testIF.integerData.DefinitionRef org.omg.testIF.attributeDefinitionRef org.omg.testIF.integerData

org.omg.testIF.realData.DefinitionRef org.omg.testIF.attributeDefinitionRef org.omg.testIF.realData

org.omg.testIF.booleanData.DefinitionRef org.omg.testIF.attributeDefinitionRef org.omg.testIF.booleanData

Comment [MW32]: Issue 18350

TestIF Beta 1 Specification Page 78

org.omg.testIF.optionalFlag org.omg.testIF.optionalFlagDef

7.5 Extending the Standard
The following section outlines the normative process for extending the standard to accommodate specific tool features and
other needs.

The TestIF standard covers the basic structures and components of Tests, but it is not intended to directly cover all the
potential Test structures or the specifics of various Test tools. Instead the standard provides a framework for expanding on
the covered concepts to allow 3rd parties to define extensions in a format that can be shared and understood by TestIF
import/export/parse implementers.

The method for TestIF extension is through new AttributeDefinitions. Attributes are the general mechanism for adding
semantic meaning or well defined information to almost any TestIF object. Creating a new AttributeDefinition allows the
3rd party to attach their specific semantic meaning to a TestIF object or to add new information to that object in a format that
can be parsed by other tools.

When creating new AttributeDefinitions to handle concepts not covered directly by the standard, thought should be given to
whether or not the concept that is being defined is a general concept vs. a very tool specific concept. If it is a general
concept, then the first step is to search the other TestIF implementors published AttributeDefinitions to make sure the concept
has not already been defined. When the concept has already been defined elsewhere it should be reused opposed to being
redefined. When the concept has not already been defined it should be defined in such a way that others could reuse it
without inheriting vendor/tool specific concepts. For example the “org.omg.testIF.resultValue” attribute definition contains
the following text as part of its description: “This attribute was designed to be used to carry result values for the TestResult,
but it may be used anywhere an Attribute needs to be tagged as being a result value". Along with the other description lines
the semantic meaning for the intended use case is covered, but it’s not restricted to be used only in the originally intended
location.

After creating a set of new AttributeDefinitions they should be published in the TestIF format and made publicly available
(ie. on your website) for other TestIF import/export/parse implementers to download. This will allow other groups the ability
to build support for your extensions into their tools.

If an AttributeDefinition has been published, then modifications that change its parsing and/or semantic meaning should be
avoided at all costs since a change of this type would invalidate existing TestIF files still using the old format. Instead a new
AttributeDefinition should be created with a new UUID (e.g. org.omg.testIF.name.V2). This approach will maintain
backwards compatibility and allow TestIF import/export/parse implementers to support both concepts in time.

The name/value pairing combined with the ability to create arbitrarily complex nesting via the AttributeDefinitionComposite
should allow 3rd parties to create extensions to the TestIF standard for their specific concepts without requiring the TestIF
structure to change (ideally).
The requirements for the use of each of the AttributeDefinition's fields from the base class “Identifiable” are specified below:

identifier
• Identifiers of new Attribute Defnitions must be unique (UUIDs). A suitably specific namespace and type name could

work, but when there is any doubt using a standard generated UUID as a prefix is suggested.

• Identifiers beginning with "org.omg.testIF" are reserved for use by this standard.

• Identifiers beginning with “localonly” are understood to be file local identifiers only and can be rewritten by
import/export/parse tools to maintain uniqueness as needed.

description
• The Description field must contain the following information if it is relevant to the Attribute being defined:

• Full description of the imparted semantic meaning

• Machine readable and/or human readable

Comment [MW33]: Issue 18346

Comment [MW34]: Issue 18346

Comment [MW35]: Issue 18347

TestIF Beta 1 Specification Page 79

• Data type information

• Formatting information

• Restrictions on which object it may be placed on

• If the AttributeDefinition is of type AttributeDefinitionComposite then the position (if required) and type of all the
child elements must be explained here.

dateLastUpdated
• The creation date/time of this AttributeDefinition or the last update to any of its fields.

longName
• A human readable name for this AttributeDefinition.

Examples of Some TestIF defined AttributeDefinitions:
 <AttributeDefinitionReal
 identifier="org.omg.testIF.max"
 longName="Maximum"
 description="
 - A machine-readable numeric attribute that indicates the
 maximum of the item it is attached to.
 - A value of INF indicates that the maximum is unbounded."
 dateLastUpdated="2012-09-18T16:00:00"/>

 <AttributeDefinitionComposite
 identifier="org.omg.testIF.multiplicity"
 longName="Multiplicity"
 description="
 - A machine-readable composite attribute that indicates the
 valid number of the items it is attached to.
 - The first child Attribute is the minimum.
 - The second child Attribute is the maximum."
 dateLastUpdated="2012-09-18T16:00:00">
 <AttributeDefinitionRef> org.omg.testIF.min </AttributeDefinitionRef>
 <AttributeDefinitionRef> org.omg.testIF.max </AttributeDefinitionRef>
 </AttributeDefinitionComposite>

Examples of 3rd Party AttributeDefinitions:
 <AttributeDefinitionComposite
 identifier=" com.idt.atrt.ParameterEdge"
 longName=" ATRT Test Manager Parameter Edge "
 description="
 - The definition of an ATRT Test Manager ParameterEdge. The
 ParameterEdge defines a specific named data item that is made
 available by the source SequenceStep after it completes it's
 execution. This value is then made available to the destination
 SequenceStep as a specific named data item.
 - This Attribute is only valid on SequenceSteps in the TestIF. The
 SequenceStep that this attribute is attached to is the source of
 the parameter edge.
 - This Attribute is Machine readable.

TestIF Beta 1 Specification Page 80

 - The first child is the Identifier of the SequenceStep that is the
 destination of the parameter edge.
 - The second child is the name of the source output variable.
 - The third child is the name of the destination input variable.”
 dateLastUpdated="2012-09-18T16:00:00" >
 <AttributeDefinitionReference> org.omg.testIF.stringData </AttributeDefinitionReference>
 <AttributeDefinitionReference> org.omg.testIF.name </AttributeDefinitionReference>
 <AttributeDefinitionReference> org.omg.testIF.name </AttributeDefinitionReference>
 </AttributeDefinitionComposite>

 <AttributeDefinitionString
 identifier="com.idt.atrt.Job"
 longName="ATRT Test Manager Job"
 description="
 - A machine readable tagging attibute that when applied to TestSets identifies
 the TestSet as being an ATRT Test Manager Job. This attribute has no value.
 - This attribute is only valid on TestSet objects."
 dateLastUpdated="2012-09-18T16:00:00" />

8 XML Platform Specific Model

8.1 Purpose
This was created to allow for interchange of Test information in the widely supported XML format.

8.2 Method of Mapping
The PIM objects/structures are represented directly in the XML. Items that are single valued and directly representable by an
XML datatype (xs:string, xs:integer, etc.) are mapped as XML attributes of their containing object. Items that are
multivalued and/or complex (ie. not directly representable by an XML data type) are mapped as XML elements of their
containing object and if needed their internals are defined in an xs:complexContent XML object.

The inheritance hierarchy defined in the PIM is mapped to the xs:extension method in the XML PSM which maintains the
same inheritance as shown in the PIM. See the example below of the IdentifiableType and the AttributedIdentifiableType sub
type.

 <xs:complexType name="IdentifiableType">
 <xs:sequence>
 <xs:element name="AlternateID" type="xs:string" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="identifier" type="xs:string" use="required" />
 <xs:attribute name="description" type="xs:string" use="optional" />
 <xs:attribute name="dateLastUpdated" type="xs:dateTime" use="required" />
 <xs:attribute name="longName" type="xs:string" use="optional" />
 </xs:complexType>

 <xs:complexType name="AttributedIdentifiableType">
 <xs:complexContent>
 <xs:extension base="IdentifiableType">

TestIF Beta 1 Specification Page 81

 <xs:sequence>
 <xs:element name="AttributeValueRef" type="xs:string" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

Those objects that add no new fields to their super types are not represented as separate objects in the XML PSM and show
up only as PIM named XML elements in their XML container. See the examples below of the definition of TestStep,
TestEnvironment, and TestItem within the TestObjects container.

 <xs:element name="TestObjects" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:all>
 <xs:element name="TestSet" type="TestSetType" minOccurs="0" maxOccurs="unbounded"
/>
 <xs:element name="TestCase" type="TestCaseType" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="TestStep" type="SequencedTestObjectType" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="TestExecutable" type="TestExecutableType" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="TestEnvironment" type="SequencedTestObjectType" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="TestItem" type="TestObjectType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:all>
 </xs:complexType>
 </xs:element>

The TestIFToolExtensionType exists serves in the XML PSM to be as a container for non-normative and unforeseen items
that need to be included in the TestIF Interchance document XML but that could not be handled with the normative standard
Attribute based extension mechanism explained earlier. The TestIFToolExtensionType should only be used in those
scenarios where attempts to use Attributes were unstatifactory somehow. This should very rare, and in the cases where it
must occur an Attribute should be created that links TestIF objects to and explains the semantics/format/usage of the
information contained within the TestIFToolExtensionType.

The entire TestIF xsd is available in a separate file named testIF.xsd.

8.3 Using the XML PSM

This section provides a non-normative set of examples for using the XML PSM.

8.3.1 Simple Attributes

This example adds a simple string attribute named ApprovalStatus with a corresponding value of
Approved to a test case.

<?xml version="1.0" encoding="utf-8"?>

Comment [MW36]: Issue 18351

Comment [MW37]: Issue 18352

TestIF Beta 1 Specification Page 82

<TestIF>
 <TestIFHeader testIFVersion="1.0" comment="Example"
 dateCreated="2012-08-02T12:00:00"
 identifier=" 79FA8C28E67D0DAE89099999BA66B9A6" title="Example"
 />
 <TestIFContent>
 <AttributeDefinitions>
 <AttributeDefinitionString identifier="com.mydomain.myproduct.ApprovalStatus"
 longName="Approval Status" description="Test case approval state."
 dateLastUpdated="2012-08-02T12:00:00"
 />
 :
 :
 </AttributeDefinitions>
 <AttributeValues>
 <AttributeValueString definition="com.mydomain.myproduct.ApprovalStatus"
 identifier="53BC2B4235012BC3C67D39C800A4F000" value="Approved"
 longName="" dateLastUpdated="2012-08-02T12:00:00"
 />
 </AttributeValues>
 :
 :
 <TestCase identifier="0F3CBB010A7D4624B3474B6FFDC95E29"
 description="Tests something interesting in the application."
 dateLastUpdated="2012-08-02T12:00:00" longName="Example_Testcase_34" >
 <AttributeValueRef> 53BC2B4235012BC3C67D39C800A4F00 </AttributeValueRef>

:
 :
 </TestCase>
 </TestIFContent>
</TestIF>

8.3.2 Attribute Lists

This example adds an attribute list called Preconditions to a test case.

<?xml version="1.0" encoding="utf-8"?>
<TestIF>
 <TestIFHeader testIFVersion="1.0" comment="Example"
 dateCreated="2012-08-02T12:00:00"
 identifier=" 79FA8C28E67D0DAE89099999BA66B9A6" title="Example"
 />
<TestIFContent>
 <AttributeDefinitions>
 <AttributeDefinitionList
 identifier="org.omg.testIF.PreConditionList"
 longName="Preconditions"
 description="A list of preconditions."
 dateLastUpdated="2012-09-18T16:00:00"
 <AttributeDefinitionRef> org.omg.testIF.PreCondition </AttributeDefinitionRef>
 </AttributeDefinitionList>

 <AttributeDefinitionString
 identifier="org.omg.testIF.preCondition"
 longName="Pre-Condition"

TestIF Beta 1 Specification Page 83

 description="
 - A human-readable string description of a condition that must be true in order
 to execute the test.
 - No formatting restrictions.
 - May be attached to a Test Set, Test Case, or Test Step."
 dateLastUpdated="2012-09-18T16:00:00"
 />
 </AttributeDefinitions>

 <AttributeValues>
 <AttributeValueList definition="org.omg.testIF.PreConditionList"
 identifier="0F3CBB010A7D4624B3474B6FFDC95E80" longName="Preconditions"
 dateLastUpdated="2012-08-02T12:00:00">
 <AttributeValueRef> 5012BC3C64F0007D39C8053BC2B4230A </AttributeValueRef>
 <AttributeValueRef> 3C67D39C800A4F00053BC2B4235012BC </AttributeValueRef>
 </AttributeValueList>
 :
 :

 <AttributeValueString definition="org.omg.testIF.preCondition"
 identifier="5012BC3C64F0007D39C8053BC2B4230A"
 value="User must be logged in with administrator privileges."
 longName="" dateLastUpdated="2012-08-02T12:00:00"
 />
 <AttributeValueString definition="org.omg.testIF.preCondition"
 identifier="3C67D39C800A4F00053BC2B4235012BC"
 value="User must have submitted at least one product order."
 longName="" dateLastUpdated="2012-08-02T12:00:00"
 />
 </AttributeValues>

 :
 :
 <TestCase identifier="FDC95E290F3CBB010A7D4624B3474B6F"
 description="Tests something interesting in the application."
 dateLastUpdated="2012-08-02T12:00:00" longName="Example_Testcase_21" >
 <AttributeValueRef>0F3CBB010A7D4624B3474B6FFDC95E80 </AttributeValueRef>

:
 :
 </TestCase>
 </TestIFContent>
</TestIF>

8.3.3 Composite Attributes

This example adds a composite attribute named SignoffInfo to a test case. Signoff info is comprised of 3
attributes, SignoffName, SignoffTitle, and SignoffDate.

<?xml version="1.0" encoding="utf-8"?>
<TestIF>
 <TestIFHeader testIFVersion="1.0" comment="Example"
 dateCreated="2012-08-02T12:00:00"
 identifier="28E690997D079FA8CDAE6B9A68999BA6" title="Example"
 />

TestIF Beta 1 Specification Page 84

 <TestIFContent>
 <AttributeDefinitions>

 <AttributeDefinitionComposite identifier="com.mydomain.myproduct.SignoffInfo"
 longName="Signoff" description="Signoff information."
 dateLastUpdated="2012-08-02T12:00:00">
 <AttributeDefinitionRef> com.mydomain.myproduct.SignoffName </AttributeDefinitionRef>
 <AttributeDefinitionRef> com.mydomain.myproduct.SignoffTitle </AttributeDefinitionRef>
 <AttributeDefinitionRef> com.mydomain.myproduct.SignoffDate </AttributeDefinitionRef>
 </AttributeDefinitionList>

 <AttributeDefinitionString identifier="com.mydomain.myproduct.SignoffName"
 longName="Signoff Name"
 description="Name of the person signing off."
 dateLastUpdated="2012-08-02T12:00:00"
 />
 <AttributeDefinitionString identifier="com.mydomain.myproduct.SignoffTitle"
 longName="Title"
 description="Title of the person signing off."
 dateLastUpdated="2012-08-02T12:00:00"
 />
 <AttributeDefinitionDate identifier="com.mydomain.myproduct.SignoffName"
 longName="Signoff Date"
 description="Date signed off."
 dateLastUpdated="2012-08-02T12:00:00"
 />
 :
 :

 </AttributeDefinitions>

 <AttributeValues>
 <AttributeValueComposite definition=" com.mydomain.myproduct.SignoffInfo"
 identifier="A7D4624B3474B0F3CBB0106FFDC95E80" longName="Signoff Information"
 dateLastUpdated="2012-08-02T12:00:00">
 <AttributeValueRef> 2B4230A5012BC3C64F0007D39C8053BC </AttributeValueRef>
 <AttributeValueRef> D39C803C670A4F000535012BCBC2B423 </AttributeValueRef>
 <AttributeValueRef> 0A4F0D39C803535012BCBC6700C2BCFF </AttributeValueRef>
 </AttributeValueList>

 <AttributeValueString definition="com.mydomain.myproduct.SignoffName"
 identifier="2B4230A5012BC3C64F0007D39C8053BC"
 value="George Jetson"
 longName="" dateLastUpdated="2012-08-02T12:00:00" />
 <AttributeValueString definition="com.mydomain.myproduct.SignoffTitle"
 identifier="D39C803C670A4F000535012BCBC2B423"
 value="VP, Software Development"
 longName="" dateLastUpdated="2012-08-02T12:00:00" />
 <AttributeValueString definition="com.mydomain.myproduct.SignoffTitle"
 identifier="0A4F0D39C803535012BCBC6700C2BCFF "
 value="2012-07-22"
 longName="" dateLastUpdated="2012-08-02T12:00:00" />

TestIF Beta 1 Specification Page 85

 </AttributeValues>
 <TestCase identifier="474B6F5E290F3CBB010AFDC97D4624B3"
 description="Tests something interesting in the application."
 dateLastUpdated="2012-08-02T12:00:00" longName="Example_Testcase_795" >
 <AttributeValueRef> A7D4624B3474B0F3CBB0106FFDC95E80 </AttributeValueRef>
 </TestCase>
 </TestIFContent>
</TestIF>

8.3.4 Test Steps, Simple Sequence

This example illustrates the XML for a simple test case with 3 steps (Login, DoSomething, Logout).

<?xml version="1.0" encoding="utf-8"?>
<TestIF>
 <TestIFHeader testIFVersion="1.0" comment="Example"
 dateCreated="2012-08-02T12:00:00"
 identifier="28E690997D079FA8CDAE6B9A68999BA6" title="Example"
 />
 <TestIFContent>
 <TestCase identifier="BC857033178D40D7BC2374ABABCC6034"
 description="Tests the app’s ability to do something intelligent."
 dateLastUpdated="2012-08-02T12:00:00" longName="Example_Testcase_562" >
 <Sequence
 identifier="3DAC417F515941C5ACC9F942D9B75C8D"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Test steps for testcase 562" >
 <Step
 identifier="4D8EABFA5C9D419CAA3129BC9856A368"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Login step" >
 <TestObjectRef>3E324D83930F4B64B990DCA63042789E </TestObjectRef>
 <NextStepRef> 400CA6B8E1BF43D79D1D6865E53F08B7 </NextStepRef>
 </Step>
 <Step
 identifier="400CA6B8E1BF43D79D1D6865E53F08B7"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Processing step" >
 <TestObjectRef> FF5337B60C674151936B81B4AE64B423 </TestObjectRef>
 <NextStepRef> DF929A14628A4DFDA2E755D58D5A84EE </NextStepRef>
 </Step>
 <Step
 identifier="DF929A14628A4DFDA2E755D58D5A84EE"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Logout step" >
 <TestObjectRef> 160FB16200EF4FE58B95CE5C8B21FD7B </TestObjectRef>
 <NextStepRef> </NextStepRef>
 </Step>
 <FirstStepRef> 4D8EABFA5C9D419CAA3129BC9856A368 </FirstStepRef>
 </Sequence>
 </TestCase>
 :
 :
 <TestStep identifier="3E324D83930F4B64B990DCA63042789E"

TestIF Beta 1 Specification Page 86

 description="Login to the application" dateLastUpdated="2012-08-02T12:00:00"
 longName="Login" >
 </TestStep>
 <TestStep identifier="FF5337B60C674151936B81B4AE64B423"
 description="Perform some kind of operation using the app"
 dateLastUpdated="2012-08-02T12:00:00" longName="DoSomething" >
 </TestStep>
 <TestStep identifier="160FB16200EF4FE58B95CE5C8B21FD7B"
 description="Log out of the application"
 dateLastUpdated="2012-08-02T12:00:00" longName="Logout" >
 </TestStep>
 :
 :
 </TestIFContent>
</TestIF>

8.3.5 Test Steps with Arguments

This example illustrates the XML for a test case using a Login test step with 2 arguments, Username and Password.
Arguments to a test step can be considered as analogs to parameters in a subroutine or function call. In TestIF, arguments are
implemented using attributes. This allows maximum flexibility, but it comes at the expense of a more complex attribute
structure.

1. The org.omg.testIF.argumentDefinition, org.omg.testIF.attributeDefinitionRef, and
org.omg.testIF.ArgumentValue definitions are predefined attributes that you use to construct the argument
definitions. Thus, the values of these attributes become, in effect, the definitions of the individual arguments.

2. The values of the attributes above are themselves composite attributes that, at a minimum, reference the data
type of the argument. The composite may also contain additional attributes that specify the direction of data
flow, multiciplicity, min/max restrictions, etc.

3. These values (which are the argument definitions) are referenced from within the containing object (normally
the Test Step definition).

4. The actual value of the argument is a composite attribute defined by org.omg.testIF.ArgumentValue that
contains two references, one to the composite attribute described in item 3 above and the other to a string
attribute value that specifies the actual runtime argument value.

<?xml version="1.0" encoding="utf-8"?>
<TestIF>
 <TestIFHeader testIFVersion="1.0" comment="Example"
 dateCreated="2012-08-02T12:00:00"
 identifier="28E690997D0799A68999BA6FA8CDAE6B" title="Example"
 />
 <TestIFContent>
 <AttributeDefinitions>
 <AttributeDefinitionComposite
 identifier="org.omg.testIF.argumentDefinition"
 longName="argumentDefinition"
 description="
 - The longName xml attribute of the AttributeValueComposite implementing this
 definition is required and is the name of the argument.
 - The first child Attribute is required and is a reference to the
 AttributeDefinition that defines the type (e.g. org.omg.testIF.stringData).
 - All other child attributes are optional and can be presented in any order.
 - An argument defined by usage of this definition is known to be a required
 argument if an org.omg.testIF.optionalFlag is not present.

TestIF Beta 1 Specification Page 87

 - The default Data Flow Direction is IN, if an org.omg.testIF.dataFlowDirection
 is not present.
 - The default multiplicity is 1, if an org.omg.testIF.multiplicity is not present
 - There is no default argument value if an org.omg.testIF.argumentValue is not
 present.
 - Additional Child Attributes can be added to further define/constrain the valid
 values of the argument as needed (eg. org.omg.testIF.min/max, etc.).
 - May be attached to any SequencedTestObject."
 dateLastUpdated="2012-09-18T16:00:00"
 <AttributeDefinitionRef>org.omg.testIF.attributeDefinitionRef</AttributeDefinitionRef>
 </AttributeDefinitionComposite>
 <AttributeDefinitionUUIDType
 identifier="org.omg.testIF.attributeDefinitionRef"
 longName="Attribute Definition Reference"
 description="
 - A machine-readable attribute whose value is the identifier of an
 AttributeDefinition."
 dateLastUpdated="2012-09-18T16:00:00"
 />
 <AttributeDefinitionComposite
 identifier="org.omg.testIF.argumentValue"
 longName="argumentValue"
 description="
 - A tagging composite attribute that identifies the child Attribute set after
 the first child as being an argument value for a test or some operation.
 - The first child Attribute is required and is the reference to the
 argumentDefinition for this argumentValue.
 - At least one more child Attribute must be contained.
 - More than one more child Attribute is allowed if multiple Attributes are
 needed to represent a single argument value correctly.
 - This attribute was designed to be used to carry argument values for
 SequenceStep and TestEnvironment, but it may be used anywhere an Attribute
 needs to be tagged as being an argument value. "
 dateLastUpdated="2012-09-18T16:00:00"
 <AttributeDefinitionRef>org.omg.testIF.argumentDefinition</AttributeDefinitionRef>
 </AttributeDefinitionComposite>
 </AttributeDefinitions>

 <AttributeValues>
 <AttributeValueComposite definition="org.omg.TestIF.argumentDefinition"
 identifier="6626C77BCCAD4E709A07548783E354F3"
 longName="Username"
 dateLastUpdated="2012-08-02T12:00:00" >
 <AttributeValueRef>org.omg.stringData.DefinitionRef</AttributeValueRef>
 </AttributeValueComposite>
 <AttributeValueComposite definition="org.omg.TestIF.argumentValue"
 identifier="50293D3C4EE74735B5F5FE47526C3DF4"
 dateLastUpdated="2012-08-02T12:00:00" >
 <AttributeValueRef>6626C77BCCAD4E709A07548783E354F3</AttributeValueRef>
 <AttributeValueRef>179E0F3083514AC6B02E6F398F345BC8</AttributeValueRef>
 </AttributeValueComposite>
 <AttributeValueString definition="org.omg.TestIF.stringData"
 identifier="179E0F3083514AC6B02E6F398F345BC8"
 dateLastUpdated="2012-08-02T12:00:00"
 value="JetsonG" >
 </AttributeValueString>

TestIF Beta 1 Specification Page 88

 <AttributeValueComposite definition="org.omg.TestIF.argumentDefinition"
 identifier="24F243810741471CB16D85C4B464E8E6"
 longName="Password"
 dateLastUpdated="2012-08-02T12:00:00" >
 <AttributeValueRef>org.omg.stringData.DefinitionRef</AttributeValueRef>
 </AttributeValueComposite>
 <AttributeValueComposite definition="org.omg.TestIF.argumentValue"
 identifier="EE74735B5F5FE50293D3C4475F426C3D"
 dateLastUpdated="2012-08-02T12:00:00" >
 <AttributeValueRef>24F243810741471CB16D85C4B464E8E6</AttributeValueRef>
 <AttributeValueRef>804B8A8E3ACB49539FBD48CC27D078B0</AttributeValueRef>
 </AttributeValueComposite>
 <AttributeValueString definition="org.omg.TestIF.stringData"
 identifier="804B8A8E3ACB49539FBD48CC27D078B0"
 dateLastUpdated="2012-08-02T12:00:00"
 value="password_for_JetsonG" >
 </AttributeValueString>

 </AttributeValues>

 <TestCase identifier="BC857033178D40D7BCBCC60342374ABA"
 description="Tests the app’s ability to do something intelligent."
 dateLastUpdated="2012-08-02T12:00:00" longName="Example_Testcase_563" >
 <Sequence identifier="C9F942D9B75C8D3DAC417F515941C5AC"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Test steps for testcase 563" >
 <Step identifier="4D8EAB9856A368FA5C9D419CAA3129BC"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Login step" >
 <TestObjectRef>3E324D83930F4B64B9789E90DCA63042</TestObjectRef>
 <NextStepRef>400CA6B8E1BF43D79D1D6865E53F08B7</NextStepRef>
 <AttributeValueRef>50293D3C4EE74735B5F5FE47526C3DF4</AttributeValueRef>
 <AttributeValueRef>EE74735B5F5FE50293D3C4475F426C3D</AttributeValueRef>
 </Step>
 :
 :
 <FirstStepRef>4D8EAB9856A368FA5C9D419CAA3129BC</FirstStepRef>
 </Sequence>
 </TestCase>
 :
 :
 <TestStep identifier="3E324D83930F4B64B9789E90DCA63042"
 description="Login to the application" dateLastUpdated="2012-08-02T12:00:00"
 longName="Login" >
 <AttributeValueRef>6626C77BCCAD4E709A07548783E354F3</AttributeValueRef>
 <AttributeValueRef>24F243810741471CB16D85C4B464E8E6</AttributeValueRef>
 </TestStep>
 :
 :
 </TestIFContent>
</TestIF>

TestIF Beta 1 Specification Page 89

8.3.6 Test Steps, Parallel Processing

This example illustrates the XML for a test case with 3 steps (Login, DoSomething, and DoSomethingSimultaneously, where
the last two steps execute in parallel).

<?xml version="1.0" encoding="utf-8"?>
<TestIF>
 <TestIFHeader testIFVersion="1.0" comment="Example"
 dateCreated="2012-08-02T12:00:00"
 identifier="28E690997D079FA8CDAE6B9A68999BA6" title="Example"
 />
 <TestIFContent>
 <TestCase identifier="BC857033178D40D7BC2374ABABCC6034"
 description="Tests the app’s ability to do something intelligent."
 dateLastUpdated="2012-08-02T12:00:00" longName="Example_Testcase_562" >
 <Sequence
 identifier="3DAC417F515941C5ACC9F942D9B75C8D"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Test steps for testcase 562" >
 <Step
 identifier="4D8EABFA5C9D419CAA3129BC9856A368"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Login step" >
 <TestObjectRef>6FAA22772BC84F25B6D28DE4C1E02A82</TestObjectRef>
 <NextStepRef> 397FE9EC742B47FC9FD0A771F6CA0C0B </NextStepRef>
 <NextStepRef> C7FFFAEAA13246A1B3B7374889617A07 </NextStepRef>
 </Step>
 <Step
 identifier="397FE9EC742B47FC9FD0A771F6CA0C0B"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Processing step" >
 <TestObjectRef> 0E78BFB356E4429D9C82583D24AB8B46 </TestObjectRef>
 <NextStepRef> </NextStepRef>
 </Step>
 <Step
 identifier="C7FFFAEAA13246A1B3B7374889617A07"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Logout step" >
 <TestObjectRef> 160FB16200EF4FE58B95CE5C8B21FD7B </TestObjectRef>
 <NextStepRef> </NextStepRef>
 </Step>
 <FirstStepRef> 4D8EABFA5C9D419CAA3129BC9856A368 </FirstStepRef>
 </Sequence>
 </TestCase>
 :
 :
 <TestStep identifier="6FAA22772BC84F25B6D28DE4C1E02A82"
 description="Login to the application" dateLastUpdated="2012-08-02T12:00:00"
 longName="Login" >
 </TestStep>
 <TestStep identifier="0E78BFB356E4429D9C82583D24AB8B46"
 description="Perform some kind of operation using the app"
 dateLastUpdated="2012-08-02T12:00:00" longName="DoSomething" >
 </TestStep>
 <TestStep identifier="160FB16200EF4FE58B95CE5C8B21FD7B"
 description="Perform a different operation in parallel "
 dateLastUpdated="2012-08-02T12:00:00" longName="DoSomethingSimultaneously" >

TestIF Beta 1 Specification Page 90

 </TestStep>
 :
 :
 </TestIFContent>
</TestIF>

8.3.7 Nested Test Steps

This example shows how to specify a test step that is comprised of other test steps. The standard allows an unlimited number
of levels of test step composition.

<?xml version="1.0" encoding="utf-8"?>
<TestIF>
 <TestIFHeader testIFVersion="1.0" comment="Example"
 dateCreated="2012-08-02T12:00:00"
 identifier="6C738597932E460E927BED57D4E7E4CD" title="Example"
 />
 <TestIFContent>
 <TestCase identifier="0212ECC5D269425A96EB401DE20220A2"
 description="Tests the app’s ability to do something intelligent."
 dateLastUpdated="2012-08-02T12:00:00" longName="Example_Testcase_754" >
 <Sequence
 identifier="4AF125FC75654003ADE54295FF914B6D"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Test steps for testcase 754" >
 :
 :
 <Step
 identifier="AA3129BC9856A3684D8EABFA5C9D419C"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Open File step" >
 <TestObjectRef>FABC9766EAF84A2B8C66CF604C56AE44</TestObjectRef>
 <NextStepRef> <!-- UUID of the next step goes here --> </NextStepRef>
 </Step>
 :
 :
 <FirstStepRef> <!-- UUID of the first step goes here --> </FirstStepRef>
 </Sequence>
 </TestCase>
 :
 :
 <TestStep identifier="FABC9766EAF84A2B8C66CF604C56AE44"
 description="Use the File/Open menu to open a new file"
 dateLastUpdated="2012-08-02T12:00:00" longName="OpenFile" >
 <Sequence
 identifier="24A8292BCEE243549E6EFAB609010A22"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Test steps for testcase 754" >
 <Step
 identifier="9EEB34517FD0494F993E5E2288E67073"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="MenuSelect" >
 <TestObjectRef>061C026377C447BFA845DD476CFB0FBA </TestObjectRef>
 <NextStepRef> 006E988919664BF0AD1B4443AC54DACE </NextStepRef>
 </Step>

TestIF Beta 1 Specification Page 91

 <Step
 identifier="51DB80887AA44A30A09A962D749BA2F5"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="WaitForWindow" >
 <TestObjectRef> 006E988919664BF0AD1B4443AC54DACE </TestObjectRef>
 <NextStepRef> 04869419AA75455ABDC8B1ED65AAE066 </NextStepRef>
 </Step>
 <Step
 identifier="650F2B9823A142F38F36C1F3A7817867"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="TextEntry" >
 <TestObjectRef> 04869419AA75455ABDC8B1ED65AAE066 </TestObjectRef>
 <NextStepRef> 17CF12262E0D42048A9A538719FDD917 </NextStepRef>
 </Step>
 <Step
 identifier="79307423D9814C838B20A477F183A315"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="ButtonClick" >
 <TestObjectRef> 17CF12262E0D42048A9A538719FDD917 </TestObjectRef>
 </Step>
 <FirstStepRef> 9EEB34517FD0494F993E5E2288E67073 </NextStepRef>
 </Sequence>
 </TestStep>

 <TestStep identifier="061C026377C447BFA845DD476CFB0FBA"
 description="(sub-step) Select a menu item"
 dateLastUpdated="2012-08-02T12:00:00" longName="MenuSelect" >
 </TestStep>
 <TestStep identifier="006E988919664BF0AD1B4443AC54DACE"
 description="(sub-step) Wait for a dialog box to appear"
 dateLastUpdated="2012-08-02T12:00:00" longName="WaitForWindow" >
 </TestStep>
 <TestStep identifier="04869419AA75455ABDC8B1ED65AAE066"
 description="(sub-step) Enter text in a control"
 dateLastUpdated="2012-08-02T12:00:00" longName="TextEntry" >
 </TestStep>
 <TestStep identifier="17CF12262E0D42048A9A538719FDD917"
 description="(sub-step) Click a button"
 dateLastUpdated="2012-08-02T12:00:00" longName="ButtonClick" >
 </TestStep>
 :
 :
 </TestIFContent>
</TestIF>

8.3.8 Test Sets and Test Cases

This example shows how to use a test set element to group 2 test cases.

<?xml version="1.0" encoding="utf-8"?>
<TestIF>
 <TestIFHeader testIFVersion="1.0" comment="Example"
 dateCreated="2012-08-02T12:00:00"
 identifier="BC857033178D40D7BC2374ABABCC6034" title="Example"
 />

TestIF Beta 1 Specification Page 92

 <TestIFContent>
 <TestCase identifier="C2374ABABCC6034BC857033178D40D7B"
 description="Tests the app’s ability to do something intelligent."
 dateLastUpdated="2012-08-02T12:00:00" longName="Example_Testcase_562" >
 :
 :
 </TestCase>
 <TestCase identifier="90DCA63042789E3E324D83930F4B64B9"
 description="Tests the app’s ability to do something intelligent."
 dateLastUpdated="2012-08-02T12:00:00" longName="Example_Testcase_565" >
 :
 :
 </TestCase>

 <TestSet identifier="BFA5C9D44D8EA19CC9856A368AA3129B"
 description="Groups Example_Testcase_562 and Example_Testcase_565 together."
 dateLastUpdated="2012-08-02T12:00:00" longName="TestSet_1" >
 <Sequence
 identifier="C5ACC9F942D9B75C8D3DAC417F515941"
 dateLastUpdated="2012-08-02T12:00:00" longName="" >
 <Step
 identifier="4D8EABFA5C9D419CAA3129BC9856A368"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Login step" >
 <TestObjectRef> C2374ABABCC6034BC857033178D40D7B </TestObjectRef>
 <NextStepRef> 90DCA63042789E3E324D83930F4B64B9 </NextStepRef>
 </Step>
 <Step
 identifier="400CA6B8E1BF43D79D1D6865E53F08B7"
 dateLastUpdated="2012-08-02T12:00:00"
 longName="Processing step" >
 <TestObjectRef> 90DCA63042789E3E324D83930F4B64B9 </TestObjectRef>
 </Step>
 <FirstStepRef> 4D8EABFA5C9D419CAA3129BC9856A368 </FirstStepRef>
 </Sequence>
 </TestSet>
 </TestIFContent>
</TestIF>

8.3.9 External References

This example contains 2 references to an external requirements system, and a reference to a datafile stored at a URL.

<?xml version="1.0" encoding="utf-8"?>
<TestIF>
 <TestIFHeader testIFVersion="1.0" comment="Example"
 dateCreated="2012-08-02T12:00:00"
 identifier="57C017488E3C4591A736B8C8F457E531" title="Example"
 />
 <TestIFContent>
 <AttributeDefinitions>
 <AttributeDefinitionString
 identifier="org.omg.testIF.requirementReference"
 longName="Requirement Reference"
 description="

TestIF Beta 1 Specification Page 93

 - A machine-readable string value that contains only a reference to a requirement
 (ReqIF or any other requirement source).
 - Leading and/or trailing white spaces are removed.
 - Supports the need for traceability from tests to requirements, and for results
 arbitration at the requirement level.
 - May be attached to a Test Set, Test Case, or Test Step."
 dateLastUpdated ="2012-08-02T12:00:00" />
 <AttributeDefinitionString
 identifier="org.omg.testIF.externalReference"
 longName="External Reference"
 description="
 - A machine-readable string value that contains only a reference to an external content
 (such as an architectural component in UPDM, model element, defect report, or other
 component).
 - Leading and/or trailing white spaces are removed.
 - Not defined past the link to the external content.
 - Expected to be a publicly available URL.
 - May be attached to a Test Set, Test Case, or Test Step."
 dateLastUpdated ="2012-08-02T12:00:00" />
 </AttributeDefinitions>

 <AttributeValues>
 <AttributeValueString
 definition="org.omg.TestIF.requirementReference"
 identifier="E02F4FC094654E9E83066B92E3D899A7"
 value="R.01"
 description="If the user logs in successfully and their account is Active or
 Pending, display the welcome screen."
 dateLastUpdated ="2012-08-02T12:00:00"
 longName="" />
 <AttributeValueString
 definition="org.omg.TestIF.requirementReference"
 identifier="506A241C27584EB5BA08497D667DFDFB"
 value="R.02"
 description="If the user logs in successfully and their account is Active,
 display Message 2 on the welcome screen."
 dateLastUpdated ="2012-08-02T12:00:00" longName="" />
 <AttributeValueString
 definition="org.omg.TestIF.externalReference"
 identifier="3359F518454C48B890796BDD4E169F04"
 value="https://dummycorp.testif.example/lookupsheet1.xls"
 description=""
 dateLastUpdated ="2012-08-02T12:00:00" longName="" />
 </AttributeValues>

 <TestCase identifier="{3747201B-D141-4843-A512-34C802F201B5}"
 description="Tests something interesting in the application."
 dateLastUpdated="2012-08-02T12:00:00" longName="Example_Testcase_601" >
 <AttributeValueRef> E02F4FC094654E9E83066B92E3D899A7 </AttributeValueRef>
 <AttributeValueRef> 506A241C27584EB5BA08497D667DFDFB </AttributeValueRef>
 <AttributeValueRef> 3359F518454C48B890796BDD4E169F04 </AttributeValueRef>
 </TestCase>
 </TestIFContent>
</TestIF>
]

TestIF Beta 1 Specification Page 94

8.3.10 Environments

This example defines a test environment element containing a variable/value pair that can supply data to a test case.

<?xml version="1.0" encoding="utf-8"?>
<TestIF>
 <TestIFHeader testIFVersion="1.0" comment="Example"
 dateCreated="2012-08-02T12:00:00"
 identifier="57C017488E3C4591A736B8C8F457E531" title="Example"
 />
 <TestIFContent>
 <AttributeDefinitions>
 <AttributeDefinitionComposite
 identifier="com.mydomain.myproduct.environmentSetting"
 description="A symbol/value pair used in the setup of the test environment."
 longName="Environment Setting" lastChange="2012-08-02T12:00:00" >
 <AttributeDefinitionRef> org.omg.TestIF.EnvVariable </AttributeDefinitionRef>
 <AttributeDefinitionRef> org.omg.TestIF.EnvValue </AttributeDefinitionRef>
 </AttributeDefinitionComposite>
 <AttributeDefinitionString
 identifier="com.mydomain.myproduct.EnvVariable" longName="Environment variable"
 description="A symbol used in the setup of the test environment."
 lastChange="2012-08-02T12:00:00" />
 <AttributeDefinitionString
 identifier="com.mydomain.myproduct.EnvValue" longName="Environment value"

 description="A value used in the setup of the test environment."
 lastChange="2012-08-02T12:00:00" />
 </AttributeDefinitions>

 <AttributeValues>
 <AttributeValueComposite
 definition="com.mydomain.myproduct.EnvironmentSetting"
 identifier="93971C64EAA24083B75C1DAB6359AA5E"
 lastChange="2012-08-02T12:00:00" >
 <AttributeValueRef> 113AD22711994BE180724C918F303899 </AttributeValueRef>
 <AttributeValueRef> 5AE90B9CE33E4AD7B68508CC6FE28361 </AttributeValueRef>
 </AttributeValueComposite>

 <AttributeValueString
 definition="com.mydomain.myproduct.EnvVariable"
 identifier="113AD22711994BE180724C918F303899"
 value="ENV_FOO" lastChange="2012-08-02T12:00:00"
 />
 <AttributeValueString

 definition=" com.mydomain.myproduct.EnvValue"
 identifier="5AE90B9CE33E4AD7B68508CC6FE28361"
 value="FOO's value" lastChange="2012-08-02T12:00:00"
 />
 </AttributeValues>

 <TestCase identifier="4D4E2A0BB1A5421DA4AE0AADC607CBD3"
 description="Tests something interesting in the application."
 dateLastUpdated="2012-08-02T12:00:00" longName="Example_Testcase_54" >
 <AttributeValueRef> 7649FD57094348E18AFD156C5FE65158 </AttributeValueRef>
 :
 :
 </TestCase>

TestIF Beta 1 Specification Page 95

 <TestEnvironment
 identifier="7649FD57094348E18AFD156C5FE65158"
 description="Test environment for all application tests"
 lastChange="2012-08-02T12:00:00" longName="App configuration" >
 <AttributeValueRef> 93971C64EAA24083B75C1DAB6359AA5E </AttributeValueRef>
 </TestEnvironment>
 </TestIFContent>
</TestIF>

9 SQL Platform Specific Model

9.1 Purpose
This was created to allow for storage and interchange of Test information in the widely supported SQL format.

This sub clause provides an overview narrative of the SQL design, relationship diagrams with descriptions and a full set of
SQL statements to create a new instance.

In this PSM the Identifier fields are defined as nvarchar(50). This is arbitrary to the standardnormative to the SQL PSM.
Each instance of a TestIF PSM must define Identifier fields sufficiently to contain the UUID format used in the PSM
instance.

9.2 Method of Mapping
Many of the Classes defined by TestIF are expressed by AttributeDefinitions and Attribute Values. This PSM defines the
tables necessary to contain and relate the TestIF Class and relations.

The various TestObject Types defined by TestIF are specified as a field in the TestObject table (testObjectType). The list of
valid types will be included in the enumerations table with an enumeration type of ObjectType.

Most Test Object Data Fields from the PIM are not explicitly shown in the PSM because they are defined as
AttributeDefinitions (simple and composite).

TestIF Arguments and ArgumentValues from the PIM do not need tables in the PSM because Arguments are created using
AttributeDefinitionComposite and AttributeValueComposite Classes and corresponding PSM tables.

Some additional tables are created to properly construct lists that link various Identifies. The additional tables are noted
below where needed.

The entire TestIF SQL schema is available in a separate file named “TestIF SQL PSM.xsl”.
A SQL creation script is available in a separate file named “TestIF SQL Create Script.sql”.

9.3 Attributes
Attributes are central to all objects in the standard. Any type of Test Object can have a rich collection of attributes.
Attributes are used to specify test data, test arguments, environment data and anything else that needs to be associated with a
Test Object. Attributes can contain any kind of data or refer to external data sources. Attributes can be grouped into
composite attributes that contain other attributes.

Comment [MW38]: Issue 18353

Comment [MW39]: Issue 18354

TestIF Beta 1 Specification Page 96

Attributes have a definition and any number of values associated with that definition. Test Objects are linked to attribute
values through a linking table that allows any number of attribute values to be associated with a Test Object. Attribute values
have a unique key that makes any attribute value reusable.

Attributes may be defined at type “composite” which will create a group of unique set of attribute values associated with a
single attribute value linked to a Test Object.

The standard defines a composite attribute “Argument”. Argument is an attribute that is a set of other attributes.

For example a Test Step may need an argument called style where style defines the characteristics of a block of text. The
style values may be Header, Body, and Footer. Each value for the style argument will link to 3 other attributes (Font, Size
and Color).

Figure 9-1: Attributes

9.4 Test Sequence
Test Sequence is designed to allow synchronous thread and, therefore, requires multiple links to derive the first/next Test
Objects in sequenced steps.

The TestIF Classes support multiple steps to be associated with a Test Step. In the PSM this is accomplished by the addition
of a table “TestSequenceList” that is not defined in the PIM. This table allows multiple (list) “SequenceStep” entries to be
related to a “TestSequence.” This supports (1…n) synchronous steps in a sequenced step.

Arguments are related to Sequenced Steps using a composite attribute. The ArgumentValue is an AttributeValue that relates
to an Argument that is a composite type AttributeDefinition. This allows any Sequenced Step to have (0…n) Arguments as
related through the ArgumentValueListId table.

A similar relation is created for ExpectedResults through the use of AttributeValues allows any Sequenced Step to have
(0…n) ExpectedResults as related through the ExpectedResultIdList table.

TestIF Beta 1 Specification Page 97

Both tables, ArgumentValueListId and ExpectedResultIdList are defined in the PSM but are not defined in the PIM.

Figure 9-2: Test Sequence

9.5 Related Test Objects
Test Objects (e.g., Test Cases, Test Steps) can be related to other Test Objects to create almost any Test structure required.
This design allows self-reference, Test Steps that include other Test Steps, Test Steps that have multiple Executed Steps etc.

TestIF Beta 1 Specification Page 98

Figure 9-3: Related Test Objects

TestIF Beta 1 Specification Page 99

ANNEX A Example of PSM-Compliant XML

This example shows a longer, somewhat more realistic example of a TestIF interchange XML file. The file contains 2 test
cases for 2 different applications, with separate environments. The number of test steps has been minimized for space
considerations, but the steps are realistic and have realistic argument lists.

The example file can be found in: Appendix A – PSM-Compliant Example.xml

TestIF Beta 1 Specification Page 100

ANNEX B Example of PSM-Compliant XML

This example shows a full XML implementation of the test cases described above in the section called “Example 2 –
Requirement Traceability and Results Arbitration for Cause-Effect Model-Generated Tests.”

It is focused on showing how complex requirements traceability and requirement-level results arbitration can be supported by
TestIF. Specifically, it shows the following concepts:

• Custom attribute definition to support:
o Requirement traceability
o Relationships between test cases
o Test step input arguments (including complex run-time data pool lookups)

• Test Step reusability across Test Cases

• Simple sequencing (no parallel sequences) of:
o Test Steps in Test Cases
o Test Cases in a Test Run

• Test Results of:
o Sequenced Steps (both for Sequenced Test Steps and Sequenced Test Cases)
o Non-sequenced Test Cases given Test Results by an external Arbiter

The example can be found in the accompanying file “Appendix B - PSM Compliant Example.xml.”

